CHAPTER 15 FURTHER COMPLEX NUMBERS
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Applying this to |z| = 1, we obtain Im4
wi—2| = |1+ w|

Now |wi — 2| = |i| |w + 2i], thus we have

,1‘1 (0]
lw+2i| =|1+w| (since |i|=1) \
Therefore, the locus is the perpendicular bisector \
of the line joining —2i to —1 (see page 13). 3»_

Example 25 Find the image of a circle, centre O, radius 1, under the

transformation w =

—Z
SOLUTION
i

The general point on the original circle is z = € or z = cos 0 +1isin 0.

Hence, we have
1 1
w= o S
1—e® 1—cosf—isinf

Note Do not use

1 1 —e 0

YT T (1 —ef1 —e )

as 1 —e 0

is not the complex conjugate of 1 — e’

Multiplying both the numerator and the denominator by
1 — cos 0 +1sin 8, we obtain
1 1l —cos0+isinf

w = =
1 —cosf —isinf = (1 —cosf —isinf)(1 —cos b + isin6)

1 —cosf+isinf
(1 — cos6)* +sin 20
Using cos?0 + sin26 = 1, we have

1 —cos0@+1isinb

w
2=2cosf
1, isin0
2 2-—2cosf
Using the half-angle identities for sin § and cos 6, we obtain vy

1 i [0
=2+ cot|~
YT 2°<2>
1

which gives u = =, since w = u + 1v.

b

Therefore, the locus of w is the straight line, u =

I
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TRANSFORMATIONS IN A COMPLEX PLANE

Example 26 Find the image of |z| = 2 under the transformation w = 2z — é

z
SOLUTION
The general point on the original circle is z = 2¢"?, or z = 2 cos § + 2isin 6.
Hence, we have
w=4cosf +4isinf — : —
2(cos O +1isin 0)
=4cos0+4isinf ~§—(COSQ —1sin 6)
which gives v

—_
—

u+iv:§c039+£isin8
2 2

0|

= uzécose and v:gsinO
2 2

Eliminating cos 6 and sin 6, we obtain

2 2
ORCR
5 11
d? 42

— - =
25 121

Therefore, the image is an ellipse with the above equation.

Example 27 Find the image of |z — 7| = 7 under the transformation

w:z—zg(z;éoy

SOLUTION

The general point of |z — 7| = 71is z = 7+ 7cos 0 + 7isin 6. Hence, we
have

3 28
7+ 7cosf -+ Tisinf

4
14 cosf+isinh

w

B 4(1 4+ cosf —isin h)
(I +cosO+1sinf)(1 + cos B —isin6)

_ 4(1 + cos O —isin 0)
(1 4 cos 0)* + sin 20

41 +cos @ —isin0) 5 4isin 0
2+2cosf 2+ 2cost
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CHAPTER 15 FURTHER COMPLEX NUMBERS

Using the half-angle identities for sin 0 v
and cos 6, we obtain

u+iv:2—2itan<g>

which gives u = 2.

This line, u = 2, is |w — 4| = |w|, which is the
perpendicular bisector of the line joining 0 and 4.
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Note We could have found the image from

z-7=7 = 45—71:7
w
128 — Tw| = 7|w|

which gives |w| = |w — 4|, as required.

Example 28 Find the image of the straight line 3x 4+ 2y = 8 under the

transformation w —

SOLUTION

We start by expressing z = x + iy in terms of w = + 1y

W= : = z:2—l
2—z w
1 1
= x+iy=2- -
u—+1v
P u—1v
u? + 12
Hence, we have
u v
x=2- =—
u? + 2 s u? + 2

Using these values in the equation of the line, 3x + 2y = 8, we obtain

U v
3(2 = +2 =38
< w +v2> <u2+ v2>

= 6(u+v?) —3u+2v=8®u*++)

= u2+v2+%u—v:0
which gives
2 2
o -5)-5
4 2 16

This is the equation of a circle, centre (—3, 1) or —2 411, radius +/13.
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EXERCISE 15D

Exercise 15D

10

For the transformation w = z2, find the locus of w when

a) z lies on a circle centre O, radius 5
b) z lies on the real axis
¢) z lies on the imaginary axis.

2

For the transformation w* = z, find the locus of w when

a) z lies on a circle centre O, radius 5
b) z lies on a circle centre O, radius 2
c) z lies on the imaginary axis.

For the transformation w = z*, show that the locus of w, when z moves along a line y = £k, is
a parabola. Find its equation.

zZ+1

1z+2

For the transformation w = , find

a) the locus of w when z lies on the real axis

b) the locus of w when z lies on the imaginary axis
¢) any invariant points.

For the transformation w = 3z + 2i — 5, find the locus of w for |z| = 4.

. b ) . .
a) For the transformation w = & , where a, b, c € R, find a, b and ¢ given that w = 3i when
z+c¢

z=-3,and w=1—4i when z = 1 + 4i.
b) Show that the points for which w = z lie on a circle. Find its centre and radius.

, : . 3i ’ :
Find the image under the transformation w = 4 2 where z is the circle == 3,
—z
Find the image of |z| = 3 under the transformation w = 3z 4 i
Z

Find the image of |z — 5| = S under the transformation w = LY (z #0).
z

The point P in the Argand diagram represents the complex number z.
a) Given that |z| = 1, sketch the locus of P.

The point Q is the image of P under the transformation
1

z—1

W=

b) Given that z = ¢, 0 < 6 < 2m, show that w = — 1 — Ticotlo
c) Make a separate sketch of the locus of Q. (EDEXCEL)
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CHAPTER 15 FURTHER COMPLEX NUMBERS

11i) Solve the equation z> + 8i = 0, giving your answers in the form re'’, where r > 0 and
<0<
ii) The point P represents the complex number z in an Argand diagram. Given that |z — 3i| = 2,

a) sketch the locus of P in an Argand diagram.
Transformations T}, T, and T from the z-plane to the w-plane are given by
T:: w=iz
T, w=3z
T3: w=7z"
b) Describe precisely the locus of the image of P under each of these transformations.
(EDEXCEL)

12 A transformation 7T from the z-plane to the w-plane is given by

=il 5oty
z—1

Find the image in the w-plane of the circle |z| = 1, z # 1, under the transformation 7.
(EDEXCEL)

13 The transformation, T, from the z-plane to the w-plane is given by
! z#£2

z—2
where z = x +iyand w = u + iv.

w =

Show that under 7T the straight line with equation 2x +y = 5 is transformed to a circle in the
w-plane with centre (1, — %) and radius %\/3 (EDEXCEL)

14 The complex numbers z and w are defined by

z
141

z=el+¢ gnd w=

where ¢ is real.

a) i) Show that |z| = e? and argz = 2¢.
ii) In an Argand diagram, z is represented by the point P. Sketch the locus of P when ¢
varies from 0 to .

b) i) Show that the imaginary part of w is
147\
Ee (sin2¢ — cos2¢)

ii) Determine the values of ¢ in the interval 0 < ¢ < = for which w is real. (NEAB)

15 Given that z = x + iy and w = u + iv are complex numbers related by w = 1 + 1, obtain
z

expressions for u and v in terms of x and y.
The complex numbers z and w are represented by the points P and Q respectively in the

Argand diagram. Given that P moves along the line y = 2x, show that Q moves along the line
2u+v—2=0. (WIEC)
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16 Intrinsic coordinates

It is no paradox to say that in our most theoretical moods we may be nearest to our practical
applications.
ALFRED NORTH WHITEHEAD

We have already seen that the position of a point on a curve (and hence the
curve’s equation) may be given in terms of:

e cartesian coordinates (x, y), or
e polar coordinates (r, 0) (see pages 43-56).

We can also define the position of a point on a curve by
means of intrinsic coordinates (s,1/), where s is the length of
the arc from a fixed point to the given point, and  is the
angle which the tangent to the curve at that point makes
with the x-axis.

Thus, referring to the figure on the right, intrinsic
coordinates would give the position of point P in terms of
the arc length PT and the angle which PA makes with Ox.

A
We must stress, however, that the majority of the equations /
of curves cannot realistically be given in intrinsic form. Also,
only in rare cases is it sensible to try to convert the cartesian,
parametric or polar equation of a curve to its intrinsic form.

But two curves in particular are more readily treated in their intrinsic forms.
They are the catenary (see Example 2, on pages 365-6) and the cycloid (see
Example 3, on pages 366-7).

Trigonometric functions of s
Considering the gradient of a tangent, we have
dy

— = tan
dx v

When we derived the length of the arc of a curve (see pages 250-3), we found

that
ds dy .
- = 1 + | =
dx (dx)

ds 5
= a—\/l+tan 1/
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CHAPTER 16 INTRINSIC COORDINATES

Using the identity 1 + tan®y = sec? y, we obtain

ds
— =sec
dx v

= cos¢:%ﬁ
3

Using siny = tany cosy, we have
dy dx

siny = dx ds

. dy
= A
sin s -

Radius of curvature

Let P and Q be points on the curve with
intrinsic coordinates (s, ) and (s + 0s, ¥ + oY)
respectively. Hence, ds is the length of PQ.

If 85 is sufficiently small, we may assume that
PQ is a segment of a circle.

If C is the centre of the circle passing through
P and Q, then the angle PCQ is oy.

Let p be the radius of curvature at P. Hence,
the length of PQ is poy. That is,

os
0s = pd = 9
s = poy =50
As ds — 0, this gives
Radius of curvature = p = _di
dy

To find the radius of curvature in terms of x and y, we need to differentiate

(55 = tany with respect to x, which gives

X
d*y d
bl o
dx? =~ dx ( an_ V)
d’y _d dy 2\ Y
2 2=t e O .
a2 gy g, = e g
dx _ sec’y
dy  d%y

dx?
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RADIUS OF CURVATURE

Using p = & L —— and substituting for il and d— we have
dyr dx dlp dx

,/1+ d” (1+tan lp) 1+ dy
dx

H}

dx2 dx2
which gives ;
dy
1+
(dX> }

PR 1
p & [1]

dx?

. ' dx d
When x and y are given in terms of a parameter ¢, we can find i and —y, and

t
hence jl, in terms of .

%
&y _d (dy>
dx? x \dx
{

2 (L
2 )
- dJ_di<d_}>ﬂ

We have

dx? dx/ dx
N @_g(@dz) dt
dx? dr \drdx/ dx

Using y and x to indicate that we have differentiated with respect to ¢ (see
page 252), we have

dy d*y
= —  and \
. dt y ds
_ dx _
x=-"9 gand x=—-
t dr?
which give
Sy 1
dx?  dr\x/ x

Remembering that X is a quotient, we find

o

dy _ <yx—x'y'>1jx—xy

dx? x2 X x3
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CHAPTER 16 INTRINSIC COORDINATES

Substituting this expression in [1], we obtain

:\2]?2
] <l>} 3
2 o2 L2y

)‘C3

Thus, the radius of curvature is given by

3
217
1+ <—dy> ] }
dx - (562 +J>2)’§ ds

=~ or or p=—
: &y R )

dx?

¢ Example 1 Find the radius of curvature of the rectangular hyperbola
. 16 . : : .
%y =—, given that its parametric coordinates are x = 4z, y = i
o X t
< SOLUTION
+  Method 1
s We use the recommended method of staying in the parametric form
= throughout. Hence, we have
. ) .4 N

X=4 = #=0 y=—-— = g==

12 [3

Substituting for x, ¥, y and j in
, = @4
i — %

where p is the radius of curvature, we obtain

z3<16 +l§)-
Z4

32

o SR
=  p Y <1+[—4>

Method 2 a
We could use the cartesian form, which readily gives d—y but from which
x

,0:

2

IS S R SRR F SRR R SR EREEREERE RS R E RN EEEEEE R ENESN ]

3 )2/ is rather more difficult to obtain, as the following shows.
X
We have
x=4t = %:4 y:i = Q:—i
d¢ f dr t?
which give
dy _dyde 4 1 dy 1
dx drdx 2 4 dx 12
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FINDING INTRINSIC EQUATIONS

Differentiating again, we obtain

&y _d <_ J_>
dx? dx t2

d?y d( 1>dz 2 1 1
= o= o e — | — = ¥ = —
dx? dr t2)dx 3 4 28
2
Substituting for 2o and a2 in
X dx?
3
213
dy
L4=—=
<dX>}
pP=—""%75
&y
dx?

where p is the radius of curvature, we have

23142 3
p= +t_4

Finding intrinsic equations
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Example 2 y = cosh x passes through the point (0, 1): Find the intrinsic
equation of the curve.

SOLUTION

We know that

2

dy

=1+ () 4
SJ <dx>x

which gives

s:J\/1+sinh2xdx

= §= Jcoshxdx =sinhx+ ¢

Y

When x = 0,5 = 0, which gives ¢ = 0. Hence, we find
s = sinh x

Now A = sinh x. So, using tany = j—y (see page 361), we obtain
o %

sinh x = tany
Since s = sinh x, we have
s =tany

This is an equation with s and  as the only variables. Therefore, the
intrinsic equation of y = cosh x is s = tan .
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CHAPTER 16 INTRINSIC COORDINATES

The curve y = cosh x (which we met on pages 189 and 190) is a catenary.

The catenary is the form assumed by a uniform, heavy and flexible cable
hanging freely between two points. An example is a slack mooring line between
a ship and a quay. In large suspension bridges, where heavy cables are used,
the curve assumed by the cables is sometimes close to a catenary.

The standard intrinsic equation of the catenary is s = atany, where a is the
y-intercept, corresponding to the standard cartesian equation y = g cosh <£>
a

Another curve of practical interest (for example, as the flank profile of the
teeth of certain gear wheels) is the cycloid. This is the locus of a point fixed on
the circumference of a circle which is rolling along a stationary, straight base-
line, as shown below.

YA

Period 27a

2a4

T T T T T T
o na 2ra 3ma 47a Sna 6ra

Note that the distance between successive cusps is 2ra, where « is the radius of
the rolling circle. Hence, the catenary is periodic with period 2ma.

The cartesian equation of the cycloid is difficult to derive, hence we normally
work with its parametric equations

x=a(t—sinf) and y=a(l —cosr)

where 7 is the central angle of the circle, as shown in the figure.

Example 3 Find the intrinsic equation of the cycloid.

SOLUTION
We know that

@

Differentiating the parametric equations for the cycloid and substituting
them in the above, we obtain

5= J\/az(l — cos £)* + a?sin” rd¢
v &= aJv2-2costdz
Using cost = 1 — 25sin? <é>, we have

o o 2 oo

which gives

s = —4acos <é> +c 1]
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FINDING INTRINSIC EQUATIONS

Using
any = & _ &t
dx df dx
we obtain
ol ‘P _ sin ¢
1 —cost

Using sin ¢ = 2sin <§> cos <é> and cost = 1 — 2sin? <%>, we have

2sin <£> coS <L> 2sin <£) cos <£>
2 2 B 2 2
| — {1 — 2sin? (iﬂ 2 sin’ (i>
2 2
which gives

tany = cot <L> = tan <E — i)
2 Z 2
T

s t
= y=2-L1 o5

tany =

Substituting for % in [1], we have

b
=c¢—4acos| ——
’ <2 w)

Therefore, the intrinsic equation of the cycloid is

s =c—4asiny

[ FFFEEER R EEREREEEE R R R R RN R RREE R REEREE R R R R RN EERRERE R R R ERRERE,

The value of ¢ will be different for each arch of the cycloid.

Exercise 1/6

In Questions 1 to 8, find the radius of curvature of each curve at the point specified.

1?2 =x*+3,at (1,2). 2 y=c¢*, at(1,e).

3 y=sinx, whenx:g. | 4 y=xlInx, at (1,0).

5 x=17,y=1>, whent=1. 6x:ct,y:§,whent:2.

7 X = cos’t, y = sin’t, when t = % 8 x = acos’t, y = asin’t, when t = g

9 Find the radius of curvature, in terms of y, for

a) s =1y’ +cosy b) s =3y + 4y siny c) s =1ycosy +
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CHAPTER 16 INTRINSIC COORDINATES

10 Find the intrinsic equation of the curve y = Insecx, where s is the distance from the origin.

11 A curve has intrinsic equation s = acos .

a) Calculate the radius of curvature of the curve in terms of .
b) Show that the tangent to the curve at the point where s = 0 is parallel to the y-axis.
(EDEXCEL)

12 The curve C has equation y = 3 cosh <§)

: . . t
a) Show that the radius of curvature, at the point on C where x = ¢, is 3 cosh® (—3—)

b) Find the radius of curvature at the point where ¢ = 1.5, giving your answer to three
significant figures.

c) Find the area of the surface generated when the arc of C between x = —3 and x =3 is
rotated through 2r radians about the x-axis, giving your answer in terms of e and .
(EDEXCEL)

13 A curve has parametric equations x =47 — ¢, y = 2/2 — 8.

i) Show that the radius of curvature at a general point (47 — %13, 2t? — 8) on the curve is
1@+

i) Find the centre of curvature corresponding to the point on the curve given by ¢ = 3.

The arc of the curve given by 0 < 7 < 24/3 is denoted by C.

iii) Find the length of the arc C.
iv) Find the area of the curved surface generated when the arc C is rotated about the y-axis.
(MEI)

14 A curve is given parametrically by x = e%(2sin 20 + cos 20), y = e’(sin 20 — 2 cos 26). P is the
point corresponding to § = 0, and Q is the point corresponding to 0 = « (where a > 0).

i) Show that the gradient of the curve at Q is tan 2o, and find the length of the arc of the curve
between P and Q.
ii) Using intrinsic coordinates (s, i), where s is the arc length of the curve measured from P

and tany = Q—, show that s = S(e%‘/’ —1).
dx
iii) Find the radius of curvature at the point Q.
iv) Show that the centre of curvature corresponding to the point Q is

($€"(2cos 20 — sin 20r), Le*(2 sin 20 + cos 20)) (MEI)
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17 Groups

Before the word ‘group’ appeared in the mathematical literature, there had been a longer
period of development in which mathematicians applied group-theoretical results without
the concept of a group being explicitly defined.

WALTER PURKERT AND HANS WUSSING

Binary and unary operations

A binary operation, usually denoted by =, is a rule which takes an ordered pair
of elements, a and b, and gives a uniquely defined third element, ¢, so that
a*b = c. (Other symbols used to represent a binary operation include O, ®
and ¢.)

For example, multiplication is a binary operation. If we represent = by
multiplication, then

4%x3=4x3=12
Addition is also a binary operation. If we represent * by addition, then
6%x3=6+3=9

Likewise for division, where we have

3

But note that in the case of division, the operation is not commutative. Hence,
we have

3>x<6:§:l
6 2

That is,
63 £3%6
In general, we have
axb#b*a

Thus, for some binary operations, the order in which we enter the elements
does matter.

Unary operations

A unary operation is one which uses only one element. For example, a — o is
a unary operation.
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CHAPTER 17 GROUPS

Modular arithmetic

We can perform arithmetical operations in different moduli. To indicate the use
of a particular modulo, say n, we add (mod n) after we have completed the
calculation.

Take, for example, the multiplication of two integers in modulo 6. We multiply
the two integers normally and then subtract 6 repeatedly until the answer is
between 0 and 5.

Hence, we have for 3 x 3 =9

3x3=3(mod 6) since9—-6=23
Similarly, for 5 x 4 = 20, we have

5x4=2(mod 6) since20—6—-6—6=2
And for 4 x 3 =12, we have

4x3=0(@mod 6) since12—6—-6=0

Modular addition is similar to multiplication. Suppose we want to add two
integers in modulo 4. We add them normally and then subtract 4 repeatedly
until the answer is between 0 and 3.

For example, we have
24+3=5=1(mod 4) 2+ 0=2(mod 4)
1+3=4=0(mod 4) 3+3=2(mod 4)

Example 1 Express 9 x 11 in modulo 17.

SOLUTION

We have 9 x 11 = 99, which becomes
9x11 =14 (mod 17) since 99 —17—-17-17—17—-17 =14

I E R SRR EEDRE|]

Definition of a group

A group comprises

e a set of elements (or members), G, together with
e a binary operation * on this set.

To be a group, G must satisfy the following four properties (sometimes referred
to as axioms).

e Closure G must be closed. This means that if ¢ and » are members of G,
then a * b must also be a member of G. This is written as

axbe G, forallaand b € G

e Associativity Provided their original order is preserved, the result of
combining a, b and ¢ does not depend on which two adjacent elements are
combined first. This is written as

(axbyxc=ax(b=xc), foralla,band c € G
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DEFINITION OF A GROUP

e Identity There is an element e in G for which a*e = e *a = a for every a in
G. That 1s, there is an identity element ¢ in G which does not change any
other element.

e Inverses For any element ¢ in G, there is an inverse element of ¢ in G,
denoted by a~!. This is written as

1

For any a € G, there exists a! € G, for which asa ! =g 'xa=e

To confirm that a set of elements, together with an operation on the set, forms
a group, we have to verify that the set possesses every one of these four
properties. This can be difficult, since we need to check each property for every
element or pairs of elements of the set.

Note When you are given a question involving a group, you will also always
be given a binary operation (which is usually multiplication or addition). It is
essential that you recognise which binary operation is being used.

Example 2 Prove that the set G = {1,i, —1, —i} under multiplication is a
group (where i* = —1).

SOLUTION

To prove that this is a group, we need to verify each of the four properties
in turn. It is essential to confirm that all the properties are satisfied.

Closure We have to verify that, for any aand b € G, a*b € G.

Therefore, if we take any element in G and multiply it by any other
element in G, the result should be an element in G. One way to check this
is to take every pair in turn. (This method is only feasible in this case
because G is a small group.) Hence, we have

I+x1=1 l*1=1 Ix—1=-1 Ik —1=—1
i*xl=1 1%1=—1 1%x—1=—1 ix—1=1

—1*x1=-1 —1%i==i —1x-1=1 —1lx—i=1i
—ix] =i —iwi=1 —ix —1=1 —i%—1=—1

That is, axb € G.

Associativity We have to verify that (a*b)*c = a*(b=*c) for all a, b and
c¢in G.

We have, for example,
(i*=D*x—i=—ix—1i=—1 and i*(—1%x—i)=i%xi=—1

This verifies associativity for just this one triple combination. To prove
associativity by this method, we would have to check every other triple
combination, of which there are 64.

Alternatively, we can simply recall and state the fact that multiplication of
complex numbers is associative.

Identity 1 is the identity element of this group. This is because multiplying
any number by 1 does not change its value. To confirm that 1 is the identity
element, we have to verify that l *a = a* 1 = a for every a in G.
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In this case, it is not too onerous to do all the calculations concerned.
Hence, we have

1*1=1x1=1 l*1i=1%x1=1
l#—1=—1%x1=—1i l#—1=—-1%1=-1

Alternatively, we can simply state that 1 is the identity, since we know
that multiplying any number by 1 does not change its value.

Inverses We need to find the inverse of each of the elements 1, i, —1 and
—1 to confirm that each inverse is a member of the group. That is, for

each element ¢ in G, we need to find an a~!, and verify that

axa'=alxa=1.

Hence, we have
Inverse of 1is 1, since 1«1 =1x%1=1
Inverse of iis — 1, sincei* —1= —1%1=1
Inverse of —11is —1, since —1*—1=—1%x—1=1
Inverse of —11is 1, since —1%i=1i%—1=1

Since all of the properties are satisfied for any choice of elements, we have
proved that G is a group.

It can take a long time to prove that a set of elements, together with an
operation on the set, forms a group, especially if there are many elements.
However, there are short-cuts we can take.

BN E S EEERE]

We can use algebraic rules to prove closure. For example, to prove that the
set of integers under addition forms a group, we just state that the sum of
any two integers is always an integer.

Associativity is always difficult to prove. However, we recall that the
multiplication and the addition of real numbers, the multiplication and the
addition of complex numbers, and the multiplication and the addition of
square matrices, are all associative.

To find the identity of a group, we recall that 0 is the identity for addition
(since adding zero to a number does not change the number). We recall also
that 1 is the identity for multiplication (since multiplying a number by 1
does not change the number). We must be careful, however, because in some
unusual cases of multiplication, such as modulo 14, the identity may not be 1
(see page 375).

To find inverses, we often just need to give a general formula which
identifies all the inverses.

Example 3 Prove that the set G = {0, 1,2, 3} under the binary operation
addition (mod 4) forms a group.

SOLUTION

As usual, we must verify that all the group properties are satisfied.
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«+  Closure Whenever we add two numbers (mod 4), we always get a

#  number between 0 and 3. Therefore, addition (mod 4) is closed.

; Associativity Addition is associative, and so addition (mod 4) must also
i be associative.

“ Identity Adding 0 to a number (mod 4) does not change the number. So
o 01s the identity of addition (mod 4).

; Inverses We have:

= Inverse of 0 is 0, since 0 +0 = 0 (mod 4)

. Inverse of 11s 3, since 1 +3 =3+ 1 =0 (mod 4)

;Z Inverse of 2 is 2, since 2 +2 = 0 (mod 4)

5 Inverse of 31is 1, since 3+ 1=1+3 =0 (mod 4)

«  Therefore, all four group properties are satisfied.

Hence, the set G = {0, 1,2, 3} under the binary operation addition (mod 4)
forms a group.

Group table

A group table shows the effect of combining any two elements. (Other
descriptions commonly used are Cayley table, composition table, combination
table, operation table and multiplication table.) The entry in row ¢ and
column b is the composition a * b.

The group table for the set G = {0, 1,2, 3} under addition modulo 4 is shown
below. As an example, [3] identifies the result 1 %2 = 3.

+ (mod 4) 0 1 2 3
0 0 1 2 3
1 1 2 131 0
2 2 3 0 1
3 3 0 1 ¢

To complete the table, we need to find each of the 16 results.

We can use the fact that x *e = x and e* x = x to find seven of these results
quite simply. All the other entries have to be calculated.

Even though we have to complete all the entries in the table, it is often easier
to draw and use a group table to see whether the set under the operation forms
a group.

For the group properties, we have:

Closure This can be seen by noting that all the results in the group table are
in the original set.

Associativity This cannot be seen from the group table.
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Identity The column under the identity element and the row across from the
identity element contain the elements in the same order as the original set.

The row and the column given below show that 0 is the identity element:

+ (mod 4) 0 1 2 3
0 0 1 2 3
1 1
- 3
3 3

Note The identity element does not have to be 0 or 1. For example, see the
group table on page 375 for the set of integers {2,4,6, 8,10, 12} under
multiplication (mod 14).

Inverses We can find the position of the identity element in each column and
each row. For example, 13 = 3% 1 = 0, which is the identity. Therefore, 3 is
the inverse of 1.

In fact, the set G = {0,1,2, ...,m — 1} under the binary operation, addition
(mod m), also forms a group. (You can check this for yourself for various
values of m.) Notice that, in general, the inverse of k£ under addition (mod m) is
m— k.

Example 4 Find whether the set {1, 3} under multiplication (mod 11)
forms a group.

SOLUTION

We can find the answer by checking each of the group properties in turn,
until we find one which does not work. We recall that for G to be a group,
we need to check that all four group properties are satisfied. So, to check
that G is not a group, we need only to find one property which is not
satisfied.

In this case, since
3¥3=3x3=9 (mod 11)
and 9 is not a member of the original set, closure does not hold.

Since the set {1, 3} is not closed under multiplication (mod 11), it does not
form a group.
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Note If in Example 4 we were to consider the other group properties, we
would find:

e The group is associative, since multiplication is associative.

e There is an identity element, 1, since 1 is the identity under multiplication.

e There is, however, no element a for which 3*a =1 (mod 11), and so the
property of possessing an inverse element is not satisfied either.
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Example 5 Prove that the set of integers {2,4, 6,8, 10, 12} under
multiplication (mod 14) forms a group.

SOLUTION

Again, we need to check that all the group properties hold. However, the
last two are difficult to prove, and so we have to use a group table to
work out how all the elements combine.

Closure If we multiply two even integers together, we obtain an even
integer, which is also even (mod 14). Hence, the set is closed.

Associativity Multiplication is associative.

Identity There is no obvious identity element. The identity element we
would naturally look for, 1, is missing from the group. To overcome this
problem, we draw the group table, which shows the effect of combining
any two elements.

x (mod 14) 2 4 6 8 10 12
2 4 8 12 2 6 10
4 8 2 10 4 12 6
6 12 10 8 6 4 2
8 2 4 6 8 10 12
10 6 12 4 10 2 8
12 10 6 2 12 8 4

From this table, we can see the column under 8, or the row across from 8§,
is 2,4, 6, 8, 10, 12, which is the same as the original set. Thus,
multiplication by 8 changes none of the elements of the group, and so 8 is
the identity element of this group.

Inverses As with most problems involving multiplication (mod »), there
is no easy way to prove that every element has an inverse. However, as in
Example 4, we can use the group table. To find the inverse of 2, we need
an element « for which 2 ¢ = 8. (Remember that 8 is the identity element
of this group.)

Inverse of 2 is 4, since 2*4 =42 = § (mod 14)

Inverse of 4 is 2, since 42 = 2%4 = § (mod 14)

Inverse of 6 is 6, since 66 = 6% 6 = § (mod 14)

Inverse of 8 is §, since 88 = 8«8 = 8 (mod 14)

Inverse of 10 is 12, since 10% 12 = 1210 = 8 (mod 14)

Inverse of 12 is 10, since 1210 = 10 %12 = 8 (mod 14)
Thus, we have checked that all the group properties hold.

Therefore, the set of integers {2,4, 6,8, 10, 12} under multiplication
(mod 14) forms a group.

Note We say that the number 6 in Example 5 is self inverse, since its inverse is
itself. (See also page 393.)
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Exerqise /1 7A

In Questions 1 to 4, prove that each set under the given operation satisfies all the group properties
and hence forms a group.

1 The set {1,5} under (x, mod 12). 2 The set {1,2,3,4} under (x, mod 5).
3 The set {0,1,2,3,4,5} under (4, mod 6). 4 The set {1,2,3,4,5,6} under (x, mod 7).
5 Show that the set {1,3} under (x, mod 12) does not form a group.

6 Show that the set of positive integers under addition is not a group.

Symmetries of a regular n-sided polygon

The set of symmetries of a regular polygon forms a group under the
composition of symmetries. Hence, this is true of the set of symmetries of, for
example, a square, a regular hexagon and a regular heptagon.

= Example 6 Prove that the set of symmetries of a regular pentagon under

= composition forms a group.

2

% SOLUTION P

B

= Itis easier to specify this group geometrically than to write down

. all the elements. The symmetries of a pentagon, PQRST, shown

= on the right, are the five reflections (top row) and the five rotations

= (bottom row) drawn below.
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SYMMETRIES OF A REGULAR n-SIDED POLYGON

The binary operation in this case is the composition of symmetries. For
example, the composition of a clockwise rotation through 72° and a
clockwise rotation through 216° is a clockwise rotation through 288°.

To prove that the set of symmetries forms a group, we must check each of
the four group properties.

2
o
=2
L]

o

Closure The composition of two rotations is another rotation. The
composition of a reflection and a rotation is a reflection, as shown in the
example below.

w2
=

Reflection in the perpendicular bisector of RS, which
passes through P, . ..
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o ~
QT Ow
= Jo)

i
=
w
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... followed by an anticlockwise rotation through 72°. ..

WO ONORNES
lav]
E>H
w

... 1s the reflection in the perpendicular bisector of PT,
which passes through R.

Q R

The composition of two reflections is a rotation, as shown in the examples
below:

oW oW

le) =
O'—U Ohﬂ
< )

w2
=

Reflection in the perpendicular bisector of RS, which
passes through P, . ..

=
w

RS S U ENERERER
w2

=

o
o)

... followed by reflection in the perpendicular bisector of
PT, which passes through R, ...

-

... 1s an anticlockwise rotation through 288°.
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So, the set of symmetries of a pentagon is closed.

|
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Associativity We certainly do not want to prove a* (b *¢) = (a*b) = ¢ for
each of the ten symmetries, giving 1000 possible combinations! Instead,
we recall that each symmetry can be represented by a 2 x 2 matrix

(see page 310). Thus, the composition of transformations corresponds to
the multiplication of matrices. Since the multiplication of matrices is
associative, so is the composition of transformations. Hence, the set of
symmetries of a pentagon is associative.

Identity The identity transformation (rotation of 0°) is in the set of
transformations.

Inverses Every symmetry has an inverse. In each case, the inverse is a
symmetry which returns the pentagon to its original position. For a
clockwise transformation of n°, the anticlockwise rotation of —n° is the
inverse transformation.

Carrying out the same reflection twice, always returns the pentagon to its
original position. Thus, the inverse of a given reflection is the same
reflection. Hence, all reflections are self-inverse.

Therefore, we have verified that the symmetries of a pentagon form a
group.
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Dihedral groups

A group of symmetries is called a dihedral group. The group of symmetries of a
pentagon contains ten (2 x 5) elements and is denoted by Dj,. The symmetries
of the other regular polygons also form groups. For example, the symmetries
of a regular heptagon form a group. Since a heptagon has seven sides, the
group contains 14 (2 x 7) elements. Hence, the group of symmetries of a
regular heptagon is denoted by D4.

Non-finite groups

The groups that we have so far considered are all composed of sets which
contain a finite number of elements. We will now consider groups whose sets
contain an infinite number of elements.

When dealing with a non-finite group, we use a similar approach to that which
we use with finite groups, except that we cannot construct a group table
because there is an infinite number of elements. However, this does not make
the verification of the group too much harder; it just means that it has to be
done algebraically.

Example 7 Prove that the set of integers under addition forms a group.

SOLUTION

Since there is an infinite number of integers, we cannot use a group table.
We therefore use algebraic methods to verify that all four properties are
satisfied.

OO OE W OROW MW N W
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NON-FINITE GROUPS

Closure If we add together any two integers, we always get an integer.
Therefore, if a and b are integers, we know that

axbh=a+b=c

and hence c is an integer. Therefore, the set of integers under addition is
closed.

Associativity We may simply quote the fact that addition is always
associative.

Identity As always with addition, 0 is the identity element. For any given
integer, a, we have

ax*0=0*a=a+0=0+a=a
This proves that 0 is the identity element for the group.
Inverses Given any integer q, its inverse is —a. This is because
a* —a=a+—-a=0 and —axa=-a+a=0

Therefore, we have checked that the four properties are satisfied, and so
the set of integers under addition forms a group.

Example 8 Prove that the set of integers under multiplication as the
binary operation does not form a group.

SOLUTION

We recall that to prove that a set under an operation does not form a
group, we just need to check that one of the properties is not satisfied.

In this case, the inverse property does not hold.

The identity element under multiplication would be 1, but the inverse of 2
would be 4, since

1#2=1x2=1

But % is not a member of the set of integers, and therefore 2 does not have
an inverse in the set.

Since one of the elements does not satisfy one of the properties, the set of
integers under multiplication cannot be a group.

Example 9 Prove that the set of real numbers (excluding zero) under the
binary operation of multiplication forms a group.

SOLUTION
Again, we need to check that all four properties are satisfied.

Closure The product of any two real numbers which are not zero is also
a real number which is not zero. Therefore, the set is closed.

Associativity Multiplication is always associative.

Identity 1 is the identity of multiplication, and it is in this group. Hence,
there is an identity element.
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£ist il
Inverses For any real number X, its inverse is — since
X

1 1
—xx=—xx=1
X X

Hence, every element has an inverse which is a member of the set.

Therefore, the set of real numbers (excluding zero) under the binary
operation of multiplication forms a group.

Note The set of real numbers including zero under the binary operation of
multiplication is not a group. This is because zero does not have an inverse.

To find an inverse of zero, would mean finding %, which is impossible.
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Example 10 Let G be the set of 3 x 3 matrices with integer elements and
determinant 1, under the multiplication of matrices as the binary
operation. Prove that G forms a group.

SOLUTION

To find whether a set of matrices under a particular operation forms a
group, we have to apply the rules of matrices. But we also still need to
check that G satisfies every one of the four group properties.

Closure If A and B are 3 x 3 matrices, then AB will also be a 3 x 3 matrix.
We also need to check that AB has integer elements.

If A and B have integer elements, then consider how we find AB. We
multiply the integers in A by the integers in B, and then add them up.
Therefore, the entries in AB are all integers.

Finally, we also need to check that the value of the determinant AB is 1.
Using det (AB) = det A x det B, we find that
det(AB)=1x1=1

Hence, AB is a member of the set and thus the set under multiplication is
closed.

Associativity Multiplication of matrices is associative.

Identity The identity of matrix multiplication is the identity matrix L
Since I has integer elements and determinant 1, I is a member of the set.

Inverse The inverse of a 3 x 3 matrix is a 3 x 3 matrix. However, we
need to check that the inverse matrix has integer elements and
determinant 1.

To verify that the inverse matrix has integer elements, we consider how
we would find the inverse (see pages 304—6). To find the inverse of a 3 x 3
matrix, we need to find the cofactor of each element. In this case, this
means finding the determinants of nine 2 x 2 matrices, each of which has
integer elements. This gives integer results. Then we divide each cofactor
by the determinant of the original 3 x 3 matrix, which in this case is 1.
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