EXERCISE 14B

a) Find the eigenvalues of P.
b) Find an eigenvector corresponding to each eigenvalue.
c) Verify that these eigenvectors are orthogonal. (NEAB)

2 3

a) i) Find the eigenvalues of A.
if) For each eigenvalue find a corresponding eigenvector.

7 The matrix A is given by A = < ! 4).

b) Given that U = ( & 3 ) , write down the values of @ and b such that

-3 b

U AU = <_01 2) (NEAB)

2 2 -3
8 The eigenvalues of the matrix A = 2 2 3 are A, Ay, 4.
-3 3 3

a) Show that 4; = 6 is an eigenvalue and find the other two eigenvalues 4, and ;.
b) Verify that detA = A, 4, 45.
c) Find an eigenvector corresponding to the eigenvalue 1; = 6.

1 1
Given that [ —1 | and | 1 | are eigenvectors of A corresponding to A, and /3,
1 0

d) write down a matrix P such that PTAP is a diagonal matrix. (EDEXCEL)

3 4 —4
9 A=14 5 0
-4 0 1

a) Show that 3 is an eigenvalue of A and find the other two eigenvalues.
b) Find an eigenvector corresponding to the eigenvalue 3.
2 2
Given that the vectors | 2] and | —1 | are eigenvectors corresponding to the other two

. =1 2
eigenvalues,

c) write down a matrix P such that P'AP is a diagonal matrix. (EDEXCEL)

10 The matrix A is given by {_7 4] . The plane transformation T is such that T: [i] — A [X} .

1 3 y

a) i) Show that A has only one eigenvalue. Find this eigenvalue and a corresponding eigenvector.
if) Hence, or otherwise, determine a cartesian equation of the fixed line of T.

b) Under T, a square with area 1 cm? is transformed into a parallelogram with area dcm?. Find
the value of d. (AEB 96)

11 The matrix P is defined by

1 30
P=|2 0 2
1 1 2
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12

13

1 1
a) Show thatv, = —1 | andv,={ 0 | are eigenvectors of P and find the two
0 —1
corresponding eigenvalues.
b) Given that the third eigenvalue of P is 4, find the corresponding eigenvector, v;.
¢) Show that vy, v, and v; are linearly independent.

a
d) Express the vector | 4 | as a linear combination of v, v, and v; with coefficients in terms
c
of the constants a, b and c. (NEAB)

Let A be the matrix B _11 } .
a) Determine the eigenvalues and corresponding eigenvectors of A.

b) i) Show that A2 — 2A — 81 = Z, where I = [(1) (” Lo e {g 8]'

i) The matrix B = A~!. By multiplying the matrix equation A> — 2A — 8I = Z by B, or
otherwise, find the values of the scalars « and f for which B = oA + fL (AEB 97)

a) Determine the eigenvalues of the matrix
3 -3 6
A=10 2 =8
0 0 =2
3
b) Show that | 1 | is an eigenvector of A.
0
7 —6 2
B={|1 2 3
1 =3 2
3
c) Show that [ 1 | is an eigenvector of B and write down the corresponding eigenvalue.
0

d) Hence, or otherwise, write down an eigenvector of the matrix AB, and state the
corresponding eigenvalue. (EDEXCEL)

14 The transformation T maps points (x, y) of the plane into image points (x’,y’) such that

x' =4x+2y+14
=2x+Ty+42

a) i) Find the coordinates of the invariant point of T.
ii) Hence express T in the form

e =Al ]

where k is a positive integer and A is a 2 x 2 matrix.
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EXERCISE 14B

b) i) Determine the eigenvalues and corresponding eigenvectors of the matrix B g] .

ii) Deduce the cartesian equations of the invariant lines of T, and prove that they are
perpendicular.
¢) Give a full geometrical description of T. (AEB 98)

4 -1 0
15i) GiventhatP=|1 5 3|, find detP and P~
2 1 1
The 3 x 3 matrix M has eigenvalues —1, 2, 5 with corresponding eigenvectors
4 -1 0
1 5 3
2 1 1

respectively.

ii) By considering MP, or otherwise, find the matrix M.

iii) Find the characteristic equation for M.

iv) Find p, ¢ and r such that M™' = pM? 4 gM + 1L (MEI)

16 A linear transformation of three-dimensional space is defined by r’ = Mr, where

x/ X 2 1 -1
r=1y r=1|y M=1|-1 0 3
g z 2 k 4

a) Show that the transformation is singular if and only if & = 2.
b) In the case when k& = 2, show that M represents a transformation of three-dimensional space
onto a plane and find a cartesian equation of this plane. (NEAB)

17 The vectors a, b and ¢, given below, are linearly independent.

1 0 1
a=| 2 b=|3 c=1|2
-1 4 0
Find «, p and 7y such that the vector
7
d= 3
—14

can be expressed as a linear combination of a, b and ¢, in the form

d=oa+ fb+yc (NEAB)

18 The matrix A is defined by

1 1 1
A=11 k 1
1 1 k

a) Find the determinant of A in terms of k.

b) The matrix A corresponds to a linear transformation T in three-dimensional space. When a
region in three-dimensional space is transformed by T its volume, V, is increased by a factor
of four to 4V. Find the possible values of k. (NEAB)

327



CHAPTER 14 MATRICES

19 A linear transformation 7 of three-dimensional space is defined by r’ = Mr, where

11 _ 1
. 2 2 V2
X X
1 1 1
=1y r=1|y M=| = = —
z : ? 21 v2
0

V2 2
a) Show that every point on the line x = y, z = 0 is invariant under 7.
b) Find M? and hence show that M* = I, where I is the 3 x 3 unit matrix.
c) Given that T is a rotation, state
i) the axis of the rotation

ii) the angle of the rotation.
0

d) Write down the image under T of the unit vector | 0 |, and hence indicate by means of a
1
diagram the sense of the rotation. (NEAB)

20 a) The matrix A and a non-singular matrix M are defined by

5 -1 0 0 -1 0
A=|-1 10 3 M=|0 -1 -2
0 3 1 2 3 6
Show that MTAM = 41, where M, the transpose of the matrix M, is given by
0o 0 2
Mf=1|-1 -1 3
0 -2 6

and I denotes the 3 x 3 unit matrix.
b) A closed surface S in three-dimensional space is defined by the equation

5x% +10y% + 22 — 2xy +.6yz = 4

Verify that this equation can be obtained from the equation

r"Ar=4 (%)
%
wherer = | y |, r" = (xyz) and A is the matrix defined in part a.
Z
‘ X
¢) A linear transformation L is defined by R = M 'r, where R = | Y | and M is the matrix
Z

defined in part a.
i) By using the relationships
r=MR and r' =R™™M"

where R' = (X Y Z), in equation (*), or otherwise, show that L maps the surface S on to
the surface of a sphere of unit radius centred at the origin which has the equation

X2 +Y+27*=1
ii) Show that detM ' = 1.
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EXERCISE 14B

iii) Given that the volume enclosed by a sphere of unit radius is %n, find the volume of the
region enclosed by S. (NEAB)

21 A transformation T of three-dimensional space is defined by r’ = Mr, where

xf X 01 0
= ¥ r=1|y M=[0 0 1
z' z 1 0 O

i) Find the image P’ of the point P(2, —3,1) under T.
ii) Show that there is a line L such that all points on L are invariant under T, and find the
cartesian equations of this line.

iii) Obtain the equation of the plane II through the origin O perpendicular to L and verify that
P and P’ lie in II.

iv) Given that T represents a rotation about the line L, find the magnitude of the angle of
rotation.

Find M? and M? and state what transformations are represented by these matrices. (NEAB)

22 Determine the eigenvalues and corresponding eigenvectors of the matrix A, where

26 -5
=

The plane transformation T is defined by T: B} — A [ﬂ .

a) Write down a cartesian equation of the line of invariant points of T.

b) Show that all lines of the form y = — %x + k (where k is an arbitrary constant) are invariant
lines of T.

c¢) Evaluate the determinant of A, and explain the geometrical significance of this answer in
relation to T.

d) Give a full geometrical description of T. (AEB 98)

23 A transformation T of three-dimensional space is defined by r’ = Mr, where

x' X 1 3 2
=1y r= |y M= 1 1 1
z' z -1 2 k

where k is real.

i) Find M~ for k #4

i) In the case when k& = 1, find the coordinates of the point whose image under T is the point
(2,1,2). ‘

iii) In the case when k£ = %, show that the image under T of every point in space lies in the plane

3x—-5y—-2z=0

iv) Show that, for one particular value of k, there is a line L such that every point on L is
invariant under T. Find the cartesian equations of L. (NEAB)
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15 Further complex numbers

In his Miscellanea analytica (1730), Abraham de Moivre presented further analytical
trigonometric results (some formulated as early as 1707), making use of complex numbers.
Although he did not state what is now known as de Moivre’s theorem, it is clear that he was
making use of it.

ALBERT C. LEWIS

De Moivre’s theorem

On page 8, we found that
(cos B +isinB)(cos ¢ +isin¢p) = cos(f + @) +1sin(0 + ¢)
Hence, we have
(cos @ +isin 0)* = (cos O + i sin O)(cos O + i sin O)
= c0s20 +1sin 20

The general case of this result is known as de Moivre’s theorem, which states
that, for all real values of n,

(cos 6 +1isin6)" = cosnb + isinnb

When 7 is not an integer, then cos nf + isin n6 is only one of the possible
values.

Proof when = is a positive integer

This proof is an example of proof by induction (see page 159).
We assume that the statement is true when n = k. Hence, we have
(cos @ + isin 0)F = (cos k@ + isin k6)
=  (cosO +isin@)* " = (cos kO + isin kB)(cos 0 + isin 0)
Using (cos 0 + isin 0)(cos ¢ + isin ¢) = cos (0 + ¢) +isin (0 + ¢), we obtain
(cos 0 +isin0)**! = cos(k + 1)0 +isin (k + 1)0
Therefore, statement is true for n = k + 1.
When n = 1, we have

(cosf +isinf)" =cosf +isinb
and

cosnf +isinnd = cosf +isinb
Therefore, the statement is true for n = 1.

Therefore, de Moivre’s theorem is true for all values of n > 1. That is, for all
positive integers.
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DE MOIVRE’S THEOREM

Proof when n is a negative integer
When 7 is a negative integer, n = —p, where p is a positive integer. Hence, we
have
(cos @ +isin )" = (cos O +isinf)™”
_ 1
~ (cos @ +isin0)?

Using de Moivre’s theorem for the positive integer p, we obtain
1 _ 1
(cosO +isin6)?  (cospb + isin ph)

_ cos pf — isin p0
~ (cos pO +isin pf)(cos pf — isin p0)

which gives
1
(cos 0 +1sin 0)?

= cospf — isin pb

But n = —p, hence we have
cos pf — isin pf = cos (—nb) — isin (—nb)
= cosnl + isinnf
Therefore, we have
(cos 0 +isin 0)" = cosnf + isinnd

for all negative integers.

Example 1 Find the value of (cos 0 + isin 6)°.

SOLUTION

Applying de Moivre’s theorem, we have

I E R EREEEENN]

(cos 0 + isin 0)’ = cos 50 + isin 50

3
Example 2 Find [cos (%) +1isin (g)] )

SOLUTION

Applying de Moivre’s theorem, we have

3
[cos (E) +1sin (Eﬂ = cos (3 X Zc—) + isin<3 X E)
6 6 6 6
= cos (Zt—> +1sin (£>
which gives 2 2

o () ()] -+ () -0 w(3) )
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CHAPTER 15 FURTHER COMPLEX NUMBERS

6
Example 3 Find {sin <§> +1cos (g)} '

SOLUTION

Using cos (—721 — 0) = sin 0, we obtain

o (5) +ieos(3)] = oo (5) 350 (3)]

=COST+1s8InT

which gives

- 16
sin (g) +icos <%> = —1 (sincecosn = —1 and sinm = 0)

Alternatively, we can proceed as follows:

in (5) @] ={ o ) - D]}
(e (-9) (301

Applying de Moivre’s theorem to the RHS, we obtain

Il

- 16
sin (g) +1icos <§> = i%[cos(—2n) + isin (21)] = =1 x 1 = —1

Therefore, we have

[ /=n ) w\1°
sin [ — ) +1cos| — =]
L <3> <3>

S S F S EEEEEEEE RS R EEEE R E SRR R R R R R EE R R R EEERSEEERERERERESERDESR!

as above.

Caution You will have noticed that

6
{cos <£> —18in (Eﬂ = CcoS2m — 18In 27
3 3

and hence you may have deduced that
(cos B —isin®)" = cosnb — isinnb

However, this cannot be used as a correct version of de Moivre’s theorem,
which is only applicable to (cos 8 + isin )"

Thus, if you are asked to use de Moivre’s theorem to find the value of, say,

6 6
{cos (g) —isin (g)} , you must change this into {COS (— g) + isin <~ %)} !

as shown in Example 3.
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DE MOIVRE’S THEOREM

Example 4 Find the value of (1 +1)*.

SOLUTION

Initially, we convert (1 +i)* into its (r, 0) form, and then use de Moivre’s
theorem. Hence, we have

0+ = {Vafeor(§) isn(3) |
) e )]

= 4(cosm +isinm)

which gives

(1+1)=—4
Example 5 Find the value of ——.
4 — 4)

SOLUTION

First, we convert 4 — 4i into its (1, 0) form, and then use de Moivre’s
theorem. Hence, we have.

4—4i:4\/§[cos <—§> +isin<—gﬂ
= (4—4i) = {4\/5 :cos (—%) +isin<—§>: }3

1 1

~3 = - 7y 3
(4 =4 {4\/5 cos <~£> + isin(— E) }
i 4 4/ |

Ay {cos —£>+isin —E>y3
1282 4 4

Using de Moivre’s theorem, we obtain
: __| {cos (EE> —+isin <3_n>]
(4—4)° 1282 4 4

which gives
1 —
4—4i 2

1 .
—1 41
56( )
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Exercise 15A

1

Using de Moivre’s theorem, find the value of each of the following.

19
a) (cosf +isinf)® b) (cos26 + isin 20)* c) [cos (g) +isin (g)

oo () )] w () ()]
I 5 5 18 18

Simplify each of the following.

- 6
T .. (m 1 1
d — . f
) FOS<4>'+1$D(4>} ®) (cos 20 + isin 20) ) [ <n> N <n>‘6
cos g +1s1n g

a) (cos 30 +isin 30)(cos 70 +isin 76) b) (cos 50 + isin 50)(cos 60 — i sin 60)

[ (5) i)
o (3) -0 5)]

Simplify each of the following.

d 1+ +1 -1

a) (1+1)° b) (2 —/31)° c) (3—/3i)°
d) (1—1i) e) (2+2v30)° f) 2i— V3)
Simplify each of the following.
a) (cosf —isin )’ b) (sin § — icos 6)*
1 1
d

) (sin O +1cos H)° ) { . (TC> . (n)} 10

simm|{— | —1CoS| —

5 5

Show that

cos2x +1sin 2x

cos9x — 1sin 9x

can be expressed in the form cosnx + isinnx, where n is an integer to be found.

(EDEXCEL)

nth roots of unity

When # is not an integer, de Moivre’s theorem gives only one of the possible
values for (cos 0 + isin 6)", which is cos nf +isinnf.

.. 1 ; p
However, (cos 8 + isin 8)7 can take n different values, as we will now show.

We let

(cos 0+ isin O)F = r(cos ¢ + isin ¢)
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nTH ROOTS OF UNITY

Comparing the moduli of both sides, we have r = 1.
Raising both sides to the nth power, and using
[(cos O +isin 0)717]” =cosf +isinf
we obtain
cosf +isinf = [(cos O +isin 9)%]” = (cos ¢ + isin ¢)"
= cosO+1sinf = cosneg + isinng
Therefore, we have
cosf =cosng and sinf = sinng
which give
np =0,0+2n, 0+4n, 0+ 6m, ...
since cos (0 + 2m) = cos 6, and sin (8 + 2m) = sin 6.
That is, we have

QZ)_Q 04+2n O0+4x
n? El g s

n n

which means that (cos 8 + isin 9)% is identical to

cos (—Q) +1sin <Q>
n n
<0+2n> . <9+2n>
or cos “+18In
n n

(0+4n> iy <9+4n>
or cos +1isin
n n

2 : : .
and so on, adding “I each time until we obtain
n

(cos 0 +1isin 0)% = cos {w} +isin [M}

n n

All subsequent values are repeats of the n different values given above. Im4
Therefore, (cos 0 + isin 0)7 has # different values.

We note that these n solutions are symmetrically placed
on a circle drawn on an Argand diagram.
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FURTHER COMPLEX NUMBERS

Example 6 Find the value of (—64)%.

SOLUTION

Expressing —64 in the form r(cos 6 + isin 6), we have
—64 = 64(cosm + isinT)

which gives

(—64)¢ = 64%(cos T + i sin m)¢

=2 [cos (%) +1isin (%)] (from de Moivre’s theorem)

Using symmetry, we find that the other roots are as shown in the diagram

below right. That is,

2leos(5) +i9n(3)]
2eos () i ()]

() ()

Since all of these values can be expressed simply in the form a + ib, it is

common to give these answers in the form

i<£i1>, 1
2 2

Example 7 Find the values of (—1 — v/3i)?.

SOLUTION

Expressing —1 — /3i in the form cos 8 + isin 6, we have

1 -\Bi= 2{003(—%5) +isin<—23—n>J

Therefore, from de Moivre’s theorem, one value of (—1 — /3 i)% 18

2] ()= (-2)
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nTH ROOTS OF UNITY

By symmetry, the other root is as shown in the diagram Im4
. . 2_
on the right. That is, L =
272
V2 By it BN
2 2 ;‘; \
Therefore, we have | . ' é -
1 -2 i -1 O o Re
(-1 _@)-:i(ﬁ;ﬁi)
2 2 S =l e
~| —"2_1,
2
72_

Example 8 Find the solutions of 27z° = 8.

SOLUTION

We take the cube root of both sides, remembering to multiply one side of
the resulting equation by each of the three cube roots of unity, taken one
at a time. In this case, it is simpler to multiply v/8 by the three cube roots:

Hence, we have
e =8
= Zg=41x2
From page 18, we know that v/1 has the following values:

PN S VAC PR VA
2 2 2 2
Using%:l,we obtain
Iz=2 = Z:g
3
Using V1= —%#— ?i, we obtain
3z=—1+V31 = z:—%+?i
Using%:*%—éi, we obtain
3z=-1-v31 = Z:—%—?i

Example 9 Find the solutions of 16z* = (z — 1)*.

SOLUTION

We take the fourth root of both sides, remembering to multiply one side
of the resulting equation by each of the four fourth roots of unity, taken
one at a time.
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Hence, we have
162* = (z — 1)*

= 2=v1@Ez-1)
We know that v1 =1, —1, i, —i.
Using v/1 = 1, we obtain

2z=z—-1 = z=-1
Using V1= —1, we obtain

2z2=—(z-1) = 3z=1 = :z=
Using v/1 = i, we obtain

2z=1i(z— 1)
i
= z=- ,
2—1
i@+
2-1)2+9)
which gives
z=21(1-20)

Using v/1 = —i, we obtain

2z=—i(z—-1)
i
z= _
241

L _ie-h
5

which gives
z=1(1+2j)

Therefore, the four solutions of 16z* = (z — 1)* are —1, 1, (1 +2i).

I E S E SR EEREEEEEEEREERRER R EEEEREEREER R R R ERRERRRRE R R R R R R R R R RSN

Exponential form of a complex number

Using the power series expansions studied on pages 177-9, we have
0 _ 1 i, 107 (i6)
g =1+4+10+ o + 31
AR A A Ux
=1 +16_—2—T__3W_+I+?_

0 0t i 6 0

= el =cosf+isinf

Fems
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This is the exponential form of a complex number.

Expressed generally, we have
z=r(cosf+isinf) = z=rel?

We can use the exponential form to simplify many types of problem.
Note Using the exponential form of (cos 6 + isin )", we have

(cos 0 +1isin0)" = (el?)" = ¢! = cosnb + isinnb
which proves de Moivre’s theorem.

®  Example 10 Express 2 + 2i in re'? form.

B

. SOLUTION

B

¢ The modulus of 2 + 2i is 2+/2 and its argument is g Hence, we have
|

u 2+2i =22

§ Example 11 Express 1 —iv/3 in rel? form.

L

§ SOLUTION

= The modulus of 1 —iv/3 is 2 and its argument is —g. Hence, we have
B

8

. 1 —iv/3 = 2e7i/3

Example 12 Find the values of (-2 + 2i)% and show their positions on an
Argand diagram.

SOLUTION
We proceed as follows:

e First, express (—2 + 21) in its (r, 6) form.
e Then find one value of (—2 + 2i)%
e Finally, use symmetry to find the other roots.

Hence, we have

= {prlon (3) ()}
_ {2 [cos (éf_) HSm(%ﬂ }@

Therefore, from de Moivre’s theorem, one value of (—2 + 2i)% is

o ) ()

I E S FPE SR EEEEEEEERE R E SRR E R R R R R R R ERERRER]
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= By symmetry, the other roots are
B
N 1 T, 2n .. (m  2m
= 27|cos | —+— ] +1isin| —+—
. { <4 3 > <4 3 >}
Z
B Im4
B and 27 [cos <£ + 4—“) +isin <£ + ﬂ)}
= These three roots (see Argand diagram // 1 "\X_ﬁem"‘
= on the right) may be expressed as g’j N\
B N

3
2 1 e it . 1 . 7
i 2%61 /4 zéellm/n 23el9in/12 ﬁelliﬂ/m; 3\2
L] | 1
] 1 %
i 3 :1 0 i } Re
» \
B % £
: \ )/
2
: k\\g B /
= T
: S~— Lo
2 2e

Multiplying one complex number by another

Expressing the two numbers, z; and z,, in their exponential form, we have

Z1Zy = rlewl X Vzeiez
which gives
Z1Z) = 717261(01+02)

This is a very simple way of showing that to find the product of two complex
numbers, we multiply the moduli and add the arguments. (See page 8.)

Simplifying certain integrals
We can simplify integrals of the type Je“’“ cos bx dx using the exponential

form, as shown in Examples 13 and 14.

Example 13 Find Jez" sin x dx.

SOLUTION

We have

Jezx sinxdx = Im J e**(cos x + isin x) dx

I E NS S REREERRE SRR ERE]

where Im[ is the imaginary part of the given integral.
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EXPONENTIAL FORM OF A COMPLEX NUMBER

Using the exponential form of cos x + isin x, we obtain
Jez" sif 6 dr — ImJer x e* dx

(2+1 *dx

which gives

Jezxsinxdlem( L e(“”‘)

2+1

Il

Il C%eosxisinx) - C]

2+ 1)(2 — 1)

g {e + (2cos x + sin x + 2isin x — 1cosx)] —
— (i)’
Hence, we find that

er
Jezxsinx dx :—5—(2sinx—cosx)+c

Example 14 Find Je“x cos 3x dx.

SOLUTION
We have
Je“x cosic—Re J e* (cos 3x + isin 3x) dx

where ReJ 18 the real part of the given integral.

Using the exponential form of cos3x + isin 3x, we obtain

Je“" cos3x dx = ReJe(“Hi)’C dx

1 5
— Re e(4—|—31)x —I—C)
(4 +3i

= Re [i—— e*(cos3x +isin3x) + ¢
4+ 31)(4 — 30)

Hence, we have

4x 2
Je4xcos3x dx:e__<4cos3x+3sm3x> s
25 25
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Exercise 15B

10

11

12

For each of the following, find the possible values of z, giving your answers in
i) a+1ib form i) re? form

a) z* =—16 b) 2 = —8+8i c) 22 =27

d) 22 = 16i e) 22 = -251 e=-32

Find the six sixth roots of unity.

Solve each of these.

a) (z +2i)° =4 b) z— 1) =38 ¢) 2= (z+ 1)
d) (z+ 3% =(Q2z—1) e) z—1)*=81z+2)*

Find the seven seventh roots of unity in the e' form.
Solve z° = 32i. Give your answers in the re'’ form, and show them on an Argand diagram.
By considering the ninth roots of unity, show that
2n 4n 6m 8n 1
cos{ — ) +cos|— | +cos|— | F+cos|— | =—=
(5) +eo(5)+r(3)++(5) -
By considering the seventh roots of unity, show that

T 37[) (57:) 1
cos| — | +cos|— | +coS{— | =—
7 7 7 2

When cos 40 = cos 30, prove that 6 = 0, 2—n, 4_71;’ | &

QM o
2n 4n om 3 )
Hence prove that cos 7 , COS 7 , COS = are the roots of 8x” 4+ 4x* —4x — 1 = 0.

Evaluate each of these.

a) Je““’ cos 5x dx b) Jel‘ sin 7x dx

c) Je‘z““ sin4x dx d) Je“"’ cos 3x dx

Find, in polar form, each of the fourth roots of —8 — 8+/31. (WIEQ)

Verify that (3 — 2i)* = 5 — 12i, showing your working clearly. Find the two roots of the
equation (z — i) = 5 — 12i (OCR)

i) Find the exact modulus and argument of the complex number —4+/3 — 41.
ii) Hence obtain the roots of the equation

P2 4+4/34+4i=0

iving your answers in the form re'’, where » > 0 and -1 < 0 < =. (OCR
giving y
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EXERCISE 15B

Express (8v/2)(1 + i) in the form r(cos 6 + isin 6), where r > 0 and —n < 6 < n. Hence, or
otherwise, solve the equation z* = (84/2)(1 + 1), giving your answers in polar form. (OCR)

Write each of the complex numbers
z=1-(3)i z=(3)+i
in the form re'?, where r > 0 and —n < 0 < .

Hence show that if z] + zJ = x + iy, where x, y € R, then

Y_24v3  (OCR)
X
a) State de Moivre’s theorem for the expansion of (cos 0 + isin 6)", where 7 is a positive integer
or rational number.

b) Find the modulus and the argument of each of the three cube roots of 1 + 1.
c) Show that (1 +1)°' =2¥(~1+1).  (WIJEQ)

Write down the modulus and argument of the complex number —64.

Hence solve the equation z* + 64 = 0, giving your answers in the form r(cos 6 + isin 0), where
r>0and -t <0 <.

Express each of these four roots in the form a + 15 and show, with the aid of a diagram, that
the points in the complex plane which represent them form the vertices of a square.
(AEB 96)
a) Solve the equation z° = 4 + 4i, giving your answers in the form z = re'*™
modulus of z and k is a rational number such that 0 <k < 2.
b) Show on an Argand diagram the points representing your solutions. (EDEXCEL)

, where r 1s the

i) Show that
eB+2)x = e3*(cos 2x + isin 2x)

where x is real.
ii) Find the real and imaginary parts of

e3*(cos 2x +1isin2x)
(3 + 2i)

i) If C = Je3x cos2xdx and S = Je3x sin 2x dx, by using parts i and ii and considering C + i8S,
or otherwise, find C and S. [You may assume the normal rules of integration apply to

Jekx dx when k is complex.] (NICCEA)

a) Verify that z; = 1 + ¢™/% is a root of the equation (z — 1)° = —1.

b) Find the other four roots of the equation.

¢) Mark on an Argand diagram the points corresponding to the five roots of the equation.
Show that these roots lie on a circle, and state the centre and the radius of the circle.

d) By considering the Argand diagram, or otherwise, find
i) argz; in terms of 7.

ii) |z{| in the form acos %, where a and b are integers to be determined. (NEAB)
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20 i) Find the roots of the equation (z — 4)° = 8i in the form a + ib, where a and b are real
numbers. Indicate, on an Argand diagram, the points A, B and C representing these three
roots and find the area of AABC.

ii) The equation z> + pz*> + 40z + g = 0, where p and ¢ are real, has a root 3 + i. Write down
another root of the equation.

Hence, or otherwise, find the values of p and q. (EDEXCEL)

21 Write down the fifth roots of unity in the form cos 8 + isin 6, where 0 < 6 < 2m.

i) Hence, or otherwise, find the fifth roots of i in a similar form.
i) By writing the equation (z — 1)° = 2’ in the form

()

show that its roots are

11 +icotthm) k=1,2,3,4 (OCR)
22 i) Find the six complex roots of the equation z® + 8i = 0, expressing eachin the form re'’.
Give the exact values of 8 in radians.
ii) Show that (1 +1) and (—1 — i) are two of the roots.
iii) Sketch the six roots on an Argand diagram, clearly indicating the significant geometrical
features. (NICCEA)

Trigonometric identities

Expressions for cos”@ and sin"@ in terms of multiples of 6

Let z = cos 8 +isin 6. We then have
lz (cosO +isinf) ' =cosf—isinh
Z

which gives

z+lz2cost9
z

Z—lz2isin9
z

We also have

1
zt  cosnb +1sinnb

2" = (cos 0 +isin 0)" = cosnf) + isinnb
1

1 ..
= — =cosnf —isinnb
Zl’l
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which gives
5 . 1
7' +—=2cosnb
le

1 _y
Zt— — =2isinnd
Zi’l

With the aid of these four identities for z + L and " £+ —1;, we can write any
7 7

power of cos @ or sin 6 in terms of multiples of 0.

Example 15 If z = cos 8 + isin 8, express the following in terms of 6.
a) z* b) z 73
SOLUTION
We know that, when z = cosf +isin,
z" = cosnf + isin nd
for all integer n.
Hence, we have
a) z* = cos40 +isin40
b) z73 = cos(—30) +isin (—30)

I E S S E SR NS EEE SRR EREEEEEEREDRE

= z3=cos30—isin30

Example 16 If z = cosf + isin 8, express the following in terms of z.

a) cos 60 b) sin 30

SOLUTION

When z = cos 8 + isin 6, we know that

7+ i = 2.cosnb
Zl’l

and 7 A2 o
Z}’l

Hence, we have

a) 200s60326+L
6
1/ ¢ 1
= cosbl =~ S
) (Z 26>
B DlsinsB=s — L
o

I E S EEEFES S S P EEEERE R R E SRR R R RN R R RS R RREEN]

= sin 30 EL_ <z3 —L)
2 z3
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Example 17 Express cos’0 as the cosines of multiples of 0.

SOLUTION
We proceed as follows:

e Express cosf in terms of z, and hence find cos®0.
1 .

e Collect terms of the type z" + —, according to the values of # (as we are
7

required to give the answer as the cosines of multiples of ).
e Finally, convert these terms into cosines of multiples of 0.

Hence, we have
1 1
cosO0==|z+—
2 (Z Z)
which gives
3
2(=+3)]
2 4
(+1)
z+—
Z
l(234—322 xl+32xi+i>
8 z

z2 73
é( 3+3z+3+i)

cos’6

Il

1
2

z

Rearranging the terms on the RHS, we obtain
cos’h = 1 [<z3 +i> + 3<z+l>]
8 z? z
Converting the RHS, we have
cos’ = %(2 cos 360 + 3 x 2cosb)
which gives

cos’ 0 = lcos 30 + icos 0
4 4

Example 18 Express cos®0 as the cosines of multiples of 0.

SOLUTION

We have

] 1\1°
0= (+3)]
COS 2 Z+Z

where z = cos 0 +isin 6.

Using the binomial theorem, we obtain

1 1 1
(Z—i——):Z6—|—625><-+1524><—+...+——
z z z2
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which gives

<Z6+6Z4+1522+20+£+£+‘1—>

z2 A g0

o 1 6 | 4 1 2 1
Ty {(z +Z—6) +6<Z +;> + 15<Z +;) -I—ZO}
Converting the RHS, we have

cos®d 561—4(200560+6 x 2cos40 + 15 x 2 cos 20 + 20)

= cos®0 = Lcos 60 +icos40 +1—5c0s20 +i
32 16 32 16

| E R EEREEEEEEREREEERERER NI

Example 19 Express sin’0 as the sines of multiples of 6.

SOLUTION

We have

5
sin’f = {i (z — l)}
21 Z

where z = cos 6 +1isin 6.

Using the binomial theorem, we obtain

sinSGEL,S(f—SfJr 102_Q+_5~ﬁl>
321

(7 -2) (= - 2) o 1))

Converting the RHS, we have

sin’0 = é[ﬁ sin 50 10i’in 30 + 20i sin 6]
1

I EE S EEEEEEEEEEREREE R E RN E R EEEEEEEREERERNENGE]

= sin'h= Lsin 50 — isin 36 +§Sin9
16 16 8

Expansions of cos 76 and sin n6 as powers of cos @ and sin 0

To change a function such as cos 660 into powers of cos 6, we express cos 60 as
the real part of cos 60 + isin'66.

By de Moivre’s theorem, we have
¢08 60 + isin 60 = (cos 6 + isin 0)°

the RHS of which we expand by the binomial theorem. We then extract the
real terms from this expansion.

Similarly, we express, for example, sin 70 as the imaginary part of
cos 70 +1sin 76.
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Example 20 Express sin 30 in terms of sin 6.

SOLUTION
We put
sin 30 = Im (cos 30 + isin 36)
where Im (z) is the imaginary part of z.
Hence, we have
sin 30 = Im (cos 6 + isin H)*
Expanding the RHS by the binomial theorem, we obtain
sin 30 = Im[cos’6 + 3 cos?0(isin 6) + 3 cos O(isin 0)* + (isin 6)°]
= Im (cos®d + 3icos2f sin O — 3 cos Osin’0 — isin’6)
= 3cos?0sin 0 — sin*0

Using cos?f = 1 — sin’6 (as the answer has to be in terms of sin 6), we
have

sin 360 = 3(1 — sin?6) sin 0 — sin’*0
= 3sin 0 — 3sin’0 — sin’0
which gives
sin 30 = 3sin 6 — 4sin’0

Example 21
a) Express cos 60 in terms of powers of cos 0.

sin 60

b) Express in terms of powers of cos 6.

S

SOLUTION
a) We put
cos 60 = Re(cos 66 + 1sin 60)
where Re(z) means the real part of z.
Hence, we have
c0s 60 = (cos 0 + isin )°
Expanding the RHS by the binomial theorem, we obtain

cos 60 = Re |cos® + 6 cos’0 (isin ) + g—i cos*0 (isin 0)* +

g;? cos 6 (isin 0)° + %g% cos*0 (isin )" +

6.54.5.2
54321

=  cos60 = cos®0 — 15cos*0sin%H + 15 cos26 sin*H — sin®H

+

cos 6 (isin 0)° + (i sin 0)°
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Using sin’f = 1 — cos?0, we have
cos 60 = cos®0 — 15cos*0 (1 — cos?d) + 15cos?0(1 — cos?h)* — (1 — cos2h)’
= c0s%0 — 15cos*0 + 15c0s°0 + 15c0s20 — 30 cos*6 + 15 costl —
— 1+ 3¢0s?0 — 3cos*0 + cos®d
which gives
cos 60 = 32cos®) — 48 cos*0 + 18 cos20 — 1
b) We put
sin 60 = Im(cos 66 + 1sin 60)
where Im(z) means the imaginary part of z.
Hence, we have
sin 60 = Im (cos § + i sin 0)°
Expanding the RHS by the binomial theorem, we obtain

sin 60 = Im |cos®d + 6 cos’@ (isin 6) + g—'fcos‘l@ (isin @)* +

g;‘l‘ cos Biisma)’ + jijf cos’0 (1I0)° +

6.5.4.3.2
54321

=  sin60 = 6cos’fsin 6 — 20 cos*fsin’6 + 6 cos O sin’0

+

cos 0 (isin 0)° + (i sin 0)°

Therefore, we have

sin 60
sin 0

= 6c0s°0 — 20 cos’O(1 — cos’d) + 6 cos 0(1 — cos’0)

= 608’0 — 20.c0s°0 + 20 cos’0 + 6¢cos ) — 12 cos’0 + 6cos°0

which gives
sin 60
sin 0

= 32¢0s°0 — 32 ¢cos’0 + 6cos 6

Example 22

a) Express sin50 in terms of sin 0.

b) Hence, prove that sin <§>, sin <2?n> , Sin (%E) and sin <7?n> are the

roots of the equation 16x* — 20x? + 5 = 0.

c) Deduce that sin <§) and sin’ <%57£> are roots of the equation

16y — 20y 4+ 5 = 0, and hence find the exact value of

o <n> : <271'> . <2n)
i) sin{ — }sin| — ii) cos{ —
5 5 5
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SOLUTION
a) We put
sin 50 = Im (cos 58 + isin 50)
where Im (z) is the imaginary part of z.
Hence, we have
sin 50 = Im (cos 6 + i sin 0)°
= Im (cos’6 + 5icos*0sin 0 + 10i*cos®d sin?0 + 10i*cos26 sin36 +
+ 5i*cos 0sin*0 + i°sin’h)
which gives
sin 50 = 5cos*@sin 0 — 10 cos?0 sin*6 + sin>0
Using cos’0 = 1 — sin?0, we obtain
sin 50 = 5(1 — sin0)*sin 6 — 10(1 — sin?@) sin30) + sin>f
= sin 50 = 16sin°0 — 20sin*0 + 5sin

b) From part a, we have
sin 50

sin 0
When sin 50 = 0, 16sin* 0 — 20sin”* 0 + 5 = 0, which gives
16x* —20x*+5=0

on substituting x = sin 6.

— 16sin*0 — 20sin’0 + 5

The solutions of 16x* — 20x% + 5 = 0 are x = sin 0, where 0 satisfies
sin 56

sin 6
we exclude the possible root sinf = 0. Hence, we have

= 0. All the x are different, and since sin 50 is divided by sin 0,

sin50=0 = 0:0(excluded),n 2—“,3—75,...

57575
which give the following values for sin 0:

sin <£>, sin <%E> , sin (3_75) which is the same as sin <%T£ ,
5 5 5 5
sin (4?“) which is the same as sin (%),

sinmt which is zero and hence excluded,

. <6n) . <7n)
sin| — and sin| —
5 5

Therefore, the four different non-zero values of x for 16x* —20x* +5=10
are
. (T . <2n> . <6n> . <7n>
sin| — sin| — sin| — sin| —
5 5 5 5
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c) We substitute y = x? to obtain the equation 16> — 20y + 5 = 0, whose
roots are the two different values for y given by the substitution.

. ' : k) :
There are just two values of x2, sin’ <%> and sin’ (—S—TE), since

sin <6_n> = —sin <£> and sin <7—n> = —sin <2—n>, which give
5 5 5 5
sin’ <6_n) = sin® <E> and sin® <7_n> = sin® <ET—E>
5 5 5 5

Therefore, the two different roots of the equation 16> — 20y +5 =0

are y = sin’ <%) and y = sin’ <2?n>

i) Using the product of the roots of a polynomial (see page 147), we
have for 16> — 20y +5 =0,

5
off = —
P 16
= sin’ (E) sin’ <2—n> = 3
5 5 16
= sin <£> sin (2—n> =4 —5—
5 5 16

2n
5

w(D)u(5) -5

i) Since 16y* — 20y + 5 = 0 is a quadratic equation, its roots are

20+ /400 — 320

Since both sin (%) and sin( > are positive, we obtain

32
2080 5+4/5
32 8

. . . 2
Since these two roots are sin’ <£> and sin® <—n>, and

5
sin <_25£) >sin (7;) > 0, we have

sin’ <E) = S—V5
5 8

>

Using the identity cos§ = 1 — sin® (—-), we obtain

cos(gﬁ> =1-—2sin 2<—7E
5 5

)

[\

~1—2><

= cos(z—n> = V51
5 4

8
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Exrekrci‘seh 1 5C

1

If z = cos 0 + isin 0, find the values of each of the following.
a)zz—i b) Fapd ¢) 4L e W
72 74 25 Zz 7 g
Express each of the following in terms of z, where z = cos 0 + isin 6.
a) cos 60 b) sin 50 c) cos*d d) sin’6
e) sin’50 f) cos*30
Express each of the following in terms of cos 6.
a) cos 60 b) cos40 c) SI? wii d) 31.n o
sin 0 sin 0
Express each of the following in terms of sin 6.
a) sin 30 b) sin 56 c) cos 70 d) "Bl
cos 0 cos 0
Express each of the following in terms of sines or cosines of multiple angles.
a) sin’0 b) cos’0 ¢) cos’0 d) sin’0

e) cos®l

Prove that cos*d = é(cos 40 + 4 cos 20 + 3).

B
Prove that tan 36 = Stane—tan_Q Hence solve 1> —3t2 — 3t +1=0.

1 — 3tan?6
By considering (cos 0 + isin 6)°, use de- Moivre’s theorem to establish the identity
cos 30 = 4cos*0 — 3cos
Write down the coefficient of 8% in the series expansion of cos 36.

Hence, using the identity above, obtain the coefficient of 6* in the series expansion of cos*0.

(AEB 96)
i) Show that (2 +i)* = —7 + 24i.
ii) Use de Moivre’s theorem to show that

cos40 = cos* — 6 cos?0sin’0 + sin*6
and sin40 = 4sin 0 cos’0 — 4sin*0 cos 6
iii) If = tan 0, show that
43
1 —612+14
iv) By considering the argument of (2 + i), explain why ¢ = % is a root of the following equation
4t — 4¢3 24

1—62+14 7
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EXERCISE 15C

v) Using the symmetry properties of the four roots of z* = ¢*, draw an Argand diagram
showing the four roots of z* = —7 + 24i.
vi) Find one other root of the equation in part iv. (NICCEA)
Use de Moivre’s theorem to prove that
sin 60 = 6 cos 0 sin § — 20 cos*0 sin30 4 6 cos Osin’0
By putting x = sin 0, deduce that, for |x| < 1,
—4 < x(16x* — 16x7 +3)/(1 — x?) <

1 (OCR)

Use de Moivre’s theorem to prove that

c0s 50 = cos 0(16 cos*0 — 20 cos?6 + 5)

()]
+
IS

By considering the equation cos 56 = 0, show that the exact value of cos? (%n) is

Use de Moivre’s theorem to show that
5= 1083 4 £
11022 4 5¢4
where ¢t = tan 0. (OCR)

tan 50

Let z =cosf +isiné.
a) Use the binomial theorem to show that the real part of z* is
cos*0 — 6 cos?0sin?0 + sin*0

Obtain a similar expression for the imaginary part of z* in terms of 6.
b) Use de Moivre’s theorem to write down an expression for z* in terms of 46.
c) Use your answers to parts a and b to express cos46 in terms of cos 0 and sin 6.

d) Hence show that cos 46 can be written in the form k(cos™ 0 — cos” ) + p, where k, m, n, p

are integers. State the values of k, m, n, p. (SQA/CSYYS)

Use de Moivre’s theorem to show that

sin 50 = acos*0 sin O + b cos?0'sin30 + ¢ sin’0
where a, b and ¢ are integers to be determined.
Hence show that

sin 560
sin 0

— 16cos* — 12cos’0 +1 (0 # kn, where k € 7)

By means of the substitution x = 2cos 0, find, in trigonometric form, the roots of the equation

x*—3x2+1=0
Hence, or otherwise, show that

cos?(+m) +cos’ (m) =2  (NEAB)
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15

16

17

Find each of the roots of the equation z> — 1 = 0 in the form r(cos 6 + isin #), where r > 0 and
—n<0<m

a) Given that a is the complex root of this equation with the smallest positive argument, show

that the roots of z° — 1 = 0 can be written as 1, o, o, o, o*.

b) Show that a* = o* and hence, or otherwise, obtain z°> — 1 as a product of real linear and
quadratic factors, giving the coefficients in terms of integers and cosines.
¢) Show also that

P—l=-E"+& L4t 1)

and hence, or otherwise, find cos(%n), giving your answer in terms of surds. (EDEXCEL)

a) Use mathematical induction to prove that when # is a positive integer
(cos 0 +isin 0)" = cosnf + isin nb

b) Hence show that
sin 50 = 16 sin°0 — 205sin*0 + 5sin 0 (EDEXCEL)

In the polynomial equation
@z"+a, 12" V. +ay=0

all the coefficients a,, a,_1, ..., ay are real. Given that x + iy is a root of the equation, show
that the complex conjugate x — iy is also a root.

Show that e™/¢ is one root of the equation z*> = i. Find the other two roots and mark on an
Argand diagram the points representing the three roots. Show that these three roots are also
roots of the equation

B$4+1=0

and write down the remaining three roots of this equation. Hence, or otherwise, express z% 4 1
as the product of three quadratic factors each with coefficients in integer or surd form.
(NEAB)
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TRANSFORMATIONS IN A COMPLEX PLANE

Transformations in a complex plane

We need to be able to transform simple loci in a complex plane, such as
straight lines and circles, into new loci, which are again usually straight lines
and circles.

The method we usually use is to identify the general point on the original locus
and find its image.

Example 23 Under the transformation w = z?, find the image of
a) circle, centre O, radius 3, and

) s
b) line argz = —.
) g >

SOLUTION
The original locus is z = x + iy, and the new locus is w = u + iv.

a) The general point on the original circle is z = 3¢', or z = 3 cos 0 + 3isin 6.
Its image point is w = z2 = 9¢?’, or z = 9(cos 20 + isin 26). Therefore,
the locus of the image is a circle, centre O, radius 9.

b) The general point on the line argz = g is

z=re™ = ¢ [cos <£> +isin <E)}
2 2

= z=ir

Hence, we have for the image point

2

Wi g =

e™ or —i?

Therefore, the locus of the image is a line along the real axis in the
negative direction from O.

I E S R EEEEEEEENREEEEEE SRR E R R E R E R R EREEEERER N

24z

1—2Z

Example 24 Find the image under the transformation w =

where z is the circle |z| = 1.

SOLUTION

To find the image of |z| = k, we usually express z in terms of w and then
apply this expression to |z| = k.

Hence, we have

I BRSNS ESREREER R R ERERGE]

wii—z)=2+z
= wi—-2=(1+w)
wi—2
= z=
IL+w
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