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1 [Complex numbers

 H
Bl

That wonder of analysis, that portent of the ideal world, that amphibian between being and
not being, which we call the imaginary root of unity
GOTTFRIED WILHELM LEIBNIZ

In all our previous mathematics work, we have assumed that it is not possible
to have a square root of a negative number. For example, on page 26 of
Introducing Pure Mathematics where we considered the solution of quadratic
equations, ax”> + bx + ¢ = 0, we noted that when 5% — 4ac is less than zero, the
equation is said to have no real roots.

In fact, such an equation has two complex roots.

Take, for example, the solution of x> + 2x 4 3 = 0. Using the quadratic
formula, we obtain

L T2EVE-T2
2

—~2++/-8
2

—2+8v-1
2

9 4 DBl
2

=—1+2vV-1

There is no real number which is v/ —1, as the square of any real number is
always positive.

Therefore, we say that v/—1 is‘an imaginary number. We denote v/—1 by 1.

So, using i, we can express the roots of the equation above in the form
—1+£/2i

or —-1-+v2i 2%d™%-1-+2i

Note j is also used to.represent v/ —1.

What is a complex number?

A complex number is a number of the form
a+1b

where a and b are real numbers and i* = —1.

For example, 3 + 5i is a complex number.

If @ = 0, the number is said to be wholly imaginary. If » = 0, the number is
real. If a complex number is 0, both a and b are 0.



CHAPTER 1 COMPLEX NUMBERS

We usually use x + iy to represent an unknown complex number, and z to
represent x +1iy. So, when the unknown in an equation is a complex number,
we denote it by z: for example, z> — 40z + 40 = 0, whose roots are 2 = 6i.

In a similar way, we use w to represent a second unknown complex number,
where w = u + iv.

The complex conjugate

The complex number x — iy is called the complex conjugate (or often just the
conjugate) of x + iy, and is denoted by z* or z.

For example, 2 — 3i is the complex conjugate of 2 4 3i, and the complex
conjugate of —8 — 91 is —8 + 9i.

Calculating with complex numbers

When we work with complex numbers, we use ordinary algebraic methods.
That means that we cannot combine a real number with an i-term. For
example, 2 + 3i cannot be simplified.

For two complex numbers to be equal, their real parts must be equal and their
imaginary parts must be equal.

This is a necessary condition for the equality of two complex numbers.

Hence, if a+1b =c+1id, thena=cand b = d.

For example, if 2 4+ 31 = x + 1y, then x =2 and y = 3.

Addition and subtraction

When adding two complex numbers, we add the real terms and separately add
the i-terms. For example,

B+7)+ @ —-61)=B+4) + (71 — 61)
=741
Generally, for addition we have
(x+i)+@wt+iv)=x+u)+i(y+v)
and for subtraction

x+1)—u+ivyy=x—uw+i(y —v)

Example 1 Subtract 8 — 4i from 7 + 2i.
SOLUTION
T+21—-8—4i)=7—-8+ (21 + 4i)
=—14+6i

I E SR ERERES YR



CALCULATING WITH COMPLEX NUMBERS
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Example 2 Find x and y if x +2i + 2(3 — 5iy) =8 — 13i.

SOLUTION

Equating real terms, we get
x+6=38
: = X=2

Equating imaginary terms, we get

2—-10y=-13
. = 15=10y
“ = y=1

Multiplication

We apply the general algebraic method for multiplication. For example,
(2 + 3i)(4 — 51) = 2(4 — 51) + 3i(4 — 5i)
=8 — 10i + 12i — 15¢°
Since i* = —1, this simplifies to
8—10i+121—15x -1 =8—10i + 12i + 15
=2342i

Generally, we have
(a+ib)(c +id) = ac — bd + i(ad + bc) sincei* = —1

Note It is simpler to multiply out the numbers every time than to memorise
this formula.

Division
To be able to divide by a complex number, we have to change it to a real
number. Take, for example, the fraction

2431

4+ 51

In the simplification of surds on page 408 of Introducing Pure Mathematics, we

noted that

could be simplified by multiplying the numerator and the

: i :
denominator of this fraction by 1 — v/3.
Similarly, to simplify % we multiply its numerator and its denominator by
i

4 — 51, which is the complex conjugate of the denominator. Thus, we have
2431 (2+31)4 - 51)
4+51 (4+51)4—-5)
8412 — 10i — 15i
42 — (5i)
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2342
16 + 25

[Note: —(51)? = —(=25) = +25]

23 2.
—H+Hl
341
T3

Example 3 Simplify

SOLUTION

Multiplying the numerator and the denominator by the complex
conjugate of 7 — 3i, which is 7 + 3i, we obtain

341 (34D +30)
7-31  (7=3i)(7+ 30

214 7i 4+ 9i + 3i

72 — (3i)’
21 4161 — 3 5
=——+——— [Note: —(31))" = —(—9) =49
2940 [ (31) (=9 ]
_18_ 16
58 58
9 8. 1 .
= — (O +8
29 "9t O g0 T8

Example 4 Simplify ES_SI)M
==

SOLUTION

First, we simplify the numerator:

(5—3i)(7T4+1) _ 35MITQ21TS 3

2—1 > -1
Ny — 16143
2—1
38— 161
2—-1

We then multiply the numerator and the denominator of this fraction by
the complex conjugate of 2 — i, which is 2 + i

(38 — 16)(2 +1) _ 76 + 16 + 38i — 32i
2 — )2 +1) 4+1
92+ 6i

182 + 11i



EXERCISE 1A

Exercise 1A

1 Simplify each of the following.

-4

i? b) i

a) 1 i®

c)1 0

d) i

2 Express each of the following complex numbers in the form a + ib.

a) 3+2v-1 b) 6 — 3v-1 ¢) 4++v-9
d) —2++v-8 e) vV—100 — v/—64

3 Write down the complex conjugate of z when z is:

a) 3+ 4i b) 2 — 61 c) —4—-3i d) -8+ 51

4 Solve each of the following equations.

a) 224+ 2z2+4=0 b) z22—3z4+6=0 ¢) 222+z+1=0 d) 42=3=22=0

5 Simplify each of the following.

a) (8 + 4i) + (2 — 6i) b) (—7 + 3i) + (8 — 4i) c) 2 — 4i+ 3(—1 + 2i)
d) 4(—2 -+ 5i) + 52 + 70) e) (8 -+ 3i) — (7 + 2i) ) (74 6i) — (4 — 2i)
g) 209 — 3i) — 42 — 6i) h) 3(8 +i) — 2(3 — 5i)

6 Evaluate each of these expressions.

a) (3 +1)(2 + 30) b) (4 — 2i)(5 + 3i) ¢) (8 —1i)(9 + 2i)
d) (9 — 3i)(5 — ) e) i(2 — 30 +4) f) (3 —2i)(7 — 50)

7 Express each of these fractions in the form a + 1b; where ¢, b € R.

a)2+3_1 b)4+§1 £ 8—1' d) 2—&-51'
4—1 541 2431 —34+2i
8 Solve each of the following equations in x and y.
a) x+iy=4-2i b) x +1iy+ 3 — 2i = 4(-2 + 5i)
c) x+iy=02+1)3 —2i) d) x+1y=03-5)4+1)
e)x+iy:7+% f)x—Hy:(2—3i)2

2—1

9 If z = 3 +1, find the value ofz+l.

Z

10 Find the solution of each of the following equations.

a) X3 4x+7=0 b) x> +2x+6=0 ¢) 2x* +6x+9=0 d) x2—5x+25=0
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Argand diagram

The French mathematician Jean Robert Argand (1768-1822) is credited with the
invention and development of the graphical representation of complex numbers
and the operations upon them, although others had anticipated his work. So,
this graphical representation has become known as the

Argand diagram.
In the Argand diagram, the complex number a + ib is Imaginary 4
represented by the point (a, b), as shown on the right. i
Real numbers are represented on the x-axis and imaginary
numbers on the y-axis. Thus, the general complex number
(x +1iy) is represented by the point (x, y).

b- X (@, b)

9 a Real

axis

= Example 5 Represent the complex number 2 + 3i on
= an Argand diagram. Show its complex conjugate. o
B m
g SOLUTION 3 X P(2,3)
= The number 2 + 3i is represented by the point
= P(2,3). N
% The complex conjugate is 2 — 3i, which is 14
=  represented by the point P'(2, —3).
L | >
. 2 -1 0 I 2 3 4 Re
; =
2
. ~2
2
E
s =34 X P'(2,-3)
E

Note The position of the complex conjugate z* can always be obtained by
reflecting the position of z in the real axis.

Modulus—argument or polar form of complex numbers

The position of point P(x, y) on the Argand diagram can be Im 4
given in terms of OP, the distance of P from the origin, and 0,
the angle in the anticlockwise sense which OP makes with the P@, y)
positive real axis.

The length OP is the modulus of z, denoted by |z|, and this
length |z| is always taken to be positive. 0

10

A

The angle 6 (normally in radians) is the argument of z, denoted
by argz. The principal value of 6 is taken to be between —n
and 7.




ARGAND DIAGRAM

Connection between the x + iy form and the modulus—argument form

From the diagram on the right, we have Im 4
r= |Z| = /Xx*+ }"2 P(x, )
x=rcosf and y=rsinf r F
which give ] i
z=x+1y =rcosf +irsinf g 5 Re

=r(cosf +1sin0)
To find 6, we use

X
X

tan 6 =

but we need to take care when either x or y is negative. (See part b in
Example 6.)

. Example 6 Find the modulus and argument of each of these complex
numbers.

a)2+2v3 b)) —1—1i

= SOLUTION
. a) The modulus of 2 + 2v/3i is given by
3 V22 + 2B K4
] 2/3 Its argument, 0, is given by
14
tan %3 = i
0 3
T I
0 1 2 Re
b) The modulus of —1 — i is given by
e Im 4
VIZH12=+/2
» o Angle ¢ is % Therefore, the argument
¢ Re (the angle from the positive real axis) is
1 B B_ oW
= 1 2 4 4

Note If the angle in Example 6 is measured anticlockwise from the positive

9 . .5 i
real axis, its value is Tn, but this is not between 7 and —=x. Thus, we take the

clockwise angle, which is — %Tn The minus sign denotes that the angle is

measured in the clockwise sense.
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Multiplication of two complex numbers in modulus—argument form
Consider the complex numbers z;, and z, given by

z1 =ry(cost +isinf;) and 2z, = ry(cos O, +isinb,)
Multiplying z; by z,, we get

212y = r1(cos 0 + isin 6y) r(cos 6, + isin 6,)

- = rry[(cos 6y cos B, — sin 0 sin 6,) + i(sin 6y cos O, + cos 6, sin 0,)]
= riry[cos (0) + 6,) +isin(6; + 6,)]

We can state this result as follows:

To find the product of two complex numbers, multiply their moduli and add
~ their arguments.

Division of two complex numbers in modulus—argument form
Dividing z; by z,, we get

zy _ ri(cos0; +1isin6) r; cosf; +isinb,
zy  ro(cosB, +isinf,) r, cosB, +isinb,

Multiplying the numerator and the denominator by the complex conjugate of
cos 0, +1sin 0,, we have

zy _ 1y (cos b +1isin6)(cos 0, —isin6,)
zy 1y (cos B, +1isinb,)(cos b, —isinb,)

_ 11 cos b cos b, + sin 0, sin 0, + i(sin 0, cos 0 — cos 0; sin 6,)
12 (cos20, + sin’6s)

_n [cos (0, — 0,) +1isin(0; — 0,)] since cos*6, + sin’f, = 1
ry

We can state this result as follows:

To find the quotient of two complex numbers, divide their moduli and subtract
. their arguments.

= Example 7 Find the modulus and argument of each of the following.

L]

5 ayz=1+i b) w= —1++/3i c) zw d) 22 e)K Im 4

] Z

i SOLUTION 24

™ w=—1+3i

= a) From the diagram, we have

B

5 Modulus of z = /2

s Argument of z = = 14 o b
= 4

2

B

2 b) Modulus of w = /12 + (v/3)*> =2

| | T

= 14

= Argumentofw:ﬂ:—zzz—n : : = —>
" 3 3 -1 1 Re
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c¢) Modulus of zw = |z| x |w| =22
Argument of zw is
argz—kargw:Eﬂ—z—n:M
4 3 12
d) Using z?> = z x z, we have
Modulus of 22 = |z| x |z] = V2 x V2 =2

Argument of 22 is

nT T
ar argz = —+— ==
grrarer=+y=3

e)ModulusofK:M:i:\/i
z |z 2

Argument of Pis

L
AE — apr = BL. B IE
k =S 4™

Exercise 1B

1 Represent each of the following on an Argand diagram.

a) 2+ 2i b) —3 +3i c) —2+2/3i
d —1—1 e) 41 f) 5+ 121
g) —4 h) 6 ++/13i

2 Find the modulus and argument of each of the complex numbers in Question 1.

3 Given that z = 3 + 4,

a) calculate i) z° ii) 23
b) find i) |z| ii) |2?] iii) |2°|
c) evaluate i) argz i) arg z° iii) arg z°

4 Express the complex number z in its « + i form when:

a) |z] =2 and argz:g b) |zl =4 and argz:% g} Iz =1  and argz:~%
d) |z] =4 and argz:% e) |zl =2 and argz:sz7I f) |zl=6 and argZ:%t

5 a) Simplify

-3 -1
b) Find the modulus and argument of the complex number —5 + 12i (WJEC)
3+ 4

6 Given that z = e find the modulus and argument of z. (WIEC)
—12i
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7

10

141
—2i’

Given that z = find

a) z in the form a + ib
b) the modulus and argument of z. (WJEC)

i) Given that z; =5+iand z, = -2 4 3i,
a) show that |z;|> = 2|z,|”
b) find arg(z,z,).
ii) Calculate, in the form a + ib, where @, b € R, the square roots of 16 — 30i. (EDEXCEL)
Given that

z=tanu+1i, where 0 <o < 47
w = 4[cos ({5 ) + isin (75 7)]

find in their simplest forms

i) [z| i) |zw| i) argz  iv) arg (5> (OCR)
w

The complex number z is given by z = sin’a + isin o cos a, where 0 < o < 1 7. Simplifying your
answers as far as possible, find

i) |zl ii)argz  (OCR)

11 The complex numbers z and w are such that

12

13

14

z=-24+5 zw = 14 4+ 231

a) Find w in the form p + ¢i, where p and ¢ are real.

b) Display z and w on the same Argand diagram.

c) Find argz, in radians, giving your answer to two decimal places.

d) Write down the complex number that represents the mid-point M of the line joining the
points z and zw. (EDEXCEL)

a) Find the roots of the equation z> + 4z + 7 = 0, giving your answers in the form p + 1,/4,
where p and ¢ are integers.

b) Show these roots on an Argand diagram.

¢) Find for each root

i) the modulus
i) the argument, in radians

giving your answers to three significant figures. (EDEXCEL)

By putting z = z 4 iy, find the complex number z which satisfies the equation
15

2—1i

where z* denotes the complex conjugate of z. (NEAB)

A28 =

Given that z; = 1 + 2i and z, = 2 + £1, write z,z, and Z1 in the form p + ig, where p and ¢ € R.
2

In an Argand diagram, the origin O and the points representing z,z,, —Zi, z3 are the vertices of a
Zy

rhombus. Find z; and sketch the rhombus on this Argand diagram.

6V/'5

—

Show that |z;| = (EDEXCEL)

10



EXERCISE 1B

15 The complex numbers z; and z, are given by
21:5+i 22:2—3i

a) Show the points representing z; and z; on an Argand diagram.
b) Find the modulus of z; — z,.

c¢) Find the complex number ZL in the form a 4+ 1b, where a and b are rational numbers.
23

d) Hence find the argument of Z—I, giving your answer in radians to three significant figures.

)
e) Determine the values of the real constants p and g such that
Pt4+32 _ o mppExcEn
p—ig+ 3z
16 zi =344 Z=1+2

a) Express z;z, and ZL each in the form a + ib where a, b eR.
2

b) Display z; and z, on the same Argand diagram.
¢) Find argz, giving your answer in radians to one decimal place.

Given that z; + (p +1g)z, = 0, where p, g € R,
d) obtain the value of p and the value of ¢. (EDEXCEL)

17 The complex number z is given by z = —2 + 2.
a) Find the modulus and argument of z.

b) Write down the modulus and argument of l

<

¢) Show on an Argand diagram the points A, B and C representing the complex numbers z, L

<

and z + 1 respectively.
z

d) State the value of /ACB. (EDEXCEL)

18 z = =30+ 151
a) Find argz,, giving your answer in radians to two decimal places.

The complex numbers z; and z3 are given by z; = —3 + pi and z3 = ¢ + 3i, where p and ¢ are
real constants and p > ¢.

b) Given that z,z3 = zy, find the value of p and the value of g.

c¢) Using yourvalues of p and ¢, plot the points corresponding to zy, z, and z; on an Argand
diagram.

d) Verify that 2z, + z3 — z; is real and find its value. (EDEXCEL)

11
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19 i) Evaluate the square roots of the complex number 5 + 12i in the form @ + bi, where a and b
are real.
i) If 0 is the argument of either of these square roots, obtain the value of cos 46 as an exact
fraction. (NICCEA)

44 2i

—1

20 a) The complex numbers z and w are such that z = (4 + 2i)(3 —i) and w = . Express

each of z and w in the form a + ib, where @ and b are real.
b) i) Write down the modulus and argument of each of the complex numbers 4 + 2i and 3 — i.
Give each modulus in an exact surd form and each argument in radians between —7n and
.
i) The points O, P and Q in the complex plane represent the complex numbers 0 + 0i,
4 + 2i and 3 — i respectively. Find the exact length of PQ and hence, or otherwise, show
that triangle OPQ is right-angled. (AEB 97)

Loci in the complex plane

We know from our previous work on vector geometry that the vector a— b
connects the point with position vector b to the point with position vector a.
(See Introducing Pure Mathematics, page 498.) Similarly, in the complex plane
z — z; joins the point z; to the point z.

-

Im 4 From the diagram, we have
P — o
OC=z and OP=:

z Therefore, we obtain

C — -_— —

CP =CO + OP

A . =—z +z
o Re

=z — 2z

Using this fact, we can identify a number of loci.

Loci which should be recognised

® [z—z|=r

|z — z| is the modulus or length of z — z;. That is, the Im &

length of the line joining z; to a variable point z.

Thus, |z — zy| = r is the locus of a point, z, moving so
that the length of the line joining a fixed point z; to z T

is always r. Hence, the locus of z is a circle, centrez, | \ 2 =
and radius r. z

12



LOCI IN THE COMPLEX PLANE

Example 8 State and sketch the locus of |z — 2 — 3i| = 3.

SOLUTION

This locus is |z — (2 4 3i)| = 3, which is a circle, centre (2, 3)
and radius 3.

I S E S EEEREEEEEEEERERN

Note When sketching this locus, show clearly that the circle touches the x-axis

and cuts the y-axis twice.

o arg(z—z)=0

The point z satisfies this locus when the line joining z; to z
has argument 6.

This is the half-line, starting at z;, inclined at 6 to the real
axis. (It is called a half-line because we want only that part
of the line which starts at z;.)

Example 9 State and sketch the locus of arg(z — 2) = %

SOLUTION
This locus is the half-line starting at (2,0), inclined at

an angle of % to the real axis.

I E R EREEREEEREREREI]

o z—z|=1|z—2)

The line joining z to z; is equal in length to the line joining z
to z,. Therefore, the locus of z is the perpendicular bisector
of the line joining z; to z,.

Example 10 State the locus of |z — 3| = |z — 2i].

SOLUTION

This locus is the perpendicular bisector of the
line joining +3 to +2i.

13

TIm A
31 X(2,3)
N N
0 2 Re
Im ﬂ
0 Re
Im A
T
3 o
3¢ >
o 2,0) Re
Im
2
2
0 / Re
Im 4
2_
y >
o 3 Re
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® |z—z|=k|z—z,|, where k # 1

The locus of P(z) is drawn so that the length of the line Im 4
joining P to z; is k times the length of the line joining P P(2)
to z,.

Assuming z = x + 1y, z; = x; +iy; and z, = x, + iy,,
Pythagoras’ theorem gives

’Z—Zl|:\/(X—X1)2+(J’*J/1)2

2

Zy

and |z — 2| = \/(x—x2)2+(y~y2)2 0
Therefore, |z — z;| = k|z — z,| can be expressed as
Va a0 3) =k — 3 + 5 — )

Squaring both sides, we get
x=x) + =y =K —x)* + (v — )]

= X —2em + x} 4% = 2yp; + 32 = k2x? — 2k xx, + K2x3 + K22 S 22 yy, + k*y3

= (1-K)x*+ (1- k2)y2 — x(2x; — 2k2x2) — ¥y — 2k*y,) + x% + y% - kzxg — kzyg =0

In this equation, the coefficients of x and y are the same, and there is no term
in xy. Therefore, the locus of z is a circle.

By symmetry, a diameter of this circle lies on the line joining z; to z,.

Note We recall from earlier work (Introducing Pure Mathematics, page 220)
that the equation of a circle, centre (a, b) and radius 7, is

(x—a)’ + (v —b) =
This equation may also be written as
X242+ 2ex+2fy+c=0

To find the centre and the radius of a circle when its equation is written in this
form, we use the method of completing the square:

X2+ P+2gx +2fy+#c=0
e+t =g+ -
Therefore, the centre of the circle is (—g, —), and its radius is 1/g2 + /2 — c.

=  Example 11 Find the locus of |z — 2| = 3|z 4 2|.
P
= SOLUTION
§ Let A be (—2,0) and B be (2,0). Im 4
g The locus required is the locus of P when BP = 3AP.
P
- To find this circle, we determine the two points
=  at which it intersects the line joining A to B.
] A
= The point (-1, 0) satisfies this condition. — 0

14



LOCI IN THE COMPLEX PLANE

The other point on the line AB which satisfies this
condition is never between A and B, but on the line AB produced.

The point (—4,0) is the other point which satisfies the locus.

The points (—1,0) and (—4, 0) identify the diameter of the locus’s circle.
Therefore, the circle has centre (—21,0) and radius 14,

I T
Its equation is |z + 25| = 2.

Im ﬁu

(—4,0) (-1,0)|0 B Re

Example 12 Find the locus of |z — 18] = 2|z + 18i|.

SOLUTION

= To find the circle, we determine the two points at which it intersects the
= line joining z; to z,, where z; = 18 and z; = —18i.

The two points satisfying the locus are 6 — 12i and —18 — 36i.

. These two points identify the diameter of the locus’s circle. Therefore, the
= circle has its centre at —6 — 24i and has a radius of 12v/2.

Hence, its equation is |z + 6 + 24i| = 12v/2.

Im 4

L &

i

b

Re

W w .

O W e

O R M OW OB B
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CHAPTER 1 COMPLEX NUMBERS

o arg (i_—zl) — 0
(z—22)
To find this locus, we use the relationship Im 4

u
arg — = argu — argv
v

Putting u =z — z; and v = z — z,, we get

] = arg(z —z) —atg(z — z3)
Z = By

arg

= arg(z—z)—arg(z—zy) =10

Angles in the same segment are equal. Therefore, the
locus of z is part of the circle through z; and z,
(shown dashed).

Example 13 Show the locus of z when
a) z—4|=4 b) argz:E

4
Find the point which satisfies both loci.

SOLUTION
The two loci required are shown in the diagram on the right.

The point which satisfies both loci is (4,4) or (4 + 4i).

N

Note  Usually, it is possible to find a common point on two separate loci by
using simple geometry and common sense. In Example 12, the point (4,4) can
readily be seen to be on both loci. To calculate a common point may involve

complicated algebra.

16



LOCI IN THE COMPLEX PLANE

= Example 14 Find the locus of% <arg(z—2) < g

]

; SOLUTION Im 4
= We draw the two separate loci

|

B2

o E:arg(z~2) and arg(z~2):E

" 4 3

; ensuring that we select the correct sector.

. G 2,0 Re
° i-altiz-nl=c

This locus is an ellipse, with z; and z, as foci (see section on ellipses, pages
222-6). To find the position of the ellipse, we have to find four points which
satisfy the locus:

two points on the line joining z; to z, produced, and
two points on the perpendicular bisector of the line joining z; to z,.

Example 15 Find the locus of z when |z — 4| + |z + 2| = 10.

SOLUTION

First, we identify on the diagram the points A and B representing z; and
z,. These are (4,0) and (-2, 0).

Im A

We then extend AB in both directions, where AB is of length 6.

Therefore, the points satisfying the locus are P(6,0) and Q( — 4, 0), so that
PA =2 and PB = &, which gives PA + PB = 10.

Also, we have QA = 8 and QB = 2, which gives QA + QB = 10.
The perpendicular bisector of PQ is the line x = 1.

The points satisfying the locus on this line are R(1,4) and S(1, —4), so that
RA =5, RB = 5 and hence RA + RB = 10.

These four points, P, Q, R and S, identify the major and minor axes of
the ellipse.

IS E SR ETS S S EEEEEESEREEEE SRR R R E R R EE R E RS R R RN EREEERESNGS.!
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CHAPTER 1 COMPLEX NUMBERS

Cube roots of unity

If z is a cube root of 1, we have
2=
=% 2 ] =0
= (-D)Z+z+1)=0
Therefore, either: z = 1, which is the real root, or
24+z4+1=0

If wis a complex cube root of 1, w = 1 and satisfies the equation
224+ z+ 1 =0. Hence, we have

w+w+1=0
-1+vV1-4
= e —
2
R
2 2

If we plot these three roots of 1 on an Argand diagram, we find
them to be symmetrically positioned on the circumference of a
circle of radius 1, as shown in the diagram on the right.

Square of a complex cube root of unity

If wis a complex cube root of 1, w? is also a complex cube root of 1.

Proof
If w is a complex cube root of 1, then w? = 1. Therefore, we have
W) =wb = ) = 1

That is, w? is also a complex cube root of 1.

Note We found earlier that w =~ % + ? i. Hence, we have
2
“72_<_l+£i> _l_.@
Z . 2 2
Or we have
2
]472: (*l_£1> or ——l‘—l-ﬁl
2 2 2 2

Thus, we obtain

1+w+w= {1+ (—%+—‘g—§i) + (—l—ﬁiﬂ =0

which agrees with the equation found above.

18
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SOLUTION

Since w® = 1, we get

wh+wd = w4+ n?

wh + w8 = —1

Example 17 If p is a cube root of 1, find the possible values of p? + p*.

SOLUTION

pP+pt=p+pxp’

=p*+p

w + wd = wx w4+ w(wd)

Since 1 + w + w? = 0, we find

2

since p*® = 1

If p is real, p = 1, and thus p*> +p = 2.

If p is a complex cube root, we have

pPtp=-1

Therefore, the possible values of p? + p* are 2 and — 1.

Exercise 1C

1 Sketch the locus of z when:
a) |z| =5
e) |z +2+42i| =2v2

2 Sketch the locus of z when:
vis
a) argz — —
) arg 3
d) arg(z — 3i)= g

3 Sketch the locus of z when:
a) jz—2|= |z -4

d) 74 2i| = |z — 2|

4 Sketch the locus of z when:
a) z—1|=3|z+2

d |z—2—i|=3|z+ 6+ 3i]

biz=23

¢) z—2|=3
) |2%3 - v3i| =23

3

b) argz = — 4

e) arg(z+1+i):§

b) |z — 6] = |z + 3]

z—1—1i
z+2+21

b) |z +1i| = 2Jz — 2i

z—2
z+2i

e)

19

EXERCISE 1C

= Example 16 If w is the complex root of 1, find the value of w* + w®.

4

d) |z—-2i|=4
g) 2|z—1i| =3

c) arg(z + 2) :g

2

f) arg(z—2 —V3i) = -y

) |z—1i| =z —2i

z—4i
z+4

f)

c) |z —1i| = 4]z + 3i



CHAPTER 1 COMPLEX NUMBERS

5 Sketch each of the following.

z s z—1 T
e B b AL
?) arg (z——2) 4 ) arg <z—3> 3

c) ar <Z+Zi>—£ d) arg( z )—E
S\z-2) 4 2+4i) 6
6 If wis a complex root of 1, simplify each of these.
a) w* 4+ uwb b) w’ + w'8 c) wP+w' +wl

7 If wis a cube root of 1, find the possible values of each of the following.

w—+ w
w2 4 w3

a) 14+ w*+wt b) w® + w® c) d) wd +w!l

8 Find the solutions of (z — 2)° = 1.

9 With the aid of a sketch, explain why there is no complex number which satisfies both

argz:g and |z—2—1i]=|z—4+]

10 The complex number z = x + iy satisfies the equation
|z—9+4i| =3|z—1—4i]
The complex number z is represented by the point P in the Argand diagram.

a) Show that the locus of P is a circle.
b) State the centre and radius of this circle.
c) Sketch the circle on an Argand diagram. (EDEXCEL)

11 A complex number z satisfies the inequality
Iz 4+2 — (2V3)i| <2

Describe in geometrical terms, with the aid of a sketch, the corresponding region in an Argand
diagram. Find

i) the least possible value of ||
ii) the greatest possible value of arg z. (OCR)
12 The region R in an Argand diagram is defined by the inequalities
|z| <4 and |z| = |z — 2|
Draw a clearly labelled diagram to illustrate R. (OCR)
13 The region R of an Argand diagram is defined by the inequalities

0<arg(z+4i) < tn and |z]<4

Draw a clearly labelled diagram to illustrate R. (OCR)

14 Two complex numbers, z and w, satisfy the inequalities
|z—3-2i|<2 and |w—-7-35i<1

By drawing an Argand diagram, find the least possible value of |z — w|. (OCR)
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