CHAPTER 10 HYPERBOLIC FUNCTIONS

We can express this result as

1o (x—-1 [x=17

which gives

ln<\/(x—1)2—5+x—1> —%ln\/g—i-c

ln(m—l-x—l) +c'

J 1 dx =
Va4x2 —8x — 16
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Exe rcrisre ‘71 0B

1 Differentiate each of the following with respect to Xx.

a) sinh !5x b) cosh !3x ¢) sinh 'v2x d) cosh™ 2x
e) sinh~'x2 f) sech 'x g) coth 'x

2 Find each of the following integrals.

a) dx b) dx o J dx
JVx2—4 x2—9 4x* = 25
4 dx 0) dx ) J dx
9x2 — 16 J V9 + x? V16 + x2
) dx h) dx
J V25 + 16x2 J V9 +25x2
3 Evaluate each of the following definite integrals, giving the exact value of your answer.
a) JI dx b) r dx o J8 dx
VIt R o Vat V16
d) J 7 dx o) Jl dx
0 V4 + 3x? 1287 —1
4 Evaluate each of the following integrals, giving your answer in terms of logarithms.
a) Jz dx b) J * dx o J ) dx
1 V25x2 — 4 1 V4 +9x2 3 /(=12 =3
d) J : dx 8} r dx ) J . dx
0 /4(X+1)2+5 0 \/4+8X+x2 ()\/16x2+20x+35
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EXERCISE 10B

1
V(X2 +4x - 12)°

5 Given that f(x) =

a) find Jf(x)dx.
10
b) Hence find the exact value of J f(x)dx, giving your answer as a single logarithm.

6 (EDEXCEL)
6 a) Show that sinh 'x = In(x + v/x% + 1).

0 dx

VX2 2x+2

b) Evaluate J (WIEQ)
7 a) Find Jx sech’x dx.

b) Find the general solution of the differential equation

cosh x Q—ysinhx =X
dx

giving your answer in the form y = f(x). (EDEXCEL)

8 4> +4x+5=(px+q)’ +r
a) Find the values of the constants p, g and r.

b) Hence, or otherwise, find J; dx.

4x2 +4x +5
c) Show that

2 = 2
J\/(4X2+4x—|—5) dx =In[(2x + 1) + (@x"+4x + 5] + k

where k is an arbitrary constant. (EDEXCEL)
9 a) Show that sinh ’x = In(x + v/I +x2).

1
b) EvaluateJ —dx____
0 Vx2+6x+ 10

10 a) Express 4x? + 4x + 26 in the form (px + ¢)* + r, where D, g and r are constants.

b) Hence determine J L d
/(4x2 + 4x + 26)

11 i) Find A4, B and C such that
3x2 +24x+23 = A(x+ B’ + C

, giving your answer correct to four decimal places. (WIEC)

X.  (EDEXCEL)

ii) Show that
J S Lok Lo (M> +c¢  (NICCEA)
V3x2+24x+23 3 5

12 Express x> — 6x + 8 in the form (x — p)* — ¢2, for positive integers p and g¢.

R d
Hence evaluate J

) m giving your answer in terms of natural logarithms.

(AEB 97)
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CHAPTER 10 HYPERBOLIC FUNCTIONS

13 a) Simplify (e* + ¢ ¥)* — (¢* — e *)* and hence deduce that cosh’x — sinh?x = 1.

b) Given that y = arsinh x, show that a4 = ;
dx x4+ 1
¢) Find J arsinh x dx. (EDEXCEL)

14 A curve has equation y = xsinh™'x.
i) Show that
&’y _ 3+
dx? 1+ XZ)%
ii) Deduce that the curve has no point of inflexion. (OCR)

15 Starting from the definition of cosh in terms of exponentials, show that
cosh™'x = In[x + /(x? — 1)]
Show that

2
J 1 1ln<4+\/ﬁ

 dx= OCR
Vee—1 T 2 > (OCR)

243

16 Given that y = tanh'x, derive the result 23 = —1—
dx 1-—x?

[No credit will be given for merely quoting the result from the List of Formulae.)
1
1, 27

Show that r tanh '2xdx = — In=—. (OCR)
0 8 16

17 i) Let x = sinhu. By first expressing x in terms of exponentials, show that
sinh'x = In[x + /(x* + 1)]

ii) By using an appropriate substitution, show that

1 . -1 f
,[7\/()@ ) dx = sinh (a) +c

where a and c¢ are constants (¢ > 0).

ili) Evaluate

Yo
————dx
J 0.4/(9x2 +4)
giving your answer in terms of a natural logarithm. (OCR)

18 a) State the values of x for which cosh 'x is defined.
b) A curve C is defined for these values of x by the equation y = x — cosh'x.

i) Show that C has just one stationary point.
ii) Evaluate y at the stationary point, giving your answer in the form p — In g, where p and
g are numbers to be determined. (NEAB)
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EXERCISE 10B

19 a) Using the substitution u = ¢*, find Jsechxdx.

20

21

b) Sketch the curve with equation y = sech x.

The finite region R is bounded by the curve with equation y = sech x, the lines x =2, x = —2
and the x-axis.

c¢) Using your result from part a, find the area of R, giving your answer to three decimal
places. (EDEXCEL)

1
(x2 + 4)F

The diagram shows the curve with equation y =

The finite region bounded by the curve, the x-axis, the y-axis and the line x = 4 is rotated
through one full turn about the x-axis to form a solid of revolution.

Use integration to determine the volume of this solid, giving your answer in terms of 7 and a
natural logarithm. (AEB 98)

a) Use the definition of coth x in terms of exponential functions to prove that

arcothx:l ln<x+ 1)
2 x=1

The function f is defined by f(x) = arcoth (g-) , X2 > 9,

b) Show that f is odd.
¢) Find f'(x).

. . . 1 .
d) Expand f(x) in a series of ascending powers of — as far as the term in % and state the
% ¥
. 1
coefficient of ——.
x2n+1

e) Hence, or otherwise, derive the expansion of

: ; . 1
> In a series of ascending powers of — as

—Xx X
.1 .. 1
far as the term in — and state the coefficient of e (EDEXCEL)
X x
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CHAPTER 10 HYPERBOLIC FUNCTIONS

22 Starting from the definitions of sinh x and cosh x in terms of exponentials, show that for
x| <1,

artanh x :%1n<1 —|—x>

e X

a) Expand artanh x as a series in ascending powers of x, as far as the term in x° and state the
coefficient of x***! in this expansion.
b) Solve the equation

3sech’x +4tanhx+1=0

giving any answers in terms of natural logarithms.
¢) Sketch the graph of y = artanh x and evaluate the area of the finite region bounded by the
curve with equation y = artanh x and the lines x = % and y = 0. (EDEXCEL)

23 a) Use integration by parts to show
sz cosh x dx = x*sinh x — 2x cosh x + 2sinh x + ¢

b) Consider the two curves whose equations are 7 y, = sinh x
yi=sinhx y, =2 —coshx

and which are shown in the figure on the right.

ENTY

i) Show that they cross at the point (log, 2, %).

ii) Find the area bounded by the y-axis, the
curve y; and the curve y,.

iii) The areca bounded by the y-axis, the line
y= % and the curve y; is rotated about the
y-axis to form a solid of revolution. Show y,=2— coshx
that its exact volume is

o
=Y

%Bm&m%4m%¢+ﬂ

The volume of revolution about the y-axis is given by = sz dy.] (NICCEA)

‘Double-angle’ formulae

To integrate cosh’x and sinh?x, we must express each in a form which contains
cosh 2x, in a similar manner to integrating cos®x and sin’x (see Introducing
Pure Mathematics, pages 451-2).

To obtain the identity relating cosh 2x to cosh®x, we have
cosh2x = %(ez)C +e ) = %[(ex +e7*)? = 2]
:lmmm%—m
2
which gives

cosh 2x = 2cosh?x — 1
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‘DOUBLE-ANGLE’

To obtain the identity relating cosh 2x to sinh’x, we take
cosh2x = 2cosh’x — 1

and make the substitution cosh’x = 1 + sinh®x to obtain
cosh 2x = 2(1 + sinh®x) — 1

which gives
cosh2x = 2sinh’x + 1

Similarly, we have
sinh2x = l(ez"' —e ) = l(ex —e )" e

Z 2
which gives

sinh 2x = 2 sinh x cosh x
Hence, we see that Jcoshzax dx is given by
Jcoshzax e J%(cosh 2ax + 1)dx
which gives

Jcoshzax dx = L sinh 2ax + i +c
4a 2

Example 14 Using the substitution x = 3sinh , find the value of

J v 9+ x2dx.

SOLUTION

s

S R BN E N

Differentiating the substitution x = 3 sinh u, we obtain

i i = 3coshu

e = dx =3coshudu

; Substituting for x and for dx in [ V9 + x2dx, we have
J\/9+x2dx - J\/9+9sinh2u(3coshu)du
: = J9cosh2u du

.

. 9

= — | (cosh2u + 1)du

- 2

Ei :%(%sinh2u+u>+c
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CHAPTER 10 HYPERBOLIC FUNCTIONS

Using sinh 2u = 2 sinh u cosh u, we obtain

J\/9+x2dx:%sinhucoshu+%u+c

As the question involves an integral in terms of x, the answer must be
given in terms of x.

Using coshu = v/ sinh®u + 1 and sinhu = %’ we obtain

9 x x2 9 . _ifx
VI+x2dx===4/1+—+=sinh (—>+c
J LIV T 3
1 9 X x2
=—xy/9+x2+—In| —+4/—+1
VIS n<3 Vo >+C
Therefore, we have

J\/9+x2dx:§ x2+9+%ln< x2+9+x)+c’

I EEEEEEEREEREERNEEEEEEERERRRR R R R R

Power series
On page 177, we used Maclaurin’s series to find the power series for sin x and
COS X.

In a similar way, we can find the power series for sinhx and cosh x.

Power series for sinh x

Let sinh x = ay + a1 x + axx*> + a3x® + ..., where the @’s are constants.
When x = 0, sinh 0 = gy. But sinh 0 =0, therefore gy, = 0.
Differentiating sinh x = ay + a;x + a»x* + a3x> + ..., we obtain
cosh x = a; + 2a,x + 3a3x* +dasx® + . ..
When x = 0, cosh0 = a;. But cosh 0 = 1, therefore a; = 1.
Differentiating again, we obtain
sinh x =2a, +3 % 2a3x + 4 x 3ayx> + 5 x 4asx> + . ..
When x =0, sinh0 =2a, = a, =0.
Differentiating yet again, we obtain

coshx =3 x 2a; +4 x 3 X 2a,x + 5 x4 x 3asx* + ...

When x =0,cosh0=3x2a; = a :L.

3!
Repeating the differentiation, we obtain
1 1
614:0 (1525 (1(,:0 617:"7—!



Hence, we have

sinhx = x + 1x +ix +Lx + .
3! 5! 7!

By d’Alembert’s ratio test, this series converges for all real x.

Power series for cosh x

We can use the procedure for sinh x to find the power series for cosh x.
However, it is much easier to start from the expansion for sinh x. Hence, we
have

d . d 1 1 1
oshx=—sinhx=—{x+—x" 4+ — S
cosh x Ix nh x dx(x 3'x S'X +7'x )

which gives

1 1 1
cosh\~1+—x —|—Ex +ax + .

By d’Alembert’s ratio rest, this series is convergent for all real x.

Osborn’s rule

Taking the power series for cosix, we have
cosix =1 —i(lx) —|— (1x) —

=1+ ix + i X+
2! 4!
which is the power series for cosh x. Hence, we have
cosix = cosh x

For sinix, we have

SRRy . W PN
sinix = (ix) 3!(1)6) +5!(1x)

¥ xS
<x+3'+5'+ )

which is the power series for isinh x. Hence, we have
sinix = isinh x

Since cos’6 + sin’6 = 1 for any angle 6, we know that
cos?ix + sin’ix = 1

which gives

cosh’x + (isinh x)P? =1

OSBORN’S RULE



CHAPTER 10 HYPERBOLIC FUNCTIONS

Therefore, we have
cosh’x — sinh*x = 1
The two identities
cos?0 +sin*0 =1 and cosh’x —sinh’x = 1

are typical of the similarity between the standard ordinary trigonometric
identities and the standard hyperbolic identities (see pages 191-2). Osborn’s
rule gives guidance on the similarity between such identities based on sinix
being equivalent to isinh x.

Osborn’s rule states that to change a standard ordinary trigonometric identity
into the equivalent standard hyperbolic identity, change the sign of the term
which is the product of two sines, and substitute the corresponding hyperbolic
functions.

Thus, for example,

cos2x=1—2sin’x gives cosh2x=1+2 sinh’x
sin®x

When applying the rule to 1 + tan?x = sec’x, we treat tan®x as . Hence,

cos’x
the equivalent hyperbolic identity is

1 — tanh®x = sech’x

!Exercise 10C

1 Expand each of the following expressions up to and including the term in b

a) cosh 2x b) sinh 3x
¢) (1 + x)cosh5x d) (1 + 2x)sinh 6x

2 By means of the substitution x = 3cosh 6, find J\/x2 —9dx.

3 Using the substitution x = 4sinh 0, find J V16 + x2dx.

4 Find J\/ 25 4+ x2dx. 5 Find J\/x2—25 dx.
. - . 2 3.3

6 Find J—x— dx. 7 Find JL— dx.
Vxr =4 a9

8 Use the substitution x = 2sinh u to find J\/(xz + 4)dx. (OCR)

9 Use the definition cosh x = %(ex +e™) to prove that
cosh A + cosh B = 2cosh (4 + B) cosh (4 — B)
For n > 0, the function P, is defined by
P,(x) =1— (n+ 1)coshnx +ncosh (n + 1)x
i) Evaluate Py(x).
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EXERCISE 10C

ii) Show that
P.(x) = P,_1(x) = 2rcoshrx(cosh x — 1)
where r > 1.
Hence, or otherwise, find Z rcosh rx for x # 0. (NEAB)
r=1
10 i) Prove that
sinh {log.(x + vVx2 + 1)} = x

ii) Show that

J%:%loge{élx—k V I6X2+9}+C

iii) Show that
d 9
—(xV16x2 -9 =2/16x2+9 — — = _
dx ( ) V16x2 +9

iv) Hence show that

1
V16x2 +9dx = §+§ log,3  (NICCEA)
J0

11 i) Show that

B —léJsinzﬁdG
V16 —9x2 27

ii) If g(x) is a continuous function, show that

12 log.7
16 B 1J ¢ G sinh u) du  (NICCEA)

0 V49 - 4x? 2 Jo
12 Find the general solution of the differential equation
(sinh x) jy + (2coshx)y = sinhx  (NEAB)
X
13 a) The locus of a point (x, y) defined by the b7Y
parametric equations
34
Xx = coshv
y= sinhv 9] 1 P(cosh u, sinh u)
together with the point P at which v = u, 11
where # >0, is shown in the figure. o A
i) Show that the area bounded by the 1 2 N3 i

curve AP, the ordinate line PN and —14
the x-axis is given by

U
J sinh?vdy —3J
0

i) Show that the area bounded by the curve AP, the straight line OP and the x-axis is %u

215



CHAPTER 10 HYPERBOLIC FUNCTIONS

b) Sketch the curve defined by x = cos 0, y = sin6.

If the co-ordinates of P’ are (cos ¢, sin ¢), shade a region whose area is %d). Comment on
the similarities between the figure on page 215 and your sketch. (NICCEA)

14 Differentiate /(x* — 1).
Show that

o

r cosh 'xdx=aln2+b
1

where a and b are rational numbers to be determined. (NEAB)

15 The diagram on the right shows a region R in the x—y plane
bounded by the curve y = sinh x, the x-axis and the line AB
which is perpendicular to the x-axis.

a) Given that AB = 3, show that OB = In 3.
b) i) Show that
K+ 1
2k

ii) Show that the area of the region R is %
¢) i) Show that

cosh(lnk) =

In3
J sinlPnds = %[sinh(ln 9) — In9]
0

i) Hence find, correct to three significant figures, the volume swept out when the region R
is rotated through an angle of 2z radians about the x-axis. (NEAB)

16 a) Given that u =1 (¢’ —e¢ ™), prove that y =In(u + V(@2 +1)).
b) Using the substitution x = sinh 0, show that
J—)f— dx = l[x\/(l + %)= In(x+ /(1 + X)) +k
V(A +x?) 2

where k is an arbitrary constant. (EDEXCEL)

17 The diagram shows a sketch of the curve defined
by the parametric equations

x=sinhz y=-cosht =0

together with the tangent to the curve at the point P
(sinh p, cosh p). The curve meets the y-axis at the
point Q and the tangent at P meets the y-axis at

the point R.

a) Show that the equation of the tangent to the
curve at P is

ycoshp —xsinhp =1 0 &
b) Given that R is the point (0, 1), show that
p=InQ2+3)
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EXERCISE 10C

c) Show that the area 4 (shown shaded in the diagram) bounded by QR, RP and the arc PQ s

given by
P
A= J cosh’rdr — ﬂ_
0 4

d) Hence find the value of A4 in the form
aln2 4 /3) + b3

where @ and b are rational numbers to be determined. (NEAB)

a) Use the power series for sin x to show that, for small values of x,
] € X2 X4 :
smx~x (1 ——+—"—
6 120
b) Hence, or otherwise, find the constants a, b, ¢ in the approximation
sin’x & ax® + bxS + ¢x’
¢) Find a similar approximation for x*sinh x for small values of x.
d) Show that
X x’sinhx —sin’x 2

lin —=Z  (NEAB)
x—0 e 3
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11 Conics

That an extensive theory of the conics was obtained is eloquent testimony to the brilliance
of Archimedes and Apollonius.
JEREMY J. GRAY

Generating conics

If we take a solid, right circular cone and, in any direction, cut a plane section
through it, we obtain a curve which is a member of the class of curves known
as conics or conic sections.

It follows that the shape of the curve so obtained is determined by the
direction in which we make the cut: that is, on the inclination, 8, of the plane
section to the axis, as the figure below shows.

Parabola Ellipse Hyperbola

Hence, with the cone standing on a horizontal plane, if we cut in a direction
parallel to the slant height of the cone, whereby 0 = o, we obtain a parabola.

If we cut in a direction for which o < 0 < g, we obtain an ellipse.

If we cut in a direction, not through the vertex, for which 6 < «, we obtain a
hyperbola.

If we cut horizontally through the cone <that is, 0 = %) , we obtain a circle.

The study of the parabola, the ellipse and the hyperbola as sections of the
same cone originated with the Greek geometer Apollonius, who flourished
about 280 BC. They were not defined analytically as loci until the seventeenth
century, largely due to the work of the renowned French mathematician

René Descartes (1596-1650), and of the English mathematician John Wallis
(1616-1703).
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Conics as loci

PARABOLA

Analytically we define a conic as the locus of a point which moves so that the

ratio of its distance from a fixed point to its distance from a fixed line is

constant.

The fixed point is called the focus, and the fixed line the directrix. The constant

ratio is known as the eccentricity of the conic and is denoted by e.

Hence, in the figure on the right, where the point P is
describing a conic, we have

PF = ePT
When e = 1, the conic is a parabola.

When 0 < e < 1, the conic is an ellipse.
When e > 1, the conic is a hyperbola.

The circle (which we met in Introducing Pure Mathematics,
pages 220-7) may be treated as the limiting case of an ellipse,
in which e = 0 (see pages 222-6).

Parabola

Let the focus, F, be (¢, 0) and the directrix be x = —a. Then
for the point P (x, y), we have

PT=x+4+a PF=4/(x—a)+)?

But PT = PF, since for a parabola ¢ = 1. Hence, we obtain
(=)’ +y = (x +a

which gives
2 =dax

This is the standard equation for a parabola, an example of
which is shown at bottom right.

Common parametric equations for the parabola > = 4ax are

x = at’ gad o = 2at

where ¢ is the parameter.

The chord of a parabola through its focus, and perpendicular
to its axis, is called the latus rectum. Thus, in the diagram on
the right, CD is the latus rectum.

Half the length of this chord (FC or FD) is known as the
semi latus rectum.

From the equation y? = 4ax, we see that the coordinates of
C are (a, 2a) and those of D are (a, —2a). Hence, the length
of the latus rectum is 4a and that of the semi latus rectum
is 2a. (See also pages 223 and 231.)

Directrix

Focus

YA

P(x, y)

=¥

x=—u
Directrix
YA
? = dax
(/"’)—_
2a
O F §
2a
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Note

PTER 11 CONICS

e All quadratic curves are parabolas.

e All quadratic curves are similar.

I E R E SRR EEEREEREREEE SRR E R R EE RN EED]
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Example 1 Find the focus and directrix of each of the parabolas
a) y* = 32x b) x2=16(y +1)
SOLUTION

For a general parabola y? = 4ax, the focus is at (a,0) and the directrix is
x=—a.

a) For the parabola y*> = 32x, a = 8.
Therefore, the focus is (8, 0), and the directrix is x = —8.

b) For the parabola x> = 16(y + 1), the x- and y-axes have been
interchanged and y has been translated to y + 1.

From the equation, a = 4. Thus the focus for the parabola x*> = 16y
would be (0, 4), which, after translation, becomes (0, 3) for the
parabola x? = 16(y + 1).

Similarly, the directrix for x> = 16y, which would be y = —4, becomes
y = —5 after translation.

Example 2 Find where the tangent to the parabola y* = 8x at the point
(272, 41) meets the directrix.

SOLUTION
We have
x=2r = a5 _ 4¢
dt
y =4t % =4
which give

dy P 1
dx dt “dr ¢
Using y — y; =m(x — x;), we find the equation of the tangent at (2¢2, 41):

y—4t:%(x—2t2)

= yt=x+27 1]
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PARABOLA

The directrix of the standard parabola y* = dax is x = —a. Therefore, for
the parabola y*> = 8x, ¢ = 2. Hence, the directrix is x = —2.
Substituting x = —2 in [1], we obtain
= 2= g
!

Therefore, the tangent meets the directrix at <—2, 2 — 2)
t

Example 3

a) Find the equation of the normal to the parabola y* = 8x at the point
T(2¢2, 41).

b) Find where the normals to the parabola at the points P(2p?, 4p) and
Q(2¢%, 4q) intersect.

Note When given the parametric equations for a parabola, it is much
easier to stay with these equations. So, do net revert to the cartesian

equation.
SOLUTION
a) We have

x=2¢ = ﬂ = 4¢

dr
dy
= 4 — =4
d dr
which give

dy _dy, dv_1

dx dr T dr ¢
Therefore, the gradient of the normal is —7.

Using y — y; = m(x — x;), we find the equation of the normal at
(212, 41):

y — 41 = —lix'— 21
= yARNEM 278

b) To find the equation of the normal at the point P, we just substitute p
for ¢. Therefore, the equation of the normal at the point P is

Ytpx =4p +2p’ 1

Similarly, the equation of the normal at Q is
Y+ qx = dq+24° 2]

Subtracting [2] from [1], we find that these normals intersect when
px —gx =4p +2p* —4q - 24°

Note In all such situations, where p and ¢ are similarly considered,
(p — g) will be a factor. Therefore, we look for this factor, remove it
and check that the answer is symmetrical in p and g.
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CHAPTER 11 CONICS

Using p* — ¢’ = (p — 9) (v + pq + ¢*), we obtain
(P —@x =40 —q) +20p - @’ +pg+9°)
= x=20°+pg+q¢*+2) 3]
Substituting [3] into [1], we have
y=4p+2p" = 2p(P> +pg+q° +2)
= y==2p4(p+q)
Therefore, the normals intersect at (2(p> + pq + ¢* + 2), —2pq(p + q)).

I EE SRR EEREEEEERRERE]

Erxercise 11A B

1 Find the focus and directrix of each of the following parabolas.
a) 1? = 16x b) y*> = 28x c) x> =8y d) x> =—1léy
e) P+ 12x=0 f) v+ 1) =32x 9 -2 —-8(x—-3)=0

2 Find in cartesian form an equation of the parabola whose focus and directrix are respectively

a) 3,0, x+3=0 b) (4,0), x=—4
c) (Oa 2)9 Y= —ul d) (07 - 5): Y= 5

3 Find the equation of the tangent to the parabola y* = 20x at
a) the point T(57, 10¢) b) the point P(5p, 10p)
¢) the point S(5, 10) d) the point R(20, 20)

4 a) Find the equation of the normal to the parabola y* = 8x at the point (2, 4).
b) Find where this normal meets the parabola again.

Ellipse

Let the focus be (ae,0) and the directrix be g

a o . .
x = —. Since, for an ellipse, e is less than 1,
e

the directrix is further from the origin than
the focus.

P(x, y)

For the point P(x, y), we have

PF% \/(x—ae) +2 PT=2_x roe

e

Since the ratio of the distance of P from the (ae, 0)
focus to the distance of P from the directrix
1S e, we have

BF—:e = PF =¢PT
PT

which gives

\/ (x — ae)* +y* = a—ex

_ll
*=%

Directrix
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Squaring both sides, we obtain

(x — ae)* + 1 = (a — ex)?

= x%—2aex+ a*é® + y* = a® — 2aex + e*x

= X*(1-e)+3> =d*(1 —é?)

X2 yZ B

@ 21 —e?)

We express this in the form
2 2

x° Yy
;+ﬁ—l
where
2
P=d1-¢&) = 62:1—2—
e

Hence, the standard equation for an ellipse is

2 2
¥ Py
a2 b
where
b2
2‘—‘ _—
e =1 o

Note An ellipse is symmetrical with respect to its axes. Hence, it has two foci,

one at (ae,0) and the other at (—ae, 0), and two directrices, x = 4 and x = — =,

YA

C( Froa
0

& (ae, 0) |
D
a a
x=—-= = =
e e
Directrix Directrix

ELLIPSE

a
e e
Ry
B[(0, b)
C A,
(=a,0) 0 (a,0) %
D[(0, —b)

The longer axis, AC, is called the major axis, and the shorter axis, BD, is called
the minor axis. We see that the length of the major axis is 2a and that of minor

axis is 2b.

A chord which passes through either focus, and which is perpendicular to the
major axis, is called a latus rectum. Half the length of this chord is known as a

semi latus rectum. (See also pages 219 and 231.)
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2 2

The parametric equations for the ellipse E
a

=1 are
x=acosf) and y=bhsinf

where 0 is the eccentric angle of the ellipse. (Further discussion of this
parameter and its use in projective geometry is beyond the scope of this book.)

Example 4

2 2
a) Find the eccentricity of the ellipse % + yj =1.

b) State the coordinates of its foci.

¢) State the equations of its directrices.

SOLUTION
2 2
a) The general equation of an ellipse is x_2 + % = 1. Hence, for the ellipse
a
2 2
x——i—y—: 1, wehavea=3,b=2.
9 4
b2
For an ellipse, f=1- —5 which in this case gives
a
=1 % = 3
9 9

Therefore, the eccentricity is TS

b) The foci are ( = ae, 0), which in this case gives (v/5, 0) and (—+/5,0).

¢) The directrices are x = iﬁ, which in this case give

IS E R EEEEEEERERERREERERE RS R EE RN R R R EEREE R R R R ERR R R R R RN

; e

¥ =L—

V5
3
Therefore, its directrices are
xX= 2 and x=-— &
V5 V5

g ) . x| PP
= Example 5 Find the tangent and the normal to the ellipse —+ o 1
] a
= at the point (acos 8, bsin ).
B
: SOLUTION
2
. We have
- dx )
o x=acos = —= —qgsinb
= 0
. d
- y=bsinf = & — beoso
= do
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ELLIPSE

which give
dy _ —bcosd
dx asinf
Using y — y; = m(x — x;), we find the equation of the tangent:

y—bsinf = M(X —acosf)
asin
= asinfy + bcosx = ab(cos?d + sin’0)

= asinfy—+bcosOx =ab

y2

2
Note We can check this by taking x_2 + 7 = 1, and replacing
a

x? by (x x abscissa) and y? by (y x ordinate)
to obtain the equation of the tangent.

Hence, we have

xacos  ybsinf
a? - o

= XxbcosO + yasin0 = ab

1

as above.

To find the equation of the normal, we need its gradient, which is given
by

1
Gradient of tangent

Gradient of normal = —

_ 1 __asinf
~ Thcos®  hcosd
asinf
So, the equation of the normal is
y—>bsinf = 2 g (x — acosh)
bcosd

= ybcosO = xasin0 — a*sinOcos O + b*sin 6 cos 0

= ybcosl = xasin 0 + (b* — a*)sin Hcos 0

Example 6 Find the area of the ellipse whose major axis is 2a and minor
axis is 2b.

SOLUTION

We have
Area = J ydx

To make the integration easier, we use the parametric equation for y,
which gives

Jydx: Jbsin@dx
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We cannot integrate a function in 8 with respect to x. Therefore, we must
convert the integration with respect to x to an integration with respect to
0. Hence, we have

a 2n
Area of ellipse = J Pdg = J bsin 6 e do
—a 0 d@
Using x = acos 0, this gives
2n
Area = J bsin O(—asin 0) do
0
Because the ellipse is symmetrical about its axes, we can express the
integral as

Area = 4J2 absin®0d0

0
Using cos 26 = 1 — 2sin%6, we obtain

Area = 4ab Jz %(1 — cos26)dé
0

— 4ab [19 1 sin20} :

2 4 0

[ FEFEE R EEREEEEREEE RN R EEEE R R RN R R R RN ERERESN]

Therefore, the area of an ellipse is wab.

Exerci‘se 11B |

1 Find the eccentricity, foci and directrices of each of the following ellipses.
7 2 2 2 2 3

ol X2y ¥ oy
X Y B L L™ XX
D16 VTR T IIET:
x? )P E -0 +27
d —+=—=4 + =1
Y4t s 9

2 Find, in cartesian form, the equation of each ellipse with the focus and the directrix as given.
a) (3,0), x=12 b) (2,0), x=18 c) (0,4), y=38 d) (0,3), y=15

2 2
3 Find the equation of a) the tangent and b) the normal to the ellipse % + T =1 at the point

(5cos6,4sin ).

4 Sketch the curve given in polar coordinates by the equation

\ 2a
3+2cos0

Prove that this curve is an ellipse and identify its foci.
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HYPERBOLA

Hyperbola

Let the focus be (ae, 0) and the directrix be x = a4 o
e
Since, for a hyperbola, e is greater than 1, the directrix A » P(x, y)

is situated between the origin and the focus.

For the point P(x, y), we have

PF = {/(x — ae)* + »? PT=x-2
e

Since bE e = PF =¢PT, we have 0 £
PT
\/(x—ae>2+y2:e<x‘g‘>
- Directrix
=X — 8

Squaring both sides, we obtain
(x — ae)’ + y* = (ex — a)’
= x? —2aex + &?e® + y* = 2x? — 2aex + a*
= ¥l =)+ =da(l — &>

which gives

2 32

A + e e S
a?  a*(1 —é?)

But e > 1, therefore a*(1 — ¢%) is negative.
Hence, the standard equation for a hyperbola is

X ¥y _
@2 b
where
bz
P=d?—-1) or e=1+—
2

As x and y become large, we have

2 2
] ~—->y— — y—>:|:b—x
a? b? a

Therefore, the asymptotes of a hyperbola are y = j:éx

a
¥ %
e = i p==x =
) FE
- -~ X/{,&«*
e o
. g
- -
™ . e
. I

e . o,

~ T,

- .

— T
o~ s
i e,
e
= B
ﬁy/"" T,
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2

2
Common parametric equations for the hyperbola x_z ~ ¥ —1are
a

b2

x=asecl and y=btanl

where 0 is the eccentric angle of the hyperbola. (Further discussion of this
parameter is beyond the scope of this book.)

Alternatively, hyperbolic functions may be used (see pages 189-91). In this
case, the parametric equations are

x=acosh¢ and y=bsinh¢

Like the ellipse, the hyperbola is symmetrical with respect to its axes. Hence,
again there are two foci, one at (ae, 0) and the other at (—ae, 0), and two

) . a a
directrices, x = — and x = — —.
e e
YA
F, E,
(—ae, 0) o (ae, 0) %

Ca
* e

Directrices

Rectangular hyperbola

When a = b, the asymptotes of the hyperbola are

y = x and y = —x, which are perpendicular to each
other. Hence, such a hyperbola (shown on the right)
is called a rectangular hyperbola.

2 2

The general equation of a hyperbola, x_2 . 1,
a

2
becomes b

2y =

for a rectangular hyperbola, as a = b. That is,

x+)x -y =a

Rotating the axes through 45° and designating the new
axes (which are the asymptotes) X and Y, we transform
this equation to

612

xy=2
2
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HYPERBOLA

where

X:L(x—y) and Y:%(x—i-y).

V2 V2

Hence, for a rectangular hyperbola, we have the equation

Xp =g

2_“2

where ¢

Common parametric equations for the rectangular
hyperbola are

x=ct and y= %
P
Example 7 Find the eccentricity of the hyperbola 6 9= 1, and the

coordinates of its foci.

SOLUTION
b2
a2

y2

2
For a hyperbola CIN S 1, we have ¢ = 1 +
a> b2

2 2

Therefore, for the hyperbola f—6 — % = 1, we obtain

, 9 25
=14+=—===
¢ 16 16

Hence, the eccentricity is %

g2 . 2P
When — — = = 1, the foci are (+ae, 0). Therefore, for =~ — 2— = 1, the
az  b? 16 9

LRSS R ERRE R R RS RER R E RN R ERRERRRE]

foci are <:t% x 4, O) , giving (£5, 0).

Example 8 Find the equation of the tangent to xy = ¢? at the point

<ct, %) Hence find the equation of the tangent to xy = 16 at the points

a) (8, 2) and b) (—12, — %)

SOLUTION

To find the equation of the tangent, we need its gradient. Hence, we have

IR SRR ER R EEERE SR ERREREE RN ER R RN

dx
X =ct —=c
d¢
c dy c
= e == —_—— —
4 t dt 2
which give
v _ 1
dx £?
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EXERCISE 11C

We can express this equation in several different forms.

For example, when x = d is used as the equation of the directrix, we have
ed
f=—
1+ cosé

. : o a g
When the focus is at (ae, 0) and the directrix is x = —, we have as the equation
of the general conic €

b2
= a(l + ecos )
which gives

B
= Bl ) for an ellipse
1 +ecosl
2 _
= e =D for a hyperbola
1 +ecosf

We can also derive a similar polar equation in terms of /, the length of the semi
latus rectum (see also pages 219 and 223).

With reference to the diagram on the right, we have

= == — A B
PT=ePT = r=e(AB—-rcosh) ~p )
The point A is on the conic, so we have N ./ \
3y
FA =e¢AB 0 i
F ;
FA is the semi latus rectum, so we obtain f;
[=e¢eAB = AB= !
e /

which gives

F= e(l— rcos@>
e

= rl+ecosf)=1I

That is, we have

/
f=—
1+ ecosf

) ) . .
Note The distance between the directrix and the focus is —.
e

Exercisﬁe/ 11C

1 Find the eccentricity, foci and directrices of each of the following hyperbolas.
2 2 2 2 2 2

) R - by = -2 =1 N ., |
16 9 49 16 25 16
2 2 132 2
d)x__y_:4 o) x-1" ¢+2) 1
9 25 9
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2 Find, in cartesian form, the equation of each hyperbola with the focus and the directrix as
given.
a) (12,0), x=3 b) (18,0), x=2 c) (0,8), y=4 d) (0,15, y=3
2 2
3 Find the equation of a) the tangent and b) the normal to the hyperbola ;—5 — i}_6 =1 at the
point (5sec 6,4 tan 0).

Exercise 11D

1 Consider the parabola y* = 4ax.
i) Show that the following parametric equations define a point on this parabola
x=at*? y=2at
ii) Show that the tangent drawn to the parabola at the point (a2, 2af) has an equation given by
ty = x + at?

Consider the points P(ap?, 2ap) and Q(ag?, 2aq), where p # q. Let M be the mid-point of PQ,
and H be the intersection point of the tangents at P and Q.

iii) Show that the line MH is parallel to the x-axis. (NICCEA)

2 The equation of the curve C is y> = 8x. The point P(22,4¢) lies on C. The line through the
point (2, 0) perpendicular to the tangent to C at P intersects this tangent at the point Q.

a) Find the coordinates of Q.
b) Given that R is the mid-point of PQ, find the equation of the locus of R in cartesian
form. (WJEC)

3 The point P lies on the parabola with equation y?> = 4ax, where a is a positive constant.
a) Show that an equation of the tangent to the parabola at P(ap?, 2ap) is py = x + ap*.

The tangents at the points P(ap?, 2ap) and Q(aq?,2aq) (p # q, p # 0, g # 0) meet at the
point N.

b) Find the coordinates of N.
Given further than N lies on the directrix of the parabola,

¢) write down a relationship between p and g. (EDEXCEL)

2 2

4 The line with equation y = mx + ¢ is a tangent to the ellipse with equation x_2 + L1,

at  b?
a) Show that ¢* = &®m?® + b%.
b) Hence, or otherwise, find the equations of the tangents from the point (3, 4) to the ellipse
2 2

with equation e + L1 (EDEXCEL)
16 25
: . x2 )P :
5 An ellipse has equation o~ uik 7 1, where a and b are positive constants and a > b.
a

a) Find an equation of the tangent at the point P(acos ¢, b sin 7).
b) Find an equation of the normal at the point P(acos ¢, bsin 7).
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The normal at P meets the x-axis at the point Q. The tangent at P meets the y-axis at the
point R.

¢) Find, in terms of a, b and ¢, the coordinates of M, the mid-point of QR.

Given that 0 < ¢ < %

2 2
d) show that, as ¢ varies, the locus of M has equation ( 22axb2) +(2i> =1l (EDEXCEL)
a — il

Ve

2
The point P(2cos 0, 3 sin 6) lies on the ellipse XT + - —

a) Find the equation of the tangent to the ellipse at the point P(2 cos 6, 3 sin ), where 0 = 0.
b) Given that the tangent in part a passes through the point (2, —6), show that
cosf) —2sinf =1

c) Solve the equation in part b for 0° < 0 < 360° and deduce the coordinates of P. (WJEC)
A curve C has equations
XN =l V= % t#£0

where ¢ is a constant and ¢ is a parameter.

a) Show that an equation of the normal to C at the point where ¢ = p is given by
py+ot=px+e

b) Verify that this normal meets C again at the point at which r = ¢, where
g +1=0  (EDEXCEL)

The rectangular hyperbola C has equation xy = ¢, where ¢ is a positive constant.

a) Show that the tangent to C at the point P <cp, £> has equation
p

P’y =~x-+2cp

The point Q has coordinates Q <cq, £>, g # p. The tangents to C at P and Q meet at N.
q
Given that p + g # 0,

b) show that the y-coordinate of N is = .

pP+4q
The line joining N to the origin O is perpendicular to the chord PQ.

¢) Find the numerical value of p242. (EDEXCEL)

The ellipse C has parametric equations
x=2+3cosf y=2sin0

a) Obtain the cartesian equation of C and find the eccentricity of the ellipse.
b) Write down the coordinates of the foci.
c) Sketch C, stating the coordinates of its intersections with the axes.

The arc of the curve C between 6 = 0 and § = %n is rotated through 27 about the x-axis.
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10

11

12

d) Show that the area S of the resulting surface of revolution is given by

T

S=4n JZ sin0(9 — 5 00320)% do
0

Using the substitution (\/E) cos 0 = 3sinu, or otherwise, find the value of S, to two decimal
places. (EDEXCEL)

The curve C; is that arc of the hyperbola with equation
2 2
X Y o1 a>o0
9a> a?

which contains the point P(3acosh 6, asinh 0).

a) Show that the equation of the normal to C; at the point P can be written in the form
ycosh 0 + 3xsinh § = 10asinh 6 cosh 0

This normal meets the coordinate axes at A and B.

b) Show that, as 0 varies, the locus C, of the mid-point of AB, is an arc of a hyperbola.

For each of the arcs C; and C,

c) give the coordinates of any points of intersection with the coordinate axes and the equations
of any asymptotes

d) find the eccentricity of the hyperbola and state the coordinates of the focus and the equation
of the corresponding directrix. (EDEXCEL)

The points S (s, l) and T<t, —lt_) lie on the curve xy = 1 and the line ST passes through the
s
point (1, 2).

a) Show that s+ =1+ 2st.

b) The tangents to the curve at S and T meet at the point P. Show that the locus of P is given
by y =2 — 2x. (WIJEC)

The figure on the right shows a parabola and a circle.
The circle passes through the parabola’s focus S,

a point P on the parabola and the intersection point Q
of the directrix and the tangent at P.

i) If the parabola has focus S(1, 0) and directrix
x = —1, show that its equation is y*> = 4x.

RL—1/p
Let the point P be given by (%, 2¢), where ¢ # 0. /

=Y

2 —
ii) Show that Q is the point <—1, ¢ : 1).
iii) Verify that the focus S, the point P and Q
the point Q lie on the circle with equation
tx? =t —Dx+0? -2 - Dy+£-2t=0

iv) The circle intersects the directrix again at the point R.
Find the coordinates of R.
v) Show that PR is parallel to the x-axis. (NICCEA)
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12 Further integration

Many a smale maketh a grate.
GEOFFREY CHAUCER

In Introducing Pure Mathematics (pages 433-8 and 445-7), we met integrals

such as Jx(x2 + 1)’ dx, where we used the substitution x> + 1 = u, and
Jxez‘” dx, where we integrated by parts.

We can extend these methods by using a greater variety of substitutions,
including hyperbolic functions, to enable us to find integrals such as

J\/9+x2dx.

To integrate more complicated expressions, we normally use the inverse
function of a function rule given on page 294 of Introducing Pure Mathematics.

Inverse function of a function rule

Jf/(x)[f(x)]” dx = ﬁ [f(x)}n—s-l s

It is usually quicker to differentiate by inspection the new expression than to
obtain f’(x) in the integrand, as shown in Examples 1 and 2.

Example 1 Find the constant k£ in

Jx(x2 + B dx=k(x*+1)*+¢

SOLUTION

Differentiating (x> 4 1)¥, we obtain

I S E S EEEER]

di(x2 + 1)¥ =8 x 2x(x* + 1)7 = 16x(x* + 1)’
X
Therefore, we have

16Jx(x2 + 1)dx =0+ 1D+ ¢

= Jx(x2 + 1) dx = %6(x2 + 1)+ ¢

which gives k = .
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Example 2 Find the constant k£ in

J sin2xcos 2xdx = kcos®2x + ¢

SOLUTION
Differentiating cos®2x, we obtain
8 x —2sin2xcos’2x = —16sin 2x cos’2x
a2 g
which gives k = — 4.

Therefore, we have

I EE B RS SEERE R RS RERERE]

J sin2x cos 2xdx = — 1L6 cos2x + ¢

Note In those cases where you experience difficulty in spotting the integral,
use instead integration by substitution.

Integration by parts

Example 3 Evaluate J e>*cosdx dx.

SOLUTION

When faced with a product neither term of which will disappear after
repeated differentiation, we usually use integration by parts until we
obtain the integral with which we started as one of the terms on the right-
hand side.

Hence, we have
Je3x cosdxdx = %eb‘ cosdx — J%eb‘ x —4sin4xdx

— %63’6 cos4x + % J ™ sin4x dx

= le?’x cos4x —|—i (le3x sin4x — Jle“ x 4 cosdx dx
3 3\3 3

— %e3xcos4x+ge3xsm4x—%u{ ¥ cos dx dx

We now move the (original) integral on the RHS to the LHS:
Je3x cos4xdx + —19£ e cosdxdx = %63" cos4x + ge3x sindx + ¢

= 25 echos4xdx:le
9 J 3

3¥ cos4x + 363" sindx + ¢

= | e¥cosdxdx = 2% <ée3x cos4x + 363" sin4x> +c

Hence, we have

B R RS R EES RS NERE R R R R R R R R ERE RN R R R R R ERNE R R R R R R R R R R RN

Je3" cosdxdx = %e“ cosdx + 2ie3x sindx + ¢’

236





