
பௌத்கவியல்

ADVANCE LEVEL PHYSICS

PAST PAPER MCQs 1979-2018

Eng. MM.ASWAR

BSc Eng in Electrical & Electronics

1.அலகுகளும், பரிமாணங்களும்

(1) 1996 Aug

பௌதீகவியலில் பாவிக்கப்படும் பின்வரும் கணியங்களைக் கருதுக.

- (A) மின்னேற்றம்
- (B) **ക്**ഞ്ഞിഖ്യ
- (C) ചെப்பநிலை

மேலுள்ளவற்றில் எது/எவை சர்வதேச அலகுத்தொகுதி (SI) யீனது அடிப்படைக் கணியம் /கணியங்கள் ஆகும்.

- (1) B மாத்திரம்.
- (2) Aயும் Bயும் மாத்திரம்.
- (3) Aயும் C யும் மாத்திரம்.
- (4) B யும் C யும் மாத்திரம்.
- (5) A, B, C ஆகிய எல்லாம்.

(2) 1979 Aug

பீன்வருவனவற்றுள் எது, சக்தியீன் பரிமாணங்களையுடையது?

(1) உந்தம்

(2) ഖിതേச

(3) ഖഖ

(4) அமுக்கம்

(5) வீசையின் திருப்பம்

(3) 1991 Aug

வேலை ஆனது, பின்வருவனவற்றில் எதன் பரிமாணங்களை போன்ற பரிமாணங்களை கொண்டிருக்கும்?

(1) சக்தி

- (2) ഖീടെ
- (3) உந்தம்

(4) ഖഖ്വ

(5) கணத்தாக்கு

(4) 1979 Aug

பீன்வரும் கணியங்களுள் எது பரிமாணங்கள் இல்லாதது

- (1) தன்வெப்பக்கொள்ளளவு
- (2) சாரடர்த்தி
- (3) விரிகைத்திறன்

(4) மீடிறன்

(5) கதி

(5) 1988 Aug

வலுவீனது பரீமாணங்களாவன

(1) ML^2T^2

- (2) ML^2T^{-3}
- (3) MLT^{-2}

(4) MLT $^{-3}$

(5) I^2T^{-2}

(6) 1980 Aug

கீழே தரப்பட்டுள்ள சமன்பாட்டிலே, சீரான ஆர்முடுகல் a யையும் தொடக்கவேகம் u வையும் கொண்ட துணிக்கையொன்று நேரம் t யீற் சென்ற தூரத்தை S குறிக்கிறது.

$$s = k^{\frac{1}{2}} \left(1 + \frac{at}{2u} \right)$$

இச்சமன்பாட்டில் இருக்கும் கணியம் k யீன் பரிமாணம்

(1) LT

(2) L^2

(3) L

(4) LT^{-2}

(5) $L^{\frac{1}{2}}$

(7) 1982 Aug

அகில ஈர்ப்பு ஒருமை G யினது பரிமாணங்கள்

(1) $ML^{-3}T^2$

- (2) $ML^{-2}T^2$
- (3) $M^{-1}LT^{-2}$

(4) $M^{-1}L^3T^{-2}$

(5) $M^{-1}L^{-3}T^2$

(8) 1981 Apr

 M_1, M_2 என்பன திணிவுகளாகவும், U_1, U_2 என்பன வேகங்களாகவும் குறிக்கப்படுகின்ற பீன்வரும் சமன்பாட்டைக் கருதுக.

$$U_1 = \frac{2M_1}{M_1 + M_2^2} U_2$$

இச்சமன்பாடு

- (1) பர்மாணப்படி சரியானது.
- (2) தொகுதியீல் இருக்கு**ம் 2M_1 இ**ற்குப் பதிலாக $2M_1M_2$ இடும்போது பரிமாணப்படி சரியானது.
- (3) தொகுதியில் இருக்கும் $2M_1$ இற்குப் பதிலாக $2M_1^2$ ஐ இடும்போது பரிமாணப்படி சரியானது.
- (4) பகுதியில் இருக்கும் $M_1+M_2^2$ இற்குப் பதிலாக $M_1^2+M_2$ ஐ இடும்போது பரிமாணப்படி சரியானது.
- (5) பகுதியீல் இருக்கும் ${
 m M}_1+{
 m M}_2^2$ இற்குப் பதிலாக ${
 m M}_1+{
 m M}_2$ ஐ இடும்போது பரிமாணப்படி சரியானது.

(9) 1986 Aug

குறிப்பிட்ட இயல்புகளைக் கொண்ட வாயுவொன்றின் அமுக்கம் P, கனவளவு V,வெப்பநிலை T, ஆகியவை

$$\left(P + \frac{a}{V^2}\right)V = nRT$$

என்ற சமன்பாட்டினால் தொடர்புபடுத்தப்பட்டுள்ளன. இங்கு a வாயுவுக்குரிய ஒரு மாறில் R அகிலவாயு ஒருமை, a இனது பரிமாணங்கள்,

(1) ML^2T^{-2}

- (2) ML^5T^{-1}
- (3) ML^5T^{-2}

(4) ML^4T^{-3}

(5) ML^6T^{-2}

(10) 1983 Aug

உராய்வு பற்றிய பரிசோதனையொன்றில் V கதியைக் கொண்டதும் a ஆரையை உடையதுமான விழும் கோளமொன்றில் தாக்கும் உராய்வு வீசை $F=kav^2$ என்பதால் தரப்படுவதாகக் காணப்படுகின்றது. k இனது பரிமாணங்கள்

(1) $ML^{-1}T^{-1}$

(2) ML^{-2}

(3) $ML^{-2}T^{-1}$

(4) $ML^{-1}T^{-2}$

(5) $ML^{-1}T$

(11) 1991 Aug

திணிவு(M), நீளம்(L), நேரம்(T), ஓட்டம்(I) ஆகிய பரிமாணங்களின் அடிப்படையில் விபரிக்கப்படும் போது, காந்தப்பாயவடர்த்தியின் பரிமாணங்கள்

(1) $M^2L^2IT^{-2}$

- (2) $ML^{-2}I^{-1}T^{-1}$
- (3) MLIT

(4) $MI^{-1}T^{-2}$

(5) ML²IT

(12) 1980 Aug

இரு திணிவுகளுக்கிடையே தாக்குகின்ற விசை P ஆனது $\frac{m_1m_2}{r^2}$ இற்கு மாத்திரம் விகிதசமன். இங்கு m_1, m_2 என்பன திணிவுகளும், r என்பது அத்திணிவுகளுக்கிடையேயுள்ள தூரமும் ஆகும். இங்கு விகிதசமத்துவமாறிலி கொண்டுள்ள பரிமாணங்கள் ,

(1) M^2L^2

- (2) $M^2L^2T^{-2}$
- (3) MLT^{-2}

(4) $M^{-1}L^3T^{-2}$

(5) MLT⁻¹

(13) 1992 Special Aug

ஈர்வை (புவியீர்ப்பு), பரப்பிழுவை S ஆகிய இரண்டினதும் தாக்கத்தின் கீழ் அடர்த்தி
ρ வை உடைய திரவம் ஒன்றின் மீதுள்ள அலைநீளம் λ வை உடைய பரப்பு
அலைக்குரிய கணியம் A ஆனது

$$A = \frac{\lambda}{B} + \frac{2\pi s}{\rho \lambda}$$

இனால் தரப்படும். இங்கு B ஒரு மாறிலி. B யீன் பரிமாணங்கள்

(1) $\frac{L}{T}$

 $(2) \frac{L^2}{T^2}$

(3) $\frac{T^2}{L}$

 $(4) \frac{ML^2}{T^2}$

 $(5) \frac{L^2}{T}$

(14) 1993 Aug

நேரம் t இல் வாகனமொன்று நகர்ந்த தூரம் S ஆனது,

$$S = At^2 \left(1 + \frac{1}{2}Bt \right)$$

என்பதாற் தரப்படுகிறது. A,B என்பவற்றினது பரிமாணங்கள் முறையே,

(1) LT^{-2} , $L^{\frac{1}{2}}T^{\frac{1}{2}}$

- (2) T^2, T^3
- (3) LT^{-2}, T^{-1}

- (4) LT^{-2} , $(LT^{-3})^{\frac{1}{2}}$
- (5) L, L

(15) 1993 Aug

கீழே தரப்பட்டுள்ள சமன்பாட்டிலே V யானது வேகமாகும், g யானது ஈர்வையீனாலான ஆர்முடுகலாகும். γ வானது பரப்பீழுவையாகும். ρ ஆனது அடர்த்தி ஆகும்.

$$V^2 = \frac{gA}{2\pi} + \frac{2\pi\gamma}{\rho A}$$

A கொண்டிருக்கும் பரிமாணங்கள்,

(1) L

(2) LT

(3) LT^{-1}

(4) LT^{-2}

(5) L²

(16) 1985 Aug

திண்மமொன்றின் வெப்பக்கொள்ளளவு C வெப்பநிலை சார்பாகப் பின்வரும் உருவில் தரப்படலாம்.

$$C = \alpha T + \beta T^3$$

இங்கு α வும், β வும் மாறிலிகளாகும். β வின் சாத்தியமான அலகு

(1) J K³

(2) DK

(3) J

(4) $1K^{-2}$

(5) JK^{-4}

(17) 1987 Aug

பீன்வரும் கூற்றுக்களைக் கருதுக

- (A) அமுக்கத்தின் பரிமாணங்கள் $ML^{-1}T^{-2}$ ஆகும்.
- (B) பரப்பு இழுவையீன் பரீமாணங்கள் MT^{-2} ஆகும்.
- (C) சாரடர்த்தி ஒரு பரிமாணமற்ற கணியமாகும். மேலுள்ள கூற்றுகளில்
- (1) A மாத்திரம் உண்மையானது.
- (2) B மாத்திரம் உண்மையானது.
- (3) C மாத்திரம் உண்மையானது.
- (4) A, C மாத்திரம் உண்மையானவை.
- (5) A, B, C ஆகிய எல்லாம் உண்மையானவை.

(18) 1991 Aug Special

பீன்வருவனவற்றுள் எது வலுவினது அலகான, வாற்றுக்குச் சமவலுவானது?

(1) $N m s^{-2}$

- (2) $N s m^{-1}$
- (3) N m s

(4) $N m s^{-1}$

(5) N m² s

(19) 1981 Apr

ார்ப்பு மாறில் G யீன் சர்வதேச முறை (SI) அலகு

(1) $m s^{-2}$

- (2) J m kg⁻¹
- (3) $m^3 kg^{-1} s^{-2}$

(4) $m^2 kg^{-2}$

(5) $N m^2 kg^{-2}$

(20) 1986 Aug

ார்ப்பு ஒருமை G யீனது அலகு,

(1) $N m^{-1}$

- (2) N kg⁻¹
- (3) N m kg^{-2}

(4) $N m^2 kg^{-1}$

(5) $N m^2 kg^{-2}$

(21) 1982 Aug

பீன்வருவனவற்றுள் எந்தவொன்று அலகுகளைக் கொண்டுள்ளது?

- (1) உராய்வுக்குணகம்
- (2) ஏகபரிமாண விரிவுக்குணகம் (நீட்டல் விரிவுக்குணகம்)
- (3) சாரடர்க்கி
- (4) சாரீரப்பதன்
- (5) தன்வெப்பங்களின் விகிதம்.

(22) 1985 Aug

பீன்வருவனவற்றில் எது மின்புல வலிமை E இற்குரிய அலகொன்றாகும்?

(1) Cm^{-1}

- (2) Am^{-1}
- (3) $N m^{-1}$

(4) NC^{-1}

(5) NV^{-1}

(23) 1991 Aug

கீலோவாற்றுமணி என்பது பின்வரும் எதன் அலகொன்றாகும்?

(1) ഖളു

(2) சக்தி

(3) ஓட்டம்

(4) வோல்ற்றளவு

(5) நேரம்

(24) 1992 Aug

கீலோவாற்றுமணி பீன்வருவனவற்றுள் எதன் அலகொன்றாகும்

(1) ഖളു

(2) சக்தி

(3) மின்னோட்டம்

(4) வோல்ற்றளவு

(5) நேரம்

(25) 1992 Special

அம்பீயர்-மணித்தியாலம் என்னும் அலகினால் அளவிடப்படுவது,

(1) மீன்கணியம்

- (2) மீன்வலிமை
- (3) ഖയ്യ

(4) சக்தி

(5) வோல்ற்றளவு

(26) 1984 Aug

பீன்வரும் சமன்பாட்டில் V_1,V_2 என்பன வோல்ற்றளவுகளையும், I_1 ஓட்டம் ஒன்றையும் குறிக்கின்றன.

$$\mathbf{V_1} = \mathbf{K_1}\mathbf{V_1} + \mathbf{K_2}\mathbf{V_2}$$

ஆயின் $\frac{\mathrm{K}_1}{\mathrm{K}_2}$ விகிதம்

- (1) தடையீன் அலகை உடையது.
- (2) ஓட்டத்தின் அலகை உடையது.
- (3) வோல்ற்றளவீன் அலகை உடையது. (4) வலுவீன் அலகையுடையது.
- (5) பரிமாணமில்லாதது.

(27) 1987 Aug

பதார்த்தமொன்றினது தன்வெப்பக்கொள்ளளவு C, பின்வரும் சமன்பாட்டினால் தரப்படுகிறது.

$$C = A + BT^2$$

இங்கு A,B ஆகியவை மாறிலிகளாகும். T வெப்பநிலையாகும். A,B ஆகியவற்றினது அலகுகள் முறையே

MM.ASWAR (BSc.Eng)

(1) $J^{\circ}C^{-1}$, $J^{\circ}C^{-3}$

- (2) Jkg⁻¹°C⁻¹, Jkg⁻¹°C⁻¹
- (3) Jkg⁻¹°C⁻¹ Jkg⁻¹°C⁻²
- (4) ∮kg⁻¹, Jkg⁻¹°C⁻²
- (5) $J kg^{-1} {}^{\circ}C^{-1}$, $Jkg^{-1} {}^{\circ}C^{-3}$

(28) 1989 Aug

பௌதிகக் கணியங்கள் சிலவற்றின் அலகுகள் கீழே தரப்பட்டுள்ளன.

(1) IA^{-2}

- (2) $J A^{-2} s^{-1}$
- (3) $JA^{-1}s^{-1}$

(4) $JA^{-1}s^{-1}m^{-1}$

(5) $J^{-1}A^2s^2$

மேலே 1 தொடக்கம் 5 வரையுள்ள அலகுகளில் எது மின் தடையின் அலகை எழுதும் ஒரு முறையாகும்.

(29) 1990 Aug

பீன்வரும் அலகுகளில் எது வோல்ற்றுக்குச் சமவலுவானது?

(1) Jm^{-1}

(2) NC^{-1}

(3) Js

(4) Nm^{-1}

(5) JC^{-1}

(30) 1991 Aug

ஒளி வருடமொன்றுக்கு சமவலுவானது, (ஒளியீன் வேகம் $= 3 imes 10^8~{
m m s^{-1}}$)

- (1) $3 \times 10^8 \times 365 \times 24 \times 3.6 \text{ km}$
- (2) $3 \times 10^8 \times 365 \times 24 \times 3600 \text{ km}$
- (3) $3 \times 10^8 \times 365 \times 3.6 \text{ km}$
- (4) $365 \times 24 \times 3.6 s$
- (5) $365 \times 24 \times 3600 \,\mathrm{s}$

(31) 1994 Aug

பின்வரும் கணியங்களில் எது அலகைக் கொண்டது?

- (1) உராய்வுக் குணகம்
- (2) வீகாரம்
- (3) சார் ஈரப்பதன்

(4) முறிவுச்கட்டி

(5) வீரிதிறன்

(32) 1992 Special

பீசுக்குமைக் குணகத்தின் SI அலகு

(1) $kgm^{-2}s^{-2}$

- (2) $kg m^{-1} s^{-1}$
- (3) $kgm^{-1}s^{-2}$

(4) $kgm^{-2}s^{-1}$

(5) kgm⁻²s

(33) 1995 Aug

பின்வரும் அலகுச் சேர்வைகளில் எது டெஸ்லாவுக்குச் சமவலுவானது ?

- (1) $\frac{m}{C.s}$

- (2) $\frac{N s}{C}$ (3) $\frac{N}{C m}$ (4) $\frac{N s}{C m}$
- (5) $\frac{Ns}{m}$

(34) 1996 Aug

அம்பீயர் — மணி என்பது

- (1) ஓட்டத்தின் அலகு ஆகும்.
- (2) வலுவீன் அலகு ஆகும்.
- (3) சக்தியின் அலகு ஆகும்.
- (4) நேரத்தின் அலகு ஆகும்.
- (5) ஏற்றக் கணியத்தின் அலகு ஆகும்.

(35) 1991 Special

சீரான ஆர்முடுகல்(a) இன் கீழ் அசையும் துணிக்கையொன்றீனது நேரம்(t) இலுள்ள பெயர்ச்சி(S) ஆனது, $S=kat^2$ எனும் கோவையீனால் தரப்படுகிறது. மாறில் k ஆனது

- (1) பரிமாணம் 🗓 ஐக் கொண்டிருக்கும்.
- (2) பரிமாணம் LT ஐக் கொண்டிருக்கும்.
- (3) பரிமாணம் LT² ஐக் கொண்டிருக்கும்.
- (4) பரிமாணம் LT⁴ ஐக் கொண்டிருக்கும்.
- (5) பரிமாணம் எதனையும் கொண்டிருக்காது.

(36) 1981 Aug

r எனும் தூரத்தினால் பிரீக்கப்பட்டுள்ள M_1, M_2 ஆகிய இரண்டு திணிவுகளுக்கும் வீசை P க்கான சமன்பாடானது பரிமாணங்கள் $M^{-1}L^3T^{-2}$ **திடையீலுள்ள** k என்பதைக் கொண்டிருக்குமாறு என்பதோடு விகிதசமத்துவ மாறிலி எழுதப்படலாம். பின்வருவனவற்றுள் எச்சமன்பாடு k இற்கான இப்பரிமாணங்களுடன் **இ**சைகின்றது.

(1)
$$P = k(\frac{M_1 + M_2}{r^2})$$

(1)
$$P = k(\frac{M_1 + M_2}{r^2})$$
 (2) $P = \frac{1}{k}(\frac{M_1 \cdot M_2}{r^2})$

(3)
$$P = k(\frac{M_1.M_2}{r^2})$$

(4)
$$P = kM_1 \cdot M_2 r^2$$
 (5) $P = k \frac{M_1 \cdot M_2}{r}$

$$(5) P = k \frac{M_1.M_2}{r}$$

(37) 1990 Aug

பீன்வரும் சோடிகளில் எந்த ஒன்று ஒரே பரீமாணங்களைக் கொண்டது.

- (1) ஈர்ப்பு ஒருமை , ஈர்வையீலான ஆர்முடுகல்
- (2) யங்கின் மட்டு, பரப்பு இழுவை
- (3) கணத்தாக்கு, உந்தம்
- (4) இணையொன்றின் திருப்பம், உந்தம்
- (5) வேலை, வலு

9

(38) 1992 Aug

பீன்வருவனவற்றுள் பௌதிகக் கணியச் சோடிகளில் எது ஒரே பரிமாணங்களை உடையது

(1) வேலையும், வலுவும்

- (2) தகைப்பும், வீகாரமும்
- (3) யங்கின் மட்டும், அமுக்கமும்
- (4) பீசுக்குமைக்குணகமும், பரப்பு இழுவையும்
- (5) வீசையும், உந்தமும்

(39) 1980 Aug

விளக்குக்குமிழொன்றின் மின் தடைக்கும், அதனுடாகப் பாயும் மின்னோட்டத்திற்கும் இடையேயுள்ள தொடர்பு கீழே தரப்பட்டுள்ளது.

$$R = k I^{\frac{3}{2}}$$

இங்கு k ஒரு மாறீலியாயின் ஓர் ஏகபரிமாண வரைபைப் பெற்றுக்கொள்வதற்கு

- (1) I ற்கு எதிரே R ஐக் குறிக்க வேண்டும்.
- (2) log (I) யிற்கு எதிரே R ஐக் குறிக்க வேண்டும்:
- (3) I யிற்கு எதிரே R² ஐக் குறிக்க வேண்டும்.
- (4) log (I) யிற்கு எதிரே log(R) ஐக் குறிக்க வேண்டும்.
- (5) I யீற்கு எதிரே log(R) ஐக் குறிக்க வேண்டும்.

(40) 1979 Aug

பீன்வருவன துரங்களை அளவிடுவதற்குப் பயன்படுத்தப்படும் சில அலகுகளாகும்.

- (A) மில்லி மீற்றர்
- (B) மைக்கீறோ மீற்றர்
- (C) அங்ஸ்றோம்

- (D) ஒளியாண்டு
- (E) கூலோ மீற்றர்

பீன்வரும் சேர்மானங்களுள் எது, மீகப்பெரியதும், மீகச் சிறியதுமான அலகுகளைக் குறிக்கின்றது.

(1) Ащи Сщи

- (2) Еպио С պио
- (3) В щі С щі

(4) Dազան Cազան

(5) D щі В щі

(41) 1982 Aug

 $f=k\sqrt{rac{T}{m}}$ என்ற சமன்பாட்டில் T ஆனது N இலும் m ஆனது kgm^{-1} இலும், f ஆனது S^{-1} இலுமுள்ளபோது k=1 ஆகும்.f இனதும் , T இனதும் அலகுகளை முன்னுள்ளவை போல் வைத்து, m ஐ mgm^{-1} இல் அளப்போமாயின், k யினது பெறுமதி,

(1) 10^{-3}

(2) $10^{-\frac{3}{2}}$

(3) 1

(4) $10^{-\frac{3}{2}}$

 $(5) 10^3$

(42) 1997 Aug

MM.ASWAR (BSc.Eng)

10

பீன்வருவனவற்றுள் எந்த ஒன்று திருப்பத்தினது அலகு ஒன்றாகும்**.**

(1) Nm^{-2}

(2) Nm^{-1}

(3) Nm

(4) Nm²

(5) N^2m

(43) 1998 Aug

பீன்வரும் சமன்பாட்டிலுள்ள F, a, v, t ஆகியவை விசை, ஆர்முடுகல் வேகம், நேரம் ஆகியவற்றைக் குறிக்கின்றன.

$$F = c_1 a + c_2 \frac{v}{t}$$

இங்கு $\frac{c_1}{c_2}$ விகிதமானது

(1) ஆர்முடுகலின் பரிமாணங்களைக் கொண்டுள்ளது.

(2) திணிவின் பரிமாணங்களைக் கொண்டுள்ளது.

(3) வேலையீன் பரிமாணங்களைக் கொண்டுள்ளது.

(4) வேகத்தின் பரிமாணங்களைக் கொண்டுள்ளது.

(5) பரிமாணமற்றது.

(44) 1998 Aug

'கோண ஆர்முடுகல் × நேரம்' என்ற பெருக்கமானது பீன்வரும் எதன் பரீமாணத்தைக் கொண்டிருக்கும் ?

(1) கோணப் பெயர்ச்சி

(2) கோண வேகம்

(3) முறுக்கம்

(4) சடத்துவத் திருப்பம்

(5) வேலை

(45) 1998-Old Aug

அமுக்கத்தினது SI அலகு

(1) ஜுல்

(2) நியூற்றன்

(3) வாற்று

(4) பஸ்கால்

(5) ஹேற்ஸ்

(46) 1999 Aug

பீளாங்கீன் மாறிலி (h) இனது அலகு

(1) Js^{-1}

(2) Js

(3) Js^{-2}

(4) $I^{-1}S$

(5) $J^{-1}S^{-1}$

(47) 1999 Aug

கோண வேகம் கொண்டிருக்கும் பரிமாணம்

(1) LT^{-1}

(2) T^{-1}

(3) LT^{-2}

(4) T

(5) $L^{-1}T^{-1}$

11

(48) 2000 Aug

அளக்கப்படும் பீன்வரும் அலகுகளில் ஒன்றினால் பௌதிகக் கணியம் மற்றையவற்றினால் அளக்கப்படும் பௌதிகக் கணியத்திலிருந்து வேறுபடுகின்றது. **இவ்வலகு**

(1) eV

(2) §s⁻¹

(3) Ws

- (4) கிலோவாற்று மணித்தியாலம் (5) MeV

(49) 2000 Aug

வலுவின் பரிமாணங்கள்

(1) ML^2T^3

- (2) ML^2T^{-2}
- (3) MLT

(4) ML^2T^{-3}

(5) $ML^{-2}T^{-3}$

(50) 2001 Aug

eV (இலத்திரன் - வோல்ற்று) என்பது

- (1) ഖബ്ലഖിൽ ക്കാക്ര
- (2) சக்தியின் அலகு (3) மின்னேற்றத்தின் அலகு
- (4)
- வோல்ற்றளவின் அலகு (5) அழுத்த வீத்தியாசத்தின் அலகு

(51) 2001 Aug

சமன்பாடு $\mathbf{v}^{\mathrm{i}} = \mathrm{ka}^{\mathrm{j}} \mathbf{s}$ இல் \mathbf{v} ஆனது வேகத்தையும், \mathbf{a} ஆனது ஆர்முடுகலையும், \mathbf{s} ஆனது இடப்பெயர்ச்சீயையும் வகைகுறிக்கின்றன. k ஒரு பரிமாணமற்ற மாறிலி i, j ஆகியன நிறைவெண்கள், சமன்பாடு பரிமாணமுறைப்படி திருத்தமாக இருப்பதற்கு i, j ஆகியவற்றின் பெறுமானங்கள் எவையாக இருத்தல் வேண்டும் ?

(1) 1, 1

- (2) 1, 2
- (3) 2 , 1

(4) 2 , 2

(5) 2 , 3

(52) 2002 Apr

மீடிறனின் பரிமாணங்கள்

(1) LT^{-1}

(2) Hz

(3) L^{-1}

(4)

(5) ML^{-1}

(53) 2003 Apr

ஒல் அலையீன் செறிவு மட்டத்தின் அலகு

(1) Hz

(2) W

(3) $J m^{-2}$

 $(4) \text{ Wm}^{-2}$

(5) dB

MM.ASWAR (BSc.Eng)

12

(54) 2004 Apr

பின்வரும் கோவையில் I, V ஆகியன முறையே மின்னோட்டம், வோல்ற்றளவு ஆகியவற்றை வகைகுறிக்கின்றன. 🕻 ஒரு மாறிலி

$$C\log\left(\frac{I}{I_0} + 1\right) = \frac{qV}{kT}$$

இடங்கே உறுப்பு $\frac{kT}{a}$ இற்கு

- (1) பரிமாணங்கள் இல்லை.
- (2) தடையீன் பரிமாணங்கள் உண்டு.
- (5) V யீன் பரீமாணங்கள் உண்டு.

(55) 2005 Apr

ஒரு கதிர்த்தொழிற்பாட்டு மாதிரியின் தேய்வு வீதம் (A) ஆனது நேரம்(t) உடன் $A = A_0 e^{-\lambda t}$ யீனால் தரப்படுகின்றது. λ வின் தொடர்புடைமை மாறலானது பரிமாணங்கள்

(1) T

- (3) MT

(4) $M^{-1}T$

(56) 2005 Apr

சமன்பாடு $C=\sqrt{rac{k}{
ho}}$ இல் C ஆனது கதியும், ho ஆனது அடர்த்தியும் ஆகும். k யீன் அலகுகள்

(1) $kg m s^{-2}$

(2) $kg^{\frac{1}{2}}s$

(3) $kg m s^{-1}$

(4) kg m⁻¹ s

(5) $kg m^{\frac{1}{2}} s$

(57) 2006 Apr

பீன்வருவனவற்றில் எது ஓர் SI அலகு அன்று?

(1) kg

(2) m

(3) S

(4) A

(5) k

(58) 2007 Aug

பரப்பீழுவையீன் SI அலகு

(1) N

- (2) $N m^{-1}$
- (3) N m

(4) $N m^{-2}$

(5) N m²

MM.ASWAR (BSc.Eng)

13

(59) 2007 Aug

ஒரு குறித்த பௌதிகக் கணியத்தின் பரிமாணங்களை $[L^3]$ இனால் பெருக்கும் போது வேலையின் பரிமாணங்கள் கிடைக்கும். அப்பௌதிகக் கணியம்

(1) ഖിഞச

- (2) உந்தம்
- (3) அமுக்கம்

(4) திணிவு

(5) வேகம்

(60) 2008 Aug-01

கீலோவாற்று – மணித்தியாலத்தின் பரிமாணங்கள்

- (1) $[M][L^2][T^{-2}]$
- (2) $[M][L][T^{-1}]$
- (3) $[M][L^2][T^{-3}]$

(4) [T]

(5) $[T^{-1}]$

(61) 2009 Aug-02

மீடிறன் f ஐ உடைய ஒரு போட்டனின் சக்தி E ஆனது E=hf இனால் தரப்படுகின்றது. h இன் பரிமாணங்கள்

(1) ML^2T^{-1}

- (2) MLT^{-2}
- (3) $ML^{-2}T^{-1}$

(4) ML^2T^{-2}

(5) $ML^{-3}T^{-1}$

(62) 2010 Aug-01

சடத்துவத் திருப்பத்தின் பரிமாணங்கள்

(1) ML^2

(2) ML

(3) M

(4) L

(5) MLT⁻¹

(63) 2010 Aug-02

வெப்பக் கணியத்தின் SI அலகு

(1) cal

(2) W

(3) K

(4) J

(5) cd

(64) 2011 Aug-01

வெப்பக் கடத்தாறின் அலகு

(1) $J m^{-1} K^{-1}$

- (2) $W m^{-1} K^{-1}$
- (3) $W m^{-2} K^{-1}$

(4) $J m^{-2} K^{-1}$

(5) $W m^{-2} K^{-2}$

(65) 2011-Old Aug-01

. ஈர்ப்பு மாறிலியீன் பரிமாணங்கள்

MM.ASWAR (BSc.Eng)

14

(1) $M^{-1}L^2$

- (2) M^2LT^{-1}
- (3) $M^{-1}L^3T^{-2}$

(4) M^2LT^{-1}

(5) MLT^{-2}

(66) 2012 Aug-01

பீன்வரும் எது S நொகுதியில் ஓர் அடிப்படை அலகை வகைகுறிப்பதில்லை ?

(1) m

(2) N

(3) kg

(4) S

(5) K

(67) 2012 Aug-18

பரிமாணப் பகுப்பிலிருந்து பெறத்தக்க தகவல் பற்றிய பின்வரும் கூற்றுகளைக் கருதுக.

- (A) ஒரு பௌதிகச் சமன்பாட்டில் தோற்றத்தக்க விகிதசமத்துவ மாறிலிகளின் எண் பர்மாணப் பகுப்பீனால் துணியலாம். பெறுமானங்ளைப்
- (B) ஒரு பௌதிகச் சமன்பாட்டில் தோற்றத்தக்க விகித**சமத்**துவ மாறிலிகளின் எண் குறிகளைப் பரிமாணப் பகுப்பீனால் துணியலாம்.
- (C) ஒருபௌதிகச் சமன்பாட்டில் தோற்ற**த்தக்**க விகி**த**சமத்துவ மாறிலிகளின் அலகுகளைப் பரிமாணப் பகுப்பினால் துணியலாம். மேற்குறித்த கூற்றுகளில்
- (1) (A) மாத்திரம் உண்மையானது.
- (2) (B) மாத்திரம் உண்மையானது.
- (3) (C) மாத்திரம் உண்மையானது.
- (4) (B),(C) ஆகியன மாத்திரம் உண்மையானவை.
- (5) (A), (B), (C) ஆகிய எல்லாம் உண்மையானவை.

(68) 2012-Old Aug-03

கோவை $a=kr^nv^m$ இன் பரிமாணச் சமன்பாடு $LT^{-2}=L^n\left(rac{L}{T}
ight)^m$ இனால் தரப்படுகின்றது. இங்கு k ஒரு பரிமாணமில்லாத மாறிலி. ஒத்த பௌதிகச் ச**மன்**பாடு

(1) $a = kr^{\frac{1}{2}}v^{\frac{1}{2}}$

- (2) $a = kr^{\frac{1}{3}}v^{\frac{1}{2}}$ (3) $a = kr^{-1}v^{-3}$
- (4) $a = kr^{-1}v^{-2}$

(5) $a = kr^{-1}v^2$

(69) 2014 Aug-01

அலகுகளைப் பொறுத்தவரை பீன்வரும் கணியங்களில் எது ஏனையவற்றிலிருந்து வேறுபடுகின்றது?

MM.ASWAR (BSc.Eng)

15

- (1) சுழற்சீ இயக்கப்பாட்டுச் சக்தி
- (2) பொறி அழுத்தச் சக்தி

(3) அகச் சக்தி

(4) வേலை

(5) ഖയ്യ

(70) 2014 Aug-02

பீன்வரும் கணியங்களில் எது/எவை பரிமாணமில்லாதது/பரிமாணமில்லாதவை?

- (A) தொடர்பு வேகம்
- (B) தொடர்பு அடர்த்தி (C) தொடர்பு ஈரப்பதன்

(1) A மாத்திரம்

- (2) A, B ஆகியன மாத்திரம்
- (3) B, C ஆகியன மாத்திரம்
- (4) A, C ஆகியன மாத்திரம்
- (5) A, B, C ஆகிய எல்லாம்

(71) 2015 Aug-01

இலத்திரன் வோல்ற்று (eV) என்பது

- (1) ஏற்றத்தின் அலகு
- (2) அழுத்தத்தின் அலகு (3) கொள்ளளவத்தின் அலகு
- (4) சக்தியின் அலகு
- (5) மின்புலச் செறிவின் அலகு

(72) 2016 Aug-01

ஒரு கதிர்த்தொழிற்பாட்டு முதலின் தொழிற்பாட்டினை அளக்கப் பயன்படுத்தப்படும் SI அலகு

(1) Bq

(2) Gy

(3) JBq^{-1}

(4) Bq^{-1}

(73) 2017 Aug-01

ஓட்ட அடர்த்தியீன் அவகு

(1) A m²

- (2) $A m^{-2}$
- (3) $A m^{-3}$

(4) A m⁻¹

(5) A m

(74) 2017 Aug-02

a, b, c, d ஆகியன வெவ்வேறு பரிமாணங்களைக் கொண்ட பௌதிகக் கணியங்களும் k ஒரு பரிமாணமில்லா மாறிலியும் ஆகும். பின்வரும் தொடர்புடைமைகளைக் கருதுக.

(A) $ka^3 = b$

- (B) d = ac
- (C) a = kb

மேற்குறித்த தொடர்புடைமைகளில்

- B மாத்திரம் பரிமாணமுறையாகச் செல்லுபடியானது.
- (2) C மாத்திரம் பரிமாணமுறையாகச் செல்லுபடியானது.

MM.ASWAR (BSc.Eng)

16

- (3) A, B ஆகியன மாத்திரம் பரிமாணமுறையாகச் செல்லுபடியானவை.
- (4) A, C ஆகியன மாத்திரம் பரிமாணமுறையாகச் செல்லுபடியானவை.
- (5) A, B, C ஆகியன எல்லாம் பரிமாணமுறையாகச் செல்லுபடியானவை.

(75) 2018 Aug-01

அமுக்கத்தின் அலகு

(1)
$$kg ms^{-2}$$

(2)
$$kg m^2 s^{-2}$$

(3)
$$kg m^{-1} s^{-2}$$

(4)
$$kg m^2 s^{-3}$$

(5)
$$kg m^{-2}s^{-2}A^{-1}$$

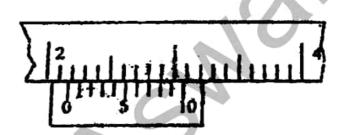
(76) 2018 Aug-02

X, Y, Z ஆகியன வெவ்வேறு பரிமாணங்களைக் கொண்ட முன்று பௌதிகக் கணியங்களை வகைகுறிக்கின்றன. இவை வடிவம்

$$P = AX + BY + CZ$$

ஆக உள்ள வேறொரு பௌதிகக் கணியம் P ஐ ஆக்குமாறு இணைக்கப்படலாம். பீன்வரும் கோவைகளில் எது ஏனையவற்றிலிருந்து வேறுபட்ட பரிமாணங்களைக் கொண்டுள்ளது ?

(3)
$$\frac{(AX).(CZ)}{BV}$$


(4)
$$\frac{(BY)^2}{P}$$

2.அளவீட்டு உபகரணங்கள்

(1) 1980 Aug

இழிவெண்ணிக்கை 0.01 cm ஆயின் இவ் வேணியர் அளவிடையிற் காட்டப்பட்டுள்ள அளவீடு யாது?

- (1) 2.7 cm
- (2) 3.03 cm
- (3) 2.13 cm
- (4) 3.07cm
- (5) 2.17cm

(2) 1981 Aug

அளக்கும் அளவிடையின் 9 கருவியொன்றிலே, பிரிவுகள் தலை**மை** 10 பிரீக்கப்பட்டுள்ளன. வேணியாளவிடையின் பீரிவுகளாகப் கருவியின் இழிவெண்ணிக்கை தலைமை அளவிடைப் பிரீவுகளில்,

(1) 0.01 ஆகும்.

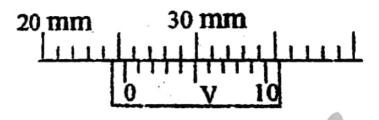
- (2) 0.001 ஆகும்.
- (3) 0.1 ஆகும்.

(4) 0.03 ஆகும்.

(5) 0.2 ஆகும்.

(3) 1985 Aug

வேணியர் **ക്കുവർത്വെന്നു** 30 பீரிவுகள், திருசியமானியொன்றின் யுடன் பொருந்துகின்றன. அளவிடையின் **இ**த்திருசியமானியொன்றின் தலைமை அளவீடை $\frac{1}{2}$. ஆயிடைகளில் அளவு கோடிடப்பட்டிருப்பின், இக்கருவியின் **இ**ழிவெண்ணிக்கை


(2) $\frac{1}{60}$ ° (5) $\frac{1}{360}$ °

(3) $\frac{1}{120}$ °

18

(4) 1987 Aug

வரிப்படத்தில் காட்டப்பட்டுள்ள கருவியில் வேணியர் அளவிடை V இன் 10 பிரிவுகள், தலைமை அளவிடையின் 9 பிரிவுகளுடன் பொருந்துகின்றன.

இவ்வரப்படத்தில் காட்டப்பட்டுள்ள வாசிப்பு

(1) 25 mm

- (2) 25.4 mm
- (3) 25.5 mm

(4) 25.6 mm

(5) 26.1 mm

(5) 1989 Aug

அளக்கும்கருவி ஒன்றில் உள்ள வேணியர் 50 பிரிப்புகளைக் கொண்டது. அந்த 50 பிரிப்புகளும் பிரதான அளவிடையின் 49 அரை mm பிரிப்புகளுடன் பொருந்துகின்றதெனின், இக்கருவியின் இழிவு எண்ணிக்கை

(1) 0.01 mm

- (2) 0.001 mm
- (3) 0.02 mm

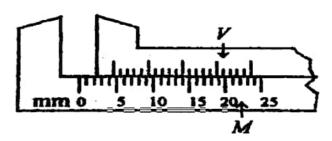
(4) 0.002 mm

(5) 0.025 mm

(6) 1992 Aug

மீற்றர்க் கோல், நகரும் நுணுக்குக்காட்டி, வேணியர் இடுக்கி, நுண்மானித் திருகுக்கணிச்சி, கோளமானி என்னும் ஆய்வுகூடத்தில் உள்ள அளக்குங் கருவிகளுள் ஒன்றைப் பயன்படுத்திப்பெறப்படாத அளவீடு பீன்வருவனவற்றுள் எது

(1) 3.015 cm


- (2) 10.122 cm
- (3) 45.73 cm

(4) 72.1 cm

(5) 0.027 cm

(7) 1994 Aug

அளவீடும் கருவி ஒன்றினது பிரதான அளவீடை M ஐயும், வேணியர் அளவீடை V ஐயும் படம் காட்டுகிறது. இக் கருவீயினது இழிவெண்ணிக்கை

(1) 0.05 mm

(2) 0.10 mm

(3) 0.15 mm

(4) 0.20 mm

(5) 0.25 mm

(8) 1995 Aug

MM.ASWAR (BSc.Eng)

19

பின்வரும் முறை/கருவி ஆகியவற்றில் எது, 50cm நீளம் ஒன்றிலே ஏற்படும் ஒரு மில்லிமீற்றர் வரிசையிலான சிறிய மாற்றங்களை அளவிடுவதற்குப் பாவிக்க முடியாதது?

(1) கோளமானி

- (2) நகரும் நுணுக்குக்காட்டி
- (3) நுண்மானித் திருகுக்கணிச்சி
- (4) நெம்புமுறை

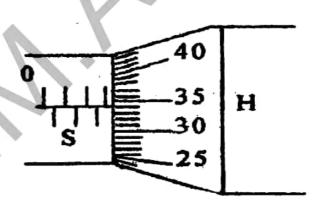
(5) மீற்றர் கோல்

(9) 2006 Apr

ஒரு குறித்த அளக்கும் உபகரணத்தின் தலைமை அளவிடைப் பிரிப்புகளின்(n-1) எண்ணிக்கை n வேணியர் அளவிடப் பிரிப்புகளாகப் பிரிக்கப்பட்டிருப்பின், உபகரணத்தின் இழிவெண்ணிக்கை தலைமை அளவிடைப்பிரிப்புகளில்

(1) 1

(2) $\frac{1}{n}$


 $(3) \ \frac{n}{n-1}$

 $(4) \ \frac{n-1}{n}$

(5) $\frac{n}{n-1}$

(10) 1984 Aug

நுண்மானித்திருகுக்கணிச்ச<u>ி</u> ஒன்றின் ஒரு பகுதியை வரிப்படம் காட்டுகிறது. எனும் காப்புரை , திருகாணியின் ஒவ்வொரு முழுத்திரும்பலுக்கும் $0.5 \, \mathrm{mm}$ பீரிவுகளைக் குறிக்கும் **அளவிடையைக்** கொண்டுள்ளது. H.50கணிச்சியின் தலைப்பாகம் பிரிவுகளைக் கொண்டிருப்பின், கருவியின் இழிவெண்ணிக்கை

(1) 0.001 mm

- (2) 0.01 mm
- (3) 0.5 mm

(4) 1 mm

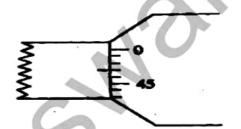
(5) 5 mm

(11) 1996 Aug

நுண்மானித்திருகுக்கணிச்சி ஒன்றினது, அதனது இரு தாடைகளும் தொடுகையிலுள்ள நேரத்திலுள்ள, ஒரு பகுதியை உரு காட்டுகிறது. இக் கருவியினது பூச்சியவழு € 45

- (1) 0.48 mm ஆயிருப்பதுடன், இறுதி அளவிடைவாசீப்புக்கு இது சேர்க்கப்படவும் வேண்டும்
- (2) 0.48 mm ஆயிருப்பதுடன், இறுதி அளவிடை வாசிப்பிலிருந்து இது

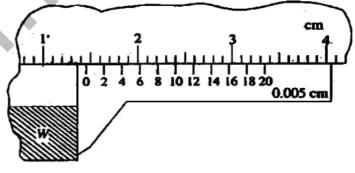
MM.ASWAR (BSc.Eng)


20

கழிக்கப்படவும் வேண்டும்

- (3) 0.02 mm ஆயிருப்பதுடன், இறுதி அளவிடை வாசீப்புக்கு இது சேர்க்கப்படவும் வேண்டும்.
- (4) 0.02 mm ஆயிருப்பதுடன், இறுதி அளவிடை வாசிப்பிலிருந்து இது கழிக்கப்படவும் வேண்டும்.
- (5) 0.03 mm ஆயிருப்பதுடன், இறுதி அளவிடை வாசீப்புக்கு இது சேர்க்கப்படவும் வேண்டும்.

(12) 2000 Aug


நுண்மானித் திருகுக் கணிச்சியின் இருதாடைகளும் ஒன்றையொன்று தொடும் சந்தர்ப்பத்தில் அதன் ஒரு பகுதியை இவ்வுரு காட்டுகின்றது. இக்கணிச்சியின் பூச்சிய வழு

- (1) 0.43 mm; அது அளவிடை வாசிப்புடன் கூட்டப்படுதல் வேண்டும்.
- (2) 0.43 mm; அது அளவிடை வாசிப்பிலிருந்து கழிக்கப்படுதல் வேண்டும்.
- (3) 0.03 mm; அது அளவிடை வாசிப்புடன் கூட்டப்படுதல் வேண்டும்.
- (4) 0.03 mm; அது அளவிடை வாசிப்பிலிருந்து கழிக்கப்படுதல் வேண்டும்.
- (5) 0.47 mm; அது அளவீடை வாசீப்பிலிருந்து கழிக்கப்படுதல் வேண்டும்.

(13) 2009 Aug-07

ஒரு செவ்வக மரக்குற்றி (W) இன் நீளம் வேணியர் இடுக்கியைப் பயன்படுத்தி அளக்கப்படுகின்றது. உருவில் வேணியர் இடுக்கியினதும் குற்றியினதும் உரிய பகுதிகள்

காட்டப்பட்டுள்ளன. வேணியர் இடுக்கியீல் பூச்சியவழு எதுவும் இல்லை எனின், மரக் குற்றியீன் நீளம் (சம்பந்தப்பட்ட பிரிவுகள் மட்டும் வேணியர் அளவிடையில் காட்டப்பட்டுள்ளன.)

(1) 1.30 cm

- (2) 1.35 cm
- (3) 1.45 cm

(4) 1.50 cm

(5) 1.55 cm

(14) 2011-Old Aug-02

பீன்வரும் அளக்கும் உபகரணங்களில் மயீர்த்துளைக் குழாயின் உள்விட்டத்தை அளப்பதற்கு மிகவும் உகந்தது எது?

- (1) மீற்றர் வரைகோல்
- (2) வேணியர் தெடுக்கி
- (3) கோளமானி

MM.ASWAR (BSc.Eng)

21

(4) நுண்மானித் திருகுக் கணிச்சி (5) நகரும் நுணுக்குக்காட்டி

(15) 2011 Aug-02

1 cm வரீசையில் வெளி விட்டமுள்ள ஒரு மென் இறப்பர்க் குழாயின் அப்பெறுமானத்தை அளப்பதற்கு மீகவும் உகந்த அளவீட்டு உபகரணம்

- (1) மீற்றர் வரைகோல்
- (2) வேணியர் தெடுக்கி
- (3) கோளமானி
- (4) நுண்மானித் திருகுக் கனிச்சி (5) நகரும் நுணுக்குக்காட்டி

(16) 2013-Old Aug-03

பீன்வரும் அளவீடுகளைக் கருதுக

- (A) ஒரு நுண்மானித் திருகுக் கணிச்சியைக் கொண்டு $1 \, \mathrm{mm}$ தடிப்புள்ள ஓர் உலோகத் தகட்டின் தடிப்பை அளத்தல்.
- (B) மீற்றர் கோலைக் கொண்டு 90 cm நீளத்தை அளத்தல்.
- (C) கோளமானியைக் கொண்டு ஓர் உலோகக் கோலின் 0.5 mm விரிவை அளத்தல்.

பின்வருவனவற்றில் எது ஏறுவரிசையில் ஓவ்வோர் அளவீட்டினதும் தொடர்புபட்ட பின்னவழுக்களை வகைக்குறிக்கின்றது ?

(1) A, B, C

(2) C, A, B

(3) B, A, C

(4) A, C, B

(5) B, C, A

(17) 2015 Aug-02

சரியாகத் தெரிந்தெடுத்த **அளவீட்**டு உபகரணங்களைப் பயன்படுத்தி $A,\ B,\ C$ என்னும் பின்வரும் அளவீடுகள் எடுக்கப்பட்டுள்ளன.

$$A = 3.1 \text{ cm } B = 4.23 \text{ cm } C = 0.354 \text{ cm}$$

A, B, C ஆகிய அளவீடுகளுக்குப் பயன்படுத்திய உபகரணங்கள்

	A	В	C
(1)	வேணியர் இடுக்கி	வேணியர் இடுக்கி	நுண்மானித் திருகுக் கணிச்சி
(2)	மீ ற்ற ர் வரைகோல்	மீற்றர் வரைகோல்	வேணியர் தெடுக்கி
(3)	மீற்றர் வரைகோல்	நுண்மானித் திருகுக் கணிச்சி	நகரும் நுணுக்குக்காட் டி
(4)	மீற்றர் வரைகோல்	வேணியர் தெடுக்கி	நுண்மானித் திருகுக் கணிச்சி
(5)	வேணியர் இடுக்கி	மீற்றர் வரைகோல்	நகரும் நுணுக் குக்காட்டி

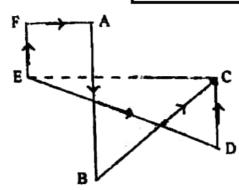
(18) 2016 Aug-02

MM.ASWAR (BSc.Eng)

22

ஒரு குறித்த நீள அளவீட்டின் சதவீத வழுவை 1% இற்குக் கீழே பேண வேண்டியுள்ளது. அளவீட்டு உபகரணத்தின் காரணமாக உள்ள வழு $1\,\mathrm{mm}$ எனின், அளக்கும் நீளம்

- (1) 1 mm இலும் பார்க்கக் கூடுதலாக இருத்தல் வேண்டும்.
- (2) 1 cm இலும் பார்க்கக் கூடுதலாக இருத்தல் வேண்டும்.
- (3) 10 cm இலும் பார்க்கக் கூடுதலாக இருத்தல் வேண்டும்.
- (4) 1 m இலும் பார்க்கக் கூடுதலாக இருத்தல் வேண்டும்.
- (5) 10 m இலும் பார்க்கக் கூடுதலாக இருத்தல் வேண்டும்.


3.காவிகள்

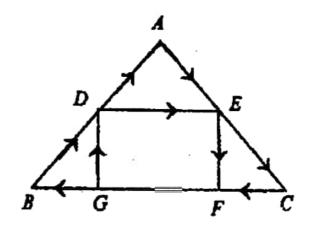
01. 1984 Aug

AB, BC, DC, ED, EF, FA எனும் ஆறு ஒருதளக்காவீகள் படத்தில் காட்டப்பட்டுள்ளன. இவ் ஆறு காவிகளினதும் வீளையுள்

- (1) **EC**
- (2) ED
- (3) 2EC

- (4) 2ED
- (5) 0

02. 1987 Aug


படத்தில்

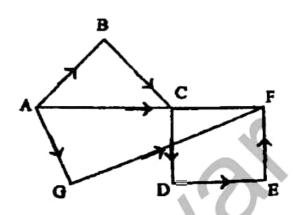
காட்டப்பட்டவாறு

GB, BD, GD, DA, AE, DE, EC, CF, EF ஆகியவற்றினால் பருமனிலும், திசையிலும் குறிக்கப்படும் ஒன்பது வீசைகளினதும் வீளையுள்

- (1) **GF**
- (2) 2GF
- (3) 0

- (4) 2FG
- (5) FG

MM.ASWAR (BSc.Eng)


23

03. 1992 Special Aug

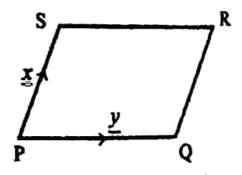
உருவில் \overrightarrow{AB} , \overrightarrow{BC} , \overrightarrow{CD} , \overrightarrow{DE} , \overrightarrow{EF} , \overrightarrow{AF} , \overrightarrow{AG} , \overrightarrow{GF} என்னும் எட்டு ஒரு தளக் காவிகள் காட்டப்பட்டுள்ளன. இந்த எட்டுக்காவிகளினதும் விளையுள்,

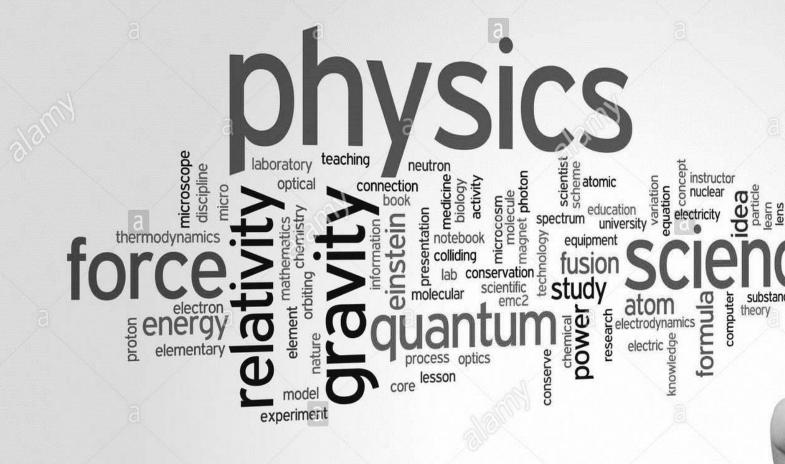
- (1) 0
- (2) 2AC
- (3) **AF**

- (4) 2AF
- (5) 3AF

04. 1994 Aug

பின்வரும் சோடிகளில் எந்த ஒன்று, காவிக்கணியம் ஒன்றையும், எண்ணிக்கணியம் ஒன்றையும் கொண்டுள்ளது?


- (1) பெயர்ச்சீ , ஆர்முடுகல்
- (2) ഖഖ്വ, കുടി
- (3) வேலை, அழுத்தச் சக்தி
- (4) விசை , தெயக்கப்பாட்டுச் சக்தி
- (5) உந்தம், வேகம்


05.1981 Aug

<u>x</u>. <u>y</u> என்னுமிரு காவிகள் PQRS எனும் காவி இணைகரமொன்றின் பொது உற்பத்தியானது P யிலிருந்து வரையப்பட்டுள்ளன. பின்வரும்கூற்றுக்களைக் கருதுக

- (B) மூலைவிட்டம் QS குறிப்பது $(\underline{x}-\underline{y})$
- (C) மூலைவிட்டம் QS குறிப்பது $(\underline{y} \underline{x})$ இக் கூற்றுக்களில்,
- (1) A மாத்திரம் உண்மையானது.
- (2) B மாத்திரம் உண்மையானது.
- (3) C மாத்திரம் உண்மையானது.
- (4) A, B மாத்திரம் உண்மையானவை.
- (5) A, C மாத்திரம் உண்மையானவை.

தொடர்புகளுக்கு:

Tel: 0756747471 0771155540

Mail: aswar.eng@gmail.com

Web: www.aswarphysics.weebly.com

Twitter: @aswarphysics