Exercise 9C

1 Verify the identity
2r—1 2r+1 _ 2
r—1) rr+1) (=D +1)
Hence, using the method of differences, prove that

z": 2 _ 3 2n+1
—Sr-Dr+1) 2 nnr+1)
Deduce the sum of the infinite series

1 1 1 1
it 0 DU DY PR, N T,
1.3 24 35 n—Dmn+1)
2 Show that
I 1 _ 2
rr+1) (r+D0r+2) e+ Dr+1)
Hence, or otherwise, find a simplified expression for

241— (WJEC)
—r(r+1)(r+1)

3 a) Express ! in partial fractions.
Q2r—DR2r+1)

b) Hence, or otherwise, show that

= 1 B an+ b
; Qr—D@2r+1) Qun—1D@n+1)

where a and b are integers to be found.

r=2n
¢) Determine the limit as # — co of Z o 1)1(2 )
r=n F— F

4 Find the value of the constant A for which (2r + 1) — 2r — 1)? = 4r.

Use this result, and the method of differences, to prove that

Zr = %n(n +1)  (AEBY%)
ri=il

5 Express 1 in partial fractions.
@2r+1)(2r+3)

Hence find the sum of the series
1 1 1
+ +...+
3x5 5x7 2n+1)(2n+3)
Show that the series

1 1 1
+...+ F 55
3IxS5 5x7 2n+ 1)2n + 3)
is convergent and state the sum to infinity. (OCR)
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CHAPTER 9 PROOF, SEQUENCES AND SERIES

6 Verify that
1 N X
Il+(mn—Dx 14nx {1+@n—1Dx}H1l+nx)

Hence show that, for x # 0,
N

1 N
;{1+(H—1)x}(l+nx)_ 1+ Nx

Deduce that the infinite series

1 1 1
1x3 3x2 2x3

is convergent and find its sum to infinity. (OCR)
7 Leta, =e "~ D¥ —e ™ where x # 0.

N
i) Find Z a, in terms of N and x.
n=1

ii) Find the set of values of x for which the infinite series
a1+a2+a3+...

converges, and state the sum to infinity. (OCR)

8 Given that
L 1 B 1
J@n—-1) J@2n+1)

N

express E u, in terms of N.
n=25

Deduce the value of Z u,. (OCR)

n=25
9 Show that
r __1__ ) ¢en
rF+D 41!

Hence or otherwise, evaluate

6 r = 742
i) i)

;(M—l)! ;(r—i—l)!

giving your answer to part ii in the terms of e. (NEAB)

10 a) Show that

r+1 1 n
r+2 r+1 (F+Dr+2)
b) Hence, or otherwise, find

2 1
Z (r+ D +2)

r=1

giving your answer as a single fraction in terms of 7.
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Convergence

As we found in geometric progressions, an infinite series is the sum of an
infinite sequence of numbers (see Iniroducing Pure Mathematics, pages 248-50).
For example, we have the infinite geometric progression

Sded g
STttt )
When we state that an infinite series Z ai converges, we mean that the sums
k=0

n
S, = g a, have a limit as n — oo.
k=0
We say that an infinite series diverges if it does not converge.

When a series diverges, it could behave in one of the following ways.
1+24+4+8+16+...
-1-2-4-8-16—...
l—1+1—-1+1-—...

1 -2+4-8+16—...

e Diverge to +o0; for example:
e Diverge to —oo; for example:
e Oscillate finitely; for example:
e Oscillate infinitely: for example:

D’Alembert’s ratio test

-
D’Alembert’s ratio test states that a series of the form z a,, converges when
n=0
Any1
ai’l

lim <1

n— 00

. a, g ) !
The test also states when lim |[—“*1| is greater than 1, the series diverges.
=500 a}l
) ) . a
It does not imply anything when lim |21 =1,
n—oo|l q,

B

1

& n
Example 15 Prove that the series Zx—' converges for all real values of x.

j n=0 n
SOLUTION
. ! . la .
First, we find the ratio [~"“*L|. Then we find its limit as n — oo.
day
Hence, we have
xn+ 1
apy1 - (n -+ 1)'
a, X"
n!
ny
n+1

As n — oo, this ratio has a limit of zero regardless of the (real) value of x.

Therefore, the ratio test implies that the series converges for all real values
of x.

2
2
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CHAPTER 9 PROOF, SEQUENCES AND SERIES

ok
Note The series ZX—' is Maclaurin’s expansion for ¢* (see page 178) and is

k=0
therefore known as the exponential series. That is,
o Lk
X
ex =] —'
i=o k!

[o.¢]
. 1
Example 16 Prove that the series g — does not converge.

n=1
SOLUTION

Applying d’Alembert’s ratio test, we obtain

1
Ani1| n+1 _n
ay IR |
n
which gives
lim |l — fim =1
n— o0 a, n—»oon+

Thus, in this case, d’Alembert’s ratio test fails, because it does not
establish whether the series converges or diverges.

To prove that the series does not converge, we write out its first few
terms:

B, | 1 1 1 1 1 1.1
e LT - N
;n 2345 6 78

Now, the first term is greater than %

The second term is 1.

The sum of the next two terms is greater than + +4 = 1.

The sum of the next four terms is greater than + + 4+ 4+ ¢ = 1.

Similarly, the sum of the next eight terms is greater than eight times %,
which is 1.
This pattern keeps repeating. We can always increase the sum by more

[oe]

than % by adding the next 2 terms. Therefore, Zl exceeds any
=1 n

pre-assigned real number L. Hence, it cannot converge to L, and so it
diverges.

Even though each term is less than the preceding term, and the terms tend
to zero, the sum is not finite.

I S S FFEEEREEEEEEESNEREEEEERRRRRRRRREERREEEEREEEEEE R R R R R RRRRRRRERERS
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MACLAURIN’S SERIES

Maclaurin’s series

Assuming that f(x) can be expanded as a series in ascending positive integral
powers of x, we can deduce the terms of the series, as shown below for sin X
cosx, e* and In(1 + x). These four expansions are needed frequently and
therefore should be known.

Power series for sin x

Let sinx = ay + a1x + a>x*> + a3x> + ... , where the o’s are constants.
When x = 0, sin0 = ay. But sin0 = 0, therefore a, = 0.
Differentiating sin x = a;x + a>x> + asx® + ..., we obtain

cos x = ay + 2ayx + 3azx? + 4aux? + . ..
When x =0, cos0 = g;. But cos0 = 1, therefore ¢; = 1.
Differentiating again, we obtain

—sinx = 2a; + 3 X 2a3x + 4 % 3a4x? + 5 X dasx> + ...
When x =0,sin0 =24, = a,=0.
Differentiating yet again, we obtain

—cosx =3 X2a3 +4 x 3 x 2a,x + 5 x 4 x 3asx? 4 ...

When x =0, —cos0 =3 x2a; = a3:—;:~l,
3x2 {1 3!
Repeating the differentiation, we obtain
1 1
6[4:0 a5:-5—! a6:0 a7:—ﬂ~
Therefore, we have
3 5 7 Vi 2n+1
sinx:x—i+x—~x+... Lt i
31 SINH (2n 4+ 1)!

By d’Alembert’s ratio test, this series converges for all real x.

Power series for cos x

We can use the procedure for sin x to find the power series for cos x. However
it 1s much easier to start from the expansion for sin x. Hence, we have

3 5 7
cosx:—(i«sinx:—d—<x-x—+x——x—+...)
X dx ! !

)

which gives

) 4 6 s n_2n
cosx:l—x—+x—~x+... gl)—x
21 41 6l (2m)!

ST

By d’Alembert’s ratio test, this series is convergent for all real x.
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Power series for e*

Let ¢* = ay + ayx + a»x? + a3x> + ..., where the a’s are constants.
When x = 0, e = a,. But ¢’ = 1, therefore qy = 1.
Differentiating ¢* = a;x + a,x> + a3x> + ... , we obtain
e* = a; + 2apx + 3azx? +dagx* + ...
When x=0,e"=a;, = a =1.
Differentiating again, we obtain
e¥ =2a, + 3 X 2a3x + 4 x 3ayx> + 5 x dasx® + . ..
When x =0,e' =24, = ay =1+
Differentiating yet again, we obtain

e =3x2a;+4%x3x2aux+5x4x3asx*+...

When x =0,¢e’ =3 x 2a; = a3:;:i.
3x2x1 3!
Repeating the differentiation, we obtain
W BT T YT

Therefore, we have

2 X3 X4 5

X XX X X
e—1+x+2!+3!+4!+5!+...

By d’Alembert’s ratio test, this series converges for all real x.

Power series for In(1 + x)

Since In 0 is not finite, we cannot have a power series for In x. Instead, we use a
power series for In(1 + x).
Let In(1 + x) = ay + a1x + aax> + azx* + . ..
When x =0, In1 = gy. But log 1 = 0, therefore gy = 0.
Differentiating In(1 + X) = a;x + a,x> + azx* + ... , we obtain
1

1+x

=a + 2a,x + 3a3x% + dag® + . ..

However, using the binomial theorem, we can expand as (1 +x)"' to

1+x
give 1 — x + x? — x* + x* — x> +.... Hence, we have

l—x+x—-X+x*—x+...=a+2ax+3a3x* +da x> + ...
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EXERCISE 9D

Equating coefficients, we obtain ¢; = 1, @, = — La=La=-1. ..

Therefore, we have

x¥ xt xS

2

X J
In(l4+x)=x—"—+=-" 42 _
B T -

Using d’Alembert’s ratio test, we obtain

Xt 1
N . L nx |
nh—>nolo o ”12’126 1t o nhm 1 T
a x| amoeln
n

Thus, when |x| < 1, the series converges. By inspection, we notice that the
expansion is valid when x = 1, but not when x = —1. Hence, we have
2 3 4 5
e xPe o x
Inl+x)=x——+=—-"4+"—— .., for-l<xx<l
( ) 2 3 4 5

Similarly, we have

Summary

The general result of this method for obtaining the power series of functions is
known as Maclaurin’s series, and is expressed as

’CZ X3
f(x) = £0) + xF'(0) + - £(0) + R+

Exercise 9D

1 a) Show that the first two non-zero terms in the Maclaurin expansion of sin ' x are given by

3
sinflx:xjt%—&—...

b) By writing x = %, deduce an approximation to n as a rational fraction in its lowest terms.
c¢) The equation sin~'x = 1.002x is satisfied by a small positive value of x. Find an
approximation to this value, giving your answer correct to three decimal places. (WIEC)

2 i) Use Maclaurin’s theorem to derive the series expansion for log.(1 + x), where —1 < x < 1
giving the first three non-zero terms.

i) If log.(1 + x) =~ x(1 + ax)” for small x, find the values of @ and b so that the first three non-

zero terms of the series expansions of the two sides agree. (NICCEA)

3 a) Find the first three derivatives of (1 + x)*cos x.

b) Hence, or otherwise, find the expansion of (1 + x)*cos x in ascending powers of x up to and
including the term in x°. (EDEXCEL)
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4 i) Use Maclaurin’s theorem to derive the first three non-zero terms of the series expansion for

sin x.
ii) Show that, for sufficiently small x,

5

) x2\2
sinx ~x(1—-——
< 15>

iii) Show that when x = ™ the error in using the approximation in part ii is about 0.2%.
2 (NICCEA)

5 Show that the first two non-zero terms of the Maclaurin series for In(1 + x) are given by

2
1n(1+x):x—3“2—+...

a) Use the series to show that the equation 31In(1 + x) = 100x* has an approximate solution
x = 0.03. _

b) Taking x = 0.03 as a first approximation, obtain an improved value of the root by two
applications of the Newton—Raphson method. Give your answer correct to six decimal
places. (WJEC)

2
6 Given that y = (1 + sinx)e”, find j—y and show that g—y? = (1 + 2cosx)e”.

X x
Hence, or otherwise, prove that the Maclaurin series for y, in-ascending powers of x, up to and

including the term in x? is
3 2
14+2x+=x
2
The binomial expansion of (1 + ax)" also begins 1 4 2x + %xz. Find the value of the

constants a and n. (AEB 97)

7 i) Use Maclaurin’s theorem to find the values of 4, B, C and D in the series expansion

x>

7
tan‘lx:A+Bx+Cx2+Dx3+ z ad

7

where —1 < x < 1.
ii) Find, using the binomial expansion, the first three non-zero terms of the series expansion, in

ascending powers of u, for . >

+u
iii) Using the series in part ii, evaluate

J I du
o 1+ u?

as a series expansion in ascending powers of x.
iv) Explain briefly how the series expansion in part i can be derived from the result in part iii.
(NICCEA)

8 Given that

y* = secx + tanx —g<x<%, y>0

180



10

11

12

EXERCISE 9D

show that
dy |1
a) <~ = —ysecx
) dx Zy
dzy

b)

1
—— =—ypsecx(secx +2tanx
dx? 4)/ ( )

Given that x is small and that terms in x* and higher powers of x may be neglected, use

Maclaurin’s expansion to express y in the form 4 + Bx + Cx2, stating the values of 4, B and C.
(EDEXCEL)

Given that f(x) = (1 + x) In (1 + x),

a) find the fifth derivative of f(x)
b) show that the first five non-zero terms in the Maclaurin expansion for f(x) are

¢) find, in terms of r, an expression for the rth term (r > 2) of the Maclaurin expansion for
f(x).  (WJEQ)

a) i) Given that y = In(2 + x?), find g—)i and show that
o
d_zy 42X
dx? 2+ x2)?

ii) Deduce the Maclaurin series for In(2 + x?) in ascending powers of x, up to and including

the term in x2.

b) By writing 2 + x* as 2(1 + 1 x?) and using the series expansion
PP
Inl+H)=¢t——4+—— ...
(1+1) 53
verify your result from part a and determine the next non-zero term in the series for
In(2 + x?). (AEB 97)

i) Use Maclaurin’s theorem to derive the first five terms of the series expansion for (1 + x)",
where —1 < x < 1.
i) Assuming that the series, obtained above, continues with the same pattern, sum the
following infinite series
N 125 1.2.5.8

4= — -
6. 612 61218 6.12.18.24

+...  (NICCEA)

i) Use Maclaurin’s theorem to derive the first five terms of the series expansion for e*.
Consider the infinite series

1 4 7 10

—t =ttt

o2t 31 4

ii) If the series continues with the same pattern, find an expression for the nth term.
iii) Sum the infinite series. (NICCEA)
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Using power series

The series studied on pages 177-9 are used in a number of situations, including
the two which are discussed below

Finding the limit of i(x); as x — 0, when f(0) = g(0) =0
g(x

If we simply insert x = 0, we obtain % = %, which means that we have
g
proceeded incorrectly.
Example 17 Find the limit of = as x — 0.
x(e* — 1)

SOLUTION

To find such a limit, we expand the numerator and the denominator of
the expression each as a power series in x and divide both by the lowest
power of x present. Then we put x = 0.

X3 )CS X3 .X'5
X — <x———+——...> S — 2L M,

Hence, we have

X —Ssinx _ 3! 5! 3! 5!
2(ex — 1) 2 B 4
#et—1) x2<1+x+—)2c—'+...—1> x3+%+...

Dividing the numerator and the denominator by x*, we obtain

12,
x—sinx _ 3 5
x2(e* — 1) x A2

1+E+-?—)T.

Therefore, we have

" eI S E R E R EE RN E R R R R R R R R R RN R R R R R R

x—sing\ ™ 1
im-——=—=—
x-0x2(ee*—1) 1 6
Example 18 Find the limit Ofl_%osx as x — 0.
sin“x

SOLUTION

Expanding the numerator and the denominator each as a power series, we
obtain

ISR EERE S FEF SRR R RN RN

1 —cosx 20 4 24
" 2 - -
sin“x 3 5 2 2x4
<x_x_+x____.> 22
31 5l 3!
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USING POWER SERIES

+  Dividing the numerator and the denominator by x?, we obtain
E

. L x>,
= l—cosx 2! 4!

& . 2 = >

= sin‘x 2x

2 l——+...
= 3!

«  Therefore, we have

@ . l—cosx 21 1

B hm 3 = — = —

ﬁ x—=0  sin“x 1 2

L’Hopital’s rule

When evaluating the limits of some forms of %, the use of power series is
g(x

not appropriate and so we apply 'Hoépital’s rule, which states that if

f(a) = gla) = 0, and g'(a) # 0, then

fim 22 _ T
¥—ag(x)  gla)

If g'(a) = 0, we repeat the procedure until we find a derivative of g(x) which is
not zero when x = a.

Thus, if f(a) = g(a) = 0 and g'(a) = 0, but g"(a) # 0, then

fim 1 _ i P& (@)
¥=a g(x) x—agx)  g'(a)

473 ) -
Example 19 Find lim (e ks 2.
x—1 x34+5x—-6

SOLUTION

We notice that both the numerator and the denominator are zero when
x = 1. Hence, we have, after differentiating both the numerator and the
denominator,

4x3 — 21x2 + 16x

g + 8x2 — 2
m

- Ii = lim
s ) x3 4 5x— 6 s=1 3x245
- A 73 T
. BN (D M Mk sl - kool SRS
s x—1 xX3+5x—6 8

Finding f(x) for small x

. Example 20 Expand tanx as a power series in x as far as a term in x>.

* Hence find the value of tan 0.001 to 15 decimal places.

]

5 SOLUTION

f We express tan x in terms of sin x and cos x, and expand each as a power
= series. Hence, we have
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We rearrange the above to give

S - G-5)]
tanx = x— 4+ 1= (XX
anx [x 6 ' 120 2 24

and then we expand the second bracket, using the binomial theorem and
ignoring terms in x° and higher, to obtain

P Pe: 2 A (xz x4 2
tanx=|x-—~—4+-—"—— .. J{1+———+ .. | ———+... | +...
[ 6 120 H 2 24 2 24

x3 XS x2 x4 X4
S U | £ S R
< 6 ' 120 )( 2 214 4 >

Therefore, we have

tanx—x+lx3 —I—ix
3 15

Hence, tan 0.001 is given by

tan 0.001 = 0.001 —l—% % 0.000 000001 + %5 x 0.000 000 000000001 + ...

That is,
tan 0.001 = 0.001 000000333333 to 15dp

" L e Y N SR E T EE YRR RNRERRREOR R R R REREOEEERRRRRRERRRR R R R R R R R RRRRRRRERNE)
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: Dividing the numerator and the denominator by x?, we obtain
E

= 1 xZ

. e
e l—cosx 2! 4l

. sin’x 2x2

= 1—=4 ...
" 3!

B

z  Therefore, we have

2

- . 1l—cosx 2! 1

B i —— ==

= x—0  §in“x 1 2

L’Hopital’s rule

When evaluating the limits of some forms of %, the use of power series is
2(x
not appropriate and so we apply I’'Hopital’s rule, which states that if
f(a) = g(a) = 0, and g'(a) # 0, then

!
W @
*—ag(x)  gla)
If g'(a) = 0, we repeat the procedure until we find a derivative of g(x) which is
not zero when x = a.

Thus, if f(a) = g(a) = 0 and g'(a) = 0, but g’(a) # 0, then

lim mzlim @~M

xoag(x)  xoagl(x)  g'(a)

4_ 7.3 2
Example 19 Find lim F_— 1 1 b 2.
x—1 x*4+5x—6

SOLUTION

We notice that both the numerator and the denominator are zero when
x = 1. Hence, we have, after differentiating both the numerator and the

denominator,
. g x> + 8x2 —2 . 4x3 —21x2+ 16x
lim = lim
x <l x3+5x—6 x—1 3x2+5
4 7.3 5
= G, X Tx° + 8x 2 1

=—-——=-0.125
x—1 x3+5x—6 8

Finding f(x) for small x

Example 20 Expand tan x as a power series in x as far as a term in x°.
Hence find the value of tan 0.001 to 15 decimal places.

SOLUTION

We express tan x in terms of sin x and cos x, and expand each as a power
series. Hence, we have

I B R BB EREREYN
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We rearrange the above to give

53 55 32 A >]—1
tamxe |w— g 2 - E .
anx [Y 6 120 ” (2 24

and then we expand the second bracket, using the binomial theorem and
ignoring terms in x> and higher, to obtain

o 5 } I <x2 o >2
tanx=|x——+—— .. || 1+ ———+ ...+ | ———+ ... | +...
[ 6 120 [ 2 24 2 24

Therefore, we have

5

1 3 2
tanx=x+—x +—Xx + ...

3 15
Hence, tan 0.001 is given by

tan 0.001 = 0.001 +% % 0.000000 001 —i—% x 0.000 000000000001 + ...

That is,
tan 0.001 = 0.001 000000333333 to 15dp

S E SRR EEEFEEE R R R R R E R EEEORREERREERRERERRRERERERRRERRRR R R RERERRERERERD
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POWER SERIES FOR MORE COMPLICATED FUNCTIONS

Power series for more complicated functions

We can combine power series for simple functions to make power series for
more complicated functions, as demonstrated in Examples 21 to 24.

I E R SRR SRR SRR SRR R R RERERRRERRERNE]

S SRS SR RERE SRR RRRR N RN ERRERERER R R RRNE

Example 21 Find the power series for cos x”.

SOLUTION
The power series for cos x is

2 4 n
X X (_ 1) 2n
cosx=1—-—"—+4"——...+ X"+
21 4l (2n)!
To obtain the power series for cos x?, we replace every x in the above
series with x? to obtain

2 O 6 (G VAP
cosx” =1 T T ”'+(2n)! xH)"+...
xt X (=D" 4
=]l -4+ ——. x4
on a4 Q!

Since the power series for cos x is valid for all real values of x, we know
that the power series for cos x? is valid for all values of x2, i.e. for all real
values of x.

Example 22 Find the power series for In(1 + 3x), stating when the
expansion is valid.

SOLUTION

In the expansion for In(1 + x),
3
X

3
we substitute 3x for x, which gives

2
ln(l-l-x):x—i;—%—

In(1 -+ 3 = (3) - O GO

9 » 3
=3x—=x"+9x — ...
2

Since the expansion for In(1 + x) is valid for —1 < x < 1, the expansion
for In(1 + 3x) is valid for —~1 <3x<l,ie. -3 <x< L

Therefore, we have

ln(1+3x):3x—%x2+9x3—... for—é<x<%
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Example 23 Find the power series for e**sin 3x, up to and including the

term in x*.

SOLUTION

Since we are asked for terms only up to x*, we do not need to consider
terms in higher powers of x.

The power series for e* is

x>  x  x

F=l+x++=+"+.
REETRAETRMT
Therefore, the power series for e* is
3 4
(4x)* (4x) n (4x) 4
2! 3! 4

Similarly, using the power series for sin x, and replacing x with 3x, we
obtain the power series expansion for sin 3x:

[E
3! 5!
Therefore, the power series for e** sin 3x is

2 3 4 5
e gin3y = {1+(4x)+(4;) +(43x!) +(4:!) H@) (3x) (3;‘!) —}

( +4x + 8x? —1—332 3+%x4+...><3x—%x3+...>

Ignoring terms in x° and higher powers, we obtain

=1+ (4x) +

sin 3x = (3x) —

e sin3x = 3x + 12x7 4 24x° — %x3 4 32 — 18x*

Therefore, we have

'C SRR R EEEEFE R EOEEREREEREOREERERERERRERESNRRRE R R R R R R R RERRERERE)

e sin 3x = 3x + 12x2 +%x3 + 14x*

Example 24 Find all the terms up to and including x* in the power series
for esin~,

SOLUTION

Using the power series for e*, we obtain

sinx sin’x  sin’x

smx _

=1+ T + o - 3l A e
We now apply the power series for sin x. Since we are asked for terms
only up to x*, we can ignore terms in higher powers of x. Therefore, we

have
% # ; % 4
X——++. X——"4... X——t.
sinx 3! 3! 3!
e =

14 T + o + 3 i

IFEEER U FEFESEEEEREE R RS REEE]
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WO oW ow

g 2%
= eSi“”‘—1+x—£+———~—x _?+x_3+£‘i+
- 3! 2! 314 T
which gives
) 2 4
eSlnle_"_x_i_i_x_
2 8

Exercise 9E

Find the power series of each of the following.

a) sin2x b) cos 5x c) e~
d) In(1 + x?) e) In(1 — 2x)

EXERCISE 9E

Find the power series of each of the following, up to and including the term in x*.

a) sin x° b) (1 4 x)e ¢) (2 + x*)cos3x
d) eos~¥ e) In(1 + cosx)

Find out whether the following infinite series converge or diverge.

a)jg:vT b)§£:2n£_l c)zz:g%

n=2 n=l

Find the power series expansion of cos x*. Which values of x is this valid for?
Find the power series expansion of e>*

nx"

n

You are told that y = Z

n=0

When does this series converge?

Given that |x| < 4, find, in ascending powers of x up to and including the term in x°, the series

expansion of

a) (4 —x)° b) (4 — x)7sin3x  (EDEXCEL)

a) Find the first four terms of the expansion, in ascending powers of x, of
Q+H)h ¥ < 2

b) Hence, or otherwise, find the first four non-zero terms of the expansion, in ascending

powers of x, of

sin 2x
2+ 3x

x| <2  (EDEXCEL)

cos <2x+%> = pcos2x + gsin2x

a) Find the exact values of the constants p and g¢.

Given that x is so small that terms in x* and higher powers of x are negligible,

b) show that cos <2x + g) = % —V3x—x*>. (EDEXCEL)
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CHAPTER 9 PROOF, SEQUENCES AND SERIES

10 The function f is defined by
f(x) = e — (1 + bx)?
where a and b are positive constants and |bx| < 1.

a) Find, in terms of a and b, the coefficients of x, x?> and x> in the expansion of f(x) in
ascending powers of x.

b) Given that the coefficient of x is zero and that the coefficient of x? is %,
i) find the values of ¢ and b

ii) show that the coefficient of x3 is — % (NEAB)
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10 Hyperbolic functions

In the 1760s Johann Heinrich Lambert gave a very nice presentation in terms of the parametrization
of the hyperbola, by analogy with such a treatment of the sine and cosine on the circle.
IVOR GRATTAN-GUINNESS

Definitions

The hyperbolic functions, of which there are six, are so named because they
are related to the parametric equations for a hyperbola.

We begin with the two functions hyperbolic sine of x and hyperbolic cosine of
x, which are written

sinhx and coshx

They are defined by the relationships
sinh x = 1 (e"—e™)
2
1 X i
coshx = E(e +e )

In a similar manner to ordinary trigonometric functions, we have

sinhx e"—e™

tanh x =
coshx eX+e™
cosech x = — 1
sinh x
1
sechx =
cosh x
cothx = I
tanh x

By convention, we pronounce sinh as ‘shine’, tanh as ‘than’, (co)sech as
‘(co)sheck’ and coth as ‘coth’.

Example 1 Find a) sinh 2 and b) sech 3.

SOLUTION

a) Usually, you would use a calculator to find sinh values. Not all
calculators operate in the same way, so you must first consult your
calculator instructions to learn the correct order in which to press the
hyperbolic (hyp) key, the sin key and, in this case, the 2 key. Your
answer should be 3.6268. ..

I E RS R ENE NSRS RESN
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sinh?2 = %(e2 —e )

1 1

HYPERBOLIC FUNCTIONS

and putting in the values of ¢? and ¢
tables or calculate from the exponential series.

sech3 =

cosh3  10.0677
Therefore, sech 3 = 0.0993, to four decimal places.

b) Again, you would normally use a calculator with the relationship

(to 4 dp)

Graphs of cosh x, sinh x and tanh x

y = coshx

We obtain the graph of y = cosh x
(shown on the right) by finding the
mean values of a few corresponding
pairs of values of y =e* and y = e,
and then plotting these mean values.

y = sinh x

To produce the graph of y = sinh x
(shown on the right), we find half the
difference between a few corresponding
pairs of values of y =¢¥and y = e 7,
and then plot these values.

Otherwise, you would have to evaluate sinh 2 using the relationship

, which you either obtain from

y = cosh x

%(vfwy =g
gl :
5
X 4 i y = sinh x
\ 2
13
f(}f" t“’a
y=¢ . e [ Y=
I‘AX‘M T T T T — dl ot
-3 -2 =1 0 1 2 30t
71 -
;2_
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STANDARD HYPERBOLIC IDENTITIES

y = tanh x i

We have tanh x = %, which gives 1

cosnh x y = tanh x

(€ —e)
(e +e )

—2x r

—e -2 i 0 1 2 x

tanh x =

= tanhx = 14—
1+ e

Therefore, tanh x < 1 for all values of x,
and as x — +oo, tanhx — 1. -1

2%

Since tanh x = — l;e’ tanh x > —1
1 +e%

for all values of x, and as x — —o0,
tanhx — —1.

Hence, the graph of y = tanh x lies
between the asymptotes y = 1 and y = —1.

Standard hyperbolic identities
From the exponential definitions for cosh x and sinh x, we have
2
cosh’x = B (e + ex)]

1 X ~2%
=Z®2+2+el) [1]

and sinh?x = F (e —e™ }
2

i( — 246 2]

[

Hence, subtracting [2] from [1], we obtain

cosh’x — sinh’x = Z(ezx +24+¢e ) — %(eh —2+e =1

Therefore, we have

cosh?x — sinh’x = 1

Notice the similarity of this hyperbolic identity with the usual trigonometric
identity cos?x + sin’x = 1. See page 213 for Osborn’s rule, which will help you
to recall the standard hyperbolic identities.

Dividing cosh®x — sinh?x = 1 by sinh®x, we obtain
cosh’x sinh’x 1

sinh’x  sinh’x ~ sinh’x

which gives
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coth’x — 1 = cosech’x

Similarly, dividing cosh’x — sinh’*x = 1 by cosh’x, we obtain

cosh’x  sinh’x 1

cosh’x cosh’x  cosh’x
which gives

1 — tanh’x = sech’x

Differentiation of hyperbolic functions

To differentiate sinh x and cosh x, we use their exponential definitions. Hence,
for sinh x, we have

d . d |1 _ 1 _
. sinhx = { (e —e )] =—(e"+¢e7)

From the definitions, we know that
%(e)C +e ) =coshx

Therefore, we have

i sinh x = cosh x
dx

d d |1 1 i
hx = 2 aX V| Le¥ _ o X
I cosh x ™ [2 (e"+e )} 5 (e"—e )

From the definitions, we know that
1 .
—(e* —e™) =sinhx
5 ( )

Therefore, we have

i cosh x = sinh x
dx

To differentiate tanh x, we use the identity

tanh x = sl
cosh x
which gives
—(1— tanh x = i Sy
dx dx coshx

cosh x cosh x — sinh x sinh x . .
= (using the quotient rule)

cosh’x
_ cosh®x — sinh®x
cosh’x
1
e sech’x
cosh“x
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coth’x — 1 = cosech’x

Similarly, dividing cosh®x — sinh’x = 1 by cosh’x, we obtain

cosh’x  sinh’x 1

cosh’x  cosh’x  cosh’x
which gives

1 — tanh’x = sech’x

Differentiation of hyperbolic functions

To differentiate sinh x and cosh x, we use their exponential definitions. Hence,
for sinh x, we have

d . d |1 - 1 _
s hx = — |=(e* — XN — —(e¥ x
dx N dx [2 (€ —e )] 2 € +e)
From the definitions, we know that

%(e)C +e ) =coshx

Therefore, we have

—d— sinh x = cosh x
dx

d d |1 1 _
- h s _T= ] X PR — T X _ X
dx oS dx [2 (€ +e )} 2 (e~

From the definitions, we know that
1 .
—(e* —e™¥) =sinhx
5 ( )

Therefore, we have

i cosh x = sinh x
dx

To differentiate tanh x, we use the identity

tanhx = sl x
cosh x
which gives
_(1_ tanh x = i Suiley
dx dx coshx

cosh x cosh x — sinh x sinh x : .
= (using the quotient rule)

cosh’x
_ cosh’x — sinh®x
cosh’x
1
= e = sech’x
cosh“x
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coth’x — 1 = cosech’x

Similarly, dividing cosh’x — sinh’x = 1 by cosh?x, we obtain

cosh’x  sinh’x 1

cosh’x  cosh’x ~ cosh’x
which gives

1 — tanh’x = sech’x

Differentiation of hyperbolic functions

To differentiate sinh x and cosh x, we use their exponential definitions. Hence,
for sinh x, we have

d . d |1 _ 1 _
= S h PETA e X _ e X — X + e X
dx e dx {2 (& )] 2 e )
From the definitions, we know that
%(ex +¢ ) =coshx
Therefore, we have
L3 sinh x = cosh x
dx
d d |1 _ 1 _
ha hx=— |~ X X — I (eX _ %
Tx cosh x o [2 (e*+e )} 2(e e )

From the definitions, we know that
1 .
—(e" —e™) =sinhx
s ( )

Therefore, we have

d .
— coshx = sinh x
X

To differentiate tanh x, we use the identity

tanh x = g
cosh x
which gives
—(1— tanh x = i sl g
dx dx coshx

_ cosh x cosh x — sinh x sinh x

(using the quotient rule)

cosh?x
_cosh’x — sinh?x
cosh?x
1
= o = sech’x
cosh“x
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INTEGRATION OF HYPERBOLIC FUNCTIONS

Therefore, we have

_c_i_ tanh x = sech®x
dx

To differentiate functions such as cosh ax, again we use the exponential
definitions. Hence, we have

d d |1 N
el h i eax +e ax
. cosh ax o [2( )}
= l(ae”x —ae ™)
2

From the exponential definitions, we note that

a E (e™ — e_"x)] = asinh ax

Therefore, we have

d .
— coshax = asinh ax
dx

Similarly, we have

d .
— sinhax = acosh ax
X

i tanh ax = asech®ax
dx

Example 2 Find j—y when y = 3 cosh 3x + 5 sinh4x + 2 cosh*7x.
X

SOLUTION

To differentiate cosh*7x, we express it as (cosh 7x)* and apply the chain
rule. Hence, we have

j—y — 9sinh 3x 4+ 20 coshdx + 2 x 4 x 7sinh 7xcosh®7x
X

— 9sinh 3x + 20 cosh 4x + 56 sinh 7x cosh’7x

I E S EEEERERRERE DR

Integration of hyperbolic functions

From the differentiation formulae given on pages 192-3, we deduce that

coshaxdx = l sinhax + ¢
a

sinhaxdx = l coshax + ¢
a

sech’axdx = L tanhax + ¢
a
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CHAPTER 10 HYPERBOLIC FUNCTIONS

Example 3 Find J (2sinh 4x + 9 sech?3x) dx.

SOLUTION

Splitting the given integral into two parts, we obtain

JZ sinh4x dx + J9 sech’3xdx = % cosh4x —1—2 tanh3x + ¢

IS S R B EEREEEEERERN]

= % cosh4x + 3tanh3x + ¢

Inverse hyperbolic functions

We define the inverses of the hyperbolic functions in a similar way to the
inverses of the ordinary trigonometric functions. Hence, for example, if
y = sinh ', then sinh y = x. Likewise for cosh 'x, tanh™'x, cosech 'x,
sech™'x and coth™'x.

Sometimes, these functions are written as arsinh x, arcosh x etc.

Sketching inverse hyperbolic functions

The curve of y = sinh ' x is obtained by reflecting the curve of y = sinh x in the
line y = x.

To draw the curve with reasonable accuracy, we need to find the gradient of
y = sinh x at the origin. Accordingly, we differentiate y = sinh x, to obtain

dy = cosh x
dx
Thus, at the origin, where x = 0, we have
gy =cosh0 =1
X

That is, the gradient of y = sinhx at the origin is 1.

We now proceed as follows:

e Draw the line y = x as a dashed line. 74 y = sinhx Sy=x
e Sketch carefully the graph of y = sinh x, /
¥ . '
remerpbermg that y=xisa tangent to 5 /
y = sinh x at the origin. /o i
i s : . /o y=sinh™' x
e Reflect this sinh curve in the line y = x. ;,f
14 j{f{"
r T T T >
—3 2 = 0 1 3 %
7
ol 1
= sinh™! S
y x /
7
gf — 94
/
{ y = sinh x
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INVERSE HYPERBOLIC FUNCTIONS

Similarly, we can sketch any other inverse hyperbolic function: that is, by
reflecting the curve of the relevant hyperbolic function in the line y = x. In
each case, we must find the gradient of the hyperbolic curve at the origin.

Take, for example, y = tanh x, which gives

dy = sech®x
dx

At the origin, where x = 0, we have
d—y:sech20:412 =1
dx cosh“0

That is, the gradient of y = tanh x at the origin is 1.

Also, we know that y = tanh x has asymptotes y = 1 and y = —1. Therefore,
because y = tanh™'x is the reflection of y=tanhxin y = x, y = tanh~!x has
asymptotes x = 1 and x = —1.

I YA y=tanh™'x |

Example 4 Solve the equation 2 cosh’x — sinh x = 3.

SOLUTION
Using the identity cosh’x — sinh?x = 1, we obtain
2(1 + sinh®x) — sinhx — 3 =0
= 2sinh*x —sinhx—1=0
We now factorise this to obtain
(2sinhx + I)(sinhx —1)=0
1

= sinhx=1 or —o

= x=0.8814 or -0.4812

I B S ERER USRS ERRERNEREEI]
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Exercise 170A

1 Evaluate each of the following, giving your answer i) in terms of ¢ and ii) correct to three
significant figures.

a) cosh?2 b) sinh3 ¢) tanh4

2 Starting with the definitions of sinh x and cosh x, prove each of the following identities.

a) cosh (4 + B) = cosh A cosh B + sinh 4 sinh B
b) sinh (A4 — B) = sinh 4 cosh B — cosh 4 sinh B

¢) sinh A + sinh B = 2sinh (#) cosh (A_;B>

3 Differentiate each of the following.

a) cosh2x b) sinh 5x c) tanh 3x
d) 2cosh4x — 5sinh 3x e) 3cosh2x + 6sinh 5x f) cothx

g) sech x h) 3 cosh®3x i) 2sinh?8x
i) lncosh x k) esinh2x I) Intanh5x

4 Integrate, with respect to x, each of the following.

a) sinh 3x b) cosh4x ¢) sinh (%)
d) 2cosh <§> e) 3cosh 5x — 2sinh (g) f) tanh4x
5 Solve each of these equations, giving your answer to three significant figures.
a) 3sinhx + 2coshx =4 b) 4coshx—8sinhx+1=0
c) coshx +4sinhx =3 d) 3sechx —2 = S5tanhx
e) 9cosh’x — 6sinhx = 17 f) 3sinh’x + coshx —2 =0

6 Find the values of x for which 8 cosh x + 4 sinh x = 7, giving your answers as natural
logarithms. (EDEXCEL)

7 a) i) Write down an expression for tanh x in terms of ¢* and e™.
ii) Hence show that

2%
14e %
b) Using the result in part a ii, evaluate

1 —tanhx =

J (1 —tanh x)dx (NEAB)
0

8 The curve C has equation y = 5cosh x + 3sinh x. Find the exact values of the coordinates of
the turning point on C and determine its nature. (EDEXCEL)

9 Show that, if x is real, 1 +4x* > x.
Deduce that cosh x > x.

The point P on the curve y = cosh x is such that its perpendicular distance from the line y = x
is a minimum. Show that the coordinates of P are (In (1 +v/2), v/2). (NEAB)
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EXERCISE 10A

10 Let y = xsinhx.

2., 4
i) Show that % = xsinh x + 2 cosh x, and find 9__);_

o 2n dx

d™y
x2n ’

ii) Write down a conjecture for
dZny
x2n ’

iii) Use induction to establish a formula for

(OCR)

11 Find the exact solution of the equation 2 cosh x + sinh x = 2. (OCR)

12 The curve C is defined parametrically by
x = t+ In(cosh ) y = sinh ¢

i) Show that Up s ¢ ‘cosh?1.
%

2

i) Hence show that j_y? = e ¥cosh’t (2 sinh  — cosh 1).
X

iii) Deduce that C has a point of inflexion where ¢ = % In 3. (OCR)

13 i) Show that
d /1 . . 4
— | — sinh4y +4sinh 2y + 6y | = 16cosh™y
dy \2
if) Given that x = 2sinh y, show that
sinh 2y = %x\/(xz +4)
and also that
sinh4y = %x(xz + v/ (e W
ili) Use the results of parts i and.ii to show that

J(f + 4 dx = %x(xz 100 /(2 + 4) + 6 sinh ™! G x> +constant  (OCR)

14 Consider the functions y; = 7 + sinh x and

YA v, = 5coshx

¥, = Scosh x whose graphs are shown in
the figure on the right. 17 =7+ sinhx
i) Show, by solving the equation, that the

solutions of 7 + sinh x = Scosh x are ><

—log. 2 and log, 3.
if) Show that the area bounded by the two

graphs in the figure is 7log, 6 — 10.

(NICCEA)
AP 0 . B
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15 Let [, = Jcosh”x dx. Show that

nl, = sinh xcosh” 'x + (n — DI,_,

Hence show that

In2
J sonhtds = — (ﬁé +1n 2) (OCR)
0 8 \ 128

16 a) Show that di(tanh x) = sech’x.
X

b) The diagram on the right shows a sketch of part of the 4

curve whose equation is 3

y=4tanhx — x x=0

i) Find, correct to two decimal places, the coordinates
of the stationary point on the curve.
ii) Find, correct to four decimal places, the area of the

shaded region bounded by the curve, the x-axis
and the ordinate x = 2.
c) For large values of x, the curve is asymptotic to the line y = mx + ¢, where m and c are
constants. State the values of m and ¢, and give a reason for your answer. (NEAB)

Logarithmic form

The inverse hyperbolic functions cosh™'x, sinh ™' x and tanh~'x can all be
expressed as logarithmic functions.

Expressing cosh™'x as a logarithmic function
Let cosh 'x = y. We then have
x =coshy
= x= %(ey +e™)
Multiplying throughout by 2e”, we obtain
2xer =e¥ +1
= .e¥ —2xe¥+1=0

To solve this equation, we treat it as a quadratic in e”, which gives

o — 2x £ V4x? —4
2

= e’=x+vVx2-1

Taking the logarithms of both sides, we obtain
y=In(x£Vx2-1)

That is, the principal value of cosh™'x is In(x + vx2 — 1).
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LOGARITHMIC FORM

Expressing the principal value in a different form, we obtain

- e+ VR =D — VX2 = 1)
ln(x—&—\/x-—l)—ln_ e }
:m-w}

L x —vVx:—1
= 1In -__1,_}
lx —vVx:—1

= —In(x — Vx> —-1)
Hence, we have
Inx+£vx2—1)=xIn(x+vVx*-1)

which matches the symmetry of the graph of cosh x.

Example 5 Find the value, in logarithmic form, of cosh™'2.
SOLUTION
Using cosh'x = In(x + v/x2 — 1), we have

cosh™'2 = In(2 + v/3)

. Example 6 Find the exact coordinates of the points where the line y = 3
cuts the graph of y = cosh x.

SOLUTION
When y = 3, we have
x =cosh™'3
= x=In(3 +8) 2n(3E2V2)
By symmetry, the other value of x is —In(3 + 2v/2).

Therefore, the two points are

(In(3 +2v2),;3) and (—In(3 +2v72), 3)

IS R B SRR EEEEERESE B

Expressing sinh ' x as a logarithmic function

Let y = sinh™'x. We then have

X=gmhy = x= %(ey —e™)
Multiplying throughout by 2¢”, we obtain

2xe? =e¥ — 1
= e¥-2x¢-1=0
Treating this equation as a quadratic in ¢”, we have
/ 2
ey}’:h—i_# = e}’:xi\/xz—ﬂ'-l
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Taking the logarithms of both sides, we obtain
y=In(xtvx>+1)

The value of sinh 'x can only be In(x + v/x2 + 1). We cannot have

sinh'x = In(x — VX2 + 1), because x < v/x2 + 1, which would give the
logarithm of a negative number, which is a complex number.

Hence, we have

sinh'x = In(x + vVx2 + 1)

Example 7 Find the value, in logarithmic form, of sinh™'3.

SOLUTION
Using sinh 'x = In(x + v/x2 4 1), we have
sinh™'3 = In(3 4+ v/10)

IR RSB ERERDEE.]

Expressing tanh 'x as a logarithmic function

Let y = tanh™'x. We then have
sinh y
cosh y
@ -e)

Tl@te)

x =tanhy =

=

Multiplying the numerator and the denominator by 2e”, we obtain
e —1
X =
e + 1
= ePx+x=e¥-—1

Therefore, we have

2y l+x 1 <1+x>
g == = y=—1In
1—x 2 1—x

Hence, the value of tanh 'x is % ln(i ]

),Where—l < x < 1.
— X

: Example 8 Find the value, in logarithmic form, of tanh™! %
B

= SOLUTION

2

s Using tanh 'x = 1 ln<1 a x) , we have
- 2 l—-x

B

. 1y 1 3

e tanh™ 5 = = In| 2

B 2

B

= which gives tanh 'L = L In3.

B
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DIFFERENTIATION OF INVERSE HYPERBOLIC FUNCTIONS

Example 9 Find the value, in logarithmic form, of sech™ %
SOLUTION

Since y = sech™' 1, we have

= coshy=2
= yp=cosh™'2
Using cosh™'x = In(x + v/x2 — 1), we have
cosh™2 = In(2 + V3)
which gives sech™' 1 = In(2 + V/3).

Summary
cosh'x =In(x£vx>—1) x>1 Plus sign gives the principal value
sinh™'x = In(x + VX2 + 1)

tarlhlyc:%ln<1 +x> —-1l<x<1

1 —x

Differentiation of inverse hyperbolic functions
sinh 'x
We have y = sinh™'x, therefore sinh y = x.

Differentiating sinh y = x, we obtain

dy
coshy — =1
ydx
_d}_*_ 1 1 1

== =3 = =
dx " coshy \/1+sinh2y V1 4+ x2

which gives
£ sinh™ x = !

dx V14 x2

Therefore, we have
JL =sinh 'x+¢
1+ x?

We now take y = sinh ™' <£>, giving sinh y = a
a a
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Differentiating sinh y = E, we obtain

coshy & _1
dx a
s, dy 1 _ 1
dx acoshy /4 + sinh?y
which gives
dy _ 1 _ 1
dx )2 Va?+ x?
ay/ 1+ (—)
a

That is, we have

4 sinh ™! <£> N S
dx a Va* + x?

from which it follows that

dx . (x)
———  —sinh Z)+c
J\/az + x2

a

cosh 'x

We have y = cosh™'x, therefore cosh y = x.
Differentiating cosh y = x, we obtain

. dy
Slnhy a =1
N dy _ 1 _ 1 ) 1
dx sinhy cosi2Al 1 Va2 -1
which gives

—(—1— cosh™'x = ;
dx x2—1

Therefore, we have
dx —1
——— =cosh  'x+¢
J vx2—1

We now take y = cosh™ (£> , giving cosh y = a:
a

Differentiating cosh y = E, we obtain

: dy
sinhy —
4 dx a
N i)i _ 1 _ |

dx asinhy B 2 /coshzy— 1
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DIFFERENTIATION OF INVERSE HYPERBOLIC FUNCTIONS

which gives
dy _ 1 1

dx \/ 2 _\/)cz—a2
X
a <—> -1
a

That 1s, we have

~d~ cosh™ <}—> = 71
dx a x2 —a?

from which it follows that
J_d)_c_ = cosh™ <i> +c
x? — a2 a

tanh 'x

X

We have y = tanh ™' < ), therefore tanh y = &
a

a

Differentiating tanh y = i, we obtain
a

sech? yﬂ L
dx a
av__ 1 L

= = 7. 2
dx asech®y  a(l —tanh”y)

which gives

d_y_ 1 a

dx a[1~<§>2] @ — x?

That is, we have

i tanh ™! <l> -
dx a a2 — x?

from which it follows that

J 2dx { :itanh”<£> +c
a>—x*  a a

Note = We can integrate

by partial fractions:
P o

dx 1 1 1 1 a+x
=— + dx=—1In +
Jaz—xz 2aJ<a+x a—x> 2a (a—x) ¢

X

a
function in tanh ' x in differentiation or integration.

This result is the logarithmic form of tanh™! ( ) Hence, it is unusual to use a
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Example 10 Differentiate

a) i) sinhl<§> ii) sinh'4x b) cosh_1<%>

SOLUTION
X

=
B
B
B
"
B
B
: a) Usin i sinh_l(—> S we have
% 5 dx a Va2 £x27
B
] d . —1{ X 1

i —sinh™' [ = | = ——
% ) dx (3) VO + 2
2
] . d . —1 d . -1l X 1
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a) Using the first integral formula on page 202, we obtain
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b) Before integrating, we must reduce the coefficient of x* to unity (as
with inverse trigonometric functions), which gives
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DIFFERENTIATION OF INVERSE HYPERBOLIC FUNCTIONS
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SOLUTION

Using the first integral formula on page 203, we obtain
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4x2 —8x — 16

SOLUTION
Before integrating, we must

e Complete the square (as with inverse trigonometric functions).
e Reduce the coefficient of x? to unity.

Hence, we have
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