INTEGRATION OF FRACTIONS

Integration of fractions

x*+5

dx.
x2+9 ~

Example 4 Find J

SOLUTION

When the power on the numerator is higher than, or equal to, the power
on the denominator, we first divide the numerator by the denominator.

Hence, we have

2
Jx +5dx:J<1- 4 )dx
x2+9 x2+9

4 ~1( X
X 3 an (3) c

g 3xT
 dx
X2 +2x+4

| E S EEEESEREEEREEEEREERER N

Example 5 Find J

SOLUTION
Dividing, we obtain
X +3x+7 ! x+3
x2+2x+4 xX2+2x+4
x+3
x> +2x+4
f'(x)
J f(x)
(derived on page 422 of Introducing Pure Mathematics).

To integrate , We use

dx =Inf(x)+ ¢

So, we need to obtain in the numerator a multiple of the differential of
x> + 2x + 4. Hence, we convert

x+3 s e 2] 32
X2+2x+4 x2+2x+4
which gives

2
Jx +3x+7dx: <1+ x+3 )dx
xX24+2x+4 ) x> +2x+4

1@2x+2
== <1+ g (X +2) + 2 )dx
X+2x+4 x2+2x+4
L2 2
_ 1dx+J@dx+2J_d+
x2+2x+4 (x+1)7+3

Therefore, we have

Jx2+3x+7
xX242x+4

I FEEEEEESEESEEREE SRR R R R R EE R E R R R R R E R R R R R R R E R R E R E R R E R E R R ERERRE,]

1 5 2 1(X+1>
dx=x+—-In(x"+2x+4)+— tan +c
2 ( ! V3 V3
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CHAPTER 12 FURTHER INTEGRATION

Note When the denominator is the square root of a linear, or quadratic,
function, a similar method is used.

x+3

——— dx.
N

Example 6 Find J

SOLUTION

Ignoring the square-root sign, we note that the differential of x*> + 9 is 2x.
Hence, we split the integral to obtain

J(\/x2x+9 - \/x23+9)dx

which gives
VX2 4+9+3 sinh1<§> +c
Therefore, we have

x+3 " _1<X>
—————dx=+vx24+94+3sinh | =] +¢
J\/x2-+—9 3

|E SR E R EEEEEE SRR EEERENEEERERESN]

3x+8

———— dx.
VX2 +4x+9

Example 7 Find J

SOLUTION

Ignoring the square-root sign, we note that the differential of x*> + 4x + 9
is 2x + 4. Hence, we express the integral as

J 3x 48 d_sJ 294 dx—i—J >
\/x2+4x+9 /(x+2)2+5

—_— X = —
VX2 +4x+9 2
o +2
:3\/x2—|-4x—|—9+2smhl<x >+c
V5

:3\/x2+4x+9+2[1n(\/x2+4x+9+x+2)—ln\/§ +c

dx

which gives

3x +8
J—x— W.9:3\/x2+4x+9+21n(\/x2+4x+9+x+2)+c’

| S EEEREEE SR EE RSN R R ERESDR

X437

g Example 8 Find J\/TT;—E dx.

g SOLUTION

% Proceeding as in Examples 4 and 6, we obtain

5 Jx2+3x+7 dx:J(x2+2x+9 x—2 )

" VX2 2x+9 VX2 4+2x+9  Vx2+2x+9

2

g :J\/x2+2x+9dx+J—\/xzx++_i+9dx
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EXERCISE 12A

Exeyrci’sg 172}A |

1 Find each of these integrals.

dx

= Taking the first integral on the RHS, we have
B
§ J\/x2—|—2x—|—9dx:J1><\/x2+2x+9dx
]
® 1@2x+2)
. =xVxX2+2x+9— |xx 2" dx
. Vx24+2x+9
B
= 2
- — a5 o xtx
§ =xvVx*+2x+9 x2+2x+9dx
2
)
s +2x4+9-x-9
& =xvVx24+2x+9— ad dx
2 VxE+2x4+9
|
E = xVx2 £2x+9— \/x2+2x+9dx+J—2x+9
. J Vx2+2x+9
% which gives
. 2J\/x2+2x+9dx:x x2+2x+9+jx—dx
5 Vx24+2x+9
E ]
2 1 1 x+9
E vVx242 9dx =— 242 9 —J~———-——d
: J x-+2x+9dx 2x xX°+ 42X + +2 P X
% Hence, we obtain
2 2
o x +3x+7 1 1 x+9 2(x —2)
——— _dx=—xVx2+2x+9+— J(
- J\/x2+2x+9 2 VX2 +2x+9 \/x2+2x+9
2
. 2 2
. — 2 x24+2x+9+ J( 2@x+2) + >
. 2 Vx2+2x+9 \/x2+2x+9
B2
||
= 1 5 x+1
= — +2x+9 —|— \/ 242 h™
% 2x X X x24+2x+9 +sin <2\/§)
- VX2 +2x+9 Vx2+2x+9  x+1
5 NGB +x)+n + +c
- 2 22 2V2
2
g which gives
" x2 4+ 3x+ % 1
" — = _ dx==-0C+)VxX2+2x+9+In(v/x2+2x+9+x+ 1)+
| J\/x2+2x+9 2( ) ( )

a) |2x(x*+1)°dx b) | x(x*— D*dx c) Jx3(x4 — 1) dx
d) | x*(1 — x*)*dx e) |sinxcos’xdx f) Jcosh x sinh*x dx
g) | sinh 3xcosh*3xdx h) | sin’2xcos2xdx

239



CHAPTER 12 FURTHER INTEGRATION

2 Find each of these integrals.

a) J e*cosx dx b) J e“sin 2x dx c) J e* cos xdx
e) J e* cosh 2x dx f) J e~ sinh 3x dx

3 Integrate each of the following with respect to x.

2 2 _
a) b b) x*—4 - 2x—5
1+ x2 x2 416 8x+3
e) 2x —1 ) x+1 %) x—1
x24+2x+3 x2+x+1 Vxi+x—1
i 2x+5 i 3x—-7
V1—4x — x2 V2 —5x —3x2
) +1
4 a) Find ——i—-—dx.
) Jm—xz)
1
7
b) Hence find the exact value of J _xFl
0 /(1 —x2)

P, q €R. (EDEXCEL)

5 If x = 5sin 0 — 3, show that 16 — 6x — x2 = 25cos26.

Hence, or otherwise, find

I
J J6—6e—m > O

6 1) Express
x4+ 3x2+8x+26
f(x) =
(x+ DE2+9)
in partial fractions of the form
b Vo V)

x4+1 x2+9

ii) Hence show that

a-+

8
J f)dx =3 +4mm2 - (OCR)
0 12

2
7 Express y = Jx + Ux 13 in partial fractions.

Bx+4)x*+9)
Hence show that

3
1 T
dx=—1n26+— OCR
Joy X 3 B ( )

d) J e¥ cos 5x dx

d) 34 7x
5 —4x

h) 2x —17
2x2 —4x+5

dx, giving your answer in the form p + grn, where
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REDUCTION FORMULAE

Reduction formulae

We need reduction formulae to facilitate the integration of functions whose
integrals cannot otherwise be found directly.
An example of a reduction formula is

T

b
7. n—11[2 . ,_
J sin"xdx = fsm" 2xdx
0 nJo

(ST
[SIE]

which enables us to convert, for example, J sinx dx into J sin*x dx.

0

[

(ST

This we may further reduce to Jz sin’x dx, and hence to J sin’x dx, which is

fid 0 0

Jz 1 dx,which we can integrate easily.
0

We usually obtain a reduction formula by changing the form of the integrand
into a product which can be integrated by parts. But we must exercise

discretion. For example, a possible product of J sin"xdx is J 1 x sin"xdx.

But this will not be helpful, as J 1dxis x and x— sin” x is an awkward
%

integrand. Thus, we must use

2 . 2 . e
J gin’ % i = J sin x sin” ~'xdx
0 0
because we can integrate sin x easily.

Hence, we have

s (s ol
T oA N P

J sin xsin” ~'xdx = [—cosxsm” lx}2—~J' —cosx x (n— 1)sin" " 2xcos xdx
0 0

0

=04+ (n— I)Fsin”zxcoszxdx
0

wy. 1)J2 sin”2x (1 — sin’x) dx
0

=mn-1) (Jz Sl o g — Jz sin"x dx)
0 0

We usually obtain the integral with which we started as one of the terms on
the right-hand side. So, we take this integral to the left-hand side, which gives

T T

29 2 . s
nJ sm”xdx:(n—l)J sin” ~“xdx
0 0

s

g i
2 . n—1(2 . ,_
= J sin"xdx = J sin” " 2x dx
0 nJo

T

: G . .
Denoting J sin"x dx by I,, we can express this reduction formula as
0

I, = <n - 1>In2
n
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CHAPTER 12 FURTHER INTEGRATION

JL

. 2 .
Example 9 Use the reduction formula for J sin"x dx to evaluate
T
0

2.
J sin’x dx.
0

SOLUTION
n—1

In the reduction formula [, = ( >I,,_2, we put n = 7, which gives

n
b4

I = Jz sin’xdx = EJZ sin’x dx
0 7Jo
Using the formula again with n = 5, we obtain

Is = ijz sin®x dx
5Jo
which gives
6

I; = - x ijz sin®x dox
0

Repeating the procedure with n = 3, we have

I E S B EEEEEEREREREEREE R RS R EREEEEE R R RS R REE R R ERERERERN.]

I7:§xixgjzsinxdx
7 5 3
6 4 2{ F
== X—=—X=|—CosX
7 5 3 0
6 4 2 16
7 5 3 35
Hence, we find Jz sin’xdx = E
0 35

T

o . 2 :
Similarly, we can find the reduction formula for fe“xcos”x dx, when a is not

0
equal to 0. In this case, the integrand is already a product, and e* is a term
which can be readily integrated. Therefore, we differentiate the term cos”x,
which gives

T
2 1 2 2 1 _ .
J e cos"xdx = {— e“xcos”x} — J — —e™pncos" 'xsin xdx
0 a 0 0 a

: . : 5
The new integrand is not in the form of J e“*cos”x, and therefore we must
0

repeat the integration by parts, which gives
n | x kid
) 2 m|2 _ .
J e™cos"xdx = {~ e"xcos”x} - J —e™cos" 'xsinxdx
0 o alJo

__1 L2 {0 - ljz [ —(n— 1)e™cos" *x(1 — cos’x) + e”xcos"x] dx}
a a alo

N J ? [—(n — 1)e®(cos”x — cos"x) + e“cos”x] dx
a

T
1 n |2 —
— __J [ne“cos”x — (n — 1)e™cos” *x]dx
a
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REDUCTION FORMULAE

Hence, we have

T T

(n* + a?) Jz e cos"xdx = —a+nn—1) Jz e™ cos" *xdx
0 0

2

Example 10 If /, = J x"e™ dx, show that
0

In — 2n_268 _% ]

2
Hence find J Xe*dx.
0

SOLUTION

The reduction formula requires that the power of x is reduced. Therefore
we differentiate the term in x” and integrate the term e**, obtaining

2 4 e4x 2 2 ! e4x
Jx”exdx: X' x — —«Jnx”‘ x — dx
0 410 Jo 4

b

na8 2
:26 _EJ xnfle4xdx
4 4

That is, we have
In — 2}1*268 _% et
as required.

2
To find J e dx, we first put n = 3, which gives
0

2

e dx =2e8 — é12
Jo 4

Then we put n = 2, which gives
2
xe™ dx = 2¢° —E( 5 —%]1> = 2¢b _éeg _|_§]1
Jo 4 4 4 8
Finally, we put n = 1, which gives

(2
feRdrt ée8 -+ 3 <leg - l10>

0 4 8 \2 4
2
:éeg—%ieg—iJ e*dx
4 16 32 Jo

2
_d8 38 3 [e4x}
4 16 128 0
Hence, we find
2
J e dx = Bgleg 3
0 128 128

I B R ESESRERSERE RN ERE R R R R E R R E R E R ERE RN ERE R R E R RN R EE R E R RN E R RN R RN E,
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S EEEEEEEEEEEEE A EEEEEEREERRDERERRRERRERRREREEREEERREREER R R R R R R R RS RERERRE.]

1 n

X n—1
Example 11 If I, :J ———— dx, show that I, = ( )I,, .
0ovVx:—1 n 2

SOLUTION

When we separate [, into a part to be integrated and a part to be
differentiated, we must take account of the following:

1 1 ) ) )
o | ——— dx =cosh 'x This result is unlikely to be helpful.
J vxr—1 ! ¥

d 1 X ) .
o — = This result increases the power of the
dx (sz_ 1> (x2 — 1)% P

denominator, and so it also is unlikely to be helpful.

Hence, we avoid having to integrate or differentiate by itself. We

1
vxz—1

therefore separate into x x"~! because we can integrate

x" X
vxr—1 Vxr—1

X )
————to give vx2 — 1.
vx2—1 g

So, we have

Loy . X
In:J ——————dx:J — = xx"ldx

0 vVx2—1

1 1
— [\/xz—l xx”‘l]o-J Va2 —1(n—1)x""2dx
0

leg.2 O n—2
= —(n— 1)j0 b izf_f dx

. 1 1 xn xn72 d
=&\ )Jo<\/x2—1_\/x2—1> *
=—m—-DU,—1,-2)

which gives

nIn:(n_l)In—Z = I,= <n_ 1>In—2
n

as required.

Exercise 12B |

T

1 If Jz cos"xdx = I,, prove that nl, = (n — 1)I,_,, (n > 1).
0

Evaluate

Z

a) Jz cos®xdx b) Jz cos’xdx
0 0
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10

11

Find the reduction formula for Jx”ex dx.

|
Ifr, = J x"e " dx, prove that
0
L=nl,_—¢! (n=1)

1

Hence evaluate J x e dx.
0

s

It L — r tan"6 do, prove that
0

Byt s i & e Ty
n—1

Hence evaluate

[

a) Ftan“@ de b) J4 tan’0d6
0

0

1
If I, = J (Inx)" dx, a) prove that [, = —nl, |, and b) deduce that I, = (=1)"n!

0

Prove that

n J cosh”xdx = cosh” 'xsinhx + (n — 1) J cosh” *xdx

1

Hence find J cosh’xdx.
0

1
Ifr, = J ¥ie* dx, prove that I, = %e - %(n — DI, .

0

XI’VI
Ifr,, = J— dx, prove that
’ (In x)"
m 41
(7’1 - I)Imn = —X—_T
’ (In x)"

If Ly = Jx’”(ln x)" dx, prove that

(WZ ot 1)Im,n — x(m+1)(1n x)n - nlm,n~1

Given that I, = J4 tan"x dx, show that
0
1
¥, — ~I.
n—1 :

(n=2)

3n — 8§

Hence show that I, = (WIEQ)

a) Given that I, = Jcosh”x dx (n = 0), show that

nl, = sinhxcosh” 'x +(n— DI,_, (n>=2)

< (Wl T I)Im.n—l

EXERCISE 12B



CHAPTER 12 FURTHER INTEGRATION

12

13

14

15

16

b) Prove the identity
cosh x — sech x = sinh xtanh x

Hence evaluate

In3
J (sech x + sinh x tanh x)® dx (AEB 98)
0

Given that [, = r x"cos x dx, show that, forn > 2,
0

(g)n— n(n—1I,_,

Hence find the area of the region enclosed by the curve y = x*cos x, the x-axis and the lines

I,

x=0and x = % (WJEC)

Given that I, = Jz sin"6 df, show that, for n > 2,
0

In = <n — 1>In—2
n

Hence evaluate Jz sin’0 dé. (WJEC)
0

V= J e dx n=0
0
a) Show that I, =nl,-, — e’%, n=2.
b) Evaluate I in terms of e.
¢) Find, using the results of parts a and b, the value of I, in terms of e.
d) Show that the approximate value for Jusing Simpson’s rule with three equally spaced
ordinates is

é(zﬁe% +e?) (EDEXCEL)

K
2 sin 2n6

Consider [, = J - dO, where n is a non-negative integer.

o sind

i) Using sin 4 — sin B = 2cos 4 ;— Li sin . ; B, derive the reduction formula
n—1
Vo \C AV
2n—1
ii) Find Jz Sin6d 4o (NICCEA)
o sin

Assuming the reduction formula

Jtan”x dx = tan” " 'x — Jtan"‘zx dx

n—

T
, 4

where n > 2, find the exact value of f tan’x dx. (NICCEA)
0
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17

18

19

20

21

EXERCISE 12B

Given that [, = Jsec”x dx,

a) show that

(n— DI, =tanxsec" *x+(n—-2)I,_, nx=2

. 3 .. ; .
b) Hence find the exact value of J sec’x dx, giving your answer in terms of natural logarithms

and surds. (EDEXCEL)

Find the value of each of the constants A, B and C for which
| | Bx+ C

1+x3 (Q14+x) (d—x+x2)
i

dx.

Hence evaluate J
0 (1 + x3)

i
Given that [, = J (1 + x*)" dx, where 7 is an integer, show that
0

Gn+ DI, =2"+3nl, ,

1
Hence evaluate J {1+ %7y e, (EDEXCEL)
0

1
iy If [, = J xX"(1 — x)% dx, prove that (2n + 3)I, = 2nl, _;, where n is a positive integer.
0
oy | 32
i) Show that J (1 —x)Fdx=—2. (NICCE®
0 315
1
Given that [, = J x"cosmxdx for n = 0, show that
0

w?l, +nn—DI,_,+n=0 forn>2

Hence show that

1 2
J x*cosmxdx = wira ) (OCR)
0 m
Show that
d . . 2 16(1’1 — l)x”’z nx"
S 16 — = =
G A== /(16 — %)

Deduce, or prove otherwise, that if

2 n
O J el
0 /(16 — x?)
then, for n > 2,

nl, =16(n — 1)I,_, — 2"/3

Hence find the exact value of /,. (OCR)
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CHAPTER 12 FURTHER INTEGRATION

22 Show that

-(%[z(l 4 Y] = (n+ 1)1+ A — dn( + £y

1
The integral I, is defined by I, = J (1 +Mde.
0

Show that (4n + 1)1, = 4nl, | + 2" (OCR)

1
23 Let], = J cosh”x dx.

0
i) By considering

& (sinh x cosh” ~ 'x)
dx

or otherwise, show that
nl,=ab" '+ m—DI,_,
where a = sinh(1) and b = cosh(1).

i) Show that I, = é(mb3 +3ab+3).  (OCR)

24 It is given that

I, = J x(In x)" dx (n=0)
1

By considering ad—[x2(1n x)"], or otherwise, show that, for n > 1,
X

1 1
@:5&—7m4
Hence find I3, leaving your answer in terms of e. (OCR)

25 For each non-negative integer n, let 1, = JCOS"H de.
i) Show that if n > 2, then

nl, =sinfcos" 0+ (mn—1)I,_»

ii) Show that F cos’0do = = (NICCEA)
0

sin nx
dx n>0, ne”Z

26 Q:J_
Sin x

a) By comsidering I, ., — I, or otherwise, show that

_ 2sin(n+ 1)x

I ,=————" 41
2 n—+1
L
3 sin 6x . .
b) Hence evaluate J : dx, giving your answer in the form pv/2 + ¢v/3, where p and ¢ are
z sinXx

rational numbers to be found. (EDEXCEL)
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27 a) Write down the values of cosh(In2) and sinh(In2).
In2

b) For n > 0, the integral 7, is given by I, = J cosh”x dx.
0

i) By writing cosh”x as cosh”~ 'xcosh x, prove that, for n > 2,
_3x 5l

=
ii) Evaluate 1. (AEB 96)

nl, +m—-DI,_,

28 I, = J sin”’xdx neN
0

a) Calculate I, in terms of .
b) Show that I, = (2n—1)
2n

Infla nz= 1.
¢) Find 5 in terms of =.

The figure on the right shows the curve with polar
equation r = asin®0, 0 < 0 < &, where a is a positive
constant.

d) Using your answer to part ¢, or otherwise, calculate
exactly the area bounded by this curve. (EDEXCEL) 0 Tnitial line

29 a) Assuming the derivatives of sinh § and cosh 6, prove that

4d (tanh 0) = sech?0
dé

In2

b) Let /. denote the integral J tanh*6 d@ for integers r > 0.
0

i) Evaluate I,.

1 ) 2r—1
ii) Show that IL_—I=—— <—> .
2r — 1 \5

iii) Hence prove that

In2 5 < 1 9\
J tanh2"0d6:1n2——§: (—>
34~ (2r—1) \25

0 r=1

iv) Deduce the sum of the infinite series

x> 1 9 r
> T (E) (AEB 98)

r=1

30 Letm and n be non-negative integers.
i) Determine J sin 6 cos"6 d6.

ii) Show that
sin” " '0cos"t10 m—1
n+1 n+1

J sin”f cos"0d0 = — J sin™ 20 cos" 20 do

where m > 2.
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31

i

iii) If 7, , = Fsian cos"6d0, show that
0

m—1
mn — Im—Z,n
m+n

where m > 2.
iv) Using the result in part iii and the similar result,
n—1

Im n :m—_‘_nlm,n72

sin’fcos*0df = °F  (NICCEA)
512

a8

where n > 2, show that
0

— xn
= J i

a) Show that nl, = x" '\/(1 +x*) —(n— DI, _,, n=2.

The curve C has equation

2 .

“virw P70

Y

The finite region R is bounded by C, the x-axis and the lines with equations x = 0 and x = 2.
The region R is rotated through 2z radians about the x-axis.

b) Find the volume of the solid so formed, giving your answer in terms of 7, surds and natural

logarithms.

An estimate for the volume obtained in part b is found using Simpson’s rule with three

ordinates.

c) Find the percentage error resulting from using this estimate, giving your answer to three

decimal places. (EDEXCEL)

Arc length

Cartesian form

Consider two points, P-and Q, on a curve. P is the
point (x, y) and Qs the point (x + dx, y -+ dy).

Let s be the length of the arc from a point T, and Js
the length of the arc PQ.

Sinee ds is very small, we can approximate the arc PQ
to a straight line. Hence, using Pythagoras’s theorem,
we have

(6x)° + (09)* = (ds)”

Dividing by (6x)*, we obtain

2 2
-
ox ox

250
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ARC LENGTH

As 0x — 0, this gives

2 ;)
(-
dx dx

ds dy g
= — =31+ |—=
dx (dx)

Therefore, we have

2
dy
s = 1+ |—) dx
()
Example 12 Find the length of the arc of the curve x* = 3)? from x = 1

to x =4.

SOLUTION

Differentiating with respect to x, we have

3x2:6yﬂ

X
L b2
dx 2y

which gives

4 d 2
Arclength = 1+ <—2}—> dx
dx

1 4y

Substituting y* = lx—, we obtain

4 3x* A I
Arclength:J l—l——dx:J 1+=dx
1 4X3 1 4

Putting 1 + %Tx =4 and differentiating, we have

2L1£1~Li:é = §udu:dx
dx 4 3

Substituting these in the original integral and changing the limits to u = 2

(from x =4) and u = \/Z (from x = 1), we obtain

2 ¢ AL
Arclength = J ~ i du= {— uﬂ
Wi RV
which gives

64 8 /TV 1
Arclength=——— (-] =—(64 - 7V7
rc leng 9 9<4> 9( \/_)
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Parametric form

To obtain the parametric form, we divide (5x)* + (6y)* = (8s)* by (61)?, where
t 1s the parameter, which gives

&)+@)-G)

As d0x — 0, and thus 67 — 0, we have
&)+
d¢ dt dt

2 z
- 4T
dt dt dr
which gives

dx'\ dy>2
= — | =] dt
’ J (dt) (dz
We sometimes express this as

s:J\/)'cz—I-)'/zdl

where)'c:g—)—c-and)'/:iil
dt dt

Note We use the dot notation only when the independent variable is ¢, and
mostly when ¢ represents time. Thus, x usually expresses speed and x
acceleration.

Example 13 Find the circumference of the circle x? + 2 = 2.

SOLUTION

The parametric equations for a circle are x = rcos 6, y = rsin 0. Therefore

we have
21 2 2
[ g
0 do de

Using just that part of the circle in the first quadrant and then multiplying
by 4, we obtain

s 2 2
s=4| (ﬂ)%ﬁz) do
Jo do dé

which gives

-]

s=4| \/r2 sin’6 + 2 cos20 db
Jo
=4 2rd0:4[r8]7 = 2mr
Jo 0

IS B EEREEEREERE R ERE RN R R R R R E R E R EEREDN]
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ARC LENGTH

Polar form

To obtain the polar form, we consider two points, P and Q, on a curve which
is expressed in its polar equation. P is the point (r, 0) and Q is the point
(r + or, 68+ 06).

As 68 — 0, we can approximate TP to an arc of a circle
of radius r, and hence of length ré6. Also, we can
approximate TPQ to a right-angled triangle, for which,
by Pythagoras’s theorem,

PQ’ = TP? + TQ?
Thus, we have

(r60)* + (0r)* = (s)°
Dividing through by (60)*, we obtain

00 o0
Therefore, as 660 — 0, we have
ds _ [(dr\, ,
o (d@) o
Hence, the length of the arc of a curve between the half-lines 6 =« and 0 = 8
is given by

p dr2
= 24— do
’ J ' <d9>

Example 14 Find the length of the arc of the curve r = ae? between
§=0and =2
2

SOLUTION

Differentiating r = ae®’ with respect to 6, we have
& = 2ae%
Hence, the required arc length is given by

s = F \/(61629)2 + (261620)2 de
0

i3

=/5a Jz e? do
0

]

0

=
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CHAPTER 12 FURTHER INTEGRATION

Area of a surface of revolution

Let A be the area of the surface formed by
rotating the curve y = f(x), between the lines
x = a and x = b, about the x-axis.

Let the curved surface area of the strip shown
shaded be 04.

Treating the strip as being bounded by two
cylinders, we have

2myos < 04 < 2n(y + 0y)os

As 6x — 0, és — 0, so we have

which gives

a4\
A:J2ny 1+<—y> dx
dx

or, in parametric form,

2 2
A=J27Iy <d_x>+<ﬂ> dr or A:J2ny\/5c2+y2dz

dr dt

SOLUTION

av\2
A:J27ty l—l—(—y> dx
dx

Differentiating x? + y*> = r?, we obtain

2x—|—2yd—y:0
dx

which gives

v / 2
A:J 2nVir? — x2 x l+x—2dx
—r y

I E S B ERERSERS SRR RN R R RERRERERDR:!

T 2 2
:J NI L dx:J
— y

Yi

4 £x)

Example 15 Find the surface area, 4, of the sphere x? + y? + 22 = 2.

The sphere x? + »? + z*> = r? is obtained by rotating the
circle x? + y? = r? about the x-axis. Hence, we have

¥

2nrdx

—r
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Exercise 1’2C -

1

2

EXERCISE 12C

By symmetry, the integral from x = —r to x = r is twice the integral from
x = 0 to x = r. Therefore, we have

A= ZJ 2nrdx = [4nrx}; = 4np?
0

Hence, the surface area of a sphere is 4772,

Using the parametric form, x = rcosf, y = rsin0, for the 7
rotated circle, we have
n
A= Jz 27r sin 0\/r2 sin’0 + 12 cos20 d@ )
-3 0
T (0] X

(=T 1)

=2 F 2 sin 0d6 = —4nr? [cos 0] = 4nr?
0

Hence, the surface area of the sphere is 47r?.

Find the length of the arc of x* = 32 from x = 0 to x = 3.
Find the length of the arc of x* = 6y from x = 1 to x = 2.
Find the length of the arc of the parabola x = a?, y = 2at, between the points (0, 0) and (ap?, 2ap).

Find the length of the arc of the cycloid x = a(z 4 sin?), y = a(1 — cos ¢), between the points
t=0and t=m.

X

Find the length of the arc of the catenary y = ccosh( >, between the points where x = 0 and

C
X =C.

Find the area of the surface generated by rotating about the x-axis each of the following.

a) Arc of the curve x = 2£°, y = 3¢?, between the points where r = 0 and ¢ = 4.
b) Arc of the curve x = ¢, y = 2t, between the points where t = 0 and 7 = 2.
¢) Part of the asteroid x = acos’t, y = asin’z, which is above the x-axis.

d) Curve y = SX%, fromx=4tox=09.

e) Curve y = coshx, between x =0 and x = 1.

f) Curve y =&, from x = 1 to x = 4.

The diagram shows a wheel of radius a which rolls along the 7
line Ox. The centre of the wheel is C and P is a point fixed
on the rim of the wheel. Initially P is at O. When CP has
rotated through an angle 6, show that the coordinates of
P are

x = a(0 —sin H) y=a(l —cosB)

Hence find the length of the path of P when the wheel rolls
through one complete revolution. (NEAB)

=Y
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CHAPTER 12 FURTHER INTEGRATION

8 a) Find the values of the constants 4 and B for which

1+ x? B
=4
1 —x? T 1 —x2
b) The function f is defined for —1 < x < 1 by f(x) = —In(1 — x?). The graph of the curve with
equation y = f(x) is shown.

Yi

i) Find g—y in terms of x. Hence show that
X

2 2\ 2
- (2)
dx 1 — x2

if) Prove that the length of the arc of the curve from x = 0 to x = % isln7 — % (AEB 96)

9 a) Using the definitions of the hyperbolic functions cosh x and sinh x given in the information
booklet, show that

i) cosh’x — sinh’x = 1 ii) 2cosh’x — 1 = cosh 2x iii) 2sinh xcosh x = sinh2x
b) Show that the length of the arc of the curve y = x* between the origin and the point (1, 1) is
5(2\/3 +sinh™!2).  (WJEQ)

10 A curve C is given parametrically by
x=¢cost y=elsint (0<:r<n)
Show that the length of C is v/2(e™ — 1).

Show also that in polar coordinates the equation of C is r = ¢’ (0 < 0 < n), and hence sketch
C.

Find the area of the region bounded by C and the x-axis. (NEAB)

11 A curve is defined parametrically by
g 3 )
X = gt y=tr-2t+4

The points A and B on the curve are defined by 7 = 0 and ¢ = 1 respectively.

i) Find the length of the arc AB.
i) Show that the area of the surface generated by one complete revolution of the arc AB about

the y-axis is %n. (OCR)
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13

14

15

16

EXERCISE 12C

The parametric equations of a curve are

x = a(t —sin¥) y=a(l —cost)

where «a is a positive constant. Show that

dx\’ [(dy\ .
(E) + <E) = 4d*sin’(1 1)

The arc of this curve between r = 0 and ¢ = 27 is rotated completely about the x-axis. Show
that the area of the surface of revolution formed is

21
8na2J [1 — cos’(Ln)]sin(L0)ds
0

and hence find this area. (OCR)

The curve C is defined parametrically by
x=3+e(cost+sins) y=4+e(cost—sinf)

Find the exact value, in terms of 7 and e, of the length of the arc of C from the point where
t = 0 to the point where 1 = 1.

This arc is rotated about the x-axis through one revolution. Express the area of the surface
generated as a definite integral. (You are not required to evaluate this integral.) (OCR)
The parametric equations of a curve are

x=23cosf —cos30 y=3sinf —sin30
Show that

) 2
<%) + <ﬂ> = 36sin%0
do do

Hence find the length of the arc of the curve between the points given by 6 =0 and 6 = %n.
(OCR)

The arc of the curve y = e* from the point where y = % to the point where y = % is rotated
through one revolution about the x-axis. Show that the area, S, of the surface generated is
given by

4
S:2nE\/(l + %) dy
T

By using the substitution y = sinh u, show that

185 3
S = — +In|l= OCR
77‘[1444r n<2>] (OCR)

A'curve C is defined parametrically by
x=201+02 y=201-02
where 0 < ¢ < 1. Find

i) the length of C
ii) the arca of the surface generated when C is rotated through one revolution about the x-axis.
(OCR)
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CHAPTER 12 FURTHER INTEGRATION

17

18

19

20

21

The curve C is defined parametrically by the equations x = %t3 —t,y=1 wheretisa
parameter.

a) Show that (d_x>2+ <d_y>2: (7 + 1)
dt dt
b) The arc of C between the points where 1 = 0 and ¢ = 3 is denoted by L. Determine

i) the length of L
i) the area of the surface generated when L is rotated through 2z radians about the x-axis.
(AEB 98)

YA

=
S
o
o
=¥

The figure above shows the curve C with parametric equations
x=uacos’t y=asin’t 0<t<n
where a is a positive constant.

The curve C is rotated through 27 radians about the x-axis. Show that the area of the surface

: . 12nd?
of revolution formed is a

(EDEXCEL)

The arc of the curve y = x°, between x = 0 and x = 1, is rotated through 2= radians about the
x-axis. Determine the exact value of the surface area generated. (AEB 98)

The curve C has the parametric equations

x=¢e%in0 « y=elcosd for0<O< %
a) Show that the area § of the surface generated when C is rotated through four right angles
about the x-axis is given by

S=2/2n Jz e*’cos 0db
0
b) Find the value of S. (WJEQ)
a) i) Using only the definitions cosh 6 = 3 (e +e~?) and sinh 0 = 1 (¢’ — e~), prove the
identity
cosh’d — sinh?6 = 1

ii) Deduce a relationship between sech 6 and tanh 0.
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IMPROPER INTEGRALS

b) A curve C has parametric representation x = sech 6, y = tanh 6.
2 2
i) Show that (%> —|-<Q> = sech?6.
do de
ii) The arc of the curve between the points where § = 0 and 6 = In 7 is rotated through one

full turn about the x-axis. Show that the area of the surface generated is ;—gn square

units. (AEB 97)

22 a) Find Jcoshztsinhtdt‘

The curve C has parametric equations
x=cosh’t y=2sinht 0<r<2
The curve C is rotated through 2z radians about the x-axis.

b) Show that the area S of the curved surface generated is given by

2
S::SnJ‘coﬂftﬁnhtdz
0

¢) Evaluate S to three significant figures. (EDEXCEL)

Improper integrals

An improper integral is one which has either

e a limit of integration of 400, or
e an integrand which is infinite at one or other of its limits of integration, or
between these limits.

In the first case, we replace +oc with n, say, and then find the limit of the

integral as #n — +oo. When this limit is finite, the integral can be found (see
Example 16). When this limit is net finite, the integral cannot be found (see
Example 17).

In the second case, we replace one or other of the limits of integration with p,
say, and then find the limit of the integral as p tends to the value of the limit it
has replaced (see Examples 18 and 19).

o

Example 16 Determine J —12— dx.
1 X

SOLUTION
The upper limit is co, so we replace it with n, which gives

J%m:mj%m

1 X n—oo )1 X

:lmlLMq =1m1<—l+4>
n— o0 x ] n— 00 n
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CHAPTER 12 FURTHER INTEGRATION

= YA 1 . 5

= As n— o0, — — 0, which gives

] P n

. _

= lim <—l -+ 1) =1

= 3 n— o0 n

o i

= That is, we have

2 o

- ] J < dx=1

= 1 x2

E

] 14

- This shows that the area under the curve y = —13 is
X

B

. 5 finite even though the boundary is of infinite length.

B2

although the curve looks very similar to y = %, which
X

has a finite area.

2 o0 1
»  Example 17 Determine J — dx.
2 1 X
=2
B SOLUTION
B
. We have
- 00 n
- J ldx:nmjldx
: 1 X oo X
B
n
. = lim [ln x}
= n— oo 1
=
= — Jim (Inn —
- m (Inn —In1)
: which is not finite since lim In# is oo.
= n— o0
. This shows that the area under y = ar is not finite
T T T ] X
- 0 1 2 3 4 &
L]
B
a8
=

1

Example 18 Determine J &y dx.
0 X

SOLUTION

This is an improper integral since the integrand, 7, is infinite when
X

x = 0. So, we replace the lower limit with p, which gives

| I q
—dx=1lm | — dx
Joﬁ * Jﬁc
1
— lim [2»&] = lim (2 — 2/p)
p—0 §4 p—0

Since lin%) 24/p =0, we have
p—-}

limo 2-2yp)=2
p*)
That is, we have

1
j—l—dx:2

0ovVX
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IMPROPER INTEGRALS

“ dx
b /(a—x)(x—b)

Example 19 Determine J

SOLUTION

At both limits the integrand is infinite, so we replace the upper limit with
p and the lower limit with ¢ and find the limit of the integral as p — a and
g — b. Hence, we have

“ dx R 14 dx
= lim lim
by/(@a—x)(x—b) r—aa=bly\/—ab+ (a+b)x —x2
R dx
= lim lim
r=ag=bly \/—[ab — (a+ b)x + x7]
5
= lim lim dx
p q Jgq ( a+b>2 <a——b>2
. . .
2 2
D
— lim limJ dx
p—aqg—b g Gk 5 a+b )
.
(5)-(-57)
which gives
5 _a—l—b ’
J i = lim lim |sin ' —2
ay/(@—x)(x—>b) r—ag—b a—>b
2 q
y4
— Tim lieg [sinl M}
poaq—b a—>b .
— fim lim{sin“l [M] _sin-! [_w
p—aqg—b a_b a_b

.1 PO | T T
=sin 1—-sin (-1)==+4+=
(=D 5 t5

That is, we have

b
dx o
L ENDG=D)
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CHAPTER 12 FURTHER INTEGRATION

Summation of series

On pages 196-7 of Introducing Pure Mathematics, we
b

noted that the definite integral J f(x)dx is an area

a

bounded by the curve y = f(x), the x-axis, and the
lines x = a and x = b.

We arrived at this result by dividing the given area
into a series of infinitesimally narrow ‘rectangular’
strips of equal width, dx, and summing their areas,
yox: that is, f(x)ox.

If we divide the interval a < x < b into n equal
strips, the x-coordinates of the strips are

a, a—i—b_a, a+2<b_a), a+3(b—a), ., b
n n n

Hence, the sum of the areas of all n rectangles ‘inside’ the integral, shown on
Figure A, is

f(a)b_a+f(a+b_a> b‘“+f<a+2b“’)—b_“+...
n

n n n n

+f(a+[n—l]b_a)b—a

n n

Figure A Figure B
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SUMMATION OF SERIES

And the sum of the areas of all n rectangles ‘outside’ the integral, shown in
Figure B, is

f<a+b—a>b—a+f<a+2b—a>b—a+f<a+3b—a>b—a+
n n n n n n

+fQH{n—ub_a>b;“

n

The actual value of the definite integral is between these two values. As » tends
to infinity, these two sums tend to the same value.

a+f<a+b~a>b—a (a+2b—a>b—a+”}
n n n n

= b—a\b—a
f(x)dx~ lim Zf a+r

n—00 n n

Hence, we have
b

fix)dx = nle [f(a) il

a

which gives

That is, the integral is the limit as # tends to infinity of the sum of the series.

This method may be used to find upper and lower bounds of integrals and
series.

Consider, for example, the curve y = Lz 87

b

00 14

The areas of the rectangles ‘inside’ J e dx are
1 X

227 32 427 %2
The areas of the rectangles ‘outside’ the integral are
1111 .
FERE A s
Therefore, we have 4
1 1 1 1 |
—t+—+—+=+. 0 > | —dx &
12 22 32m42 J 1 &
1 1 1 1
Sttt
2 32 42 52
Since J — dx =1 (see page 260), this gives
L N =
DRI

}21"
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CHAPTER 12 FURTHER INTEGRATION

Example 20 Prove that

4 1 1 1 91
ettt < ——
41 7 8 203 7200

SOLUTION

. . 1 1
Since we require terms —» we take the curve y = -
P s

The first two rectangles ‘outside’ the curve, areas % and é, are shown in
Figure C.

We could continue in a similar manner until we obtain

11 1 ol |
—t—4 .. = > — dx
7383 203 L x3

0 Y '

6 7 8

N=}
=Y
o

6 7 8

Figure C Figure D

Using rectangles ‘inside’ the curve, as shown in Figure D, we obtain
L—}-...—PL < ro—l—dx
i 203 6 X3

Evaluating both integrals, we obtain

21 21

J de:[_% _ L 14
7 x3 2x% ], 2x212 98 441
20 20

[t o] = e = 2

s 800 72 7200
Therefore, we have

L TR ey |
441 73 8 T 203 T 7200

as required.
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EXERCISE 12D

Exareise 130

Find the value, where it exists, of each of the following.

| o S|

1 | —dx 2 | —dx 3 [ ——Fdx
Jo x3 Jo x2 Ji(1—x)

4 ( s % 5 ildx 6 %dx
Jo 14+ x2 0 X2 0 X3
00 00 r2

7 ———1—dx 8 ! dx 9 ! dx
e X2 —a? 0 X2 4+ a2 ax+2
%

10 tan xdx
Jo

11 a) Use integration by parts to find Jxlnxdx.
1

b) Explain why J xIn x dx exists, and obtain the value of this integral. (NEAB)
0

12 a) Write down the value of lim .
x—002x 41

b) Evaluate

G5
1 \x  2x+1

giving your answer in the form In k, where k is a constant to be determined. (NEAB)

1k
cos (5 X
13 a) Find (in terms of the constant k) the limit of —(3——) as x — 1.

nx

T s related to the area under the curve y = e

24 2 1+ x2

b) i) Explain in detail how Z
r=1

between x = 0 and x = 1.

(You should include a diagram. You may assume that 1s an increasing function

1+ x?
for0<x<1.>

r

ii) Evaluate the limit L = lim .
) it 56 ;2::1 nZ + 72
- r

iif) Show that L < _
) re] n? + r?

<Lt (MEI)
2n
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CHAPTER 12 FURTHER INTEGRATION

i}

14 i) Find the exact value of J dx.
ol +x
i) YA
1_
e
0 B
0 1 2 3 4 5 n-4 n—-3 n—-2 n=-1 1 *
n n n n n n n n n

The graph of y = %, for 0 < x < 1, is shown in the diagram together with » rectangles,
X

each of width l Show that the total area of all n rectangles is
n

1 1 1 1
1 [Tt — g+t
n n n

iii) State the limit, as n — oo, of the expression in part ii.
iv) By considering an appropriate graph, find the limit, as n — oo, of

@0

1
R (OCR)

266



15

16

EXERCISE 12D

Prove by induction, or otherwise, that 7Y

}:3 run+n

Pl 11
The diagram shows a sketch of the graph of

y=x> 0<x<1)
The area of the region between the curve and the

x-axis is divided up into # strips, each of width —,
n

by lines drawn parallel to the y-axis. Show that
the area A of the rth strip BCDE, shown in the 0 E B Y
diagram, satisfies the inequalities

fr =1} 13 P

< A, <—
nt nt

Hence show that the sum S of the areas of all # strips satisfies

5 5
l(n—l)<S<_l_(n+l>
4 n 4 n

1

Deduce the value of the integral J x3 dx. (NEAB)
0

In this question, you may assume the following three results:

Inw

A) —0asw— oo.

w

B) y = Ly
X3

b k+1 _ k41 k+1 _  k+1
) J xklnxdx:b 1n/lz+cll lna b (k+1‘1)2 , where 0 < a < b and k # —1.

is a decreasing function for x > 2.

3
2

i) By substituting w = % into the result in 4, show that \/xInx — 0 as x — 0.
X

ii) Show that ks — 0 asx — oo.
X

1

iii) Explain why J Ry dx is an improper integral, and evaluate this integral.
RVA

iv) Draw a diagram to show that Z ln;r J Iz dx, and write down a similar integral [ for
r2 2

r= x7

v) Deduce that the infinite series Z
=3

357<§:mr<381 (MEI)

— 1s convergent, and show that
2
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13 Numerical methods

Which is so small that it scarcely admits of calculation.
DAVID HUME

Solution of polynomial equations

Most equations cannot be solved using algebraic procedures which give exact
solutions, and so we have to turn to numerical methods to solve them.

While there are several, distinct numerical methods available to use, they all
have one property in common: if we repeatedly apply any of the methods to a
problem, we will normally be able to obtain the solution to any desired degree
of accuracy.

Initially, we need to determine an interval in which the £(x) 4
root lies. Hence, generally, to find f(x) = 0, we find f(x)
and f(p). If these are of opposite sign, and f(x) is

continuous between o and f, then f(x) = 0 has a root for =zt
some x satisfying « < x < f. *

If f(x) is not continuous, it may be as in the graph on the
right, where (1) and f(—1) are of opposite sign, and
f(x) # 0 for any value between —1 and 1. =i

®)
=

Example 1 Find an approximate value for the root of
fx)=x*+5x-9=0.

SOLUTION

We have
fH)=14+5-9=-3
f2)=8410—-9=9

We know that f(x) is continuous for 1 < x < 2. Hence, there is a root of
f(x) = 0 for a value of x between 1 and 2.

To find the value of the root more accurately, we could repeat this
method, finding f(1.1), f(1.2), f(1.3), and so on, noting that the values of
f(x) change sign between 1.3 and 1.4, and then finding f(1.31), f(1.32),
etc.

IS E S SR EEREEEEERESRE SRR R NSRS N

The method used in Example 1 is time-consuming, although with a sensible
choice of values of x it can be reasonably effective in finding a solution
without too many unnecessary calculations.
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SOLUTION OF POLYNOMIAL EQUATIONS

The procedures which are normally used to solve polynomial equations such as
that in Example 1 are interval bisection, linear interpolation, the Newton—
Raphson method, and iteration.

Interval bisection

As the name suggests, if we know that there is a root of f(x) = 0 between x = «

andx:ﬁ,wetryx:@(—;—ﬂ)

(2 +5)
2

. The sign of f(x) determines which side of

the root lies.

The method is repeated until we obtain the same answer to the degree of
accuracy required.

Example 2 Find, by interval bisection, an approximate value for the root
of f(x) = x* + 5x — 9 = 0, correct to two significant figures.

SOLUTION
f1)=14+5-9=-3
f2)=8+10-9=9
Therefore, the root lies between x = 1 and x = 2.
We now put x = 1.5, which gives
f(1.5) = 1.875

We note that f(1.5) and f(1) are of opposite sign. Therefore, the root lies
between x = 1 and x = 1.5.

We continue to bisect the interval in which we know the root lies, until we
obtain the required accuracy. Hence, we have the following results.

f(1.25) = —0.796 875
f(1.25) and f(1.5) of opposite sign: root between x = 1.25 and 1.5

f(1.375) = 0.474609 375
f(1.25) and {(1.375) of opposite sign: root between x = 1.25 and 1.375

f(1.3125) = -0.176 513 67
f(1.3125) and (1.375) of opposite sign: root between x = 1.3125 and 1.375

f(1.34375) = 0.145111
f(1.34375) and {(1.3125) of opposite sign: root between x = 1.3125 and 1.343 75

Only now are we able to state that the solution of f(x) = 0is 1.3 to two
significant figures.

IR SRS RS EEEEEEREEEE R EEEE R R EE R R R R R E R E R R R E R R R R R RN

Interval bisection is a very long and generally slow method. Also, it fails if the
graph of f(x) is not continuous over the interval in question, as in the case of

the graph of f(x) = x + L on page 268.
X

(The actual value of the solution is 1.329 744 122 to ten significant figures.)
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CHAPTER 13 NUMERICAL METHODS

Linear interpolation

A more efficient method of progressing from f(1) = —3 and f(2) = 9 is to
deduce that the root of f(x) = x* + 5x — 9 = 0 is likely to be much nearer to 1

than to 2, since [f(2)| > |f(1)].

This intuitive approach is formalised in linear interpolation, where the two
points (1, —3) and (2, 9) are joined by a straight line and the x-value of the

point on this line is calculated.

Using similar triangles, with the root at x = 1 + py,
we have

D1 1 —p 1
oo = B o5
3 9 Pr="%

Therefore, a better approximation to the root of
f(x) = 0 is 1.25, which gives

£(1.25) = —0.796 875

Hence, the root is between 1.25 and 2.

Using similar triangles again, we have

P2 _ 0.75 =5
0.796 875 9

= 9.796875p, = 0.75 x 0.796 875
= p,=0.061004784

Therefore, the second approximation to the root of
f(x) = 01is 1.311 004 784, which gives

f(1.311004784) = —0.191 708 181
Hence, the root is between 1.311 004 784 and 2.

f(x) &

1.311 004 784

dJ

l P
"V [/ 0.688 995216 — p, o

0.191 708 181

=Y

f(x)
9_
9
__21\/ LI i
0 l=p 2 *
3
ﬁ3_
f(x) 4
9_
P> 9
1.25
o] ;
0 1 Cl/ 075—-p, o %
;1_
0.796 875

Repeating the procedure again (see figure above), we obtain

3 _0.688995216 — p;
0.191708 181 9

= 9.191708181p; = 0.688995216 x 0.191 708 181

= p3 =0.014370127
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Therefore, the third approximation to the root is 1.325374912, which gives

f(1.325374912) = —0.044 947 145

Hence, the root is between 1.325374912 and 2.

f(x) A

1.325374912
Py

0.674 625 088 — p,

T

0.044 947 145

T
2

x

Repeating the procedure yet again (see figure above), we obtain

P4

~0.674625088 — py4

0.044947 145 9
=

= ps=0.003352421099
Therefore, the fourth approximation 1.328 727 333 is to the root.

9.044947 145p4 = 0.674 625088 x 0.044 947 145

Both the fourth and third approximations are 1.33 correct to two decimal
places. To check that this is the correct answer to two decimal places, we find

f(1.335):
f(1.335) = 0.054 27
which has the opposite sign to £(1.326).

Hence, the root is 1.33 correct to two decimal places.

Although linear interpolation is much quicker than interval bisection, it still
does not take into account the shape of the graph of f(x) between the starting

points.

The procedure which does is the Newton—Raphson method.

Newton—Raphson method

If o is an approximate value for the root of

£6) = 0, then o LI

f'(x

is generally a better
approximation.

Consider the graph of y = f(x). Draw the
tangent at P, where x = «, and let the
tangent meet the x-axis at T.

We see that the x-value at T is closer than
o 1s to the x-value at N, where the graph
cuts the axis.

74 y = f(x)
P(a, f(a))
e -
i /N/T ’ ’
/

271





