CHAPTER 3 POLAR COORDINATES

Hence, the values of 0 at the points where the tangent is perpendicular to the
initial line are

0=0atA 0=m—0912atB
0=—-n+0912atC HzgatD

So, the equations of the tangents perpendicular to the initial line are
x=a
x=0

and

x=—0.9858a or acos E [cosl<— l)]
2 4

The tangents to r = acos 36 parallel to the initial line are shown below. These
are at the points P, Q, R and S. To find these points, we find the maximum
and minimum values of rsin 6 in a similar way to that shown above.
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Exercise 3E

1 Find the equation of each tangent to the curve » = acos 360 which is parallel to the initial line.

2 Find the equation of the tangent to the curve r = ¢’ which is
a) parallel to the initial line
b) perpendicular to the initial line.

3 Give in polar coordinates the points on the curve r = acos 20 where the tangents are
a) parallel to the initial line

b) perpendicular to the initial line.

4 The diagram (top of page 55) shows a square PQRS with sides parallel to the axes Ox and Oy.
The square circumscribes a curve C whose cartesian equation is (x> + »%)* = xy.
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a) Show that, in terms of polar coordinates (r, 0),
the equation of Cis r =1 sin 26.

b) Find the area bounded by C.

¢) The coordinates of a variable point on C are (x, y).
i) Show that x = sin § — sin®.
ii) Show that, as 6 varies, the maximum value

J 1
of x occurs when sin = —.

EXERCISE 3E

YA

3
iii) Calculate the area of the square PQRS.
(NEAB)

5 The diagram shows a sketch of the curve C whose polar
equation is

r=+v3-cosf (—n<<7n)

The line L touches the curve at A and B. Express in
terms of 0 the x-coordinate of a general point, P, on

C and determine the values of 0 for which this coordinate
has a stationary value.

Deduce that at A, 0 = %

Show that the area of the region bounded by C and L,
shown shaded in the diagram, is

17v/3  7n

—Y-_ = (NEAB)
16 12

6 a) Sketch the curve with polar equation

r = cos20 —% <0<

At the distinct points A and B on this curve, the tangents to the curve are parallel to the initial

line, 6 = 0.

b) Determine the polar coordinates of A and B, giving your answers to three significant

figures. (EDEXCEL)

7 The figure on the right shows a sketch of the circle
with polar equation » = ¢ and the cardioid with
polar equation r = a(1 — cos 0), where « is a
positive constant.

a) Verify that the curves intersect where 6 = j:g.

b) Find the area of the shaded region, giving your
answer in terms of ¢ and . (EDEXCEL)

55




CHAPTER 3 POLAR COORDINATES

8 The curves C; and C, have polar equations

Ci: r=4sin’0 0<0<2n
Cy: r=(2v3)sin20 0<0< 1T
a) Sketch C; and C, on the same diagram.
b) Find the polar coordinates of all points of intersection of C; and C,.

¢) Find, to two decimal places, the area of the region R which is inside both C; and C;.
(EDEXCEL)

9 Relative to the origin O as pole and initial line 6 = 0, find an equation in polar coordinate form
for

a) a circle, centre O and radius 2
b) a line perpendicular to the initial line and passing through the point with polar coordinates

(3,0)
c) a straight line through the points with polar coordinates (4,0) and (4, %) (EDEXCEL)
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4 Differential equations

Change and decay in all around I see.
H.F.LYIE

We have already solved first-order differential equations in which the variables
are separable (see pages 457-60 in Introducing Pure Mathematics.)

We will now consider three other main types of differential equation.

First-order equations requiring an integrating factor

This is the other main type of first-order differential equation.

Equations of this type are of the form
dy

_+P7:
qp 00 0

where P and Q are functions of x.
Such an equation can be solved by first multiplying both sides by the

integrating factor /79,

Multiplying % + Py = Q by &/P9 we get
X

olPdx Q—l— Pedexy _ Qefpdx
dx

Since the left-hand side is the differential of yefP ¥ we therefore have

% <ye,J'de> > Qe.dex

which gives

yedex e JQe.dex dx

The right-hand side is often integrated by parts.

- dy :

®  Example 1 If — 4 3y = x, find y.

. dx

2

& SOLUTION

» The integrating factor is /34, which is 3.
. Multiplying both sides by e**, we obtain

% e3.\' Q + e3X3y - xe3x

~ dx
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CHAPTER 4 DIFFERENTIAL EQUATIONS

= —d—(ye3x) = xe™*
dx
Integrating by parts, we have
ye* = Jxe3x dx
= le3x X X — Jle3x dx
3 3

which gives

et = LR M ny
3 9
Multiplying both sides by e**, including ¢, we obtain
1 1 —3x
=—X——1e6
Y730

I E X EEEEEEEEEEEEEEE R SR EEREEEE R RN R

Note The constant term, ¢, has now become a function of x.

Example 2 Solve the differential equation x A _ 2y = x*.
SOLUTION
Dividing both sides by x to make the first term j—y, we obtain
X

dy 2y _ s

dx x
The integrating factor is

ef—(2/x)dx — g 2lnx — e]nx’2'
Applying the result e™* = u, we have e™* " = —17

X

We now multiply the differential equation by the integrating factor, Lz, to
X
obtain
1dy 2 0%
x% dx %3

which we express as

i(i ):x
dx x2y

= %y:dex
X
1 X

= —y=—+c
xzy 2

Multiplying both sides by x?, we obtain the general solution

[ EE S E F T s " F ST EEEREREEEEEECEEERRE CERREREERRRERRRRERR RN REE

y=4xt+ex?
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EXERCISE 4A

Note To obtain a particular solution, we need to be given a specific point
which lies on the curve. Hence, we can find the value of ¢. This extra fact is
called a boundary condition. Example 3 illustrates such a situation.

Example 3 Solve the differential equation g—y
X

when x = 2.

SOLUTION

The integrating factor is el (1/x)dx — ginx —

+ly = x?%, given that y = 3
X

Multiplying the differential equation by the integrating factor, x, we have

dy 3
X—+y=x
dx Y

which we express as
d 3
—(xy)=x
dx( ”) 1
4
= xy=-—x +4c
!

When x = 2, y = 3, which gives
6=4+c = c¢c=2

Therefore, the solution is

2

xy:ix“—i—?. or yzi)f—k;

Exercise 4A

1 Simplify each of the following.

a) eln x2 —3Inx

e) ev[x/(xzfl) dx

b) e%ln(x2+l) c) e

f) e3x In2

In each of Questions 2 to 7, find the general solution.

8 A curve C in the x—y plane passes through the point (1,0). At any point (x, y) on C

dy dy 2x
—+3y=x 3 ——5y=e
dx Y dx d
5xd—y—2y:x3 6 & __ 4 =5(x—1)°
dx dx x-—1
dy %
_+ =ie
dx +

d) eftanx dx

4 xﬂ—ky:x2
dx

7 tanx ﬂ%—y = e*tanx
dx

s

a) Find the general solution of this differential equation.
b) i) Hence find the equation of C, giving your answer in the form y = f(x).

ii) Write down the equation of the asymptote of C.
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CHAPTER 4 DIFFERENTIAL EQUATIONS

9 Find the general solution of the differential equation
dy

Y352y = xe*
dx 4

giving y explicitly in terms of x in your answer.

Find also the particular solution for which y = 1 when x = 0. (OCR)

10 Find the general solution of the differential equation

(cos x) dy + (sin x)y = cos’x
dx

expressing y in terms of x. (OCR)

11 Find the general solution of the differential equation
dy

x—+4y=x
X

giving y explicitly in terms of x in your answer.

Find also the particular solution for which y = 1 when x = 1. (OCR)

12 Find, in the form y = f(x), the general solution of the differential equation
dy 4

< 4 -y=6x—5 x>0  (EDEXCEL)
dx x

13 A car moves from rest along a straight road. After# seconds the velocity is v metres per
second. The motion is modelled by

dV ﬁl‘
—4av=c¢
ds

where o and f§ are positive constants.
i) Find v in terms of «, f and ¢.
ii) Show that, as long as the above model applies, the car does not come to rest. (OCR)

14 The variables v and ¢ are related by the differential equation

%: 20 + L vtan (49

Given that v =1 when ¢ = 0, find v when ¢ = 2. (OCR)
15 i) Find the general solution of the differential equation

d—y+ytanx =COSX

dx
i) If y = 2 when x = 0, find the particular solution. (NICCEA)
16 Given that
B | @x+ )y =128 7
dx
and that y = 5 when x = 0, find y in terms of x. (OCR)

17 The number, N, of animals of a certain species at time ¢ years increases at a rate of AN per year
by births, but decreases at a rate of ut per year by deaths, where A and u are positive constants.
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19

20
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SECOND-ORDER DIFFERENTIAL EQUATIONS

Modelled as continuous variables, N and ¢ are related by the differential equation

dN
— =N — ut
dr #

Given that N = Ny when ¢ = 0, find N in terms of ¢, A, u and N,. (OCR)
i) Find the general solution of the differential equation

d ,

= = k(x +7)

dx

where k is a constant, giving your answer in the form y = f(x).

i) The gradient at any point P(x, y) of a curve is proportional to the sum of the coordinates of
P. The curve passes through the point (1, —2) and its gradient at (1, —2) is —4.
a) Find the equation of the curve.

b) Show that the line y = —x — % is an asymptote to the curve. (OCR)

i) Show that the appropriate integrating factor for

4 + (2cotx)y = f(x)
dx
is sin’x.
i) Hence find the general solution of the differential equation

sin x j_y + 2ycosx = cosx (NICCEA)
%

Find the general solution of the differential equation
ds
4+ ==1
( ) i
Given that s = 0 when ¢ = 2, express s in terms of 7. (EDEXCEL)

a) Find the general solution of the differential equation

be QAy = x% %

dx
giving your answer in the form y = f(x).

b) i) Verify that the graphs of all solutions of the differential equation pass through the origin

O, and find the particular solution which is such that iy =—latO.
%
ii) For this particular solution, state the limiting value of y as x — cc. (NEAB)

Second-order differential equations

An equation is termed second order when it contains the second derivative, —}5

2

dx
Initially, we will consider equations of the form
d*y dy
@ ——ph g =
dx? dx g

where a, b and ¢ are constants.
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CHAPTER 4 DIFFERENTIAL EQUATIONS

2
To solve the equation a% +b j—y + ¢y = 0, we make the substitution
% 58

y = Ae™. Hence, we have

2
dy =nAe™ and L n*Ae™

dx dx?
which give
an® Ae™ + bnAe™ + cAe™ = 0

That 1s,
an’* +bn+c=0
This quadratic equation is called the auxiliary equation.

The solution of a second-order differential equation depends on the type of
solution which satisfies its auxiliary equation. There are three types of solution
of a quadratic equation:

1 Two real and different roots
2 Two real and equal roots.
3 Two complex roots.

Type 1 solution.

The auxiliary equation has two real, different roots, n; and n,. So, the solution
d’y dy :
ofa——+b—+cy=0is
dx? dx ’
V= Aeh> | Bew?
where 4 and B are arbitrary constants.

To verify that this is the full solution, we need to confirm that the following
two conditions obtain:

e There are two arbitrary constants, as it is a second-order differential
equation.
e The solution does satisfy the equation
&y, dy

SV p Y 20
S e

We notice that there are indeed the two required arbitrary constants.

To prove that the solution, y = 4e™* 4+ Be™*, satisfies the differential equation,
we substitute it and its derivatives in the LHS of

&’y , dy
AL b~ ey =10
dx? dx -
which gives
d2y dy 2 falix 2 p X nx nyx nx mx
a @%— b :1;—'_ ¢y = a(njAe™” + n; Be™") + b(ny Ae™” + ny, Be™) + c(Ae™™ + Be™)

= Ae"*(an} + bn; + ¢) + Be"*(an3 + bn, + ¢)
— 0

since #; and n, are roots of the equation an® + bn + ¢ = 0.
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SECOND-ORDER DIFFERENTIAL EQUATIONS

To find the values of 4 and B, we need two boundary conditions. Usually, these
are either

e the values of y at two different values of x, or

e the value of y and that of L for one value of x.

dx
; d’y dy ,
Example 4 Find y when 2 o2 3y =0, given that x = 0 when
X X

y = 2 and y is finite as x tends to infinity.

% SOLUTION

bk 1« = : o @y dy

Substituting y = A¢™ and its derivatives in 2 q  an d/ — 3y =0, we get
by X

2 —n—-3=0
= @n-Nn+1=0

= n:é and -1
2

Therefore, we have
y= Ae?* + Be™™
When x =0, y = 2, which gives
2=A+B

We know that as x tends to infinity, y is finite. Therefore, 4 = 0 because
the limit of 2 as x tends to infinity is not finite.

Hence, B = 2, which gives y = 2¢™".

Type 2 solution

The auxiliary equation has two real, equal roots, n. In this case, we cannot, as
in Type 1, use just y = Ae™ + Be™™, since this simplifies to y = (4 + B)e™ or
»y = Ce™, which has only one arbitrary constant. The solution is, therefore,

y = (4 + Bx)e™
To prove this is the solution, we must show that it satisfies the equation
d*y dy

a—=+b—+cy=
dx? dx

Differentiating y = (A4 + Bx)e™ twice, we get

oo 3 Be™ + ne™ (A + Bx)
dx

d2V : 2 nx ¢
— = Bne™ + n"¢"™ (A + Bx) + ne™B

x?2

= n*(A + Bx)e™ + 2nBe"™

63



CHAPTER 4 DIFFERENTIAL EQUATIONS

2
Substituting these in the LHS of a L +b & + ¢y =0, we have
dx? dx
d2y dy 2 nx nx nx nx nx
ap—i—b a———i—cy:a[n (4 + Bx)e™ + 2nBe™] + b[Be™ + ne™ (A + Bx)] + ¢(A + Bx)e
X X

= (4 + Bx)e™(an* + bn + ¢) + (2na + b)Be™

Since 7 is a root of an®> 4+ bn + ¢ = 0, the first term is zero.

—b +Vb? — dac

Consider now the quadratic formula, n = > . When its roots are
a

coincident, > — 4ac = 0. Therefore, we have

n:—i = 2na+b=0
2a
So, the second term is also zero.
d2y dy e
Hence, a ) =D = + ¢y does equal zero, and y = (4 + Bx)e™ is indeed the
X b

required solution.

3
Example 5 Solve 4y +6 9y + 9y = 0.
el dx
SOLUTION
s : e dy
Substituting y = 4e™ and its derivatives in ) + 4 % + 9y =0, we get
X by

n+6n+9=0
= m+3)n+3)=0

= w=3
Therefore, the general solution is

y = (4 + Bx)e >

I E R R R R EEEEEE SRR E R ERERE]

Type 3 solution

The auxiliary equation has two complex roots, n; & in,.

2
Q.{_bﬂ

Therefore, the solution of a
dx? dx

+cy=0is

y 4 Ae(’” Fing)x " Be(”‘ —im)x
= gnx(Aeimx 4 Be-imy
= e"¥[A4 cos nyx + 14 sin nyx + B cos (—nyx) + 1B sin (—nyx)]
= e"*(Acos nyx +1A4 sin nyx + Bcosnyx — 1Bsinn,x)
= e"*[(4 + B)cosmx + i(4 — B) sinn,x]

Since 4 and B are arbitrary constants, we can combine (4 + B) to give an
arbitrary constant C, and we can combine i(4 — B) to give an arbitrary
constant D. So, we have

y = e&"¥(Ccosmx + D sinn,Xx)
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E 5

®  Example 6 Solve —— L -2 = iy + 3y =0, given that y = 0 and —=< dy =6,
B x?2 dx dx

=  when x = 0.

:E; SOLUTION

= Substituting y = Ae™ and its deriv ¢ g

B X

8 n”—2n+3=0

=

:zi—w_ V;_lzzli\/ii

Therefore, the general solution is
y = e*(Ccos vV2x + Dsin v2x)

To find C and D, we use the boundary conditions.

When x = 0, y = 0, which gives
0=CcosO0O+Dsin0 = C=0
Hence, we have

y = De*sin v2x

X

dy = De’ s1nfx+\/_De coS \/‘x

When x =0, 9——
X

6 = Dsin0 4+ /2D cos0
= 6=+v2D = D=32
Therefore, the solution is y = 3v/2e"sin v/2x.

= 6, which gives

IS S EE S SRS EEEEEEEEE RS ENENEN]

IR B BB

Alternative notation for derivatives

EXERCISE 4B

ey . dy . 1
As one boundary condition is given in terms of di we differentiate the above:

: o : d 2
Sometimes it is more convenient to denote d—y— by y’ or f’, and %12 by y” or {7,
x X

where y = f(x).

Exercise 4B

In Questions 1 to 12, find the general solution of each differential equation.

1%%—6;1); 8y =0 2%%3 +2y=0 32%—31 6y =0
43%1—_+4§£ 7y =0 5‘;3—7%;“&40 6%—113—3%2&;0
73?2 gi+4y—0 8% 63 +9y =0 93—;+%+y—0

10 32\}2 §z+8v-0 11%—6%3+7¢—0 12i2+2i—x+13x_0
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CHAPTER 4 DIFFERENTIAL EQUATIONS

Second-order differential equations of the type
dy dy

a— +b— +cy=1_1(x
dx? dx y =)

If y = g(x) is the solution of

d?y dy
a—=+b—+cy=0
a A @
and y = h(x) is the solution of
d*y dy
——4+b—=—+4cy=1(x
¢ dax? dx =1

then we have
¥ = h(x) + ig(x)

as the general solution of
&y, dy

—=+b
¢ dx? dx

+cy = f(x)

Proof
Substituting y = h + /g and its derivatives in the LHS of

d*y dy
—=+b—=—+cy=fi
¢ dx? dx ¢y = 1(x)

we have
ay’ + by + cy = a(h” + Ag") + b(h' + Ag)+ ch + Ag)
= ah” + bh' + ch + A(ag" by + cy)
= f(x)

since h is a solution of ah” + hh’ + ch = f(x), and g is a solution of
ag’ +bg +cg=0.

Therefore,
¥ = h(x) + 1g(x)
is the general solution of @y + by’ + ¢y = f(x)

g(x) is called the complementary function (CF), and h(x) is called the particular
integral (PI).

The particular solution is obtained by inserting boundary conditions into the
general solution.

Types of particular integral

The particular integral depends on the function f(x).
We will consider three types of function f(x):

e polynomial
e cxponential
e trigonometric
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SECOND-ORDER DIFFERENTIAL EQUATIONS

e f(x) is a polynomial of degree n

In this case, the particular integral will also be a polynomial of degree x.

Example 7 By finding a) the complementary function and b) the
particular integral, solve the equation

SOLUTION

a) For the complementary function, we use

d?x dx _ 0

3 de dz

Substituting x = Ae™ and its derivatives in the above equation, we get
n?+3n—-4=0

= m+4)n-1)=0

= n=1 or -4

" So, the CF is x = Ae’ + Be .

b) For the particular integral, f(x) is a polynomial of degree 0. Hence, we
need consider only x = ¢ for the particular integral.

9
. Substituting x = ¢ | i dx
—4c=8 = c=-2
£ So, the Pl is x = —2.

Therefore, the general solution is x = 4e’ 4+ Be ™ — 2.

E 2

. Example 8 Find the solution of% +3 j} 4y = 2 + 8x%, given that,
b X
Whenx:O,}fzoandgl:I.

SOLUTION

To find the CF, we use

““ d2 dy

. = + 3 -4y =0

dx? dx

Substituting y = 4e™ and its derivatives in the above equation, we get
; W 4+3n—4=0

é = m+4)n-1)=90

- = n=1 or -4

2

s So, the CFis y = 4e* + Be %",
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CHAPTER 4 DIFFERENTIAL EQUATIONS

*  To find the PI, we substitute y = a + bx + cx? and its derivatives in
2

- d}+3d} 4y =3+ 8x°

L dx? dx

B

which gives

2¢ +3(b + 2¢x) — 4(a+ bx + cx?) = 3 + 8x?
Equating coefficients of x>: —4c¢=8 = c¢=-2
Equating coefficients of x: 6c—4b=0 = b=-3
Letting x = 0 in the above equation, we get

2c+3h—4a=3
= a=-4

So, the Pl is y = —4 — 3x — 2x7.

Therefore, the general solution is
y=Ae*+ Be™ —4 — 3x — 2x?

We now need to find values for 4 and B.

When x = 0, y = 0, which gives

0=A+B—-4

= A+ B=4 1]
= Differentiating y = de* + Be™** — 4 — 3x — 2x%, we have
: Y _ g 4B — 3 4x
- X
= Whenx =0, i = 1, which gives
" dx
= 1=A4A—-4B-3
. = A-4B=4 2]
2
®  From [1] and [2], we get 4 =4 and B=0.
= Therefore, the general solution is y = 4e* — 4 — 3x — 2x°.

e f(x) is an exponential function

Take, for example, the equation

d J/ d.y Tx
\- 3 —4y =3¢
dx? dx o

In this case, f(x) = 3e’. The particular integral will be of the same form: Ce’*.
Therefore, the CF is y = Ae* + Be ™ (see Example 8).

To find the PI, we substitute y = Ce’™ and its derivatives in

dzy dy 7
+3 — 4y = 3eF
dx? dx =
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SECOND-ORDER DIFFERENTIAL EQUATIONS

which gives
49Ce™ + 21Ce™ — 4Ce™™ = 3¢’
= 66C=3 = C=+
So, the PLis y = % e™.
Tx

Therefore, the general solution is y = Ae* + Be * + %.

e f(x) is a trigonometric function of the form a sin nx

Take, for example, f(x) = 4sin2x. The particular integral will be of the form
Csin2x + Dcos2x

2 2 ;

= Example 9 Solve 43 -+ & T 4y = 4sin2x.

§ dx? dx

g SOLUTION

i The CF is y = Ae* + Be ™ (see Example 8).

= Caution Suppose we were simply to consider y = Csin2x as the PIL.
:  Because there is only a sin 2x term on the right-hand side, we would
» obtain

. : 2

Y _sceostx and S _4cenie

e dx dx?

o . d%y dy . :

=  Substituting these in — + 3 — — 4y = 4sin 2x, we would obtain

. dx? dx

—4Csin2x + 3 x 2Ccos 2x — 4Csin 2x = 4sin 2x

= which includes only one term in cos2x <frorn dy) .

] X

2

> This means that this equation cannot be solved.

. Hence, the PI used must contain both sin 2x and cos 2x terms. That is,

y = Csin2x 4+ .Dcos2x
Differentiating this, we have

y' =2Ccos2x — 2D sin 2x
y"'=—4Csin2x — 4D cos 2x

2
Substituting y" and y” in LF) +3 L 4y = 4sin 2x, we get
dx? dx

—4Csin2x —4Dcos2x + 6Ccos2x — 6Dsin2x — 4Csin2x — 4D cos 2x = 4sin 2x

Equating coefficients of sin2x: —8C — 6D =4

B E ST R R EEEEEESEEEEREEEEN RN N

= —4C-3D=2 1]
Equating coefficients of cos2x: —8D +6C =0
= —4D+3C=0 2]
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CHAPTER 4 DIFFERENTIAL EQUATIONS

®  Solving the simultaneous equations [1] and[2], we get
L]
‘ C=- & and D= — 5
= 25 25
= Therefore, the Pl is
L |
. y:—isin2x—icos2x
= 25 2
s  Hence, the general solution is
E ]
2
= y=Ae" + Be ™™ — 8 sin 2x — 5, cos 2x
o 25 25
3
Example 10 Solve ey & _ 2y = 3¢*, given that y = 0 and dy =11
dx?  dx dx
when x = 0.
SOLUTION
To find the CF, we use
d’y dy
— ———2y=0
dx? dx 4
Substituting y = Ae™ and its derivatives in the above equation, we get
w—p—2=0

= m—-2)n+1)=0
= n=2 or -1
So, the CF is y = Ae** + Be ™.
To find the PI, we let y = Cxe*".
(Note xe”* is used here because ¢** already forms part of the CF.)

Differentiating y = Cxe®*, we have

b _ Ce®™ + 2Cxe™
X
2
Y 2™ 206> + 40k
dx?
2
Substituting these in Uy Gy _ 2y = 3¢, we get
dx? dx

4Ce* + 4Cxe* — Ce* — 2Cxe™ — 2Cxe™ = 3e**
(Note The x-terms should cancel at this stage.)

3Ce* =3¢ = C=1
Therefore, the Pl is y = xe**.

Hence, the general solution is y = 4e** 4+ Be™ + xe?*.
Y
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SECOND-ORDER DIFFERENTIAL EQUATIONS

At this stage, after adding the CF and the PI, we insert the boundary
conditions:

y=0whenx=0 = 0=A4+8

L 24e™ — Be ™ 4 &* + 2xe™

Qzllwhenx:o = 11=24-B+1 = 10=24-B
% Since 0 = 4 + B, we have
) A = E and B—— E
3 3
The solution is, therefore,
= <& & r)ezx - Ee’x

e 3
«  Example 11 Solve y" — 4y + 4y = 3¢e**.
f SOLUTION
‘* To find the CF, we substitute y = Ae™ and its derivatives in
= y"—4y’ 44y =0, which gives
W —4n+4=0
= (n—-2)(n—-2=0
= n=2 (repeated root)

= Therefore, the CF is y = (4 + Bx)e%.

= To find the PI, we need to use a term in x*e*", since both ¢** and xe>*
«  already form terms in the CF. Therefore, we let y = Cx*¢®, which gives

; y' =2Cx*e* + 2Cxe™

»" = 4Cxe> 4 4QxeP + 2Ce™ + 4Cxe™

/ = 4Cx%e QR + 2Ce?

5 Substituting these in »” — 4y’ + 4y = 3e**, we have

* 4Cx2e™ + 8Cxe®™ + 2Ce™ — 4(2Cx%e™ + 2Cxe™) + 4Cx2e = 3

(Note The terms in x* and x should cancel at this stage.)

2@ =3¢" => C=3
«  Therefore, the PTis y = %xzez"'.
; Hence, the general solution is y = (4 + Bx + 2 x?)e".
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2
2
B

Example 12 Solve y” + 16y = 2 cos4x.

SOLUTION

To find the CF, we substitute y = 4e™* and its second derivative in
" + 16y = 0, which gives

w+16=0 = n==+4
The CF is, therefore, y = A cos4x + Bsin4x.

Note that for the PI we need to use terms in x cos 4x and xsin4x, since
the CF already contains the terms cos4x and sin 4x. Therefore, the PI is
given by

y = Cxcosdx + Dxsindx

So, we have

E
2
=
2

y' = Ccosdx — 4Cxsin4x + Dsin4x + 4Dx cos 4x
y" = —4Csin4x — 4Csindx — 16Cx cos4x + 4D cos4x + 4D cos4x — 16D sin 4x

Substituting the above in y” 4+ 16y = 2 cos 4x, we get

B E B BRI

—8Csindx — 16Cxcosdx +8Dcos4dx — 16Dxsin4x + 16Cxcos4dx +
+16Dxsindx = 2cosdx

Simplifying, equating sin and cos terms, and remembering that the terms
in x should cancel, we find

C=0 and D—-

]

W

= Therefore, the PTis y = + xsin4x.

% Hence, the solution is

. y:Asin4x+Bcos4x+§sin4x
2

Exercise 4C

In Questions 1 to 12, find the general solution of each differential equation.

1 2?2+7ij 8y = 16x 2 %+4§y+3y*4ez‘ 3 2232—3%—5)) 10x* 41
43g—ij+2gz—y:4sin5x 5%—4%—5 = 3¢ 63—27—8%+15s—5cos2z
7 jx}_+5§y+4y—2e‘x 8%—6%+9y:563“‘ 9%—2%+3y=22€4x
10 jx}z’% gzﬂoy_se*‘“ 11 %—2%+x:4e[ 12 ‘;i+16x—3cos4z
13 Solve the differential equation
fg-z%ﬁx:o

if x = —3 and %)[E =1 when t = 0. (NICCEA)
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EXERCISE 4C
14

a) Find the general solution of the differential equation

b) Hence find the solution for which y = -2 at x = 0, and Y fatx=0

x=0. (EDEXCEL)
X
15

2
Find the general solution of the equation 5

=™ e 1x.
X2

State what extra information would be needed to enable a particular solution to be obtained

(NEAB/SMP 16-19)
16 i) Find the solution of the differential equation
d*y dy
X a1 13y=0
dx? dx =

o il p = Band = 1wtz =0
X
ii) Given that

dvy
cos x =2 +2ysinx =cos’x +sinx 0 < x <
X
and that y =1 at x =

Lo
2
1, find the value of y at x = 1

7T (EDEXCEL)
; : . dz}' dy
17 Find the general solution of the differential equation —= e —4 — g + 5y = sin 2x.
S X
18 i i

2
i) Solve the differential equation % + 16x = 0 to find its general solution
i) Ifx:3and£1—)£

% —8 when ¢ = 0, show that the particular solution of the differential
equation above is

(EDEXCEL)

x = 3cosdr — 2sin4dr

i) By writing the particular solution as R cos (47 + o), find the first positive value of ¢ for
which x is maximum. (NICCEA)

19 Obtain the solution of the differential equation
d’x dx
20 =+4—"—+4x=2¢+11
dr? dr i@
given that, when r = 0, x = 3 and E;ﬁ = 2.8. Show that x ~ 27 4 3 for large positive 7. (OCR)
20 Find the general solution of the differential equation
2
2—2+5%+4x—15c0831—55m3t (OCR)
21 Find the general solution of the differential equation
dZ

L
dx? dx

Given that y = 0 when x = 0 and that y remains finite as x — oo, find y in terms of x (OCR)
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22 i) Find the general solution of the differential equation
d’x  dx
—— —4 —— 4+ 29x = —16cos 2t + 50 sin 2t
drs? dr

i) If x=3 and —((11—); = 10 when ¢ = 0, find the particular solution. (NICCEA)

23 a) Solve the equation %Ji = x + xy. You do not need to make y the subject of your solution.
b i

b) Find the complementary function and a particular integral for the equation

dy
dx
Hence write down the general solution of the equation. (NEAB/SMP 16-19)

—3y=2x+e*

24 a) Find the general solution of the differential equation

d*y dy
—+4—=+13y=0
dx? dx e
b) Given that y = acos3x + bsin3x is a particular integral of the differential equation
d? dy dy .
+4 —=—+4 13y = 6cos3x — 8sin3x
dx? dx ’
find the values of ¢ and 5.
c) Show that this particular integral has maximum and minimum values of \/4:—0 and \/4:_0

respectively.
d) Find the solution of the differential equation

2
d_y+4ﬂ

4+ 13y = 6¢cos3x — 8sin 3x
dx? dx i

for which y = 0 and —?11 =0atx=0. (EDEXCEL)
X

25 a) Find the general solution of the differential equation

2
Zd——7dy 4y =8sinx — 19cosx
dx? dx

b) Hence find the solution for which y =0 at x = 0 and 4y =11 atx=0. (EDEXCEL)
b

26 The value of the stock held by a large business organisation ¢ years after 1st January 1998 is
(10 4 x) million dollars. The variation of x, which may be regarded as a continuous variable, is
modelled by the differential equation

d’x | dx
452 185 | sy =2cost— 16sint
de? dr
i) Find the general solution for x in terms of 7.
ii) Given that x = 1 and % = 3 when ¢t = 0, find, correct to four significant figures, the

predicted value of the stock held on 1st January 2000. (OCR)
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SOLUTION OF DIFFERENTIAL EQUATIONS BY SUBSTITUTION

27 Find the values of the constants p and ¢ for which y = pxsin 2x + gxcos 2x is a particular
integral of the differential equation

d*y :

—— + 4y =sin2x

dx?
Find the general solution of this differential equation.
Show that when x = nr, where n is a large positive integer, y ~ — %nn, whatever the initial
conditions, and find a corresponding approximation for y when x = (n + %)n. (OCR)

28 Given that x = A’e™' satisfies the differential equation

d*x dx _
—+2—+x=¢"'
de? dr

a) find the value of A4.

b) Hence find the solution of the differential equation for which x = 1 and % 210 af§ = 0.
t

¢) Use your solution to prove that for 7 > 0, x < 1. (EDEXCEL)

Solution of differential equations by substitution

We can now solve the following three types of differential equation:

e First order in which variables are separable.

e First order requiring an integrating factor.

e Second order of the form ay” + by’ + ¢y = f(x), where a, b and ¢ are
constants.

Substitutions can be used to make a differential equation, which is one of these
three types, more manageable.

For example, to solve

(m + SkEM) + ¢ % = (m + 5kM)?
we would make the substitution p = m + 5kM, which changes this equation
into

dp 3
+i-t=p
P dr &
In this form, the equation looks less daunting and is easier to solve.

Substitutions can also be used to convert a more difficult form of differential
equation to-one of the above three types. (In an A-level examination, these
kinds of substitution will normally be given.)

Two such substitutions which you will meet frequently are y = ux and x = e,
where u is a function of x. Their application is shown respectively in Examples
13 and 14.
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CHAPTER 4 DIFFERENTIAL EQUATIONS

Example 13 Solve x’ g—y = 4x* + xy + )7, given that when x = 1, y =2
X

SOLUTION

Notice that in this equation the power of each term, treating x and y as
the same, is 2.

Such equations are called homogeneous equations, for which the usual
substitution is y = ux.

Differentiating y = ux with respect to x, we have

dy du
== x+
dx dx o

Substituting for j—y and for y in x* g—y =4x? 4 xy + *, we get
X x

x° (x Ei—Li + u) = 4% + ux? + X
dx

Dividing through by x? and rearranging the terms, we have
du

x—— =4 it
dx

71

4 +u? %

which gives (see page 36)
1 —1{u
— 1 — |l =lnx+
bint(2) <t o

1 -1 J’)
= —tan" (— | =lnx+¢
2 <2x

Now when x = 1, y = 2. Therefore, ¢ = = Hence, we have

1 2y i

—tan | = ) =lnx +—

2 (2x) TR
=

PA S tan<£+2lnx>
2x 4

I B SR EREERESEEREREES RS RERERRERRRRERRERRRERERERRE R ERE R R E R EERRRE R R R R R EREER R ERE:

= y= 2xtan<§+2lnx>

L] 2

= Example 14 Solve x* d—JZ) —2x ? — 10y = 0 using the substitution
= X X

. O’

2

= SOLUTION

= 2 7]

®  Weneed to replace 4y by a term in d_y’ and L3/ by a term in ﬂ
~ dx du dx? du?

L

= So, first we differentiate x = e* with respect to u, which gives dx = e".

du
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EXERCISE 4D

Using L) = G %, we get
dx du dx
v _1dy
dx et du
= d_y — eiu d_y
dx du

We now differentiate this equation with respect to x, noting that the RHS
is differentiated as a product and using

i(.@X)_i(d_y)%:_@zl%
dx \du du \du/ dx du? dx

Hence, we arrive at

2 2
&y wdudy . dydu

dx? dx du du? dx
Since i = ¢ “, we therefore have
dx
2 2
Q.Z — _e_zu ﬂ + efzu d_y
dx? du du?
2 2
Substituting for & and dy in x* 4y _ 2x Y_ 10y = 0, we get
dx dx? dx? dx
2u —2u dy —2u dz)’) u_—u dy
et —e M L 4t —= ) -2 " —=——-10p=0
( du & du o\
2
= Ay 00—
du? du

Substituting y = 4e™ and its derivatives in the above equation, we obtain
n—-3n—10=0
= n=5 or -2
Therefore, the general solution is
y = Ae™ + Be
Using x = ¢*, we have
e =(e) =x% and e ¥ =(¢")*=x"

which give

IS EF R EEEEEEEEEE R EEEEEEREEEE RO REEREEREREOREOEREENEE SR EERGEERERREREEEREEREEER R RREREERE.]

B
y:Ax5+—2
X

Exercise 4D

1 Using the substitution y = ux, find the general solution of each of the following.

dy

d -3
BY o 2—AF b) xy —— = x° + )? c))chzd—y:)c3Jr)c2)1—)13
dx dx

a)

dx X

d) 3x3j—i}c:y3—x2y
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2 Using the substitution p = x + y, find the general solution of
dy 3x+3y+4
dx x+y+1

3 Use the substitution p = 2x + 3y to find the general solution of
dy 4x+6y—-35
dx 2x+3y+1

4 Using the substitution x = ¢¥, find the general solution of

2 d’y dy 2 dzy dy
2x -2 0 b — -6 0
2 X dx2+ dx = ) dx? dx =
c)xzﬂ x Y 14y -0 d) x 2dy+2xdy+y 0

dx? dx dx? dx

5 Given that x = t%, x>0,¢>0,and y is a function of x, find j—y in terms ofﬂj- and 1.
X

dy

42
) +2 E show that the substitution x = tz transforms the

Assuming that — = 4« d’ =
dx? ds

differential equation
d2 1\ dy 2 2 2x?
—— 4+ | 6x—— ) — —16x"y = 4x"e™ I
dx? ( x> dx 4 i

into the differential equation

d’y L dy
LB AR, ]
dz dt =

Hence find the general solution of [I], giving y in terms of x. (EDEXCEL)

6 a) Find the general solution of the equation
dz
—+z=¢"
dx

b) Make the substitution y = xz in the equation
xd—y+(x~ Dy = x’e"
dx . . .
Hence write down the solution of this equation. (NEAB/SMP 16-19)

7 a) Show that the substitution v = xy transforms the differential equation
2

A0 420 Y 4400 £y = 3287 x£0
dx? dx
into the differential equation
v |, dv
@ + 4 d—* + 4y = 326

b) Given that v = ae®, where a is a constant, is a particular integral of this transformed
equation, find a.
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EXERCISE 4D

c) Find the solution of the differential equation

2 :
» 82 Lo 429 ¥ 4401+ x)y = 3267
x2 dx
. 2 dy
for which y = 2¢ and —=0at x = 1.
X
d) Determine whether or not this solution remains finite as x — oc. (EDEXCEL)

The variables x and y are functions of ¢, and satisfy the differential equations

dx
—+2x=y *
P yooM
dy
—+x=0
dt

By eliminating y, show that
d’x dx

$d ek E =0

de? dt

Find the general solution of this differential equation for x and deduce by substitution in (*)
the general solution for y.

Hence, or otherwise, find x and y in terms of ¢, given that x = 1.and y = 0 when ¢ = 0.
(NEAB)

a) Find, in the form y = f(x), the general solution of the equation

(x2—1)%+xy:1 x>1
5

b) i) Given that y = ﬁ, show that
X

ﬁ 1 du 2 AN 22
dx? xdx? x2S
ii) Hence find the general solution of the differential equation

d’y 2 dy
+ 5 W0 x>0 (EDEXCEL)
dx?  xdx
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5 Determinants

In algebra, to mention only one thing of many, Jacobi cast the theory of determinants
into the simple form now familiar to every student.
E.T. BELL

Definition of 2 X 2 and 3 X 3 determinants

The 2 x 2 determinant ? J represents the expression ad — be.
For example, we have
3 4
I,] 8‘_3><8—4><7—24~28—4
a b ¢
The 3 x 3 determinant |d e f| represents the expression
g h i
M 4 f +C t e
h i g i g h

which 1s
alei — fh) — b(di — fg) + c(dh — eg)

We see that the determinant of a 3 x 3 matrix is found by expanding the
matrix along its first row. In turn, we take each element, or entry, in the first
row, cover up its column and the first row, and find the determinant of the

2 x 2 matrix which is left. We then combine the three results. Notice the minus
sign for the b-term, which relates to the fact that 5 is an odd number of places
from the first element, a.

Note It is much easier to learn the method for evaluating a determinant than
to remember its formula.

. 3 7 8

« Example 1 Evaluate |4 2 5

. 1 9 15

. SOLUTION

o 3 7 8

5 2 5 4 5 4 2
5 4 2 5 :3I ’—7{ 1+8| l
- 1 9 1s 9 15 1 15 1 9
- = 3(30 —45) — 7(60 — 5) + 8(36 — 2)
. = —45—-385+272

|

£ = —158
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RULES FOR THE MANIPULATION OF DETERMINANTS

Determinants, unlike matrices, always consist of a square array of elements.
The determinant of the square matrix A is denoted either by |A| or by det A.

Because determinants are always square, the expansion method just described
can be applied to determinants of any size. Thus to evaluate the determinant of
a 4 x 4 matrix, we first expand it along its top row to get an expression
involving four 3 x 3 matrices, remembering to alternate the plus and minus
signs. For example,

é—31 _43 _24 ~1 -8 —4 5 -3 —4
=1-3 4 7|-3]2 4 7|+
2347 8 5 6 1 5 6
1 8 5 6
5 -1 —4 5 ~1 =3
+4)2 -3 7 |-22 -3 4
1 8 6 1 8 5

We then proceed to evaluate each 3 x 3 matrix as before.

Rules for the manipulation of determinants

Changing a determinant without changing its value

We can alter the rows and the columns of a determinant in three ways without
changing its value. Two are given below.

Adding any row, or column, to any other row, or column

If we add the corresponding elements in two rows (or columns), the value of
the determinant is unaltered. For example, we have

a b ¢ a+b b ¢
d e fl=|d+e e f
g h i g+h h i

The rule also applies to the sabtraction of the corresponding elements in two
rows (or columns). So, we have

a b ¢ a b ¢
d e fl=l|d—g e—h f—i
g h i g h i
1 1 1
Example 2 Evaluate |0 —1 -1
4 6 8
SOLUTION

The most efficient way to evaluate this determinant is to add the second
row to the first row.

Note If you cannot quickly spot this simplification, it is better to expand
using 2 x 2 determinants, rather than to spend time trying various
possible simplifications.

I E R R EEREER NS ERERER,]
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CHAPTER 5 DETERMINANTS

So, we have
1 1 1 140 1—-1 1-1
0 -1 —-1|=] 0 -1 —1
4 6 8 4 6
1 0 0
=0 -1 -1
4 6 8

Expanding this simplified determinant, we get

L|-1 -1
6 8

‘:1><(—8+6):—2

Adding any multiple of any row, or column, to any other row, or column

If we add the same multiple of the elements of a column (or row) to the
corresponding elements of another column (or row), the value of the
determinant is unaltered. For example, we have

a b c a+5 b ¢
d e fl=|d+5 e f
g h i g+5h h i

The rule also applies to negative multiples. So, we have

a b c a b c
d e fl=|d—3a e—3b f-3c
g h i g h i
4 6 8
Example 3 Evaluate |0 1 4
1 3 4

SOLUTION

This determinant is best simplified by subtracting 2 x the third row from
the first row.

Again, if you cannot quickly spot this, it is better to expand using 2 x 2

determinants.
So, we have
4 6 8 4-2 6-6 8-38 200
0 1 4/ =| 0 1 4 =10 1 4
1 3 4 1 3 4 1 3 4
Expanding this simplified determinant, we get
200
0 1 4 :2x(§ 3\2—16
1 3 4

te g2 e R E RS EREE R EEREERE RN ERREE R RN

82



RULES FOR THE MANIPULATION OF DETERMINANTS

Two rows or columns can be interchanged by changing the sign of
the determinant

For example, by switching columns 1 and 2 in the left-hand determinants, we
get

a c a c¢
d e fl=—le d f
g h i h g i
and
2 0 0 0 2 0
1 4/=—1 0 4
1 3 4 31 4

When any two rows or any two columns are equal, the determinant
is zero

Say, for example, the corresponding elements in columns 1 and 3 are equal, as
in the determinant below. If we subtract column 3 from column 1, column 1
becomes a column of zeros. Hence, the value of the determinant must be zero.

4 1 4 0 1 4
2 3 2|=0 3 2|=0
3 = 3 0 -5 3

2 .00 7 0
0 1 4 6 4
Example 4 Evaluate |1 3 4 3 4
4 2 3 3 3
2 0 2 42,2

SOLUTION

Evaluating this determinant by normal expansion would be very time
consuming. However, we notice that columns 3 and 5 are identical, and so
the value of the determinant is 0.

Multiplying any row, or any column, by &, multiplies the value of the
determinant by k

If we multiply all the elements of one row (or column) by k, this is the same as
multiplying the value of the determinant by k. For example, we have

a kb c¢ a b ¢
d ke fl=kid e f
g kh i g h i
If we multiply every element in the determinant by k, we obtain
ka kb ke
kd ke kf
kg kh ki
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