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 ■ Con v e r s i on  Fa Ct or s

Length
1 m � 39.37 in. � 3.281 ft
1 in. � 2.54 cm (exact)
1 km � 0.621 mi
1 mi � 5 280 ft � 1.609 km
1 lightyear (ly) � 9.461 � 1015 m
1 angstrom (Å) � 10�10 m

Mass
1 kg � 103 g � 6.85 � 10�2 slug
1 slug � 14.59 kg
1 u � 1.66 � 10�27 kg � 931.5 MeV/c 2

Time
1 min � 60 s
1 h � 3 600 s
1 day � 24 h � 1.44 � 103 min � 8.64 � 104 s
1 yr � 365.242 days � 3.156 � 107 s

Volume
1 L � 1 000 cm3 � 0.035 3 ft3

1 ft3 � 2.832 � 10�2 m3

1 gal � 3.786 L � 231 in.3

Angle
180° � p rad
1 rad � 57.30°
1° � 60 min � 1.745 � 10�2 rad

Speed
1 km/h � 0.278 m/s � 0.621 mi/h
1 m/s � 2.237 mi/h � 3.281 ft/s
1 mi/h � 1.61 km/h � 0.447 m/s � 1.47 ft/s

Force
1 N � 0.224 8 lb � 105 dynes
1 lb � 4.448 N
1 dyne � 10�5 N � 2.248 � 10�6 lb

Work and energy
1 J � 107 erg � 0.738 ft � lb � 0.239 cal
1 cal � 4.186 J
1 ft � lb � 1.356 J
1 Btu � 1.054 � 103 J � 252 cal
1 J � 6.24 � 1018 eV
1 eV � 1.602 � 10�19 J
1 kWh � 3.60 � 106 J

Pressure
1 atm � 1.013 � 105 N/m2 (or Pa) � 14.70 lb/in.2

1 Pa � 1 N/m2 � 1.45 � 10�4 lb/in.2

1 lb/in.2 � 6.895 � 103 N/m2

Power
1 hp � 550 ft � lb/s � 0.746 kW
1 W � 1 J/s � 0.738 ft � lb/s
1 Btu/h � 0.293 W
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■ Preface

College Physics is written for a one-year course in introductory physics usually taken by 
students majoring in biology, the health professions, or other disciplines, including 
environmental, earth, and social sciences, and technical fields such as architecture. 
The mathematical techniques used in this book include algebra, geometry, and trig-
onometry, but not calculus. Drawing on positive feedback from users of the ninth 
edition, analytics gathered from both professors and students who use Enhanced 
WebAssign, as well as reviewers’ suggestions, we have refined the text to better meet 
the needs of students and teachers.

This textbook, which covers the standard topics in classical physics and 
twentieth-century physics, is divided into six parts. Part 1 (Chapters 1–9) deals 
with Newtonian mechanics and the physics of fluids; Part 2 (Chapters 10–12) is 
concerned with heat and thermodynamics; Part 3 (Chapters 13 and 14) covers 
wave motion and sound; Part 4 (Chapters 15–21) develops the concepts of electric-
ity and magnetism; Part 5 (Chapters 22–25) treats the properties of light and the 
field of geometric and wave optics; and Part 6 (Chapters 26–30) provides an intro-
duction to special relativity, quantum physics, atomic physics, and nuclear physics.

objectives
The main objectives of this introductory textbook are twofold: to provide the student 
with a clear and logical presentation of the basic concepts and principles of phys-
ics and to strengthen an understanding of those concepts and principles through 
a broad range of interesting, real-world applications. To meet those objectives, we 
have emphasized sound physical arguments and problem-solving methodology. At 
the same time we have attempted to motivate the student through practical exam-
ples that demonstrate the role of physics in other disciplines.

Changes to the Tenth edition
Several changes and improvements have been made in preparing the tenth edition 
of this text. Some of the new features are based on our experiences and on current 
trends in science education. Other changes have been incorporated in response 
to comments and suggestions offered by users of the ninth edition. The features 
listed here represent the major changes made for the tenth edition.

New learning objectives Added for every Section
In response to a growing trend across the discipline (and the request of many users), 
we have added learning objectives for every section of the tenth edition. The learning 
objectives identify the major concepts in a given section and also identify the specific 
skills/outcomes students should be able to demonstrate once they have a solid under-
standing of those concepts. It is hoped that these learning objectives will assist those 
professors who are transitioning their course to a more outcomes-based approach.

New online Tutorials
The new online tutorials (available via Enhanced WebAssign) offer students another 
training tool to assist them in understanding how to apply certain key concepts pre-
sented in a given chapter. The tutorials first present a brief review of the necessary 
concepts from the text, together with advice on how to solve problems involving them. 
The student can then attempt to solve one or two such problems, guided by questions 
presented in the tutorial. The tutorial automatically scores student responses and pres-
ents correct solutions together with discussion. Students can then practice on several 
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 | Preface  ix

additional problems of a similar level, and in some cases go to higher level or related 
problems, depending on the concepts covered in the tutorial.

New Warm-up exercises in every Chapter
Warm-up exercises (over 320 are included in the full book) appear at the beginning 
of each chapter’s problems set, and were inspired by one of the author’s (Vuille) class-
room experiences. The idea behind warm-up exercises is to review mathematical and 
physical concepts that are prerequisites for a given chapter’s problems set, and also to 
provide students with a general preview of the new physics concepts covered in a given 
chapter. By doing the warm-up exercises first, students will have an easier time getting 
comfortable with the new concepts of a chapter before tackling harder problems.

New Algorithmic Solutions in enhanced WebAssign
All quantitative end-of-chapter problems in Enhanced WebAssign now feature 
algorithmic solutions. Fully worked out solutions are available to students with quan-
titative parameters exactly matching the version of the problem assigned to indi-
vidual students. As always for all “Hints” features, Enhanced WebAssign offers 
great flexibility to instructors regarding when to enable algorithmic solutions.

Chapter-by-Chapter Changes
The text has been carefully edited to improve clarity of presentation and preci-
sion of language. We hope that the result is a book both accurate and enjoyable to 
read. Although the overall content and organization of the textbook are similar to 
the ninth edition, a few changes were implemented. The list below highlights some 
of the major changes for the tenth edition.

Chapter 1 Introduction
 ■ Nine new warm-up exercises have been added.
 ■ A new tutorial (Unit conversions) has been added in Enhanced WebAssign.

Chapter 2 Motion in One Dimension
 ■ Seven new warm-up exercises have been added.
 ■ A new tutorial (One-dimensional motion at constant acceleration) has been added in 

Enhanced WebAssign.
Chapter 3 Vectors and Two-Dimensional Motion

 ■ Nine new warm-up exercises have been added.
 ■ Two new tutorials (Applying the kinematics equations of two-dimensional motion and 

Applying the concept of relative velocity) have been added in Enhanced WebAssign.
Chapter 4 The Laws of Motion

 ■ Thirteen new warm-up exercises have been added.
 ■ Five new tutorials (Normal forces, Applying the second law to objects in equilibrium, 

Applying the second law to accelerating objects, Applying the static and kinetic friction 
forces in the second law, and Applying the system approach) have been added in 
Enhanced WebAssign.

Chapter 5 Energy
 ■ Ten new warm-up exercises have been added.
 ■ Five new tutorials (Calculating work, Applying the work-energy theorem, Applying 

conservation of mechanical energy, Applying the work-energy theorem with the potential 
energies of gravity and springs, and Applying average and instantaneous power) have 
been added in Enhanced WebAssign.

Chapter 6 Momentum and Collisions
 ■ Eleven new warm-up exercises have been added.
 ■ Two new tutorials (Collisions in one dimension and Inelastic collisions in two  

dimensions) have been added in Enhanced WebAssign.
Chapter 7 Rotational Motion and the Law of Gravity

 ■ Example 7.1 has been revised.
 ■ Fifteen new warm-up exercises have been added.
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 ■ Two new tutorials (Applying the second law to objects in uniform circular motion 
and Applying gravitational potential energy) have been added in Enhanced 
WebAssign.

Chapter 8 Rotational Equilibrium and Rotational Dynamics
 ■ Fourteen new warm-up exercises have been added.
 ■ Four new tutorials (Applying the conditions of mechanical equilibrium to rigid bodies, 

Applying the rotational second law, Applying the work-energy theorem including rota-
tional kinetic energy, and Applying conservation of angular momentum) have been 
added in Enhanced WebAssign.

Chapter 9 Solids and Fluids
 ■ Eleven new warm-up exercises have been added.
 ■ Two new tutorials (Applying Archimedes’ principle and Applying Bernoulli’s equation) 

have been added in Enhanced WebAssign.
Chapter 10 Thermal Physics

 ■ Ten new warm-up exercises have been added.
 ■ A new tutorial (Applying the ideal gas law) has been added in Enhanced 

WebAssign.
Chapter 11 Energy in Thermal Processes

 ■ Example 11.11 (“Planet of Alpha Centauri B”) is completely new to this 
edition.

 ■ Nine new warm-up exercises have been added.
 ■ A new tutorial (Calorimetry) has been added in Enhanced WebAssign.

Chapter 12 The Laws of Thermodynamics
 ■ Fourteen new warm-up exercises have been added.
 ■ Two new tutorials (Thermal processes and Calculating changes in entropy) have been 

added in Enhanced WebAssign.
Chapter 13 Vibrations and Waves

 ■ Eleven new warm-up exercises have been added.
 ■ A new tutorial (Investigating simple harmonic oscillations) has been added in 

Enhanced WebAssign.
Chapter 14 Sound

 ■ Fourteen new warm-up exercises have been added.
 ■ Two new tutorials (Sound intensity, decibel level, and their variation with 

distance and Calculating the Doppler effect) have been added in Enhanced 
WebAssign.

Textbook Features
Most instructors would agree that the textbook assigned in a course should be the 
student’s primary guide for understanding and learning the subject matter. Fur-
ther, the textbook should be easily accessible and written in a style that facilitates 
instruction and learning. With that in mind, we have included many pedagogical 
features that are intended to enhance the textbook’s usefulness to both students 
and instructors. The following features are included.

examples For this tenth edition we have reviewed all the worked examples and 
made numerous improvements. Every effort has been made to ensure the collec-
tion of examples, as a whole, is comprehensive in covering all the physical con-
cepts, physics problem types, and required mathematical techniques. The Ques-
tions usually require a conceptual response or determination, but they also include 
estimates requiring knowledge of the relationships between concepts. The answers 
for the Questions can be found at the back of the book. The examples are in a 
two-column format for a pedagogic purpose: students can study the example, then 
cover up the right column and attempt to solve the problem using the cues in the 
left column. Once successful in that exercise, the student can cover up both solu-
tion columns and attempt to solve the problem using only the strategy statement, 
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and finally just the problem statement. Here is a sample of an in-text worked exam-
ple, with an explanation of each of the example’s main parts:

462  Chap t e r  13 | Vibrations and Waves

number of clock designs employ a pendulum, with the length adjusted so that 
its period serves as the basis for the rate at which the clock’s hands turn. Of 
course, these clocks are used at different locations on the Earth, so there will 
be some variation of the free-fall acceleration. To compensate for this varia-
tion, the pendulum of a clock should have some movable mass so that the effec-
tive length can be adjusted.

Geologists often make use of the simple pendulum and Equation 13.15 when 
prospecting for oil or minerals. Deposits beneath the Earth’s surface can produce 
irregularities in the free-fall acceleration over the region being studied. A specially 
designed pendulum of known length is used to measure the period, which in turn 
is used to calculate g. Although such a measurement in itself is inconclusive, it’s an 
important tool for geological surveys.

■ Quick Quiz

13.7  A simple pendulum is suspended from the ceiling of a stationary elevator, 
and the period is measured. If the elevator moves with constant velocity, does the 
period (a) increase, (b) decrease, or (c) remain the same? If the elevator accelerates 
upward, does the period (a) increase, (b) decrease, or (c) remain the same?

13.8  A pendulum clock depends on the period of a pendulum to keep correct time. 
Suppose a pendulum clock is keeping correct time and then Dennis the Menace 
slides the bob of the pendulum downward on the oscillating rod. Does the clock run 
(a) slow, (b) fast, or (c) correctly?

13.9  The period of a simple pendulum is measured to be T on the Earth. If the 
same pendulum were set in motion on the Moon, would its period be (a) less than T, 
(b) greater than T, or (c) equal to T ?

a pp LICat ION
Use of Pendulum in Prospecting

 ■ e Xa Mp Le  13.7 Measuring the Value of g

GOa L  Determine g from pendulum motion.

pr OBLe M  Using a small pendulum of length 0.171 m, a geophysicist counts 72.0 complete swings in a time of 60.0 s. 
What is the value of g in this location?

St r at e GY  First calculate the period of the pendulum by dividing the total time by the number of complete swings. 
Solve Equation 13.15 for g and substitute values.

SOLut ION

Calculate the period by dividing the total elapsed time by 
the number of complete oscillations:

T 5
time

# of oscillations
5

60.0 s
72.0

5 0.833 s

Solve Equation 13.15 for g and substitute values: T 5 2p Å
L
g

S T 2 5 4p2 
L
g

g 5
4p2L
T 2 5

139.5 2 10.171 m 2
10.833 s 22 5  9.73 m/s2

re Mar KS  Measuring such a vibration is a good way of determining the local value of the acceleration of gravity.

Que St ION 13.7  True or False: A simple pendulum of length 0.50 m has a larger frequency of vibration than a simple 
pendulum of length 1.0 m.

e Xer CISe  13.7  What would be the period of the 0.171-m pendulum on the Moon, where the acceleration of gravity is 
1.62 m/s2?

a NSWe r  2.04 s
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The Goal describes the physical 
concepts being explored within 
the worked example.

The Strategy section helps students 
analyze the problem and create a 
framework for working out the solution.

The Problem 
statement presents 
the problem itself.

The Solution section uses a two-
column format that gives the 
explanation for each step of the 
solution in the left-hand column, 
while giving each accompanying 
mathematical step in the right-
hand column. This layout 
facilitates matching the idea with 
its execution and helps students 
learn how to organize their work. 
Another benefit: students can easily 
use this format as a training tool, 
covering up the solution on the 
right and solving the problem using 
the comments on the left as a guide.

Remarks follow each Solution 
and highlight some of the 
underlying concepts and 
methodology used in arriving 
at a correct solution. In 
addition, the remarks are 
often used to put the problem 
into a larger, real-world 
context.

Question Each worked example 
features a conceptual question that 
promotes student understanding of 
the underlying concepts contained 
in the example.

Exercise/Answer Every Question is followed immediately by an 
exercise with an answer. These exercises allow students to reinforce 
their understanding by working a similar or related problem, with 
the answers giving them instant feedback. At the option of the 
instructor, the exercises can also be assigned as homework. Students 
who work through these exercises on a regular basis will find the 
end-of-chapter problems less intimidating.

Many Worked Examples are also available to be assigned in the 
Enhanced WebAssign homework management system (visit www 
.cengage.com/physics/serway for more details).

Integration with enhanced WebAssign The textbook’s tight integration with 
Enhanced WebAssign content facilitates an online learning environment that 
helps students improve their problem-solving skills and gives them a variety of tools 
to meet their individual learning styles. Extensive user data gathered by WebAssign 
were used to ensure that the problems most often assigned were retained for this 
new edition. In each chapter’s problems set, the top quartile of problems that were 
assigned in WebAssign have cyan-shaded problem numbers for easy identification, 
allowing professors to quickly and easily find the most popular problems that were 
assigned in Enhanced WebAssign. Master It tutorials help students solve problems 
by having them work through a stepped-out solution. Problems with Master It tuto-
rials are indicated in each chapter’s problem set with a icon. In addition, Watch 
It solution videos (indicated by a W  icon) explain fundamental problem-solving 
strategies to help students step through selected problems. The problems most 
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often assigned in Enhanced Web Assign (shaded in blue) have feedback to address 
student misconceptions, helping students avoid common pitfalls.

Artwork  Every piece of artwork in the tenth edition is in a modern style that helps 
express the physics principles at work in a clearer and more precise fashion. Every 
piece of art is also drawn to make certain that the physical situations presented 
correspond exactly to the text discussion at hand.
 Guidance labels are included with many figures in the text; these point out important 
features of the figure and guide students through figures without having to go back 
and forth from the figure legend to the figure itself. This format also helps those stu-
dents who are visual learners. An example of this kind of figure appears below.

vS

vS

vS

gS 

x
v0x

v0x

v0x

vy

vy � 0

v0x

vy

v0y

v0y

v0x

y

u0

u

u

u0

The y -component of 
velocity is zero at the 
peak of the path.

The x-component of 
velocity remains 
constant in time.

v0
S

f igure 3.14
The parabolic trajectory of a particle 
that leaves the origin with a velocity 
of vS0. Note that vS  changes with time. 
However, the x -component of the 
velocity, vx, remains constant in time, 
equal to its initial velocity, v0x. Also, 
vy 5 0 at the peak of the trajectory, 
but the acceleration is always equal 
to the free-fall acceleration and acts 
vertically downward.

Warm-up exercises  As discussed earlier, these new exercises (over 320 are 
included in the full book) were inspired by one of the author’s (Vuille) classroom 
experiences. Warm-up exercises review mathematical and physical concepts that 
are prerequisites for a given chapter’s problems set and also provide students with 
a general preview of the new physics concepts covered in a given chapter. By doing 
the warm-up exercises first, students will have an easier time getting comfortable 
with the new concepts of a chapter before tackling harder problems. Answers 
to odd-numbered warm-up exercises are included in the Answers section at the 
end of the book. Answers to all warm-up exercises are in the Instructor’s Solutions 
Manual.

Conceptual Questions  At the end of each chapter are approximately a dozen 
conceptual questions. The Applying Physics examples presented in the text serve 
as models for students when conceptual questions are assigned and show how the 
concepts can be applied to understanding the physical world. The conceptual 
questions provide the student with a means of self-testing the concepts presented 
in the chapter. Some conceptual questions are appropriate for initiating classroom 
discussions. Answers to odd-numbered conceptual questions are included in the 
Answers section at the end of the book. Answers to all conceptual questions are in 
the Instructor’s Solutions Manual.

Problems  All questions and problems for this revision were carefully reviewed to 
improve their variety, interest, and pedagogical value while maintaining their clar-
ity and quality. An extensive set of problems is included at the end of each chapter 
(in all, more than 2 000 problems are provided in the tenth edition). Answers to 
odd-numbered problems are given at the end of the book. For the convenience 
of both the student and instructor, about two-thirds of the problems are keyed 
to specific sections of the chapter. The remaining problems, labeled “Additional 
Problems,” are not keyed to specific sections. The three levels of problems 
are graded according to their difficulty. Straightforward problems are num-
bered in black, intermediate level problems are numbered in blue, and the 
most challenging problems are numbered in red. The  icon identifies prob-
lems dealing with applications to the life sciences and medicine. Solutions to  
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approximately 12 problems in each chapter are in the Student Solutions Manual 
and Study Guide.
 There are three other types of problems we think instructors and students will 
find interesting as they work through the text:

 ■  Symbolic problems require the student to obtain an answer in terms  
of symbols. In general, some guidance is built into the problem statement. The 
goal is to better train the student to deal with mathematics at a level appropri-
ate to this course. Most students at this level are uncomfortable with symbolic 
equations, which is unfortunate because symbolic equations are the most effi-
cient vehicle for presenting relationships between physics concepts. Once stu-
dents understand the physical concepts, their ability to solve problems is greatly 
enhanced. As soon as the numbers are substituted into an equation, however, 
all the concepts and their relationships to one another are lost, melded together 
in the student’s calculator. Symbolic problems train the student to postpone 
substitution of values, facilitating their ability to think  conceptually using the 
equations. An example of a symbolic problem is provided here:

116  CHAPTER 4 | The Laws of Motion

two forces? (b) If the car has a mass of 3 000 kg, what 
acceleration does it have? Ignore friction.

 13. A 970-kg car starts from rest on a horizontal roadway 
and accelerates eastward for 5.00 s when it reaches a 
speed of 25.0 m/s. What is the average force exerted on 
the car during this time?

 14.  An object of mass m is dropped from the roof of a 
building of height h. While the object is falling, a wind 
blowing parallel to the face of the building exerts a 
constant horizontal force F on the object. (a) How long 
does it take the object to strike the ground? Express 
the time t in terms of g and h. (b) Find an expres-
sion in terms of m and F for the acceleration ax of the 
object in the horizontal direction (taken as the positive 
x - direction). (c) How far is the object displaced hori-
zontally before hitting the ground? Answer in terms of 
m, g, F, and h. (d) Find the magnitude of the object’s 
acceleration while it is falling, using the variables F, m, 
and g.

 15. After falling from rest from a height of 30 m, a 0.50-kg 
ball rebounds upward, reaching a height of 20 m. If 
the contact between ball and ground lasted 2.0 ms, 
what average force was exerted on the ball?

 16.  The force exerted by the wind on the sails of a 
sailboat is 390 N north. The water exerts a force of 
180 N east. If the boat (including its crew) has a mass 
of 270 kg, what are the magnitude and direction of its 
acceleration?

4.5 Applications of Newton’s Laws

 17.  (a) Find the tension in each 
cable supporting the 600-N cat 
burglar in Figure P4.17. (b) Sup-
pose the horizontal cable were 
reattached higher up on the wall. 
Would the tension in the other 
cable increase, decrease, or stay 
the same? Why?

 18.  A certain orthodontist uses 
a wire brace to align a patient’s 
crooked tooth as in Figure P4.18. The tension in the 
wire is adjusted to have a magnitude of 18.0 N. Find 
the magnitude of the net force exerted by the wire on 
the crooked tooth.

37.0�

600 N

Figure P4.17

14°

14°

y
x

T
S

T
S

Figure P4.18

60° 30°

Bird
food

Figure P4.19

 21. Two blocks each of mass m 5 
3.50 kg are fastened to the top 
of an elevator as in Figure P4.21. 
(a) If the elevator has an upward 
acceleration a 5 1.60 m/s2, find 
the tensions T1 and T2 in the 
upper and lower strings. (b) If 
the strings can withstand a max-
imum tension of 85.0 N, what 
maximum acceleration can the 
elevator have before the upper 
string breaks?

 22.  Two blocks each of mass m are fastened to the top 
of an elevator as in Figure P4.21. The elevator has an 
upward acceleration a. The strings have negligible 
mass. (a) Find the tensions T1 and T2 in the upper and 
lower strings in terms of m, a, and g. (b) Compare the 
two tensions and determine which string would break 
first if a is made sufficiently large. (c) What are the ten-
sions if the cable supporting the elevator breaks?

 23. The distance between two telephone poles is 50.0 m. 
When a 1.00-kg bird lands on the telephone wire mid-
way between the poles, the wire sags 0.200 m. Draw a 
free-body diagram of the bird. How much tension does 
the bird produce in the wire? Ignore the weight of the 
wire.

 24. The systems shown in Figure P4.24 are in equilibrium. 
If the spring scales are calibrated in newtons, what do 
they read? Ignore the masses of the pulleys and strings 

w1 

40° α110 N
w2

Figure P4.20

T1

T2

aS m

m

Figure P4.21 
(Problems 21 and 22)

 19. A 150-N bird feeder is supported 
by three cables as shown in Fig-
ure P4.19. Find the tension in 
each cable.

 20.  The leg and cast in Figure 
P4.20 weigh 220 N (w1). Deter-
mine the weight w2 and the 
angle a needed so that no force 
is exerted on the hip joint by the 
leg plus the cast.
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 ■  Quantitative/conceptual problems encourage the student to think 
conceptually about a given physics problem rather than rely solely on compu-
tational skills. Research in physics education suggests that standard physics 
problems requiring calculations may not be entirely adequate in training stu-
dents to think conceptually. Students learn to substitute numbers for symbols 
in the equations without fully understanding what they are doing or what the 
symbols mean. Quantitative/conceptual problems combat this tendency by 
asking for answers that require something other than a number or a calcula-
tion. An example of a quantitative/conceptual problem is provided here:

158  CHAPTER 5 | Energy

 8. A block of mass m 5 2.50 kg 
is pushed a distance d 5 
2.20 m along a frictionless 
horizontal table by a con-
stant applied force of mag-
nitude F 5 16.0 N directed 
at an angle u 5 25.0° below 
the horizontal as shown in 
Figure P5.8. Determine the work done by (a) the applied 
force, (b) the normal force exerted by the table, (c) the 
force of gravity, and (d) the net force on the block.

5.2  Kinetic Energy and the Work–Energy Theorem

 9. A mechanic pushes a 2.50 3 103-kg car from rest to a 
speed of v, doing 5 000 J of work in the process. Dur-
ing this time, the car moves 25.0 m. Neglecting friction 
between car and road, find (a) v and (b) the horizontal 
force exerted on the car.

 10. A 7.00-kg bowling ball moves at 3.00 m/s. How fast 
must a 2.45-g Ping-Pong ball move so that the two balls 
have the same kinetic energy?

 11. A 65.0-kg runner has a speed of 5.20 m/s at one instant 
during a long-distance event. (a) What is the runner’s 
kinetic energy at this instant? (b) If he doubles his 
speed to reach the finish line, by what factor does his 
kinetic energy change?

 12.  A worker pushing a 35.0-kg wooden crate at 
a constant speed for 12.0 m along a wood floor does 
350  J of work by applying a constant horizontal force 
of magnitude F0 on the crate. (a) Determine the value 
of F0. (b) If the worker now applies a force greater 
than F0, describe the subsequent motion of the crate. 
(c)  Describe what would happen to the crate if the 
applied force is less than F0.

 13. A 70-kg base runner begins his slide into second base 
when he is moving at a speed of 4.0 m/s. The coeffi-
cient of friction between his clothes and Earth is 0.70. 
He slides so that his speed is zero just as he reaches the 
base. (a)  How much mechanical energy is lost due to 
friction acting on the runner? (b) How far does he slide?

 14. A running 62-kg cheetah has a top speed of 32 m/s. 
(a) What is the cheetah’s maximum kinetic energy? 
(b) Find the cheetah’s speed when its kinetic energy is 
one half of the value found in part (a).

 15. A 7.80-g bullet moving at 575 m/s penetrates a tree 
trunk to a depth of 5.50 cm. (a) Use work and energy 
considerations to find the average frictional force that 
stops the bullet. (b) Assuming the frictional force is 
constant, determine how much time elapses between 
the moment the bullet enters the tree and the moment 
it stops moving.

 16. A 0.60-kg particle has a speed of 2.0 m/s at point A 
and a kinetic energy of 7.5 J at point B. What is (a) its 
kinetic energy at A? (b) Its speed at point B ? (c) The 
total work done on the particle as it moves from A to B ?

5.1  Work

 1. A weight lifter lifts a 350-N set of weights from ground 
level to a position over his head, a vertical distance 
of 2.00 m. How much work does the weight lifter do, 
assuming he moves the weights at constant speed?

 2. In 1990 Walter Arfeuille of Belgium lifted a 281.5-kg 
object through a distance of 17.1 cm using only his 
teeth. (a) How much work did Arfeuille do on the 
object? (b) What magnitude force did he exert on the 
object during the lift, assuming the force was constant?

 3. The record number of boat lifts, including the boat 
and its ten crew members, was achieved by Sami Hei-
nonen and Juha Räsänen of Sweden in 2000. They 
lifted a total mass of 653.2 kg approximately 4 in. 
off the ground a total of 24 times. Estimate the total 
mechanical work done by the two men in lifting the 
boat 24 times, assuming they applied the same force 
to the boat during each lift. (Neglect any work they 
may have done allowing the boat to drop back to the 
ground.)

 4.  A shopper in a supermarket pushes a cart with a 
force of 35 N directed at an angle of 25° below the hor-
izontal. The force is just sufficient to overcome various 
frictional forces, so the cart moves at constant speed. 
(a) Find the work done by the shopper as she moves 
down a 50.0-m length aisle. (b) What is the net work 
done on the cart? Why? (c) The shopper goes down 
the next aisle, pushing horizontally and maintaining 
the same speed as before. If the work done by frictional 
forces doesn’t change, would the shopper’s applied 
force be larger, smaller, or the same? What about the 
work done on the cart by the shopper?

 5.  Starting from rest, a 5.00-kg block slides 2.50 m 
down a rough 30.0° incline. The coefficient of kinetic 
friction between the block and the incline is mk 5 
0.436. Determine (a) the work done by the force of 
gravity, (b) the work done by the friction force between 
block and incline, and (c) the work done by the normal 
force. (d) Qualitatively, how would the answers change 
if a shorter ramp at a steeper angle were used to span 
the same vertical height?

 6. A horizontal force of 150 N is used to push a 40.0-kg 
packing crate a distance of 6.00 m on a rough hori-
zontal surface. If the crate moves at constant speed, 
find (a) the work done by the 150-N force and (b) the 
coefficient of kinetic friction between the crate and 
surface.

 7. A sledge loaded with bricks has a total mass of 18.0 kg 
and is pulled at constant speed by a rope inclined at 
20.0° above the horizontal. The sledge moves a dis-
tance of 20.0 m on a horizontal surface. The coeffi-
cient of kinetic friction between the sledge and surface 
is 0.500. (a) What is the tension in the rope? (b) How 
much work is done by the rope on the sledge? (c) What 
is the mechanical energy lost due to friction?

u

F
S

m

d

Figure P5.8
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 ■  Guided problems help students break problems into steps. A physics 
problem typically asks for one physical quantity in a given context. Often, 
however, several concepts must be used and a number of calculations are 
required to get that final answer. Many students are not accustomed to this 
level of complexity and often don’t know where to start. A guided problem 
breaks a problem into smaller steps, enabling students to grasp all the con-
cepts and strategies required to arrive at a correct solution. Unlike stan-
dard physics problems, guidance is often built into the problem statement. 
For example, the problem might say “Find the speed using conservation of 
energy” rather than asking only for the speed. In any given chapter there are 
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usually two or three problem types that are particularly suited to this prob-
lem form. The problem must have a certain level of complexity, with a similar 
problem-solving strategy involved each time it appears. Guided problems are 
reminiscent of how a student might interact with a professor in an office visit. 
These problems help train students to break down complex problems into a 
series of simpler problems, an essential problem-solving skill. An example of a 
guided problem is provided here:

Quick Quizzes  All the Quick Quizzes (see example below) are cast in an objective 
format, including multiple-choice, true–false, matching, and ranking questions. 
Quick Quizzes provide students with opportunities to test their understanding of 
the physical concepts presented. The questions require students to make decisions 
on the basis of sound reasoning, and some have been written to help students over-
come common misconceptions. Answers to all Quick Quiz questions are found at 
the end of the textbook, and answers with detailed explanations are provided in 
the Instructor’s Solutions Manual. Many instructors choose to use Quick Quiz ques-
tions in a “peer instruction” teaching style.

4.4 | Newton’s Third Law  99

Unless otherwise noted, all content on this page is © Cengage Learning.

engines apply forces in opposite directions, so there is no net force rotating the 
helicopter.

As mentioned earlier, Earth exerts a gravitational force F
S

g on any object. If the 
object is a monitor at rest on a table, as in Figure 4.10a, the reaction force to F

S

g is 
the gravitational force the monitor exerts on the Earth, F

S

g r. The monitor doesn’t 
accelerate downward because it’s held up by the table. The table therefore exerts 
an upward force nS, called the normal force, on the monitor. (Normal, a techni-
cal term from mathematics, means “perpendicular” in this context.) The normal 
force is an elastic force arising from the cohesion of matter and is electromagnetic 
in origin. It balances the gravitational force acting on the monitor, preventing the 
monitor from falling through the table, and can have any value needed, up to the 
point of breaking the table. The reaction to nS is the force exerted by the monitor 
on the table, nS r. Therefore,

 F
S

g 5 2 F
S

g r  and  nS 5 2 nS r

The forces nS and nS r both have the same magnitude as F
S

g. Note that the forces 
acting on the monitor are F

S

g and nS, as shown in Figure 4.10b. The two reaction 
forces, F

S

g r and nS r, are exerted by the monitor on objects other than the monitor. 
Remember that the two forces in an action–reaction pair always act on two differ-
ent objects.

Because the monitor is not accelerating in any direction (aS � 0), it follows from 
Newton’s second law that m aS 5 0 5 F

S

g 1 nS. However, Fg � �mg, so n � mg, a  
useful result.

Tip 4.5 Equal and Opposite 
but Not a Reaction Force
A common error in Figure 4.10b 
is to consider the normal force 
on the object to be the reaction 
force to the gravity force, because 
in this case these two forces are 
equal in magnitude and opposite 
in direction. That is impossible, 
however, because they act on the 
same object!

nS

n�S

nS

Fg
S

Fg�
S

Fg
S

a b

Figure 4.10 When a monitor is sit-
ting on a table, the forces acting on 
the monitor are the normal force nS 
exerted by the table and the force of 
gravity, F

S

g, as illustrated in (b). The 
reaction to nS is the force exerted by 
the monitor on the table, nS r. The 
reaction to F

S

g is the force exerted by 
the monitor on Earth, F

S

g r.

■ Quick Quiz

4.4 A small sports car collides head-on with a massive truck. The greater impact 
force (in magnitude) acts on (a) the car, (b) the truck, (c) neither, the force is the 
same on both. Which vehicle undergoes the greater magnitude acceleration?  
(d) the car, (e) the truck, (f) the accelerations are the same.

■ Ex a mp l E 4.5 Action–Reaction and the Ice Skaters

Go a l  Illustrate Newton’s third law of motion.

p r ob l Em A man of mass M 5 75.0 kg and woman of mass m 5 55.0 kg stand facing each other on an ice rink, both 
wearing ice skates. The woman pushes the man with a horizontal force of F 5 85.0 N in the positive x-direction. Assume  
the ice is frictionless. (a) What is the man’s acceleration? (b) What is the reaction force acting on the woman? (c) Calculate 
the woman’s acceleration.

STra TEGy  Parts (a) and (c) are simple applications of the second law. An application of the third law solves part (b).
(Continued)

a pp l ICa TIoN
Colliding Vehicles
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Problem-Solving Strategies  A general problem-solving strategy to be followed 
by the student is outlined at the end of Chapter 1. This strategy provides students 
with a structured process for solving problems. In most chapters, more specific 
strategies and suggestions (see example below) are included for solving the types 
of problems featured in both the worked examples and the end-of-chapter prob-
lems. This feature helps students identify the essential steps in solving problems 
and increases their skills as problem solvers.
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m2
m1

F
S

Figure P4.32

 32.  Two blocks of masses m1 
and m2 (m1 . m2) are placed on 
a frictionless table in contact 
with each other. A horizontal 
force of magnitude F is applied 
to the block of mass m1 in Fig-
ure P4.32. (a) If P is the magnitude of the contact force 
between the blocks, draw the free-body diagrams for 
each block. (b) What is the net force on the system 
consisting of both blocks? (c)  What is the net force 

acting on m1? (d) What is the net force acting on m2? 
(e) Write the x -component of Newton’s second law for 
each block. (f) Solve the resulting system of two equa-
tions and two unknowns, expressing the acceleration 
a and contact force P in terms of the masses and force. 
(g)  How would the answers change if the force had 
been applied to m2 instead? (Hint: Use symmetry; don’t 
calculate!) Is the contact force larger, smaller, or the 
same in this case? Why?
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the rope. What we mean by the words “tension in the rope” is just the force read 
by a spring scale when the rope in question has been cut and the scale inserted 
between the cut ends. A dashed circle is drawn around the crate in Figure 4.12a to 
emphasize the importance of isolating the crate from its surroundings.

Because we are interested only in the motion of the crate, we must be able 
to identify all forces acting on it. These forces are illustrated in Figure 4.12b. In 
addition to displaying the force T

S

, the force diagram for the crate includes the 
force of gravity F

S

g exerted by Earth and the normal force nS exerted by the floor. 
Such a force diagram is called a free-body diagram because the environment is 
replaced by a series of forces on an otherwise free body. The construction of a cor-
rect free-body diagram is an essential step in applying Newton’s laws. An incorrect 
diagram will most likely lead to incorrect answers!

The reactions to the forces we have listed—namely, the force exerted by the rope 
on the hand doing the pulling, the force exerted by the crate on Earth, and the force 
exerted by the crate on the floor—aren’t included in the free-body diagram because 
they act on other objects and not on the crate. Consequently, they don’t directly 
influence the crate’s motion. Only forces acting directly on the crate are included.

Now let’s apply Newton’s second law to the crate. First we choose an appropriate 
coordinate system. In this case it’s convenient to use the one shown in Figure 4.12b, 
with the x-axis horizontal and the y-axis vertical. We can apply Newton’s second law 
in the x-direction, y-direction, or both, depending on what we’re asked to find in a 
problem. Newton’s second law applied to the crate in the x- and y- directions yields 
the following two equations:

max 5 T  may 5 n 2 mg 5 0

From these equations, we find that the acceleration in the x -direction is constant, 
given by ax 5 T/m, and that the normal force is given by n 5 mg. Because the accel-
eration is constant, the equations of kinematics can be applied to obtain further 
information about the velocity and displacement of the object.

 ■ PROBLEM-SOLVING STRATEGY

Newton’s Second Law
Problems involving Newton’s second law can be very complex. The following protocol breaks 
the solution process down into smaller, intermediate goals:

1. Read the problem carefully at least once.
2. Draw a picture of the system, identify the object of primary interest, and indi-

cate forces with arrows.
3. Label each force in the picture in a way that will bring to mind what physical 

quantity the label stands for (e.g., T for tension).
4. Draw a free-body diagram of the object of interest, based on the labeled pic-

ture. If additional objects are involved, draw separate free-body diagrams for 
them. Choose convenient coordinates for each object.

5. Apply Newton’s second law. The x - and y -components of Newton’s second law 
should be taken from the vector equation and written individually. This usually 
results in two equations and two unknowns.

6. Solve for the desired unknown quantity, and substitute the numbers.

In the special case of equilibrium, the foregoing process is simplified because the 
acceleration is zero.

Objects in Equilibrium
Objects that are either at rest or moving with constant velocity are said to be in 
equilibrium. Because aS � 0, Newton’s second law applied to an object in equilib-
rium gives

 a  F
S

5 0 [4.9]

Tip 4.6 Free-Body 
Diagrams
The most important step in solving 
a problem by means of Newton’s 
second law is to draw the correct 
free-body diagram. Include only 
those forces that act directly on 
the object of interest.

Tip 4.7 A Particle  
in Equilibrium
A zero net force on a particle does 
not mean that the particle isn’t 
moving. It means that the particle 
isn’t accelerating. If the particle has 
a nonzero initial velocity and is 
acted upon by a zero net force, it 
continues to move with the same 
velocity.
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Biomedical Applications  For biology and pre-med students,  icons point the 
way to various practical and interesting applications of physical principles to biol-
ogy and medicine.

mCAT Skill Builder Study Guide  The tenth edition of College Physics has a special 
skill-building Appendix (Appendix E) available via CengageCompose to help pre-
med students prepare for the MCAT exam. The appendix contains examples writ-
ten by the text authors that help students build conceptual and quantitative skills. 
These skill-building examples are followed by MCAT-style questions written by test 
prep experts to make sure students are ready to ace the exam.

mCAT Test Preparation Guide  Located at the front of the book, this guide out-
lines the six content categories related to physics on the new MCAT exam that will 
be administered starting in 2015. Students can use the guide to prepare for the 
MCAT exam, class tests, or homework assignments.

Applying Physics  The Applying Physics features provide students with an addi-
tional means of reviewing concepts presented in that section. Some Applying Phys-
ics examples demonstrate the connection between the concepts presented in that 
chapter and other scientific disciplines. These examples also serve as models for 
students when assigned the task of responding to the Conceptual Questions pre-
sented at the end of each chapter. For examples of Applying Physics boxes, see 
Applying Physics 9.5 (Home Plumbing) on page 313 and Applying Physics 13.1 
(Bungee Jumping) on page 456.

Tips  Placed in the margins of the text, Tips address common student misconcep-
tions and situations in which students often follow unproductive paths (see exam-
ple at the right). More than 95 Tips are provided in this edition to help students 
avoid common mistakes and misunderstandings.

marginal Notes  Comments and notes appearing in the margin (see example at 
the right) can be used to locate important statements, equations, and concepts in 
the text.

Applications  Although physics is relevant to so much in our modern lives, it may 
not be obvious to students in an introductory course. Application margin notes 
(see example to the right) make the relevance of physics to everyday life more 
obvious by pointing out specific applications in the text. Some of these applica-
tions pertain to the life sciences and are marked with a  icon. A list of the 
Applications in Volume 1 appears after this Preface.

Style  To facilitate rapid comprehension, we have attempted to write the book in 
a style that is clear, logical, relaxed, and engaging. The somewhat informal and 
relaxed writing style is designed to connect better with students and enhance their 
reading enjoyment. New terms are carefully defined, and we have tried to avoid 
the use of jargon.

Introductions  All chapters begin with a brief preview that includes a discussion 
of the chapter’s objectives and content.

units  The international system of units (SI) is used throughout the text. The 
U.S. customary system of units is used only to a limited extent in the chapters on 
mechanics and thermodynamics.

Pedagogical use of Color  Readers should consult the pedagogical color chart 
(inside the front cover) for a listing of the color-coded symbols used in the text 
diagrams. This system is followed consistently throughout the text.

Important Statements and equations  Most important statements and defini-
tions are set in boldface type or are highlighted with a background screen for 
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Table 4.1 Units of Mass, Acceleration, and Force

System Mass Acceleration Force

SI kg m/s2 N 5 kg ? m/s2

U.S. customary slug ft/s2 lb 5 slug ? ft/s2

Fprop
S

Fresist
S

Propeller

Figure 4.6 (Example 4.1)

■ EXAMPLE 4.1 Airboat

Go AL Apply Newton’s second law in one dimension, together with 
the equations of kinematics.

Pr ob LEM An airboat with mass 3.50 3 102 kg, including the 
passenger, has an engine that produces a net horizontal force of  
7.70 3 102 N, after accounting for forces of resistance (see Fig. 4.6). 
(a) Find the acceleration of the airboat. (b) Starting from rest, how 
long does it take the airboat to reach a speed of 12.0 m/s? (c) After 
reaching that speed, the pilot turns off the engine and drifts to a 
stop over a distance of 50.0 m. Find the resistance force, assuming 
it’s constant.

STr ATEGy  In part (a), apply Newton’s second law to find the acceleration, and in part (b) use that acceleration in the 
one-dimensional kinematics equation for the velocity. When the engine is turned off in part (c), only the resistance forces 
act on the boat in the x -direction, so the net acceleration can be found from v 2 2 v0

2 5 2a Dx. Then Newton’s second law 
gives the resistance force.

So Lu Ti on
(a) Find the acceleration of the airboat.

r EMArk S The propeller exerts a force on the air, pushing it backwards behind the 
boat. At the same time, the air exerts a force on the propellers and consequently on 
the airboat. Forces always come in pairs of this kind, which are formalized in the next 
section as Newton’s third law of motion. The negative answer for the acceleration in 
part (c) means that the airboat is slowing down.

Qu ESTi on  4.1 What other forces act on the airboat? Describe them.

EXEr Ci SE 4.1 Suppose the pilot, starting again from rest, opens the throttle part-
way. At a constant acceleration, the airboat then covers a distance of 60.0 m in 10.0 s. 
Find the net force acting on the boat.

An Sw Er  4.20 3 102 N

Tip 4.3 Newton’s Second 
Law Is a Vector Equation
In applying Newton’s second law, 
add all of the forces on the object 
as vectors and then find the 
resultant vector acceleration by 
dividing by m. Don’t find the indi-
vidual magnitudes of the forces 
and add them like scalars.

Apply Newton’s second law and solve for the acceleration:
ma 5 Fnet    S     a 5

Fnet

m
5

7.70 3 102 N
3.50 3 102 kg

5  2.20 m/s2

(b) Find the time necessary to reach a speed of 12.0 m/s.

Apply the kinematics velocity equation: v 5 at 1 v0 5 (2.20 m/s2)t 5 12.0 m/s S t 5   5.45 s

(c) Find the resistance force after the engine is turned off.

Using kinematics, find the net acceleration due to  
resistance forces:

v2 2 v0
2 5 2a Dx

0 2 (12.0 m/s)2 5 2a(50.0 m) S a 5 21.44 m/s2

Substitute the acceleration into Newton’s second law,  
finding the resistance force:

Fresist 5 ma 5 (3.50 3 102 kg)(21.44 m/s2) 5  2504 N
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b Newton’s third law

a PPl ica t io n
Diet Versus Exercise in Weight-loss 
Programs
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added emphasis and ease of review. Similarly, important equations are highlighted 
with a tan background screen to facilitate location.

Illustrations and Tables  The readability and effectiveness of the text material, 
worked examples, and end-of-chapter conceptual questions and problems are 
enhanced by the large number of figures, diagrams, photographs, and tables. Full 
color adds clarity to the artwork and makes illustrations as realistic as possible. 
Three-dimensional effects are rendered with the use of shaded and lightened 
areas where appropriate. Vectors are color coded, and curves in graphs are drawn 
in color. Color photographs have been carefully selected, and their accompany-
ing captions have been written to serve as an added instructional tool. A complete 
description of the pedagogical use of color appears on the inside front cover.

Summary The end-of-chapter Summary is organized by individual section head-
ing for ease of reference. Most chapter summaries also feature key figures from 
the chapter.

Significant Figures Significant figures in both worked examples and end-of- chapter 
problems have been handled with care. Most numerical examples and problems are 
worked out to either two or three significant figures, depending on the accuracy of 
the data provided. Intermediate results presented in the examples are rounded to 
the proper number of significant figures, and only those digits are carried forward.

Appendices and endpapers  Several appendices are provided at the end of 
the textbook. Most of the appendix material (Appendix A) represents a review 
of mathematical concepts and techniques used in the text, including scientific 
notation, algebra, geometry, and trigonometry. Reference to these appendices 
is made as needed throughout the text. Most of the mathematical review sec-
tions include worked examples and exercises with answers. In addition to the 
mathematical review, some appendices contain useful tables that supplement 
textual information. For easy reference, the front endpapers contain a chart 
explaining the use of color throughout the book and a list of frequently used 
conversion factors.

Teaching options
This book contains more than enough material for a one-year course in introduc-
tory physics, which serves two purposes. First, it gives the instructor more flexibility 
in choosing topics for a specific course. Second, the book becomes more useful as a 
resource for students. On average, it should be possible to cover about one chapter 
each week for a class that meets three hours per week. Those sections, examples, 
and end-of-chapter problems dealing with applications of physics to life sciences 
are identified with the  icon. We offer the following suggestions for shorter 
courses for those instructors who choose to move at a slower pace through the year.

Option A: If you choose to place more emphasis on contemporary topics in 
physics, you could omit all or parts of Chapter 8 (Rotational Equilibrium and 
Rotational Dynamics), Chapter 21 (Alternating-Current Circuits and Electro-
magnetic Waves), and Chapter 25 (Optical Instruments).

Option B: If you choose to place more emphasis on classical physics, you could 
omit all or parts of Part 6 of the textbook, which deals with special relativity 
and other topics in twentieth-century physics.

The Instructor’s Solutions Manual offers additional suggestions for specific sections 
and topics that may be omitted without loss of continuity if time presses.

CengageCompose options for College Physics
Would you like to easily create your own personalized text, selecting the elements
that meet your specific learning objectives?
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 CengageCompose puts the power of the vast Cengage Learning library of 
learning content at your fingertips to create exactly the text you need. The all-
new, Web-based CengageCompose site lets you quickly scan content and review 
materials to pick what you need for your text. Site tools let you easily assemble the 
modular learning units into the order you want and immediately provide you with 
an online copy for review. Add enrichment content like case studies, exercises, 
and lab materials to further build your ideal learning materials. Even choose from 
hundreds of vivid, art-rich, customizable, full-color covers.
 Cengage Learning offers the fastest and easiest way to create unique custom-
ized learning materials delivered the way you want. For more information about 
custom publishing options, visit www.cengage.com/custom or contact your local 
Cengage Learning representative.

Course Solutions That Fit Your Teaching Goals  
and Your Students’ learning Needs
Recent advances in educational technology have made homework management 
systems and audience response systems powerful and affordable tools to enhance 
the way you teach your course. Whether you offer a more traditional text-based 
course, are interested in using or are currently using an online homework man-
agement system such as Enhanced WebAssign, or are ready to turn your lecture 
into an interactive learning environment with JoinIn™, you can be confident that 
the text’s proven content provides the foundation for each and every component 
of our technology and ancillary package.

Homework management Systems
enhanced WebAssign for College Physics, Tenth edition.  Exclusively from 
Cengage Learning, Enhanced WebAssign offers an extensive online program for 
physics to encourage the practice that’s so critical for concept mastery. The metic-
ulously crafted pedagogy and exercises in our proven texts become even more 
effective in Enhanced WebAssign. Enhanced WebAssign includes the Cengage 
YouBook, a highly customizable, interactive eBook. WebAssign includes:

 ■ All of the quantitative end-of-chapter problems, now including worked out 
solutions, matching the algorithmic version of the question assigned to each 
student.

 ■ Selected problems enhanced with targeted feedback. An example of targeted 
feedback appears below:

Selected problems include feedback 
to address common mistakes that 
students make. This feedback was 
developed by professors with years 
of classroom experience.
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■ Master It tutorials (indicated in the text by an icon), to help students work 
through the problem one step at a time. An example of a Master It tutorial 
appears below:

Master It tutorials help 
students work through 
each step of the problem.

 ■ Watch It solution videos (indicated in the text by a W  icon) that explain 
fundamental problem-solving strategies, to help students step through the 
problem. In addition, instructors can choose to include video hints of problem-
solving strategies. A screen shot from a Watch It solution video appears below:

Watch It solution videos help 
students visualize the steps 
needed to solve a problem.

 ■ Concept Checks
 ■ PhET simulations
 ■ Most worked examples, enhanced with hints and feedback, to help strengthen 

students’ problem-solving skills
 ■ Every Quick Quiz, giving your students ample opportunity to test their concep-

tual understanding
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 ■ Personalized Study Plan. The Personal Study Plan in Enhanced WebAssign 
provides chapter and section assessments that show students what material they 
know and what areas require more work. For items that they answer incorrectly, 
students can click on links to related study resources such as videos, tutorials, 
or reading materials. Color-coded progress indicators let them see how well 
they are doing on different topics. You decide what chapters and sections to 
include—and whether to include the plan as part of the final grade or as a 
study guide with no scoring involved.

 ■ The Cengage YouBook. WebAssign has a customizable and interactive 
eBook, the Cengage YouBook, that lets you tailor the textbook to fit your 
course and connect with your students. You can remove and rearrange 
chapters in the table of contents and tailor assigned readings that match 
your syllabus exactly. Powerful editing tools let you change as much as you’d 
like—or leave it just like it is. You can highlight key passages or add sticky 
notes to pages to comment on a concept in the reading, and then share any 
of these individual notes and highlights with your students, or keep them 
personal. You can also edit narrative content in the textbook by adding a 
text box or striking out text. With a handy link tool, you can drop in an icon 
at any point in the eBook that lets you link to your own lecture notes, audio 
summaries, video lectures, or other files on a personal Web site or anywhere 
on the Web. A simple YouTube widget lets you easily find and embed videos 
from YouTube directly into eBook pages. The Cengage YouBook helps stu-
dents go beyond just reading the textbook. Students can also highlight the 
text and add their own notes or bookmarks. Animations play right on the 
page at the point of learning so that they’re not speed bumps to reading but 
true enhancements. Please visit www.webassign.net/brookscole to view an 
interactive demonstration of Enhanced WebAssign.

 ■ Offered exclusively in WebAssign, Quick Prep for physics is algebra and trigo-
nometry math remediation within the context of physics applications and 
principles. Quick Prep helps students succeed by using narratives illustrated 
throughout with video examples. The Master It tutorial problems allow stu-
dents to assess and retune their understanding of the material. The Practice 
Problems that go along with each tutorial allow both the student and the 
instructor to test the student’s understanding of the material.

Quick Prep includes the following features:

 ■ 67 interactive tutorials
 ■ 67 additional practice problems
 ■ A thorough overview of each topic, including video examples
 ■ Can be taken before the semester begins or during the first few weeks of the 

course
 ■ Can also be assigned alongside each chapter for “ just in time” remediation

Topics include units, scientific notation, and significant figures; the motion 
of objects along a line; functions; approximation and graphing; probability 
and error; vectors, displacement, and velocity; spheres; and force and vector 
projections.

mindTap™: The Personal learning experience
MindTap for Serway and Vuille College Physics is a personalized, fully online 
digital learning platform of authoritative textbook content, WebAssign assign-
ments, and services that engages your students with interactivity while also offer-
ing choices in the configuration of coursework and enhancement of the curric-
ulum via complimentary Web apps known as MindApps. MindApps range from 
WebAssign, ReadSpeaker (which reads the text out loud to students), to Kaltura 
(allowing you to insert inline video and audio into your curriculum), to Con-
nectYard (allowing you to create digital “yards” through social media—all without 
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“friending” your students). MindTap is well beyond an eBook, a homework 
solution or digital supplement, a resource center Web site, a course delivery 
platform, or a Learning Management System. It is the first in a new category—
the Personal Learning Experience.

CengageBrain.com
On CengageBrain.com students will be able to save up to 60% on their course 
materials through our full spectrum of options. Students will have the option 
to rent their textbooks or purchase print textbooks, e-textbooks, or individual 
e-chapters and audio books all for substantial savings over average retail prices. 
CengageBrain.com also includes access to Cengage Learning’s broad range of 
homework and study tools and features a selection of free content.

lecture Presentation Resources
Instructor’s Companion Site for College Physics, Tenth edition. Bringing phys-
ics principles and concepts to life in your lectures has never been easier! The full- 
featured Instructor’s Companion Site provides everything you need for College Physics, 
tenth edition. Key content includes the Instructor’s Solutions Manual, art and images 
from the text, premade chapter-specific PowerPoint lectures, Cengage Learning 
Testing Powered by Cognero with pre-loaded test questions, JoinIn response-system 
“clickers,” Active Figures animations, a physics movie library, and more.

Cengage learning Testing Powered by Cognero is a flexible, online system 
that allows you to author, edit, and manage test bank content, create multiple 
test versions in an instant, and deliver tests from your LMS, your classroom, 
or wherever you want. No special installs or downloads needed, you can cre-
ate tests from anywhere with internet access. Cognero brings simplicity at every 
step, with a desktop-inspired interface, a full-featured test generator, and cross-
platform compatibility.

JoinIn. Assessing to Learn in the Classroom questions developed at the University 
of Massachusetts Amherst. This collection of 250 advanced conceptual questions 
has been tested in the classroom for more than ten years and takes peer learning 
to a new level. JoinIn helps you turn your lectures into an interactive learning 
environment that promotes conceptual understanding. Available exclusively for 
higher education from our partnership with Turning Technologies, JoinIn is the 
easiest way to turn your lecture hall into a personal, fully interactive experience 
for your students!

Assessment and Course Preparation Resources
A number of resources listed below will assist with your assessment and prepara-
tion processes.

Instructor’s Solutions Manual  This manual contains complete worked solu-
tions to all end-of-chapter warm-up exercises, conceptual questions, and problems 
in the text, and full answers with explanations to the Quick Quizzes. Volume 1 
contains Chapters 1 through 14, and Volume 2 contains Chapters 15 through 30. 
Electronic files of the Instructor’s Solutions Manual are available on the Instructor’s 
Companion Site.

Test Bank  by Ed Oberhofer (University of North Carolina at Charlotte and  
Lake-Sumter Community College). The test bank is available on the Instruc-
tor’s Companion Site. This two-volume test bank contains approximately 1 750 
multiple-choice questions. Instructors may print and duplicate pages for distribu-
tion to students. The test bank is available in the Cognero test-generator, or in 
PDF, Word, WebCT, or Blackboard versions on the instructor’s companion site at  
www.CengageBrain.com.
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Supporting materials for the Instructor
Supporting instructor materials are available to qualified adopters. Please consult 
your local Cengage Learning representative for details. Visit www.CengageBrain
.com to

 ■ request a desk copy
 ■ locate your local representative
 ■ download electronic files of select support materials

Student Resources
Visit the College Physics website at www.CengageBrain.com to see samples of select 
student supplements. Go to CengageBrain.com to purchase and access this prod-
uct at Cengage Learning’s preferred online store.

Student Solutions Manual and Study Guide  Now offered in two volumes, the 
Student Solutions Manual and Study Guide features detailed solutions to approxi-
mately 12 problems per chapter. Boxed numbers identify those problems in the 
textbook for which complete solutions are found in the manual. The manual also 
features a skills section, important notes from key sections of the text, and a list of 
important equations and concepts. Volume 1 contains Chapters 1 through 14, and 
Volume 2 contains Chapters 15 through 30.

Physics Laboratory Manual, Third Edition  by David Loyd (Angelo State Univer-
sity) supplements the learning of basic physical principles while introducing labora-
tory procedures and equipment. Each chapter includes a prelaboratory assignment, 
objectives, an equipment list, the theory behind the experiment, experimental pro-
cedures, graphing exercises, and questions. A laboratory report form is included 
with each experiment so that the student can record data, calculations, and experi-
mental results. Students are encouraged to apply statistical analysis to their data. 
A complete Instructor’s Manual is also available to facilitate use of this lab manual.

Physics Laboratory Experiments, Seventh Edition by Jerry D. Wilson (Lander 
College) and Cecilia A. Hernández (American River College). This market- 
leading manual for the first-year physics laboratory course offers a wide range of 
class-tested experiments designed specifically for use in small to midsize lab pro-
grams. A series of integrated experiments emphasizes the use of computerized 
instrumentation and includes a set of “computer-assisted experiments” to allow stu-
dents and instructors to gain experience with modern equipment. This option also 
enables instructors to determine the appropriate balance between traditional and 
computer-based experiments for their courses. By analyzing data through two dif-
ferent methods, students gain a greater understanding of the concepts behind the 
experiments. The seventh edition is updated with the latest information and tech-
niques involving state-of-the-art equipment and a new Guided Learning feature 
addresses the growing interest in guided-inquiry pedagogy. Fourteen additional 
experiments are also available through custom printing.
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Chapter 9
Snowshoes, p. 285
Bed-of-nails trick, p. 286

 Football injuries, p. 291
Arch structures in buildings, p. 292

 A pain in the ear, p. 295
Hydraulic lifts, p. 295
Building the pyramids, p. 297

 Decompression and injury to the 
lungs, p. 298

 Measuring blood pressure, p. 298
Ballpoint pens, p. 298

 Swim bladders in fish, p. 301
 Buoyancy control in fish, p. 301
 Cerebrospinal fluid, p. 301

Testing your car’s antifreeze, p. 301
Checking the battery charge, p. 301
Flight of a golf ball, p. 311
“Atomizers” in perfume bottles and paint 

sprayers, p. 311
 Vascular flutter and aneurysms, p. 311

Lift on aircraft wings, p. 312
Sailing upwind, p. 312
Home plumbing, p. 313
Rocket engines, p. 313

 Air sac surface tension, p. 315
 Walking on water, pp. 315–316

Detergents and waterproofing agents, p. 317
 Blood samples with capillary tubes, 

p. 318
 Capillary action in plants, p. 318
 Poiseuille’s law and blood flow, p. 320
 A blood transfusion, p. 320
 Turbulent flow of blood, p. 321
 Effect of osmosis on living cells, p. 322
 Kidney function and dialysis, p. 323
 Separating biological molecules with 

centrifugation, p. 325

Chapter 10
 Skin temperature, pp. 341–342

Thermal expansion joints, p. 343
Pyrex glass, p. 344
Bimetallic strips and thermostats, p. 345
Rising sea levels, p. 347

 Global warming and coastal flooding, 
p. 347

 The expansion of water on freezing 
and life on Earth, p. 348

Bursting pipes in winter, p. 348
Expansion and temperature, p. 359

■ Engaging Applications

Although physics is relevant to so much in our lives, it may not be obvious to students in an introductory course. In this tenth 
edition of College Physics, we continue a design feature begun in the seventh edition. This feature makes the relevance of physics 
to everyday life more obvious by pointing out specific applications in the form of a marginal note. Some of these applications 
pertain to the life sciences and are marked with the  icon. The list below is not intended to be a complete listing of all the 
applications of the principles of physics found in this textbook. Many other applications are to be found within the text and espe-
cially in the worked examples, conceptual questions, and end-of-chapter problems.

Chapter 3
Long jumping, p. 69

Chapter 4
Seat belts, p. 91
Helicopter flight, p. 98
Colliding vehicles, p. 99
Skydiving, p. 114

Chapter 5
 Flagellar movement; bioluminescence, 

p. 149
Asteroid impact, p. 150

 Shamu sprint (power generated by 
killer whale), p. 152

 Energy and power in a vertical jump, 
pp. 153–155

 Diet versus exercise in weight-loss 
programs, p. 154

 Maximum power output from humans 
over various periods (table), p. 155

Chapter 6
 Boxing and brain injury, pp. 172–173
 Injury to passengers in car collisions, 

p. 174
 Conservation of momentum and squid 

propulsion, p. 177
 Glaucoma testing, p. 179

Professor Goddard was right all along: 
Rockets work in space! p. 188

Multistage rockets, p. 190

Chapter 7
ESA launch sites, p. 209
Phonograph records and compact discs, 

p. 210
Artificial gravity, p. 215
Banked roadways, pp. 218
Why is the Sun hot? p. 224
Geosynchronous orbit and 

telecommunications satellites,  
p. 229

Chapter 8
 Locating your lab partner’s center of 

gravity, pp. 248–249
 A weighted forearm, pp. 249–250

Bicycle gears, p. 254
 Warming up, pp. 257–258

Figure skating, p. 263
Aerial somersaults, p. 264
Rotating neutron stars, p. 264

Chapter 11
 Working off breakfast, p. 369
 Physiology of exercise, p. 369

Sea breezes and thermals, p. 370
 Conductive losses from the human 

body, p. 382
 Minke whale temperature, p. 382

Home insulation, p. 383
Construction and thermal insulation,  

pp. 384–385
Cooling automobile engines, p. 386

 Algal blooms in ponds and lakes, 
p. 386

 Body temperature, p. 387
Light-colored summer clothing, p. 388

 Thermography, p. 388
 Radiation thermometers for 

measuring body temperature, p. 388
Thermal radiation and night vision, p. 389

 Polar bear club, pp. 389–390
Estimating planetary temperatures, p. 390
Thermos bottles, p. 391

 Global warming and greenhouse gases, 
pp. 391–393

Chapter 12
Refrigerators and heat pumps, pp. 421–422
“Perpetual motion” machines, p. 427
The direction of time, p. 430

 Human metabolism, pp. 432–435
 Fighting fat, pp. 433–434

Chapter 13
Archery, p. 450
Pistons and drive wheels, p. 454
Bungee jumping, p. 456
Pendulum clocks, p. 461
Use of pendulum in prospecting, p. 462
Shock absorbers, p. 463
Bass guitar strings, p. 469

Chapter 14
 Medical uses of ultrasound, p. 483
 Cavitron ultrasonic surgical aspirator, 

p. 484
 High-intensity focused ultrasound 

(HIFU), p. 484
Ultrasonic ranging unit for cameras,  

p. 484
The sounds heard during a storm, p. 485
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 OSHA noise-level regulations, p. 489
Sonic booms, p. 496
Connecting your stereo speakers, p. 497
Tuning a musical instrument, p. 500
Guitar fundamentals, pp. 501–502
Shattering goblets with the voice, p. 503

Structural integrity and resonance, p. 504
Oscillations in a harbor, p. 506
Why are instruments warmed up? p. 506
How do bugles work? p. 506
Using beats to tune a musical instrument, 

p. 509

Why does the professor sound like Donald 
Duck? p. 511

 The ear, pp. 511–513
 Cochlear implants, p. 513
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■ To the Student

As a student, it’s important that you understand how to use this book most effec-
tively and how best to go about learning physics. Scanning through the Pref-
ace will acquaint you with the various features available, both in the book and 
online. Awareness of your educational resources and how to use them is essential. 
Although physics is challenging, it can be mastered with the correct approach.

How to Study
Students often ask how best to study physics and prepare for examinations. There 
is no simple answer to this question, but we’d like to offer some suggestions based 
on our own experiences in learning and teaching over the years.

First and foremost, maintain a positive attitude toward the subject matter. Like 
learning a language, physics takes time. Those who keep applying themselves on a 
daily basis can expect to reach understanding and succeed in the course. Keep in 
mind that physics is the most fundamental of all natural sciences. Other science 
courses that follow will use the same physical principles, so it is important that you 
understand and are able to apply the various concepts and theories discussed in 
the text. They’re relevant!

Concepts and Principles
Students often try to do their homework without first studying the basic concepts. 
It is essential that you understand the basic concepts and principles before attempt-
ing to solve assigned problems. You can best accomplish this goal by carefully 
reading the textbook before you attend your lecture on the covered material. When 
reading the text, you should jot down those points that are not clear to you. Also 
be sure to make a diligent attempt at answering the questions in the Quick Quizzes 
as you come to them in your reading. We have worked hard to prepare questions 
that help you judge for yourself how well you understand the material. Pay care-
ful attention to the many Tips throughout the text. They will help you avoid mis-
conceptions, mistakes, and misunderstandings as well as maximize the efficiency 
of your time by minimizing adventures along fruitless paths. During class, take 
careful notes and ask questions about those ideas that are unclear to you. Keep 
in mind that few people are able to absorb the full meaning of scientific material 
after only one reading. Your lectures and laboratory work supplement your text-
book and should clarify some of the more difficult material. You should minimize 
rote memorization of material. Successful memorization of passages from the text, 
equations, and derivations does not necessarily indicate that you understand the 
fundamental principles.
 Your understanding will be enhanced through a combination of efficient study 
habits, discussions with other students and with instructors, and your ability to 
solve the problems presented in the textbook. Ask questions whenever you think 
clarification of a concept is necessary.

Study Schedule
It is important for you to set up a regular study schedule, preferably a daily one. 
Make sure you read the syllabus for the course and adhere to the schedule set 
by your instructor. As a general rule, you should devote about two hours of study 
time for every one hour you are in class. If you are having trouble with the course, 
seek the advice of the instructor or other students who have taken the course. You 
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may find it necessary to seek further instruction from experienced students. Very 
often, instructors offer review sessions in addition to regular class periods. It is 
important that you avoid the practice of delaying study until a day or two before an 
exam. One hour of study a day for 14 days is far more effective than 14 hours the 
day before the exam. “Cramming” usually produces disastrous results, especially 
in science. Rather than attempting an all-night study session immediately before 
an exam, briefly review the basic concepts and equations and get a good night’s 
rest. If you think you need additional help in understanding the concepts, in pre-
paring for exams, or in problem solving, we suggest you acquire a copy of the Stu-
dent Solutions Manual and Study Guide that accompanies this textbook; this manual 
should be available at your college bookstore.

Visit the College Physics website at www.CengageBrain.com to see samples of select 
student supplements. Go to CengageBrain.com to purchase and access this product 
at Cengage Learning’s preferred online store.

use the Features
You should make full use of the various features of the text discussed in the pref-
ace. For example, marginal notes are useful for locating and describing important 
equations and concepts, and boldfaced type indicates important statements and 
definitions. Many useful tables are contained in the appendices, but most tables 
are incorporated in the text where they are most often referenced. Appendix A is a 
convenient review of mathematical techniques.

Answers to all Quick Quizzes and Example Questions, as well as odd-numbered 
multiple-choice questions, conceptual questions, and problems, are given at the 
end of the textbook. Answers to selected end-of-chapter problems are provided in 
the Student Solutions Manual and Study Guide. Problem-Solving Strategies included 
in selected chapters throughout the text give you additional information about 
how you should solve problems. The contents provide an overview of the entire 
text, and the index enables you to locate specific material quickly. Footnotes some-
times are used to supplement the text or to cite other references on the subject 
discussed.

After reading a chapter, you should be able to define any new quantities intro-
duced in that chapter and to discuss the principles and assumptions used to arrive 
at certain key relations. The chapter summaries and the review sections of the 
Student Solutions Manual and Study Guide should help you in this regard. In some 
cases, it may be necessary for you to refer to the index of the text to locate certain 
topics. You should be able to correctly associate with each physical quantity the 
symbol used to represent that quantity and the unit in which the quantity is speci-
fied. Further, you should be able to express each important relation in a concise 
and accurate prose statement.

Problem Solving
R. P. Feynman, Nobel laureate in physics, once said, “You do not know anything 
until you have practiced.” In keeping with this statement, we strongly advise that 
you develop the skills necessary to solve a wide range of problems. Your ability to 
solve problems will be one of the main tests of your knowledge of physics, so you 
should try to solve as many problems as possible. It is essential that you under-
stand basic concepts and principles before attempting to solve problems. It is good 
practice to try to find alternate solutions to the same problem. For example, you 
can solve problems in mechanics using Newton’s laws, but very often an alter-
nate method that draws on energy considerations is more direct. You should not 
deceive yourself into thinking you understand a problem merely because you have 
seen it solved in class. You must be able to solve the problem and similar problems 
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on your own. We have cast the examples in this book in a special, two-column 
format to help you in this regard. After studying an example, see if you can cover 
up the right-hand side and do it yourself, using only the written descriptions on 
the left as hints. Once you succeed at that, try solving the example using only the 
strategy statement as a guide. Finally, try to solve the problem completely on your 
own. At this point you are ready to answer the associated question and solve the 
exercise. Once you have accomplished all these steps, you will have a good mastery 
of the problem, its concepts, and mathematical technique. After studying all the 
Example Problems in this way, you are ready to tackle the problems at the end of 
the chapter. Of those, the guided problems provide another aid to learning how to 
solve some of the more complex problems.
 The approach to solving problems should be carefully planned. A systematic plan 
is especially important when a problem involves several concepts. First, read the 
problem several times until you are confident you understand what is being asked. 
Look for any key words that will help you interpret the problem and perhaps allow 
you to make certain assumptions. Your ability to interpret a question properly is 
an integral part of problem solving. Second, you should acquire the habit of writ-
ing down the information given in a problem and those quantities that need to be 
found; for example, you might construct a table listing both the quantities given and 
the quantities to be found. This procedure is sometimes used in the worked exam-
ples of the textbook. After you have decided on the method you think is appropriate 
for a given problem, proceed with your solution. Finally, check your results to see if 
they are reasonable and consistent with your initial understanding of the problem. 
General problem-solving strategies of this type are included in the text and are high-
lighted with a surrounding box. If you follow the steps of this procedure, you will 
find it easier to come up with a solution and will also gain more from your efforts.
 Often, students fail to recognize the limitations of certain equations or physical 
laws in a particular situation. It is very important that you understand and remem-
ber the assumptions underlying a particular theory or formalism. For example, 
certain equations in kinematics apply only to a particle moving with constant 
acceleration. These equations are not valid for describing motion whose accelera-
tion is not constant, such as the motion of an object connected to a spring or the 
motion of an object through a fluid.

experiments
Because physics is a science based on experimental observations, we recommend 
that you supplement the text by performing various types of “hands-on” experi-
ments, either at home or in the laboratory. For example, the common Slinky/ toy 
is excellent for studying traveling waves, a ball swinging on the end of a long string 
can be used to investigate pendulum motion, various masses attached to the end 
of a vertical spring or rubber band can be used to determine their elastic nature, 
an old pair of Polaroid sunglasses and some discarded lenses and a magnifying 
glass are the components of various experiments in optics, and the approximate 
measure of the free-fall acceleration can be determined simply by measuring with 
a stopwatch the time it takes for a ball to drop from a known height. The list of 
such experiments is endless. When physical models are not available, be imagina-
tive and try to develop models of your own.

New media
If available, we strongly encourage you to use the Enhanced WebAssign product 
that is available with this textbook. It is far easier to understand physics if you see 
it in action, and the materials available in Enhanced WebAssign will enable you 
to become a part of that action. Enhanced WebAssign is described in the Preface.
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An Invitation to Physics
It is our hope that you too will find physics an exciting and enjoyable experience 
and that you will profit from this experience, regardless of your chosen profession. 
Welcome to the exciting world of physics!

To see the World in a Grain of Sand
And a Heaven in a Wild Flower,
Hold infinity in the palm of your hand
And Eternity in an hour.

William Blake, “Auguries of Innocence”
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Content Category 4A: Translational motion, 
forces, work, energy, and equilibrium in 
living systems

Review Plan

motion

� Chapter 1, Sections 1.1, 1.3, and 1.5
 Examples 1.1–1.2 and 1.4–1.5
 Chapter problems 1–6 and 15–27

� Chapter 2, Sections 2.2 and 2.3
 Quick Quizzes 2.1–2.3
 Examples 2.1–2.3
 Chapter problems 1–25

� Chapter 3, Sections 3.1 and 3.2 
 Quick Quizzes 3.1–3.3
 Examples 3.1–3.3
 Chapter problems 1–21

equilibrium

� Chapter 4, Sections 4.1–4.5 
 Quick Quizzes 4.1–4.6
 Examples 4.1–4.11
 Chapter problems 1–38

� Chapter 8, Sections 8.1–8.5
  Quick Quizzes 8.1–8.3
 Examples 8.1–8.11
 Chapter problems 1–41

Work

� Chapter 5, Sections 5.1 and 5.2
 Quick Quiz 5.1
 Examples 5.1–5.3
 Chapter problems 1–18

� Chapter 12, Section 12.1
 Quick Quiz 12.1
 Examples 12.1–12.2
 Chapter problems 1–10

 energy

� Chapter 5, Sections 5.2–5.6
 Quick Quizzes 5.2–5.4 
 Examples 5.3–5.14
 Chapter problems 9–58

Content Category 4B: Importance of fluids for 
the circulation of blood, gas movement, and 
gas exchange

Review Plan

Fluids

� Chapter 9, Sections 9.2, 9.4–9.7, and 9.9
Quick Quizzes 9.1–9.7
Examples 9.1, 9.5–9.14, and 9.16–9.19 
Chapter problems 1–7 and 20–72

Gas phase

� Chapter 9, Section 9.5
Quick Quizzes 9.3–9.4
Chapter problems 20–28

�  Chapter 10, Sections 10.2, 10.4, and 
10.5
Quick Quiz 10.6
Examples 10.1–10.2 and 10.6–10.10
Chapter problems 1–10 and 29–46

Welcome to Your MCAT Test Preparation Guide
The MCAT Test Preparation Guide makes your copy of College Physics, tenth edition, the most comprehensive MCAT 
study tool and classroom resource in introductory physics. Starting with the Spring 2015 test, the MCAT will be 
thoroughly revised (see www.aamc.org/students/applying/mcat/mcat2015 for more details). The new test section that 
will include problems related to physics is Chemical and Physical Foundations of Biological Systems. Of the ~65 test questions 
in this section, approximately 25% will relate to introductory physics topics from the six content categories shown below:
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Content Category 4C: Electrochemistry and 
electrical circuits and their elements.

Review Plan

electrostatics

� Chapter 15, Sections 15.1–15.2 and 15.4
Quick Quizzes 15.1 and 15.3–15.5
Examples 15.4 and 15.5
Chapter problems 17–29

� Chapter 16, Sections 16.1–16.3
Quick Quizzes 16.1–16.7 
Examples 16.1–16.5
Chapter problems 1–24

Circuit elements

� Chapter 15, Sections 15.1 and 15.6
Chapter problems 30–35

� Chapter 16, Sections 16.7–16.10
Quick Quizzes 16.8–16.11
Examples 16.6–16.12
Chapter problems 25–53

� Chapter 17, Sections 17.1 and 17.3–17.5
Quick Quizzes 17.1 and 17.3–17.6
Examples 17.1 and 17.3–17.4
Chapter problems 1–32

� Chapter 18, Sections 18.1–18.3
Quick Quizzes 18.1–18.8
Examples 18.1–18.3
Chapter problems 1–15

Content Category 4D: How light and sound 
interact with matter

Review Plan

Sound

� Chapter 13, Sections 13.6 and 13.8
 Examples 13.8–13.9
 Chapter problems 41–49

�  Chapter 14, Sections 14.1–14.4, 14.6, 
14.9–14.10, and 14.12

 Quick Quizzes 14.1–14.3 and 14.5–14.6
 Examples 14.1–14.2, 14.4–14.5, and 14.9–14.10
 Chapter problems 1–32, 48–54

light, electromagnetic radiation

� Chapter 21, Sections 21.11–21.12
 Quick Quizzes 21.7 and 21.8
 Examples 21.8 and 21.9
 Chapter problems 49–63

� Chapter 22, Sections 22.1 and 22.4
 Example 22.5
 Chapter problems 1–7 and 28–33

�  Chapter 24, Sections 24.1–24.2, 24.4, 
24.6–24.9

 Quick Quizzes 24.1–24.6
 Examples 24.1–24.4 and 24.6–24.8
 Chapter problems 1–61

� Chapter 27, Section 27.3
 Chapter problems 15–17

Geometrical optics

� Chapter 22, Sections 22.2–22.4 and 22.7
 Quick Quizzes 22.2–22.4
 Examples 22.1–22.6
 Chapter problems 8–44

�  Chapter 23, Sections 23.1–23.4 and 
23.6–23.7

 Quick Quizzes 23.1–23.6
 Examples 23.1–23.10
 Chapter problems 1–46

� Chapter 25, Sections 25.1–25.6
 Quick Quizzes 25.1–25.2
 Examples 25.1–25.8
 Chapter problems 1–46
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Content Category 4e: Atoms, nuclear decay, 
electronic structure, and atomic chemical 
behavior

Review Plan

Atomic nucleus

� Chapter 19, Section 19.6
Quick Quiz 19.4
Examples 19.5 and 19.6
Chapter problems 33–42

� Chapter 29, Sections 29.1–29.4
Quick Quizzes 29.1–29.3
Examples 29.1–29.5
Chapter problems 1–31

electronic structure

� Chapter 19, Section 19.10

� Chapter 27, Sections 27.2 and 27.8
Examples 27.1 and 27.5
Chapter problems 9–14 and 33–38

�  Chapter 28, Sections 28.2–28.3, 28.5, 
and 28.7
Quick Quizzes 28.1 and 28.3
Examples 28.1 and 28.2
Chapter problems 1–26 and 30–33

Content Category 5e: Principles of chemical 
thermodynamics and kinetics

Review Plan

energy changes in chemical reactions

� Chapter 10, Sections 10.1 and 10.3
Quick Quizzes 10.1–10.5
Examples 10.3–10.5
Chapter problems 11–28

� Chapter 11, Sections 11.1–11.5
Quick Quizzes 11.1–11.5
Examples 11.1–11.11
Chapter problems 1–50

� Chapter 12, Sections 12.2 and 12.4–12.5
 Quick Quizzes 12.3–12.5

Examples 12.3, 12.10–12.12, and 12.14–12.16
Chapter problems 11–54
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Introduction
The goal of physics is to provide an understanding of the physical world by developing the-
ories based on experiments. A physical theory, usually expressed mathematically, describes 
how a given physical system works. The theory makes certain predictions about the physical 
system which can then be checked by observations and experiments. If the predictions turn 
out to correspond closely to what is actually observed, then the theory stands, although it 
remains provisional. No theory to date has given a complete description of all physical phe-
nomena, even within a given subdiscipline of physics. Every theory is a work in progress.

The basic laws of physics involve such physical quantities as force, velocity, volume, and 
acceleration, all of which can be described in terms of more fundamental quantities. In 
mechanics, it is conventional to use the quantities of length (L), mass (M), and time (T); all 
other physical quantities can be constructed from these three.

1.1    Standards of Length, Mass, and Time
Learning Objectives

1. State and use the SI units for length, mass, and time.

2. Give examples of the approximate magnitudes of common measurements.

To communicate the result of a measurement of a certain physical quantity, a unit
for the quantity must be defined. If our fundamental unit of length is defined 
to be 1.0 meter, for example, and someone familiar with our system of measure-
ment reports that a wall is 2.0 meters high, we know that the height of the wall is 
twice the fundamental unit of length. Likewise, if our fundamental unit of mass is 

In the eighteenth century, 
navigators of ocean-going ships 
could obtain their latitude 
by observations of the north 
star, but there was no reliable 
way of determining longitude. 
The H1 clock was invented by 
John Harrison in 1736 in an 
attempt to address that need. 
His clock had to remain highly 
accurate for months at sea 
while withstanding constant 
motion, dampness, and changes 
of temperature. To determine 
longitude, navigators had only to 
compare local noon, when the 
sun was highest in the sky, with 
the time on the clock, which was 
Greenwich time. The difference 
in the number of hours then 
revealed their longitude.

1
1.1 Standards of Length, Mass, 

and Time

1.2 The Building Blocks of Matter

1.3 Dimensional Analysis

1.4 Uncertainty in Measurement 
and Significant Figures

1.5 Conversion of Units

1.6 Estimates and Order-of-
Magnitude Calculations

1.7 Coordinate Systems

1.8 Trigonometry

1.9 Problem-Solving Strategy
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2  c hap t e r  1 | Introduction

defined as 1.0 kilogram and we are told that a person has a mass of 75 kilograms, 
then that person has a mass 75 times as great as the fundamental unit of mass.

In 1960 an international committee agreed on a standard system of units for 
the fundamental quantities of science, called SI (Système International). Its units 
of length, mass, and time are the meter, kilogram, and second, respectively.

Length
In 1799 the legal standard of length in France became the meter, defined as one 
ten-millionth of the distance from the equator to the North Pole. Until 1960, the 
official length of the meter was the distance between two lines on a specific bar 
of platinum-iridium alloy stored under controlled conditions. This standard was 
abandoned for several reasons, the principal one being that measurements of 
the separation between the lines were not precise enough. In 1960 the meter was 
defined as 1 650 763.73 wavelengths of orange-red light emitted from a  krypton-86 
lamp. In October 1983 this definition was abandoned also, and the meter was 
redefined as the distance traveled by light in vacuum during a time interval 
of 1/299 792 458 second. This latest definition establishes the speed of light at 
299 792 458 meters per second.

Mass
The SI unit of mass, the kilogram, is defined as the mass of a specific platinum–
iridium alloy cylinder kept at the International Bureau of Weights and Measures 
at Sèvres, France (similar to that shown in Fig. 1.1a). As we’ll see in Chapter 4, 
mass is a quantity used to measure the resistance to a change in the motion of an 
object. It’s more difficult to cause a change in the motion of an object with a large 
mass than an object with a small mass.

Time
Before 1960, the time standard was defined in terms of the average length of a 
solar day in the year 1900. (A solar day is the time between successive appearances 
of the Sun at the highest point it reaches in the sky each day.) The basic unit of 

Definition of the meter c

Definition of the kilogram c

t ip 1.1  No Commas in 
Numbers with Many Digits
In science, numbers with more 
than three digits are written in 
groups of three digits separated 
by spaces rather than commas; 
so that 10 000 is the same as the 
common American notation 
10,000. Similarly, p 5 3.14159265 
is written as 3.141 592 65.

Figure 1.1  (a) International Pro-
totype of the Kilogram, an accurate 
copy of the International Standard 
Kilogram kept at Sèvres, France, is 
housed under a double bell jar in 
a vault at the National Institute of 
Standards and Technology. (b) A 
cesium fountain atomic clock. The 
clock will neither gain nor lose a  
second in 20 million years.
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1.1 | Standards of Length, Mass, and Time  3

time, the second, was defined to be (1/60)(1/60)(1/24) 5 1/86 400 of the average 
solar day. In 1967 the second was redefined to take advantage of the high preci-
sion attainable with an atomic clock, which uses the characteristic frequency of 
the light emitted from the cesium-133 atom as its “reference clock.” The second is 
now defined as 9 192 631 700 times the period of oscillation of radiation from 
the cesium atom. The newest type of cesium atomic clock is shown in Figure 1.1b.

Approximate Values for Length, Mass, and Time Intervals
Approximate values of some lengths, masses, and time intervals are presented in 
Tables 1.1, 1.2, and 1.3, respectively. Note the wide ranges of values. Study these 
tables to get a feel for a kilogram of mass (this book has a mass of about 2 kilograms), 
a time interval of 1010 seconds (one century is about 3 3 109 seconds), or 2 meters 
of length (the approximate height of a forward on a basketball team). Appendix A 
reviews the notation for powers of 10, such as the expression of the number 50 000 
in the form 5 3 104.

Systems of units commonly used in physics are the Système International, in 
which the units of length, mass, and time are the meter (m), kilogram (kg), and 
second (s); the cgs, or Gaussian, system, in which the units of length, mass, and time 

b Definition of the second

t able 1.1  Approximate Values of Some Measured Lengths

 Length (m)

Distance from Earth to most remote known quasar 1 3 1026

Distance from Earth to most remote known normal galaxies 4 3 1025

Distance from Earth to nearest large galaxy (M31, the Andromeda galaxy) 2 3 1022

Distance from Earth to nearest star (Proxima Centauri) 4 3 1016

One light year 9 3 1015

Mean orbit radius of Earth about Sun 2 3 1011

Mean distance from Earth to Moon 4 3 108

Mean radius of Earth 6 3 106

Typical altitude of satellite orbiting Earth 2 3 105

Length of football field 9 3 101

Length of housefly 5 3 1023

Size of smallest dust particles 1 3 1024

Size of cells in most living organisms 1 3 1025

Diameter of hydrogen atom 1 3 10210

Diameter of atomic nucleus 1 3 10214

Diameter of proton 1 3 10215

t able 1.2  Approximate 
Values of Some Masses

Mass (kg)

Observable Universe 1 3 1052

Milky Way galaxy 7 3 1041

Sun 2 3 1030

Earth 6 3 1024

Moon 7 3 1022

Shark 1 3 102

Human 7 3 101

Frog 1 3 1021

Mosquito 1 3 1025

Bacterium 1 3 10215

Hydrogen atom 2 3 10227

Electron 9 3 10231

t able 1.3  Approximate Values of Some Time Intervals

Time Interval (s)

Age of Universe 5 3 1017

Age of Earth 1 3 1017

Average age of college student 6 3 108

One year 3 3 107

One day 9 3 104 

Time between normal heartbeats 8 3 1021

Perioda of audible sound waves 1 3 1023

Perioda of typical radio waves 1 3 1026

Perioda of vibration of atom in solid 1 3 10213

Perioda of visible light waves 2 3 10215

Duration of nuclear collision 1 3 10222

Time required for light to travel across a proton 3 3 10224

aA period is defined as the time required for one complete vibration.
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4  c hap t e r  1 | Introduction

are the centimeter (cm), gram (g), and second; and the U.S. customary system, in 
which the units of length, mass, and time are the foot (ft), slug, and second. SI units 
are almost universally accepted in science and industry, and will be used through-
out the book. Limited use will be made of Gaussian and U.S. customary units.

Some of the most frequently used “metric” (SI and cgs) prefixes representing 
powers of 10 and their abbreviations are listed in Table 1.4. For example, 1023 m is 
equivalent to 1 millimeter (mm), and 103 m is 1 kilometer (km). Likewise, 1 kg is 
equal to 103 g, and 1 megavolt (MV) is 106 volts (V). It’s a good idea to memorize 
the more common prefixes early on: femto- to centi-, and kilo- to giga- are used 
routinely by most physicists.

1.2    The Building Blocks of Matter
Learning Objectives

1. State the fundamental components of matter.

2. Describe qualitatively the levels of structure of matter.

A 1-kg (<  2-lb) cube of solid gold has a length of about 3.73 cm (< 1.5 in.) on 
a side. If the cube is cut in half, the two resulting pieces retain their chemical 
identity. But what happens if the pieces of the cube are cut again and again, 
indefinitely? The Greek philosophers Leucippus and Democritus couldn’t accept 
the idea that such cutting could go on forever. They speculated that the process 
ultimately would end when it produced a particle that could no longer be cut. In 
Greek, atomos means “not sliceable.” From this term comes our English word atom, 
once believed to be the smallest particle of matter but since found to be a compos-
ite of more elementary particles.

The atom can be naively visualized as a miniature solar system, with a dense, 
positively charged nucleus occupying the position of the Sun and negatively 
charged electrons orbiting like planets. This model of the atom, first developed 
by the great Danish physicist Niels Bohr nearly a century ago, led to the under-
standing of certain properties of the simpler atoms such as hydrogen but failed to 
explain many fine details of atomic structure.

Notice the size of a hydrogen atom, listed in Table 1.1, and the size of a 
proton—the nucleus of a hydrogen atom—one hundred thousand times smaller. 
If the proton were the size of a ping-pong ball, the electron would be a tiny speck 
about the size of a bacterium, orbiting the proton a kilometer away! Other atoms 
are similarly constructed. So there is a surprising amount of empty space in ordi-
nary matter.

After the discovery of the nucleus in the early 1900s, questions arose concern-
ing its structure. Although the structure of the nucleus remains an area of active 
research even today, by the early 1930s scientists determined that two basic entities— 
protons and neutrons—occupy the nucleus. The proton is nature’s most common 
carrier of positive charge, equal in magnitude but opposite in sign to the charge 
on the electron. The number of protons in a nucleus determines what the element 
is. For instance, a nucleus containing only one proton is the nucleus of an atom of 
hydrogen, regardless of how many neutrons may be present. Extra neutrons cor-
respond to different isotopes of hydrogen—deuterium and tritium—which react 
chemically in exactly the same way as hydrogen, but are more massive. An atom 
having two protons in its nucleus, similarly, is always helium, although again, dif-
fering numbers of neutrons are possible.

The existence of neutrons was verified conclusively in 1932. A neutron has no 
charge and has a mass about equal to that of a proton. Except for hydrogen, all 
atomic nuclei contain neutrons, which, together with the protons, interact through 
the strong nuclear force. That force opposes the strongly repulsive electrical force 
of the protons, which otherwise would cause the nucleus to disintegrate.

t able 1.4  Some Prefixes for 
Powers of Ten Used with 
“Metric” (SI and cgs) Units

Power Prefix Abbreviation

10218 atto- a
 10215 femto- f
 10212 pico- p
 1029 nano- n
 1026 micro- m

 1023 milli- m
 1022 centi- c
 1021 deci- d
 101 deka- da
 103 kilo- k
 106 mega- M
 109 giga- G
 1012 tera- T
 1015 peta- P
 1018 exa- E
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Unless otherwise noted, all content on this page is © Cengage Learning.

The division doesn’t stop here; strong evidence collected over many years indi-
cates that protons, neutrons, and a zoo of other exotic particles are composed of six 
particles called quarks (rhymes with “sharks” though some rhyme it with “forks”). 
These particles have been given the names up, down, strange, charm, bottom, and top. 
The up, charm, and top quarks each carry a charge equal to 12

3 that of the proton, 
whereas the down, strange, and bottom quarks each carry a charge equal to 21

3
the proton charge. The proton consists of two up quarks and one down quark (see 
Fig. 1.2), giving the correct charge for the proton, 11. The neutron is composed of 
two down quarks and one up quark and has a net charge of zero.

The up and down quarks are sufficient to describe all normal matter, so the 
existence of the other four quarks, indirectly observed in high-energy experi-
ments, is something of a mystery. Despite strong indirect evidence, no isolated 
quark has ever been observed. Consequently, the possible existence of yet more 
fundamental particles remains purely speculative.

1.3    Dimensional Analysis
Learning Objectives

1. State the definition of a dimension and give examples of the dimensions of 
some basic physical quantities.

2. Use dimensions to check equations for consistency.

3. Use dimensions to derive relationships between physical quantities.

In physics the word dimension denotes the physical nature of a quantity. The dis-
tance between two points, for example, can be measured in feet, meters, or fur-
longs, which are different ways of expressing the dimension of length.

The symbols used in this section to specify the dimensions of length, mass, and 
time are L, M, and T, respectively. Brackets [ ] will often be used to denote the 
dimensions of a physical quantity. In this notation, for example, the dimensions of 
velocity v are written [v] 5 L/T, and the dimensions of area A are [A] 5 L2. The 
dimensions of area, volume, velocity, and acceleration are listed in Table 1.5, along 
with their units in the three common systems. The dimensions of other quantities, 
such as force and energy, will be described later as they are introduced.

In physics it’s often necessary to deal with mathematical expressions that relate 
different physical quantities. One way to analyze such expressions, called dimen-
sional analysis, makes use of the fact that dimensions can be treated as algebraic 
quantities. Adding masses to lengths, for example, makes no sense, so it follows 
that quantities can be added or subtracted only if they have the same dimensions. 
If the terms on the opposite sides of an equation have the same dimensions, then 
that equation may be correct, although correctness can’t be guaranteed on the 
basis of dimensions alone. Nonetheless, dimensional analysis has value as a partial 
check of an equation and can also be used to develop insight into the relationships 
between physical quantities.

The procedure can be illustrated by developing some relationships between 
acceleration, velocity, time, and distance. Distance x has the dimension of length: 
[x] 5 L. Time t has dimension [t] 5 T. Velocity v has the dimensions length over 

A piece of 
gold consists 
of gold atoms.

p

u u

d

At the center 
of each atom 
is a nucleus.

Inside the 
nucleus are 
protons 
(orange) and 
neutrons 
(gray).

Protons and 
neutrons are 
composed of 
quarks. A 
proton 
consists of two 
up quarks and 
one down 
quark.

Figure 1.2  Levels of organization 
in matter.
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t able 1.5  Dimensions and Some Units of Area, Volume, Velocity,  
and Acceleration

System Area (L2) Volume (L3) Velocity (L/T) Acceleration (L/T2)

SI m2 m3 m/s m/s2

cgs cm2 cm3 cm/s cm/s2

U.S. customary ft2 ft3 ft/s ft/s2
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6  c hap t e r  1 | Introduction

time: [v] 5 L/T, and acceleration the dimensions length divided by time squared: 
[a] 5 L/T2. Notice that velocity and acceleration have similar dimensions, except 
for an extra dimension of time in the denominator of acceleration. It follows that

3v 4 5
L
T

5
L
T2 T 5 3a 4 3t 4

From this it might be guessed that velocity equals acceleration multiplied by time, 
v 5 at, and that is true for the special case of motion with constant acceleration 
starting at rest. Noticing that velocity has dimensions of length divided by time 
and distance has dimensions of length, it’s reasonable to guess that

3x 4 5 L 5 L 
T
T

5
L
T

 T 5 3v 4 3t 4 5 3a 4 3t 42

Here it appears that x 5 at2 might correctly relate the distance traveled to accelera-
tion and time; however, that equation is not even correct in the case of constant 
acceleration starting from rest. The correct expression in that case is x 5 1

2at
2. 

These examples serve to show the inherent limitations in using dimensional analy-
sis to discover relationships between physical quantities. Nonetheless, such simple 
procedures can still be of value in developing a preliminary mathematical model 
for a given physical system. Further, because it’s easy to make errors when solving 
problems, dimensional analysis can be used to check the consistency of the results. 
When the dimensions in an equation are not consistent, it indicates an error has 
been made in a prior step.

 ■ e Xa Mp Le  1.1 Analysis of an Equation

g Oa L  Check an equation using dimensional analysis.

pr Ob Le M  Show that the expression v 5 v0 1 at is dimensionally correct, where v and v0 represent velocities, a is accel-
eration, and t is a time interval.

s t r at e g Y  Analyze each term, finding its dimensions, and then check to see if all the terms agree with each other.

s OLUti On
Find dimensions for v and v0. 3v 4 5 3v0 4 5

L
T

Find the dimensions of at. 3at 4 5 3a 4 3t 4 5
L
T2 1T 2 5

L
T

re Mar Ks  All the terms agree, so the equation is dimensionally correct.

QUes t i On  1.1  True or False. An equation that is dimensionally correct is always physically correct, up to a constant of 
proportionality.

e Xe rc i s e  1.1  Determine whether the equation x 5 v t 2 is dimensionally correct. If not, provide a correct expression, 
up to an overall constant of proportionality.

a ns We r  Incorrect. The expression x 5 vt is dimensionally correct.

 ■ e Xa Mp Le  1.2 Find an Equation

g Oa L  Derive an equation by using dimensional analysis.

pr Ob Le M  Find a relationship between an acceleration of constant magnitude a, speed v, and distance r from the  
origin for a particle traveling in a circle.

s t r at e g Y  Start with the term having the most dimensionality, a. Find its dimensions, and then rewrite those dimen-
sions in terms of the dimensions of v and r. The dimensions of time will have to be eliminated with v, because that’s the 
only quantity (other than a, itself) in which the dimension of time appears.
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1.4 | Uncertainty in Measurement and Significant Figures   7

s OLUti On
Write down the dimensions of a: 3a 4 5

L
T2

Solve the dimensions of speed for T: 3v 4 5
L
T

S T 5
L
3v 4

Substitute the expression for T into the equation for [a]: 3a 4 5
L
T2 5

L
1L/ 3v 4 22 5

3v 42
L

Substitute L 5 [r], and guess at the equation: 3a 4 5
3v 42
3r 4    S  a 5

v 2

r

re Mar Ks  This is the correct equation for the magnitude of the centripetal acceleration—acceleration toward the cen-
ter of motion—to be discussed in Chapter 7. In this case it isn’t necessary to introduce a numerical factor. Such a factor is 
often displayed explicitly as a constant k in front of the right-hand side; for example, a 5 kv2/r. As it turns out, k 5 1 gives 
the correct expression. A good technique sometimes introduced in calculus-based textbooks involves using unknown 
powers of the dimensions. This problem would then be set up as [a] 5 [v]b[r]c. Writing out the dimensions and equating 
powers of each dimension on both sides of the equation would result in b 5 2 and c 5 21.

QUes t i On  1.2  True or False: Replacing v by r/t in the final answer also gives a dimensionally correct equation.

e Xe rc i s e  1.2  In physics, energy E carries dimensions of mass times length squared divided by time squared. Use 
dimensional analysis to derive a relationship for energy in terms of mass m and speed v, up to a constant of proportion-
ality. Set the speed equal to c, the speed of light, and the constant of proportionality equal to 1 to get the most famous 
equation in physics. (Note, however, that the first relationship is associated with energy of motion, and the second with 
energy of mass. See Chapter 26.)

a ns We r  E 5 kmv 2  S E 5 mc 2 when k 5 1 and v 5 c.

1.4     Uncertainty in Measurement  
and Significant Figures
Learning Objectives

1. Identify the number of significant figures in a given physical measurement.

2. Apply significant figures to estimate the proper accuracy of a combination of 
physical measurements.

Physics is a science in which mathematical laws are tested by experiment. No physi-
cal quantity can be determined with complete accuracy because our senses are 
physically limited, even when extended with microscopes, cyclotrons, and other 
instruments. Consequently, it’s important to develop methods of determining the 
accuracy of measurements.

All measurements have uncertainties associated with them, whether or not they 
are explicitly stated. The accuracy of a measurement depends on the sensitivity of 
the apparatus, the skill of the person carrying out the measurement, and the num-
ber of times the measurement is repeated. Once the measurements, along with 
their uncertainties, are known, it’s often the case that calculations must be carried 
out using those measurements. Suppose two such measurements are multiplied. 
When a calculator is used to obtain this product, there may be eight digits in the 
calculator window, but often only two or three of those numbers have any signifi-
cance. The rest have no value because they imply greater accuracy than was actu-
ally achieved in the original measurements. In experimental work, determining 
how many numbers to retain requires the application of statistics and the mathe-
matical propagation of uncertainties. In a textbook it isn’t practical to apply those 
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8  c hap t e r  1 | Introduction

sophisticated tools in the numerous calculations, so instead a simple method, 
called significant figures, is used to indicate the approximate number of digits that 
should be retained at the end of a calculation. Although that method is not math-
ematically rigorous, it’s easy to apply and works fairly well.

Suppose that in a laboratory experiment we measure the area of a rectangular 
plate with a meter stick. Let’s assume that the accuracy to which we can measure a 
particular dimension of the plate is 60.1 cm. If the length of the plate is measured 
to be 16.3 cm, we can only claim that it lies somewhere between 16.2 cm and 16.4 cm. 
In this case, we say the measured value has three significant figures. Likewise, if 
the plate’s width is measured to be 4.5 cm, the actual value lies between 4.4 cm 
and 4.6 cm. This measured value has only two significant figures. We could write 
the measured values as 16.3 6 0.1 cm and 4.5 6 0.1 cm. In general, a signifi-
cant figure is a reliably known digit (other than a zero used to locate a decimal 
point). Note that in each case, the final number has some uncertainty associated 
with it, and is therefore not 100% reliable. Despite the uncertainty, that number is 
retained and considered significant because it does convey some information.

Suppose we would like to find the area of the plate by multiplying the two mea-
sured values together. The final value can range between (16.3 2 0.1 cm)(4.5 2 
0.1 cm) 5 (16.2 cm)(4.4 cm) 5 71.28 cm2 and (16.3 1 0.1 cm)(4.5 1 0.1 cm) 5 
(16.4 cm)(4.6 cm) 5 75.44 cm2. Claiming to know anything about the hundredths 
place, or even the tenths place, doesn’t make any sense, because it’s clear we can’t 
even be certain of the units place, whether it’s the 1 in 71, the 5 in 75, or some-
where in between. The tenths and the hundredths places are clearly not signifi-
cant. We have some information about the units place, so that number is significant. 
Multiplying the numbers at the middle of the uncertainty ranges gives (16.3 cm)
(4.5 cm) 5 73.35 cm2, which is also in the middle of the area’s uncertainty range. 
Because the hundredths and tenths are not significant, we drop them and take 
the answer to be 73 cm2, with an uncertainty of 62 cm2. Note that the answer has 
two significant figures, the same number of figures as the least accurately known 
quantity being multiplied, the 4.5-cm width.

Calculations as carried out in the preceding paragraph can indicate the proper 
number of significant figures, but those calculations are time-consuming. Instead, 
two rules of thumb can be applied. The first, concerning multiplication and divi-
sion, is as follows: In multiplying (dividing) two or more quantities, the number 
of significant figures in the final product (quotient) is the same as the number of 
significant figures in the least accurate of the factors being combined, where least 
accurate means having the lowest number of significant figures.

To get the final number of significant figures, it’s usually necessary to do some 
rounding. If the last digit dropped is less than 5, simply drop the digit. If the last 
digit dropped is greater than or equal to 5, raise the last retained digit by one.1

Zeros may or may not be significant figures. Zeros used to position the decimal 
point in such numbers as 0.03 and 0.007 5 are not considered significant figures. 
Hence, 0.03 has one significant figure, and 0.007 5 has two.

When zeros are placed after other digits in a whole number, there is a possibil-
ity of misinterpretation. For example, suppose the mass of an object is given as 
1 500 g. This value is ambiguous, because we don’t know whether the last two zeros 
are being used to locate the decimal point or whether they represent significant 
figures in the measurement.

Using scientific notation to indicate the number of significant figures removes 
this ambiguity. In this case, we express the mass as 1.5 3 103 g if there are two sig-
nificant figures in the measured value, 1.50 3 103 g if there are three significant 
figures, and 1.500 3 103 g if there are four. Likewise, 0.000 15 is expressed in scien-
tific notation as 1.5 3 1024 if it has two significant figures or as 1.50 3 1024 if it has 

t ip 1.2  Using Calculators
Calculators are designed by engi-
neers to yield as many digits as 
the memory of the calculator chip 
permits, so be sure to round the 
final answer down to the correct 
number of significant figures.

1Some prefer to round to the nearest even digit when the last dropped digit is 5, which has the advantage of round-
ing 5 up half the time and down half the time. For example, 1.55 would round to 1.6, but 1.45 would round to 1.4. 
Because the final significant figure is only one representative of a range of values given by the uncertainty, this 
very slight refinement will not be used in this text.
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1.4 | Uncertainty in Measurement and Significant Figures   9

three significant figures. The three zeros between the decimal point and the digit 
1 in the number 0.000 15 are not counted as significant figures because they only 
locate the decimal point. Similarly, trailing zeros are not considered significant. 
However, any zeros written after a decimal point are considered significant. For 
example, 3.00, 30.0, and 300. have three significant figures, whereas 300 has only 
one. In this book, most of the numerical examples and end-of-chapter problems 
will yield answers having two or three significant figures.

For addition and subtraction, it’s best to focus on the number of decimal places 
in the quantities involved rather than on the number of significant figures. When 
numbers are added (subtracted), the number of decimal places in the result 
should equal the smallest number of decimal places of any term in the sum (dif-
ference). For example, if we wish to compute 123 (zero decimal places) 1 5.35 
(two decimal places), the answer is 128 (zero decimal places) and not 128.35. If we 
compute the sum 1.000 1 (four decimal places) 1 0.000 3 (four decimal places) 
5 1.000 4, the result has the correct number of decimal places, namely four. 
Observe that the rules for multiplying significant figures don’t work here because 
the answer has five significant figures even though one of the terms in the sum, 
0.000 3, has only one significant figure. Likewise, if we perform the subtraction 
1.002 2 0.998 5 0.004, the result has three decimal places because each term in 
the subtraction has three decimal places.

To show why this rule should hold, we return to the first example in which we 
added 123 and 5.35, and rewrite these numbers as 123.xxx and 5.35x. Digits written 
with an x are completely unknown and can be any digit from 0 to 9. Now we line up 
123.xxx and 5.35x relative to the decimal point and perform the addition, using the 
rule that an unknown digit added to a known or unknown digit yields an unknown:

 123.xxx
 1  5.35x

 128.xxx

The answer of 128.xxx means that we are justified only in keeping the number 128 
because everything after the decimal point in the sum is actually unknown. The 
example shows that the controlling uncertainty is introduced into an addition or 
subtraction by the term with the smallest number of decimal places.

 ■ e Xa Mp Le  1.3 Carpet Calculations

g Oa L  Apply the rules for significant figures.

(a) Compute the area of the banquet hall.

Count significant figures:

pr Ob Le M  Several carpet installers make measurements 
for carpet installation in the different rooms of a restau-
rant, reporting their measurements with inconsistent 
accuracy, as compiled in Table 1.6. Compute the areas for 
(a) the banquet hall, (b) the meeting room, and (c) the 
dining room, taking into account significant figures. (d) 
What total area of carpet is required for these rooms?

14.71 m S 4 significant figures

 7.46 m S 3 significant figures

t able 1.6  Dimensions of Rooms in Example 1.3

 Length (m) Width (m)

Banquet hall 14.71 7.46
Meeting room 4.822 5.1
Dining room 13.8 9

To find the area, multiply the numbers keeping only 
three digits:

14.71 m 3 7.46 m 5 109.74 m2 S   1.10 3 102 m2

(Continued)

s t r at e g Y  For the multiplication problems in parts (a)–(c), count the significant figures in each number. The smaller 
result is the number of significant figures in the answer. Part (d) requires a sum, where the area with the least accurately 
known decimal place determines the overall number of significant figures in the answer.

s OLUti On
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10  c hap t e r  1 | Introduction

re Mar Ks  Notice that the final answer in part (d) has only one significant figure, in the hundred’s place, resulting in 
an answer that had to be rounded down by a sizable fraction of its total value. That’s the consequence of having insuf-
ficient information. The value of 9 m, without any further information, represents a true value that could be anywhere in 
the interval [8.5 m, 9.5 m), all of which round to 9 when only one digit is retained.

QUes t i On  1.3  How would the final answer change if the width of the dining room were given as 9.0 m?

e Xe rc i s e  1.3  A ranch has two fenced rectangular areas. Area A has a length of 750 m and width 125 m, and area B 
has length 400 m and width 150 m. Find (a) area A, (b) area B, and (c) the total area, with attention to the rules of signifi-
cant figures. Assume trailing zeros are not significant.

a ns We r s  (a) 9.4 3 104 m2 (b) 6 3 104 m2 (c) 1.5 3 105 m2

(b) Compute the area of the meeting room.

Count significant figures: 4.822 m S 4 significant figures

5.1 m S 2 significant figures

To find the area, multiply the numbers keeping only two 
digits:

4.822 m 3 5.1 m 5 24.59 m2 S   25 m2

(c) Compute the area of the dining room.

Count significant figures: 13.8 m S 3 significant figures

  9 m S 1 significant figure

To find the area, multiply the numbers keeping only one 
digit:

13.8 m 3 9 m 5 124.2 m2 S   100 m2

(d) Calculate the total area of carpet required, with the 
proper number of significant figures.

Sum all three answers without regard to significant 
figures:

1.10 3 102 m2 1 25 m2 1 100 m2 5 235 m2

The least accurate number is 100 m2, with one significant 
figure in the hundred’s decimal place:

235 m2 S   2 3 102 m2

In performing any calculation, especially one involving a number of steps, 
there will always be slight discrepancies introduced by both the rounding pro-
cess and the algebraic order in which steps are carried out. For example, con-
sider 2.35 3 5.89/1.57. This computation can be performed in three different 
orders. First, we have 2.35 3 5.89 5 13.842, which rounds to 13.8, followed 
by 13.8/1.57 5 8.789 8, rounding to 8.79. Second, 5.89/1.57 5 3.751 6, which 
rounds to 3.75, resulting in 2.35 3 3.75 5 8.812 5, rounding to 8.81. Finally, 
2.35/1.57 5 1.496 8 rounds to 1.50, and 1.50 3 5.89 5 8.835 rounds to 8.84. 
So three different algebraic orders, following the rules of rounding, lead to 
answers of 8.79, 8.81, and 8.84, respectively. Such minor discrepancies are to 
be expected, because the last significant digit is only one representative from 
a range of possible values, depending on experimental uncertainty. To avoid 
such discrepancies, some carry one or more extra digits during the calculation, 
although it isn’t conceptually consistent to do so because those extra digits are 
not significant. As a practical matter, in the worked examples in this text, inter-
mediate reported results will be rounded to the proper number of significant 
figures, and only those digits will be carried forward. In the problem sets, how-
ever, given data will usually be assumed accurate to two or three digits, even 
when there are trailing zeros. In solving the problems, the student should be 
aware that slight differences in rounding practices can result in answers vary-
ing from the text in the last significant digit, which is normal and not cause for 
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1.5 | Conversion of Units  11

concern. The method of significant figures has its limitations in determining 
accuracy, but it’s easy to apply. In experimental work, however, statistics and the 
mathematical propagation of uncertainty must be used to determine the accu-
racy of an experimental result.

1.5    Conversion of Units
Learning Objective

1. Convert physical quantities from one system of units to another.

Sometimes it’s necessary to convert units from one system to another. Conver-
sion factors between the SI and U.S. customary systems for units of length are as 
follows:

1 mi 5 1 609 m 5 1.609 km 1 ft 5 0.304 8 m 5 30.48 cm

 1 m 5 39.37 in. 5 3.281 ft 1 in. 5 0.025 4 m 5 2.54 cm

A more extensive list of conversion factors can be found on the front endsheets of 
this book. In all the given conversion equations, the “1” on the left is assumed to 
have the same number of significant figures as the quantity given on the right of 
the equation.

Units can be treated as algebraic quantities that can “cancel” each other. We 
can make a fraction with the conversion that will cancel the units we don’t want, 
and multiply that fraction by the quantity in question. For example, suppose we 
want to convert 15.0 in. to centimeters. Because 1 in. 5 2.54 cm, we find that

15.0 in. 5 15.0 in. 3 a2.54 cm
1.00 in.

b 5 38.1 cm

The next two examples show how to deal with problems involving more than one 
conversion and with powers.

The speed limit is given in both kilo-
meters per hour and miles per hour 
on this road sign. How accurate is 
the conversion?
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 ■ e Xa Mp Le  1.4 Pull Over, Buddy!

g Oa L  Convert units using several conversion factors.

pr Ob Le M  If a car is traveling at a speed of 28.0 m/s, is the driver exceeding the speed limit of 55.0 mi/h?

s t r at e g Y  Meters must be converted to miles and seconds to hours, using the conversion factors listed on the front 
endsheets of the book. Here, three factors will be used.

s OLUti On
Convert meters to miles: 28.0 m/s 5 a28.0 

m
s
b a 1.00 mi

1 609 m
b 5 1.74 3 1022 mi/s

Convert seconds to hours: 1.74 3 1022 mi/s 5 a1.74 3 1022 
mi

 s 
b a60.0 

 s 

min
b a60.0 

min
h

b
5   62.6 mi/h

re Mar Ks  The driver should slow down because he’s exceeding the speed limit.

QUes t i On  1.4  Repeat the conversion, using the relationship 1.00 m/s 5 2.24 mi/h. Why is the answer slightly different?

e Xe rc i s e  1.4  Convert 152 mi/h to m/s.

a ns We r  67.9 m/s
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12  c hap t e r  1 | Introduction

 ■ e Xa Mp Le  1.5 Press the Pedal to the Metal

g Oa L  Convert a quantity featuring powers of a unit.

pr Ob Le M  The traffic light turns green, and the driver of a high-performance car slams the accelerator to the floor. 
The accelerometer registers 22.0 m/s2. Convert this reading to km/min2.

s t r at e g Y  Here we need one factor to convert meters to kilometers and another two factors to convert seconds squared 
to minutes squared.

s OLUti On
Multiply by the three factors:

22.0 m
1.00 s2 a

1.00 km
1.00 3 103 m

b a 60.0 s
1.00 min

b
2

5 79.2 
km

min2

re Mar Ks  Notice that in each conversion factor the numerator equals the denominator when units are taken into 
account. A common error in dealing with squares is to square the units inside the parentheses while forgetting to square 
the numbers!

QUes t i On  1.5  What time conversion factor or factors would be used to further convert the answer to km/h2?

e Xe rc i s e  1.5  Convert 4.50 3 103 kg/m3 to g/cm3.

a ns We r  4.50 g/cm3

1.6     Estimates and Order-of-Magnitude 
Calculations
Learning Objective

1. Create estimates for physical quantities using approximations and educated 
guesses.

Getting an exact answer to a calculation may often be difficult or impossible, either 
for mathematical reasons or because limited information is available. In these 
cases, estimates can yield useful approximate answers that can determine whether 
a more precise calculation is necessary. Estimates also serve as a partial check if 
the exact calculations are actually carried out. If a large answer is expected but a 
small exact answer is obtained, there’s an error somewhere.

For many problems, knowing the approximate value of a quantity—within 
a factor of 10 or so—is sufficient. This approximate value is called an order-of-
magnitude estimate, and requires finding the power of 10 that is closest to the 
actual value of the quantity. For example, 75 kg , 102 kg, where the symbol , 
means “is on the order of” or “is approximately”. Increasing a quantity by three 
orders of magnitude means that its value increases by a factor of 103 5 1 000.

Occasionally the process of making such estimates results in fairly crude 
answers, but answers ten times or more too large or small are still useful. For 
example, suppose you’re interested in how many people have contracted a certain 
disease. Any estimates under ten thousand are small compared with Earth’s total 
population, but a million or more would be alarming. So even relatively imprecise 
information can provide valuable guidance.

In developing these estimates, you can take considerable liberties with the num-
bers. For example, p , 1, 27 , 10, and 65 , 100. To get a less crude estimate, it’s 
permissible to use slightly more accurate numbers (e.g., p , 3, 27 , 30, 65 , 70). 
Better accuracy can also be obtained by systematically underestimating as many 
numbers as you overestimate. Some quantities may be completely unknown, but 
it’s standard to make reasonable guesses, as the examples show.
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 ■ e Xa Mp Le  1.6 Brain Cells Estimate

g Oa L  Develop a simple estimate.

pr Ob Le M  Estimate the number of cells in the human brain.

s t r at e g Y  Estimate the volume of a human brain and divide by the estimated volume of one cell. The brain is located 
in the upper portion of the head, with a volume that could be approximated by a cube , 5 20 cm on a side. Brain cells, 
consisting of about 10% neurons and 90% glia, vary greatly in size, with dimensions ranging from a few microns to a 
meter or so. As a guess, take d 5 10 microns as a typical dimension and consider a cell to be a cube with each side having 
that length.

s OLUti On
Estimate of the volume of a human brain: Vbrain 5 ,3 < 10.2 m 23 5 8 3 1023 m3 < 1 3 1022 m3

Estimate the volume of a cell: Vcell 5 d3 < 110 3 1026 m 23 5 1 3 10215 m3

Divide the volume of a brain by the volume of a cell: number of cells 5
Vbrain

Vcell
5

0.01 m3

1 3 10215 m3 5  1 3 1013 cells

re Mar Ks  Notice how little attention was paid to obtaining precise values. Some general information about a problem 
is required if the estimate is to be within an order of magnitude of the actual value. Here, knowledge of the approximate 
dimensions of brain cells and the human brain were essential to developing the estimate.

QUes t i On  1.6  Would 1012 cells also be a reasonable estimate? What about 109 cells? Explain.

e Xe rc i s e  1.6  Estimate the total number of cells in the human body.

a ns We r  1014 (Answers may vary.)

■ e Xa Mp Le  1.7 Stack One-Dollar Bills to the Moon

g Oa L  Estimate the number of stacked objects required to reach a given height.

pr Ob Le M  How many one-dollar bills, stacked one on top of the other, would reach the Moon?

s t r at e g Y  The distance to the Moon is about 400 000 km. Guess at the number of dollar bills in a millimeter, and mul-
tiply the distance by this number, after converting to consistent units.

s OLUti On
We estimate that ten stacked bills form a layer of 1 mm. 
Convert mm to km:

10 bills
1 mm

 a103 mm
1 m

b a103 m
1 km

b 5
107 bills

1 km

Multiply this value by the approximate lunar distance: # of dollar bills , 14 3 105 km 2 a107 bills
1 km

b 5  4 3 1012 bills

re Mar Ks  That’s within an order of magnitude of the U.S. national debt!

QUes t i On  1.7  Based on the answer, about how many stacked pennies would reach the Moon?

e Xe rc i s e  1.7  How many pieces of cardboard, typically found at the back of a bound pad of paper, would you have to 
stack up to match the height of the Washington monument, about 170 m tall?

a ns We r  , 105 (Answers may vary.)
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 ■ e Xa Mp Le  1.8 Number of Galaxies in the Universe

g Oa L  Estimate a volume and a number density, and combine.

pr Ob Le M  Given that astronomers can see about 10 billion light years into space 
and that there are 14 galaxies in our local group, 2 million light years from the next 
local group, estimate the number of galaxies in the observable universe. (Note: 
One light year is the distance traveled by light in one year, about 9.5 3 1015 m.) (See 
Fig. 1.3.)

s t r at e g Y  From the known information, we can estimate the number of galaxies 
per unit volume. The local group of 14 galaxies is contained in a sphere a million 
light years in radius, with the Andromeda group in a similar sphere, so there are 
about 10 galaxies within a volume of radius 1 million light years. Multiply that num-
ber density by the volume of the observable universe.

s OLUti On

Figure 1.3  In this deep-space pho-
tograph, there are few stars—just 
galaxies without end.
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Compute the approximate volume Vlg of the local group 
of galaxies:

Vlg 5 4
3pr 3 , 1106 ly 23 5 1018 ly3

Estimate the density of galaxies: density of galaxies 5
# of galaxies

Vlg

,
10 galaxies

1018 ly3 5 10217 
galaxies

ly3

Compute the approximate volume of the observable 
universe:

Vu 5 4
3pr 3 , 11010 ly 23 5 1030 ly3

Multiply the density of galaxies by Vu: # of galaxies , (density of galaxies)Vu

5 a10217 
galaxies

ly3 b 11030 ly3 2

5  1013 galaxies

re Mar Ks  Notice the approximate nature of the com-
putation, which uses 4p/3 , 1 on two occasions and  
14 , 10 for the number of galaxies in the local group. 
This is completely justified: Using the actual numbers 
would be pointless, because the other assumptions in the 
problem—the size of the observable universe and the 
idea that the local galaxy density is representative of the 
density everywhere—are also very rough approximations. 
Further, there was nothing in the problem that required 
using volumes of spheres rather than volumes of cubes. 
Despite all these arbitrary choices, the answer still gives 
useful information, because it rules out a lot of reasonable 
possible answers. Before doing the calculation, a guess of 
a billion galaxies might have seemed plausible.

QUes t i On  1.8 About one in ten galaxies in the local 
group are not dwarf galaxies. Estimate the number of gal-
axies in the universe that are not dwarfs.

e Xe rc i s e  1.8  (a) Given that the nearest star is about 
4 light years away, develop an estimate of the density of stars  
per cubic light year in our galaxy. (b) Estimate the num-
ber of stars in the Milky Way galaxy, given that it’s roughly 
a disk 100 000 light years across and a thousand light years 
thick.

a ns We r  (a) 0.02 stars/ly3 (b) 2 3 1011 stars (Estimates 
will vary. The actual answer is probably about twice that 
number.)
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1.7    Coordinate Systems
Learning Objectives

1. Describe and locate points in a plane using a Cartesian coordinate system.

2. Describe and locate points in a plane using a polar coordinate system.

Many aspects of physics deal with locations in space, which require the definition 
of a coordinate system. A point on a line can be located with one coordinate, a 
point in a plane with two coordinates, and a point in space with three.

A coordinate system used to specify locations in space consists of the following:

 ■ A fixed reference point O, called the origin
 ■ A set of specified axes, or directions, with an appropriate scale and labels on 
the axes

 ■ Instructions on labeling a point in space relative to the origin and axes

One convenient and commonly used coordinate system is the Cartesian coordi-
nate system, sometimes called the rectangular coordinate system. Such a system 
in two dimensions is illustrated in Figure 1.4. An arbitrary point in this system 
is labeled with the coordinates (x, y). For example, the point P in the figure has 
coordinates (5, 3). If we start at the origin O, we can reach P by moving 5 meters 
horizontally to the right and then 3 meters vertically upward. In the same way, the 
point Q has coordinates (23, 4), which corresponds to going 3 meters horizontally 
to the left of the origin and 4 meters vertically upward from there.

Positive x is usually selected as right of the origin and positive y upward from 
the origin, but in two dimensions this choice is largely a matter of taste. (In three 
dimensions, however, there are “right-handed” and “left-handed” coordinates, 
which lead to minus sign differences in certain operations. These will be addressed 
as needed.)

Sometimes it’s more convenient to locate a point in space by its plane polar 
coordinates (r, u), as in Figure 1.5. In this coordinate system, an origin O and a 
reference line are selected as shown. A point is then specified by the distance r 
from the origin to the point and by the angle u between the reference line and 
a line drawn from the origin to the point. The standard reference line is usually 
selected to be the positive x -axis of a Cartesian coordinate system. The angle u is 
considered positive when measured counterclockwise from the reference line and 
negative when measured clockwise. For example, if a point is specified by the polar 
coordinates 3 m and 60°, we locate this point by moving out 3 m from the origin 
at an angle of 60° above (counterclockwise from) the reference line. A point speci-
fied by polar coordinates 3 m and 260° is located 3 m out from the origin and 60° 
below (clockwise from) the reference line.

1.8    Trigonometry
Learning Objectives

1. Convert between Cartesian and polar coordinates using the basic trigonomet-
ric functions and the Pythagorean theorem.

2. Apply the basic trigonometric functions and the Pythagorean theorem in sim-
ple physical contexts.

Consider the right triangle shown in Figure 1.6, where side y is opposite the angle u,  
side x is adjacent to the angle u, and side r is the hypotenuse of the triangle. The 
basic trigonometric functions defined by such a triangle are the ratios of the 
lengths of the sides of the triangle. These relationships are called the sine (sin), 

y

x

Q

(–3, 4) (5, 3)

(x, y)

P

5 10

5

10

O

Figure 1.4  Designation of points 
in a two-dimensional Cartesian coor-
dinate system. Every point is labeled 
with coordinates (x, y).

O

(r, u)

r

u
u� 0�

Reference line

Figure 1.5  The plane polar coor-
dinates of a point are represented by 
the distance r and the angle u, where 
u is measured counterclockwise from 
the positive x -axis.

θ

x

r
y

sin  =
y
r

cos  = x
r

tan  = x
y

θ

θ

θ

y

x

Figure 1.6
Certain trigonometric functions of a 
right triangle.
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cosine (cos), and tangent (tan) functions. In terms of u, the basic trigonometric 
functions are as follows2:

sin u 5
side opposite u

hypotenuse
5

y
r
 

 cos u 5
side adjacent to u

hypotenuse
5

x
r

  [1.1]

tan u 5
side opposite u

side adjacent to u
5

y
x
 

For example, if the angle u is equal to 30°, then the ratio of y to r is always 0.50; that 
is, sin 30° 5 0.50. Note that the sine, cosine, and tangent functions are quantities 
without units because each represents the ratio of two lengths.

Another important relationship, called the Pythagorean theorem, exists 
between the lengths of the sides of a right triangle:

 r 2 5 x2 1 y2 [1.2]

Finally, it will often be necessary to find the values of inverse relationships. For 
example, suppose you know that the sine of an angle is 0.866, but you need to 
know the value of the angle itself. The inverse sine function may be expressed as  
sin21 (0.866), which is a shorthand way of asking the question “What angle has a sine 
of 0.866?” Punching a couple of buttons on your calculator reveals that this angle is 
60.0°. Try it for yourself and show that tan21 (0.400) 5 21.8°. Be sure that your cal-
culator is set for degrees and not radians. In addition, the inverse tangent function 
can return only values between 290° and 190°, so when an angle is in the second 
or third quadrant, it’s necessary to add 180° to the answer in the calculator window.

The definitions of the trigonometric functions and the inverse trigonometric 
functions, as well as the Pythagorean theorem, can be applied to any right triangle, 
regardless of whether its sides correspond to x - and y -coordinates.

These results from trigonometry are useful in converting from rectangular 
coordinates to polar coordinates, or vice versa, as the next example shows.

t ip 1.3  Degrees vs. Radians
When calculating trigonometric 
functions, make sure your calcula-
tor setting—degrees or radians— 
is consistent with the angular 
measure you’re using in a given 
problem.

 ■ e Xa Mp Le  1.9 Cartesian and Polar Coordinates

g Oa L  Understand how to convert from plane rect-
angular coordinates to plane polar coordinates and 
vice versa.

pr Ob Le M  (a) The Cartesian coordinates of a point 
in the xy -plane are (x, y) 5 (23.50 m, 22.50 m), as 
shown in Figure 1.7. Find the polar coordinates of 
this point. (b) Convert (r, u) 5 (5.00 m, 37.0°) to rect-
angular coordinates.

s t r at e g Y  Apply the trigonometric functions and their inverses, together with the Pythagorean theorem.

s OLUti On

2Many people use the mnemonic SOHCAHTOA to remember the basic trigonometric formulas: Sine 5 Opposite/
Hypotenuse, Cosine 5 Adjacent/Hypotenuse, and Tangent 5 Opposite/Adjacent. (Thanks go to Professor Don 
Chodrow for pointing this out.)

(–3.50, –2.50)

x (m)

r

y (m)

u

Figure 1.7 (Example 1.9) Convert-
ing from Cartesian coordinates to polar 
coordinates.

(a) Cartesian to Polar conversion

Take the square root of both sides of Equation 1.2 to find 
the radial coordinate:

r 5 "x2 1 y2 5 "123.50 m 22 1 122.50 m 22 5  4.30 m

Use Equation 1.1 for the tangent function to find the 
angle with the inverse tangent, adding 180° because the 
angle is actually in third quadrant:

tan u 5
y
x

5
22.50 m
23.50 m

5 0.714

u 5 tan21 10.714 2 5 35.58 1 1808 5  216°
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■ e Xa Mp Le  1.10 How High Is the Building?

g Oa L  Apply basic results of trigonometry.

pr Ob Le M  A person measures the height of a building by walk-
ing out a distance of 46.0 m from its base and shining a flashlight 
beam toward the top. When the beam is elevated at an angle of 
39.0° with respect to the horizontal, as shown in Figure 1.8, the 
beam just strikes the top of the building. (a) If the flashlight is 
held at a height of 2.00 m, find the height of the building. (b) Cal-
culate the length of the light beam.

s t r at e g Y  Refer to the right triangle shown in the figure. We 
know the angle, 39.0°, and the length of the side adjacent to it. 
Because the height of the building is the side opposite the angle, 
we can use the tangent function. With the adjacent and opposite 
sides known, we can then find the hypotenuse with the Pythago-
rean theorem.

s OLUti On

(b) Polar to Cartesian conversion

Use the trigonometric definitions, Equation 1.1. x 5 r cos u 5 (5.00 m) cos 37.0° 5   3.99 m

y 5 r sin u 5 (5.00 m) sin 37.0° 5   3.01 m

re Mar Ks  When we take up vectors in two dimensions in Chapter 3, we will routinely use a similar process to find the 
direction and magnitude of a given vector from its components, or, conversely, to find the components from the vector’s 
magnitude and direction.

QUes t i On  1.9  Starting with the answers to part (b), work backwards to recover the given radius and angle. Why are 
there slight differences from the original quantities?

e Xe rc i s e  1.9  (a) Find the polar coordinates corresponding to (x, y) 5 (23.25 m, 1.50 m). (b) Find the Cartesian coor-
dinates corresponding to (r, u) 5 (4.00 m, 53.0°)

a ns We r s  (a) (r, u) 5 (3.58 m, 155°) (b) (x, y) 5 (2.41 m, 3.19 m)

46.0 m

2.00 m

�y
r

39.0�

Figure 1.8  (Example 1.10)

(a) Find the height of the building.

Use the tangent of the given angle: tan 39.08 5
Dy

46.0 m

Solve for the height: Dy 5 (tan 39.0°)(46.0 m) 5 (0.810)(46.0 m) 5 37.3 m

Add 2.00 m to Dy to obtain the height: height =  39.3 m

(b) Calculate the length of the light beam.

Use the Pythagorean theorem: r 5 "x2 1 y2 5 "137.3 m 22 1 146.0 m 22 5  59.2 m

re Mar Ks  In a later chapter, right-triangle trigonometry is often used when working with vectors.

QUes t i On  1.10  Could the distance traveled by the light beam be found without using the Pythagorean theorem? How?

e Xe rc i s e  1.10  While standing atop a building 50.0 m tall, you spot a friend standing on a street corner. Using a pro-
tractor and dangling a plumb bob, you find that the angle between the horizontal and the direction to the spot on the 
sidewalk where your friend is standing is 25.0°. Your eyes are located 1.75 m above the top of the building. How far away 
from the foot of the building is your friend?

a ns We r  111 m
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1.9    Problem-Solving Strategy
Learning Objective

1. Systematically organize and solve a general physics problem.

Most courses in general physics require the student to learn the skills used in solv-
ing problems, and examinations usually include problems that test such skills. 
This brief section presents some useful suggestions to help increase your success 
in solving problems. An organized approach to problem solving will also enhance 
your understanding of physical concepts and reduce exam stress. Throughout the 
book, there will be a number of sections labeled “Problem-Solving Strategy,” many 
of them just a specializing of the list given below (and illustrated in Fig. 1.9).

General Problem-Solving Strategy

Problem
1. Read the problem carefully at least twice. Be sure you understand the 

nature of the problem before proceeding further.
2. Draw a diagram while rereading the problem.
3. Label all physical quantities in the diagram, using letters that remind you 

what the quantity is (e.g., m for mass). Choose a coordinate system and label it.

Strategy
4. Identify physical principles, the knowns and unknowns, and list them. Put 

circles around the unknowns. There must be as many equations as there are 
unknowns.

5. Equations, the relationships between the labeled physical quantities, should 
be written down next. Naturally, the selected equations should be consistent 
with the physical principles identified in the previous step.

Solution
6. Solve the set of equations for the unknown quantities in terms of the 

known. Do this algebraically, without substituting values until the next step, 
except where terms are zero.

7. Substitute the known values, together with their units. Obtain a numerical 
value with units for each unknown.

Check Answer
8. Check your answer. Do the units match? Is the answer reasonable? Does the 

plus or minus sign make sense? Is your answer consistent with an order of 
magnitude estimate?

This same procedure, with minor variations, should be followed throughout the 
course. The first three steps are extremely important, because they get you men-
tally oriented. Identifying the proper concepts and physical principles assists you 
in choosing the correct equations. The equations themselves are essential, because 
when you understand them, you also understand the relationships between the 
physical quantities. This understanding comes through a lot of daily practice.

Equations are the tools of physics: To solve problems, you have to have them 
at hand, like a plumber and his wrenches. Know the equations, and understand 
what they mean and how to use them. Just as you can’t have a conversation without 
knowing the local language, you can’t solve physics problems without knowing and 
understanding the equations. This understanding grows as you study and apply 
the concepts and the equations relating them.

Carrying through the algebra for as long as possible (substituting numbers only 
at the end) is also important, because it helps you think in terms of the physical 

1. Read problem

2. Draw diagram

3. Label physical quantities

4. Identify principle(s); list data

5. Choose equation(s)

6. Solve equation(s)

8. Check answer

7. Substitute known values

Figure 1.9  A guide to problem 
solving.
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quantities involved, not merely the numbers that represent them. Many begin-
ning physics students are eager to substitute, but once numbers are substituted it’s 
harder to understand relationships and easier to make mistakes.

The physical layout and organization of your work will make the final product 
more understandable and easier to follow. Although physics is a challenging disci-
pline, your chances of success are excellent if you maintain a positive attitude and 
keep trying.

t ip 1.4  Get Used  
to Symbolic Algebra
Whenever possible, solve prob-
lems symbolically and then substi-
tute known values. This process 
helps prevent errors and clarifies 
the relationships between physical 
quantities.

 ■ e Xa Mp Le  1.11 A Round Trip by Air

g Oa L  Illustrate the Problem-Solving Strategy.

pr Ob Le M  An airplane travels x 5 4.50 3 102 km due east and then travels an unknown 
distance y due north. Finally, it returns to its starting point by traveling a distance of  
r 5 525 km. How far did the airplane travel in the northerly direction?

s t r at e g Y  We’ve finished reading the problem (step 1), and have drawn a diagram 
(step 2) in Figure 1.10 and labeled it (step 3). From the diagram, we recognize a right 
triangle and identify (step 4) the principle involved: the Pythagorean theorem. Side y is 
the unknown quantity, and the other sides are known.

s OLUti On

y

x

r

E

N

S

W

Figure 1.10 (Example 1.11)

Write the Pythagorean theorem (step 5): r2 5 x2 + y2

Solve symbolically for y (step 6): y2 5 r 2 2 x2 S y 5 1"r 2 2 x2

Substitute the numbers, with units (step 7): y 5 "1525 km 22 2 14.50 3 102 km 22 5  2.70 3 102 km

re Mar Ks  Note that the negative solution has been disregarded, because it’s not physically meaningful. In checking 
(step 8), note that the units are correct and that an approximate answer can be obtained by using the easier quantities, 
500 km and 400 km. Doing so gives an answer of 300 km, which is approximately the same as our calculated answer of 
270 km.

QUes t i On  1.11  What is the answer if both the distance traveled due east and the direct return distance are both 
doubled?

e Xe rc i s e  1.11  A plane flies 345 km due south, then turns and flies 615 km at a heading north of east, until it’s due 
east of its starting point. If the plane now turns and heads for home, how far will it have to go?

a ns We r  509 km

 ■ s UMMar Y

1.1  Standards of Length, Mass, and Time
The physical quantities in the study of mechanics can 
be expressed in terms of three fundamental quantities: 
length, mass, and time, which have the SI units meters (m), 
kilograms (kg), and seconds (s), respectively.

1.2  The Building Blocks of Matter
Matter is made of atoms, which in turn are made up of a 
relatively small nucleus of protons and neutrons within a 
cloud of electrons. Protons and neutrons are composed of 
still smaller particles, called quarks.

1.3  Dimensional Analysis
Dimensional analysis can be used to check equations and 
to assist in deriving them. When the dimensions on both 
sides of the equation agree, the equation is often cor-
rect up to a numerical factor. When the dimensions don’t 
agree, the equation must be wrong.

1.4   Uncertainty in Measurement  
and Significant Figures

No physical quantity can be determined with complete 
accuracy. The concept of significant figures affords a basic 
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method of handling these uncertainties. A significant 
figure is a reliably known digit, other than a zero used to 
locate the decimal point. The two rules of significant fig-
ures are as follows:

1. When multiplying or dividing using two or more 
quantities, the result should have the same number 
of significant figures as the quantity having the few-
est significant figures.

2. When quantities are added or subtracted, the num-
ber of decimal places in the result should be the 
same as in the quantity with the fewest decimal 
places.

Use of scientific notation can avoid ambiguity in sig-
nificant figures. In rounding, if the last digit dropped is 
less than 5, simply drop the digit; otherwise, raise the last 
retained digit by one.

1.5  Conversion of Units
Units in physics equations must always be consistent. In 
solving a physics problem, it’s best to start with consistent 
units, using the table of conversion factors on the front 
endsheets as necessary.

Converting units is a matter of multiplying the given 
quantity by a fraction, with one unit in the numerator 
and its equivalent in the other units in the denominator, 
arranged so the unwanted units in the given quantity are 
canceled out in favor of the desired units.

1.6   Estimates and Order-of-Magnitude 
Calculations

Sometimes it’s useful to find an approximate answer to a 
question, either because the math is difficult or because 
information is incomplete. A quick estimate can also be 
used to check a more detailed calculation. In an order-of-
magnitude calculation, each value is replaced by the clos-
est power of ten, which sometimes must be guessed or esti-
mated when the value is unknown. The computation is then 

carried out. For quick estimates involving known values, 
each value can first be rounded to one significant figure.

1.7  Coordinate Systems
The Cartesian coordinate 
system consists of two perpen-
dicular axes, usually called 
the x -axis and y -axis, with 
each axis labeled with all 
numbers from negative infin-
ity to positive infinity. Points 
are located by specifying the 
x - and y -values. Polar coordi-
nates consist of a radial coor-
dinate r, which is the distance 
from the origin, and an angu-
lar coordinate u, which is the angular displacement from 
the positive x -axis.

1.8  Trigonometry
The three most basic trigonometric functions of a right tri-
angle are the sine, cosine, and tangent, defined as follows:

sin u 5
side opposite u

hypotenuse
5

y
r
 

 cos u 5
side adjacent to u

hypotenuse
5

x
r
  [1.1]

tan u 5
side opposite u

side adjacent to u
5

y
x
 

 The Pythagorean theorem is an impor-
tant relationship between the lengths of 
the sides of a right triangle:

 r2 5 x2 1 y2 [1.2]

where r is the hypotenuse of the triangle 
and x and y are the other two sides.

 ■ War M-Up  e Xe rc i s e s

The warm-up exercises in this chapter may be assigned online in Enhanced WebAssign.

1. Math Review Convert the following numbers to scien-
tific notation. (a) 568 017 (b) 0.000 309

 2. Math Review Simplify the following expression in terms 
of the dimensions mass, length, and time given by [M], 
[L], and [T]. (See Section 1.3.)

  
3M 4 3L 42
3T 43  . 

3T 4
3L 4  

. 3T 4 5 ?

 3. Simplify the following expression, combining terms as 
appropriate and combining and canceling units. (See 
Section 1.5.)

  a7.00 
m
s2 b a

1.00 km
1.00 3 103 m

b a 60.0 s
1.00 min

b
2

5 ?

 4. The Roman cubitus is an ancient unit of measure equiv-
alent to about 0.445 m. Convert the 2.00-m height of a 
basketball forward to cubiti. (See Section 1.5.)

 5. A house is advertised as having 1 420 square feet under 
roof. What is the area of this house in square meters? 
(See Section 1.5.)

 6. A rectangular airstrip measures 32.30 m by 210 m, with 
the width measured more accurately than the length. 
Find the area, taking into account significant figures. 
(See Section 1.4.)

y

r

x

(x, y)

5

5

10

O

u

A point in the plane can be 
described with Cartesian 
coordinates (x, y) or with the 
polar coordinates (r, u).

θ
x

r y

37027_ch01_ptg01_hr_001-025.indd   20 19/08/13   2:09 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



 | Problems  21

7. Use the rules for significant figures to find the answer 
to the addition problem 21.4 1 15 1 17.17 1 4.003. (See 
Section 1.4).

8. Find the polar coordinates corresponding to a point 
located at (25.00, 12.00) in Cartesian coordinates. (See 
Section 1.7.)

 9. At a horizontal distance of 45 m from the bottom of a 
tree, the angle of elevation to the top of the tree is 268. 
How tall is the tree? (See Section 1.8.)

 8. How many of the lengths or time intervals given in 
Tables 1.2 and 1.3 could you verify, using only equip-
ment found in a typical dormitory room?

 9. (a) If an equation is dimensionally correct, does this 
mean that the equation must be true? (b) If an equa-
tion is not dimensionally correct, does this mean that 
the equation can’t be true? Explain your answers.

 10. Why is the metric system of units considered superior 
to most other systems of units?

 11. How can an estimate be of value even when it is off by 
an order of magnitude? Explain and give an example.

 12. Suppose two quantities, A and B, have different dimen-
sions. Determine which of the following arithmetic 
operations could be physically meaningful. (a) A 1 B 
(b) B 2 A (c) A 2 B (d) A/B (e) AB

 13. Answer each question yes or no. Must two quantities 
have the same dimensions (a) if you are adding them? 
(b) If you are multiplying them? (c) If you are subtract-
ing them? (d) If you are dividing them? (e) If you are 
equating them?

 1. Estimate the order of magnitude of the length, in 
meters, of each of the following: (a) a mouse, (b) a 
pool cue, (c) a basketball court, (d) an elephant, (e) a 
city block.

 2. What types of natural phenomena could serve as time 
standards?

 3. Find the order of magnitude of your age in seconds.

 4. An object with a mass of 1 kg weighs approximately 
2 lb. Use this information to estimate the mass of the 
following objects: (a) a baseball; (b) your physics text-
book; (c) a pickup truck.

 5.  (a) Estimate the number of times your heart beats 
in a month. (b) Estimate the number of human heart-
beats in an average lifetime.

 6. Estimate the number of atoms in 1 cm3 of a solid. 
(Note that the diameter of an atom is about 10210 m.)

 7. The height of a horse is sometimes given in units of 
“hands.” Why is this a poor standard of length?

 ■ c On ce p t Ua L QUes t i Ons

The conceptual questions in this chapter may be assigned online in Enhanced WebAssign.

 ■ pr Ob Le Ms

1.3  Dimensional Analysis

 1. The period of a simple pendulum, defined as the time 
necessary for one complete oscillation, is measured in 
time units and is given by

 T 5 2pÅ
,

g
 

  where , is the length of the pendulum and g is the 
acceleration due to gravity, in units of length divided 
by time squared. Show that this equation is dimension-
ally consistent. (You might want to check the formula 
using your keys at the end of a string and a stopwatch.)

 2. (a) Suppose that the displacement of an object is 
related to time according to the expression x 5 Bt 2. 
What are the dimensions of B? (b) A displacement is 
related to time as x 5 A sin (2pft), where A and f are 
constants. Find the dimensions of A. (Hint: A trigo-
nometric function appearing in an equation must be 
dimensionless.)

 3.  A shape that covers an area A and has a uniform 
height h has a volume V 5 Ah. (a) Show that V 5 Ah 
is dimensionally correct. (b) Show that the volumes 
of a cylinder and of a rectangular box can be writ-
ten in the form V 5 Ah, identifying A in each case. 

  denotes biomedical problems

  denotes guided problems

  denotes Master It tutorial available in Enhanced WebAssign

  denotes asking for quantitative and conceptual reasoning

  denotes symbolic reasoning problem

 W  denotes Watch It video solution available in Enhanced WebAssign

The problems in this chapter may be assigned online in 
Enhanced WebAssign. 

 1. denotes straightforward problem; 2. denotes intermediate problem;

 3. denotes challenging problem

 1. denotes full solution available in Student Solutions Manual/ 
Study Guide

 1. denotes problems most often assigned in Enhanced WebAssign
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(Note that A, sometimes called the “footprint” of 
the object, can have any shape and that the height 
can, in general, be replaced by the average thickness 
of the object.)

 4. Each of the following equations was given by a student 
during an examination: (a) 1

2mv
2 5 1

2mv0
2 1 !mgh

(b) v 5 v0 1 at2 (c) ma 5 v2. Do a dimensional analysis 
of each equation and explain why the equation can’t 
be correct.

 5. Newton’s law of universal gravitation is represented by

 F 5 G 
Mm
r 2  

  where F is the gravitational force, M and m are masses, 
and r is a length. Force has the SI units kg ? m/s2. What 
are the SI units of the proportionality constant G?

 6. Kinetic energy KE (Chapter 5) has dimensions 
kg ? m2/s2. It can be written in terms of the momentum 
p (Chapter 6) and mass m as

 KE 5
p2

2m
 

(a) Determine the proper units for momentum using 
dimensional analysis. (b) Refer to Problem 5. Given 
the units of force, write a simple equation relating a 
constant force F exerted on an object, an interval of 
time t during which the force is applied, and the result-
ing momentum of the object, p.

1.4   Uncertainty in Measurement  
and Significant Figures

7. W A carpet is to be installed in a room of length 9.72 m 
and width 5.3 m. Find the area of the room retaining the 
proper number of significant figures.

 8.  Use your calculator to determine (!8)3 to three 
significant figures in two ways: (a) Find !8 to four 
significant figures; then cube this number and round 
to three significant figures. (b) Find !8 to three sig-
nificant figures; then cube this number and round to 
three significant figures. (c) Which answer is more 
accurate? Explain.

 9. How many significant figures are there in (a) 78.9 6 
0.2, (b) 3.788 3 109, (c) 2.46 3 1026, (d) 0.003 2

 10. The speed of light is now defined to be 2.997 924 58 3 
108  m/s. Express the speed of light to (a) three signifi-
cant figures, (b) five significant figures, and (c) seven 
significant figures.

 11. A block of gold has length 5.62 cm, width 
6.35 cm, and height 2.78 cm. (a) Calculate the length 
times the width and round the answer to the appropri-
ate number of significant figures. (b) Now multiply 
the rounded result of part (a) by the height and again 
round, obtaining the volume. (c) Repeat the process, 
first finding the width times the height, rounding it, 
and then obtaining the volume by multiplying by the 
length. (d) Explain why the answers don’t agree in the 
third significant figure.

12. The radius of a circle is measured to be (10.5 6 0.2) m. 
Calculate (a) the area and (b) the circumference of the 
circle, and give the uncertainty in each value.

 13. The edges of a shoebox are measured to be 11.4 cm, 
17.8 cm, and 29 cm. Determine the volume of the box 
retaining the proper number of significant figures in 
your answer.

 14. Carry out the following arithmetic operations: (a) the 
sum of the measured values 756, 37.2, 0.83, and 2.5; 
(b)  the product 0.003 2 3 356.3; (c) the product 
5.620 3 p.

1.5  Conversion of Units

15. A fathom is a unit of length, usually reserved for mea-
suring the depth of water. A fathom is approximately 
6  ft in length. Take the distance from Earth to the 
Moon to be 250 000 miles, and use the given approxi-
mation to find the distance in fathoms.

16. A small turtle moves at a speed of 186 furlongs per 
fortnight. Find the speed of the turtle in centimeters 
per second. Note that 1 furlong 5 220 yards and 1 fort-
night 5 14 days.

17. A firkin is an old British unit of volume equal to 9 gal-
lons. How many cubic meters are there in 6.00 firkins?

18. Find the height or length of these natural wonders 
in kilometers, meters, and centimeters: (a) The lon-
gest cave system in the world is the Mammoth Cave 
system in Central Kentucky, with a mapped length 
of 348 miles. (b) In the United States, the waterfall 
with the greatest single drop is Ribbon Falls in Cali-
fornia, which drops 1 612 ft. (c) At 20 320 feet, Mount  
McKinley in Alaska is America’s highest mountain. 
(d) The deepest canyon in the United States is King’s 
Canyon in California, with a depth of 8 200 ft.

 19. A car is traveling at a speed of 38.0 m/s on an inter-
state highway where the speed limit is 75.0 mi/h. Is the 
driver exceeding the speed limit? Justify your answer.

 20. A certain car has a fuel efficiency of 25.0 miles per gal-
lon (mi/gal). Express this efficiency in kilometers per 
liter (km/L).

 21. The diameter of a sphere is measured to be 5.36 in. 
Find (a) the radius of the sphere in centimeters, (b) the 
surface area of the sphere in square centimeters, and 
(c) the volume of the sphere in cubic centimeters.

 22. W  Suppose your hair grows at the rate of  
1/32 inch per day. Find the rate at which it grows in 
nanometers per second. Because the distance between 
atoms in a molecule is on the order of 0.1 nm, your 
answer suggests how rapidly atoms are assembled in 
this protein synthesis.

 23. The speed of light is about 3.00 3 108 m/s. Convert 
this figure to miles per hour.

 24. A house is 50.0 ft long and 26 ft wide and has 8.0-ft-
high ceilings. What is the volume of the interior of the 
house in cubic meters and in cubic centimeters?
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25. The amount of water in reservoirs is often measured in 
acre-ft. One acre-ft is a volume that covers an area of 
one acre to a depth of one foot. An acre is 43 560 ft2. 
Find the volume in SI units of a reservoir containing 
25.0 acre-ft of water.

 26. The base of a pyramid covers an area of 13.0 acres 
(1 acre  5 43 560 ft2) and has a height of 481 ft  
(Fig. P1.26). If the volume of a pyramid is given by the 
expression V 5 bh/3, where b is the area of the base 
and h is the height, find the volume of this pyramid in 
cubic meters.

27. A quart container of ice cream is to be made in the 
form of a cube. What should be the length of a side, 
in centimeters? (Use the conversion 1 gallon 5 
3.786 liter.)

1.6   Estimates and Order-of-Magnitude Calculations

Note: In developing answers to the problems in this 
section, you should state your important assumptions, 
including the numerical values assigned to parameters 
used in the solution.

 28. Estimate the number of steps you would have to take 
to walk a distance equal to the circumference of the 
Earth.

 29. Estimate the number of breaths taken by a 
human being during an average lifetime.

 30. Estimate the number of people in the world who 
are suffering from the common cold on any given day. 
(Answers may vary. Remember that a person suffers 
from a cold for about a week.)

 31.  (a) About how many microorganisms are 
found in the human intestinal tract? (A typical bacte-
rial length scale is one micron = 1026 m. Estimate the 
intestinal volume and assume bacteria occupy one 
hundredth of it.) (b) Discuss your answer to part (a). 
Are these bacteria beneficial, dangerous, or neutral? 
What functions could they serve?

 32. Treat a cell in a human as a sphere of radius 
1.0  mm. (a) Determine the volume of a cell. (b) Esti-
mate the volume of your body. (c) Estimate the num-
ber of cells in your body.

 33. An automobile tire is rated to last for 50 000 miles. 
Estimate the number of revolutions the tire will make 
in its lifetime.

34.  Bacteria and other prokaryotes are found 
deep underground, in water, and in the air. One 
micron (1026 m) is a typical length scale associated 
with these microbes. (a) Estimate the total number of 
bacteria and other prokaryotes in the biosphere of the 
Earth. (b) Estimate the total mass of all such microbes. 
(c) Discuss the relative importance of humans and 
microbes to the ecology of planet Earth. Can Homo 
sapiens survive without them?

1.7  Coordinate Systems

35. A point is located in a polar coordinate system by 
the coordinates r 5 2.5 m and u 5 35°. Find the x - and 
y -coordinates of this point, assuming that the two coor-
dinate systems have the same origin.

 36. A certain corner of a room is selected as the origin of 
a rectangular coordinate system. If a fly is crawling on 
an adjacent wall at a point having coordinates (2.0, 
1.0), where the units are meters, what is the distance of 
the fly from the corner of the room?

 37. Express the location of the fly in Problem 36 in polar 
coordinates.

 38. W Two points in a rectangular coordinate system 
have the coordinates (5.0, 3.0) and (23.0, 4.0), where 
the units are centimeters. Determine the distance 
between these points.

 39. Two points are given in polar coordinates by (r, u) 5 
(2.00 m, 50.0°) and (r, u) 5 (5.00 m, 250.0°), respec-
tively. What is the distance between them?

 40.  Given points (r1, u1) and (r2, u2) in polar coor-
dinates, obtain a general formula for the distance 
between them. Simplify it as much as possible using 
the identity cos2 u 1 sin2 u 5 1. Hint: Write the expres-
sions for the two points in Cartesian coordinates and 
substitute into the usual distance formula.

1.8    Trigonometry

 41.  For the triangle 
shown in Figure P1.41, 
what are (a) the length of 
the un known side, (b) the 
tangent of u, and (c) the 
sine of f?

 42. A ladder 9.00 m long leans against the side of a build-
ing. If the ladder is inclined at an angle of 75.0° to the 
horizontal, what is the horizontal distance from the 
bottom of the ladder to the building?

 43. A high fountain of water 
is located at the center of 
a circular pool as shown 
in Figure P1.43. Not wish-
ing to get his feet wet, a 
student walks around the 
pool and measures its cir-
cumference to be 15.0 m. 
Next, the student stands 
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at the edge of the pool and uses a protractor to gauge 
the angle of elevation at the bottom of the fountain to 
be 55.0°. How high is the fountain?

 44. W A right triangle has a hypotenuse of length 3.00 m, 
and one of its angles is 30.0°. What are the lengths of 
(a) the side opposite the 30.0° angle and (b) the side 
adjacent to the 30.0° angle?

 45. In Figure P1.45, find 
(a)  the side opposite u, 
(b) the side adjacent to f,  
(c) cos u, (d) sin f, and 
(e) tan f.

 46. In a certain right trian-
gle, the two sides that are 
perpendicular to each 
other are 5.00 m and 
7.00 m long. What is the length of the third side of the 
triangle?

 47. In Problem 46, what is the tangent of the angle for 
which 5.00 m is the opposite side?

 48.   A woman measures the angle of elevation of a 
mountaintop as 12.0°. After walking 1.00 km closer to 
the mountain on level ground, she finds the angle to 
be 14.0°. (a) Draw a picture of the problem, neglecting 
the height of the woman’s eyes above the ground. Hint: 
Use two triangles. (b) Select variable names for the 
mountain height (suggestion: y) and the woman’s origi-
nal distance from the mountain (suggestion: x) and 
label the picture. (c) Using the labeled picture and the 
tangent function, write two trigonometric equations 
relating the two selected variables. (d) Find the height 
y of the mountain by first solving one equation for x 
and substituting the result into the other equation.

 49. A surveyor measures the distance across a straight river 
by the following method: Starting directly across from 
a tree on the opposite bank, he walks x 5 100 m along 
the riverbank to establish a baseline. Then he sights 
across to the tree. The angle from his baseline to the 
tree is u 5 35.0° (Fig. P1.49). How wide is the river?

Additional Problems

51. (a) One of the fundamental laws of motion states that 
the acceleration of an object is directly proportional to 
the resultant force on it and inversely proportional 
to its mass. If the proportionality constant is defined 
to have no dimensions, determine the dimensions of 
force. (b) The newton is the SI unit of force. According 
to the results for (a), how can you express a force hav-
ing units of newtons by using the fundamental units of 
mass, length, and time?

52. (a) Find a conversion factor to convert from miles per 
hour to kilometers per hour. (b) For a while, federal 
law mandated that the maximum highway speed would 
be 55 mi/h. Use the conversion factor from part (a) to 
find the speed in kilometers per hour. (c) The maxi-
mum highway speed has been raised to 65 mi/h in 
some places. In kilometers per hour, how much of an 
increase is this over the 55-mi/h limit?

 53. One cubic centimeter (1.0 cm3) of water has a 
mass of 1.0 3 1023 kg. (a) Determine the mass of 1.0 m3

of water. Assuming that biological substances are 98% 
water, estimate the masses of (b) a cell with a diameter 
of 1.0 mm, (c) a human kidney, and (d) a fly. Take a 
kidney to be roughly a sphere with a radius of 4.0 cm 
and a fly to be roughly a cylinder 4.0 mm long and 
2.0 mm in diameter.

 54. Soft drinks are commonly sold in aluminum contain-
ers. (a) To an order of magnitude, how many such con-
tainers are thrown away or recycled each year by U.S. 
consumers? (b) How many tons of aluminum does this 
represent? In your solution, state the quantities you 
measure or estimate and the values you take for them.

 55. The displacement of an object moving under uniform 
acceleration is some function of time and the accelera-
tion. Suppose we write this displacement as s 5 kamtn, 
where k is a dimensionless constant. Show by dimen-
sional analysis that this expression is satisfied if m 5 1 
and n 5 2. Can the analysis give the value of k?

 56. Assume that it takes 7.00 minutes to fill a 30.0-gal gaso-
line tank. (a) Calculate the rate at which the tank is filled 
in gallons per second. (b) Calculate the rate at which the 
tank is filled in cubic meters per second. (c) Determine 
the time interval, in hours, required to fill a 1.00-m3 vol-
ume at the same rate. (1 U.S. gal = 231 in.3)

 57.  One gallon of paint (volume = 3.79 3 10–3 m3) cov-
ers an area of 25.0 m2. What is the thickness of the 
fresh paint on the wall?

 58.  Sphere 1 has surface area A1 and volume V1, and 
sphere 2 has surface area A2 and volume V2. If the 
radius of sphere 2 is double the radius of sphere 1, 
what is the ratio of (a) the areas, A2/A1 and (b) the vol-
umes, V2/V1?

 59.  Assume that there are 100 million passenger cars 
in the United States and that the average fuel consump-
tion is 20 mi/gal of gasoline. If the average distance 
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Figure p 1.49

50. Refer to Problem 48. Suppose the mountain height 
is y, the woman’s original distance from the mountain 
is x, and the angle of elevation she measures from 
the horizontal to the top of the mountain is u. If she 
moves a distance d closer to the mountain and mea-
sures an angle of elevation f, find a general equation 
for the height of the mountain y in terms of d, f, and u, 
neglecting the height of her eyes above the ground.
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traveled by each car is 10 000 mi/yr, how much gaso-
line would be saved per year if average fuel consump-
tion could be increased to 25 mi/gal?

 60. In 2013, the U.S. national debt was about $17 trillion. 
(a) If payments were made at the rate of $1 000 per 
second, how many years would it take to pay off the 
debt, assuming that no interest were charged? (b) A 
dollar bill is about 15.5 cm long. If seventeen trillion 
dollar bills were laid end to end around the Earth’s 
equator, how many times would they encircle the 
planet? Take the radius of the Earth at the equator to 
be 6 378 km. (Note: Before doing any of these calcu-
lations, try to guess at the answers. You may be very 
surprised.)

 61. (a) How many seconds are there in a year? (b) If one 
micrometeorite (a sphere with a diameter on the order 
of 1026 m) struck each square meter of the Moon each 
second, estimate the number of years it would take to 
cover the Moon with micrometeorites to a depth of one 
meter. (Hint: Consider a cubic box, 1 m on a side, on the 
Moon, and find how long it would take to fill the box.)

 62. Imagine that you are the equipment manager of a pro-
fessional baseball team. One of your jobs is to keep 
baseballs on hand for games. Balls are sometimes lost 

when players hit them into the stands as either home 
runs or foul balls. Estimate how many baseballs you 
have to buy per season in order to make up for such 
losses. Assume that your team plays an 81-game home 
schedule in a season.

 63. The nearest neutron star (a collapsed star made pri-
marily of neutrons) is about 3.00 3 1018 m away from 
Earth. Given that the Milky Way galaxy (Fig. P1.63) 
is roughly a disk of diameter , 1021 m and thickness 
, 1019 m, estimate the number of neutron stars in the 
Milky Way to the nearest order of magnitude.

Figure p 1.63
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The current absolute land speed 

record holder is the British 

designed ThrustSSC, a twin 

turbofan-powered car which 

achieved 763 miles per hour 

(1,228 km/h) for the measured 

mile (1.6 km), breaking the 

sound barrier. The car was 

driven by Andy Green (UK) on 

10/15/1997 in the Black Rock 

Desert in Gerlach, Nevada.

Life is motion. Our muscles coordinate motion microscopically to enable us to walk and jog. 
Our hearts pump tirelessly for decades, moving blood through our bodies. Cell wall mecha-
nisms move select atoms and molecules in and out of cells. From the prehistoric chase of 
antelopes across the savanna to the pursuit of satellites in space, mastery of motion has been 
critical to our survival and success as a species.

The study of motion and of physical concepts such as force and mass is called dynamics.
The part of dynamics that describes motion without regard to its causes is called kinematics. 
In this chapter the focus is on kinematics in one dimension: motion along a straight line. This 
kind of motion—and, indeed, any motion—involves the concepts of displacement, velocity, and 
acceleration. Here, we use these concepts to study the motion of objects undergoing constant 
acceleration. In Chapter 3 we will repeat this discussion for objects moving in two dimensions.

The first recorded evidence of the study of mechanics can be traced to the people of 
ancient Sumeria and Egypt, who were interested primarily in understanding the motions of 
heavenly bodies. The most systematic and detailed early studies of the heavens were con-
ducted by the Greeks from about 300 B.C. to A.D. 300. Ancient scientists and laypeople 
regarded the Earth as the center of the Universe. This geocentric model was accepted by 
such notables as Aristotle (384–322 B.C.) and Claudius Ptolemy (about A.D. 140). Largely 
because of the authority of Aristotle, the geocentric model became the accepted theory of 
the Universe until the seventeenth century.

About 250 B.C., the Greek philosopher Aristarchus worked out the details of a model of 
the solar system based on a spherical Earth that rotated on its axis and revolved around the 
Sun. He proposed that the sky appeared to turn westward because the Earth was turning 
eastward. This model wasn’t given much consideration because it was believed that a turning 

2 Motion in One Dimension
2.1 Displacement

2.2 Velocity

2.3 Acceleration

2.4 Motion Diagrams

2.5 One-Dimensional Motion with 
Constant Acceleration

2.6 Freely Falling Objects
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2.1 | Displacement  27

Earth would generate powerful winds as it moved through the air. We now know that the 
Earth carries the air and everything else with it as it rotates.

The Polish astronomer Nicolaus Copernicus (1473–1543) is credited with initiating the 
revolution that finally replaced the geocentric model. In his system, called the heliocentric 
model, Earth and the other planets revolve in circular orbits around the Sun.

This early knowledge formed the foundation for the work of Galileo Galilei (1564–1642), 
who stands out as the dominant facilitator of the entrance of physics into the modern era. 
In 1609 he became one of the first to make astronomical observations with a telescope. He 
observed mountains on the Moon, the larger satellites of Jupiter, spots on the Sun, and the 
phases of Venus. Galileo’s observations convinced him of the correctness of the Copernican 
theory. His quantitative study of motion formed the foundation of Newton’s revolutionary 
work in the next century.

2.1    Displacement
Learning Objectives

1. Calculate displacements in one dimension.

2. Explain the difference between scalars and vectors.

Motion involves the displacement of an object from one place in space and time 
to another. Describing motion requires some convenient coordinate system and a 
specified origin. A frame of reference is a choice of coordinate axes that defines 
the starting point for measuring any quantity, an essential first step in solving 
virtually any problem in mechanics (Fig. 2.1). In Figure 2.2a, for example, a car 
moves along the x -axis. The coordinates of the car at any time describe its position 
in space and, more importantly, its displacement at some given time of interest.

The displacement Dx of an object is defined as its change in position and is 
given by

 Dx ; xf 2 xi [2.1]

where xi is the coordinate of the initial position of the car and xf is the coor-
dinate of the car’s final position. (The indices i and f stand for initial and 
final, respectively.)

SI unit: meter (m)

b Definition of displacement

a

b

Figure 2.1  (a) How large is the canyon? Without a frame of reference, it’s 
hard to tell. (b) The canyon is Valles Marineris on Mars, and with a frame 
of reference provided by a superposed outline of the United States, its size 
is easily grasped.
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We will use the Greek letter delta, D, to denote a change in any physical quantity. From 
the definition of displacement, we see that Dx (read “delta ex”) is positive if xf is greater 
than xi and negative if xf is less than xi. For example, if the car moves from point � 
to point � so that the initial position is xi 5 30 m and the final position is xf 5 52 m, 
the displacement is Dx 5 xf 2 xi 5 52 m 2 30 m 5 122 m. However, if the car moves 
from point � to point �, then the initial position is xi 5 38 m and the final position is  
xf 5 253 m, and the displacement is Dx 5 xf 2 xi 5 253 m 2 38 m 5 291 m. A positive 
answer indicates a displacement in the positive x-direction, whereas a negative answer 
indicates a displacement in the negative x-direction. Figure 2.2b displays the graph of 
the car’s position as a function of time.

Because displacement has both a magnitude (size) and a direction, it’s a vector 
quantity, as are velocity and acceleration. In general, a vector quantity is characterized 
by having both a magnitude and a direction. By contrast, a scalar quantity has magni-
tude, but no direction. Scalar quantities such as mass and temperature are completely 
specified by a numeric value with appropriate units; no direction is involved.

Vector quantities will usually be denoted in boldface type with an arrow over 
the top of the letter. For example, vS represents velocity and aS denotes an accelera-
tion, both vector quantities. In this chapter, however, it won’t be necessary to use 
that notation because in one-dimensional motion an object can only move in one 
of two directions, and these directions are easily specified by plus and minus signs.

2.2    Velocity
Learning Objectives

1. Calculate the average speed of an object.

2. Calculate the average velocity of an object.

3. Show by example that an object’s average speed can differ from the magnitude 
of its average velocity.

4. Analyze a graph of position vs. time to obtain average and instantaneous 
velocities.

In everyday usage the terms speed and velocity are interchangeable. In physics, 
however, there’s a clear distinction between them: speed is a scalar quantity, 

t ip 2.1  A Displacement 
Isn’t a Distance!
The displacement of an object 
is not the same as the distance it 
travels. Toss a tennis ball up and 
catch it. The ball travels a distance 
equal to twice the maximum 
height reached, but its displace-
ment is zero.

t ip 2.2  Vectors Have Both a 
Magnitude and a Direction
Scalars have size. Vectors, too, 
have size, but they also indicate a 
direction.

�60 �50 �40 �30 �20 �10 0 10 20 30 40 50 60
x (m)

� �

The car moves to 
the right between 

positions � and �.

�60 �50 �40 �30 �20 �10 0 10 20 30 40 50 60
x (m)

� ���

The car moves to 
the left between 

positions � and �.

a
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�

�

�

�

�

b

Figure 2.2
(a) A car moves back and forth along a straight line taken to be the x -axis. Because we are interested 
only in the car’s translational motion, we can model it as a particle. (b) Graph of position vs. time for 
the motion of the “particle.”
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having only magnitude, whereas velocity is a vector, having both magnitude and 
direction.

Why must velocity be a vector? If you want to get to a town 70 km away in an hour’s 
time, it’s not enough to drive at a speed of 70 km/h; you must travel in the correct 
direction as well. That’s obvious, but it shows that velocity gives considerably more 
information than speed, as will be made more precise in the formal definitions.

The average speed of an object over a given time interval is the length of the 
path it travels divided by the total elapsed time:

Average speed ;  
path length

elapsed time

SI unit: meter per second (m/s)

This equation might be written with symbols as v 5 d/t, where v represents the 
average speed (not average velocity), d represents the path length, and t repre-
sents the elapsed time during the motion. The path length is often called the 
“total distance,” but that can be misleading because distance has a different, 
precise mathematical meaning based on differences in the coordinates between 
the initial and final points. Distance (neglecting any curvature of the surface) is 
given by the Pythagorean theorem, Ds 5 !1xf 2 xi 22 1 1yf 2 yi 22, which depends 
only on the endpoints, (xi , yi ) and (xf , yf ), and not on what happens in between. 
The same equation gives the magnitude of a displacement. The straight-line dis-
tance from Atlanta, Georgia, to St. Petersburg, Florida, for example, is about 
500 miles. If someone drives a car that distance in 10 h, the car’s average speed 
is 500 mi/10 h 5 50 mi/h, even if the car’s speed varies greatly during the trip. 
If the driver takes scenic detours off the direct route along the way, however, or 
doubles back for a while, the path length increases while the distance between 
the two cities remains the same. A side trip to Jacksonville, Florida, for example, 
might add 100 miles to the path length, so the car’s average speed would then be 
600 mi/10 h 5 60 mi/h. The magnitude of the average velocity, however, would 
remain 50 mi/h.

b Definition of average speed

 ■ e Xa Mp Le  2.1 The Tortoise and the Hare

g Oa L  Apply the concept of average speed.

pr Ob Le M  A turtle and a rabbit engage in a footrace over a distance of 4.00 km. The rabbit runs 0.500 km and then 
stops for a 90.0-min nap. Upon awakening, he remembers the race and runs twice as fast. Finishing the course in a total 
time of 1.75 h, the rabbit wins the race. (a) Calculate the average speed of the rabbit. (b) What was his average speed 
before he stopped for a nap? Assume no detours or doubling back.

s t r at e g Y  Finding the overall average speed in part (a) is just a matter of dividing the path length by the elapsed 
time. Part (b) requires two equations and two unknowns, the latter turning out to be the two different average speeds: v1 
before the nap and v2 after the nap. One equation is given in the statement of the problem (v2 5 2v1), whereas the other 
comes from the fact the rabbit ran for only 15 minutes because he napped for 90 minutes.

s OLUti On
(a) Find the rabbit’s overall average speed.

Apply the equation for average speed: Average speed ;  
path length

elapsed time
5

4.00 km
1.75 h

5  2.29 km/h

(b) Find the rabbit’s average speed before his nap.

Sum the running times, and set the sum equal to 0.25 h: t1 1 t2 5 0.25 h

(Continued)
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Unlike average speed, average velocity is a vector quantity, having both a mag-
nitude and a direction. Consider again the car of Figure 2.2, moving along the 
road (the x-axis). Let the car’s position be xi at some time ti and xf at a later time tf . 
In the time interval Dt 5 tf 2 ti, the displacement of the car is Dx 5 xf 2 xi.

The average velocity v during a time interval Dt is the displacement Dx 
divided by Dt:

 v ;
Dx
Dt

5
xf 2 xi
tf 2 ti

 [2.2]

SI unit: meter per second (m/s)

Unlike the average speed, which is always positive, the average velocity of an 
object in one dimension can be either positive or negative, depending on the sign 
of the displacement. (The time interval Dt is always positive.) In Figure 2.2a, for 
example, the average velocity of the car is positive in the upper illustration, a posi-
tive sign indicating motion to the right along the x -axis. Similarly, a negative aver-
age velocity for the car in the lower illustration of the figure indicates that it moves 
to the left along the x -axis.

As an example, we can use the data in Table 2.1 to find the average velocity in 
the time interval from point � to point � (assume two digits are significant):

v 5
Dx
Dt

5
52 m 2 30 m

10 s 2 0 s
5 2.2 m/s

Aside from meters per second, other common units for average velocity are feet 
per second (ft/s) in the U.S. customary system and centimeters per second (cm/s) 
in the cgs system.

To further illustrate the distinction between speed and velocity, suppose we’re 
watching a drag race from a stationary blimp. In one run we see a car follow the 
straight-line path from � to � shown in Figure 2.3 during the time interval Dt, 
and in a second run a car follows the curved path during the same interval. From 
the definition in Equation 2.2, the two cars had the same average velocity because 
they had the same displacement Dx 5 xf 2 xi during the same time interval Dt. The 
car taking the curved route, however, traveled a greater path length and had the 
higher average speed.

Definition of average c

velocity

Substitute v2 5 2v1 and the values of d1 and d2 into Equa-
tion (1):

(2)    
0.500 km

v1
1

3.50 km
2v1

5 0.25 h

Solve Equation (2) for v1: v1 5  9.0 km/h

re Mar Ks  As seen in this example, average speed can be calculated regardless of any variation in speed over the given 
time interval.

QUes t i On  2.1  Does a doubling of an object’s average speed always double the magnitude of its displacement in a given 
amount of time? Explain.

e Xe rc i s e  2.1  Estimate the average speed of the Apollo spacecraft in meters per second, given that the craft took five 
days to reach the Moon from Earth. (The Moon is 3.8 3 108 m from Earth.)

a ns We r  , 900 m/s

t able 2.1  Position of the Car 
at Various Times

Position t (s) x (m)

 �  0 30
 � 10 52
 � 20 38
 � 30 0
 � 40 237
 � 50 253

�� x
xfxi

Figure 2.3  A drag race viewed 
from a stationary blimp. One car 
follows the rust-colored straight-line 
path from � to �, and a second car 
follows the blue curved path.

Substitute t1 5 d1/v1 and t2 5 d2/v2: (1)    
d1

v1
1

d2

v2
5 0.25 h
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■ Quick Quiz

2.1  Figure 2.4 shows the unusual 
path of a confused football player. 
After receiving a kickoff at his own 
goal, he runs downfield to within 
inches of a touchdown, then reverses 
direction and races back until he’s 
tackled at the exact location where he 
first caught the ball. During this run, 
which took 25 s, what is (a) the path 
length he travels, (b) his displacement, 
and (c) his average velocity in the 
x -direction? (d) What is his average speed?

Graphical Interpretation of Velocity
If a car moves along the x-axis from � to � to �, and so forth, we can plot the posi-
tions of these points as a function of the time elapsed since the start of the motion. 
The result is a position vs. time graph like those of Figure 2.5. In Figure 2.5a, the 
graph is a straight line because the car is moving at constant velocity. The same dis-
placement Dx occurs in each time interval Dt. In this case, the average velocity is 
always the same and is equal to Dx/Dt. Figure 2.5b is a graph of the data in Table 2.1. 
Here, the position vs. time graph is not a straight line because the velocity of the car 
is changing. Between any two points, however, we can draw a straight line just as in 
Figure 2.5a, and the slope of that line is the average velocity Dx/Dt in that time inter-
val. In general, the average velocity of an object during the time interval Dt is equal 
to the slope of the straight line joining the initial and final points on a graph of the 
object’s position versus time.

From the data in Table 2.1 and the graph in Figure 2.5b, we see that the car 
first moves in the positive x-direction as it travels from � to �, reaches a position 
of 52 m at time t 5 10 s, then reverses direction and heads backwards. In the first 
10 s of its motion, as the car travels from � to �, its average velocity is 2.2 m/s, 
as previously calculated. In the first 40 seconds, as the car goes from � to �, its 
displacement is Dx 5 237 m 2 (30 m) 5 267 m. So the average velocity in this 
interval, which equals the slope of the blue line in Figure 2.5b from � to �, is v  5  
Dx/Dt 5(267 m)/(40 s) 5 21.7 m/s. In general, there will be a different average 
velocity between any distinct pair of points.

100 yd0 yd 50 yd

Figure 2.4  (Quick Quiz 2.1) The path followed 
by a confused football player.
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The average velocity between any 
two points equals the slope of the 
blue line connecting the points.

b

Figure 2.5  (a) Position 
vs. time graph for the 
motion of a car moving 
along the x -axis at con-
stant velocity. (b) Posi-
tion vs. time graph for 
the motion of a car with 
changing velocity, using 
the data in Table 2.1.

t ip 2.3  Slopes of Graphs
The word slope is often used in 
reference to the graphs of physi-
cal data. Regardless of the type of 
data, the slope is given by

 Slope 5
change in vertical axis

change in horizontal axis
 

Slope carries units.

t ip 2.4  Average Velocity 
vs. Average Speed
Average velocity is not the same 
as average speed. If you run from 
x 5 0 m to x 5 25 m and back 
to your starting point in a time 
interval of 5 s, the average velocity 
is zero, whereas the average speed 
is 10 m/s.

37027_ch02_ptg01_hr_026-056.indd   31 19/08/13   2:10 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



32  c hap t e r  2 | Motion in One Dimension

Instantaneous Velocity
Average velocity doesn’t take into account the details of what happens during an 
interval of time. On a car trip, for example, you may speed up or slow down a num-
ber of times in response to the traffic and the condition of the road, and on rare 
occasions even pull over to chat with a police officer about your speed. What is 
most important to the police (and to your own safety) is the speed of your car and 
the direction it was going at a particular instant in time, which together determine 
the car’s instantaneous velocity.

So in driving a car between two points, the average velocity must be computed 
over an interval of time, but the magnitude of instantaneous velocity can be read 
on the car’s speedometer.

The instantaneous velocity v is the limit of the average velocity as the time 
interval Dt becomes infinitesimally small:

v ; lim
Dt S0

 
Dx
Dt

 [2.3]

SI unit: meter per second (m/s)

The notation lim
Dt S0

means that the ratio Dx/Dt is repeatedly evaluated for smaller 

and smaller time intervals Dt. As Dt gets extremely close to zero, the ratio Dx/Dt 
gets closer and closer to a fixed number, which is defined as the instantaneous 
velocity.

To better understand the formal definition, consider data obtained on our vehi-
cle via radar (Table 2.2). At t 5 1.00 s, the car is at x 5 5.00 m, and at t 5 3.00 s, it’s 
at x 5 52.5 m. The average velocity computed for this interval Dx/Dt 5 (52.5 m 2 
5.00 m)/(3.00 s 2 1.00 s) 5 23.8 m/s. This result could be used as an estimate for 
the velocity at t 5 1.00 s, but it wouldn’t be very accurate because the speed changes 
considerably in the 2-second time interval. Using the rest of the data, we can con-
struct Table 2.3. As the time interval gets smaller, the average velocity more closely 
approaches the instantaneous velocity. Using the final interval of only 0.010 0  s, 
we find that the average velocity is v 5 Dx/Dt 5 0.470 m/0.010 0 s 5 47.0 m/s. 
Because 0.010 0 s is a very short time interval, the actual instantaneous velocity is 
probably very close to this latter average velocity, given the limits on the car’s abil-
ity to accelerate. Finally using the conversion factor on the front endsheets of the 
book, we see that this is 105 mi/h, a likely violation of the speed limit.

As can be seen in Figure 2.6, the chords formed by the blue lines gradually 
approach a tangent line as the time interval becomes smaller. The slope of the 
line tangent to the position vs. time curve at “a given time” is defined to be the 
instantaneous velocity at that time.

Definition of instantaneous c

velocity

t able 2.2  Positions of a Car 
at Specific Instants of Time

t (s) x (m)

1.00 5.00
1.01 5.47
1.10 9.67

 1.20 14.3
 1.50 26.3
 2.00 34.7
 3.00 52.5

t able 2.3 Calculated Values of the Time Intervals, Displacements, 
and Average Velocities of the Car of Table 2.2

Time Interval (s) Dt (s) Dx (m) v 1m/s 2
1.00 to 3.00 2.00 47.5 23.8
1.00 to 2.00 1.00 29.7 29.7
1.00 to 1.50 0.50 21.3 42.6

 1.00 to 1.20 0.20 9.30 46.5
 1.00 to 1.10 0.10 4.67 46.7

1.00 to 1.01 0.01 0.470 47.0
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x (m)

t (s)
2.502.001.501.00

10.0

20.0

30.0

40.0

50.0

3.00

The slopes of the blue lines are average 
velocities which approach the slope of the 
green tangent line, an instantaneous velocity.

Figure 2.6  Graph representing the 
motion of the car from the data in 
Table 2.2.

 ■ e Xa Mp Le  2.2 Slowly Moving Train

g Oa L  Obtain average and instantaneous velocities from a 
graph.

pr Ob Le M  A train moves slowly along a straight portion of track 
according to the graph of position versus time in Figure 2.7a. 
Find (a) the average velocity for the total trip, (b) the average 
velocity during the first 4.00 s of motion, (c) the average velocity 
during the next 4.00 s of motion, (d) the instantaneous velocity at 
t 5 2.00 s, and (e) the instantaneous velocity at t 5 9.00 s.

s t r at e g Y  The average velocities can be obtained by substi-
tuting the data into the definition. The instantaneous velocity 
at t 5 2.00 s is the same as the average velocity at that point because the position vs. time graph is a straight line, indicat-
ing constant velocity. Finding the instantaneous velocity when t 5 9.00 s requires sketching a line tangent to the curve at 
that point and finding its slope.

s OLUti On
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a b

Figure 2.7  (a) (Example 2.2) (b) (Exercise 2.2)

(a) Find the average velocity from � to �.

Calculate the slope of the dashed blue line: v 5
Dx
Dt

5
10.0 m
12.0 s

5  10.833 m/s

(b) Find the average velocity during the first 4 seconds of 
the train’s motion.

Again, find the slope: v 5
Dx
Dt

5
4.00 m
4.00 s

5  11.00 m/s

(c) Find the average velocity during the next 4 seconds.

Here, there is no change in position as the train moves 
from � to �, so the displacement Dx is zero:

v 5
Dx
Dt

5
0 m

4.00 s
5  0 m/s

(Continued)

The instantaneous speed of an object, which is a scalar quantity, is defined as 
the magnitude of the instantaneous velocity. Like average speed, instantaneous 
speed (which we will usually call, simply, “speed”) has no direction associated with it 
and hence carries no algebraic sign. For example, if one object has an instanta-
neous velocity of 115 m/s along a given line and another object has an instanta-
neous velocity of 215 m/s along the same line, both have an instantaneous speed 
of 15 m/s.

b  Definition of instantaneous 
speed
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2.3    Acceleration
Learning Objectives

1. Calculate an object’s average acceleration.

2. Analyze an object’s velocity vs. time graph to obtain average and instanta-
neous accelerations.

Going from place to place in your car, you rarely travel long distances at con-
stant velocity. The velocity of the car increases when you step harder on the gas 
pedal and decreases when you apply the brakes. The velocity also changes when 
you round a curve, altering your direction of motion. The changing of an object’s 
velocity with time is called acceleration.

Average Acceleration
A car moves along a straight highway as in Figure 2.8. At time ti it has a velocity of 
vi, and at time tf its velocity is vf , with Dv 5 vf 2 vi and Dt 5 tf 2 ti.

The average acceleration a  during the time interval Dt is the change in veloc-
ity Dv divided by Dt:

 a ;
Dv
Dt

5
vf 2 vi
tf 2 ti

 [2.4]

SI unit: meter per second per second (m/s2)

For example, suppose the car shown in Figure 2.8 accelerates from an initial 
velocity of vi 5 110 m/s to a final velocity of vf 5 120 m/s in a time interval of 2 s. 

Definition of average c

acceleration

re Mar Ks  From the origin to �, the train moves at constant speed in the positive x -direction for the first 4.00 s, 
because the position vs. time curve is rising steadily toward positive values. From � to �, the train stops at x 5 4.00 m for 
4.00 s. From � to �, the train travels at increasing speed in the positive x -direction.

QUes t i On  2.2  Would a vertical line in a graph of position versus time make sense? Explain.

e Xe rc i s e  2.2  Figure 2.7b graphs another run of the train. Find (a) the average velocity from � to �; (b) the average 
velocity from � to � and the instantaneous velocity at any given point between � and �; (c) the approximate instan-
taneous velocity at t 5 6.0 s; and (d) the average velocity on the open interval from � to � and instantaneous velocity  
at t 5 9.0 s.

a ns We r s  (a) 0 m/s (b) both are 10.5 m/s (c) 2 m/s (d) both are 22.5 m/s

t f
v fv i

ti

Figure 2.8  A car moving to the 
right accelerates from a velocity of vi 
to a velocity of vf in the time interval 
Dt 5 tf 2 ti.

(e) Find the instantaneous velocity at t 5 9.00 s.

The tangent line appears to intercept the x-axis at (3.0 s, 
0 m) and graze the curve at (9.0 s, 4.5 m). The instanta-
neous velocity at t 5 9.00 s equals the slope of the tan-
gent line through these points:

v 5
Dx
Dt

5
4.5 m 2 0 m
9.0 s 2 3.0 s

 5  0.75 m/s

(d) Find the instantaneous velocity at t 5 2.00 s.

This is the same as the average velocity found in (b), 
because the graph is a straight line:

v 5  1.00 m/s
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(Both velocities are toward the right, selected as the positive direction.) These val-
ues can be inserted into Equation 2.4 to find the average acceleration:

a 5
Dv
Dt

5
20 m/s 2 10 m/s

2 s
5 15 m/s2

Acceleration is a vector quantity having dimensions of length divided by the 
time squared. Common units of acceleration are meters per second per second 
((m/s)/s, which is usually written m/s2) and feet per second per second (ft/s2). An 
average acceleration of 15 m/s2 means that, on average, the car increases its veloc-
ity by 5 m/s every second in the positive x -direction.

For the case of motion in a straight line, the direction of the velocity of an object 
and the direction of its acceleration are related as follows: When the object’s veloc-
ity and acceleration are in the same direction, the speed of the object increases 
with time. When the object’s velocity and acceleration are in opposite directions, 
the speed of the object decreases with time.

To clarify this point, suppose the velocity of a car changes from 210 m/s to 
220 m/s in a time interval of 2 s. The minus signs indicate that the velocities of the 
car are in the negative x -direction; they do not mean that the car is slowing down! 
The average acceleration of the car in this time interval is

a 5
Dv
Dt

5
220 m/s 2 1210 m/s 2

2 s
5 25 m/s2

The minus sign indicates that the acceleration vector is also in the negative 
x-direction. Because the velocity and acceleration vectors are in the same direc-
tion, the speed of the car must increase as the car moves to the left. Positive and 
negative accelerations specify directions relative to chosen axes, not “speeding up” 
or “slowing down.” The terms speeding up or slowing down refer to an increase and a 
decrease in speed, respectively.

■ Quick Quiz

2.2  True or False? (a) A car must always have an acceleration in the same direction 
as its velocity. (b) It’s possible for a slowing car to have a positive acceleration. (c) An 
object with constant nonzero acceleration can never stop and remain at rest.

An object with nonzero acceleration can have a velocity of zero, but only instan-
taneously. When a ball is tossed straight up, its velocity is zero when it reaches its 
maximum height. Gravity still accelerates the ball at that point, however; other-
wise, it wouldn’t fall down.

Instantaneous Acceleration
The value of the average acceleration often differs in different time intervals, so 
it’s useful to define the instantaneous acceleration, which is analogous to the 
instantaneous velocity discussed in Section 2.2.

The instantaneous acceleration a is the limit of the average acceleration as 
the time interval Dt goes to zero:

 a ; lim
Dt S0

 
Dv
Dt

 [2.5]

SI unit: meter per second per second (m/s2)

Here again, the notation lim
Dt S0

means that the ratio Dv/Dt is evaluated for smaller

and smaller values of Dt. The closer Dt gets to zero, the closer the ratio gets to a 
fixed number, which is the instantaneous acceleration.

t ip 2.5  Negative 
Acceleration
Negative acceleration doesn’t nec-
essarily mean an object is slowing 
down. If the acceleration is nega-
tive and the velocity is also nega-
tive, the object is speeding up!

t ip 2.6  Deceleration
The word deceleration means a 
reduction in speed, a slowing 
down. Some confuse it with a 
negative acceleration, which 
can speed something up. (See 
Tip 2.5.)

b  Definition of instantaneous  
acceleration
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Figure 2.9, a velocity vs. time graph, plots the velocity of an object against time. 
The graph could represent, for example, the motion of a car along a busy street. 
The average acceleration of the car between times ti and tf can be found by deter-
mining the slope of the line joining points � and �. If we imagine that point � is 
brought closer and closer to point �, the line comes closer and closer to becoming 
tangent at �. The instantaneous acceleration of an object at a given time equals 
the slope of the tangent to the velocity vs. time graph at that time. From now on, 
we will use the term acceleration to mean “instantaneous acceleration.”

In the special case where the velocity vs. time graph of an object’s motion is a 
straight line, the instantaneous acceleration of the object at any point is equal to 
its average acceleration. That also means the tangent line to the graph overlaps 
the graph itself. In that case, the object’s acceleration is said to be uniform, which 
means that it has a constant value. Constant acceleration problems are important 
in kinematics and will be studied extensively in this and the next chapter.

■ Quick Quiz

2.3  Parts (a), (b), and (c) of Figure 2.10 represent three graphs of the velocities of 
different objects moving in straight-line paths as functions of time. The possible 
accelerations of each object as functions of time are shown in parts (d), (e), and (f). 
Match each velocity vs. time graph with the acceleration vs. time graph that best 
describes the motion.

t

v

t

a

t

v

t

a

t

v

t

a

a b c

d e f

Figure 2.10  (Quick Quiz 2.3) 
Match each velocity vs. time graph 
to its corresponding acceleration vs. 
time graph.

b

a

�

�

�

t ft i

v

vf

vi

 

�t

�v

t

ti tf
x

v �vi v �vf

�

The car moves with 
different velocities at 

points � and �.

The slope of the green line is 
the instantaneous acceleration 

of the car at point � (Eq. 2.5).

The slope of the blue 

line connecting � and 

� is the average 
acceleration of the car 
during the time interval 
�t � tf � ti (Eq. 2.4).

Figure 2.9  (a) A car, modeled as 
a particle, moving along the x -axis 
from � to �, has velocity vx i at t 5 ti 
and velocity vxf at t 5 tf . (b) Velocity 
vs. time graph for an object moving 
in a straight line. 

 ■ e Xa Mp Le  2.3 Catching a Fly Ball

g Oa L  Apply the definition of instantaneous acceleration.

pr Ob Le M  A baseball player moves in a straight-line path 
in order to catch a fly ball hit to the outfield. His velocity as a 
function of time is shown in Figure 2.11a. Find his instanta-
neous acceleration at points �, �, and �.

s t r at e g Y  At each point, the velocity vs. time graph is a 
straight line segment, so the instantaneous acceleration will 
be the slope of that segment. Select two points on each seg-
ment and use them to calculate the slope.

s OLUti On
Acceleration at �.

O 1 2 3 4

1

2

3

4

v (m/s)

t (s)

�

�

O 1 2 3 4

1

2

3

4

v (m/s)

t (s)

� �

��

a b

Figure 2.11  (a) (Example 2.3) (b) (Exercise 2.3)

The acceleration at � equals the slope of the line con-
necting the points (0 s, 0 m/s) and (2.0 s, 4.0 m/s):

a 5
Dv
Dt

5
4.0 m/s 2 0

2.0 s 2 0
5  12.0 m/s2
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2.4    Motion Diagrams
Learning Objective

1. Analyze an object’s motion using a motion diagram.

Velocity and acceleration are sometimes confused with each other, but they’re 
very different concepts, as can be illustrated with the help of motion diagrams. A 
motion diagram is a representation of a moving object at successive time intervals, 
with velocity and acceleration vectors sketched at each position, red for velocity 
vectors and violet for acceleration vectors, as in Figure 2.12. The time intervals 
between adjacent positions in the motion diagram are assumed equal.

A motion diagram is analogous to images resulting from a stroboscopic photo-
graph of a moving object. Each image is made as the strobe light flashes. Figure 2.12 
represents three sets of strobe photographs of cars moving along a straight roadway 
from left to right. The time intervals between flashes of the stroboscope are equal in 
each diagram.

In Figure 2.12a, the images of the car are equally spaced: The car moves the 
same distance in each time interval. This means that the car moves with constant 
positive velocity and has zero acceleration. The red arrows are all the same length (con-
stant velocity) and there are no violet arrows (zero acceleration).

In Figure 2.12b, the images of the car become farther apart as time progresses 
and the velocity vector increases with time, because the car’s displacement between 
adjacent positions increases as time progresses. The car is moving with a positive 

Acceleration at �.

Dv 5 0, because the segment is horizontal: a 5
Dv
Dt

5
4.0 m/s 2 4.0 m/s

3.0 s 2 2.0 s
5   0 m/s2

Acceleration at �.

The acceleration at � equals the slope of the line con-
necting the points (3.0 s, 4.0 m/s) and (4.0 s, 2.0 m/s):

a 5
Dv
Dt

5
2.0 m/s 2 4.0 m/s

4.0 s 2 3.0 s
5  22.0 m/s2

re Mar Ks  For the first 2.0 s, the ballplayer moves in the positive x -direction (the velocity is positive) and steadily 
accelerates (the curve is steadily rising) to a maximum speed of 4.0 m/s. He moves for 1.0 s at a steady speed of 4.0 m/s 
and then slows down in the last second (the v vs. t curve is falling), still moving in the positive x -direction (v is always 
positive).

QUes t i On  2.3  Can the tangent line to a velocity vs. time graph ever be vertical? Explain.

e Xe rc i s e  2.3  Repeat the problem, using Figure 2.11b.

a ns We r  The accelerations at �, �, and � are 23.0 m/s2, 1.0 m/s2, and 0 m/s2, respectively.

Figure 2.12
Motion diagrams of a car moving 
along a straight roadway in a single 
direction. The velocity at each 
instant is indicated by a red arrow, 
and the constant acceleration is indi-
cated by a purple arrow.

a

b

c

v

v

v

a

a

This car moves at 
constant velocity (zero 
acceleration). 

This car has a constant 
acceleration in the 
direction of its velocity. 

This car has a 
constant acceleration 
in the direction 
opposite its velocity.
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velocity and a constant positive acceleration. The red arrows are successively longer in 
each image, and the violet arrows point to the right.

In Figure 2.12c, the car slows as it moves to the right because its displacement 
between adjacent positions decreases with time. In this case, the car moves initially to 
the right with a constant negative acceleration. The velocity vector decreases in time 
(the red arrows get shorter) and eventually reaches zero, as would happen when the 
brakes are applied. Note that the acceleration and velocity vectors are not in the same 
direction. The car is moving with a positive velocity, but with a negative acceleration.

Try constructing your own diagrams for various problems involving kinematics.

■ Quick Quiz

2.4  The three graphs in Figure 2.13 represent the position vs. time for objects mov-
ing along the x -axis. Which, if any, of these graphs is not physically possible?

2.5  Figure 2.14a is a diagram of a multiflash image of an air puck moving to the right 
on a horizontal surface. The images sketched are separated by equal time intervals, 
and the first and last images show the puck at rest. (a) In Figure 2.14b, which color 
graph best shows the puck’s position as a function of time? (b) In Figure 2.14c, which 
color graph best shows the puck’s velocity as a function of time? (c) In Figure 2.14d, 
which color graph best shows the puck’s acceleration as a function of time?

2.5     One-Dimensional Motion  
with Constant Acceleration
Learning Objectives

1. Apply the kinematics equations for objects moving at constant acceleration.

2. Find accelerations and displacements by analyzing a velocity vs. time graph.

Many applications of mechanics involve objects moving with constant acceleration.
This type of motion is important because it applies to numerous objects in nature, 
such as an object in free fall near Earth’s surface (assuming air resistance can be 
neglected). A graph of acceleration versus time for motion with constant accelera-
tion is shown in Figure 2.15a. When an object moves with constant acceleration, 
the instantaneous acceleration at any point in a time interval is equal to the value 
of the average acceleration over the entire time interval. Consequently, the veloc-
ity increases or decreases at the same rate throughout the motion, and a plot of v 
versus t gives a straight line with either positive, zero, or negative slope.

Because the average acceleration equals the instantaneous acceleration when a 
is constant, we can eliminate the bar used to denote average values from our defin-
ing equation for acceleration, writing a 5 a, so that Equation 2.4 becomes

a 5
vf 2 vi
tf 2 ti

x

t

x

t

x

t
a b c

Figure 2.13 (Quick Quiz 2.4) Which position vs. time curve is impossible?

t
O

+

x

+

t
O

v

–

+

t
O

a

–

a

b

c

d

Figure 2.14  (Quick Quiz 2.5) 
Choose the correct graphs.

v

v

t

v0

v0

at

t

Slope �  a

x

t

x0

Slope � v0

t

Slope � v

t

a

t

Slope � 0

a

a

b

c

Figure 2.15
A particle moving along the x -axis 
with constant acceleration a.
(a) the acceleration vs. time graph,
(b) the velocity vs. time graph, and
(c) the position vs. time graph.
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The observer timing the motion is always at liberty to choose the initial time, so 
for convenience, let ti 5 0 and tf be any arbitrary time t. Also, let vi 5 v0 (the initial 
velocity at t 5 0) and vf 5 v (the velocity at any arbitrary time t). With this notation, 
we can express the acceleration as

a 5
 v 2 v0

t

or

v 5 v0 1 at  (for constant a) [2.6]

Equation 2.6 states that the acceleration a steadily changes the initial velocity v0 by 
an amount at. For example, if a car starts with a velocity of 12.0 m/s to the right 
and accelerates to the right with a 5 16.0 m/s2, it will have a velocity of 114 m/s 
after 2.0 s have elapsed:

v 5 v0 1 at 5 1 2.0 m/s 1 (6.0 m/s2)(2.0 s) 5 114 m/s

The graphical interpretation of v is shown in Figure 2.15b. The velocity varies lin-
early with time according to Equation 2.6, as it should for constant acceleration.

Because the velocity is increasing or decreasing uniformly with time, we can 
express the average velocity in any time interval as the arithmetic average of the 
initial velocity v0 and the final velocity v:

 v 5
v0 1 v

2
  (for constant a) [2.7]

Remember that this expression is valid only when the acceleration is constant, in 
which case the velocity increases uniformly.

We can now use this result along with the defining equation for average veloc-
ity, Equation 2.2, to obtain an expression for the displacement of an object as a 
function of time. Again, we choose ti 5 0 and tf 5 t, and for convenience, we write
Dx 5 xf 2 xi 5 x 2 x0. This results in

Dx 5 vt 5 av0 1 v
2

bt

 Dx 5 1
2 1v0 1 v 2 t  (for constant a) [2.8]

We can obtain another useful expression for displacement by substituting the 
equation for v (Eq. 2.6) into Equation 2.8:

Dx 5 1
2 1v0 1 v0 1 at 2 t

 Dx 5 v0t 1 1
2at

2 (for constant a) [2.9]

This equation can also be written in terms of the position x, since Dx 5 x 2 x0.  
Figure 2.15c shows a plot of x versus t for Equation 2.9, which is related to the graph 
of velocity vs. time: The area under the curve in Figure 2.15b is equal to v0t 1 1

2at
2, 

which is equal to the displacement Dx. In fact, the area under the graph of v versus 
t for any object is equal to the displacement Dx of the object.

Finally, we can obtain an expression that doesn’t contain time by solving Equa-
tion 2.6 for t and substituting into Equation 2.8, resulting in

Dx 5 1
2 1v 1 v0 2 a

v 2 v0

a b 5
v2 2 v0

2

2a

 v2 5 v0
2 1 2aDx (for constant a) [2.10]

Equations 2.6 and 2.9 together can solve any problem in one-dimensional motion 
with constant acceleration, but Equations 2.7, 2.8, and, especially, 2.10 are sometimes 
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convenient. The three most useful equations—Equations 2.6, 2.9, and 2.10—are 
listed in Table 2.4.

The best way to gain confidence in the use of these equations is to work a num-
ber of problems. There is usually more than one way to solve a given problem, 
depending on which equations are selected and what quantities are given. The dif-
ference lies mainly in the algebra.

 ■ pr Ob Le M-s OLv i ng  s t r at e g Y

Motion in One Dimension at Constant Acceleration
The following procedure is recommended for solving problems involving accelerated motion.

1. Read the problem.
2. Draw a diagram, choosing a coordinate system, labeling initial and final 

points, and indicating directions of velocities and accelerations with arrows.
3. Label all quantities, circling the unknowns. Convert units as needed.
4. Equations from Table 2.4 should be selected next. All kinematics problems in 

this chapter can be solved with the first two equations, and the third is often 
convenient.

5. Solve for the unknowns. Doing so often involves solving two equations for two 
unknowns.

6. Check your answer, using common sense and estimates.

Most of these problems reduce to writing the kinematic equations from Table 2.4 
and then substituting the correct values into the constants a, v0, and x0 from  
the given information. Doing this produces two equations—one linear and one 
quadratic—for two unknown quantities.

t able 2.4 Equations for Motion in a Straight Line Under 
Constant Acceleration

Equation Information Given by Equation

v 5 v0 1 at Velocity as a function of time
Dx 5 v0t 1 1

2at
2 Displacement as a function of time

v 2 5 v0
2 1 2a Dx Velocity as a function of displacement

Note: Motion is along the x -axis. At t 5 0, the velocity of the particle is v0.

 ■ e Xa Mp Le  2.4 The Daytona 500

g Oa L Apply the basic kinematic equations.

pr Ob Le M (a) A race car starting from rest accelerates at a constant rate of 5.00 m/s2. 
What is the velocity of the car after it has traveled 1.00 3 102 ft? (b) How much time 
has elapsed? (c) Calculate the average velocity two different ways.

s t r at e g Y We’ve read the problem, drawn the diagram in Figure 2.16, and chosen a 
coordinate system (steps 1 and 2). We’d like to find the velocity v after a certain known 
displacement Dx. The acceleration a is also known, as is the initial velocity v0 (step 3, 
labeling, is complete), so the third equation in Table 2.4 looks most useful for solving part (a). Given the velocity, the first 
equation in Table 2.4 can then be used to find the time in part (b). Part (c) requires substitution into Equations 2.2 and 
2.7, respectively.

s OLUti On

t ip 2.7  Pigs Don’t Fly
After solving a problem, you 
should think about your answer 
and decide whether it seems rea-
sonable. If it isn’t, look for your 
mistake!

v = ?

x = 0

v0 = 0

x = 30.5 m
+ x

Figure 2.16  (Example 2.4) 

(a) Convert units of Dx to SI, using the information in 
the inside front cover.

1.00 3 102 ft 5 11.00 3 102 ft 2 a 1 m
3.28 ft

b 5 30.5 m

Write the kinematics equation for v2 (step 4): v 2 5 v0
2 1 2a Dx
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 ■ e Xa Mp Le  2.5 Car Chase

g Oa L  Solve a problem involving two objects, one moving at con-
stant acceleration and the other at constant velocity.

pr Ob Le M  A car traveling at a constant speed of 24.0 m/s passes 
a trooper hidden behind a billboard, as in Figure 2.17. One second 
after the speeding car passes the billboard, the trooper sets off in 
chase with a constant acceleration of 3.00 m/s2. (a) How long does 
it take the trooper to overtake the speeding car? (b) How fast is 
the trooper going at that time?

s t r at e g Y  Solving this problem involves two simultaneous kine-
matics equations of position, one for the trooper and the other for 
the car. Choose t 5 0 to correspond to the time the trooper takes 
up the chase, when the car is at xcar 5 24.0 m because of its head start (24.0 m/s 3 1.00 s). The trooper catches up with the 
car when their positions are the same, which suggests setting xtrooper 5 xcar and solving for time, which can then be used to 
find the trooper’s speed in part (b).

s OLUti On

Solve for v, taking the positive square root because the 
car moves to the right (step 5):

v 5 "v0
2 1 2a Dx

Substitute v0 5 0, a 5 5.00 m/s2, and Dx 5 30.5 m: v 5 "v0
2 1 2a Dx 5 "10 22 1 2 15.00 m/s2 2 130.5 m 2

 5  17.5 m/s

(b) How much time has elapsed?

Apply the first equation of Table 2.4: v 5 at 1 v0

Substitute values and solve for time t: 17.5 m/s 5 (5.00 m/s2)t

t 5
17.5 m/s
5.00 m/s2 5  3.50 s

(c) Calculate the average velocity in two different ways.

Apply the definition of average velocity, Equation 2.2: v 5
xf 2 xi
tf 2 ti

5
30.5 m
3.50 s

5    8.71 m/s 

Apply the definition of average velocity in Equation 2.7: v 5
v0 1 v

2
5

0 1 17.5 m/s
2

5    8.75 m/s

re Mar Ks  The answers are easy to check. An alternate technique is to use Dx 5 v0t 1 1
2at

2 to find t and then use the 
equation v 5 v0 1 at to find v. Notice that the two different equations for calculating the average velocity, due to round-
ing, give slightly different answers.

QUes t i On  2.4  What is the final speed if the displacement is increased by a factor of 4?

e Xe rc i s e  2.4  Suppose the driver in this example now slams on the brakes, stopping the car in 4.00 s. Find (a) the 
acceleration, (b) the distance the car travels while braking, assuming the acceleration is constant, and (c) the average 
velocity.

a ns We r s  (a) 24.38 m/s2 (b) 35.0 m (c) 8.75 m/s

t� � ?t� � 0t� � �1.00 s

� � �

Figure 2.17  (Example 2.5) A speeding car passes a hid-
den trooper. When does the trooper catch up to the car?

(a) How long does it take the trooper to overtake the car?

Write the equation for the car’s displacement: Dxcar 5 xcar 2 x0 5 v0t 1 1
2acart

2

Take x0 5 24.0 m, v0 5 24.0 m/s, and acar 5 0. Solve  
for xcar:

xcar 5 x0 1 vt 5 24.0 m 1 (24.0 m/s)t

(Continued)
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 ■ e Xa Mp Le  2.6 Runway Length

g Oa L Apply kinematics to horizontal motion with two phases.

pr Ob Le M A typical jetliner lands at a speed of 1.60 3

102 mi/h and decelerates at the rate of (10.0 mi/h)/s. If the 
plane travels at a constant speed of 1.60 3 102 mi/h for 1.00 s 
after landing before applying the brakes, what is the total dis-
placement of the aircraft between touchdown on the runway 
and coming to rest?

s t r at e g Y See Figure 2.18. First, convert all quantities to 
SI units. The problem must be solved in two parts, or phases, 
corresponding to the initial coast after touchdown, followed by 
braking. Using the kinematic equations, find the displacement during each part and add the two displacements.

s OLUti On

re Mar Ks  The trooper, traveling about twice as fast as the car, must swerve or apply his brakes strongly to avoid a col-
lision! This problem can also be solved graphically by plotting position versus time for each vehicle on the same graph. 
The intersection of the two graphs corresponds to the time and position at which the trooper overtakes the car.

QUes t i On  2.5  The graphical solution corresponds to finding the intersection of what two types of curves in the 
tx -plane?

e Xe rc i s e  2.5  A motorist with an expired license tag is traveling at 10.0 m/s down a street, and a policeman on a 
motorcycle, taking another 5.00 s to finish his donut, gives chase at an acceleration of 2.00  m/s2. Find (a) the time 
required to catch the car and (b) the distance the trooper travels while overtaking the motorist.

a ns We r s  (a) 13.7 s (b) 188 m

Write the equation for the trooper’s position, taking
x0 5 0, v0 5 0, and atrooper 5 3.00 m/s2:

xtrooper 5 1
2atroopert

2 5 1
2 13.00 m/s2 2 t 2 5 11.50 m/s2 2 t 2 

Set xtrooper 5 xcar, and solve the quadratic equation. (The 
quadratic formula appears in Appendix A, Equation 
A.8.) Only the positive root is meaningful.

(1.50 m/s2)t 2 5 24.0 m 1 (24.0 m/s)t

(1.50 m/s2)t 2 2 (24.0 m/s)t 2 24.0 m 5 0

t 5  16.9 s

(b) Find the trooper’s speed at that time.

Substitute the time into the trooper’s velocity equation: vtrooper 5 v0 1 atrooper t 5 0 1 (3.00 m/s2)(16.9 s)

5  50.7 m/s

a

Coasting
distance

Braking distance
+x

v0 = 71.5 m/s
a = 0
t = 1.00 s

v  = 71.5 m/s
vf = 0
a = –4.47 m/s2

Origin

vv

0

Figure 2.18  (Example 2.6) Coasting and braking distances for 
a landing jetliner.

Convert units of speed and acceleration to SI: v0 5 11.60 3 102 mi/h 2 a0.447 m/s
1.00 mi/h

b 5 71.5 m/s

a 5 1210.0 1mi/h 2/s 2 a0.447 m/s
1.00 mi/h

b 5 24.47 m/s2

Taking a 5 0, v0 5 71.5 m/s, and t 5 1.00 s, find the dis-
placement while the plane is coasting:

Dxcoasting 5 v0t 1 1
2at

2 5 171.5 m/s 2 11.00 s 2 1 0 5 71.5 m

Use the time-independent kinematic equation to find 
the displacement while the plane is braking.

v 2 5 v0
2 1 2 a D x braking

re Mar Ks  To find the displacement while braking, we could have used the two kinematics equations involving time, namely, 
Dx 5 v0t 1 1

2at
2 and v 5 v0 1 at, but because we weren’t interested in time, the time-independent equation was easier to use.

QUes t i On  2.6  How would the answer change if the plane coasted for 2.00 s before the pilot applied the brakes?

Take a 5 24.47 m/s2 and v0 5 71.5 m/s. The negative 
sign on a means that the plane is slowing down.

Dxbraking 5
v 2 2 v0

2

2a
5

0 2 171.5 m/s 22

2.00 124.47 m/s2 2 5 572 m

Sum the two results to find the total displacement: Dxcoasting 1 Dx braking 5 71.5 m 1 572 m 5   644 m
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e Xe rc i s e  2.6  A jet lands at 80.0 m/s, the pilot applying the brakes 2.00 s after landing. Find the acceleration needed 
to stop the jet within 5.00 3 102 m after touchdown.

a ns We r  29.41 m/s2

 ■ e Xa Mp Le  2.7 The Acela: The Porsche of American Trains

g Oa L  Find accelerations and displacements from a velocity vs. time graph.
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Figure 2.19  (Example 2.7) (a) Velocity vs. time graph for the Acela. (b) The slope of the steepest tangent blue line gives the peak 
acceleration, and the slope of the green line is the average acceleration between 200 s and 300 s. (c) The area under the velocity vs. time 
graph in some time interval gives the displacement of the Acela in that time interval. (d) (Exercise 2.7).

(Continued)

pr Ob Le M  The sleek high-speed electric train known as 
the Acela (pronounced ahh-sell-ah) is currently in service 
on the Washington-New York-Boston run. The Acela con-
sists of two power cars and six coaches and can carry 304 
passengers at speeds up to 170  mi/h. In order to negoti-
ate curves comfortably at high speeds, the train carriages 
tilt as much as 6° from the vertical, preventing passengers 
from being pushed to the side. A velocity vs. time graph for 
the Acela is shown in Figure 2.19a. (a) Describe the motion 
of the Acela. (b) Find the peak acceleration of the Acela in 
miles per hour per second ((mi/h)/s) as the train speeds 
up from 45 mi/h to 170 mi/h. (c) Find the train’s displace-
ment in miles between t 5 0 and t 5 200 s. (d) Find the 
average acceleration of the Acela and its displacement in 
miles in the interval from 200  s to 300 s. (The train has 
regenerative braking, which means that it feeds energy 

back into the utility lines each time it stops!) (e) Find the 
total displacement in the interval from 0 to 400 s. Note: 
Assume that all given quantities and estimates are good to 
two significant figures. (Estimates by different individuals 
may vary, and result in slightly different answers.)

s t r at e g Y  For part (a), remember that the slope of the tan-
gent line at any point of the velocity vs. time graph gives the 
acceleration at that time. To find the peak acceleration in part 
(b), study the graph and locate the point at which the slope is 
steepest. In parts (c) through (e), estimating the area under 
the curve gives the displacement during a given period, with 
areas below the time axis, as in part (e), subtracted from the 
total. The average acceleration in part (d) can be obtained by 
substituting numbers taken from the graph into the defini-
tion of average acceleration, a 5 Dv/Dt.

s OLUti On
(a) Describe the motion.

From about 250 s to 50 s, the Acela cruises at a constant velocity in the 1x -direction. Then the train accelerates in 
the 1x -direction from 50 s to 200 s, reaching a top speed of about 170 mi/h, whereupon it brakes to rest at 350 s and 
reverses, steadily gaining speed in the 2x -direction.
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Calculate the slope of the steepest tangent line, 
which connects the points (50 s, 50 mi/h) and (100 s, 
150 mi/h) (the light blue line in Figure 2.19b):

a 5 slope 5
Dv
Dt

5
11.5 3 102 2 5.0 3 101 2  mi/h

11.0 3 102 2 5.0 3 101 2s  

5   2.0 (mi/h)/s

(c) Find the displacement between 0 s and 200 s.

Using triangles and rectangles, approximate the 
area in Figure 2.19c:

Dx0 S 200 s 5 area1 1 area2 1 area3 1 area4 1 area5

< (5.0 3 101 mi/h)(5.0 3 101 s)

1 (5.0 3 101 mi/h)(5.0 3 101 s)

1 (1.6 3 102 mi/h)(1.0 3 102 s)

1 1
2 15.0 3 101 s 2 11.0 3 102 mi/h 2

1 1
2 11.0 3 102 s 2 11.7 3 102 mi/h 2 1.6 3 102 mi/h 2

5 2.4 3 104 (mi/h)s

(b) Find the peak acceleration.

re Mar Ks  There are a number of ways to find the approximate area under a graph. Choice of technique is a personal 
preference.

QUes t i On  2.7  According to the graph in Figure 2.19a, at what different times is the acceleration zero?

e Xe rc i s e  2.7  Suppose the velocity vs. time graph of another train is given in Figure 2.19d. Find (a) the maximum 
instantaneous acceleration and (b) the total displacement in the interval from 0 s to 4.00 3 102 s.

a ns We r s  (a) 1.0 (mi/h)/s (b) 4.7 mi

Convert units to miles by converting hours to seconds: Dx0 S 200 s < 2.4 3 104 
mi # s

h
 a 1 h

3 600 s
b 5  6.7 mi

(d) Find the average acceleration from 200 s to 300 s, and 
find the displacement.

The slope of the green line is the average acceleration 
from 200 s to 300 s (Fig. 2.19b):

a 5 slope 5
Dv
Dt

5
11.0 3 101 2 1.7 3 102 2  mi/h

1.0 3 102 s
5   21.6 (mi/h)/s

The displacement from 200 s to 300 s is equal to area6, 
which is the area of a triangle plus the area of a very nar-
row rectangle beneath the triangle:

Dx200 S 300 s <
1
2 11.0 3 102 s 2 11.7 3 102 2 1.0 3 101 2  mi/h

1 (1.0 3 101 mi/h)(1.0 3 102 s)

5 9.0 3 103(mi/h)(s) 5   2.5 mi

(e) Find the total displacement from 0 s to 400 s.

The total displacement is the sum of all the individual 
displacements. We still need to calculate the displace-
ments for the time intervals from 300 s to 350 s and from 
350 s to 400 s. The latter is negative because it’s below 
the time axis.

Dx300 S 350 s <
1
2 15.0 3 101 s 2 11.0 3 101 mi/h 2

5 2.5 3 102(mi/h)(s)

Dx350 S 400 s <
1
2 15.0 3 101 s 2 125.0 3 101 mi/h 2

5 21.3 3 103(mi/h)(s)

Find the total displacement by summing the parts: Dx0 S 400 s < 12.4 3 104 1 9.0 3 103 1 2.5 3 102

21.3 3 103)(mi/h)(s) 5   8.9 mi

2.6    Freely Falling Objects
Learning Objectives

1. Apply the kinematics equations for constant acceleration to freely falling 
objects near Earth’s surface.

2. Construct and solve the kinematics equations for motion involving two distinct 
phases of acceleration.
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When air resistance is negligible, all objects dropped under the influence of grav-
ity near Earth’s surface fall toward Earth with the same constant acceleration. This 
idea may seem obvious today, but it wasn’t until about 1600 that it was accepted. 
Prior to that time, the teachings of the great philosopher Aristotle (384–322 b.c.) 
had held that heavier objects fell faster than lighter ones.

According to legend, Galileo discovered the law of falling objects by observ-
ing that two different weights dropped simultaneously from the Leaning Tower 
of Pisa hit the ground at approximately the same time. Although it’s unlikely 
that this particular experiment was carried out, we know that Galileo performed 
many systematic experiments with objects moving on inclined planes. In his 
experiments he rolled balls down a slight incline and measured the distances they 
covered in successive time intervals. The purpose of the incline was to reduce the 
acceleration and enable Galileo to make accurate measurements of the intervals. 
(Some people refer to this experiment as “diluting gravity.”) By gradually increas-
ing the slope of the incline he was finally able to draw mathematical conclusions 
about freely falling objects, because a falling ball is equivalent to a ball going 
down a vertical incline. Galileo’s achievements in the science of mechanics paved 
the way for Newton in his development of the laws of motion, which we will study 
in Chapter 4.

Try the following experiment: Drop a hammer and a feather simultaneously 
from the same height. The hammer hits the floor first because air drag has a 
greater effect on the much lighter feather. On August 2, 1971, this same experi-
ment was conducted on the Moon by astronaut David Scott, and the hammer and 
feather fell with exactly the same acceleration, as expected, hitting the lunar sur-
face at the same time. In the idealized case where air resistance is negligible, such 
motion is called free fall.

The expression freely falling object doesn’t necessarily refer to an object dropped 
from rest. A freely falling object is any object moving freely under the influence 
of gravity alone, regardless of its initial motion. Objects thrown upward or down-
ward and those released from rest are all considered freely falling.

We denote the magnitude of the free-fall acceleration by the symbol g. The 
value of g decreases with increasing altitude, and varies slightly with latitude as 
well. At Earth’s surface, the value of g is approximately 9.80 m/s2. Unless stated 
otherwise, we will use this value for g in doing calculations. For quick estimates, 
use g < 10 m/s2.

If we neglect air resistance and assume that the free-fall acceleration doesn’t 
vary with altitude over short vertical distances, then the motion of a freely falling 
object is the same as motion in one dimension under constant acceleration. This 
means that the kinematics equations developed in Section 2.5 can be applied. It’s 
conventional to define “up” as the 1 y -direction and to use y as the position vari-
able. In that case the acceleration is a 5 2g 5 29.80 m/s2. In Chapter 7, we study 
the variation in g  with altitude.

■ Quick Quiz

2.6  A tennis player on serve tosses a ball straight up. While the ball is in free fall, 
does its acceleration (a) increase, (b) decrease, (c) increase and then decrease, 
(d) decrease and then increase, or (e) remain constant?

2.7  As the tennis ball of Quick Quiz 2.6 travels through the air, does its speed 
(a) increase, (b) decrease, (c) decrease and then increase, (d) increase and then 
decrease, or (e) remain the same?

2.8  A skydiver jumps out of a hovering helicopter. A few seconds later, another 
skydiver jumps out, so they both fall along the same vertical line relative to the 
helicopter. Assume both skydivers fall with the same acceleration. Does the  
vertical distance between them (a) increase, (b) decrease, or (c) stay the same? 
Does the difference in their velocities (d) increase, (e) decrease, or (f) stay the 
same? 

g alileo g alilei
Italian Physicist and Astronomer 
(1564–1642)
Galileo formulated the laws that gov-
ern the motion of objects in free fall. 
He also investigated the motion of 
an object on an inclined plane, estab-
lished the concept of relative motion, 
invented the thermometer, and dis-
covered that the motion of a swinging 
pendulum could be used to measure 
time intervals. After designing and 
constructing his own telescope, he dis-
covered four of Jupiter’s moons, found 
that our own Moon’s surface is rough, 
discovered sunspots and the phases 
of Venus, and showed that the Milky 
Way consists of an enormous number 
of stars. Galileo publicly defended 
Nicolaus Copernicus’s assertion that 
the Sun is at the center of the Universe 
(the heliocentric system). He published 
Dialogue Concerning Two New World 
Systems to support the Copernican 
model, a view the Church declared to 
be heretical. After being taken to Rome 
in 1633 on a charge of heresy, he was 
sentenced to life imprisonment and 
later was confined to his villa at Arcetri, 
near Florence, where he died in 1642.
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 ■ e Xa Mp Le  2.8 Not a Bad Throw for a Rookie!

g Oa L  Apply the kinematic equations to a 
freely falling object with a nonzero initial 
velocity.

pr Ob Le M  A ball is thrown from the top of 
a building with an initial velocity of 20.0 m/s 
straight upward, at an initial height of 50.0 m 
above the ground. The ball just misses the 
edge of the roof on its way down, as shown 
in Figure 2.20. Determine (a) the time 
needed for the ball to reach its maximum 
height, (b) the maximum height, (c) the time 
needed for the ball to return to the height 
from which it was thrown and the velocity of 
the ball at that instant, (d) the time needed 
for the ball to reach the ground, and (e) the 
velocity and position of the ball at t 5 5.00 s. 
Neglect air drag.

s t r at e g Y  The diagram in Figure 2.20 
establishes a coordinate system with y0 5 0 
at the level at which the ball is released from 
the thrower’s hand, with y positive upward. 
Write the velocity and position kinematic 
equations for the ball, and substitute the 
given information. All the answers come 
from these two equations by using simple 
algebra or by just substituting the time. In 
part (a), for example, the ball comes to rest 
for an instant at its maximum height, so set 
v 5 0 at this point and solve for time. Then 
substitute the time into the displacement 
equation, obtaining the maximum height.

s OLUti On

t � 5.00 s
y � �22.5 m
v � �29.0 m/s

t � 4.08 s
y � 0
v � �20.0 m/s

t � 2.04 s
ymax � 20.4 m

v � 0

50.0 m

t � 5.83 s
y � �50.0 m
v � �37.1 m/s

t � 0
y0 � 0
v0 � 20.0 m/s

Figure 2.20  (Example 2.8) A ball is 
thrown upward with an initial velocity of 
v0 5 120.0 m/s. Positions and velocities 
are given for several times.

(a) Find the time when the ball reaches its maximum 
height.

Write the velocity and position kinematic equations: v 5 at 1 v0

Dy 5 y 2 y0 5 v0t 1 1
2at

2

Substitute a 5 29.80 m/s2, v0 5 20.0 m/s, and y0 5 0 into 
the preceding two equations:

(1) v 5 (29.80 m/s2)t 1 20.0 m/s

(2) y 5 (20.0 m/s)t 2 (4.90 m/s2)t2

Substitute v 5 0, the velocity at maximum height, into 
Equation (1) and solve for time:

0 5 (29.80 m/s2)t 1 20.0 m/s

t 5
220.0 m/s
29.80 m/s2 5   2.04 s

(b) Determine the ball’s maximum height.

Substitute the time t 5 2.04 s into Equation (2): ymax 5 (20.0 m/s)(2.04 s) 2 (4.90 m/s2)(2.04 s)2 5  20.4 m

(c) Find the time the ball takes to return to its initial 
position, and find the velocity of the ball at that time.

Set y 5 0 in Equation (2) and solve for t: 0 5 (20.0 m/s)t 2 (4.90 m/s2)t 2

5 t(20.0 m/s 2 4.90 m/s2t)

t 5   4.08 s
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 ■ e Xa Mp Le  2.9 Maximum Height Derived

g Oa L  Find the maximum height of a thrown projectile using symbols.

pr Ob Le M  Refer to Example 2.8. Use symbolic manipulation to find (a) the time tmax it takes the ball to reach its maxi-
mum height and (b) an expression for the maximum height that doesn’t depend on time. Answers should be expressed in 
terms of the quantities v0, g, and y0 only.

s t r at e g Y  When the ball reaches its maximum height, its velocity is zero, so for part (a) solve the kinematics velocity 
equation for time t and set v 5 0. For part (b), substitute the expression for time found in part (a) into the displacement 
equation, solving it for the maximum height.

s OLUti On

re Mar Ks  Notice how everything follows from the two kinematic equations. Once they are written down and the con-
stants correctly identified as in Equations (1) and (2), the rest is relatively easy. If the ball were thrown downward, the 
initial velocity would have been negative.

QUes t i On  2.8  How would the answer to part (b), the maximum height, change if the person throwing the ball was 
jumping upward at the instant he released the ball?

e Xe rc i s e  2.8  A projectile is launched straight up at 60.0 m/s from a height of 80.0 m, at the edge of a sheer cliff. The 
projectile falls, just missing the cliff and hitting the ground below. Find (a) the maximum height of the projectile above 
the point of firing, (b) the time it takes to hit the ground at the base of the cliff, and (c) its velocity at impact.

a ns We r s  (a) 184 m (b) 13.5 s (c) 272.3 m/s

Substitute the time into Equation (1) to get the velocity: v 5 20.0 m/s 1 (29.80 m/s2)(4.08 s) 5   220.0 m/s

(d) Find the time required for the ball to reach the 
ground.

In Equation (2), set y 5 250.0 m: 250.0 m 5 (20.0 m/s)t 2 (4.90 m/s2)t 2

Apply the quadratic formula and take the positive root: t 5   5.83 s

(e) Find the velocity and position of the ball at t 5 5.00 s.

Substitute values into Equations (1) and (2): v 5 (29.80 m/s2)(5.00 s) 1 20.0 m/s 5   229.0 m/s

y 5 (20.0 m/s)(5.00 s) 2 (4.90 m/s2)(5.00 s)2 5   222.5 m

(a) Find the time it takes the ball to reach its maximum 
height.

Write the velocity kinematics equation: v 5 at 1 v0

Move v0 to the left side of the equation: v 2 v0 5 at

Divide both sides by a:
v 2 v0

a
5

at
a

5 t

Turn the equation around so that t is on the left and sub-
stitute v 5 0, corresponding to the velocity at maximum 
height:

(1) t 5
2v0

a

Replace t by tmax and substitute a 5 2g : (2) tmax 5 
v0

g

(b) Find the maximum height.

Write the equation for the position y at any time: y 5 y0 1 v0t 1 1
2at

2

(Continued)
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 ■ e Xa Mp Le  2.10 A Rocket Goes Ballistic

g Oa L  Solve a problem involving a 
powered ascent followed by free-fall 
motion.

pr Ob Le M  A rocket moves straight 
upward, starting from rest with an 
acceleration of 129.4 m/s2. It runs 
out of fuel at the end of 4.00 s and 
continues to coast upward, reach-
ing a maximum height before fall-
ing back to Earth. (a) Find the rock-
et’s velocity and position at the end 
of 4.00  s. (b) Find the maximum 
height the rocket reaches. (c) Find 
the velocity the instant before the 
rocket crashes on the ground.

s t r at e g Y  Take y 5 0 at the 
launch point and y positive upward, 
as in Figure 2.21. The problem con-
sists of two phases. In phase 1 the 
rocket has a net upward acceleration 
of 29.4 m/s2, and we can use the 
kinematic equations with constant 
acceleration a to find the height and velocity of the rocket at the end of phase 1, when the fuel is burned up. In phase 2 
the rocket is in free fall and has an acceleration of 29.80 m/s2, with initial velocity and position given by the results of 
phase 1. Apply the kinematic equations for free fall.

s OLUti On
(a) Phase 1: Find the rocket’s velocity and position after 4.00 s.

re Mar Ks  Notice that g 5 19.8 m/s2, so the second term is positive overall. Equations (1)–(3) are much more useful 
than a numerical answer because the effect of changing one value can be seen immediately. For example, doubling the 
initial velocity v0 quadruples the displacement above the point of release. Notice also that ymax could be obtained more 
readily from the time-independent equation, v2 2 v0

2 5 2a Dy.

QUes t i On  2.9  By what factor would the maximum displacement above the rooftop be increased if the building were 
transported to the Moon, where a 5 21

6g?

e Xe rc i s e  2.9  (a) Using symbols, find the time tE it takes for a ball to reach the ground on Earth if released from rest 
at height y0. (b) In terms of tE, how much time tM would be required if the building were on Mars, where a 5 20.385g?

a ns We r s  (a) tE 5 Å
2y0

g
 (b) tM 5 1.61tE

Substitute t 5 2v0/a, which corresponds to the time it 
takes to reach ymax, the maximum height:

ymax 5 y0 1 v0a
2v0

a
b 1 1

2a a2v0

a
b

2

5 y0 2
v0

2

a
1 1

2 
v0

2

a

Combine the last two terms and substitute a 5 2g : (3) ymax 5 y0 1
v0

2

2g

Figure 2.21 (Example 2.10) 
Two linked phases of motion 
for a rocket that is launched, 
uses up its fuel, and crashes.

y = 0 Launch

Rocket crashes
after falling
from ymax

Rocket
fuel
burns
out

+y

Phase 1
a = 29.4 m/s2

Phase 2
a = –9.80 m/s2

Maximum
height ymax
v = 0

Write the velocity and position kinematic equations: (1) v 5 v0 1 at

(2) Dy 5 y 2 y0 5 v0t 1 1
2 at

2
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re Mar Ks  You may think that it is more natural to break this problem into three phases, with the second phase ending 
at the maximum height and the third phase a free fall from maximum height to the ground. Although this approach 
gives the correct answer, it’s an unnecessary complication. Two phases are sufficient, one for each different acceleration.

QUes t i On  2.10  If, instead, some fuel remains, at what height should the engines be fired again to brake the rocket’s 
fall and allow a perfectly soft landing? (Assume the same acceleration as during the initial ascent.)

e Xe rc i s e  2.10  An experimental rocket designed to land upright falls freely from a height of 2.00 3 102 m, starting 
at rest. At a height of 80.0 m, the rocket’s engines start and provide constant upward acceleration until the rocket lands. 
What acceleration is required if the speed on touchdown is to be zero? (Neglect air resistance.)

a ns We r 14.7 m/s2

Adapt these equations to phase 1, substituting
a 5 29.4 m/s2, v0 5 0, and y0 5 0:

(3) v 5 (29.4 m/s2)t

(4) y 5 1
2 129.4 m/s2 2 t 2 5 114.7 m/s2 2 t 2

Substitute t 5 4.00 s into Equations (3) and (4) to find 
the rocket’s velocity v and position y at the time of burn-
out. These will be called vb and yb, respectively.

vb 5 118 m/s   and   yb 5 235 m

(b) Phase 2: Find the maximum height the rocket attains.

Adapt Equations (1) and (2) to phase 2, substituting
a 5 29.8 m/s2, v0 5 vb 5 118 m/s, and y0 5 yb 5 235 m:

(5) v 5 (29.8 m/s2)t 1 118 m/s

(6) y 5 235 m 1 1118 m/s 2 t 2 14.90 m/s2 2 t 2

Substitute v 5 0 (the rocket’s velocity at maximum 
height) in Equation (5) to get the time it takes the 
rocket to reach its maximum height:

0 5 129.8 m/s2 2 t 1 118 m/s S t 5
118 m/s

9.80 m/s2 5 12.0 s

Substitute t 5 12.0 s into Equation (6) to find the 
rocket’s maximum height:

ymax 5 235 m 1 (118 m/s)(12.0 s) 2 (4.90 m/s2)(12.0 s)2

5   945 m

(c) Phase 2: Find the velocity of the rocket just prior to 
impact.

Find the time to impact by setting y 5 0 in Equation (6) 
and using the quadratic formula:

0 5 235 m 1 (118 m/s)t 2 (4.90 m/s)t 2

t 5 25.9 s

Substitute this value of t into Equation (5): v 5 (29.80 m/s2)(25.9 s) 1 118 m/s 5   2136 m/s

 ■ s UMMar Y

2.1  Displacement
The displacement of an object moving along the x -axis is 
defined as the change in position of the object,

Dx ; xf 2 xi [2.1]

where xi is the initial position of the object and xf is its final 
position.

A vector quantity is characterized by both a magnitude 
and a direction. A scalar quantity has a magnitude only.

2.2  Velocity
The average speed of an object is given by

Average speed ;
path length

elapsed time

The average velocity v during a time interval Dt is the dis-
placement Dx divided by Dt.

 v ;
Dx
Dt

5
xf 2 xi
tf 2 ti

 [2.2]

The average velocity is equal to the slope of the straight 
line joining the initial and final points on a graph of the 
position of the object versus time.

The slope of the line tangent to the position vs. time 
curve at some point is equal to the instantaneous veloc-
ity at that time. The instantaneous speed of an object is 
defined as the magnitude of the instantaneous velocity.

37027_ch02_ptg01_hr_026-056.indd   49 19/08/13   2:10 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



50  c hap t e r  2 | Motion in One Dimension

2.3  Acceleration
The average acceleration a of an object undergoing a 
change in velocity Dv during a time interval Dt is

 a ;
Dv
Dt

5
vf 2 vi
tf 2 ti

 [2.4]

The instantaneous acceleration of an object at a certain 
time equals the slope of a velocity vs. time graph at that 
instant.

2.5   One-Dimensional Motion  
with Constant Acceleration

The most useful equations that describe the motion of an 
object moving with constant acceleration along the x -axis 
are as follows:

 v 5 v0 1 at [2.6]

Dx 5 v0t 1 1
2at

2 [2.9]

 v2 5 v0
2 1 2a Dx [2.10]

All problems can be solved with the first two equations 
alone, the last being convenient when time doesn’t explic-
itly enter the problem. After the constants are properly 
identified, most problems reduce to one or two equations 
in as many unknowns.

2.6  Freely Falling Objects
An object falling in the presence of Earth’s gravity exhib-
its a free-fall acceleration directed toward Earth’s center. 
If air friction is neglected and if the altitude of the falling 
object is small compared with Earth’s radius, then we can 
assume that the free-fall acceleration g 5 9.8 m/s2 is con-
stant over the range of motion. Equations 2.6, 2.9, and 2.10 
apply, with a 5 2g.

 ■ War M-Up  e Xe rc i s e s

The warm-up exercises in this chapter may be assigned online in Enhanced WebAssign.

1. Math Review Solve the quadratic equation 2.00t 2 2 
6.00t 2 9.00 5 0 using the quadratic formula, finding 
both solutions.

 2. Math Review Solve the following two equations for (a) 
the time t, and (b) the position, x. Assume SI units.

29.8t 1 49 5 0 and x 5 24.9t2 1 49t 1 16

3. Math Review Solve the following two equations for (a) the 
(positive) time t, and (b) the position x. Assume SI units.

x 5 3.00t 2  x 5 24.0t 1 72.0

4. A football player runs from his own goal line to the 
opposing team’s goal line, returning to the fifty-yard 

line, all in 18.0 s. Calculate (a) his average speed, and  
(b) the magnitude of his average velocity. (See Section 2.2.)

 5. A ball is thrown downward from the top of a 40.0 m 
tower with an initial speed of 12.0 m/s. Assuming neg-
ligible air resistance, what is the speed of the ball just 
before hitting the ground? (See Section 2.6.)

 6. An arrow is shot straight up in the air at an initial speed 
of 15.0 m/s. After how much time is the arrow heading 
downward at a speed of 8.00 m/s? (See Section 2.6.)

 7. A red ball is dropped from rest at a height of 6.00 m. A 
blue ball at a height of 10.0 m is thrown down at the same 
instant at 4.00 m/s. How long does it take the blue ball to 
catch up with the red ball? (See Sections 2.5 and 2.6.)

 1. If the velocity of a particle is nonzero, can the particle’s 
acceleration be zero? Explain.

 2. If the velocity of a particle is zero, can the particle’s 
acceleration be nonzero? Explain.

 3. If a car is traveling eastward, can its acceleration be 
westward? Explain.

 4. (a) Can the equations in Table 2.4 be used in a situa-
tion where the acceleration varies with time? (b) Can 
they be used when the acceleration is zero?

 5. Two cars are moving in the same direction in paral-
lel lanes along a highway. At some instant, the velocity 

 ■ c On ce p t Ua L QUes t i Ons

The conceptual questions in this chapter may be assigned online in Enhanced WebAssign.

of car A exceeds the velocity of car B. Does that mean 
that the acceleration of A is greater than that of B at 
that instant? Explain.

 6. Figure CQ2.6 shows strobe photographs taken of a disk 
moving from left to right under different conditions. 
The time interval between images is constant. Tak-
ing the direction to the right to be positive, describe 
the motion of the disk in each case. For which case is 
(a) the acceleration positive? (b) the acceleration nega-
tive? (c) the velocity constant?
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7. (a) Can the instantaneous velocity of an object at an 
instant of time ever be greater in magnitude than the 
average velocity over a time interval containing that 
instant? (b) Can it ever be less?

8. A ball is thrown vertically upward. (a) What are its 
velocity and acceleration when it reaches its maximum 
altitude? (b) What is the acceleration of the ball just 
before it hits the ground?

9. Consider the following combinations of signs and val-
ues for the velocity and acceleration of a particle with 
respect to a one-dimensional x -axis:

 Velocity Acceleration

a. Positive Positive
b. Positive Negative
c. Positive Zero
d. Negative Positive
e. Negative Negative
f. Negative Zero
g. Zero Positive
h. Zero Negative

  Describe what the particle is doing in each case and 
give a real-life example for an automobile on an east–
west one-dimensional axis, with east considered the 
positive direction.

 10. A ball rolls in a straight line along the horizontal direc-
tion. Using motion diagrams (or multiflash photo-
graphs), describe the velocity and acceleration of the 
ball for each of the following situations: (a) The ball 
moves to the right at a constant speed. (b) The ball 
moves from right to left and continually slows down.  
(c) The ball moves from right to left and continually speeds 
up. (d) The ball moves to the right, first speeding up at a 
constant rate and then slowing down at a constant rate.

 11. An object moves along the x -axis, its position mea-
sured at each instant of time. The data are organized 
into an accurate graph of x vs. t. Which of the follow-
ing quantities cannot be obtained from this graph?  
(a) The velocity at any instant (b) the acceleration at any 
instant (c) the displacement during some time inter-
val (d) the average velocity during some time interval  
(e) the speed of the particle at any instant.

 12. A ball is thrown straight up in the air. For which situa-
tion are both the instantaneous velocity and the accel-
eration zero? (a) On the way up (b) at the top of the 
flight path (c) on the way down (d) halfway up and 
halfway down (e) none of these.

 13. A juggler throws a bowling pin straight up in the air. 
After the pin leaves his hand and while it is in the air, 
which statement is true? (a) The velocity of the pin  
is always in the same direction as its acceleration.  
(b) The velocity of the pin is never in the same direc-
tion as its acceleration. (c) The acceleration of the pin 
is zero. (d) The velocity of the pin is opposite its accel-
eration on the way up. (e) The velocity of the pin is in 
the same direction as its acceleration on the way up.

 14. A racing car starts from rest and reaches a final speed 
v in a time t. If the acceleration of the car is constant 
during this time, which of the following statements 
must be true? (a) The car travels a distance vt. (b) The 
average speed of the car is v/2. (c) The acceleration of 
the car is v/t. (d) The velocity of the car remains con-
stant. (e) None of these.

c
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denotes biomedical problems

denotes guided problems

denotes Master It tutorial available in Enhanced WebAssign

denotes asking for quantitative and conceptual reasoning

denotes symbolic reasoning problem

W denotes Watch It video solution available in Enhanced WebAssign

The problems in this chapter may be assigned online in 
Enhanced WebAssign. 

1. denotes straightforward problem; 2. denotes intermediate problem;

3. denotes challenging problem

1. denotes full solution available in Student Solutions Manual/ 
Study Guide

1. denotes problems most often assigned in Enhanced WebAssign
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2.1  Displacement

2.2  Velocity

1.  The speed of a nerve impulse in the human body 
is about 100 m/s. If you accidentally stub your toe in 
the dark, estimate the time it takes the nerve impulse 
to travel to your brain.

 2. Light travels at a speed of about 3 3 108 m/s. (a) How 
many miles does a pulse of light travel in a time inter-
val of 0.1 s, which is about the blink of an eye? (b) Com-
pare this distance to the diameter of Earth.

 3. A person travels by car from one city to another with 
different constant speeds between pairs of cities. She 
drives for 30.0 min at 80.0 km/h, 12.0 min at 100 km/h, 
and 45.0 min at 40.0 km/h and spends 15.0 min eat-
ing lunch and buying gas. (a) Determine the average 
speed for the trip. (b) Determine the distance between 
the initial and final cities along the route.

 4. The current indoor world record time in the 200-m 
race is 19.92 s, held by Frank Fredericks of Namibia 
(1996), while the indoor record time in the one-mile 
race is 228.5 s, held by Hicham El Guerrouj of Mor-
roco (1997). Find the mean speed in meters per second 
corresponding to these record times for (a) the 200-m 
event and (b) the one-mile event.

 5. Two boats start together and race across a 60-km-wide 
lake and back. Boat A goes across at 60 km/h and 
returns at 60 km/h. Boat B goes across at 30 km/h, 
and its crew, realizing how far behind it is getting, 
returns at 90 km/h. Turnaround times are negligible, 
and the boat that completes the round trip first wins. 
(a) Which boat wins and by how much? (Or is it a tie?) 
(b) What is the average velocity of the winning boat?

 6. A graph of position versus 
time for a certain particle 
moving along the x -axis 
is shown in Figure P2.6. 
Find the average velocity 
in the time intervals from 
(a) 0 to 2.00 s, (b) 0 to 
4.00 s, (c) 2.00 s to 4.00 s, 
(d) 4.00 s to 7.00 s, and 
(e) 0 to 8.00 s.

 7. W A motorist drives north for 35.0  minutes at 
85.0  km/h and then stops for 15.0  minutes. He then 
continues north, traveling 130 km in 2.00 h. (a) What is 
his total displacement? (b) What is his average velocity?

 8. A tennis player moves in a 
straight-line path as shown 
in Figure P2.8. Find her 
average velocity in the 
time intervals from (a) 0 to 
1.0 s, (b) 0 to 4.0 s, (c) 1.0 s 
to 5.0 s, and (d) 0 to 5.0 s.

 9. A jet plane has a takeoff 
speed of vto 5 75 m/s and 

can move along the runway at an average acceleration 
of 1.3 m/s2. If the length of the runway is 2.5 km, will 
the plane be able to use this runway safely? Defend your 
answer.

 10. Two cars travel in the same direction along a straight 
highway, one at a constant speed of 55 mi/h and the 
other at 70 mi/h. (a) Assuming they start at the same 
point, how much sooner does the faster car arrive at a 
destination 10 mi away? (b) How far must the faster car 
travel before it has a 15-min lead on the slower car?

 11. The cheetah can reach a top speed of 114 km/h 
(71 mi/h). While chasing its prey in a short sprint, a 
cheetah starts from rest and runs 45 m in a straight 
line, reaching a final speed of 72 km/h. (a) Determine 
the cheetah’s average acceleration during the short 
sprint, and (b) find its displacement at t 5 3.5 s.

 12. An athlete swims the length L of a pool in a time 
t1 and makes the return trip to the starting position 
in a time t2. If she is swimming initially in the positive 
x -direction, determine her average velocities symboli-
cally in (a) the first half of the swim, (b) the second 
half of the swim, and (c) the round trip. (d) What is 
her average speed for the round trip?

 13.  A person takes a trip, driving with a constant speed 
of 89.5 km/h, except for a 22.0-min rest stop. If the per-
son’s average speed is 77.8 km/h, (a) how much time is 
spent on the trip and (b) how far does the person travel?

14. A tortoise can run with a speed of 0.10 m/s, and a hare 
can run 20 times as fast. In a race, they both start at the 
same time, but the hare stops to rest for 2.0 minutes. 
The tortoise wins by a shell (20 cm). (a) How long does 
the race take? (b) What is the length of the race?

15. To qualify for the finals in a racing event, a race car 
must achieve an average speed of 250 km/h on a track 
with a total length of 1 600 m. If a particular car cov-
ers the first half of the track at an average speed of 
230 km/h, what minimum average speed must it have 
in the second half of the event in order to qualify?

16.   One athlete in a race running on a long, 
straight track with a constant speed v1 is a distance d 
behind a second athlete running with a constant speed 
v2. (a) Under what circumstances is the first athlete able 
to overtake the second athlete? (b) Find the time t it takes 
the first athlete to overtake the second athlete, in terms 
of d, v1, and v2. (c) At what minimum distance d2 from 
the leading athlete must the finish line be located so that 
the trailing athlete can at least tie for first place? Express 
d2 in terms of d, v1, and v2 by using the result of part (b).

 17. A graph of position versus time for a certain particle 
moving along the x -axis is shown in Figure P2.6. Find 
the instantaneous velocity at the instants (a) t 5 1.00 s, 
(b) t 5 3.00 s, (c) t 5 4.50 s, and (d) t 5 7.50 s.

 18. A race car moves such that its position fits the 
relationship

x 5 (5.0 m/s)t 1 (0.75 m/s3)t3

x (m)

1 2 3 4 5 7
t (s)

–6
–4
–2
0
2
4
6
8

10

6 8

Figure p 2.6 Problems 6 and 17
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t (s)
1 2 3 4 5

2

4

–2

Figure p 2.8
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where x is measured in meters and t in seconds. (a) Plot 
a graph of the car’s position versus time. (b) Determine 
the instantaneous velocity of the car at t 5 4.0 s, using 
time intervals of 0.40 s, 0.20 s, and 0.10 s. (c) Compare 
the average velocity during the first 4.0 s with the results 
of part (b).

 19. Runner A is initially 4.0 mi west of a f lagpole and 
is running with a constant velocity of 6.0 mi/h due 
east. Runner B is initially 3.0 mi east of the flagpole 
and is running with a constant velocity of 5.0 mi/h 
due west. How far are the runners from the flagpole 
when they meet?

2.3  Acceleration

20. A particle starts from rest 
and accelerates as shown in 
Figure P2.20. Determine 
(a) the particle’s speed at  
t 5 10.0 s and at t 5 20.0 s, 
and (b) the distance trav-
eled in the first 20.0 s.

 21. A 50.0-g Super Ball travel-
ing at 25.0 m/s bounces off 
a brick wall and rebounds 
at 22.0 m/s. A high-speed 
camera records this event. If the ball is in contact with 
the wall for 3.50 ms, what is the magnitude of the aver-
age acceleration of the ball during this time interval?

 22.  The average person passes out at an acceleration 
of 7g (that is, seven times the gravitational acceleration 
on Earth). Suppose a car is designed to accelerate at 
this rate. How much time would be required for the 
car to accelerate from rest to 60.0 miles per hour? (The 
car would need rocket boosters!)

 23. W A certain car is capable of accelerating at a rate of 
0.60 m/s2. How long does it take for this car to go from 
a speed of 55 mi/h to a speed of 60 mi/h?

 24. The velocity vs. time graph for an object moving along 
a straight path is shown in Figure P2.24. (i) Find the 
average acceleration of the object during the time 
intervals (a) 0 to 5.0 s, (b) 5.0 s to 15 s, and (c) 0 to 20 s. 
(ii) Find the instantaneous acceleration at (a) 2.0  s, 
(b) 10 s, and (c) 18 s.

25. A steam catapult launches a jet aircraft from the 
aircraft carrier John C. Stennis, giving it a speed of 
175 mi/h in 2.50 s. (a) Find the average acceleration of 
the plane. (b) Assuming the acceleration is constant, 
find the distance the plane moves.

2.5   One-Dimensional Motion  
with Constant Acceleration

26. Solve Example 2.5, “Car Chase” by a graphical method. 
On the same graph, plot position versus time for the car 
and the trooper. From the intersection of the two curves, 
read the time at which the trooper overtakes the car.

27. An object moving with uniform acceleration has a 
velocity of 12.0 cm/s in the positive x-direction when 
its x -coordinate is 3.00 cm. If its x-coordinate 2.00  s 
later is 25.00 cm, what is its acceleration?

 28. W  In 1865 Jules Verne proposed sending men to the 
Moon by firing a space capsule from a 220-m-long can-
non with final speed of 10.97 km/s. What would have 
been the unrealistically large acceleration experienced 
by the space travelers during their launch? (A human 
can stand an acceleration of 15g for a short time.) 
Compare your answer with the free-fall acceleration, 
9.80 m/s2.

 29. A truck covers 40.0 m in 8.50 s while uniformly slow-
ing down to a final velocity of 2.80 m/s. (a) Find the 
truck’s original speed. (b) Find its acceleration.

 30.  A speedboat increases its speed uniformly from vi 5 
20.0 m/s to vf 5 30.0 m/s in a distance of 2.00 3 102 m. 
(a) Draw a coordinate system for this situation and label 
the relevant quantities, including vectors. (b)  For the 
given information, what single equation is most appro-
priate for finding the acceleration? (c) Solve the equa-
tion selected in part (b) symbolically for the boat’s accel-
eration in terms of vf , vi, and Dx. (d) Substitute given 
values, obtaining that acceleration. (e) Find the time it 
takes the boat to travel the given distance.

 31. A Cessna aircraft has a liftoff speed of 120 km/h. 
(a) What minimum constant acceleration does the air-
craft require if it is to be airborne after a takeoff run 
of 240 m? (b)  How long does it take the aircraft to 
become airborne?

 32. An object moves with constant acceleration 4.00 m/s2  
and over a time interval reaches a final velocity of 
12.0  m/s. (a) If its original velocity is 6.00 m/s, what 
is its displacement during the time interval? (b) What 
is the distance it travels during this interval? (c) If its 
original velocity is 26.00 m/s, what is its displacement 
during this interval? (d) What is the total distance it 
travels during the interval in part (c)?

 33.  In a test run, a certain car accelerates uniformly 
from zero to 24.0 m/s in 2.95 s. (a) What is the mag-
nitude of the car’s acceleration? (b) How long does 
it take the car to change its speed from 10.0 m/s to 
20.0 m/s? (c) Will doubling the time always double the 
change in speed? Why?

2
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34. A jet plane lands with a speed of 100 m/s and can 
accelerate at a maximum rate of 25.00 m/s2 as it comes 
to rest. (a) From the instant the plane touches the run-
way, what is the minimum time needed before it can 
come to rest? (b) Can this plane land on a small tropi-
cal island airport where the runway is 0.800 km long?

 35. Speedy Sue, driving at 30.0 m/s, enters a one-lane 
tunnel. She then observes a slow-moving van 155  m 
ahead traveling at 5.00 m/s. Sue applies her brakes but 
can accelerate only at 22.00 m/s2 because the road is 
wet. Will there be a collision? State how you decide. 
If yes, determine how far into the tunnel and at what 
time the collision occurs. If no, determine the distance 
of closest approach between Sue’s car and the van.

 36. A record of travel along a straight path is as follows:

  1.  Start from rest with a constant acceleration of 
2.77 m/s2 for 15.0 s.

  2.  Maintain a constant velocity for the next 2.05 min.

  3.  Apply a constant negative acceleration of 29.47 m/s2

for 4.39 s. 

  (a) What was the total displacement for the trip? 
(b) What were the average speeds for legs 1, 2, and 3 
of the trip, as well as for the complete trip?

 37. A train is traveling down a straight track at 20 m/s when 
the engineer applies the brakes, resulting in an accel-
eration of 21.0 m/s2 as long as the train is in motion. 
How far does the train move during a 40-s time inter-
val starting at the instant the brakes are applied?

 38. A car accelerates uniformly from rest to a speed of 
40.0 mi/h in 12.0 s. Find (a) the distance the car trav-
els during this time and (b) the constant acceleration 
of the car.

 39. A car starts from rest and travels for 5.0 s with a uni-
form acceleration of 11.5 m/s2. The driver then 
applies the brakes, causing a uniform acceleration of  
22.0 m/s2. If the brakes are applied for 3.0 s, (a) how 
fast is the car going at the end of the braking period, 
and (b) how far has the car gone?

 40. A car starts from rest and travels for t1 seconds 
with a uniform acceleration a1. The driver then applies 
the brakes, causing a uniform acceleration a2. If the 
brakes are applied for t2 seconds, (a) how fast is the car 
going just before the beginning of the braking period? 
(b) How far does the car go before the driver begins to 
brake? (c) Using the answers to parts (a) and (b) as the 
initial velocity and position for the motion of the car 
during braking, what total distance does the car travel? 
Answers are in terms of the variables a1, a2, t1, and t2.

 41. In the Daytona 500 auto race, a Ford Thunderbird and a 
Mercedes Benz are moving side by side down a straight-
away at 71.5 m/s. The driver of the Thunderbird realizes 
that she must make a pit stop, and she smoothly slows 
to a stop over a distance of 250 m. She spends 5.00 s in 
the pit and then accelerates out, reaching her previous 
speed of 71.5 m/s after a distance of 350 m. At this point, 

how far has the Thunderbird fallen behind the Mercedes 
Benz, which has continued at a constant speed?

 42. A certain cable car in San Francisco can stop in 10 s 
when traveling at maximum speed. On one occasion, 
the driver sees a dog a distance d in front of the car 
and slams on the brakes instantly. The car reaches the 
dog 8.0 s later, and the dog jumps off the track just in 
time. If the car travels 4.0 m beyond the position of the 
dog before coming to a stop, how far was the car from 
the dog? (Hint: You will need three equations.)

 43. A hockey player is standing on his skates on a frozen 
pond when an opposing player, moving with a uniform 
speed of 12 m/s, skates by with the puck. After 3.0 s, the 
first player makes up his mind to chase his opponent. If 
he accelerates uniformly at 4.0 m/s2, (a) how long does 
it take him to catch his opponent, and (b) how far has 
he traveled in that time? (Assume the player with the 
puck remains in motion at constant speed.)

 44. A train 400 m long is moving on a straight track with 
a speed of 82.4 km/h. The engineer applies the brakes 
at a crossing, and later the last car passes the crossing 
with a speed of 16.4 km/h. Assuming constant acceler-
ation, determine how long the train blocked the cross-
ing. Disregard the width of the crossing.

2.6  Freely Falling Objects

45. A ball is thrown vertically upward with a speed of 
25.0 m/s. (a) How high does it rise? (b) How long does 
it take to reach its highest point? (c) How long does the 
ball take to hit the ground after it reaches its highest 
point? (d) What is its velocity when it returns to the 
level from which it started?

46. A ball is thrown directly downward with an initial 
speed of 8.00 m/s, from a height of 30.0 m. After what 
time interval does it strike the ground?

47. A certain freely falling object, released from rest, 
requires 1.50 s to travel the last 30.0 m before it hits 
the ground. (a) Find the velocity of the object when it 
is 30.0 m above the ground. (b) Find the total distance 
the object travels during the fall.

48.  An attacker at the base of a castle wall 3.65 m high 
throws a rock straight up with speed 7.40 m/s at a height 
of 1.55 m above the ground. (a) Will the rock reach the 
top of the wall? (b) If so, what is the rock’s speed at the 
top? If not, what initial speed must the rock have to 
reach the top? (c) Find the change in the speed of a 
rock thrown straight down from the top of the wall at 
an initial speed of 7.40 m/s and moving between the 
same two points. (d) Does the change in speed of the 
downward-moving rock agree with the magnitude of 
the speed change of the rock moving upward between 
the same elevations? Explain physically why or why not.

 49. Traumatic brain injury such as concussion results 
when the head undergoes a very large acceleration. 
Generally, an acceleration less than 800 m/s2 lasting 
for any length of time will not cause injury, whereas an 
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acceleration greater than 1 000 m/s2 lasting for at least 
1 ms will cause injury. Suppose a small child rolls off a 
bed that is 0.40 m above the floor. If the floor is hard-
wood, the child’s head is brought to rest in approxi-
mately 2.0 mm. If the floor is carpeted, this stopping 
distance is increased to about 1.0  cm. Calculate the 
magnitude and duration of the deceleration in both 
cases, to determine the risk of injury. Assume the child 
remains horizontal during the fall to the floor. Note 
that a more complicated fall could result in a head 
velocity greater or less than the speed you calculate.

 50. A small mailbag is released from a helicopter that is 
descending steadily at 1.50 m/s. After 2.00 s, (a) what is 
the speed of the mailbag, and (b) how far is it below the 
helicopter? (c) What are your answers to parts (a) and 
(b) if the helicopter is rising steadily at 1.50 m/s?

 51. A tennis player tosses a tennis ball straight up and then 
catches it after 2.00 s at the same height as the point of 
release. (a) What is the acceleration of the ball while it 
is in flight? (b) What is the velocity of the ball when it 
reaches its maximum height? Find (c) the initial veloc-
ity of the ball and (d) the maximum height it reaches.

 52. A package is dropped from a helicopter that is 
descending steadily at a speed v0. After t seconds have 
elapsed, (a) what is the speed of the package in terms 
of v0, g, and t? (b) What distance d is it from the heli-
copter in terms of g and t? (c) What are the answers to 
parts (a) and (b) if the helicopter is rising steadily at 
the same speed?

 53.  A model rocket is launched straight upward with 
an initial speed of 50.0 m/s. It accelerates with a con-
stant upward acceleration of 2.00 m/s2 until its engines 
stop at an altitude of 150 m. (a) What can you say about 
the motion of the rocket after its engines stop? (b) What 
is the maximum height reached by the rocket? (c) How 
long after liftoff does the rocket reach its maximum 
height? (d) How long is the rocket in the air?

 54. W  A baseball is hit so that it travels straight upward 
after being struck by the bat. A fan observes that it takes 
3.00  s for the ball to reach its maximum height. Find  
(a) the ball’s initial velocity and (b) the height it reaches.

a dditional p roblems

55. A truck tractor pulls two trailers, one behind the other, 
at a constant speed of 100 km/h. It takes 0.600 s for the 
big rig to completely pass onto a bridge 400 m long. 
For what duration of time is all or part of the truck–
trailer combination on the bridge?

56.  Colonel John P. Stapp, USAF, participated 
in studying whether a jet pilot could survive emer-
gency ejection. On March 19, 1954, he rode a rocket- 
propelled sled that moved down a track at a speed of 
632 mi/h (see Fig. P2.56). He and the sled were safely 
brought to rest in 1.40 s. Determine in SI units (a) the 
negative acceleration he experienced and (b) the dis-
tance he traveled during this negative acceleration.

Figure p 2.56 (left) Col. John Stapp and his rocket sled are brought to rest in a 
very short time interval. (right) Stapp’s face is contorted by the stress of rapid 
negative acceleration.
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57. A bullet is fired through a board 10.0 cm thick in such 
a way that the bullet’s line of motion is perpendicular 
to the face of the board. If the initial speed of the bul-
let is 400 m/s and it emerges from the other side of the 
board with a speed of 300 m/s, find (a) the acceleration 
of the bullet as it passes through the board and (b) the 
total time the bullet is in contact with the board.

58. A speedboat moving at 30.0 m/s approaches a no-wake 
buoy marker 100 m ahead. The pilot slows the boat 
with a constant acceleration of 23.50 m/s2 by reducing 
the throttle. (a) How long does it take the boat to reach 
the buoy? (b) What is the velocity of the boat when it 
reaches the buoy?

 59. A student throws a set of keys vertically upward to his 
fraternity brother, who is in a window 4.00 m above. 
The brother’s outstretched hand catches the keys 
1.50 s later. (a) With what initial velocity were the keys 
thrown? (b)? What was the velocity of the keys just 
before they were caught?

 60. A student throws a set of keys vertically upward to 
his fraternity brother, who is in a window a distance 
h above. The brother’s outstretched hand catches the 
keys on their way up a time t later. (a) With what initial 
velocity were the keys thrown? (b) What was the veloc-
ity of the keys just before they were caught? (Answers 
should be in terms of h, g, and t.)

 61. It has been claimed that an insect called the 
froghopper (Philaenus spumarius) is the best jumper 
in the animal kingdom. This insect can accelerate at 
4 000 m/s2 over a distance of 2.0 mm as it straightens 
its specially designed “ jumping legs.” (a) Assuming a 
uniform acceleration, what is the velocity of the insect 
after it has accelerated through this short distance, and 
(b) how long did it take to reach that velocity? (c) How 
high would the insect jump if air resistance could be 
ignored? Note that the actual height obtained is about 
0.7 m, so air resistance is important here.

 62. Draw motion diagrams (see Section 2.5) for 
(a)  an object moving to the right at constant speed, 
(b) an object moving to the right and speeding up at 
a constant rate, (c) an object moving to the right and 
slowing down at a constant rate, (d) an object mov-
ing to the left and speeding up at a constant rate, and 
(e) an object moving to the left and slowing down at a 
constant rate. (f) How would your drawings change if 
the changes in speed were not uniform; that is, if the 
speed were not changing at a constant rate?
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63. A ball is thrown upward from the ground with an 
initial speed of 25 m/s; at the same instant, another 
ball is dropped from a building 15 m high. After how 
long will the balls be at the same height?

 64. To pass a physical education class at a university, a student 
must run 1.0 mi in 12 min. After running for 10 min, she 
still has 500 yd to go. If her maximum acceleration is 
0.15 m/s2, can she make it? If the answer is no, determine 
what acceleration she would need to be successful.

 65. In Chapter 5 we will define the center of mass of an 
object. The center of mass moves with constant accel-
eration when constant forces act on the object. A gym-
nast jumps straight up, with her center of mass moving 
at 2.80 m/s as she leaves the ground. How high above 
this point is her center of mass (a) 0.100 s, (b) 0.200 s, 
(c) 0.300 s, and (d) 0.500 s thereafter?

 66. Two students are on a balcony a distance h above 
the street. One student throws a ball vertically down-
ward at a speed v0; at the same time, the other student 
throws a ball vertically upward at the same speed. 
Answer the following symbolically in terms of v0, g, 
h, and t. (a) Write the kinematic equation for the 
y - coordinate of each ball. (b) Set the equations found 
in part (a) equal to height 0 and solve each for t sym-
bolically using the quadratic formula. What is the dif-
ference in the two balls’ time in the air? (c) Use the 
time-independent kinematics equation to find the 
velocity of each ball as it strikes the ground. (d) How 
far apart are the balls at a time t after they are released 
and before they strike the ground?

 67. You drop a ball from a window on an upper floor of 
a building and it is caught by a friend on the ground 
when the ball is moving with speed vf . You now repeat 
the drop, but you have a friend on the street below 
throw another ball upward at speed vf  exactly at the 
same time that you drop your ball from the window. 
The two balls are initially separated by 28.7 m. (a) At 
what time do they pass each other? (b) At what loca-
tion do they pass each other relative the window?

 68. The driver of a truck slams on the brakes when he sees 
a tree blocking the road. The truck slows down uni-
formly with an acceleration of 25.60 m/s2 for 4.20 s, 
making skid marks 62.4 m long that end at the tree. 
With what speed does the truck then strike the tree?

 69.  Emily challenges 
her husband, David, to 
catch a $1 bill as follows. 
She holds the bill verti-
cally as in Figure P2.69, 
with the center of the 
bill between David’s 
index finger and thumb. 
David must catch the bill 
after Emily releases it 
without moving his hand 
downward. If his reaction time is 0.2 s, will he succeed? 

Explain your reasoning. (This challenge is a good trick 
you might want to try with your friends.)

 70. A mountain climber stands at the top of a 50.0-m cliff 
that overhangs a calm pool of water. She throws two 
stones vertically downward 1.00 s apart and observes 
that they cause a single splash. The first stone had an ini-
tial velocity of 22.00 m/s. (a) How long after release of 
the first stone did the two stones hit the water? (b) What 
initial velocity must the second stone have had, given 
that they hit the water simultaneously? (c) What was the 
velocity of each stone at the instant it hit the water?

 71. An ice sled powered by a rocket engine starts from rest 
on a large frozen lake and accelerates at 140 ft/s2. After 
some time t1, the rocket engine is shut down and the sled 
moves with constant velocity v for a time t2. If the total 
distance traveled by the sled is 17 500 ft and the total time 
is 90 s, find (a) the times t1 and t2 and (b) the velocity v.  
At the 17 500-ft mark, the sled begins to accelerate at 
220 ft/s2. (c) What is the final position of the sled when it 
comes to rest? (d) How long does it take to come to rest?

 72. In Bosnia, the ultimate test of a young man’s cour-
age used to be to jump off a 400-year-old bridge 
(destroyed in 1993; rebuilt in 2004) into the River 
Neretva, 23 m below the bridge. (a) How long did the 
jump last? (b) How fast was the jumper traveling upon 
impact with the river? (c) If the speed of sound in air is 
340 m/s, how long after the jumper took off did a spec-
tator on the bridge hear the splash?

 73. A person sees a lightning bolt pass close to an airplane 
that is flying in the distance. The person hears thun-
der 5.0 s after seeing the bolt and sees the airplane 
overhead 10 s after hearing the thunder. The speed 
of sound in air is 1 100 ft/s. (a) Find the distance of 
the airplane from the person at the instant of the bolt. 
(Neglect the time it takes the light to travel from the 
bolt to the eye.) (b) Assuming the plane travels with a 
constant speed toward the person, find the velocity of 
the airplane. (c) Look up the speed of light in air and 
defend the approximation used in part (a).

 74. A glider on an air track carries a flag of length 
, through a stationary photogate, which measures the 
time interval Dtd during which the flag blocks a beam 
of infrared light passing across the photogate. The 
ratio vd 5 ,/Dtd is the average velocity of the glider over 
this part of its motion. Suppose the glider moves with 
constant acceleration. (a) Is vd necessarily equal to the 
instantaneous velocity of the glider when it is halfway 
through the photogate in space? Explain. (b) Is vd

equal to the instantaneous velocity of the glider when 
it is halfway through the photogate in time? Explain.

 75. A stuntman sitting on a tree limb wishes to drop verti-
cally onto a horse galloping under the tree. The con-
stant speed of the horse is 10.0 m/s, and the man is 
initially 3.00 m above the level of the saddle. (a) What 
must be the horizontal distance between the saddle 
and the limb when the man makes his move? (b) How 
long is he in the air?

Figure p 2.69
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Vectors and Two-
Dimensional Motion

In our discussion of one-dimensional motion in Chapter 2, we used the concept of vectors 
only to a limited extent. In our further study of motion, manipulating vector quantities will 
become increasingly important, so much of this chapter is devoted to vector techniques. We’ll 
then apply these mathematical tools to two-dimensional motion, especially that of projectiles, 
and to the understanding of relative motion.

3.1    Vectors and Their Properties
Learning Objectives

1. Apply the definitions of scalar and vector to categorize different physical 
quantities.

2. Use the geometric interpretation of vector addition, subtraction and multipli-
cation to find the resultant vectors of those operations.

Each of the physical quantities we will encounter in this book can be categorized 
as either a vector quantity or a scalar quantity. As noted in Chapter 2, a vector has 
both direction and magnitude (size). A scalar can be completely specified by its 
magnitude with appropriate units; it has no direction. An example of each kind of 
quantity is shown in Figure 3.1.

Dave “Human Cannonball” 

Smith hurtles through the 

air along a parabolic path, 

depending on the correct 

initial velocity and cannon 

angle to send him safely over 

the U.S.-Mexico border fence 

and into a net.

3
3.1 Vectors and Their Properties

3.2 Components of a Vector

3.3 Displacement, Velocity, and 
Acceleration in Two Dimensions

3.4 Motion in Two Dimensions

3.5 Relative Velocity

Figure 3.1  A vector such as veloc-
ity has a magnitude, shown on the 
race car’s speedometer, and a direc-
tion, straight out through the race 
car’s front windshield. The mass of 
the car is a scalar quantity, as is the 
volume of gasoline in its fuel tank.
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As described in Chapter 2, displacement, velocity, and acceleration are 
vector quantities. Temperature is an example of a scalar quantity. If the tem-
perature of an object is 25°C, that information completely specifies the tem-
perature of the object; no direction is required. Masses, time intervals, and 
volumes are scalars as well. Scalar quantities can be manipulated with the rules 
of ordinary arithmetic. Vectors can also be added and subtracted from each 
other, and multiplied, but there are a number of important differences, as will 
be seen in the following sections.

When a vector quantity is handwritten, it is often represented with an arrow 
over the letter (A

S

). As mentioned in Section 2.1, a vector quantity in this book will 
be represented by boldface type with an arrow on top (for example, A

S

). The mag-
nitude of the vector A

S

 will be represented by italic type, as A. Italic type will also be 
used to represent scalars.

Equality of Two Vectors  Two vectors A
S

 and B
S

 are equal if they have the 
same magnitude and the same direction. This property allows us to translate 
a vector parallel to itself in a diagram without affecting the vector. In fact, for 
most purposes, any vector can be moved parallel to itself without being affected. 
(See Fig. 3.2.)

Adding Vectors  When two or more vectors are added, they must all have the 
same units. For example, it doesn’t make sense to add a velocity vector, carrying 
units of meters per second, to a displacement vector, carrying units of meters. Sca-
lars obey the same rule: It would be similarly meaningless to add temperatures to 
volumes or masses to time intervals.

Vectors can be added geometrically or algebraically. (The latter is discussed  
at the end of the next section.) To add vector B

S

 to vector A
S

 geometrically, first 
draw A

S

 on a piece of graph paper to some scale, such as 1 cm 5 1 m, so that its 
direction is specified relative to a coordinate system. Then draw vector B

S

 to the 
same scale with the tail of B

S

 starting at the tip of A
S

, as in Figure 3.3a. Vector B
S

must be drawn along the direction that makes the proper angle relative vector A
S

.  
The resultant vector R

S

5 A
S

1 B
S

 is the vector drawn from the tail of A
S

 to the tip  
of B

S

. This procedure is known as the triangle method of addition.
When two vectors are added, their sum is independent of the order of the addi-

tion: A
S

1 B
S

5 B
S

1 A
S

. This relationship can be seen from the geometric construc-
tion in Figure 3.3b, and is called the commutative law of addition.

This same general approach can also be used to add more than two vectors, as  
is done in Figure 3.4 for four vectors. The resultant vector sum R

S

5 A
S

1 B
S

1 C
S

1 D
S

 
is the vector drawn from the tail of the first vector to the tip of the last. Again, the 
order in which the vectors are added is unimportant.

t ip 3.1  Vector Addition vs. 
Scalar Addition

A
S

1 B
S

5 C
S

 differs significantly 
from A 1 B 5 C. The first is a vec-
tor sum, which must be handled 
graphically or with components, 
whereas the second is a simple 
arithmetic sum of numbers.

O

y

x

Figure 3.2  These four vectors 
are equal because they have equal 
lengths and point in the same 
direction.
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Figure 3.3
(a) When vector B

S

 is added to vector A
S

, the vector sum R
S

 is the vector that runs 
from the tail of A

S

 to the tip of B
S

. (b) Here the resultant runs from the tail of B
S

 
to the tip of A

S

. These constructions prove that A
S

1 B
S

5 B
S

1 A
S

.

A
S

 

B
S

 

C
S

 

D
S

 

AS  
BS  

CS  
DS  

RS

�
�

�
�

Figure 3.4  A geometric construc-
tion for summing four vectors.  
The resultant vector R

S

 is the vector 
that completes the polygon.

37027_ch03_ptg01_hr_057-087.indd   58 19/08/13   2:13 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



3.1 | Vectors and Their Properties  59

Unless otherwise noted, all content on this page is © Cengage Learning.

Negative of a Vector  The negative of the vector A
S

 is defined as the vector that 
gives zero when added to A

S

. This means that A
S

 and 2A
S

 have the same magnitude 
but opposite directions.

Subtracting Vectors  Vector subtraction makes use of the definition of the neg-
ative of a vector. We define the operation A

S

2 B
S

 as the vector 2B
S

 added to the 
vector A

S

:

 A
S

2 B
S

5 A
S

1 12B
S 2  [3.1]

Vector subtraction is really a special case of vector addition. The geometric con-
struction for subtracting two vectors is shown in Figure 3.5.

Multiplying or Dividing a Vector by a Scalar  Multiplying or dividing a vec-
tor by a scalar gives a vector. For example, if vector A

S

 is multiplied by the scalar 
number 3, the result, written 3A

S

, is a vector with a magnitude three times that of 
A
S

 and pointing in the same direction. If we multiply vector A
S

 by the scalar 23, the 
result is 23A

S

, a vector with a magnitude three times that of A
S

 and pointing in the 
opposite direction (because of the negative sign).

■ Quick Quiz

3.1  The magnitudes of two vectors A
S

 and B
S

 are 12 units and 8 units, respectively. 
What are the largest and smallest possible values for the magnitude of the resultant 
vector R

S

5 A
S

1 B
S

? (a) 14.4 and 4 (b) 12 and 8 (c) 20 and 4 (d) none of these.

A
S

 

A
S

 
B
S

 
B
S

 

B
S

 

B
S

 A
S

 

B
S

 

�
�

A
S

 
B
S

 
We would draw
   here if we were 
adding it to    .

Adding �    to   
is equivalent to 
subtracting    
from    . A

S
 

Figure 3.5  This construction 
shows how to subtract vector B

S

 from 
vector A

S

. The vector 2B
S

 has the 
same magnitude as the vector B

S

, but 
points in the opposite direction.

 ■ e Xa Mp Le  3.1 Taking a Trip

g Oa L  Find the sum of two vectors by using a graph.

pr Ob Le M  A car travels 20.0 km due north and 
then 35.0 km in a direction 60.0° west of north, as 
in Figure 3.6. Using a graph, find the magnitude 
and direction of a single vector that gives the net 
effect of the car’s trip. This vector is called the car’s 
resultant displacement.

s t r at e g Y  Draw a graph and represent the dis-
placement vectors as arrows. Graphically locate the 
vector resulting from the sum of the two displacement vectors. Measure its length and angle with respect to the vertical.

s OLUti On
Let A

S

 represent the first displacement vector, 20.0 km north, and B
S

 the second displacement vector, extending west of 
north. Carefully graph the two vectors, drawing a resultant vector R

S

 with its base touching the base of A
S

 and extending to 
the tip of B

S

. Measure the length of this vector, which turns out to be about 48 km. The angle b, measured with a protrac-
tor, is about 39° west of north.

re Mar Ks  Notice that ordinary arithmetic doesn’t work here: the correct answer of 48 km is not equal to 20.0 km 1 
35.0 km 5 55.0 km!

QUes t i On  3.1  Suppose two vectors are added. Under what conditions would the sum of the magnitudes of the vectors 
equal the magnitude of the resultant vector?

e Xe rc i s e  3.1  Graphically determine the magnitude and direction of the displacement if a man walks 30.0 km 45° 
north of east and then walks due east 20.0 km.

a ns We r  46 km, 27° north of east

y (km)

40

20

60.0�

x (km)
0�20

b

E

N

S

W

A
S

 

B
S

 

R
S

Figure 3.6  (Example 3.1) A graph-
ical method for finding the resultant 
displacement vector R

S

5 A
S

1 B
S

.

37027_ch03_ptg01_hr_057-087.indd   59 19/08/13   2:13 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



60  c hap t e r  3 | Vectors and Two-Dimensional Motion

Unless otherwise noted, all content on this page is © Cengage Learning.

3.2    Components of a Vector
Learning Objectives

1. Represent vectors in terms of their magnitudes and directions.

2. Represent vectors in terms of x- and y-components.

3. Perform arithmetic operations with vectors using their components.

One method of adding vectors makes use of the projections of a vector along the 
axes of a rectangular coordinate system. These projections are called components.
Any vector can be completely described by its components.

Consider a vector A
S

 in a rectangular coordinate system, as shown in Figure 3.7. 
A
S

 can be expressed as the sum of two vectors: A
S

x, parallel to the x -axis, and A
S

y, par-
allel to the y -axis. Mathematically,

A
S

5 A
S

x 1 A
S

y

where A
S

x and A
S

y are the component vectors of A
S

. The projection of A
S

 along the 
x-axis, Ax, is called the x -component of A

S

, and the projection of A
S

 along the y -axis, 
Ay, is called the y -component of A

S

. These components can be either positive or 
negative numbers with units. From the definitions of sine and cosine, we see that 
cos u 5 Ax /A and sin u 5 Ay /A, so the components of A

S

 are

 Ax 5 A cos u [3.2a]

  Ay 5 A sin u [3.2b]

These components form two sides of a right triangle having a hypotenuse with 
magnitude A. It follows that A

S

’s magnitude and direction are related to its compo-
nents through the Pythagorean theorem and the definition of the tangent:

  A 5 "Ax
2 1 Ay

2 [3.3]

 tan u 5
Ay

Ax
  [3.4]

To solve for the angle u, which is measured counterclockwise from the positive 
x-axis by convention, the inverse tangent can be taken of both sides of Equation 3.4:

u 5 tan21a
Ay

Ax
b

This formula gives the right answer for u only half the time! The inverse tangent 
function returns values only from 290° to 190°, so the answer in your calculator 
window will only be correct if the vector happens to lie in the first or fourth quad-
rant. If it lies in the second or third quadrant, adding 180° to the number in the 
calculator window will always give the right answer. The angle in Equations 3.2 and 
3.4 must be measured from the positive x -axis. Other choices of reference line are 
possible, but certain adjustments must then be made. (See Tip 3.2 and Fig. 3.8.)

y

x
O

u

A
S

 

Ax

Ay

tan u�
Ax

Ay

Figure 3.7  Any vector A
S

 lying in 
the xy -plane can be represented by its 
rectangular components Ax and Ay.

y

x
0

Ay = A sin

θ

θ

Ax = A cos θ

y

x
0

Ay = A cos
θ

θ

Ax = A sin θ

A
SA

S

a b

Figure 3.8  The angle u need not 
always be defined from the positive 
x -axis.

t ip 3.2  x- and 
y-components
Equation 3.2 for the x - and 
y -components of a vector associ-
ates cosine with the x -component 
and sine with the y -component, 
as in Figure 3.8a. This associa-
tion is due solely to the fact that 
we chose to measure the angle u 
with respect to the positive x -axis. 
If the angle were measured with 
respect to the y -axis, as in Figure 
3.8b, the components would be 
given by Ax 5 A sin u and Ay 5 

A cos u.

t ip 3.3  Inverse Tangents  
on Calculators: Right Half 
the Time
The inverse tangent function 
on calculators returns an angle 
between 290° and 190°. If the 
vector lies in the second or third 
quadrant, the angle, as measured 
from the positive x -axis, will be 
the angle returned by your calcu-
lator plus 180°.
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If a coordinate system other than the one shown in Figure 3.7 is chosen, the 
components of the vector must be modified accordingly. In many applications 
it’s more convenient to express the components of a vector in a coordinate sys-
tem having axes that are not horizontal and vertical, but are still perpendicular 
to each other. Suppose a vector B

S

 makes an angle u9 with the x9-axis defined in  
Figure 3.9. The rectangular components of B

S

 along the axes of the figure are given 
by Bx9 5 B cos u9 and By9 5 B sin u9, as in Equations 3.2. The magnitude and direc-
tion of B

S

 are then obtained from expressions equivalent to Equations 3.3 and 3.4.

■ Quick Quiz

3.2  Figure 3.10 shows two vectors lying in the xy -plane. Determine the signs of  
the x- and y-components of A

S

, B
S

, and A
S

 1 B
S

.

3.3  Which vector has an angle with respect to the positive x -axis that is in the range 
of the inverse tangent function?

x ′

y ′

′
By ′

Bx ′

O ′

θ

B
S

Figure 3.9  The components of vec-
tor B

S

 in a tilted coordinate system.

y

x

B
S

A
S

Figure 3.10  (Quick Quizzes 3.2 
and 3.3)

 ■ e Xa Mp Le  3.2 Help Is on the Way!

g Oa L  Find vector components, given a magnitude and 
direction, and vice versa.

pr Ob Le M  (a) Find the horizontal and vertical compo-
nents of the d 5 1.00 3 102 m displacement of a superhero 
who flies from the top of a tall building along the path 
shown in Figure 3.11a. (b) Suppose instead the superhero 
leaps in the other direction along a displacement vector 
B
S

 to the top of a flagpole where the displacement compo-
nents are given by Bx 5 225.0 m and By 5 10.0 m. Find the 
magnitude and direction of the displacement vector.

s t r at e g Y  (a) The triangle formed by the displace-
ment and its components is shown in Figure 3.11b. Simple 
trigonometry gives the components relative to the stan-
dard xy -coordinate system: Ax 5 A cos u and Ay 5 A sin u  
(Eqs. 3.2). Note that u 5 230.0°, negative because it’s 
measured clockwise from the positive x -axis. (b) Apply 
Equations 3.3 and 3.4 to find the magnitude and direc-
tion of the vector.

s OLUti On

a

b

y

Ax x

Ay

30.0�
A
S

d

x

y

30.0�

Figure 3.11  (Example 3.2)

(a) Find the vector components of A
S

 from its magnitude 

and direction.

Use Equations 3.2 to find the components of the dis-
placement vector A

S

:
Ax 5 A cos u 5(1.00 3 102 m) cos (230.0°) 5   186.6 m

Ay 5 A sin u 5 (1.00 3 102 m) sin (230.0°) 5   250.0 m

(Continued)
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Adding Vectors Algebraically
The graphical method of adding vectors is valuable in understanding how vectors 
can be manipulated, but most of the time vectors are added algebraically in terms 
of their components. Suppose R

S

5 A
S

1 B
S

. Then the components of the resultant 
vector R

S

 are given by

 Rx 5 Ax 1 Bx [3.5a]

 Ry 5 Ay 1 By [3.5b]

So x-components are added only to x -components, and y -components only to 
y -components. The magnitude and direction of R

S

 can subsequently be found with 
Equations 3.3 and 3.4.

Subtracting two vectors works the same way because it’s a matter of adding the neg-
ative of one vector to another vector. You should make a rough sketch when adding 
or subtracting vectors, in order to get an approximate geometric solution as a check.

(b) Find the magnitude and direction of the displace-
ment vector B

S

 from its components.

Compute the magnitude of B
S

 from the Pythagorean 
theorem:

B 5 "Bx
2 1 By

2 5 "1225.0 m 22 1 110.0 m 22 5  26.9 m

Calculate the direction of B
S

 using the inverse tangent, 
remembering to add 180° to the answer in your calculator 
window, because the vector lies in the second quadrant:

u 5 tan21 a
By

Bx
b 5 tan21 a 10.0

225.0
b 5 221.88

u 5  158°

re Mar Ks  In part (a), note that cos (2u) 5 cos u; however, sin (2u) 5 2sin u. The negative sign of Ay reflects the fact 
that displacement in the y -direction is downward.

QUes t i On  3.2  What other functions, if any, can be used to find the angle in part (b)?

e Xe rc i s e  3.2  (a) Suppose the superhero had flown 150 m at a 120° angle with respect to the positive x -axis. Find the 
components of the displacement vector. (b) Suppose instead the superhero had leaped with a displacement having an 
x -component of 32.5 m and a y -component of 24.3 m. Find the magnitude and direction of the displacement vector.

a ns We r s  (a) Ax 5 275 m, Ay 5 130 m (b) 40.6 m, 36.8°

 ■ e Xa Mp Le  3.3 Take a Hike

g Oa L  Add vectors algebraically and find the 
resultant vector.

pr Ob Le M  A hiker begins a trip by first walk-
ing 25.0 km 45.0° south of east from her base 
camp. On the second day she walks 40.0 km in a 
direction 60.0° north of east, at which point she 
discovers a forest ranger’s tower. (a) Determine 
the components of the hiker’s displacements 
in the first and second days. (b) Determine the 
components of the hiker’s total displacement 
for the trip. (c) Find the magnitude and direc-
tion of the displacement from base camp.

s t r at e g Y  This problem is just an application 
of vector addition using components, Equations 
3.5. We denote the displacement vectors on the 
first and second days by A

S

 and B
S

, respectively. 
Figure 3.12  (Example 3.3) (a) Hiker’s path and the resultant vector. (b) Com-
ponents of the hiker’s total displacement from camp.

y (km)

x (km)

60.0�

45.0� 20 30 40
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0
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S

A
S

 

B
S

 

a
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�20

20 30 40O 10
Rx = 37.7 km

Ry = 16.9 kmR
S

b

u
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Using the camp as the origin of the coordinates, we get the vectors shown in Figure 3.12a. After finding x- and y-components 
for each vector, we add them “componentwise.” Finally, we determine the magnitude and direction of the resultant vector R

S

, 
using the Pythagorean theorem and the inverse tangent function.

s OLUti On

(a) Find the components of A
S

.

Use Equations 3.2 to find the components of A
S

: Ax 5 A cos (245.0°) 5 (25.0 km)(0.707) 5   17.7 km

Ay 5 A sin (245.0°) 5 2(25.0 km)(0.707) 5   217.7 km

Find the components of B
S

: Bx 5 B cos 60.0° 5 (40.0 km)(0.500) 5   20.0 km

By 5 B sin 60.0° 5 (40.0 km)(0.866) 5   34.6 km

(b) Find the components of the resultant vector,  
R
S

 5 A
S

1 B
S

.

To find Rx, add the x -components of A
S

 and B
S

: Rx 5 Ax 1 Bx 5 17.7 km 1 20.0 km 5   37.7 km

To find Ry, add the y -components of A
S

 and B
S

: Ry 5 Ay 1 By 5 217.7 km 1 34.6 km 5   16.9 km

(c) Find the magnitude and direction of R
S

.

Use the Pythagorean theorem to get the magnitude: R 5 "R x
2 1 R y

2 5 "137.7 km 22 1 116.9 km 22 5  41.3 km

Calculate the direction of R
S

 using the inverse tangent 
function:

u 5 tan21 a16.9 km
37.7 km

b 5 ˜  24.1°

re Mar Ks  Figure 3.12b shows a sketch of the components of R
S

 and their directions in space. The magnitude and direc-
tion of the resultant can also be determined from such a sketch.

QUes t i On  3.3  A second hiker follows the same path the first day, but then walks 15.0 km east on the second day before 
turning and reaching the ranger’s tower. Is the second hiker’s resultant displacement vector the same as the first hiker’s, 
or different?

e Xe rc i s e  3.3  A cruise ship leaving port travels 50.0 km 45.0° north of west and then 70.0 km at a heading 30.0° north of 
east. Find (a) the components of the ship’s displacement vector and (b) the displacement vector’s magnitude and direction.

a ns We r  (a) Rx 5 25.3 km, Ry 5 70.4 km (b) 74.8 km, 70.2° north of east

3.3     Displacement, Velocity, and 
Acceleration in Two Dimensions
Learning Objectives

1. Define displacement vectors in two dimensions.

2. Define average and instantaneous velocity vectors in two dimensions.

3. Define average and instantaneous acceleration vectors in two dimensions.

In one-dimensional motion, as discussed in Chapter 2, the direction of a vector 
quantity such as a velocity or acceleration can be taken into account by specifying 
whether the quantity is positive or negative. The velocity of a rocket, for example, 
is positive if the rocket is going up and negative if it’s going down. This simple solu-
tion is no longer available in two or three dimensions. Instead, we must make full 
use of the vector concept.

Consider an object moving through space as shown in Figure 3.13. When the 
object is at some point � at time ti, its position is described by the position vector 

Path of
an object

x

y

 ti

i

�
 t f

f

O

rS 

rS 

rS 

�r.S 
The displacement of the 
object is the vector

�
�

Figure 3.13  An object moving 
along some curved path between 
points � and �. The displacement 
vector DrS is the difference in the 
position vectors: DrS 5 rSf 2 rSi.
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rSi, drawn from the origin to �. When the object has moved to some other point 
� at time tf , its position vector is rSf . From the vector diagram in Figure 3.13, the 
final position vector is the sum of the initial position vector and the displacement  
DrS: rSf  5 rSi 1 DrS. From this relationship, we obtain the following one:

An object’s displacement is defined as the change in its position vector, or

 DrS ; rSf 2 rSi [3.6]

SI unit: meter (m)

We now present several generalizations of the definitions of velocity and accel-
eration given in Chapter 2.

An object’s average velocity during a time interval Dt is its displacement 
divided by Dt:

 vSav ;
DrS

Dt
 [3.7]

SI unit: meter per second (m/s)

Because the displacement is a vector quantity and the time interval is a scalar quan-
tity, we conclude that the average velocity is a vector quantity directed along DrS.

An object’s instantaneous velocity vS is the limit of its average velocity as Dt 
goes to zero:

 vS ; lim
Dt S 0

  DrS

Dt
 [3.8]

SI unit: meter per second (m/s)

The direction of the instantaneous velocity vector is along a line that is tangent to 
the object’s path and in the direction of its motion.

An object’s average acceleration during a time interval Dt is the change in its 
velocity DvS divided by Dt, or

 aSav ;
DvS

Dt
 [3.9]

SI unit: meter per second squared (m/s2)

An object’s instantaneous acceleration vector aS is the limit of its average 
acceleration vector as Dt goes to zero:

 aS ; lim
Dt S 0

  DvS

Dt
 [3.10]

SI unit: meter per second squared (m/s2)

It’s important to recognize that an object can accelerate in several ways. First, 
the magnitude of the velocity vector (the speed) may change with time. Second, 
the direction of the velocity vector may change with time, even though the speed is 
constant, as can happen along a curved path. Third, both the magnitude and the 
direction of the velocity vector may change at the same time.

 Average velocity c

 Instantaneous velocity c

 Average acceleration c

 Instantaneous acceleration c
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■ Quick Quiz

3.4  Which of the following objects can’t be accelerating? (a) An object moving with 
a constant speed; (b) an object moving with a constant velocity; (c) an object moving 
along a curve.

3.5  Consider the following controls in an automobile: gas pedal, brake, steering wheel. 
The controls in this list that can cause an acceleration of the car are (a) all three con-
trols, (b) the gas pedal and the brake, (c) only the brake, or (d) only the gas pedal.

3.4    Motion in Two Dimensions
Learning Objectives

1. Describe projectile motion in two dimensions graphically.

2. Apply the two-dimensional kinematics equations to motion with constant 
acceleration near the surface of the Earth.

In Chapter 2 we studied objects moving along straight-line paths, such as the 
x-axis. In this chapter, we look at objects that move in both the x - and y -directions 
simultaneously under constant acceleration. An important special case of this two-
dimensional motion is called projectile motion.

Anyone who has tossed any kind of object into the air has observed projectile 
motion. If the effects of air resistance and the rotation of Earth are neglected, the 
path of a projectile in Earth’s gravity field is curved in the shape of a parabola, as 
shown in Figure 3.14.

The positive x-direction is horizontal and to 
the right, and the y -direction is vertical and posi-
tive upward. The most important experimental fact 
about projectile motion in two dimensions is that 
the horizontal and vertical motions are completely 
independent of each other. This means that motion 
in one direction has no effect on motion in the other 
direction. If a baseball is tossed in a parabolic path, 
as in Figure 3.14, the motion in the y -direction will 
look just like a ball tossed straight up under the 
influence of gravity. Figure 3.15 shows the effect 
of various initial angles; note that complementary 
angles give the same horizontal range. 

Figure 3.16 is an experiment illustrating the inde-
pendence of horizontal and vertical motion. The gun 
is aimed directly at the target ball and fired at the 
instant the target is released. In the absence of grav-
ity, the projectile would hit the target because the 
target wouldn’t move. However, the projectile still 
hits the target in the presence of gravity. That means 

b Projectile motion

Figure 3.14
The parabolic trajectory of a particle that leaves the origin with a veloc-
ity of vS0. Note that vS changes with time. However, the x -component of 
the velocity, vx, remains constant in time, equal to its initial velocity, v0x. 
Also, vy 5 0 at the peak of the trajectory, but the acceleration is always 
equal to the free-fall acceleration and acts vertically downward.

vS

vS

vS

gS 

x
v0x

v0x

v0x

vy

vy � 0

v0x

vy

v0y

v0y

v0x

y

u0

u

u

u0

The y -component of 
velocity is zero at the 
peak of the path.

The x-component of 
velocity remains 
constant in time.

v0
S

50
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y (m)

x (m)

75�

60�

45�

30�

15�

vi � 50 m/s

50 100 150 200 250

Complementary 
values of the initial 
angle u result in 
the same value of 
the range, R.

Figure 3.15
A projectile launched from the ori-
gin with an initial speed of 50 m/s at 
various angles of projection.
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the projectile is falling through the same vertical displacement as the target despite 
its horizontal motion. The experiment also works when set up as in Figure 3.17, 
when the initial velocity has a vertical component.

In general, the equations of constant acceleration developed in Chapter 2 follow 
separately for both the x-direction and the y -direction. An important difference is 
that the initial velocity now has two components, not just one as in that chapter. 
We assume that at t 5 0 the projectile leaves the origin with an initial velocity vS0. 
If the velocity vector makes an angle u0 with the horizontal, where u0 is called the 
projection angle, then from the definitions of the cosine and sine functions and  
Figure 3.14 we have

v0x 5 v0 cos u0  and  v0y 5 v0 sin u0

where v0x is the initial velocity (at t 5 0) in the x -direction and v0y is the initial 
velocity in the y -direction.

Now, Equations 2.6, 2.9, and 2.10 developed in Chapter 2 for motion with con-
stant acceleration in one dimension carry over to the two-dimensional case; there 
is one set of three equations for each direction, with the initial velocities modified 
as just discussed. In the x -direction, with ax constant, we have

 vx 5 v0x 1 axt [3.11a]

 Dx 5 v0x t 1 1
2axt

2 [3.11b]

 vx
2 5 v0x

2 1 2ax Dx [3.11c]

where v0x 5 v0 cos u0. In the y -direction, we have

 vy 5 v0y 1 ayt [3.12a]

 Dy 5 v0y t 1 1
2ay t

2 [3.12b]

 vy
2 5 v0y

2 1 2ay Dy [3.12c]

where v0y 5 v0 sin u0 and ay is constant. The object’s speed v can be calculated 
from the components of the velocity using the Pythagorean theorem:

v 5 "vx
2 1 vy

2

The angle that the velocity vector makes with the x -axis is given by

u 5 tan21 a
vy

vx
b

t ip 3.4  Acceleration  
at the Highest Point
The acceleration in the 
y - direction is not zero at the top 
of a projectile’s trajectory. Only 
the y -component of the velocity 
is zero there. If the acceleration 
were zero, too, the projectile 
would never come down!

Target
Line of sight

y

Point of
collision

Gun

0 x

v0
S

Figure 3.16  A ball is fired at a target at the 
same instant the target is released. Both fall  
vertically at the same rate and collide.

The velocity of the projectile (red 
arrows) changes in direction and 
magnitude, but its acceleration 
(purple arrows) remains constant.
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Figure 3.17  Multiflash photograph of the projectile–target demon-
stration. If the gun is aimed directly at the target and is fired at the 
same instant the target begins to fall, the projectile will hit the target. 
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This formula for u, as previously stated, must be used with care, because the inverse 
tangent function returns values only between 290° and 190°. Adding 180° is nec-
essary for vectors lying in the second or third quadrant.

The kinematic equations are easily adapted and simplified for projectiles close 
to the surface of the Earth. In this case, assuming air friction is negligible, the 
acceleration in the x -direction is 0 (because air resistance is neglected). This 
means that ax 5 0, and the projectile’s velocity component along the x-direction 
remains constant. If the initial value of the velocity component in the x -direction 
is v0x 5 v0 cos u0, then this is also the value of v- at any later time, so

 vx 5 v0x 5 v0 cos u0 5 constant [3.13a]

whereas the horizontal displacement is simply

 Dx 5 v0xt 5 (v0 cos u0)t [3.13b]

For the motion in the y -direction, we make the substitution ay 5 2g and
v0y 5 v0 sin u0 in Equations 3.12, giving

 vy 5 v0 sin u0 2 gt [3.14a]

 Dy 5 1v0 sin u0 2 t 2 1
2gt

2 [3.14b]

 vy
2 5 (v0 sin u0)

2 2 2g Dy [3.14c]

The important facts of projectile motion can be summarized as follows:

1. Provided air resistance is negligible, the horizontal component of the 
velocity vx remains constant because there is no horizontal component of 
acceleration.

2. The vertical component of the acceleration is equal to the free-fall accelera-
tion 2g.

3. The vertical component of the velocity vy and the displacement in the 
y -direction are identical to those of a freely falling body.

4. Projectile motion can be described as a superposition of two independent 
motions in the x- and y -directions.

 ■ e Xa Mp Le  3.4 Projectile Motion with Diagrams

g Oa L  Approximate answers in projectile motion using a 
motion diagram.

pr Ob Le M  A ball is thrown so that its initial vertical and 
horizontal components of velocity are 40 m/s and 20 m/s, 
respectively. Use a motion diagram to estimate the ball’s total 
time of flight and the distance it traverses before hitting the 
ground.

s t r at e g Y  Use the diagram, estimating the acceleration of 
gravity as 210 m/s2. By symmetry, the ball goes up and comes 
back down to the ground at the same y -velocity as when it left, 
except with opposite sign. With this fact and the fact that the 
acceleration of gravity decreases the velocity in the y -direction 
by 10 m/s every second, we can find the total time of flight 
and then the horizontal range.

s OLUti On
In the motion diagram shown in Figure 3.18, the acceleration vectors are all the same, pointing downward with mag-
nitude of nearly 10 m/s2. By symmetry, we know that the ball will hit the ground at the same speed in the y -direction 
as when it was thrown, so the velocity in the y -direction goes from 40 m/s to 240 m/s in steps of 210 m/s every second; 
hence, approximately 8 seconds elapse during the motion.

vS

aS

Figure 3.18  (Example 3.4) Motion diagram for a projectile.

(Continued)
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The velocity vector constantly changes direction, but the horizontal velocity never changes because the acceleration  
in the horizontal direction is zero. Therefore, the displacement of the ball in the x -direction is given by Equation 3.13b,  
Dx < v0xt 5 (20 m/s)(8 s) 5 160 m.

re Mar Ks  This example emphasizes the independence of the x- and y -components in projectile motion problems.

QUes t i On  3.4  Is the magnitude of the velocity vector at impact greater than, less than, or equal to the magnitude of 
the initial velocity vector? Why?

e Xe rc i s e  3.4  Estimate the maximum height in this same problem.

a ns We r  80 m

■ Quick Quiz

3.6  Suppose you are carrying a ball and running at constant speed, and wish to 
throw the ball and catch it as it comes back down. Neglecting air resistance, should 
you (a) throw the ball at an angle of about 45° above the horizontal and maintain 
the same speed, (b) throw the ball straight up in the air and slow down to catch it, or 
(c) throw the ball straight up in the air and maintain the same speed?

3.7  As a projectile moves in its parabolic path, the velocity and acceleration vectors 
are perpendicular to each other (a) everywhere along the projectile’s path, (b) at the 
peak of its path, (c) nowhere along its path, or (d) not enough information is given.

 ■ pr Ob Le M-s OLv i ng  s t r at e g Y

Projectile Motion

1. Select a coordinate system and sketch the path of the projectile, including  
initial and final positions, velocities, and accelerations.

2. Resolve the initial velocity vector into x - and y -components.
3. Treat the horizontal motion and the vertical motion independently.
4. Follow the techniques for solving problems with constant velocity to analyze 

the horizontal motion of the projectile.
5. Follow the techniques for solving problems with constant acceleration to  

analyze the vertical motion of the projectile.

 ■ e Xa Mp Le  3.5 Stranded Explorers

g Oa L Solve a two-dimensional projectile motion problem in which an object has an ini-
tial horizontal velocity.

pr Ob Le M An Alaskan rescue plane drops a package of emergency rations to stranded 
hikers, as shown in Figure 3.19. The plane is traveling horizontally at 40.0 m/s at a height 
of 1.00 3 102 m above the ground. Neglect air resistance. (a) Where does the package 
strike the ground relative to the point at which it was released? (b) What are the horizon-
tal and vertical components of the velocity of the package just before it hits the ground? 
(c) Find the angle of the impact.

s t r at e g Y Here, we’re just taking Equations 3.13 and 3.14, filling in known quantities, 
and solving for the remaining unknown quantities. Sketch the problem using a coordi-
nate system as in Figure 3.19. In part (a), set the y -component of the displacement equa-
tions equal to 21.00 3 102 m—the ground level where the package lands—and solve for 
the time it takes the package to reach the ground. Substitute this time into the displace-
ment equation for the x -component to find the range. In part (b), substitute the time 
found in part (a) into the velocity components. Notice that the initial velocity has only 
an x -component, which simplifies the math. Solving part (c) requires the inverse tangent 
function.

x

40.0 m/s
y

100 m

Figure 3.19  (Example 3.5) 
From the point of view of an 
observer on the ground, a pack-
age released from the rescue 
plane travels along the path 
shown.
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s OLUti On
(a) Find the range of the package.

Use Equation 3.14b to find the y -displacement: Dy 5 y 2 y0 5 v0y t 2 1
2g t

2

Substitute y0 5 0 and v0y 5 0, and set y 5 21.00 3 102 m, 
the final vertical position of the package relative to the 
airplane. Solve for time:

y 5 2(4.90 m/s2)t2 5 21.00 3 102 m

t 5 4.52 s

Use Equation 3.13b to find the x -displacement: Dx 5 x 2 x0 5 v0x t

Substitute x0 5 0, v0x 5 40.0 m/s, and the time: x 5 (40.0 m/s)(4.52 s)5   181 m

(b) Find the components of the package’s velocity at 
impact:

Find the x -component of the velocity at the time of 
impact:

vx 5 v0 cos u 5 (40.0 m/s) cos 0° 5   40.0 m/s

Find the y -component of the velocity at the time of 
impact:

vy 5 v0 sin u 2 gt 5 0 2 (9.80 m/s2) (4.52 s) 5   244.3 m/s

(c) Find the angle of the impact.

Write Equation 3.4 and substitute values: tan u 5
vy
vx

5
244.3 m/s
40.0 m/s

5 21.11

Apply the inverse tangent functions to both sides: u 5 tan21 (21.11) 5   248.0°

re Mar Ks  Notice how motion in the x -direction and motion in the y -direction are handled separately.

QUes t i On  3.5  Neglecting air resistance effects, what path does the package travel as observed by the pilot? Explain.

e Xe rc i s e  3.5  A bartender slides a beer mug at 1.50 m/s toward a customer at the end of a frictionless bar that is 
1.20 m tall. The customer makes a grab for the mug and misses, and the mug sails off the end of the bar. (a) How far away 
from the end of the bar does the mug hit the floor? (b) What are the speed and direction of the mug at impact?

a ns We r s  (a) 0.742 m (b) 5.08 m/s, u 5 272.8°

 ■ e Xa Mp Le  3.6 The Long Jump

g Oa L  Solve a two-dimensional 
projectile motion problem involv-
ing an object starting and ending 
at the same height.

pr Ob Le M  A long jumper (Fig. 
3.20) leaves the ground at an 
angle of 20.0° to the horizon-
tal and at a speed of 11.0 m/s. 
(a)  How long does it take for  
her to reach maximum height? 
(b) What is the maximum height? 
(c) How far does she jump? 
(Assume her motion is equivalent 
to that of a particle, disregarding 
the motion of her arms and legs.) 
(d) Use Equation 3.14c to find the 
maximum height she reaches.

Figure 3.20  (Example 3.6) This multiple-exposure shot of a long jumper shows that in reality, 
the jumper’s motion is not the equivalent of the motion of a particle. The center of mass of the 
jumper follows a parabola, but to extend the length of the jump before impact, the jumper pulls 
her feet up so she strikes the ground later than she otherwise would have.
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(Continued)
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s t r at e g Y  Again, we take the projectile equations, fill in the known quantities, and solve for the unknowns. At the 
maximum height, the velocity in the y -direction is zero, so setting Equation 3.14a equal to zero and solving gives the time 
it takes her to reach her maximum height. By symmetry, given that her trajectory starts and ends at the same height, dou-
bling this time gives the total time of the jump.

s OLUti On
(a) Find the time tmax taken to reach maximum height.

Set vy 5 0 in Equation 3.14a and solve for tmax: vy 5 v0 sin u0 2 gt max 5 0

(1) tmax 5
v0 sin u0

g

5
111.0 m/s 2 1sin 20.08 2

9.80 m/s2  5   0.384 s

(b) Find the maximum height she reaches.

Substitute the time tmax into the equation for the 
y - displacement, equation 3.14b:

ymax 5 (v0 sin u0)tmax 2 1
2g  (tmax)

2

ymax 5 (11.0 m/s)(sin 20.0°)(0.384 s)

2 1
2 19.80 m/s2 2 10.384 s 22

ymax 5   0.722 m

(c) Find the horizontal distance she jumps.

First find the time for the jump, which is twice tmax: t 5 2tmax 5 2(0.384 s) 5 0.768 s

Substitute this result into the equation for the 
x -displacement:

(2) Dx 5 (v0 cos u0)t 

5 (11.0 m/s)(cos 20.0°)(0.768 s) 5   7.94 m

(d) Use an alternate method to find the maximum height.

Use Equation 3.14c, solving for Dy: vy
2 2 v0y

2 5 22g  Dy

Dy 5
vy

2 2 v0y
2

22g

Substitute vy 5 0 at maximum height, and the fact that  
v0y 5 (11.0 m/s) sin 20.0°:

Dy 5
0 2 3 111.0 m/s 2  sin 20.08 42

22 19.80 m/s2 2 5  0.722 m

re Mar Ks  Although modeling the long jumper’s motion as that of a projectile is an oversimplification, the values 
obtained are reasonable.

QUes t i On  3.6  True or False: Because the x -component of the displacement doesn’t depend explicitly on g, the hori-
zontal distance traveled doesn’t depend on the acceleration of gravity.

e Xe rc i s e  3.6  A grasshopper jumps a horizontal distance of 1.00 m from rest, with an initial velocity at a 45.0° angle 
with respect to the horizontal. Find (a) the initial speed of the grasshopper and (b) the maximum height reached.

a ns We r s  (a) 3.13 m/s (b) 0.250 m

 ■ e Xa Mp Le  3.7 The Range Equation

g Oa L  Find an equation for the maximum horizontal displacement of a projectile fired from ground level.

pr Ob Le M  An athlete participates in a long-jump competition, leaping into the air with a velocity v0 at an angle u0 with 
the horizontal. Obtain an expression for the length of the jump in terms of v0, u0, and g.

s t r at e g Y  Use the results of Example 3.6, eliminating the time t from Equations (1) and (2).
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s OLUti On

Simplify: Dx 5
2v0

2 cos u0 sin u0

g

Substitute the identity 2 cos u0 sin u0 5 sin 2u0 to reduce 
the foregoing expression to a single trigonometric 
function:

(1) Dx 5
v0

2 sin 2u0

g

Use Equation (1) of Example 3.6 to find the time of 
flight, t :

t 5 2tmax 5
2v0 sin u0

g

Substitute that expression for t into Equation (2) of 
Example 3.6:

Dx 5 1v0 cos u0 2 t 5 1v0 cos u0 2 a
2v0 sin u0

g
b

re Mar Ks  The use of a trigonometric identity in the final step isn’t necessary, but it makes Question 3.7 easier to 
answer.

QUes t i On  3.7  What angle u0 produces the longest jump?

e Xe rc i s e  3.7  Obtain an expression for the athlete’s maximum displacement in the vertical direction, Dymax in terms 
of v0, u0, and g.

a ns We r  Dymax 5
v0

2 sin2 u0

2g

 ■ e Xa Mp Le  3.8 That’s Quite an Arm

g Oa L Solve a two-dimensional kinematics problem with a nonhorizontal 
initial velocity, starting and ending at different heights.

pr Ob Le M A ball is thrown upward from the top of a building at an angle 
of 30.0° above the horizontal and with an initial speed of 20.0 m/s, as in  
Figure 3.21. The point of release is 45.0 m above the ground. (a) How long 
does it take for the ball to hit the ground? (b) Find the ball’s speed at impact. 
(c) Find the horizontal range of the stone. Neglect air resistance.

s t r at e g Y Choose coordinates as in the figure, with the origin at the point 
of release. (a) Fill in the constants of Equation 3.14b for the y -displacement 
and set the displacement equal to 245.0 m, the y -displacement when the ball 
hits the ground. Using the quadratic formula, solve for the time. To solve 
part (b), substitute the time from part (a) into the components of the veloc-
ity, and substitute the same time into the equation for the x -displacement to 
solve part (c).

s OLUti On

45.0 m

v0 � 20.0 m/s

30.0�

y

x

x

(0, 0)

(x, – 45.0 m)

Figure 3.21  (Example 3.8)

(a) Find the ball’s time of flight.

Find the initial x - and y -components of the velocity: v0x 5 v0 cos u0 5 (20.0 m/s)(cos 30.0°) 5 117.3 m/s

v0y 5 v0 sin u0 5 (20.0 m/s)(sin 30.0°) 5 110.0 m/s

Find the y -displacement, taking y0 5 0, y 5 245.0 m, and 
v0y 5 10.0 m/s:

Dy 5 y 2 y0 5 v0yt 2 1
2gt

2

245.0 m 5 (10.0 m/s)t 2 (4.90 m/s2)t2

Reorganize the equation into standard form and use the 
quadratic formula (see Appendix A) to find the positive 
root:

t 5   4.22 s

(b) Find the ball’s speed at impact.

Substitute the value of t found in part (a) into Equation 
3.14a to find the y -component of the velocity at impact:

vy 5 v0y 2 gt 5 10.0 m/s 2 (9.80 m/s2)(4.22 s)

5 231.4 m/s
(Continued)
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re Mar Ks  The angle at which the ball is thrown affects the velocity vector throughout its subsequent motion, but 
doesn’t affect the speed at a given height. This is a consequence of the conservation of energy, described in Chapter 5.

QUes t i On  3.8  True or False: All other things being equal, if the ball is thrown at half the given speed it will travel half 
as far.

e Xe rc i s e  3.8  Suppose the ball is thrown from the same height as in the example at an angle of 30.0° below  
the horizontal. If it strikes the ground 57.0 m away, find (a) the time of flight, (b) the initial speed, and (c) the speed 
and the angle of the velocity vector with respect to the horizontal at impact. (Hint: For part (a), use the equation for the 
x - displacement to eliminate v0t from the equation for the y -displacement.)

a ns We r s  (a) 1.57 s (b) 41.9 m/s (c) 51.3 m/s, 245.0°

Use this value of vy, the Pythagorean theorem, and the 
fact that vx 5 v0x 5 17.3 m/s to find the speed of the ball 
at impact:

v 5 "vx
2 1 vy

2 5 "117.3 m/s 22 1 1231.4 m/s 22

5   35.9 m/s

(c) Find the horizontal range of the ball.

Substitute the time of flight into the range equation: Dx 5 x 2 x0 5 (v0 cos u)t 5 (20.0 m/s)(cos 30.0°)(4.22 s)

5   73.1 m

Two-Dimensional Constant Acceleration
So far we have studied only problems in which an object with an initial velocity 
follows a trajectory determined by the acceleration of gravity alone. In the more 
general case, other agents, such as air drag, surface friction, or engines, can cause 
accelerations. These accelerations, taken together, form a vector quantity with com-
ponents ax and ay. When both components are constant, we can use Equations 3.11 
and 3.12 to study the motion, as in the next example.

 ■ e Xa Mp Le  3.9 The Rocket

g Oa L  Solve a problem involving accelerations in two directions.

pr Ob Le M  A jet plane traveling horizontally at 1.00 3 102 m/s drops a rocket from a 
considerable height. (See Fig. 3.22.) The rocket immediately fires its engines, acceler-
ating at 20.0 m/s2 in the x -direction while falling under the influence of gravity in the 
y -direction. When the rocket has fallen 1.00 km, find (a) its velocity in the y -direction, 
(b) its velocity in the x -direction, and (c) the magnitude and direction of its velocity. 
Neglect air drag and aerodynamic lift.

s t r at e g Y  Because the rocket maintains a horizontal orientation (say, through 
gyroscopes), the x- and y -components of acceleration are independent of each other. 
Use the time-independent equation for the velocity in the y -direction to find the 
y -component of the velocity after the rocket falls 1.00 km. Then calculate the time of the fall and use that time to find the 
velocity in the x -direction.

s OLUti On

v0x = 1.00 � 102 m/s

�y � �1.00 � 103 m

Figure 3.22  (Example 3.9)

(a) Find the velocity in the y -direction.

Use Equation 3.14c: vy
2 5 v0y

2 2 2g  Dy

Substitute v0y 5 0, g 5 29.80 m/s2, and
Dy 5 21.00 3 103 m, and solve for vy:

vy
2 2 0 5 2(29.8 m/s2)(21.00 3 103 m)

vy 5   21.40 3 102 m/s

(b) Find the velocity in the x -direction.

Find the time it takes the rocket to drop 1.00 3 103 m, 
using the y -component of the velocity:

vy 5 v0y 1 ay t

21.40 3 102 m/s 5 0 2 19.80 m/s2 2 t S t 5 14.3 s
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re Mar Ks  Notice the similarity: The kinematic equations for the x- and y -directions are handled in exactly the same 
way. Having a nonzero acceleration in the x -direction doesn’t greatly increase the difficulty of the problem.

QUes t i On  3.9  True or False: Neglecting air friction and lift effects, a projectile with a horizontal acceleration always 
stays in the air longer than a projectile that is freely falling.

e Xe rc i s e  3.9  Suppose a rocket-propelled motorcycle is fired from rest horizontally across a canyon 1.00 km wide. 
(a) What minimum constant acceleration in the x -direction must be provided by the engines so the cycle crosses safely if 
the opposite side is 0.750 km lower than the starting point? (b) At what speed does the motorcycle land if it maintains this 
constant horizontal component of acceleration? Neglect air drag, but remember that gravity is still acting in the negative 
y -direction.

a ns We r s  (a) 13.1 m/s2 (b) 202 m/s

Substitute t, v0x, and ax into Equation 3.11a to find the 
velocity in the x -direction:

vx 5 v0x 1 axt 5 1.00 3 102 m/s 1 (20.0 m/s2)(14.3 s)

5   386 m/s

(c) Find the magnitude and direction of the velocity.

Find the magnitude using the Pythagorean theorem and 
the results of parts (a) and (b):

v 5 "vx
2 1 vy

2 5 "121.40 3 102 m/s 22 1 1386 m/s 22

5   411 m/s

Use the inverse tangent function to find the angle: u 5 tan21 a
vy
vx
b 5 tan21 a21.40 3 102 m/s

386 m/s
b 5  219.9°

In a stunt similar to that described in Exercise 3.9, motorcycle daredevil Evel 
Knievel tried to vault across Hells Canyon, part of the Snake River system in Idaho, 
on his rocket-powered Harley-Davidson X-2 “Skycycle.” He lost consciousness at 
takeoff and released a lever, prematurely deploying his parachute and falling short 
of the other side. He landed safely in the canyon.

3.5    Relative Velocity
Learning Objectives

1. Derive the relative velocity equation.

2. Solve problems involving relative velocity.

Relative velocity is all about relating the measurements of two different observers, 
one moving with respect to the other. The measured velocity of an object depends 
on the velocity of the observer with respect to the object. On highways, for exam-
ple, cars moving in the same direction are often moving at high speed relative to 
Earth, but relative to each other they hardly move at all. To an observer at rest at 
the side of the road, a car might be traveling at 60 mi/h, but to an observer in a 
truck traveling in the same direction at 50 mi/h, the car would appear to be travel-
ing only 10 mi/h.

So measurements of velocity depend on the reference frame of the observer. 
Reference frames are just coordinate systems. Most of the time, we use a stationary 
frame of reference relative to Earth, but occasionally we use a moving frame of 
reference associated with a bus, car, or plane moving with constant velocity rela-
tive to Earth.

In two dimensions relative velocity calculations can be confusing, so a system-
atic approach is important and useful. Let E be an observer, assumed stationary 
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with respect to Earth. Let two cars be labeled A and B, and introduce the following 
notation (see Fig. 3.23):

rSAE 5  the position of Car A as measured by E (in a coordinate system fixed 
with respect to Earth).

rSBE 5 the position of Car B as measured by E.

rSAB 5 the position of Car A as measured by an observer in Car B.

According to the preceding notation, the first letter tells us what the vector is 
pointing at and the second letter tells us where the position vector starts. The posi-
tion vectors of Car A and Car B relative to E, rSAE and rSBE, are given in the figure. 
How do we find rSAB, the position of Car A as measured by an observer in Car B? 
We simply draw an arrow pointing from Car B to Car A, which can be obtained by 
subtracting rSBE from rSAE:

 rSAB 5 rSAE 2 rSBE [3.15]

Now, the rate of change of these quantities with time gives us the relationship 
between the associated velocities:

vSAB 5 vSAE 2 vSBE [3.16]

The coordinate system of observer E need not be fixed to Earth, although it often 
is. Take careful note of the pattern of subscripts; rather than memorize Equation 
3.16, it’s better to study the short derivation based on Figure 3.23. Note also that 
the equation doesn’t work for observers traveling a sizable fraction of the speed of 
light, when Einstein’s theory of special relativity comes into play.

 ■ pr Ob Le M-s OLv i ng  s t r at e g Y

Relative Velocity

1. Label each object involved (usually three) with a letter that reminds you of 
what it is (for example, E for Earth).

2. Look through the problem for phrases such as “The velocity of A relative to B” 
and write the velocities as vSAB. When a velocity is mentioned but it isn’t explic-
itly stated as relative to something, it’s almost always relative to Earth.

3. Take the three velocities you’ve found and assemble them into an equation just 
like Equation 3.16, with subscripts in an analogous order.

4. There will be two unknown components. Solve for them with the x - and 
y - components of the equation developed in step 3.

y

x
E

B

A

rAB � rAE � rBE
S S S

rBE

S

r AES

Figure 3.23  The position of Car 
A relative to Car B can be found 
by vector subtraction. The rate of 
change of the resultant vector with 
respect to time is the relative velocity 
equation.

 ■ e Xa Mp Le  3.10 Pitching Practice on the Train

g Oa L  Solve a one-dimensional relative velocity problem.

pr Ob Le M  A train is traveling with a speed of 15 m/s 
relative to Earth. A passenger standing at the rear of the 
train pitches a baseball with a speed of 15 m/s relative to 
the train off the back end, in the direction opposite the 
motion of the train. (a) What is the velocity of the baseball 
relative to Earth? (b) What is the velocity of the baseball 
relative to the Earth if thrown in the opposite direction at 
the same speed?

s t r at e g Y  Solving these problems involves putting 
the proper subscripts on the velocities and arranging 

them as in Equation 3.16. In the first sentence of the 
problem statement, we are informed that the train trav-
els at “15 m/s relative to Earth.” This quantity is vSTE, 
with T for train and E for Earth. The passenger throws 
the baseball at “15 m/s relative to the train,” so this 
quantity is vSBT, where B stands for baseball. The second 
sentence asks for the velocity of the baseball relative to 
Earth, vSBE. The rest of the problem can be solved by 
identifying the correct components of the known quan-
tities and solving for the unknowns, using an analog of 
Equation 3.16. Part(b) just requires a change of sign.
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s OLUti On
(a) What is the velocity of the baseball relative to the 
Earth?

Write the x -components of the known quantities: 1 vSTE 2 x 5 115 m/s
1 vSBT 2 x 5 215 m/s

Follow Equation 3.16: (1) 1 vSBT 2 x 5 1 vSBE 2 x 2 1 vSTE 2 x
Insert the given values and solve: 215 m/s 5 1 vSBE 2 x 2 15 m/s 

 1 vSBE 2 x 5  0

(b) What is the velocity of the baseball relative the to 
Earth if thrown in the opposite direction at the same 
speed?

Substitute 1 vSBT 2 x 5 115 m/s into Equation (1): 115 m/s 5 1 vSBT 2 x 2 15 m/s

Solve for 1 vSBT 2 x: 1 vSBT 2 x 5  13.0 3 101 m/s

QUes t i On  3.10  Describe the motion of the ball in part (a) as related by an observer on the ground.

e Xe rc i s e  3.10  A train is traveling at 27 m/s relative to Earth in the positive x-direction. A passenger standing on the 
ground throws a ball at 15 m/s relative to Earth in the same direction as the train’s motion. (a) Find the speed of the ball 
relative to an observer on the train. (b) Repeat the exercise if the ball is thrown in the opposite direction.

a ns We r s  (a) 212 m/s (b) 242 m/s

 ■ e Xa Mp Le  3.11 Crossing a River

g Oa L  Solve a simple two-dimensional relative motion problem.

pr Ob Le M  The boat in Figure 3.24 is heading due north as it crosses a wide river with a 
velocity of 10.0 km/h relative to the water. The river has a uniform velocity of 5.00 km/h 
due east. Determine the magnitude and direction of the boat’s velocity with respect to an 
observer on the riverbank.

s t r at e g Y  Again, we look for key phrases. “The boat . . . (has) a velocity of 10.0 km/h 
relative to the water” gives vSBR. “The river has a uniform velocity of 5.00 km/h due east” 
gives vSRE, because this implies velocity with respect to Earth. The observer on the riverbank 
is in a reference frame at rest with respect to Earth. Because we’re looking for the velocity of 
the boat with respect to that observer, this last velocity is designated vSBE. Take east to be the 
1x - direction, north the 1y -direction.

s OLUti On

u

BR

BE

RE

E

N

S

W

vS

vS

vS

Figure 3.24  (Example 3.10)

Arrange the three quantities into the proper relative 
velocity equation:

vSBR 5 vSBE 2 vSRE

Write the velocity vectors in terms of their components. 
For convenience, these are organized in the following 
table:

Vector x -Component (km/h) y-Component (km/h)

 vSBR 0 10.0
 vSBE vx vy

 vSRE 5.00 0

Find the x -component of velocity: 0 5 vx 2 5.00 km/h  S  vx 5 5.00 km/h

Find the y -component of velocity: 10.0 km/h 5 vy 2 0   S  vy 5 10.0 km/h

(Continued)
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 ■ e Xa Mp Le  3.12 Bucking the Current

g Oa L  Solve a complex two-dimensional rela-
tive motion problem.

pr Ob Le M  If the skipper of the boat of 
Example 3.11 moves with the same speed 
of 10.0 km/h relative to the water but now 
wants to travel due north, as in Figure 
3.25a, in what direction should he head? 
What is the speed of the boat, according to 
an observer on the shore? The river is flow-
ing east at 5.00 km/h.

s t r at e g Y  Proceed as in the previous 
example. In this situation, we must find 
the heading of the boat and its velocity 
with respect to the water, using the fact that the boat travels due north.

s OLUti On

re Mar Ks   The boat travels at a speed of 11.2 km/h in the direction 26.6° east of north with respect to Earth.

QUes t i On  3.11  If the speed of the boat relative to the water is increased, what happens to the angle?

e Xe rc i s e  3.11  Suppose the river is flowing east at 3.00 m/s and the boat is traveling south at 4.00 m/s with respect to 
the river. Find the speed and direction of the boat relative to Earth.

a ns We r  5.00 m/s, 53.1° south of east

Find the magnitude of vSBE: vBE 5 "vx
2 1 vy

2

5 "15.00 km/h 22 1 110.0 km/h 22 5  11.2 km/h

Find the direction of vSBE: u 5 tan21 avx
vy
b 5 tan21 a5.00 m/s

10.0 m/s
b 5 26.6°

E

N

S

W

a

u

BR

BE

REvS

vS

vS

E

N

S

W

b

REvS

BRvS BEvS

60°45°

Figure 3.25   
(a) (Example 3.12)  
(b) (Exercise 3.12)

Arrange the three quantities, as before: vSBR 5 vSBE 2 vSRE

Organize a table of velocity components: Vector x-Component (km/h) y-Component (km/h)

 vSBR 2(10.0 km/h) sin u (10.0 km/h) cos u
 vSBE 0 v
 vSRE 5.00 km/h 0

The x -component of the relative velocity equation can be 
used to find u:

2(10.0 m/s) sin u 5 0 2 5.00 km/h

sin u 5
5.00 km/h
10.0 km/h

5
1.00
2.00

Apply the inverse sine function and find u, which is the 
boat’s heading, west of north:

u 5 sin21 a1.00
2.00

b 5   30.0°

re Mar Ks  From Figure 3.25, we see that this problem can be solved with the Pythagorean theorem, because the prob-
lem involves a right triangle: the boat’s x -component of velocity exactly cancels the river’s velocity. When this is not the  
case, a more general technique is necessary, as shown in the following exercise. Notice that in the x -component of  
the relative velocity equation a minus sign had to be included in the term 2(10.0 km/h)sin u because the x -component of 
the boat’s velocity with respect to the river is negative.

QUes t i On  3.12  The speeds in this example are the same as in Example 3.11. Why isn’t the angle the same as before?

The y -component of the relative velocity equation can be 
used to find v:

110.0 km/h 2  cos u 5 v S v 5   8.66 km/h

37027_ch03_ptg01_hr_057-087.indd   76 19/08/13   2:13 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



 | Summary  77

e Xe rc i s e  3.12  Suppose the river is moving east at 5.00 km/h and the boat is traveling 45.0° south of east with respect 
to Earth. Find (a) the speed of the boat with respect to Earth and (b) the speed of the boat with respect to the river 
if the boat’s heading in the water is 60.0° south of east. (See Fig. 3.25b.) You will have to solve two equations with two 
unknowns. (As an alternative, the law of sines can be used.)

a ns We r s   (a) 16.7 km/h (b) 13.7 km/h

 ■ s UMMar Y

3.1 Vectors and Their Properties
Two vectors A

S

 and B
S

 can be added geometrically with the 
triangle method. The two vectors are drawn to scale on 
graph paper, with the tail of the second vector located at 
the tip of the first. The resultant vector is the vector drawn 
from the tail of the first vector to the tip of the second.

The negative of a vector A
S

 is a vector with the same 
magnitude as A

S

, but pointing in the opposite direction.  
A vector can be multiplied by a scalar, changing its magni-
tude, and its direction if the scalar is negative.

3.2  Components of a Vector
A vector A

S

 can be split into two components, one pointing 
in the x -direction and the other in the y -direction. These 
components form two sides of a right triangle having a 
hypotenuse with magnitude A and are given by

 Ax 5 A cos u [3.2a]

 Ay 5 A sin u [3.2b]

3.3   Displacement, Velocity, and Acceleration  
in Two Dimensions

The displacement of an object in two dimensions is defined 
as the change in the object’s position vector:

DrS ; rSf 2 rSi [3.6]

The average velocity of an object during the time interval 
Dt is

 vSav ;
DrS

Dt
 [3.7]

Taking the limit of this expression as Dt gets arbitrarily 
small gives the instantaneous velocity vS:

 vS ; lim
Dt S 0

 
DrS

Dt
 [3.8]

The direction of the instantaneous velocity vector is along 
a line that is tangent to the path of the object and in the 
direction of its motion.

The average acceleration of an object with a velocity 
changing by DvS in the time interval Dt is

 aSav ;
DvS

Dt
 [3.9]

Taking the limit of this expression as Dt gets arbitrarily 
small gives the instantaneous acceleration vector aS:

 aS ; lim
Dt S 0

DvS

Dt
 [3.10]

3.4  Motion in Two Dimensions
The general kinematic equations in two dimensions for 
objects with constant acceleration are, for the x -direction,

 vx 5 v0x 1 axt [3.11a]

 Dx 5 v0x t 1 1
2ax t

2 [3.11b]

 vx
2 5 v0x

2 1 2ax Dx [3.11c]

where v0x 5 v0 cos u0, and, for the y -direction,

 vy 5 v0y 1 ayt [3.12a]

 Dy 5 v0yt 1 1
2ayt

2 [3.12b]

 vy
2 5 v0y

2 1 2ay Dy [3.12c]

where v0y 5 v0 sin u0. The speed v of the object at any 
instant can be calculated from the components of velocity 
at that instant using the Pythagorean theorem:

v 5 "vx
2 1 vy

2

y

x
O

u

A
S

 

Ax

Ay

tan u�
Ax

Ay

A vector can be written in 
terms of components in the 
x - and y - directions.

The magnitude and direction of A
S

 are related to its com-
ponents through the Pythagorean theorem and the defini-
tion of the tangent:

 A 5 "Ax
2 1 Ay

2 [3.3]

 tan u 5
Ay

Ax
 [3.4]

In Equation (3.4), u 5 tan21(Ay/Ax) gives the correct vec-
tor angle only for vectors with 290° , u , 90°. If the vec-
tor has a negative x -component, 180° must be added to the 
answer in the calculator window.

If R
S

5 A
S

1 B
S

, then the components of the resultant vec-
tor R

S

 are

 Rx 5 Ax 1 Bx [3.5a]

 Ry 5 Ay 1 By [3.5b]
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The angle that the velocity vector makes with the x -axis is 
given by

u 5 tan21 a
vy
vx
b

The horizontal and vertical motions of a projectile are 
completely independent of each other.

Dy 5 1v0 sin u0 2 t 2 1
2gt

2 [3.14b]

 vy
2 5 (v0 sin u0)

2 2 2g Dy [3.14c]

 Problems are solved by algebraically manipulating one 
or more of these equations, which often reduces the system 
to two equations and two unknowns.

3.5  Relative Velocity
Let E be an observer, and B a second observer traveling 
with velocity vSBE as measured by E. If E measures the veloc-
ity of an object A as vSAE, then B will measure A’s velocity as

 vSAB 5 vSAE 2 vSBE [3.16]

Equation 3.16 can be derived from Figure 3.21 by dividing 
the relative position equation by the Dt and taking the limit 
as Dt goes to zero.

Solving relative velocity problems involves identifying 
the velocities properly and labeling them correctly, substi-
tuting into Equation 3.16, and then solving for unknown 
quantities.

vS

vS

vS

gS 

x
v0x

v0x

v0x

vy

vy � 0

v0x

vy

v0y

v0y

v0x

y

u0

u

u

u0

Gravity changes 
the y-component 
of the velocity.

The x-component of 
velocity remains 
constant in time.

v0
S

Gravity acts on the y - component of the velocity and has no effect 
on the x - component, illustrating the independence of horizontal 
and vertical projectile motion.

The kinematic equations are easily adapted and simpli-
fied for projectiles close to the surface of the Earth. The 
equations for the motion in the horizontal or x-direction are

 vx 5 v0x 5 v0 cos u0 5 constant [3.13a]

 Dx 5 v0xt 5 (v0 cos u0)t [3.13b]

while the equations for the motion in the vertical or 
y -direction are

 vy 5 v0 sin u0 2 gt [3.14a]

y

x
E

B

A

rAB � rAE � rBE
S S S

rBE

S

r AES

The time rate of change of the difference of the two position vec-
tors rSAE and rSBE gives the relative velocity equation, Equation 3.16.

 ■ War M-Up  e Xe rc i s e s

The warm-up exercises in this chapter may be assigned online in Enhanced WebAssign.

 1. A vector A
S

 has components Ax 5 25.00 m and Ay 5 9.00 m.  
Find (a) the magnitude and (b) the direction of the 
vector. (See Section 3.2.)

 2. Calculate (a) the x - and (b) y -components of the vector 
with magnitude 24.0 m and direction 56.08. (See Sec-
tion 3.2.)

 3. Find (a) the x - and (b) y -components of R
S

5 2A
S

2 B
S

 if 
A
S

 has components Ax 5 15.0 m and Ay 5 12.0 m whereas 
B
S

 has components Bx 5 24.0 m and By 5 8.00 m. (See 
Section 3.2.)

 4. A hiker walks from (x1, y1) 5 (24.00 km, 3.00 km) to 
(x2, y2) 5 (3.00 km, 6.00 km). (a) What distance has he 
traveled? (b) The hiker desires to return to his starting 

point. In what direction should he go? (Give the angle 
with respect to due east.) (See Sections 3.2 and 3.3.)

 5. A hiker walks 3.00 km north and then 4.00 km west, all 
in one hour and forty minutes. (a) Calculate his average 
speed in km/h. (b) Calculate the magnitude of his aver-
age velocity. (See Section 3.2 and 3.3.)

 6. A car is traveling east at 25.0 m/s when it turns north 
and accelerates to 35.0 m/s, all during a time of 6.00 s. 
Calculate the magnitude of the car’s average accelera-
tion. (See Section 3.3.)

 7. A skier leaves the end of a horizontal ski jump at 22.0 
m/s and falls through a vertical distance of 3.20 m 
before landing. Neglecting air resistance, (a) how long 
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does it take the skier to reach the ground? (b) How far 
horizontally does the skier travel in the air before land-
ing? (See Section 3.4.)

 8. A catapult launches a large stone from ground level at a 
speed of 45.0 m/s at an angle of 55.08 with the horizon-
tal. The stone returns to ground level shortly thereafter.  
(a) How long is it in the air? (b) What maximum height 

does the stone reach? (Neglect air friction.) (See  
Section 3.4.)

 9. A cruise ship sails due north at 4.50 m/s while a coast 
guard patrol boat heads 45.08 north of west at 5.20 m/s. 
What are (a) the x - and (b) y -components of the veloc-
ity of the cruise ship relative to the patrol boat? (See 
Section 3.5.)

thrusting the plane forward. (c) A rocket leaves the 
launch pad. (d) A rocket moves through the sky after its 
engines have failed. (e) A stone is thrown under water.

 9. Two projectiles are thrown with the same initial speed, 
one at an angle u with respect to the level ground and the 
other at angle 90° 2 u. Both projectiles strike the ground 
at the same distance from the projection point. Are both 
projectiles in the air for the same length of time?

 10. A ball is thrown upward in the air by a passenger on a 
train that is moving with constant velocity. (a) Describe 
the path of the ball as seen by the passenger. Describe 
the path as seen by a stationary observer outside the 
train. (b) How would these observations change if the 
train were accelerating along the track?

 11. A projectile is launched at some angle to the horizontal 
with some initial speed vi, and air resistance is negligi-
ble. (a) Is the projectile a freely falling body? (b) What 
is its acceleration in the vertical direction? (c) What is 
its acceleration in the horizontal direction?

 12. A baseball is thrown from the outfield toward the 
catcher. When the ball reaches its highest point, which 
statement is true? (a) Its velocity and its acceleration 
are both zero. (b) Its velocity is not zero, but its accel-
eration is zero. (c) Its velocity is perpendicular to its 
acceleration. (d) Its acceleration depends on the angle 
at which the ball was thrown. (e) None of statements 
(a) through (d) is true.

 13. A student throws a heavy red ball horizontally from a 
balcony of a tall building with an initial speed v0. At 
the same time, a second student drops a lighter blue 
ball from the same balcony. Neglecting air resistance, 
which statement is true? (a) The blue ball reaches the 
ground first. (b) The balls reach the ground at the 
same instant. (c) The red ball reaches the ground first. 
(d) Both balls hit the ground with the same speed.  
(e) None of statements (a) through (d) is true.

 14. A car moving around a circular track with constant 
speed (a) has zero acceleration, (b) has an accel-
eration component in the direction of its velocity,  
(c) has an acceleration directed away from the center 
of its path, (d) has an acceleration directed toward 
the center of its path, or (e) has an acceleration with 

 1. If B
S

 is added to A
S

, under what conditions does the resul-
tant vector have a magnitude equal to A 1 B? Under 
what conditions is the resultant vector equal to zero?

 2. Under what circumstances would a vector have compo-
nents that are equal in magnitude?

 3. As a projectile moves in its path, is there any point 
along the path where the velocity and acceleration vec-
tors are (a) perpendicular to each other? (b) Parallel 
to each other?

 4. Construct motion diagrams showing the velocity and 
acceleration of a projectile at several points along its 
path, assuming (a) the projectile is launched horizon-
tally and (b) the projectile is launched at an angle u 
with the horizontal.

 5. Explain whether the following particles do or do not 
have an acceleration: (a) a particle moving in a straight 
line with constant speed and (b) a particle moving 
around a curve with constant speed.

 6. A ball is projected horizontally from the top of a 
building. One second later, another ball is projected 
horizontally from the same point with the same veloc-
ity. (a)  At what point in the motion will the balls be 
closest to each other? (b) Will the first ball always be 
traveling faster than the second? (c) What will be the 
time difference between them when the balls hit the 
ground? (d) Can the horizontal projection velocity of 
the second ball be changed so that the balls arrive at 
the ground at the same time?

 7. A spacecraft drifts through space at a constant veloc-
ity. Suddenly, a gas leak in the side of the spacecraft 
causes it to constantly accelerate in a direction per-
pendicular to the initial velocity. The orientation of 
the spacecraft does not change, so the acceleration 
remains perpendicular to the original direction of 
the velocity. What is the shape of the path followed by 
the spacecraft?

 8. Determine which of the following moving objects 
obey the equations of projectile motion developed in 
this chapter. (a) A ball is thrown in an arbitrary direc-
tion. (b) A jet airplane crosses the sky with its engines 

 ■ c On ce p t Ua L QUes t i Ons

The conceptual questions in this chapter may be assigned online in Enhanced WebAssign.
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a direction that cannot be determined from the 
information given.

 15. As an apple tree is transported by a truck moving to the 
right with a constant velocity, one of its apples shakes 
loose and falls toward the bed of the truck. Of the 
curves shown in Figure CQ3.15, (i) which best describes 
the path followed by the apple as seen by a stationary 
observer on the ground, who observes the truck moving 

from his left to his right? (ii) Which best describes the 
path as seen by an observer sitting in the truck?

a b c d e

Figure c Q3.15

3.1  Vectors and Their Properties

 1. Vector A
S

 has a magnitude of 29 units and points in 
the positive y -direction. When vector B

S

 is added to A
S

,  
the resultant vector A

S

1 B
S

 points in the negative 
y - direction with a magnitude of 14 units. Find the mag-
nitude and direction of B

S

.

 2. Vector A
S

 has a magnitude of 8.00 units and makes an 
angle of 45.0° with the positive x -axis. Vector B

S

 also has 
a magnitude of 8.00 units and is directed along the 
negative x -axis. Using graphical methods, find (a) the 
vector sum A

S

1 B
S

 and (b) the vector difference A
S

2 B
S

.

 3. Vector A
S

 is 3.00 units in length and points along the 
positive x -axis. Vector B

S

 is 4.00 units in length and 
points along the negative y -axis. Use graphical meth-
ods to find the magnitude and direction of the vec-
tors (a) A

S

1 B
S

 and (b) A
S

2 B
S

.

 4.  Three displacements are A
S

 5 200 m due south, 
B
S

 5 250 m due west, and C
S

 5 150 m at 30.0° east of 
north. (a) Construct a separate diagram for each of 
the following possible ways of adding these vectors: 
R
S

1 5 A
S

1 B
S

1 C
S

; R
S

2 5 B
S

1 C
S

1 A
S

; R
S

3 5 C
S

1 B
S

1 A
S

. 
(b) Explain what you can conclude from comparing 
the diagrams.

 5. A roller coaster moves 200 ft horizontally and then 
rises 135 ft at an angle of 30.0° above the horizontal. 
Next, it travels 135 ft at an angle of 40.0° below the 
horizontal. Use graphical techniques to find the roller 
coaster’s displacement from its starting point to the 
end of this movement.

 6.  An airplane flies 200 km due west from city A 
to city B and then 300 km in the direction of 30.0° 
north of west from city B to city C. (a) In straight-line 
distance, how far is city C from city A? (b) Relative to 
city A, in what direction is city C? (c) Why is the answer 
only approximately correct?

 7. A plane flies from base camp to lake A, a distance of 
280 km at a direction of 20.0° north of east. After drop-
ping off supplies, the plane flies to lake B, which is 
190 km and 30.0° west of north from lake A. Graphi-
cally determine the distance and direction from lake B 
to the base camp.

 8. A force F
S

1 of magnitude 6.00 
units acts on an object at the 
origin in a direction u 5 30.0° 
above the positive x -axis (Fig. 
P3.8). A second force F

S

2 of mag-
nitude 5.00  units acts on the 
object in the direction of the 
positive y -axis. Find graphically 
the magnitude and direction of 
the resultant force F

S

1 1 F
S

2.

 9. A man in a maze makes three consecutive displace-
ments. His first displacement is 8.00 m westward, and 
the second is 13.0 m northward. At the end of his third 
displacement he is back to where he started. Use the 
graphical method to find the magnitude and direction 
of his third displacement.

3.2  Components of a Vector

 10. A person walks 25.0° north of east for 3.10 km. How far 
due north and how far due east would she have to walk 
to arrive at the same location?

 11. The magnitude of vector A
S

 is 35.0 units and points 
in the direction 325° counterclockwise from the posi-
tive x -axis. Calculate the x - and y -components of this 
vector.

 12. A figure skater glides along a circular path of radius 
5.00  m. If she coasts around one half of the circle, 
find (a) the magnitude of the displacement vector and 

F2
S

F1
S

u

Figure p 3.8

 ■ pr Ob Le Ms

denotes biomedical problems

denotes guided problems

denotes Master It tutorial available in Enhanced WebAssign

denotes asking for quantitative and conceptual reasoning

denotes symbolic reasoning problem

W denotes Watch It video solution available in Enhanced WebAssign

The problems in this chapter may be assigned online in 
Enhanced WebAssign. 

1. denotes straightforward problem; 2. denotes intermediate problem;

3. denotes challenging problem

1. denotes full solution available in Student Solutions Manual/ 
Study Guide

1. denotes problems most often assigned in Enhanced WebAssign
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21. W A novice golfer on the 
green takes three strokes 
to sink the ball. The succes-
sive displacements of the 
ball are 4.00 m to the north, 
2.00 m northeast, and 1.00 m  
at 30.0° west of south (Fig. 
P3.21). Starting at the same 
initial point, an expert golfer 
could make the hole in what single displacement?

3.3   Displacement, Velocity, and Acceleration  
in Two Dimensions

3.4   Motion in Two Dimensions

22. One of the fastest recorded pitches in major-league 
baseball, thrown by Tim Lin cecum in 2009, was clocked 

(b) what distance she skated. (c) What is the magnitude 
of the displacement if she skates all the way around the 
circle?

 13. A girl delivering newspapers covers her route by trav-
eling 3.00 blocks west, 4.00 blocks north, and then 
6.00  blocks east. (a) What is her resultant displace-
ment? (b) What is the total distance she travels?

 14. A hiker starts at his camp and moves the follow-
ing distances while exploring his surroundings: 75.0 m 
north, 2.50 3 102 m east, 125 m at an angle 30.0° north 
of east, and 1.50 3 102 m south. (a) Find his resul-
tant displacement from camp. (Take east as the posi-
tive x -direction and north as the positive y -direction.) 
(b) Would changes in the order in which the hiker 
makes the given displacements alter his final position? 
Explain.

 15. A vector has an x-component of 225.0 units and a 
y -component of 40.0 units. Find the magnitude and 
direction of the vector.

 16. A quarterback takes the ball from the line of scrim-
mage, runs backwards for 10.0 yards, then runs side-
ways parallel to the line of scrimmage for 15.0 yards. 
At this point, he throws a 50.0-yard forward pass 
straight downfield, perpendicular to the line of scrim-
mage. What is the magnitude of the football’s resultant 
displacement?

 17. The eye of a hurricane passes over Grand Bahama 
Island in a direction 60.0° north of west with a speed 
of 41.0 km/h. Three hours later the course of the hur-
ricane suddenly shifts due north, and its speed slows to 
25.0 km/h. How far from Grand Bahama is the hurri-
cane 4.50 h after it passes over the island?

 18. A map suggests that Atlanta is 730 miles in a direction 
5.00° north of east from Dallas. The same map shows 
that Chicago is 560 miles in a direction 21.0° west of 
north from Atlanta. Figure P3.18 shows the location of 
these three cities. Modeling the Earth as flat, use this 
information to find the displacement from Dallas to 
Chicago.

city A, located 175 km away in a direction 30.0° north 
of east. Next, it flies for 150 km 20.0° west of north, to 
city B. Finally, the plane flies 190 km due west, to city C.  
Find the location of city C relative to the location of 
the starting point.

Chicago

Dallas

Atlanta

21.0�

5.00�

730 mi

560 mi

Figure p 3.18

19. A commuter airplane starts from an airport and takes 
the route shown in Figure P3.19. The plane first flies to 

x

y
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Figure p 3.20
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Figure p 3.21
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Figure p 3.19

20. The helicopter view in Figure P3.20 shows two people 
pulling on a stubborn mule. Find (a) the single force 
that is equivalent to the two forces shown and (b) the 
force a third person would have to exert on the mule to 
make the net force equal to zero. The forces are mea-
sured in units of newtons (N).
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at 101.0 mi/h (Fig. P3.22). If a pitch were thrown hori-
zontally with this velocity, how far would the ball fall ver-
tically by the time it reached home plate, 60.5 ft away?

(a) the initial speed of the projectile and (b) the total 
time the projectile was in flight. (c) Qualitatively, how 
would the answers change if the launch angle were 
greater than 45°? Explain.

 27. A place-kicker must kick a football from a point 
36.0 m (about 40 yards) from the goal. Half the 
crowd hopes the ball will clear the crossbar, which 
is 3.05 m high. When kicked, the ball leaves the 
ground with a speed of 20.0 m/s at an angle of 53.0° 
to the horizontal. (a)  By how much does the ball 
clear or fall short of clearing the crossbar? (b) Does 
the ball approach the crossbar while still rising or 
while falling?

 28.  From the window of a building, a ball is tossed 
from a height y0 above the ground with an initial veloc-
ity of 8.00 m/s and angle of 20.0° below the horizon-
tal. It strikes the ground 3.00 s later. (a) If the base 
of the building is taken to be the origin of the coor-
dinates, with upward the positive y -direction, what are 
the initial coordinates of the ball? (b) With the posi-
tive x -direction chosen to be out the window, find the 
x - and y -components of the initial velocity. (c) Find the 
equations for the x - and y -components of the position 
as functions of time. (d) How far horizontally from the 
base of the building does the ball strike the ground? 
(e) Find the height from which the ball was thrown. 
(f)  How long does it take the ball to reach a point 
10.0 m below the level of launching?

 29. A brick is thrown upward from the top of a building 
at an angle of 25° to the horizontal and with an initial 
speed of 15 m/s. If the brick is in flight for 3.0 s, how 
tall is the building?

 30. An artillery shell is fired with an initial velocity of 
300 m/s at 55.0° above the horizontal. To clear an 
avalanche, it explodes on a mountainside 42.0 s after 
firing. What are the x - and y -coordinates of the shell 
where it explodes, relative to its firing point?

 31. A car is parked on a cliff overlooking the ocean on an 
incline that makes an angle of 24.0° below the horizon-
tal. The negligent driver leaves the car in neutral, and 
the emergency brakes are defective. The car rolls from 
rest down the incline with a constant acceleration of 
4.00 m/s2 for a distance of 50.0 m to the edge of the 
cliff, which is 30.0 m above the ocean. Find (a) the car’s 
position relative to the base of the cliff when  
the car lands in the ocean and (b) the length of time 
the car is in the air.

 32. W A fireman d 5 50.0 m away from a burning building 
directs a stream of water from a ground-level fire hose 
at an angle of ui 5 30.0° above the horizontal as shown 
in Figure P3.32. If the speed of the stream as it leaves 
the hose is vi 5 40.0 m/s, at what height will the stream 
of water strike the building?

Figure p 3.22 Tim Lincecum 
throws a baseball. 
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23.  A student stands at the 
edge of a cliff and throws 
a stone horizontally over 
the edge with a speed of 
18.0 m/s. The cliff is 50.0 m 
above a flat, horizontal 
beach as shown in Figure 
P3.23. (a) What are the coor-
dinates of the initial posi-
tion of the stone? (b) What 
are the components of the 
initial velocity? (c) Write 
the equations for the x- and 
y-components of the veloc-
ity of the stone with time.  
(d) Write the equations for the position of the stone 
with time, using the coordinates in Figure P3.23.  
(e) How long after being released does the stone strike 
the beach below the cliff? (f) With what speed and angle 
of impact does the stone land?

 24.  A rock is thrown upward from the level 
ground in such a way that the maximum height of its 
flight is equal to its horizontal range R. (a) At what 
angle u is the rock thrown? (b) In terms of the original 
range R, what is the range Rmax the rock can attain if it 
is launched at the same speed but at the optimal angle 
for maximum range? (c) Would your answer to part  
(a) be different if the rock is thrown with the same 
speed on a different planet? Explain.

 25. W The best leaper in the animal kingdom is the puma, 
which can jump to a height of 3.7 m when leaving the 
ground at an angle of 45°. With what speed must the 
animal leave the ground to reach that height?

 26. The record distance in the sport of throwing cow-
pats is 81.1 m. This record toss was set by Steve Urner of 
the United States in 1981. Assuming the initial launch 
angle was 45° and neglecting air resistance, determine 

h � 50.0 m

x

y

v0 � �18.0 m/sS

vS

gS

O

Figure p 3.23
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33. A projectile is launched with an initial speed of 
60.0 m/s at an angle of 30.0° above the horizontal. The 
projectile lands on a hillside 4.00 s later. Neglect air 
friction. (a) What is the projectile’s velocity at the high-
est point of its trajectory? (b) What is the straight-line 
distance from where the projectile was launched to 
where it hits its target?

 34. A playground is on the flat roof of a city school, 6.00 m 
above the street below (Fig. P3.34). The vertical wall of 
the building is h 5 7.00 m high, to form a 1-m-high 
railing around the playground. A ball has fallen to the 
street below, and a passerby returns it by launching it 
at an angle of u 5 53.0° above the horizontal at a point 
d  5 24.0 m from the base of the building wall. The 
ball takes 2.20 s to reach a point vertically above the 
wall. (a) Find the speed at which the ball was launched. 
(b) Find the vertical distance by which the ball clears 
the wall. (c) Find the horizontal distance from the wall 
to the point on the roof where the ball lands.

with respect to the Earth. The traces of the rain on the 
side windows of the car make an angle of 60.0° with 
the vertical. Find the velocity of the rain with respect 
to (a) the car and (b) the Earth.

 37. A bolt drops from the ceiling of a moving 
train car that is accelerating northward at a rate of  
2.50 m/s2. (a) What is the acceleration of the bolt rela-
tive to the train car? (b) What is the acceleration of the 
bolt relative to the Earth? (c) Describe the trajectory of 
the bolt as seen by an observer fixed on the Earth.

 38. A Coast Guard cutter detects an unidentified ship at 
a distance of 20.0 km in the direction 15.0° east of 
north. The ship is traveling at 26.0 km/h on a course 
at 40.0° east of north. The Coast Guard wishes to 
send a speedboat to intercept and investigate the 
vessel. (a)  If the speedboat travels at 50.0 km/h,  
in what direction should it head? Express the direc-
tion as a compass bearing with respect to due north.  
(b) Find the time required for the cutter to intercept 
the ship.

 39. An airplane maintains a speed of 630 km/h relative 
to the air it is flying through, as it makes a trip to a 
city 750 km away to the north. (a) What time interval is 
required for the trip if the plane flies through a head-
wind blowing at 35.0 km/h toward the south? (b) What 
time interval is required if there is a tailwind with the 
same speed? (c) What time interval is required if there 
is a crosswind blowing at 35.0 km/h to the east relative 
to the ground?

 40. Suppose a chinook salmon needs to jump a 
waterfall that is 1.50 m high. If the fish starts from a 
distance 1.00 m from the base of the ledge over which 
the waterfall flows, (a) find the x - and y -components 
of the initial velocity the salmon would need to just 
reach the ledge at the top of its trajectory. (b) Can 
the fish make this jump? (Note that a chinook salmon 
can jump out of the water with an initial speed of 
6.26 m/s.)

 41. A river has a steady speed of 0.500 m/s. A student 
swims upstream a distance of 1.00 km and swims back 
to the starting point. (a) If the student can swim at a 
speed of 1.20 m/s in still water, how long does the trip 
take? (b) How much time is required in still water for 
the same length swim? (c) Intuitively, why does the 
swim take longer when there is a current?

 42.  This is a symbolic version of Problem 41. A river 
has a steady speed of vs. A student swims upstream a 
distance d and back to the starting point. (a) If the stu-
dent can swim at a speed of v in still water, how much 
time tup does it take the student to swim upstream a 
distance d? Express the answer in terms of d, v, and vs. 
(b) Using the same variables, how much time tdown

does it take to swim back downstream to the starting 

d

h

i

ui

vS

Figure p 3.32

h

u

d

Figure p 3.34

3.5  Relative Velocity

35.  A jet airliner moving initially at 3.00 3 102 mi/h 
due east enters a region where the wind is blowing 
1.00  3 102 mi/h in a direction 30.0° north of east. 
(a) Find the components of the velocity of the jet air-
liner relative to the air, vSJA. (b) Find the components 
of the velocity of the air relative to Earth, vSAE. (c) Write 
an equation analogous to Equation 3.16 for the veloci-
ties vSJA, vSAE, and vSJE. (d) What are the speed and direc-
tion of the aircraft relative to the ground?

 36. A car travels due east with a speed of 50.0 km/h. 
Raindrops are falling at a constant speed vertically 
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point? (c) Sum the answers found in parts (a) and (b) 
and show that the time ta required for the whole trip 
can be written as

ta 5
2d/v

1 2 vs
2/v2

(d) How much time tb does the trip take in still water? 
(e) Which is larger, ta or tb? Is it always larger?

 43. A bomber is flying horizontally over level terrain at 
a speed of 275 m/s relative to the ground and at an 
altitude of 3.00 km. (a) The bombardier releases one 
bomb. How far does the bomb travel horizontally 
between its release and its impact on the ground? 
Ignore the effects of air resistance. (b) Firing from 
the people on the ground suddenly incapacitates the 
bombardier before he can call, “Bombs away!” Conse-
quently, the pilot maintains the plane’s original course, 
altitude, and speed through a storm of flak. Where is 
the plane relative to the bomb’s point of impact when 
the bomb hits the ground? (c) The plane has a tele-
scopic bombsight set so that the bomb hits the target 
seen in the sight at the moment of release. At what 
angle from the vertical was the bombsight set?

Additional Problems

44. A moving walkway at an airport has a speed v1 and 
a length L. A woman stands on the walkway as it moves 
from one end to the other, while a man in a hurry to 
reach his flight walks on the walkway with a speed of 
v2 relative to the moving walkway. (a) How long does it 
take the woman to travel the distance L? (b) How long 
does it take the man to travel this distance?

 45. How long does it take an automobile traveling in 
the left lane of a highway at 60.0 km/h to overtake 
(become even with) another car that is traveling in the 
right lane at 40.0 km/h when the cars’ front bumpers 
are initially 100 m apart?

 46. You can use any coordinate system you like to solve a 
projectile motion problem. To demonstrate the truth 
of this statement, consider a ball thrown off the top of 
a building with a velocity vS at an angle u with respect 
to the horizontal. Let the building be 50.0 m tall, the 
initial horizontal velocity be 9.00 m/s, and the initial 
vertical velocity be 12.0 m/s. Choose your coordinates 
such that the positive y -axis is upward, the x -axis is to 
the right, and the origin is at the point where the ball 
is released. (a) With these choices, find the ball’s maxi-
mum height above the ground and the time it takes to 
reach the maximum height. (b) Repeat your calcula-
tions choosing the origin at the base of the building.

 47.  A Nordic jumper goes off a ski jump at an angle of 
10.0° below the horizontal, traveling 108 m horizontally  

and 55.0 m vertically before landing. (a) Ignoring  
friction and aerodynamic effects, calculate the speed 
needed by the skier on leaving the ramp. (b) Olympic  
Nordic jumpers can make such jumps with a jump speed 
of 23.0 m/s, which is considerably less than the answer 
found in part (a). Explain how that is possible.

 48. In a local diner, a customer slides an empty coffee 
cup down the counter for a refill. The cup slides off 
the counter and strikes the floor at distance d from the 
base of the counter. If the height of the counter is h, 
(a) find an expression for the time t it takes the cup 
to fall to the floor in terms of the variables h and g. 
(b) With what speed does the mug leave the counter? 
Answer in terms of the variables d, g, and h. (c) In the 
same terms, what is the speed of the cup immediately 
before it hits the floor? (d) In terms of h and d, what is 
the direction of the cup’s velocity immediately before it 
hits the floor?

 49. Towns A and B in Figure P3.49 are 80.0 km apart. 
A couple arranges to drive from town A and meet a 
couple driving from town B at the lake, L. The two cou-
ples leave simultaneously and drive for 2.50 h in the 
directions shown. Car 1 has a speed of 90.0 km/h. If 
the cars arrive simultaneously at the lake, what is the 
speed of car 2?

80.0 km40.0°
A B

1
2

L

Figure p 3.49

50. A chinook salmon has a maximum underwater 
speed of 3.58 m/s, but it can jump out of water with a 
speed of 6.26 m/s. To move upstream past a waterfall, 
the salmon does not need to jump to the top of the fall, 
but only to a point in the fall where the water speed is 
less than 3.58 m/s; it can then swim up the fall for the 
remaining distance. Because the salmon must make 
forward progress in the water, let’s assume it can swim 
to the top if the water speed is 3.00 m/s. If water has 
a speed of 1.50 m/s as it passes over a ledge, (a) how 
far below the ledge will the water be moving with a 
speed of 3.00 m/s? (Note that water undergoes projec-
tile motion once it leaves the ledge.) (b) If the salmon 
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is able to jump vertically upward from the base of the 
fall, what is the maximum height of waterfall that the 
salmon can clear?

 51. A rocket is launched at an angle of 53.0° above the 
horizontal with an initial speed of 100 m/s. The 
rocket moves for 3.00 s along its initial line of motion 
with an acceleration of 30.0 m/s2. At this time, its 
engines fail and the rocket proceeds to move as a 
projectile. Find (a) the maximum altitude reached by 
the rocket, (b) its total time of f light, and (c) its hori-
zontal range.

 52. W Two canoeists in identical canoes exert the same 
effort paddling and hence maintain the same speed 
relative to the water. One paddles directly upstream 
(and moves upstream), whereas the other paddles 
directly downstream. With downstream as the positive 
direction, an observer on shore determines the veloci-
ties of the two canoes to be 21.2 m/s and 12.9 m/s, 
respectively. (a) What is the speed of the water relative 
to the shore? (b) What is the speed of each canoe rela-
tive to the water?

 53. (a) If a person can jump a maximum horizontal dis-
tance (by using a 45° projection angle) of 3.0 m on 
Earth, what would be his maximum range on the 
Moon, where the free-fall acceleration is g/6 and g 5 
9.80 m/s2? (b) Repeat for Mars, where the acceleration 
due to gravity is 0.38g.

 54.  A farm truck 
moves due east with a 
constant velocity of 
9.50 m/s on a limitless, 
horizontal stretch of 
road. A boy riding on 
the back of the truck 
throws a can of soda 
upward (Fig. P3.54) and catches the projectile at the 
same location on the truck bed, but 16.0 m farther 
down the road. (a) In the frame of reference of the 
truck, at what angle to the vertical does the boy throw 
the can? (b) What is the initial speed of the can rela-
tive to the truck? (c) What is the shape of the can’s tra-
jectory as seen by the boy? An observer on the ground 
watches the boy throw the can and catch it. In this 
observer’s frame of reference, (d) describe the shape of 
the can’s path and (e) determine the initial velocity of 
the can.

 55.  A home run is hit in such a way that the baseball 
just clears a wall 21 m high, located 130 m from home 
plate. The ball is hit at an angle of 35° to the horizon-
tal, and air resistance is negligible. Find (a) the initial 
speed of the ball, (b) the time it takes the ball to reach 
the wall, and (c) the velocity components and the 
speed of the ball when it reaches the wall. (Assume the 
ball is hit at a height of 1.0 m above the ground.)

56. A ball is thrown straight upward and returns to the 
thrower’s hand after 3.00 s in the air. A second ball 
thrown at an angle of 30.0° with the horizontal reaches 
the same maximum height as the first ball. (a) At what 
speed was the first ball thrown? (b) At what speed was 
the second ball thrown?

57. A quarterback throws a football toward a receiver 
with an initial speed of 20 m/s at an angle of 30° 
above the horizontal. At that instant the receiver is 
20 m from the quarterback. In (a) what direction and 
(b) with what constant speed should the receiver run 
in order to catch the football at the level at which it 
was thrown?

58. A 2.00-m-tall basketball player is standing on the floor 
10.0 m from the basket, as in Figure P3.58. If he shoots 
the ball at a 40.0° angle with the horizontal, at what ini-
tial speed must he throw the basketball so that it goes 
through the hoop without striking the backboard? The 
height of the basket is 3.05 m.

vS

Figure p 3.54

10.0 m

2.00
m

3.05 m

40.0�

Figure p 3.58

59.  In a very popular lec-
ture demonstration, a projec-
tile is fired at a falling target 
as in Figure P3.59. The projec-
tile leaves the gun at the same 
instant the target is dropped 
from rest. Assuming the gun 
is initially aimed at the target, 
show that the projectile will 
hit the target. (One restric-
tion of this experiment is that 
the projectile must reach the target before the target 
strikes the floor.)

 60. Figure P3.60 illustrates the difference in propor-
tions between the male (m) and female (f) anatomies. 
The displacements d

S

1m and d
S

1f from the bottom of 
the feet to the navel have magnitudes of 104 cm and 
84.0  cm, respectively. The displacements d

S

2m and d
S

2f 
have magnitudes of 50.0 cm and 43.0 cm, respectively. 
(a) Find the vector sum of the displacements d

S

d1 and 
d
S

d2 in each case. (b) The male figure is 180 cm tall, the 
female 168  cm. Normalize the displacements of each 

0 Point of
collision

Target

θ

v0
S

Figure p 3.59
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figure to a common height of 200 cm and re-form the 
vector sums as in part (a). Then find the vector differ-
ence between the two sums.

 65. A daredevil is shot out of a cannon at 45.0° to the 
horizontal with an initial speed of 25.0 m/s. A net is 
positioned a horizontal distance of 50.0 m from the 
cannon. At what height above the cannon should the 
net be placed in order to catch the daredevil?

 66. Chinook salmon are able to move upstream faster 
by jumping out of the water periodically; this behav-
ior is called porpoising. Suppose a salmon swimming 
in still water jumps out of the water with a speed of 
6.26 m/s at an angle of 45°, sails through the air a dis-
tance L before returning to the water, and then swims 
a distance L underwater at a speed of 3.58 m/s before 
beginning another porpoising maneuver. Determine 
the average speed of the fish.

 67. A student decides to measure the muzzle velocity 
of a pellet shot from his gun. He points the gun hori-
zontally. He places a target on a vertical wall a distance 
x away from the gun. The pellet hits the target a verti-
cal distance y below the gun. (a) Show that the position 
of the pellet when traveling through the air is given by 
y 5 Ax2, where A is a constant. (b) Express the constant 
A in terms of the initial (muzzle) velocity and the free-
fall acceleration. (c) If x 5 3.00 m and y 5 0.210 m, 
what is the initial speed of the pellet?

 68. A sailboat is heading directly north at a speed of 
20  knots (1 knot 5 0.514 m/s). The wind is blowing 
toward the east with a speed of 17 knots. (a) Determine 
the magnitude and direction of the wind velocity as 
measured on the boat. (b) What is the component of 
the wind velocity in the direction parallel to the motion 
of the boat? (See Problem 58 in Chapter 4 for an expla-
nation of how a sailboat can move “into the wind.”)

 69. A golf ball with an initial speed of 50.0 m/s lands 
exactly 240 m downrange on a level course. (a) Neglect-
ing air friction, what two projection angles would 
achieve this result? (b) What is the maximum height 
reached by the ball, using the two angles determined 
in part (a)?

 70.  A landscape architect 
is planning an artificial 
waterfall in a city park. 
Water flowing at 0.750 m/s 
leaves the end of a horizon-
tal channel at the top of 
a vertical wall h 5 2.35  m 
high and falls into a pool 
(Fig. P3.70). (a)  How far 
from the wall will the water 
land? Will the space behind the waterfall be wide 
enough for a pedestrian walkway? (b) To sell her plan 
to the city council, the architect wants to build a model 
to standard scale, one-twelfth actual size. How fast 
should the water flow in the channel in the model?

 71. One strategy in a snowball fight is to throw a snowball at 
a high angle over level ground. Then, while your oppo-
nent is watching that snowball, you throw a second one 

d1m
S

d1f
S

d2f
S

23.0�
28.0�
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S

Figure p 3.60

61. By throwing a ball at an angle of 45°, a girl can 
throw the ball a maximum horizontal distance R on a 
level field. How far can she throw the same ball ver-
tically upward? Assume her muscles give the ball the 
same speed in each case. (Is this assumption valid?)

 62. The equation of a parabola is y 5 ax2 1 bx 1 c, 
where a, b, and c are constants. The x - and y - coordinates 
of a projectile launched from the origin as a func-
tion of time are given by x 5 v0xt and y 5 v0yt 2 1

2gt
2, 

where v0x and v0y are the components of the initial 
velocity. (a) Eliminate t from these two equations and 
show that the path of a projectile is a parabola and has 
the form y 5 ax 1 bx2. (b) What are the values of a, b, 
and c for the projectile?

 63. A hunter wishes to cross a river that is 1.5 km wide and 
flows with a speed of 5.0 km/h parallel to its banks. 
The hunter uses a small powerboat that moves at a 
maximum speed of 12 km/h with respect to the water. 
What is the minimum time necessary for crossing?

 64. When baseball outfielders throw the ball, they usu-
ally allow it to take one bounce, on the theory that the 
ball arrives at its target sooner that way. Suppose that, 
after the bounce, the ball rebounds at the same angle u  
that it had when it was released (as in Fig. P3.64), but 
loses half its speed. (a) Assuming that the ball is always 
thrown with the same initial speed, at what angle u 
should the ball be thrown in order to go the same dis-
tance D with one bounce as a ball thrown upward at 
45.0° with no bounce? (b) Determine the ratio of the 
times for the one-bounce and no-bounce throws.

45.0°
θ θ

D

Figure p 3.64

h

Figure p 3.70
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at a low angle timed to arrive before or at the same time 
as the first one. Assume both snowballs are thrown with 
a speed of 25.0 m/s. The first is thrown at an angle of 
70.0° with respect to the horizontal. (a) At what angle 
should the second snowball be thrown to arrive at the 
same point as the first? (b) How many seconds later 
should the second snowball be thrown after the first in 
order for both to arrive at the same time?

 72. A dart gun is fired while being held horizontally at 
a height of 1.00 m above ground level and while it is 
at rest relative to the ground. The dart from the gun 
travels a horizontal distance of 5.00 m. A college stu-
dent holds the same gun in a horizontal position 
while sliding down a 45.0° incline at a constant speed 
of 2.00 m/s. How far will the dart travel if the student 
fires the gun when it is 1.00 m above the ground?

 73. The determined Wile E. 
Coyote is out once more 
to try to capture the elu-
sive roadrunner. The 
coyote wears a new pair 
of power roller skates, 
which provide a constant 
horizontal acceleration 
of 15 m/s2, as shown in 
Figure P3.73. The coyote 
starts off at rest 70 m from the edge of a cliff at the 
instant the roadrunner zips by in the direction of the 
cliff. (a) If the roadrunner moves with constant speed, 
find the minimum speed the roadrunner must have 

to reach the cliff before the coyote. (b) If the cliff is 
100 m above the base of a canyon, find where the coy-
ote lands in the canyon. (Assume his skates are still 
in operation when he is in “flight” and that his hori-
zontal component of acceleration remains constant at  
15 m/s2.)

 74. A truck loaded with cannonball watermelons stops sud-
denly to avoid running over the edge of a washed-out 
bridge (Fig. P3.74). The quick stop causes a number of 
melons to fly off the truck. One melon rolls over the 
edge with an initial speed vi 5 10.0 m/s in the horizon-
tal direction. A cross section of the bank has the shape 
of the bottom half of a parabola with its vertex at the 
edge of the road, and with the equation y2 5 (16.0 m) x,  
where x and y are measured in meters. What are the 
x - and y-coordinates of the melon when it splatters on 
the bank?

BEEP
BEEP

Figure p 3.73

x

y

vi
S

Figure p 3.74  The blue dashed curve shows 
the parabolic shape of the bank.
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Classical mechanics describes the relationship between the motion of objects found in our 
everyday world and the forces acting on them. As long as the system under study doesn’t 
involve objects comparable in size to an atom or traveling close to the speed of light, classical 
mechanics provides an excellent description of nature.

This chapter introduces Newton’s three laws of motion and his law of gravity. The three 
laws are simple and sensible. The first law states that a force must be applied to an object in 
order to change its velocity. Changing an object’s velocity means accelerating it, which implies 
a relationship between force and acceleration. This relationship, the second law, states that 
the net force on an object equals the object’s mass times its acceleration. Finally, the third law 
says that whenever we push on something, it pushes back with equal force in the opposite 
direction. Those are the three laws in a nutshell.

Newton’s three laws, together with his invention of calculus, opened avenues of inquiry 
and discovery that are used routinely today in virtually all areas of mathematics, science, 
engineering, and technology. Newton’s theory of universal gravitation had a similar impact, 
starting a revolution in celestial mechanics and astronomy that continues to this day. With 
the advent of this theory, the orbits of all the planets could be calculated to high precision 
and the tides understood. The theory even led to the prediction of “dark stars,” now called 
black holes, more than two centuries before any evidence for their existence was observed.1

Newton’s three laws of motion, together with his law of gravitation, are considered among 
the greatest achievements of the human mind.

4 The Laws of Motion
4.1 Forces

4.2 Newton’s First Law

4.3 Newton’s Second Law

4.4 Newton’s Third Law

4.5 Applications of Newton’s Laws

4.6 Forces of Friction

1In 1783, John Michell combined Newton’s theory of light and theory of gravitation, predicting the existence of 
“dark stars” from which light itself couldn’t escape.

A rock climber depends on a 
number of different forces to 
overcome the force of gravity 
and reach a summit. Her muscles 
apply forces to the rocks and to 
her own body, static friction forces 
helping her maintain her grip and 
enabling motion. Safety lines and 
the tension forces they can exert 
offer insurance against a fall. 
The climber uses the third law of 
motion continually: by exerting a 
downward force on the rock, the 
rock exerts an equal and opposite 
force on her, propelling her up the 
sheer cliff.
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4.1  Forces
Learning Objectives

1. Describe the distinction between contact forces and field forces.

2. Identify the four field forces and describe their roles in the interactions  
of matter.

A force is commonly imagined as a push or a pull on some object, perhaps rapidly, 
as when we hit a tennis ball with a racket. (See Fig. 4.1.) We can hit the ball at dif-
ferent speeds and direct it into different parts of the opponent’s court. That means 
we can control the magnitude of the applied force and also its direction, so force is 
a vector quantity, just like velocity and acceleration.

If you pull on a spring (Fig. 4.2a), the spring stretches. If you pull hard enough 
on a wagon (Fig. 4.2b), the wagon moves. When you kick a football (Fig. 4.2c), it 
deforms briefly and is set in motion. These are all examples of contact forces, so 
named because they result from physical contact between two objects.

Another class of forces doesn’t involve any direct physical contact. Early scientists, 
including Newton, were uneasy with the concept of forces that act between two dis-
connected objects. Nonetheless, Newton used this “action-at-a-distance” concept in 
his law of gravity, whereby a mass at one location, such as the Sun, affects the motion 
of a distant object such as Earth despite no evident physical connection between 
the two objects. To overcome the conceptual difficulty associated with action at a 
distance, Michael Faraday (1791–1867) introduced the concept of a field. The corre-
sponding forces are called field forces. According to this approach, an object of mass 
M, such as the Sun, creates an invisible influence that stretches throughout space. A 
second object of mass m, such as Earth, interacts with the field of the Sun, not directly 
with the Sun itself. So the force of gravitational attraction between two objects, illus-
trated in Figure 4.2d, is an example of a field force. The force of gravity keeps objects 
bound to Earth and also gives rise to what we call the weight of those objects.

Another common example of a field force is the electric force that one electric 
charge exerts on another (Fig. 4.2e). A third example is the force exerted by a bar 
magnet on a piece of iron (Fig. 4.2f).

The known fundamental forces in nature are all field forces. These are, in order 
of decreasing strength, (1) the strong nuclear force between subatomic particles, 
(2) the electromagnetic forces between electric charges, (3) the weak nuclear 
force, which arises in certain radioactive decay processes, and (4) the gravitational 
force between objects. The strong force keeps the nucleus of an atom from flying 
apart due to the repulsive electric force of the protons. The weak force is involved 
in most radioactive processes and plays an important role in the nuclear reactions 

Figure 4.1 A tennis player applies 
a contact force to the ball with her 
racket, accelerating and directing 
the ball toward the open court.
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Figure 4.2 Examples of forces 
applied to various objects. In each 
case, a force acts on the object sur-
rounded by the dashed lines. Some-
thing in the environment external 
to the boxed area exerts the force.
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that generate the Sun’s energy output. The strong and weak forces operate only 
on the nuclear scale, with a very short range on the order of 10215 m. Outside this 
range they have no influence. Classical physics, however, deals only with gravita-
tional and electromagnetic forces, which have infinite range.

Forces exerted on an object can change the object’s shape. For example, strik-
ing a tennis ball with a racket, as in Figure 4.1, deforms the ball to some extent. 
Even objects we usually consider rigid and inflexible are deformed under the 
action of external forces. Often the deformations are permanent, as in the case of 
a collision between automobiles.

4.2  Newton’s First Law
Learning Objectives  

1. Explain what the first law of motion implies about an object’s motion and the 
forces acting on it.

2. Explain the concepts of mass and inertia and the relationship between them.

Consider a book lying on a table. Obviously, the book remains at rest if left alone. 
Now imagine pushing the book with a horizontal force great enough to overcome 
the force of friction between the book and the table, setting the book in motion. 
Because the magnitude of the applied force exceeds the magnitude of the friction 
force, the book accelerates. When the applied force is withdrawn (Fig. 4.3a), fric-
tion soon slows the book to a stop.

Now imagine pushing the book across a smooth, waxed floor. The book again 
comes to rest once the force is no longer applied, but not as quickly as before. 
Finally, if the book is moving on a horizontal frictionless surface (Fig. 4.3b), it con-
tinues to move in a straight line with constant velocity until it hits a wall or some 
other obstruction.

Before about 1600, scientists felt that the natural state of matter was the state of 
rest. Galileo, however, devised thought experiments—such as an object moving on 
a frictionless surface, as just described—and concluded that it’s not the nature of 
an object to stop once set in motion, but rather to continue in its original state of 
motion. This approach was later formalized as Newton’s first law of motion:

An object moves with a velocity that is constant in magnitude and direction 
unless a non-zero net force acts on it.

Newton’s first law c

Figure 4.3 The first law of motion. 
(a) A book moves at an initial  
velocity of vS on a surface with  
friction. Because there is a friction 
force acting horizontally, the book 
slows to rest. (b) A book moves at 
velocity vS on a frictionless surface.  
In the absence of a net force, the 
book keeps moving at velocity v.

Physics Physics PhysicsPhysics
vS

f
S

Physics
vS

a

b

Physics Physics

First Law: No net force, 
no change in velocity.

First Law: When a net force is 
applied, the velocity changes.
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The net force on an object is defined as the vector sum of all external forces 
exerted on the object. External forces come from the object’s environment. If an 
object’s velocity isn’t changing in either magnitude or direction, then its accelera-
tion and the net force acting on it must both be zero.

Internal forces originate within the object itself and can’t change the object’s 
velocity (although they can change the object’s rate of rotation, as described in 
Chapter 8). As a result, internal forces aren’t included in Newton’s second law. It’s 
not really possible to “pull yourself up by your own bootstraps.”

A consequence of the first law is the feasibility of space travel. After just a few 
moments of powerful thrust, the spacecraft coasts for months or years, its velocity 
only slowly changing with time under the relatively faint influence of the distant 
Sun and planets.

Mass and Inertia
Imagine hitting a golf ball off a tee with a driver. If you’re a good golfer, the ball 
will sail over two hundred yards down the fairway. Now imagine teeing up a bowl-
ing ball and striking it with the same club (an experiment we don’t recommend). 
Your club would probably break, you might sprain your wrist, and the bowling ball, 
at best, would fall off the tee, take half a roll, and come to rest.

From this thought experiment, we conclude that although both balls resist 
changes in their state of motion, the bowling ball offers much more effective 
resistance. The tendency of an object to continue in its original state of motion is 
called inertia.

Although inertia is the tendency of an object to continue its motion in the 
absence of a force, mass is a measure of the object’s resistance to changes in its 
motion due to a force. The greater the mass of a body, the less it accelerates under 
the action of a given applied force. The SI unit of mass is the kilogram. Mass is a 
scalar quantity that obeys the rules of ordinary arithmetic.

Inertia can be used to explain the operation of one type of seat belt mechanism. 
The purpose of the seat belt is to hold the passenger firmly in place relative to 
the car, to prevent serious injury in the event of an accident. Figure 4.4 illustrates 
how one type of shoulder harness operates. Under normal conditions, the ratchet 
turns freely to allow the harness to wind on or unwind from the pulley as the pas-
senger moves. In an accident, the car undergoes a large acceleration and rapidly 
comes to rest. Because of its inertia, the large block under the seat continues to 
slide forward along the tracks. The pin connection between the block and the rod 
causes the rod to pivot about its center and engage the ratchet wheel. At this point, 
the ratchet wheel locks in place and the harness no longer unwinds.

4.3  Newton’s Second Law
Learning Objectives  

1. Relate accelerations to forces with the second law of motion.
2. Convert forces between SI and U.S. customary units.
3. Use the second law to study the motion of an object in elementary 

applications.
4. Apply Newton’s Universal Law of gravitation to elementary systems.

5. Contrast the concepts of mass and weight.

Newton’s first law explains what happens to an object that has no net force acting 
on it: The object either remains at rest or continues moving in a straight line with 
constant speed. Newton’s second law answers the question of what happens to an 
object that does have a net force acting on it.

Imagine pushing a block of ice across a frictionless horizontal surface. When 
you exert some horizontal force on the block, it moves with an acceleration of, 

Unless acted on by an external force, 
an object at rest will remain at rest 
and an object in motion will continue 
in motion with constant velocity. In 
this case, the wall of the building did 
not exert a large enough external 
force on the moving train to stop it.
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t ip 4.1 Force Causes 
Changes in Motion
Motion can occur even in the 
absence of forces. Force causes 
changes in motion.

Pulley

Rachet

Pin
connection

Large
block

Seat
belt

Rod

Pivot

Tracks

Figure 4.4 A mechanical arrange-
ment for an automobile seat belt.

a pp Lica t iOn
Seat Belts
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say, 2 m/s2. If you apply a force twice as large, the acceleration doubles to 4 m/s2. 
Pushing three times as hard triples the acceleration, and so on. From such obser-
vations, we conclude that the acceleration of an object is directly proportional to 
the net force acting on it.

Mass also affects acceleration. Suppose you stack identical blocks of ice on top 
of each other while pushing the stack with constant force. If the force applied 
to one block produces an acceleration of 2 m/s2, then the acceleration drops to 
half that value, 1 m/s2, when two blocks are pushed, to one-third the initial value 
when three blocks are pushed, and so on. We conclude that the acceleration of an 
object is inversely proportional to its mass. These observations are summarized 
in Newton’s second law:

The acceleration aS of an object is directly proportional to the net force  
acting on it and inversely proportional to its mass.

The constant of proportionality is equal to one, so in mathematical terms the pre-
ceding statement can be written

aS 5
a F

S

m

where aS is the acceleration of the object, m is its mass, and o F
S

 is the vector sum of 
all forces acting on it. Multiplying through by m, we have

 a  F
S

5 m aS [4.1]

Physicists commonly refer to this equation as ‘F 5 ma.’ Figure 4.5 illustrates the 
relationship between the mass, acceleration, and the net force. The second law is a 
vector equation, equivalent to the following three component equations:

 o Fx 5 max  o Fy 5 may  o Fz 5 maz [4.2]

When there is no net force on an object, its acceleration is zero, which means 
the velocity is constant.

Units of Force and Mass
The SI unit of force is the newton. When 1 newton of force acts on an object that 
has a mass of 1 kg, it produces an acceleration of 1 m/s2 in the object. From this 
definition and Newton’s second law, we see that the newton can be expressed in 
terms of the fundamental units of mass, length, and time as

 1 N ; 1 kg # m/s2 [4.3]

In the U.S. customary system, the unit of force is the pound. The conversion 
from newtons to pounds is given by

 1 N 5 0.225 lb [4.4]

The units of mass, acceleration, and force in the SI and U.S. customary systems 
are summarized in Table 4.1.

Newton’s second law c 

i saac n ewton
English Physicist and Mathematician 
(1642–1727)
Newton was one of the most brilliant 
scientists in history. Before he was 
30, he formulated the basic concepts 
and laws of mechanics, discovered 
the law of universal gravitation, and 
invented the mathematical methods of 
the calculus. As a consequence of his 
theories, Newton was able to explain 
the motions of the planets, the ebb 
and flow of the tides, and many special 
features of the motions of the Moon 
and Earth. He also interpreted many 
fundamental observations concerning 
the nature of light. His contributions to 
physical theories dominated scientific 
thought for two centuries and remain 
important today.
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t ip 4.2 maS Is Not a Force
Equation 4.1 does not say that the 
product m aS is a force. All forces 
exerted on an object are summed 
as vectors to generate the net 
force on the left side of the 
equation. This net force is then 
equated to the product of the 
mass and resulting acceleration of 
the object. Do not include an “m aS 
force” in your analysis.

■ Quick Quiz

4.1 Which of the following statements are true? (a) An object can move even when 
no force acts on it. (b) If an object isn’t moving, no external forces act on it. (c) If 
a single force acts on an object, the object accelerates. (d) If an object accelerates, 
a force is acting on it. (e) If an object isn’t accelerating, no external force is acting 
on it. (f) If the net force acting on an object is in the positive x -direction, the object 
moves only in the positive x -direction.

m
aS

�F
S

Figure 4.5 The second law of 
motion. For the block of mass m, the 
net force g F

S

 acting on the block 
equals the mass m times the accelera-
tion vector aS.
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t able 4.1 Units of Mass, Acceleration, and Force

System Mass Acceleration Force

SI kg m/s2 N 5 kg ? m/s2

U.S. customary slug ft/s2 lb 5 slug ? ft/s2

Fprop
S

Fresist
S

Propeller

Figure 4.6 (Example 4.1)

■ e Xa Mp Le  4.1 Airboat

gO a L Apply Newton’s second law in one dimension, together with 
the equations of kinematics.

p r Ob Le M An airboat with mass 3.50 3 102 kg, including the 
passenger, has an engine that produces a net horizontal force of  
7.70 3 102 N, after accounting for forces of resistance (see Fig. 4.6). 
(a) Find the acceleration of the airboat. (b) Starting from rest, how 
long does it take the airboat to reach a speed of 12.0 m/s? (c) After 
reaching that speed, the pilot turns off the engine and drifts to a 
stop over a distance of 50.0 m. Find the resistance force, assuming 
it’s constant.

s t r at e g y  In part (a), apply Newton’s second law to find the acceleration, and in part (b) use that acceleration in the 
one-dimensional kinematics equation for the velocity. When the engine is turned off in part (c), only the resistance forces 
act on the boat in the x -direction, so the net acceleration can be found from v 2 2 v0

2 5 2a Dx. Then Newton’s second law 
gives the resistance force.

s OLut i On
(a) Find the acceleration of the airboat.

r e Ma r ks  The propeller exerts a force on the air, pushing it backwards behind the 
boat. At the same time, the air exerts a force on the propellers and consequently on 
the airboat. Forces always come in pairs of this kind, which are formalized in the next 
section as Newton’s third law of motion. The negative answer for the acceleration in 
part (c) means that the airboat is slowing down.

Que s t i On  4.1 What other forces act on the airboat? Describe them.

e Xe rc i s e  4.1 Suppose the pilot, starting again from rest, opens the throttle part-
way. At a constant acceleration, the airboat then covers a distance of 60.0 m in 10.0 s. 
Find the net force acting on the boat.

a n s w er  4.20 3 102 N

t ip 4.3 Newton’s Second 
Law Is a Vector Equation
In applying Newton’s second law, 
add all of the forces on the object 
as vectors and then find the 
resultant vector acceleration by 
dividing by m. Don’t find the indi-
vidual magnitudes of the forces 
and add them like scalars.

Apply Newton’s second law and solve for the acceleration:
ma 5 Fnet    S     a 5

Fnet

m
5

7.70 3 102 N
3.50 3 102 kg

5  2.20 m/s2

(b) Find the time necessary to reach a speed of 12.0 m/s.

Apply the kinematics velocity equation: v 5 at 1 v0 5 (2.20 m/s2)t 5 12.0 m/s S t 5   5.45 s

(c) Find the resistance force after the engine is turned off.

Using kinematics, find the net acceleration due to  
resistance forces:

v2 2 v0
2 5 2a Dx

0 2 (12.0 m/s)2 5 2a(50.0 m) S a 5 21.44 m/s2

Substitute the acceleration into Newton’s second law,  
finding the resistance force:

Fresist 5 ma 5 (3.50 3 102 kg)(21.44 m/s2) 5  2504 N
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■ e Xa Mp Le  4.2 Horses Pulling a Barge

gO a L Apply Newton’s second law in a two-dimensional 
problem.

p r Ob Le M Two horses are pulling a barge with mass 2.00 3 
103 kg along a canal, as shown in Figure 4.7. The cable con-
nected to the first horse makes an angle of u1 5 30.0° with 
respect to the direction of the canal, while the cable con-
nected to the second horse makes an angle of u2 5 245.0°. 
Find the initial acceleration of the barge, starting at rest, if 
each horse exerts a force of magnitude 6.00 3 102 N on the 
barge. Ignore forces of resistance on the barge.

s t r at e g y  Using trigonometry, find the vector force 
exerted by each horse on the barge. Add the x-components 
together to get the x-component of the resultant force, and 
then do the same with the y-components. Divide by the mass 
of the barge to get the accelerations in the x- and y-directions.

s OLut i On
Compute the x -components of the forces exerted by  
the horses.

y

x

F1
S

F2
S

u1

u2

Figure 4.7 (Example 4.2)

F1x 5 F1 cos u1 5 (6.00 3 102 N) cos (30.0°) 5 5.20 3 102 N

F2x 5 F2 cos u2 5 (6.00 3 102 N) cos (245.0°) 5 4.24 3 102 N

Find the total force in the x -direction by adding the 
x -components:

Fx 5 F1x 1 F2x 5 5.20 3 102 N 1 4.24 3 102 N

5 9.44 3 102 N

Compute the y -components of the forces exerted by 
the horses:

F1y 5 F1 sin u1 5 (6.00 3 102 N) sin 30.0° 5 3.00 3 102 N

F2y 5 F2 sin u2 5 (6.00 3 102 N) sin (245.0°)

5 24.24 3 102 N

Find the total force in the y -direction by adding the 
y -components:

Fy 5 F1y 1 F2y 5 3.00 3 102 N 2 4.24 3 102 N

5 21.24 3 102 N

Obtain the components of the acceleration by divid-
ing each of the force components by the mass: ax 5

Fx
m

5
9.44 3 102 N
2.00 3 103 kg

5 0.472 m/s2

ay 5
Fy
m

5
21.24 3 102 N
2.00 3 103 kg

5 20.062 0 m/s2

Calculate the magnitude of the acceleration: a 5 "ax
2 1 ay

2 5 "10.472 m/s2 22 1 120.062 0 m/s2 22

5  0.476 m/s2

Calculate the direction of the acceleration using the 
tangent function: tan u 5  

ay
ax

5
20.062 0 m/s2

0.472 m/s2 5 20.131

u 5 tan21(20.131) 5  27.46°

r e Ma r ks  Notice that the angle is in fourth quadrant, in the range of the inverse tangent function, so it is not neces-
sary to add 180° to the answer. The horses exert a force on the barge through the tension in the cables, while the barge 
exerts an equal and opposite force on the horses, again through the cables. If that were not true, the horses would easily 
move forward, as if unburdened. This example is another illustration of forces acting in pairs.

Que s t i On  4.2 True or False: In general, the magnitude of the acceleration of an object is determined by the magni-
tudes of the forces acting on it.

e Xe rc i s e  4.2 Repeat Example 4.2, but assume the first horse pulls at a 40.0° angle, the second horse at �20.0°.

a n s w er  0.520 m/s2, 10.0°
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The Gravitational Force
The gravitational force is the mutual force of attraction between any two objects 
in the Universe. Although the gravitational force can be very strong between very 
large objects, it’s the weakest of the fundamental forces. A good demonstration of 
how weak it is can be carried out with a small balloon. Rubbing the balloon in your 
hair gives the balloon a tiny electric charge. Through electric forces, the balloon 
then adheres to a wall, resisting the gravitational pull of the entire Earth!

In addition to contributing to the understanding of motion, Newton studied 
gravity extensively. Newton’s law of universal gravitation states that every particle 
in the Universe attracts every other particle with a force that is directly propor-
tional to the product of the masses of the particles and inversely proportional to 
the square of the distance between them. If the particles have masses m1 and m2
and are separated by a distance r, as in Figure 4.8, the magnitude of the gravita-
tional force Fg is

 Fg 5 G 
m1m2

r 2   [4.5]

where G 5 6.67 3 10211 N ? m2/kg2 is the universal gravitation constant. We exam-
ine the gravitational force in more detail in Chapter 7.

Weight
The magnitude of the gravitational force acting on an object of mass m is 
called the weight w of the object, given by

 w 5 mg [4.6]

where g is the acceleration of gravity.
SI unit: newton (N)

From Equation 4.5, an alternate definition of the weight of an object with mass 
m can be written as

w 5 G 
MEm

r 2  [4.7]

where ME is the mass of Earth and r is the distance from the object to Earth’s 
center. If the object is at rest on Earth’s surface, then r is equal to Earth’s radius 
RE. Because r 2 is in the denominator of Equation 4.7, the weight decreases with 
increasing r. So the weight of an object on a mountaintop is less than the weight of 
the same object at sea level.

Comparing Equations 4.6 and 4.7, it follows that

 g 5 G 
ME

r 2   [4.8]

Unlike mass, weight is not an inherent property of an object because it can take 
different values, depending on the value of g in a given location. If an object has 
a mass of 70.0 kg, for example, then its weight at a location where g 5 9.80 m/s2 is 
mg 5 686 N. In a high-altitude balloon, where g might be 9.76 m/s2, the object’s 
weight would be 683 N. The value of g also varies slightly due to the density of  
matter in a given locality. In this text, unless stated otherwise, the value of g will 
be understood to be 9.80 m/s2, its value near the surface of the Earth.

Equation 4.8 is a general result that can be used to calculate the acceleration of 
an object falling near the surface of any massive object if the more massive object’s 
radius and mass are known. Using the values in Table 7.3 (p. 228), you should be 
able to show that gSun 5 274 m/s2 and gMoon 5 1.62 m/s2. An important fact is that 
for spherical bodies, distances are calculated from the centers of the objects, a 
consequence of Gauss’s law (explained in Chapter 15), which holds for both gravi-
tational and electric forces.

b  Law of universal gravitation

Fg

�Fg

m1

m 2

r

S

S

Figure 4.8 The gravitational force 
between two particles is attractive.

The life-support unit strapped to the 
back of astronaut Harrison Schmitt 
weighed 300 lb on Earth and had a 
mass of 136 kg. During his training, 
a 50-lb mock-up with a mass of 23 
kg was used. Although the mock-up 
had the same weight as the actual 
unit would have on the Moon, the 
smaller mass meant it also had a 
lower inertia. The weight of the unit 
is caused by the acceleration of the 
local gravity field, but the astronaut 
must also accelerate anything he’s 
carrying in order to move it around. 
Consequently, the actual unit used 
on the Moon, with the same weight 
but greater inertia, was harder for 
the astronaut to handle than the 
mock-up unit on Earth.
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■ Quick Quiz

4.2 Which has greater value, a newton of gold on Earth or a newton of gold on the 
Moon? (a) The newton of gold on the Earth. (b) The newton of gold on the Moon. 
(c) The value is the same, regardless.

4.3 Respond to each statement, true or false: (a) No force of gravity acts on an 
astronaut in an orbiting space station. (b) At three Earth radii from the center of 
Earth, the acceleration of gravity is 1/9 its surface value. (c) If two identical planets, 
each with surface gravity g and volume V, coalesce into one planet with volume 2V, 
the surface gravity of the new planet is 2g. (d) One kilogram of gold would have 
greater value on Earth than on the Moon.

■ e Xa Mp Le  4.3 Forces of Distant Worlds

gO a L Calculate the magnitude of a gravitational force using Newton’s law of gravitation.

p r Ob Le M (a) Find the gravitational force exerted by the Sun on a 70.0-kg man located at the Earth’s equator at noon, 
when the man is closest to the Sun. (b) Calculate the gravitational force of the Sun on the man at midnight, when he is 
farthest from the Sun. (c) Calculate the difference in the acceleration due to the Sun between noon and midnight. (For 
values, see Table 7.3 on page 228.)

s t r at e g y  To obtain the distance of the Sun from the man at noon, subtract the Earth’s radius from the solar dis-
tance. At midnight, add the Earth’s radius. Retain enough digits so that rounding doesn’t remove the small difference 
between the two answers. For part (c), subtract the answer for (b) from (a) and divide by the man’s mass.

s OLut i On

r e Ma r ks  The gravitational attraction between the Sun and objects on Earth is easily measurable and has been 
exploited in experiments to determine whether gravitational attraction depends on the composition of the object.  
The gravitational force on Earth due to the Moon is much weaker than the gravitational force on Earth due to the Sun. 
Paradoxically, the Moon’s effect on the tides is over twice that of the Sun because the tides depend on differences in the 

(a) Find the gravitational force exerted by the Sun on 
the man at the Earth’s equator at noon.

Write the law of gravitation, Equation 4.5, in terms of 
the distance from the Sun to the Earth, rS , and Earth’s 
radius, RE:

(1)   F noon
Sun 5

mMSG

r2 5  
mMSG

1rS 2 RE 22

Substitute values into (1) and retain two extra digits: F noon
Sun 5

170.0 kg 2 11.991 3 1030 kg 2 16.67 3 10211 kg21m3/s2 2
11.496 3 1011 m 2 6.38 3 106 m 22

5  0.415 40 N

(b) Calculate the gravitational force of the Sun on the 
man at midnight.

Write the law of gravitation, adding Earth’s radius this 
time:

(2)   Fmid
Sun 5

mMSG

r2 5
mMSG

1rS 1 RE 22

Substitute values into (2): Fmid
Sun 5

170.0 kg 2 11.991 3 1030 kg 2 16.67 3 10211 kg21m3/s2 2
11.496 3 1011 m 1 6.38 3 106 m 22

5  0.415 33 N

(c) Calculate the difference in the man’s solar  
acceleration between noon and midnight.

Write an expression for the difference in acceleration 
and substitute values:

a 5
F noon

Sun 2 F mid
Sun

m
5

0.415 19 N 2 0.415 12 N
70.0 kg

>  1 3 1026 m/s2
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gravitational force across the Earth, and those differences are greater for the Moon’s gravitational force because the 
Moon is much closer to Earth than the Sun.

Que s t i On  4.3 Mars is about one and a half times as far from the Sun as Earth. Without doing an explicit calculation, 
estimate to one significant digit the gravitational force of the Sun on a 70.0 kg man standing on Mars.

e Xe rc i s e  4.3 During a new Moon, the Moon is directly overhead in the middle of the day. (a) Find the gravitational 
force exerted by the Moon on a 70.0-kg man at the Earth’s equator at noon. (b) Calculate the gravitational force of the 
Moon on the man at midnight. (c) Calculate the difference in the man’s acceleration due to the Moon between noon and 
midnight. Note: The distance from the Earth to the Moon is 3.84 3 108 m. The mass of the Moon is 7.36 3 1022 kg.

a n s w er s  (a) 2.41 3 1023 N (b) 2.25 3 1023 N (c) 2.3 3 1026 m/s2

■ e Xa Mp Le  4.4 Weight on Planet X

gO a L Understand the effect of a planet’s mass and radius on the weight of an object on the planet’s surface.

p r Ob Le M An astronaut on a space mission lands on a planet with three times the mass and twice the radius of Earth. 
What is her weight wX on this planet as a multiple of her Earth weight wE?

s t r at e g y  Write MX and rX, the mass and radius of the planet, in terms of ME and RE, the mass and radius of Earth, 
respectively, and substitute into the law of gravitation.

s OLut i On
From the statement of the problem, we have the following 
relationships:

MX 5 3ME rX 5 2RE

Substitute the preceding expressions into Equation 4.5 
and simplify, algebraically associating the terms giving 
the weight on Earth:

wX 5 G 
MXm

rX
2 5 G 

3MEm
12RE 22 5

3
4

 G 
MEm

RE
2  5 

3
4

 wE

r e Ma r ks  This problem shows the interplay between a planet’s mass and radius in determining the weight of objects 
on its surface. Although Jupiter has about three hundred times the mass of the Earth, the weight of an object at Jupiter's 
planetary radius is only a little over two and a half times the weight of the same object on Earth’s surface.

Que s t i On  4.4 A volume of rock has a mass roughly three times a similar volume of ice. Suppose one world is made of 
ice whereas another world with the same radius is made of rock. If g is the acceleration of gravity on the surface of the ice 
world, what is the approximate acceleration of gravity on the rock world?

e Xe rc i s e  4.4 An astronaut lands on Ganymede, a giant moon of Jupiter that is larger than the planet Mercury. 
Ganymede has one-fortieth the mass of Earth and two-fifths the radius. Find the weight of the astronaut standing on 
Ganymede in terms of his Earth weight wE.

a n s w er  wG 5 (5/32)wE

4.4  Newton’s Third Law
Learning Objective  

1. Apply the third law of motion to simple systems, for each force identifying the 
proper reaction force.

In Section 4.1 we found that a force is exerted on an object when it comes into 
contact with some other object. Consider the task of driving a nail into a block 
of wood, for example, as illustrated in Figure 4.9a (page 98). To accelerate the 
nail and drive it into the block, the hammer must exert a net force on the nail. 
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Newton recognized, however, that a single isolated force couldn’t exist. Instead, 
forces in nature always exist in pairs. According to Newton, as the nail is driven 
into the block by the force exerted by the hammer, the hammer is slowed down 
and stopped by the force exerted by the nail.

Newton described such paired forces with his third law:

If object 1 and object 2 interact, the force F
S

12 exerted by object 1 on object 
2 is equal in magnitude but opposite in direction to the force F

S

21 exerted by 
object 2 on object 1.

This law, which is illustrated in Figure 4.9b, states that a single isolated force 
can’t exist. The force F

S

12 exerted by object 1 on object 2 is sometimes called the 
action force, and the force F

S

21 exerted by object 2 on object 1 is called the reaction 
force. In reality, either force can be labeled the action or reaction force. The action 
force is equal in magnitude to the reaction force and opposite in direction. In all 
cases, the action and reaction forces act on different objects. For example, the 
force acting on a freely falling projectile is the force of gravity exerted by Earth on 
the projectile, F

S

g, and the magnitude of this force is its weight mg. The reaction to 
force F

S

g is the gravitational force exerted by the projectile on Earth, F
S

g r 5 �2F
S

g. 
The reaction force F

S

g r must accelerate the Earth towards the projectile, just as the 
action force F

S

g accelerates the projectile towards Earth. Because Earth has such a 
large mass, however, its acceleration due to this reaction force is negligibly small.

Newton’s third law constantly affects our activities in everyday life. Without it, 
no locomotion of any kind would be possible, whether on foot, on a bicycle, or in a 
motorized vehicle. When walking, for example, we exert a frictional force against 
the ground. The reaction force of the ground against our foot propels us forward. 
In the same way, the tires on a bicycle exert a frictional force against the ground, 
and the reaction of the ground pushes the bicycle forward. As we’ll see shortly, 
friction plays a large role in such reaction forces.

For another example of Newton’s third law, consider the helicopter. Most heli-
copters have a large set of blades rotating in a horizontal plane above the body 
of the vehicle and another, smaller set rotating in a vertical plane at the back. 
Other helicopters have two large sets of blades above the body rotating in oppo-
site directions. Why do helicopters always have two sets of blades? In the first type 
of helicopter, the engine applies a force to the blades, causing them to change 
their rotational motion. According to Newton’s third law, however, the blades 
must exert a force on the engine of equal magnitude and in the opposite direc-
tion. This force would cause the body of the helicopter to rotate in the direction 
opposite the blades. A rotating helicopter would be impossible to control, so a 
second set of blades is used. The small blades in the back provide a force opposite 
to that tending to rotate the body of the helicopter, keeping the body oriented 
in a stable position. In helicopters with two sets of large counterrotating blades, 

Newton’s third law c

a pp Lica t iOn
Helicopter Flight

t ip 4.4 Action–Reaction 
Pairs
In applying Newton’s third law, 
remember that an action and its 
reaction force always act on dif-
ferent objects. Two external forces 
acting on the same object, even if 
they are equal in magnitude and 
opposite in direction, can’t be an 
action–reaction pair.
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Figure 4.9 Newton’s third law. 
(a) The force exerted by the hammer 
on the nail is equal in magnitude 
and opposite in direction to the 
force exerted by the nail on the 
hammer. (b) The force F

S

12 exerted 
by object 1 on object 2 is equal in 
magnitude and opposite in direction 
to the force F

S

21 exerted by object 2 
on object 1.
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engines apply forces in opposite directions, so there is no net force rotating the 
helicopter.

As mentioned earlier, Earth exerts a gravitational force F
S

g on any object. If the 
object is a monitor at rest on a table, as in Figure 4.10a, the reaction force to F

S

g is 
the gravitational force the monitor exerts on the Earth, F

S

g r. The monitor doesn’t 
accelerate downward because it’s held up by the table. The table therefore exerts 
an upward force nS, called the normal force, on the monitor. (Normal, a techni-
cal term from mathematics, means “perpendicular” in this context.) The normal 
force is an elastic force arising from the cohesion of matter and is electromagnetic 
in origin. It balances the gravitational force acting on the monitor, preventing the 
monitor from falling through the table, and can have any value needed, up to the 
point of breaking the table. The reaction to nS is the force exerted by the monitor 
on the table, nS r. Therefore,

 F
S

g 5 2 F
S

g r  and  nS 5 2 nS r

The forces nS and nS r both have the same magnitude as F
S

g. Note that the forces 
acting on the monitor are F

S

g and nS, as shown in Figure 4.10b. The two reaction 
forces, F

S

g r and nS r, are exerted by the monitor on objects other than the monitor. 
Remember that the two forces in an action–reaction pair always act on two differ-
ent objects.

Because the monitor is not accelerating in any direction (aS � 0), it follows from 
Newton’s second law that m aS 5 0 5 F

S

g 1 nS. However, Fg � �mg, so n � mg, a  
useful result.

t ip 4.5 Equal and Opposite 
but Not a Reaction Force
A common error in Figure 4.10b 
is to consider the normal force 
on the object to be the reaction 
force to the gravity force, because 
in this case these two forces are 
equal in magnitude and opposite 
in direction. That is impossible, 
however, because they act on the 
same object!

nS

n�S

nS

Fg
S

Fg�
S

Fg
S

a b

Figure 4.10 When a monitor is sit-
ting on a table, the forces acting on 
the monitor are the normal force nS 
exerted by the table and the force of 
gravity, F

S

g, as illustrated in (b). The 
reaction to nS is the force exerted by 
the monitor on the table, nS r. The 
reaction to F

S

g is the force exerted by 
the monitor on Earth, F

S

g r.

■ Quick Quiz

4.4 A small sports car collides head-on with a massive truck. The greater impact 
force (in magnitude) acts on (a) the car, (b) the truck, (c) neither, the force is the 
same on both. Which vehicle undergoes the greater magnitude acceleration?  
(d) the car, (e) the truck, (f) the accelerations are the same.

■ eX a Mp Le 4.5 Action–Reaction and the Ice Skaters

gO a L Illustrate Newton’s third law of motion.

p r Ob Le M A man of mass M 5 75.0 kg and woman of mass m 5 55.0 kg stand facing each other on an ice rink, both 
wearing ice skates. The woman pushes the man with a horizontal force of F 5 85.0 N in the positive x-direction. Assume  
the ice is frictionless. (a) What is the man’s acceleration? (b) What is the reaction force acting on the woman? (c) Calculate 
the woman’s acceleration.

s t r at e g y  Parts (a) and (c) are simple applications of the second law. An application of the third law solves part (b).
(Continued)

a pp Lica t iOn
Colliding Vehicles
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s OLut i On
(a) What is the man’s acceleration?

Write the second law for the man: MaM 5 F

Solve for the man’s acceleration and substitute values: aM 5
F
M

5
85.0 N
75.0 kg

5  1.13 m/s2

(b) What is the reaction force acting on the woman?

Apply Newton’s third law of motion, finding that the reac-
tion force R acting on the woman has the same magni-
tude and opposite direction:

R 5 2F 5   285.0 N

(c) Calculate the woman’s acceleration.

Write Newton’s second law for the woman: maW 5 R 5 2F

Solve for the woman’s acceleration and substitute values: aW 5
2F
m

5
285.0 N
55.0 kg

5   21.55 m/s2

r e Ma r ks  Notice that the forces are equal and opposite each other, but the accelerations are not because the two 
masses differ from each other.

Que s t i On 4 .5 Name two other forces acting on the man and the two reaction forces that are paired with them.

eX e r c i s e 4.5 A space-walking astronaut of total mass 148 kg exerts a force of 265 N on a free-floating satellite of mass 
635 kg, pushing it in the positive x -direction. (a) What is the reaction force exerted by the satellite on the astronaut?  
Calculate the accelerations of (b) the astronaut, and (c) the satellite.

a n s w er s  (a) 2265 N (b) 21.79 m/s2 (c) 0.417 m/s2

4.5  Applications of Newton’s Laws
Learning Objectives  

1. Draw free-body diagrams for physical systems.

2. Apply the second law to an object in equilibrium.

3. Apply the second law to an object under acceleration.

4. Apply the second law to systems of two objects.

This section applies Newton’s laws to objects moving under the influence of con-
stant external forces. We assume that objects behave as particles, so we need not 
consider the possibility of rotational motion. We also neglect any friction effects 
and the masses of any ropes or strings involved. With these approximations, the 
magnitude of the force exerted along a rope, called the tension, is the same at 
all points in the rope. This is illustrated by the rope in Figure 4.11, showing the 
forces T

S

 and T
S

r acting on it. If the rope has mass m, then Newton’s second law 
applied to the rope gives T � T� � ma. If the mass m is taken to be negligible, how-
ever, as in the upcoming examples, then T � T�.

When we apply Newton’s law to an object, we are interested only in those forces 
which act on the object. For example, in Figure 4.10b, the only external forces act-
ing on the monitor are nS and F

S

g. The reactions to these forces, nS r and F
S

g r, act 
on the table and on Earth, respectively, and don’t appear in Newton’s second law 
applied to the monitor.

Consider a crate being pulled to the right on a frictionless, horizontal sur-
face, as in Figure 4.12a. Suppose you wish to find the acceleration of the crate 
and the force the surface exerts on it. The horizontal force exerted on the crate 
acts through the rope. The force that the rope exerts on the crate is denoted by 
T
S

 (because it’s a tension force). The magnitude of T
S

 is equal to the tension in 

T
S

T
S

�

Figure 4.11 Newton’s second law 
applied to a rope gives T 2 T 9 5 ma. 
However, if m 5 0, then T 5 T 9. Thus, 
the tension in a massless rope is the 
same at all points in the rope.

a

b

nS

T
S

Fg
S

x

y

Figure 4.12 (a) A crate being 
pulled to the right on a frictionless 
surface. (b) The free-body diagram 
that represents the forces exerted on 
the crate.
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the rope. What we mean by the words “tension in the rope” is just the force read 
by a spring scale when the rope in question has been cut and the scale inserted 
between the cut ends. A dashed circle is drawn around the crate in Figure 4.12a to 
emphasize the importance of isolating the crate from its surroundings.

Because we are interested only in the motion of the crate, we must be able 
to identify all forces acting on it. These forces are illustrated in Figure 4.12b. In 
addition to displaying the force T

S

, the force diagram for the crate includes the 
force of gravity F

S

g exerted by Earth and the normal force nS exerted by the floor. 
Such a force diagram is called a free-body diagram because the environment is 
replaced by a series of forces on an otherwise free body. The construction of a cor-
rect free-body diagram is an essential step in applying Newton’s laws. An incorrect 
diagram will most likely lead to incorrect answers!

The reactions to the forces we have listed—namely, the force exerted by the rope 
on the hand doing the pulling, the force exerted by the crate on Earth, and the force 
exerted by the crate on the floor—aren’t included in the free-body diagram because 
they act on other objects and not on the crate. Consequently, they don’t directly 
influence the crate’s motion. Only forces acting directly on the crate are included.

Now let’s apply Newton’s second law to the crate. First we choose an appropriate 
coordinate system. In this case it’s convenient to use the one shown in Figure 4.12b, 
with the x-axis horizontal and the y-axis vertical. We can apply Newton’s second law 
in the x-direction, y-direction, or both, depending on what we’re asked to find in a 
problem. Newton’s second law applied to the crate in the x- and y- directions yields 
the following two equations:

max 5 T  may 5 n 2 mg 5 0

From these equations, we find that the acceleration in the x -direction is constant, 
given by ax 5 T/m, and that the normal force is given by n 5 mg. Because the accel-
eration is constant, the equations of kinematics can be applied to obtain further 
information about the velocity and displacement of the object.

 ■ pr Ob Le M-s OLv i ng  s t r at e g y

Newton’s Second Law
Problems involving Newton’s second law can be very complex. The following protocol breaks 
the solution process down into smaller, intermediate goals:

1. Read the problem carefully at least once.
2. Draw a picture of the system, identify the object of primary interest, and indi-

cate forces with arrows.
3. Label each force in the picture in a way that will bring to mind what physical 

quantity the label stands for (e.g., T for tension).
4. Draw a free-body diagram of the object of interest, based on the labeled pic-

ture. If additional objects are involved, draw separate free-body diagrams for 
them. Choose convenient coordinates for each object.

5. Apply Newton’s second law. The x- and y -components of Newton’s second law 
should be taken from the vector equation and written individually. This usually 
results in two equations and two unknowns.

6. Solve for the desired unknown quantity, and substitute the numbers.

In the special case of equilibrium, the foregoing process is simplified because the 
acceleration is zero.

Objects in Equilibrium
Objects that are either at rest or moving with constant velocity are said to be in 
equilibrium. Because aS � 0, Newton’s second law applied to an object in equilib-
rium gives

 a  F
S

5 0 [4.9]

t ip 4.6 Free-Body 
Diagrams
The most important step in solving 
a problem by means of Newton’s 
second law is to draw the correct 
free-body diagram. Include only 
those forces that act directly on 
the object of interest.

t ip 4.7 A Particle  
in Equilibrium
A zero net force on a particle does 
not mean that the particle isn’t 
moving. It means that the particle 
isn’t accelerating. If the particle has 
a nonzero initial velocity and is 
acted upon by a zero net force, it 
continues to move with the same 
velocity.
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This statement signifies that the vector sum of all the forces (the net force) acting 
on an object in equilibrium is zero. Equation 4.9 is equivalent to the set of compo-
nent equations given by

a  Fx 5 0      and      a  Fy 5 0 [4.10]

We won’t consider three-dimensional problems in this book, but the extension 
of Equation 4.10 to a three-dimensional problem can be made by adding a third 
equation: o Fz 5 0.

■ Quick Quiz

4.5 Consider the two situations shown in Figure 4.13, in which there is no accel-
eration. In both cases the men pull with a force of magnitude F. Is the reading on 
the scale in part (i) of the figure (a) greater than, (b) less than, or (c) equal to the 
reading in part (ii)?

■ e Xa Mp Le  4.6 A Traffic Light at Rest

gO a L Use the second law in an equilibrium problem 
requiring two free-body diagrams.

p r Ob Le M A traffic light weighing 1.00 3 102 N hangs from 
a vertical cable tied to two other cables that are fastened to a 
support, as in Figure 4.14a. The upper cables make angles of 
37.0° and 53.0° with the horizontal. Find the tension in each 
of the three cables.

s t r at e g y  There are three unknowns, so we need to 
generate three equations relating them, which can then 
be solved. One equation can be obtained by applying  
Newton’s second law to the traffic light, which has forces in 
the y -direction only. Two more equations can be obtained 
by applying the second law to the knot joining the cables—
one equation from the x -component and one equation 
from the y -component.

s OLut i On

i

ii

i

ii

Figure 4.13 (Quick Quiz 4.5)  
(i) A person pulls with a force  
of magnitude F on a spring scale 
attached to a wall. (ii) Two people 
pull with forces of magnitude F  in 
opposite directions on a spring scale 
attached between two ropes.

Fg
S

a b c

T2T1

T3

53.0�37.0�

53.0�37.0� x

y

T
S
3

T
S
3

T
S
1

T
S
2

Figure 4.14 (Example 4.6) (a) A traffic light suspended by 
cables. (b) The forces acting on the traffic light. (c) A free-body 
diagram for the knot joining the cables.

Find T3 from Figure 4.14b, using the condition of 
equilibrium:

o Fy 5 0    S    T3 2 Fg 5 0

T3 5 Fg 5 1.00 3 102 N
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r e Ma r ks  It’s very easy to make sign errors in this kind of problem. One way to avoid them is to always measure the 
angle of a vector from the positive x-direction. The trigonometric functions of the angle will then automatically give the 
correct signs for the components. For example, T1 makes an angle of 180° 2 37° 5 143° with respect to the positive x -axis, 
and its x -component, T1 cos 143°, is negative, as it should be.

Que s t i On  4.6 How would the answers change if a second traffic light were attached beneath the first?

e Xe rc i s e  4.6 Suppose the traffic light is hung so that the tensions T1 and T2 are both equal to 80.0 N. Find the new 
angles they make with respect to the x -axis. (By symmetry, these angles will be the same.)

a n s w er  Both angles are 38.7°.

Using Figure 4.14c, resolve all three tension forces into 
components and construct a table for convenience:

Force x -Component y-Component

 T
S

1 2T1 cos 37.0° T1 sin 37.0°

 T
S

2 T2 cos 53.0° T2 sin 53.0°

 T
S

3 0 21.00 3 102 N

Apply the conditions for equilibrium to the knot, using 
the components in the table:

(1)   o Fx 5 2T1 cos 37.0° 1 T2 cos 53.0° 5 0

(2)   o Fy 5 T1 sin 37.0° 1 T2 sin 53.0° 2 1.00 3 102 N 5 0

There are two equations and two remaining unknowns. 
Solve Equation (1) for T2:

T2 5 T1 a
cos 37.08

cos 53.08
b 5 T1 a

0.799
0.602

b 5 1.33T1 

Substitute the result for T2 into Equation (2): T1 sin 37.0° 1 (1.33T1)(sin 53.0°) 2 1.00 3 102 N 5 0

T1 5  60.1 N

T2 5 1.33T1 5 1.33(60.1 N) 5  79.9 N

■ e Xa Mp Le  4.7 Sled on a Frictionless Hill

gO a L Use the second law and the normal force in an 
equilibrium problem.

p r Ob Le M A sled is tied to a tree on a frictionless, 
snow-covered hill, as shown in Figure 4.15a. If the 
sled weighs 77.0 N, find the magnitude of the tension 
force T

S

 exerted by the rope on the sled and that of 
the normal force nS exerted by the hill on the sled.

s t r at e g y  When an object is on a slope, it’s conve-
nient to use tilted coordinates, as in Figure 4.15b, so 
that the normal force nS is in the y -direction and the 
tension force T

S

 is in the x -direction. In the absence 
of friction, the hill exerts no force on the sled in the 
x -direction. Because the sled is at rest, the conditions 
for equilibrium, o Fx 5 0 and o Fy 5 0, apply, giving 
two equations for the two unknowns—the tension 
and the normal force.

s OLut i On

a b

u � 30.0°

y

x

� 30.0°
 sin

nS

T
S

 � mFg
S

gS

u
u

 cos u�mg 

�mg

Figure 4.15 (Example 4.7) (a) A sled tied to a tree on a frictionless hill. 
(b) A diagram of forces acting on the sled. 

(Continued)

Apply Newton’s second law to the sled, with aS5 0: a  F
S

5 T
S

1 nS 1 F
S

g 5 0
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r e Ma r ks  Unlike its value on a horizontal surface, n is less than the weight of the sled when the sled is on the slope. This 
is because only part of the force of gravity (the x -component) is acting to pull the sled down the slope. The y- component 
of the force of gravity balances the normal force.

Que s t i On  4.7 Consider the same scenario on a hill with a steeper slope. Would the magnitude of the tension in the 
rope get larger, smaller, or remain the same as before? How would the normal force be affected?

e Xe rc i s e  4.7 Suppose a child of weight w climbs onto the sled. If the tension force is measured to be 60.0 N, find the 
weight of the child and the magnitude of the normal force acting on the sled.

a n s w er s  w 5 43.0 N, n 5 104 N

Extract the x -component from this equation to find T. 
The x -component of the normal force is zero, and the 
sled’s weight is given by mg 5 77.0 N.

a  Fx 5 T 1 0 2 mg sin u 5 T 2 177.0 N 2  sin 30.08 5 0

T 5  38.5 N

Write the y -component of Newton’s second law. The 
y -component of the tension is zero, so this equation will 
give the normal force.

a  Fy 5 0 1 n 2 mg cos u 5 n 2 177.0 N 2 1cos 30.08 2 5 0

n 5  66.7 N

■ Quick Quiz

4.6 For the woman being pulled forward on the toboggan in Figure 4.16, is the 
magnitude of the normal force exerted by the ground on the toboggan (a) equal to 
the total weight of the woman plus the toboggan, (b) greater than the total weight, 
(c) less than the total weight, or (d) possibly greater than or less than the total 
weight, depending on the size of the weight relative to the tension in the rope?

Accelerating Objects and Newton’s Second Law
When a net force acts on an object, the object accelerates, and we use Newton’s 
second law to analyze the motion.

■ e Xa Mp Le  4.8 Moving a Crate

gO a L Apply the second law of motion for a system not in equilibrium, together with 
a kinematics equation.

p r Ob Le M The combined weight of the crate and dolly in Figure 4.17 is 3.00 3 102 N. 
If the man pulls on the rope with a constant force of 20.0 N, what is the acceleration 
of the system (crate plus dolly), and how far will it move in 2.00 s? Assume the system 
starts from rest and that there are no friction forces opposing the motion.

s t r at e g y  We can find the acceleration of the system from Newton’s second law. 
Because the force exerted on the system is constant, its acceleration is constant. There-
fore, we can apply a kinematics equation to find the distance traveled in 2.00 s.

s OLut i On

Figure 4.16 (Quick Quiz 4.6)

Fg
S

F
S

nS

Figure 4.17 (Example 4.8)

Use kinematics to find the distance moved in 2.00 s, with 
v 0 5 0:

Dx 5 1
2 ax t

2 5 1
2 10.654 m/s2 2 12.00 s 22 5  1.31 m

Find the acceleration of the system from the second law: ax 5
Fx
m

 5
20.0 N
30.6 kg

 5  0.654 m/s2

Find the mass of the system from the definition of weight, 
w 5 mg:

m 5
w
g

5
3.00 3 102 N

9.80 m/s2 5 30.6 kg
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r e Ma r ks  Note that the constant applied force of 20.0 N is assumed to act on the system at all times during its motion. 
If the force were removed at some instant, the system would continue to move with constant velocity and hence zero accel-
eration. The rollers have an effect that was neglected, here.

Que s t i On  4.8 What effect does doubling the weight have on the acceleration and the displacement?

e Xe rc i s e  4.8 A man pulls a 50.0-kg box horizontally from rest while exerting a constant horizontal force, displacing 
the box 3.00 m in 2.00 s. Find the force the man exerts on the box. (Ignore friction.)

a n s w er  75.0 N

■ e Xa Mp Le  4.9 The Runaway Car

gO a L Apply the second law and kinematic equa-
tions to a problem involving an object moving on 
an incline.

p r Ob Le M (a) A car of mass m is on an icy driveway 
inclined at an angle u � 20.0°, as in Figure 4.18a. 
Determine the acceleration of the car, assuming 
the incline is frictionless. (b) If the length of the 
driveway is 25.0 m and the car starts from rest at the 
top, how long does it take to travel to the bottom? 
(c) What is the car’s speed at the bottom?

s t r at e g y  Choose tilted coordinates as in Figure 
4.18b so that the normal force nS is in the positive 
y -direction, perpendicular to the driveway, and 
the positive x -axis is down the slope. The force of 
gravity F

S

g  then has an x -component, mg sin �, and a 
y -component, 2mg cos �. The components of Newton’s second law form a system of two equations and two unknowns for 
the acceleration down the slope, ax, and the normal force. Parts (b) and (c) can be solved with the kinematics equations.

s OLut i On

a b

y

xx u
u

�mg cos u

mg sin u

g � mgS 

nS

F
S

Figure 4.18 (Example 4.9)

(a) Find the acceleration of the car.

Apply Newton’s second law to the car: maS 5 a  F
S

5 F
S

g 1 nS

Extract the x - and y -components from the second law: (1)   max 5 o Fx 5 mg sin u

(2)       0 5 o Fy 5 2mg cos u 1 n

Divide Equation (1) by m and substitute the given values: ax 5 g sin u 5 (9.80 m/s2) sin 20.0° 5  3.35 m/s2

(b) Find the time taken for the car to reach the bottom.

Use Equation 3.11b for displacement, with v0x 5 0: Dx 5 1
2ax t

2    S     12 13.35 m/s2 2 t 2 5 25.0 m

t 5  3.86 s

(c) Find the speed of the car at the bottom of the 
driveway.

Use Equation 3.11a for velocity, again with v0x 5 0: vx 5 axt 5 (3.35 m/s2)(3.86 s) 5  12.9 m/s

r e Ma r ks  Notice that the final answer for the acceleration depends only on g and the angle u, not the mass. Equation 
(2), which gives the normal force, isn’t useful here, but is essential when friction plays a role.

Que s t i On  4.9 If the car is parked on a more gentle slope, how will the time required for it to slide to the bottom of the 
hill be affected? Explain.

e Xe rc i s e  4.9 (a) Suppose a hockey puck slides down a frictionless ramp with an acceleration of 5.00 m/s2. What 
angle does the ramp make with respect to the horizontal? (b) If the ramp has a length of 6.00 m, how long does it take 

(Continued)
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the puck to reach the bottom? (c) Now suppose the mass of the puck is doubled. What’s the puck’s new acceleration 
down the ramp?

a n s w er  (a) 30.7° (b) 1.55 s (c) unchanged, 5.00 m/s2

■ e Xa Mp Le  4.10 Weighing a Fish in an Elevator

gO a L Explore the effect of acceleration on the apparent 
weight of an object.

p r Ob Le M A woman weighs a fish with a spring scale 
attached to the ceiling of an elevator, as shown in Figures 
4.19a and 4.19b. While the elevator is at rest, she measures a 
weight of 40.0 N. (a) What weight does the scale read if the 
elevator accelerates upward at 2.00 m/s2? (b) What does the 
scale read if the elevator accelerates downward at 2.00 m/s2,  
as in Figure 4.19b? (c) If the elevator cable breaks, what 
does the scale read?

s t r at e g y  Write down Newton’s second law for the fish, 
including the force T

S

 exerted by the spring scale and the 
force of gravity, m gS. The scale doesn’t measure the true 
weight, it measures the force T that it exerts on the fish, 
so in each case solve for this force, which is the apparent 
weight as measured by the scale.

s OLut i On
(a) Find the scale reading as the elevator accelerates 
upward, as in Figure 4.19a.

T
S

mg
S

T
S

mg
S

a b

aS
aS

When the elevator accelerates 
upward, the spring scale reads 
a value greater than the
weight of the 
sh. 

When the elevator accelerates 
downward, the spring scale 
reads a value less than the
weight of the 
sh. 

10
20
30

405060
70
80

90 0 10
20
30

405060
70
80

90 0

Figure 4.19 (Example 4.10)

Apply Newton’s second law to the fish, taking upward as 
the positive direction:

ma 5 o F 5 T 2 mg

Solve for T: T 5 ma 1 mg 5 m(a 1 g)

Find the mass of the fish from its weight of 40.0 N: m 5
w
g

 5
 40.0 N

 9.80 m/s 2 
 5 4.08 kg

Compute the value of T, substituting a 5 12.00 m/s2: T 5 m(a 1 g ) 5 (4.08 kg)(2.00 m/s2 1 9.80 m/s2)

5  48.1 N

(b) Find the scale reading as the elevator accelerates 
downward, as in Figure 4.19b.

The analysis is the same, the only change being the accel-
eration, which is now negative: a 5 22.00 m/s2.

T 5 m(a 1 g ) 5 (4.08 kg)(22.00 m/s2 1 9.80 m/s2)

5  31.8 N

(c) Find the scale reading after the elevator cable breaks.

Now a 5 29.80 m/s2, the acceleration due to gravity: T 5 m(a 1 g ) 5 (4.08 kg)(29.80 m/s2 1 9.80 m/s2)

5  0 N

r e Ma r ks  Notice how important it is to have correct signs in this problem! Accelerations can increase or decrease the 
apparent weight of an object. Astronauts experience very large changes in apparent weight, from several times normal 
weight during ascent to weightlessness in free fall.

37027_ch04_ptg01_hr_088-126.indd   106 19/08/13   2:17 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



4.5 | Applications of Newton’s Laws  107

Unless otherwise noted, all content on this page is © Cengage Learning.

Que s t i On  4.10 Starting from rest, an elevator accelerates upward, reaching and maintaining a constant velocity there-
after until it reaches the desired floor, when it begins to slow down. Describe the scale reading during this time.

e Xe rc i s e  4.10 Find the initial acceleration of a rocket if the astronauts on board experience eight times their normal 
weight during an initial vertical ascent. (Hint: In this exercise, the scale force is replaced by the normal force.)

a n s w er  68.6 m/s2

■ e Xa Mp Le  4.11 Atwood’s Machine

gO a L Use the second law to solve a simple two-body problem 
symbolically.

p r Ob Le M Two objects of mass m1 and m2, with m2 . m1, are con-
nected by a light, inextensible cord and hung over a frictionless pul-
ley, as in Figure 4.20a. Both cord and pulley have negligible mass. 
Find the magnitude of the acceleration of the system and the tension 
in the cord.

s t r at e g y  The heavier mass, m2, accelerates downward, in the  
negative y -direction. Because the cord can’t be stretched, the accel-
erations of the two masses are equal in magnitude, but opposite in 
direction, so that a1 is positive and a2 is negative, and a2 5 2a1. Each 
mass is acted on by a force of tension T

S

 in the upward direction and 
a force of gravity in the downward direction. Figure 4.20b shows free-
body diagrams for the two masses. Newton’s second law for each mass, 
together with the equation relating the accelerations, constitutes a set 
of three equations for the three unknowns—a1, a2, and T.

s OLut i On

m1

m1

m2

m2

a b

T
S

T
S

gS 

gS 

m1

m2

a2
S

a1
S

Figure 4.20 (Example 4.11) Atwood’s machine.  
(a) Two hanging objects connected by a light string that 
passes over a frictionless pulley. (b) Free-body diagrams 
for the objects.

Apply the second law to each of the two objects 
individually:

(1)   m1a1 5 T 2 m1g   (2)   m2a2 5 T 2 m2g  

Substitute a2 5 2a1 into Equation (2) and multiply both 
sides by 21:

(3)   m2a1 5 2T 1 m2g

Add Equations (1) and (3), and solve for a1: (m1 1 m2)a1 5 m2g 2 m1g

a1 5 am2 2 m1

m1 1 m2
bg

Substitute this result into Equation (1) to find T : T 5 a 2m1m2

m1 1 m2
bg

r e Ma r ks  The acceleration of the second object is the same as that of the first, but negative. When m2 gets very large 
compared with m1, the acceleration of the system approaches g, as expected, because m2 is falling nearly freely under the 
influence of gravity. Indeed, m2 is only slightly restrained by the much lighter m1.

Que s t i On  4.11 How could this simple machine be used to raise objects too heavy for a person to lift?

e Xe rc i s e  4.11 Suppose in the same Atwood setup another string is attached to the bottom of m1 and a constant force f  
is applied, retarding the upward motion of m1. If m1 5 5.00 kg and m2 5 10.00 kg, what value of f will reduce the accelera-
tion of the system by 50%?

a n s w er  24.5 N
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4.6  Forces of Friction
Learning Objectives  

1. Explain the physical origins of friction forces.

2. Apply the concept of the kinetic friction force.

3. Apply the concept of the static friction force.

4. Apply the system approach to multiple-body problems.

An object moving on a surface or through a viscous medium such as air or water 
encounters resistance as it interacts with its surroundings. This resistance is called 
friction. Forces of friction are essential in our everyday lives. Friction makes it pos-
sible to grip and hold things, drive a car, walk, and run. Even standing in one spot 
would be impossible without friction, as the slightest shift would instantly cause 
you to slip and fall.

Imagine that you’ve filled a plastic trash can with yard clippings and want to 
drag the can across the surface of your concrete patio. If you apply an external 
horizontal force F

S

 to the can, acting to the right as shown in Figure 4.21a, the can 
remains stationary if F

S

 is small. The force that counteracts  F
S

 and keeps the can 
from moving acts to the left, opposite the direction of F

S

, and is called the force of 
static friction, f

S

s. As long as the can isn’t moving, f
S

s � � F
S

. If F
S

 is increased, f
S

s also 
increases. Likewise, if F

S

 decreases, f
S

s decreases. Experiments show that the friction 
force arises from the nature of the two surfaces: Because of their roughness, con-
tact is made at only a few points.

If we increase the magnitude of F
S

, as in Figure 4.21b, the trash can eventu-
ally slips. When the can is on the verge of slipping, fs is a maximum, as shown 
in Figure 4.21c. When F exceeds fs,max, the can accelerates to the right. When  
the can is in motion, the friction force is less than fs,max (Fig. 4.21c). We call the 

a b

c

nS

f
S

f
S

gS

nS

f
S

gS

F
S

fs,max

F
Static region Kinetic region

f s �
 F

fk � mkn    

|  |

O

s

m

F
S

k

m

Motion

For small applied 
forces, the magnitude 
of the force of static 
friction equals the 
magnitude of the 
applied force.

When the magnitude of 
the applied force 
exceeds the magnitude 
of the maximum force of 
static friction, the trash 
can breaks free and 
accelerates to the right.

Figure 4.21 (a) and (b) When 
pulling on a trash can, the direction 
of the force of friction ( f

S

s in part (a) 
and f

S

k in part (b)) between the can 
and a rough surface is opposite the 
direction of the applied force F

S

.  
(c) A graph of the magnitude of the 
friction force versus applied force. 
Note that fs,max . fk.
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friction force for an object in motion the force of kinetic friction, f
S

k. The net 
force F � fk in the x -direction produces an acceleration to the right, according to 
Newton’s second law. If F � fk, the acceleration is zero, and the can moves to the 
right with constant speed. If the applied force is removed, the friction force acting 
to the left provides an acceleration of the can in the �x-direction and eventually 
brings it to rest, again consistent with Newton’s second law.

Experimentally, to a good approximation, both fs,max and fk for an object on a 
surface are proportional to the normal force exerted by the surface on the object. 
The experimental observations can be summarized as follows:

 ■ The magnitude of the force of static friction between any two surfaces in con-
tact can have the values

fs # msn [4.11]

 where the dimensionless constant ms is called the coefficient of static fric-
tion and n is the magnitude of the normal force exerted by one surface on 
the other. Equation 4.11 also holds for fs 5 fs,max ; msn when an object is on 
the verge of slipping. This situation is called impending motion. The strict 
inequality holds when the component of the applied force parallel to the  
surfaces is less than msn.

 ■ The magnitude of the force of kinetic friction acting between two surfaces is

 fk 5 mkn [4.12]

 where mk is the coefficient of kinetic friction.
 ■ The values of mk and ms depend on the nature of the surfaces, but mk is gener-
ally less than ms. Table 4.2 lists some reported values.

 ■ The direction of the friction force exerted by a surface on an object is oppo-
site the actual motion (kinetic friction) or the impending motion (static fric-
tion) of the object relative to the surface.

 ■ The coefficients of friction are nearly independent of the area of contact 
between the surfaces.

Although the coefficient of kinetic friction varies with the speed of the object, 
we will neglect any such variations. The approximate nature of Equations 4.11 and 
4.12 is easily demonstrated by trying to get an object to slide down an incline at 
constant acceleration. Especially at low speeds, the motion is likely to be character-
ized by alternating stick and slip episodes.

t ip 4.8 Use the Equals Sign 
in Limited Situations
In Equation 4.11, the equals sign 
is used only when the surfaces are 
just about to break free and begin 
sliding. Don’t fall into the com-
mon trap of using fs 5 msn in any 
static situation.

t able 4.2 Coefficients of Frictiona

ms mk

Steel on steel 0.74 0.57
Aluminum on steel 0.61 0.47
Copper on steel 0.53 0.36
Rubber on concrete 1.0 0.8
Wood on wood 0.25–0.5 0.2
Glass on glass 0.94 0.4
Waxed wood on wet snow 0.14 0.1
Waxed wood on dry snow — 0.04
Metal on metal (lubricated) 0.15 0.06
Ice on ice 0.1 0.03
Teflon on Teflon 0.04 0.04
Synovial joints in humans 0.01 0.003
aAll values are approximate.
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■ Quick Quiz

4.7 If you press a book flat against a vertical wall with your hand, in what direction 
is the friction force exerted by the wall on the book? (a) downward (b) upward  
(c) out from the wall (d) into the wall

4.8 A crate is sitting in the center of a f latbed truck. As the truck accelerates 
to the east, the crate moves with it, not sliding on the bed of the truck. In what 
direction is the friction force exerted by the bed of the truck on the crate?  
(a) To the west. (b) To the east. (c) There is no friction force, because the  
crate isn’t sliding.

4.9 Suppose your friend is sitting on a sled and asks you to move her across a flat, 
horizontal field. You have a choice of (a) pushing her from behind by applying a force 
downward on her shoulders at 30° below the horizontal (Fig. 4.22a) or (b) attaching  
a rope to the front of the sled and pulling with a force at 30° above the horizontal 
(Fig 4.22b). Which option would be easier and why?

a

b

30�

F
S

30�

F
S

Figure 4.22 (Quick Quiz 4.9)

■ e Xa Mp Le  4.12 A Block on a Ramp

gO a L Apply the concept of static friction to an object resting on an incline.

p r Ob Le M Suppose a block with a mass of 2.50 kg is resting on a ramp. If the coeffi-
cient of static friction between the block and ramp is 0.350, what maximum angle can 
the ramp make with the horizontal before the block starts to slip down?

s t r at e g y This is an application of Newton’s second law involving an object in 
equilibrium. Choose tilted coordinates, as in Figure 4.23. Use the fact that the block 
is just about to slip when the force of static friction takes its maximum value, fs 5 msn.

s OLut i On

y

x

s

mg sin u

uu

�mg cos u

nS

f
S

 

Fg
S

Figure 4.23 (Example 4.12)

Write Newton’s laws for a static system in component 
form. The gravity force has two components, just as in 
Examples 4.7 and 4.9.

(1)   o Fx 5 mg sin u 2 msn 5 0

(2)   o Fy 5 n 2 mg cos u 5 0

Rearrange Equation (2) to get an expression for the nor-
mal force n:

n 5 mg cos u

Substitute the expression for n into Equation (1) and 
solve for tan u:

o Fx 5 mg sin u 2 msmg cos u 5 0  S  tan u 5 ms

Apply the inverse tangent function to get the answer: tan u 5 0.350  S  u 5 tan21 (0.350) 5  19.3°

r e Ma r ks  It’s interesting that the final result depends only on the coefficient of static friction. Notice also how similar 
Equations (1) and (2) are to the equations developed in Examples 4.7 and 4.9. Recognizing such patterns is key to solving 
problems successfully.

Que s t i On  4.12 How would a larger static friction coefficient affect the maximum angle?

e Xe rc i s e  4.12 The ramp in Example 4.12 is roughed up and the experiment repeated. (a) What is the new coefficient 
of static friction if the maximum angle turns out to be 30.0°? (b) Find the maximum static friction force that acts on the 
block.

a n s w er  (a) 0.577 (b) 12.2 N
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■ e Xa Mp Le  4.13 The Sliding Hockey Puck

gO a L Apply the concept of kinetic friction.

p r Ob Le M The hockey puck in Figure 4.24, struck by a hockey stick, is given an 
initial speed of 20.0 m/s on a frozen pond. The puck remains on the ice and slides  
1.20 3 102 m, slowing down steadily until it comes to rest. Determine the coefficient  
of kinetic friction between the puck and the ice.

s t r at e g y  The puck slows “steadily,” which means that the acceleration is constant. 
Consequently, we can use the kinematic equation v2 5 v0

2 1 2a Dx to find a, the accel-
eration in the x -direction. The x - and y -components of Newton’s second law then give 
two equations and two unknowns for the coefficient of kinetic friction, mk, and the nor-
mal force n.

s OLut i On

Motion

k

gS 

f
S

 

nS

x

y

Fg � m
S

Figure 4.24 (Example 4.13) After 
the puck is given an initial velocity 
to the right, the external forces act-
ing on it are the force of gravity F

S

g, 
the normal force nS, and the force of 
kinetic friction,  f

S

k.

Solve the time-independent kinematic equation for the 
acceleration a:

v 2 5 v0
2 1 2a Dx

a 5
v 2 2 v0

2

2Dx

Substitute v 5 0, v0 5 20.0 m/s, and Dx 5 1.20 3 102 m. 
Note the negative sign in the answer: aS is opposite vS:

a 5
0 2 120.0 m/s 22

2 11.20 3 102 m 2 5 21.67 m/s2

Find the normal force from the y -component of the sec-
ond law:

o Fy 5 n 2 Fg 5 n 2 mg 5 0

n 5 mg

Obtain an expression for the force of kinetic friction, and 
substitute it into the x -component of the second law:

fk 5 mkn 5 mkmg

ma 5 o Fx 5 2fk 5 2mkmg

Solve for mk and substitute values: mk 5 2 
a
g

5
1.67 m/s2

9.80 m/s2 5  0.170

r e Ma r ks  Notice how the problem breaks down into three parts: kinematics, Newton’s second law in the y -direction, 
and then Newton’s law in the x -direction.

Que s t i On  4.13 How would the answer be affected if the puck were struck by an astronaut on a patch of ice on Mars, 
where the acceleration of gravity is 0.35g, with all other given quantities remaining the same?

e Xe rc i s e  4.13 An experimental rocket plane lands on skids on a dry lake bed. If it’s traveling at 80.0 m/s when it 
touches down, how far does it slide before coming to rest? Assume the coefficient of kinetic friction between the skids and 
the lake bed is 0.600.

a n s w er  544 m

The System Approach
Two-body problems can often be treated as single objects and solved with a system 
approach. When the objects are rigidly connected—say, by a string of negligible 
mass that doesn’t stretch—this approach can greatly simplify the analysis. When 
the two bodies are considered together, one or more of the forces end up becom-
ing forces that are internal to the system, rather than external forces affecting 
each of the individual bodies. Both approaches will be used in Example 4.14.

37027_ch04_ptg01_hr_088-126.indd   111 19/08/13   2:17 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



112  c hap t e r  4 | The Laws of Motion

Unless otherwise noted, all content on this page is © Cengage Learning.

■ e Xa Mp Le  4.14 Connected Objects

gO a L Use both the general method and the system approach to solve a 
connected two-body problem involving gravity and friction.

p r Ob Le M (a) A block with mass m1 5 4.00 kg and a ball with mass  
m2 5 7.00 kg are connected by a light string that passes over a massless, fric-
tionless pulley, as shown in Figure 4.25a. The coefficient of kinetic friction 
between the block and the surface is 0.300. Find the acceleration of the two 
objects and the tension in the string. (b) Check the answer for the accelera-
tion by using the system approach.

s t r at e g y  Connected objects are handled by applying Newton’s second 
law separately to each object. The force diagrams for the block and the 
ball are shown in Figure 4.25b, with the 1x -direction to the right and the 
1y -direction upwards. The magnitude of the acceleration for both objects 
has the same value, ua1u 5 ua2u 5 a. The block with mass m1 moves in the 
positive x -direction, and the ball with mass m2 moves in the negative 
y -direction, so a1 5 2a2. Using Newton’s second law, we can develop two 
equations involving the unknowns T and a that can be solved simultane-
ously. In part (b), treat the two masses as a single object, with the gravity 
force on the ball increasing the combined object’s speed and the friction 
force on the block retarding it. The tension forces then become internal and don’t appear in the second law.

s OLut i On
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m2

m2

m1

x

y

a

b
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S

m1g 
S

fk
S

nS

T
S

T
S

Figure 4.25 (Example 4.14) (a) Two objects 
connected by a light string that passes over a 
frictionless pulley. (b) Force diagrams for the 
objects.

(a) Find the acceleration of the objects and the tension in 
the string.

Write the components of Newton’s second law for the 
block of mass m1:

o Fx 5 T 2 fk 5 m1a1 o Fy 5 n 2 m1g 5 0

The equation for the y -component gives n 5 m1g. Sub-
stitute this value for n and fk 5 mkn into the equation for 
the x -component:

(1)   T 2 mkm1g 5 m1a1

Apply Newton’s second law to the ball, recalling that  
a2 5 2a1:

o Fy 5 T 2 m2 g 5 m2a2 5 2m2a1

(2) T 2 m2 g  5 2m2a1

Subtract Equation (2) from Equation (1), eliminating T 
and leaving an equation that can be solved for a1:

m2g 2 mkm1g 5 (m1 1 m2)a1

a1 5
m2g 2 mkm1g

m1 1 m2

Substitute the given values to obtain the acceleration: a1 5
 17.00 kg 2 19.80 m/s2 2 2 10.300 2 14.00 kg 2 19.80 m/s2 2

14.00 kg 1 7.00 kg 2
5  5.17 m/s2

Substitute the value for a1 into Equation (1) to find the 
tension T:

T 5  32.4 N

(b) Find the acceleration using the system approach, 
where the system consists of the two blocks.

Apply Newton’s second law to the system and solve for a: (m1 1 m2)a 5 m2g 2 mkn 5 m2g 2 mkm1g

a 5 
m2g 2 mkm1g

m1 1 m2
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r e Ma r ks  Although the system approach appears quick and easy, it can be applied only in special cases and can’t give 
any information about the internal forces, such as the tension. To find the tension, you must consider the free-body  
diagram of one of the blocks separately as was done in part (a) of Example 4.14.

Que s t i On  4.14 If mass m2 is increased, does the acceleration of the system increase, decrease, or remain the same? 
Does the tension increase, decrease, or remain the same?

e Xe rc i s e  4.14 What if an additional mass is attached to the ball in Example 4.14? How large must this mass be to 
increase the downward acceleration by 50%? Why isn’t it possible to add enough mass to double the acceleration?

a n s w er  14.0 kg. Doubling the acceleration to 10.3 m/s2 isn’t possible simply by suspending more mass because all 
objects, regardless of their mass, fall freely at 9.8 m/s2 near Earth’s surface.

■ e Xa Mp Le  4.15 Two Blocks and a Cord

gO a L Apply Newton’s second law and static friction to a two-body 
system.

p r Ob Le M A block of mass m 5 5.00 kg rides on top of a second 
block of mass M 5 10.0 kg. A person attaches a string to the bottom 
block and pulls the system horizontally across a frictionless sur-
face, as in Figure 4.26a. Friction between the two blocks keeps the 
5.00-kg block from slipping off. If the coefficient of static friction is 
0.350, (a) what maximum force can be exerted by the string on the  
10.0-kg block without causing the 5.00-kg block to slip? (b) Use  
the system approach to calculate the acceleration.

s t r at e g y  Draw a free-body diagram for each block. The static 
friction force causes the top block to move horizontally, and the 
maximum such force corresponds to fs 5 msn. That same static fric-
tion retards the motion of the bottom block. As long as the top block isn’t slipping, the acceleration of both blocks is the 
same. Write Newton’s second law for each block, and eliminate the acceleration a by substitution, solving for the tension T. 
Once the tension is known, use the system approach to calculate the acceleration.

s OLut i On
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S

a b

Figure 4.26 (a) (Example 4.15) (b) (Exercise 4.15)

(a) Find the maximum force that can be exerted by the 
string. 

Write the two components of Newton’s second law for the 
top block:

x -component: ma 5 msn1

y -component: 0 5 n1 2 mg

Solve the y -component for n1, substitute the result into 
the x -component, and then solve for a:

n1 5 mg    S    ma 5 msmg    S    a 5 msg

Write the x -component of Newton’s second law for the 
bottom block:

(1)   Ma 5 2msmg 1 T

Substitute the expression for a 5 ms g into Equation (1) 
and solve for the tension T:

Mms g 5 T 2 msmg S T 5 (m 1 M)msg

Now evaluate to get the answer: T 5 (5.00 kg 1 10.0 kg)(0.350)(9.80 m/s2) 5  51.5 N

(b) Use the system approach to calculate the acceleration.

Write the second law for the x -component of the force on 
the system:

(m 1 M)a 5 T

Solve for the acceleration and substitute values: a 5
T

m 1 M
5

51.5 N
5.00 kg 1 10.0 kg

5  3.43 m/s2

(Continued)
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r e Ma r ks  Notice that the y -component for the 10.0-kg block wasn’t needed because there was no friction between that 
block and the underlying surface. It’s also interesting to note that the top block was accelerated by the force of static fric-
tion. The system acceleration could also have been calculated with a 5 msg. Does the result agree with the answer found 
by the system approach?

Que s t i On  4.15 What would happen if the tension force exceeded 51.5 N?

e Xe rc i s e  4.15 Suppose instead the string is attached to the top block in Example 4.15 (see Fig. 4.26b). Find the maxi-
mum force that can be exerted by the string on the block without causing the top block to slip.

a n s w er  25.7 N

 ■ a pp Ly i ng  ph y s ic s  4.1 Cars and Friction

Forces of friction are important in the analysis of the 
motion of cars and other wheeled vehicles. How do such 
forces both help and hinder the motion of a car?

eX p La n at i On  There are several types of friction forces 
to consider, the main ones being the force of friction 
between the tires and the road surface and the retarding 
force produced by air resistance.
 Assuming the car is a four-wheel-drive vehicle of mass m,  
as each wheel turns to propel the car forward, the tire 
exerts a rearward force on the road. The reaction to this 
rearward force is a forward force f

S

 exerted by the road on 
the tire (Fig. 4.27). If we assume the same forward force f

S

is exerted on each tire, the net forward force on the car is 
4 f

S

, and the car’s acceleration is therefore aS 5 4 f
S

/m.
 The friction between the moving car’s wheels and the 
road is normally static friction, unless the car is skidding.
 When the car is in motion, we must also consider the 
force of air resistance, R

S

, which acts in the direction 
opposite the velocity of the car. The net force exerted 

on the car is therefore 4 f
S

 2 R
S

, so the car’s acceleration is  
aS5 (4 f

S

 2 R
S

)/m. At normal driving speeds, the magnitude 
of R

S

 is proportional to the first power of the speed, R 5 bv, 
where b is a constant, so the force of air resistance increases 
with increasing speed. When R is equal to 4f, the accel-
eration is zero and the car moves at a constant speed. To 
minimize this resistive force, race cars often have very low 
profiles and streamlined contours. 

f
S

f
S

R
S

Figure 4.27 (Applying Physics 4.1) The horizontal forces acting 
on the car are the forward forces f

S

 exerted by the road on each tire 
and the force of air resistance R

S

, which acts opposite the car’s veloc-
ity. (The car’s tires exert a rearward force on the road, not shown in 
the diagram.)

 ■ a pp Ly i ng  ph y s ic s  4.2 Air Drag

Air resistance isn’t always undesirable. What are some 
applications that depend on it?

eX p La n at i On  Consider a skydiver plunging through 
the air, as in Figure 4.28. Despite falling from a height 
of several thousand meters, she never exceeds a speed of 
around 120 miles per hour. This is because, aside from 
the downward force of gravity m gS, there is also an upward 
force of air resistance, R

S

. Before she reaches a final con-
stant speed, the magnitude of  R

S

 is less than her weight. 
As her downward speed increases, the force of air resis-
tance increases. The vector sum of the force of gravity and 
the force of air resistance gives a total force that decreases 
with time, so her acceleration decreases. Once the two 
forces balance each other, the net force is zero, so the 
acceleration is zero, and she reaches a terminal speed.
 Terminal speed is generally still high enough to be 
fatal on impact, although there have been amazing stories 
of survival. In one case, a man fell flat on his back in a 
freshly plowed field and survived. (He did, however, break 

virtually every bone in his body.) In another case, a flight 
attendant survived a fall from thirty thousand feet into a 
snowbank. In neither case would the person have had any 
chance of surviving without the effects of air drag.
 Parachutes and paragliders create a much larger drag 
force due to their large area and can reduce the terminal 
speed to a few meters per second. Some sports enthusiasts 
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Figure 4.28 (Applying Physics 4.2)
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These two equations are then solved algebraically for the 
unknown quantities.

4.4 Newton’s Third Law
Newton’s third law states that 
if two objects interact, the 
force F

S

12 exerted by object 1 
on object 2 is equal in mag-
nitude and opposite in direc-
tion to the force F

S

21 exerted by 
object 2 on object 1:

F
S

12 5 2F
S

21

An isolated force can never occur in nature.

4.5 Applications of Newton’s Laws
An object in equilibrium has no net external force acting 
on it, and the second law, in component form, implies that 
o Fx 5 0 and o Fy 5 0 for such an object. These two equa-
tions are useful for solving problems in statics, in which the 
object is at rest or moving at constant velocity.
 An object under acceleration requires the same two equa-
tions, but with the acceleration terms included: o Fx 5 max

and o Fy 5 may. When the acceleration is constant, the equa-
tions of kinematics can supplement Newton’s second law.

4.6 Forces of Friction
The magnitude of the maximum force of static friction, 
fs,max, between an object and a surface is proportional to 
the magnitude of the normal force acting on the object. 
This maximum force occurs when the object is on the 
verge of slipping. In general,

 fs # msn [4.11]

where ms is the coefficient of static friction. When an object 
slides over a surface, the direction of the force of kinetic fric-
tion, f

S

k, on the object is opposite the direction of the motion 
of the object relative to the surface and proportional to the 
magnitude of the normal force. The magnitude of f

S

k is

 fk 5 mkn [4.12]

where mk is the coefficient of kinetic friction. In general, 
mk , ms.
 Solving problems that involve friction is a matter of 
using these two friction forces in Newton’s second law. The 
static friction force must be handled carefully because it 
refers to a maximum force, which is not always called upon 
in a given problem.

have even developed special suits with wings, allowing 
a long glide to the ground. In each case, a larger cross- 
sectional area intercepts more air, creating greater air 
drag, so the terminal speed is lower.
 Air drag is also important in space travel. Without it, 
returning to Earth would require a considerable amount 

of fuel. Air drag helps slow capsules and spaceships, and 
aerocapture techniques have been proposed for trips to 
other planets. These techniques significantly reduce fuel 
requirements by using air drag to reduce the speed of the 
spacecraft. 

 ■ su MMa ry

4.1 Forces
There are four known fundamental forces of nature: 
(1)  the strong nuclear force between subatomic par-
ticles; (2) the electromagnetic forces between electric  
charges; (3) the weak nuclear forces, which arise in 
certain radioactive decay processes; and (4) the gravi-
tational force between objects. These are collectively 
called field forces. Classical physics deals only with the 
gravitational and electromagnetic forces.
 Forces such as friction or the force of a bat hitting a ball 
are called contact forces. On a more fundamental level, 
contact forces have an electromagnetic nature.

4.2 Newton’s First Law
Newton’s first law states that an object moves at constant 
velocity unless acted on by a force.

The tendency for an object to maintain its original state 
of motion is called inertia. Mass is the physical quantity 
that measures the resistance of an object to changes in its 
velocity.

4.3 Newton’s Second Law
Newton’s second law states that the 
acceleration of an object is directly 
proportional to the net force act-
ing on it and inversely proportional 
to its mass. The net force acting on 
an object equals the product of its 
mass and acceleration:

a  F
S

5 m aS [4.1]

 Newton’s universal law of gravitation is

 Fg 5 G 
m1m2

r2   [4.5]

The weight w of an object is the magnitude of the force of 
gravity exerted on that object and is given by

 w 5 mg [4.6]

where g 5 Fg/m is the accel-
eration of gravity.
 Solving problems with 
Newton’s second law involves 
finding all the forces acting 
on a system and writing Equa-
tion 4.1 for the x -component 
and y -component separately. 

m1

m 2

r

Fg
S �Fg

S

The gravity force between 
any two objects is propor-
tional to their masses and 
inversely proportional to 
the square of the distance 
between them.

Fhn
S Fnh

S

Newton’s third law in 
action: the hammer drives 
the nail forward into the 
wall, and the nail slows the 
head of the hammer down 
to rest with an equal and 
opposite force.

m
aS

�F
S

A net force o F
S

 acting 
on a mass m creates an 
acceleration propor-
tional to the force and 
inversely proportional 
to the mass.

37027_ch04_ptg01_hr_088-126.indd   115 19/08/13   2:17 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



116  c hap t e r  4 | The Laws of Motion

 2. A space explorer is moving through space far from any 
planet or star. He notices a large rock, taken as a speci-
men from an alien planet, floating around the cabin of 
the ship. Should he push it gently, or should he kick it 
toward the storage compartment? Explain.

 1. A passenger sitting in the rear of a bus claims that she 
was injured as the driver slammed on the brakes, caus-
ing a suitcase to come flying toward her from the front 
of the bus. If you were the judge in this case, what dis-
position would you make? Explain.

 ■ c On ce p t ua L Que s t i Ons  

The conceptual questions in this chapter may be assigned online in Enhanced WebAssign.

 ■ wa r M-up  e Xe rc i s e s

The warm-up exercises in this chapter may be assigned online in Enhanced WebAssign.

1. Physics Review A hockey player strikes a puck, giving it 
an initial velocity of 10.0 m/s in the positive x-direction.  
The puck slows uniformly to 6.00 m/s when it has  
traveled 40.0 m. (a) What is the puck’s acceleration?  
(b) At what velocity is it traveling after 2.00 s? (c) How 
long does it take to travel 40.0 m? (See Section 2.5.)

 2. Four forces act on an object, given by A
S

 � 40.0 N east,  
B
S

 � 50.0 N north, C
S

 � 70.0 N west, and D
S

 � 90.0 N 
south. (a) What is the magnitude of the net force on 
the object? (b) What is the direction of the force? (See 
Sections 3.2 and 4.3.)

 3. A force of 30.0 N is applied in the positive x -direction 
to a block of mass 8.00 kg, at rest on a frictionless sur-
face. (a) What is the block’s acceleration? (b) How fast 
is it going after 6.00 s? (See Sections 2.5 and 4.3.)

 4. What would be the acceleration of gravity at the sur-
face of a world with twice Earth’s mass and twice its 
radius? (See Section 4.3.)

 5. Two monkeys are holding onto a single vine of negli-
gible mass that hangs vertically from a tree, with one 
monkey a few meters higher than the other. The upper 
monkey has mass 20.0 kg and the lower monkey mass 
10.0 kg. What is the ratio of the tension in the vine 
above the upper monkey to the tension in the vine 
between the two monkeys? (See Section 4.5.)

 6. Two identical strings making an angle of � = 30.0° with 
respect to the vertical support a block of mass m = 15.0 kg  
(Figure WU4.6). What is the tension in each of the 
strings? (See Section 4.5.)

a level surface. (b) The block is resting on a surface 
tilted up at a 30.0° angle with respect to the horizontal. 
(c) The block is resting on the floor of an elevator that 
is accelerating upwards at 3.00 m/s2. (d) The block is on 
a level surface and a force of 125 N is exerted on it at an 
angle of 30.0° above the horizontal. (See Section 4.5.)

 8. A horizontal force of 95.0 N is applied to a 60.0-kg 
crate on a rough, level surface. If the crate acceler-
ates at 1.20 m/s2, what is the magnitude of the force of 
kinetic friction acting on the crate? (See Section 4.5.)

 9. A car of mass 875 kg is traveling 30.0 m/s when the 
driver applies the brakes, which lock the wheels. The car 
skids for 5.60 s in the positive x-direction before coming 
to rest. (a) What is the car’s acceleration? (b) What mag-
nitude force acted on the car during this time? (c) How 
far did the car travel? (See Sections 2.5 and 4.5.)

 10. A block of mass 12.0 kg is sliding at an initial velocity of 
8.00 m/s in the positive x -direction. The surface has a 
coefficient of kinetic friction of 0.300. (a) What is the 
force of kinetic friction acting on the block? (b) What 
is the block’s acceleration? (c) How far will it slide 
before coming to rest? (See Sections 2.5 and 4.6.)

 11. A man exerts a horizontal force of 112 N on a refrigera-
tor of mass 42.0 kg. If the refrigerator doesn’t move, what 
is the minimum coefficient of static friction between  
the refrigerator and the floor? (See Section 4.6.)

 12. An Atwood’s machine (Figure 4.20) consists of two 
masses, one of mass 3.00 kg and the other of mass  
8.00 kg. When released from rest, what is the accelera-
tion of the system? (See Section 4.6.)

 13. A block of mass m1 � 16 kg is on a frictionless table to 
the left of a second block of mass m2 � 24 kg, attached 
by a horizontal string (Figure WU4.13). If a horizontal 
force of 120 N is exerted on the block m2 in the positive 
x -direction, (a) use the system approach to find the 
acceleration of the two blocks. (b) What is the tension 
in the string connecting the blocks? (See Section 4.6.)

m

u u

7. Calculate the normal force on a 15.0 kg block in the 
following circumstances: (a) The block is resting on 

m1
m2

F
S

Unless otherwise noted, all content on this page is © Cengage Learning.

Figure wu 4.6

Figure wu 4.13
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3. (a) If gold were sold by weight, would you rather buy 
it in Denver or in Death Valley? (b) If it were sold by 
mass, in which of the two locations would you prefer to 
buy it? Why?

4. If you push on a heavy box that is at rest, you must 
exert some force to start its motion. Once the box is 
sliding, why does a smaller force maintain its motion?

5. A ball is held in a person’s hand. (a) Identify all the 
external forces acting on the ball and the reaction to 
each. (b) If the ball is dropped, what force is exerted 
on it while it is falling? Identify the reaction force in 
this case. (Neglect air resistance.)

6. A weight lifter stands on a bathroom scale. (a) As she 
pumps a barbell up and down, what happens to the 
reading on the scale? (b) Suppose she is strong enough 
to actually throw the barbell upward. How does the 
reading on the scale vary now?

 7. (a) What force causes an automobile to move? (b) A 
propeller-driven airplane? (c) A rowboat?

 8. If only one force acts on an object, can it be in equilib-
rium? Explain.

 9. In the motion picture It Happened One Night (Colum-
bia Pictures, 1934), Clark Gable is standing inside a 
stationary bus in front of Claudette Colbert, who is 
seated. The bus suddenly starts moving forward and 
Clark falls into Claudette’s lap. Why did this happen?

 10. Analyze the motion of a rock dropped in water in 
terms of its speed and acceleration as it falls. Assume a 
resistive force is acting on the rock that increases as the 
velocity of the rock increases.

 11. Identify the action–reaction pairs in the following situ-
ations: (a) a man takes a step, (b) a snowball hits a girl 
in the back, (c) a baseball player catches a ball, (d) a 
gust of wind strikes a window.

 12. Draw a free-body diagram for each of the following 
objects: (a) a projectile in motion in the presence of 
air resistance, (b) a rocket leaving the launch pad with 
its engines operating, (c) an athlete running along a 
horizontal track.

 13. In a tug-of-war between two athletes, each pulls on the 
rope with a force of 200 N. What is the tension in the 
rope? If the rope doesn’t move, what horizontal force 
does each athlete exert against the ground?

 14. Suppose you are driving a car at a high speed. Why 
should you avoid slamming on your brakes when you 
want to stop in the shortest possible distance? (Newer 
cars have antilock brakes that avoid this problem.)

 15. As a block slides down a frictionless incline, which of 
the following statements is true? (a) Both its speed 
and acceleration increase. (b) Its speed and accel-
eration remain constant. (c) Its speed increases and  

its accel eration remains constant. (d) Both its speed 
and accel eration decrease. (e) Its speed increases and 
its acceleration decreases.

 16. A crate remains stationary after it has been placed 
on a ramp inclined at an angle with the horizontal. 
Which of the following statements must be true about 
the magnitude of the frictional force that acts on the 
crate? (a) It is larger than the weight of the crate. (b) It 
is at least equal to the weight of the crate. (c) It is equal 
to �sn. (d) It is greater than the component of the grav-
itational force acting down the ramp. (e) It is equal to 
the component of the gravitational force acting down 
the ramp.

 17. In the photo on page 91, a locomotive has broken 
through the wall of a train station. During the colli-
sion, what can be said about the force exerted by the  
locomotive on the wall? (a) The force exerted by 
the locomotive on the wall was larger than the force  
the wall could exert on the locomotive. (b) The force 
exerted by the locomotive on the wall was the same 
in magnitude as the force exerted by the wall on the 
locomotive. (c) The force exerted by the locomotive on 
the wall was less than the force exerted by the wall on 
the locomotive. (d) The wall cannot be said to “exert” a 
force; after all, it broke.

 18. If an object is in equilibrium, which of the following state-
ments is not true? (a) The speed of the object remains 
constant. (b) The acceleration of the object is zero.  
(c) The net force acting on the object is zero. (d) The 
object must be at rest. (e) The velocity is constant.

 19. A truck loaded with sand accelerates along a highway. 
The driving force on the truck remains constant. What 
happens to the acceleration of the truck as its trailer 
leaks sand at a constant rate through a hole in its bot-
tom? (a) It decreases at a steady rate. (b) It increases at 
a steady rate. (c) It increases and then decreases. (d) It 
decreases and then increases. (e) It remains constant.

 20. A large crate of mass m is placed on the back of a truck 
but not tied down. As the truck accelerates forward 
with an acceleration a, the crate remains at rest relative 
to the truck. What force causes the crate to accelerate 
forward? (a) the normal force (b) the force of gravity 
(c) the force of friction between the crate and the floor 
of the truck (d) the “ma” force (e) none of these

 21. Which of the following statements are true? (a) An 
astronaut’s weight is the same on the Moon as on 
Earth. (b) An astronaut’s mass is the same on the Inter-
national Space Station as it is on Earth. (c) Earth’s 
gravity has no effect on astronauts inside the Interna-
tional Space Station. (d) An astronaut’s mass is greater 
on Earth than on the Moon. (e) None of these state-
ments are true.

37027_ch04_ptg01_hr_088-126.indd   117 19/08/13   2:17 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



118  c hap t e r  4 | The Laws of Motion

Unless otherwise noted, all content on this page is © Cengage Learning.

4.1 Forces

4.2 Newton’s First Law

4.3 Newton’s Second Law

4.4 Newton’s Third Law

1. The heaviest invertebrate is the giant squid, which is 
estimated to have a weight of about 2 tons spread out 
over its length of 70 feet. What is its weight in newtons?

2. A football punter accelerates a football from rest to a 
speed of 10 m/s during the time in which his toe is in 
contact with the ball (about 0.20 s). If the football has 
a mass of 0.50 kg, what average force does the punter 
exert on the ball?

3. A 6.0-kg object undergoes an acceleration of 2.0 m/s2. 
(a) What is the magnitude of the resultant force act-
ing on it? (b) If this same force is applied to a 4.0-kg 
object, what acceleration is produced?

 4. One or more external forces are exerted on each 
object enclosed in a dashed box shown in Figure 4.2. 
Identify the reaction to each of these forces.

 5. A bag of sugar weighs 5.00 lb on Earth. What would it 
weigh in newtons on the Moon, where the free-fall accel-
eration is one-sixth that on Earth? Repeat for Jupiter, 
where g is 2.64 times that on Earth. Find the mass of the 
bag of sugar in kilograms at each of the three locations.

 6. A freight train has a mass of 1.5 3 107 kg. If the loco-
motive can exert a constant pull of 7.5 3 105 N, how 
long does it take to increase the speed of the train 
from rest to 80 km/h?

 7. A 75-kg man standing on a scale in an elevator notes 
that as the elevator rises, the scale reads 825 N. What is 
the acceleration of the elevator?

 8. Consider a solid metal sphere (S) a few centime-
ters in diameter and a feather (F). For each quantity 
in the list that follows, indicate whether the quantity 
is the same, greater, or lesser in the case of S or in that 
of F. Explain in each case why you gave the answer you 
did. Here is the list: (a) the gravitational force, (b) the  
time it will take to fall a given distance in air, (c) the 
time it will take to fall a given distance in vacuum, 
(d) the total force on the object when falling in vacuum.

 9. As a fish jumps vertically out of the water, assume 
that only two significant forces act on it: an upward 
force F exerted by the tail fin and the downward force 

due to gravity. A record Chinook salmon has a length 
of 1.50 m and a mass of 61.0 kg. If this fish is moving 
upward at 3.00 m/s as its head first breaks the surface 
and has an upward speed of 6.00 m/s after two-thirds of 
its length has left the surface, assume constant accelera-
tion and determine (a) the salmon’s acceleration and 
(b) the magnitude of the force F during this interval.

 10. W A 5.0-g bullet leaves the muzzle of a rifle with a 
speed of 320 m/s. What force (assumed constant) is 
exerted on the bullet while it is traveling down the 
0.82-m-long barrel of the rifle?

 11. A boat moves through the water with two forces acting 
on it. One is a 2 000-N forward push by the water on 
the propeller, and the other is a 1 800-N resistive force 
due to the water around the bow. (a) What is the accel-
eration of the 1 000-kg boat? (b) If it starts from rest, 
how far will the boat move in 10.0 s? (c) What will its 
velocity be at the end of that time?

 12. Two forces are applied 
to a car in an effort to 
move it, as shown in 
Figure P4.12. (a)  What 
is the resultant vector 
of these two forces? 
(b) If the car has a mass 
of 3 000 kg, what accel-
eration does it have? 
Ignore friction.

 13. A 970-kg car starts 
from rest on a horizon-
tal roadway and accelerates eastward for 5.00 s when it 
reaches a speed of 25.0 m/s. What is the average force 
exerted on the car during this time?

 14.  An object of mass m is dropped from the roof of 
a building of height h. While the object is falling, a 
wind blowing parallel to the face of the building 
exerts a constant horizontal force F on the object. (a) 
How long does it take the object to strike the ground? 
Express the time t in terms of g and h. (b) Find an 
expression in terms of m and F for the acceleration 
ax of the object in the horizontal direction (taken 
as the positive x - direction). (c) How far is the object  
displaced horizontally before hitting the ground? 
Answer in terms of m, g, F, and h. (d) Find the mag-
nitude of the object’s acceleration while it is falling, 
using the variables F, m, and g.

10�

30�
400 N450 N

Figure p 4.12
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  denotes biomedical problems

  denotes guided problems

  denotes Master It tutorial available in Enhanced WebAssign

  denotes asking for quantitative and conceptual reasoning

  denotes symbolic reasoning problem

 W  denotes Watch It video solution available in Enhanced WebAssign

The problems in this chapter may be assigned online in 
Enhanced WebAssign. 

 1. denotes straightforward problem; 2. denotes intermediate problem;

 3. denotes challenging problem

 1. denotes full solution available in Student Solutions Manual/ 
Study Guide

 1. denotes problems most often assigned in Enhanced WebAssign
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21. Two blocks each of mass m 5 
3.50 kg are fastened to the top 
of an elevator as in Figure P4.21. 
(a) If the elevator has an upward 
acceleration a 5 1.60 m/s2, find 
the tensions T1 and T2 in the 
upper and lower strings. (b) If 
the strings can withstand a maxi-
mum tension of 85.0 N, what 
maximum acceleration can the 
elevator have before the upper 
string breaks?

 22. Two blocks each of mass m are fastened to the 
top of an elevator as in Figure P4.21. The eleva-
tor has an upward acceleration a. The strings have 
negligible mass. (a) Find the tensions T1 and T2 in 
the upper and lower strings in terms of m, a, and g.  
(b) Compare the two tensions and determine which 
string would break first if a is made sufficiently large.  
(c) What are the tensions if the cable supporting the 
elevator breaks?

 23. The distance between two telephone poles is 50.0 m. 
When a 1.00-kg bird lands on the telephone wire mid-
way between the poles, the wire sags 0.200 m. Draw a 
free-body diagram of the bird. How much tension does 
the bird produce in the wire? Ignore the weight of the 
wire.

 24. The systems shown in Figure P4.24 are in equilibrium. 
If the spring scales are calibrated in newtons, what do 
they read? Ignore the masses of the pulleys and strings 
and assume the pulleys and the incline in Figure 
P4.24d are frictionless.

15. After falling from rest from a height of 30 m, a 0.50-kg  
ball rebounds upward, reaching a height of 20 m. If 
the contact between ball and ground lasted 2.0 ms, 
what average force was exerted on the ball?

 16. The force exerted by the wind on the sails of a 
sailboat is 390 N north. The water exerts a force of 
180 N east. If the boat (including its crew) has a mass 
of 270 kg, what are the magnitude and direction of its 
acceleration?

4.5 Applications of Newton’s Laws

17. (a) Find the tension in each 
cable supporting the 600-N cat 
burglar in Figure P4.17. (b) Sup-
pose the horizontal cable were 
reattached higher up on the wall. 
Would the tension in the other 
cable increase, decrease, or stay 
the same? Why?

 18. A certain orthodontist uses 
a wire brace to align a patient’s 
crooked tooth as in Figure P4.18. 
The tension in the wire is adjusted to have a magni-
tude of 18.0 N. Find the magnitude of the net force 
exerted by the wire on the crooked tooth.

37.0�

600 N

Figure p 4.17

14°

14°

y
x
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T
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Figure p 4.18

w1 

40° α110 N
w2

Figure p 4.20

T1

T2

aS m

m

Figure p 4.21  
(Problems 21 and 22)

19. A 150-N bird feeder is supported 
by three cables as shown in  
Figure P4.19. Find the tension  
in each cable.

 20. The leg and cast in Figure 
P4.20 weigh 220 N (w1). Deter-
mine the weight w2 and the 
angle a needed so that no force 
is exerted on the hip joint by the 
leg plus the cast.

60° 30°

Bird
food

Figure p 4.19

5.00 kg

5.00 kg 5.00 kg

5.00 kg 5.00 kg

a b

c

5.00 kg

30.0�

d

Figure p 4.24

25. W A 5.0-kg bucket of water is raised from a well by a 
rope. If the upward acceleration of the bucket is 3.0 m/s2, 
find the force exerted by the rope on the bucket.
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31. A setup similar to the one shown in Figure P4.31 
is often used in hospitals to support and apply a trac-
tion force to an injured leg. (a) Determine the force of 
tension in the rope supporting the leg. (b) What is the 
traction force exerted on the leg? Assume the traction 
force is horizontal.

26. A crate of mass m 5 
32  kg rides on the bed 
of a truck attached by a 
cord to the back of the 
cab as in Figure P4.26. 
The cord can withstand 
a maximum tension of 
68 N before breaking. Neglecting friction between the 
crate and truck bed, find the maximum acceleration 
the truck can have before the cord breaks.

 27. Two blocks of 
masses m and 2m are 
held in equilibrium on a 
frictionless incline as in 
Figure P4.27. In terms 
of m and u, find (a) the 
magnitude of the ten-
sion T1 in the upper 
cord and (b) the magni-
tude of the tension T2 in 
the lower cord connecting the two blocks.

 28. Two packing crates 
of masses 10.0 kg and 
5.00  kg are connected 
by a light string that 
passes over a friction-
less pulley as in Figure 
P4.28. The 5.00-kg crate 
lies on a smooth incline 
of angle 40.0°. Find 
(a)  the acceleration of 
the 5.00-kg crate and (b) the tension in the string.

 29. Assume the three blocks portrayed in Figure P4.29 
move on a frictionless surface and a 42-N force acts as 
shown on the 3.0-kg block. Determine (a) the accelera-
tion given this system, (b) the tension in the cord con-
necting the 3.0-kg and the 1.0-kg blocks, and (c) the 
force exerted by the 1.0-kg block on the 2.0-kg block.

m
aS 

Figure p 4.26

u

m

2m

T1

T2

Figure p 4.27

5.00 kg

10.0 kg
40.0�

Figure p 4.28

70�

8.00 kg

Figure p 4.31

m2
m1

F
S

Figure p 4.32

32.  Two blocks of masses m1

and m2 (m1 . m2) are placed on 
a frictionless table in contact 
with each other. A horizontal 
force of magnitude F is applied 
to the block of mass m1 in Fig-
ure P4.32. (a) If P is the magnitude of the contact force 
between the blocks, draw the free-body diagrams for 
each block. (b) What is the net force on the system 
consisting of both blocks? (c)  What is the net force 
acting on m1? (d) What is the net force acting on m2? 
(e) Write the x -component of Newton’s second law for 
each block. (f) Solve the resulting system of two equa-
tions and two unknowns, expressing the acceleration 
a and contact force P in terms of the masses and force. 
(g)  How would the answers change if the force had 
been applied to m2 instead? (Hint: use symmetry; don’t 
calculate!) Is the contact force larger, smaller, or the 
same in this case? Why?

 33. A 276-kg glider is being pulled by a 1 950-kg jet 
along a horizontal runway with an acceleration of  
 aS 5 2.20 m/s2 to the right as in Figure P4.33. Find 
(a) the thrust provided by the jet’s engines and (b) the 
magnitude of the tension in the cable connecting the 
jet and glider.

aS

Figure p 4.33

2 1

B A

Figure p 4.34

42 N

1.0 kg
2.0 kg

3.0 kg

Figure p 4.29

30. A block of mass m 5 
5.8 kg is pulled up a u  5 
25° incline as in Figure 
P4.30 with a force of 
magnitude F 5 32  N. 
(a)  Find the accelera-
tion of the block if the 
incline is frictionless. 
(b) Find the accelera-
tion of the block if the coefficient of kinetic friction 
between the block and incline is 0.10.

m

u

F
S

Figure p 4.30

34. In Figure P4.34, the 
light, taut, unstretchable 
cord B joins block 1 and the 
larger-mass block 2. Cord A 
exerts a force on block 1 to 
make it accelerate forward. 
(a) How does the magnitude of the force exerted by 
cord A on block 1 compare with the magnitude of the 
force exerted by cord B on block 2? (b) How does the 
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constant speed. Find the coefficients of static and 
kinetic friction between crate and floor.

 40. In Figure P4.36, m1 5 10 kg and m2 5 4.0 kg. The coef-
ficient of static friction between m1 and the horizontal 
surface is 0.50, and the coefficient of kinetic friction is 
0.30. (a) If the system is released from rest, what will its 
acceleration be? (b) If the system is set in motion with 
m2 moving downward, what will be the acceleration of 
the system?

 41. A 1 000-N crate is being pushed across a level f loor 
at a constant speed by a force F

S

 of 300 N at an angle 
of 20.0° below the horizontal, as shown in Figure 
P4.41a. (a) What is the coefficient of kinetic friction 
between the crate and the floor? (b) If the 300-N 
force is instead pulling the block at an angle of 20.0° 
above the horizontal, as shown in Figure P4.41b, what 
will be the acceleration of the crate? Assume that the 
coefficient of friction is the same as that found in 
part (a).

acceleration of block 1 compare with the acceleration 
of block 2? (c) Does cord B exert a force on block 1? 
Explain your answer.

 35. (a) An elevator of mass m moving upward has two 
forces acting on it: the upward force of tension in the 
cable and the downward force due to gravity. When the 
elevator is accelerating upward, which is greater, T or  
w? (b) When the elevator is moving at a constant veloc-
ity upward, which is greater, T or w? (c) When the  
elevator is moving upward, but the acceleration is 
downward, which is greater, T or w? (d) Let the elevator 
have a mass of 1 500 kg and an upward acceleration of  
2.5 m/s2. Find T. Is your answer consistent with the 
answer to part (a)? (e) The elevator of part (d) now 
moves with a constant upward velocity of 10 m/s. Find 
T. Is your answer consistent with your answer to part 
(b)? (f) Having initially moved upward with a constant 
velocity, the elevator begins to accelerate downward at 
1.50 m/s2. Find T. Is your answer consistent with your 
answer to part (c)?

 36. W An object with mass m1 5 
5.00 kg rests on a frictionless 
horizontal table and is con-
nected to a cable that passes 
over a pulley and is then fas-
tened to a hanging object 
with mass m2 5 10.0 kg, as 
shown in Figure P4.36. Find 
(a) the acceleration of each 
object and (b) the tension in the cable.

 37. A 1 000-kg car is pulling a 300-kg trailer. Together, the 
car and trailer have an acceleration of 2.15 m/s2 in the 
positive x -direction. Neglecting frictional forces on  
the trailer, determine (a) the net force on the car, 
(b) the net force on the trailer, (c) the magnitude and 
direction of the force exerted by the trailer on the car, 
and (d) the resultant force exerted by the car on the 
road.

 38. Two objects with masses of 
3.00  kg and 5.00 kg are con-
nected by a light string that 
passes over a frictionless pul-
ley, as in Figure P4.38. Deter-
mine (a) the tension in the 
string, (b) the acceleration of 
each object, and (c)  the dis-
tance each object will move in 
the first second of motion if 
both objects start from rest.

4.6 Forces of Friction

39. A dockworker loading crates on a ship finds that a 
20-kg crate, initially at rest on a horizontal surface, 
requires a 75-N horizontal force to set it in motion. 
However, after the crate is in motion, a horizontal 
force of 60 N is required to keep it moving with a  

m1

m2

Figure p 4.36  
(Problems 36, 40, and 45)

20.0� 20.0�
F
S

F
S

a b

Figure p 4.41

42.  A block of mass 3m 
is placed on a frictionless hor-
izontal surface, and a second 
block of mass m is placed on 
top of the first block. The sur-
faces of the blocks are rough. 
A constant force of magnitude F is applied to the first 
block as in Figure P4.42. (a) Construct free-body dia-
grams for each block. (b) Identify the horizontal 
force that causes the block of mass m to accelerate. 
(c) Assume that the upper block does not slip on the 
lower block, and find the acceleration of each block in 
terms of m and F.

 43. Consider a large truck carrying a heavy load, such as 
steel beams. A significant hazard for the driver is that 
the load may slide forward, crushing the cab, if the 
truck stops suddenly in an accident or even in brak-
ing. Assume, for example, a 10 000-kg load sits on 
the flatbed of a 20 000-kg truck moving at 12.0 m/s. 
Assume the load is not tied down to the truck and has 
a coefficient of static friction of 0.500 with the truck 
bed. (a)  Calculate the minimum stopping distance 
for which the load will not slide forward relative to 
the truck. (b) Is any piece of data unnecessary for the 
solution?

 44. A crate of mass 45.0 kg is being transported on the flat-
bed of a pickup truck. The coefficient of static friction 

3.00 kg

5.00 kg

Figure p 4.38

3m
F
Sm

Figure p 4.42
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distance when the surface is dry and the coefficient  
of friction is 0.600?

 51. A 3.00-kg block starts from rest at the top of a 30.0° 
incline and slides 2.00 m down the incline in 1.50 s. 
Find (a) the acceleration of the block, (b) the coef-
ficient of kinetic friction between the block and the 
incline, (c) the frictional force acting on the block, and 
(d) the speed of the block after it has slid 2.00 m.

 52. A 15.0-lb block rests on a horizontal floor. (a) What 
force does the floor exert on the block? (b) A rope is 
tied to the block and is run vertically over a pulley. The 
other end is attached to a free-hanging 10.0-lb object. 
What now is the force exerted by the floor on the  
15.0-lb block? (c) If the 10.0-lb object in part (b) is 
replaced with a 20.0-lb object, what is the force exerted 
by the floor on the 15.0-lb block?

 53. To meet a U.S. Postal Service requirement, employ-
ees’ footwear must have a coefficient of static friction 
of 0.500 or more on a specified tile surface. A typical 
athletic shoe has a coefficient of 0.800. In an emer-
gency, what is the minimum time interval in which 
a person starting from rest can move 3.00 m on the 
tile surface if she is wearing (a) footwear meeting the 
Postal Service minimum and (b) a typical athletic 
shoe?

 54. Objects of masses m1 5 
4.00  kg and m2 5 9.00 kg 
are connected by a light 
string that passes over a fric-
tionless pulley as in Figure 
P4.54. The object m1 is held 
at rest on the floor, and 
m2 rests on a fixed incline 
of u  5  40.0°. The objects 
are released from rest, and m2 slides 1.00 m down the 
incline in 4.00 s. Determine (a) the acceleration of 
each object, (b) the tension in the string, and (c) the 
coefficient of kinetic friction between m2 and the 
incline.

 55. The person in Figure 
P4.55 weighs 170 lb. Each 
crutch makes an angle of 
22.0° with the vertical (as 
seen from the front). Half 
of the person’s weight is 
supported by the crutches, 
the other half by the verti-
cal forces exerted by the 
ground on his feet. Assum-
ing he is at rest and the 
force exerted by the ground 
on the crutches acts along 
the crutches, determine 
(a) the smallest possible coefficient of friction between 
crutches and ground and (b) the magnitude of the 
compression force supported by each crutch.

between the crate and the truck’s flatbed is 0.350, and 
the coefficient of kinetic friction is 0.320. (a) The truck 
accelerates forward on level ground. What is the maxi-
mum acceleration the truck can have so that the crate 
does not slide relative to the truck’s flatbed? (b) The 
truck barely exceeds this acceleration and then moves 
with constant acceleration, with the crate sliding along 
its bed. What is the acceleration of the crate relative to 
the ground?

 45. Objects with masses m1 5 10.0 kg and m2 5 5.00 kg 
are connected by a light string that passes over a fric-
tionless pulley as in Figure P4.36. If, when the system 
starts from rest, m2 falls 1.00 m in 1.20 s, determine the 
coefficient of kinetic friction between m1 and the table.

 46.  A hockey puck struck by a hockey stick is given an 
initial speed v0 in the positive x -direction. The coeffi-
cient of kinetic friction between the ice and the puck 
is mk. (a) Obtain an expression for the acceleration 
of the puck. (b) Use the result of part (a) to obtain 
an expression for the distance d the puck slides. The 
answer should be in terms of the variables v0, mk, and 
g only.

 47. W The coefficient of 
static friction between 
the 3.00-kg crate and 
the 35.0° incline of 
Figure P4.47 is 0.300. 
What minimum force F

S

must be applied to the 
crate perpendicular to 
the incline to prevent 
the crate from sliding 
down the incline?

 48. A student decides to move a box of books into her 
dormitory room by pulling on a rope attached to the 
box. She pulls with a force of 80.0 N at an angle of 
25.0° above the horizontal. The box has a mass of 25.0 
kg, and the coefficient of kinetic friction between box 
and floor is 0.300. (a) Find the acceleration of the 
box. (b) The student now starts moving the box up 
a 10.0° incline, keeping her 80.0 N force directed at 
25.0° above the line of the incline. If the coefficient 
of friction is unchanged, what is the new acceleration 
of the box?

 49. An object falling under the pull of gravity is acted 
upon by a frictional force of air resistance. The mag-
nitude of this force is approximately proportional to 
the speed of the object, which can be written as f 5 bv. 
Assume b 5 15 kg/s and m 5 50 kg. (a) What is the ter-
minal speed the object reaches while falling? (b) Does 
your answer to part (a) depend on the initial speed of 
the object? Explain.

 50. A car is traveling at 50.0 km/h on a flat highway. (a) If 
the coefficient of friction between road and tires on 
a rainy day is 0.100, what is the minimum distance 
in which the car will stop? (b) What is the stopping  

35.0�

3.00 kg

F
S

Figure p 4.47 u
m1

m2

Figure p 4.54

22.0�22.0�

Figure p 4.55
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Additional Problems

56. As a protest against the umpire’s calls, a baseball 
pitcher throws a ball straight up into the air at a speed 
of 20.0 m/s. In the process, he moves his hand through 
a distance of 1.50 m. If the ball has a mass of 0.150 kg, 
find the force he exerts on the ball to give it this 
upward speed.

57. Three objects are connected on a table as shown 
in Figure P4.57. The coefficient of kinetic friction 
between the block of mass m2 and the table is 0.350. 
The objects have masses of m1 5 4.00 kg, m2 5 1.00 kg, 
and m3 5 2.00 kg as shown, and the pulleys are friction-
less. (a) Draw a diagram of the forces on each object. 
(b) Determine the acceleration of each object, includ-
ing its direction. (c) Determine the tensions in the two 
cords. (d) If the tabletop were smooth, would the ten-
sions increase, decrease, or remain the same? Explain.

 58. The force exerted by the wind on a sailboat is approxi-
mately perpendicular to the sail and proportional to 
the component of the wind velocity perpendicular to 
the sail. For the 800-kg sailboat shown in Figure P4.58,  
the force exerted by the wind on the sailboat is

Fsail 5 a550 
N

m/s
bvwind'

Water exerts a force along the keel (bottom) of the 
boat that prevents it from moving sideways, as shown in 
the figure. Once the boat starts moving forward, water 
also exerts a drag force backwards on the boat, oppos-
ing the forward motion. If a 17-knot wind (1 knot  5 
0.514 m/s) is blowing to the east, what is the initial 
acceleration of the sailboat?

60. (a) What is the minimum 
force of friction required 
to hold the system of  
Figure P4.60 in equilib-
rium? (b)  What coefficient 
of static friction between the 
100-N block and the table 
ensures equilibrium? (c) If 
the coefficient of kinetic 
friction between the 100-N 
block and the table is 0.250, 
what hanging weight should 
replace the 50.0-N weight to 
allow the system to move at a 
constant speed once it is set 
in motion?

61. A boy coasts down a hill on a 
sled, reaching a level surface 
at the bottom with a speed of 7.0 m/s. If the coefficient 
of friction between the sled’s runners and the snow is 
0.050 and the boy and sled together weigh 600 N, how 
far does the sled travel on the level surface before com-
ing to rest?

62. A woman at an airport is towing 
her 20.0-kg suitcase at constant 
speed by pulling on a strap at 
an angle u above the horizon-
tal (Fig. 4.62). She pulls on the 
strap with a 35.0-N force, and 
the friction force on the suitcase 
is 20.0 N. (a) Draw a free-body 
diagram of the suitcase. (b) 
What angle does the strap make 
with the horizontal? (c) What is the magnitude of the 
normal force that the ground exerts on the suitcase?

63. A box rests on the back of a truck. The coefficient 
of static friction between the box and the bed of the 
truck is 0.300. (a) When the truck accelerates forward, 
what force accelerates the box? (b) Find the maximum 
acceleration the truck can have before the box slides.

 64. Three objects are connected 
by light strings as shown in 
Figure P4.64. The string con-
necting the 4.00-kg object 
and the 5.00-kg object passes 
over a light frictionless pulley. 
Determine (a) the accelera-
tion of each object and (b) the 
tension in the two strings.

 65. A frictionless plane is 10.0 m long and inclined at 
35.0°. A sled starts at the bottom with an initial speed 
of 5.00 m/s up the incline. When the sled reaches the 
point at which it momentarily stops, a second sled 
is released from the top of the incline with an initial 
speed vi. Both sleds reach the bottom of the incline at 
the same moment. (a) Determine the distance that the 

45.0�45.0�

60.0 N 60.0 N

Figure p 4.59

100 N

50.0 N

Figure p 4.60

u

Figure p 4.62

m1

m2

m3

Figure p 4.57

30�

Fsail
S

Fkeel
S

E

N

S

W

Figure p 4.58

59. (a) What is the resultant force exerted by the two 
cables supporting the traffic light in Figure P4.59? 
(b) What is the weight of the light?

5.00 kg

4.00 kg

3.00 kg

Figure p 4.64
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first sled traveled up the incline. (b) Determine the ini-
tial speed of the second sled.

 66. A high diver of mass 70.0 kg steps off a board 10.0 m 
above the water and falls vertical to the water, start-
ing from rest. If her downward motion is stopped 
2.00 s after her feet first touch the water, what average 
upward force did the water exert on her?

 67. A 2.00-kg aluminum block 
and a 6.00-kg copper block 
are connected by a light 
string over a frictionless 
pulley. The two blocks are 
allowed to move on a fixed 
steel block wedge (of angle 
u 5 30.0°) as shown in  
Figure P4.67. Making use of Table 4.2, determine  
(a) the acceleration of the two blocks and (b) the ten-
sion in the string.

 68. An object of mass m1 hangs from a string that 
passes over a very light fixed pulley P1 as shown in Fig-
ure P4.68. The string connects to a second very light 
pulley P2. A second string passes around this pulley 
with one end attached to a wall and the other to an 
object of mass m2 on a frictionless, horizontal table. 
(a)  If a1 and a2 are the accelerations of m1 and m2, 
respectively, what is the relation between these accel-
erations? Find expressions for (b) the tensions in the 
strings and (c) the accelerations a1 and a2 in terms of 
the masses m1 and m2, and g.

P2
P1

m2

m1

T1

T2

Figure p 4.68

70. Measuring coefficients of 
friction A coin is placed near 
one edge of a book lying on 
a table, and that edge of the 
book is lifted until the coin 
just slips down the incline as 
shown in Figure P4.70. The 
angle of the incline, uc, called 
the critical angle, is measured. 
(a) Draw a free-body diagram 
for the coin when it is on 
the verge of slipping and identify all forces acting on 
it. Your free-body diagram should include a force of 
static friction acting up the incline. (b) Is the magni-
tude of the friction force equal to msn for angles less 
than uc? Explain. What can you definitely say about the 
magnitude of the friction force for any angle u # uc? 
(c) Show that the coefficient of static friction is given 
by ms 5 tan uc. (d) Once the coin starts to slide down 
the incline, the angle can be adjusted to a new value  
uc9 # uc such that the coin moves down the incline with 
constant speed. How does observation enable you to 
obtain the coefficient of kinetic friction?

 71. A fisherman poles a boat as he searches for his 
next catch. He pushes parallel to the length of the light 
pole, exerting a force of 240 N on the bottom of a shal-
low lake. The pole lies in the vertical plane contain-
ing the boat’s keel. At one moment, the pole makes an 
angle of 35.0° with the vertical and the water exerts a 
horizontal drag force of 47.5 N on the boat, opposite 
to its forward velocity of magnitude 0.857 m/s. The 
mass of the boat including its cargo and the worker is 
370 kg. (a) The water exerts a buoyant force vertically 
upward on the boat. Find the magnitude of this force. 
(b) Assume the forces are constant over a short inter-
val of time. Find the velocity of the boat 0.450 s after 
the moment described. (c) If the angle of the pole with 
respect to the vertical increased but the exerted force 
against the bottom remained the same, what would 
happen to buoyant force and the acceleration of the 
boat?

 72. A rope with mass mr is attached to a block with 
mass mb as in Figure P4.72. Both the rope and the 
block rest on a horizontal, frictionless surface. The 
rope does not stretch. The free end of the rope is 
pulled to the right with a horizontal force F. (a) Draw 
free-body diagrams for the rope and the block, noting 
that the tension in the rope is not uniform. (b) Find 
the acceleration of the system in terms of mb, mr, and F. 
(c) Find the magnitude of the force the rope exerts on 
the block. (d) What happens to the force on the block 
as the rope’s mass approaches zero? What can you state 
about the tension in a light cord joining a pair of mov-
ing objects?

 73. A van accelerates down a hill (Fig. P4.73), going from 
rest to 30.0 m/s in 6.00 s. During the acceleration, a 

Coin

θ

Physics

Figure p 4.70

Aluminum
Copper

Steel

m1

m2

u

Figure p 4.67

69. Two boxes of fruit on a frictionless horizontal surface 
are connected by a light string as in Figure P4.69, 
where m1 5 10 kg and m2 5 20 kg. A force of 50 N 
is applied to the 20-kg box. (a) Determine the accel-
eration of each box and the tension in the string. 
(b) Repeat the problem for the case where the coef-
ficient of kinetic friction between each box and the 
surface is 0.10.

T
50 N

m1
m2

Figure p 4.69
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penguin and sled is 0.700, find the maximum hori-
zontal force that can be exerted on the sled before the  
penguin begins to slide off.

 79. A 72-kg man stands on a spring scale in an elevator. 
Starting from rest, the elevator ascends, attaining its 
maximum speed of 1.2 m/s in 0.80 s. The elevator trav-
els with this constant speed for 5.0 s, undergoes a uni-
form negative acceleration for 1.5 s, and then comes to 
rest. What does the spring scale register (a) before the 
elevator starts to move? (b) During the first 0.80s of 
the elevator’s ascent? (c) While the elevator is traveling 
at constant speed? (d) During the elevator’s negative 
acceleration?

 80. A magician pulls a tablecloth from under a 200-g mug 
located 30.0 cm from the edge of the cloth. The cloth 
exerts a friction force of 0.100 N on the mug and is 
pulled with a constant acceleration of 3.00 m/s2. How 
far does the mug move relative to the horizontal table-
top before the cloth is completely out from under it? 
Note that the cloth must move more than 30 cm rela-
tive to the tabletop during the process.

 81. An inventive child wants 
to reach an apple in 
a tree without climb-
ing the tree. Sitting in 
a chair connected to a 
rope that passes over a 
frictionless pulley (Fig. 
P4.81), the child pulls 
on the loose end of the 
rope with such a force 
that the spring scale 
reads 250 N. The child’s 
true weight is 320 N, and 
the chair weighs 160 N. 
The child’s feet are not 
touching the ground. 
(a) Show that the acceleration of the system is upward, 
and find its magnitude. (b) Find the force the child 
exerts on the chair.

 82. A fire helicopter carries a 620-kg bucket of water at the 
end of a 20.0-m-long cable. Flying back from a fire at a 
constant speed of 40.0 m/s, the cable makes an angle 
of 40.0° with respect to the vertical. Determine the 
force exerted by air resistance on the bucket.

 83. A crate of weight Fg is pushed 
by a force P

S

 on a horizontal floor 
as shown in Figure P4.83. The coef-
ficient of static friction is ms, and P

S

is directed at angle u below the hori-
zontal. (a) Show that the minimum 
value of P that will move the crate is 
given by

P 5
ms Fg sec u

1 2 ms tan u

toy (m 5 0.100 kg) hangs by a 
string from the van’s ceiling. 
The acceleration is such that 
the string remains perpen-
dicular to the ceiling. Deter-
mine (a) the angle u and 
(b) the tension in the string.

 74. An inquisitive physics stu-
dent, wishing to combine 
pleasure with scientific 
inquiry, rides on a roller 
coaster sitting on a bath-
room scale. (Do not try this 
yourself on a roller coaster that forbids loose, heavy 
packages.) The bottom of the seat in the roller-coaster 
car is in a plane parallel to the track. The seat has a 
perpendicular back and a seat belt that fits around the  
student’s chest in a plane parallel to the bottom of  
the seat. The student lifts his feet from the floor so 
that the scale reads his weight, 200 lb, when the car is 
horizontal. At one point during the ride, the car zooms 
with negligible friction down a straight slope inclined 
at 30.0° below the horizontal. What does the scale read 
at that point?

 75. The parachute on a race car of weight 8 820 N opens 
at the end of a quarter-mile run when the car is travel-
ing at 35 m/s. What total retarding force must be sup-
plied by the parachute to stop the car in a distance of 
1 000 m?

 76. On an airplane’s takeoff, the combined action of 
the air around the engines and wings of an airplane 
exerts an 8 000-N force on the plane, directed upward 
at an angle of 65.0° above the horizontal. The plane 
rises with constant velocity in the vertical direction 
while continuing to accelerate in the horizontal direc-
tion. (a) What is the weight of the plane? (b) What is its 
horizontal acceleration?

 77. The board sandwiched 
between two other boards 
in Figure P4.77 weighs 95.5 
N. If the coefficient of fric-
tion between the boards 
is 0.663, what must be the 
magnitude of the compres-
sion forces (assumed to be 
horizontal) acting on both 
sides of the center board to keep it from slipping?

 78. A sled weighing 60.0 N is 
pulled horizontally across 
snow so that the coefficient 
of kinetic friction between 
sled and snow is 0.100. A 
penguin weighing 70.0 N 
rides on the sled, as in Fig-
ure P4.78. If the coefficient 
of static friction between 

mr

x
mb

F
S
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Figure p 4.77

F
S

Figure p 4.78

Figure p 4.81

P
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u

Figure p 4.83
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(b) Find the condition on u in terms of ms for which 
motion of the crate is impossible for any value of P.

 84. In Figure P4.84, the pul-
leys and the cord are light, 
all surfaces are frictionless, 
and the cord does not stretch. 
(a)  How does the accelera-
tion of block 1 compare with 
the acceleration of block 2?  
Explain your reasoning. 
(b) The mass of block 2 is m2 5 
1.30 kg. Derive an expression 
for the acceleration of the block having mass m2 as a 
function of the mass of block 1, m1. (c) What does the 
result of part (b) predict if m1 is very much less than 

1.30 kg? (d) What does the result of part (b) predict 
if m1 approaches infinity? (e) In this last case, what is 
the tension in the cord? (f) Could you anticipate the 
answers to parts (c), (d), and (e) without first doing 
part (b)? Explain.

 85. What horizontal force 
must be applied to a large 
block of mass M shown in 
Figure P4.85 so that the 
blocks remain stationary 
relative to M? Assume all 
surfaces and the pulley are 
frictionless. Notice that the 
force exerted by the string accelerates m2.

m1

m2

Figure p 4.84

F
S m1

m2

M

Figure p 4.85
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Energy is one of the most important concepts in the world of science. In everyday use 
energy is associated with the fuel needed for transportation and heating, with electricity 
for lights and appliances, and with the foods we consume. These associations, however, 
don’t tell us what energy is, only what it does, and that producing it requires fuel. Our 
goal in this chapter, therefore, is to develop a better understanding of energy and how to 
quantify it. 

Energy is present in the Universe in a variety of forms, including mechanical, chemical, 
electromagnetic, and nuclear energy. Even the inert mass of everyday matter contains a very 
large amount of energy. Although energy can be transformed from one kind to another, all 
observations and experiments to date suggest that the total amount of energy in the Uni-
verse never changes. That’s also true for an isolated system, which is a collection of objects 
that can exchange energy with each other, but not with the rest of the Universe. If one form 
of energy in an isolated system decreases, then another form of energy in the system must 
increase. For example, if the system consists of a motor connected to a battery, the battery 
converts chemical energy to electrical energy and the motor converts electrical energy to 
mechanical energy. Understanding how energy changes from one form to another is essen-
tial in all the sciences.

In this chapter the focus is mainly on mechanical energy, which is the sum of kinetic energy, 
the energy associated with motion, and potential energy—the energy associated with relative 
position. Using an energy approach to solve certain problems is often much easier than using 
forces and Newton’s three laws. These two very different approaches are linked through the 
concept of work.

By timing his jumps, a student 

does work on the pogo-stick-

student system, increasing 

his height with each jump. 

The work is transformed into 

gravitational potential energy 

at maximum height, converted 

to kinetic energy while falling, 

and stored as spring potential 

energy after contact with the 

ground.

5Energy
5.1 Work

5.2 Kinetic Energy and the  
Work–Energy Theorem

5.3 Gravitational Potential Energy

5.4 Spring Potential Energy

5.5 Systems and Energy 
Conservation

5.6 Power

5.7 Work Done by a Varying Force
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5.1    Work
Learning Obje Ctives

1. Contrast by example the physics concept of work with the commonly accepted 
concept.

2. Calculate the work done by a force on an object in basic contexts.

Work has a different meaning in physics than it does in everyday usage. In the 
physics definition, a physics textbook author does very little work typing away at 
a computer. A mason, by contrast, may do a lot of work laying concrete blocks. In 
physics, work is done only if an object is moved through some displacement while 
a force is applied to it. If either the force or displacement is doubled, the work 
is doubled. Double them both, and the work is quadrupled. Doing work involves 
applying a force to an object while moving it a given distance.

The definition for work W might be taken as

W 5 Fd [5.1]

where F is the magnitude of the force acting on the object and d is the magni-
tude of the object’s displacement. That definition, however, gives only the mag-
nitude of work done on an object when the force is constant and parallel to the 
displacement, which must be along a line. A more sophisticated definition is 
required.

Figure 5.1 shows a block undergoing a displacement DxS along a straight line while 
acted on by a constant force F

S

 in the same direction. We have the following definition:

The work W done on an object by a constant force F
S

 during a linear displace-
ment along the x -axis is

 W 5 FxDx [5.2]

where Fx is the x-component of the force F
S

 and Dx 5 xf 2 xi is the object’s 
displacement.

SI unit: joule (J) 5 newton ? meter (N ? m) 5 kg ? m2/s2

Note that in one dimension, Dx 5 xf 2 xi is a vector quantity, just as it was defined in 
Chapter 2, not a magnitude as might be inferred from definitions of a vector and its 
magnitude in Chapter 3. Therefore Dx can be either positive or negative. Work as 
defined in Equation 5.2 is rigorous for displacements of any object along the x -axis 
while a constant force acts on it and, therefore, is suitable for many one-dimensional 
problems. Work is a positive number if Fx and Dx are both positive or both negative, 
in which case, as discussed in the next section, the work increases the mechanical 
energy of the object. If Fx is positive and Dx is negative, or vice versa, then the work 
is negative, and the object loses mechanical energy. The definition in Equation 5.2 
works even when the constant force F

S

 is not parallel to the x-axis. Work is only done 
by the part of the force acting parallel to the object’s direction of motion.

It’s easy to see the difference between the physics definition and the everyday 
definition of work. The author exerts very little force on the keys of a keyboard, cre-
ating only small displacements, so relatively little physics work is done. The mason 
must exert much larger forces on concrete blocks and move them significant dis-
tances, and so performs a much greater amount of work. Even very tiring tasks, 
however, may not constitute work according to the physics definition. A truck driver, 
for example, may drive for several hours, but if he doesn’t exert a force, then Fx 5 0 
in Equation 5.2 and he doesn’t do any work. Similarly, a student pressing against a 
wall for hours in an isometric exercise also does no work, because the displacement  

Intuitive definition of work c

Work by a constant force c
 during a linear displacement 

t ip 5.1  Work Is a Scalar 
Quantity
Work is a simple number—a 
scalar, not a vector—so there is 
no direction associated with it. 
Energy and energy transfer are 
also scalars.

�

F
S

xS

Figure 5.1  A constant force F
S

 in 
the same direction as the displace-
ment, DxS, does work F Dx.
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in Equation 5.2, Dx, is zero.1 Atlas, of Greek mythology, bore the world on his shoul-
ders, but that, too, wouldn’t qualify as work in the physics definition.

Work is a scalar quantity—a number rather than a vector—and consequently  
is easier to handle. No direction is associated with it. Further, work doesn’t depend 
explicitly on time, which can be an advantage in problems involving only veloci-
ties and positions. Because the units of work are those of force and distance, the 
SI unit is the newton-meter (N ? m). Another name for the newton-meter is the 
joule (J) (rhymes with “pool”). The U.S. customary unit of work is the foot-pound, 
because distances are measured in feet and forces in pounds in that system.

A useful alternate definition relates the work done on an object to the angle the 
displacement makes with respect to the force. This definition exploits the triangle 
shown in Figure 5.2. The components of the vector F

S

 can be written as Fx 5 F cos u 
and Fy 5 F sin u. However, only the x -component, which is parallel to the direction 
of motion, makes a nonzero contribution to the work done on the object.

The work W done on an object by a constant force F
S

 during a linear displace-
ment DxS is

 W 5 (F cos u)d [5.3]

where d is the magnitude of the displacement and u is the angle between the 
vectors F

S

 and DxS.

SI unit: joule (J)

The definition in Equation 5.3 can also be used more generally when the dis-
placement is not specifically along the x -axis or any other axis.

In Figure 5.3 a man carries a bucket of water horizontally at constant velocity. 
The upward force exerted by the man’s hand on the bucket is perpendicular to 
the direction of motion, so it does no work on the bucket. This can also be seen 
from Equation 5.3 because the angle between the force exerted by the hand and 
the direction of motion is 90°, giving cos 90° 5 0 and W 5 0. Similarly, the force of 
gravity does no work on the bucket.

Work always requires a system of more than just one object. A nail, for example, 
can’t do work on itself, but a hammer can do work on the nail by driving it into a 
board. In general, an object may be moving under the influence of several exter-
nal forces. In that case, the net work done on the object as it undergoes some dis-
placement is just the sum of the amount of work done by each force.

Work can be either positive or negative. In the definition of work in Equa-
tion 5.3, F and d are magnitudes, which are never negative. Work is therefore 
positive or negative depending on whether cos u is positive or negative. This, 
in turn, depends on the direction of F

S

 relative the direction of DxS. When these 
vectors are pointing in the same direction, the angle between them is 0°, so  
cos 0° 5 11 and the work is positive. For example, when a student lifts a box as 
in Figure 5.4, the work he does on the box is positive because the force he exerts 
on the box is upward, in the same direction as the displacement. In lowering the 
box slowly back down, however, the student still exerts an upward force on the 
box, but the motion of the box is downwards. Because the vectors F

S

 and DxS are 
now in opposite directions, the angle between them is 180°, and cos 180° 5 21  
and the work done by the student is negative. In general, when the part of F

S

parallel to DxS points in the same direction as DxS, the work is positive; other-
wise, it’s negative.

Because Equations 5.1–5.3 assume a force constant in both direction and mag-
nitude, they are only special cases of a more general definition of work—that done 
by a varying force—treated briefly in Section 5.7.

b  Work by a constant 
force at an angle to the 
displacement 

�xS

u

F
S

F cos u

Figure 5.2  A constant force F
S

 
exerted at an angle u with respect  
to the displacement, DxS, does work 
(F cos u)Dx.

g = m

F
S

F
S

gS

�xS

Figure 5.3  No work is done on a 
bucket when it is moved horizontally 
because the applied force F

S

 is per-
pendicular to the displacement.

t ip 5.2  Work Is Done  
by Something, on 
Something Else
Work doesn’t happen by itself. 
Work is done by something in the 
environment, on the object of 
interest.

g = m

F
S

F
S

gS
�xS

Figure 5.4  The student does posi-
tive work when he lifts the box from 
the floor, because the applied force 
F
S

 is in the same direction as the dis-
placement. When he lowers the box 
to the floor, he does negative work.

1Actually, you do expend energy while doing isometric exercises because your muscles are continuously contracting 
and relaxing in the process. This internal muscular movement qualifies as work according to the physics definition.
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■ Quick Quiz

5.1  In Figure 5.5 (a)–(d), a block moves to the right in the positive x - direction 
through the displacement DxS while under the influence of a force with the  
same magnitude F

S

. Which of the following is the correct order of the amount  
of work done by the force F

S

, from most positive to most negative? (a) d, c, a, b  
(b) c, a, b, d (c) c, a, d, b

F
S

F
S

F
S

F
S

ba

dc

�xS �xS

�xS �xS

F
S

F
S

F
S

F
S

ba

dc

�xS �xS

�xS �xS

Figure 5.5 (Quick Quiz 5.1) A 
force F

S

 is exerted on an object that 
undergoes a displacement DxS to the 
right. Both the magnitude of the 
force and the displacement are the 
same in all four cases.

 ■ e Xa Mp Le  5.1 Sledding Through the Yukon

g Oa L  Apply the basic definitions of work done by a constant force.

pr Ob Le M  An Eskimo returning from a successful fishing trip pulls a sled 
loaded with salmon. The total mass of the sled and salmon is 50.0 kg, and the 
Eskimo exerts a force of magnitude 1.20 3 102 N on the sled by pulling on the 
rope. (a) How much work does he do on the sled if the rope is horizontal to  
the ground (u 5 0° in Fig. 5.6) and he pulls the sled 5.00 m? (b) How much 
work does he do on the sled if u 5 30.0° and he pulls the sled the same  
distance? (Treat the sled as a point particle, so details such as the point of 
attachment of the rope make no difference.) (c) At a coordinate position of 
12.4 m, the Eskimo lets up on the applied force. A friction force of 45.0 N 
between the ice and the sled brings the sled to rest at a coordinate position of 
18.2 m. How much work does friction do on the sled?

s t r at e g Y  Substitute the given values of F and Dx into the basic equations for work, Equations 5.2 and 5.3.

s OLUti On

fk

mg

θ

F
S

S

nS

S

Figure 5.6  (Examples 5.1 and 5.2) An 
Eskimo pulling a sled with a rope at an angle 
u to the horizontal.

(a) Find the work done when the force is horizontal.

Use Equation 5.2, substituting the given values: W 5 F x Dx 5 (1.20 3 102 N)(5.00 m) 5   6.00 3 102 J 

(b) Find the work done when the force is exerted at a 
30° angle.

Use Equation 5.3, again substituting the given values: W 5 (F cos u)d 5 (1.20 3 102 N)(cos 30°)(5.00 m)

5   5.20 3 102 J

re Mar Ks  The normal force nS, the gravitational force mgS, and the upward component of the applied force do no work 
on the sled because they’re perpendicular to the displacement. The mass of the sled didn’t come into play here, but it is 
important when the effects of friction must be calculated, and in the next section, where we introduce the work–energy 
theorem.

(c) How much work does a friction force of 45.0 N do on 
the sled as it travels from a coordinate position of 12.4 m 
to 18.2 m?

Use Equation 5.2, with Fx replaced by fk : W fric5 Fx Dx 5 fk(xf 2 xi)

Substitute fk 5 245.0 N and the initial and final coordi-
nate positions into xi and xf :

W fric5 (245.0 N)(18.2 m 2 12.4 m) 5   2 2.6 3 102 J
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(Continued)

QUes t i On  5.1  How does the answer for the work done by the applied force change if the load is doubled? Explain.

e Xer Ci se  5.1  Suppose the Eskimo is pushing the same 50.0-kg sled across level terrain with a force of 50.0 N. (a) If he 
does 4.00 3 102 J of work on the sled while exerting the force horizontally, through what distance must he have pushed 
it? (b) If he exerts the same force at an angle of 45.0° with respect to the horizontal and moves the sled through the same 
distance, how much work does he do on the sled?

a ns We r s  (a) 8.00 m (b) 283 J

Work and Dissipative Forces
Frictional work is extremely important in everyday life because doing almost any 
other kind of work is impossible without it. The Eskimo in the last example, 
for instance, depends on surface friction to pull his sled. Otherwise, the rope 
would slip in his hands and exert no force on the sled, while his feet slid out 
from underneath him and he fell flat on his face. Cars wouldn’t work without 
friction, nor could conveyor belts, nor even our muscle tissue.

The work done by pushing or pulling an object is the application of a single 
force. Friction, on the other hand, is a complex process caused by numerous 
microscopic interactions over the entire area of the surfaces in contact. Con-
sider a metal block sliding over a metal surface. Microscopic “teeth” in the 
block encounter equally microscopic irregularities in the underlying surface. 
Pressing against each other, the teeth deform, get hot, and weld to the oppo-
site surface. Work must be done breaking these temporary bonds, and that 
comes at the expense of the energy of motion of the block, to be discussed in 
the next section. The energy lost by the block goes into heating both the block 
and its environment, with some energy converted to sound.

The friction force of two objects in contact and in relative motion to each 
other always dissipates energy in these relatively complex ways. For our purposes, 
the phrase “work done by friction” will denote the effect of these processes on 
mechanical energy alone.

The edge of a razor blade looks 
smooth to the eye, but under a 
microscope proves to have numerous 
irregularities.
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 ■ e Xa Mp Le  5.2 More Sledding

g Oa L  Calculate the work done by friction when an object is acted on by an applied force.

pr Ob Le M  Suppose that in Example 5.1 the coefficient 
of kinetic friction between the loaded 50.0-kg sled and 
snow is 0.200. (a) The Eskimo again pulls the sled 5.00 m, 
exerting a force of 1.20 3 102 N at an angle of 0°. Find the 
work done on the sled by friction, and the net work. (b) 
Repeat the calculation if the applied force is exerted at an 
angle of 30.0° with the horizontal.

s t r at e g Y  See Figure 5.6. The frictional work depends 
on the magnitude of the kinetic friction coefficient, the 
normal force, and the displacement. Use the y- component 
of Newton’s second law to find the normal force nS, calculate 
the work done by friction using the definitions, and sum 
with the result of Example 5.1(a) to obtain the net work on 
the sled. Part (b) is solved similarly, but the normal force is 
smaller because it has the help of the applied force F

S

app in 
supporting the load.

s OLUti On
(a) Find the work done by friction on the sled and the net 
work, if the applied force is horizontal.

First, find the normal force from the y -component of 
Newton’s second law, which involves only the normal 
force and the force of gravity:

o Fy 5 n 2 mg 5 0 : n 5 mg

Use the normal force to compute the work done by 
friction:

Wfric 5 2fk Dx 5 2mkn Dx 5 2mkmg Dx

5 2(0.200)(50.0 kg)(9.80 m/s2)(5.00 m)

5   24.90 3 102 J
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5.2     Kinetic Energy and  
the Work–Energy Theorem
Learning Obje Ctives

1. Define kinetic energy and derive the work–energy theorem.

2. Apply the work–energy theorem in elementary physical contexts.

3. Categorize forces as conservative or non-conservative forces.

Solving problems using Newton’s second law can be difficult if the forces involved 
are complicated. An alternative is to relate the speed of an object to the net work 
done on it by external forces. If the net work can be calculated for a given displace-
ment, the change in the object’s speed is easy to evaluate.

Figure 5.7 shows an object of mass m moving to the right under the action of a 
constant net force F

S

net, also directed to the right. Because the force is constant, we 
know from Newton’s second law that the object moves with constant acceleration aS. 
If the object is displaced by Dx, the work done by F

S

net on the object is

 Wnet 5 Fnet Dx 5 (ma) Dx [5.4]

In Chapter 2, we found that the following relationship holds when an object under-
goes constant acceleration:

v2 5 v0
2 1 2a Dx  or  a Dx 5

v2 2 v0
2

2

Sum the frictional work with the work done by the 
applied force from Example 5.1 to get the net work (the 
normal and gravity forces are perpendicular to the dis-
placement, so they don’t contribute):

Wnet 5 Wapp 1 Wfric 1 Wn 1 Wg

5 6.00 3 102 J 1 (24.90 3 102 J) 1 0 1 0

5  1.10 3 102 J

(b) Recalculate the frictional work and net work if the 
applied force is exerted at a 30.0° angle.

Find the normal force from the y -component of Newton’s 
second law:

o Fy 5 n 2 mg 1 Fapp sin u 5 0

n 5 mg 2 Fapp sin u

Use the normal force to calculate the work done by 
friction:

Wfric 5 2fk Dx 5 2mkn Dx 5 2mk(mg 2 Fapp sin u) Dx

5 2(0.200)(50.0 kg ? 9.80 m/s2

21.20 3 102 N sin 30.0°)(5.00 m)

Wfric 5   24.30 3 102 J

Sum this answer with the result of Example 5.1(b) to get 
the net work (again, the normal and gravity forces don’t 
contribute):

Wnet 5 Wapp 1 Wfric 1 Wn 1 Wg

5 5.20 3 102 J 2 4.30 3 102 J 1 0 1 0 5  9.0 3 101 J

re Mar Ks   The most important thing to notice here is that exerting the applied force at different angles can dramati-
cally affect the work done on the sled. Pulling at the optimal angle (11.3° in this case) will result in the most net work for 
the same applied force.

QUes t i On  5.2  How does the net work change in each case if the displacement is doubled?

e Xer Ci se  5.2  (a) The Eskimo pushes the same 50.0-kg sled over level ground with a force of 1.75 3 102 N exerted 
horizontally, moving it a distance of 6.00 m over new terrain. If the net work done on the sled is 1.50 3 102 J, find the 
coefficient of kinetic friction. (b) Repeat the exercise with the same data, finding the coefficient of kinetic friction, but 
assume the applied force is upwards at a 45.0° angle with the horizontal.

a ns Wer s   (a) 0.306 (b) 0.270

m Fnet
S

Fnet
S

�xS

vi � v0
S S vf � vS S

Figure 5.7  An object undergoes a 
displacement and a change in veloc-
ity under the action of a constant net 
force F

S

net.
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We can substitute this expression into Equation 5.4 to get

Wnet 5 m av
2 2 v0

2

2
b

or

Wnet 5 1
2mv

2 2 1
2mv0

2  [5.5]

So the net work done on an object equals a change in a quantity of the form 
1
2mv

2. Because this term carries units of energy and involves the object’s speed, it 
can be interpreted as energy associated with the object’s motion, leading to the 
following definition:

The kinetic energy KE of an object of mass m moving with a speed v is

 KE ;
1
2mv

2 [5.6]

SI unit: joule (J) 5 kg ? m2/s2

Like work, kinetic energy is a scalar quantity. Using this definition in Equation 5.5, 
we arrive at an important result known as the work–energy theorem:

The net work done on an object is equal to the change in the object’s kinetic 
energy:

Wnet 5 KEf 2 KEi 5 DKE [5.7]

where the change in the kinetic energy is due entirely to the object’s change 
in speed.

The proviso on the speed is necessary because work that deforms or causes the 
object to warm up invalidates Equation 5.7, although under most circumstances 
it remains approximately correct. From that equation, a positive net work Wnet 
means that the final kinetic energy KEf is greater than the initial kinetic energy 
KEi. This, in turn, means that the object’s final speed is greater than its initial 
speed. So positive net work increases an object’s speed, and negative net work 
decreases its speed.

We can also turn Equation 5.7 around and think of kinetic energy as the 
work a moving object can do in coming to rest. For example, suppose a ham-
mer is on the verge of striking a nail, as in Figure 5.8. The moving hammer has 
kinetic energy and can therefore do work on the nail. The work done on the 
nail is F Dx, where F is the average net force exerted on the nail and Dx is the dis-
tance the nail is driven into the wall. That work, plus small amounts of energy 
carried away by heat and sound, is equal to the change in kinetic energy of the 
hammer, DKE.

For convenience, the work–energy theorem was derived under the assumption 
that the net force acting on the object was constant. A more general derivation, 
using calculus, would show that Equation 5.7 is valid under all circumstances, 
including the application of a variable force.

b Kinetic energy

b Work–energy theorem

 ■ a pp LYi ng  ph Ysi Cs  5.1 Leaving Skid Marks

Suppose a car traveling at a speed v skids a distance d after 
its brakes lock. Estimate how far it would skid if it were 
traveling at speed 2v when its brakes locked.

e Xp La n at i On  Assume for simplicity that the force of 
kinetic friction between the car and the road surface is con-
stant and the same at both speeds. From the work–energy  

theorem, the net force exerted on the car times the displace-
ment of the car, Fnet Dx, is equal in magnitude to its initial 
kinetic energy, 12mv2. When the speed is doubled, the kinetic 
energy of the car is quadrupled. So for a given applied fric-
tion force, the distance traveled must increase fourfold when 
the initial speed is doubled, and the estimated distance the 
car skids is 4d. ■

Figure 5.8  The moving hammer 
has kinetic energy and can do work 
on the nail, driving it into the wall.
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 ■ e Xa Mp Le  5.3 Collision Analysis

g Oa L  Apply the work–energy theorem with a known force.

pr Ob Le M  The driver of a 1.00 3 103 kg car traveling on the interstate at 35.0 m/s 
(nearly 80.0 mph) slams on his brakes to avoid hitting a second vehicle in front of him, 
which had come to rest because of congestion ahead (Fig. 5.9). After the brakes are 
applied, a constant kinetic friction force of magnitude 8.00 3 103 N acts on the car. 
Ignore air resistance. (a) At what minimum distance should the brakes be applied to 
avoid a collision with the other vehicle? (b) If the distance between the vehicles is ini-
tially only 30.0 m, at what speed would the collision occur?

s t r at e g Y  Compute the net work, which involves just the kinetic friction, because the normal and gravity forces are 
perpendicular to the motion. Then set the net work equal to the change in kinetic energy. To get the minimum distance 
in part (a), we take the final speed vf to be zero just as the braking vehicle reaches the rear of the vehicle at rest. Solve for 
the unknown, Dx. For part (b) proceed similarly, except that the unknown is the final velocity vf .

s OLUti On

�xS

vi
S

fk
S

 

Figure 5.9  (Example 5.3) A brak-
ing vehicle just prior to an accident.

(a) Find the minimum necessary stopping distance.

Apply the work–energy theorem to the car: Wnet 5 1
2mvf 

2 2 1
2mvi

2

Substitute an expression for the frictional work and set  
vf 5 0:

2fk Dx 5 0 2 1
2mvi

2

Substitute vi 5 35.0 m/s, fk 5 8.00 3 103 N, and  
m 5 1.00 3 103 kg. Solve for Dx:

2 18.00 3 103 N 2 Dx 5 21
2 11.00 3 103 kg 2 135.0 m/s 22

Dx 5   76.6 m

(b) At the given distance of 30.0 m, the car is too close 
to the other vehicle. Find the speed at impact.

Write down the work–energy theorem: Wnet 5 Wfric 5 2fk Dx 5 1
2mvf 

2 2 1
2mvi

2

Multiply by 2/m and rearrange terms, solving for the 
final velocity vf :

vf
2 5 vi

2 2
2
m

 fk Dx

vf
2 5 135.0 m/s 22 2 a 2

1.00 3 103 kg
b(8.00 3 103 N)(30.0 m)

5 745 m2/s2

vf 5   27.3 m/s

re Mar Ks  This calculation illustrates how important it is to remain alert on the highway, allowing for an adequate stop-
ping distance at all times. It takes about a second to react to the brake lights of the car in front of you. On a high-speed 
highway, your car may travel more than 30 m before you can engage the brakes. Bumper-to-bumper traffic at high speed, 
which often occurs on the highways near big cities, is extremely unsafe.

QUes t i On  5.3  Qualitatively, how would the answer for the final velocity change in part (b) if it’s raining during the 
incident? Explain.

e Xer Ci se  5.3  A police investigator measures straight skid marks 27.0 m long in an accident investigation. Assuming a fric-
tion force and car mass the same as in the previous problem, what was the minimum speed of the car when the brakes locked?

a ns We r  20.8 m/s

Conservative and Nonconservative Forces
It turns out there are two general kinds of forces. The first is called a conservative 
force. Gravity is probably the best example of a conservative force. To understand 
the origin of the name, think of a diver climbing to the top of a 10-meter platform. 
The diver has to do work against gravity in making the climb. Once at the top, 
however, she can recover the work as kinetic energy by taking a dive. Her speed 
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just before hitting the water will give her a kinetic energy equal to the 
work she did against gravity in climbing to the top of the platform, 
minus the effect of some nonconservative forces, such as air drag and 
internal muscular friction.

A nonconservative force is generally dissipative, which means that 
it tends to randomly disperse the energy of bodies on which it acts. 
This dispersal of energy often takes the form of heat or sound. Kinetic 
friction and air drag are good examples. Propulsive forces, like the 
force exerted by a jet engine on a plane or by a propeller on a subma-
rine, are also nonconservative.

Work done against a nonconservative force can’t be easily recov-
ered. Dragging objects over a rough surface requires work. When the Eskimo in 
Example 5.2 dragged the sled across terrain having a nonzero coefficient of fric-
tion, the net work was smaller than in the frictionless case. The missing energy 
went into warming the sled and its environment. As will be seen in the study of 
thermodynamics, such losses can’t be avoided, nor all the energy recovered, so 
these forces are called nonconservative.

Another way to characterize conservative and nonconservative forces is to mea-
sure the work done by a force on an object traveling between two points along dif-
ferent paths. The work done by gravity on someone going down a frictionless slide, 
as in Figure 5.10, is the same as that done on someone diving into the water from 
the same height. This equality doesn’t hold for nonconservative forces. For example, 
sliding a book directly from point � to point � in Figure 5.11 requires a certain 
amount of work against friction, but sliding the book along the three other legs of 
the square, from � to �, � to �, and finally � to �, requires three times as much 
work. This observation motivates the following definition of a conservative force:

A force is conservative if the work it does moving an object between two 
points is the same no matter what path is taken.

Nonconservative forces, as we’ve seen, don’t have this property. The work–energy 
theorem, Equation 5.7, can be rewritten in terms of the work done by conservative 
forces Wc and the work done by nonconservative forces Wnc because the net work is 
just the sum of these two:

 Wnc 1 Wc 5 DKE [5.8]

It turns out that conservative forces have another useful property: The work they 
do can be recast as something called potential energy, a quantity that depends 
only on the beginning and end points of a curve, not the path taken.

5.3    Gravitational Potential Energy
Learning Obje Ctives

1. Understand the relationship between gravitational potential energy and  
gravitational work.

2. Apply the conservation of mechanical energy to solving problems.

3. Extend and apply the work–energy theorem to problems involving gravity.

An object with kinetic energy (energy of motion) can do work on another object, 
just like a moving hammer can drive a nail into a wall. A brick on a high shelf can 
also do work: it can fall off the shelf, accelerate downwards, and hit a nail squarely, 
driving it into the floorboards. The brick is said to have potential energy associ-
ated with it, because from its location on the shelf it can potentially do work.

Potential energy is a property of a system, rather than of a single object, because 
it’s due to the relative positions of interacting objects in the system, such as the 
position of the diver in Figure 5.10 relative to the Earth. In this chapter we define 

b Conservative force

�

�

�

�
Physics

The work done in moving 
the book is greater along 
the rust-colored path than 
along the blue path.

Figure 5.11  Because friction is 
a nonconservative force, a book 
pushed along the three segments 
�–�, �–�, and �–� requires 
three times the work as pushing the 
book directly from � to �.

Figure 5.10  Because the grav-
ity field is conservative, the diver 
regains as kinetic energy the work 
she did against gravity in climbing 
the ladder. Taking the frictionless 
slide gives the same result.

37027_ch05_ptg01_hr_127-169.indd   135 19/08/13   2:21 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



136  Chap t e r  5 | Energy

Unless otherwise noted, all content on this page is © Cengage Learning.

a system as a collection of objects interacting via forces or other processes that are 
internal to the system. It turns out that potential energy is another way of looking 
at the work done by conservative forces.

Gravitational Work and Potential Energy
Using the work–energy theorem in problems involving gravitation requires com-
puting the work done by gravity. For most trajectories—say, for a ball traversing a 
parabolic arc—finding the gravitational work done on the ball requires sophisti-
cated techniques from calculus. Fortunately, for conservative fields there’s a simple 
alternative: potential energy.

Gravity is a conservative force, and for every conservative force a special expres-
sion called a potential energy function can be found. Evaluating that function at 
any two points in an object’s path of motion and finding the difference will give the 
negative of the work done by that force between those two points. It’s also advanta-
geous that potential energy, like work and kinetic energy, is a scalar quantity.

Our first step is to find the work done by gravity on an object when it moves 
from one position to another. The negative of that work is the change in the gravi-
tational potential energy of the system, and from that expression, we’ll be able to 
identify the potential energy function.

In Figure 5.12, a book of mass m falls from a height yi to a height yf , where the pos-
itive y-coordinate represents position above the ground. We neglect the force of air 
friction, so the only force acting on the book is gravitation. How much work is done? 
The magnitude of the force is mg and that of the displacement is Dy 5 yi 2 yf (a posi-
tive number), while both F

S

 and DyS are pointing downwards, so the angle between 
them is zero. We apply the definition of work in Equation 5.3, with d 5 yi 2 yf :

 Wg 5 Fd cos u 5 mg (yi 2 yf) cos 0° 5 2mg (yf 2 yi) [5.9]

Factoring out the minus sign was deliberate, to clarify the coming connec-
tion to potential energy. Equation 5.9 for gravitational work holds for any object, 
regardless of its trajectory in space, because the gravitational force is conservative. 
Now, Wg will appear as the work done by gravity in the work–energy theorem. For 
the rest of this section, assume for simplicity that we are dealing only with systems 
involving gravity and nonconservative forces. Then Equation 5.8 can be written as

Wnet 5 Wnc 1 Wg 5 DKE

where Wnc is the work done by the nonconservative forces. Substituting the expres-
sion for Wg from Equation 5.9, we obtain

 Wnc 2 mg (yf 2 yi) 5 DKE [5.10a]

Next, we add mg(yf 2 yi) to both sides:

 Wnc 5 DKE 1 mg (yf 2 yi) [5.10b]

Now, by definition, we’ll make the connection between gravitational work and 
gravitational potential energy.

The gravitational potential energy of a system consisting of Earth and an 
object of mass m near Earth’s surface is given by

 PE ; mgy [5.11]

where g is the acceleration of gravity and y is the vertical position of the mass 
relative the surface of Earth (or some other reference point).

SI unit: joule (J)

In this definition, y 5 0 is usually taken to correspond to Earth’s surface, but that 
is not strictly necessary, as discussed in the next subsection. It turns out that only 
differences in potential energy really matter.

Gravitational potential c

energy

gS 

gS 

yi

yf
m

Physics

Physics

The work done by the 
gravitational force as 
the book falls equals 
mgyi � mgyf .

m

�yS

Figure 5.12  A book of mass m falls 
from a height yi to a height yf .
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So the gravitational potential energy associated with an object located near the 
surface of Earth is the object’s weight mg times its vertical position y above Earth. 
From this definition, we have the relationship between gravitational work and gravi-
tational potential energy:

 Wg 5 2(PEf 2 PEi) 5 2(mgyf 2 mgyi) [5.12]

The work done by gravity is one and the same as the negative of the change in 
gravitational potential energy.

Finally, using the relationship in Equation 5.12 in Equation 5.10b, we obtain an 
extension of the work–energy theorem:

 Wnc 5 (KEf 2 KEi ) 1 (PEf 2 PEi ) [5.13]

This equation says that the work done by nonconservative forces, Wnc, is equal to the 
change in the kinetic energy plus the change in the gravitational potential energy.

Equation 5.13 will turn out to be true in general, even when other conservative  
forces besides gravity are present. The work done by these additional conserva-
tive forces will again be recast as changes in potential energy and will appear on 
the right-hand side along with the expression for gravitational potential energy.

Reference Levels for Gravitational Potential Energy
In solving problems involving gravitational potential energy, it’s important to 
choose a location at which to set that energy equal to zero. Given the form of 
Equation 5.11, this is the same as choosing the place where y 5 0. The choice is 
completely arbitrary because the important quantity is the difference in potential 
energy, and this difference will be the same regardless of the choice of zero level. 
However, once this position is chosen, it must remain fixed for a given problem.

While it’s always possible to choose the surface of Earth as the reference posi-
tion for zero potential energy, the statement of a problem will usually suggest a 
convenient position to use. As an example, consider a book at several possible loca-
tions, as in Figure 5.13. When the book is at �, a natural zero level for potential 
energy is the surface of the desk. When the book is at �, the floor might be a more 
convenient reference level. Finally, a location such as �, where the book is held out 
a window, would suggest choosing the surface of Earth as the zero level of poten-
tial energy. The choice, however, makes no difference: Any of the three reference 
levels could be used as the zero level, regardless of whether the book is at �, �, or 
�. Example 5.4 illustrates this important point.

t ip 5.3  Potential Energy 
Takes Two
Potential energy always takes a 
system of at least two interacting 
objects—for example, the Earth 
and a baseball interacting via the 
gravitational force.

 ■ e Xa Mp Le  5.4 Wax Your Skis

g Oa L Calculate the change in gravitational potential energy for different 
choices of reference level.

pr Ob Le M A 60.0-kg skier is at the top of a slope, as shown in Figure 
5.14. At the initial point �, she is 10.0 m vertically above point �. (a) Set-
ting the zero level for gravitational potential energy at �, find the gravi-
tational potential energy of this system when the skier is at � and then at 
�. Finally, find the change in potential energy of the skier–Earth system as 
the skier goes from point � to point �. (b) Repeat this problem with the 
zero level at point �. (c) Repeat again, with the zero level 2.00 m higher 
than point �.

s t r at e g Y Follow the definition and be careful with signs. � is the ini-
tial point, with gravitational potential energy PEi, and � is the final point, 
with gravitational potential energy PEf . The location chosen for y 5 0 is 
also the zero point for the potential energy, because PE 5 mgy.

10.0 m

�

�

Figure 5.14  (Example 5.4)

� � �

Figure 5.13  Any reference level—
the desktop, the floor of the room,  
or the ground outside the building— 
can be used to represent zero gravita-
tional potential energy in the book–
Earth system.

(Continued)
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s OLUti On
(a) Let y 5 0 at �. Calculate the potential energy at � 
and at �, and calculate the change in potential energy.

Find PEi, the potential energy at �, from Equation 5.11: PEi 5 mgyi 5 (60.0 kg)(9.80 m/s2)(10.0 m) 5 5.88 3 103 J

PEf 5 0 at � by choice. Find the difference in potential 
energy between � and �:

PEf 2 PEi 5 0 2 5.88 3 103 J 5   25.88 3 103 J

(b) Repeat the problem if y 5 0 at �, the new reference 
point, so that PE 5 0 at �.

Find PEf , noting that point � is now at y 5 210.0 m: PEf 5 mgyf 5 (60.0 kg)(9.80 m/s2)(210.0 m)

5 25.88 3 103 J

PEf 2 PEi 5 25.88 3 103 J 2 0 5   25.88 3 103 J

(c) Repeat the problem, if y 5 0 two meters above �.

Find PEi,  the potential energy at �: PEi 5 mgyi 5 (60.0 kg)(9.80 m/s2)(8.00 m) 5 4.70 3 103 J

Find PEf , the potential energy at �: PEf 5 mgyf 5 (60.0 kg)(9.8 m/s2)(22.00 m)

5 21.18 3 103 J

Compute the change in potential energy: PEf 2 PEi 5 21.18 3 103 J 2 4.70 3 103 J

5   25.88 3 103 J

re Mar Ks  These calculations show that the change in the gravitational potential energy when the skier goes from the 
top of the slope to the bottom is 25.88 3 103 J, regardless of the zero level selected.

QUes t i On  5.4  If the angle of the slope is increased, does the change of gravitational potential energy between two 
heights (a) increase, (b) decrease, (c) remain the same?

e Xer Ci se  5.4  If the zero level for gravitational potential energy is selected to be midway down the slope, 5.00 m above 
point �, find the initial potential energy, the final potential energy, and the change in potential energy as the skier goes 
from point � to � in Figure 5.14.

a ns We r  2.94 kJ, 22.94 kJ, 25.88 kJ

Gravity and the Conservation of Mechanical Energy
Conservation principles play a very important role in physics. When a physical quan-
tity is conserved the numeric value of the quantity remains the same throughout 
the physical process. Although the form of the quantity may change in some way, 
its final value is the same as its initial value.

The kinetic energy KE of an object falling only under the influence of gravity is 
constantly changing, as is the gravitational potential energy PE. Obviously, then, 
these quantities aren’t conserved. Because all nonconservative forces are assumed 
absent, however, we can set Wnc 5 0 in Equation 5.13. Rearranging the equation, 
we arrive at the following very interesting result:

 KEi 1 PEi 5 KEf 1 PEf [5.14]

According to this equation, the sum of the kinetic energy and the gravitational 
potential energy remains constant at all times and hence is a conserved quantity. 
We denote the total mechanical energy by E 5 KE 1 PE, and say that the total 
mechanical energy is conserved.

To show how this concept works, think of tossing a rock off a cliff, ignoring the 
drag forces. As the rock falls, its speed increases, so its kinetic energy increases. As 
the rock approaches the ground, the potential energy of the rock–Earth system 
decreases. Whatever potential energy is lost as the rock moves downward appears 
as kinetic energy, and Equation 5.14 says that in the absence of nonconservative 

t ip 5.4  Conservation 
Principles
There are many conservation laws 
like the conservation of mechani-
cal energy in isolated systems, as 
in Equation 5.14. For example, 
momentum, angular momen-
tum, and electric charge are all 
conserved quantities, as will be 
seen later. Conserved quantities 
may change form during physical 
interactions, but their sum total 
for a system never changes.
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forces like air drag, the trading of energy is exactly even. This is true for all conser-
vative forces, not just gravity.

In any isolated system of objects interacting only through conservative forces, 
the total mechanical energy E 5 KE 1 PE, of the system, remains the same 
at all times.

If the force of gravity is the only force doing work within a system, then the prin-
ciple of conservation of mechanical energy takes the form

1
2mvi

2 1 mgyi 5 1
2mvf

2 1 mgyf  [5.15]

This form of the equation is particularly useful for solving problems explicitly 
involving only one mass and gravity. In that special case, which occurs commonly, 
notice that the mass cancels out of the equation. However, that is possible only 
because any change in kinetic energy of the Earth in response to the gravity field 
of the object of mass m has been (rightfully) neglected. In general, there must 
be kinetic energy terms for each object in the system, and gravitational potential 
energy terms for every pair of objects. Further terms have to be added when other 
conservative forces are present, as we’ll soon see.

■ Quick Quiz

5.2  Three identical balls are thrown from the top of a building, all with the same 
initial speed. The first ball is thrown horizontally, the second at some angle above 
the horizontal, and the third at some angle below the horizontal, as in Figure 5.15. 
Neglecting air resistance, rank the speeds of the balls as they reach the ground, 
from fastest to slowest. (a) 1, 2, 3 (b) 2, 1, 3 (c) 3, 1, 2 (d) All three balls strike the 
ground at the same speed.

5.3  Bob, of mass m, drops from a tree limb at the same time that Esther, also of 
mass m, begins her descent down a frictionless slide. If they both start at the same 
height above the ground, which of the following is true about their kinetic energies 
as they reach the ground?

(a) Bob’s kinetic energy is greater than Esther’s.

(b) Esther’s kinetic energy is greater than Bob’s.

(c) They have the same kinetic energy.

(d) The answer depends on the shape of the slide.

 ■ pr Ob Le M-s OLv i ng  s t r at e g Y

Applying Conservation of Mechanical Energy
Take the following steps when applying conservation of mechanical energy to problems 
involving gravity:

1. Define the system, including all interacting bodies. Verify the absence of non-
conservative forces.

2. Choose a location for y 5 0, the zero point for gravitational potential energy.
3. Select the body of interest and identify two points—one point where you have 

given information and the other point where you want to find out something 
about the body of interest.

4. Write down the conservation of energy equation, Equation 5.15, for the sys-
tem. Identify the unknown quantity of interest.

5. Solve for the unknown quantity, which is usually either a speed or a position, 
and substitute known values.

As previously stated, it’s usually best to do the algebra with symbols rather than 
substituting known numbers first, because it’s easier to check the symbols for pos-
sible errors. The exception is when a quantity is clearly zero, in which case immedi-
ate substitution greatly simplifies the ensuing algebra.

b  Conservation of mechanical 
energy

2
1

3

Figure 5.15 (Quick Quiz 5.2) A 
student throws three identical balls 
from the top of a building, each at 
the same initial speed but at a differ-
ent initial angle.
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 ■ e Xa Mp Le  5.6 The Jumping Bug

g Oa L  Use conservation of mechanical energy and concepts from ballistics in 
two dimensions to calculate a speed.

pr Ob Le M  A powerful grasshopper launches itself at an angle of 45° above 
the horizontal and rises to a maximum height of 1.00 m during the leap. (See 
Fig. 5.17.) With what speed vi did it leave the ground? Neglect air resistance.

s t r at e g Y  This problem can be solved with conservation of energy and 
the relation between the initial velocity and its x -component. Aside from the 
origin, the other point of interest is the maximum height y 5 1.00 m, where 
the grasshopper has a velocity vx in the x -direction only. Energy conservation 
then gives one equation with two unknowns: the initial speed vi and speed at 
maximum height, vx. Because there are no forces in the x-direction, however, vx is the same as the x-component of the 
initial velocity.

 ■ e Xa Mp Le  5.5 Platform Diver

g Oa L  Use conservation of energy to calculate the speed of a 
body falling straight down in the presence of gravity.

pr Ob Le M  A diver of mass m drops from a board 10.0 m above 
the water’s surface, as in Figure 5.16. Neglect air resistance. (a) Use 
conservation of mechanical energy to find his speed 5.00 m above 
the water’s surface. (b) Find his speed as he hits the water.

s t r at e g Y  Refer to the problem-solving strategy. Step 1: 
The system consists of the diver and Earth. As the diver falls, 
only the force of gravity acts on him (neglecting air drag), so 
the mechanical energy of the system is conserved, and we can 
use conservation of energy for both parts (a) and (b). Step 2:  
Choose y 5 0 for the water’s surface. Step 3: In part (a), y 5 10.0 m  
and y 5 5.00 m are the points of interest, while in part (b), y 5 10.0 m and y 5 0 m are of interest.

s OLUti On

10.0 m

5.00 m

K Ei = 0
P Ei = mg

m

yi

K Ef  = mvf
2

P Ef  = 00

1
2Figure 5.16  (Example 5.5) 

The zero of gravitational 
potential energy is taken to  
be at the water’s surface.

y

x

vy = 0

vx

ymax = hZero level of
gravitational

potential energy45°

vi
S

Figure 5.17  (Example 5.6)

(a) Find the diver’s speed halfway down, at y 5 5.00 m.

Step 4: We write the energy conservation equation and 
supply the proper terms:

KEi 1 PEi 5 KEf 1 PEf 
1
2mvi

2 1 mgyi 5 1
2mvf 

2 1 mgyf

Step 5: Substitute vi 5 0, cancel the mass m, and solve  
for vf :

0 1 gyi 5 1
2vf 

2 1 gyf
vf 5 "2g 1yi 2 yf 2 5 "2 19.80 m/s2 2 110.0 m 2 5.00 m 2
vf 5   9.90 m/s

(b) Find the diver’s speed at the water’s surface, y 5 0.

Use the same procedure as in part (a), taking yf 5 0: 0 1 mgyi 5 1
2mvf 

2 1 0

vf 5 "2gyi 5 "2 19.80 m/s2 2 110.0 m 2  5  14.0 m/s

re Mar Ks  Notice that the speed halfway down is not half the final speed. Another interesting point is that the final 
answer doesn’t depend on the mass. That is really a consequence of neglecting the change in kinetic energy of Earth, 
which is valid when the mass of the object, the diver in this case, is much smaller than the mass of Earth. In reality,  
Earth also falls towards the diver, reducing the final speed, but the reduction is so minuscule it could never be measured.

QUes t i On  5.5  Qualitatively, how will the answers change if the diver takes a running dive off the end of the board?

e Xer Ci se  5.5  Suppose the diver vaults off the springboard, leaving it with an initial speed of 3.50 m/s upward. Use 
energy conservation to find his speed when he strikes the water.

a ns We r  14.4 m/s
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s OLUti On
Use energy conservation: 1

2mvi
2 1 mg yi 5 1

2mvf
2 1 mg yf

Substitute yi 5 0, vf 5 vx, and yf 5 h: 1
2mvi

2 5 1
2mvx

2 1 mgh

Multiply each side by 2/m, obtaining one equation and 
two unknowns:

(1) vi
2 5 vx

2 1 2gh

Eliminate vx by substituting vx 5 vi cos 458 into Equation 
(1), solving for vi, and substituting known values:

vi
2 5 1vi cos 458 22 1 2gh 5 1

2vi
2 1 2gh

vi 5 2"gh 5 2"19.80 m/s2 2 11.00 m 2  5  6.26 m/s

re Mar Ks  The final answer is a surprisingly high value and illustrates how strong insects are relative to their size.

QUes t i On  5.6  All other given quantities remaining the same, how would the answer change if the initial angle were 
smaller? Why?

e Xer Ci se  5.6  A catapult launches a rock at a 30.0° angle with respect to the horizontal. Find the maximum height 
attained if the speed of the rock at its highest point is 30.0 m/s.

a ns We r  15.3 m

Gravity and Nonconservative Forces
When nonconservative forces are involved along with gravitation, the full work–
energy theorem must be used, often with techniques from Chapter 4. Solv-
ing problems requires the basic procedure of the problem-solving strategy for 
conservation-of-energy problems in the previous section. The only difference lies 
in substituting Equation 5.13, the work–energy equation with potential energy, for 
Equation 5.15.

t ip 5.5  Don’t Use Work 
Done by the Force of 
Gravity and Gravitational 
Potential Energy!
Gravitational potential energy is 
just another way of including the 
work done by the force of gravity  
in the work–energy theorem. 
Don’t use both of them in the 
same equation or you’ll count it 
twice!

 ■ e Xa Mp Le  5.7 Der Stuka!

g Oa L  Use the work–energy theorem with gravitational potential energy 
to calculate the work done by a nonconservative force.

pr Ob Le M  Waterslides are nearly frictionless, hence can provide bored 
students with high-speed thrills (Fig. 5.18). One such slide, Der Stuka, 
named for the terrifying German dive bombers of World War II, is 72.0 feet 
high (21.9 m), found at Six Flags in Dallas, Texas, and at Wet’n Wild in 
Orlando, Florida. (a) Determine the speed of a 60.0-kg woman at the bot-
tom of such a slide, assuming no friction is present. (b) If the woman is 
clocked at 18.0 m/s at the bottom of the slide, find the work done on the 
woman by friction.

s t r at e g Y  The system consists of the woman, Earth, and the slide. The 
normal force, always perpendicular to the displacement, does no work. Let 
y 5 0 m represent the bottom of the slide. The two points of interest are 
y 5 0 m and y 5 21.9 m. Without friction, Wnc 5 0, and we can apply conser-
vation of mechanical energy, Equation 5.15. For part (b), use Equation 5.13, 
substitute two velocities and heights, and solve for Wnc. Figure 5.18  (Example 5.7) If the slide is 

frictionless, the woman’s speed at the bottom 
depends only on the height of the slide, not on 
the path it takes.

W
et

’n
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 O

rla
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o

(Continued)
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s OLUti On
(a) Find the woman’s speed at the bottom of the slide, 
assuming no friction.

Write down Equation 5.15, for conservation of energy: 1
2mvi

2 1 mgyi 5 1
2mvf

2 1 mgyf

Insert the values vi 5 0 and vf 5 0: 0 1 mg yi 5 1
2mvf

2 1 0

Solve for vf and substitute values for g and yi: vf 5 "2g yi 5 "2 19.80 m/s2 2 121.9 m 2  5   20.7 m/s

(b) Find the work done on the woman by friction if  
vf 5 18.0 m/s , 20.7 m/s.

Write Equation 5.13, substituting expressions for the 
kinetic and potential energies:

Wnc 5 (KEf 2 KEi) 1 (PEf 2 PEi)

5 1 1
2 mvf

2 2 1
2mvi

2 2 1 1mg yf 2 mg yi 2
Substitute m 5 60.0 kg, vf 5 18.0 m/s, and vi 5 0, and 
solve for Wnc:

Wnc 5 3 1
2
# 60.0 kg # 118.0 m/s 22 2 0 4

1 30 2 60.0 kg # 19.80 m/s2 2 # 21.9 m 4
Wnc 5   23.16 3 103 J

re Mar Ks  The speed found in part (a) is the same as if the woman fell vertically through a distance of 21.9 m, consis-
tent with our intuition in Quick Quiz 5.3. The result of part (b) is negative because the system loses mechanical energy. 
Friction transforms part of the mechanical energy into thermal energy and mechanical waves, absorbed partly by the 
system and partly by the environment.

QUes t i On  5.7  If the slide were not frictionless, would the shape of the slide affect the final answer? Explain.

e Xer Ci se  5.7  Suppose a slide similar to Der Stuka is 35.0 m high, but is a straight slope, inclined at 45.0° with respect 
to the horizontal. (a) Find the speed of a 60.0-kg woman at the bottom of the slide, assuming no friction. (b) If the 
woman has a speed of 20.0 m/s at the bottom, find the change in mechanical energy due to friction and (c) the magni-
tude of the force of friction, assumed constant.

a ns We r s  (a) 26.2 m/s (b) 28.58 3 103 J (c) 173 N

 ■ e Xa Mp Le  5.8 Hit the Ski Slopes

g Oa L  Combine conservation of mechanical energy with 
the work–energy theorem involving friction on a horizontal 
surface.

pr Ob Le M  A skier starts from rest at the top of a frictionless 
incline of height 20.0 m, as in Figure 5.19. At the bottom of 
the incline, the skier encounters a horizontal surface where 
the coefficient of kinetic friction between skis and snow is 
0.210. (a) Find the skier’s speed at the bottom. (b) How far 
does the skier travel on the horizontal surface before com-
ing to rest? Neglect air resistance.

s t r at e g Y  Going down the frictionless incline is physi-
cally no different than going down the slide of the previous 
example and is handled the same way, using conservation of mechanical energy to find the speed v� at the bottom. On 
the flat, rough surface, use the work–energy theorem, Equation 5.13, with Wnc 5 Wfric 5 2fkd, where fk is the magnitude 
of the force of friction and d is the distance traveled on the horizontal surface before coming to rest.

s OLUti On

d

h � 20.0 m

�

� �ux

y

Figure 5.19  (Example 5.8) The skier slides down the slope and 
onto a level surface, stopping after traveling a distance d from the 
bottom of the hill.

(a) Find the skier’s speed at the bottom.

Follow the procedure used in part (a) of the previous 
example as the skier moves from the top, point �, to the 
bottom, point �:

v� 5 "2gh 5 "2 19.80 m/s2 2 120.0 m 2  5   19.8 m/s
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5.4    Spring Potential Energy
Learning Obje Ctives

1. Understand the relationship between spring potential energy and the work 
done by springs.

2. Extend and apply spring potential energy using the work–energy theorem.

Springs are important elements in modern technology. They are found in machines 
of all kinds, in watches, toys, cars, and trains. Springs will be introduced here, then 
studied in more detail in Chapter 13.

Work done by an applied force in stretching or compressing a spring can be 
recovered by removing the applied force, so like gravity, the spring force is conser-
vative, as long as losses through internal friction of the spring can be neglected. 
That means a potential energy function can be found and used in the work–energy 
theorem.

Figure 5.20a shows a spring in its equilibrium position, where the spring is nei-
ther compressed nor stretched. Pushing a block against the spring as in Figure 
5.20b compresses it a distance x. Although x appears to be merely a coordinate, for 
springs it also represents a displacement from the equilibrium position, which for 
our purposes will always be taken to be at x 5 0. Experimentally, it turns out that 
doubling a given displacement requires twice the force, and tripling it takes three 
times the force. This means the force exerted by the spring, Fs, must be propor-
tional to the displacement x, or

 Fs 5 2kx [5.16]

where k is a constant of proportionality, the spring constant, carrying units of new-
tons per meter. Equation 5.16 is called Hooke’s law, after Sir Robert Hooke, who 
discovered the relationship. The force Fs is often called a restoring force because the 
spring always exerts a force in a direction opposite the displacement of its end, 
tending to restore whatever is attached to the spring to its original position. For 
positive values of x, the force is negative, pointing back towards equilibrium at  
x 5 0, and for negative x, the force is positive, again pointing towards x 5 0. For a 
flexible spring, k is a small number (about 100 N/m), whereas for a stiff spring k is 
large (about 10 000 N/m). The value of the spring constant k is determined by how 
the spring was formed, its material composition, and the thickness of the wire. 
The minus sign ensures that the spring force is always directed back towards the 
equilibrium point.

re Mar Ks  Substituting the symbolic expression v� 5 !2gh into the equation for the distance d shows that d is linearly 
proportional to h: Doubling the height doubles the distance traveled.

QUes t i On  5.8  Give two reasons why skiers typically assume a crouching position down when going down a slope.

e Xer Ci se  5.8  Find the horizontal distance the skier travels before coming to rest if the incline also has a coefficient of 
kinetic friction equal to 0.210. Assume that u 5 20.0°.

a ns We r  40.3 m

(b) Find the distance traveled on the horizontal, rough 
surface.

Apply the work–energy theorem as the skier moves from 
� to �:

Wnet 5 2fkd 5 DKE 5 1
2mv�

2 2 1
2 mv�  2

Substitute v� 5 0 and fk 5 mkn 5 mkmg : 2mkmgd 5 21
2mv�

2

Solve for d: d 5
v�

2

2mkg
5

119.8 m/s 22

2 10.210 2 19.80 m/s2 2  5   95.2 m

m

m

m

x � 0

x � 0 vS

x

KEf =    mv21
2

PEs = 0

PEs =    kx21
2

KEi = 0

The spring force always acts 
toward the equilibrium point, 
which is at x � 0 in this �gure.

For an equilibrium point at 
x � 0, the spring potential 
energy is    kx2.1

2

a

b

c

Figure 5.20 (a) A spring at equi-
librium, neither compressed nor 
stretched. (b) A block of mass m on a 
frictionless surface is pushed against 
the spring. (c) When the block is 
released, the energy stored in the 
spring is transferred to the block in 
the form of kinetic energy.
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As in the case of gravitation, a potential energy, called the elastic potential 
energy, can be associated with the spring force. Elastic potential energy is another 
way of looking at the work done by a spring during motion because it is equal 
to the negative of the work done by the spring. It can also be considered stored 
energy arising from the work done to compress or stretch the spring.

Consider a horizontal spring and mass at the equilibrium position. We deter-
mine the work done by the spring when compressed by an applied force from equi-
librium to a displacement x, as in Figure 5.20b. The spring force points in the 
direction opposite the motion, so we expect the work to be negative. When we 
studied the constant force of gravity near Earth’s surface, we found the work done 
on an object by multiplying the gravitational force by the vertical displacement of 
the object. However, this procedure can’t be used with a varying force such as the 
spring force. Instead, we use the average force, F :

F 5
F0 1 F1

2
5

0 2 kx
2

5 2
kx
2

Therefore, the work done by the spring force is

Ws 5 Fx 5 2 1
2 kx

2

In general, when the spring is stretched or compressed from xi to xf , the work done 
by the spring is

Ws 5 2 11
2kxf 

2 2 1
2kxi 

2 2

The work done by a spring can be included in the work–energy theorem. Assume 
Equation 5.13 now includes the work done by springs on the left-hand side. It 
then reads

Wnc 2 11
2 kxf 

2 2 1
2 kxi 

2 2 5 DKE 1 DPEg

where PEg is the gravitational potential energy. We now define the elastic potential 
energy associated with the spring force, PEs, by

 PEs ;
1
2kx

2 [5.17]

Inserting this expression into the previous equation and rearranging gives the 
new form of the work–energy theorem, including both gravitational and elastic 
potential energy:

 Wnc 5 (KEf 2 KEi) 1 (PEgf 2 PEgi) 1 (PEsf 2 PEsi) [5.18]

where Wnc is the work done by nonconservative forces, KE is kinetic energy, PEg is 
gravitational potential energy, and PEs is the elastic potential energy. PE, formerly 
used to denote gravitational potential energy alone, will henceforth denote the 
total potential energy of a system, including potential energies due to all conserva-
tive forces acting on the system.

It’s important to remember that the work done by gravity and springs in any 
given physical system is already included on the right-hand side of Equation 5.18 as 
potential energy and should not also be included on the left as work.

Figure 5.20c shows how the stored elastic potential energy can be recovered. 
When the block is released, the spring snaps back to its original length, and the 
stored elastic potential energy is converted to kinetic energy of the block. The elas-
tic potential energy stored in the spring is zero when the spring is in the equilib-
rium position (x 5 0). As given by Equation 5.17, potential energy is also stored in 
the spring when it’s stretched. Further, the elastic potential energy is a maximum 
when the spring has reached its maximum compression or extension. Finally, 
because PEs is proportional to x 2, the potential energy is always positive when the 
spring is not in the equilibrium position.
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In the absence of nonconservative forces, Wnc 5 0, so the left-hand side of 
Equation 5.18 is zero, and an extended form for conservation of mechanical 
energy results:

 (KE 1 PEg1 PEs)i 5 (KE 1 PEg1 PEs)f [5.19]

Problems involving springs, gravity, and other forces are handled in exactly the 
same way as described in the problem-solving strategy for conservation of mechan-
ical energy, except that the equilibrium point of any spring in the problem must 
be defined in addition to the zero point for gravitational potential energy.

 ■ e Xa Mp Le  5.9 A Horizontal Spring

g Oa L  Use conservation of energy to calculate the speed of a block on a horizontal 
spring with and without friction.

pr Ob Le M  A block with mass of 5.00 kg is attached to a horizontal spring with spring 
constant k 5 4.00 3 102 N/m, as in Figure 5.21. The surface the block rests upon is fric-
tionless. If the block is pulled out to xi 5 0.050 0 m and released, (a) find the speed of the 
block when it first reaches the equilibrium point, (b) find the speed when x 5 0.025 0 m, 
and (c) repeat part (a) if friction acts on the block, with coefficient mk 5 0.150.

s t r at e g Y  In parts (a) and (b) there are no nonconservative forces, so conservation 
of energy, Equation 5.19, can be applied. In part (c) the definition of work and the 
work–energy theorem are needed to deal with the loss of mechanical energy due to 
friction.

s OLUti On

x
xi0

m

Fs
S

mgS 

fk
S

nS

Figure 5.21  (Example 5.9) A 
mass attached to a spring.

(a) Find the speed of the block at equilibrium 
point.

Start with Equation 5.19: (KE 1 PEg1 PEs)i 5 (KE 1 PEg1 PEs)f

Substitute expressions for the block’s kinetic 
energy and the potential energy, and set the 
gravity terms to zero:

(1) 1
2mvi

2 1 1
2kxi

2 5 1
2mvf

2 1 1
2kxf

2

Substitute vi 5 0, xf 5 0, and multiply by 2/m: k
m

 xi2 5 vf
2

Solve for vf  and substitute the given values: vf 5 Å
k
m

 xi 5 Å
4.00 3 102 N/m

5.00 kg
 10.050 0 m 2

5   0.447 m/s

(b) Find the speed of the block at the halfway 
point.

Set vi 5 0 in Equation (1) and multiply by 2/m:
kxi

2

m
5 vf

2 1
kxf

2

m

Solve for vf  and substitute the given values: vf 5 Å
k
m

 1xi2 2 xf
2 2

5 Å
4.00 3 102 N/m

5.00 kg
 3 10.050 m 22 2 10.025 m 22 4

5   0.387 m/s

(c) Repeat part (a), this time with friction.

Apply the work–energy theorem. The work done 
by the force of gravity and the normal force is 
zero because these forces are perpendicular to 
the motion.

Wfric 5 1
2mvf

2 2 1
2mvi

2 1 1
2kxf

2 2 1
2kxi

2
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 ■ e Xa Mp Le  5.10 Circus Acrobat

g Oa L Use conservation of mechanical energy to solve a one-
dimensional problem involving gravitational potential energy 
and spring potential energy.

pr Ob Le M A 50.0-kg circus acrobat drops from a height of 
2.00 meters straight down onto a springboard with a force con-
stant of 8.00 3 103 N/m, as in Figure 5.22. By what maximum 
distance does she compress the spring?

s t r at e g Y Nonconservative forces are absent, so conserva-
tion of mechanical energy can be applied. At the two points of 
interest, the acrobat’s initial position and the point of maximum 
spring compression, her velocity is zero, so the kinetic energy 
terms will be zero. Choose y 5 0 as the point of maximum  
compression, so the final gravitational potential energy is zero. 
This choice also means that the initial position of the acrobat is 
yi 5 h 1 d, where h is the acrobat’s initial height above the plat-
form and d is the spring’s maximum compression.

s OLUti On

Substitute vi 5 0, xf 5 0, and Wfric 5 2mknxi: 2mknxi 5 1
2 mvf

2 2 1
2kxi

2

re Mar Ks  Friction or drag from immersion in a fluid damps the motion of an object attached to a spring, eventually 
bringing the object to rest.

QUes t i On  5.9  In the case of friction, what percent of the mechanical energy was lost by the time the mass first reached 
the equilibrium point? (Hint: use the answers to parts (a) and (c).)

e Xer Ci se  5.9  Suppose the spring system in the last example starts at x 5 0 and the attached object is given a kick to 
the right, so it has an initial speed of 0.600 m/s. (a) What distance from the origin does the object travel before coming to 
rest, assuming the surface is frictionless? (b) How does the answer change if the coefficient of kinetic friction is mk 5 0.150? 
(Use the quadratic formula.)

a ns We r s  (a) 0.067 1 m (b) 0.051 2 m

Set n 5 mg and solve for vf :
1
2mvf 

2 5 1
2kxi 

2 2 mkmgxi

vf 5 Å
k
m

 xi2 2 2mkgx i

vf 5 Å
4.00 3 102 N/m

5.00 kg
 10.050 0 m 22 22 10.150 2 19.80 m/s2 2 10.050 0 m 2

vf 5   0.230 m/s

h

d

a b

Figure 5.22  (Example 5.10) 
An acrobat drops onto a spring-
board, causing it to compress.

Use conservation of mechanical energy: (1) (KE 1 PEg1 PEs)i 5 (KE 1 PEg1 PEs)f

The only nonzero terms are the initial gravitational 
potential energy and the final spring potential energy.

0 1 mg 1h 1 d 2 1 0 5 0 1 0 1 1
2 kd

2

mg 1h 1 d 2 5 1
2 kd

2

Substitute the given quantities and rearrange the equa-
tion into standard quadratic form:

150.0 kg 2 19.80 m/s2 2 12.00 m 1d 2 5 1
2 18.00 3 103 N/m 2  d 2

d 2 2 10.123 m 2d 2 0.245 m2 5 0

Solve with the quadratic formula (Equation A.8): d 5   0.560 m

re Mar Ks  The other solution, d 5 20.437 m, can be rejected because d was chosen to be a positive number at the out-
set. A change in the acrobat’s center of mass, say, by crouching as she makes contact with the springboard, also affects the 

37027_ch05_ptg01_hr_127-169.indd   146 19/08/13   2:21 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



5.4 | Spring Potential Energy  147

Unless otherwise noted, all content on this page is © Cengage Learning.

spring’s compression, but that effect was neglected. Shock absorbers often involve springs, and this example illustrates 
how they work. The spring action of a shock absorber turns a dangerous jolt into a smooth deceleration, as excess kinetic 
energy is converted to spring potential energy.

QUes t i On  5.10  Is it possible for the acrobat to rebound to a height greater than her initial height? If so, how?

e Xer Ci se  5.10  An 8.00-kg block drops straight down from a height of 1.00 m, striking a platform spring having force 
constant 1.00 3 103 N/m. Find the maximum compression of the spring.

a ns We r  d 5 0.482 m

 ■ e Xa Mp Le  5.11 A Block Projected up a Frictionless Incline

g Oa L  Use conservation of mechanical energy to solve a 
problem involving gravitational potential energy, spring 
potential energy, and a ramp.

pr Ob Le M  A 0.500-kg block rests on a horizontal, fric-
tionless surface as in Figure 5.23. The block is pressed back 
against a spring having a constant of k 5 625 N/m, com-
pressing the spring by 10.0 cm to point �. Then the block is 
released. (a) Find the maximum distance d the block travels 
up the frictionless incline if u 5 30.0°. (b) How fast is the 
block going at half its maximum height?

s t r at e g Y  In the absence of other forces, conservation of mechanical energy applies to parts (a) and (b). In part (a), 
the block starts at rest and is also instantaneously at rest at the top of the ramp, so the kinetic energies at � and � are 
both zero. Note that the question asks for a distance d along the ramp, not the height h. In part (b), the system has both 
kinetic and gravitational potential energy at �.

s OLUti On

�

�

�

k h

xi 0
x

h/2

d

θm

Figure 5.23  (Example 5.11)

(a) Find the distance the block travels up the ramp.

Apply conservation of mechanical energy: 1
2mvi

2 1 mgyi 1 1
2 kxi

2 5 1
2mvf

2 1 mgyf 1 1
2 kxf

2

Substitute vi 5 vf 5 0, yi 5 0, yf 5 h 5 d sin u, and xf 5 0: 1
2kxi

2 5 mgh 5 mgd sin u

Solve for the distance d and insert the known values: d 5

1
2kxi

2

mg sin u
5

1
2 1625 N/m 2 120.100 m 22

10.500 kg 2 19.80 m/s2 2  sin 130.08 2
5   1.28 m

(b) Find the velocity at half the height, h/2. Note that  
h 5 d sin u 5 (1.28 m) sin 30.0° 5 0.640 m.

Use energy conservation again: 1
2mvi

2 1 mgyi 1 1
2kxi

2 5 1
2mvf

2 1 mgyf 1 1
2kxf

2

Take vi 5 0, yi 5 0, yf 5 1
2 h, and xf 5 0, yielding 1

2 kxi
2 5 1

2mvf
2 1 mg 11

2 h 2

Multiply by 2/m and solve for vf : k
m

 xi2 5 vf
2 1 gh

vf 5 Å
k
m

 xi2 2 gh

5 Åa625 N/m
0.500 kg

b 120.100 m 22 2 19.80 m/s2 2 10.640 m 2

vf 5   2.50 m/s

re Mar Ks  Notice that it wasn’t necessary to compute the velocity gained upon leaving the spring: only the mechanical 
energy at each of the two points of interest was required, where the block was at rest.

(Continued)
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QUes t i On  5.11  A real spring will continue to vibrate slightly after the mass has left it. How would this affect the answer 
to part (a), and why?

e Xer Ci se  5.11  A 1.00-kg block is shot horizontally from a spring, as in the previous example, and travels 0.500 m up 
along a frictionless ramp before coming to rest and sliding back down. If the ramp makes an angle of 45.0° with respect 
to the horizontal, and the spring was originally compressed by 0.120 m, find the spring constant.

a ns We r  481 N/m

■ a pp LYi ng ph Ysi Cs  5.2 Accident Reconstruction

Sometimes people involved in automobile accidents make 
exaggerated claims of chronic pain due to subtle injuries 
to the neck or spinal column. The likelihood of injury can 
be determined by finding the change in velocity of a car 
during the accident. The larger the change in velocity, 
the more likely it is that the person suffered spinal injury 
resulting in chronic pain. How can reliable estimates for 
this change in velocity be found after the fact?

e Xp La n at i On  The metal and plastic of an automobile 
acts much like a spring, absorbing the car’s kinetic energy 
by flexing during a collision. When the magnitude of the 
difference in velocity of the two cars is under 5 mi/h, 
there is usually no visible damage, because bumpers are 
designed to absorb the impact and return to their original 

shape at such low speeds. At greater relative speeds there 
will be permanent damage to the vehicle. Despite the 
fact the structure of the car may not return to its original 
shape, a certain force per meter is still required to deform 
it, just as it takes a certain force per meter to compress a 
spring. The greater the original kinetic energy, the more 
the car is compressed during a collision, and the greater 
the damage. By using data obtained through crash tests, 
it’s possible to obtain effective spring constants for all the 
different models of cars and determine reliable estimates 
of the change in velocity of a given vehicle during an acci-
dent. Medical research has established the likelihood of 
spinal injury for a given change in velocity, and the esti-
mated velocity change can be used to help reduce insur-
ance fraud. ■

5.5    Systems and Energy Conservation
Learning Obje Ctives

1. State the work–energy theorem in terms of the total mechanical energy.

2. Discuss the different forms of energy and energy transfer, and give examples.

3. State the general principle of conservation of energy and discuss its consequences.

Recall that the work–energy theorem can be written as

Wnc 1 Wc 5 DKE

where Wnc represents the work done by nonconservative forces and Wc is the work 
done by conservative forces in a given physical context. As we have seen, any work 
done by conservative forces, such as gravity and springs, can be accounted for by 
changes in potential energy. The work–energy theorem can therefore be written 
in the following way:

 Wnc 5 DKE 1 DPE 5 (KEf 2 KEi) 1 (PEf 2 PEi) [5.20]

where now, as previously stated, PE includes all potential energies. This equation is 
easily rearranged to

 Wnc 5 (KEf 1 PEf) 2 (KEi 1 PEi) [5.21]

Recall, however, that the total mechanical energy is given by E 5 KE 1 PE. Mak-
ing this substitution into Equation 5.21, we find that the work done on a system by all 
nonconservative forces is equal to the change in mechanical energy of that system:

 Wnc 5 Ef 2 Ei 5 DE [5.22]

If the mechanical energy is changing, it has to be going somewhere. The energy 
either leaves the system and goes into the surrounding environment, or it stays in 
the system and is converted into a nonmechanical form such as thermal energy.

37027_ch05_ptg01_hr_127-169.indd   148 19/08/13   2:22 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



5.5 | Systems and Energy Conservation  149

A simple example is a block sliding along a rough surface. Friction creates ther-
mal energy, absorbed partly by the block and partly by the surrounding environ-
ment. When the block warms up, something called internal energy increases. The 
internal energy of a system is related to its temperature, which in turn is a con-
sequence of the activity of its parts, such as the motion of atoms in a gas or the 
vibration of atoms in a solid. (Internal energy will be studied in more detail in 
Chapters 10–12.)

Energy can be transferred between a nonisolated system and its environment. If 
positive work is done on the system, energy is transferred from the environment to 
the system. If negative work is done on the system, energy is transferred from the 
system to the environment.

So far, we have encountered three methods of storing energy in a system: kinetic 
energy, potential energy, and internal energy. On the other hand, we’ve seen only 
one way of transferring energy into or out of a system: through work. Other meth-
ods will be studied in later chapters, but are summarized here:

 ■ Work, in the mechanical sense of this chapter, transfers energy to a system by 
displacing it with an applied force.

 ■ Heat is the process of transferring energy through microscopic collisions 
between atoms or molecules. For example, a metal spoon resting in a cup of 
coffee becomes hot because some of the kinetic energy of the molecules in 
the liquid coffee is transferred to the spoon as internal energy.

 ■ Mechanical waves transfer energy by creating a disturbance that propagates 
through air or another medium. For example, energy in the form of sound 
leaves your stereo system through the loudspeakers and enters your ears to 
stimulate the hearing process. Other examples of mechanical waves are seis-
mic waves and ocean waves.

 ■ Electrical transmission transfers energy through electric currents. This is 
how energy enters your stereo system or any other electrical device.

 ■ Electromagnetic radiation transfers energy in the form of electromagnetic 
waves such as light, microwaves, and radio waves. Examples of this method of 
transfer include cooking a potato in a microwave oven and light energy trav-
eling from the Sun to Earth through space.

Conservation of Energy in General
The most important feature of the energy approach is the idea that energy is 
conserved; it can’t be created or destroyed, only transferred from one form into 
another. This is the principle of conservation of energy.

The principle of conservation of energy is not confined to physics. In biology, 
energy transformations take place in myriad ways inside all living organisms. One 
example is the transformation of chemical energy to mechanical energy that causes 
flagella to move and propel an organism. Some bacteria use chemical energy to 
produce light. (See Fig. 5.24.) Although the mechanisms that produce these light 
emissions are not well understood, living creatures often rely on this light for their 
existence. For example, certain fish have sacs beneath their eyes filled with light-
emitting bacteria. The emitted light attracts creatures that become food for the fish.

■ Quick Quiz

5.4  A book of mass m is projected with a speed v across a horizontal surface. The 
book slides until it stops due to the friction force between the book and the surface. 
The surface is now tilted 30°, and the book is projected up the surface with the same 
initial speed v. When the book has come to rest, how does the decrease in mechani-
cal energy of the book–Earth system compare with that when the book slid over 
the horizontal surface? (a) It’s the same. (b) It’s larger on the tilted surface. (c) It’s 
smaller on the tilted surface. (d) More information is needed.

a pp LiCat iOn
Flagellar Movement; 
Bioluminescence

Figure 5.24  This small plant, 
found in warm southern waters, 
exhibits bioluminescence, a process 
in which chemical energy is con-
verted to light. The red areas are 
chlorophyll, which fluoresce when 
irradiated with blue light.
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 ■ a pp LYi ng  ph Ysi Cs  5.3 Asteroid Impact!

Figure 5.25  Asteroid map of the inner solar system. The violet 
circles represent the orbits of the inner planets. Green dots stand for 
asteroids not considered dangerous to Earth; those that are consid-
ered threatening are represented by red dots.
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An asteroid about 10 kilometers in diameter has been 
blamed for the extinction of the dinosaurs 65 million 
years ago. How can a relatively small object, which could 
fit inside a college campus, inflict such injury on the vast 
biosphere of Earth?

e Xp La n at i On  While such an asteroid is comparatively 
small, it travels at a very high speed relative to Earth, typi-
cally on the order of 40 000 m/s. A roughly spherical aster-
oid 10 kilometers in diameter and made mainly of rock 
has a mass of approximately 1 000  trillion kilograms—a 
mountain of matter. The kinetic energy of such an aster-
oid would be about 1024  J, or a trillion trillion joules. By 
contrast, the atomic bomb that devastated Hiroshima was 
equivalent to 15 kilotons of TNT, approximately 6 3 1013 J 
of energy. On striking Earth, the asteroid’s enormous 
kinetic energy changes into other forms, such as ther-
mal energy, sound, and light, with a total energy release 
greater than ten billion Hiroshima explosions! Aside 
from the devastation in the immediate blast area and fires 
across a continent, gargantuan tidal waves would scour 
low-lying regions around the world and dust would block 
the Sun for decades.

For this reason, asteroid impacts represent a threat to 
life on Earth. Asteroids large enough to cause widespread 
extinction hit Earth only every 60 million years or so. 

Smaller asteroids, of sufficient size to cause serious dam-
age to civilization on a global scale, are thought to strike 
every five to ten thousand years. There have been several 
near misses by such asteroids in the last century and even 
in the last decade. In 1907, a small asteroid or comet frag-
ment struck Tunguska, Siberia, annihilating a region 
60 kilometers across. Had it hit northern Europe, millions 
of people might have perished.

Figure 5.25 is an asteroid map of the inner solar system. 
More asteroids are being discovered every year. ■

5.6    Power
Learning Obje Ctives

1. Define average power and instantaneous power and explain their physical 
meaning.

2. Calculate average power in simple physical contexts.

3. Calculate instantaneous power in simple physical contexts.

Power, the rate at which energy is transferred, is important in the design and use 
of practical devices, such as electrical appliances and engines of all kinds. The 
concept of power, however, is essential whenever a transfer of any kind of energy 
takes place. The issue is particularly interesting for living creatures because the 
maximum work per second, or power output, of an animal varies greatly with out-
put duration. Power is defined as the rate of energy transfer with time:

If an external force does work W on an object in the time interval Dt, then 
the average power delivered to the object is the work done divided by the 
time interval, or

 P 5
W
Dt

 [5.23]

SI unit: watt (W 5 J/s)

It’s sometimes useful to rewrite Equation 5.23 by substituting W 5 F Dx and notic-
ing that Dx/Dt is the average velocity of the object during the time Dt:

 P 5
W
Dt

5
F Dx
Dt

5 F v  [5.24]

Average power c
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According to Equation 5.24, average power is a constant force times the average 
velocity. The force F is the component of force in the direction of the average 
velocity. A more general definition, called the instantaneous power, can be writ-
ten down with a little calculus and has the same form as Equation 5.24:

P 5 Fv [5.25]

In Equation 5.25 both the force F and the velocity v must be parallel, but can 
change with time. The SI unit of power is the joule per second (J/s), also called the 
watt, named after James Watt:

 1 W 5 1 J/s 5 1 kg ? m2/s3 [5.26a]

The unit of power in the U.S. customary system is the horsepower (hp), where

 1 hp ; 550 
ft # lb

s
5 746 W [5.26b]

The horsepower was first defined by Watt, who needed a large power unit to rate 
the power output of his new invention, the steam engine.

The watt is commonly used in electrical applications, but it can be used in 
other scientific areas as well. For example, European sports car engines are rated 
in kilowatts.

In electric power generation, it’s customary to use the kilowatt-hour as a mea-
sure of energy. One kilowatt-hour (kWh) is the energy transferred in 1 h at the 
constant rate of 1 kW 5 1 000 J/s. Therefore,

1 kWh 5 (103 W)(3 600 s) 5 (103 J/s)(3 600 s) 5 3.60 3 106 J

It’s important to realize that a kilowatt-hour is a unit of energy, not power. When 
you pay your electric bill, you’re buying energy, and that’s why your bill lists a 
charge for electricity of about 10 cents/kWh. The amount of electricity used by 
an appliance can be calculated by multiplying its power rating (usually expressed 
in watts and valid only for normal household electrical circuits) by the length 
of time the appliance is operated. For example, an electric bulb rated at 100 W 
(5 0.100 kW) “consumes” 3.6 3 105 J of energy in 1 h.

b Instantaneous power

t ip 5.6  Watts the 
Difference?
Don’t confuse the nonitalic sym-
bol for watts, W, with the italic 
symbol W for work. A watt is a 
unit, the same as joules per sec-
ond. Work is a concept, carrying 
units of joules.

 ■ e Xa Mp Le  5.12 Power Delivered by an Elevator Motor

g Oa L  Apply the force-times-velocity definition 
of power.

pr Ob Le M  A 1.00 3 103-kg elevator car carries 
a maximum load of 8.00 3 102 kg. A constant 
frictional force of 4.00 3 103 N retards its motion 
upward, as in Figure 5.26. What minimum power, 
in kilowatts and in horsepower, must the motor 
deliver to lift the fully loaded elevator car at a 
constant speed of 3.00 m/s?

s t r at e g Y  To solve this problem, we need 
to determine the force the elevator car’s motor 
must deliver through the force of tension in the 
cable, T

S

. Substituting this force together with the 
given speed v into P 5 Fv gives the desired power.  
The tension in the cable, T, can be found with 
Newton’s second law.

T
S

gS 

f
S

 

�

Motor

M

a b

Figure 5.26  (a) (Example 5.12) The 
motor exerts an upward force T

S

 on the 
elevator. A frictional force f

S

 and the force 
of gravity M gS act downward. (b) The free-
body diagram for the elevator car.

(Continued)
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Apply Newton’s second law to the elevator car: a  F
S

5 maS

The velocity is constant, so the acceleration is zero. The 
forces acting on the elevator car are the force of tension 
in the cable, T

S

, the friction f
S

, and gravity M gS, where M 
is the mass of the elevator car.

T
S

1 f
S

1 M gS 5 0

re Mar Ks  The friction force acts to retard the motion, requiring more power. For a descending elevator car, the fric-
tion force can actually reduce the power requirement.

QUes t i On  5.12  In general, are the minimum power requirements of an elevator car ascending at constant velocity (a) greater 
than, (b) less than, or (c) equal to the minimum power requirements of an elevator car descending at constant velocity?

e Xer Ci se  5.12  Suppose the same elevator car with the same load descends at 3.00 m/s. What minimum power is 
required? (Here, the motor removes energy from the elevator car by not allowing it to fall freely.)

a ns We r  4.09 3 104 W 5 54.9 hp

Write the equation in terms of its components: T 2 f 2 Mg 5 0

Solve this equation for the tension T and evaluate it: T 5 f 1 Mg

5 4.00 3 103 N 1 (1.80 3 103 kg)(9.80 m/s2)

T 5 2.16 3 104 N

Substitute this value of T for F in the power equation: P 5 Fv 5 (2.16 3 104 N)(3.00 m/s) 5 6.48 3 104 W

P 5 64.8 kW 5   86.9 hp

 ■ e Xa Mp Le  5.13 Shamu Sprint 

g Oa L  Calculate the average power needed to increase an object’s kinetic energy.

pr Ob Le M  Killer whales are known to reach 32 ft in length and have a mass of over 8 000 kg. They are also very quick, able 
to accelerate up to 30 mi/h in a matter of seconds. Disregarding the considerable drag force of water, calculate the average 
power a killer whale named Shamu with mass 8.00 3 103 kg would need to generate to reach a speed of 12.0 m/s in 6.00 s.

s t r at e g Y  Find the change in kinetic energy of Shamu and use the work–energy theorem to obtain the minimum 
work Shamu has to do to effect this change. (Internal and external friction forces increase the necessary amount of 
energy.) Divide by the elapsed time to get the average power.

s OLUti On
Calculate the change in Shamu’s kinetic energy. By the 
work–energy theorem, this equals the minimum work 
Shamu must do:

DKE 5 1
2mvf

2 2 1
2mvi

2

5 1
2
# 8.00 3 103 kg # 112.0 m/s 22 2 0

5 5.76 3 105 J

Divide by the elapsed time (Eq. 5.23), noting that  
W 5 DKE :

P 5
W
Dt

5
5.76 3 105 J

6.00 s
 5   9.60 3 104 W

re Mar Ks  This is enough power to run a moderate-sized office building! The actual requirements are larger because 
of friction in the water and muscular tissues. Something similar can be done with gravitational potential energy, as the 
exercise illustrates.

QUes t i On  5.13  If Shamu could double his velocity in double the time, by what factor would the average power require-
ment change?

e Xer Ci se  5.13  What minimum average power must a 35-kg human boy generate climbing up the stairs to the top of 
the Washington monument? The trip up the nearly 170-m-tall building takes him 10 minutes. Include only work done 
against gravity, ignoring biological inefficiency.

a ns We r  97 W

s OLUti On
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 ■ e Xa Mp Le  5.14 Speedboat Power

g Oa L  Combine power, the work–energy theorem, and nonconservative forces with one-dimensional kinematics.

pr Ob Le M  (a) What average power would a 1.00 3 103-kg speedboat need to go from rest to 20.0 m/s in 5.00 s, assuming 
the water exerts a constant drag force of magnitude fd 5 5.00 3 102 N and the acceleration is constant. (b) Find an expres-
sion for the instantaneous power in terms of the drag force fd, the mass m, acceleration a, and time t.

s t r at e g Y  The power is provided by the engine, which creates a nonconservative force. Use the work–energy theorem 
together with the work done by the engine, Wengine, and the work done by the drag force, Wdrag, on the left-hand side. 
Use one-dimensional kinematics to find the acceleration and then the displacement Dx. Solve the work–energy theorem 
for Wengine, and divide by the elapsed time to get the average power. For part (b), use Newton’s second law to obtain an 
example for FE, and then substitute into the definition of instantaneous power.

s OLUti On
(a) Write the work–energy theorem: Wnet 5 DKE 5 1

2mvf
2 2 1

2mvi
2

Fill in the two work terms and take vi 5 0: (1) Wengine 1 Wdrag 5 1
2mvf 

2

To get the displacement Dx, first find the acceleration 
using the velocity equation of kinematics:

vf 5 at 1 vi S vf 5 at

20.0 m/s 5 a(5.00 s) S a 5 4.00 m/s2

Substitute a into the time-independent kinematics equa-
tion and solve for Dx:

vf
2 2 vi

2 5 2a Dx

(20.0 m/s)2 2 02 5 2(4.00 m/s2) Dx

Dx 5 50.0 m

Now that we know Dx, we can find the mechanical energy 
lost due to the drag force:

Wdrag 5 2fd Dx 5 2(5.00 3 102 N)(50.0 m) 5 22.50 3 104 J

Solve equation (1) for Wengine: Wengine 5 1
2mvf

2 2 Wdrag

5 1
2 11.00 3 103  kg 2 120.0 m/s 22 2 122.50 3 104 J 2

Wengine 5 2.25 3 105 J

Compute the average power: P 5
Wengine

Dt
5

2.25 3 105 J

5.00 s
5 4.50 3 104 W5   60.3 hp

(b) Find a symbolic expression for the instantaneous 
power.

Use Newton’s second law: ma 5 FE 2 fd

Solve for the force exerted by the engine, FE: FE 5 ma 1 fd

Substitute the expression for FE and v = at into Equation 
5.25 to obtain the instantaneous power:

P 5 FEv 5 (ma 1 fd)(at)

P 5 (ma2 1 afd)t

re Mar Ks  In fact, drag forces generally get larger with increasing speed.

QUes t i On  5.14  How does the instantaneous power at the end of 5.00 s compare to the average power?

e Xer Ci se  5.14  What average power must be supplied to push a 5.00-kg block from rest to 10.0 m/s in 5.00 s when the 
coefficient of kinetic friction between the block and surface is 0.250? Assume the acceleration is uniform.

a ns We r  111 W

2For more information on this topic, see E. J. Offenbacher, American Journal of Physics, 38, 829 (1969).

Energy and Power in a Vertical Jump 

The stationary jump consists of two parts: extension and free flight.2 In the exten-
sion phase the person jumps up from a crouch, straightening the legs and throw-
ing up the arms; the free-flight phase occurs when the jumper leaves the ground. 
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Because the body is an extended object and different parts move with different 
speeds, we describe the motion of the jumper in terms of the position and velocity 
of the center of mass (CM), which is the point in the body at which all the mass 
may be considered to be concentrated. Figure 5.27 shows the position and velocity 
of the CM at different stages of the jump.

Using the principle of the conservation of mechanical energy, we can find H, 
the maximum increase in height of the CM, in terms of the velocity vCM of the 
CM at liftoff. Taking PEi,  the gravitational potential energy of the jumper–Earth 
system just as the jumper lifts off from the ground to be zero, and noting that the 
kinetic energy KEf of the jumper at the peak is zero, we have

PEi 1 KEi 5 PEf 1 KEf

1
2mvCM

2 5 mgH   or  H 5
vCM

2

2g

We can estimate vCM by assuming that the acceleration of the CM is constant dur-
ing the extension phase. If the depth of the crouch is h and the time for extension 
is Dt, we find that vCM 5 2v 5 2h/Dt. Measurements on a group of male college 
students show typical values of h 5 0.40 m and Dt 5 0.25 s, the latter value being 
set by the fixed speed with which muscle can contract. Substituting, we obtain

vCM 5 2(0.40 m)/(0.25 s) 5 3.2 m/s

and

H 5
vCM

2

2g
5

13.2 m/s 22

2 19.80 m/s2 2 5 0.52 m

Measurements on this same group of students found that H was between 0.45 m 
and 0.61 m in all cases, confirming the basic validity of our simple calculation.

To relate the abstract concepts of energy, power, and efficiency to humans, it’s 
interesting to calculate these values for the vertical jump. The kinetic energy given 
to the body in a jump is KE 5 1

2mvCM
2, and for a person of mass 68 kg, the kinetic 

energy is

KE 5 1
2 168 kg 2 13.2 m/s 22 5 3.5 3 102 J

Although this may seem like a large expenditure of energy, we can make a 
simple calculation to show that jumping and exercise in general are not good 
ways to lose weight, in spite of their many health benefits. Because the muscles 
are at most 25% efficient at producing kinetic energy from chemical energy 
(muscles always produce a lot of internal energy and kinetic energy as well as 
work—that’s why you perspire when you work out), they use up four times the 
350 J (about 1 400 J) of chemical energy in one jump. This chemical energy ulti-
mately comes from the food we eat, with energy content given in units of food 

 a pp LiCat iOn
Diet Versus Exercise in Weight-loss 

Programs

Figure 5.27  Extension and free 
flight in the vertical jump.

vCM = 0
CM

h

Extension Free �ight

CM

CM
vCM
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H
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calories and one food calorie equal to 4 200 J. So the total energy supplied by 
the body as internal energy and kinetic energy in a vertical jump is only about 
one-third of a food calorie!

Finally, it’s interesting to calculate the average mechanical power that can be 
generated by the body in strenuous activity for brief periods. Here we find that

P 5
KE
Dt

5
3.5 3 102  J

0.25 s
5 1.4 3 103 W

or (1 400 W)(1 hp/746  W) 5 1.9 hp. So humans can produce about 2 hp of 
mechanical power for periods on the order of seconds. Table 5.1 shows the maxi-
mum power outputs from humans for various periods while bicycling and rowing, 
activities in which it is possible to measure power output accurately.

5.7    Work Done by a Varying Force
Learning Obje Ctive

1. Analyze a graph of force vs. position to find the work done on an object by a 
varying force.

Suppose an object is displaced along the x -axis under the action of a force Fx
that acts in the x -direction and varies with position, as shown in Figure 5.28. The 
object is displaced in the direction of increasing x from x 5 xi to x 5 xf . In such 
a situation, we can’t use Equation 5.2 to calculate the work done by the force 
because this relationship applies only when F

S

 is constant in magnitude and direc-
tion. However, if we imagine that the object undergoes the small displacement Dx 
shown in Figure 5.28a, then the x -component Fx of the force is nearly constant 
over this interval and we can approximate the work done by the force for this 
small displacement as

 W1 > Fx Dx [5.27]

This quantity is just the area of the shaded rectangle in Figure 5.28a. If we imagine 
that the curve of Fx versus x is divided into a large number of such intervals, then 
the total work done for the displacement from xi to xf  is approximately equal to  
the sum of the areas of a large number of small rectangles:

 W > F1 Dx1 1 F2 Dx2 1 F3 Dx3 1 ? ? ? [5.28]

Now imagine going through the same process with twice as many intervals, each 
half the size of the original Dx. The rectangles then have smaller widths and will 

t able 5.1  Maximum Power 
Output from Humans over 
Various Periods 

Power Time

2 hp, or 1 500 W 6 s
1 hp, or 750 W 60 s
0.35 hp, or 260 W 35 min
0.2 hp, or 150 W 5 h
0.1 hp, or 75 W 8 h
(safe daily level)

Fx Area  =  A = Fx x

Fx

xxfxi
x

Fx

xxfxi

Work

�

��

a b

The sum of the areas of all the 
rectangles approximates the work 
done by the force Fx on the particle 
during its displacement from xi to xf. 

The area under the curve exactly 
equals the work done by the force 
Fx on the particle during its 
displacement from xi to xf.

Figure 5.28  (a) The work done on 
a particle by the force component 
Fx for the small displacement Dx is 
approximately Fx Dx, the area of the 
shaded rectangle. (b) The width Dx 
of each rectangle is shrunk to zero.
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better approximate the area under the curve. Continuing the process of increasing 
the number of intervals while allowing their size to approach zero, the number of 
terms in the sum increases without limit, but the value of the sum approaches a 
definite value equal to the area under the curve bounded by Fx and the x-axis in 
Figure 5.28b. In other words, the work done by a variable force acting on an object 
that undergoes a displacement is equal to the area under the graph of Fx versus x.

A common physical system in which force varies with position consists of a block 
on a horizontal, frictionless surface connected to a spring, as discussed in Section 
5.4. When the spring is stretched or compressed a small distance x from its equilib-
rium position x 5 0, it exerts a force on the block given by Fx 5 2kx, where k is the 
force constant of the spring.

Now let’s determine the work done by an external agent on the block as the spring 
is stretched very slowly from xi 5 0 to xf 5 xmax, as in Figure 5.29a. This work can be 
easily calculated by noting that at any value of the displacement, Newton’s third law 
tells us that the applied force F

S

app is equal in magnitude to the spring force F
S

s and 
acts in the opposite direction, so that Fapp 5 2(2kx) 5 kx. A plot of Fapp versus x is 
a straight line, as shown in Figure 5.29b. Therefore, the work done by this applied 
force in stretching the spring from x 5 0 to x 5 xmax is the area under the straight 
line in that figure, which in this case is the area of the shaded triangle:

WFapp
5 1

2kxmax
2

During this same time the spring has done exactly the same amount of work, but 
that work is negative, because the spring force points in the direction opposite the 
motion. The potential energy of the system is exactly equal to the work done by 
the applied force and is the same sign, which is why potential energy is thought of 
as stored work.

O

Fapp

x
xmax

xf � xmaxxi � 0

Fs
S

Fapp
S

If the process of moving the 
block is carried out very 
slowly, the applied force is 
equal in magnitude and 
opposite in direction to the 
spring force at all times.

a

b

Figure 5.29 (a) A block being 
pulled from xi 5 0 to xf 5 xmax on  
a frictionless surface by a force F

S

app. 
(b) A graph of Fapp versus x.

 ■ e Xa Mp Le  5.15 Work Required to Stretch a Spring

g Oa L  Apply the graphical method of finding work.

pr Ob Le M  One end of a horizontal spring (k 5 80.0 N/m) is held fixed 
while an external force is applied to the free end, stretching it slowly from 
x� 5 0 to x� 5 4.00 cm. (a) Find the work done by the applied force on the 
spring. (b) Find the additional work done in stretching the spring from  
x� 5 4.00 cm to x� 5 7.00 cm.

s t r at e g Y  For part (a), simply find the area of the smaller triangle in 
Figure 5.30, using A 5 1

2bh, one-half the base times the height. For part 
(b), the easiest way to find the additional work done from x� 5 4.00 cm 
to x� 5 7.00 cm is to find the area of the new, larger triangle and subtract 
the area of the smaller triangle.

s OLUti On

Fapp

Fapp = (80.0 N/m)(x)

x (cm)
O 4.00 7.00

�

�

�

Figure 5.30  (Example 5.15) A graph of the exter-
nal force required to stretch a spring that obeys 
Hooke’s law versus the elongation of the spring.

(a) Find the work from x� 5 0 cm to x� 5 4.00 cm.

Compute the area of the smaller triangle: W 5 1
2kx�

2 5 1
2 180.0 N/m 2 10.040 m 22 5   0.064 0 J

(b) Find the work from x� 5 4.00 cm to x� 5 7.00 cm.

Compute the area of the large triangle and subtract the 
area of the smaller triangle:

W 5 1
2kx�

2 2 1
2kx�

2

W 5 1
2 180.0 N/m 2 10.070 0 m 22 2 0.064 0 J

5 0.196 J 2 0.064 0 J

5   0.132 J
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re Mar Ks  Only simple geometries (rectangles and triangles) can be solved exactly with this method. More complex 
shapes require calculus or the square-counting technique in the next worked example.

QUes t i On  5.15  True or False: When stretching springs, half the displacement requires half as much work.

e Xer Ci se  5.15  How much work is required to stretch this same spring from xi 5 5.00 cm to xf 5 9.00 cm?

a ns We r  0.224 J

 ■ e Xa Mp Le  5.16 Estimating Work by Counting Boxes

g Oa L  Use the graphical method and counting 
boxes to estimate the work done by a force.

pr Ob Le M  Suppose the force applied to stretch a 
thick piece of elastic changes with position as indi-
cated in Figure 5.31a. Estimate the work done by 
the applied force.

s t r at e g Y  To find the work, simply count the 
number of boxes underneath the curve and mul-
tiply that number by the area of each box. The 
curve will pass through the middle of some boxes, 
in which case only an estimated fractional part 
should be counted.

s OLUti On
There are 62 complete or nearly complete boxes under the curve, 6 boxes that are about half under the curve, and a 
triangular area from x 5 0 m to x 5 0.10 m that is equivalent to 1 box, for a total of about 66 boxes. Because the area of 
each box is 0.10 J, the total work done is approximately 66 3 0.10 J 5 6.6 J.

re Mar Ks  Mathematically, there are a number of other methods for creating such estimates, all involving adding up 
regions approximating the area. To get a better estimate, make smaller boxes.

QUes t i On  5.16  In developing such an estimate, is it necessary for all boxes to have the same length and width?

e Xer Ci se  5.16  Suppose the applied force necessary to pull the drawstring on a bow is given by Figure 5.31b. Find the 
approximate work done by counting boxes.

a ns We r  About 50 J. (Individual answers may vary.)

Figure 5.31  (a) (Example 5.16) (b) (Exercise 5.16)
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 ■ s UMMar Y

5.1  Work
The work done on an object by a constant force is

W 5 (F cos u)d [5.3]

where F is the magnitude of the 
force, d is the magnitude of the 
object’s displacement, and u is  
the angle between the direction of 
the force F

S

 and the displacement 
DxS. Solving simple problems 
requires substituting values into 
this equation. More complex prob-
lems, such as those involving fric-
tion, often require using Newton’s 
second law, maS 5 F

S

net, to determine forces.

5.2   Kinetic Energy and  
the Work–Energy Theorem

The kinetic energy of a body 
with mass m and speed v is 
given by

 KE ;
1
2mv

2 [5.6]

The work–energy theorem states 
that the net work done on an 
object of mass m is equal to the 
change in its kinetic energy, or

 Wnet 5 KEf 2 KEi 5 DKE [5.7]

Work and energy of any kind carry units of joules. Solving 
problems involves finding the work done by each force acting  

�xS

u

F
S

F cos u

A constant force F
S

applied during a dis-
placement DxS does 
work (F cos u) Dx.

m Fnet
S

Fnet
S

�xS

vi � v0
S S vf � vS S

Work done by a net force 
F
S

net on an object changes 
the object's velocity.
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on the object and summing them up, which is Wnet, fol-
lowed by substituting known quantities into Equation 5.7, 
solving for the unknown quantity.

Conservative forces are special: Work done against them 
can be recovered—it’s conserved. An example is grav-
ity: The work done in lifting an object through a height is 
effectively stored in the gravity field and can be recovered 
in the kinetic energy of the object simply by letting it fall. 
Nonconservative forces, such as surface friction and drag, 
dissipate energy in a form that can’t be readily recovered. 
To account for such forces, the work–energy theorem can 
be rewritten as

Wnc 1 Wc 5 DKE [5.8]

where Wnc is the work done by nonconservative forces and 
Wc is the work done by conservative forces.

5.3  Gravitational Potential Energy
The gravitational force is a conser-
vative field. Gravitational potential 
energy is another way of account-
ing for gravitational work Wg :

Wg 5 2(PEf 2 PEi) 

 5 2(mgyf 2 mgyi) [5.12]

To find the change in gravita-
tional potential energy as an 
object of mass m moves between 
two points in a gravitational field, 
substitute the values of the object’s 
y -coordinates.

The work–energy theorem can be generalized to 
include gravitational potential energy:

 Wnc 5 (KEf 2 KEi) 1 (PEf 2 PEi) [5.13]

Gravitational work and gravitational potential energy 
should not both appear in the work–energy theorem at the 
same time, only one or the other, because they’re equiva-
lent. Setting the work due to nonconservative forces to zero 
and substituting the expressions for KE and PE, a form of 
the conservation of mechanical energy with gravitation 
can be obtained:

 1
2mvi

2 1 mgyi 5 1
2mvf

2 1 mgyf  [5.15]

To solve problems with this equation, identify two points 
in the system—one where information is known and the 
other where information is desired. Substitute and solve 
for the unknown quantity.

The work done by other forces, as when frictional forces 
are present, isn’t always zero. In that case, identify two 
points as before, calculate the work due to all other forces, 
and solve for the unknown in Equation 5.13.

5.4  Spring Potential Energy
The spring force is conservative, and its potential energy is 
given by

PEs ;
1
2kx

2 [5.17]

Spring potential energy can be put into the work–energy 
theorem, which then reads

 Wnc 5 (KEf 2 KEi) 1 (PEgf 2 PEgi) 1 (PEsf 2 PEsi) [5.18]

When nonconservative forces are absent, Wnc 5 0 and 
mechanical energy is conserved.

5.5  Systems and Energy Conservation
The principle of the conservation of energy states that 
energy can’t be created or destroyed. It can be trans-
formed, but the total energy content of any isolated sys-
tem is always constant. The same is true for the universe 
at large. The work done by all nonconservative forces act-
ing on a system equals the change in the total mechanical 
energy of the system:

 Wnc 5 (KEf 1 PEf ) 2 (KEi 1 PEi ) 5 Ef 2 Ei [5.21–5.22]

where PE represents all potential energies present.

5.6  Power
Average power is the amount of energy transferred divided 
by the time taken for the transfer:

P 5
W
Dt

  [5.23]

This expression can also be written

 P 5 F  v [5.24]

where v is the object’s average velocity and F is constant 
and parallel to v. The instantaneous power is given by.

 P 5 Fv [5.25]

where F must be parallel to the velocity v and both quanti-
ties can change with time. The unit of power is the watt  
(W 5 J/s). To solve simple problems, substitute given quan-
tities into one of these equations. More difficult problems 
usually require finding the work done on the object using 
the work–energy theorem or the definition of work.

yi

yf gS 

gS 

m

m
�yS

Physics

Physics

The work done by the 
gravitational force as 
the book falls equals 
mgyi 2 mgyf .

 ■ War M-Up  e Xer Ci se s

The warm-up exercises in this chapter may be assigned online in Enhanced WebAssign.

 1. Physics Review A crane lifts a load of bricks of mass  
1 570 kg at an initial acceleration of 1.60 m/s2. Calcu-
late the tension in the cable. (See Section 4.5.)

 2. Physics Review A crate of mass 20.0 kg rest on a level 
surface. If the coefficient of kinetic friction between 

the crate and surface is 0.400, (a) calculate the nor-
mal force and (b) the magnitude of the kinetic fric-
tion force when a horizontal applied force of 90.0 N 
moves the crate. (c) Calculate the normal force and  
(d) the magnitude of the kinetic friction force when 
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8. A block of mass 3.00 kg is placed against a horizontal 
spring of constant k 5 875 N/m and pushed so the 
spring compresses by 0.070 0 m. (a) What is the spring 
potential energy of the block-spring system? (b) If the 
block is now released and the surface is frictionless, 
calculate the block’s speed after leaving the spring. 
(See Section 5.4.)

 9. What average mechanical power must a 70.0-kg moun-
tain climber generate to climb to the summit of a hill 
of height 325 m in 45.0 min? Note: Due to inefficien-
cies in converting chemical energy to mechanical 
energy, the amount calculated here is only a fraction 
of the power that must be produced by the climber’s 
body. 

 10. A puck of mass 0.170 kg slides across ice in the positive 
x -direction with a kinetic friction coefficient between 
the ice and puck of 0.150. If the puck is moving at an 
initial speed of 12.0 m/s, (a) what is the force of kinetic 
friction? (b) What is the acceleration of the puck?  
(c) How long does it take for the puck to come to rest? 
(d) What distance does the puck travel during that 
time? (e) What total work does friction do on the puck? 
(f) What average power does friction generate in the 
puck during that time? (g) What instantaneous power 
does friction generate in the puck when the velocity is 
6.00 m/s? (See Sections 2.5, 4.6, 5.1, and 5.6.)

the 90.0-N applied force is exerted at an angle of 35.0° 
above the horizontal. (See Section 4.6.) 

 3. Calculate the work done by an applied force of 75.0 N on 
a crate if (a) the force is exerted horizontally while push-
ing the create 5.00 m and (b) the force is exerted at an 
angle of 35.0° above the horizontal. (See Section 5.1.)

 4. In each of the diagrams WU5.4a-WU5.4c, calculate the 
work done by the graph of the force vs. position. (See 
Section 5.7.)

 5. Suppose that in each of the diagrams WU5.4a-WU5.4c, 
the force is applied to a block of mass 5.00 kg at rest on 
a level, frictionless surface. Calculate the block’s speed 
in each case after the work is done. (See Section 5.2.)

 6. A 4.00-kg crate starting at rest slides down a rough 
6.00-m-long ramp, inclined at 30.0° below the horizon-
tal. The magnitude of the force of friction between the 
crate and the ramp is 8.00 N. (a) How much work is 
done on the crate by friction? (b) What is the change 
in potential energy of the crate in sliding down the 
ramp? (c) What is the speed of the crate at the bottom 
of the incline? (See Sections 5.2 and 5.3.)

 7. A skier leaves a ski jump at 15.0 m/s at some angle u. 
At what speed is he traveling at his maximum height 
of 4.50 m above the level of the end of the ski jump? 
(Neglect air friction.) (See Section 5.3.)

a

0
x (m)

10.0

20.0

8.004.00

F (N)

b

0
x (m)

10.0

20.0

8.004.00

F (N)

c

0
x (m)

10.0

20.0

8.004.00

F (N)

WU5.4 Exercises 4 & 5.

motion takes place. Is work done on the rope? On the 
pullers? On the ground? Is work done on anything?

 2.  During a stress test of the cardiovascular system, a 
patient walks and runs on a treadmill. (a) Is the energy 
expended by the patient equivalent to the energy of 
walking and running on the ground? Explain. (b) What 
effect, if any, does tilting the treadmill upward have? 
Discuss.

 3. (a) If the height of a playground slide is kept constant, 
will the length of the slide or whether it has bumps 
make any difference in the final speed of children play-
ing on it? Assume that the slide is slick enough to be 
considered frictionless. (b) Repeat part (a), assuming 
that the slide is not frictionless.

 1. Consider a tug-of-war as in Figure CQ5.1, in which two 
teams pulling on a rope are evenly matched so that no 

 ■  COn Cep t Ua L QUes t i Ons

The conceptual questions in this chapter may be assigned online in Enhanced WebAssign.
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4. (a) Can the kinetic energy of a system be negative? 
(b) Can the gravitational potential energy of a system 
be negative? Explain.

5. Roads going up mountains are formed into switch-
backs, with the road weaving back and forth along the 
face of the slope such that there is only a gentle rise 
on any portion of the roadway. Does this configura-
tion require any less work to be done by an automobile 
climbing the mountain, compared with one traveling 
on a roadway that is straight up the slope? Why are 
switchbacks used?

 6. A bowling ball is suspended from 
the ceiling of a lecture hall by a 
strong cord. The ball is drawn away 
from its equilibrium position and 
released from rest at the tip of the 
demonstrator’s nose, as shown in 
Figure CQ5.6. (a) If the demonstra-
tor remains stationary, explain why 
the ball does not strike her on its 
return swing. (b) Would this dem-
onstrator be safe if the ball were 
given a push from its starting posi-
tion at her nose?

 7. As a simple pendulum swings back and forth, the forces 
acting on the suspended object are the force of gravity, 
the tension in the supporting cord, and air resistance. 
(a) Which of these forces, if any, does no work on 
the pendulum? (b) Which of these forces does nega-
tive work at all times during the pendulum’s motion? 
(c) Describe the work done by the force of gravity while 
the pendulum is swinging.

 8. Discuss whether any work is being done by each of the 
following agents and, if so, whether the work is posi-
tive or negative: (a) a chicken scratching the ground, 
(b) a person studying, (c) a crane lifting a bucket of 
concrete, (d) the force of gravity on the bucket in part 
(c), (e) the leg muscles of a person in the act of sitting 
down.

 9. When a punter kicks a football, is he doing any work 
on the ball while the toe of his foot is in contact with 
it? Is he doing any work on the ball after it loses con-
tact with his toe? Are any forces doing work on the ball 
while it is in flight?

 10. The driver of a car slams on her brakes to avoid collid-
ing with a deer crossing the highway. What happens to 
the car’s kinetic energy as it comes to rest?

 11. A weight is connected to a spring that is suspended 
vertically from the ceiling. If the weight is dis-
placed downward from its equilibrium position and 
released, it will oscillate up and down. (a) If air resis-
tance is neglected, will the total mechanical energy 
of the system (weight plus Earth plus spring) be con-
served? (b) How many forms of potential energy are 
there for this situation?

 12. In most situations we have encountered in this chap-
ter, frictional forces tend to reduce the kinetic energy 
of an object. However, frictional forces can sometimes 
increase an object’s kinetic energy. Describe a few situ-
ations in which friction causes an increase in kinetic 
energy.

 13. Suppose you are re-shelving books in a library. You 
lift a book from the floor to the top shelf. The kinetic 
energy of the book on the floor was zero, and the 
kinetic energy of the book on the top shelf is zero, so 
there is no change in kinetic energy. Yet you did some 
work in lifting the book. Is the work–energy theorem 
violated?

 14. The feet of a standing person of mass m exert a force 
equal to mg on the floor, and the floor exerts an equal 
and opposite force upwards on the feet, which we call 
the normal force. During the extension phase of a  
vertical jump (see page 154), the feet exert a force on 
the floor that is greater than mg, so the normal force is 
greater than mg. As you learned in Chapter 4, we can 
use this result and Newton’s second law to calculate the 
acceleration of the jumper: 

a  5 Fnet/m  5 (n 2 mg )/m

  Using energy ideas, we know that work is performed on 
the jumper to give him or her kinetic energy. But the 
normal force can’t perform any work here because the 
feet don’t undergo any displacement. How is energy 
transferred to the jumper?

 15. An Earth satellite is in a circular orbit at an altitude 
of 500 km. Explain why the work done by the gravita-
tional force acting on the satellite is zero. Using the 
work–energy theorem, what can you say about the 
speed of the satellite?

 16. Mark and David are loading identical cement blocks 
onto David’s pickup truck. Mark lifts his block straight 
up from the ground to the truck, whereas David 
slides his block up a ramp on massless, frictionless 
rollers. Which statement is true? (a) Mark does more 
work than David. (b) Mark and David do the same 
amount of work. (c) David does more work than Mark.  
(d) None of these statements is necessarily true because 
the angle of the incline is unknown. (e) None of these 
statements is necessarily true because the mass of one 
block is not given.

 17. If the speed of a particle is doubled, what happens to 
its kinetic energy? (a) It becomes four times larger.  

  (b) It becomes two times larger. (c) It becomes "2 times 
larger. (d) It is unchanged. (e) It becomes half as large.

 18. A certain truck has twice the mass of a car. Both are 
moving at the same speed. If the kinetic energy of the 
truck is K, what is the kinetic energy of the car? (a) K/4 
(b) K/2 (c) 0.71K (d) K (e) 2K

 19. If the net work done on a particle is zero, which of the 
following statements must be true? (a) The velocity is 

Figure CQ5.6
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zero. (b) The velocity is decreased. (c) The velocity 
is unchanged. (d) The speed is unchanged. (e) More 
information is needed.

 20. A car accelerates uniformly from rest. Ignoring air fric-
tion, when does the car require the greatest power? 

(a) When the car first accelerates from rest, (b) just as 
the car reaches its maximum speed, (c) when the car 
reaches half its maximum speed. (d) The question is 
misleading because the power required is constant.  
(e) More information is needed.

5.1  Work

 1. A weight lifter lifts a 350-N set of weights from ground 
level to a position over his head, a vertical distance 
of 2.00 m. How much work does the weight lifter do, 
assuming he moves the weights at constant speed?

 2. In 1990 Walter Arfeuille of Belgium lifted a 281.5-kg 
object through a distance of 17.1 cm using only his 
teeth. (a) How much work did Arfeuille do on the 
object? (b) What magnitude force did he exert on the 
object during the lift, assuming the force was constant?

 3. The record number of boat lifts, including the boat and 
its ten crew members, was achieved by Sami Heinonen 
and Juha Räsänen of Sweden in 2000. They lifted a total 
mass of 653.2 kg approximately 4 in. off the ground a 
total of 24 times. Estimate the total mechanical work 
done by the two men in lifting the boat 24 times, assum-
ing they applied the same force to the boat during each 
lift. (Neglect any work they may have done allowing the 
boat to drop back to the ground.)

 4.  A shopper in a supermarket pushes a cart with a 
force of 35 N directed at an angle of 25° below the hori-
zontal. The force is just sufficient to overcome various 
frictional forces, so the cart moves at constant speed. 
(a) Find the work done by the shopper as she moves 
down a 50.0-m length aisle. (b) What is the net work 
done on the cart? Why? (c) The shopper goes down 
the next aisle, pushing horizontally and maintaining 
the same speed as before. If the work done by frictional 
forces doesn’t change, would the shopper’s applied 
force be larger, smaller, or the same? What about the 
work done on the cart by the shopper?

 5.  Starting from rest, a 5.00-kg block slides 2.50 m 
down a rough 30.0° incline. The coefficient of kinetic 
friction between the block and the incline is mk 5 0.436.  
Determine (a) the work done by the force of gravity, 
(b) the work done by the friction force between block 
and incline, and (c) the work done by the normal force. 
(d) Qualitatively, how would the answers change if a 

shorter ramp at a steeper angle were used to span the 
same vertical height?

 6. A horizontal force of 150 N is used to push a 40.0-kg 
packing crate a distance of 6.00 m on a rough horizon-
tal surface. If the crate moves at constant speed, find 
(a) the work done by the 150-N force and (b) the coef-
ficient of kinetic friction between the crate and surface.

 7. A sledge loaded with bricks has a total mass of 18.0 kg 
and is pulled at constant speed by a rope inclined at 
20.0° above the horizontal. The sledge moves a dis-
tance of 20.0 m on a horizontal surface. The coeffi-
cient of kinetic friction between the sledge and surface 
is 0.500. (a) What is the tension in the rope? (b) How 
much work is done by the rope on the sledge? (c) What 
is the mechanical energy lost due to friction?

 8.  A block of mass m 5 2.50  
kg is pushed a distance  
d 5 2.20 m along a fric-
tionless horizontal table 
by a constant applied force 
of magnitude F 5 16.0 N  
directed at an angle  
u 5 25.0° below the horizon-
tal as shown in Figure P5.8. Determine the work done 
by (a) the applied force, (b) the normal force exerted 
by the table, (c) the force of gravity, and (d)  the net 
force on the block.

5.2  Kinetic Energy and the Work–Energy Theorem

 9. A mechanic pushes a 2.50 3 103-kg car from rest to a 
speed of v, doing 5 000 J of work in the process. Dur-
ing this time, the car moves 25.0 m. Neglecting friction 
between car and road, find (a) v and (b) the horizontal 
force exerted on the car.

 10. A 7.00-kg bowling ball moves at 3.00 m/s. How fast 
must a 2.45-g Ping-Pong ball move so that the two balls 
have the same kinetic energy?

 11. A 65.0-kg runner has a speed of 5.20 m/s at one instant 
during a long-distance event. (a) What is the runner’s 

u

F
S

m

d

Figure p 5.8
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kinetic energy at this instant? (b) If he doubles his 
speed to reach the finish line, by what factor does his 
kinetic energy change?

 12.  A worker pushing a 35.0-kg wooden crate at a con-
stant speed for 12.0 m along a wood floor does 350 J of 
work by applying a constant horizontal force of magnitude 
F0 on the crate. (a) Determine the value of F0. (b) If the 
worker now applies a force greater than F0, describe the 
subsequent motion of the crate. (c) Describe what would 
happen to the crate if the applied force is less than F0.

 13. W A 70-kg base runner begins his slide into second 
base when he is moving at a speed of 4.0 m/s. The coef-
ficient of friction between his clothes and Earth is 0.70. 
He slides so that his speed is zero just as he reaches the 
base. (a)  How much mechanical energy is lost due to 
friction acting on the runner? (b) How far does he slide?

 14. A running 62-kg cheetah has a top speed of 32 m/s. 
(a) What is the cheetah’s maximum kinetic energy? 
(b) Find the cheetah’s speed when its kinetic energy is 
one half of the value found in part (a).

 15. A 7.80-g bullet moving at 575 m/s penetrates a tree 
trunk to a depth of 5.50 cm. (a) Use work and energy 
considerations to find the average frictional force that 
stops the bullet. (b) Assuming the frictional force is 
constant, determine how much time elapses between 
the moment the bullet enters the tree and the moment 
it stops moving.

 16. A 0.60-kg particle has a speed of 2.0 m/s at point A 
and a kinetic energy of 7.5 J at point B. What is (a) its 
kinetic energy at A? (b) Its speed at point B ? (c) The 
total work done on the particle as it moves from A to B ?

 17. A large cruise ship of mass 6.50 3 107 kg has a speed of  
12.0 m/s at some instant. (a) What is the ship’s kinetic 
energy at this time? (b) How much work is required to stop 
it? (c) What is the magnitude of the constant force re - 
quired to stop it as it undergoes a displacement of 2.50 km?

 18. A man pushing a crate of mass m 5 92.0 kg at a speed 
of v 5 0.850 m/s encounters a rough horizontal sur-
face of length , 5 0.65 m as in Figure P5.18. If the coef-
ficient of kinetic friction between the crate and rough 
surface is 0.358 and he exerts a constant horizontal 
force of 275 N on the crate, find (a) the magnitude and 
direction of the net force on the crate while it is on 
the rough surface, (b) the net work done on the crate 
while it is on the rough surface, and (c) the speed of 
the crate when it reaches the end of the rough surface.

5.3  Gravitational Potential Energy

5.4  Spring Potential Energy

19. A 0.20-kg stone is held 1.3 m above the top edge of a 
water well and then dropped into it. The well has a 
depth of 5.0 m. Taking y 5 0 at the top edge of the 
well, what is the gravitational potential energy of the 
stone–Earth system (a) before the stone is released 
and (b)  when it reaches the bottom of the well.  
(c) What is the change in gravitational potential 
energy of the system from release to reaching the 
bottom of the well?

 20. When a 2.50-kg object is hung vertically on a cer-
tain light spring described by Hooke’s law, the spring 
stretches 2.76 cm. (a) What is the force constant of the 
spring? (b)  If the 2.50-kg object is removed, how far 
will the spring stretch if a 1.25-kg block is hung on 
it? (c) How much work must an external agent do to 
stretch the same spring 8.00 cm from its unstretched 
position?

 21. In a control system, an accelerometer consists of a 
4.70-g object sliding on a calibrated horizontal rail. A 
low-mass spring attaches the object to a flange at one 
end of the rail. Grease on the rail makes static fric-
tion negligible, but rapidly damps out vibrations of the 
sliding object. When subject to a steady acceleration 
of 0.800g, the object should be at a location 0.500 cm 
away from its equilibrium position. Find the force con-
stant of the spring required for the calibration to be 
correct.

 22.  A 60.0-kg athlete leaps straight up into the air 
from a trampoline with an initial speed of 9.0 m/s. The 
goal of this problem is to find the maximum height 
she attains and her speed at half maximum height. 
(a) What are the interacting objects and how do they 
interact? (b) Select the height at which the athlete’s 
speed is 9.0 m/s as y 5 0. What is her kinetic energy at 
this point? What is the gravitational potential energy 
associated with the athlete? (c) What is her kinetic 
energy at maximum height? What is the gravitational 
potential energy associated with the athlete? (d) Write 
a general equation for energy conservation in this case 
and solve for the maximum height. Substitute and 
obtain a numerical answer. (e) Write the general equa-
tion for energy conservation and solve for the velocity 
at half the maximum height. Substitute and obtain a 
numerical answer.

 23. A 2 100-kg pile driver is used to drive a steel I-beam 
into the ground. The pile driver falls 5.00 m before 
coming into contact with the top of the beam, and it 
drives the beam 12.0 cm farther into the ground as it 
comes to rest. Using energy considerations, calculate 
the average force the beam exerts on the pile driver 
while the pile driver is brought to rest.

 24. Two blocks are connected by a light string that 
passes over two frictionless pulleys as in Figure P5.24. 

m

,

vS

Figure p 5.18
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The block of mass m2

is attached to a spring 
of force constant k and 
m1 . m2. If the system is 
released from rest, and 
the spring is initially 
not stretched or com-
pressed, find an expres-
sion for the maximum 
displacement d of m2.

 25. A daredevil on a motor-
cycle leaves the end of a 
ramp with a speed of 35.0 m/s as in Figure P5.25. If 
his speed is 33.0 m/s when he reaches the peak of the 
path, what is the maximum height that he reaches? 
Ignore friction and air resistance.

distance of 7.5 cm in a 75-kg male.3 How much work 
can the biceps muscles (one in each arm) perform 
in a single contraction? Compare this amount of 
work with the energy required to lift a 75-kg person  
40 cm in performing a chin-up. Do you think the 
biceps muscle is the only muscle involved in perform-
ing a chin-up?

 28. A flea is able to jump about 0.5 m. It has been 
said that if a flea were as big as a human, it would be 
able to jump over a 100-story building! When an ani-
mal jumps, it converts work done in contracting mus-
cles into gravitational potential energy (with some 
steps in between). The maximum force exerted by a 
muscle is proportional to its cross-sectional area, and 
the work done by the muscle is this force times the 
length of contraction. If we magnified a flea by a factor 
of 1 000, the cross section of its muscle would increase 
by 1 0002 and the length of contraction would increase 
by 1 000. How high would this “superflea” be able to 
jump? (Don’t forget that the mass of the “superflea” 
increases as well.)

 29. A 50.0-kg projectile is fired at an angle of 30.0° above 
the horizontal with an initial speed of 1.20 3 102 m/s 
from the top of a cliff 142 m above level ground, where 
the ground is taken to be y 5 0. (a) What is the initial 
total mechanical energy of the projectile? (b) Suppose 
the projectile is traveling 85.0 m/s at its maximum 
height of y 5 427 m. How much work has been done 
on the projectile by air friction? (c) What is the speed 
of the projectile immediately before it hits the ground 
if air friction does one and a half times as much work 
on the projectile when it is going down as it did when it 
was going up?

 30.  A projectile of mass m is fired horizontally with 
an initial speed of v0 from a height of h above a f lat, 
desert surface. Neglecting air friction, at the instant 
before the projectile hits the ground, find the follow-
ing in terms of m, v0, h, and g : (a) the work done by 
the force of gravity on the projectile, (b) the change 
in kinetic energy of the projectile since it was fired, 
and (c) the final kinetic energy of the projectile.  
(d) Are any of the answers changed if the initial 
angle is changed?

 31.  A horizontal spring attached to a wall has a 
force constant of 850 N/m. A block of mass 1.00 kg is 
attached to the spring and oscillates freely on a hori-
zontal, frictionless surface as in Figure 5.20. The ini-
tial goal of this problem is to find the velocity at the 
equilibrium point after the block is released. (a) What 
objects constitute the system, and through what forces 
do they interact? (b) What are the two points of inter-
est? (c) Find the energy stored in the spring when the 
mass is stretched 6.00 cm from equilibrium and again 

k

 m1 m2

Figure p 5.24

h

33.0 m/s
35.0 m/s

Figure p 5.25

26. Truck suspensions often have “helper springs” that 
engage at high loads. One such arrangement is a leaf 
spring with a helper coil spring mounted on the axle, 
as shown in Figure P5.26. When the main leaf spring 
is compressed by distance y0, the helper spring engages 
and then helps to support any additional load. Suppose 
the leaf spring constant is 5.25 3 105 N/m, the helper 
spring constant is 3.60 3 105 N/m, and y0 5 0.500  m. 
(a) What is the compression of the leaf spring for a load 
of 5.00 3 105 N? (b) How much work is done in com-
pressing the springs?

y0

Axle

Truck body

“Helper”
  spring

Main leaf
spring

Figure p 5.26

27. The chin-up is one exercise that can be used 
to strengthen the biceps muscle. This muscle can 
exert a force of approximately 800 N as it contracts a  

3 G. P. Pappas et al., “Nonuniform shortening in the biceps brachii during 
elbow flexion,” Journal of Applied Physiology 92, 2381, 2002.
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when the mass passes through equilibrium after being 
released from rest. (d) Write the conservation of energy 
equation for this situation and solve it for the speed of 
the mass as it passes equilibrium. Substitute to obtain 
a numerical value. (e) What is the speed at the halfway 
point? Why isn’t it half the speed at equilibrium?

5.5  Systems and Energy Conservation

32. A 50-kg pole vaulter running at 10 m/s vaults over the 
bar. Her speed when she is above the bar is 1.0 m/s. 
Neglect air resistance, as well as any energy absorbed 
by the pole, and determine her altitude as she crosses 
the bar.

33. W A child and a sled with a combined mass of 50.0 kg 
slide down a frictionless slope. If the sled starts from 
rest and has a speed of 3.00 m/s at the bottom, what is 
the height of the hill?

 34. Hooke’s law describes a certain light spring of 
unstretched length 35.0 cm. When one end is 
attached to the top of a door frame and a 7.50-kg 
object is hung from the other end, the length of the 
spring is 41.5 cm. (a) Find its spring constant. (b) The 
load and the spring are taken down. Two people pull 
in opposite directions on the ends of the spring, each 
with a force of 190 N. Find the length of the spring in 
this situation.

 35. A 0.250-kg block along a horizontal track has a 
speed of 1.50 m/s immediately before colliding with a 
light spring of force constant 4.60 N/m located at the 
end of the track. (a) What is the spring’s maximum 
compression if the track is frictionless? (b) If the track 
is not frictionless, would the spring’s maximum com-
pression be greater than, less than, or equal to the 
value obtained in part (a)?

 36. A block of mass m 5 5.00 kg is released from rest from 
point � and slides on the frictionless track shown in 
Figure P5.36. Determine (a) the block’s speed at points 
� and � and (b) the net work done by the gravita-
tional force on the block as it moves from point from 
� to �.

 38. Two blocks are connected 
by a light string that passes over 
a frictionless pulley as in Figure 
P5.38. The system is released from 
rest while m2 is on the floor and 
m1 is a distance h above the floor. 
(a)  Assuming m1 . m2, find an 
expression for the speed of m1 just 
as it reaches the floor. (b) Taking  
m1 5 6.5 kg, m2 5 4.2  kg, and  
h  5 3.2 m, evaluate your answer 
to part (a), and (c) find the speed 
of each block when m1 has fallen a 
distance of 1.6 m.

 39. The launching mechanism  
of a toy gun consists of a spring 
of unknown spring constant, as 
shown in Figure P5.39a. If the 
spring is compressed a distance 
of 0.120 m and the gun fired 
vertically as shown, the gun can 
launch a 20.0-g projectile from 
rest to a maximum height of 
20.0 m above the starting point 
of the projectile. Neglecting 
all resistive forces, (a) describe 
the mechanical energy trans-
formations that occur from 
the time the gun is fired until 
the projectile reaches its maxi-
mum height, (b) determine the 
spring constant, and (c) find 
the speed of the projectile as it moves through the 
equilibrium position of the spring (where x 5 0), as 
shown in Figure P5.39b.

 40.  (a) A block with a mass m is pulled along a horizon-
tal surface for a distance x by a constant force F

S

 at an  
angle u with respect to the horizontal. The coefficient 
of kinetic friction between block and table is mk. Is the 
force exerted by friction equal to mkmg? If not, what 
is the force exerted by friction? (b)  How much work 
is done by the friction force and by F

S

? (Don’t forget 
the signs.) (c) Identify all the forces that do no work on 
the block. (d) Let m 52.00 kg, x 5 4.00 m, u 5 37.0°,  
F 5 15.0 N, and mk 5 0.400, and find the answers to 
parts (a) and (b).

 41.  (a) A child slides down a water slide at an amuse-
ment park from an initial height h. The slide can be 
considered frictionless because of the water flowing 
down it. Can the equation for conservation of mechan-
ical energy be used on the child? (b) Is the mass of the 
child a factor in determining his speed at the bottom 
of the slide? (c) The child drops straight down rather 
than following the curved ramp of the slide. In which 
case will he be traveling faster at ground level? (d) If 
friction is present, how would the conservation-of-
energy equation be modified? (e) Find the maximum 

2.00 m

5.00 m
3.20 m

m
�

�

�

Figure p 5.36

37. Tarzan swings on a 30.0-m-long vine initially inclined 
at an angle of 37.0° with the vertical. What is his speed 
at the bottom of the swing (a) if he starts from rest? 
(b) If he pushes off with a speed of 4.00 m/s?

m1

m2

h

Figure p 5.38

x x

vS

a b

x � 0

Figure p 5.39
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speed of the child when the slide is frictionless if the 
initial height of the slide is 12.0 m.

 42. An airplane of mass 1.50 3 104 kg is moving at 
60.0 m/s. The pilot then increases the engine’s thrust 
to 7.50 3 104 N. The resistive force exerted by air on 
the airplane has a magnitude of 4.00 3 104 N. (a) Is the 
work done by the engine on the airplane equal to the  
change in the airplane’s kinetic energy after it travels 
through some distance through the air? Is mechanical 
energy conserved? Explain. (b) Find the speed of the 
airplane after it has traveled 5.00 3 102 m. Assume the 
airplane is in level flight throughout the motion.

 43. The system shown in Figure P5.43 
is used to lift an object of mass  
m 5 76.0 kg. A constant downward 
force of magnitude F is applied to 
the loose end of the rope such that 
the hanging object moves upward 
at constant speed. Neglecting the 
masses of the rope and pulleys, 
find (a) the required value of F, 
(b) the tensions T1, T2, and T3, and 
(c) the work done by the applied 
force in raising the object a distance of 1.80 m.

 44. A 25.0-kg child on a 2.00-m-long swing is released from 
rest when the ropes of the swing make an angle of 
30.0° with the vertical. (a) Neglecting friction, find the 
child’s speed at the lowest position. (b) If the actual 
speed of the child at the lowest position is 2.00 m/s, 
what is the mechanical energy lost due to friction?

 45. A 2.1 3 103-kg car starts from rest at the top of a 
5.0-m-long driveway that is inclined at 20° with the 
horizontal. If an average friction force of 4.0 3 103 N 
impedes the motion, find the speed of the car at the 
bottom of the driveway.

 46.   A child of mass m starts from rest and slides 
without friction from a height h along a curved water-
slide (Fig. P5.46). She is launched from a height h/5 into 
the pool. (a) Is mechanical energy conserved? Why? 
(b) Give the gravitational potential energy associated 
with the child and her kinetic energy in terms of mgh 
at the following positions: the top of the waterslide, the 
launching point, and the point where she lands in the 
pool. (c) Determine her initial speed v0 at the launch 
point in terms of g and h. (d) Determine her maximum 
airborne height ymax in terms of h, g, and the horizontal 

speed at that height, v0x. (e) Use the x-component of 
the answer to part (c) to eliminate v0 from the answer 
to part (d), giving the height ymax in terms of g, h, and 
the launch angle u. (f) Would your answers be the same 
if the waterslide were not frictionless? Explain.

 47. A skier starts from rest at the top of a hill that is 
inclined 10.5° with respect to the horizontal. The 
hillside is 200  m long, and the coefficient of friction 
between snow and skis is 0.075 0. At the bottom of the 
hill, the snow is level and the coefficient of friction is 
unchanged. How far does the skier glide along the hor-
izontal portion of the snow before coming to rest?

 48. In a circus performance, a monkey is strapped to a sled 
and both are given an initial speed of 4.0 m/s up a 20° 
inclined track. The combined mass of monkey and sled 
is 20 kg, and the coefficient of kinetic friction between 
sled and incline is 0.20. How far up the incline do the 
monkey and sled move?

 49. An 80.0-kg skydiver jumps out of a balloon at an altitude 
of 1 000 m and opens the parachute at an altitude of 
200.0 m. (a) Assuming that the total retarding force on 
the diver is constant at 50.0 N with the parachute closed 
and constant at 3 600 N with the parachute open, what 
is the speed of the diver when he lands on the ground? 
(b) Do you think the skydiver will get hurt? Explain.  
(c) At what height should the parachute be opened so 
that the final speed of the skydiver when he hits the 
ground is 5.00 m/s? (d) How realistic is the assumption 
that the total retarding force is constant? Explain.

5.6  Power

 50. W  A skier of mass 70 kg is pulled up a slope by a motor-
driven cable. (a) How much work is required to pull 
him 60 m up a 30° slope (assumed frictionless) at a 
constant speed of 2.0 m/s? (b) What power (expressed 
in hp) must a motor have to perform this task?

 51. A 3.50-kN piano is lifted by three workers at constant 
speed to an apartment 25.0 m above the street using a 
pulley system fastened to the roof of the building. Each 
worker is able to deliver 165 W of power, and the pulley 
system is 75.0% efficient (so that 25.0% of the mechani-
cal energy is lost due to friction in the pulley). Neglect-
ing the mass of the pulley, find the time required to lift 
the piano from the street to the apartment.

 52.  While running, a person dissipates about 0.60 J 
of mechanical energy per step per kilogram of body 
mass. If a 60-kg person develops a power of 70 W dur-
ing a race, how fast is the person running? (Assume a 
running step is 1.5 m long.)

 53. The electric motor of a model train accelerates the 
train from rest to 0.620 m/s in 21.0 ms. The total mass 
of the train is 875 g. Find the average power delivered 
to the train during its acceleration.

 54. When an automobile moves with constant speed down 
a highway, most of the power developed by the engine 
is used to compensate for the mechanical energy loss 
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due to frictional forces exerted on the car by the air 
and the road. If the power developed by an engine is 
175 hp, estimate the total frictional force acting on the 
car when it is moving at a speed of 29 m/s. One horse-
power equals 746 W.

 55. An older-model car accelerates from 0 to speed v in 
10 s. A newer, more powerful sports car of the same 
mass accelerates from 0 to 2v in the same time period. 
Assuming the energy coming from the engine appears 
only as kinetic energy of the cars, compare the power 
of the two cars.

 56. A certain rain cloud at an altitude of 1.75 km contains 
3.20 3 107 kg of water vapor. How long would it take 
for a 2.70-kW pump to raise the same amount of water 
from Earth’s surface to the cloud’s position?

 57. A 1.50 3 103-kg car starts from rest and accelerates 
uniformly to 18.0 m/s in 12.0 s. Assume that air resis-
tance remains constant at 400 N during this time. Find 
(a)  the average power developed by the engine and 
(b)  the instantaneous power output of the engine at 
t 5 12.0 s, just before the car stops accelerating.

 58. A 650-kg elevator starts from rest and moves upward 
for 3.00 s with constant acceleration until it reaches its 
cruising speed, 1.75 m/s. (a) What is the average power 
of the elevator motor during this period? (b) How does 
this amount of power compare with its power during 
an upward trip with constant speed?

5.7  Work Done by a Varying Force

59. The force acting on a particle varies as in Figure 
P5.59. Find the work done by the force as the parti-
cle moves (a) from x 5 0 to x 5 8.00 m, (b) from x 5 
8.00 m to x 5 10.0 m, and (c) from x 5 0 to x 5 10.0 m.

and (c) from x 5 10.0 m to x 5 15.0 m. (d) If the object 
has a speed of 0.500 m/s at x 5 0, find its speed at x 5 
5.00 m and its speed at x 5 15.0 m.

 61. The force acting on an object is given by Fx 5  
(8x 2 16) N, where x is in meters. (a) Make a plot of 
this force versus x from x 5 0 to x 5 3.00 m. (b) From 
your graph, find the net work done by the force as the 
object moves from x 5 0 to x 5 3.00 m.

Additional Problems

62. An outfielder throws a 0.150-kg baseball at a speed 
of 40.0 m/s and an initial angle of 30.0°. What is the 
kinetic energy of the ball at the highest point of its 
motion?

63. A person doing a chin-up weighs 700 N, exclusive of 
the arms. During the first 25.0 cm of the lift, each arm 
exerts an upward force of 355 N on the torso. If the 
upward movement starts from rest, what is the person’s 
velocity at that point?

 64. A boy starts at rest and slides down a frictionless 
slide as in Figure P5.64. The bottom of the track is a 
height h above the ground. The boy then leaves the 
track horizontally, striking the ground a distance d as 
shown. Using energy methods, determine the initial 
height H of the boy in terms of h and d.

2 4 6 8 10
x (m)

�2

2

4

6

Fx (N)

Figure p 5.59

60. An object of mass 3.00 kg is subject to a force Fx that 
varies with position as in Figure P5.60. Find the work 
done by the force on the object as it moves (a) from 
x 5 0 to x 5 5.00 m, (b) from x 5 5.00 m to x 5 10.0 m, 
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Figure p 5.60
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Figure p 5.64

65. A roller-coaster car of mass 1.50 3 103 kg is initially at 
the top of a rise at point �. It then moves 35.0 m at an 
angle of 50.0° below the horizontal to a lower point �. 
(a) Find both the potential energy of the system when 
the car is at points � and � and the change in poten-
tial energy as the car moves from point � to point �, 
assuming y 5 0 at point �. (b) Repeat part (a), this 
time choosing y 5 0 at point �, which is another 
15.0 m down the same slope from point �.

 66. A ball of mass m 5 
1.80 kg is released from 
rest at a height h  5 
65.0 cm above a light 
vertical spring of force 
constant k as in Figure 
P5.66a. The ball strikes 
the top of the spring 
and compresses it a dis-
tance d 5 9.00 cm as in 
Figure P5.66b. Neglect-
ing any energy losses 
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Figure p 5.66
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during the collision, find (a) the speed of the ball just 
as it touches the spring and (b) the force constant of the 
spring.

 67. An archer pulls her bowstring back 0.400 m by exert-
ing a force that increases uniformly from zero to 
230 N. (a) What is the equivalent spring constant of the 
bow? (b) How much work does the archer do in pulling 
the bow?

 68. A block of mass 12.0 kg slides from rest down a fric-
tionless 35.0° incline and is stopped by a strong spring 
with k 5 3.00 3 104 N/m. The block slides 3.00 m from 
the point of release to the point where it comes to rest 
against the spring. When the block comes to rest, how 
far has the spring been compressed?

 69. (a) A 75-kg man steps out a window and falls 
(from rest) 1.0 m to a sidewalk. What is his speed just 
before his feet strike the pavement? (b) If the man falls 
with his knees and ankles locked, the only cushion for 
his fall is an approximately 0.50-cm give in the pads of 
his feet. Calculate the average force exerted on him by 
the ground during this 0.50 cm of travel. This average 
force is sufficient to cause damage to cartilage in the 
joints or to break bones.

 70. A toy gun uses a spring to project a 5.3-g soft rubber 
sphere horizontally. The spring constant is 8.0 N/m, 
the barrel of the gun is 15 cm long, and a constant 
frictional force of 0.032 N exists between barrel and 
projectile. With what speed does the projectile leave 
the barrel if the spring was compressed 5.0 cm for this 
launch?

 71. Two objects (m1 5 5.00 kg and 
m2 5 3.00 kg) are connected 
by a light string passing over 
a light, frictionless pulley as 
in Figure P5.71. The 5.00-kg 
object is released from rest 
at a point h 5 4.00 m above 
the table. (a)  Determine the 
speed of each object when 
the two pass each other. 
(b)  Determine the speed of 
each object at the moment 
the 5.00-kg object hits the 
table. (c) How much higher 
does the 3.00-kg object travel after the 5.00-kg object 
hits the table?

 72. In a needle biopsy, a narrow strip of tissue is 
extracted from a patient with a hollow needle. Rather 
than being pushed by hand, to ensure a clean cut the 
needle can be fired into the patient’s body by a spring. 
Assume the needle has mass 5.60 g, the light spring 
has force constant 375 N/m, and the spring is origi-
nally compressed 8.10 cm to project the needle hori-
zontally without friction. The tip of the needle then 
moves through 2.40 cm of skin and soft tissue, which 
exerts a resistive force of 7.60 N on it. Next, the needle 

cuts 3.50 cm into an organ, which exerts a backward 
force of 9.20 N on it. Find (a) the maximum speed of 
the needle and (b) the speed at which a flange on the 
back end of the needle runs into a stop, set to limit the 
penetration to 5.90 cm.

 73. A 2.00 3 102-g particle is released from rest at point A 
on the inside of a smooth hemispherical bowl of radius 
R 5 30.0 cm (Fig. P5.73). Calculate (a) its gravitational 
potential energy at A relative to B, (b) its kinetic energy 
at B, (c) its speed at B, (d) its potential energy at C rela-
tive to B, and (e) its kinetic energy at C.
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Figure p 5.71
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Figure p 5.73 Problems 73 and 74.

74. The particle described in Problem 73 (Fig. 
P5.73) is released from point A at rest. Its speed at B is 
1.50 m/s. (a) What is its kinetic energy at B? (b) How 
much mechanical energy is lost as a result of friction 
as the particle goes from A to B? (c) Is it possible to 
determine m from these results in a simple manner? 
Explain.

 75. A light spring with spring constant 1.20 3 103 N/m 
hangs from an elevated support. From its lower end 
hangs a second light spring, which has spring constant 
1.80 3 103 N/m. A 1.50-kg object hangs at rest from 
the lower end of the second spring. (a) Find the total 
extension distance of the pair of springs. (b) Find the 
effective spring constant of the pair of springs as a sys-
tem. We describe these springs as being in series. Hint: 
Consider the forces on each spring separately.

 76. Symbolic Version of Problem 75 A light spring with 
spring constant k1 hangs from an elevated support. 
From its lower end hangs a second light spring, which 
has spring constant k2. An object of mass m hangs at 
rest from the lower end of the second spring. (a) Find 
the total extension distance x of the pair of springs in 
terms of the two displacements x1 and x2. (b) Find the 
effective spring constant of the pair of springs as a sys-
tem. We describe these springs as being in series.

 77.  In terms of saving energy, bicycling and walking 
are far more efficient means of transportation than 
is travel by automobile. For example, when riding 
at 10.0  mi/h, a cyclist uses food energy at a rate of 
about 400 kcal/h above what he would use if he were 
merely sitting still. (In exercise physiology, power is 
often measured in kcal/h rather than in watts. Here, 
1 kcal 5 1 nutritionist’s Calorie 5 4 186 J.) Walking at 
3.00 mi/h requires about 220 kcal/h. It is interesting 
to compare these values with the energy consump-
tion required for travel by car. Gasoline yields about 
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1.30  3 108 J/gal. Find the fuel economy in equiva-
lent miles per gallon for a person (a) walking and  
(b) bicycling.

 78. Energy is conventionally measured in Calories as 
well as in joules. One Calorie in nutrition is 1 kilocalo-
rie, which we define in Chapter 11 as 1 kcal 5 4 186 J. 
Metabolizing 1 gram of fat can release 9.00 kcal. A 
student decides to try to lose weight by exercising. 
She plans to run up and down the stairs in a football 
stadium as fast as she can and as many times as nec-
essary. Is this in itself a practical way to lose weight? 
To evaluate the program, suppose she runs up a flight 
of 80 steps, each 0.150 m high, in 65.0 s. For simplic-
ity, ignore the energy she uses in coming down (which 
is small). Assume that a typical efficiency for human 
muscles is 20.0%. This means that when your body con-
verts 100 J from metabolizing fat, 20 J goes into doing 
mechanical work (here, climbing stairs). The remain-
der goes into internal energy. Assume the student’s 
mass is 50.0 kg. (a) How many times must she run the 
flight of stairs to lose 1 pound of fat? (b) What is her 
average power output, in watts and in horsepower, as 
she is running up the stairs?

 79. A ski jumper starts from rest 50.0 m above the ground 
on a frictionless track and flies off the track at an angle 
of 45.0° above the horizontal and at a height of 10.0 m 
above the level ground. Neglect air resistance. (a) What 
is her speed when she leaves the track? (b) What is the 
maximum altitude she attains after leaving the track? 
(c) Where does she land relative to the end of the 
track?

 80. A 5.0-kg block is pushed 3.0 m up 
a vertical wall with constant speed 
by a constant force of magnitude F 
applied at an angle of u 5 30° with 
the horizontal, as shown in Figure 
P5.80. If the coefficient of kinetic 
friction between block and wall 
is 0.30, determine the work done 
by (a) F

S

, (b) the force of gravity, and (c)  the normal 
force between block and wall. (d) By how much does 
the gravitational potential energy increase during the 
block’s motion?

 81. A child’s pogo stick (Fig. P5.81)  
stores energy in a spring (k 5 
2.50 3 104 N/m). At position 
� (x1 5 20.100 m), the spring 
compression is a maximum 
and the child is momentarily 
at rest. At position � (x  5 0), 
the spring is relaxed and the 
child is moving upward. At 
position �, the child is again 
momentarily at rest at the top 
of the jump. Assuming that 
the combined mass of child 

and pogo stick is 25.0 kg, (a) calculate the total energy 
of the system if both potential energies are zero at x 5 0, 
(b) determine x2, (c) calculate the speed of the child at 
x 5 0, (d) determine the value of x for which the kinetic 
energy of the system is a maximum, and (e) obtain the 
child’s maximum upward speed.

 82.  A hummingbird is able to hover because, as the 
wings move downward, they exert a downward force on 
the air. Newton’s third law tells us that the air exerts an 
equal and opposite force (upward) on the wings. The 
average of this force must be equal to the weight of the 
bird when it hovers. If the wings move through a dis-
tance of 3.5 cm with each stroke, and the wings beat 
80 times per second, determine the work performed by 
the wings on the air in 1 m if the mass of the hum-
mingbird is 3.0 g.

 83. In the dangerous “sport” of bungee jumping, a dar-
ing student jumps from a hot-air balloon with a spe-
cially designed elastic cord attached to his waist. The 
unstretched length of the cord is 25.0 m, the student 
weighs 700 N, and the balloon is 36.0 m above the sur-
face of a river below. Calculate the required force con-
stant of the cord if the student is to stop safely 4.00 m 
above the river.

 84.  The masses of the javelin, discus, and shot are 
0.80 kg, 2.0 kg, and 7.2 kg, respectively, and record 
throws in the corresponding track events are about 
98  m, 74 m, and 23 m, respectively. Neglecting air 
resistance, (a) calculate the minimum initial kinetic 
energies that would produce these throws, and (b) esti-
mate the average force exerted on each object during 
the throw, assuming the force acts over a distance of 
2.0 m. (c) Do your results suggest that air resistance is 
an important factor?

 85. A truck travels uphill with constant velocity on a high-
way with a 7.0° slope. A 50-kg package sits on the floor 
of the back of the truck and does not slide, due to a 
static frictional force. During an interval in which the 
truck travels 340 m, (a) what is the net work done on 
the package? What is the work done on the package 
by (b) the force of gravity, (c) the normal force, and 
(d) the friction force?

 86. A daredevil wishes to bungee-jump from a hot-air bal-
loon 65.0 m above a carnival midway. He will use a 
piece of uniform elastic cord tied to a harness around 
his body to stop his fall at a point 10.0 m above the 
ground. Model his body as a particle and the cord as 
having negligible mass and a tension force described 
by Hooke’s force law. In a preliminary test, hanging at 
rest from a 5.00-m length of the cord, the jumper finds 
that his body weight stretches it by 1.50 m. He will drop 
from rest at the point where the top end of a longer 
section of the cord is attached to the stationary bal-
loon. (a) What length of cord should he use? (b) What 
maximum acceleration will he experience?

u

F
S

Figure p 5.80

�
�

�

x1

x2

Figure p 5.81

37027_ch05_ptg01_hr_127-169.indd   168 19/08/13   2:22 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Unless otherwise noted, all content on this page is © Cengage Learning.

 | Problems  169

87. A loaded ore car has a mass of 950 kg and rolls on 
rails with negligible friction. It starts from rest and is 
pulled up a mine shaft by a cable connected to a winch. 
The shaft is inclined at 30.0° above the horizontal. The 
car accelerates uniformly to a speed of 2.20 m/s in 
12.0 s and then continues at constant speed. (a) What 
power must the winch motor provide when the car is 
moving at constant speed? (b) What maximum power 
must the motor provide? (c) What total energy trans-
fers out of the motor by work by the time the car moves 
off the end of the track, which is of length 1 250 m?

 88. An object of mass m is suspended from the top of 
a cart by a string of length L as in Figure P5.88a. The 
cart and object are initially moving to the right at a con-
stant speed v0. The cart comes to rest after colliding 
and sticking to a bumper, as in Figure P5.88b, and the 
suspended object swings through an angle u. (a) Show 
that the initial speed is v0 5 !2gL 11 2 cos u 2 . (b)  If 
L  5 1.20 m and u 5 35.0°, find the initial speed of 
the cart. (Hint: The force exerted by the string on the 
object does no work on the object.)

horizontal surface exerts a force of friction of 30 N on 
m2. If the system is released from rest, use energy con-
cepts to find the speed of m3 after it moves down 4.0 m.

 90. A light spring with force constant 3.85 N/m is com-
pressed by 8.00 cm as it is held between a 0.250-kg 
block on the left and a 0.500-kg block on the right, 
both resting on a horizontal surface. The spring exerts 
a force on each block, tending to push them apart. 
The blocks are simultaneously released from rest. Find 
the acceleration with which each block starts to move, 
given that the coefficient of kinetic friction between 
each block and the surface is (a) 0, (b) 0.100, and 
(c) 0.462.

 91. In bicycling for aerobic exercise, a woman wants 
her heart rate to be between 136 and 166 beats per 
minute. Assume that her heart rate is directly pro-
portional to her mechanical power output. Ignore all 
forces on the woman-plus-bicycle system, except for 
static friction forward on the drive wheel of the bicycle 
and an air resistance force proportional to the square 
of the bicycler’s speed. When her speed is 22.0 km/h, 
her heart rate is 90.0 beats per minute. In what range 
should her speed be so that her heart rate will be in 
the range she wants?

 92. Two blocks, A and B (with mass 50 kg and 100 kg, 
respectively), are connected by a string, as shown in 
Figure P5.92. The pulley is frictionless and of negli-
gible mass. The coefficient of kinetic friction between 
block A and the incline is mk 5 0.25. Determine the 
change in the kinetic energy of block A as it moves 
from � to �, a distance of 20 m up the incline (and 
block B drops downward a distance of 20 m) if the sys-
tem starts from rest.
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Figure p 5.88

89. Three objects with masses m1 5 5.0 kg, m2 5 10 kg, and 
m3 5 15 kg, respectively, are attached by strings over 
frictionless pulleys as indicated in Figure P5.89. The 

m1
m3

m2

Figure p 5.89

50 kg
100 kg

37°
�

�

A

B

Figure p 5.92

37027_ch05_ptg01_hr_127-169.indd   169 19/08/13   2:22 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



170

N
AS

A
/T

on
y 

Gr
ay

 a
nd

 R
ob

er
t M

ur
ra

y

What happens when two automobiles collide? How does the impact affect the motion of each 
vehicle, and what basic physical principles determine the likelihood of serious injury? How do 
rockets work, and what mechanisms can be used to overcome the limitations imposed by 
exhaust speed? Why do we have to brace ourselves when firing small projectiles at high veloc-
ity? Finally, how can we use physics to improve our golf game?

To begin answering such questions, we introduce momentum. Intuitively, anyone or any-
thing that has a lot of momentum is going to be hard to stop. In politics, the term is meta-
phorical. Physically, the more momentum an object has, the more force has to be applied to 
stop it in a given time. This concept leads to one of the most powerful principles in physics: 
conservation of momentum. Using this law, complex collision problems can be solved without 
knowing much about the forces involved during contact. We’ll also be able to derive informa-
tion about the average force delivered in an impact. With conservation of momentum, we’ll 
have a better understanding of what choices to make when designing an automobile or a 
moon rocket, or when addressing a golf ball on a tee.

6.1    Momentum and Impulse
Learning Objectives

1. Define momentum and impulse and state the impulse–momentum theorem.

2. Apply the impulse–momentum theorem to find estimates of average forces  
during collisions.

6 Momentum and Collisions
6.1 Momentum and Impulse

6.2 Conservation of Momentum

6.3 Collisions

6.4 Glancing Collisions

6.5 Rocket Propulsion

Rockets such as the Falcon 9 
transform a large part of their 
initial mass into hot gas through 
chemical reactions. The energetic 
gas molecules collide with the 
reaction chamber walls, transferring 
momentum to the rest of the  
rocket before escaping out  
the exhaust nozzle.
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In physics, momentum has a precise definition. A slowly moving brontosaurus 
has a lot of momentum, but so does a little hot lead shot from the muzzle of a 
gun. We therefore expect that momentum will depend on an object’s mass and 
velocity.

The linear momentum pS of an object of mass m moving with velocity vS is the 
product of its mass and velocity:

 pS ; mvS [6.1]

SI unit: kilogram-meter per second (kg ? m/s)

Doubling either the mass or the velocity of an object doubles its momentum; dou-
bling both quantities quadruples its momentum. Momentum is a vector quantity 
with the same direction as the object’s velocity. Its components are given in two 
dimensions by

px 5 mvx  py 5 mvy

where px is the momentum of the object in the x-direction and py its momentum in 
the y -direction.

The magnitude of the momentum p of an object of mass m can be related to its 
kinetic energy KE:

 KE 5
p2

2m
 [6.2]

This relationship is easy to prove using the definitions of kinetic energy and 
momentum (see Problem 6) and is valid for objects traveling at speeds much less 
than the speed of light. Equation 6.2 is useful in grasping the interplay between 
the two concepts, as illustrated in Quick Quiz 6.1.

b Linear momentum

■ Quick Quiz

6.1  Two masses m1 and m2, with m1 , m2, have equal kinetic energy. How do the 
mag nitudes of their momenta compare? (a) Not enough information is given.  
(b) p1 , p2 (c) p1 5 p2 (d) p1 . p2.

Changing the momentum of an object requires the application of a force. This 
is, in fact, how Newton originally stated his second law of motion. Starting from 
the more common version of the second law, we have

F
S

net 5 maS 5 m 
DvS

Dt
5

D 1mvS 2
Dt

where the mass m and the forces are assumed constant. The quantity in parenthe-
ses is just the momentum, so we have the following result:

The change in an object’s momentum DpS divided by the elapsed time Dt 
equals the constant net force F

S

net acting on the object:

 
DpS

Dt
5

change in momentum

time interval
5 F

S

net  [6.3]

This equation is also valid when the forces are not constant, provided the 
limit is taken as Dt becomes infinitesimally small. Equation 6.3 says that if  
the net force on an object is zero, the object’s momentum doesn’t change. In 
other words, the linear momentum of an object is conserved when F

S

net 5 0. 
Equation 6.3 also shows us that changing an object’s momentum requires the 

b  Newton’s second law and 
momentum
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continuous application of a force over a period of time Dt, leading to the defini-
tion of impulse:

If a constant force F
S

 acts on an object, the impulse I
S

 delivered to the object 
over a time interval Dt is given by

 I
S

; F
S Dt [6.4]

SI unit: kilogram meter per second (kg ? m/s)

Impulse is a vector quantity with the same direction as the constant force acting 
on the object. When a single constant force F

S

 acts on an object, Equation 6.3 can 
be written as

 I
S

5 F
S

 Dt 5 DpS 5 mvSf 2 mvSi  [6.5]

which is a special case of the impulse–momentum theorem. Equation 6.5 shows 
that the impulse of the force acting on an object equals the change in momentum 
of that object. That equality is true even if the force is not constant, as long as the 
time interval Dt is taken to be arbitrarily small. (The proof of the general case 
requires concepts from calculus.)

In real-life situations, the force on an object is only rarely constant. For exam-
ple, when a bat hits a baseball, the force increases sharply, reaches some maximum 
value, and then decreases just as rapidly. Figure 6.1(a) shows a typical graph of 
force versus time for such incidents. The force starts out small as the bat comes in 
contact with the ball, rises to a maximum value when they are firmly in contact, 
and then drops off as the ball leaves the bat. In order to analyze this rather com-
plex interaction, it’s useful to define an average force F

S

av, shown as the dashed 
line in Figure 6.1b. The average force is the constant force delivering the same 
impulse to the object in the time interval Dt as the actual time-varying force. We 
can then write the impulse–momentum theorem as

 F
S

av Dt 5 DpS [6.6]

The magnitude of the impulse delivered by a force during the time interval Dt is 
equal to the area under the force vs. time graph as in Figure 6.1a or, equivalently, 
to Fav Dt as shown in Figure 6.1b. The brief collision between a bullet and an apple 
is illustrated in Figure 6.2.

Impulse–momentum c 

theorem

t i t ft i

F

t f
t

F

t

F av

a b

The impulse of the average 
force equals the impulse of 
the actual time-varying force.

The impulse equals the 
area under the force vs. 
time curve.

Figure 6.1  (a) A net force act-
ing on a particle may vary in time. 
(b) The value of the constant force 
Fav (horizontal dashed line) is cho-
sen so that the area of the rectangle 
FavDt is the same as the area under 
the curve in (a).

Figure 6.2  An apple being pierced 
by a 30-caliber bullet traveling at a 
supersonic speed of 900 m/s. This 
collision was photographed with a 
microflash stroboscope using an 
exposure time of 0.33 �s. Shortly 
after the photograph was taken, the 
apple disintegrated completely. Note 
that the points of entry and exit of 
the bullet are visually explosive.
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 ■ a pp LYi ng  ph Ys ic s  6.1 Boxing and Brain Injury

Boxers in the nineteenth century used their bare fists. 
In modern boxing, fighters wear padded gloves. How do 
gloves protect the brain of the boxer from injury? Also, 
why do boxers often “roll with the punch”?

e Xp La n at i On  The brain is immersed in a cushioning 
fluid inside the skull. If the head is struck suddenly by a 
bare fist, the skull accelerates rapidly. The brain matches 
this acceleration only because of the large impulsive force 
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■ e Xa Mp Le 6.1 Teeing Off

g Oa L  Use the impulse–momentum theorem to estimate the average force exerted during an impact.

pr ObLe M  A golf ball with mass 5.0 3 1022 kg is struck with a club as in Figure 6.3. The force on the ball varies from zero 
when contact is made up to some maximum value (when the ball is maximally deformed) and then back to zero when the 
ball leaves the club, as in the graph of force vs. time in Figure 6.1. Assume that 
the ball leaves the club face with a velocity of 44 m/s. (a) Find the magnitude 
of the impulse due to the collision. (b) Estimate the duration of the collision 
and the average force acting on the ball.

s t r at e g Y  In part (a), use the fact that the impulse is equal to the change 
in momentum. The mass and the initial and final velocities are known, so 
this change can be computed. In part (b), the average force is just the change 
in momentum computed in part (a) divided by an estimate of the duration 
of the collision. Estimate the distance the ball travels on the face of the club 
(about 2.0  cm, roughly the same as the radius of the ball). Divide this dis-
tance by the average velocity (half the final velocity) to get an estimate of the 
time of contact.

s OLUti On

Figure 6.3 (Example 6.1) During impact, 
the club head momentarily flattens the side 
of the golf ball.
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(a) Find the impulse delivered to the ball.

The problem is essentially one dimensional. Note that 
vi 5 0, and calculate the change in momentum, which 
equals the impulse:

I 5 Dp 5 pf 2 pi 5 15.0 3 1022 kg 2 144 m/s 2 2 0

5  2.2 kg ? m/s

(b) Estimate the duration of the collision and the average 
force acting on the ball.

Estimate the time interval of the collision, Dt, using the 
approximate displacement (radius of the ball) and its 
average speed (half the maximum speed):

Dt 5
Dx
vav

5
2.0 3 1022 m

22 m/s
5  9.1 3 1024 s

Estimate the average force from Equation 6.6: Fav 5
Dp

Dt
5

2.2 kg # m/s

9.1 3 1024 s
5  2.4 3 103 N

re Mar Ks  This estimate shows just how large such contact forces can be. A good golfer achieves maximum momentum 
transfer by shifting weight from the back foot to the front foot, transmitting the body’s momentum through the shaft and 
head of the club. This timing, involving a short movement of the hips, is more effective than a shot powered exclusively 
by the arms and shoulders. Following through with the swing ensures that the motion isn’t slowed at the critical instant 
of impact.

QUes t i On  6.1  What average club speed would double the average force? (Assume the final velocity is unchanged.)

e Xe rc i s e  6.1  A 0.150-kg baseball, thrown with a speed of 40.0 m/s, is hit straight back at the pitcher with a speed of 
50.0 m/s. (a) What is the magnitude of the impulse delivered by the bat to the baseball? (b) Find the magnitude of the 
average force exerted by the bat on the ball if the two are in contact for 2.00 3 1023 s.

a ns Wer s   (a) 13.5 kg ? m/s (b) 6.75 kN

exerted by the skull on the brain. This large and sud-
den force (large Fav and small Dt) can cause severe brain 
injury. Padded gloves extend the time Dt over which the 
force is applied to the head. For a given impulse FavDt, 
a glove results in a longer time interval than a bare fist, 
decreasing the average force. Because the average force 
is decreased, the acceleration of the skull is decreased, 

reducing (but not eliminating) the chance of brain injury. 
The same argument can be made for “rolling with the 
punch”: If the head is held steady while being struck, the 
time interval over which the force is applied is relatively 
short and the average force is large. If the head is allowed 
to move in the same direction as the punch, the time 
interval is lengthened and the average force reduced. 
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■ e Xa Mp Le 6.2 How Good Are the Bumpers?

g Oa L  Find an impulse and estimate a force in a col-
lision of a moving object with a stationary object.

pr Ob Le M  In a crash test, a car of mass 1.50 3 103 kg  
collides with a wall and rebounds as in Figure 6.4a. 
The initial and final velocities of the car are vi 5 
215.0 m/s and vf 5 2.60 m/s, respectively. If the col-
lision lasts for 0.150 s, find (a) the impulse delivered 
to the car due to the collision and (b) the magnitude 
and direction of the average force exerted on the car.

s t r at e g Y  This problem is similar to the previous 
example, except that the initial and final momenta 
are both nonzero. Find the momenta and substitute 
into the impulse–momentum theorem, Equation 6.6, solving for Fav.

s OLUti On

b

Figure 6.4  (Example 6.2) (a) This car’s 
momentum changes as a result of its col-
lision with the wall. (b) In a crash test (an 
inelastic collision), much of the car’s initial 
kinetic energy is transformed into the 
energy it took to damage the vehicle.

Hy
un

da
i M

ot
or

s/
HO

/L
an

do
v

+2.60 m/s

–15.0 m/s

Before

After

a

(a) Find the impulse delivered to the car.

Calculate the initial and final momenta of the car: pi 5 mvi 5 (1.50 3 103 kg)(215.0 m/s)

5 22.25 3 104 kg ? m/s

pf 5 mvf 5 (1.50 3 103 kg)(12.60 m/s)

5 10.390 3 104 kg ? m/s

The impulse is just the difference between the final
and initial momenta:

I 5 pf 2 pi

5 10.390 3 104 kg ? m/s 2 (22.25 3 104 kg ? m/s)

I 5   2.64 3 104 kg ? m/s

(b) Find the average force exerted on the car.

Apply Equation 6.6, the impulse–momentum theorem: Fav 5
Dp

Dt
5

2.64 3 104 kg # m/s

0.150 s
  5   11.76 3 105 N

re Mar Ks If the car doesn’t rebound off the wall, the average force exerted on the car is smaller than the value just 
calculated. With a final momentum of zero, the car undergoes a smaller change in momentum.

QUes t i On  6.2  When a person is involved in a car accident, why is the likelihood of injury greater in a head-on collision 
as opposed to being hit from behind? Answer using the concepts of relative velocity, momentum, and average force.

e Xe rc i s e  6.2  Suppose the car doesn’t rebound off the wall, but the time interval of the collision remains at 0.150 s. In 
this case, the final velocity of the car is zero. Find the average force exerted on the car.

a ns We r  11.50 3 105 N

Injury in Automobile Collisions
The main injuries that occur to a person hitting the interior of a car in a crash 
are brain damage, bone fracture, and trauma to the skin, blood vessels, and inter-
nal organs. Here, we compare the rather imprecisely known thresholds for human 
injury with typical forces and accelerations experienced in a car crash.

A force of about 90 kN (20  000  lb) compressing the tibia can cause fracture. 
Although the breaking force varies with the bone considered, we may take this 
value as the threshold force for fracture. It’s well known that rapid acceleration 
of the head, even without skull fracture, can be fatal. Estimates show that head 
accelerations of 150g experienced for about 4 ms or 50g for 60 ms are fatal 50% 
of the time. Such injuries from rapid acceleration often result in nerve damage to 
the spinal cord where the nerves enter the base of the brain. The threshold for 

 a pp Lica t iOn
Injury to Passengers in Car 

Collisions
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damage to skin, blood vessels, and internal organs may be estimated from whole-
body impact data, where the force is uniformly distributed over the entire front 
surface area of 0.7 to 0.9 m2. These data show that if the collision lasts for less than 
about 70 ms, a person will survive if the whole-body impact pressure (force per 
unit area) is less than 1.9 3 105 N/m2 (28 lb/in.2). Death results in 50% of cases in 
which the whole-body impact pressure reaches 3.4 3 105 N/m2 (50 lb/in.2).

Armed with the data above, we can estimate the forces and accelerations in a 
typical car crash and see how seat belts, air bags, and padded interiors can reduce 
the chance of death or serious injury in a collision. Consider a typical collision 
involving a 75-kg passenger not wearing a seat belt, traveling at 27 m/s (60 mi/h) 
who comes to rest in about 0.010 s after striking an unpadded dashboard. Using 
Fav Dt 5 mvf 2 mvi, we find that

Fav 5
mvf 2 mvi

Dt
5

0 2 175 kg 2 127 m/s 2
0.010 s

5 22.0 3 105 N

and

a 5 2 Dv
Dt

2 5
27 m/s
0.010 s

5 2 700 m/s2 5
2 700 m/s2

9.8 m/s2  g 5 280g

If we assume the passenger crashes into the dashboard and windshield so that the 
head and chest, with a combined surface area of 0.5 m2, experience the force, we 
find a whole-body pressure of

Fav

A
5

2.0 3 105 N
0.5 m2  > 4 3 105 N/m2

We see that the force, the acceleration, and the whole-body pressure all exceed the 
threshold for fatality or broken bones and that an unprotected collision at 60 mi/h 
is almost certainly fatal.

What can be done to reduce or eliminate the chance of dying in a car crash? 
The most important factor is the collision time, or the time it takes the person to 
come to rest. If this time can be increased by 10 to 100 times the value of 0.01 s for 
a hard collision, the chances of survival in a car crash are much higher because the 
increase in Dt makes the contact force 10 to 100 times smaller. Seat belts restrain 
people so that they come to rest in about the same amount of time it takes to 
stop the car, typically about 0.15 s. This increases the effective collision time by an 
order of magnitude. Figure 6.5 shows the measured force on a car versus time for 
a car crash.

Air bags also increase the collision time, absorb energy from the body as they 
rapidly deflate, and spread the contact force over an area of the body of about 
0.5 m2, preventing penetration wounds and fractures. Air bags must deploy 
very rapidly (in less than 10 ms) in order to stop a human traveling at 27 m/s 
before he or she comes to rest against the steering column about 0.3 m away. To 
achieve this rapid deployment, accelerometers send a signal to discharge a bank 
of capacitors (devices that store electric charge), which then ignites an explo-
sive, thereby filling the air bag with gas very quickly. The electrical charge for 
ignition is stored in capacitors to ensure that the air bag deploys in the event of 
damage to the battery or the car’s electrical system in a severe collision.

The important reduction in potentially fatal forces, accelerations, and pres-
sures to tolerable levels by the simultaneous use of seat belts and air bags is sum-
marized as follows: If a 75-kg person traveling at 27 m/s is stopped by a seat belt 
in 0.15 s, the person experiences an average force of 9.8 kN, an average accel-
eration of 18g, and a whole-body pressure of 2.8 3 104 N/m2 for a contact area 
of 0.5 m2. These values are about one order of magnitude less than the values 
estimated earlier for an unprotected person and well below the thresholds for 
life-threatening injuries.

1200
t (ms)

2

4

6

8

10

10080604020

F (in units of 105 N)

Figure 6.5  Force on a car versus 
time for a typical collision.
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6.2    Conservation of Momentum
Learning Objectives

1. Obtain the principle of conservation of momentum from the impulse–momentum 
theorem and the third law of motion.

2. Apply conservation of momentum to the problem of recoil.

When a collision occurs in an isolated system, the total momentum of the system 
doesn’t change with the passage of time. Instead, it remains constant both in mag-
nitude and in direction. The momenta of the individual objects in the system may 
change, but the vector sum of all the momenta will not change. The total momen-
tum is therefore said to be conserved. In this section, we will see how the laws of 
motion lead us to this important conservation law.

A collision may be the result of physical contact between two objects, as illus-
trated in Figure 6.6a. This is a common macroscopic event, as when a pair of 
billiard balls or a baseball and a bat strike each other. By contrast, because con-
tact on a submicroscopic scale is hard to define accurately, the notion of colli-
sion must be generalized to that scale. Forces between two objects arise from the 
electrostatic interaction of the electrons in the surface atoms of the objects. As 
will be discussed in Chapter 15, electric charges are either positive or negative. 
Charges with the same sign repel each other, while charges with opposite sign 
attract each other. To understand the distinction between macroscopic and micro-
scopic collisions, consider the collision between two positive charges, as shown in  
Figure 6.6b. Because the two particles in the figure are both positively charged, 
they repel each other. During such a microscopic collision, particles need not 
touch in the normal sense in order to interact and transfer momentum.

Figure 6.7 shows an isolated system of two particles before and after they col-
lide. By “isolated,” we mean that no external forces, such as the gravitational force 
or friction, act on the system. Before the collision, the velocities of the two par-
ticles are vS1i and vS2i ; after the collision, the velocities are vS1f  and vS2f . The impulse–
momentum theorem applied to m1 becomes

F
S

21 Dt 5 m 1v
S

1f 2 m 1v
S

1i

Likewise, for m2, we have

F
S

12 Dt 5 m 2v
S

2f 2 m 2v
S

2i

where F
S

21 is the average force exerted by m2 on m1 during the collision and F
S

12

is the average force exerted by m1 on m2 during the collision, as in Figure 6.6a.
We use average values for F

S

21 and F
S

12 even though the actual forces may vary in 
time in a complicated way, as is the case in Figure 6.8. Newton’s third law states 
that at all times these two forces are equal in magnitude and opposite in direction: 
F
S

21 5 2F
S

12. In addition, the two forces act over the same time interval. As a result, 
we have

F
S

21 Dt 5 2F
S

12 Dt
or

m 1v
S

1f 2 m 1v
S

1i 5 2 1m 2v
S

2f 2 m 2v
S

2i 2
after substituting the expressions obtained for F

S

21 and F
S

12. This equation can be 
rearranged to give the following important result:

 m 1v
S

1i 1 m 2 v
S

2i 5 m 1v
S

1f 1 m 2v
S

2f  [6.7]

This result is a special case of the law of conservation of momentum and is true of 
isolated systems containing any number of interacting objects.

When no net external force acts on a system, the total momentum of the  
system remains constant in time.

Conservation of momentum c

+ +

He

m2
m1

4

p�

a

b

F21
S

F12
S

Figure 6.6  (a) A collision between 
two objects resulting from direct 
contact. (b) A collision between two 
charged objects (in this case, a pro-
ton and a helium nucleus).

1i 2i

1f 2f

m1 m2

a

b

vS vS

vS vS

Before the collision, 
these particles have equal 
and opposite velocities.

After the collision both 
velocities change, but the total 
momentum of the system 
remains the same.

Figure 6.7 Before and after a 
head-on collision between two par-
ticles. The momentum of each object 
changes during the collision, but 
the total momentum of the system 
is constant. Notice that the magni-
tude of the change of velocity of the 
lighter particle is greater than that 
of the heavier particle, which is true 
in general.
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Defining the isolated system is an important feature of applying this conserva-
tion law. A cheerleader jumping upwards from rest might appear to violate con-
servation of momentum, because initially her momentum is zero and suddenly 
she’s leaving the ground with velocity vS. The flaw in this reasoning lies in the fact 
that the cheerleader isn’t an isolated system. In jumping, she exerts a downward 
force on Earth, changing its momentum. This change in Earth’s momentum isn’t 
noticeable, however, because of Earth’s gargantuan mass compared to the cheer-
leader’s. When we define the system to be the cheerleader and Earth, momentum is 
conserved.

Action and reaction, together with the accompanying exchange of momentum 
between two objects, is responsible for the phenomenon known as recoil. Everyone 
knows that throwing a baseball while standing straight up, without bracing one’s 
feet against Earth, is a good way to fall over backwards. This reaction, an example 
of recoil, also happens when you fire a gun or shoot an arrow. Conservation of 
momentum provides a straightforward way to calculate such effects, as the next 
example shows.

t

F

F21
S

F12
S

Figure 6.8  Force as a function of 
time for the two colliding particles 
in Figures 6.6a and 6.7. Note that 
F
S

21 5 2F
S

12.

t ip 6.1  Momentum 
Conservation Applies  
to a System!
The momentum of an isolated 
system is conserved, but not 
necessarily the momentum of 
one particle within that system, 
because other particles in the 
system may be interacting with it. 
Apply conservation of momentum 
to an isolated system only.

Conservation of momentum is 
the principle behind a squid’s 
propulsion system. It propels 
itself by expelling water at a 
high velocity.
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a pp Lica t iOn
Conservation of momentum and 
squid propulsion

■ e Xa Mp Le  6.3 The Archer

g Oa L Calculate recoil velocity using conservation of momentum.

pr Ob Le M An archer stands at rest on frictionless ice; his total mass including 
his bow and quiver of arrows is 60.00 kg. (See Fig. 6.9.) (a) If the archer fires a 
0.030 0-kg arrow horizontally at 50.0 m/s in the positive x-direction, what is his 
subsequent velocity across the ice? (b) He then fires a second identical arrow at 
the same speed relative to the ground but at an angle of 30.0° above the horizontal. 
Find his new speed. (c) Estimate the average normal force acting on the archer as 
the second arrow is accelerated by the bowstring. Assume a draw length of 0.800 m.

s t r at e g Y To solve part (a), set up the conservation of momentum equa-
tion in the x -direction and solve for the final velocity of the archer. The  
system of the archer (including the bow) and the arrow is not isolated, because 
the gravitational and normal forces act on it. Those forces, however, are per-
pendicular to the motion of the system during the release of the arrow, and in 
addition are equal in magnitude and opposite in direction. Consequently, they 
produce no impulse during the arrow's release and conservation of momen-
tum can be used. In part (b), conservation of momentum can be applied again, 
neglecting the tiny effect of gravitation on the arrow during its release. This 
time there is a non-zero initial velocity. Part (c) requires using the impulse–
momentum theorem and estimating the time, which can be carried out with 
simple ballistics.

Figure 6.9  (Example 6.3) An archer fires 
an arrow horizontally to the right. Because 
he is standing on frictionless ice, he will 
begin to slide to the left across the ice.

(Continued)
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s OLUti On
(a) Find the archer’s subsequent velocity across the ice.

Write the conservation of momentum equation for the 
x -direction.

pix 5 pfx

Let m1 and v1f  be the archer’s mass and velocity after 
firing the arrow, respectively, and m2 and v2f the arrow’s 
mass and velocity. Both velocities are in the x-direction. 
Substitute pi 5 0 and expressions for the final momenta:

0 5 m1v1f 1 m2v2f

Solve for v1f  and substitute m1 5 59.97 kg, m2 5 0.030 0 
kg, and v2f 5 50.0 m/s:

v1f 5 2
m 2

m 1
 v2f 5 2a0.030 0 kg

59.97 kg
b 150.0 m/s 2

v1f  5   20.025 0 m/s

(b) Calculate the archer’s velocity after he fires a sec-
ond arrow at an angle of 30.0° above the horizontal.

Write the x -component of the momentum equation 
with m1 again the archer’s mass after firing the first 
arrow as in part (a) and m2 the mass of the next arrow:

m1v1i 5 (m12 m2)v1f 1 m2v2f cos u

Solve for v1f , the archer’s final velocity, and 
substitute:

v1f 5
m 1

1m 1 2 m 2 2
 v1i 2

m 2

1m 1 2 m 2 2
 v2f  cos u

5 a59.97 kg

59.94 kg
b 120.025 0 m/s 2 2 a0.030 0 kg

59.94 kg
b 150.0 m/s 2  cos 130.08 2

v1f 5   20.046 7 m/s

(c) Estimate the average normal force acting on the 
archer as the arrow is accelerated by the bowstring.

Use kinematics in one dimension to  estimate the 
acceleration of the arrow:

v 2 2 v0
2 5 2aDx

Solve for the acceleration and substitute values set-
ting v 5 v2f , the final velocity of the arrow:

a 5
v2f

2 2 v0
2

2Dx
5

150.0 m/s 22 2 0
2 10.800 m 2 5 1.56 3 103 m/s2

Find the time the arrow is accelerated using  
v 5 at 1 v0:

t 5
v2f 2 v0

a
5

50.0 m/s 2 0
1.56 3 103 m/s2 5 0.032 0 s

Write the y -component of the impulse–momentum 
theorem:

Fy,av Dt 5 Dpy

Fy,av 5
Dpy
Dt

5
m 2v2f sin u

Dt

Fy,av 5
10.030 0 kg 2 150.0 m/s 2  sin 130.08 2

0.032 0 s
5 23.4 N

The average normal force is given by the 
archer’s weight plus the reaction force R of the 
arrow on the archer:

o Fy 5 n 2 mg 2 R 5 0

n 5 mg 1 R 5 (59.94 kg)(9.80 m/s2) 1 (23.4 N) 5   6.11 3 102 N

re Mar Ks  The negative sign on v1f indicates that the 
archer is moving opposite the arrow’s direction, in accor-
dance with Newton’s third law. Because the archer is much 
more massive than the arrow, his acceleration and veloc-
ity are much smaller than the acceleration and velocity of 
the arrow. A technical point: the second arrow was fired at 
the same velocity relative to the ground, but because the 
archer was moving backwards at the time, it was traveling 
slightly faster than the first arrow relative to the archer. 

Velocities must always be given relative to a frame of 
reference.

Notice that conservation of momentum was effective in 
leading to a solution in parts (a) and (b). The final answer for 
the normal force is only an average because the force exerted 
on the arrow is unlikely to be constant. If the ice really were 
frictionless, the archer would have trouble standing. In gen-
eral the coefficient of static friction of ice is more than suffi-
cient to prevent sliding in response to such small recoils.
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QUes t i On  6.3  Would firing a heavier arrow necessarily increase the recoil velocity? Explain, using the result of Quick 
Quiz 6.1.

e Xe rc i s e  6.3  A 70.0-kg man and a 55.0-kg woman holding a 2.50-kg purse on ice skates stand facing each other.  
(a) If the woman pushes the man backwards so that his final speed is 1.50 m/s, with what average force did she push him, 
assuming they were in contact for 0.500 s? (b) What is the woman’s recoil speed? (c) If she now throws her 2.50-kg purse 
at him at a 20.0° angle above the horizontal and at 4.20 m/s relative to the ground, what is her subsequent speed?

a ns We r s  (a) 2.10 3 102 N (b) 1.83 m/s (c) 2.09 m/s

■ Quick Quiz

6.2  A boy standing at one end of a floating raft that is stationary relative to the 
shore walks to the opposite end of the raft, away from the shore. As a consequence, 
the raft (a) remains stationary, (b) moves away from the shore, or (c) moves toward 
the shore. (Hint: Use conservation of momentum.)

6.3    Collisions
Learning Objectives

1. Define inelastic, perfectly inelastic, and elastic collisions.

2. Apply conservation of momentum to inelastic and perfectly inelastic collisions 
in one dimension. 

3. Apply conservation of momentum and energy to one-dimensional elastic 
collisions.

We have seen that for any type of collision, the total momentum of the system 
just before the collision equals the total momentum just after the collision as long 
as the system may be considered isolated. The total kinetic energy, on the other 
hand, is generally not conserved in a collision because some of the kinetic energy is 
converted to internal energy, sound energy, and the work needed to permanently 
deform the objects involved, such as cars in a car crash. We define an inelastic 
collision as a collision in which momentum is conserved, but kinetic energy is 
not. The collision of a rubber ball with a hard surface is inelastic, because some 
of the kinetic energy is lost when the ball is deformed during contact with the 
surface. When two objects collide and stick together, the collision is called per-
fectly inelastic. For example, if two pieces of putty collide, they stick together and 
move with some common velocity after the collision. If a meteorite collides head 
on with Earth, it becomes buried in Earth and the collision is considered perfectly 
inelastic. Only in very special circumstances is all the initial kinetic energy lost in a 
perfectly inelastic collision.

An elastic collision is defined as one in which both momentum and kinetic 
energy are conserved. Billiard ball collisions and the collisions of air mole-
cules with the walls of a container at ordinary temperatures are highly elastic.  
Macroscopic collisions such as those between billiard balls are only approximately 
elastic, because some loss of kinetic energy takes place—for example, in the click-
ing sound when two balls strike each other. Perfectly elastic collisions do occur, 
however, between atomic and subatomic particles. Elastic and perfectly inelastic 
collisions are limiting cases; most actual collisions fall into a range in between them.

As a practical application, an inelastic collision is used to detect glaucoma, a dis-
ease in which the pressure inside the eye builds up and leads to blindness by dam-
aging the cells of the retina. In this application, medical professionals use a device 
called a tonometer to measure the pressure inside the eye. This device releases a puff 
of air against the outer surface of the eye and measures the speed of the air after 
reflection from the eye. At normal pressure, the eye is slightly spongy, and the pulse 

t ip 6.2  Momentum and 
Kinetic Energy in Collisions
The momentum of an isolated sys-
tem is conserved in all collisions. 
However, the kinetic energy of an 
isolated system is conserved only 
when the collision is elastic.

t ip 6.3  Inelastic vs. 
Perfectly Inelastic Collisions
If the colliding particles stick 
together, the collision is perfectly 
inelastic. If they bounce off each 
other (and kinetic energy is 
not conserved), the collision is 
inelastic.

a pp Lica t iOn
Glaucoma Testing
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is reflected at low speed. As the pressure inside the eye increases, the outer surface 
becomes more rigid, and the speed of the reflected pulse increases. In this way, the 
speed of the reflected puff of air can measure the internal pressure of the eye.

We can summarize the types of collisions as follows:

 ■ In an elastic collision, both momentum and kinetic energy are conserved.
 ■ In an inelastic collision, momentum is conserved but kinetic energy is not.
 ■ In a perfectly inelastic collision, momentum is conserved, kinetic energy 
is not, and the two objects stick together after the collision, so their final 
velocities are the same.

In the remainder of this section, we will treat perfectly inelastic collisions and 
elastic collisions in one dimension.

 Elastic collision c

 Inelastic collision c

m1 m2

m1 m2

vf
S

v1i
S v2i

S

a

b

�

After the collision the objects 
remain in contact. System 
momentum is conserved, but 
system energy is not conserved.

Before a perfectly inelastic 
collision the objects move 
independently.

�x

�x

Figure 6.10 (a) Before and (b) 
after a perfectly inelastic head-on 
collision between two objects.

■ Quick Quiz

6.3  A car and a large truck traveling at the same speed collide head-on and stick 
together. Which vehicle undergoes the larger change in the magnitude of its  
momentum? (a) the car (b) the truck (c) the change in the magnitude of momentum 
is the same for both (d) impossible to determine without more information.

Perfectly Inelastic Collisions
Consider two objects having masses m1 and m2 moving with known initial velocity 
components v1i and v2i along a straight line, as in Figure 6.10. If the two objects col-
lide head-on, stick together, and move with a common velocity component vf  after 
the collision, then the collision is perfectly inelastic. Because the total momentum 
of the two-object isolated system before the collision equals the total momentum 
of the combined-object system after the collision, we can solve for the final velocity 
using conservation of momentum alone:

 m1v1i 1 m2v2i 5 (m1 1 m2)vf [6.8]

 vf 5
m 1v1i 1 m 2v2i

m 1 1 m 2
 [6.9]

It’s important to notice that v1i, v2i, and vf represent the x -components of the  
velocity vectors, so care is needed in entering their known values, particularly with 
regard to signs. For example, in Figure 6.10, v1i would have a positive value (m1 
moving to the right), whereas v2i would have a negative value (m2 moving to the 
left). Once these values are entered, Equation 6.9 can be used to find the correct 
final velocity, as shown in Examples 6.4 and 6.5.

■ e Xa Mp Le  6.4 A Truck Versus a Compact

g Oa L  Apply conservation of momentum to a one-dimensional inelastic collision.

pr Ob Le M  A pickup truck with mass 1.80 3 103 kg is traveling eastbound at 115.0 m/s,  
while a compact car with mass 9.00 3 102 kg is traveling westbound at 215.0 m/s. (See 
Fig. 6.11.) The vehicles collide head-on, becoming entangled. (a) Find the speed of the 
entangled vehicles after the collision. (b) Find the change in the velocity of each vehi-
cle. (c) Find the change in the kinetic energy of the system consisting of both vehicles.

s t r at e g Y  The total momentum of the vehicles before the collision, pi, equals the 
total momentum of the vehicles after the collision, pf , if we ignore friction and assume 
the two vehicles form an isolated system. (This is called the “impulse approximation.”) 
Solve the momentum conservation equation for the final velocity of the entangled 
vehicles. Once the velocities are in hand, the other parts can be solved by substitution.

vf
S

v2i
Sv1i

S

a

b

Figure 6.11  (Example 6.4)
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s OLUti On
(a) Find the final speed after collision.

Let m1 and v1i represent the mass and initial velocity of 
the pickup truck, while m2 and v2i pertain to the compact. 
Apply conservation of momentum:

pi 5 pf

m1v1i 1 m2v2i 5 (m1 1 m2)vf

Substitute the values and solve for the final velocity, vf : (1.80 3 103 kg)(15.0 m/s) 1 (9.00 3 102 kg)(215.0 m/s)

5 (1.80 3 103 kg 1 9.00 3 102 kg)vf

vf  5   15.00 m/s

(b) Find the change in velocity for each vehicle.

Change in velocity of the pickup truck: Dv1 5 vf 2 v1i 5 5.00 m/s 2 15.0 m/s 5   210.0 m/s

Change in velocity of the compact car: Dv2 5 vf 2 v2i 5 5.00 m/s 2 (215.0 m/s) 5   20.0 m/s

(c) Find the change in kinetic energy of the system.

Calculate the initial kinetic energy of the system: KEi 5 1
2m 1v1i

2 1 1
2m 2v2i

2 5 1
2 11.80 3 103 kg 2 115.0 m/s 22

11
2 19.00 3 102 kg 2 1215.0 m/s 22

5 3.04 3 105 J

Calculate the final kinetic energy of the system and
the change in kinetic energy, DKE.

KEf 5 1
2 1m 1 1 m 2 2vf

2

5 1
2 11.80 3 103 kg 1 9.00 3 102 kg 2 15.00 m/s 22

5 3.38 3 104 J

DKE 5 KEf 2 KEi 5   22.70 3 105 J

re Mar Ks  During the collision, the system lost almost 
90% of its kinetic energy. The change in velocity of the 
pickup truck was only 10.0 m/s, compared to twice that for 
the compact car. This example underscores perhaps the 
most important safety feature of any car: its mass. Injury 
is caused by a change in velocity, and the more massive 
vehicle undergoes a smaller velocity change in a typical 
accident.

QUes t i On  6.4  If the mass of both vehicles were dou-
bled, how would the final velocity be affected? The change 
in kinetic energy?

e Xe rc i s e  6.4  Suppose the same two vehicles are both 
traveling eastward, the compact car leading the pickup 
truck. The driver of the compact car slams on the brakes 
suddenly, slowing the vehicle to 6.00 m/s. If the pickup 
truck traveling at 18.0 m/s crashes into the compact car, 
find (a) the speed of the system right after the collision, 
assuming the two vehicles become entangled, (b) the 
change in velocity for both vehicles, and (c) the change 
in kinetic energy of the system, from the instant before 
impact (when the compact car is traveling at 6.00 m/s) to 
the instant right after the collision.

a ns We r s  (a) 14.0 m/s (b) pickup truck: Dv1 5 
24.0 m/s, compact car: Dv2 5 8.0 m/s (c) 24.32 3 104 J

■ e Xa Mp Le  6.5 The Ballistic Pendulum

g Oa L  Combine the concepts of conservation of energy and conservation of momentum in inelastic collisions.

pr Ob Le M  The ballistic pendulum (Fig. 6.12a) is a device 
used to measure the speed of a fast-moving projectile such 
as a bullet. The bullet is fired into a large block of wood 
suspended from some light wires. The bullet embeds in 
the block, and the entire system swings up to a height h. It 
is possible to obtain the initial speed of the bullet by mea-
suring h and the two masses. As an example of the tech-
nique, assume that the mass of the bullet, m1, is 5.00 g, the 

mass of the pendulum, m2, is 1.000 kg, and h is 5.00 cm. 
(a) Find the velocity of the system after the bullet embeds 
in the block. (b) Calculate the initial speed of the bullet.

s t r at e g Y  Use conservation of energy to find the initial 
velocity of the block– bullet system, labeling it vsys. Part (b) 
requires the conservation of momentum equation, which 
can be solved for the initial velocity of the bullet, v1i.

(Continued)
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Figure 6.12  (Example 6.5) 
(a) Diagram of a ballistic pendu-
lum. Note that vSsys is the velocity of 
the system just after the perfectly 
inelastic collision. (b) Multiflash 
photograph of a laboratory ballistic 
pendulum.

(a) Find the velocity of the system after the bullet embeds 
in the block.

Apply conservation of energy to the block–bullet system 
after the collision:

(KE 1 PE)after collision 5 (KE 1 PE)top

Substitute expressions for the kinetic and potential ener-
gies. Note that both the potential energy at the bottom 
and the kinetic energy at the top are zero: 

1
2 1m 1 1 m 2 2v sys

2 1 0 5 0 1 1m 1 1 m 2 2gh

(b) Calculate the initial speed of the bullet.

Write the conservation of momentum equation and sub-
stitute expressions.

pi 5 pf

m1v1i 1 m2v2i 5 (m1 1 m2)vsys

Solve for the initial velocity of the bullet, and substitute 
values: v1i 5

1m 1 1 m 2 2v sys

m 1

v1i 5
11.005 kg 2 10.990 m/s 2

5.00 3 1023 kg
  5  199 m/s

Solve for the final velocity of the block–bullet system, vsys: vsys
2 5 2gh

vsys 5 "2gh 5 "2 19.80 m/s2 2 15.00 3 1022 m 2
vsys 5   0.990 m/s

re Mar Ks  Because the impact is inelastic, it would be incorrect to equate the initial kinetic energy of the incoming bul-
let to the final gravitational potential energy associated with the bullet–block combination. The energy isn’t conserved!

QUes t i On  6.5  List three ways mechanical energy can be lost from the system in this experiment.

e Xe rc i s e  6.5  A bullet with mass 5.00 g is fired horizontally into a 2.000-kg block attached to a horizontal spring. The 
spring has a constant 6.00 3 102 N/m and reaches a maximum compression of 6.00 cm. (a) Find the initial speed of the 
bullet–block system. (b) Find the speed of the bullet.

a ns Wer s  (a) 1.04 m/s (b) 417 m/s

■ Quick Quiz

6.4  An object of mass m moves to the right with a speed v. It collides head-on with 
an object of mass 3m moving with speed v/3 in the opposite direction. If the two 
objects stick together, what is the speed of the combined object, of mass 4m, after 
the collision?

(a) 0 (b) v/2 (c) v (d) 2v

6.5  A skater is using very low-friction rollerblades. A friend throws a Frisbee to 
her, on the straight line along which she is coasting. Describe each of the following 
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Elastic Collisions
Now consider two objects that undergo an elastic head-on collision (Fig. 6.13). In 
this situation, both the momentum and the kinetic energy of the system of two 
objects are conserved. We can write these conditions as

m1v1i 1 m2v2i 5 m1v1f 1 m2v2f [6.10]

and

 1
2m 1v1i

2 1 1
2m 2v2i

2 5 1
2m 1v1f

2 1 1
2m 2v2f

2  [6.11]

where v is positive if an object moves to the right and negative if it moves to the left.
In a typical problem involving elastic collisions, there are two unknown quan-

tities, and Equations 6.10 and 6.11 can be solved simultaneously to find them. 
These two equations are linear and quadratic, respectively. An alternate approach 
simplifies the quadratic equation to another linear equation, facilitating solution. 
Canceling the factor 12 in Equation 6.11, we rewrite the equation as

m1(v1i
2 2 v1f

2) 5 m2(v2f
2 2 v2i

2)

Here we have moved the terms containing m1 to one side of the equation and those 
containing m2 to the other. Next, we factor both sides of the equation:

 m1(v1i 2 v1f) (v1i 1 v1f) 5 m2(v2f 2 v2i) (v2f 1 v2i) [6.12]

Now we separate the terms containing m1 and m2 in the equation for the conserva-
tion of momentum (Eq. 6.10) to get

 m1(v1i 2 v1f) 5 m2(v2f 2 v2i) [6.13]

Next, we divide Equation 6.12 by Equation 6.13, producing

v1i 1 v1f 5 v2f 1 v2i

Gathering initial and final values on opposite sides of the equation gives

 v1i 2 v2i 5 2(v1f 2 v2f) [6.14]

This equation, in combination with Equation 6.10, will be used to solve problems 
dealing with perfectly elastic head-on collisions. According to Equation 6.14, the 
relative velocity of the two objects before the collision, v1i 2 v2i , equals the nega-
tive of the relative velocity of the two objects after the collision, 2(v1f 2 v2f). To 
better understand the equation, imagine that you are riding along on one of the 
objects. As you measure the velocity of the other object from your vantage point, 
you will be measuring the relative velocity of the two objects. In your view of  
the collision, the other object comes toward you and bounces off, leaving the  
collision with the same speed, but in the opposite direction. This is just what 
Equation 6.14 states.

events as an elastic, an inelastic, or a perfectly inelastic collision between the skater 
and the Frisbee. (a) She catches the Frisbee and holds it. (b) She tries to catch the 
Frisbee, but it bounces off her hands and falls to the ground in front of her. (c) She 
catches the Frisbee and immediately throws it back with the same speed (relative to 
the ground) to her friend.

6.6  In a perfectly inelastic one-dimensional collision between two objects, what  
initial condition alone is necessary so that all of the original kinetic energy of the 
system is gone after the collision? (a) The objects must have momenta with the same 
magnitude but opposite directions. (b) The objects must have the same mass. (c) The 
objects must have the same velocity. (d) The objects must have the same speed, with 
velocity vectors in opposite directions.

1i 2i

1f 2f

m1 m2

a

b

vS vS

vS vS

After the collision the object  
velocities change, but both the 
energy and momentum of the 
system are conserved. 

Before an elastic collision 
the two objects move 
independently.

�x

�x

Figure 6.13 (a) Before and (b) 
after an elastic head-on collision 
between two hard spheres. Unlike 
an inelastic collision, both the total 
momentum and the total energy are 
conserved.
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 ■ pr Ob Le M-s OLv i ng  s t r at e g Y

One-Dimensional Collisions
The following procedure is recommended for solving one-dimensional problems involving  
collisions between two objects:

1. Coordinates. Choose a coordinate axis that lies along the direction of motion.
2. Diagram. Sketch the problem, representing the two objects as blocks and  

labeling velocity vectors and masses.
3. Conservation of Momentum. Write a general expression for the total momen-

tum of the system of two objects before and after the collision, and equate the 
two, as in Equation 6.10. On the next line, fill in the known values.

4. Conservation of Energy. If the collision is elastic, write a general expression for 
the total energy before and after the collision, and equate the two quantities,  
as in Equation 6.11 or (preferably) Equation 6.14. Fill in the known values.  
(Skip this step if the collision is not perfectly elastic.)

5. Solve the equations simultaneously. Equations 6.10 and 6.14 form a system of 
two linear equations and two unknowns. If you have forgotten Equation 6.14, 
use Equation 6.11 instead.

Steps 1 and 2 of the problem-solving strategy are generally carried out in the pro-
cess of sketching and labeling a diagram of the problem. This is clearly the case in 
our next example, which makes use of Figure 6.13. Other steps are pointed out as 
they are applied.

■ e Xa Mp Le  6.6 Let’s Play Pool

g Oa L  Solve an elastic collision in one dimension.

pr Ob Le M  Two billiard balls of identical mass move toward each other as in Figure 6.13, with the positive x -axis to 
the right (steps 1 and 2). Assume that the collision between them is perfectly elastic. If the initial velocities of the balls 
are 130.0 cm/s and 220.0 cm/s, what are the velocities of the balls after the collision? Assume friction and rotation are 
unimportant.

s t r at e g Y  Solution of this problem is a matter of solving two equations, the conservation of momentum and conserva-
tion of energy equations, for two unknowns, the final velocities of the two balls. Instead of using Equation 6.11 for conser-
vation of energy, use Equation 6.14, which is linear, hence easier to handle.

s OLUti On
Write the conservation of momentum equation. Because 
m1 5 m2, we can cancel the masses, then substitute  
v1i 5 130.0 m/s and v2i 5 220.0 cm/s (Step 3).

m1v1i 1 m2v2i 5 m1v1f 1 m2v2f

30.0 cm/s 1 (220.0 cm/s) 5 v1f 1 v2f

(1) 10.0 cm/s 5 v1f 1 v2f

Next, apply conservation of energy in the form of Equa-
tion 6.14 (Step 4):

(2) v1i 2 v2i 5 2(v1f 2 v2f)

30.0 cm/s 2 (220.0 cm/s) 5 v2f 2 v1f

(3) 50.0 cm/s 5 v2f 2 v1f

Now solve Equations (1) and (3) simultaneously by adding 
them together (Step 5):

10.0 cm/s 1 50.0 cm/s 5 (v1f 1 v2f) 1 (v2f 2 v1f)

60.0 cm/s 5 2v2f  S v2f 5   30.0 m/s

Substitute the answer for v2f  into Equation (1): 10.0 cm/s 5 v1f 1 30.0 m/s S v1f 5   220.0 m/s

re Mar Ks  Notice the balls exchanged velocities—almost as if they’d passed through each other. This is always the case 
when two objects of equal mass undergo an elastic head-on collision.

QUes t i On  6.6  In this example, is it possible to adjust the initial velocities of the balls so that both are at rest after the 
collision? Explain.
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e Xe rc i s e  6.6  Find the final velocities of the two balls if the ball with initial velocity v2i 5 220.0 cm/s has a mass equal 
to one-half that of the ball with initial velocity v1i 5 130.0 cm/s.

a ns We r  v1f 5 23.33 cm/s; v2f 5 146.7 cm/s

■ e Xa Mp Le  6.7 Two Blocks and a Spring

g Oa L  Solve an elastic collision involving spring potential energy.

pr Ob Le M  A block of mass m1 5 1.60 kg, initially moving to the right 
with a velocity of 14.00 m/s on a frictionless horizontal track, collides 
with a massless spring attached to a second block of mass m2 5 2.10 kg 
moving to the left with a velocity of 22.50 m/s, as in Figure 6.14a. The 
spring has a spring constant of 6.00 3 102 N/m. (a) Determine the veloc-
ity of block 2 at the instant when block 1 is moving to the right with a 
velocity of 13.00 m/s, as in Figure 6.14b. (b) Find the compression of the 
spring at that time.

s t r at e g Y  We identify the system as the two blocks and the spring. 
Write down the conservation of momentum equations, and solve for the 
final velocity of block 2, v2f . Then use conservation of energy to find the 
compression of the spring at that time.

s OLUti On

1i  4.00 m/s

1f  3.00 m/s 2f

2i  –2.50 m/svS vS

vS vS

x

k
m1

m

k

2

m1
m2

a

b

� �

�

Figure 6.14  
(Example 6.7)

re Mar Ks  The initial velocity component of block 2 is 22.50 m/s because the block is moving to the left. The negative 
value for v2f means that block 2 is still moving to the left at the instant under consideration.

QUes t i On  6.7  Is it possible for both blocks to come to rest while the spring is being compressed? Explain. Hint: Look 
at the momentum in Equation (1).

e Xe rc i s e  6.7  Find (a) the velocity of block 1 and (b) the compression of the spring at the instant that block 2 is at rest.

a ns Wer s   (a) 0.719 m/s to the right (b) 0.251 m

(a) Find the velocity v2f when block 1 has 
velocity 13.00 m/s.

Write the conservation of momentum 
equation for the system and solve for v2f :

(1) m1v1i 1 m2v2i 5 m1v1f 1 m2v2f

v2f 5
m 1v1i 1 m 2v2i 2 m 1v1f

m 2
 

5
11.60 kg 2 14.00 m/s 2 1 12.10 kg 2 122.50 m/s 2 2 11.60 kg 2 13.00 m/s 2

2.10 kg

v2f 5   21.74 m/s

(b) Find the compression of the spring.

Use energy conservation for the system, 
noticing that potential energy is stored 
in the spring when it is compressed a 
distance x :

Ei 5 Ef

1
2m 1v1i

2 1 1
2m 2v2i

2 1 0 5 1
2m 1v1f

2 1 1
2m 2 v2f

2 1 1
2kx

2

Substitute the given values and the result 
of part (a) into the preceding expression, 
solving for x :

x 5   0.173 m

37027_ch06_ptg01_hr_170-201.indd   185 19/08/13   2:23 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



186  c hap t e r  6 | Momentum and Collisions

Unless otherwise noted, all content on this page is © Cengage Learning.

6.4    Glancing Collisions
Learning Objective

1. Solve two-dimensional collisions with conservation of momentum.

In Section 6.2 we showed that the total linear momentum of a system is conserved 
when the system is isolated (that is, when no external forces act on the system). 
For a general collision of two objects in three-dimensional space, the conservation 
of momentum principle implies that the total momentum of the system in each 
direction is conserved. However, an important subset of collisions takes place in 
a plane. The game of billiards is a familiar example involving multiple collisions 
of objects moving on a two-dimensional surface. We restrict our attention to a sin-
gle two-dimensional collision between two objects that takes place in a plane, and 
ignore any possible rotation. For such collisions, we obtain two component equa-
tions for the conservation of momentum:

m1v1ix 1 m2v2ix 5 m1v1fx 1 m2v2fx

m1v1iy 1 m2v2iy 5 m1v1fy 1 m2v2fy

We must use three subscripts in this general equation, to represent, respectively, 
(1) the object in question, and (2) the initial and final values of the components 
of velocity.

Now, consider a two-dimensional problem in which an object of mass m1 col-
lides with an object of mass m2 that is initially at rest, as in Figure 6.15. After the 
collision, object 1 moves at an angle u with respect to the horizontal, and object 2 
moves at an angle f with respect to the horizontal. This is called a glancing colli-
sion. Applying the law of conservation of momentum in component form, and not-
ing that the initial y -component of momentum is zero, we have

 x-component: m1v1i 1 0 5 m1v1f  cos u 1 m2v2f  cos f [6.15]

 y-component: 0 1 0 5 m1v1f sin u 1 m2v2f sin f [6.16]

If the collision is elastic, we can write a third equation, for conservation of energy, 
in the form

 1
2m 1v1i

2 5 1
2m 1v1f

2 1 1
2m 2v2f

2 [6.17]

If we know the initial velocity v1i and the masses, we are left with four unknowns 
(v1f , v2f , u, and f). Because we have only three equations, one of the four remain-
ing quantities must be given in order to determine the motion after the collision 
from conservation principles alone.

If the collision is inelastic, the kinetic energy of the system is not conserved, and 
Equation 6.17 does not apply.

m1

m2

v2f  cos

v1f  cos

v1f  sin

2f  sin

θ

φ
φ

φ

θ

θ

v

a b

v1i
S

v1f
S

v2f
S

x�x

�y

After the collision

Before the collision

Figure 6.15 A glancing collision 
between two objects.
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 ■ pr Ob Le M-s OLv i ng  s t r at e g Y

Two-Dimensional Collisions
To solve two-dimensional collisions, follow this procedure:

1. Coordinate Axes. Use both x - and y -coordinates. It’s convenient to have 
either the x -axis or the y -axis coincide with the direction of one of the  
initial velocities.

2. Diagram. Sketch the problem, labeling velocity vectors and masses.
3. Conservation of Momentum. Write a separate conservation of momentum 

equation for each of the x - and y -directions. In each case, the total initial 
momentum in a given direction equals the total final momentum in that 
direction.

4. Conservation of Energy. If the collision is elastic, write a general expression 
for the total energy before and after the collision, and equate the two expres-
sions, as in Equation 6.11. Fill in the known values. (Skip this step if the colli-
sion is not perfectly elastic.) The energy equation can’t be simplified as in  
the one-dimensional case, so a quadratic expression such as Equation 6.11 or 
6.17 must be used when the collision is elastic.

5. Solve the equations simultaneously. There are two equations for inelastic  
collisions and three for elastic collisions.

■ e Xa Mp Le  6.8 Collision at an Intersection

g Oa L  Analyze a two-dimensional inelastic collision.

pr Ob Le M  A car with mass 1.50 3 103  kg traveling east at a speed of 25.0  m/s 
collides at an intersection with a 2.50 3 103-kg van traveling north at a speed of 
20.0 m/s, as shown in Figure 6.16. Find the magnitude and direction of the velocity 
of the wreckage after the collision, assuming that the vehicles undergo a perfectly 
inelastic collision (that is, they stick together) and assuming that friction between 
the vehicles and the road can be neglected.

s t r at e g Y  Use conservation of momentum in two dimensions. (Kinetic energy 
is not conserved.) Choose coordinates as in Figure 6.16. Before the collision, the 
only object having momentum in the x -direction is the car, while the van carries all 
the momentum in the y -direction. After the totally inelastic collision, both vehicles 
move together at some common speed vf and angle u. Solve for these two unknowns, 
using the two components of the conservation of momentum equation.

s OLUti On

25.0 m/s

20.0 m/s

y

xu

vf
S

Figure 6.16 (Example 6.8) A top 
view of a perfectly inelastic collision 
between a car and a van.

Find the x -components of the initial and final total 
momenta:

o pxi 5 mcarvcar 5 (1.50 3 103 kg)(25.0 m/s)

5 3.75 3 104 kg ? m/s

o pxf 5 (mcar 1 mvan)vf cos u 5 (4.00 3 103 kg)vf cos u

Set the initial x -momentum equal to the final 
x -momentum:

(1) 3.75 3 104 kg ? m/s 5 (4.00 3 103 kg)vf cos u

Find the y -components of the initial and final total 
momenta:

o piy 5 mvanvvan 5 (2.50 3 103 kg)(20.0 m/s)

5 5.00 3 104 kg ? m/s

o pfy 5 (mcar 1 mvan)vf  sin u 5 (4.00 3 103 kg)vf  sin u

Set the initial y -momentum equal to the final 
y -momentum:

(2) 5.00 3 104 kg ? m/s 5 (4.00 3 103 kg)vf sin u

(Continued)
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6.5    Rocket Propulsion
Learning Objective

1.  Apply the physics of rocket propulsion to calculate rocket motion in elemen-
tary contexts.

When ordinary vehicles such as cars and locomotives move, the driving force 
of the motion is friction. In the case of the car, this driving force is exerted 
by the road on the car, a reaction to the force exerted by the wheels against 
the road. Similarly, a locomotive “pushes” against the tracks; hence, the driving 
force is the reaction force exerted by the tracks on the locomotive. However, a 
rocket moving in space has no road or tracks to push against. How can it move 
forward?

In fact, reaction forces also propel a rocket. (You should review Newton’s 
third law, discussed in Chapter 4.) To illustrate this point, we model our rocket 
with a spherical chamber containing a combustible gas, as in Figure 6.17a. 
When an explosion occurs in the chamber, the hot gas expands and presses 
against all sides of the chamber, as indicated by the arrows. Because the sum of 
the forces exerted on the rocket is zero, it doesn’t move. Now suppose a hole is 
drilled in the bottom of the chamber, as in Figure 6.17b. When the explosion 
occurs, the gas presses against the chamber in all directions, but can’t press 
against anything at the hole, where it simply escapes into space. Adding the 
forces on the spherical chamber now results in a net force upwards. Just as in 
the case of cars and locomotives, this is a reaction force. A car’s wheels press 
against the ground, and the reaction force of the ground on the car pushes it 
forward. The wall of the rocket’s combustion chamber exerts a force on the gas 
expanding against it. The reaction force of the gas on the wall then pushes the 
rocket upward.

In a now infamous article in The New York Times, rocket pioneer Robert God-
dard was ridiculed for thinking that rockets would work in space, where, according 
to the Times, there was nothing to push against. The Times retracted, rather belat-
edly, during the first Apollo moon landing mission in 1969. The hot gases are not 
pushing against anything external, but against the rocket itself—and ironically, 
rockets actually work better in a vacuum. In an atmosphere, the gases have to do 
work against the outside air pressure to escape the combustion chamber, slowing 
the exhaust velocity and reducing the reaction force.

Divide Equation (2) by Equation (1) and solve for u: tan u 5
5.00 3 104 kg # m/s

3.75 3 104 kg # m
5 1.33

u 5   53.1°

Substitute this angle back into Equation (2) to find vf : vf 5
5.00 3 104 kg # m/s

14.00 3 103 kg 2  sin 53.18
  5   15.6 m/s

re Mar Ks  It’s also possible to first find the x - and y -components vfx and vfy of the resultant velocity. The magnitude and 
direction of the resultant velocity can then be found with the Pythagorean theorem, vf 5 !vf x

2 1 vf y
2 , and the inverse 

tangent function u 5 tan21 (vfy /vfx ). Setting up this alternate approach is a simple matter of substituting vfx 5 vf   cos u and 
vfy 5 vf   sin u into Equations (1) and (2).

QUes t i On  6.8  If the car and van had identical mass and speed, what would the resultant angle have been?

e Xe rc i s e  6.8  A 3.00-kg object initially moving in the positive x -direction with a velocity of 15.00 m/s collides with 
and sticks to a 2.00-kg object initially moving in the negative y -direction with a velocity of 23.00 m/s. Find the final com-
ponents of velocity of the composite object.

a ns We r  vfx 5 3.00 m/s; vfy 5 21.20 m/s

A rocket reaction chamber
without a nozzle has reaction 
forces pushing equally in all 
directions, so no motion results.

An opening at the bottom of the 
chamber removes the downward 
reaction force, resulting in a net 
upward reaction force.

a

b

Figure 6.17 A rocket reaction 
chamber containing a combusting 
gas works because it has a nozzle 
where gases can escape. The chamber 
wall acts on the expanding gas; the 
reaction force of the gas on the cham-
ber wall pushes the rocket forward.
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At the microscopic level, this process is complicated, but it can be simplified 
by applying conservation of momentum to the rocket and its ejected fuel. In prin-
ciple, the solution is similar to that in Example 6.3, with the archer representing 
the rocket and the arrows the exhaust gases.

Suppose that at some time t, the momentum of the rocket plus the fuel is given 
by (M 1 Dm)v, where Dm is an amount of fuel about to be burned (Fig. 6.18a). This 
fuel is traveling at a speed v relative to, say, Earth, just like the rest of the rocket. 
During a short time interval Dt, the rocket ejects fuel of mass Dm, and the rocket’s 
speed increases to v 1 Dv (Fig. 6.18b). If the fuel is ejected with exhaust speed ve
relative to the rocket, the speed of the fuel relative to the Earth is v 2 ve. Equating the 
total initial momentum of the system with the total final momentum, we have

(M 1 Dm)v 5 M(v 1 Dv) 1 Dm(v 2 ve )

Simplifying this expression gives

M Dv 5 ve Dm

The increase Dm in the mass of the exhaust corresponds to an equal decrease in 
the mass of the rocket, so that Dm 5 2DM. Using this fact, we have

 M Dv 5 2ve DM [6.18]

This result, together with the methods of calculus, can be used to obtain the fol-
lowing equation:

 vf 2 vi 5 ve ln aMi

Mf
b [6.19]

where Mi is the initial mass of the rocket plus fuel and Mf is the final mass of the 
rocket plus its remaining fuel. This is the basic expression for rocket propulsion; 
it tells us that the increase in velocity is proportional to the exhaust speed ve and 
to the natural logarithm of Mi/Mf . Because the maximum ratio of Mi to Mf for a 
single-stage rocket is about 10:1, the increase in speed can reach ve ln 10 5 2.3ve 
or about twice the exhaust speed! For best results, therefore, the exhaust speed 
should be as high as possible. Currently, typical rocket exhaust speeds are several 
kilometers per second.

The thrust on the rocket is defined as the force exerted on the rocket by the 
ejected exhaust gases. We can obtain an expression for the instantaneous thrust 
by dividing Equation 6.18 by Dt:

 Instantaneous thrust 5 Ma 5 M 
Dv
Dt

5 2 ve 
DM
Dt

 2  [6.20]

The absolute value signs are used for clarity: In Equation 6.18, 2DM is a positive 
quantity (as is ve, a speed). Here we see that the thrust increases as the exhaust 
velocity increases and as the rate of change of mass DM/Dt (the burn rate) 
increases.

b Rocket thrust

M � �m

M�m

vS

� �v
SvS

a

b

pS vSi � (M � �m)

Figure 6.18  Rocket propulsion. (a) The initial 
mass of the rocket and fuel is M 1 Dm at a time t, 
and the rocket’s speed is v. (b) At a time t 1 Dt, 
the rocket’s mass has been reduced to M, and an 
amount of fuel Dm has been ejected. The rocket’s 
speed increases by an amount Dv.
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■ e Xa Mp Le  6.9 Single Stage to Orbit (SSTO)

g Oa L  Apply the velocity and thrust equations of a rocket.

pr Ob Le M  A rocket has a total mass of 1.00 3 105 kg 
and a burnout mass of 1.00 3 104 kg, including engines, 
shell, and payload. The rocket blasts off from Earth and 
exhausts all its fuel in 4.00  min, burning the fuel at a 
steady rate with an exhaust velocity of ve 5 4.50 3 103 m/s. 
(a) If air friction and gravity are neglected, what is the 
speed of the rocket at burnout? (b) What thrust does the 
engine develop at liftoff? (c) What is the initial accelera-
tion of the rocket if gravity is not neglected? (d) Estimate 
the speed at burnout if gravity isn’t neglected.

s t r at e g Y  Although it sounds sophisticated, this prob-
lem is mainly a matter of substituting values into the 
appropriate equations. Part (a) requires substituting val-
ues into Equation 6.19 for the velocity. For part (b), divide 
the change in the rocket’s mass by the total time, getting 
DM/Dt, then substitute into Equation 6.20 to find the 
thrust. (c) Using Newton’s second law, the force of gravity, 
and the result of (b), we can find the initial acceleration. 
For part (d), the acceleration of gravity is approximately 
constant over the few kilometers involved, so the velocity 
found in part (b) will be reduced by roughly Dvg 5 2gt. 
Add this loss to the result of part (a).

s OLUti On
(a) Calculate the velocity at burnout, ignoring gravity and 
air drag.

Substitute vi 5 0, ve 5 4.50 3 103 m/s, Mi 5 1.00 3 105 kg, 
and Mf 5 1.00 3 104 kg into Equation 6.19:

vf 5 vi 1 ve ln aMi

Mf
b

5 0 1 14.5 3 103  m/s 2  ln a 1.00 3 105 kg

1.00 3 104 kg
b

vf 5  1.04 3 104 m/s
(b) Find the thrust at liftoff.

Compute the change in the rocket’s mass: DM 5 Mf 2 Mi 5 1.00 3 104 kg 2 1.00 3 105 kg

5 29.00 3 104 kg

Calculate the rate at which rocket mass changes by divid-
ing the change in mass by the time (where the time inter-
val equals 4.00 min 5 2.40 3 102 s):

DM
Dt

5
29.00 3 104 kg

2.40 3 102 s
5 23.75 3 102 kg/s

Substitute this rate into Equation 6.20, obtaining the 
thrust:

Thrust 5 2ve 
DM
Dt

2 5 14.50 3 103 m/s 2 13.75 3 102 kg/s 2

5   1.69 3 106 N

(c) Find the initial acceleration, including the gravity force.

Write Newton’s second law, where T stands for thrust, and 
solve for the acceleration a:

Ma 5 o F 5 T 2 Mg

a 5
T
M

2 g 5
1.69 3 106 N
1.00 3 105 kg

 2 9.80 m/s2

5   7.10 m/s2

 ■ a pp LYi ng  ph Ys ic s  6.2 Multistage Rockets

The current maximum exhaust speed of ve 5 4 500 m/s 
can be realized with rocket engines fueled with liquid 
hydrogen and liquid oxygen. But this means that the max-
imum speed attainable for a given rocket with a mass ratio 
of 10 is ve ln 10 . 10 000 m/s. To reach the Moon, however, 
requires a change in velocity of over 11 000 m/s. Further, 
this change must occur while working against gravity and 
atmospheric friction. How can that be managed without 
developing better engines?

e Xp La n at i On  The answer is the multistage rocket. By 
dropping stages, the spacecraft becomes lighter, so that 
fuel burned later in the mission doesn’t have to accelerate 
mass that no longer serves any purpose. Strap-on boosters,  
as used by the space shuttle and a number of other  
rockets, such as the Titan 4 or Russian Proton, employ a 
similar method. The boosters are jettisoned after their fuel 
is exhausted, so the rocket is no longer burdened by their 
weight.
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(d) Estimate the speed at burnout when gravity is not 
neglected.

Find the approximate loss of speed due to gravity: Dvg 5 2g Dt 5 2(9.80 m/s2)(2.40 3 102 s)

5 22.35 3 103 m/s

Add this loss to the result of part (b): vf  5 1.04 3 104 m/s 2 2.35 3 103 m/s

5   8.05 3 103 m/s

 ■ s UMMar Y

6.1  Momentum and Impulse
The linear momentum pS of an object of mass m moving 
with velocity vS is defined as

 pS ;  mvS [6.1]

Momentum carries units of kg # m/s. The impulse I
S

 of a 
constant force F

S

 delivered to an object is equal to the prod-
uct of the force and the time interval during which the 
force acts:

 I
S

; F
S

Dt [6.4]

These two concepts are unified in the impulse– momentum 
theorem, which states that the impulse of a constant force 
delivered to an object is equal to the change in momentum 
of the object:

 I
S

5 F
S

Dt 5 DpS ;  mvSf 2 mvSi  [6.5]

Solving problems with this theorem often involves estimat-
ing speeds or contact times (or both), leading to an average 
force.

6.2  Conservation of Momentum
When no net external force acts on an isolated system, the 
total momentum of the system is constant. This principle 
is called conservation of momentum. In particular, if the 
isolated system consists of two objects undergoing a colli-
sion, the total momentum of the system is the same before 

and after the collision. Conservation of momentum can be 
written mathematically for this case as

 m 1v
S

1i 1 m 2v
S

2i 5 m 1v
S

1f 1 m 2v
S

2f  [6.7]

1i 2i

m1 m2

a

vS vS 1f 2f

b

vS vS

In an isolated system of two objects undergoing a collision, the 
total momentum of the system remains constant.

Collision and recoil problems typically require finding 
unknown velocities in one or two dimensions. Each vector 
component gives an equation, and the resulting equations 
are solved simultaneously.

6.3  Collisions
In an inelastic collision, the momentum of the system is 
conserved, but kinetic energy is not. In a perfectly inelas-
tic collision, the colliding objects stick together. In an elas-
tic collision, both the momentum and the kinetic energy 
of the system are conserved.

A one-dimensional elastic collision between two objects 
can be solved by using the conservation of momentum and 
conservation of energy equations:

m1v1i 1 m2v2i 5 m1v1f 1 m2v2f [6.10]

 1
2m 1v1i

2 1 1
2m 2v2i

2 5 1
2m 1v1f

2 1 1
2m 2v2f

2 [6.11]

re Mar Ks  Even taking gravity into account, the speed is sufficient to attain orbit. Some additional boost may be 
required to overcome air drag.

QUes t i On  6.9  What initial normal force would be exerted on an astronaut of mass m in a rocket traveling vertically 
upward with an acceleration a? Answer symbolically in terms of the positive quantities m, g, and a.

e Xe rc i s e  6.9  A spaceship with a mass of 5.00 3 104 kg is traveling at 6.00 3 103 m/s relative to a space station. What 
mass will the ship have after it fires its engines in order to reach a relative speed of 8.00 3 103 m/s, traveling in the same 
direction? Assume an exhaust velocity of 4.50 3 103 m/s.

a ns We r  3.21 3 104 kg
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The following equation, derived from Equations 6.10 and 
6.11, is usually more convenient to use than the original 
conservation of energy equation:

v1i 2 v2i 5 2(v1f 2 v2f) [6.14]

These equations can be solved simultaneously for the 
unknown velocities. Energy is not conserved in inelastic col-
lisions, so such problems must be solved with Equation 6.10 
alone.

6.4  Glancing Collisions
In glancing collisions, conservation of momentum can 
be applied along two perpendicular directions: an x -axis 
and a y -axis. Problems can be solved by using the x - and 
y - components of Equation 6.7. Elastic two-dimensional 
collisions will usually require Equation 6.11 as well. (Equa-
tion 6.14 doesn’t apply to two dimensions.) Generally, one 
of the two objects is taken to be traveling along the x -axis, 
undergoing a deflection at some angle u after the collision. 
The final velocities and angles can be found with elemen-
tary trigonometry.
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θ
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θ

θ

v
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v1f
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v2f
S

x

After the collision

Before the collision

In a two-dimensional collision the system momentum is con-
served, whereas the system energy is conserved only if the colli-
sion is elastic.

 ■ War M-Up  e Xe rc i s e s

1. Math Review Solve the two equations mvi � MVi �  
mvf � MVf and vi � Vi � � (vf � Vf) for (a) vf and (b) Vf  
if m � 2.00 kg, vi � 4.00 m/s, M � 3.00 kg, and Vi � 0. 
(See Section 6.3.)

 2. Math Review Given the equations �507 � 147 Vf cos � 
and −377 = 147 Vf sin �, find (a) Vf  by using the identity 
cos2 u 1 sin2 u 5 1, and (b) � by using the inverse tan-
gent function. (Note: Some may consider it easier find-
ing the angle � first, and then Vf by back substitution.) 
(See Section 6.4.)

 3. Math Review (a) Solve the equation 7.20 � 103 m/s � 

(4.20 � 103 m/s) ln (Mi/Mf ) for the fraction Mi/Mf .

 (b) If Mi = 2.65 � 104 kg, calculate Mf.

 4. A soccer player runs up behind a 0.450-kg soccer ball 
traveling at 3.20 m/s and kicks it in the same direc-
tion as it is moving, increasing its speed to 12.8 m/s. 
(a) What is the change in the magnitude of the ball’s 
momentum? (b) What magnitude impulse did the 
soccer player deliver to the ball? (c) What magnitude 
impulse would be required to kick the ball in the oppo-
site direction at 12.8 m/s, instead? (See Section 6.1.) 

 5. A 57.0-g tennis ball is traveling straight at a player at 
21.0 m/s. The player volleys the ball straight back 
at 25.0 m/s. (a) What is the magnitude of the ball’s 
change of momentum? (b) If the ball remains in con-
tact with the racket for 0.060 0 s, what average force 
acts on the ball? (See Section 6.1.) 

 6. An astronaut, of total mass 85.0 kg including her suit, 
stands on a spherical satellite of mass 375 kg, both 
at rest relative a nearby space station. She jumps at a 
speed of 2.56 m/s directly away from the satellite, as 
measured by an observer in the station. At what speed 
does that observer measure the satellite traveling in 
the opposite direction? (See Section 6.2.) 

 7. A small china bowl of mass 0.450 kg is sliding along a 
frictionless countertop at speed 1.28 m/s. (a) What is 
the kinetic energy of the bowl? Subsequently a server, 
with perfect timing, places a rice ball of the same mass 
into the bowl as it passes him. (b) What is the subse-
quent speed of the system and (c) what is the system’s 
kinetic energy? (See Section 6.3.) 

 8. A car of mass 750 kg traveling at a velocity of 27 m/s in 
the positive x -direction crashes into the rear of a truck 
of mass 1 500 kg that is at rest and in neutral at an 
intersection. If the collision is inelastic and the truck 
moves forward at 15.0 m/s, what is the velocity of the 
car after the collision? (See Section 6.3.) 

 9. A car of mass 1 560 kg traveling east and a truck of 
equal mass traveling north collide and become entan-
gled, moving as a unit at 15.0 m/s and 60.0° north of 
east. Find the speed of (a) the car, and (b) the truck 
prior to the collision. (See Section 6.4.)

 10. A rocket with total mass 3.00 � 105 kg is in circu-
lar orbit around the Earth. It begins to accelerate at 

The warm-up exercises in this chapter may be assigned online in Enhanced WebAssign.

37027_ch06_ptg01_hr_170-201.indd   192 19/08/13   2:23 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



| Conceptual Questions  193

 ■ c On ce p t Ua L QUes t i Ons

36.0 m/s2 tangent to its orbit (hence doing no work 
against gravity). If the speed of the exhausted gases 
is 4.50 � 103 m/s, at what rate is the rocket initially 
burning fuel? (b) If the rocket were to be launched 
vertically from Earth’s surface with the same initial 
acceleration, at what rate would the fuel have to  
be burned? (Disregard the reduction in exhaust 
speed due to the ambient atmospheric pressure.) 
(See Section 6.5.)

 11. A spacecraft in circular orbit around Earth has nuclear 
hydrogen rocket engines with an exhaust velocity  
of 9.00 � 103 m/s. If the rocket has an initial mass of 
6.70 � 105 kg, (a) what mass will it have after the rock-
ets have fired and changed the spacecraft’s velocity  
by 3.50 � 103 m/s? Assume changes in radial position 
during the burn are negligible. (b) What mass of fuel 
will the rocket use during that time? (See Section 6.5.)

 1. A batter bunts a pitched baseball, blocking the ball 
without swinging. (a) Can the baseball deliver more 
kinetic energy to the bat and batter than the ball 
carries initially? (b) Can the baseball deliver more 
momentum to the bat and batter than the ball carries 
initially? Explain each of your answers.

 2. If two objects collide and one is initially at rest, (a) is it 
possible for both to be at rest after the collision? (b) Is 
it possible for only one to be at rest after the collision? 
Explain.

 3. In perfectly inelastic collisions between two objects, 
there are events in which all of the original kinetic 
energy is transformed to forms other than kinetic. 
Give an example of such an event.

 4. Americans will never forget the terrorist attack on 
September 11, 2001. One commentator remarked that 
the force of the explosion at the Twin Towers of the 
World Trade Center was strong enough to blow glass 
and parts of the steel structure to small fragments. Yet 
the television coverage showed thousands of sheets of 
paper floating down, many still intact. Explain how 
that could be.

 5. A ball of clay of mass m is thrown with a speed v against 
a brick wall. The clay sticks to the wall and stops. Is the 
principle of conservation of momentum violated in 
this example?

 6. A skater is standing still on a frictionless ice rink. Her 
friend throws a Frisbee straight to her. In which of the 
following cases is the largest momentum transferred to 
the skater? (a) The skater catches the Frisbee and holds 
onto it. (b) The skater catches the Frisbee momen-
tarily, but then drops it vertically downward. (c)  The 
skater catches the Frisbee, holds it momentarily, and 
throws it back to her friend.

 7. A more ordinary example of conservation of momen-
tum than a rocket ship occurs in a kitchen dishwashing 
machine. In this device, water at high pressure is forced 
out of small holes on the spray arms. Use conservation 
of momentum to explain why the arms rotate, direct-
ing water to all the dishes.

 8. (a) If two automobiles collide, they usually do not 
stick together. Does this mean the collision is elastic? 

(b) Explain why a head-on collision is likely to be more 
dangerous than other types of collisions.

 9. Your physical education teacher throws you a tennis 
ball at a certain velocity, and you catch it. You are now 
given the following choice: The teacher can throw you 
a medicine ball (which is much more massive than the 
tennis ball) with the same velocity, the same momen-
tum, or the same kinetic energy as the tennis ball. 
Which option would you choose in order to make the 
easiest catch, and why?

 10. A large bedsheet is held vertically by two students. A 
third student, who happens to be the star pitcher on the 
baseball team, throws a raw egg at the sheet. Explain 
why the egg doesn’t break when it hits the sheet, regard-
less of its initial speed. (If you try this, make sure the 
pitcher hits the sheet near its center, and don’t allow the 
egg to fall on the floor after being caught.)

 11. A sharpshooter fires a rifle while standing with the butt 
of the gun against his shoulder. If the forward momen-
tum of a bullet is the same as the backward momentum 
of the gun, why isn’t it as dangerous to be hit by the 
gun as by the bullet?

 12. An air bag inflates when a collision occurs, protecting 
a passenger (the dummy in Figure CQ6.12) from seri-
ous injury. Why does the air bag soften the blow? Dis-
cuss the physics involved in this dramatic photograph.

The conceptual questions in this chapter may be assigned online in Enhanced WebAssign.
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13. In golf, novice players are often advised to be sure to  
“follow through” with their swing. (a) Why does this make 
the ball travel a longer distance? (b) If a shot is taken near 
the green, very little follow-through is required. Why?
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14. An open box slides across a frictionless, icy surface of 
a frozen lake. What happens to the speed of the box as 
water from a rain shower falls vertically downward into 
the box? Explain.

15. Does a larger net force exerted on an object always pro-
duce a larger change in the momentum of the object, 
compared to a smaller net force? Explain.

 16. Does a larger net force always produce a larger change 
in kinetic energy than a smaller net force? Explain.

 17. If two particles have equal momenta, are their kinetic 
energies equal? (a) yes, always (b) no, never (c) no, 

except when their masses are equal (d) no, except 
when their speeds are the same (e) yes, as long as they 
move along parallel lines.

 18. Two particles of different mass start from rest. The 
same net force acts on both of them as they move 
over equal distances. How do their final kinetic ener-
gies compare? (a) The particle of larger mass has 
more kinetic energy. (b) The particle of smaller mass 
has more kinetic energy. (c) The particles have equal 
kinetic energies. (d) Either particle might have more 
kinetic energy.

6.1  Momentum and Impulse

1. Calculate the magnitude of the linear momentum  
for the following cases: (a) a proton with mass equal 
to 1.67 3 10227 kg, moving with a speed of 5.00 3 106

m/s; (b) a 15.0-g bullet moving with a speed of 300 m/s; 
(c) a 75.0-kg sprinter running with a speed of 10.0 m/s; 
(d) the Earth (mass 5 5.98 3 1024 kg) moving with an 
orbital speed equal to 2.98 3 104 m/s.

 2. A high-speed photograph of a club hitting a golf ball 
is shown in Figure 6.3. The club was in contact with a 
ball, initially at rest, for about 0.002 0 s. If the ball has 
a mass of 55 g and leaves the head of the club with a 
speed of 2.0 3 102 ft/s, find the average force exerted 
on the ball by the club.

 3. A pitcher claims he can throw a 0.145-kg baseball with 
as much momentum as a 3.00-g bullet moving with a 
speed of 1.50 3 103 m/s. (a) What must the baseball’s 
speed be if the pitcher’s claim is valid? (b) Which has 
greater kinetic energy, the ball or the bullet?

 4.  A ball of mass m is thrown straight up into the air 
with an initial speed v0. (a) Find an expression for the 
maximum height reached by the ball in terms of v0

and g. (b) Using conservation of energy and the result 
of part (a), find the magnitude of the momentum of 
the ball at one-half its maximum height in terms of m 
and v0.

 5. Drops of rain fall perpendicular to the roof of a 
parked car during a rainstorm. The drops strike the 
roof with a speed of 12 m/s, and the mass of rain per 
second striking the roof is 0.035 kg/s. (a) Assuming 
the drops come to rest after striking the roof, find the 

average force exerted by the rain on the roof. (b) If 
hailstones having the same mass as the raindrops fall 
on the roof at the same rate and with the same speed, 
how would the average force on the roof compare to 
that found in part (a)?

 6. Show that the kinetic energy of a particle of mass m 
is related to the magnitude of the momentum p of that 
particle by KE 5 p 2/2m. (Note: This expression is invalid 
for particles traveling at speeds near that of light.)

 7. An object has a kinetic energy of 275 J and a momen-
tum of magnitude 25.0 kg ? m/s. Find the (a) speed 
and (b) mass of the object.

 8. An estimated force vs. 
time curve for a baseball 
struck by a bat is shown 
in Figure P6.8. From this 
curve, determine (a) the 
impulse delivered to the 
ball and (b) the average 
force exerted on the ball.

 9. A 0.280-kg volleyball approaches a player horizontally 
with a speed of 15.0 m/s. The player strikes the ball 
with her fist and causes the ball to move in the opposite 
direction with a speed of 22.0 m/s. (a) What impulse is 
delivered to the ball by the player? (b) If the player’s fist 
is in contact with the ball for 0.060 0 s, find the magni-
tude of the average force exerted on the player’s fist.

 10.  A man claims he can safely hold on to a 12.0-kg  
child in a head-on collision with a relative speed of  
120-mi/h lasting for 0.10 s as long as he has his seat belt 
on. (a) Find the magnitude of the average force needed 

0

5 000

10 000

15 000
20 000

0 1 2
t (ms)

F (N) Fmax = 18 000 N

Figure p 6.8

 ■ pr Ob Le Ms

denotes biomedical problems

denotes guided problems

denotes Master It tutorial available in Enhanced WebAssign

denotes asking for quantitative and conceptual reasoning

denotes symbolic reasoning problem

W denotes Watch It video solution available in Enhanced WebAssign

The problems in this chapter may be assigned online in 
Enhanced WebAssign. 

1. denotes straightforward problem; 2. denotes intermediate problem;

3. denotes challenging problem

1. denotes full solution available in Student Solutions Manual/ 
Study Guide

1. denotes problems most often assigned in Enhanced WebAssign

37027_ch06_ptg01_hr_170-201.indd   194 19/08/13   2:23 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Unless otherwise noted, all content on this page is © Cengage Learning.

| Problems  195

to hold onto the child. (b) Based on the result to part 
(a), is the man’s claim valid? (c) What does the answer to 
this problem say about laws requiring the use of proper 
safety devices such as seat belts and special toddler seats?

 11. A ball of mass 0.150 kg is dropped from rest from a 
height of 1.25 m. It rebounds from the floor to reach a 
height of 0.960 m. What impulse was given to the ball 
by the floor?

 12. A tennis player receives a shot with the ball (0.060 0 kg) 
traveling horizontally at 50.0 m/s and returns the shot 
with the ball traveling horizontally at 40.0 m/s in the 
opposite direction. (a) What is the impulse delivered to 
the ball by the racket? (b) What work does the racket 
do on the ball?

 13. A car is stopped for a traffic signal. When the light 
turns green, the car accelerates, increasing its speed 
from 0 to 5.20 m/s in 0.832 s. What are (a) the magni-
tudes of the linear impulse and (b) the average total 
force experienced by a 70.0-kg passenger in the car 
during the time the car accelerates?

 14. A 65.0-kg basketball player jumps vertically and leaves 
the floor with a velocity of 1.80 m/s upward. (a) What 
impulse does the player experience? (b) What force 
does the floor exert on the player before the jump? 
(c) What is the total average force exerted by the floor 
on the player if the player is in contact with the floor 
for 0.450 s during the jump?

 15. The force shown in the 
force vs. time diagram 
in Figure P6.15 acts on a 
1.5-kg object. Find (a) the 
impulse of the force, 
(b)  the final velocity of 
the object if it is initially 
at rest, and (c) the final 
velocity of the object if it is 
initially moving along the 
x-axis with a velocity of 22.0 m/s.

 16. A force of magnitude Fx 
acting in the x -direction 
on a 2.00-kg particle var-
ies in time as shown in 
Figure P6.16. Find (a) the 
impulse of the force, (b) 
the final velocity of the 
particle if it is initially 
at rest, and (c)  the final 
velocity of the particle 
if it is initially moving 
along the x -axis with a 
velocity of 22.00 m/s.

 17. The forces shown in the 
force vs. time diagram 
in Figure P6.17 act on 
a 1.5-kg particle. Find 

(a) the impulse for the interval from t 5 0 to t 5 3.0 s 
and (b) the impulse for the interval from t 5 0 to  
t 5 5.0  s. If the forces act on a 1.5-kg particle that is 
initially at rest, find the particle’s speed (c) at t 5 3.0 s 
and (d) at t 5 5.0 s.

 18. W  A 3.00-kg steel ball 
strikes a massive wall 
at 10.0 m/s at an angle 
of u 5 60.0° with the 
plane of the wall. It 
bounces off the wall 
with the same speed 
and angle (Fig. P6.18). 
If the ball is in con-
tact with the wall for 
0.200 s, what is the average force exerted by the wall on 
the ball?

 19.  The front 1.20 m of a 1 400-kg car is designed as a 
“crumple zone” that collapses to absorb the shock of a 
collision. If a car traveling 25.0 m/s stops uniformly in 
1.20 m, (a) how long does the collision last, (b) what 
is the magnitude of the average force on the car, and 
(c)  what is the acceleration of the car? Express the 
acceleration as a multiple of the acceleration of gravity.

 20.  A pitcher throws a 0.14-kg baseball toward the 
batter so that it crosses home plate horizontally and 
has a speed of 42 m/s just before it makes contact with 
the bat. The batter then hits the ball straight back at 
the pitcher with a speed of 48 m/s. Assume the ball 
travels along the same line leaving the bat as it followed 
before contacting the bat. (a) What is the magnitude 
of the impulse delivered by the bat to the baseball? 
(b) If the ball is in contact with the bat for 0.005 0 s, 
what is the magnitude of the average force exerted by 
the bat on the ball? (c) How does your answer to part 
(b) compare to the weight of the ball?

6.2  Conservation of Momentum

 21. W  High-speed stroboscopic photographs show that the 
head of a 200-g golf club is traveling at 55 m/s just before 
it strikes a 46-g golf ball at rest on a tee. After the col-
lision, the club head travels (in the same direction) at  
40 m/s. Find the speed of the golf ball just after impact.

 22. A rifle with a weight of 30 N fires a 5.0-g bullet with a 
speed of 300 m/s. (a) Find the recoil speed of the rifle. 
(b)  If a 700-N man holds the rifle firmly against his 
shoulder, find the recoil speed of the man and rifle.

 23. A 45.0-kg girl is standing on a 150-kg plank. The plank, 
originally at rest, is free to slide on a frozen lake, which 
is a flat, frictionless surface. The girl begins to walk 
along the plank at a constant velocity of 1.50 m/s to the 
right relative to the plank. (a) What is her velocity rela-
tive to the surface of the ice? (b) What is the velocity of 
the plank relative to the surface of the ice?

 24.  This is a symbolic version of Problem 23. A girl of 
mass mG is standing on a plank of mass mP. Both are 
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28.  An amateur skater of mass M (when fully 
dressed) is trapped in the middle of an ice rink and 
is unable to return to the side where there is no ice. 
Every motion she makes causes her to slip on the ice 
and remain in the same spot. She decides to try to 
return to safety by removing her gloves of mass m and 
throwing them in the direction opposite the safe side. 
(a) She throws the gloves as hard as she can, and they 
leave her hand with a velocity vSgloves. Explain whether 
or not she moves. If she does move, calculate her veloc-
ity vSgirl relative to the Earth after she throws the gloves. 
(b) Discuss her motion from the point of view of the 
forces acting on her.

6.3  Collisions

6.4  Glancing Collisions

29.  A man of mass m1 5 70.0 kg is skating at v1 5 
8.00  m/s behind his wife of mass m2 5 50.0 kg, who 
is skating at v2 5 4.00 m/s. Instead of passing her, he 
inadvertently collides with her. He grabs her around 
the waist, and they maintain their balance. (a) Sketch 
the problem with before-and-after diagrams, repre-
senting the skaters as blocks. (b) Is the collision best 
described as elastic, inelastic, or perfectly inelastic? 
Why? (c) Write the general equation for conserva-
tion of momentum in terms of m1, v1, m2, v2, and final 
velocity vf . (d) Solve the momentum equation for vf . 
(e) Substitute values, obtaining the numerical value for 
vf , their speed after the collision.

 30. An archer shoots an arrow toward a 300-g target that 
is sliding in her direction at a speed of 2.50 m/s on a 
smooth, slippery surface. The 22.5-g arrow is shot with 
a speed of 35.0 m/s and passes through the target, 
which is stopped by the impact. What is the speed of 
the arrow after passing through the target?

 31. Gayle runs at a speed of 4.00 m/s and dives on a sled, 
initially at rest on the top of a frictionless, snow- covered 
hill. After she has descended a vertical distance of 
5.00 m, her brother, who is initially at rest, hops on her 
back, and they continue down the hill together. What 
is their speed at the bottom of the hill if the total ver-
tical drop is 15.0 m? Gayle’s mass is 50.0 kg, the sled 
has a mass of 5.00 kg, and her brother has a mass of 
30.0 kg.

 32.  A 75.0-kg ice skater moving at 10.0 m/s crashes 
into a stationary skater of equal mass. After the colli-
sion, the two skaters move as a unit at 5.00 m/s. Sup-
pose the average force a skater can experience with-
out breaking a bone is 4 500 N. If the impact time is 
0.100 s, does a bone break?

 33. A railroad car of mass 2.00 3 104 kg moving at 3.00 m/s 
collides and couples with two coupled railroad cars, 
each of the same mass as the single car and moving in 
the same direction at 1.20 m/s. (a) What is the speed 
of the three coupled cars after the collision? (b) How 
much kinetic energy is lost in the collision?

26. A 75-kg fisherman in a 125-kg boat throws a package 
of mass m 5 15 kg horizontally toward the right with 
a speed of vi 5 4.5 m/s as in Figure P6.26. Neglect-
ing water resistance, and assuming the boat is at rest 
before the package is thrown, find the velocity of the 
boat after the package is thrown.

originally at rest on a frozen lake that constitutes a 
frictionless, flat surface. The girl begins to walk along 
the plank at a constant velocity vGP to the right relative 
to the plank. (The subscript GP denotes the girl rela-
tive to plank.) (a) What is the velocity vPI of the plank 
relative to the surface of the ice? (b) What is the girl’s 
velocity vGI relative to the ice surface?

 25. An astronaut in her space suit has a total mass 
of 87.0 kg, including suit and oxygen tank. Her tether 
line loses its attachment to her spacecraft while she’s 
on a spacewalk. Initially at rest with respect to her 
spacecraft, she throws her 12.0-kg oxygen tank away 
from her spacecraft with a speed of 8.00 m/s to propel 
herself back toward it (Fig. P6.25). (a) Determine the 
maximum distance she can be from the craft and still 
return within 2.00 min (the amount of time the air in 
her helmet remains breathable). (b) Explain in terms 
of Newton’s laws of motion why this strategy works.

75.0 kg

12.0 kg

8.00 m/s

Figure p 6.25

m vi
S

Figure p 6.26

27. A 65.0-kg person throws a 0.045 0-kg snowball for-
ward with a ground speed of 30.0 m/s. A second per-
son, with a mass of 60.0 kg, catches the snowball. Both 
people are on skates. The first person is initially mov-
ing forward with a speed of 2.50 m/s, and the second 
person is initially at rest. What are the velocities of the 
two people after the snowball is exchanged? Disregard 
friction between the skates and the ice.
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41. W A 12.0-g bullet is fired horizontally into a 100-g 
wooden block that is initially at rest on a frictionless 
horizontal surface and connected to a spring having 
spring constant 150 N/m. The bullet becomes embed-
ded in the block. If the bullet–block system compresses 
the spring by a maximum of 80.0 cm, what was the 
speed of the bullet at impact with the block?

 42. A 1 200-kg car traveling initially with a speed of 
25.0 m/s in an easterly direction crashes into the rear 
end of a 9 000-kg truck moving in the same direction 
at 20.0 m/s (Fig. P6.42). The velocity of the car right 
after the collision is 18.0 m/s to the east. (a) What 
is the velocity of the truck right after the collision? 
(b) How much mechanical energy is lost in the colli-
sion? Account for this loss in energy.

 34. This is a symbolic version of Problem 33. A railroad 
car of mass M moving at a speed v1 collides and cou-
ples with two coupled railroad cars, each of the same 
mass M and moving in the same direction at a speed 
v2. (a) What is the speed vf of the three coupled cars 
after the collision in terms of v1 and v2? (b) How much 
kinetic energy is lost in the collision? Answer in terms 
of M, v1, and v2.

 35. Consider the ballistic pendulum device discussed 
in Example 6.5 and illustrated in Figure 6.12. (a) Deter-
mine the ratio of the momentum immediately after 
the collision to the momentum immediately before the 
collision. (b) Show that the ratio of the kinetic energy 
immediately after the collision to the kinetic energy 
immediately before the collision is m1/(m1 1 m2).

 36. A car of mass m moving at a speed v1 collides and 
couples with the back of a truck of mass 2m moving ini-
tially in the same direction as the car at a lower speed 
v2. (a) What is the speed vf of the two vehicles imme-
diately after the collision? (b) What is the change in 
kinetic energy of the car–truck system in the collision?

 37. In a Broadway performance, an 80.0-kg actor swings 
from a 3.75-m-long cable that is horizontal when he 
starts. At the bottom of his arc, he picks up his 55.0-kg 
costar in an inelastic collision. What maximum height 
do they reach after their upward swing?

 38. W Two shuffleboard disks of equal mass, one orange 
and the other green, are involved in a perfectly elastic 
glancing collision. The green disk is initially at rest and 
is struck by the orange disk moving initially to the right 
at 5.00 m/s as in Figure P6.38a. After the collision, the 
orange disk moves in a direction that makes an angle of 
37.0° with the horizontal axis while the green disk makes 
an angle of 53.0° with this axis as in Figure P6.38b. 
Determine the speed of each disk after the collision.

a b

vof
S

vgf
S

x

After the collision

Before the collision

37.0�5.00 m/s

53.0�

Figure p 6.38

39. A 0.030-kg bullet is fired vertically at 200 m/s into a 
0.15-kg baseball that is initially at rest. How high does 
the combined bullet and baseball rise after the colli-
sion, assuming the bullet embeds itself in the ball?

 40.  An bullet of mass m = 8.00 g is fired into a block 
of mass M = 250 g that is initially at rest at the edge of 

a table of height h 5 1.00 m (Fig. P6.40). The bullet 
remains in the block, and after the impact the block 
lands d = 2.00 m from the bottom of the table. Deter-
mine the initial speed of the bullet.

h

d

m
M

Figure p 6.40

Before After

vS�25.0 m/s �20.0 m/s �18.0 m/s

Figure p 6.42

43.  A boy of mass mb and his girlfriend of mass 
mg, both wearing ice skates, face each other at rest 
while standing on a frictionless ice rink. The boy 
pushes the girl, sending her away with velocity vg

toward the east. Assume that mb . mg. (a) Describe the 
subsequent motion of the boy. (b) Find expressions for 
the final kinetic energy of the girl and the final kinetic 
energy of the boy, and show that the girl has greater 
kinetic energy than the boy. (c) The boy and girl had 
zero kinetic energy before the boy pushed the girl, but 
ended up with kinetic energy after the event. How do 
you account for the appearance of mechanical energy?

 44.   A space probe, initially at rest, undergoes an 
internal mechanical malfunction and breaks into three 
pieces. One piece of mass m1 5 48.0 kg travels in the 
positive x-direction at 12.0 m/s, and a second piece of 
mass m2 5 62.0 kg travels in the xy-plane at an angle of 
105° at 15.0 m/s. The third piece has mass m3 5 112 kg. 
(a) Sketch a diagram of the situation, labeling the dif-
ferent masses and their velocities. (b) Write the general 
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moves at 4.33 m/s at an angle of 30° with respect to the 
original line of motion. (a) Find the velocity (magni-
tude and direction) of the second ball after collision. 
(b) Was the collision inelastic or elastic?

Additional Problems

52. In research in cardiology and exercise physiol-
ogy, it is often important to know the mass of blood 
pumped by a person’s heart in one stroke. This infor-
mation can be obtained by means of a ballistocardio-
graph. The instrument works as follows: The subject lies 
on a horizontal pallet floating on a film of air. Friction 
on the pallet is negligible. Initially, the momentum of 
the system is zero. When the heart beats, it expels a 
mass m of blood into the aorta with speed v, and the 
body and platform move in the opposite direction with 
speed V. The speed of the blood can be determined 
independently (e.g., by observing an ultrasound Dop-
pler shift). Assume that the blood’s speed is 50.0 cm/s 
in one typical trial. The mass of the subject plus the  
pallet is 54.0 kg. The pallet moves at a speed of  
6.00 3 1025 m in 0.160 s after one heartbeat. Calculate 
the mass of blood that leaves the heart. Assume that  
the mass of blood is negligible compared with the total 
mass of the person. This simplified example illustrates 
the principle of ballistocardiography, but in practice a 
more sophisticated model of heart function is used.

 53. Most of us know intuitively that in a head-on colli-
sion between a large dump truck and a subcompact car, 
you are better off being in the truck than in the car. Why 
is this? Many people imagine that the collision force 
exerted on the car is much greater than that exerted 
on the truck. To substantiate this view, they point out 
that the car is crushed, whereas the truck is only dented. 
This idea of unequal forces, of course, is false; New-
ton’s third law tells us that both objects are acted upon 
by forces of the same magnitude. The truck suffers less 
damage because it is made of stronger metal. But what 
about the two drivers? Do they experience the same 
forces? To answer this question, suppose that each vehi-
cle is initially moving at 8.00 m/s and that they undergo 
a perfectly inelastic head-on collision. Each driver has 
mass 80.0 kg. Including the masses of the drivers, the 
total masses of the vehicles are 800 kg for the car and  
4 000 kg for the truck. If the collision time is 0.120 s, 
what force does the seat belt exert on each driver?

 54. Consider a frictionless track as shown in Figure P6.54. 
A block of mass m1 5 5.00 kg is released from �.  

expression for conservation of momentum in the x- and 
y-directions in terms of m1, m2, m3, v1, v2, and v3 and 
the sines and cosines of the angles, taking u to be the 
unknown angle. (c) Calculate the final x-components  
of the momenta of m1 and m2. (d)  Calculate the final 
y-components of the momenta of m1 and m2. (e) Substi-
tute the known momentum components into the gen-
eral equations of momentum for the x- and y-directions,  
along with the known mass m3. (f)  Solve the two  
momentum equations for v3 cos u and v3 sin u, respec-
tively, and use the identity cos2 u 1 sin2 u 5 1 to obtain v3. 
(g) Divide the equation for v3 sin u by that for v3 cos u to 
obtain tan u, then obtain the angle by taking the inverse 
tangent of both sides. (h) In general, would three such 
pieces necessarily have to move in the same plane? Why?

 45. A 25.0-g object moving to the right at 20.0 cm/s  
overtakes and collides elastically with a 10.0-g object 
moving in the same direction at 15.0 cm/s. Find the 
velocity of each object after the collision.

 46. A billiard ball rolling across a table at 1.50 m/s makes 
a head-on elastic collision with an identical ball. Find 
the speed of each ball after the collision (a) when the 
second ball is initially at rest, (b) when the second ball 
is moving toward the first at a speed of 1.00 m/s, and 
(c) when the second ball is moving away from the first 
at a speed of 1.00 m/s.

 47.   A 90.0-kg fullback running east with a speed 
of 5.00 m/s is tackled by a 95.0-kg opponent running 
north with a speed of 3.00 m/s. (a) Why does the tackle 
constitute a perfectly inelastic collision? (b) Calculate 
the velocity of the players immediately after the tackle 
and (c) determine the mechanical energy that is lost as a 
result of the collision. (d) Where did the lost energy go?

 48. Identical twins, each with mass 55.0 kg, are on ice 
skates and at rest on a frozen lake, which may be taken 
as frictionless. Twin A is carrying a backpack of mass 
12.0 kg. She throws it horizontally at 3.00 m/s to Twin 
B. Neglecting any gravity effects, what are the subse-
quent speeds of Twin A and Twin B?

 49. A 2 000-kg car moving east at 10.0 m/s collides with a 
3 000-kg car moving north. The cars stick together and 
move as a unit after the collision, at an angle of 40.0° 
north of east and a speed of 5.22 m/s. Find the speed 
of the 3 000-kg car before the collision.

 50. Two automobiles of equal mass approach an intersec-
tion. One vehicle is traveling with velocity 13.0 m/s 
toward the east, and the other is traveling north with 
velocity v2i. Neither driver sees the other. The vehicles 
collide in the intersection and stick together, leaving 
parallel skid marks at an angle of 55.0° north of east. 
The speed limit for both roads is 35 mi/h, and the 
driver of the northward-moving vehicle claims he was 
within the limit when the collision occurred. Is he tell-
ing the truth?

 51. A billiard ball moving at 5.00 m/s strikes a stationary 
ball of the same mass. After the collision, the first ball 

m1

m2

5.00 m

�

�

Figure p 6.54
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It makes a head-on elastic collision at � with a block of 
mass m2 5 10.0 kg that is initially at rest. Calculate the 
maximum height to which m1 rises after the collision.

 55.   A 2.0-g particle moving at 8.0 m/s makes a perfectly 
elastic head-on collision with a resting 1.0-g object. 
(a) Find the speed of each particle after the collision. 
(b) Find the speed of each particle after the collision if 
the stationary particle has a mass of 10 g. (c) Find the 
final kinetic energy of the incident 2.0-g particle in the 
situations described in parts (a) and (b). In which case 
does the incident particle lose more kinetic energy?

 56. A bullet of mass m and 
speed v passes completely 
through a pendulum bob of 
mass M as shown in Figure 
P6.56. The bullet emerges with 
a speed of v/2. The pendulum 
bob is suspended by a stiff rod 
of length , and negligible mass. 
What is the minimum value of v such that the bob will 
barely swing through a complete vertical circle?

 57. Two objects of masses 
m1 5 0.56 kg and m2 5 
0.88 kg are placed on 
a horizontal friction-
less surface and a com-
pressed spring of force 
constant k 5 280 N/m 
is placed between them 
as in Figure P6.57a. 
Neglect the mass of 
the spring. The spring 
is not attached to either object and is compressed a  
distance of 9.8 cm. If the objects are released from  
rest, find the final velocity of each object as shown in 
Figure P6.57b.

 58. A 0.400-kg blue bead 
slides on a frictionless, 
curved wire, starting 
from rest at point � 
in Figure P6.58, where 
h 5 1.50 m. At point 
�, the bead collides 
elastically with a 0.600-
kg green bead at rest. Find the maximum height the 
green bead rises as it moves up the wire.

 59. A 730-N man stands in the middle of a frozen pond 
of radius 5.0 m. He is unable to get to the other side 
because of a lack of friction between his shoes and the 
ice. To overcome this difficulty, he throws his 1.2-kg 
physics textbook horizontally toward the north shore 
at a speed of 5.0 m/s. How long does it take him to 
reach the south shore?

 60. An unstable nucleus of mass 1.7 3 10226 kg, initially at 
rest at the origin of a coordinate system, disintegrates 
into three particles. One particle, having a mass of  

m1 5 5.0 3 10227 kg, moves in the positive y- direction 
with speed v1 5 6.0 3 106 m/s. Another particle, of mass 
m2 5 8.4 3 10227 kg, moves in the positive x- direction 
with speed v2 5 4.0 3 106 m/s. Find the magnitude and 
direction of the velocity of the third particle.

 61.  Two blocks of masses m1 and m2 approach each 
other on a horizontal table with the same constant 
speed, v0, as measured by a laboratory observer. The 
blocks undergo a perfectly elastic collision, and it is 
observed that m1 stops but m2 moves opposite its origi-
nal motion with some constant speed, v. (a) Determine 
the ratio of the two masses, m1/m2. (b) What is the ratio 
of their speeds, v/v0?

 62. Two blocks of masses m1 5 2.00 kg and m2 5 4.00 kg 
are each released from rest at a height of h 5 5.00 m  
on a frictionless track, as shown in Figure P6.62, and 
undergo an elastic head-on collision. (a) Determine 
the velocity of each block just before the collision. 
(b) Determine the velocity of each block immediately 
after the collision. (c) Determine the maximum heights 
to which m1 and m2 rise after the collision.

m
�

M

vS v/2S

Figure p 6.56
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m2

Figure p 6.57

h

�

�

Figure p 6.58

hh

m1 m2

Figure p 6.62

63. A block with mass m1 5 0.500 kg is released from rest 
on a frictionless track at a distance h1 5 2.50 m above 
the top of a table. It then collides elastically with an 
object having mass m2 5 1.00 kg that is initially at rest 
on the table, as shown in Figure P6.63. (a) Determine 
the velocities of the two objects just after the colli-
sion. (b)  How high up the track does the 0.500-kg 
object travel back after the collision? (c) How far away 
from the bottom of the table does the 1.00-kg object 
land, given that the height of the table is h2 5 2.00 m? 
(d) How far away from the bottom of the table does the 
0.500-kg object eventually land?

h1

h2

m2

m1

x

Figure p 6.63
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66. A cue ball traveling at 4.00 m/s makes a glancing, elas-
tic collision with a target ball of equal mass that is ini-
tially at rest. The cue ball is deflected so that it makes 
an angle of 30.0° with its original direction of travel. 
Find (a) the angle between the velocity vectors of the 
two balls after the collision and (b) the speed of each 
ball after the collision.

 67. A cannon is rigidly attached to a carriage, which 
can move along horizontal rails, but is connected to a 
post by a large spring, initially unstretched and with 
force constant k 5 2.00 3 104 N/m, as in Figure P6.67. 
The cannon fires a 200-kg projectile at a velocity of 
125 m/s directed 45.0° above the horizontal. (a) If the 
mass of the cannon and its carriage is 5 000 kg, find 
the recoil speed of the cannon. (b) Determine the 
maximum extension of the spring. (c) Find the maxi-
mum force the spring exerts on the carriage. (d) Con-
sider the system consisting of the cannon, the carriage, 
and the shell. Is the momentum of this system con-
served during the firing? Why or why not?

68. The “force platform” is a tool 
that is used to analyze the 
performance of athletes by 
measuring the vertical force 
as a function of time that the 
athlete exerts on the ground 
in performing various activi-
ties. A simplified force vs. time 
graph for an athlete perform-
ing a standing high jump is shown in Figure P6.68. The 
athlete started the jump at t 5 0.0 s. How high did this 
athlete jump?

69. A neutron in a reactor makes an elastic head-on col-
lision with a carbon atom that is initially at rest. (The 
mass of the carbon nucleus is about 12 times that of 
the neutron.) (a) What fraction of the neutron’s kinetic 
energy is transferred to the carbon nucleus? (b) If the 
neutron’s initial kinetic energy is 1.6 3 10213 J, find its 
final kinetic energy and the kinetic energy of the car-
bon nucleus after the collision.

 70.   Two blocks collide on a frictionless surface. 
After the collision, the blocks stick together. Block 
A has a mass M and is initially moving to the right at 
speed v. Block B has a mass 2M and is initially at rest. 
System C is composed of both blocks. (a) Draw a force 
diagram for each block at an instant during the colli-
sion. (b) Rank the magnitudes of the horizontal forces 
in your diagram. Explain your reasoning. (c) Calculate 
the change in momentum of block A, block B, and 
system C. (d) Is kinetic energy conserved in this col-
lision? Explain your answer. (This problem is courtesy 
of Edward F. Redish. For more such problems, visit 
http://www.physics.umd.edu/perg.)

 71.  (a) A car traveling due east strikes a car traveling 
due north at an intersection, and the two move together 
as a unit. A property owner on the southeast corner of 
the intersection claims that his fence was torn down 
in the collision. Should he be awarded damages by 
the insurance company? Defend your answer. (b) Let 
the eastward-moving car have a mass of 1 300 kg and 
a speed of 30.0 km/h and the northward-moving car 
a mass of 1 100 kg and a speed of 20.0 km/h. Find the 
velocity after the collision. Are the results consistent 
with your answer to part (a)?

 72. A 60-kg soccer player jumps vertically upwards and 
heads the 0.45-kg ball as it is descending vertically with 
a speed of 25 m/s. (a) If the player was moving upward 
with a speed of 4.0 m/s just before impact, what will be 
the speed of the ball immediately after the collision if 
the ball rebounds vertically upwards and the collision 
is elastic? (b) If the ball is in contact with the player’s 
head for 20 ms, what is the average acceleration of the 
ball? (Note that the force of gravity may be ignored 
during the brief collision time.)

 73.  A tennis ball of mass 57.0 g is held just above a 
basketball of mass 590 g. With their centers vertically 

a b

h m2m2

m1

m1

v2
S

4.00 m/s

Figure p 6.65

64. Two objects of masses m and 3m are moving toward 
each other along the x -axis with the same initial speed 
v0. The object with mass m is traveling to the left, and 
the object with mass 3m is traveling to the right. They 
undergo an elastic glancing collision such that m is 
moving downward after the collision at right angles 
from its initial direction. (a) Find the final speeds of 
the two objects. (b) What is the angle u at which the 
object with mass 3m is scattered?

 65. A small block of mass m1 5 0.500 kg is released from 
rest at the top of a curved wedge of mass m2 5 3.00 kg, 
which sits on a frictionless horizontal surface as in Fig-
ure P6.65a. When the block leaves the wedge, its veloc-
ity is measured to be 4.00 m/s to the right, as in Figure 
P6.65b. (a) What is the velocity of the wedge after the 
block reaches the horizontal surface? (b) What is the 
height h of the wedge?

45.0°

Figure p 6.67
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Figure p 6.68
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aligned, both balls are released from 
rest at the same time, to fall through 
a distance of 1.20 m, as shown in Fig-
ure P6.73. (a)  Find the magnitude 
of the downward velocity with which 
the basketball reaches the ground. 
(b) Assume that an elastic collision 
with the ground instantaneously 
reverses the velocity of the basketball while the tennis 
ball is still moving down. Next, the two balls meet in 
an elastic collision. To what height does the tennis ball 
rebound?

 74. A 20.0-kg toboggan with 70.0-kg driver is sliding down 
a frictionless chute directed 30.0° below the horizon-
tal at 8.00 m/s when a 55.0-kg woman drops from a 
tree limb straight down behind the driver. If she drops 
through a vertical displacement of 2.00 m, what is the 
subsequent velocity of the toboggan immediately after 
impact?

 75. Measuring the speed of a bullet. A bullet of mass m is 
fired horizontally into a wooden block of mass M lying 
on a table. The bullet remains in the block after the 
collision. The coefficient of friction between the block 
and table is m, and the block slides a distance d before 
stopping. Find the initial speed v0 of the bullet in terms 
of M, m, m, g, and d.

 76. A flying squid (family Ommastrephidae) is able to 
“ jump” off the surface of the sea by taking water into 
its body cavity and then ejecting the water vertically 
downward. A 0.85-kg squid is able to eject 0.30  kg 
of water with a speed of 20 m/s. (a) What will be the 
speed of the squid immediately after ejecting the 
water? (b) How high in the air will the squid rise?

77. A 0.30-kg puck, initially at rest on a frictionless hori-
zontal surface, is struck by a 0.20-kg puck that is ini-
tially moving along the x -axis with a velocity of 2.0 m/s. 
After the collision, the 0.20-kg puck has a speed of 
1.0  m/s at an angle of u 5 53° to the positive x -axis. 
(a) Determine the velocity of the 0.30-kg puck after the 
collision. (b) Find the fraction of kinetic energy lost in 
the collision.

78.  A wooden 
block of mass M rests 
on a table over a large 
hole as in Figure P6.78. 
A bullet of mass m with 
an initial velocity vi is 
fired upward into the 
bottom of the block 
and remains in the 
block after the colli-
sion. The block and bullet rise to a maximum height of 
h. (a) Describe how you would find the initial velocity 
of the bullet using ideas you have learned in this chap-
ter. (b) Find an expression for the initial velocity of the 
bullet.

 79. A 1.25-kg wooden block rests on a table over a 
large hole as in Figure P6.78. A 5.00-g bullet with an 
initial velocity vi is fired upward into the bottom of the 
block and remains in the block after the collision. The 
block and bullet rise to a maximum height of 22.0 cm. 
(a) Describe how you would find the initial velocity of 
the bullet using ideas you have learned in this chapter. 
(b) Calculate the initial velocity of the bullet from the 
information provided.

Figure p 6.73

M

vi
S

m

Figure p 6.78  Problems 78 and 79.
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Rotational motion is an important part of everyday life. The rotation of the Earth creates 
the cycle of day and night, the rotation of wheels enables easy vehicular motion, and mod-
ern technology depends on circular motion in a variety of contexts, from the tiny gears in a 
Swiss watch to the operation of lathes and other machinery. The concepts of angular speed, 
angular acceleration, and centripetal acceleration are central to understanding the motions of 
a diverse range of phenomena, from a car moving around a circular racetrack to clusters of 
galaxies orbiting a common center.

Rotational motion, when combined with Newton’s law of universal gravitation and 
his laws of motion, can also explain certain facts about space travel and satellite motion, 
such as where to place a satellite so it will remain fixed in position over the same spot 
on the Earth. The generalization of gravitational potential energy and energy conservation 
offers an easy route to such results as planetary escape speed. Finally, we present Kepler’s 
three laws of planetary motion, which formed the foundation of Newton’s approach 
to gravity.

The International Space Station 

falls freely around the Earth 

at thousands of meters per 

second, held in orbit by the 

centripetal force provided by 

gravity.

7 Rotational Motion  
and the Law of Gravity

7.1 Angular Speed and Angular 
Acceleration

7.2 Rotational Motion Under 
Constant Angular Acceleration

7.3 Relations Between Angular 
and Linear Quantities

7.4 Centripetal Acceleration

7.5 Newtonian Gravitation

7.6 Kepler’s Laws
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7.1     Angular Speed and  
Angular Acceleration
Learning Objectives

1. Define radian measure, angular position, and angular displacement.

2. Define average and instantaneous angular speed.

3. Define average and instantaneous angular acceleration.

4. Perform elementary calculations with angular variables.

In the study of linear motion, the important concepts are displacement Dx, velocity v, 
and acceleration a. Each of these concepts has its analog in rotational motion: angu-
lar displacement D u, angular velocity v, and angular acceleration a.

The radian, a unit of angular measure, is essential to the understanding of 
these concepts. Recall that the distance s around a circle is given by s 5 2pr, 
where r is the radius of the circle. Dividing both sides by r results in s/r 5 2p. 
This quantity is dimensionless because both s and r have dimensions of length, 
but the value 2p corresponds to a displacement around a circle. A half circle 
would give an answer of p, a quarter circle an answer of p/2. The numbers 2p, p, 
and p/2 correspond to angles of 360°, 180°, and 90°, respectively, so a new unit 
of angular measure, the radian, can be introduced, with 180° 5 p rad relating 
degrees to radians.

The angle u subtended by an arc length s along a circle of radius r, measured in 
radians counterclockwise from the positive x -axis, is

 u 5
s
r

 [7.1]

The angle u in Equation 7.1 is actually an angular displacement from the positive 
x-axis, and s the corresponding displacement along the circular arc, again mea-
sured from the positive x -axis. Figure 7.1 illustrates the size of 1 radian, which is 
approximately 57°. Converting from degrees to radians requires multiplying by the 
ratio (p rad/180°). For example, 45° (p rad/180°) 5 (p/4) rad.

Generally, angular quantities in physics must be expressed in radians. Be 
sure to set your calculator to radian mode; neglecting to do so is a common 
error.

Armed with the concept of radian measure, we can now discuss angular con-
cepts in physics. Consider Figure 7.2a, a top view of a rotating compact disc. Such 
a disk is an example of a “rigid body,” with each part of the body fixed in position 
relative to all other parts of the body. When a rigid body rotates through a given 
angle, all parts of the body rotate through the same angle at the same time. For 
the compact disc, the axis of rotation is at the center of the disc, O. A point P on 
the disc is at a distance r from the origin and moves about O in a circle of radius r. 
We set up a fixed reference line, as shown in Figure 7.2a, and assume that at time 
t 5 0 the point P is on that reference line. After a time interval Dt has elapsed, P 
has advanced to a new position (Fig. 7.2b). In this interval, the line OP has moved 
through the angle u with respect to the reference line. The angle u, measured in 
radians, is called the angular position and is analogous to the linear position vari-
able x. Likewise, P has moved an arc length s measured along the circumference 
of the circle.

In Figure 7.3, as a point on the rotating disc moves from � to � in a time Dt, 
it starts at an angle ui and ends at an angle uf . The difference uf 2 ui is called the 
angular displacement.

Figure 7.1  For a circle of radius r, 
one radian is the angle subtended by 
an arc length equal to r.

x

y

r s = r

 = 1 rad � 57.3°θ

θ

Reference
line

O P
r

O

P

Reference
line

r s
u

a

b

Figure 7.2  (a) The point P on a 
rotating compact disc at t 5 0. (b) As 
the disc rotates, P moves through an 
arc length s.

x

y

� t f

� tir

i

O

fu

u

Figure 7.3  As a point on the com-
pact disc moves from � to �, the 
disc rotates through the angle  
Du 5 uf 2 ui .
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An object’s angular displacement, Du, is the difference in its final and initial angles:

Du 5 uf 2 ui [7.2]

SI unit: radian (rad)

For example, if a point on a disc is at ui 5 4 rad and rotates to angular position uf 5 
7 rad, the angular displacement is Du 5 uf 2 ui 5 7 rad 2 4 rad 5 3 rad. Note that we  
use angular variables to describe the rotating disc because each point on the disc 
undergoes the same angular displacement in any given time interval.

Using the definition in Equation 7.2, Equation 7.1 can be written more gener-
ally as Du 5 Ds/r, where Ds is a displacement along the circular arc subtended by 
the angular displacement. Having defined angular displacements, it’s natural to 
define an angular speed:

The average angular speed vav of a rotating rigid object during the time 
interval Dt is the angular displacement Du divided by Dt:

 vav ;
uf 2 ui

tf 2 ti
5

Du

Dt
 [7.3]

SI unit: radian per second (rad/s)

For very short time intervals, the average angular speed approaches the instanta-
neous angular speed, just as in the linear case.

The instantaneous angular speed v of a rotating rigid object is the limit of 
the average speed Du/Dt as the time interval Dt approaches zero:

 v ; lim
Dt S 0

 
Du

Dt
    [7.4]

SI unit: radian per second (rad/s)

We take v to be positive when u is increasing (counterclockwise motion) and nega-
tive when u is decreasing (clockwise motion). When the angular speed is constant, 
the instantaneous angular speed is equal to the average angular speed.

 ■ e Xa Mp Le  7.1 Whirlybirds

g Oa L  Perform some elementary calculations with angular variables.

pr Ob Le M  The rotor on a helicopter turns at an angular speed of 3.20 3 102 revolutions per minute. (In this book, we 
sometimes use the abbreviation rpm, but in most cases we use rev/min.) (a) Express this angular speed in radians per 
second. (b) If the rotor has a radius of 2.00 m, what arclength does the tip of the blade trace out in 3.00 3 102 s? (c) The 
pilot opens the throttle, and the angular speed of the blade increases while rotating twenty-six times in 3.60 s. Calculate 
the average angular speed during that time.

s t r at e g Y  During one revolution, the rotor turns through an angle of 2p radians. Use this relationship as a conversion 
factor. For part (b), first calculate the angular displacement in radians by multiplying the angular speed by time. Part (c) 
is a simple application of Equation 7.3.

s OLUti On

(a) Express this angular speed in radians per second.

Apply the conversion factors 1 rev 5 2p rad and  
60.0 s 5 1 min: v 5 3.20 3 102 

rev
min

5 3.20 3 102 
rev
min

a2p rad
1 rev

b a1.00 min
60.0 s

b
5   33.5 rad/s

t ip 7.1  Remember  
the Radian
Equation 7.1 uses angles mea-
sured in radians. Angles expressed 
in terms of degrees must first be 
converted to radians. Also, be 
sure to check whether your calcu-
lator is in degree or radian mode 
when solving problems involving 
rotation.
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7.1 | Angular Speed and Angular Acceleration   205

re Mar Ks  It’s best to express angular speeds in radians per second. Consistent use of radian measure minimizes errors.

QUes t i On  7.1  Is it possible to express angular speed in degrees per second? If so, what’s the conversion factor from 
radians per second?

e Xe rc i s e  7.1  A Ferris wheel turns at a constant 185.0 revolutions per hour. (a) Express this rate of rotation in units of 
radians per second. (b) If the wheel has a radius of 12.0 m, what arclength does a passenger trace out during a ride lasting 
5.00 min? (c) If the wheel then slows to rest in 9.72 s while making a quarter turn, calculate the magnitude of its average 
angular speed during that time.

a ns We r s  (a) 0.323 rad/s (b) 1.16 3 103 m (c) 0.162 rad/s

Multiply the angular displacement by the radius to get the 
arc length:

Ds 5 r Du 5 (2.00 m)(1.01 3 104 rad) 5   2.02 3 104 m

(c) Calculate the average angular speed of the blade while 
its angular speed increases. 

Apply Equation 7.3, noticing that Du 5 (26 rev)(2p rad/rev) 5 52p rad:

vav 5
Du

Dt
5

52p rad
3.60 s

5 45 rad/s

■ Quick Quiz

7.1  A rigid body is rotating counterclockwise about a fixed axis. Each of the fol-
lowing pairs of quantities represents an initial angular position and a final angular 
position of the rigid body. Which of the sets can occur only if the rigid body rotates 
through more than 180°? (a) 3 rad, 6 rad; (b) 21 rad, 1 rad; (c) 1 rad, 5 rad.

7.2  Suppose the change in angular position for each of the pairs of values in Quick 
Quiz 7.1 occurred in 1 s. Which choice represents the lowest average angular speed?

Figure 7.4 shows a bicycle turned upside down so that a repair technician 
can work on the rear wheel. The bicycle pedals are turned so that at time ti the 
wheel has angular speed vi (Fig. 7.4a) and at a later time tf it has angular speed vf
(Fig. 7.4b). Just as a changing speed leads to the concept of an acceleration, a 
changing angular speed leads to the concept of an angular acceleration.

An object’s average angular acceleration aav during the time interval Dt is the 
change in its angular speed Dv divided by Dt:

 aav ;
vf 2 vi

tf 2 ti
5

Dv

Dt
 [7.5]

SI unit: radian per second squared (rad/s2)

tf

fi

ti

ω ω

a b

Figure 7.4  An accelerating bicycle 
wheel rotates with (a) angular speed 
vi at time ti and (b) angular speed vf 
at time tf .

(b) Find the arclength traced out by the tip of the blade. 
Multiply the angular speed by the time to obtain the 
angular displacement:

Du 5 vt 5 (33.5 rad/s)(3.00 3 102 s) 5 1.01 3 104 rad

b   Average angular 
acceleration
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206  c hap t e r  7 | Rotational Motion and the Law of Gravity

As with angular velocity, positive angular accelerations are in the counterclockwise 
direction, negative angular accelerations in the clockwise direction. If the angular 
speed goes from 15 rad/s to 9.0 rad/s in 3.0 s, the average angular acceleration 
during that time interval is

aav 5
Dv

Dt
5

9.0 rad/s 2 15 rad/s
3.0 s

5 22.0 rad/s2

The negative sign indicates that the angular acceleration is clockwise (although 
the angular speed, still positive but slowing down, is in the counterclockwise direc-
tion). There is also an instantaneous version of angular acceleration:

The instantaneous angular acceleration a is the limit of the average angular 
acceleration Dv/Dt as the time interval Dt approaches zero:

 a ; lim
Dt S 0

 
Dv

Dt
 [7.6]

SI unit: radian per second squared (rad/s2)

When a rigid object rotates about a fixed axis, as does the bicycle wheel, every 
portion of the object has the same angular speed and the same angular accel-
eration. This fact is what makes these variables so useful for describing rotational 
motion. In contrast, the tangential (linear) speed and acceleration of the object 
take different values that depend on the distance from a given point to the axis of 
rotation.

7.2     Rotational Motion Under Constant 
Angular Acceleration
Learning Objectives

1. Identify the correspondence between the equations for linear motion at con-
stant acceleration and those for angular motion.

2. Apply rotational kinematics to objects undergoing uniform angular 
acceleration.

A number of parallels exist between the equations for rotational motion and those 
for linear motion. For example, compare the defining equation for the average 
angular speed,

vav ;
uf 2 ui

tf 2 ti
5

Du

Dt

with that of the average linear speed,

vav ;
xf 2 xi
tf 2 ti

5
Dx
Dt

In these equations, v takes the place of v and u takes the place of x, so the equa-
tions differ only in the names of the variables. In the same way, every linear 
quantity we have encountered so far has a corresponding “twin” in rotational 
motion.

The procedure used in Section 2.5 to develop the kinematic equations for lin-
ear motion under constant acceleration can be used to derive a similar set of equa-
tions for rotational motion under constant angular acceleration. The resulting 

Instantaneous angular c
acceleration
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7.2 | Rotational Motion Under Constant Angular Acceleration  207

equations of rotational kinematics, along with the corresponding equations for 
linear motion, are as follows:

Linear Motion with a Constant Rotational Motion About a Fixed
 (Variables: x and v) Axis with a Constant (Variables: u and v)

 v 5 vi 1 at v 5 vi 1 at [7.7]
 Dx 5 vit 1 1

2at
2 Du 5 vit 1 1

2at 2 [7.8]

 v2 5 vi
2 1 2a Dx v2 5 vi

2 1 2a Du [7.9]

Notice that every term in a given linear equation has a corresponding term in the 
analogous rotational equation.

■ Quick Quiz

7.3  Consider again the pairs of angular positions for the rigid object in Quick 
Quiz 7.1. If the object starts from rest at the initial angular position, moves coun-
terclockwise with constant angular acceleration, and arrives at the final angular 
position with the same angular speed in all three cases, for which choice is the 
angular acceleration the highest?

 ■ e Xa Mp Le  7.2 A Rotating Wheel

g Oa L  Apply the rotational kinematic equations.

pr Ob Le M  A wheel rotates with a constant angular acceleration of 3.50 rad/s2. If the angular speed of the wheel is 
2.00 rad/s at t 5 0, (a) through what angle does the wheel rotate between t 5 0 and t 5 2.00 s? Give your answer in 
radians and in revolutions. (b) What is the angular speed of the wheel at t 5 2.00 s? (c) What angular displacement (in 
revolutions) results while the angular speed found in part (b) doubles?

s t r at e g Y  The angular acceleration is constant, so this problem just requires substituting given values into  
Equa tions 7.7–7.9.

s OLUti On
(a) Find the angular displacement after 2.00 s, in both 
radians and revolutions.

Use Equation 7.8, setting vi 5 2.00 rad/s, a 5 3.5 rad/s2, 
and t 5 2.00 s:

Du 5 vit 1 1
2at 2

5 12.00 rad/s 2 12.00 s 2 1 1
2 13.50 rad/s2 2 12.00 s 22

5   11.0 rad

Convert radians to revolutions. Du 5 (11.0 rad)(1.00 rev/2p rad) 5   1.75 rev

(b) What is the angular speed of the wheel at t 5 2.00 s?

Substitute the same values into Equation 7.7: v 5 vi 1 at 5 2.00 rad/s 1 (3.50 rad/s2)(2.00 s)

5   9.00 rad/s

(c) What angular displacement (in revolutions) results 
during the time in which the angular speed found in part 
(b) doubles?

Apply the time-independent rotational kinematics 
equation: vf 

2 2 vi 
2 5 2aDu

Substitute values, noting that vf 5 2vi: (2 3 9.00 rad/s)2 2 (9.00 rad/s)2 5 2(3.50 rad/s2)Du

Solve for the angular displacement and convert to 
revolutions: Du 5 134.7 rad 2 a 1 rev

2p rad
b5   5.52 rev

re Mar Ks  The result of part (b) could also be obtained from Equation 7.9 and the results of part (a).
(Continued)
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7.3     Relations Between Angular  
and Linear Quantities
Learning Objective

1. Apply the relationships between angular and linear quantities.

Angular variables are closely related to linear variables. Consider the arbitrarily 
shaped object in Figure 7.5 rotating about the z-axis through the point O. Assume the 
object rotates through the angle Du, and hence point P moves through the arc length 
Ds, in the interval Dt. We know from the defining equation for radian measure that

Du 5
Ds
r

Dividing both sides of this equation by Dt, the time interval during which the rota-
tion occurs, yields

Du

Dt
5

1
r
 
Ds
Dt

When Dt is very small, the angle Du through which the object rotates is also small 
and the ratio Du/Dt is close to the instantaneous angular speed v. On the other 
side of the equation, similarly, the ratio Ds/Dt approaches the instantaneous linear 
speed v for small values of Dt. Hence, when Dt gets arbitrarily small, the preceding 
equation is equivalent to

v 5
v
r

In Figure 7.5, the point P traverses a distance Ds along a circular arc during 
the time interval Dt at a linear speed of v. The direction of P’s velocity vector vS is 
tangent to the circular path. The magnitude of vS is the linear speed v 5 vt, called the 
tangential speed of a particle moving in a circular path, written

 vt 5 rv [7.10]

The tangential speed of a point on a rotating object equals the distance of that 
point from the axis of rotation multiplied by the angular speed. Equation 7.10 
shows that the linear speed of a point on a rotating object increases as that point is 
moved outward from the center of rotation toward the rim, as expected; however, 
every point on the rotating object has the same angular speed.

Equation 7.10, derived using the defining equation for radian measure, is valid 
only when v is measured in radians per unit time. Other measures of angular 
speed, such as degrees per second and revolutions per second, shouldn’t be used.

To find a second equation relating linear and angular quantities, refer again to 
Figure 7.5 and suppose the rotating object changes its angular speed by Dv in the 
time interval Dt. At the end of this interval, the speed of a point on the object, such 
as P, has changed by the amount Dvt. From Equation 7.10 we have

Dvt 5 r Dv

Tangential speed c

QUes t i On  7.2  Suppose the radius of the wheel is doubled. Are the answers affected? If so, in what way?

e Xe rc i s e  7.2  (a) Find the angle through which the wheel rotates between t 5 2.00 s and t 5 3.00 s. (b) Find the angu-
lar speed when t 5 3.00 s. (c) What is the magnitude of the angular speed two revolutions following t 5 3.00 s?

a ns We r s  (a) 10.8 rad (b) 12.5 rad/s (c) 15.6 rad/s

y

P

x
O

r

vS

�s
�u

Figure 7.5  Rotation of an object 
about an axis through O (the z-axis) 
that is perpendicular to the plane of 
the figure. Note that a point P on the 
object rotates in a circle of radius r 
centered at O.
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7.3 | Relations Between Angular and Linear Quantities  209

Dividing by Dt gives

Dvt
Dt

5 r 
Dv

Dt

As the time interval Dt is taken to be arbitrarily small, Dv/Dt approaches the 
instantaneous angular acceleration. On the left-hand side of the equation, note 
that the ratio Dvt /Dt tends to the instantaneous linear acceleration, called the tan-
gential acceleration of that point, given by

 at 5 r a [7.11]

The tangential acceleration of a point on a rotating object equals the distance of 
that point from the axis of rotation multiplied by the angular acceleration. Again, 
radian measure must be used for the angular acceleration term in this equation.

One last equation that relates linear quantities to angular quantities will be 
derived in the next section.

■ Quick Quiz

7.4  Andrea and Chuck are riding on a merry-go-round. Andrea rides on a horse at 
the outer rim of the circular platform, twice as far from the center of the circular 
platform as Chuck, who rides on an inner horse. When the merry-go-round is rotat-
ing at a constant angular speed, Andrea’s angular speed is (a) twice Chuck’s (b) the 
same as Chuck’s (c) half of Chuck’s (d) impossible to determine.

7.5  When the merry-go-round of Quick Quiz 7.4 is rotating at a constant angular 
speed, Andrea’s tangential speed is (a) twice Chuck’s (b) the same as Chuck’s (c) half 
of Chuck’s (d) impossible to determine.

b Tangential acceleration

 ■ a pp LYi ng  ph Ys ic s  7.1 ESA Launch Site

Why is the launch area for the European Space Agency in 
South America and not in Europe?

e XpLa n at iOn  Satellites are boosted into orbit on top of 
rockets, which provide the large tangential speed necessary 
to achieve orbit. Due to its rotation, the surface of Earth is 
already traveling toward the east at a tangential speed of 

nearly 1 700 m/s at the equator. This tangential speed is 
steadily reduced farther north because the distance to the 
axis of rotation is decreasing. It finally goes to zero at the 
North Pole. Launching eastward from the equator gives 
the satellite a starting initial tangential speed of 1 700 m/s, 
whereas a European launch provides roughly half that speed 
(depending on the exact latitude). ■

■ e Xa Mp Le  7.3 Compact Discs

g Oa L  Apply the rotational kinematics equations in tandem with tangential acceleration and speed.

pr ObLe M  A compact disc rotates from rest up to an angular speed of 31.4 rad/s in a time of 0.892 s. (a) What is the angular 
acceleration of the disc, assuming the angular acceleration is uniform? (b) Through what angle does the disc turn while com-
ing up to speed? (c) If the radius of the disc is 4.45 cm, find the tangential speed of a microbe riding on the rim of the disc 
when t 5 0.892 s. (d) What is the magnitude of the tangential acceleration of the microbe at the given time?

s t r at e g Y  We can solve parts (a) and (b) by applying the kinematic equations for angular speed and angular displace-
ment (Eqs. 7.7 and 7.8). Multiplying the radius by the angular acceleration yields the tangential acceleration at the rim, 
whereas multiplying the radius by the angular speed gives the tangential speed at that point.

s OLUti On

(a) Find the angular acceleration of the disc.

Apply the angular velocity equation v 5 vi 1 at, taking  
vi 5 0 at t 5 0: a 5

v

t
5

31.4 rad/s
0.892 s

5   35.2 rad/s2

(Continued)
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Before MP3s became the medium of choice for recorded music, compact discs 
and phonographs were popular. There are similarities and differences between 
the rotational motion of phonograph records and that of compact discs. A pho-
nograph record rotates at a constant angular speed. Popular angular speeds were 
331

3 rev/min for long-playing albums (hence the nickname “LP”), 45 rev/min for 
“singles,” and 78 rev/min used in very early recordings. At the outer edge of the 
record, the pickup needle (stylus) moves over the vinyl material at a faster tangen-
tial speed than when the needle is close to the center of the record. As a result, the 
sound information is compressed into a smaller length of track near the center of 
the record than near the outer edge.

CDs, on the other hand, are designed so that the disc moves under the laser 
pickup at a constant tangential speed. Because the pickup moves radially as it 
follows the tracks of information, the angular speed of the compact disc must 
vary according to the radial position of the laser. Because the tangential speed is 
fixed, the information density (per length of track) anywhere on the disc is the 
same. Example 7.4 demonstrates numerical calculations for both compact discs 
and phonograph records.

(b) Through what angle does the disc turn?

Use Equation 7.8 for angular displacement, with  
t 5 0.892 s and vi 5 0: Du 5 vit 1 1

2at 2 5 1
2 135.2 rad/s2 2 10.892 s 22 5   14.0 rad

(c) Find the final tangential speed of a microbe at  
r 5 4.45 cm.

Substitute into Equation 7.10: vt 5 rv 5 (0.044 5 m)(31.4 rad/s) 5   1.40 m/s

(d) Find the tangential acceleration of the microbe at  
r 5 4.45 cm.

Substitute into Equation 7.11: at 5 ra 5 (0.044 5 m)(35.2 rad/s2) 5   1.57 m/s2

re Mar Ks  Because 2p rad 5 1 rev, the angular displacement in part (b) corresponds to 2.23 rev. In general, dividing 
the number of radians by 6 gives a rough approximation to the number of revolutions, because 2p , 6.

QUes t i On  7.3  If the angular acceleration were doubled for the same duration, by what factor would the angular dis-
placement change? Why is the answer true in this case but not in general?

e Xe rc i s e  7.3  (a) What are the angular speed and angular displacement of the disc 0.300 s after it begins to rotate? 
(b) Find the tangential speed at the rim at this time.

a ns We r s  (a) 10.6 rad/s; 1.58 rad (b) 0.472 m/s

 ■ e Xa Mp Le  7.4 Track Length of a Compact Disc 

g Oa L  Relate angular to linear variables.

pr ObLe M  In a compact disc player, as the read head 
moves out from the center of the disc, the angular speed 
of the disc changes so that the linear speed at the position 
of the head remains at a constant value of about 1.3 m/s.  
(a) Find the angular speed of a compact disc of radius 
6.00 cm when the read head is at r 5 2.0 cm and again at 
r 5 5.6 cm. (b) An old-fashioned record player rotates at a 
constant angular speed, so the linear speed of the record 
groove moving under the detector (the stylus) changes. 
Find the linear speed of a 45.0-rpm record at points 2.0 and  
5.6 cm from the center. (c) In both the CDs and phonograph  

records, information is recorded in a continuous spi-
ral track. Calculate the total length of the track for a CD 
designed to play for 1.0 h.

s t r at e g Y  This problem is just a matter of substituting 
numbers into the appropriate equations. Part (a) requires 
relating angular and linear speed with Equation 7.10,  
vt 5 rv, solving for v and substituting given values. In part  
(b), convert from rev/min to rad/s and substitute straight 
into Equation 7.10 to obtain the linear speeds. In part  
(c), linear speed multiplied by time gives the total distance.

a pp Lica t iOn
Phonograph Records and  

Compact Discs
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7.4    Centripetal Acceleration
Learning Objectives

1. Calculate the centripetal, tangential, and total accelerations of objects in  
circular motion.

2. Apply the second law to objects in uniform circular motion.

3. Identify forces responsible for centripetal accelerations in physical contexts.

Figure 7.6a shows a car moving in a circular path with constant linear speed v. 
Even though the car moves at a constant speed, it still has an acceleration. To 
understand this, consider the defining equation for average acceleration:

aSav 5
vSf 2 vSi

tf 2 ti
 [7.12]

s OLUti On
(a) Find the angular speed of the disc when the read head 
is at r 5 2.0 cm and r 5 5.6 cm.

Solve vt 5 rv for v and calculate the angular speed at  
r 5 2.0 cm: v 5

vt
r

5
1.3 m/s

2.0 3 1022 m
5   65 rad/s

Likewise, find the angular speed at r 5 5.6 cm: v 5
vt
r

5
1.3 m/s

5.6 3 1022 m
5   23 rad/s

(b) Find the linear speed in m/s of a 45.0-rpm record at 
points 2.0 cm and 5.6 cm from the center.

Convert rev/min to rad/s: 45.0 
rev
min

5 45.0 
rev
min

 a2p rad
rev

b a1.00 min
60.0 s

b 5 4.71 
rad

s

Calculate the linear speed at r 5 2.0 cm: vt 5 rv 5 (2.0 3 1022 m)(4.71 rad/s) 5   0.094 m/s

Calculate the linear speed at r 5 5.6 cm: vt 5 rv 5 (5.6 3 1022 m)(4.71 rad/s) 5   0.26 m/s

(c) Calculate the total length of the track for a CD 
designed to play for 1.0 h.

Multiply the linear speed of the read head by the time in 
seconds:

d 5 vtt 5 (1.3 m/s)(3 600 s) 5   4 700 m

re Mar Ks  Notice that for the record player in part (b), even though the angular speed is constant at all points along 
a radial line, the tangential speed steadily increases with increasing r. The calculation for a CD in part (c) is easy only 
because the linear (tangential) speed is constant. It would be considerably more difficult for a record player, where the 
tangential speed depends on the distance from the center.

QUes t i On  7.4  What is the angular acceleration of a record player while it’s playing a song? Can a CD player have the 
same angular acceleration as a record player? Explain.

e Xe rc i s e  7.4  Compute the linear speed on a record playing at 331
3 revolutions per minute (a) at r 5 2.00 cm and  

(b) at r 5 5.60 cm.

a ns We r s  (a) 0.069 8 m/s (b) 0.195 m/s
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Figure 7.7  (a) As the particle 
moves from � to �, the direction of 
its velocity vector changes from vSi to 
vSf . (b) The construction for deter-
mining the direction of the change 
in velocity DvS, which is toward the 
center of the circle.
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Figure 7.6  (a) Circular motion of 
a car moving with constant speed. 
(b) As the car moves along the cir-
cular path from � to �, the direc-
tion of its velocity vector changes, 
so the car undergoes a centripetal 
acceleration.

The numerator represents the difference between the velocity vectors vSf  and vSi .
These vectors may have the same magnitude, corresponding to the same speed, 
but if they have different directions, their difference can’t equal zero. The direc-
tion of the car’s velocity as it moves in the circular path is continually changing, 
as shown in Figure 7.6b. For circular motion at constant speed, the acceleration 
vector always points toward the center of the circle. Such an acceleration is called a 
centripetal (center-seeking) acceleration. Its magnitude is given by

ac 5
v 2

r
 [7.13]

To derive Equation 7.13, consider Figure 7.7a. An object is first at point � with 
velocity vSi at time ti and then at point � with velocity vSf  at a later time tf . We 
assume vSi and vSf  differ only in direction; their magnitudes are the same (vi 5 vf 5 
v). To calculate the acceleration, we begin with Equation 7.12,

 aSav 5
vSf 2 vSi

tf 2 ti
5

DvS

Dt
 [7.14]

where DvS 5 vSf 2 vSi is the change in velocity. When Dt is very small, Ds and Du 
are also very small. In Figure 7.7b vSf  is almost parallel to vSi, and the vector DvS is 
approximately perpendicular to them, pointing toward the center of the circle. In 
the limiting case when Dt becomes vanishingly small, DvS points exactly toward the 
center of the circle, and the average acceleration aSav becomes the instantaneous 
acceleration aS. From Equation 7.14, aS and DvS point in the same direction (in this 
limit), so the instantaneous acceleration points to the center of the circle.

The triangle in Figure 7.7a, which has sides Ds and r, is similar to the one formed 
by the vectors in Figure 7.7b, so the ratios of their sides are equal:

Dv
v

5
Ds
r

or

Dv 5
v
r
 Ds [7.15]

Substituting the result of Equation 7.15 into aav 5 Dv/Dt gives

 aav 5
v
r
 
Ds
Dt

 [7.16]

But Ds is the distance traveled along the arc of the circle in time Dt, and in the lim-
iting case when Dt becomes very small, Ds/Dt approaches the instantaneous value of 
the tangential speed, v. At the same time, the average acceleration aav approaches 
ac, the instantaneous centripetal acceleration, so Equation 7.16 reduces to Equa-
tion 7.13:

ac 5
v 2

r

Because the tangential speed is related to the angular speed through the relation 
vt 5 rv (Eq. 7.10), an alternate form of Equation 7.13 is

 ac 5
r 2v2

r
5 rv2 [7.17]

Dimensionally, [r] 5 L and [v] 5 1/T, so the units of centripetal acceleration are  
L/T2, as they should be. This is a geometric result relating the centripetal accelera-
tion to the angular speed, but physically an acceleration can occur only if some force 
is present. For example, if a car travels in a circle on flat ground, the force of static 
friction between the tires and the ground provides the necessary centripetal force.

Note that ac in Equations 7.13 and 7.17 represents only the magnitude of the cen-
tripetal acceleration. The acceleration itself is always directed toward the center of 
rotation.
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The foregoing derivations concern circular motion at constant speed. When an 
object moves in a circle but is speeding up or slowing down, a tangential compo-
nent of acceleration, at 5 ra, is also present. Because the tangential and centripetal 
components of acceleration are perpendicular to each other, we can find the mag-
nitude of the total acceleration with the Pythagorean theorem:

 a 5 "at
2 1 ac

2 [7.18]

■ Quick Quiz

7.6  A racetrack is constructed such that two arcs of radius 80 m at � and 40 m at � 
are joined by two stretches of straight track as in Figure 7.8. In a particular trial run, 
a driver travels at a constant speed of 50 m/s for one complete lap.

1. The ratio of the tangential acceleration at � to that at � is  
(a) 12 (b) 14 (c) 2 (d) 4 (e) The tangential acceleration is zero at both points.

2. The ratio of the centripetal acceleration at � to that at � is  
(a) 12 (b) 14 (c) 2 (d) 4 (e) The centripetal acceleration is zero at both points.

3. The angular speed is greatest at
 (a) � (b) � (c) It is equal at both � and �.

7.7  An object moves in a circular path with constant speed v. Which of the following 
statements is true concerning the object? (a) Its velocity is constant, but its accelera-
tion is changing. (b) Its acceleration is constant, but its velocity is changing. (c) Both 
its velocity and acceleration are changing. (d) Its velocity and acceleration remain 
constant.

b Total acceleration

�80 m40 m�

Figure 7.8  (Quick Quiz 7.6)

 ■ e Xa Mp Le  7.5 At the Racetrack

g Oa L  Apply the concepts of centripetal acceleration and tangential speed.

pr Ob Le M  A race car accelerates uniformly from a speed of 40.0 m/s to a speed of 60.0 m/s in 5.00 s while traveling 
counterclockwise around a circular track of radius 4.00 3 102 m. When the car reaches a speed of 50.0 m/s, calculate  
(a) the magnitude of the car’s centripetal acceleration, (b) the angular speed, (c) the magnitude of the tangential accel-
eration, and (d) the magnitude of the total acceleration.

s t r at e g Y  Substitute values into the definitions of centripetal acceleration (Eq. 7.13), tangential speed (Eq. 7.10), and 
total acceleration (Eq. 7.18). Dividing the change in linear speed by the time yields the tangential acceleration.

s OLUti On

(a) Calculate the magnitude of the centripetal acceleration 
when v 5 50.0 m/s.

Substitute into Equation 7.13: ac 5
v 2

r
5

150.0 m/s 22

4.00 3 102 m
5   6.25 m/s2

(b) Calculate the angular speed.

Solve Equation 7.10 for v and substitute: v 5
v
r

5
50.0 m/s

4.00 3 102 m
5   0.125 rad/s

(c) Calculate the magnitude of the tangential acceleration.

Divide the change in linear speed by the time: at 5
vf 2 vi

Dt
5

60.0 m/s 2 40.0 m/s
5.00 s

5    4.00 m/s2

(d) Calculate the magnitude of the total acceleration.

Substitute into Equation 7.18: a 5 "at
2 1 ac

2 5 "14.00 m/s2 22 1 16.25 m/s2 22

a 5   7.42 m/s2

(Continued)
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v
S

v
S

a

b

When the disk rotates 
clockwise, v points 
downwards.

S

When the disk rotates 
counterclockwise, v 
points upwards.

S

Figure 7.10  The direction of the 
angular velocity vector vS  depends on 
the direction of rotation.

Angular Quantities Are Vectors
When we discussed linear motion in Chapter 2, we emphasized that displacement, 
velocity, and acceleration are all vector quantities. In describing rotational motion, 
angular displacement, angular velocity, and angular acceleration are also vector 
quantities.

The direction of the angular velocity vector vS  can be found with the right-hand 
rule, as illustrated in Figure 7.9a. Grasp the axis of rotation with your right hand 
so that your fingers wrap in the direction of rotation. Your extended thumb then 
points in the direction of vS . Figure 7.9b shows that vS  is also in the direction of 
advance of a rotating right-handed screw.

We can apply this rule to a disk rotating about a vertical axis through its center, 
as in Figure 7.10. When the disk rotates counterclockwise (Fig. 7.10a), the right-
hand rule shows that the direction of vS  is upward. When the disk rotates clockwise 
(Fig. 7.10b), the direction of vS  is downward.

Finally, the directions of the angular acceleration aS and the angular velocity vS  
are the same if the angular speed v (the magnitude of vS) is increasing with time, 
and are opposite each other if the angular speed is decreasing with time.

Forces Causing Centripetal Acceleration
An object can have a centripetal acceleration only if some external force  
acts on it. For a ball whirling in a circle at the end of a string, that force is the 
tension in the string. In the case of a car moving on a f lat circular track, the 
force is friction between the car and track. A satellite in circular orbit around 
Earth has a centripetal acceleration due to the gravitational force between the 
satellite and Earth.

Some books use the term “centripetal force,” which can give the mistaken 
impression that it is a new force of nature. This is not the case: The adjective “cen-
tripetal” in “centripetal force” simply means that the force in question acts toward 
a center. The force of tension in the string of a yo-yo whirling in a vertical circle 

re Mar Ks  We can also find the centripetal acceleration by substituting the derived value of v into Equation 7.17.

QUes t i On  7.5  If the force causing the centripetal acceleration suddenly vanished, would the car (a) slide away along 
a radius, (b) proceed along a line tangent to the circular motion, or (c) proceed at an angle intermediate between the 
tangent and radius?

e Xe rc i s e  7.5  Suppose the race car now slows down uniformly from 60.0 m/s to 30.0 m/s in 4.50 s to avoid an accident, 
while still traversing a circular path 4.00 3 102 m in radius. Calculate the car’s (a) centripetal acceleration, (b) angular 
speed, (c) tangential acceleration, and (d) total acceleration when the speed is 40.0 m/s.

a ns We r s  (a) 4.00 m/s2 (b) 0.100 rad/s (c) 26.67 m/s2 (d) 7.78 m/s2

 v
S

v
S

a b

Figure 7.9  (a) The right-hand rule 
for determining the direction of the 
angular velocity vector vS . (b) The 
direction of vS  is in the direction of 
advance of a right-handed screw.
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is an example of a centripetal force, as is the force of gravity on a satellite circling 
the Earth.

Consider a puck of mass m that is tied to a string of length r and is being 
whirled at constant speed in a horizontal circular path, as illustrated in Figure 7.11. 
Its weight is supported by a frictionless table. Why does the puck move in a circle? 
Because of its inertia, the tendency of the puck is to move in a straight line; how-
ever, the string prevents motion along a straight line by exerting a radial force on 
the puck—a tension force—that makes it follow the circular path. The tension 
T
S

 is directed along the string toward the center of the circle, as shown in the figure.
In general, converting Newton’s second law to polar coordinates yields an equa-

tion relating the net centripetal force, Fc, which is the sum of the radial compo-
nents of all forces acting on a given object, to the centripetal acceleration. The 
magnitude of the net centripetal force equals the mass times the magnitude of the 
centripetal acceleration:

 Fc 5 mac 5 m 
v2

r
 [7.19]

A net force causing a centripetal acceleration acts toward the center of the circu-
lar path and effects a change in the direction of the velocity vector. If that force 
should vanish, the object would immediately leave its circular path and move 
along a straight line tangent to the circle at the point where the force vanished.

Centrifugal ('center-fleeing') forces also exist, such as the force between two 
particles with the same sign charge (see Chapter 15). The normal force that pre-
vents an object from falling toward the center of the Earth is another example of 
a centrifugal force. Sometimes an insufficient centripetal force is mistaken for the 
presence of a centrifugal force (see "Fictitious Forces," page 219).

m

r

Tension T is the 
centripetal force 
keeping the puck 
on a circular path.

S

T
S

vS

Figure 7.11  A puck attached to a 
string of length r rotates in a hori-
zontal plane at constant speed.

t ip 7.2  Centripetal Force  
Is a Type of Force, Not  
a Force in Itself!
“Centripetal force” is a classifica-
tion that includes forces acting 
toward a central point, like the 
horizontal component of the 
string tension on a tetherball or 
gravity on a satellite. A centripetal 
force must be supplied by some 
actual, physical force.

■ a pp LYi ng ph Ys ic s  7.2 Artificial Gravity

Astronauts spending lengthy periods of time in space expe-
rience a number of negative effects due to weightlessness, 
such as weakening of muscle tissue and loss of calcium in 
bones. These effects may make it very difficult for them to 
return to their usual environment on Earth. How could 
artificial gravity be generated in space to overcome such 
complications?

s OLUti On  A rotating cylindrical space station creates an 
environment of artificial gravity. The normal force of the 
rigid walls provides the centripetal force, which keeps the 
astronauts moving in a circle (Fig. 7.12). To an astronaut, 
the normal force can’t be easily distinguished from a gravi-
tational force as long as the radius of the station is large 
compared with the astronaut’s height. (Otherwise there 
are unpleasant inner ear effects.) This same principle is 
used in certain amusement park rides in which passengers 
are pressed against the inside of a rotating cylinder as it 
tilts in various directions. The visionary physicist Gerard 
O’Neill proposed creating a giant space colony a kilome-
ter in radius that rotates slowly, creating Earth-normal 

artificial gravity for the inhabitants in its interior. These 
inside-out artificial worlds could enable safe transport on 
a several-thousand-year journey to another star system. ■

Figure 7.12  Artificial gravity inside a spinning cylinder is provided 
by the normal force.

nS

nS

nS

v
S

 ■ pr Ob Le M-s OLv i ng  s t r at e g Y

Forces That Cause Centripetal Acceleration
Use the following steps in dealing with centripetal accelerations and the forces that produce them:

1. Draw a free-body diagram of the object under consideration, labeling all 
forces that act on it.
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2. Choose a coordinate system that has one axis perpendicular to the circular 
path followed by the object (the radial direction) and one axis tangent to the 
circular path (the tangential, or angular, direction). The normal direction, 
perpendicular to the plane of motion, is also often needed.

3. Find the net force Fc toward the center of the circular path, Fc 5 o Fr, where 
o Fr  is the sum of the radial components of the forces. This net radial force 
causes the centripetal acceleration.

4. Use Newton’s second law for the radial, tangential, and normal directions, 
as required, writing o Fr 5 mac, o Ft 5 mat, and o Fn 5 man. Remember that the 
magnitude of the centripetal acceleration for uniform circular motion can 
always be written ac 5 vt

2/r.
5. Solve for the unknown quantities.

 ■ e Xa Mp Le  7.6 Buckle Up for Safety

g Oa L Calculate the frictional force that causes an object 
to have a centripetal acceleration.

pr Ob Le M A car travels at a constant speed of 30.0 mi/h 
(13.4 m/s) on a level circular turn of radius 50.0 m, as 
shown in the bird’s-eye view in Figure 7.13a. What mini-
mum coefficient of static friction, ms, between the tires 
and roadway will allow the car to make the circular turn 
without sliding?

s t r at e g Y In the car’s free-body diagram (Fig. 7.13b) 
the normal direction is vertical and the tangential direc-
tion is into the page (Step 2). Use Newton’s second law. 
The net force acting on the car in the radial direction is 
the force of static friction toward the center of the circu-
lar path, which causes the car to have a centripetal accel-
eration. Calculating the maximum static friction force 
requires the normal force, obtained from the normal 
component of the second law.

s OLUti On
(Steps 3, 4) Write the components of Newton’s second law. 
The radial component involves only the maximum static 
friction force, fs, max: m 

v 2

r 5 fs,max 5 msn

In the vertical component of the second law, the gravity 
force and the normal force are in equilibrium: n 2 mg 5 0 S n 5 mg

(Step 5) Substitute the expression for n into the first 
equation and solve for ms: m 

v 2

r 5 msmg

ms 5
v 2

rg
5

113.4 m/s 22

150.0 m 2 19.80 m/s2 2 5   0.366

re Mar Ks  The value of ms for rubber on dry concrete is very close to 1, so the car can negotiate the curve with ease. If 
the road were wet or icy, however, the value for ms could be 0.2 or lower. Under such conditions, the radial force provided 
by static friction wouldn’t be great enough to keep the car on the circular path, and it would slide off on a tangent, leav-
ing the roadway.

QUes t i On  7.6  If the static friction coefficient were increased, would the maximum safe speed be reduced, increased, 
or remain the same?

Figure 7.13  (Example 7.6) 
(a) The centripetal force is 
provided by the force of static 
friction, which is directed 
radially toward the center of 
the circular path. (b) Grav-
ity, the normal force, and the 
static friction force act on 
the car.

nS

fs
S

 

fs
S

 

mgS 

a

b
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e Xe rc i s e  7.6  At what maximum speed can a car negotiate a turn on a wet road with coefficient of static friction 0.230 
without sliding out of control? The radius of the turn is 25.0 m.

a ns We r  7.51 m/s

 ■ e Xa Mp Le  7.7 Daytona International Speedway

g Oa L Solve a centripetal force 
problem involving two dimensions.

pr Ob Le M The Daytona Interna-
tional Speedway in Daytona Beach, 
Florida, is famous for its races, 
especially the Daytona 500, held 
every February. Both of its courses 
feature four-story, 31.0° banked 
curves, with maximum radius of 
316 m. If a car negotiates the curve 
too slowly, it tends to slip down the 
incline of the turn, whereas if it’s 
going too fast, it may begin to slide 
up the incline. (a) Find the neces-
sary centripetal acceleration on 
this banked curve so the car won’t 
tend to slip down or slide up the 
incline. (Neglect friction.) (b) Cal-
culate the speed of the race car.

s t r at e g Y Two forces act on the race car: the force of gravity and the normal force nS. (See Fig. 7.14.) Use Newton’s 
second law in the upward and radial directions to find the centripetal acceleration ac. Solving ac 5 v2/r for v then gives 
the race car’s speed.

s OLUti On

(a) Find the centripetal acceleration.

Write Newton’s second law for the car: maS 5 aF
S

5 nS 1 mgS

Use the y -component of Newton’s second law to solve for 
the normal force n: n cos u 2 mg 5 0

n 5
mg

cos u

Obtain an expression for the horizontal component of nS, 
which is the centripetal force Fc in this example: Fc 5 n sin u 5

mg sin u

cos u
5 mg tan u

Substitute this expression for Fc into the radial component 
of Newton’s second law and divide by m to get the 
centripetal acceleration: mac 5 Fc

ac 5
Fc
m

5
mg tan u

m
5 g tan u

ac 5 (9.80 m/s2)(tan 31.0°) 5   5.89 m/s2

(b) Find the speed of the race car.

Apply Equation 7.13:
v 2

r 5 ac

v 5 "rac 5 "1316 m 2 15.89 m/s2 2 5   43.1 m/s

u

unS

�mg

n sin

n cos

θ

θ

mgS 

a b

Figure 7.14  (Example 7.7) As 
the car rounds a curve banked at 
an angle u, the centripetal force 
that keeps it on a circular path is 
supplied by the radial component 
of the normal force. Friction also 
contributes, although is neglected 
in this example. The car is moving 
forward, into the page. (a) Force 
diagram for the car. (b) Compo-
nents of the forces.

(Continued)
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re Mar Ks  In fact, both banking and friction assist in keeping the race car on the track.

QUes t i On  7.7  What three physical quantities determine the minimum and maximum 
safe speeds on a banked racetrack?

e Xe rc i s e  7.7  A racetrack is to have a banked curve with radius of 245 m. What should be the angle of the bank if the 
normal force alone is to allow safe travel around the curve at 58.0 m/s?

a ns We r  54.5°

R

vtop
S

vbot
S

R

a b

vS

vS

Figure 7.15  (a) (Example 7.8) A roller coaster traveling 
around a nearly circular track. (b) (Exercise 7.8) A jet execut-
ing a vertical loop.

(a) Find the speed at the top of the loop.

Write Newton’s second law for the car: (1) maSc 5 nS 1 mgS

At the top of the loop, set n 5 0. The force of gravity 
acts toward the center and provides the centripetal 
acceleration ac 5 v2/R: m 

v 2
top

R
5 mg

Solve the foregoing equation for vtop: vtop 5 !gR

(b) Find the speed at the bottom of the loop.

Apply conservation of mechanical energy to find the total 
mechanical energy at the top of the loop: Etop 5 1

2mv
2
top 1 mgh 5 1

2mgR 1 mg 12R 2 5 2.5mgR

Find the total mechanical energy at the bottom of the 
loop: Ebot 5 1

2mv bot
2

Energy is conserved, so these two energies may be 
equated and solved for vbot:  12mv

2
bot 5 2.5mgR

vbot 5 !5gR

(c) Find the normal force on a passenger at the bottom. 
(This is the passenger’s perceived weight.)

Use Equation (1). The net centripetal force is n 2 mg : m 
v 2

bot

R
5 n 2 mg

a pp Lica t iOn
Banked Roadways

 ■ e Xa Mp Le  7.8 Riding the Tracks

g Oa L  Combine centripetal force with conservation of energy. 
Derive results symbolically.

pr Ob Le M  Figure 7.15a shows a roller-coaster car moving 
around a circular loop of radius R. (a) What speed must the car 
have at the top of the loop so that it will just make it over the top 
without any assistance from the track? (b) What speed will the 
car subsequently have at the bottom of the loop? (c) What will be 
the normal force on a passenger at the bottom of the loop if the 
loop has a radius of 10.0 m?

s t r at e g Y  This problem requires Newton’s second law and 
centripetal acceleration to find an expression for the car’s speed 
at the top of the loop, followed by conservation of energy to find 
its speed at the bottom. If the car just makes it over the top, the 
force nS must become zero there, so the only force exerted on 
the car at that point is the force of gravity, mgS. At the bottom of  
the loop, the normal force acts up toward the center and the gravity force acts down, away from the center. The differ-
ence of these two is the centripetal force. The normal force can then be calculated from Newton’s second law.

s OLUti On
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Fictitious Forces
Anyone who has ridden a merry-go-round as a child (or as a fun-loving grown-up) 
has experienced what feels like a “center-fleeing” force. Holding onto the railing 
and moving toward the center feels like a walk up a steep hill.

Actually, this so-called centrifugal force is fictitious. In reality, the rider is exerting a 
centripetal force on her body with her hand and arm muscles. In addition, a smaller 
centripetal force is exerted by the static friction between her feet and the platform. If 
the rider’s grip slipped, she wouldn’t be flung radially away; rather, she would go off 
on a straight line, tangent to the point in space where she let go of the railing. The 
rider lands at a point that is farther away from the center, but not by “fleeing the cen-
ter” along a radial line. Instead, she travels perpendicular to a radial line, traversing 
an angular displacement while increasing her radial displacement. (See Fig. 7.16.)

7.5    Newtonian Gravitation
Learning Objectives

1. Apply the law of gravitation to calculate gravitational forces and their 
consequences.

2. Apply the general form of gravitational potential energy to the motion of 
interacting bodies.

Prior to 1686, a great deal of data had been collected on the motions of the Moon and 
planets, but no one had a clear understanding of the forces affecting them. In that 
year, Isaac Newton provided the key that unlocked the secrets of the heavens. He knew 
from the first law that a net force had to be acting on the Moon. If it were not, the 
Moon would move in a straight-line path rather than in its almost circular orbit around 
Earth. Newton reasoned that it was the same kind of force that attracted objects—such 
as apples—close to the surface of the Earth. He called it the force of gravity.

In 1687 Newton published his work on the law of universal gravitation:

If two particles with masses m1 and m2 are separated by a distance r, a gravita-
tional force F acts along a line joining them, with magnitude given by

 F 5 G 
m 1m 2

r 2  [7.20]

where G 5 6.673 3 10211 kg21 ? m3 ? s22 is a constant of proportionality called 
the constant of universal gravitation. The gravitational force is always attractive.

This force law is an example of an inverse-square law, in that it varies as one over 
the square of the distance between particles. From Newton’s third law, we know that 
the force exerted by m1 on m2, designated F

S

12 in Figure 7.17, is equal in magnitude 

re Mar Ks  The final answer for n shows that the rider experiences a force six times normal weight at the bottom of the 
loop! Astronauts experience a similar force during space launches.

QUes t i On  7.8  Suppose the car subsequently goes over a rise with the same radius of curvature and at the same speed 
as part (a). What is the normal force in this case?

e Xe rc i s e  7.8  A jet traveling at a constant speed of 1.20 3 102 m/s executes a vertical loop with a radius of 5.00 3 102 m. 
(See Fig. 7.15b.) Find the magnitude of the force of the seat on a 70.0-kg pilot at (a) the top and (b) the bottom of the loop.

a ns We r s  (a) 1.33 3 103 N (b) 2.70 3 103 N

Solve for n: n 5 mg 1 m 
v 2

bot

R
5 mg 1 m 

5gR

R
5   6mg 

t ip 7.3  Centrifugal Force
A so-called centrifugal force is 
very often just the absence of an 
adequate centripetal force, arising 
from measuring phenomena 
from a noninertial (accelerat-
ing) frame of reference such as a 
merry-go-round.

Figure 7.16  A fun-loving stu-
dent loses her grip and falls along 
a line tangent to the rim of the 
merry-go-round.

m1

m2
r

F21
S

F12
S

Figure 7.17  The gravitational 
force between two particles is 
attractive and acts along the line 
joining the particles. Note that 
according to Newton’s third law, 
F
S

12 5 2F
S

21.
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t able 7.1  Free-Fall 
Acceleration g at Various 
Altitudes

 Altitude (km)a g (m/s2)

  1 000 7.33
  2 000 5.68
  3 000 4.53
  4 000 3.70
  5 000 3.08
  6 000 2.60
  7 000 2.23
  8 000 1.93
  9 000 1.69
 10 000 1.49
 50 000 0.13
aAll figures are distances above Earth’s 
surface.

Mirror

r
m

Light
source

M

Gravity forces cause the rod to 
rotate away from its original 
position (the dashed line).

Figure 7.18  A schematic diagram 
of the Cavendish apparatus for 
measuring G. The smaller spheres 
of mass m are attracted to the large 
spheres of mass M, and the rod 
rotates through a small angle. A light 
beam reflected from a mirror on 
the rotating apparatus measures the 
angle of rotation.

but opposite in direction to the force F
S

21 exerted by m2 on m1, forming an action– 
reaction pair.

Another important fact is that the gravitational force exerted by a uniform sphere 
on a particle outside the sphere is the same as the force exerted if the entire mass 
of the sphere were concentrated at its center. This is called Gauss’s law, after the Ger-
man mathematician and astronomer Karl Friedrich Gauss, and is also true of electric 
fields, which we will encounter in Chapter 15. Gauss’s law is a mathematical result, true 
because the force falls off as an inverse square of the separation between the particles.

Near the surface of the Earth, the expression F 5 mg is valid. As shown in 
Table 7.1, however, the free-fall acceleration g varies considerably with altitude 
above the Earth.

■ Quick Quiz

7.8  A ball is falling toward the ground. Which of the following statements are false? 
(a) The force that the ball exerts on Earth is equal in magnitude to the force that 
Earth exerts on the ball. (b) The ball undergoes the same acceleration as Earth. 
(c) The magnitude of the force the Earth exerts on the ball is greater than the mag-
nitude of the force the ball exerts on the Earth.

7.9  A planet has two moons with identical mass. Moon 1 is in a circular orbit of 
radius r. Moon 2 is in a circular orbit of radius 2r. The magnitude of the gravita-
tional force exerted by the planet on Moon 2 is (a) four times as large (b) twice as 
large (c) the same (d) half as large (e) one-fourth as large as the gravitational force 
exerted by the planet on Moon 1.

Measurement of the Gravitational Constant
The gravitational constant G in Equation 7.20 was first measured in an important 
experiment by Henry Cavendish in 1798. His apparatus consisted of two small 
spheres, each of mass m, fixed to the ends of a light horizontal rod suspended 
by a thin metal wire, as in Figure 7.18. Two large spheres, each of mass M, were 
placed near the smaller spheres. The attractive force between the smaller and 
larger spheres caused the rod to rotate in a horizontal plane and the wire to twist. 
The angle through which the suspended rod rotated was measured with a light 
beam reflected from a mirror attached to the vertical suspension. (Such a mov-
ing spot of light is an effective technique for amplifying motion.) The experiment 
was carefully repeated with different masses at various separations. In addition 
to providing a value for G, the results showed that the force is attractive, propor-
tional to the product mM, and inversely proportional to the square of the dis-
tance r. Modern forms of such experiments are carried out regularly today in an 
effort to determine G with greater precision.

 ■ e Xa Mp Le  7.9 Billiards, Anyone?

g Oa L  Use vectors to find the net gravitational force on an object.

pr Ob Le M   (a) Three 0.300-kg billiard balls are placed on a table at the corners of a 
right triangle, as shown from overhead in Figure 7.19. Find the net gravitational force 
on the cue ball (designated as m1) resulting from the forces exerted by the other two 
balls. (b) Find the components of the gravitational force of m2 on m3.

s t r at e g Y  (a) To find the net gravitational force on the cue ball of mass m1, we 
first calculate the force F

S

21 exerted by m2 on m1. This force is the y -component of the 
net force acting on m1. Then we find the force F

S

31 exerted by m3 on m1, which is the 
x -component of the net force acting on m1. With these two components, we can find 
the magnitude and direction of the net force on the cue ball. (b) In this case, we must 
use trigonometry to find the components of the force F

S

23.

m2

m1 m3

x
21

31u

y

F
S F

S

F
S

0.500 m0.400 m

0.300 m

F23
S

f

Figure 7.19  (Example 7.9)
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s OLUti On

(a) Find the net gravitational force on the cue ball.

Find the magnitude of the force F
S

21 exerted by m2 on 
m1 using the law of gravitation, Equation 7.20: F21 5 G 

m2m1

r21
2 5 16.67 3 10211 N # m2/kg2 2 10.300 kg 2 10.300 kg 2

10.400 m 22

F21 5 3.75 3 10211 N

Find the magnitude of the force F
S

31 exerted by m3 on 
m1, again using Newton’s law of gravity: F31 5 G 

m3m1

r31
2 5 16.67 3 10211 N # m2/kg2 2 10.300 kg 2 10.300 kg 2

10.300 m 22

F31 5 6.67 3 10211 N

The net force has components Fx 5 F31 and Fy 5 F21. 
Compute the magnitude of this net force: F 5 "Fx

2 1 Fy
2 5 "16.67 22 1 13.75 22 3 10211 N

5   7.65 3 10211 N

Use the inverse tangent to obtain the direction of F
S

: u 5 tan21a
Fy
Fx
b 5 tan21a3.75 3 10211 N

6.67 3 10211 N
b 5   29.3°

(b) Find the components of the force of m2 on m3. 

First, compute the magnitude of F
S

23: F23 5 G 
m2m1

r23
2

5 16.67 3 10211 kg21m3s22 2 10.300 kg 2 10.300 kg 2
10.500 m 22

5 2.40 3 10211 N

To obtain the x - and y -components of F23, we need 
cos w and sin w. Use the sides of the large triangle in 
Figure 7.19: cos w 5

adj

hyp
5

0.300 m
0.500 m

5 0.600

sin w 5
opp

hyp
5

0.400 m
0.500 m

5 0.800

Compute the components of F
S

23. A minus sign must 
be supplied for the x -component because it’s in the 
negative x -direction. F23x 5 2F23 cos w 5 2(2.40 3 10211 N)(0.600)

5   21.44 3 10211 N

F23y 5 F23 sin w 5 (2.40 3 10211 N)(0.800) 5   1.92 3 10211 N

re Mar Ks  Notice how small the gravity forces are between everyday objects. Nonetheless, such forces can be measured 
directly with torsion balances.

QUes t i On  7.9  Is the gravity force a significant factor in a game of billiards? Explain.

e Xe rc i s e  7.9  Find magnitude and direction of the force exerted by m1 and m3 on m2.

a ns We r s  5.85 3 10211 N, 275.8°

 ■ e Xa Mp Le  7.10 Ceres

g Oa L  Relate Newton’s universal law of gravity to mg and show how g changes with position.

pr Ob Le M  An astronaut standing on the surface of Ceres, the largest asteroid, drops a rock from a height of 10.0 m. It 
takes 8.06 s to hit the ground. (a) Calculate the acceleration of gravity on Ceres. (b) Find the mass of Ceres, given that 
the radius of Ceres is RC 5 5.10 3 102 km. (c) Calculate the gravitational acceleration 50.0 km from the surface of Ceres.

s t r at e g Y  Part (a) is a review of one-dimensional kinematics. In part (b) the weight of an object, w 5 mg, is the same 
as the magnitude of the force given by the universal law of gravity. Solve for the unknown mass of Ceres, after which the 
answer for (c) can be found by substitution into the universal law of gravity, Equation 7.20.

(Continued)
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Earth

R E

O

GME m

m

PE

r

R E

ME

�

The potential 
energy 
increases 
towards zero 
as r increases.

Figure 7.20  As a mass m moves 
radially away from the Earth, the 
potential energy of the Earth-mass 
system, which is PE 5 2G(MEm/RE) 
at Earth’s surface, increases toward 
a limit of zero as the mass m travels 
away from Earth, as shown in the 
graph.

s OLUti On

(a) Calculate the acceleration of gravity, gC, on Ceres. 
Apply the kinematics equation of displacement to the 
falling rock: (1) Dx 5 1

2at
2 1 v0t

Substitute Dx 5 210.0 m, v0 5 0, a 5 2gC, and t 5 8.06 s, 
and solve for the gravitational acceleration on Ceres, gC: 210.0 m 5 21

2gC 18.06 s 22 S gC 5   0.308 m/s2

(b) Find the mass of Ceres.

Equate the weight of the rock on Ceres to the gravita-
tional force acting on the rock: mgC 5 G 

MCm

RC
2

Solve for the mass of Ceres, MC: MC 5
gCRC

2

G
5   1.20 3 1021 kg

(c) Calculate the acceleration of gravity at a height of 
50.0 km above the surface of Ceres.

Equate the weight at 50.0 km to the gravitational force: mg rC 5 G 
mMC

r 2

Cancel m, then substitute r 5 5.60 3 105 m and the mass 
of Ceres: g rC 5 G 

MC

r 2  

5 16.67 3 10211 kg21m3s22 2  1.20 3 1021 kg
15.60 3 105 m 22

5   0.255 m/s2

re Mar Ks  This is the standard method of finding the mass of a planetary body: study the motion of a falling (or orbit-
ing) object.

QUes t i On  7.10  Give two reasons Equation (1) could not be used for every asteroid as it is used in part (a).

e Xe rc i s e  7.10  An object takes 2.40 s to fall 5.00 m on a certain planet. (a) Find the acceleration due to gravity on the 
planet. (b) Find the planet’s mass if its radius is 5 250 km.

a ns We r s  (a) 1.74 m/s2 (b) 7.19 3 1023 kg

Gravitational Potential Energy Revisited
In Chapter 5 we introduced the concept of gravitational potential energy and 
found that the potential energy associated with an object could be calculated from 
the equation PE 5 mgh, where h is the height of the object above or below some 
reference level. This equation, however, is valid only when the object is near Earth’s 
surface. For objects high above Earth’s surface, such as a satellite, an alternative 
must be used because g varies with distance from the surface, as shown in Table 7.1.

The gravitational potential energy associated with an object of mass m at a 
distance r from the center of Earth is

 PE 5 2G 
ME m
r

 [7.21]

where ME and RE are the mass and radius of Earth, respectively, with r . RE .

SI units: Joules (J)

As before, gravitational potential energy is a property of a system, in this case  
the object of mass m and Earth. Equation 7.21, illustrated in Figure 7.20, is valid for the 
special case where the zero level for potential energy is at an infinite distance from the 
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center of Earth. Recall that the gravitational potential energy associated with an object 
is nothing more than the negative of the work done by the force of gravity in moving 
the object. If an object falls under the force of gravity from a great distance (effectively 
infinity), the change in gravitational potential energy is negative, which corresponds 
to a positive amount of gravitational work done on the system. This positive work is 
equal to the (also positive) change in kinetic energy, as the next example shows.

■ e Xa Mp Le  7.11 A Near-Earth Asteroid

g Oa L  Use gravitational potential energy to calculate the work done by gravity on a falling object.

pr Ob Le M  An asteroid with mass m 5 1.00 3 109 kg 
comes from deep space, effectively from infinity, and falls 
toward Earth. (a) Find the change in potential energy when 
it reaches a point 4.00 3 108 m from the center of the Earth 
( just beyond the orbital radius of the Moon). In addition, 
find the work done by the force of gravity. (b) Calculate the 
asteroid’s speed at that point, assuming it was initially at 
rest when it was arbitrarily far away. (c)  How much work 
would have to be done on the asteroid by some other agent 

so the asteroid would be traveling at only half the speed 
found in (b) at the same point?

s t r at e g Y  Part (a) requires simple substitution into 
the definition of gravitational potential energy. To find 
the work done by the force of gravity, recall that the 
work done on an object by a conservative force is just the 
negative of the change in potential energy. Part (b) can 
be solved with conservation of energy, and part (c) is an 
application of the work–energy theorem.

s OLUti On
(a) Find the change in potential energy and the work 
done by the force of gravity.

Apply Equation 7.21: DPE 5 PEf 2 PEi 5 2
GMEm
rf

2 a2
GMEm
ri

b

5 GMEm a2
1
r f

1
1
r i
b

Substitute known quantities. The asteroid’s initial 
position is effectively infinity, so 1/ri is zero: DPE 5 (6.67 3 10211 kg21 m3/s2)(5.98 3 1024 kg)

3 11.00 3 109 kg 2 a2
1

4.00 3 108 m
1 0b

DPE 5   29.97 3 1014 J

Compute the work done by the force of gravity: Wgrav 5   2DPE 5 9.97 3 1014 J

(b) Find the speed of the asteroid when it reaches  
rf 5 4.00 3 108 m.

Use conservation of energy: DKE 1 DPE 5 0

11
2mv

2 2 0 2 2 9.97 3 1014 J 5 0

v 5   1.41 3 103 m/s

(c) Find the work needed to reduce the speed to  
7.05 3 102 m/s (half the value just found) at this point.

Apply the work–energy theorem: W 5 DKE 1 DPE

The change in potential energy remains the same as in 
part (a), but substitute only half the speed in the kinetic-
energy term: W 5 11

2mv
2 2 0 2 2 9.97 3 1014 J

W 5 1
2 11.00 3 109 kg 2 17.05 3 102 m/s 22 2 9.97 3 1014 J

5   27.48 3 1014 J

re Mar Ks  The amount of work calculated in part (c) is negative because an external agent must exert a force against 
the direction of motion of the asteroid. It would take a thruster with a megawatt of output about 24 years to slow down 

(Continued)
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Figure 7.21  Relating the general 
form of gravitational potential 
energy to mgh.

the asteroid to half its original speed. An asteroid endangering Earth need not be slowed that much: A small change in 
its speed, if applied early enough, will cause it to miss Earth. Timeliness of the applied thrust, however, is important. 
By the time an astronaut on the asteroid can look over his shoulder and see the Earth, it’s already far too late, despite 
how these scenarios play out in Hollywood. Last-minute rescues won’t work!

QUes t i On  7.11  As the asteroid approaches Earth, does the gravitational potential energy associated with the asteroid–
Earth system (a) increase, (b) decrease, (c) remain the same?

e Xe rc i s e  7.11  Suppose the asteroid starts from rest at a great distance (effectively infinity), falling toward Earth. How 
much work would have to be done on the asteroid to slow it to 425 m/s by the time it reached a distance of 2.00 3 108 m 
from Earth?

a ns We r  21.90 3 1015 J

 ■ a pp LYi ng  ph Ys ic s  7.3 Why Is the Sun Hot?

e Xp La n at i On  The Sun formed when particles in a 
cloud of gas coalesced, due to gravitational attraction, 
into a massive astronomical object. Before this occurred, 
the particles in the cloud were widely scattered, repre-
senting a large amount of gravitational potential energy. 
As the particles fell closer together, their kinetic energy 
increased, but the gravitational potential energy of the 
system decreased, as required by the conservation of 
energy. With further slow collapse, the cloud became 

more dense and the average kinetic energy of the parti-
cles increased. This kinetic energy is the internal energy 
of the cloud, which is proportional to the temperature. 
If enough particles come together, the temperature can 
rise to a point at which nuclear fusion occurs and the 
ball of gas becomes a star. Otherwise, the temperature 
may rise, but not enough to ignite fusion reactions, and 
the object becomes a brown dwarf (a failed star) or a 
planet. ■

On inspecting Equation 7.21, some may wonder what happened to mgh, the 
gravitational potential energy expression introduced in Chapter 5. That expres-
sion is still valid when h is small compared with Earth’s radius. To see this, we write 
the change in potential energy as an object is raised from the ground to height h, 
using the general form for gravitational potential energy (see Fig. 7.21):

PE2 2 PE1 5 2G 
MEm

1RE 1 h 2 2 a2G 
MEm
RE

b

5 2GMEm c 1
1RE 1 h 2 2

1
RE

d

After finding a common denominator and applying some algebra, we obtain

PE2 2 PE1 5
GMEmh

RE 1RE 1 h 2
When the height h is very small compared with RE, h can be dropped from the sec-
ond factor in the denominator, yielding

1
RE 1RE 1 h 2 >

1
RE

2

Substituting this into the previous expression, we have

PE2 2 PE1 >
GME

RE
2  mh

Now recall from Chapter 4 that the free-fall acceleration at the surface of Earth is 
given by g 5 GME/RE

2, giving

PE2 2 PE1 > mgh
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Escape Speed
If an object is projected upward from Earth’s surface with a large enough speed, 
it can soar off into space and never return. This speed is called Earth’s escape 
speed. (It is also commonly called the escape velocity, but in fact is more properly a 
speed.)

Earth’s escape speed can be found by applying conservation of energy. Suppose 
an object of mass m is projected vertically upward from Earth’s surface with an ini-
tial speed vi. The initial mechanical energy (kinetic plus potential energy) of the 
object–Earth system is given by

KEi 1 PEi 5 1
2mvi

2 2
GMEm
RE

We neglect air resistance and assume the initial speed is just large enough to 
allow the object to reach infinity with a speed of zero. This value of vi is the escape 
speed vesc. When the object is at an infinite distance from Earth, its kinetic energy 
is zero because vf 5 0, and the gravitational potential energy is also zero because 
1/r goes to zero as r goes to infinity. Hence the total mechanical energy is zero, 
and the law of conservation of energy gives

1
2mv

2
esc 2

GMEm
RE

5 0

so that

 vesc 5 Å
2GME

RE
 [7.22]

The escape speed for Earth is about 11.2 km/s, which corresponds to about 
25 000 mi/h. (See Example 7.12.) Note that the expression for vesc doesn’t depend 
on the mass of the object projected from Earth, so a spacecraft has the same 
escape speed as a molecule. Escape speeds for the planets, the Moon, and the Sun 
are listed in Table 7.2. Escape speed and temperature determine to a large extent 
whether a world has an atmosphere and, if so, what the constituents of the atmo-
sphere are. Planets with low escape speeds, such as Mercury, generally don’t have 
atmospheres because the average speed of gas molecules is close to the escape 
speed. Venus has a very thick atmosphere, but it’s almost entirely carbon dioxide, 
a heavy gas. The atmosphere of Earth has very little hydrogen or helium, but has 
retained the much heavier nitrogen and oxygen molecules.

t able 7.2  Escape Speeds for 
the Planets and the Moon

Planet vesc (km/s)

Mercury  4.3
Venus 10.3
Earth 11.2
Moon  2.3
Mars  5.0
Jupiter 60.0
Saturn 36.0
Uranus 22.0
Neptune 24.0
Plutoa  1.1
aIn August 2006, the International 
Astronomical Union adopted a definition 
of a planet that separates Pluto from the 
other eight planets. Pluto is now defined 
as a “dwarf planet” (like the asteroid 
Ceres).

 ■ e Xa Mp Le  7.12 From the Earth to the Moon

g Oa L  Apply conservation of energy with the general form of Newton’s universal law of gravity.

pr Ob Le M  In Jules Verne’s classic novel From the Earth to the Moon, a giant cannon dug into the Earth in Florida fired 
a spacecraft all the way to the Moon. (a) If the spacecraft leaves the cannon at escape speed, at what speed is it moving 
when 1.50 3 105 km from the center of Earth? Neglect any friction effects. (b) Approximately what constant acceleration 
is needed to propel the spacecraft to escape speed through a cannon bore 1.00 km long?

s t r at e g Y  For part (a), use conservation of energy and solve for the final speed vf . Part (b) is an application of the 
time-independent kinematic equation: solve for the acceleration a.

s OLUti On

(a) Find the speed at r 5 1.50 3 105 km.

Apply conservation of energy: 1
2mvi

2 2
GMEm
RE

5 1
2mvf

2 2
GMEm
rf

(Continued)
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7.6    Kepler’s Laws
Learning Objectives

1. State Kepler’s three laws and explain the significance of each.

2. Apply the third law to obtain information about orbiting bodies.

The movements of the planets, stars, and other celestial bodies have been 
observed for thousands of years. In early history scientists regarded Earth as 
the center of the Universe. This geocentric model was developed extensively 
by the Greek astronomer Claudius Ptolemy in the second century A.D. and was 
accepted for the next 1 400 years. In 1543 Polish astronomer Nicolaus Coper-
nicus (1473–1543) showed that Earth and the other planets revolve in circular 
orbits around the Sun (the heliocentric model).

Danish astronomer Tycho Brahe (pronounced Brah or BRAH–huh; 1546–1601) 
made accurate astronomical measurements over a period of 20 years, providing 
the data for the currently accepted model of the solar system. Brahe’s precise 
observations of the planets and 777 stars were carried out with nothing more 
elaborate than a large sextant and compass; the telescope had not yet been 
invented.

German astronomer Johannes Kepler, who was Brahe’s assistant, acquired 
Brahe’s astronomical data and spent about 16 years trying to deduce a math-
ematical model for the motions of the planets. After many laborious calcu-
lations, he found that Brahe’s precise data on the motion of Mars about the  
Sun provided the answer. Kepler’s analysis first showed that the concept of 
circular orbits about the Sun had to be abandoned. He eventually discovered 
that the orbit of Mars could be accurately described by an ellipse with the Sun 
at one focus. He then generalized this analysis to include the motions of all 

re Mar Ks  This result corresponds to an acceleration of over 6 000 times the free-fall acceleration on Earth. Such a 
huge acceleration is far beyond what the human body can tolerate.

QUes t i On  7.12  Suppose the spacecraft managed to go into an elliptical orbit around Earth, with a nearest point (peri-
gee) and farthest point (apogee). At which point is the kinetic energy of the spacecraft higher, and why?

e Xe rc i s e  7.12  Using the data in Table 7.3 (see page 228), find (a) the escape speed from the surface of Mars and 
(b) the speed of a space vehicle when it is 1.25 3 107 m from the center of Mars if it leaves the surface at the escape speed.

a ns We r s  (a) 5.04 3 103 m/s (b) 2.62 3 103 m/s

Multiply by 2/m and rearrange, solving for vf
2. Then 

substitute known values and take the square root. vf
2 5 vi

2 1
2GME

rf
2

2GME

RE
5 vi

2 1 2GME a1
rf

2
1
RE

b

vf
2 5 11.12 3 104 m/s 22 1 2 16.67 3 10211 kg21m3s22 2

3 15.98 3 1024 kg 2 a 1
1.50 3 108 m

2
1

6.38 3 106 m
b

vf 5   2.39 3 103 m/s

(b) Find the acceleration through the cannon bore, 
assuming it’s constant.

Use the time-independent kinematics equation: v2 2 v0
2 5 2a Dx

(1.12 3 104 m/s)2 2 0 5 2a(1.00 3 103 m)

a 5   6.27 3 104 m/s2
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planets. The complete analysis is summarized in three statements known as 
Kepler’s laws:

1.  All planets move in elliptical orbits with the Sun at one of the focal points.
2.  A line drawn from the Sun to any planet sweeps out equal areas in equal 

time intervals.
3.  The square of the orbital period of any planet is proportional to the cube 

of the average distance from the planet to the Sun.

Newton later demonstrated that these laws are consequences of the gravita-
tional force that exists between any two objects. Newton’s law of universal gravita-
tion, together with his laws of motion, provides the basis for a full mathematical 
description of the motions of planets and satellites.

Kepler’s First Law
The first law arises as a natural consequence of the inverse-square nature of New-
ton’s law of gravitation. Any object bound to another by a force that varies as 
1/r 2 will move in an elliptical orbit. As shown in Figure 7.22a, an ellipse is a curve 
drawn so that the sum of the distances from any point on the curve to two internal 
points called focal points or foci (singular, focus) is always the same. The semimajor 
axis a is half the length of the line that goes across the ellipse and contains both 
foci. For the Sun–planet configuration (Fig. 7.22b), the Sun is at one focus and the 
other focus is empty. Because the orbit is an ellipse, the distance from the Sun to 
the planet continuously changes.

Kepler’s Second Law
Kepler’s second law states that a line drawn from the Sun to any planet sweeps out 
equal areas in equal time intervals. Consider a planet in an elliptical orbit about 
the Sun, as in Figure 7.23. In a given period Dt, the planet moves from point � to 
point �. The planet moves more slowly on that side of the orbit because it’s farther 
away from the sun. On the opposite side of its orbit, the planet moves from point 
� to point � in the same amount of time, Dt, moving faster because it’s closer 
to the sun. Kepler’s second law says that any two wedges formed as in Figure 7.23 
will always have the same area. As we will see in Chapter 8, Kepler’s second law is 
related to a physical principle known as conservation of angular momentum.

Kepler’s Third Law
The derivation of Kepler’s third law is simple enough to carry out for the special 
case of a circular orbit. Consider a planet of mass Mp moving around the Sun, 
which has a mass of MS, in a circular orbit. Because the orbit is circular, the planet 
moves at a constant speed v. Newton’s second law, his law of gravitation, and cen-
tripetal acceleration then give the following equation:

Mpac 5
Mpv

2

r
5

GMSMp

r 2

The speed v of the planet in its orbit is equal to the circumference of the orbit 
divided by the time required for one revolution, T, called the period of the planet, 
so v 5 2pr/T. Substituting, the preceding expression becomes

GMS

r 2 5
12pr/T 22

r

 T 2 5 a 4p2

GMS
b r 3 5 KSr

3  [7.23]

b Kepler’s Laws

b Kepler’s third law

FocusFocus

Planet

Sun

p q

a

b

Figure 7.22  (a) The sum p 1 q 
is the same for every point on the 
ellipse. (b) In the Solar System, the 
Sun is at one focus of the elliptical 
orbit of each planet and the other 
focus is empty.

Sun
�

�

�

�
S

Figure 7.23  The two areas swept 
out by the planet in its elliptical orbit 
about the Sun are equal if the time 
interval between points � and � is 
equal to the time interval between 
points � and �.
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where KS is a constant given by

KS 5
4p2

GMS
5 2.97 3 10219 s2/m3

Equation 7.23 is Kepler’s third law for a circular orbit. The orbits of most of the 
planets are very nearly circular. Comets and asteroids, however, usually have ellip-
tical orbits. For these orbits, the radius r must be replaced with a, the semimajor 
axis—half the longest distance across the elliptical orbit. (This is also the aver-
age distance of the comet or asteroid from the Sun.) A more detailed calculation 
shows that KS actually depends on the sum of both the mass of a given planet and 
the Sun’s mass. The masses of the planets, however, are negligible compared with 
the Sun’s mass; hence can be neglected, meaning Equation 7.23 is valid for any 
planet in the Sun’s family. If we consider the orbit of a satellite such as the Moon 
around Earth, then the constant has a different value, with the mass of the Sun 
replaced by the mass of Earth. In that case, KE equals 4p2/GME.

The mass of the Sun can be determined from Kepler’s third law because the 
constant KS in Equation 7.23 includes the mass of the Sun and the other variables 
and constants can be easily measured. The value of this constant can be found by 
substituting the values of a planet’s period and orbital radius and solving for KS. 
The mass of the Sun is then

MS 5
4p2

GKS

This same process can be used to calculate the mass of Earth (by considering the 
period and orbital radius of the Moon) and the mass of other planets in the solar 
system that have satellites.

The last column in Table 7.3 confirms that T 2/r 3 is very nearly constant. When time 
is measured in Earth years and the semimajor axis in astronomical units (1 AU 5 the 
distance from Earth to the Sun), Kepler’s law takes the following simple form:

T 2 5 a3

This equation can be easily checked: Earth has a semimajor axis of one astronomi-
cal unit (by definition), and it takes one year to circle the Sun. This equation, of 
course, is valid only for the sun and its planets, asteroids, and comets.

■ Quick Quiz

7.10  Suppose an asteroid has a semimajor axis of 4 AU. How long does it take the 
asteroid to go around the Sun? (a) 2 years (b) 4 years (c) 6 years (d) 8 years

t able 7.3  Useful Planetary Data

Mean
Mean  Distance T 2

r3  10219 a s2

m3bBody Mass (kg) Radius (m) Period (s) from Sun (m)

Mercury 3.18 3 1023 2.43 3 106 7.60 3 106 5.79 3 1010 2.97
Venus 4.88 3 1024 6.06 3 106 1.94 3 107 1.08 3 1011 2.99
Earth 5.98 3 1024 6.38 3 106 3.156 3 107 1.496 3 1011 2.97
Mars 6.42 3 1023 3.37 3 106 5.94 3 107 2.28 3 1011 2.98
Jupiter 1.90 3 1027 6.99 3 107 3.74 3 108 7.78 3 1011 2.97
Saturn 5.68 3 1026 5.85 3 107 9.35 3 108 1.43 3 1012 2.99
Uranus 8.68 3 1025 2.33 3 107 2.64 3 109 2.87 3 1012 2.95
Neptune 1.03 3 1026 2.21 3 107 5.22 3 109 4.50 3 1012 2.99
Plutoa 1.27 3 1023 1.14 3 106 7.82 3 109 5.91 3 1012 2.96
Moon 7.36 3 1022 1.74 3 106 — — —
Sun 1.991 3 1030 6.96 3 108 — — —
aIn August 2006, the International Astronomical Union adopted a definition of a planet that separates Pluto from the other eight 
planets. Pluto is now defined as a “dwarf planet” like the asteroid Ceres.
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 ■ e Xa Mp Le  7.13 Geosynchronous Orbit and Telecommunications Satellites

g Oa L  Apply Kepler’s third law to an Earth satellite.

pr ObLe M  From a telecommunications point of view, it’s advantageous for satellites to remain at the same location  
relative to a location on Earth. This can occur only if the satellite’s orbital period is the same as the Earth’s period of  
rotation, approximately 24.0 h. (a) At what distance from the center of the Earth can this geosynchronous orbit be found? 
(b) What’s the orbital speed of the satellite?

s t r at e g Y  This problem can be solved with the same method that was used to derive a special case of Kepler’s third 
law, with Earth’s mass replacing the Sun’s mass. There’s no need to repeat the analysis; just replace the Sun’s mass with 
Earth’s mass in Kepler’s third law, substitute the period T (converted to seconds), and solve for r. For part (b), find the 
circumference of the circular orbit and divide by the elapsed time.

s OLUti On
(a) Find the distance r to geosynchronous orbit.

Apply Kepler’s third law: T 2 5 a 4p2

GME
br 3

Substitute the period in seconds, T 5 86 400 s, the gravity 
constant G 5 6.67 3 10211 kg21 m3/s2, and the mass of the 
Earth, ME 5 5.98 3 1024 kg. Solve for r : r 5   4.23 3 107 m

(b) Find the orbital speed. 

Divide the distance traveled during one orbit by the period: v 5
d
T

5
2pr
T

5
2p 14.23 3 107 m 2

8.64 3 104 s
5   3.08 3 103 m/s

re Mar Ks Earth’s motion around the Sun was neglected; that requires using Earth's “sidereal” period (about four min-
utes shorter). Notice that Earth’s mass could be found by substituting the Moon’s distance and period into this form of 
Kepler’s third law.

QUes t i On  7.13  If the satellite was placed in an orbit three times as far away, about how long would it take to orbit the 
Earth once? Answer in days, rounding to one digit.

e Xe rc i s e  7.13  Mars rotates on its axis once every 1.02 days (almost the same as Earth does). (a) Find the distance from 
the center of Mars at which a satellite would remain in one spot over the Martian surface. (b) Find the speed of the satellite.

a ns We r s  (a) 2.03 3 107 m (b) 1.45 3 103 m/s

 ■ s UMMar Y

7.1  Angular Speed and Angular Acceleration
The average angular speed vav of a rigid object is defined 
as the ratio of the angular displacement Du to the time 
interval Dt, or

 vav ;
uf 2 ui

tf 2 ti
5

Du

Dt
 [7.3]

where vav is in radians per second (rad/s).
The average angular acceleration aav of a rotating 

object is defined as the ratio of the change in angular 
speed Dv to the time interval Dt, or

 aav ;
vf 2 vi

tf 2 ti
5

Dv

Dt
 [7.5]

where aav is in radians per second per second (rad/s2).

7.2   Rotational Motion Under  
Constant Angular Acceleration

If an object undergoes rotational motion about a fixed axis 
under a constant angular acceleration a, its motion can be 
described with the following set of equations:

 v 5 vi 1 at [7.7]

Du 5 vit 1 1
2 at2 [7.8]

 v2 5 vi
2 1 2a Du [7.9]

Problems are solved as in one-dimensional kinematics.

7.3   Relations Between Angular  
and Linear Quantities

When an object rotates about a fixed axis, the angular speed 
and angular acceleration are related to the tangential speed 
and tangential acceleration through the relationships

vt 5 rv [7.10]

and
 at 5 ra [7.11]

7.4  Centripetal Acceleration
Any object moving in a circular path has an acceleration 
directed toward the center of the circular path, called a 
centripetal acceleration. Its magnitude is given by

ac 5
v 2

r
5 rv2 [7.13, 7.17]
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Any object moving in a circular path must have a net force 
exerted on it that is directed toward the center of the path. 
Some examples of forces that cause centripetal accelera-
tion are the force of gravity (as in the motion of a satellite) 
and the force of tension in a string.

7.5  Newtonian Gravitation
Newton’s law of universal gravi-
tation states that every particle in 
the Universe attracts every other 
particle with a force that is directly 
proportional to the product of 
their masses and inversely propor-
tional to the square of the distance r 
between them:

F 5 G 
m 1m 2

r 2  [7.20]

where G 5 6.673 3 10211

N ? m2/kg2 is the constant of 
universal gravitation. A gen-
eral expression for gravitational 
potential energy is

 PE 5 2G 
MEm
r

 [7.21]

This expression reduces to  
PE 5 mgh close to the surface 
of Earth and holds for other worlds through replacement 
of the mass ME. Problems such as finding the escape veloc-
ity from Earth can be solved by using Equation 7.21 in the 
conservation of energy equation.

7.6  Kepler’s Laws
Kepler derived the following three laws of planetary 
motion:

1.  All planets move in elliptical orbits with the Sun at one 
of the focal points. 

m1

m2r

F21
S

F12
S

The gravitational 
force is attractive and 
acts along the line 
joining the particles.

Earth

R E
O

GME m

m

PE

r

 R E

ME

�

The gravitational potential 
energy increases towards 
zero as r increases.

2.  A line drawn from the Sun to any planet sweeps out 
equal areas in equal time intervals. 

3.  The square of the orbital period of a planet is propor-
tional to the cube of the average distance from the 
planet to the Sun:

 T 2 5 a 4p2

GMS
br 3  

Kepler’s third law.
 [7.23]

The third law can be applied to any large body and its sys-
tem of satellites by replacing the Sun’s mass with the body’s 
mass. In particular, it can be used to determine the mass 
of the central body once the average distance to a satellite 
and its period are known.

Planet

Sun

Kepler’s first law.

Sun �

�

�

�
S

Kepler’s second law.

 ■ Wa r M-Up eX e r c i s e s 

The warm-up exercises in this chapter may be assigned online in Enhanced WebAssign.

 1. Math Review A circular track has a radius of 125 m. 
(a) Calculate the distance around the track. (b) If a 
runner jogs 275 m along the track, through what 
angle has he run?

 2. Math Review (a) Convert 47.0° to radians, using the 
appropriate conversion ratio. (b) Convert 2.35 rad to 
degrees. (c) If a circle has radius 1.70 m, what is the 
arc length subtended by a 47.0° angle? (See Sections 
1.5 and 7.1.)

 3. (a) Convert 12.0 rev/min to radians per second.  
(b) Convert 2.57 rad/s to rev/min. (See Sections 1.5 
and 7.1.)

 4. A carnival carousel accelerates nonuniformly from 
rest, moving through an angle of 8.60 rad in 6.00 s. If 
it’s turning at 3.30 rad/s at that time, find (a) its aver-
age angular speed, and (b) average angular accelera-
tion during that time interval. (See Section 7.1.)

 5. Find the angular speed of a planet that circles its star 
in 1.00 y, in radians per second. (See Section 7.1.)

 6. A grindstone increases in angular speed uniformly 
from 4.00 rad/s to 12.0 rad/s in 4.00 s. (a) Calculate the 
grindstone’s angular acceleration. (b) Through what 
angle does it turn during that time? (See Section 7.2.)

 7. A bicyclist starting at rest produces a constant angular 
acceleration of 1.60 rad/s2 for wheels that are 38.0 cm 
in radius. (a) What is the bicyclist’s linear acceleration? 
(b) What is the angular speed of the wheels when the 
bicyclist reaches 11.0 m/s? (c) How many radians have 
the wheels turned through in that time? (d) How far 
has the bicyclist traveled? (See Sections 7.2 and 7.3.) 

 8. A car of mass 1 230 kg travels along a circular road of 
radius 60.0 m at 18.0 m/s. (a) Calculate the magnitude 
of the car’s centripetal acceleration. (b) What is the 
magnitude of the force of static friction acting on the 
car? (See Section 7.4.)

 9. A man whirls a 0.20-kg piece of lead attached to the end 
of a string of length 0.500 m in a circular path and in a 
vertical plane. If the man maintains a constant speed of 
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(b) How long does it take to orbit the world one time? 
(See Section 7.5.)

 13. Calculate the escape velocity from the surface of a 
world with mass 9.10 3 1024 kg and radius 6.80 3 103 

km. (See Section 7.5.)

 14. A space capsule of mass 645 kg is at rest 1.20 3 107 m  
from the center of the Earth. When it has fallen  
3.00 3 106 m closer to the Earth, (a) what is the change  
in the system’s gravitational potential energy?  
(b) Find the speed of the satellite at that point. (See  
Section 7.5.)

 15. A comet has a period of 76.3 years and moves in an 
elliptical orbit in which its perihelion (closest approach 
to the Sun) is 0.610 AU. Find (a) the semi-major axis 
of the comet and (b) an estimate of the comet’s maxi-
mum distance from the Sun, both in astronomical 
units. (See Section 7.6.)

4.00 m/s, what is the tension in the string when the lead 
is (a) at the top of the circular path? (b) at the bottom 
of the circular path? (See Section 7.4.)

 10. (a) Find the magnitude of the gravity force between 
a planet with mass 5.98 3 1024 kg and its moon, with 
mass 7.36 3 1022 kg, if the average distance between 
them is 3.84 3 108 m. (b) What is the acceleration of 
the moon toward the planet? (c) What is the accelera-
tion of the planet toward the moon? (See Section 7.5.)

 11. What is the gravitational acceleration close to the sur-
face of a planet with a mass of 2ME and radius of 2RE, 
where ME and RE are the mass and radius of Earth, 
respectively? Answer as a multiple of g, the magnitude 
of the gravitational acceleration near Earth’s surface. 
(See Section 7.5.)

 12. (a) Find the speed of a satellite in circular orbit 7.20 3 
106 m from the center of a world with mass 9.40 3 1023 kg.  

 ■ c On ce p t Ua L QUes t i Ons

The conceptual questions in this chapter may be assigned online in Enhanced WebAssign.

1. In a race like the Indianapolis 500, a driver circles 
the track counterclockwise and feels his head pulled 
toward one shoulder. To relieve his neck muscles from 
having to hold his head erect, the driver fastens a strap 
to one wall of the car and the other to his helmet. The 
length of the strap is adjusted to keep his head vertical. 
(a) Which shoulder does his head tend to lean toward? 
(b) What force or forces produce the centripetal accel-
eration when there is no strap? (c) What force or forces 
do so when there is a strap?

 2. If someone told you that astronauts are weightless in 
Earth orbit because they are beyond the force of grav-
ity, would you accept the statement? Explain.

 3. If a car’s wheels are replaced with wheels of greater 
diameter, will the reading of the speedometer change? 
Explain.

 4. At night, you are farther away from the Sun than dur-
ing the day. What’s more, the force exerted by the Sun 
on you is downward into Earth at night and upward 
into the sky during the day. If you had a sensitive 
enough bathroom scale, would you appear to weigh 
more at night than during the day?

 5. A pendulum consists of a small 
object called a bob hanging from 
a light cord of fixed length, with 
the top end of the cord fixed, as 
represented in Figure CQ7.5. The 
bob moves without friction, swing-
ing equally high on both sides. 
It moves from its turning point 
A through point B and reaches 
its maximum speed at point C.  

(a)  At what point does the bob have nonzero radial 
acceleration and zero tangential acceleration? What 
is the direction of its total acceleration at this point? 
(b) At what point does the bob have nonzero tangen-
tial acceleration and zero radial acceleration? What 
is the direction of its total acceleration at this point? 
(c) At what point does the bob have both nonzero tan-
gential and radial acceleration? What is the direction 
of its total acceleration at this point?

 6. Because of Earth’s rotation about its axis, you weigh 
slightly less at the equator than at the poles. Explain.

 7. It has been suggested that rotating cylinders about 
10  miles long and 5 miles in diameter be placed in 
space for colonies. The purpose of their rotation is to 
simulate gravity for the inhabitants. Explain the con-
cept behind this proposal.

 8. Describe the path of a moving object in the event that 
the object’s acceleration is constant in magnitude at all 
times and (a) perpendicular to its velocity; (b) parallel 
to its velocity.

 9. A pail of water can be whirled in a vertical circular 
path such that no water is spilled. Why does the water 
remain in the pail, even when the pail is upside down 
above your head?

 10. Use Kepler’s second law to convince yourself that Earth 
must move faster in its orbit during the northern hemi-
sphere winter, when it is closest to the Sun, than dur-
ing the summer, when it is farthest from the Sun.

 11. Is it possible for a car to move in a circular path in such 
a way that it has a tangential acceleration but no cen-
tripetal acceleration?

A
B C

Figure c Q7.5
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view of Figure CQ7.12. (a) What are the directions  
of his velocity at points A, B, and C ? For each point 
choose one: north, south, east, west, or nonexistent?  
(b) What are the directions of his acceleration at points 
A, B, and C ?

 13. An object executes circular motion with constant 
speed whenever a net force of constant magnitude acts 
perpendicular to the velocity. What happens to the 
speed if the force is not perpendicular to the velocity?

 12. A child is practicing for 
a BMX race. His speed 
remains constant as he 
goes counterclockwise 
around a level track 
with two nearly straight 
sections and two nearly 
semicircular sections, 
as shown in the aerial 

A

B

C

D E

E

N

S

W

Figure c Q7.12

7.1  Angular Speed and Angular Acceleration

 1.  (a) Find the angular speed of Earth’s rotation 
about its axis. (b) How does this rotation affect the 
shape of Earth?

 2. A wheel has a radius of 4.1 m. How far (path length) 
does a point on the circumference travel if the wheel 
is rotated through angles of (a) 30°, (b) 30 rad, and 
(c) 30 rev, respectively?

 3. The tires on a new compact car have a diameter of 
2.0  ft and are warranted for 60 000 miles. (a) Deter-
mine the angle (in radians) through which one of 
these tires will rotate during the warranty period. 
(b) How many revolutions of the tire are equivalent to 
your answer in part (a)?

 4.  A potter’s wheel moves uniformly from rest to 
an angular speed of 1.00 rev/s in 30.0 s. (a) Find its 
angular acceleration in radians per second per second. 
(b)  Would doubling the angular acceleration during 
the given period have doubled final angular speed?

7.2   Rotational Motion Under Constant  
Angular Acceleration

7.3   Relations Between Angular  
and Linear Quantities

 5. A dentist’s drill starts from rest. After 3.20 s of con-
stant angular acceleration, it turns at a rate of 2.51 3 
104 rev/min. (a) Find the drill’s angular acceleration. 
(b) Determine the angle (in radians) through which 
the drill rotates during this period.

 6. W  A centrifuge in a medical laboratory rotates at an 
angular speed of 3 600 rev/min. When switched off, it 
rotates through 50.0 revolutions before coming to rest. 
Find the constant angular acceleration (in rad/s2) of 
the centrifuge.

 7.  A machine part rotates at an angular speed of 
0.06 rad/s; its speed is then increased to 2.2 rad/s at an 
angular acceleration of 0.70 rad/s2. (a) Find the angle 
through which the part rotates before reaching this 
final speed. (b) In general, if both the initial and final 
angular speed are doubled at the same angular accel-
eration, by what factor is the angular displacement 
changed? Why? Hint: Look at the form of Equation 7.9.

 8.  A bicycle is turned 
upside down while its 
owner repairs a flat tire. 
A friend spins the other 
wheel and observes that 
drops of water fly off tan-
gentially. She measures 
the heights reached by 
drops moving vertically 
(Fig. P7.8). A drop that 
breaks loose from the 
tire on one turn rises 
vertically 54.0 cm above the tangent point. A drop that 
breaks loose on the next turn rises 51.0 cm above the tan-
gent point. The radius of the wheel is 0.381 m. (a) Why 
does the first drop rise higher than the second drop? 
(b) Neglecting air friction and using only the observed 
heights and the radius of the wheel, find the wheel’s 
angular acceleration (assuming it to be constant).

 9. The diameters of the main rotor and tail rotor of a 
single-engine helicopter are 7.60 m and 1.02 m, respec-
tively. The respective rotational speeds are 450 rev/min 
and 4 138 rev/min. Calculate the speeds of the tips of 
both rotors. Compare these speeds with the speed of 
sound, 343 m/s.

 10. The tub of a washer goes into its spin-dry cycle, starting 
from rest and reaching an angular speed of 5.0 rev/s in 

h

A

Figure p 7.8  Problems 8 and 69.
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final speed, what is the tangential velocity of the bug? 
One second after the bug starts from rest, what are its 
(c)  tangential acceleration, (d) centripetal accelera-
tion, and (e) total acceleration?

 18. An adventurous archeologist (m 5 85.0 kg) tries 
to cross a river by swinging from a vine. The vine is 
10.0 m long, and his speed at the bottom of the swing is 
8.00 m/s. The archeologist doesn’t know that the vine 
has a breaking strength of 1 000 N. Does he make it 
across the river without falling in?

 19.  One end of a cord is fixed and 
a small 0.500-kg object is attached 
to the other end, where it swings in 
a section of a vertical circle of radius 
2.00  m, as shown in Figure P7.19. 
When u 5 20.0°, the speed of the 
object is 8.00  m/s. At this instant, 
find (a) the tension in the string, (b) 
the tangential and radial components of accelera-
tion, and (c) the total acceleration. (d) Is your answer 
changed if the object is swinging down toward its low-
est point instead of swinging up? (e) Explain your 
answer to part (d).

 20. A coin rests 15.0 cm from the center of a turn-
table. The coefficient of static friction between the 
coin and turntable surface is 0.350. The turntable 
starts from rest at t 5 0 and rotates with a constant 
angular acceleration of 0.730 rad/s2. (a) Once the turn-
table starts to rotate, what force causes the centripetal 
acceleration when the coin is stationary relative to the 
turntable? Under what condition does the coin begin 
to move relative to the turntable? (b) After what period 
of time will the coin start to slip on the turntable?

 21. A 55.0-kg ice skater is moving at 4.00 m/s when she 
grabs the loose end of a rope, the opposite end of 
which is tied to a pole. She then moves in a circle of 
radius 0.800 m around the pole. (a) Determine the 
force exerted by the horizontal rope on her arms. 
(b) Compare this force with her weight.

 22. A 40.0-kg child swings in a swing supported by two 
chains, each 3.00 m long. The tension in each chain at 
the lowest point is 350 N. Find (a) the child’s speed at 
the lowest point and (b) the force exerted by the seat 
on the child at the lowest point. (Ignore the mass of 
the seat.)

 23. A certain light truck can go around a flat curve having 
a radius of 150 m with a maximum speed of 32.0 m/s. 
With what maximum speed can it go around a curve 
having a radius of 75.0 m?

 24. A sample of blood is placed in a centrifuge of 
radius 15.0 cm. The mass of a red blood cell is 3.0 3 
10216 kg, and the magnitude of the force acting on it 
as it settles out of the plasma is 4.0 3 10211 N. At how 
many revolutions per second should the centrifuge be 
operated?

8.0 s. At this point, the person doing the laundry opens 
the lid, and a safety switch turns off the washer. The 
tub slows to rest in 12.0 s. Through how many revolu-
tions does the tub turn during the entire 20-s interval? 
Assume constant angular acceleration while it is start-
ing and stopping.

 11. A car initially traveling at 29.0 m/s undergoes a con-
stant negative acceleration of magnitude 1.75 m/s2

after its brakes are applied. (a) How many revolutions 
does each tire make before the car comes to a stop, 
assuming the car does not skid and the tires have radii 
of 0.330 m? (b) What is the angular speed of the wheels 
when the car has traveled half the total distance?

 12. A 45.0-cm diameter disk rotates with a constant angu-
lar acceleration of 2.50 rad/s2. It starts from rest at t 5 
0, and a line drawn from the center of the disk to a 
point P on the rim of the disk makes an angle of 57.3° 
with the positive x -axis at this time. At t 5 2.30 s, find 
(a) the angular speed of the wheel, (b) the linear 
velocity and tangential acceleration of P, and (c) the 
position of P (in degrees, with respect to the positive 
x -axis).

 13. A rotating wheel requires 3.00 s to rotate 37.0 rev-
olutions. Its angular velocity at the end of the 3.00-s 
interval is 98.0 rad/s. What is the constant angular 
acceleration (in rad/s2) of the wheel?

 14. An electric motor rotating a workshop grinding wheel 
at a rate of 1.00 3 102 rev/min is switched off. Assume 
the wheel has a constant negative angular accelera-
tion of magnitude 2.00 rad/s2. (a) How long does it 
take for the grinding wheel to stop? (b) Through how 
many radians has the wheel turned during the interval 
found in part (a)?

7.4  Centripetal Acceleration

15. A car initially traveling 
eastward turns north by 
traveling in a circular 
path at uniform speed 
as shown in Figure P7.15. 
The length of the arc 
ABC is 235 m, and the 
car completes the turn 
in 36.0 s. (a) Determine 
the car’s speed. (b) What 
is the magnitude and 
direction of the acceleration when the car is at point B?

 16. It has been suggested that rotating cylinders about 
10 mi long and 5.0 mi in diameter be placed in space 
and used as colonies. What angular speed must such a 
cylinder have so that the centripetal acceleration at its 
surface equals the free-fall acceleration on Earth?

 17. (a) What is the tangential acceleration of a bug on 
the rim of a 10.0-in.-diameter disk if the disk accel-
erates uniformly from rest to an angular speed of  
78.0 rev/min in 3.00 s? (b)  When the disk is at its 
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passes through a small hole in the center of the table, 
and an object of mass m2 is tied to it (Fig. P7.27). The 
suspended object remains in equilibrium while the 
puck on the tabletop revolves. (a) Find a symbolic 
expression for the tension in the string in terms of m2

and g. (b) Write Newton’s second law for the air puck, 
using the variables m1, v, R, and T. (c) Eliminate the 
tension T from the expressions found in parts (a) and 
(b) and find an expression for the speed of the puck 
in terms of m1, m2, g, and R. (d) Check your answers by 
substituting the values of Problem 27 and comparing 
the results with the answers for that problem.

 29. A woman places her briefcase on the backseat 
of her car. As she drives to work, the car negotiates an 
unbanked curve in the road that can be regarded as an 
arc of a circle of radius 62.0 m. While on the curve, the 
speed of the car is 15.0 m/s at the instant the briefcase 
starts to slide across the backseat toward the side of 
the car. (a) What force causes the centripetal accelera-
tion of the briefcase when it is stationary relative to the 
car? Under what condition does the briefcase begin to 
move relative to the car? (b) What is the coefficient of 
static friction between the briefcase and seat surface?

 30. A pail of water is rotated in a vertical circle of 
radius 1.00 m. (a) What two external forces act on the 
water in the pail? (b) Which of the two forces is most 
important in causing the water to move in a circle? 
(c) What is the pail’s minimum speed at the top of the 
circle if no water is to spill out? (d) If the pail with the 
speed found in part (c) were to suddenly disappear at 
the top of the circle, describe the subsequent motion 
of the water. Would it differ from the motion of a 
projectile?

 31. A 40.0-kg child takes a ride on a Ferris wheel that 
rotates four times each minute and has a diameter of 
18.0 m. (a) What is the centripetal acceleration of the 
child? (b) What force (magnitude and direction) does 
the seat exert on the child at the lowest point of the 
ride? (c) What force does the seat exert on the child 
at the highest point of the ride? (d) What force does 
the seat exert on the child when the child is halfway 
between the top and bottom?

 32.     A roller-coaster vehicle has a mass of 500 kg when 
fully loaded with passengers (Fig. P7.32). (a) If the 

25. A 50.0-kg child stands at the rim of a merry-go-round 
of radius 2.00 m, rotating with an angular speed of 
3.00  rad/s. (a) What is the child’s centripetal accel-
eration? (b) What is the minimum force between her 
feet and the floor of the carousel that is required to 
keep her in the circular path? (c) What minimum coef-
ficient of static friction is required? Is the answer you 
found reasonable? In other words, is she likely to stay 
on the merry-go-round?

 26.  A space habitat for a long space voyage consists of 
two cabins each connected by a cable to a central hub 
as shown in Figure P7.26. The cabins are set spinning 
around the hub axis, which is connected to the rest of the 
spacecraft to generate artificial gravity. (a) What forces 
are acting on an astronaut in one of the cabins? (b) Write 
Newton’s second law for an astronaut lying on the “floor” 
of one of the habitats, relating the astronaut’s mass m, his 
velocity v, his radial distance from the hub r, and the nor-
mal force n. (c) What would n have to equal if the 60.0-kg 
astronaut is to experience half his normal Earth weight? 
(d) Calculate the necessary tangential speed of the habi-
tat from Newton’s second law. (e) Calculate the angular 
speed from the tangential speed. (f) Calculate the period 
of rotation from the angular speed. (g) If the astronaut 
stands up, will his head be moving faster, slower, or at the 
same speed as his feet? Why? Calculate the tangential 
speed at the top of his head if he is 1.80 m tall.

10.0 m

ω

Figure p 7.26

27. An air puck of mass 
m1  5 0.25 kg is tied to 
a string and allowed 
to revolve in a circle of 
radius R  5 1.0  m on a 
frictionless horizontal 
table. The other end 
of the string passes 
through a hole in the 
center of the table, and 
a mass of m2  5 1.0 kg 
is tied to it (Fig. P7.27). The suspended mass remains 
in equilibrium while the puck on the tabletop revolves.  
(a) What is the tension in the string? (b) What is  
the horizontal force acting on the puck? (c) What is the 
speed of the puck?

 28. An air puck of mass m1 is tied to a string and 
allowed to revolve in a circle of radius R on a hori-
zontal, frictionless table. The other end of the string 

m1

m2

R

vS

Figure p 7.27  Problems 27 and 28.
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the satellite. Hint: Modify Equation 7.23 so it is suitable 
for objects orbiting the Earth rather than the Sun.

 42. An artificial satellite circling the Earth completes each 
orbit in 110 minutes. (a) Find the altitude of the satel-
lite. (b) What is the value of g at the location of this 
satellite?

 43. A satellite of Mars, called Phoebus, has an orbital 
radius of 9.4 3 106 m and a period of 2.8 3 104 s. 
Assuming the orbit is circular, determine the mass of 
Mars.

 44. A 600-kg satellite is in a circular orbit about Earth at a 
height above Earth equal to Earth’s mean radius. Find 
(a)  the satellite’s orbital speed, (b) the period of its 
revolution, and (c) the gravitational force acting on it.

 45. Two satellites are in circular orbits around the Earth. 
Satellite A is at an altitude equal to the Earth’s radius, 
while satellite B is at an altitude equal to twice the 
Earth’s radius. What is the ratio of their periods,  
TB/TA?

Additional Problems

 46. W  A synchronous satellite, which always remains above 
the same point on a planet’s equator, is put in circular 
orbit around Jupiter to study that planet’s famous red 
spot. Jupiter rotates once every 9.84 h. Use the data of 
Table 7.3 to find the altitude of the satellite.

 47. (a) One of the moons of Jupiter, named Io, has 
an orbital radius of 4.22 3 108 m and a period of 
1.77 days. Assuming the orbit is circular, calculate the 
mass of Jupiter. (b) The largest moon of Jupiter, named 
Ganymede, has an orbital radius of 1.07 3 109 m and a 
period of 7.16 days. Calculate the mass of Jupiter from 
this data. (c) Are your results to parts (a) and (b) con-
sistent? Explain.

  48. Neutron stars are extremely dense objects that are 
formed from the remnants of supernova explosions. 
Many rotate very rapidly. Suppose the mass of a certain 
spherical neutron star is twice the mass of the Sun and 
its radius is 10.0 km. Determine the greatest possible 
angular speed the neutron star can have so that the 
matter at its surface on the equator is just held in orbit 
by the gravitational force.

 49.  One method of pitching a softball is called the 
“windmill” delivery method, in which the pitcher’s 
arm rotates through approximately 360° in a vertical 
plane before the 198-gram ball is released at the lowest 
point of the circular motion. An experienced pitcher 
can throw a ball with a speed of 98.0 mi/h. Assume the 
angular acceleration is uniform throughout the pitch-
ing motion and take the distance between the softball 
and the shoulder joint to be 74.2 cm. (a) Determine 
the angular speed of the arm in rev/s at the instant of 
release. (b) Find the value of the angular acceleration 
in rev/s2 and the radial and tangential acceleration of 
the ball just before it is released. (c) Determine the 
force exerted on the ball by the pitcher’s hand (both 

vehicle has a speed of 20.0 m/s at point �, what is the 
force of the track on the vehicle at this point? (b) What 
is the maximum speed the vehicle can have at point � 
for gravity to hold it on the track?

7.5  Newtonian Gravitation

33. The average distance separating Earth and the Moon 
is 384 000 km. Use the data in Table 7.3 to find the 
net gravitational force exerted by Earth and the Moon 
on a 3.00 3 104-kg spaceship located halfway between 
them.

 34. A satellite has a mass of 100 kg and is located at 2.00 3 
106 m above the surface of Earth. (a) What is the poten-
tial energy associated with the satellite at this location? 
(b) What is the magnitude of the gravitational force on 
the satellite?

 35. A coordinate system (in meters) is constructed on the 
surface of a pool table, and three objects are placed 
on the table as follows: a 2.0-kg object at the origin of 
the coordinate system, a 3.0-kg object at (0, 2.0), and a 
4.0-kg object at (4.0, 0). Find the resultant gravitational 
force exerted by the other two objects on the object at 
the origin.

 36. After the Sun exhausts its nuclear fuel, its ultimate 
fate may be to collapse to a white dwarf state. In this 
state, it would have approximately the same mass as it 
has now, but its radius would be equal to the radius of 
Earth. Calculate (a) the average density of the white 
dwarf, (b) the surface free-fall acceleration, and (c) the 
gravitational potential energy associated with a 1.00-kg 
object at the surface of the white dwarf.

 37. W Objects with masses of 200 kg and 500 kg are sepa-
rated by 0.400 m. (a) Find the net gravitational force 
exerted by these objects on a 50.0-kg object placed 
midway between them. (b) At what position (other 
than infinitely remote ones) can the 50.0-kg object be 
placed so as to experience a net force of zero?

 38. Use the data of Table 7.3 to find the point between 
Earth and the Sun at which an object can be placed so 
that the net gravitational force exerted by Earth and 
the Sun on that object is zero.

 39. A projectile is fired straight upward from the Earth’s 
surface at the South Pole with an initial speed equal 
to one third the escape speed. (a) Ignoring air resis-
tance, determine how far from the center of the Earth 
the projectile travels before stopping momentarily. 
(b) What is the altitude of the projectile at this instant?

 40. Two objects attract each other with a gravitational 
force of magnitude 1.00 3 1028 N when separated by 
20.0 cm. If the total mass of the objects is 5.00 kg, what 
is the mass of each?

7.6  Kepler’s Laws

 41.  A satellite is in a circular orbit around the Earth at an 
altitude of 2.80 3 106 m. Find (a) the period of the orbit, 
(b) the speed of the satellite, and (c) the acceleration of 
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the gravitational force on an object (the object’s true 
weight) must exceed the object’s apparent weight. 
(b) What are the apparent weights of a 75.0-kg person 
at the equator and at the poles? (Assume Earth is a uni-
form sphere and take g 5 9.800 m/s2.)

 58. A small block of mass m 5 0.50 kg is fired with an ini-
tial speed of v0 5 4.0 m/s along a horizontal section 
of frictionless track, as shown in the top portion of 
Figure P7.58. The block then moves along the fric-
tionless, semicircular, vertical tracks of radius R 5 
1.5 m. (a) Determine the force exerted by the track on 
the block at points � and �. (b) The bottom of the 
track consists of a section (L 5 0.40 m) with friction. 
Determine the coefficient of kinetic friction between 
the block and that portion of the bottom track if the 
block just makes it to point � on the first trip. Hint: If 
the block just makes it to point �, the force of contact 
exerted by the track on the block at that point is zero.

radial and tangential components) just before it is 
released.

 50. A digital audio compact disc carries data along a con-
tinuous spiral track from the inner circumference of 
the disc to the outside edge. Each bit occupies 0.6 µm 
of the track. A CD player turns the disc to carry the 
track counterclockwise above a lens at a constant speed 
of 1.30 m/s. Find the required angular speed (a) at 
the beginning of the recording, where the spiral has 
a radius of 2.30 cm, and (b) at the end of the record-
ing, where the spiral has a radius of 5.80 cm. (c) A 
full-length recording lasts for 74 min, 33 s. Find the 
average angular acceleration of the disc. (d) Assum-
ing the acceleration is constant, find the total angular 
displacement of the disc as it plays. (e) Find the total 
length of the track.

 51. An athlete swings a 5.00-kg ball horizontally on the 
end of a rope. The ball moves in a circle of radius 
0.800 m at an angular speed of 0.500 rev/s. What are 
(a) the tangential speed of the ball and (b) its centrip-
etal acceleration? (c) If the maximum tension the rope 
can withstand before breaking is 100 N, what is the 
maximum tangential speed the ball can have?

 52. A car rounds a banked curve where the radius of cur-
vature of the road is R, the banking angle is u, and 
the coefficient of static friction is m. (a) Determine 
the range of speeds the car can have without slipping 
up or down the road. (b) What is the range of speeds 
possible if R 5 100 m, u 5 10°, and m 5 0.10 (slippery 
conditions)?

 53. The Solar Maximum Mission Satellite was placed in 
a circular orbit about 150 mi above Earth. Determine 
(a) the orbital speed of the satellite and (b) the time 
required for one complete revolution.

 54. A 0.400-kg pendulum bob passes through the low-
est part of its path at a speed of 3.00 m/s. (a) What is 
the tension in the pendulum cable at this point if the 
pendulum is 80.0 cm long? (b) When the pendulum 
reaches its highest point, what angle does the cable 
make with the vertical? (c) What is the tension in the 
pendulum cable when the pendulum reaches its high-
est point?

 55. A car moves at speed v across a bridge made 
in the shape of a circular arc of radius r. (a) Find an 
expression for the normal force acting on the car when 
it is at the top of the arc. (b) At what minimum speed 
will the normal force become zero (causing the occu-
pants of the car to seem weightless) if r 5 30.0 m?

 56. Show that the escape speed from the surface of a 
planet of uniform density is directly proportional to 
the radius of the planet.

 57.  Because of Earth’s rotation about its axis, a 
point on the equator has a centripetal acceleration of 
0.034 0 m/s2, whereas a point at the poles has no cen-
tripetal acceleration. (a) Show that, at the equator, 
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m

R

�

�

�

μ

gS

v0
S

Figure p 7.58

59. In Robert Heinlein’s The Moon Is a Harsh Mistress, the 
colonial inhabitants of the Moon threaten to launch 
rocks down onto Earth if they are not given indepen-
dence (or at least representation). Assuming a gun 
could launch a rock of mass m at twice the lunar escape 
speed, calculate the speed of the rock as it enters 
Earth’s atmosphere.

60. A roller coaster travels in a circular path. 
(a)  Identify the forces on a passenger at the top of 
the circular loop that cause centripetal acceleration. 
Show the direction of all forces in a sketch. (b) Identify 
the forces on the passenger at the bottom of the loop 
that produce centripetal acceleration. Show these in a 
sketch. (c) Based on your answers to parts (a) and (b), 
at what point, top or bottom, should the seat exert the 
greatest force on the passenger? (d) Assume the speed 
of the roller coaster is 4.00 m/s at the top of the loop of 
radius 8.00 m. Find the force exerted by the seat on a 
70.0-kg passenger at the top of the loop. Then, assume 
the speed remains the same at the bottom of the loop 
and find the force exerted by the seat on the passen-
ger at this point. Are your answers consistent with your 
choice of answers for parts (a) and (b)?

 61. In a home laundry dryer, a cylindrical tub containing 
wet clothes is rotated steadily about a horizontal axis, 

37027_ch07_ptg01_hr_202-239.indd   236 19/08/13   2:30 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Unless otherwise noted, all content on this page is © Cengage Learning.

 | Problems  237

cylindrical enclosure is rotated rapidly and steadily 
about a horizontal axis, as in Figure P7.64. Molten 
metal is poured into the rotating cylinder and then 
cooled, forming the finished product. Turning the 
cylinder at a high rotation rate forces the solidifying 
metal strongly to the outside. Any bubbles are dis-
placed toward the axis so that unwanted voids will not 
be present in the casting.

   Suppose a copper sleeve of inner radius 2.10 cm 
and outer radius 2.20 cm is to be cast. To eliminate 
bubbles and give high structural integrity, the centrip-
etal acceleration of each bit of metal should be 100g. 
What rate of rotation is required? State the answer in 
revolutions per minute.

as shown in Figure P7.61. So that the clothes will dry 
uniformly, they are made to tumble. The rate of rota-
tion of the smooth-walled tub is chosen so that a small 
piece of cloth will lose contact with the tub when the 
cloth is at an angle of u 5 68.0° above the horizontal. If 
the radius of the tub is r 5 0.330 m, what rate of revolu-
tion is needed in revolutions per second?

u

r

Figure p 7.61

62. A model airplane of mass 0.750 kg flies with 
a speed of 35.0 m/s in a horizontal circle at the end 
of a 60.0-m control wire as shown in Figure P7.62a. 
The forces exerted on the airplane are shown in  
Figure P7.62b; the tension in the control wire, u 5 
20.0° inward from the vertical. Compute the tension in 
the wire, assuming the wire makes a constant angle of 
u 5 20.0° with the horizontal.

Wire

Circular path 
of airplane

u

mgS

F
S

T
S

u

lift

a b

Figure p 7.62

63. A skier starts at rest at the top of a large hemi-
spherical hill (Fig. P7.63). Neglecting friction, show 
that the skier will leave the hill and become airborne 
at a distance h 5 R/3 below the top of the hill. Hint: At 
this point, the normal force goes to zero.

R

Figure p 7.63

64. Casting of molten metal is important in many indus-
trial processes. Centrifugal casting is used for manufac-
turing pipes, bearings, and many other structures. A 

Axis of rotation

Molten metal

Preheated steel sheath

Figure p 7.64

65. Suppose a 1 800-kg car 
passes over a bump in a 
roadway that follows the 
arc of a circle of radius 
20.4 m, as in Figure 
P7.65. (a) What force does the road exert on the car as 
the car passes the highest point of the bump if the car 
travels at 8.94 m/s? (b) What is the maximum speed 
the car can have without losing contact with the road 
as it passes this highest point?

 66. A stuntman whose mass is 70 kg swings from the end 
of a 4.0-m-long rope along the arc of a vertical circle. 
Assuming he starts from rest when the rope is horizon-
tal, find the tensions in the rope that are required to 
make him follow his circular path (a) at the beginning 
of his motion, (b) at a height of 1.5 m above the bottom 
of the circular arc, and (c) at the bottom of the arc.

67. A minimum-energy orbit to an outer planet 
consists of putting a spacecraft on an elliptical trajec-
tory with the departure planet corresponding to the 
perihelion of the ellipse, or closest point to the Sun, 
and the arrival planet corresponding to the aphelion 
of the ellipse, or farthest point from the Sun. (a) Use 
Kepler’s third law to calculate how long it would take 
to go from Earth to Mars on such an orbit. (Answer 
in years.) (b) Can such an orbit be undertaken at any 
time? Explain.

 68. The pilot of an airplane executes a constant-
speed loop-the-loop maneuver in a vertical circle as 
in Figure 7.15b. The speed of the airplane is 2.00 3 
102 m/s, and the radius of the circle is 3.20 3 103 m. 
(a)  What is the pilot’s apparent weight at the lowest 

vS

Figure p 7.65

37027_ch07_ptg01_hr_202-239.indd   237 19/08/13   2:30 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



238  c hap t e r  7 | Rotational Motion and the Law of Gravity

Unless otherwise noted, all content on this page is © Cengage Learning.

banking angle that allows the bat to stay in a horizontal 
plane? (c) What is the radius of the circle of its flight 
when the bat flies at its maximum speed? (d) Can the 
bat turn with a smaller radius by flying more slowly?

point of the circle if his true weight is 712 N? (b) What 
is his apparent weight at the highest point of the circle? 
(c) Describe how the pilot could experience weightless-
ness if both the radius and the speed can be varied. 
Note: His apparent weight is equal to the magnitude of 
the force exerted by the seat on his body. Under what 
conditions does this occur? (d) What speed would have 
resulted in the pilot experiencing weightlessness at the 
top of the loop?

 69.  A piece of mud is initially at point A on the  
rim of a bicycle wheel of radius R rotating clockwise 
about a horizontal axis at a constant angular speed v 
(Fig. P7.8). The mud dislodges from point A when the 
wheel diameter through A is horizontal. The mud then 
rises vertically and returns to point A. (a) Find a sym-
bolic expression in terms of R, v, and g for the total 
time the mud is in the air and returns to point A. (b) If 
the wheel makes one complete revolution in the time it 
takes the mud to return to point A, find an expression 
for the angular speed of the bicycle wheel v in terms of 
p, g, and R.

 70.  A 0.275-kg object is swung in 
a vertical circular path on a string 
0.850 m long as in Figure P7.70. 
(a)  What are the forces acting on 
the ball at any point along this 
path? (b) Draw free-body diagrams 
for the ball when it is at the bottom 
of the circle and when it is at the 
top. (c) If its speed is 5.20 m/s at the top of the circle, 
what is the tension in the string there? (d) If the string 
breaks when its tension exceeds 22.5 N, what is the 
maximum speed the object can 
have at the bottom before the 
string breaks?

 71. A 4.00-kg object is attached 
to a vertical rod by two strings 
as shown in Figure P7.71. The 
object rotates in a horizontal cir-
cle at constant speed 6.00 m/s. 
Find the tension in (a) the upper 
string and (b) the lower string.

 72.  The maximum lift force on a bat is proportional 
to the square of its flying speed v. For the hoary bat 
(Lasiurus cinereus), the magnitude of the lift force is 
given by

FL # (0.018 N ? s2/m2)v2

  The bat can fly in a horizontal circle by “banking” its 
wings at an angle u, as shown in Figure P7.72. In this 
situation, the magnitude of the vertical component of 
the lift force must equal the bat’s weight. The horizon-
tal component of the force provides the centripetal 
acceleration. (a) What is the minimum speed that the 
bat can have if its mass is 0.031 kg? (b) If the maxi-
mum speed of the bat is 10 m/s, what is the maximum 

m

L

Figure p 7.70

2.00 m

2.00 m

3.00 m m

Figure p 7.71
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Figure p 7.72

 73. (a) A luggage carousel at an airport has the form of a 
section of a large cone, steadily rotating about its verti-
cal axis. Its metallic surface slopes downward toward 
the outside, making an angle of 20.0° with the hori-
zontal. A 30.0-kg piece of luggage is placed on the car-
ousel, 7.46 m from the axis of rotation. The travel bag 
goes around once in 38.0 s. Calculate the force of static 
friction between the bag and the carousel. (b) The 
drive motor is shifted to turn the carousel at a higher 
constant rate of rotation, and the piece of luggage is 
bumped to a position 7.94 m from the axis of rotation. 
The bag is on the verge of slipping as it goes around 
once every 34.0 s. Calculate the coefficient of static 
friction between the bag and the carousel.

 74. A 0.50-kg ball that is tied to the end 
of a 1.5-m light cord is revolved in 
a horizontal plane, with the cord 
making a 30° angle with the verti-
cal. (See Fig. P7.74.) (a) Determine 
the ball’s speed. (b) If, instead, the 
ball is revolved so that its speed is 
4.0 m/s, what angle does the cord 
make with the vertical? (c) If the cord can withstand a 
maximum tension of 9.8 N, what is the highest speed at 
which the ball can move?

 75. In a popular amusement 
park ride, a rotating cylin-
der of radius 3.00 m is set 
in rotation at an angular 
speed of 5.00 rad/s, as in 
Figure P7.75. The floor 
then drops away, leav-
ing the riders suspended 
against the wall in a verti-
cal position. What mini-
mum coefficient of friction 
between a rider’s clothing 
and the wall is needed to keep the rider from slipping? 
Hint: Recall that the magnitude of the maximum force 

θ

Figure p 7.74

R

Figure p 7.75
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d of the spring that enables the block to just make it 
through the loop-the-loop at point C. Hint: The force 
exerted by the track on the block will be zero if the 
block barely makes it through the loop-the-loop.

of static friction is equal to msn, where n is the normal 
force—in this case, the force causing the centripetal 
acceleration.

 76. A massless spring of constant k 5 78.4 N/m is fixed 
on the left side of a level track. A block of mass m 5 
0.50 kg is pressed against the spring and compresses 
it a distance d, as in Figure P7.76. The block (initially 
at rest) is then released and travels toward a circular 
loop-the-loop of radius R 5 1.5 m. The entire track 
and the loop-the-loop are frictionless, except for the 
section of track between points A and B. Given that the 
coefficient of kinetic friction between the block and 
the track along AB is mk 5 0.30, and that the length 
of AB is 2.5 m, determine the minimum compression 

C

R

k

BA

d

m kμ

Figure p 7.76
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In the study of linear motion, objects were treated as point particles without structure. It 
didn’t matter where a force was applied, only whether it was applied or not.

The reality is that the point of application of a force does matter. In football, for example, 
if the ball carrier is tackled near his midriff, he might carry the tackler several yards before 
falling. If tackled well below the waistline, however, his center of mass rotates toward the 
ground, and he can be brought down immediately. Tennis provides another good example. If 
a tennis ball is struck with a strong horizontal force acting through its center of mass, it may 
travel a long distance before hitting the ground, far out of bounds. Instead, the same force 
applied in an upward, glancing stroke will impart topspin to the ball, which can cause it to 
land in the opponent’s court.

The concepts of rotational equilibrium and rotational dynamics are also important in other 
disciplines. For example, students of architecture benefit from understanding the forces that 
act on buildings, and biology students should understand the forces at work in muscles and 
on bones and joints. These forces create torques, which tell us how the forces affect an 
object’s equilibrium and rate of rotation.

We will find that an object remains in a state of uniform rotational motion unless acted 
on by a net torque. That principle is the equivalent of Newton’s first law. Further, the angular 
acceleration of an object is proportional to the net torque acting on it, which is the analog 
of Newton’s second law. A net torque acting on an object causes a change in its rotational 
energy.

Finally, torques applied to an object through a given time interval can change the 
object’s angular momentum. In the absence of external torques, angular momentum is 
conserved, a property that explains some of the mysterious and formidable properties of 
pulsars, remnants of supernova explosions that rotate at equatorial speeds approaching 
that of light.

Wind exerts forces on the 

propellers of this wind turbine, 

producing a torque that causes 

the turbine to rotate. This 

process converts the kinetic 

energy of wind to rotational 

kinetic energy, which is 

transformed by electromagnetic 

induction to electrical energy.

8 Rotational Equilibrium 
and Rotational Dynamics

8.1 Torque

8.2 Torque and the Two 
Conditions for Equilibrium

8.3 The Center of Gravity

8.4 Examples of Objects in 
Equilibrium

8.5 Relationship Between Torque 
and Angular Acceleration

8.6 Rotational Kinetic Energy

8.7 Angular Momentum
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8.1    Torque
Learning Objectives  

1. Define torque and state the rotational analog of the first law.

2. Apply the definition of torque to elementary systems.

Forces cause accelerations; torques cause angular accelerations. There is a definite 
relationship, however, between the two concepts.

Figure 8.1 depicts an overhead view of a door hinged at point O. From this view-
point, the door is free to rotate around an axis perpendicular to the page and 
passing through O. If a force F

S

 is applied to the door, there are three factors that 
determine the effectiveness of the force in opening the door: the magnitude of the 
force, the position of application of the force, and the angle at which it is applied.

For simplicity, we restrict our discussion to position and force vectors lying in a 
plane. When the applied force F

S

 is perpendicular to the outer edge of the door, 
as in Figure 8.1, the door rotates counterclockwise with constant angular accelera-
tion. The same perpendicular force applied at a point nearer the hinge results in 
a smaller angular acceleration. In general, a larger radial distance r between the 
applied force and the axis of rotation results in a larger angular acceleration. Simi-
larly, a larger applied force will also result in a larger angular acceleration. These 
considerations motivate the basic definition of torque for the special case of forces 
perpendicular to the position vector:

Let F
S

 be a force acting on an object, and let rS be a position vector from a cho-
sen point O to the point of application of the force, with F

S

 perpendicular to 
rS. The magnitude of the torque tS exerted by the force F

S

 is given by

 t 5 rF [8.1]

where r is the length of the position vector and F is the magnitude of the 
force.

SI unit: Newton-meter (N ? m)

The vectors rS and F
S

 lie in a plane. Figure 8.2 illustrates how the point of the force’s 
application affects the magnitude of the torque. As discussed in detail shortly in con-
junction with Figure 8.6, the torque tS is then perpendicular to this plane. The point 
O is usually chosen to coincide with the axis the object is rotating around, such as 
the hinge of a door or hub of a merry-go-round. (Other choices are possible as well.) 
In addition, we consider only forces acting in the plane perpendicular to the axis of 
rotation. This criterion excludes, for example, a force with upward component on a 
merry-go-round railing, which cannot affect the merry-go-round’s rotation.

Under these conditions, an object can rotate around the chosen axis in one of 
two directions. By convention, counterclockwise is taken to be the positive direc-
tion, clockwise the negative direction. When an applied force causes an object to 

b Basic definition of torque

O

Hinge
F
S

rS 

Figure 8.1  A bird’s-eye view of 
a door hinged at O, with a force 
applied perpendicular to the door.
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Figure 8.2  As the force is applied 
farther out along the wrench, the 
magnitude of the torque increases.
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rotate counterclockwise, the torque on the object is positive. When the force causes 
the object to rotate clockwise, the torque on the object is negative. When two or 
more torques act on an object at rest, the torques are added. If the net torque 
isn’t zero, the object starts rotating at an ever-increasing rate. If the net torque is 
zero, the object’s rate of rotation doesn’t change. These considerations lead to the 
rotational analog of the first law: the rate of rotation of an object doesn’t change, 
unless the object is acted on by a net torque.

 ■ e Xa Mp Le  8.1 Battle of the Revolving Door

g Oa L Apply the basic definition of torque.

pr Ob Le M Two disgruntled businesspeople are trying to use a revolving door, as in 
Figure 8.3. The woman on the left exerts a force of 625 N perpendicular to the door and 
1.20 m from the hub’s center, while the man on the right exerts a force of 8.50 3 102 N 
perpendicular to the door and 0.800 m from the hub’s center. Find the net torque on 
the revolving door.

s t r at e g Y Calculate the individual torques on the door using the definition of torque, 
Equation 8.1, and then sum to find the net torque on the door. The woman exerts a neg-
ative torque, the man a positive torque. Their positions of application also differ.

s OLUti On

t1 5 2r1F1 5 2(1.20 m)(625 N) 5 27.50 3 102 N ? m

F1
S

F2
S

r1
S r2

S

Figure 8.3  (Example 8.1)

Calculate the torque exerted by the woman. A negative 
sign must be supplied because F

S

1, if unopposed, would 
cause a clockwise rotation:

Calculate the torque exerted by the man. The torque 
is positive because F

S

2, if unopposed, would cause a 
counterclockwise rotation: t2 5  r2 F2 5 (0.800 m)(8.50 3 102 N) 5 6.80 3 102 N ? m

Sum the torques to find the net torque on the door: tnet 5 t1 1 t2 5   27.0 3 101 N ? m

re Mar Ks  The negative result here means that the net torque will produce a clockwise rotation.

QUes t i On  8.1  What happens if the woman suddenly slides closer to the hub by 0.400 m?

e Xe rc i s e  8.1  A businessman enters the same revolving door on the right, pushing with 576 N of force directed per-
pendicular to the door and 0.700 m from the hub, while a boy exerts a force of 365 N perpendicular to the door, 1.25 m to 
the left of the hub. Find (a) the torques exerted by each person and (b) the net torque on the door.

a ns We r s  (a) tboy 5 2456 N ? m, tman 5 403 N ? m (b) tnet 5 253 N ? m

The applied force isn’t always perpendicular to the position vector rS. Sup-
pose the force F

S

 exerted on a door is directed away from the axis, as in Figure 8.4a,  
say, by someone’s grasping the doorknob and pushing to the right. Exerting the 
force in this direction couldn’t possibly open the door. However, if the applied 
force acts at an angle to the door as in Figure 8.4b, the component of the force per-
pendicular to the door will cause it to rotate. This figure shows that the component 
of the force perpendicular to the door is F sin u, where u is the angle between the 
position vector rS and the force F

S

. When the force is directed away from the axis,  
u 5 0°, sin (0°) 5 0, and F sin (0°) 5 0. When the force is directed toward the axis,  
u 5 180° and F sin (180°) 5 0. The maximum absolute value of F sin u is attained only 
when F

S

 is perpendicular to rS—that is, when u 5 90° or u 5 270°. These considerations 
motivate a more general definition of torque:
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Figure 8.5  As the angle between the position vector and force vector 
increases in parts (a)–(b), the torque exerted by the wrench increases.
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Figure 8.4  (a) A force F
S

 acting at an angle u 5 08 
exerts zero torque about the pivot O. (b) The part of 
the force perpendicular to the door, F sin u, exerts 
torque rF sin u about O. (c) An alternate interpretation 
of torque in terms of a lever arm d 5 r sin u.

Let F
S

 be a force acting on an object, and let rS be a position vector from a 
chosen point O to the point of application of the force. The magnitude of the 
torque tS exerted by the force F

S

 is

 t 5 rF sin u [8.2]

where r is the length of the position vector, F the magnitude of the force, and u 
the angle between rS and F

S

.

SI unit: Newton-meter (N ? m)

Again the vectors rS and F
S

 lie in a plane, and for our purposes the chosen point O 
will usually correspond to an axis of rotation perpendicular to the plane. Figure 8.5 
illustrates how the magnitude of the torque exerted by a wrench increases as the 
angle between the position vector and the force vector increases at 90°, where the 
torque is a maximum.

A second way of understanding the sin u factor is to associate it with the mag-
nitude r of the position vector rS. The quantity d 5 r sin u is called the lever arm, 
which is the perpendicular distance from the axis of rotation to a line drawn along 
the direction of the force. This alternate interpretation is illustrated in Figure 8.4c.

It’s important to remember that the value of t depends on the chosen axis of 
rotation. Torques can be computed around any axis, regardless of whether there 
is some actual, physical rotation axis present. Once the point is chosen, however, it 
must be used consistently throughout a given problem.

Torque is a vector perpendicular to the plane determined by the position and 
force vectors, as illustrated in Figure 8.6. The direction can be determined by the 
right-hand rule:

1. Point the fingers of your right hand in the direction of rS.
2. Curl your fingers toward the direction of vector F

S

.
3. Your thumb then points approximately in the direction of the torque, in this 

case out of the page.

Notice the two choices of angle in Figure 8.6. The angle u is the actual angle 
between the directions of the two vectors. The angle u9 is literally “between” 

b  General definition  

of torque

θ

θ�

F
S

rS 

Figure 8.6  The right-hand rule: 
Point the fingers of your right hand 
along rS and curl them in the direc-
tion of F

S

. Your thumb then points 
in the direction of the torque (out 
of the page, in this case). Note that 
either u or u9 can be used in the defi-
nition of torque.

37027_ch08_ptg01_hr_240-281.indd   243 19/08/13   2:30 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



244  c hap t e r  8 | Rotational Equilibrium and Rotational Dynamics

Unless otherwise noted, all content on this page is © Cengage Learning.

the two vectors. Which angle is correct? Because sin u 5 sin (180° 2 u) 5 
sin (180°) cos u 2 sin u cos (180°) 5 0 2 sin u ? (21) 5 sin u, either angle is correct. 
Problems used in this book will be confined to objects rotating around an axis 
perpendicular to the plane containing rS and F

S

, so if these vectors are in the plane 
of the page, the torque will always point either into or out of the page, parallel to 
the axis of rotation. If your right thumb is pointed in the direction of a torque, 
your fingers curl naturally in the direction of rotation that the torque would pro-
duce on an object at rest.

 ■ e Xa Mp Le  8.2 The Swinging Door

g Oa L  Apply the more general definition of torque.

pr Ob Le M  (a) A man applies a force of F 5 3.00 3 102 N 
at an angle of 60.0° to the door of Figure 8.7a, 2.00 m from 
well-oiled hinges. Find the torque on the door, choosing the 
position of the hinges as the axis of rotation. (b) Suppose a 
wedge is placed 1.50 m from the hinges on the other side 
of the door. What minimum force must the wedge exert so 
that the force applied in part (a) won’t open the door?

s t r at e g Y  Part (a) can be solved by substitution into the 
general torque equation. In part (b) the hinges, the wedge, 
and the applied force all exert torques on the door. The 
door doesn’t open, so the sum of these torques must be 
zero, a condition that can be used to find the wedge force.

s OLUti On

260 N

150 N

2.00 m

60.0°

300 NHinge

Hinge

O

O

2.00 m

a

b

Figure 8.7  (Example 8.2a) 
(a) Top view of a door being 
pushed by a 300-N force. 
(b) The components of the 
300-N force.

(a) Compute the torque due to the applied force exerted 
at 60.0°.

Substitute into the general torque equation: tF 5 rF sin u 5 (2.00 m)(3.00 3 102 N) sin 60.0°

5 (2.00 m)(2.60 3 102 N)5   5.20 3 102 N ? m

(b) Calculate the force exerted by the wedge on the other 
side of the door.

Set the sum of the torques equal to zero: thinge 1 twedge 1 tF 5 0

The hinge force provides no torque because it acts at the 
axis (r 5 0). The wedge force acts at an angle of 290.0°, 
opposite the upward 260 N component.

0 1 Fwedge(1.50 m) sin (290.0°) 1 5.20 3 102 N ? m 5 0

Fwedge 5   347 N

re Mar Ks   Notice that the angle from the position vector to the wedge force is 290°. That’s because, starting at the 
position vector, it’s necessary to go 90° clockwise (the negative angular direction) to get to the force vector. Measur-
ing the angle that way automatically supplies the correct sign for the torque term and is consistent with the right-hand 
rule. Alternately, the magnitude of the torque can be found and the correct sign chosen based on physical intuition.  
Figure 8.7b illustrates the fact that the component of the force perpendicular to the lever arm causes the torque.

QUes t i On  8.2  To make the wedge more effective in keeping the door closed, should it be placed closer to the hinge or 
to the doorknob?

e Xe rc i s e  8.2  A man ties one end of a strong rope 8.00 m long to the bumper of his truck, 0.500 m from the ground, 
and the other end to a vertical tree trunk at a height of 3.00 m. He uses the truck to create a tension of 8.00 3 102 N in the 
rope. Compute the magnitude of the torque on the tree due to the tension in the rope, with the base of the tree acting as 
the reference point.

a ns We r  2.28 3 103 N ? m
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This large balanced rock at the 
Garden of the Gods in Colorado 
Springs, Colorado, is in mechanical 
equilibrium.

Da
vi

d 
Se

rw
ay

8.2     Torque and the Two Conditions  
for Equilibrium
Learning Objective

1. State the two conditions of mechanical equilibrium and apply them to elemen-
tary systems.

An object in mechanical equilibrium must satisfy the following two conditions:

1. The net external force must be zero:  aF
S

5 0

2. The net external torque must be zero:  at
S

5 0

The first condition is a statement of translational equilibrium: The sum of all 
forces acting on the object must be zero, so the object has no translational accel-
eration, aS 5 0. The second condition is a statement of rotational equilibrium: The 
sum of all torques on the object must be zero, so the object has no angular accel-
eration, aS 5 0. For an object to be in equilibrium, it must move through space at a 
constant speed and rotate at a constant angular speed.

Because we can choose any location for calculating torques, it’s usually best to 
select an axis that will make at least one torque equal to zero, just to simplify the 
net torque equation.

 ■ e Xa Mp Le  8.3 Balancing Act

g Oa L  Apply the conditions of equilibrium and illustrate the use of 
different axes for calculating the net torque on an object.

pr ObLe M  A woman of mass m 5 55.0 kg sits on the left end of a see-
saw—a plank of length L 5 4.00 m, pivoted in the middle as in Figure 
8.8. (a) First compute the torques on the seesaw about an axis that 
passes through the pivot point. Where should a man of mass M 5 75.0 
kg sit if the system (seesaw plus man and woman) is to be balanced? 
(b) Find the normal force exerted by the pivot if the plank has a mass 
of mpl 5 12.0 kg. (c) Repeat part (a), but this time compute the torques 
about an axis through the left end of the plank.

s t r at e g Y  In part (a), apply the second condition of equilibrium, ot 5 0,  
computing torques around the pivot point. The mass of the plank form-
ing the seesaw is distributed evenly on either side of the pivot point, so 
the torque exerted by gravity on the plank, tplank, can be computed as 
if all the plank’s mass is concentrated at the pivot point. Then tplank is 
zero, as is the torque exerted by the pivot, because their lever arms are zero. In part (b) the first condition of equilibrium, 
gF

S

5 0, must be applied. Part (c) is a repeat of part (a) showing that choice of a different axis yields the same answer.

s OLUti On

x

L

m

nS

M gS 
gS 

mplg
S 

,

Figure 8.8  (Example 8.3) The system consists of two 
people and a seesaw. Because the sum of the forces and 
the sum of the torques acting on the system are both 
zero, the system is said to be in equilibrium.

(a) Where should the man sit to balance the seesaw?

Apply the second condition of equilibrium to the plank 
by setting the sum of the torques equal to zero: tpivot 1 tplank 1 tman 1 twoman 5 0

The first two torques are zero. Let x represent the man’s 
distance from the pivot. The woman is at a distance  
, � L/2 from the pivot. 0 1 0 2 Mgx 1 mg(L/2) 5 0

(Continued)

Solve this equation for x and evaluate it: x 5
m 1L/2 2

M
5

155.0 kg 2 12.00 m 2
75.0 kg

5    1.47 m
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(b) Find the normal force n exerted by the pivot on the 
seesaw.

Apply for first condition of equilibrium to the plank, 
solving the resulting equation for the unknown normal 
force, n:

2Mg 2 mg 2 mplg 1 n 5 0

n 5 (M 1 m 1 mpl)g 

5 (75.0 kg 1 55.0 kg 1 12.0 kg)(9.80 m/s2)

n 5   1.39 3 103 N

(c) Repeat part (a), choosing a new axis through the left 
end of the plank.

Compute the torques using this axis, and set their sum 
equal to zero. Now the pivot and gravity forces on the 
plank result in nonzero torques.

tman 1 twoman 1 tplank 1 tpivot 5 0

2Mg(L/2 1 x) 1 mg(0) 2 mplg(L/2) 1 n(L/2) 5 0

Substitute all known quantities: 2(75.0 kg)(9.80 m/s2)(2.00 m 1 x) 1 0 

2 (12.0 kg)(9.80 m/s2)(2.00 m) 1 n(2.00 m) 5 0

2(1.47 3 103 N ? m) 2 (735 N)x 2 (235 N ? m) 

1 (2.00 m)n 5 0

Solve for x, substituting the normal force found in 
part (b): x 5   1.46 m

re Mar Ks  The answers for x in parts (a) and (c) agree except for a small rounding discrepancy. That illustrates how 
choosing a different axis leads to the same solution.

QUes t i On  8.3  What happens if the woman now leans backwards?

e Xe rc i s e  8.3  Suppose a 30.0-kg child sits 1.50 m to the left of center on the same seesaw. A second child sits at the 
end on the opposite side, and the system is balanced. (a) Find the mass of the second child. (b) Find the normal force 
acting at the pivot point.

a ns We r s  (a) 22.5 kg (b) 632 N

8.3    The Center of Gravity
Learning Objectives

1. Define center of gravity and qualitatively determine it for homogeneous, 
symmetric bodies.

2. Calculate the center of gravity for individual objects and for systems  
of objects.

In the example of the seesaw in the previous section, we guessed that the torque due 
to the force of gravity on the plank was the same as if all the plank’s weight were 
concentrated at its center. That’s a general procedure: To compute the torque on a 
rigid body due to the force of gravity, the body’s entire weight can be thought of as 
concentrated at a single point. The problem then reduces to finding the location of 
that point. If the body is homogeneous (its mass is distributed evenly) and symmetric, 
it’s usually possible to guess the location of that point, as in Example 8.3. Otherwise, 
it’s necessary to calculate the point’s location, as explained in this section.

Consider an object of arbitrary shape lying in the xy-plane, as in Figure 8.9. The 
object is divided into a large number of very small particles of weight m1g, m2g, 
m3g, . . . having coordinates (x1, y1), (x2, y2), (x3, y3), . . . . If the object is free to rotate 
around the origin, each particle contributes a torque about the origin that is equal to 
its weight multiplied by its lever arm. For example, the torque due to the weight m1g is 
m1gx1, and so forth.

(x1, y1)

(xcg, ycg)

(x2, y2)

(x3, y3)

O

m3

y

CG

x
g
S

m2g
S

m1g
S

mgS 

Figure 8.9  The net gravitational 
torque on an object is zero if com-
puted around the center of gravity. 
The object will balance if supported 
at that point (or at any point along 
a vertical line above or below that 
point).
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We wish to locate the point of application of the single force of magnitude 
w 5 Fg 5 Mg (the total weight of the object), where the effect on the rotation of 
the object is the same as that of the individual particles. That point is called the 
object’s center of gravity. Equating the torque exerted by w at the center of gravity 
to the sum of the torques acting on the individual particles gives

(m1g 1 m2g 1 m3g 1 ? ? ?)xcg 5 m1g x1 1 m2g x2 1 m3g x3 1 ? ? ?

We assume that g is the same everywhere in the object (which is true for all objects 
we will encounter). Then the g factors in the preceding equation cancel, resulting in

 xcg 5
m1x1 1 m2x2 1 m3x3 1 # # #

m1 1 m2 1 m3 1 # # # 5
gmixi
gmi

 [8.3a]

where xcg is the x -coordinate of the center of gravity. Similarly, the y-coordinate 
and z-coordinate of the center of gravity of the system can be found from

 ycg 5
gmiyi
gmi

 [8.3b]

and

 z cg 5
gmizi
gmi

 [8.3c]

These three equations are identical to the equations for a similar concept called 
center of mass. The center of mass and center of gravity of an object are exactly 
the same when g doesn’t vary significantly over the object.

It’s often possible to guess the location of the center of gravity. The center of 
gravity of a homogeneous, symmetric body must lie on the axis of symmetry. For 
example, the center of gravity of a homogeneous rod lies midway between the ends 
of the rod, and the center of gravity of a homogeneous sphere or a homogeneous 
cube lies at the geometric center of the object. The center of gravity of an irregularly 
shaped object, such as a wrench, can be determined experimentally by suspending 
the wrench from two different arbitrary points (Fig. 8.10). The wrench is first hung 
from point A, and a vertical line AB (which can be established with a plumb bob) is 
drawn when the wrench is in equilibrium. The wrench is then hung from point C, and 
a second vertical line CD is drawn. The center of gravity coincides with the intersec-
tion of these two lines. In fact, if the wrench is hung freely from any point, the center 
of gravity always lies straight below the point of support, so the vertical line through 
that point must pass through the center of gravity.

Several examples in Section 8.4 involve homogeneous, symmetric objects where 
the centers of gravity coincide with their geometric centers. A rigid object in a 
uniform gravitational field can be balanced by a single force equal in magnitude 
to the weight of the object, as long as the force is directed upward through the 
object’s center of gravity.

t ip 8.1  Specify Your Axis
Choose the axis of rotation and 
use that axis exclusively through-
out a given problem. The axis 
need not correspond to a physical 
axle or pivot point. Any conve-
nient point will do.

A
B

C

D

C

The wrench is hung 
freely �rst from point A 
and then from point C.

The intersection of 
the two lines AB 
and CD locates the 
center of gravity.

A

B

Figure 8.10  An experimental 
technique for determining the cen-
ter of gravity of a wrench.

 ■ e Xa Mp Le  8.4 Where Is the Center of Gravity?

g Oa L  Find the center of gravity of a system of objects.

pr Ob Le M  (a) Three objects are located in a coordi-
nate system as shown in Figure 8.11a. Find the center 
of gravity. (b) How does the answer change if the object 
on the left is displaced upward by 1.00 m and the 
object on the right is displaced downward by 0.500 m  
(Figure 8.11b)? Treat the objects as point particles.

s t r at e g Y  The y-coordinate and z-coordinate of the  
center of gravity in part (a) are both zero because all the 
objects are on the x-axis. We can find the x-coordinate  
of the center of gravity using Equation 8.3a. Part  
(b) requires Equation 8.3b.

0.500 m
1.00 m

4.00 kg2.00 kg5.00 kg
x

y

0.500 m

a

0.500 m1.00 m

4.00 kg

2.00 kg

5.00 kg

x

y

1.00 m

b

Figure 8.11  (Example 8.4) Locating the center of gravity of a system of 
three particles.

(Continued)
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s OLUti On
(a) Find the center of gravity of the system in 
Figure 8.11a. 

Apply Equation 8.3a to the system of three 
objects:

(1) xcg 5
gmixi
gmi

5
m1x1 1 m2x2 1 m3x3

m1 1 m2 1 m3

re Mar Ks  Notice that translating objects in the y -direction doesn’t change the x -coordinate of the center of gravity. 
The three components of the center of gravity are each independent of the other two coordinates.

QUes t i On  8.4  If 1.00 kg is added to the masses on the left and right in Figure 8.11a, does the center of mass (a) move 
to the left, (b) move to the right, or (c) remain in the same position?

e Xe rc i s e  8.4  If a fourth particle of mass 2.00 kg is placed at (0, 0.25 m) in Figure 8.11a, find the x - and y -coordinates 
of the center of gravity for this system of four particles.

a ns We r  xcg 5 0.115 m; ycg 5 0.038 5 m

 ■ e Xa Mp Le  8.5 Locating Your Lab Partner’s Center of Gravity 

g Oa L  Use torque to find a center of gravity.

pr Ob Le M  In this example we show how to find the loca-
tion of a person’s center of gravity. Suppose your lab partner 
has a height L of 173 cm (5 ft, 8 in.) and a weight w of 715 
N (160 lb). You can determine the position of his center of 
gravity by having him stretch out on a uniform board sup-
ported at one end by a scale, as shown in Figure 8.12. If the 
board’s weight wb is 49 N and the scale reading F is 3.50 3 
102 N, find the distance of your lab partner’s center of grav-
ity from the left end of the board.

s t r at e g Y  To find the position xcg of the center of grav-
ity, compute the torques using an axis through O. There is 
no torque due to the normal force nS because its moment arm is zero about an axis through O. Set the sum of the torques 
equal to zero and solve for xcg.

s OLUti On

F
S

nS

wS

L
L/2

b

xcg

O

wS

Figure 8.12  (Example 8.5) Determining your lab partner’s center 
of gravity.

Apply the second condition of equilibrium: o ti 5 tn 1 tw 1 twb
 1 tF 5 0

Compute the numerator of Equation (1): o mixi 5 m1x1 1 m2x2 1 m3x3

5 (5.00 kg)(20.500 m) 1 (2.00 kg)(0 m) 1 (4.00 kg)(1.00 m)

5 1.50 kg ? m
Substitute the denominator, omi 5 11.0 kg, and 
the numerator into Equation (1). xcg 5  

1.50 kg # m

11.0 kg
5    0.136 m

(b) How does the answer change if the positions 
of the objects are changed as in Figure 8.11b?

Because the x -coordinates have not been 
changed, the x -coordinate of the center of grav-
ity is also unchanged: xcg 5   0.136 m

Write Equation 8.3b: ycg 5
gmiyi
gmi

5
m1y1 1 m2y2 1 m3y3

m1 1 m2 1 m3

Substitute values: ycg 5
15.00 kg 2 11.00 m 2 1 12.00 kg 2 10 m 2 1 14.00 kg 2 120.500 m 2

5.00 kg 1 2.00 kg 1 4.00 kg

ycg 5   0.273 m
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re Mar Ks  The given information is sufficient only to determine the x -coordinate of the center of gravity. The other 
two coordinates can be estimated, based on the body’s symmetry.

QUes t i On  8.5  What would happen if a support is placed exactly at x 5 79 cm followed by the removal of the supports 
at the subject’s head and feet?

e Xe rc i s e  8.5  Suppose a 416-kg alligator of length 3.5 m is stretched out on a board of the same length weighing 65 N. 
If the board is supported on the ends as in Figure 8.12, and the scale reads 1 880 N, find the x-component of the alliga-
tor’s center of gravity.

a ns We r  1.59 m

Solve for xcg and substitute known values:  xcg 5
FL 2 wb 1L/2 2

w

 5
1350 N 2 1173 cm 2 2 149 N 2 186.5 cm 2

715 N
5    79 cm

Substitute expressions for the torques: 0 2 wxcg 2 wb(L/2) 1 FL 5 0

8.4    Examples of Objects in Equilibrium
Learning Objective

1. Apply the conditions of mechanical equilibrium to rigid bodies.

Recall from Chapter 4 that when an object is treated as a geometric point, equi-
librium requires only that the net force on the object is zero. In this chapter 
we have shown that for extended objects a second condition for equilibrium 
must also be satisfied: The net torque on the object must be zero. The following 
general procedure is recommended for solving problems that involve objects in 
equilibrium.

 ■ pr Ob Le M-s OLv i ng  s t r at e g Y

Objects in Equilibrium

1. Diagram the system. Include coordinates and choose a convenient rotation 
axis for computing the net torque on the object.

2. Draw a force diagram of the object of interest, showing all external forces act-
ing on it. For systems with more than one object, draw a separate diagram for 
each object. (Most problems will have a single object of interest.)

3. Apply o ti 5 0, the second condition of equilibrium. This condition yields 
a single equation for each object of interest. If the axis of rotation has been 
carefully chosen, the equation often has only one unknotwn and can be solved 
immediately.

4. Apply oFx 5 0 and oFy 5 0, the first condition of equilibrium. This yields  
two more equations per object of interest.

5. Solve the system of equations. For each object, the two conditions of 
equilibrium yield three equations, usually with three unknowns. Solve by 
substitution.

t ip 8.2  Rotary Motion 
Under Zero Torque
If a net torque of zero is exerted 
on an object, it will continue 
to rotate at a constant angular 
speed—which need not be zero. 
However, zero torque does imply 
that the angular acceleration is 
zero.

 ■ e Xa Mp Le  8.6 A Weighted Forearm 

g Oa L  Apply the equilibrium conditions to the human body.

pr Ob Le M  A 50.0-N (11-lb) bowling ball is held in a person’s hand with the forearm horizontal, as in Figure 8.13a. 
The biceps muscle is attached 0.030 0  m from the joint, and the ball is 0.350 m from the joint. Find the upward 

(Continued)
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force F
S

 exerted by the biceps on the forearm 
(the ulna) and the downward force R

S

 exerted 
by the humerus on the forearm, acting at the 
joint. Neglect the weight of the forearm and 
slight deviation from the vertical of the biceps.

s t r at e g Y  The forces acting on the forearm 
are equivalent to those acting on a bar of length 
0.350 m, as shown in Figure 8.13b. Choose the 
usual x - and y -coordinates as shown and the 
axis at O on the left end. (This completes Steps 
1 and 2.) Use the conditions of equilibrium to  
generate equations for the unknowns, and solve.

O

0.350 m

0.030 0 m
50.0 N

a b

F
S

R
S

0.350 m
0.030 0 m

Ulna

Biceps

Humerus

50.0 N

O

Figure 8.13  (Example 8.6) (a) A weight held with the forearm horizontal. 
(b) The mechanical model for the system.

Apply the second condition for equilibrium (Step 3) and 
solve for the upward force F :

o ti 5 tR 1 tF 1 tBB 5 0

R(0) 1 F(0.030 0 m) 2 (50.0 N)(0.350 m) 5 0

F 5   583 N (131 lb)

Apply the first condition for equilibrium (Step 4) and 
solve (Step 5) for the downward force R:

o Fy 5 F 2 R 2 50.0 N 5 0

R 5 F 2 50.0 N 5 583 N 2 50 N 5   533 N (120 lb)

re Mar Ks  The magnitude of the force supplied by the biceps must be about ten times as large as the bowling ball it is 
supporting!

QUes t iOn  8.6  Suppose the biceps were surgically reattached three centimeters farther toward the person’s hand. If the 
same bowling ball were again held in the person’s hand, how would the force required of the biceps be affected? Explain.

e Xe rc i s e  8.6  Suppose you wanted to limit the force acting on your joint to a maximum value of 8.00 3 102 N. (a) Under 
these circumstances, what maximum weight would you attempt to lift? (b) What force would your biceps apply while lift-
ing this weight?

a ns We r s  (a) 75.0 N (b) 875 N

 ■ e Xa Mp Le  8.7 Don’t Climb the Ladder

g Oa L  Apply the two conditions of equilibrium.

pr Ob Le M  A uniform ladder 10.0 m long and weighing 50.0 N  
rests against a frictionless vertical wall as in Figure 8.14a. If the 
ladder is just on the verge of slipping when it makes a 50.0° 
angle with the ground, find the coefficient of static friction 
between the ladder and ground.

s t r at e gY  Figure 8.14b is the force diagram for the lad-
der. The first condition of equilibrium, gF

S

i 5 0, gives two 
equations for three unknowns: the magnitudes of the static 
friction force f and the normal force n, both acting on the 
base of the ladder, and the magnitude of the force of the 
wall, P, acting on the top of the ladder. The second condi-
tion of equilibrium, oti 5 0, gives a third equation (for P), so  
all three quantities can be found. The definition of static friction then allows computation of the coefficient of static friction.

s OLUti On

O

50 N

P
S

d1

d2O

50 N
50° 50°

10 m

f
S

P
S

nS

a b c

Figure 8.14  (Example 8.7) (a) A ladder leaning against a 

frictionless wall. (b) A force diagram of the ladder. (c) Lever 

arms for the force of gravity and P
S

.

s OLUti On

Apply the first condition of equilibrium to the ladder: (1) oFx 5 f 2 P 5 0 S f 5 P

(2) oFy 5 n 2 50.0 N 5 0 S n 5 50.0 N
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(Continued)

Apply the second condition of equilibrium, computing 
torques around the base of the ladder, with tgrav stand-
ing for the torque due to the ladder’s 50.0-N weight: oti 5 tf 1 tn 1 tgrav 1 tP 5 0

The torques due to friction and the normal force are 
zero about O because their moment arms are zero. 
(Moment arms can be found from Fig. 8.14c.) 0 1 0 2(50.0 N)(5.00 m) sin 40.0° 1 P(10.0 m) sin 50.0° 5 0

P 5 21.0 N

From Equation (1), we now have f 5 P 5 21.0 N. The 
ladder is on the verge of slipping, so write an expression 
for the maximum force of static friction and solve for ms: 21.0 N 5 f 5 fs,max 5 msn 5 ms(50.0 N)

ms 5
21.0 N
50.0 N

5    0.420

re Mar Ks  Note that torques were computed around an axis through the bottom of the ladder so that only P
S

 and the 
force of gravity contributed nonzero torques. This choice of axis reduces the complexity of the torque equation, often 
resulting in an equation with only one unknown.

QUes t i On  8.7  If a 50.0 N monkey hangs from the middle rung, would the coefficient of static friction be (a) doubled, 
(b) halved, or (c) unchanged?

e Xe rc i s e  8.7  If the coefficient of static friction is 0.360, and the same ladder makes a 60.0° angle with respect to the 
horizontal, how far along the length of the ladder can a 70.0-kg painter climb before the ladder begins to slip?

a ns We r  6.33 m

 ■ e Xa Mp Le  8.8 Walking a Horizontal Beam

g Oa L  Apply the two conditions of 
equilibrium.

pr Ob Le M  A uniform horizontal beam 
5.00 m long and weighing 3.00 3 102 N 
is attached to a wall by a pin connection 
that allows the beam to rotate. Its far 
end is supported by a cable that makes 
an angle of 53.0° with the horizontal 
(Fig. 8.15a). If a person weighing 6.00 3 
102 N stands 1.50 m from the wall, find 
the magnitude of the tension T

S

 in the 
cable and the components of the force R

S

 
exerted by the wall on the beam.

s t r at e g Y  See Figure 8.15a–c (Steps 
1 and 2). The second condition of equi-
librium, oti 5 0, with torques computed 
around the pin, can be solved for the 
tension T in the cable. The first condi-
tion of equilibrium, gF

S

i 5 0, gives two 
equations and two unknowns for the 
two components of the force exerted by 
the wall, Rx and Ry.

Figure 8.15  (Example 8.8) (a) A uniform beam attached to a wall and supported by a 
cable. (b) A force diagram for the beam. (c) The component form of the force diagram. 
(d) (Exercise 8.8)

Ry

Rx

T cos 53.0�

T sin 53.0�

R
S

T
S

a b

c

53.0�

53.0�

5.00 m

2.50 m

1.50 m

600 N

600 N

300 N

300 N

6.00 m
2.00 m

30°

d
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s OLUti On
From Figure 8.15, the forces causing torques are the wall 
force R

S

, the gravity forces on the beam and the man, wB 
and wM, and the tension force T

S

. Apply the condition of 
rotational equilibrium (Step 3): o ti 5 tR 1 tB 1 tM 1 tT 5 0

Compute torques around the pin at O, so tR 5 0 (zero 
moment arm). The torque due to the beam’s weight acts 
at the beam’s center of gravity. o ti 5 0 2 wB(L/2) 2 wM(1.50 m) 1 TL sin (53°) 5 0

re Mar Ks  Even if we selected some other axis for the torque equation, the solution would be the same. For example, 
if the axis were to pass through the center of gravity of the beam, the torque equation would involve both T and Ry. 
Together with Equations (1) and (2), however, the unknowns could still be found—a good exercise. In both Example 8.6 
and Example 8.8, notice the steps of the Problem-Solving Strategy could be carried out in the explicit recommended 
order.

QUes t i On  8.8  What happens to the tension in the cable if the man in Figure 8.15a moves farther away from the wall?

e Xe rc i s e  8.8  A person with mass 55.0 kg stands 2.00 m away from the wall on a uniform 6.00-m beam, as shown in 
Figure 8.15d. The mass of the beam is 40.0 kg. Find the hinge force components and the tension in the wire.

a ns We r s  T 5 751 N, Rx 5 26.50 3 102 N, Ry 5 556 N

Substitute L 5 5.00 m and the weights, solving for T : 2(3.00 3 102 N)(2.50 m) 2 (6.00 3 102 N)(1.50 m) 

 1 (T sin 53.0°)(5.00 m) 5 0

T 5   413 N

Now apply the first condition of equilibrium to the beam 
(Step 4): (1) o Fx 5 Rx 2 T cos 53.0° 5 0

(2) o Fy 5 Ry 2 wB 2 wM 1 T sin 53.0° 5 0

Substituting the value of T found in the previous step and 

the weights, obtain the components of R
S

 (Step 5): Rx 5   249 N  Ry 5   5.70 3 102 N

8.5     Relationship Between Torque  
and Angular Acceleration
Learning Objectives

1. Define moment of inertia and state the rotational analog of Newton’s second 
law.

2. Calculate the moment of inertia for a variety of different objects.

3. Apply the rotational second law to physical systems.

When a rigid object is subject to a net torque, it undergoes an angular acceleration 
that is directly proportional to the net torque. This result, which is analogous to 
Newton’s second law, is derived as follows.

The system shown in Figure 8.16 consists of an object of mass m connected to 
a very light rod of length r. The rod is pivoted at the point O, and its movement is 
confined to rotation on a frictionless horizontal table. Assume that a force Ft acts 

O

m
r

Ft
S

Figure 8.16  An object of mass m 
attached to a light rod of length r 
moves in a circular path on a fric-
tionless horizontal surface while a 
tangential force F

S

t acts on it.
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perpendicular to the rod and hence is tangent to the circular path of the object. 
Because there is no force to oppose this tangential force, the object undergoes a 
tangential acceleration at in accordance with Newton’s second law:

Ft 5 mat

Multiply both sides of this equation by r :

Ftr 5 mrat

Substituting the equation at 5 ra relating tangential and angular acceleration into 
the above expression gives

 Ftr 5 mr 2a [8.4]

The left side of Equation 8.4 is the torque acting on the object about its axis of 
rotation, so we can rewrite it as

 t 5 mr 2a [8.5]

Equation 8.5 shows that the torque on the object is proportional to the angular 
acceleration of the object, where the constant of proportionality mr 2 is called 
the moment of inertia of the object of mass m. (Because the rod is very light, its 
moment of inertia can be neglected.)

■ Quick Quiz

8.1  Using a screwdriver, you try to remove a screw from a piece of furniture, but 
can’t get it to turn. To increase the chances of success, you should use a screwdriver 
that (a) is longer, (b) is shorter, (c) has a narrower handle, or (d) has a wider handle.

Torque on a Rotating Object
Consider a solid disk rotating about its axis as in Figure 8.17a. The disk consists of 
many particles at various distances from the axis of rotation. (See Fig. 8.17b.) The 
torque on each one of these particles is given by Equation 8.5. The net torque on 
the disk is given by the sum of the individual torques on all the particles:

 o t 5 (o mr 2)a [8.6]

Because the disk is rigid, all of its particles have the same angular acceleration, so a 
is not involved in the sum. If the masses and distances of the particles are labeled 
with subscripts as in Figure 8.17b, then

o mr 2 5 m1r1
2 1 m2r2

2 1 m3r3
2 1 ? ? ?

This quantity is the moment of inertia, I, of the whole body:

 I ; o mr 2 [8.7] b Moment of inertia

m3

m2

m1

r2

r3
r1

a b

Figure 8.17  (a) A solid disk rotat-
ing about its axis. (b) The disk con-
sists of many particles, all with the 
same angular acceleration.
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The moment of inertia has the SI units kg ? m2. Using this result in Equation 8.6, 
we see that the net torque on a rigid body rotating about a fixed axis is given by

 o t 5 Ia [8.8]

Equation 8.8 says that the angular acceleration of an extended rigid object is 
proportional to the net torque acting on it. This equation is the rotational analog 
of Newton’s second law of motion, with torque replacing force, moment of inertia 
replacing mass, and angular acceleration replacing linear acceleration. Although 
the moment of inertia of an object is related to its mass, there is an important dif-
ference between them. The mass m depends only on the quantity of matter in an 
object, whereas the moment of inertia, I, depends on both the quantity of matter 
and its distribution (through the r 2 term in I 5 omr 2) in the rigid object.

■ Quick Quiz

8.2  A constant net torque is applied to an object. Which one of the following will 
not be constant? (a) angular acceleration, (b) angular velocity, (c) moment of inertia, 
or (d) center of gravity.

8.3  The two rigid objects shown in Figure 8.18 have the same mass, radius, and 
angular speed, each spinning around an axis through the center of its circular 
shape. If the same braking torque is applied to each, which takes longer to stop?  
(a) A (b) B (c) more information is needed

The gear system on a bicycle provides an easily visible example of the relation-
ship between torque and angular acceleration. Consider first a five-speed gear 
system in which the drive chain can be adjusted to wrap around any of five gears 
attached to the back wheel (Fig. 8.19). The gears, with different radii, are concen-
tric with the wheel hub. When the cyclist begins pedaling from rest, the chain is 
attached to the largest gear. Because it has the largest radius, this gear provides 
the largest torque to the drive wheel. A large torque is required initially, because 
the bicycle starts from rest. As the bicycle rolls faster, the tangential speed of the 
chain increases, eventually becoming too fast for the cyclist to maintain by push-
ing the pedals. The chain is then moved to a gear with a smaller radius, so the 
chain has a smaller tangential speed that the cyclist can more easily maintain. 
This gear doesn’t provide as much torque as the first, but the cyclist needs to 
accelerate only to a somewhat higher speed. This process continues as the bicycle 
moves faster and faster and the cyclist shifts through all five gears. The fifth gear 
supplies the lowest torque, but now the main function of that torque is to counter 
the frictional torque from the rolling tires, which tends to reduce the speed of the 
bicycle. The small radius of the fifth gear allows the cyclist to keep up with the 
chain’s movement by pushing the pedals.

A 15-speed bicycle has the same gear structure on the drive wheel, but has three 
gears on the sprocket connected to the pedals. By combining different positions of 
the chain on the rear gears and the sprocket gears, 15 different torques are available.

More on the Moment of Inertia
As we have seen, a small object (or a particle) has a moment of inertia equal to 
mr 2 about some axis. The moment of inertia of a composite object about some axis 
is just the sum of the moments of inertia of the object’s components. For example, 
suppose a majorette twirls a baton as in Figure 8.20. Assume that the baton can 
be modeled as a very light rod of length 2, with a heavy object at each end. (The 
rod of a real baton has a significant mass relative to its ends.) Because we are 
neglecting the mass of the rod, the moment of inertia of the baton about an axis 
through its center and perpendicular to its length is given by Equation 8.7:

I 5 omr 2

Rotational analog of c
Newton’s second law

a pp Lica t iOn
Bicycle Gears

B

A

Figure 8.18  (Quick Quiz 8.3)

Figure 8.19  The drive wheel and 
gears of a bicycle.

©
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Figure 8.20  A baton of length 
2, and mass 2m. (The mass of the 
connecting rod is neglected.) The 
moment of inertia about the axis 
through the baton’s center and per-
pendicular to its length is 2m,2.
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Because this system consists of two objects with equal masses equidistant from the 
axis of rotation, r 5 , for each object, and the sum is

I 5 omr 2 5 m,2 1 m,2 5 2m,2

If the mass of the rod were not neglected, we would have to include its moment of 
inertia to find the total moment of inertia of the baton.

We pointed out earlier that I is the rotational counterpart of m. However, there 
are some important distinctions between the two. For example, mass is an intrin-
sic property of an object that doesn’t change, whereas the moment of inertia of a 
system depends on how the mass is distributed and on the location of the axis of 
rotation. Example 8.9 illustrates this point.

re Mar Ks  The moment of inertia is smaller in part (b) because in this configuration the 0.20-kg balls are essentially 
located on the axis of rotation.

■ e Xa Mp Le  8.9 The Baton Twirler

g Oa L  Calculate a moment of inertia.

pr Ob Le M  In an effort to be the star of the halftime show, a 
majorette twirls an unusual baton made up of four balls fastened 
to the ends of very light rods (Fig. 8.21). Each rod is 1.0 m long. 
(a) Find the moment of inertia of the baton about an axis per-
pendicular to the page and passing through the point where the 
rods cross. (b) The majorette tries spinning her strange baton 
about the axis OO9, as shown in Figure 8.22 on page 256. Calcu-
late the moment of inertia of the baton about this axis.

s t r at e g Y  In Figure 8.21, all four balls contribute to the 
moment of inertia, whereas in Figure 8.22, with the new axis, 
only the two balls on the left and right contribute. Technically, 
the balls on the top and bottom in Figure 8.22 still make a small 
contribution because they’re not really point particles. However, their contributions can be neglected because the distance 
from the axis of rotation of the balls on the horizontal rod is much greater than the radii of the balls on the vertical rod.

s OLUti On

0.20 kg 0.30 kg

0.30 kg 0.20 kg

1 2

4

0.50 m

3

Figure 8.21  (Example 

8.9a) Four balls con-
nected to light rods 
rotating in the plane  
of the page.

(a) Calculate the moment of inertia of the baton when 
oriented as in Figure 8.21.

Apply Equation 8.7, neglecting the mass of the connect-
ing rods:

I 5 omr2 5 m1r1
2 1 m2r2

2 1 m3r3
2 1 m4r4

2

5 (0.20 kg)(0.50 m)2 1 (0.30 kg)(0.50 m)2

1(0.20 kg)(0.50 m)2 1 (0.30 kg)(0.50 m)2

I 5   0.25 kg ? m2

(b) Calculate the moment of inertia of the baton when 
oriented as in Figure 8.22.

Apply Equation 8.7 again, neglecting the radii of the  
0.20-kg balls.

I 5 omr2 5 m1r1
2 1 m2r2

2 1 m3r3
2 1 m4r4

2

5 (0.20 kg)(0)2 1 (0.30 kg)(0.50 m)2 1 (0.20 kg)(0)2

1 (0.30 kg)(0.50 m)2

I 5   0.15 kg ? m2

(Continued)
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QUes t i On  8.9  If one of the rods is lengthened, which 
one would cause the larger change in the moment of 
inertia, the rod connecting balls one and three or the 
rod connecting balls two and four?

e Xe rc i s e  8.9  Yet another bizarre baton is created 
by taking four identical balls, each with mass 0.300 kg, 
and fixing them as before, except that one of the rods 
has a length of 1.00 m and the other has a length of 
1.50 m. Calculate the moment of inertia of this baton 
(a) when oriented as in Figure 8.21; (b) when oriented 
as in Figure 8.22, with the shorter rod vertical; and  
(c) when oriented as in Figure 8.22, but with longer 
rod vertical.

a ns We r s  (a) 0.488 kg ? m2 (b) 0.338 kg ? m2  
(c) 0.150 kg ? m2

0.20 kg

0.20 kg

0.30 kg0.30 kg

O

O�

Figure 8.22  (Example 8.9b) 
A double baton rotating about 
the axis OO9.

Calculation of Moments of Inertia for Extended Objects
The method used for calculating moments of inertia in Example 8.9 is simple when 
only a few small objects rotate about an axis. When the object is an extended one, 
such as a sphere, a cylinder, or a cone, techniques of calculus are often required, 
unless some simplifying symmetry is present. One such extended object amenable 
to a simple solution is a hoop rotating about an axis perpendicular to its plane and 
passing through its center, as shown in Figure 8.23. (A bicycle tire, for example, 
would approximately fit into this category.)

To evaluate the moment of inertia of the hoop, we can still use the equation 
I 5 omr 2 and imagine that the mass of the hoop M is divided into n small segments 
having masses m1, m2, m3,  ?  ?  ?  , mn, as in Figure 8.23, with M 5 m1 1 m2 1 m3 1  
?  ?  ?  1 mn. This approach is just an extension of the baton problem described in 
the preceding examples, except that now we have a large number of small masses 
in rotation instead of only four.

We can express the sum for I as

I 5 omr 2 5 m1r1
2 1 m2r2

2 1 m3r3
2 1 ? ? ? 1 mnrn

2

All of the segments around the hoop are at the same distance R from the axis of rota-
tion, so we can drop the subscripts on the distances and factor out R2 to obtain

 I 5 (m1 1 m2 1 m3 1 ? ? ? 1 mn)R
2 5 MR2 [8.9]

This expression can be used for the moment of inertia of any ring-shaped object 
rotating about an axis through its center and perpendicular to its plane. Note that 
the result is strictly valid only if the thickness of the ring is small relative to its 
inner radius.

The hoop we selected as an example is unique in that we were able to find an 
expression for its moment of inertia by using only simple algebra. Unfortunately, 
for most extended objects the calculation is much more difficult because the mass 
elements are not all located at the same distance from the axis, so the methods of 
integral calculus are required. The moments of inertia for some other common 
shapes are given without proof in Table 8.1. You can use this table as needed to 
determine the moment of inertia of a body having any one of the listed shapes.

If mass elements in an object are redistributed parallel to the axis of rotation, 
the moment of inertia of the object doesn’t change. Consequently, the expres-
sion I 5 MR2 can be used equally well to find the axial moment of inertia of an 
embroidery hoop or of a long sewer pipe. Likewise, a door turning on its hinges is 
described by the same moment-of-inertia expression as that tabulated for a long, 
thin rod rotating about an axis through its end.

t ip 8.3  No Single Moment 
of Inertia
Moment of inertia is analogous to 
mass, but there are major differ-
ences. Mass is an inherent prop-
erty of an object. The moment of 
inertia of an object depends on 
the shape of the object, its mass, 
and the choice of rotation axis.

2

R

m1

m

m3

Figure 8.23  A uniform hoop can 
be divided into a large number of 
small segments that are equidistant 
from the center of the hoop.
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t able 8.1  Moments of Inertia for Various Rigid Objects of Uniform Composition

Hoop or thin
cylindrical shell
I � MR 

2
R

Solid cylinder
or disk

R

Long, thin rod
with rotation axis
through center

Long, thin
rod with
rotation axis
through end

LL

MR 

21
2

 1
12

I � ML2

Thin spherical
shell

R

2
3

I � MR 

2

1
3

ML2I �

Solid sphere

 2
5

I � MR 

2

R

I �

 ■ e Xa Mp Le  8.10 Warming Up

g Oa L  Find a moment of inertia and apply the rota-
tional analog of Newton’s second law.

pr Ob Le M  A baseball player loosening up his arm 
before a game tosses a 0.150-kg baseball, using only 
the rotation of his forearm to accelerate the ball 
(Fig. 8.24). The forearm has a mass of 1.50 kg and 
the length from the elbow to the ball's center is 
0.350 m. The ball starts at rest and is released with 
a speed of 30.0 m/s in 0.300 s. (a) Find the constant 
angular acceleration of the arm and ball. (b) Calcu-
late the moment of inertia of the system consisting of the forearm and ball. (c) Find the torque exerted on the system that 
results in the angular acceleration found in part (a).

s t r at e g Y  The angular acceleration can be found with rotational kinematic equations, while the moment of inertia of 
the system can be obtained by summing the separate moments of inertia of the ball and forearm. The ball is treated as a 
point particle. Multiplying these two results together gives the torque.

s OLUti On

0.350 m

Figure 8.24  (Example 8.10) A ball 
being tossed by a pitcher. The fore-
arm is used to accelerate the ball.

(a) Find the angular acceleration of the ball.

The angular acceleration is constant, so use the angular 
velocity kinematic equation with vi 5 0: v 5 vi 1 at S a 5

v

t

The ball accelerates along a circular arc with radius given 
by the length of the forearm. Solve v 5 rv for v and 
substitute: a 5

v

t
5

v
rt

5  
30.0 m/s

10.350 m 2 10.300 s 2 5    286 rad/s2

(Continued)
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(b) Find the moment of inertia of the system (forearm 
plus ball).

Find the moment of inertia of the ball about an axis that 
passes through the elbow, perpendicular to the arm: Iball 5 mr 2 5 (0.150 kg)(0.350 m)2 5 1.84 3 1022 kg ? m2

Obtain the moment of inertia of the forearm, modeled 
as a rod rotating about an axis through one end, by 
consulting Table 8.1: Iforearm 5 1

3 ML2 5 1
3 11.50 kg 2 10.350 m 22

5 6.13 3 1022 kg ? m2

Sum the individual moments of inertia to obtain the 
moment of inertia of the system (ball plus forearm): Isystem 5 Iball 1 Iforearm 5   7.97 3 1022 kg ? m2

(c) Find the torque exerted on the system.

Apply Equation 8.8, using the results of parts (a) and (b): t 5 Isystema 5 (7.97 3 1022 kg ? m2)(286 rad/s2) 

5   22.8 N ? m

re Mar Ks  Notice that having a long forearm can greatly increase the torque and hence the acceleration of the ball. 
This is one reason it’s advantageous for a pitcher to be tall: the pitching arm is proportionately longer. A similar advan-
tage holds in tennis, where taller players can usually deliver faster serves.

QUes t i On  8.10  Why do pitchers step forward when delivering the pitch? Why is the timing important?

e Xe rc i s e  8.10  A catapult with a radial arm 4.00 m long accelerates a ball of mass 20.0 kg through a quarter circle. 
The ball leaves the apparatus at 45.0 m/s. If the mass of the arm is 25.0 kg and the acceleration is constant, find (a) the 
angular acceleration, (b) the moment of inertia of the arm and ball, and (c) the net torque exerted on the ball and arm.

Hint: Use the time-independent rotational kinematics equation to find the angular acceleration, rather than the 
angular velocity equation.

a ns We r s  (a) 40.3 rad/s2 (b) 453 kg ? m2 (c) 1.83 3 104 N ? m

 ■ e Xa Mp Le  8.11 The Falling Bucket

g Oa L  Combine Newton’s second law with its 
rotational analog.

pr Ob Le M  A solid, uniform, frictionless cylin-
drical reel of mass M 5 3.00 kg and radius R 5 
0.400 m is used to draw water from a well (Fig. 
8.25a). A bucket of mass m 5 2.00 kg is attached 
to a cord that is wrapped around the cylinder.  
(a) Find the tension T in the cord and accelera-
tion a of the bucket. (b) If the bucket starts from 
rest at the top of the well and falls for 3.00 s 
before hitting the water, how far does it fall?

s t r at e g Y  This problem involves three equa-
tions and three unknowns. The three equations 
are Newton’s second law applied to the bucket, 
ma 5 oFi; the rotational version of the second law 
applied to the cylinder, Ia 5 oti ; and the relation-
ship between linear and angular acceleration, a 
5 ra, which connects the dynamics of the bucket 
and cylinder. The three unknowns are the acceleration a of the bucket, the angular acceleration a of the cylinder, and 
the tension T in the rope. Assemble the terms of the three equations and solve for the three unknowns by substitution. 
Part (b) is a review of kinematics.

Figure 8.25  (Example 8.11) (a) A water 
bucket attached to a rope passing over a 
frictionless reel. (b) A force diagram for the 
bucket. (c) The tension produces a torque 
on the cylinder about its axis of rotation. 
(d) A falling cylinder (Exercise 8.11).
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s OLUti On
(a) Find the tension in the cord and the acceleration of 
the bucket.

Apply Newton’s second law to the bucket in Figure 8.25b. 
There are two forces: the tension T

S

 acting upward and 
gravity m gS acting downward.

(1) ma 5 2mg 1 T

Apply t 5 Ia to the cylinder in Figure 8.25c: at 5 Ia 5 1
2MR 2a    (solid cylinder)

Notice the angular acceleration is clockwise, so the torque 
is negative. The normal and gravity forces have zero 
moment arm and don’t contribute any torque.

(2) 2TR 5 1
2MR 2a

Solve for T and substitute a 5 a/R (notice that both a and 
a are negative):

(3) T 5 21
2MRa 5 21

2Ma

Substitute the expression for T in Equation (3) into 
Equation (1), and solve for the acceleration:

ma 5 2mg 2 1
2Ma S a 5 2

mg

m 1 1
2M

Substitute the values for m, M, and g, getting a, then 
substitute a into Equation (3) to get T :

a 5   25.60 m/s2  T 5   8.40 N

(b) Find the distance the bucket falls in 3.00 s.

Apply the displacement kinematic equation for constant 
acceleration, with t 5 3.00 s and v0 5 0:

Dy 5 v0t 1 1
2at

2 5 2 1
2 15.60 m/s2 2 13.00 s 22 5   225.2 m

re Mar Ks  Proper handling of signs is very important in these problems. All such signs should be chosen initially and 
checked mathematically and physically. In this problem, for example, both the angular acceleration a and the acceleration 
a are negative, so a 5 a/R applies. If the rope had been wound the other way on the cylinder, causing counterclockwise 
rotation, the torque would have been positive, and the relationship would have been a 5 2a/R, with the double negative 
making the right-hand side positive, just like the left-hand side.

QUes t i On  8.11  How would the acceleration and tension change if most of the reel’s mass were at its rim?

e Xe rc i s e  8.11  A hollow cylinder of mass 0.100 kg and radius 4.00 cm has a string wrapped several times around it, as in 
Figure 8.25d. If the string is attached to a rigid support and the cylinder allowed to drop from rest, find (a) the acceleration 
of the cylinder and (b) the speed of the cylinder when a meter of string has unwound off of it.

a ns We r s  (a) 24.90 m/s2 (b) 3.13 m/s

8.6    Rotational Kinetic Energy
Learning Objectives

1. Define the kinetic energy of a rotating object and extend the work-energy 
theorem to include it.

2. Apply the extended work-energy theorem to systems involving rotation.

In Chapter 5 we defined the kinetic energy of a particle moving through space 
with a speed v as the quantity 1

2mv
2. Analogously, an object rotating about some 

axis with an angular speed v has rotational kinetic energy given by 1
2Iv

2.  
To prove this, consider an object in the shape of a thin, rigid plate rotating 
around some axis perpendicular to its plane, as in Figure 8.26. The plate con-
sists of many small particles, each of mass m. All these particles rotate in circu-
lar paths around the axis. If r is the distance of one of the particles from the 
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axis of rotation, the speed of that particle is v 5 rv. Because the total kinetic 
energy of the plate’s rotation is the sum of all the kinetic energies associated 
with its particles, we have

KEr 5 a 1 1
2mv

2 2 5 a 1 1
2mr

2v2 2 5 1
2 1 amr 2 2v2

In the last step, the v2 term is factored out because it’s the same for every particle. 
Now, the quantity in parentheses on the right is the moment of inertia of the plate 
in the limit as the particles become vanishingly small, so

 KEr 5 1
2Iv

2 [8.10]

where I 5 omr 2 is the moment of inertia of the plate.
A system such as a bowling ball rolling down a ramp is described by three types 

of energy: gravitational potential energy PEg, translational kinetic energy KEt, 
and rotational kinetic energy KEr. All these forms of energy, plus the potential 
energies of any other conservative forces, must be included in our equation for the 
conservation of mechanical energy of an isolated system:

 (KEt 1 KEr 1 PE)i 5 (KEt 1 KEr 1 PE)f [8.11]

where i and f refer to initial and final values, respectively, and PE includes the 
potential energies of all conservative forces in a given problem. This relation is 
true only if we ignore dissipative forces such as friction. Otherwise, it’s necessary to 
resort to a generalization of the work–energy theorem:

 Wnc 5 DKEt 1 DKEr 1 DPE [8.12]

 ■ pr Ob Le M-s OLv i ng  s t r at e g Y

Energy Methods and Rotation

1. Choose two points of interest, one where all necessary information is known, 
and the other where information is desired.

2. Identify the conservative and nonconservative forces acting on the system 
being analyzed.

3. Write the general work–energy theorem, Equation 8.12, or Equation 8.11 if all 
forces are conservative.

4. Substitute general expressions for the terms in the equation.
5. Use v 5 rv to eliminate either v or v from the equation.
6. Solve for the unknown.

Conservation of c

mechanical energy

Work–energy theorem c

including rotational energy

m

r

z axis

O

vS

v
S

Figure 8.26  A rigid plate rotates 
about the z-axis with angular speed 
v. The kinetic energy of a particle 
of mass m is 12mv

2. The total kinetic 
energy of the plate is 12Iv

2.

 ■ e Xa Mp Le  8.12 A Ball Rolling Down an Incline

g Oa L  Combine gravitational, translational, and rotational energy.

pr Ob Le M  A ball of mass M and radius R starts from rest at a height of h 5 2.00 m 
and rolls down a u 5 30.0° slope, as in Figure 8.27. What is the linear speed of the 
ball when it leaves the incline? Assume that the ball rolls without slipping.

s t r at e g Y  The two points of interest are the top and bottom of the incline, with 
the bottom acting as the zero point of gravitational potential energy. As the ball rolls 
down the ramp, gravitational potential energy is converted into both translational 
and rotational kinetic energy without dissipation, so conservation of mechanical 
energy can be applied with the use of Equation 8.11.

M

u

v
h

vS

R

Figure 8.27  (Example 8.12) A ball 
starts from rest at the top of an incline 
and rolls to the bottom without slipping.
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s OLUti On

Apply conservation of energy with PE 5 PEg, the potential 
energy associated with gravity:

(KEt1 KEr 1 PEg)i 5 (KEt 1 KEr 1 PEg)f

Substitute the appropriate general expressions, noting 
that (KEt)i 5 (KEr)i 5 0 and (PEg)f 5 0 (obtain the 
moment of inertia of a ball from Table 8.1):

0 1 0 1 Mgh 5 1
2Mv 2 1 1

2 12
5MR 2 2v2 1 0

The ball rolls without slipping, so Rv 5 v, the “no-slip 
condition,” can be applied:

Mgh 5 1
2Mv 2 1 1

5Mv 2 5 7
10Mv 2

Solve for v, noting that M cancels. v 5 Å
10gh

7
5 Å

10 19.80 m/s2 2 12.00 m 2
7

5    5.29 m/s

re Mar Ks  Notice the translational speed is less than that of a block sliding down a frictionless slope, v 5 !2gh. That’s 
because some of the original potential energy must go to increasing the rotational kinetic energy.

QUes t i On  8.12  Rank from fastest to slowest: (a) a solid ball rolling down a ramp without slipping, (b) a cylinder roll-
ing down the same ramp without slipping, (c) a block sliding down a frictionless ramp with the same height and slope.

e Xe rc i s e  8.12  Repeat this example for a solid cylinder of the same mass and radius as the ball and released from the 
same height. In a race between the two objects on the incline, which one would win?

a ns We r  v 5 !4g h/3 5 5.11 m/s; the ball would win.

■ Quick Quiz

8.4  Two spheres, one hollow and one solid, are rotating with the same angular 
speed around an axis through their centers. Both spheres have the same mass and 
radius. Which sphere, if either, has the higher rotational kinetic energy? (a) The hol-
low sphere. (b) The solid sphere. (c) They have the same kinetic energy.

 ■ e Xa Mp Le  8.13 Blocks and Pulley

g Oa L  Solve a system requiring rotation concepts and the work–energy theorem.

pr Ob Le M  Two blocks with masses m1 5 5.00 kg and m2 5 7.00 kg are attached by a string as in Figure 8.28a, over a pul-
ley with mass M 5 2.00 kg. The pulley, which turns on a frictionless axle, is a hollow cylinder with radius 0.050 0 m over 

(Continued)

Figure 8.28  (a) (Example 8.13) T
S

1 

and T
S

2 exert torques on the pulley.

(b) (Exercise 8.13)  

m2

m1

m1

m2

I
r

fk
S T1

S

T2
S

nS

gS m1

a b

gS m2

r
I
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which the string moves without slipping. The horizontal surface has coefficient of kinetic friction 0.350. Find the speed of 
the system when the block of mass m2 has dropped 2.00 m.

s t r at e g Y  This problem can be solved with the extension of the work–energy theorem, Equation 8.12. If the block of 
mass m2 falls from height h to 0, then the block of mass m1 moves the same distance, Dx 5 h. Apply the work-energy theo-
rem, solve for v, and substitute. Kinetic friction is the sole nonconservative force.

s OLUti On
Apply the work–energy theorem, with PE 5 PEg, the 
potential energy associated with gravity:

Wnc 5 DKEt 1 DKEr 1 DPEg

Substitute the frictional work for Wnc, kinetic energy 
changes for the two blocks, the rotational kinetic energy 
change for the pulley, and the potential energy change 
for the second block:

2mkn Dx 5 2mk 1m 1g 2 Dx 5 11
2m 1v

2 2 0 2 1 11
2m 2v

2 2 0 2
1 11

2Iv
2 2 0 2 1 10 2 m2gh 2

Substitute Dx 5 h, and write I as (I/r 2)r 2: 2mk 1m1g 2h 5 1
2m1v

2 1 1
2m2v

2 1 1
2a

I
r 2br 2v2 2 m2gh

For a hoop, I 5 Mr 2 so (I/r 2) 5 M. Substitute this quantity 
and v 5 rv:

2mk 1m1g 2h 5 1
2m1v

2 1 1
2m2v

2 1 1
2Mv 2 2 m2gh

Solve for v: m 2gh 2 mk 1m1g 2h 5 1
2m1v

2 1 1
2m2v

2 1 1
2Mv 2 

 5 1
2 1m 1 1 m 2 1 M 2v 2

 v 5 Å
2gh 1m2 2 mkm1 2
m1 1 m2 1 M

Substitute m1 5 5.00 kg, m2 5 7.00 kg, M 5 2.00 kg,  
g 5 9.80 m/s2, h 5 2.00 m, and mk 5 0.350:

v 5   3.83 m/s

re Mar Ks  In the expression for the speed v, the mass m1 of the first block and the mass M of the pulley all appear in 
the denominator, reducing the speed, as they should. In the numerator, m2 is positive while the friction term is negative. 
Both assertions are reasonable because the force of gravity on m2 increases the speed of the system while the force of fric-
tion on m1 slows it down. This problem can also be solved with Newton’s second law together with t 5 Ia, a good exercise.

QUes t i On  8.13  How would increasing the radius of the pulley affect the final answer? Assume the angles of the cables 
are unchanged and the mass is the same as before.

e Xe rc i s e  8.13  Two blocks with masses m1 5 2.00 kg and m2 5 9.00 kg are attached over a pulley with mass M 5 3.00 kg,  
hanging straight down as in Atwood’s machine (Fig. 8.28b). The pulley is a solid cylinder with radius 0.050 0 m, and there 
is some friction in the axle. The system is released from rest, and the string moves without slipping over the pulley. If the 
larger mass is traveling at a speed of 2.50 m/s when it has dropped 1.00 m, how much mechanical energy was lost due to 
friction in the pulley’s axle?

a ns We r  29.5 J

8.7    Angular Momentum
Learning Objectives

1. Define angular momentum and state the rotational second law in terms of it.

2. State and apply the principle of the conservation of angular momentum.

In Figure 8.29, an object of mass m rotates in a circular path of radius r, acted on by 
a net force, F

S

net. The resulting net torque on the object increases its angular speed 
from the value v0 to the value v in a time interval Dt. Therefore, we can write

a t 5 Ia 5 I 
Dv

Dt
5 I av 2 v0

Dt
b 5

Iv 2 Iv0

Dt

m

r

Fnet
S

Figure 8.29  An object of mass m 
rotating in a circular path under the 
action of a constant torque.
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If we define the product

L ; Iv [8.13]

as the angular momentum of the object, then we can write

 a t 5
change in angular momentum

time interval
5

DL
Dt

 [8.14]

Equation 8.14 is the rotational analog of Newton’s second law, which can be writ-
ten in the form F 5 Dp/Dt and states that the net torque acting on an object is 
equal to the time rate of change of the object’s angular momentum. Recall that 
this equation also parallels the impulse–momentum theorem.

When the net external torque (ot) acting on a system is zero, Equation 8.14 
gives DL/Dt 5 0, which says that the time rate of change of the system’s angular 
momentum is zero. We then have the following important result:

Let Li and Lf be the angular momenta of a system at two different times, and 
suppose there is no net external torque, so ot 5 0. Then

 Li 5 Lf [8.15]

and angular momentum is said to be conserved.

Equation 8.15 gives us a third conservation law to add to our list: conser-
vation of angular momentum. We can now state that the mechanical energy, 
linear momentum, and angular momentum of an isolated system all remain 
constant.

If the moment of inertia of an isolated rotating system changes, the system’s 
angular speed will change. Conservation of angular momentum then requires 
that

 Iivi 5 If vf  if  o t 5 0 [8.16]

Note that conservation of angular momentum applies to macroscopic objects 
such as planets and people, as well as to atoms and molecules. There are many 
examples of conservation of angular momentum; one of the most dramatic is that 
of a figure skater spinning in the finale of his act. In Figure 8.30a, the skater has 
pulled his arms and legs close to his body, reducing their distance from his axis of 
rotation and hence also reducing his moment of inertia. By conservation of angu-
lar momentum, a reduction in his moment of inertia must increase his angular 

b   Conservation of angular 
momentum

a pp Lica t iOn
Figure Skating

Upon landing, extending 
his arms and legs increases 
his moment of inertia and 
helps slow his spin. 
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By pulling in his arms and 
legs, he reduces his moment 
of inertia and increases his 
angular speed (rate of spin).
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Figure 8.30  Evgeni 
 Plushenko varies his 
moment of inertia to 
change his angular speed.

Tightly curling her body, a diver 
decreases her moment of inertia, 
increasing her angular speed.
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speed. Coming out of the spin in Figure 8.30b, he needs to reduce his angular 
speed, so he extends his arms and legs again, increasing his moment of inertia and 
thereby slowing his rotation.

Similarly, when a diver or an acrobat wishes to make several somersaults, she 
pulls her hands and feet close to the trunk of her body in order to rotate at a 
greater angular speed. In this case, the external force due to gravity acts through 
her center of gravity and hence exerts no torque about her axis of rotation, so the 
angular momentum about her center of gravity is conserved. For example, when a 
diver wishes to double her angular speed, she must reduce her moment of inertia 
to half its initial value.

An interesting astrophysical example of conservation of angular momentum 
occurs when a massive star, at the end of its lifetime, uses up all its fuel and 
collapses under the influence of gravitational forces, causing a gigantic out-
burst of energy called a supernova. The best-studied example of a remnant of 
a supernova explosion is the Crab Nebula, a chaotic, expanding mass of gas 
(Fig. 8.31). In a supernova, part of the star’s mass is ejected into space, where 
it eventually condenses into new stars and planets. Most of what is left behind 
typically collapses into a neutron star—an extremely dense sphere of matter 
with a diameter of about 10 km, greatly reduced from the 106-km diameter of 
the original star and containing a large fraction of the star’s original mass. In 
a neutron star, pressures become so great that atomic electrons combine with 
protons, becoming neutrons. As the moment of inertia of the system decreases 
during the collapse, the star’s rotational speed increases. More than 700 rap-
idly rotating neutron stars have been identified since their first discovery in 
1967, with periods of rotation ranging from a millisecond to several seconds. 
The neutron star is an amazing system—an object with a mass greater than the 
Sun, fitting comfortably within the space of a small county and rotating so fast 
that the tangential speed of the surface approaches a sizable fraction of the 
speed of light!

■ Quick Quiz

8.5  A horizontal disk with moment of inertia I1 rotates with angular speed v1  
about a vertical frictionless axle. A second horizontal disk having moment of inertia 
I2 drops onto the first, initially not rotating but sharing the same axis as the first 
disk. Because their surfaces are rough, the two disks eventually reach the same 
angular speed v. The ratio v/v1 is equal to (a) I1/I2 (b) I2/I1 (c) I1/(I1 1 I2) 
(d) I2/(I1 1 I2)

8.6  If global warming continues, it’s likely that some ice from the polar ice caps of 
the Earth will melt and the water will be distributed closer to the equator. If this 
occurs, would the length of the day (one rotation) (a) increase, (b) decrease, or  
(c) remain the same?

a pp Lica t iOn
Aerial Somersaults

a pp Lica t iOn
Rotating Neutron Stars

a b c

Figure 8.31  (a) The Crab Nebula 
in the constellation Taurus. This 
nebula is the remnant of a super-
nova seen on Earth in a.d. 1054. It is 
located some 6 300 light-years away 
and is approximately 6 light-years in 
diameter, still expanding outward. A 
pulsar deep inside the nebula flashes 
30 times every second. (b) Pulsar off. 
(c) Pulsar on.
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 ■ e Xa Mp Le  8.14 The Spinning Stool

g Oa L  Apply conservation of angular momentum to a simple system.

pr Ob Le M  A student sits on a pivoted stool while holding a pair of weights. (See Fig. 8.32.) 
The stool is free to rotate about a vertical axis with negligible friction. The moment of inertia 
of student, weights, and stool is 2.25 kg ? m2. The student is set in rotation with arms out-
stretched, making one complete turn every 1.26 s, arms outstretched. (a) What is the initial 
angular speed of the system? (b) As he rotates, he pulls the weights inward so that the new 
moment of inertia of the system (student, objects, and stool) becomes 1.80 kg ? m2. What is 
the new angular speed of the system? (c) Find the work done by the student on the system 
while pulling in the weights. (Ignore energy lost through dissipation in his muscles.)

s t r at e gY  (a) The angular speed can be obtained from the frequency, which is the 
inverse of the period. (b) There are no external torques acting on the system, so the new 
angular speed can be found with the principle of conservation of angular momentum. 
(c) The work done on the system during this process is the same as the system’s change in 
rotational kinetic energy.

s OLUti On

v vi f

a b

Figure 8.32  (Example 8.14) 
(a) The student is given an initial 
angular speed while holding two 
weights out. (b) The angular 
speed increases as the student 
draws the weights inwards.

(a) Find the initial angular speed of the system.

Invert the period to get the frequency, and multiply by 2p: vi 5 2pf 5 2p/T 5   4.99 rad/s

(b) After he pulls the weights in, what’s the system’s new 
angular speed?

Equate the initial and final angular momenta of the 
system:

(1) Li 5 Lf S Iivi 5  If vf

Substitute and solve for the final angular speed vf : (2) (2.25 kg ? m2)(4.99 rad/s) 5 (1.80 kg ? m2)vf

vf 5   6.24 rad/s

(c) Find the work the student does on the system.

Apply the work–energy theorem: Wstudent 5 DKr 5 1
2If vf 

2 2 1
2Ii vi 

2 

 5 1
2 11.80 kg # m2 2 16.24 rad/s 22

2 1
2 12.25 kg # m2 2 14.99 rad/s 22

Wstudent 5   7.03 J

re Mar Ks  Although the angular momentum of the system is conserved, mechanical energy is not conserved because 
the student does work on the system.

QUes t iOn  8.14  If the student suddenly releases the weights, will his angular speed increase, decrease, or remain the same?

e Xe rc i s e  8.14  A star with an initial radius of 1.0 3 108 m and period of 30.0 days collapses suddenly to a radius of 
1.0 3 104 m. (a) Find the period of rotation after collapse. (b) Find the work done by gravity during the collapse if the 
mass of the star is 2.0 3 1030 kg. (c) What is the speed of an indestructible person standing on the equator of the col-
lapsed star? (Neglect any relativistic or thermal effects, and assume the star is spherical before and after it collapses.)

a ns We r s  (a) 2.6 3 1022 s (b) 2.3 3 1042 J (c) 2.4 3 106 m/s

 ■ e Xa Mp Le  8.15 The Merry-Go-Round

g Oa L  Apply conservation of angular momentum while combining two moments of inertia.

pr ObLe M  A merry-go-round modeled as a disk of mass M 5 1.00 3 102 kg and radius R 5 2.00 m is rotating in a horizontal 
plane about a frictionless vertical axle (Fig. 8.33 is an overhead view of the system). (a) After a student with mass m 5 60.0 kg 

(Continued)
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jumps on the rim of the merry-go-round, the system’s 
angular speed decreases to 2.00 rad/s. If the student 
walks slowly from the edge toward the center, find the 
angular speed of the system when she reaches a point 
0.500 m from the center. (b) Find the change in the 
system’s rotational kinetic energy caused by her move-
ment to r 5 0.500 m. (c) Find the work done on the 
student as she walks to r 5 0.500 m.

s t r at e gY  This problem can be solved with conser-
vation of angular momentum by equating the system’s 
initial angular momentum when the student stands at the rim to the angular momentum when the student has reached  
r 5 0.500 m. The key is to find the different moments of inertia.

s OLUti On

R

M

m

Figure 8.33  (Example 8.15) As 
the student walks toward the center 
of the merry-go-round, the moment 
of inertia I of the system becomes 
smaller. Because angular momen-
tum is conserved and L 5 Iv, the 
angular speed must increase.

(a) Find the angular speed when the student reaches a 
point 0.500 m from the center.

Calculate the moment of inertia of the disk, ID: ID 5 1
2MR 2 5 1

2 11.00 3 102 kg 2 12.00 m 22

5 2.00 3 102 kg ? m2

Calculate the initial moment of inertia of the student. 
This is the same as the moment of inertia of a mass a 
distance R from the axis:

ISi 5 mR 2 5 (60.0 kg)(2.00 m)2 5 2.40 3 102 kg ? m2

Sum the two moments of inertia and multiply by the 
initial angular speed to find Li, the initial angular 
momentum of the system:

Li 5 (ID 1 ISi)vi

5 (2.00 3 102 kg ? m2 1 2.40 3 102 kg ? m2)(2.00 rad/s)

5 8.80 3 102 kg ? m2/s

Calculate the student’s final moment of inertia, ISf , when 
she is 0.500 m from the center:

ISf 5 mrf
2 5 (60.0 kg)(0.50 m)2 5 15.0 kg ? m2

The moment of inertia of the platform is unchanged. Add 
it to the student’s final moment of inertia, and multiply by 
the unknown final angular speed to find Lf :

Lf 5 (ID 1 ISf )vf 5 (2.00 3 102 kg ? m2 1 15.0 kg ? m2)vf

5 (2.15 3 102 kg ? m2)vf

Equate the initial and final angular momenta and solve 
for the final angular speed of the system:

Li 5 Lf

(8.80 3 102 kg ? m2/s) 5 (2.15 3 102 kg ? m2)vf

vf 5   4.09 rad/s

(b) Find the change in the rotational kinetic energy of 
the system.

Calculate the initial kinetic energy of the system: KEi 5 1
2Ii v

2
i 5 1

2 14.40 3 102 kg # m2 2 12.00 rad/s 22

5 8.80 3 102 J

Calculate the final kinetic energy of the system: KEf 5 1
2If vf

2 5 1
2 1215 kg # m2 2 14.09 rad/s 22 5 1.80 3 103 J

Calculate the change in kinetic energy of the system: KEf 2 KEi 5   920 J

(c) Find the work done on the student.

The student undergoes a change in kinetic energy that 
equals the work done on her. Apply the work–energy 
theorem:

W 5 DKEstudent 5 1
2ISf v

2
f 2 1

2ISi v
2
i

5 1
2 115.0 kg # m2 2 14.09 rad/s 22

2 1
2 12.40 3 102 kg # m2 2 12.00 rad/s 22

W 5   2355 J
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re Mar Ks  The angular momentum is unchanged by internal forces; however, the kinetic energy increases because the 
student must perform positive work in order to walk toward the center of the platform.

QUes t i On  8.15  Is energy conservation violated in this example? Explain why there is a positive net change in mechan-
ical energy. What is the origin of this energy?

e Xe rc i s e  8.15  (a) Find the angular speed of the merry-go-round before the student jumped on, assuming the student 
didn’t transfer any momentum or energy as she jumped on the merry-go-round. (b) By how much did the kinetic energy 
of the system change when the student jumped on? Notice that energy is lost in this process, as should be expected, since 
it is essentially a perfectly inelastic collision.

a ns We r s  (a) 4.40 rad/s (b) KEf 2 KEi 5 21.06 3 103 J.

 ■ s UMMar Y

8.1  Torque
Let F

S

 be a force acting on an object, and let rS be a position 
vector from a chosen point O to the point of application of 
the force. Then the magnitude of the torque tS of the force 
F
S

 is given by

 t 5 rF sin u [8.2]

where r is the length of the position vector, F the magni-
tude of the force, and u the angle between F

S

 and rS.

These two conditions, used in solving problems involving 
rotation in a plane—result in three equations and three 
unknowns—two from the first condition (corresponding 
to the x - and y -components of the force) and one from the 
second condition, on torques. These equations must be 
solved simultaneously.

8.5   Relationship Between Torque  
and Angular Acceleration

The moment of inertia of a group of particles is

 I ; omr 2 [8.7]

If a rigid object free to rotate about a fixed axis has a net 
external torque ot acting on it, then the object undergoes 
an angular acceleration a, where

 ot 5 Ia [8.8] 

This equation is the rotational equivalent of the second law 
of motion.
 Problems are solved by using Equation 8.8 together with 
Newton’s second law and solving the resulting equations 
simultaneously. The relation a 5 ra is often key in relating 
the translational equations to the rotational equations.

8.6  Rotational Kinetic Energy
If a rigid object rotates about a fixed axis with angular 
speed v, its rotational kinetic energy is

 KEr 5 1
2Iv

2 [8.10]

where I is the moment of inertia of the object around the 
axis of rotation.
 A system involving rotation is described by three types 
of energy: potential energy PE, translational kinetic energy 
KEt, and rotational kinetic energy KEr. All these forms of 
energy must be included in the equation for conservation 
of mechanical energy for an isolated system:

 (KEt 1 KEr 1 PE)i 5 (KEt 1 KEr 1 PE)f [8.11]

where i and f refer to initial and final values, respectively. 
When non-conservative forces are present, it’s necessary to 
use a generalization of the work–energy theorem:

 Wnc 5 DKEt 1 DKEr 1 DPE [8.12]

rS 

x

y

z

O

t
S

F
S

30.0�

The torque at O depends on the distance to the point of applica-
tion of the force F

S

 and the force’s magnitude and direction.

d � r sin

O
θ

θ

θ

F
S

rS 

An alternate interpretation of torque involves the concept of a 
lever arm d 5 r sin u that is perpendicular to the force.

The quantity d 5 r sin u is called the lever arm of the 
force.

8.2   Torque and the Two Conditions  
for Equilibrium

An object in mechanical equilibrium must satisfy the fol-
lowing two conditions:

1. The net external force must be zero: aF
S

5 0.

 2. The net external torque must be zero: at
S

5 0.
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Angular momentum is related to torque in the following 
equation:

at 5
change in angular momentum

time interval
5

DL
Dt

 [8.14]

If the net external torque acting on a system is zero, the 
total angular momentum of the system is constant,

 Li 5 Lf [8.15]

and is said to be conserved. Solving problems usually 
involves substituting into the expression

 Iivi 5 If vf [8.16]

and solving for the unknown.

M

u

h

vS

R

v

A ball rolling down an incline converts potential energy to trans-
lational and rotational kinetic energy.

8.7  Angular Momentum
The angular momentum of a rotating object is given by

L ; Iv [8.13]

 ■ Wa r M-Up eX e rc i s e s

 The warm-up exercises in this chapter may be assigned online in Enhanced WebAssign.

 1. Math Review The two conditions for equilibrium (see 
Sections 8.2 and 8.4) often result in a system of equa-
tions such as F1 + F2 = 60.0 N and 2.00F1 − 3.00F2 = 0. 
Find (a) F1 and (b) F2.

 2. Math Review Solve the equations 1
2 mv

2 1 1
2 Iv

2 5 mgh 
and v = rω  for the speed v using substitution, given 
that I = mr2 and h = 3.00 m. (See Section 8.6. Note that 
mass m and radius r will both cancel, so their numeri-
cal values aren’t required.)

 3. Physics Review A spinning wheel steadily slows from 
an initial angular velocity of 2.00 rev/s to 0.500 rev/s in 
10.0 s. (a) Calculate the wheel’s angular acceleration in 
radians per second squared. (b) What angle does it go 
through during that time? (See Sections 7.1 and 7.2.)

 4. Physics Review A construction crane’s cable lifts a 
50.0-kg box upward with an acceleration of 1.50 m/s2. 
Find the tension in the rope. (See Section 4.5.) 

 5. A man opens a 1.00-m wide door by pushing on it with 
a force of 50.0 N directed perpendicular to its surface. 
What magnitude torque does he apply about an axis 
through the hinges if the force is applied (a) at the 
center of the door? (b) at the edge farthest from the 
hinges? (See Section 8.1.) 

 6. A worker applies a torque to a nut with a wrench 0.500 m 
long. Because of the cramped space, she must exert a 
force upward at an angle of 60.0° with respect to a line 
from the nut through the end of the wrench. If the 
force she exerts has magnitude 80.0 N, what magnitude 
torque does she apply to the nut? (See Section 8.1.) 

 7. A mass of 1.00 kg is at (−2.00 m, 0) and a 2.00-kg mass 
at (3.00 m, 3.00 m). Find the center of mass of the sys-
tem. (See Section 8.3.)

 8. A horizontal plank 4.00 m long and having mass 20.0 kg 
rests on two pivots, one at the left end and a second 
1.00 m from the right end. Find the magnitude of the 
force exerted on the plank by the second pivot. (See 
Section 8.4.) 

 9. A student rides his bicycle at a constant speed of  
3.00 m/s along a straight, level road. If the bike’s tires 
each have a radius of 0.350 m, (a) what is the tires’ 
angular speed? (See Section 7.3.) (b) What is the net 
torque on each tire? (See Section 8.5.) 

 10. What is the magnitude of the angular acceleration of a 
25.0-kg disk of radius 0.800 m when a torque of magni-
tude 40.0 N ⋅ m is applied to it? (See Section 8.5.) 

 11. A bicycle tire has a mass of 2.70 kg and a radius of 
0.350 m. (a) Treating the tire as a hoop, what is its 
moment of inertia about an axis passing through 
the hub at its center? (b) What torque is required to 
produce an angular acceleration of 0.750 rad/s2? (c) 
What friction force applied tangentially to the edge 
of the tire will create a torque of that magnitude? 
(See Section 8.5.) 

 12. A bowling ball of mass 7.00 kg is rolling at 3.00 m/s 
along a level surface. Calculate (a) the ball’s transla-
tional kinetic energy, (b) the ball’s rotational kinetic 
energy, and (c) the ball’s total kinetic energy. (d) How 
much work would have to be done on the ball to bring 
it to rest? (See Section 8.6.) 

 13. A basketball player entertains the crowd by spinning 
a basketball on his nose. The basketball has a mass of 
0.600 kg and a radius of 0.121 m. If the basketball is 
spinning at a rate of 3.00 revolutions per second, (a) 
what is its rotational kinetic energy? (See Section 8.6.) 
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is dropped on it so that their axes coincide. In a short 
time the two disks are corotating. (a) What is the angu-
lar speed of the new system? (b) If a third such disk is 
dropped on the first two, find the final angular speed 
of the system. (See Section 8.7.)

(b) What is the magnitude of its angular momentum? 
Treat the ball as a thin, spherical shell. (See Section 8.7.) 

 14. A disk of mass m is spinning freely at 6.00 rad/s when 
a second disk of identical mass, initially not spinning, 

The conceptual questions in this chapter may be assigned online in Enhanced WebAssign.

 ■ c On ce p t Ua L QUes t i Ons

1. Why can’t you put your heels firmly against a wall and 
then bend over without falling?

2. Explain why changing the axis of rotation of an object 
changes its moment of inertia.

3. If you see an object rotating, is there necessarily a net 
torque acting on it?

4. (a) Is it possible to calculate the torque acting on a 
rigid object without specifying an origin? (b) Is the 
torque independent of the location of the origin?

5. Why does a long pole help a tightrope walker stay 
balanced?

6. In the movie Jurassic Park, there is a scene in which 
some members of the visiting group are trapped in 
the kitchen with dinosaurs outside. The paleontolo-
gist is pressing against the center of the door, trying 
to keep out the dinosaurs on the other side. The bota-
nist throws herself against the door at the edge near 
the hinge. A pivotal point in the film is that she can-
not reach a gun on the floor because she is trying to 
hold the door closed. If the paleontologist is pressing 
at the center of the door, and the botanist is pressing 
at the edge about 8 cm from the hinge, estimate how 
far the paleontologist would have to relocate in order 
to have a greater effect on keeping the door closed 
than both of them pushing together have in their 
original positions. (Question 6 is courtesy of Edward 
F. Redish. For more questions of this type, see www 
.physics.umd.edu/perg/.)

7. In some motorcycle races, the riders drive over small 
hills and the motorcycle becomes airborne for a 
short time. If the motorcycle racer keeps the throttle 
open while leaving the hill and going into the air, the 
motorcycle’s nose tends to rise upwards. Why does this 
happen?

8. If you toss a textbook into the air, rotating it each time 
about one of the three axes perpendicular to it, you 
will find that it will not rotate smoothly about one of 
those axes. (Try placing a strong rubber band around 
the book before the toss so that it will stay closed.) The 
book’s rotation is stable about those axes having the 
largest and smallest moments of inertia, but unstable 
about the axis of intermediate moment. Try this on 
your own to find the axis that has this intermediate 
moment of inertia.

 9. Stars originate as large bodies of slowly rotating gas. 
Because of gravity, these clumps of gas slowly decrease 
in size. What happens to the angular speed of a star as 
it shrinks? Explain.

 10. If a high jumper posi-
tions his body correctly 
when going over the bar, 
the center of gravity of 
the athlete may actually 
pass under the bar. (See 
Fig. CQ8.10.) Explain 
how this is possible.

 11. In a tape recorder, the tape is pulled past the read–write 
heads at a constant speed by the drive mechanism. Con-
sider the reel from which the tape is pulled: As the tape 
is pulled off, the radius of the roll of remaining tape 
decreases. (a) How does the torque on the reel change 
with time? (b) If the tape mechanism is suddenly turned 
on so that the tape is quickly pulled with a large force, is 
the tape more likely to break when pulled from a nearly 
full reel or from a nearly empty reel?

 12. (a) Give an example in which 
the net force acting on an object 
is zero, yet the net torque is 
nonzero. (b) Give an example 
in which the net torque acting 
on an object is zero, yet the net 
force is nonzero.

 13. A ladder rests inclined against a 
wall. Would you feel safer climb-
ing up the ladder if you were told 
that the floor was frictionless, but 
the wall was rough, or that the 
wall was frictionless, but the floor 
was rough? Justify your answer.

 14. A cat usually lands on its feet 
regardless of the position from 
which it is dropped. A slow-
motion film of a cat falling shows 
that the upper half of its body 
twists in one direction while the 
lower half twists in the opposite 
direction. (See Fig. CQ8.14.) Why 
does this type of rotation occur?

Figure c Q8.10
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15. A solid disk and a hoop are simultaneously released 
from rest at the top of an incline and roll down without 
slipping. Which object reaches the bottom first? (a) The 
one that has the largest mass arrives first. (b) The one 
that has the largest radius arrives first. (c) The hoop 
arrives first. (d) The disk arrives first. (e) The hoop and 
the disk arrive at the same time.

16. A mouse is initially at rest on a horizontal turnta-
ble mounted on a frictionless, vertical axle. As the 
mouse begins to walk clockwise around the perim-
eter, which of the following statements must be true 
of the turntable? (a) It also turns clockwise. (b) It 

turns counterclockwise with the same angular veloc-
ity as the mouse. (c) It remains stationary. (d) It turns 
counterclockwise because angular momentum is con-
served. (e) It turns clockwise because mechanical 
energy is conserved. 

 17. The cars in a soapbox derby have no engines; they 
simply coast downhill. Which of the following design 
criteria is best from a competitive point of view? The 
car’s wheels should (a) have large moments of inertia,  
(b) be massive, (c) be hoop-like wheels rather than 
solid disks, (d) be large wheels rather than small 
wheels, or (e) have small moments of inertia.

8.1  Torque

1. The fishing pole in Figure P8.1 makes an angle of 
20.0° with the horizontal. What is the magnitude of the 
torque exerted by the fish about an axis perpendicular 
to the page and passing through the angler’s hand if 
the fish pulls on the fishing line with a force F

S

5 100 N
at an angle 37.0° below the horizontal? The force is 
applied at a point 2.00 m from the angler’s hands.

 2. Find the net torque on the wheel in Figure P8.2 
about the axle through O perpendicular to the page, 
taking a 5 10.0 cm and b 5 25.0 cm.

100 N
20.0�

20.0�
37.0�

2.00 m

Figure p 8.1

10.0 N

30.0� a

O

b
12.0 N

9.00 N

Figure p 8.2

3. Calculate the net 
torque (magnitude and 
direction) on the beam 
in Figure P8.3 about 
(a) an axis through O 
perpendicular to the 
page and (b) an axis 
through C perpendicu-
lar to the page.

 4. A dental bracket exerts a 
horizontal force of 80.0 N on a 
tooth at point B in Figure P8.4. 
What is the torque on the root 
of the tooth about point A?

 5. A simple pendulum con-
sists of a small object of mass 
3.0 kg hanging at the end of 
a 2.0-m-long light string that is connected to a pivot 
point. (a) Calculate the magnitude of the torque (due 
to the force of gravity) about this pivot point when the 
string makes a 5.0° angle with the vertical. (b) Does the 
torque increase or decrease 
as the angle increases? 
Explain.

 6. Write the necessary 
equations of equilibrium of 
the object shown in Figure 
P8.6. Take the origin of the 
torque equation about an 
axis perpendicular to the 
page through the point O.

C

4.0 m

2.0 m45°

30 N

10 N

20°

30°

25 N

O

Figure p 8.3

B

48.0°

1.20 cm

A

Gum

F
S

Figure p 8.4

Fx

Fy

Rx O

Ry

�

u

Fg
S

Figure p 8.6

 ■ pr Ob Le Ms

denotes biomedical problems

denotes guided problems

denotes Master It tutorial available in Enhanced WebAssign

denotes asking for quantitative and conceptual reasoning

denotes symbolic reasoning problem

W denotes Watch It video solution available in Enhanced WebAssign

The problems in this chapter may be assigned online in 
Enhanced WebAssign. 

1. denotes straightforward problem; 2. denotes intermediate problem;

3. denotes challenging problem

1. denotes full solution available in Student Solutions Manual/ 
Study Guide

1. denotes problems most often assigned in Enhanced WebAssign
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8.2  Torque and the Two Conditions for Equilibrium

8.3  The Center of Gravity

8.4  Examples of Objects in Equilibrium

7. The arm in Figure P8.7 weighs 41.5 N. The 
force of gravity acting on the arm acts through point 
A. Determine the magnitudes of the tension force F

S

t

in the deltoid muscle and the force F
S

s exerted by the 
shoulder on the humerus (upper-arm bone) to hold 
the arm in the position shown.

12.  A beam resting on two pivots has a length of  
L 5 6.00 m and mass M 5 90.0 kg. The pivot under 
the left end exerts a normal force n1 on the beam, and 
the second pivot placed a distance , 5 4.00 m from 
the left end exerts a normal force n2. A woman of mass 
m 5 55.0 kg steps onto the left end of the beam and 
begins walking to the right as in Figure P8.12. The goal 
is to find the woman’s position when the beam begins 
to tip. (a) Sketch a free-body diagram, labeling the 
gravitational and normal forces acting on the beam 
and placing the woman x meters to the right of the 
first pivot, which is the origin. (b) Where is the woman 
when the normal force n1 is the greatest? (c) What is n1

when the beam is about to tip? (d) Use the force equa-
tion of equilibrium to find the value of n2 when the 
beam is about to tip. (e) Using the result of part (c) and 
the torque equilibrium equation, with torques com-
puted around the second pivot point, find the woman’s 
position when the beam is about to tip. (f) Check the 
answer to part (e) by computing torques around the 
first pivot point. Except for possible slight differences 
due to rounding, is the answer the same?

Fs
S

Ft
S

Fg
S

0.290 m
0.080 m

12�

O
A

u

Figure p 8.7

8. A uniform 35.0-kg beam of length , 5 5.00 m is sup-
ported by a vertical rope located d 5 1.20 m from its 
left end as in Figure P8.8. The right end of the beam 
is supported by a vertical col-
umn. Find (a) the tension in 
the rope and (b) the force 
that the column exerts on the 
right end of the beam.

 9. A cook holds a 2.00-kg 
carton of milk at arm’s length 
(Fig. P8.9). What force F

S

B

must be exerted by the biceps 
muscle? (Ignore the weight of 
the forearm.)

�

d

Figure p 8.8

Milk

25.0 cm
8.00 cm

75.0�
B

gF
S

F
S

Figure p 8.9

10. A meter stick is found to balance at the 49.7-cm mark 
when placed on a fulcrum. When a 50.0-gram mass 
is attached at the 10.0-cm mark, the fulcrum must be 
moved to the 39.2-cm mark for balance. What is the 
mass of the meter stick?

11. Find the x - and y -coordinates of the center of grav-
ity of a 4.00-ft by 8.00-ft uniform sheet of plywood 
with the upper right quadrant removed as shown 
in Figure P8.11. Hint: The mass of any segment of 
the plywood sheet is proportional to the area of that 
segment.

2.00

4.00

0
0 6.00 8.002.00 4.00

y (ft)

x (ft)

Figure p 8.11

L

x
m

M

Figure p 8.12 Problems 12 and 14.

13. Consider the following mass distribution, where x- and 
y-coordinates are given in meters: 5.0 kg at (0.0, 0.0) m, 
3.0 kg at (0.0, 4.0) m, and 4.0 kg at (3.0, 0.0) m. Where 
should a fourth object of 8.0 kg be placed so that the 
center of gravity of the four-object arrangement will be 
at (0.0, 0.0) m?

 14.  A beam of length L and mass M rests on two piv-
ots. The first pivot is at the left end, taken as the ori-
gin, and the second pivot is at a distance , from the 
left end. A woman of mass m starts at the left end 
and walks toward the right end as in Figure P8.12. 
When the beam is on the verge of tipping, find sym-
bolic expressions for (a) the normal force exerted by 
the second pivot in terms of M, m, and g and (b) the 
woman’s position in terms of M, m, L, and ,. (c) Find 
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the minimum value of , that will allow the woman to 
reach the end of the beam without it tipping.

 15. Many of the elements in horizontal-bar exer-
cises can be modeled by representing the gymnast by 
four segments consisting of arms, torso (including 
the head), thighs, and lower legs, as shown in Figure 
P8.15a. Inertial parameters for a particular gymnast 
are as follows:

Segment Mass (kg) Length (m) rcg (m) I (kg ? m2)

Arms 6.87 0.548 0.239 0.205
Torso 33.57 0.601 0.337 1.610
Thighs 14.07 0.374 0.151 0.173
Legs 7.54 — 0.227 0.164

  Note that in Figure P8.15a rcg is the distance to the cen-
ter of gravity measured from the joint closest to the bar 
and the masses for the arms, thighs, and legs include 
both appendages. I is the moment of inertia of each seg-
ment about its center of gravity. Determine the distance 
from the bar to the center of gravity of the gymnast for 
the two positions shown in Figures P8.15b and P8.15c.

bending forward to lift a 200-N object. The spine and 
upper body are represented as a uniform horizontal 
rod of weight 350 N, pivoted at the base of the spine. 
The erector spinalis muscle, attached at a point two-
thirds of the way up the spine, maintains the position 
of the back. The angle between the spine and this mus-
cle is 12.0°. Find (a) the tension in the back muscle and 
(b) the compressional force in the spine.

bar
arm

torso

thigh

leg

a b c

Figure p 8.15

16. Using the data given in Problem 15 and the coor-
dinate system shown in Figure P8.16b, calculate the 
position of the center of gravity of the gymnast shown 
in Figure P8.16a. Pay close attention to the definition 
of rcg in the table.

60°60°
leg

thigh

torso

arm

x

y

a b

Figure p 8.16

17. A person bending forward to lift a load “with his 
back” (Fig. P8.17a) rather than “with his knees” can 
be injured by large forces exerted on the muscles and 
vertebrae. The spine pivots mainly at the fifth lumbar 
vertebra, with the principal supporting force provided 
by the erector spinalis muscle in the back. To see the 
magnitude of the forces involved, and to understand 
why back problems are common among humans, con-
sider the model shown in Figure P8.17b of a person 

a b

Pivot

Back muscle

Ry

Rx

12.0�

200 N
350 N

T
S

Figure p 8.17

18. When a person stands on tiptoe (a strenuous 
position), the position of the foot is as shown in Figure 
P8.18a. The total gravitational force on the body, F

S

g,  
is supported by the force nS exerted by the floor on the 
toes of one foot. A mechanical model of the situation 
is shown in Figure P8.18b, where T

S

 is the force exerted 
by the Achilles tendon on the foot and R

S

 is the force 
exerted by the tibia on the foot. Find the values of T, R, 
and u when Fg 5 n 5 700 N.

18.0 cm
25.0 cm

15.0�

Tibia

Achilles
tendon

a b

nS

R
S T

S
u

Figure p 8.18

19. A 500-N uniform rectangular 
sign 4.00 m wide and 3.00  m high 
is suspended from a horizontal, 
6.00-m-long, uniform, 100-N rod 
as indicated in Figure P8.19. The 
left end of the rod is supported 
by a hinge, and the right end is 
supported by a thin cable mak-
ing a 30.0° angle with the vertical. 
(a) Find the tension T in the cable. 
(b) Find the horizontal and vertical components of 
force exerted on the left end of the rod by the hinge.

 20. A window washer is standing on a scaffold supported 
by a vertical rope at each end. The scaffold weighs 
200 N and is 3.00 m long. What is the tension in each 

30.0°

T

ICE CREAM
SHOP

Figure p 8.19
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rope when the 700-N worker stands 1.00 m from one 
end?

 21. W A uniform plank of length 2.00 m and mass 30.0 kg  
is supported by three ropes, as indicated by the blue 
vectors in Figure P8.21. Find the tension in each rope 
when a 700-N person is d 5 0.500 m from the left end.

y -components of the force on the hinge. (g) Assum-
ing the strut position is to remain the same, would it 
be advantageous to attach the cable higher up on the 
wall? Explain the benefit in terms of the force on the 
hinge and cable tension.

2.00 m
d

T3
S

T2
S

T1
S

40.0�

Figure p 8.21

22. A hungry bear weighing 700 N walks out on a beam in 
an attempt to retrieve a basket of goodies hanging at the 
end of the beam (Fig. P8.22). 
The beam is uniform, weighs 
200 N, and is 6.00 m long, and 
it is supported by a wire at an 
angle of u 5 60.0°. The bas-
ket weighs 80.0 N. (a)  Draw a 
force diagram for the beam. 
(b) When the bear is at x 5 
1.00 m, find the tension in the 
wire supporting the beam and 
the components of the force 
exerted by the wall on the left 
end of the beam. (c) If the wire can withstand a maxi-
mum tension of 900 N, what is the maximum distance 
the bear can walk before the wire breaks?

 23. Figure P8.23 shows a uniform beam of mass m piv-
oted at its lower end, with a 
horizontal spring attached 
between its top end and 
a vertical wall. The beam 
makes an angle u with the 
horizontal. Find expres-
sions for (a) the distance 
d the spring is stretched 
from equilibrium and (b) 
the components of the 
force exerted by the pivot on the beam.

 24.  A strut of length L 5 3.00 m and mass m 5 16.0 kg 
is held by a cable at an angle of u 5 30.0° with respect 
to the horizontal as shown in Figure P8.24. (a) Sketch a 
force diagram, indicating all the forces and their place-
ment on the strut. (b) Why is the hinge a good place 
to use for calculating torques? (c) Write the condition 
for rotational equilibrium symbolically, calculating the 
torques around the hinge. (d) Use the torque equa-
tion to calculate the tension in the cable. (e) Write the 
x - and y -components of Newton’s second law for equi-
librium. (f) Use the force equation to find the x - and 

u

x

Goodies

Figure p 8.22

u

m

k

Figure p 8.23

θ

Figure p 8.24

25. A refrigerator of width w and height h rests on a 
rough incline as in Figure P8.25. Find an expression 
for the maximum value u can have before the refrig-
erator tips over. Note, the contact point between the 
refrigerator and incline shifts as u increases and treat 
the refrigerator as a uniform box.

u

h

w

Figure p 8.25

26.  A uniform beam 
of length L and mass m 
shown in Figure P8.26 is 
inclined at an angle u to 
the horizontal. Its upper 
end is connected to a wall 
by a rope, and its lower end 
rests on a rough horizon-
tal surface. The coefficient 
of static friction between the beam and surface is ms. 
Assume the angle is such that the static friction force 
is at its maximum value. (a) Draw a force diagram for 
the beam. (b) Using the condition of rotational equi-
librium, find an expression for the tension T in the 
rope in terms of m, g, and u. (c) Using Newton’s second 
law for equilibrium, find a second expression for T in 
terms of ms, m, and g. (d) Using the foregoing results, 
obtain a relationship involving only ms and the angle 
u. (e) What happens if the angle gets smaller? Is this 
equation valid for all values of u? Explain.

 27.  The chewing muscle, the masseter, is one of  
the strongest in the human body. It is attached to the 
mandible (lower jawbone) as shown in Figure P8.27a. 
The jawbone is pivoted about a socket just in front of 
the auditory canal. The forces acting on the jawbone 
are equivalent to those acting on the curved bar in  

u

L

Figure p 8.26
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held by friction. (See 
Fig. P8.30.) The coef-
ficient of static friction 
between the wall and 
the rod is ms  5 0.50. 
Determine the mini-
mum distance x from 
point A at which an 
additional weight w (the 
same as the weight of 
the rod) can be hung 
without causing the rod 
to slip at point A.

8.5   Relationship Between Torque  
and Angular Acceleration

31. Four objects are held in position at the corners of a 
rectangle by light rods as shown in Figure P8.31. Find 
the moment of inertia of the system about (a) the 
x -axis, (b) the y -axis, and 
(c) an axis through O 
and perpendicular to the 
page.

32. If the system shown in Fig-
ure P8.31 is set in rotation 
about each of the axes 
mentioned in Problem 31, 
find the torque that will 
produce an angular accel-
eration of 1.50 rad/s2 in 
each case.

 33. A large grinding wheel in the shape of a solid cylinder 
of radius 0.330 m is free to rotate on a frictionless, ver-
tical axle. A constant tangential force of 250 N applied 
to its edge causes the wheel to have an angular acceler-
ation of 0.940 rad/s2. (a) What is the moment of inertia 
of the wheel? (b) What is the mass of the wheel? (c) If 
the wheel starts from rest, what is its angular velocity 
after 5.00 s have elapsed, assuming the force is acting 
during that time?

 34.  An oversized yo-yo is made from two identical 
solid disks each of mass M 5 2.00 kg and radius R 5 
10.0 cm. The two disks are joined by a solid cylinder 
of radius r 5 4.00 cm and mass m 5 1.00 kg as in Fig-
ure P8.34. Take the center of the cylinder as the axis 
of the system, with positive torques directed to the left 
along this axis. All torques and angular variables are to 
be calculated around this axis. Light string is wrapped 
around the cylinder, and the system is then allowed to 
drop from rest. (a) What is the moment of inertia of the 
system? Give a symbolic answer. (b) What torque does 
gravity exert on the system with respect to the given 
axis? (c) Take downward as the negative coordinate 
direction. As depicted in Figure P8.34, is the torque 
exerted by the tension positive or negative? Is the 
angular acceleration positive or negative? What about 

Figure P8.27b. F
S

C is the force exerted by the food being 
chewed against the jawbone, T

S

 is the force of tension  
in the masseter, and R

S

 is the force exerted by the socket 
on the mandible. Find T

S

 and R
S

 for a person who bites 
down on a piece of steak with a force of 50.0 N.

Masseter

Mandible

3.50 cm

7.50 cm

CF
S

T
S R

S

a b

Figure p 8.27

28. A 1 200-N uniform boom 
at f 5 65° to the horizon-
tal is supported by a cable 
at an angle u 5 25.0° to 
the horizontal as shown in 
Figure P8.28. The boom is 
pivoted at the bottom, and 
an object of weight w  5 
2 000  N hangs from its 
top. Find (a) the tension in 
the support cable and (b) the components of the reac-
tion force exerted by the pivot on the boom.

 29. The large quadri-
ceps muscle in the upper 
leg terminates at its lower 
end in a tendon attached 
to the upper end of the 
tibia (Fig. P8.29a). The 
forces on the lower leg 
when the leg is extended 
are modeled as in Fig-
ure P8.29b, where T

S

 is 
the force of tension in  
the tendon, wS is the force  
of gravity acting on the  
lower leg, and F

S

 is the 
force of gravity acting  
on the foot. Find T

S

 when 
the tendon is at an angle 
of 25.0° with the tibia, 
assuming that w 5 30.0 N,  
F 5 12.5 N, and the leg is extended at an angle u of 
40.0° with the vertical. Assume that the center of grav-
ity of the lower leg is at its center and that the tendon 
attaches to the lower leg at a point one-fifth of the way 
down the leg.

 30. One end of a uniform 4.0-m-long rod of weight w is 
supported by a cable at an angle of u 5 37° with the 
rod. The other end rests against a wall, where it is 

�3
4 �

u

w

f

Pivot

Figure p 8.28

Tibia

Quadriceps
Tendon

a

T
S

F
S

u

b

25.0�

wS

Figure p 8.29

B
x

w

u
A

Figure p 8.30

3.00 kg 2.00 kg

4.00 kg
2.00 kg

6.00 m

4.00 m

y

x
O

Figure p 8.31 Problems 31 
and 32.
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wheel an acceleration of 4.50 rad/s2? (b) What force is 
required if you shift to a 5.60-cm-diameter sprocket?

 39. A 150-kg merry-go-round in the shape of a uni-
form, solid, horizontal disk of radius 1.50 m is set in 
motion by wrapping a rope about the rim of the disk 
and pulling on the rope. What constant force must be 
exerted on the rope to bring the merry-go-round from 
rest to an angular speed of 0.500 rev/s in 2.00 s?

 40.  An Atwood’s machine 
consists of blocks of masses m1 5 
10.0 kg and m2 5 20.0 kg attached 
by a cord running over a pulley 
as in Figure P8.40. The pulley is 
a solid cylinder with mass M 5 
8.00 kg and radius r 5 0.200 m. 
The block of mass m2 is allowed 
to drop, and the cord turns the 
pulley without slipping. (a) Why 
must the tension T2 be greater 
than the tension T1? (b)  What 
is the acceleration of the system, assuming the pulley 
axis is frictionless? (c) Find the tensions T1 and T2.

 41. An airliner lands with a speed of 50.0 m/s. Each wheel 
of the plane has a radius of 1.25 m and a moment of 
inertia of 110 kg ? m2. At touchdown, the wheels begin 
to spin under the action of friction. Each wheel sup-
ports a weight of 1.40 3 104 N, and the wheels attain 
their angular speed in 0.480 s while rolling without 
slipping. What is the coefficient of kinetic friction 
between the wheels and the runway? Assume that the 
speed of the plane is constant.

8.6  Rotational Kinetic Energy

42. A car is designed to get its energy from a rotating fly-
wheel with a radius of 2.00 m and a mass of 500 kg. 
Before a trip, the flywheel is attached to an electric 
motor, which brings the flywheel’s rotational speed up 
to 5 000 rev/min. (a) Find the kinetic energy stored in 
the flywheel. (b) If the flywheel is to supply energy to 
the car as a 10.0-hp motor would, find the length of 
time the car could run before the flywheel would have 
to be brought back up to speed.

43. A horizontal 800-N merry-go-round of radius 1.50 m  
is started from rest by a constant horizontal force of 
50.0 N applied tangentially to the merry-go-round. 
Find the kinetic energy of the merry-go-round after 
3.00 s. (Assume it is a solid cylinder.)

 44. Four objects—a hoop, a solid cylinder, a solid 
sphere, and a thin, spherical shell—each have a mass of 
4.80 kg and a radius of 0.230 m. (a) Find the moment 
of inertia for each object as it rotates about the axes 
shown in Table 8.1. (b) Suppose each object is rolled 
down a ramp. Rank the translational speed of each 
object from highest to lowest. (c) Rank the objects’ 
rotational kinetic energies from highest to lowest as 
the objects roll down the ramp.

the translational acceleration? (d) Write an equation 
for the angular acceleration a in terms of the transla-
tional acceleration a and radius r. (Watch the sign!) 
(e) Write Newton’s second law for the system in terms 
of m, M, a, T, and g. (f) Write Newton’s second law for 
rotation in terms of I, a, T, and r. (g) Eliminate a from 
the rotational second law with the expression found in 
part (d) and find a symbolic expression for the accel-
eration a in terms of m, M, g, r and R. (h) What is the 
numeric value for the system’s acceleration? (i) What is 
the tension in the string? (j) How long does it take the 
system to drop 1.00 m from rest?

R

M

m

r

R

M

Figure p 8.34

35. A rope of negligible mass is wrapped around a 
225-kg solid cylinder of radius 0.400 m. The cylinder 
is suspended several meters off the ground with its axis 
oriented horizontally, and turns on that axis without 
friction. (a) If a 75.0-kg man takes hold of the free end 
of the rope and falls under the force of gravity, what is 
his acceleration? (b) What is the angular acceleration 
of the cylinder? (c) If the mass of the rope were not 
neglected, what would happen to the angular accelera-
tion of the cylinder as the man falls?

 36. W A potter’s wheel having a radius of 0.50 m and a 
moment of inertia of 12 kg  ?  m2 is rotating freely at 
50 rev/min. The potter can stop the wheel in 6.0 s by 
pressing a wet rag against the rim and exerting a radi-
ally inward force of 70 N. Find the effective coefficient 
of kinetic friction between the wheel and the wet rag.

 37. A model airplane with mass 0.750 kg is tethered by a 
wire so that it flies in a circle 30.0 m in radius. The 
airplane engine provides a net thrust of 0.800 N per-
pendicular to the tethering wire. (a) Find the torque 
the net thrust produces about the center of the circle. 
(b) Find the angular acceleration of the airplane when 
it is in level flight. (c) Find the linear acceleration of 
the airplane tangent to its flight path.

 38. A bicycle wheel has a diameter of 64.0 cm and a mass 
of 1.80 kg. Assume that the wheel is a hoop with all 
the mass concentrated on the outside radius. The 
bicycle is placed on a stationary stand, and a resistive 
force of 120 N is applied tangent to the rim of the tire. 
(a) What force must be applied by a chain passing 
over a 9.00-cm-diameter sprocket in order to give the 

m

M r

1

m 2
aS

aS

T1

T2

Figure p 8.40
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51. A 10.0-kg cylinder rolls without slipping on a rough 
surface. At an instant when its center of gravity has 
a speed of 10.0 m/s, determine (a) the translational 
kinetic energy of its center of gravity, (b) the rotational 
kinetic energy about its center of gravity, and (c) its 
total kinetic energy.

52. W Use conservation of energy 
to determine the angular speed 
of the spool shown in Figure 
P8.52 after the 3.00-kg bucket 
has fallen 4.00 m, starting from 
rest. The light string attached to 
the bucket is wrapped around 
the spool and does not slip as it 
unwinds.

 53. A giant swing at an amuse-
ment park consists of a 365-kg 
uniform arm 10.0 m long, with 
two seats of negligible mass 
connected at the lower end of the arm (Fig. P8.53). 
(a) How far from the upper end is the center of mass 
of the arm? (b) The gravitational potential energy of 
the arm is the same as if all its mass were concentrated 
at the center of mass. If the arm is raised through a 
45.0° angle, find the gravitational potential energy, 
where the zero level is taken to be 10.0 m below the 
axis. (c)  The arm drops from rest from the position 
described in part (b). Find the gravitational potential 
energy of the system when it reaches the vertical orien-
tation. (d) Find the speed of the seats at the bottom of 
the swing.

45. A light rod of length , 5 1.00 m 
rotates about an axis perpen-
dicular to its length and passing 
through its center as in Figure 
P8.45. Two particles of masses 
m1 5 4.00 kg and m2 5 3.00 kg 
are connected to the ends of 
the rod. (a) Neglecting the mass 
of the rod, what is the system’s 
kinetic energy when its angular 
speed is 2.50  rad/s? (b) Repeat 
the problem, assuming the mass 
of the rod is taken to be 2.00 kg.

 46. A 240-N sphere 0.20 m in radius rolls without slipping 
6.0 m down a ramp that is inclined at 37° with the hori-
zontal. What is the angular speed of the sphere at the 
bottom of the slope if it starts from rest?

 47. A solid, uniform disk of radius 0.250 m and mass 
55.0 kg rolls down a ramp of length 4.50 m that makes 
an angle of 15.0° with the horizontal. The disk starts 
from rest from the top of the ramp. Find (a) the speed 
of the disk’s center of mass when it reaches the bottom 
of the ramp and (b) the angular speed of the disk at 
the bottom of the ramp.

 48.  A solid uniform sphere of mass m and radius 
R rolls without slipping down an incline of height h. 
(a) What forms of mechanical energy are associated 
with the sphere at any point along the incline when its 
angular speed is v? Answer in words and symbolically 
in terms of the quantities m, g, y, I, v, and v. (b) What 
force acting on the sphere causes it to roll rather than 
slip down the incline? (c) Determine the ratio of the 
sphere’s rotational kinetic energy to its total kinetic 
energy at any instant.

 49. The top in Figure P8.49 
has a moment of inertia of 
4.00 3 1024 kg ? m2 and is 
initially at rest. It is free to 
rotate about a stationary 
axis AA9. A string wrapped 
around a peg along the 
axis of the top is pulled in 
such a manner as to main-
tain a constant tension of 
5.57 N in the string. If the string does not slip while 
wound around the peg, what is the angular speed of 
the top after 80.0 cm of string has been pulled off the 
peg? Hint: Consider the work that is done.

 50. A constant torque of 25.0 N ? m is applied to a grind-
stone whose moment of inertia is 0.130 kg ? m2. Using 
energy principles and neglecting friction, find the 
angular speed after the grindstone has made 15.0 revo-
lutions. Hint: The angular equivalent of Wnet 5 FDx 5 
1
2mvf

2 2 1
2mvi

2 is Wnet 5 tDu 5 1
2Ivf

2 2 1
2Ivi

2. You should 
convince yourself that this last relationship is correct.

x

y

m1

m2

,

vS

vS

Figure p 8.45 Problems 
45 and 57.
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Figure p 8.49

0.600 m

5.00 kg

3.00 kg

Figure p 8.52

10.0 m

Figure p 8.53

8.7  Angular Momentum

54. Each of the following objects has a radius of 0.180 m 
and a mass of 2.40 kg, and each rotates about an axis 
through its center (as in Table 8.1) with an angular 
speed of 35.0 rad/s. Find the magnitude of the angular 
momentum of each object. (a) a hoop (b) a solid cylin-
der (c) a solid sphere (d) a hollow spherical shell

55. (a) Calculate the angular momentum of Earth that 
arises from its spinning motion on its axis, treat-
ing Earth as a uniform solid sphere. (b) Calculate 
the angular momentum of Earth that arises from its 
orbital motion about the Sun, treating Earth as a point 
particle.
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60.  A 60.0-kg woman stands at the rim of a horizontal 
turntable having a moment of inertia of 500 kg ? m2 and 
a radius of 2.00 m. The turntable is initially at rest and is 
free to rotate about a frictionless, vertical axle through 
its center. The woman then starts walking around the 
rim clockwise (as viewed from above the system) at a 
constant speed of 1.50 m/s relative to Earth. (a) In what 
direction and with what angular speed does the turnta-
ble rotate? (b) How much work does the woman do to set 
herself and the turntable into motion?

61. A solid, horizontal cylinder of mass 10.0 kg and radius 
1.00 m rotates with an angular speed of 7.00 rad/s  
about a fixed vertical axis through its center. A  
0.250-kg piece of putty is dropped vertically onto the 
cylinder at a point 0.900 m from the center of rotation 
and sticks to the cylinder. Determine the final angular 
speed of the system.

 62. A student sits on a rotating stool holding two 3.0-kg  
objects. When his arms are extended horizontally, 
the objects are 1.0 m from the axis of rotation and 
he rotates with an angular speed of 0.75 rad/s. 
The moment of inertia of the student plus stool is 
3.0 kg ? m2 and is assumed to be constant. The student 
then pulls in the objects horizontally to 0.30 m from 
the rotation axis. (a) Find the new angular speed of 
the student. (b) Find the kinetic energy of the student 
before and after the objects are pulled in.

63. W  The puck in Figure 
P8.63 has a mass of 0.120 kg. 
Its original distance from 
the center of rotation is 
40.0  cm, and it moves with 
a speed of 80.0 cm/s. The 
string is pulled downward 
15.0 cm through the hole in 
the frictionless table. Deter-
mine the work done on the 
puck. Hint: Consider the change in kinetic energy of 
the puck.

 64. A space station shaped 
like a giant wheel has 
a radius of 100 m and 
a moment of inertia 
of 5.00 3 108 kg ? m2. 
A crew of 150 lives on 
the rim, and the sta-
tion is rotating so that 
the crew experiences 
an apparent accelera-
tion of 1g (Fig. P8.64). 
When 100 people move to the center of the station for 
a union meeting, the angular speed changes. What 
apparent acceleration is experienced by the managers 
remaining at the rim? Assume the average mass of a 
crew member is 65.0 kg.

56. A 0.005  00-kg bullet travel-
ing horizontally with a speed of 
1.00 3 103 m/s enters an 18.0-kg 
door, embedding itself 10.0  cm 
from the side opposite the 
hinges as in Figure P8.56. The 
1.00-m-wide door is free to swing 
on its hinges. (a)  Before it hits 
the door, does the bullet have 
angular momentum relative the 
door’s axis of rotation? Explain. 
(b) Is mechanical energy con-
served in this collision? Answer without doing a calcu-
lation. (c) At what angular speed does the door swing 
open immediately after the collision? (The door has 
the same moment of inertia as a rod with axis at one 
end.) (d) Calculate the energy of the door–bullet sys-
tem and determine whether it is less than or equal to 
the kinetic energy of the bullet before the collision.

 57. A light rigid rod of length , 5 1.00 m rotates about an 
axis perpendicular to its length and through its center, 
as shown in Figure P8.45. Two particles of masses m1 5 
4.00 kg and m2 5 3.00 kg are connected to the ends of 
the rod. What is the angular momentum of the system 
if the speed of each particle is 5.00 m/s? (Neglect the 
rod’s mass.)

 58. Halley’s comet moves about the Sun in an ellipti-
cal orbit, with its closest approach to the Sun being 
0.59 A.U. and its greatest distance being 35 A.U. (1 A.U. 
is the Earth–Sun distance). If the comet’s speed at clos-
est approach is 54 km/s, what is its speed when it is far-
thest from the Sun? You may neglect any change in the 
comet’s mass and assume that its angular momentum 
about the Sun is conserved.

 59.  A rigid, massless rod has three particles with equal 
masses attached to it as shown in Figure P8.59. The 
rod is free to rotate in a vertical plane about a friction-
less axle perpendicular to the rod through the point 
P and is released from rest in the horizontal position 
at t 5 0. Assuming m and d are known, find (a) the 
moment of inertia of the system (rod plus particles) 
about the pivot, (b) the torque acting on the system 
at t 5 0, (c) the angular acceleration of the system at  
t 5 0, (d) the linear acceleration of the particle labeled 
3 at t 5 0, (e) the maximum kinetic energy of the sys-
tem, (f)  the maximum angular speed reached by the 
rod, (g) the maximum angular momentum of the 
system, and (h) the maximum translational speed 
reached by the particle labeled 2.

0.005 00 kg

18.0 kg

Hinge

Figure p 8.56. An 
overhead view of a 

bullet striking a door.
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69. A 40.0-kg child stands at one end of a 70.0-kg 
boat that is 4.00 m long (Fig. P8.69). The boat is ini-
tially 3.00 m from the pier. The child notices a turtle 
on a rock beyond the far end of the boat and proceeds 
to walk to that end to catch the turtle. (a) Neglect-
ing friction between the boat and water, describe the 
motion of the system (child plus boat). (b) Where will 
the child be relative to the pier when he reaches the far 
end of the boat? (c) Will he catch the turtle? (Assume 
that he can reach out 1.00 m from the end of the boat.)

 65.  A cylinder with moment of inertia I1 rotates 
with angular velocity v0 about a frictionless verti-
cal axle. A second cylinder, with moment of inertia 
I2, initially not rotating, drops onto the first cylinder 
(Fig. P8.65). Because the surfaces are rough, the two 
cylinders eventually reach the same angular speed v. 
(a) Calculate v. (b) Show that kinetic energy is lost in 
this situation, and calculate the ratio of the final to the 
initial kinetic energy.

Before After

I2

I1

v0 v

Figure p 8.65

66. A particle of mass 0.400 kg is attached to the 
100-cm mark of a meter stick of mass 0.100 kg. The 
meter stick rotates on a horizontal, frictionless table 
with an angular speed of 4.00 rad/s. Calculate the angu-
lar momentum of the system when the stick is pivoted 
about an axis (a) perpendicular to the table through the  
50.0-cm mark and (b) perpendicular to the table 
through the 0-cm mark.

Additional Problems

67. A typical propeller of 
a turbine used to generate 
electricity from the wind 
consists of three blades as 
in Figure P8.67. Each blade 
has a length of L 5 35 m 
and a mass of m 5 420 kg. 
The propeller rotates at the 
rate of 25 rev/min. (a) Con-
vert the angular speed of 
the propeller to units of rad/s. Find (b) the moment of 
inertia of the propeller about the axis of rotation and 
(c) the total kinetic energy of the propeller.

 68. Figure P8.68 shows a claw-
hammer as it is being used to 
pull a nail out of a horizontal 
board. If a force of magni-
tude 150 N is exerted hori-
zontally as shown, find (a) the 
force exerted by the hammer 
claws on the nail and (b) the 
force exerted by the surface 
at the point of contact with 
the hammer head. Assume 
that the force the hammer 
exerts on the nail is parallel 
to the nail and perpendicular 
to the position vector from  
the point of contact.

L

m

120�

Figure p 8.67

Single point
of contact

5.00 cm

30.0�

30.0 cm

F
S

 

Figure p 8.68

4.00 m3.00 m

Figure p 8.69

70. An object of mass M 5 
12.0 kg is attached to 
a cord that is wrapped 
around a wheel of 
radius r  5 10.0  cm 
(Fig. P8.70). The accel-
eration of the object 
down the frictionless 
incline is measured to 
be a  5 2.00  m/s2 and 
the incline makes an angle u 5 37.0° with the horizon-
tal. Assuming the axle of the wheel to be frictionless, 
determine (a) the tension in the rope, (b) the moment 
of inertia of the wheel, and (c) the angular speed of the 
wheel 2.00 s after it begins rotating, starting from rest.

 71. A uniform ladder of length L and weight w is leaning 
against a vertical wall. The coefficient of static friction 
between the ladder and the floor is the same as that 
between the ladder and the wall. If this coefficient 
of static friction is ms 5 0.500, determine the small-
est angle the ladder can make with the floor without 
slipping.

 72. Two astronauts (Fig. P8.72), each having a mass of 
75.0 kg, are connected by a 10.0-m rope of negligible 
mass. They are isolated in space, moving in circles 
around the point halfway between them at a speed of 
5.00 m/s. Treating the astronauts as particles, calcu-
late (a) the magnitude of the angular momentum and 
(b) the rotational energy of the system. By pulling on 
the rope, the astronauts shorten the distance between 
them to 5.00 m. (c) What is the new angular momen-
tum of the system? (d) What are their new speeds? 
(e)  What is the new rotational energy of the system? 
(f) How much work is done by the astronauts in short-
ening the rope?

r

u

M

aS

Figure p 8.70
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respectively. Find (a) the force Fs exerted by the top 
spring on the bar, and (b) the location x of the upper 
spring that will keep the bar in equilibrium.

 76.  A light rod of length 2L is free to rotate in 
a vertical plane about a frictionless pivot through its  
center. A particle of mass m1 is attached at one end of 
the rod, and a mass m2 is at the opposite end, where 
m1 . m2. The system is released from rest in the verti-
cal position shown in Figure P8.76a, and at some later 
time the system is rotating in the position shown in 
Figure P8.76b. Take the reference point of the gravi-
tational potential energy to be at the pivot. (a) Find 
an expression for the system’s total mechanical energy 
in the vertical position. (b) Find an expression for the 
total mechanical energy in the rotated position shown 
in Figure P8.76b. (c) Using the fact that the mechani-
cal energy of the system is conserved, how would you 
determine the angular speed v of the system in the 
rotated position? (d) Find the magnitude of the torque 
on the system in the vertical position and in the rotated 
position. Is the torque constant? Explain what these 
results imply regarding the angular momentum of the 
system. (e) Find an expression for the magnitude of 
the angular acceleration of the system in the rotated 
position. Does your result make sense when the rod is 
horizontal? When it is vertical? Explain.

 73. This is a symbolic version of problem 72. Two astro-
nauts (Fig. P8.72), each having a mass M, are connected 
by a rope of length d having negligible mass. They are 
isolated in space, moving in circles around the point 
halfway between them at a speed v. (a) Calculate the 
magnitude of the angular momentum of the system by 
treating the astronauts as particles. (b) Calculate the 
rotational energy of the system. By pulling on the rope, 
the astronauts shorten the distance between them to 
d/2. (c) What is the new angular momentum of the sys-
tem? (d) What are their new speeds? (e) What is the 
new rotational energy of the system? (f) How much 
work is done by the astronauts in shortening the rope?

 74. Two window washers, Bob and Joe, are on a 3.00-m-long, 
345-N scaffold supported by two cables attached to its 
ends. Bob weighs 750 N and stands 1.00 m from the left 
end, as shown in Figure P8.74. Two meters from the left 
end is the 500-N washing equipment. Joe is 0.500 m 
from the right end and weighs 1 000 N. Given that the 
scaffold is in rotational and translational equilibrium, 
what are the forces on each cable?

CG

d

Figure p 8.72 Problems 72 and 73.

1.00 m

3.00 m

Bob
Joe

0.500 m2.00 m

Figure p 8.74

75. A 2.35-kg uniform bar of 
length , 5 1.30 m is held 
in a horizontal position 
by three vertical springs 
as in Figure P8.75. The 
two lower springs are 
compressed and exert 
upward forces on the 
bar of magnitude F1 5 
6.80 N and F2 5 9.50 N, 

x

F1
S

F2
S

Fs
S

,

Figure p 8.75
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a b

Figure p 8.76

77. A light rope passes over a light, 
frictionless pulley. One end is fas-
tened to a bunch of bananas of mass 
M, and a monkey of mass M clings to 
the other end (Fig. P8.77). The mon-
key climbs the rope in an attempt to 
reach the bananas. (a)  Treating the 
system as consisting of the monkey, 
bananas, rope, and pulley, find the 
net torque of the system about the 
pulley axis. (b) Using the result of 
part (a), determine the total angular 
momentum about the pulley axis and 
describe the motion of the system. 
(c) Will the monkey reach the bananas before they get 
stuck in the pulley?

 78. An electric motor turns a flywheel through a drive belt 
that joins a pulley on the motor and a pulley that is rig-
idly attached to the flywheel, as shown in Figure P8.78. 
The flywheel is a uniform disk with a mass of 80.0 kg 
and a radius of R 5 0.625 m. It turns on a frictionless 

M

M

Figure p 8.77
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the vertical wall on the ladder is horizontal. (b) If the 
ladder of length L leans at an angle u with the horizon-
tal, what is the lever arm for this horizontal force with 
the axis of rotation taken at the base of the ladder? 
(c) If the ladder is uniform, what is the lever arm for 
the force of gravity acting on the ladder? (d) Let the 
mass of the painter be 80 kg, L 5 4.0 m, the ladder’s 
mass be 30 kg, u 5 53°, and the coefficient of friction 
between ground and ladder be 0.45. Find the maxi-
mum distance the painter can climb up the ladder.

 83. A war-wolf, or trebuchet, is a device used during the Mid-
dle Ages to throw rocks at castles and now sometimes 
used to fling pumpkins and pianos. A simple trebuchet 
is shown in Figure P8.83. Model it as a stiff rod of neg-
ligible mass 3.00 m long and joining particles of mass 
m1 5 0.120 kg and m2 5 60.0 kg at its ends. It can turn 
on a frictionless horizontal axle perpendicular to the 
rod and 14.0 cm from the particle of larger mass. The 
rod is released from rest in a horizontal orientation. 
Find the maximum speed that the object of smaller 
mass attains.

79. In exercise physi-
ology studies, it is 
sometimes important 
to determine the loca-
tion of a person’s cen-
ter of gravity. This 
can be done with the 
arrangement shown in 
Figure P8.79. A light 
plank rests on two scales that read Fg1 5 380 N and 
Fg2 5 320 N. The scales are separated by a distance of 
2.00 m. How far from the woman’s feet is her center of 
gravity?

 80. A uniform thin 
rod of length L and 
mass M is free to rotate 
on a frictionless pin 
passing through one 
end (Fig. P8.80). The 
rod is released from 
rest in the horizontal 
position. (a) What is 
the speed of its center 
of gravity when the rod 
reaches its lowest position? (b) What is the tangential 
speed of the lowest point on the rod when it is in the 
vertical position?

 81. A uniform solid cylinder of 
mass M and radius R rotates on 
a frictionless horizontal axle  
(Fig. P8.81). Two objects with 
equal masses m hang from light 
cords wrapped around the cylin-
der. If the system is released from 
rest, find (a) the tension in each 
cord and (b) the acceleration of each object after the 
objects have descended a distance h.

 82.  A painter climbs a ladder leaning against a 
smooth wall. At a certain height, the ladder is on the 
verge of slipping. (a) Explain why the force exerted by 

R
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Figure p 8.78
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Figure p 8.83

84. A string is wrapped around a uni-
form cylinder of mass M and radius 
R. The cylinder is released from 
rest with the string vertical and  
its top end tied to a fixed bar  
(Fig. P8.84). Show that (a) the ten-
sion in the string is one-third the 
weight of the cylinder, (b) the mag-
nitude of the acceleration of the 
center of gravity is 2g/3, and (c) the speed of the center 
of gravity is (4gh/3)1/2 after the cylinder has descended 
through distance h. Verify your answer to part (c) with 
the energy approach.

 85. The Iron Cross When a gymnast weighing 750 N 
executes the iron cross as in Figure P8.85a, the pri-
mary muscles involved in supporting this position are 
the latissimus dorsi (“lats”) and the pectoralis major 
(“pecs”). The rings exert an upward force on the arms 
and support the weight of the gymnast. The force 
exerted by the shoulder joint on the arm is labeled F

S

s

while the two muscles exert a total force F
S

m on the arm. 
Estimate the magnitude of the force F

S

m. Note that one 
ring supports half the weight of the gymnast, which is 
375 N as indicated in Figure P8.85b. Assume that the 
force F

S

m acts at an angle of 45° below the horizontal at 

h

MR

Figure p 8.84

axle. Its pulley has much smaller mass and a radius 
of r  5 0.230 m. The tension Tu in the upper (taut)  
segment of the belt is 135 N and the flywheel has a 
clockwise angular acceleration of 1.67 rad/s2. Find the 
tension in the lower (slack) segment of the belt.
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87. An object of mass m1 5 4.00 kg 
is connected by a light cord to an 
object of mass m2 5 3.00 kg on a 
frictionless surface (Fig. P8.87). 
The pulley rotates about a fric-
tionless axle and has a moment 
of inertia of 0.500 kg  ? m2 and 
a radius of 0.300 m. Assuming that the cord does not 
slip on the pulley, find (a) the acceleration of the two 
masses and (b) the tensions T1 and T2.

 88. A 10.0-kg monkey climbs  
a uniform ladder with weight 
w  5 1.20 3 102 N and length  
L 5 3.00  m as shown in Figure 
P8.88. The ladder rests against 
the wall at an angle of u 5 60.0°. 
The upper and lower ends of the 
ladder rest on frictionless sur-
faces, with the lower end fastened 
to the wall by a horizontal rope 
that is frayed and that can support 
a maximum tension of only 80.0  N. (a) Draw a force 
diagram for the ladder. (b) Find the normal force 
exerted by the bottom of the ladder. (c) Find the ten-
sion in the rope when the monkey is two-thirds of the 
way up the ladder. (d) Find the maximum distance d 
that the monkey can climb up the ladder before the 
rope breaks. (e) If the horizontal surface were rough 
and the rope were removed, how would your analysis of 
the problem be changed and what other information 
would you need to answer parts (c) and (d)?

 89. A 3.2-kg sphere is suspended 
by a cord that passes over a 
1.8-kg pulley of radius 3.8 cm. 
The cord is attached to a 
spring whose force constant is 
k 5 86 N/m as in Figure P8.89. 
Assume the pulley is a solid 
disk. (a) If the sphere is released from rest with the spring 
unstretched, what distance does the sphere fall through 
before stopping? (b) Find the speed of the sphere after it 
has fallen 25 cm.

a distance of 4.0 cm from the shoulder joint. In your 
estimate, take the distance from the shoulder joint to 
the hand to be L 5 70 cm and ignore the weight of the 
arm.
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86.  In an emergency situa-
tion, a person with a broken 
forearm ties a strap from his 
hand to clip on his shoulder 
as in Figure P8.86. His 1.60-kg 
forearm remains in a horizon-
tal position and the strap makes 
an angle of u 5 50.0° with the 
horizontal. Assume the fore-
arm is uniform, has a length of 
, 5 0.320 m, assume the biceps 
muscle is relaxed, and ignore 
the mass and length of the hand. Find (a) the tension in 
the strap and (b) the components of the reaction force 
exerted by the humerus on the forearm.
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Figure p 8.86

m1

m2

T1

T2

Figure p 8.87

L

Ropeu

Figure p 8.88

k

m

Figure p 8.89
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Hot air balloons exploit 

Archimedes’ principle: the 

buoyant force is equal to the 

weight of the displaced air. 

The hot air expands and is less 

dense than the ambient air, 

hence lighter. When the total 

weight of the balloon is lighter 

than the air it displaces, the 

balloon rises.

There are four known states of matter: solids, liquids, gases, and plasmas. In the Universe at 
large, plasmas—systems of charged particles interacting electromagnetically—are the most 
common. In our environment on Earth, solids, liquids, and gases predominate.

An understanding of the fundamental properties of these different states of matter is impor-
tant in all the sciences, in engineering, and in medicine. Forces put stresses on solids, and stresses 
can strain, deform, and break those solids, whether they are steel beams or bones. Fluids under 
pressure can perform work or carry nutrients and essential solutes, like the blood flowing through 
our arteries and veins. Flowing gases cause pressure differences that can lift a massive cargo 
plane or the roof off a house in a hurricane. High-temperature plasmas created in fusion reactors 
may someday allow humankind to harness the energy source of the Sun.

The study of any one of these states of matter is itself a vast discipline. Here, we’ll intro-
duce basic properties of solids and liquids, the latter including some properties of gases. In 
addition, we’ll take a brief look at surface tension, viscosity, osmosis, and diffusion.

9.1    States of Matter
Learning Objective

1. Describe and contrast the four states of matter.

Matter is normally classified as being in one of three states: solid, liquid, or gas. 
Often this classification system is extended to include a fourth state of matter, 
called a plasma.

Everyday experience tells us that a solid has a definite volume and shape. A 
brick, for example, maintains its familiar shape and size day in and day out.

A liquid has a definite volume but no definite shape. When you fill the tank on 
a lawn mower, the gasoline changes its shape from that of the original container to 

9 Solids and Fluids
9.1 States of Matter

9.2 Density and Pressure

9.3 The Deformation of Solids

9.4 Variation of Pressure with 
Depth

9.5 Pressure Measurements

9.6 Buoyant Forces and 
Archimedes’ Principle

9.7 Fluids in Motion

9.8 Other Applications of Fluid 
Dynamics

9.9 Surface Tension, Capillary 
Action, and Viscous Fluid 
Flow

9.10 Transport Phenomena
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that of the tank on the mower, but the original volume is unchanged. A gas differs 
from solids and liquids in that it has neither definite volume nor definite shape. 
Because gas can flow, however, it shares many properties with liquids.

All matter consists of some distribution of atoms or molecules. The atoms in a 
solid, held together by forces that are mainly electrical, are located at specific posi-
tions with respect to one another and vibrate about those positions. At low temper-
atures, the vibrating motion is slight and the atoms can be considered essentially 
fixed. As energy is added to the material, the amplitude of the vibrations increases. 
A vibrating atom can be viewed as being bound in its equilibrium position by springs 
attached to neighboring atoms. A collection of such atoms and imaginary springs is 
shown in Figure 9.1. We can picture applied external forces as compressing these tiny 
internal springs. When the external forces are removed, the solid tends to return to 
its original shape and size. Consequently, a solid is said to have elasticity.

Solids can be classified as either crystalline or amorphous. In a crystalline solid 
the atoms have an ordered structure. For example, in the sodium chloride crys-
tal (common table salt), sodium and chlorine atoms occupy alternate corners of 
a cube, as in Figure 9.2a. In an amorphous solid, such as glass, the atoms are 
arranged almost randomly, as in Figure 9.2b.

For any given substance, the liquid state exists at a higher temperature than the 
solid state. The intermolecular forces in a liquid aren’t strong enough to keep the 
molecules in fixed positions, and they wander through the liquid in random fashion  
(Fig. 9.2c). Solids and liquids both have the property that when an attempt is made to 
compress them, strong repulsive atomic forces act internally to resist the compression.

In the gaseous state, molecules are in constant random motion and exert only 
weak forces on each other. The average distance between the molecules of a gas is 
quite large compared with the size of the molecules. Occasionally the molecules 
collide with each other, but most of the time they move as nearly free, noninteract-
ing particles. As a result, unlike solids and liquids, gases can be easily compressed. 
We’ll say more about gases in subsequent chapters.

When a gas is heated to high temperature, many of the electrons surrounding 
each atom are freed from the nucleus. The resulting system is a collection of free, 
electrically charged particles—negatively charged electrons and positively charged 
ions. Such a highly ionized state of matter containing equal amounts of positive 
and negative charges is called a plasma. Unlike a neutral gas, the long-range elec-
tric and magnetic forces allow the constituents of a plasma to interact with each 
other. Plasmas are found inside stars and in accretion disks around black holes, 
for example, and are far more common than the solid, liquid, and gaseous states 
because there are far more stars around than any other form of celestial matter.

Normal matter, however, may constitute less than 5% of all matter in the Uni-
verse. Observations of the last several years point to the existence of an invisible 
dark matter, which affects the motion of stars orbiting the centers of galaxies. Dark 
matter may comprise nearly 25% of the matter in the Universe, several times larger 

Crystals of natural quartz (SiO2), 
one of the most common minerals 
on Earth. Quartz crystals are used to 
make special lenses and prisms and 
are employed in certain electronic 
applications.
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Figure 9.1  A model of a portion 
of a solid. The atoms (spheres) are 
imagined as being attached to each 
other by springs, which represent 
the elastic nature of the interatomic 
forces. A solid consists of trillions of 
segments like this, with springs con-
necting all of them.

a b c

Figure 9.2  (a) The NaCl structure, with the Na1 (gray) and Cl2 (green) ions at alternate corners of a cube. (b) In an 
amorphous solid, the atoms are arranged randomly. (c) Erratic motion of a molecule in a liquid.
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than the amount of normal matter. Finally, the rapid acceleration of the expan-
sion of the Universe may be driven by an even more mysterious form of matter, 
called dark energy, which may account for over 70% of all matter in the Universe.

9.2    Density and Pressure
Learning Objectives

1. Define the density of a uniform object.

2. Define pressure and apply it in common physical contexts.

Equal masses of aluminum and gold have an important physical difference: The 
aluminum takes up over seven times as much space as the gold. Although the rea-
sons for the difference lie at the atomic and nuclear levels, a simple measure of 
this difference is the concept of density.

The density r of an object having uniform composition is its mass M divided 
by its volume V:

r ;  
M
V

 [9.1]

SI unit: kilogram per meter cubed (kg/m3)

For an object with non-uniform composition, Equation 9.1 defines an average 
density. The most common units used for density are kilograms per cubic meter in 
the SI system and grams per cubic centimeter in the cgs system. Table 9.1 lists the 
densities of some substances. The densities of most liquids and solids vary slightly 
with changes in temperature and pressure; the densities of gases vary greatly with 
such changes. Under normal conditions, the densities of solids and liquids are 
about 1 000 times greater than the densities of gases. This difference implies that 
the average spacing between molecules in a gas under such conditions is about ten 
times greater than in a solid or liquid.

The specific gravity of a substance is the ratio of its density to the density of 
water at 4°C, which is 1.0 3 103 kg/m3. (The size of the kilogram was originally 
defined to make the density of water 1.0 3 103 kg/m3 at 4°C.) By definition, spe-
cific gravity is a dimensionless quantity. For example, if the specific gravity of a 
substance is 3.0, its density is 3.0(1.0 3 103 kg/m3) 5 3.0 3 103 kg/m3.

■ Quick Quiz

9.1  Suppose you have one cubic meter of gold, two cubic meters of silver, and six cubic 
meters of aluminum. Rank them by mass, from smallest to largest. (a) gold, aluminum, 
silver (b) gold, silver, aluminum (c) aluminum, gold, silver (d) silver, aluminum, gold

 Density c

t able 9.1  Densities of Some Common Substances

Substance r (kg/m3)a Substance r (kg/m3)a

Ice 0.917 3 103 Water 1.00 3 103

Aluminum 2.70 3 103 Glycerin 1.26 3 103

Iron 7.86 3 103 Ethyl alcohol 0.806 3 103

Copper 8.92 3 103 Benzene 0.879 3 103

Silver 10.5 3 103 Mercury 13.6 3 103

Lead 11.3 3 103 Air 1.29
Gold 19.3 3 103 Oxygen 1.43
Platinum 21.4 3 103 Hydrogen 8.99 3 1022

Uranium 18.7 3 103 Helium 1.79 3 1021

aAll values are at standard atmospheric temperature and pressure (STP), defined as 0°C (273 K) and 1 atm  
(1.013 3 105 Pa). To convert to grams per cubic centimeter, multiply by 1023.
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9.2 | Density and Pressure  285

The force exerted by a fluid on an object is always perpendicular to the surfaces 
of the object, as shown in Figure 9.3a.

The pressure at a specific point in a fluid can be measured with the device 
pictured in Figure 9.3b: an evacuated cylinder enclosing a light piston connected 
to a spring that has been previously calibrated with known weights. As the device 
is submerged in a fluid, the fluid presses down on the top of the piston and com-
presses the spring until the inward force exerted by the fluid is balanced by the 
outward force exerted by the spring. Let F be the magnitude of the force on the 
piston and A the area of the top surface of the piston. Notice that the force that 
compresses the spring is spread out over the entire area, motivating our formal 
definition of pressure:

If F is the magnitude of a force exerted perpendicular to a given surface of 
area A, then the average pressure P is the force divided by the area:

 P ;  
F
A

 [9.2]

SI unit: pascal (Pa 5 N/m2)

Pressure can change from point to point, which is why the pressure in Equa-
tion 9.2 is called an average. Because pressure is defined as force per unit area, 
it has units of pascals (newtons per square meter). The English customary unit 
for pressure is the pound per inch squared. Atmospheric pressure at sea level is  
14.7 lb/in.2, which in SI units is 1.01 3 105 Pa.

As we see from Equation 9.2, the effect of a given force depends critically on the 
area to which it’s applied. A 700-N man can stand on a vinyl-covered floor in regu-
lar street shoes without damaging the surface, but if he wears golf shoes, the metal 
cleats protruding from the soles can do considerable damage to the floor. With 
the cleats, the same force is concentrated into a smaller area, greatly elevating the 
pressure in those areas, resulting in a greater likelihood of exceeding the ultimate 
strength of the floor material.

Snowshoes use the same principle (Fig. 9.4). The snow exerts an upward normal 
force on the shoes to support the person’s weight. According to Newton’s third law, 
this upward force is accompanied by a downward force exerted by the shoes on 
the snow. If the person is wearing snowshoes, that force is distributed over the very 
large area of each snowshoe, so that the pressure at any given point is relatively low 
and the person doesn’t penetrate very deeply into the snow.

b Pressure

Figure 9.3  (a) The force exerted 
by a fluid on the surfaces of a sub-
merged object. (b) A simple device 
for measuring pressure in a fluid.

The force exerted by a �uid on 
a submerged object at any point 
is perpendicular to the surface 
and increases with depth.

a

Vacuum

A

F
S

b

t ip 9.1  Force and Pressure
Equation 9.2 makes a clear 
distinction between force and 
pressure. Another important 
distinction is that force is a vec-
tor and pressure is a scalar. There 
is no direction associated with 
pressure, but the direction of the 
force associated with the pressure 
is perpendicular to the surface of 
interest.

Figure 9.4  Snowshoes prevent the 
person from sinking into the soft 
snow because the force on the snow 
is spread over a larger area, reducing 
the pressure on the snow’s surface.
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After an exciting but exhausting lecture, a physics professor 
stretches out for a nap on a bed of nails, as in Figure 9.5, 
suffering no injury and only moderate discomfort. How is 
that possible?

e Xp La n at i On   If you try to support your entire weight 
on a single nail, the pressure on your body is your weight 
divided by the very small area of the end of the nail. The 
resulting pressure is large enough to penetrate the skin. 
If you distribute your weight over several hundred nails, 
however, as demonstrated by the professor, the pressure is 
considerably reduced because the area that supports your 
weight is the total area of all nails in contact with your 
body. (Why is lying on a bed of nails more comfortable 
than sitting on the same bed? Extend the logic to show that 
it would be more uncomfortable yet to stand on a bed of 
nails without shoes.) 

Figure 9.5  (Applying Physics 9.1) Does anyone have a pillow?

Ra
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(a) Calculate the weight of a cylindrical column of water 
with height 40.0 m and radius 1.00 m.

Calculate the volume of the cylinder: V 5 pr 2h 5 p(1.00 m)2(40.0 m) 5 126 m3

Multiply the volume by the density of water to obtain the 
mass of water in the cylinder:

m 5 rV 5 (1.00 3 103 kg/m3)(126 m3) 5 1.26 3 105 kg

Multiply the mass by the acceleration of gravity g to 
obtain the weight w:

w 5 mg 5 (1.26 3 105 kg)(9.80 m/s2) 5   1.23 3 106 N

(b) Calculate the force exerted by air on a disk of radius 
1.00 m at the surface of the lake.

Write the equation for pressure: P 5
F
A

Solve the pressure equation for the force and substitute  
A 5 pr 2:

F 5 PA 5 Ppr 2

Substitute values: F 5 (1.01 3 105 Pa)p (1.00 m)2 5   3.17 3 105 N

 ■ a pp LYi ng  ph Ys ic s  9.1 Bed of Nails Trick

h 

Fdown
S

Fup
S

r

wS

The downward 
force is caused by 
air pressure.

The upward force 
is caused by the 
pressure of water, 
and must equal 
the weight plus the 
downward force of 
air pressure.

Figure 9.6  (Example 9.1)

 ■ e Xa Mp Le  9.1 Pressure and Weight of Water

g Oa L  Relate density, pressure, and weight.

pr Ob Le M  (a) Calculate the weight of a cylindrical column of water with 
height h 5 40.0 m and radius r 5 1.00 m. (See Fig. 9.6.) (b) Calculate 
the force exerted by air on a disk of radius 1.00 m at the water’s surface.  
(c) What pressure at a depth of 40.0 m supports the water column?

s t r at e g Y  For part (a), calculate the volume and multiply by the density 
to get the mass of water, then multiply the mass by g to get the weight. Part 
(b) requires substitution into the definition of pressure. Adding the results 
of parts (a) and (b) and dividing by the area gives the pressure of water at 
the bottom of the column.

s OLUti On

Unless otherwise noted, all content on this page is © Cengage Learning.

37027_ch09_ptg01_hr_282-335.indd   286 28/08/13   4:17 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



9.3 | The Deformation of Solids  287

Unless otherwise noted, all content on this page is © Cengage Learning.

9.3    The Deformation of Solids
Learning Objectives

1. Identify the three elastic moduli related to changes in an object’s length, 
shape and volume in response to applied stress.

2. Apply the stress–strain equations to deformation problems.

Although a solid may be thought of as having a definite shape and volume, it’s 
possible to change its shape and volume by applying external forces. A sufficiently 
large force will permanently deform or break an object, but otherwise, when the 
external forces are removed, the object tends to return to its original shape and 
size. This is called elastic behavior.

The elastic properties of solids are discussed in terms of stress and strain. Stress is 
the force per unit area causing a deformation; strain is a measure of the amount of 
the deformation. For sufficiently small stresses, stress is proportional to strain, with  
the constant of proportionality depending on the material being deformed and on the 
nature of the deformation. We call this proportionality constant the elastic modulus:

 stress 5 elastic modulus 3 strain [9.3]

The elastic modulus is analogous to a spring constant. It can be taken as the stiff-
ness of a material: A material having a large elastic modulus is very stiff and dif-
ficult to deform. There are three relationships having the form of Equation 9.3, 
corresponding to tensile, shear, and bulk deformation, and all of them satisfy an 
equation similar to Hooke’s law for springs:

 F 5 2k Dx [9.4]

where F is the applied force, k is the spring constant, and Dx is essentially the 
amount by which the spring is stretched or compressed.

Young’s Modulus: Elasticity in Length
Consider a long bar of cross-sectional area A and length L0, clamped at one end 
(Fig. 9.7). When an external force F

S

 is applied along the bar, perpendicular to 
the cross section, internal forces in the bar resist the distortion (“stretching”) 

re Mar Ks  Notice that the pressure at a given depth is related to the sum of the weight of the water and the force 
exerted by the air pressure at the water’s surface. Water at a depth of 40.0 m must push upward to maintain the column in 
equilibrium. Notice also the important role of density in determining the pressure at a given depth.

QUes t i On  9.1  A giant oil storage facility contains oil to a depth of 40.0 m. How does the pressure at the bottom of the 
tank compare to the pressure at a depth of 40.0 m in water? Explain.

eX e r c i s e 9.1  A large rectangular tub is filled to a depth of 2.60 m with olive oil, which has density 915 kg/m3. If the 
tub has length 5.00 m and width 3.00 m, calculate (a) the weight of the olive oil, (b) the force of air pressure on the sur-
face of the oil, and (c) the pressure exerted upward by the bottom of the tub.

a ns We r s  (a) 3.50 3 105 N (b) 1.52 3 106 N (c) 1.25 3 105 Pa

(c) What pressure at a depth of 40.0 m supports 
the water column?

Write Newton’s second law for the water column: 2Fdown 2 w 1 Fup 5 0

Solve for the upward force: Fup 5 Fdown 1 w 5 (3.17 3 105 N) 1 (1.23 3 106 N) 5 1.55 3 106 N

Divide the force by the area to obtain the 
required pressure:

P 5
Fup

A
5

1.55 3 106 N
p 11.00 m 22 5   4.93 3 105 Pa

L0

�L

A

F
S

S

The bar is stretched 
by the amount �L 
under the action of 
a force F.

Figure 9.7 A force is applied to a 
long bar clamped at one end.
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that F
S

 tends to produce. Nevertheless, the bar attains an equilibrium in which 
(1) its length is greater than L0 and (2) the external force is balanced by inter-
nal forces. Under these circumstances, the bar is said to be stressed. We define 
the tensile stress as the ratio of the magnitude of the external force F to the 
cross-sectional area A. The word “tensile” has the same root as the word “ten-
sion” and is used because the bar is under tension. The SI unit of stress is the 
newton per square meter (N/m2), called the pascal (Pa), the same as the unit of 
pressure:

1 Pa ; N/m2

The tensile strain in this case is defined as the ratio of the change in length DL to 
the original length L0 and is therefore a dimensionless quantity. Using Equation 9.3, 
we can write an equation relating tensile stress to tensile strain:

 
F
A

5 Y 
DL
L 0

 [9.5]

In this equation, Y is the constant of proportionality, called Young’s modulus. 
Notice that Equation 9.5 could be solved for F and put in the form F 5 k DL, where 
k 5 YA/L0, making it look just like Hooke’s law, Equation 9.4.

A material having a large Young’s modulus is difficult to stretch or compress. 
This quantity is typically used to characterize a rod or wire stressed under either 
tension or compression. Because strain is a dimensionless quantity, Y is in pascals. 
Typical values are given in Table 9.2. Experiments show that (1) the change in 
length for a fixed external force is proportional to the original length and (2) the 
force necessary to produce a given strain is proportional to the cross-sectional 
area. The value of Young’s modulus for a given material depends on whether the 
material is stretched or compressed. A human femur, for example, is stronger 
under compression than tension. For many materials, such as metals, the moduli 
for compression and tension differ very little from each other.

It’s possible to exceed the elastic limit of a substance by applying a sufficiently 
great stress (Fig. 9.8). At the elastic limit, the stress–strain curve departs from a 
straight line. A material subjected to a stress beyond this limit ordinarily doesn’t 
return to its original length when the external force is removed. As the stress is 
increased further, it surpasses the ultimate strength: the greatest stress the sub-
stance can withstand without breaking. The breaking point for brittle materials 
is just beyond the ultimate strength. For ductile metals like copper and gold, after 
passing the point of ultimate strength, the metal thins and stretches at a lower 
stress level before breaking.

 The pascal c
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Elastic
behavior
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Figure 9.8  Stress-versus-strain 
curve for an elastic solid.

t able 9.2  Typical Values for the Elastic Modulus

Substance Young’s Modulus (Pa) Shear Modulus (Pa) Bulk Modulus (Pa)

Aluminum 7.0 3 1010 2.5 3 1010 7.0 3 1010

Bone 1.8 3 1010 8.0 3 1010 —
Brass 9.1 3 1010 3.5 3 1010 6.1 3 1010

Copper 11 3 1010 4.2 3 1010 14 3 1010

Steel 20 3 1010 8.4 3 1010 16 3 1010

Tungsten 35 3 1010 14 3 1010 20 3 1010

Glass 6.5–7.8 3 1010 2.6–3.2 3 1010 5.0–5.5 3 1010

Quartz 5.6 3 1010 2.6 3 1010 2.7 3 1010

Rib Cartilage 1.2 3 107 — —
Rubber 0.1 3 107 — —
Tendon 2 3 107 — —
Water — — 0.21 3 1010

Mercury — — 2.8 3 1010
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Shear Modulus: Elasticity of Shape
Another type of deformation occurs when an object is subjected to a force F

S

 parallel 
to one of its faces while the opposite face is held fixed by a second force (Fig. 9.9a). 
If the object is originally a rectangular block, such a parallel force results in a shape 
with the cross section of a parallelogram. This kind of stress is called a shear stress. 
A book pushed sideways, as in Figure 9.9b, is being subjected to a shear stress. There 
is no change in volume with this kind of deformation. It’s important to remember 
that in shear stress, the applied force is parallel to the cross-sectional area, whereas 
in tensile stress the force is perpendicular to the cross-sectional area. We define the 
shear stress as F/A, the ratio of the magnitude of the parallel force to the area A 
of the face being sheared. The shear strain is the ratio Dx/h, where Dx is the hori-
zontal distance the sheared face moves and h is the height of the object. The shear 
stress is related to the shear strain according to

 
F
A

5 S 
Dx
h

 [9.6]

where S is the shear modulus of the material, with units of pascals (force per unit 
area). Once again, notice the similarity to Hooke’s law.

A material having a large shear modulus is difficult to bend. Shear moduli for 
some representative materials are listed in Table 9.2.

Bulk Modulus: Volume Elasticity
The bulk modulus characterizes the response of a substance to uniform squeez-
ing. Suppose the external forces acting on an object are all perpendicular to the 
surface on which the force acts and are distributed uniformly over the surface of 
the object (Fig. 9.10). This occurs when an object is immersed in a fluid. An object 
subject to this type of deformation undergoes a change in volume but no change 
in shape. The volume stress DP is defined as the ratio of the change in the mag-
nitude of the applied force DF to the surface area A. From the definition of pres-
sure in Section 9.2, DP is also simply a change in pressure. The volume strain is 
equal to the change in volume DV divided by the original volume V. Again using 
Equation 9.3, we can relate a volume stress to a volume strain by the formula

 DP 5 2B 
DV
V

 [9.7]

A material having a large bulk modulus doesn’t compress easily. Note that a neg-
ative sign is included in this defining equation so that B is always positive. An 
increase in pressure (positive DP) causes a decrease in volume (negative DV) and 
vice versa.

b Bulk modulus

The shear 
stress 
displaces the
top face of 
the block to 
the right 
relative the 
bottom.

–
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A

Fixed
face

h

F
S

F
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a

F
S

The shear 
stress 
displaces the 
front cover 
of the book 
to the right 
relative the 
back cover.

b

P
h
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Figure 9.9 (a) A shear deforma-
tion in which a rectangular block is 
distorted by forces applied tangent 
to two of its faces. (b) A book under 
shear stress.

Under uniform bulk stress, the 
cube shrinks in size without 
changing shape.

V

V � �V

F
S

Figure 9.10 A solid cube is under 
uniform pressure and is therefore 
compressed on all sides by forces 
normal to its six faces. The arrow-
heads of force vectors on the sides of 
the cube that are not visible are hid-
den by the cube.
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Table 9.2 lists bulk modulus values for some materials. If you look up such val-
ues in a different source, you may find that the reciprocal of the bulk modulus, 
called the compressibility of the material, is listed. Note from the table that both 
solids and liquids have bulk moduli. There is neither a Young’s modulus nor shear 
modulus for liquids, however, because liquids simply flow when subjected to a ten-
sile or shearing stress.

(a) Find the amount of compression in the beam.

Solve Equation 9.5 for DL and substitute, using the value 
of Young’s modulus from Table 9.2:

F
A

5 Y 
DL
L0

DL 5  
FL0

YA
5

16.0 3 104 N 2 14.0 m 2
12.0 3 1011 Pa 2 18.0 3 1023 m2 2

5   1.5 3 1024 m

(b) Find the maximum load that the beam can support.

Set the compressive stress equal to the ultimate compres-
sive strength from Table 9.3, and solve for F:

F
A

5
F

8.0 3 1023 m2 5 5.0 3 108 Pa

F 5   4.0 3 106 N

re Mar Ks  In designing load-bearing structures of any kind, it’s always necessary to build in a safety factor. No one would 
drive a car over a bridge that had been designed to supply the minimum necessary strength to keep it from collapsing.

QUes t i On  9.2  Rank by the amount of fractional increase in length under increasing tensile stress, from smallest to 
largest: rubber, tungsten, steel, aluminum.

e Xe rc i s e  9.2  A cable used to lift heavy materials like steel I-beams must be strong enough to resist breaking  
even under a load of 1.0 3 106 N. For safety, the cable must support twice that load. (a) What cross-sectional area should 
the cable have if it’s to be made of steel? (b) By how much will an 8.0-m length of this cable stretch when subject to the  
1.0 3 106-N load?

a ns We r s  (a) 4.0 3 1023 m2 (b) 1.0 3 1022 m

 ■ e Xa Mp Le  9.2 Built to Last

g Oa L  Calculate a compression due to tensile stress and maximum load.

pr Ob Le M  A vertical steel beam in a building supports a load of 6.0 3 104 N. (a) If the length of the beam is 4.0 m and 
its cross-sectional area is 8.0 3 1023 m2, find the distance the beam is compressed along its length. (b) What maximum 
load in newtons could the steel beam support before failing?

s t r at e g Y  Equation 9.3 pertains to compressive stress and strain and can be solved for DL, followed by substitution of 
known values. For part (b), set the compressive stress equal to the ultimate strength of steel from Table 9.3. Solve for the 
magnitude of the force, which is the total weight the structure can support.

s OLUti On

t able 9.3  Ultimate Strength of Materials

 Tensile Strength Compressive Strength
Material (N/m2) (N/m2)

Iron 1.7 3 108 5.5 3 108

Steel 5.0 3 108 5.0 3 108

Aluminum 2.0 3 108 2.0 3 108

Bone 1.2 3 108 1.5 3 108

Marble — 8.0 3 107

Brick 1 3 106 3.5 3 107

Concrete 2 3 106 2 3 107
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 ■ e Xa Mp Le  9.3 Football Injuries 

g Oa L  Obtain an estimate of shear stress.

pr Ob Le M  A defensive lineman of mass M 5 125 kg makes a flying tackle at vi 5 4.00 m/s on a stationary quarterback of  
mass m 5 85.0 kg, and the lineman’s helmet makes solid contact with the quarterback’s femur. (a) What is the speed vf

of the two athletes immediately after contact? Assume a linear perfectly inelastic collision. (b) If the collision lasts for 
0.100 s, estimate the average force exerted on the quarterback’s femur. (c) If the cross-sectional area of the quarterback’s 
femur is equal to 5.00 3 1024 m2, calculate the shear stress exerted on the bone in the collision.

s t r at e g Y  The solution proceeds in three well-defined steps. In part (a), use conservation of linear momentum to cal-
culate the final speed of the system consisting of the quarterback and the lineman. Second, the speed found in part (a) 
can be used in the impulse-momentum theorem to obtain an estimate of the average force exerted on the femur. Third, 
dividing the average force by the cross-sectional area of the femur gives the desired estimate of the shear stress.

s OLUti On
(a) What is the speed of the system immediately after 
contact?

Apply momentum conservation to the system: pinitial 5 pfinal

Substitute expressions for the initial and final momenta: Mvi 5 (M 1 m) vf

Solve for the final speed vf : vf 5
Mvi

M 1 m
5

1125 kg 2 14.00 m/s 2
125 kg 1 85.0 kg

5   2.38 m/s

(b) Obtain an estimate for the average force delivered to 
the quarterback’s femur.

Apply the impulse-momentum theorem: Fav Dt 5 Dp 5 Mvf 2 Mvi

Solve for the average force exerted on the quarterback’s 
femur:

Fav 5
M 1vf 2 vi 2

Dt

5
1125 kg 2 14.00 m/s 2 2.38 m/s 2

0.100 s
5   2.03 3 103 N

(c) Obtain the average shear stress exerted on the 
quarterback’s femur.

Divide the average force found in part (b) by the cross-
sectional area of the femur:

Shear stress 5
F
A

5
2.03 3  103 N

5.00 3  1024 m2 5   4.06 3 106 Pa

re Mar Ks  The ultimate shear strength of a femur is approximately 7 3 107 Pa, so this collision would not be expected 
to break the quarterback’s leg.

QUes t i On  9.3  What kind of stress would be sustained by the lineman? What parts of his body would be affected?

e Xe rc i s e  9.3  Calculate the diameter of a horizontal steel bolt if it is expected to support a maximum load hung on 
it having a mass of 2.00 3 103 kg but for safety reasons must be designed to support three times that load. (Assume the 
ultimate shear strength of steel is 2.50 3 108 Pa.)

a ns We r  1.73 cm

 ■ e Xa Mp Le  9.4 Lead Ballast Overboard

g Oa L  Apply the concepts of bulk stress and strain.

pr Ob Le M  Ships and sailing vessels often carry lead ballast in various forms, such as bricks, to keep the ship properly 
oriented and upright in the water. Suppose a ship takes on cargo and the crew jettisons a total of 0.500 m3 of lead ballast 

(Continued)
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Arches and the Ultimate Strength of Materials
As we have seen, the ultimate strength of a material is the maximum force per 
unit area the material can withstand before it breaks or fractures. Such values are 
of great importance, particularly in the construction of buildings, bridges, and 
roads. Table 9.3 gives the ultimate strength of a variety of materials under both 
tension and compression. Note that bone and a variety of building materials (con-
crete, brick, and marble) are stronger under compression than under tension. The 
greater ability of brick and stone to resist compression is the basis of the semicircu-
lar arch, developed and used extensively by the Romans in everything from memo-
rial arches to expansive temples and aqueduct supports.

Before the development of the arch, the principal method of spanning a space 
was the simple post-and-beam construction (Fig. 9.11a), in which a horizontal 
beam is supported by two columns. This type of construction was used to build the 
great Greek temples. The columns of these temples were closely spaced because 
of the limited length of available stones and the low ultimate tensile strength of a 
sagging stone beam.

The semicircular arch (Fig. 9.11b) developed by the Romans was a great tech-
nological achievement in architectural design. It effectively allowed the heavy load 

into water 2.00 km deep. Calculate (a) the change in the pressure at that depth and (b) the change in volume of the lead 
upon reaching the bottom. Take the density of sea water to be 1.025 3 103 kg/m3, and take the bulk modulus of lead to 
be 4.2 3 1010 Pa.

s t r at e g Y  The pressure difference between the surface and a depth of 2.00 km is due to the weight of the water col-
umn. Calculate the weight of water in a column with cross section of 1.00 m2. That number in newtons will be the same 
magnitude as the pressure difference in pascal. Substitute the pressure change into the bulk stress and strain equation to 
obtain the change in volume of the lead.

s OLUti On

(a) Calculate the pressure difference between the 
surface and at a depth of 2.00 km.

Use the density, volume, and acceleration of grav-
ity g to compute the weight of water in a column 
having cross-sectional area of 1.00 m2:

w 5 mg 5 1rV  2g
5 11.025 3 103 kg/m32 12.00 3 103 m32 19.80 m/s22
5 2.01 3 107 N

Divide by the area (in this case, 1.00 m2) to obtain 
the pressure difference due to the column of water:

DP 5
F
A

5
2.01 3 107 N

1.00 m2 5 2.01 3 107 Pa

(b) Calculate the change in volume of the lead 
upon reaching the bottom.

Write the bulk stress and strain equation: DP 5 2B 
DV
V

 

Solve for DV:
DV 5 2

VDP
B

5 2
10.500 m3 2 12.01 3 107 Pa 2

4.2 3 1010 Pa
5 22.4 3 1024 m3

re Mar Ks  The negative sign indicates a decrease in volume. The following exercise shows that even water can be com-
pressed, although not by much.

QUes t i On  9.4  Rank the following substances in order of the fractional change in volume in response to increasing 
pressure, from smallest to largest: copper, steel, water, mercury.

e Xe rc i s e  9.4  (a) By what percentage does the volume of a ball of water shrink at that same depth? (b) What is the 
ratio of the new radius to the initial radius?

a ns We r s  (a) 0.96% (b) 0.997

a pp Lica t iOn
Arch Structures in Buildings
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of a wide roof span to be channeled into horizontal and vertical forces on nar-
row supporting columns. The stability of this arch depends on the compression 
between its wedge-shaped stones. The stones are forced to squeeze against each 
other by the uniform loading, as shown in the figure. This compression results in 
horizontal outward forces at the base of the arch where it starts curving away from 
the vertical. These forces must then be balanced by the stone walls shown on the 
sides of the arch. It’s common to use very heavy walls (buttresses) on either side 
of the arch to provide horizontal stability. If the foundation of the arch should 
move, the compressive forces between the wedge-shaped stones may decrease to 
the extent that the arch collapses. The stone surfaces used in the Roman arches 
were cut to make very tight joints; mortar was usually not used. The resistance to 
slipping between stones was provided by the compression force and the friction 
between the stone faces.

Another important architectural innovation was the pointed Gothic arch, 
shown in Figure 9.11c. This type of structure was first used in Europe beginning 
in the 12th century, followed by the construction of several magnificent Gothic 
cathedrals in France in the 13th century. One of the most striking features of 
these cathedrals is their extreme height. For example, the cathedral at Chartres 
rises to 118 ft, and the one at Reims has a height of 137 ft. Such magnificent build-
ings evolved over a very short time, without the benefit of any mathematical theory 
of structures. However, Gothic arches required flying buttresses to prevent the 
spreading of the arch supported by the tall, narrow columns.

9.4    Variation of Pressure with Depth
Learning Objectives

1. Develop the equation of hydrostatic equilibrium to explain the variation of 
pressure with depth in a fluid at rest.

2. Apply the equation of hydrostatic equilibrium to fluid systems.

3. Explain Pascal’s principle and apply it to fluid systems.

When a fluid is at rest in a container, all portions of the fluid must be in static 
equilibrium—at rest with respect to the observer. Furthermore, all points at the 
same depth must be at the same pressure. If this were not the case, fluid would 
flow from the higher pressure region to the lower pressure region. For example, 
consider the small block of fluid shown in Figure 9.12a. If the pressure were 
greater on the left side of the block than on the right, F

S

1 would be greater than F
S

2, 
and the block would accelerate to the right and thus would not be in equilibrium.

Next, let’s examine the fluid contained within the volume indicated by the 
darker region in Figure 9.12b. This region has cross-sectional area A and extends 

Post and beam Semicircular arch (Roman) Pointed arch (Gothic)

Flying
buttress

Gothic
arch

Flying
buttress

a b c

Figure 9.11  (a) A simple post-
and-beam structure. (b) The 
semicircular arch developed by 
the Romans. (c) Gothic arch 
with flying buttresses to provide 
lateral support.

h

P

y

0
1

y1

y2

A

P2A

F1
S

F2
S

M gS 

a

b

Figure 9.12  (a) In a static fluid, all 
points at the same depth are at the 
same pressure, so the force F

S

1 must 
equal the force F

S

2. (b) Because the 
volume of the shaded fluid isn’t sink-
ing or rising, the net force on it must 
equal zero.
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from position y1 to position y2 below the surface of the liquid. Three external forces 
act on this volume of fluid: the force of gravity, Mg; the upward force P2A exerted 
by the liquid below it; and a downward force P1A exerted by the fluid above it. 
Because the given volume of fluid is in equilibrium, these forces must add to zero, 
so we get

 P2A 2 P1A 2 Mg 5 0 [9.8]

From the definition of density, we have

 M 5 rV 5 rA(y1 2 y2) [9.9]

Substituting Equation 9.9 into Equation 9.8, canceling the area A, and rearrang-
ing terms, we get

 P2 5 P1 1 rg(y1 2 y2) [9.10]

Notice that (y1 2 y2) is positive, because y2 , y1. The force P2A is greater than the 
force P1A by exactly the weight of water between the two points. This is the same 
principle experienced by the person at the bottom of a pileup in football or rugby.

Atmospheric pressure is also caused by a piling up of fluid—in this case, the 
fluid is the gas of the atmosphere. The weight of all the air from sea level to the 
edge of space results in an atmospheric pressure of P0 5 1.013 3 105 Pa (equivalent 
to 14.7 lb/in.2) at sea level. This result can be adapted to find the pressure P at any 
depth h 5 (y1 2 y2) 5 (0 2 y2) below the surface of the water:

 P 5 P0 1 rgh [9.11]

According to Equation 9.11, the pressure P at a depth h below the surface of a liq-
uid open to the atmosphere is greater than atmospheric pressure by the amount 
rgh. Moreover, the pressure isn’t affected by the shape of the vessel, as shown in 
Figure 9.13. Equation 9.11 is often called the equation of hydrostatic equilibrium. 
(Similar, related equations also go by that name.)

■ Quick Quiz

9.2  The pressure at the bottom of a glass filled with water (r 5 1 000 kg/m3) is P. 
The water is poured out and the glass is filled with ethyl alcohol (r 5 806 kg/m3).  
The pressure at the bottom of the glass is now (a) smaller than P (b) equal to P 
(c) larger than P (d) indeterminate.

Figure 9.13  This photograph illus-
trates the fact that the pressure in a 
liquid is the same at all points lying 
at the same elevation. Note that the 
shape of the vessel does not affect 
the pressure.

©
 C

en
ga

ge
 L

ea
rn

in
g/

Ch
ar

le
s 

D.
 W

in
te

rs

 ■ e Xa Mp Le  9.5 Oil and Water

g Oa L  Calculate pressures created by layers of different fluids.

pr Ob Le M  In a huge oil tanker, salt water has flooded an oil tank to a depth of  
h2 5 5.00 m. On top of the water is a layer of oil h1 5 8.00 m deep, as in the cross-
sectional view of the tank in Figure 9.14. The oil has a density of 0.700 g/cm3. Find 
the pressure at the bottom of the tank. (Take 1 025 kg/m3 as the density of salt water.)

s t r at e g Y  Equation 9.11 must be used twice. First, use it to calculate the pressure 
P1 at the bottom of the oil layer. Then use this pressure in place of P0 in Equation 9.11 
and calculate the pressure Pbot at the bottom of the water layer.

s OLUti On

P1

P0

Pbot

Air

Oil

Waterh2

h1

Figure 9.14  (Example 9.5)

Use Equation 9.11 to calculate the pressure at the bottom 
of the oil layer:

(1) P1 5 P0 1 rgh1

5 1.01 3 105 Pa

1 (7.00 3 102 kg/m3)(9.80 m/s2)(8.00 m)

P1 5 1.56 3 105 Pa

Unless otherwise noted, all content on this page is © Cengage Learning.
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Now adapt Equation 9.11 to the new starting pressure, 
and use it to calculate the pressure at the bottom of the 
water layer:

(2) Pbot 5 P1 1 rgh2

5 1.56 3 105 Pa

1 (1.025 3 103 kg/m3)(9.80 m/s2)(5.00 m)

Pbot 5   2.06 3 105 Pa

re Mar Ks  The weight of the atmosphere results in P0 at the surface of the oil layer. Then the weight of the oil and the 
weight of the water combine to create the pressure at the bottom.

QUes t i On  9.5  Why does air pressure decrease with increasing altitude?

e Xe rc i s e  9.5  Calculate the pressure on the top lid of a chest buried under 4.00 meters of mud with density equal to 
1.75 3 103 kg/m3 at the bottom of a 10.0-m-deep lake.

a ns We r  2.68 3 105 Pa

 ■ e Xa Mp Le  9.6 A Pain in the Ear 

g Oa L  Calculate a pressure difference at a given depth and estimate a force.

pr Ob Le M  Estimate the net force exerted on your eardrum due to the water above when you are swimming at the bot-
tom of a pool that is 5.0 m deep.

s t r at e g Y  Use Equation 9.11 to find the pressure difference across the eardrum at the given depth. The air inside the 
ear is generally at atmospheric pressure. Estimate the eardrum’s surface area, then use the definition of pressure to get 
the net force exerted on the eardrum.

s OLUti On
Use Equation 9.11 to calculate the difference between the 
water pressure at the depth h and the pressure inside the 
ear:

DP 5 P 2 P0 5 rgh

5 (1.00 3 103 kg/m3)(9.80 m/s2)(5.0 m)

5 4.9 3 104 Pa

Multiply by area A to get the net force on the eardrum 
associated with this pressure difference, estimating the 
area of the eardrum as 1 cm2.

Fnet 5 ADP < (1 3 1024 m2) (4.9 3 104 Pa) <   5 N

re Mar Ks  Because a force on the eardrum of this magnitude is uncomfortable, swimmers often “pop their ears” by 
swallowing or expanding their jaws while underwater, an action that pushes air from the lungs into the middle ear. Using 
this technique equalizes the pressure on the two sides of the eardrum and relieves the discomfort.

QUes t i On  9.6  Why do water containers and gas cans often have a second, smaller cap opposite the spout?

e Xe rc i s e  9.6  An airplane takes off at sea level and climbs to a height of 425 m. Estimate the net outward force on a 
passenger’s eardrum assuming the density of air is approximately constant at 1.3 kg/m3 and that the inner ear pressure 
hasn’t been equalized.

a ns We r  0.54 N

Because the pressure in a fluid depends on depth and on the value of P0, any 
increase in pressure at the surface must be transmitted to every point in the fluid. 
This was first recognized by the French scientist Blaise Pascal (1623–1662) and is 
called Pascal’s principle:

A change in pressure applied to an enclosed fluid is transmitted undimin-
ished to every point of the fluid and to the walls of the container.

An important application of Pascal’s principle is the hydraulic press (Fig. 9.15a). 
A downward force F

S

1 is applied to a small piston of area A1. The pressure is 
 transmitted through a fluid to a larger piston of area A2. As the pistons move 

a pp Lica t iOn
Hydraulic Lifts
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and the fluids in the left and right cylinders change their relative heights, there 
are slight differences in the pressures at the input and output pistons. Neglect-
ing these small differences, the fluid pressure on each of the pistons may be taken  
to be the same; P1 5 P2. From the definition of pressure, it then follows that  
F1/A1 5 F2/A2. Therefore, the magnitude of the force F

S

2 is larger than the magnitude  
of F

S

1 by the factor A2/A1. That’s why a large load, such as a car, can be moved on the 
large piston by a much smaller force on the smaller piston. Hydraulic brakes, car lifts, 
hydraulic jacks, forklifts, and other machines make use of this principle.

Figure 9.15  (a) In a hydraulic 
press, an increase of pressure in 
the smaller area A1 is transmitted 
to the larger area A2. Because 
force equals pressure times area, 
the force F

S

2 is larger than F
S

1 by 
a factor of A2/A1. (b) A vehicle 
under repair is supported by a 
hydraulic lift in a garage.
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 ■ e Xa Mp Le  9.7 The Car Lift

g Oa L  Apply Pascal’s principle to a car lift, and show that the input work is the same as the output work.

pr Ob Le M  In a car lift used in a service station, compressed 
air exerts a force on a small piston of circular cross section 
having a radius of r1 5 5.00 cm. This pressure is transmitted 
by an incompressible liquid to a second piston of radius r2 5 
15.0 cm. (a) What force must the compressed air exert on the 
small piston in order to lift a car weighing 13 300 N? Neglect 
the weights of the pistons. (b) What air pressure will produce 
a force of that magnitude? (c) Show that the work done by the 
input and output pistons is the same.

s t r at e g Y  Substitute into Pascal’s principle in part (a), 
while recognizing that the magnitude of the output force, 
F2, must be equal to the car’s weight in order to support 
it. Use the definition of pressure in part (b). In part (c), 
use W 5 F Dx to find the ratio W1/W2, showing that it must 
equal 1. This requires combining Pascal’s principle with 
the fact that the input and output pistons move through 
the same volume.

s OLUti On
(a) Find the necessary force on the small piston.

Substitute known values into Pascal’s principle, using  
A 5 pr2 for the area of each piston:

F1 5 aA1

A2
bF2 5

pr1
2

pr2
2  F2

5
p 15.00 3 1022 m 22

p 115.0 3 1022 m 22 11.33 3 104 N 2

5   1.48 3 103 N
(b) Find the air pressure producing F1.

Substitute into the definition of pressure: P 5
F1

A1
5

1.48 3 103 N
p 15.00 3 1022 m 22 5  1.88 3 105 Pa

(c) Show that the work done by the input and output 
pistons is the same.

First equate the volumes, and solve for the ratio of  
A2 to A1:

V1 5 V2 S A1Dx1 5 A2Dx2

A2

A1
5

Dx1

Dx2

Now use Pascal’s principle to get a relationship for F1/F2:
F1

A1
5

F2

A2
S

F1

F2
5

A1

A2
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9.5    Pressure Measurements
Learning Objectives

1. Define absolute pressure and gauge pressure.

2. Calculate pressures from fluid heights in a barometer.

A simple device for measuring pressure is the open-tube manometer (Fig. 9.17a). 
One end of a U-shaped tube containing a liquid is open to the atmosphere, and 
the other end is connected to a system of unknown pressure P. The pressure at 
point B equals P0 1 rgh, where r is the density of the fluid. The pressure at B, how-
ever, equals the pressure at A, which is also the unknown pressure P. We conclude 
that P 5 P0 1 rgh.

The pressure P is called the absolute pressure, and P 2 P0 is called the gauge 
pressure. If P in the system is greater than atmospheric pressure, h is positive. If P 
is less than atmospheric pressure (a partial vacuum), h is negative, meaning that 
the right-hand column in Figure 9.17a is lower than the left-hand column.

Another instrument used to measure pressure is the barometer (Fig. 9.17b), 
invented by Evangelista Torricelli (1608–1647). A long tube closed at one end is 
filled with mercury and then inverted into a dish of mercury. The closed end of 
the tube is nearly a vacuum, so its pressure can be taken to be zero. It follows that 
P0 5 rgh, where r is the density of the mercury and h is the height of the mer-
cury column. Note that the barometer measures the pressure of the atmosphere, 
whereas the manometer measures pressure in an enclosed fluid.

Evaluate the work ratio, substituting the preceding two 
results:

W1

W2
5

F1 Dx1

F2 Dx2
5 aF1

F2
b aDx1

Dx2
b 5 aA1

A2
b aA2

A1
b 5 1

W1 5 W2

re Mar Ks  In this problem, we didn’t address the effect of possible differences in the heights of the pistons. If the col-
umn of fluid is higher in the small piston, the fluid weight assists in supporting the car, reducing the necessary applied 
force. If the column of fluid is higher in the large piston, both the car and the extra fluid must be supported, so addi-
tional applied force is required.

QUes t i On  9.7  True or False: If the radius of the output piston is doubled, the output force increases by a factor of 4.

e Xe rc i s e  9.7  A hydraulic lift has pistons with diameters 8.00 cm and 36.0 cm, respectively. If a force of 825 N is 
exerted at the input piston, what maximum mass can be lifted by the output piston?

a ns We r  1.70 3 103 kg

Figure 9.16  (Applying Physics 9.2)

 ■ a pp LYi ng  ph Ys ic s  9.2 Building the Pyramids

A corollary to the statement that pressure in a fluid 
increases with depth is that water always seeks its own level. 
This means that if a vessel is filled with water, then regard-
less of the vessel’s shape the surface of the water is per-
fectly flat and at the same height at all points. The ancient 
Egyptians used this fact to make the pyramids level. Devise 
a scheme showing how this could be done.

e Xp La n at i On   There are many ways it could be done, 
but Figure 9.16 shows the scheme used by the Egyptians. 
The builders cut grooves in the base of the pyramid as  
in (a) and partially filled the grooves with water. The 
height of the water was marked as in (b), and the rock was 

chiseled down to the mark, as in (c). Finally, the groove was 
filled with crushed rock and gravel, as in (d). 

a b c d

a

P � 0

P

P0
h

h

A B

b

P0

Figure 9.17  Two devices for 
measuring pressure: (a) an open-
tube manometer and (b) a mercury 
barometer.
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One atmosphere of pressure is defined to be the pressure equivalent of a col-
umn of mercury that is exactly 0.76 m in height at 0°C with g 5 9.806 65 m/s2. At 
this temperature, mercury has a density of 13.595 3 103 kg/m3; therefore,

P0 5 rgh 5 (13.595 3 103 kg/m3)(9.806 65 m/s2)(0.760 0 m)

 5 1.013 3 105 Pa 5 1 atm

It is interesting to note that the force of the atmosphere on our bodies (assuming 
a body area of 2 000 in.2) is extremely large, on the order of 30 000 lb! If it were not 
for the fluids permeating our tissues and body cavities, our bodies would collapse. 
The fluids provide equal and opposite forces. In the upper atmosphere or in space, 
sudden decompression can lead to serious injury and death. Air retained in the lungs 
can damage the tiny alveolar sacs, and intestinal gas can even rupture internal organs.

■ Quick Quiz

9.3  Several common barometers are built using a variety of fluids. For which fluid 
will the column of fluid in the barometer be the highest? (Refer to Table 9.1.) 
(a) mercury (b) water (c) ethyl alcohol (d) benzene

Blood Pressure Measurements
A specialized manometer (called a sphygmomanometer) is often used to measure 
blood pressure. In this application, a rubber bulb forces air into a cuff wrapped tightly 
around the upper arm and simultaneously into a manometer, as in Figure 9.18. The 
pressure in the cuff is increased until the flow of blood through the brachial artery in 
the arm is stopped. A valve on the bulb is then opened, and the measurer listens with 
a stethoscope to the artery at a point just below the cuff. When the pressure in the cuff 
and brachial artery is just below the maximum value produced by the heart (the sys-
tolic pressure), the artery opens momentarily on each beat of the heart. At this point, 
the velocity of the blood is high and turbulent, and the flow is noisy and can be heard 
with the stethoscope. The manometer is calibrated to read the pressure in millimeters 
of mercury, and the value obtained is about 120 mm for a normal heart. Values of  
130 mm or above are considered high, and medication to lower the blood pressure is 
often prescribed for such patients. As the pressure in the cuff is lowered further, inter-
mittent sounds are still heard until the pressure falls just below the minimum heart  
pressure (the diastolic pressure). At this point, continuous sounds are heard. In the 
normal heart, this transition occurs at about 80 mm of mercury, and values above  
90 require medical intervention. Blood pressure readings are usually expressed as the 
ratio of the systolic pressure to the diastolic pressure, which is 120/80 for a healthy heart.

■ Quick Quiz

9.4  Blood pressure is normally measured with the cuff of the sphygmomanometer 
around the arm. Suppose the blood pressure is measured with the cuff around the 
calf of the leg of a standing person. Would the reading of the blood pressure be 
(a) the same here as it is for the arm, (b) greater than it is for the arm, or (c) less 
than it is for the arm?

a pp Lica t iOn
Decompression and Injury  

to the Lungs

 ■ a pp LYi ng  ph Ys ic s  9.3 Ballpoint Pens

In a ballpoint pen, ink moves down a tube to the tip, where 
it is spread on a sheet of paper by a rolling stainless steel 
ball. Near the top of the ink cartridge, there is a small hole 
open to the atmosphere. If you seal this hole, you will find 
that the pen no longer functions. Use your knowledge of 
how a barometer works to explain this behavior.

e Xp La n at i On   If the hole were sealed, or if it were 
not present, the pressure of the air above the ink would 
decrease as the ink was used. Consequently, atmospheric 
pressure exerted against the ink at the bottom of the car-
tridge would prevent some of the ink from flowing out. 
The hole allows the pressure above the ink to remain at 
atmospheric pressure. Why does a ballpoint pen seem to 
run out of ink when you write on a vertical surface? 

a pp Lica t iOn
Measuring Blood Pressure

Stethoscope

Sphygmomanometer

Cuff

Figure 9.18  A sphygmomanom-
eter can be used to measure blood 
pressure.
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9.6     Buoyant Forces and  
Archimedes’ Principle
Learning Objectives

1. State Archimedes’ principle and explain its physical origins.

2. Apply Archimedes’ principle to floating and submerged objects.

A fundamental principle affecting objects submerged in fluids was discovered 
by Greek mathematician and natural philosopher Archimedes. Archimedes’ 
principle can be stated as follows:

Any object completely or partially submerged in a fluid is buoyed up by a 
force with magnitude equal to the weight of the fluid displaced by the object.

Many historians attribute the concept of buoyancy to Archimedes’ “bathtub 
epiphany,” when he noticed an apparent change in his weight upon lowering him-
self into a tub of water. As will be seen in Example 9.8, buoyancy yields a method 
of determining density.

Everyone has experienced Archimedes’ principle. It’s relatively easy, for 
example, to lift someone if you’re both standing in a swimming pool, whereas 
lifting that same individual on dry land may be a difficult task. Water provides 
partial support to any object placed in it. We often say that an object placed 
in a f luid is buoyed up by the f luid, so we call this upward force the buoyant 
force.

The buoyant force is not a mysterious new force that arises in fluids. In fact, 
the physical cause of the buoyant force is the pressure difference between the 
upper and lower sides of the object. In Figure 9.19a, the fluid inside the indi-
cated sphere, colored darker blue, is pressed on all sides by the surrounding 
fluid. Arrows indicate the forces arising from the pressure. Because pressure 
increases with depth, the arrows on the underside are larger than those on top. 
Adding them all up, the horizontal components cancel, but there is a net force 
upward. This force, due to differences in pressure, is the buoyant force B

S

. The 
sphere of water neither rises nor falls, so the vector sum of the buoyant force 
and the force of gravity on the sphere of fluid must be zero, and it follows that  
B 5 Mg, where M is the mass of the fluid. The buoyant force, therefore, is equal 
in magnitude to the weight of the displaced fluid.

b Archimedes’ principle

a rchimedes
Greek mathematician, physicist, and 
engineer (287–212 b.c.)
Archimedes was probably the great-
est scientist of antiquity. According 
to legend, King Hieron asked him to  
determine whether the king’s crown 
was pure gold or a gold alloy. Archi-
medes allegedly arrived at a solution 
when bathing, noticing a partial loss 
of weight on lowering himself into 
the water. He was so excited that 
he  reportedly ran naked through the 
streets of Syracuse shouting “Eureka!”, 
which is Greek for “I have found it!”
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The net upward force is 
the buoyant force.

The magnitude of the buoyant 
force on the cannon ball equals 
the weight of the displaced �uid.

Figure 9.19  (a) The arrows indi-
cate forces on the sphere of fluid 
due to pressure, larger on the under-
side because pressure increases with 
depth. (b) The buoyant force, which 
is caused by the surrounding fluid, is 
the same on any object of the same 
volume, including this cannon ball. 
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Replacing the shaded fluid with a cannon ball of the same volume, as in Figure 
9.19b, changes only the mass on which the pressure acts, so the buoyant force is 
the same: B 5 Mg, where M is the mass of the displaced fluid, not the mass of the 
cannon ball. The force of gravity on the heavier ball is greater than it was on the 
fluid, so the cannon ball sinks.

Archimedes’ principle can also be obtained from Equation 9.8, relating 
pressure and depth, using Figure 9.12b. Horizontal forces from the pressure 
cancel, but in the vertical direction P2A acts upward on the bottom of the  
block of f luid, and P1A and the gravity force on the f luid, Mg, act downward, 
giving

 B 5 P2A 2 P1A 5 Mg [9.12a]

where the buoyancy force has been identified as the result of differences in pres-
sure and is equal in magnitude to the weight of the displaced fluid. This buoyancy 
force remains the same regardless of the material occupying the volume in ques-
tion because it’s due to the surrounding fluid. Using the definition of density, Equa-
tion 9.12a becomes

 B 5 rfluidVfluidg [9.12b]

where rfluid is the density of the fluid and Vfluid is the volume of the displaced 
fluid. This result applies equally to all shapes because any irregular shape can be 
approximated by a large number of infinitesimal cubes.

It’s instructive to compare the forces on a totally submerged object with those 
on a floating object.

Case I: A Totally Submerged Object. When an object is totally submerged 
in a fluid of density rfluid, the upward buoyant force acting on the object has a 
magnitude of B 5 rfluidVobjg, where Vobj is the volume of the object. If the object 
has density robj, the downward gravitational force acting on the object has a 
magnitude equal to w 5 mg 5 robjVobjg, and the net force on it is B 2 w 5 (rfluid 2 
robj)Vobjg. Therefore, if the density of the object is less than the density of the 
fluid, the net force exerted on the object is positive (upward) and the object 
accelerates upward, as in Figure 9.20a. If the density of the object is greater than 
the density of the fluid, as in Figure 9.20b, the net force is negative and the 
object accelerates downward.

Case II: A Floating Object. Now consider a partially submerged object in static 
equilibrium floating in a fluid, as in Figure 9.21. In this case, the upward buoy-
ant force is balanced by the downward force of gravity acting on the object. If 
Vfluid is the volume of the fluid displaced by the object (which corresponds to the 
volume of the part of the object beneath the fluid level), then the magnitude of 

aS 

B
S

aS 
B
S

a b

robj � r�uid robj � r�uid

mgS 
mgS 

Figure 9.20 (a) A totally sub-
merged object that is less dense than 
the fluid in which it is submerged is 
acted upon by a net upward force. 
(b) A totally submerged object that is 
denser than the fluid sinks.

Hot-air balloons. Because hot air is 
less dense than cold air, there is a 
net upward force on the balloons.
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Most of the volume of this iceberg 
is beneath the water. Can you deter-
mine what fraction of the total vol-
ume is under water?
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t ip 9.2  Buoyant Force Is 
Exerted by the Fluid
The buoyant force on an object 
is exerted by the fluid and is the 
same, regardless of the density of 
the object. Objects more dense 
than the fluid sink; objects less 
dense rise.
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the buoyant force is given by B 5 rfluidVfluidg. Because the weight of the object is  
w 5 mg 5 robjVobjg, and because w 5 B, it follows that rfluidVfluidg 5 robjVobj g, or

 
robj

rfluid
5

Vfluid

Vobj
 [9.13]

Equation 9.13 neglects the buoyant force of the air, which is slight because the 
density of air is only 1.29 kg/m3 at sea level.

Under normal circumstances, the average density of a fish is slightly greater 
than the density of water, so a fish would sink if it didn’t have a mechanism for 
adjusting its density. By changing the size of an internal swim bladder, fish main-
tain neutral buoyancy as they swim to various depths.

The human brain is immersed in a fluid (the cerebrospinal fluid) of density 
1 007 kg/m3, which is slightly less than the average density of the brain, 1 040 kg/m3.  
Consequently, most of the weight of the brain is supported by the buoyant force of 
the surrounding fluid. In some clinical procedures, a portion of this fluid must be 
removed for diagnostic purposes. During such procedures, the nerves and blood 
vessels in the brain are placed under great strain, which in turn can cause extreme 
discomfort and pain. Great care must be exercised with such patients until the ini-
tial volume of brain fluid has been restored by the body.

When service station attendants check the antifreeze in your car or the condition 
of your battery, they often use devices that apply Archimedes’ principle. Figure 9.22 
shows a common device that is used to check the antifreeze in a car radiator. The 
small balls in the enclosed tube vary in density so that all of them float when the tube 
is filled with pure water, none float in pure antifreeze, one floats in a 5% mixture, 
two in a 10% mixture, and so forth. The number of balls that float is a measure of the 
percentage of antifreeze in the mixture, which in turn is used to determine the low-
est temperature the mixture can withstand without freezing.

Similarly, the degree of charge in some car batteries can be determined with a 
so-called magic-dot process that is built into the battery (Fig. 9.23). Inside a view-
ing port in the top of the battery, the appearance of an orange dot indicates that 
the battery is sufficiently charged; a black dot indicates that the battery has lost its 
charge. If the battery has sufficient charge, the density of the battery fluid is high 
enough to cause the orange ball to float. As the battery loses its charge, the density 
of the battery fluid decreases and the ball sinks beneath the surface of the fluid, 
making the dot appear black.

■ Quick Quiz

9.5  Atmospheric pressure varies from day to day. The level of a floating ship on a 
high-pressure day is (a) higher (b) lower, or (c) no different than on a low-pressure 
day.

9.6  The density of lead is greater than iron, and both metals are denser than water. 
Is the buoyant force on a solid lead object (a) greater than, (b) equal to, or (c) less 
than the buoyant force acting on a solid iron object of the same dimensions?

Fg
S

B
S

The two forces are equal 
in magnitude and 
opposite in direction.

Figure 9.21 An object floating on 
the surface of a fluid is acted upon 
by two forces: the gravitational force 
F
S

g and the buoyant force B
S

.

a pp Lica t iOn
Cerebrospinal Fluid

a pp Lica t iOn
Buoyancy Control in Fish

As the battery loses its 
charge, the density of the 
battery �uid decreses, and 
the ball sinks out of sight.

Battery
�uid

Charged battery Discharged battery

Figure 9.23  The orange ball in the 
plastic tube inside the battery serves as 
an indicator of whether the battery is 
(a) charged or (b) discharged.

Balls of different
densities

Tubing to draw
antifreeze from
the radiator

Figure 9.22  The number of balls 
that float in this device is a measure 
of the density of the antifreeze 
solution in a vehicle’s radiator and, 
consequently, a measure of the 
temperature at which freezing will 
occur.

a pp Lica t iOn
Checking the Battery Charge
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 ■ e Xa Mp Le  9.8 A Red-Tag Special on Crowns

g Oa L  Apply Archimedes’ principle to a submerged object.

pr Ob Le M  A bargain hunter purchases a “gold” crown at a flea 
market. After she gets home, she hangs it from a scale and finds its 
weight to be 7.84 N (Fig. 9.24a). She then weighs the crown while it is 
immersed in water, as in Figure 9.24b, and now the scale reads 6.86 N.  
Is the crown made of pure gold?

s t r at e g Y  The goal is to find the density of the crown and com-
pare it to the density of gold. We already have the weight of the 
crown in air, so we can get the mass by dividing by the acceleration 
of gravity. If we can find the volume of the crown, we can obtain the 
desired density by dividing the mass by this volume.
 When the crown is fully immersed, the displaced water is equal to 
the volume of the crown. This same volume is used in calculating the 
buoyant force. So our strategy is as follows: (1) Apply Newton’s second 
law to the crown, both in the water and in the air to find the buoyant 
force. (2) Use the buoyant force to find the crown’s volume. (3) Divide 
the crown’s scale weight in air by the acceleration of gravity to get the 
mass, then by the volume to get the density of the crown.

B
S Twater

S

Tair
S

a b

mgS mgS 

Figure 9.24  (Example 9.8) (a) When the crown is sus-
pended in air, the scale reads Tair 5 mg, the crown’s true 
weight. (b) When the crown is immersed in water, the 
buoyant force B

S

 reduces the scale reading by the magni-
tude of the buoyant force, Twater 5 mg 2 B.

s OLUti On
Apply Newton’s second law to the crown when it’s weighed 
in air. There are two forces on the crown—gravity mgS 
and T

S

air, the force exerted by the scale on the crown, with 
magnitude equal to the reading on the scale.

(1) Tair 2 mg 5 0

When the crown is immersed in water, the scale force is 
T
S

water, with magnitude equal to the scale reading, and 
there is an upward buoyant force B

S

 and the force of 
gravity.

(2) Twater 2 mg 1 B 5 0

Solve Equation (1) for mg, substitute into Equation 
(2), and solve for the buoyant force, which equals the 
difference in scale readings:

Twater 2 Tair 1 B 5 0

B 5 Tair 2 Twater 5 7.84 N 2 6.86 N 5 0.980 N

Find the volume of the displaced water, using the fact that 
the magnitude of the buoyant force equals the weight of 
the displaced water:

B 5 rwatergVwater 5 0.980 N

Vwater 5
0.980 N
grwater

5
0.980 N

19.80 m/s2 2 11.00 3 103 kg/m3 2
5 1.00 3 1024 m3

The crown is totally submerged, so Vcrown 5 Vwater. From 
Equation (1), the mass is the crown’s weight in air, Tair, 
divided by g :

m 5
Tair

g
5

7.84 N
9.80 m/s2 5 0.800 kg

Find the density of the crown: rcrown 5
m

Vcrown
5

0.800 kg

1.00 3 1024 m3 5   8.00 3 103 kg/m3

re Mar Ks  Because the density of gold is 19.3 3 103 kg/m3, the crown is either hollow, made of an alloy, or both. Despite 
the mathematical complexity, it is certainly conceivable that this was the method that occurred to Archimedes. Concep-
tually, it’s a matter of realizing (or guessing) that equal weights of gold and a silver–gold alloy would have different scale 
readings when immersed in water because their densities and hence their volumes are different, leading to differing 
buoyant forces.

QUes t i On  9.8  True or False: The magnitude of the buoyant force on a completely submerged object depends on the 
object’s density.
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e Xe rc i s e  9.8  The weight of a metal bracelet is measured to be 0.100 00 N in air and 0.092 00 N when immersed in 
water. Find its density.

a ns We r  1.25 3 104 kg/m3

 ■ e Xa Mp Le  9.9 Floating Down the River

g Oa L  Apply Archimedes’ principle to a partially submerged object.

pr Ob Le M  A raft is constructed of wood having a density of 6.00 3 102 kg/m3. Its sur-
face area is 5.70 m2, and its volume is 0.60 m3. When the raft is placed in fresh water as 
in Figure 9.25, to what depth h is the bottom of the raft submerged?

s t r at e g Y  There are two forces acting on the raft: the buoyant force of magnitude 
B, acting upward, and the force of gravity, acting downward. Because the raft is in 
equilibrium, the sum of these forces is zero. The buoyant force depends on the sub-
merged volume Vwater 5 Ah. Set up Newton’s second law and solve for h, the depth 
reached by the bottom of the raft.

s OLUti On

A

h

Figure 9.25  (Example 9.9) A raft 
partially submerged in water.

Apply Newton’s second law to the raft, which is in 
equilibrium:

B 2 mraftg 5 0 S B 5 mraftg

re Mar Ks  How low the raft rides in the water depends on the density of the raft. The same is true of the human body: 
Fat is less dense than muscle and bone, so those with a higher percentage of body fat float better.

QUes t i On  9.9  If the raft is placed in salt water, which has a density greater than fresh water, would the value of h 
(a) decrease, (b) increase, or (c) not change?

e Xe rc i s e  9.9  Calculate how much of an iceberg is beneath the surface of the ocean, given that the density of ice is 
917 kg/m3 and salt water has density 1 025 kg/m3.

a ns We r  89.5%

The volume of the raft submerged in water is given by 
Vwater 5 Ah. The magnitude of the buoyant force is equal 
to the weight of this displaced volume of water:

B 5 mwaterg 5 (rwaterVwater)g 5 (rwaterAh)g

Now rewrite the gravity force on the raft using the raft’s 
density and volume:

mraftg 5 (rraftVraft)g

Substitute these two expressions into Newton’s second 
law, B 5 mraft  g, and solve for h (note that g cancels):

1rwaterAh 2 g 5 1rraftVraft 2g
h 5

rraftVraft

rwaterA

5
16.00 3 102 kg/m3 2 10.600 m3 2
11.00 3 103 kg/m3 2 15.70 m2 2

5   0.063 2 m

 ■ e Xa Mp Le  9.10 Floating in Two Fluids

g Oa L Apply Archimedes’ principle to an object floating in a fluid having two layers with different densities.

pr Ob Le M A 1.00 3 103-kg cube of aluminum is placed in a tank. Water is then added to the tank until half the cube is 
immersed. (a) What is the normal force on the cube? (See Fig. 9.26a.) (b) Mercury is now slowly poured into the tank until 
the normal force on the cube goes to zero. (See Fig. 9.26b.) How deep is the layer of mercury? Assume a very thin layer of 

(Continued)
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fluid is underneath the block in both parts of Figure 9.26, 
due to imperfections between the surfaces in contact.

s t r at e g Y  Both parts of this problem involve appli-
cations of Newton’s second law for a body in equilib-
rium, together with the concept of a buoyant force. In  
part (a) the normal, gravitational, and buoyant force  
of water act on the cube. In part (b) there is an addi-
tional buoyant force of mercury, while the normal force 
goes to zero. Using VHg 5 Ah, solve for the height of 
mercury, h. Figure 9.26  (Example 9.10)

MAl 

MAl

a

b

nS Bwater
S

Bwater
S

BHg
S

gS

gS

MAl 

MAl

a

b

nS Bwater
S

Bwater
S

BHg
S

gS

gS

s OLUti On
(a) Find the normal force on the cube when half-
immersed in water.

Calculate the volume V of the cube and the length d of 
one side, for future reference (both quantities will be 
needed for what follows):

VAl 5
MAl

rAl 
5

1.00 3 103 kg

2.70 3 103 kg/m3 5 0.370 m3

d 5 V A
1

1
/3 5 0.718 m

Write Newton’s second law for the cube, and solve for the 
normal force. The buoyant force is equal to the weight of 
the displaced water (half the volume of the cube).

n 2 MA1g 1 Bwater 5 0

n 5 MAlg 2 Bwater 5 MAlg 2 rwater (V/2)g

5 (1.00 3 103 kg)(9.80 m/s2) 

2 (1.00 3 103 kg/m3)(0.370 m3/2.00)(9.80 m/s2)

n 5 9.80 3 103 N 2 1.81 3 103 N 5   7.99 3 103 N

re Mar Ks  Notice that the buoyant force of mercury calculated in part (b) is the same as the normal force in part (a). 
This is naturally the case, because enough mercury was added to exactly cancel out the normal force. We could have 
used this fact to take a shortcut, simply writing BHg 5 7.99 3 103 N immediately, solving for h, and avoiding a second use 
of Newton’s law. Most of the time, however, we wouldn’t be so lucky! Try calculating the normal force when the level of 
mercury is 4.00 cm.

QUes t i On  9.10  What would happen to the aluminum cube if more mercury were poured into the tank?

e Xe rc i s e  9.10  A cube of aluminum 1.00 m on a side is immersed one-third in water and two-thirds in glycerin. What 
is the normal force on the cube?

a ns We r  1.50 3 104 N

(b) Calculate the level h of added mercury.

Apply Newton’s second law to the cube: n 2 MAlg 1 Bwater 1 BHg 5 0

Set n 5 0 and solve for the buoyant force of mercury: BHg 5 (rHg Ah)g 5 MAlg 2 Bwater 5 7.99 3 103 N

Solve for h, noting that A 5 d 2: h 5
MAlg 2 Bwater

rHgAg
5

7.99 3 103 N
113.6 3103 kg/m3 2 10.718 m 22 19.80 m/s2 2

h 5   0.116 m

9.7    Fluids in Motion
Learning Objectives

1. State the properties of an ideal fluid.

2. Apply the equation of continuity to fluid systems.

3. Explain the physical origins of Bernoulli’s equation.

4. Apply Bernoulli’s equation to fluid systems.
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When a fluid is in motion, its flow can be characterized in one of two ways. The 
flow is said to be streamline, or laminar, if every particle that passes a particular 
point moves along exactly the same smooth path followed by previous particles 
passing that point. This path is called a streamline (Fig. 9.27). Different streamlines 
can’t cross each other under this steady-flow condition, and the streamline at any 
point coincides with the direction of the velocity of the fluid at that point.

In contrast, the flow of a fluid becomes irregular, or turbulent, above a certain 
velocity or under any conditions that can cause abrupt changes in velocity. Irregu-
lar motions of the fluid, called eddy currents, are characteristic in turbulent flow, as 
shown in Figure 9.28.

In discussions of fluid flow, the term viscosity is used for the degree of internal 
friction in the fluid. This internal friction is associated with the resistance between 
two adjacent layers of the fluid moving relative to each other. A fluid such as kero-
sene has a lower viscosity than does crude oil or molasses.

Many features of fluid motion can be understood by considering the behavior 
of an ideal fluid, which satisfies the following conditions:

1. The fluid is nonviscous, which means there is no internal friction force 
between adjacent layers.

2. The fluid is incompressible, which means its density is constant.
3. The fluid motion is steady, meaning that the velocity, density, and pressure 

at each point in the fluid don’t change with time.
4. The fluid moves without turbulence. This implies that each element of the 

fluid has zero angular velocity about its center, so there can’t be any eddy 
currents present in the moving fluid. A small wheel placed in the fluid 
would translate but not rotate.

Equation of Continuity
Figure 9.29a represents a fluid flowing through a pipe of nonuniform size. The 
particles in the fluid move along the streamlines in steady-state flow. In a small 
time interval Dt, the fluid entering the bottom end of the pipe moves a distance 
Dx1 5 v1 Dt, where v1 is the speed of the fluid at that location. If A1 is the cross-
sectional area in this region, then the mass contained in the bottom blue region 
is DM1 5 r1A1 Dx1 5 r1A1v1 Dt, where r1 is the density of the fluid at A1. Similarly, 
the fluid that moves out of the upper end of the pipe in the same time interval Dt 
has a mass of DM2 5 r2A2v2 Dt. However, because mass is conserved and because 

Figure 9.27  An illustration of 
streamline flow around an auto-
mobile in a test wind tunnel. The 
streamlines in the airflow are made 
visible by smoke particles.
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Figure 9.28  Hot gases made vis-
ible by smoke particles. The smoke 
first moves in laminar flow at the 
bottom and then in turbulent  
flow above.
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Figure 9.29  (a) A fluid moving 
with streamline flow through a pipe 
of varying cross-sectional area. The 
volume of fluid flowing through A1 
in a time interval Dt must equal the 
volume flowing through A2 in the 
same time interval. (b) Water flow-
ing slowly out of a faucet.
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The width of the stream 
narrows as the water falls and 
speeds up in accord with the 
continuity equation.
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the flow is steady, the mass that flows into the bottom of the pipe through A1 in 
the time Dt must equal the mass that flows out through A2 in the same interval. 
Therefore, DM1 5 DM2, or

 r1A1v1 5 r2A2v2 [9.14]

For the case of an incompressible fluid, r1 5 r2 and Equation 9.14 reduces to

 A1v1 5 A2v2 [9.15]

This expression is called the equation of continuity. From this result, we see that the 
product of the cross-sectional area of the pipe and the fluid speed at that cross 
section is a constant. Therefore, the speed is high where the tube is constricted and 
low where the tube has a larger diameter. The product Av, which has dimensions of 
volume per unit time, is called the flow rate. The condition Av 5 constant is equiva-
lent to the fact that the volume of fluid entering one end of the tube in a given time 
interval equals the volume of fluid leaving the tube in the same interval, assuming 
that the fluid is incompressible and there are no leaks. Figure 9.29b is an example 
of an application of the equation of continuity: As the stream of water flows continu-
ously from a faucet, the width of the stream narrows as it falls and speeds up.

There are many instances in everyday experience that involve the equation 
of continuity. Reducing the cross-sectional area of a garden hose by putting a 
thumb over the open end makes the water spray out with greater speed; hence 
the stream goes farther. Similar reasoning explains why smoke from a smol-
dering piece of wood first rises in a streamline pattern, getting thinner with 
height, eventually breaking up into a swirling, turbulent pattern. The smoke 
rises because it’s less dense than air and the buoyant force of the air acceler-
ates it upward. As the speed of the smoke stream increases, the cross-sectional 
area of the stream decreases, in accordance with the equation of continuity. 
The stream soon reaches a speed so great that streamline flow is not possible. 
We will study the relationship between speed of fluid flow and turbulence in a 
later discussion on the Reynolds number.

 Equation of continuity c

t ip 9.3  Continuity 
Equations
The rate of flow of fluid into a 
system equals the rate of flow out 
of the system. The incoming fluid 
occupies a certain volume and 
can enter the system only if an 
equal volume of fluid is expelled 
during the same time interval.

 ■ e Xa Mp Le  9.11 Niagara Falls

g Oa L  Apply the equation of continuity.

pr Ob Le M  Each second, 5 525 m3 of water flows over the 670-m-wide cliff of the Horseshoe Falls portion of Niagara 
Falls. The water is approximately 2 m deep as it reaches the cliff. Estimate its speed at that instant.

s t r at e g Y  This is an estimate, so only one significant figure will be retained in the answer. The volume flow rate is 
given, and, according to the equation of continuity, is a constant equal to Av. Find the cross-sectional area, substitute, and 
solve for the speed.

s OLUti On
Calculate the cross-sectional area of the water as it 
reaches the edge of the cliff:

A 5 (670 m)(2 m) 5 1 340 m2

Multiply this result by the speed and set it equal to the 
flow rate. Then solve for v:

Av 5 volume flow rate

(1 340 m2)v 5 5 525 m3/s S v <   4 m/s

QUes t i On  9.11  What happens to the speed of blood in an artery when plaque starts to build up on the artery’s sides?

e Xe rc i s e  9.11  The Garfield Thomas water tunnel at Pennsylvania State University has a circular cross section that 
constricts from a diameter of 3.6 m to the test section which has a diameter of 1.2 m. If the speed of flow is 3.0 m/s in the 
larger-diameter pipe, determine the speed of flow in the test section.

a ns We r  27 m/s
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Bernoulli’s Equation
As a fluid moves through a pipe of varying cross section and elevation, the pressure 
changes along the pipe. In 1738 the Swiss physicist Daniel Bernoulli (1700–1782) 
derived an expression that relates the pressure of a fluid to its speed and elevation. 
Bernoulli’s equation is not a freestanding law of physics; rather, it’s a consequence 
of energy conservation as applied to an ideal fluid.

In deriving Bernoulli’s equation, we again assume the fluid is incompressible, 
nonviscous, and flows in a nonturbulent, steady-state manner. Consider the flow 
through a nonuniform pipe in the time Dt, as in Figure 9.30. The force on the 

 ■ e Xa Mp Le  9.12 Watering a Garden

g Oa L  Combine the equation of continuity with concepts of flow rate and kinematics.

pr Ob Le M  A water hose 2.50 cm in diameter is used by a gardener to fill a 30.0-liter bucket. (One liter 5 1 000 cm3.) 
The gardener notices that it takes 1.00 min to fill the bucket. A nozzle with an opening of cross-sectional area 0.500 cm2

is then attached to the hose. The nozzle is held so that water is projected horizontally from a point 1.00 m above the 
ground. Over what horizontal distance can the water be projected?

s t r at e g Y  We can find the volume flow rate through the hose by dividing the volume of the bucket by the time it takes 
to fill it. After finding the flow rate, apply the equation of continuity to find the speed at which the water shoots horizon-
tally from the nozzle. The rest of the problem is an application of two-dimensional kinematics. The answer obtained is 
the same as would be found for a ball having the same initial velocity and height.

s OLUti On
Calculate the volume flow rate into the bucket, and 
convert to m3/s:

volume flow rate 5

5 
30.0 L

1.00 min
 a1.00 3 103 cm3

1.00 L
b a 1.00 m

100.0 cm
b

3

a1.00 min
60.0 s

b
5 5.00 3 1024 m3/s

Solve the equation of continuity for v0x, the x -component 
of the initial velocity of the stream exiting the hose:

A1v1 5 A2v2 5 A2v0x

v0x 5
A1v1

A2
5

5.00 3 1024 m3/s
0.500 3 1024 m2 5 10.0 m/s

Calculate the time for the stream to fall 1.00 m, using 
kinematics. Initially, the stream is horizontal, so v0y is 
zero:

Dy 5 v0yt 2 1
2gt

2

Set v0y 5 0 in the preceding equation and solve for t, 
noting that Dy 5 21.00 m:

t 5 Å
22Dy
g

5 Å
22 121.00 m 2

9.80 m/s2 5 0.452 s

re Mar Ks  It’s interesting that the motion of fluids can be treated with the same kinematics equations as individual objects.

QUes t i On  9.12  By what factor would the range be changed if the flow rate were doubled?

e Xe rc i s e  9.12  The nozzle is replaced with a Y-shaped fitting that splits the flow in half. Garden hoses are con-
nected to each end of the Y, with each hose having a 0.400 cm2 nozzle. (a) How fast does the water come out of one 
of the nozzles? (b) How far would one of the nozzles squirt water if both were operated simultaneously and held hori-
zontally 1.00 m off the ground? Hint: Find the volume flow rate through each 0.400-cm2 nozzle, then follow the same 
steps as before.

a ns We r s  (a) 6.25 m/s (b) 2.83 m

Find the horizontal distance the stream travels: x 5 v0xt 5 (10.0 m/s)(0.452 s) 5   4.52 m
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lower end of the fluid is P1A1, where P1 is the pressure at the lower end. The work 
done on the lower end of the fluid by the fluid behind it is

W1 5 F1Dx1 5 P1A1Dx1 5 P1V

where V is the volume of the lower blue region in the figure. In a similar manner, 
the work done on the fluid on the upper portion in the time Dt is

W2 5 2P2A2Dx2 5 2P2V

The volume is the same because, by the equation of continuity, the volume of 
fluid that passes through A1 in the time Dt equals the volume that passes through 
A2 in the same interval. The work W2 is negative because the force on the fluid 
at the top is opposite its displacement. The net work done by these forces in the 
time Dt is

Wfluid 5 P1V 2 P2V

Part of this work goes into changing the fluid’s kinetic energy, and part goes into 
changing the gravitational potential energy of the fluid–Earth system. If m is the 
mass of the fluid passing through the pipe in the time interval Dt, then the change 
in kinetic energy of the volume of fluid is

DKE 5 1
2mv2

2 2 1
2mv1

2

The change in the gravitational potential energy is

DPE 5 mg y2 2 mg y1

Because the net work done by the fluid on the segment of fluid shown in Figure 
9.30 changes the kinetic energy and the potential energy of the nonisolated sys-
tem, we have

Wfluid 5 DKE 1 DPE 

The three terms in this equation are those we have just evaluated. Substituting 
expressions for each of the terms gives

P1V 2 P2V 5 1
2mv2

2 2 1
2mv1

2 1 mg y2 2 mgy1

If we divide each term by V and recall that r 5 m/V, this expression becomes

P1 2 P2 5 1
2rv2

2 2 1
2rv1

2 1 rg y2 2 rg y1

Rearrange the terms as follows:

 P1 1 1
2rv1

2 1 rg y1 5 P2 1 1
2rv2

2 1 rgy2 [9.16]

This is Bernoulli’s equation, often expressed as

 P 1 1
2rv2 1 rg y 5 constant [9.17]

Bernoulli’s equation states that the sum of the pressure P, the kinetic energy 
per unit volume, 12rv 2, and the potential energy per unit volume, rg y, has the 
same value at all points along a streamline.

An important consequence of Bernoulli’s equation can be demonstrated by 
considering Figure 9.31, which shows water flowing through a horizontal con-
stricted pipe from a region of large cross-sectional area into a region of smaller 
cross- sectional area. This device, called a Venturi tube, can be used to measure 
the speed of fluid flow. Because the pipe is horizontal, y1 5 y2, and Equation 9.16 
applied to points 1 and 2 gives

 P1 1 1
2rv1

2 5 P2 1 1
2rv2

2 [9.18]

 Bernoulli’s equation c

�x2

�x1 y2

y1

P1A1

P2A2

The tube of �uid between points 

� and � moves forward so it is 

between points � and �. 

v1
S

v2
S

� �

��

Figure 9.30  By the work-energy 
theorem, the work done by the oppos-
ing pressures P1 and P2 equals the dif-
ference in mechanical energy between 
that of the fluid now between points 
� and � and the fluid that was for-
merly between � and �.

Daniel b ernoulli
Swiss physicist and mathematician 
(1700–1782)
In his most famous work, Hydrody-
namica, Bernoulli showed that, as 
the velocity of fluid flow increases, 
its pressure decreases. In this same 
publication, Bernoulli also attempted 
the first explanation of the behavior of 
gases with changing pressure and tem-
perature; this was the beginning of the 
kinetic theory of gases.
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t ip 9.4  Bernoulli’s Principle 
for Gases
Equation 9.16 isn’t strictly true 
for gases because they aren’t 
incompressible. The qualitative 
behavior is the same, however: As 
the speed of the gas increases, its 
pressure decreases.
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Because the water is not backing up in the pipe, its speed v2 in the constricted 
region must be greater than its speed v1 in the region of greater diameter. From 
Equation 9.18, we see that P2 must be less than P1 because v2 . v1. This result is 
often expressed by the statement that swiftly moving fluids exert less pressure 
than do slowly moving fluids. This important fact enables us to understand a wide 
range of everyday phenomena.

■ Quick Quiz

9.7  You observe two helium balloons floating next to each other at the ends of 
strings secured to a table. The facing surfaces of the balloons are separated by 
1–2 cm. You blow through the opening between the balloons. What happens to  
the balloons? (a) They move toward each other. (b) They move away from each 
other. (c) They are unaffected.

Figure 9.31  (a) This device can be 
used to measure the speed of fluid 
flow. (b) A Venturi tube, located 
at the top of the photograph. The 
higher level of fluid in the middle 
column shows that the pressure at 
the top of the column, which is in 
the constricted region of the Venturi 
tube, is lower than the pressure else-
where in the column.

a

P1 P2

A2

A1

v1
S v2

S
�

�

The pressure P1 is greater than 
the pressure P2, because v1 � v2.

b

Pressure is lower at 
the narrow part of 
the tube, so the 
uid level is higher. 
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 ■ e Xa Mp Le  9.13 Shoot-Out at the Old Water Tank

g Oa L  Apply Bernoulli’s equation to find the 
speed of a fluid.

pr Ob Le M  A nearsighted sheriff fires at a cattle 
rustler with his trusty six-shooter. Fortunately for 
the rustler, the bullet misses him and penetrates 
the town water tank, causing a leak (Fig. 9.32).  
(a) If the top of the tank is open to the atmosphere, 
determine the speed at which the water leaves the 
hole when the water level is 0.500  m above the 
hole. (b) Where does the stream hit the ground if the hole is 3.00 m above the ground?

s t r at e g Y  (a) Assume the tank’s cross-sectional area is large compared to the hole’s (A2 .. A1), so the water level 
drops very slowly and v2 < 0. Apply Bernoulli’s equation to points � and � in Figure 9.31, noting that P1 equals atmo-
spheric pressure P0 at the hole and is approximately the same at the top of the water tank. Part (b) can be solved with 
kinematics, just as if the water were a ball thrown horizontally.

s OLUti On

A2

�

A1

P0

h

y2 y1

�

v1
S

P2 � P0

Zero level for 
gravitational 
potential 
energy

Figure 9.32  (Example 9.13) 
The water speed v1 from the 
hole in the side of the con-
tainer is given by v1 5 !2gh.

(a) Find the speed of the water leaving the hole.

Substitute P1 5 P2 5 P0 and v2 < 0 into Bernoulli’s equa-
tion, and solve for v1:

P0 1 1
2rv1

2 1 rg y1 5 P0 1 rg y2

v1 5 "2g 1y2 2 y1 2 5 "2gh

v1 5 "2 19.80 m/s2 2 10.500 m 2 5  3.13 m/s

(Continued)
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(b) Find where the stream hits the ground.

Use the displacement equation to find the time of the 
fall, noting that the stream is initially horizontal, so  
v0y 5 0.

Dy 5 21
2gt

2 1 v0yt

23.00 m 5 2(4.90 m/s2)t2

t 5 0.782 s

Compute the horizontal distance the stream travels in 
this time:

x 5 v0xt 5 (3.13 m/s)(0.782 s) 5   2.45 m

re Mar Ks  As the analysis of part (a) shows, the speed of the water emerging from the hole is equal to the speed 
acquired by an object falling freely through the vertical distance h. This is known as Torricelli’s law.

QUes t i On  9.13  As time passes, what happens to the speed of the water leaving the hole?

e Xe rc i s e  9.13  Suppose, in a similar situation, the water hits the ground 4.20 m from the hole in the tank. If the hole 
is 2.00 m above the ground, how far above the hole is the water level?

a ns We r  2.21 m above the hole

 ■ e Xa Mp Le  9.14 Fluid Flow in a Pipe

g Oa L  Solve a problem combining Bernoulli’s equation and the equation of continuity.

pr Ob Le M  A large pipe with a cross-sectional area of 1.00 m2 descends 5.00 m and 
narrows to 0.500 m2, where it terminates in a valve at point � (Fig. 9.33). If the pres-
sure at point � is atmospheric pressure, and the valve is opened wide and water 
allowed to flow freely, find the speed of the water leaving the pipe.

s t r at e g Y  The equation of continuity, together with Bernoulli’s equation, consti-
tute two equations in two unknowns: the speeds v1 and v2. Eliminate v2 from Bernoul-
li’s equation with the equation of continuity, and solve for v1.

s OLUti On

P0

�

P

h

0

�
v2
S

v1
S

Figure 9.33  (Example 9.14)

Write Bernoulli’s equation: (1) P1 1 1
2 rv1

2 1 rgy1 5 P2 1 1
2 rv2

2 1 rgy2

Solve the equation of continuity for v2: A2v2 5 A1v1

(2) v2 5
A1

A2
 v1

re Mar Ks  Calculating actual flow rates of real fluids through pipes is in fact much more complex than presented here, 
due to viscosity, the possibility of turbulence, and other factors.

QUes t i On  9.14  Find a symbolic expression for the limit of  speed v1 as the lower cross sectional area A1 opening 
becomes negligibly small compared to cross section A2. What is this result called?

e Xe rc i s e  9.14  Water flowing in a horizontal pipe is at a pressure of 1.40 3 105 Pa at a point where its cross-sectional 
area is 1.00 m2. When the pipe narrows to 0.400 m2, the pressure drops to 1.16 3 105 Pa. Find the water’s speed (a) in the 
wider pipe and (b) in the narrower pipe.

a ns We r s  (a) 3.02 m/s (b) 7.56 m/s

In Equation (1), set P1 5 P2 5 P0, and substitute the 
expression for v2. Then solve for v1.

(3) P0 1 1
2 rv1

2 1 rgy1 5 P0 1 1
2 r aA1

A2
 v1b

2

1 rgy2 

v1
2 c1 2 aA1

A2
b

2

d 5 2g 1y2 2 y1 2 5 2gh

v1 5
"2gh

"1 2 1A1/A2 22

Substitute the given values: v1 5   11.4 m/s
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9.8    Other Applications of Fluid Dynamics
Learning Objective

1. Explain some common phenomena using Bernoulli’s equation.

In this section we describe some common phenomena that can be explained, at 
least in part, by Bernoulli’s equation.

In general, an object moving through a fluid is acted upon by a net upward 
force as the result of any effect that causes the fluid to change direction as it flows 
past the object. For example, a golf ball struck with a club is given a rapid back-
spin, as shown in Figure 9.34. The dimples on the ball help entrain the air along 
the curve of the ball’s surface. The figure shows a thin layer of air wrapping part-
way around the ball and being deflected downward as a result. Because the ball 
pushes the air down, by Newton’s third law the air must push up on the ball and 
cause it to rise. Without the dimples, the air isn’t as well entrained, so the golf ball 
doesn’t travel as far. A tennis ball’s fuzz performs a similar function, though the 
desired result is accurate placement rather than greater distance.

Many devices operate in the manner illustrated in Figure 9.35. A stream of air 
passing over an open tube reduces the pressure above the tube, causing the liquid 
to rise into the airstream. The liquid is then dispersed into a fine spray of droplets. 
You might recognize that this so-called atomizer is used in perfume bottles and 
paint sprayers. The same principle is used in the carburetor of a gasoline engine. 
In that case, the low-pressure region in the carburetor is produced by air drawn in 
by the piston through the air filter. The gasoline vaporizes, mixes with the air, and 
enters the cylinder of the engine for combustion.

In a person with advanced arteriosclerosis, the Bernoulli effect produces a symp-
tom called vascular flutter. In this condition, the artery is constricted as a result of 
accumulated plaque on its inner walls, as shown in Figure 9.36. To maintain a constant 
flow rate, the blood must travel faster than normal through the constriction. If the 
speed of the blood is sufficiently high in the constricted region, the blood pressure is 
low, and the artery may collapse under external pressure, causing a momentary inter-
ruption in blood flow. During the collapse there is no Bernoulli effect, so the vessel 
reopens under arterial pressure. As the blood rushes through the constricted artery, 
the internal pressure drops and the artery closes again. Such variations in blood flow 
can be heard with a stethoscope. If the plaque becomes dislodged and ends up in a 
smaller vessel that delivers blood to the heart, it can cause a heart attack.

An aneurysm is a weakened spot on an artery where the artery walls have bal-
looned outward. Blood flows more slowly though this region, as can be seen from 
the equation of continuity, resulting in an increase in pressure in the vicinity of 
the aneurysm relative to the pressure in other parts of the artery. This condition is 
dangerous because the excess pressure can cause the artery to rupture.

The lift on an aircraft wing can also be explained in part by the Bernoulli effect. 
Airplane wings are designed so that the air speed above the wing is greater than the 
speed below. As a result, the air pressure above the wing is less than the pressure 
below, and there is a net upward force on the wing, called the lift. (There is also a 
horizontal component called the drag.) Another factor influencing the lift on a wing, 
shown in Figure 9.37, is the slight upward tilt of the wing. This causes air molecules 
striking the bottom to be deflected downward, producing a reaction force upward 
by Newton’s third law. Finally, turbulence also has an effect. If the wing is tilted too 

Figure 9.34  A spinning golf ball 
is acted upon by a lifting force that 
allows it to travel much further than 
it would if it were not spinning.

Figure 9.35  A stream of air pass-
ing over a tube dipped in a liquid 
causes the liquid to rise in the tube. 
This effect is used in perfume bot-
tles and paint sprayers.

a pp Lica t iOn
“Atomizers” in Perfume Bottles and 
Paint Sprayers

a pp Lica t iOn
Vascular Flutter and Aneurysms

Plaque

Artery

Figure 9.36  Blood must travel 
faster than normal through a con-
stricted region of an artery.

Drag

LiftF
S

The difference in pressure 
between the underside and 
top of the wing creates a 
dynamic upward lift force.

Figure 9.37  Streamline flow 
around an airplane wing. The 
pressure above is less than the pres-
sure below, and there is a dynamic 
upward lift force.
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much, the flow of air across the upper surface becomes turbulent, and the pressure 
difference across the wing is not as great as that predicted by the Bernoulli effect. In 
an extreme case, this turbulence may cause the aircraft to stall.

a pp Lica t iOn
Lift on Aircraft Wings

 ■ e Xa Mp Le  9.15 Lift on an Airfoil

g Oa L  Use Bernoulli’s equation to calculate the lift on an airplane wing.

pr Ob Le M  An airplane has wings, each with area 4.00 m2, designed so that air flows over the top of the wing at 245 m/s 
and underneath the wing at 222 m/s. Find the mass of the airplane such that the lift on the plane will support its weight, 
assuming the force from the pressure difference across the wings is directed straight upward.

s t r at e g Y  This problem can be solved by substituting values into Bernoulli’s equation to find the pressure difference 
between the air under the wing and the air over the wing, followed by applying Newton’s second law to find the mass the 
airplane can lift.

s OLUti On
Apply Bernoulli’s equation to the air flowing under the 
wing (point 1) and over the wing (point 2). Gravitational 
potential energy terms are small compared with the other 
terms, and can be neglected.

P1 1 1
2 rv1

2 5 P2 1 1
2rv2

2

Solve this equation for the pressure difference: DP 5 P1 2 P2 5 1
2 rv2

2 2 1
2 rv1

2 5 1
2 r 1v2

2 2 v1
2 2

Substitute the given speeds and r 5 1.29 kg/m3, the 
density of air:

DP 5 1
2 11.29 kg/m3 2 12452 m2/s2 2 2222 m2/s2 2

DP 5 6.93 3 103 Pa

Apply Newton’s second law. To support the plane’s weight, 
the sum of the lift and gravity forces must equal zero. 
Solve for the mass m of the plane.

2A DP 2 mg 5 0 S m 5   5.66 3 103 kg

re Mar Ks  Note the factor of two in the last equation, needed because the airplane has two wings. The density of the atmo-
sphere drops steadily with increasing height, reducing the lift. As a result, all aircraft have a maximum operating altitude.

QUes t i On  9.15  Why is the maximum lift affected by increasing altitude?

e Xe rc i s e  9.15  Approximately what size wings would an aircraft need on Mars if its engine generates the same differences 
in speed as in the example and the total mass of the craft is 400 kg? The density of air on the surface of Mars is approximately 
one percent Earth’s density at sea level, and the acceleration of gravity on the surface of Mars is about 3.8 m/s2.

a ns We r  Rounding to one significant digit, each wing would have to have an area of about 10 m2. There have been pro-
posals for solar-powered robotic Mars aircraft, which would have to be gossamer-light with large wings.

 ■ a pp LYi ng  ph Ys ic s  9.4 Sailing Upwind

How can a sailboat accomplish the seemingly impossible 
task of sailing into the wind?

e Xp La n at i On   As shown in Figure 9.38, the wind blow-
ing in the direction of the arrow causes the sail to billow 
out and take on a shape similar to that of an airplane wing. 
By Bernoulli’s equation, just as for an airplane wing, there 
is a force on the sail in the direction shown. The compo-
nent of force perpendicular to the boat tends to make the 
boat move sideways in the water, but the keel prevents this 
sideways motion. The component of the force in the for-
ward direction drives the boat almost against the wind. 
The word almost is used because a sailboat can move for-
ward only when the wind direction is about 10° to 15° with 
respect to the forward direction. This means that to sail 

directly against the wind, a boat must follow a zigzag path, 
a procedure called tacking, so that the wind is always at 
some angle with respect to the direction of travel. 

Wind

Sail

Keel axis

wind

water

RF
S

F
S

F
S

Figure 9.38  (Applying Physics 9.4)
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The exhaust speed of a rocket engine can also be understood qualitatively with 
Bernoulli’s equation, although, in actual practice, a large number of additional 
variables need to be taken into account. Rockets actually work better in vacuum 
than in the atmosphere, contrary to an early New York Times article criticizing 
rocket pioneer Robert Goddard, which held that they wouldn’t work at all, having 
no air to push against. The pressure inside the combustion chamber is P, and the 
pressure just outside the nozzle is the ambient atmospheric pressure, Patm. Differ-
ences in height between the combustion chamber and the end of the nozzle result 
in negligible contributions of gravitational potential energy. In addition, the gases 
inside the chamber flow at negligible speed compared to gases going through the 
nozzle. The exhaust speed can be found from Bernoulli’s equation,

vex 5 Å
2 1P 2 Patm 2

r 

This equation shows that the exhaust speed is reduced in the atmosphere, so 
rockets are actually more effective in the vacuum of space. Also of interest is the 
appearance of the density r in the denominator. A lower density working fluid or 
gas will give a higher exhaust speed, which partly explains why liquid hydrogen, 
which has a very low density, is a fuel of choice.

9.9     Surface Tension, Capillary Action,  
and Viscous Fluid Flow
Learning Objectives

1. Explain the physical origins of surface tension and capillary action.

2. Define surface tension and apply it in elementary physical contexts.

3. Define viscosity and apply it in Poiseuille’s equation.

4. Define the Reynolds number and use it to determine the speed associated with 
the onset of turbulence.

 ■ a pp LYi ng  ph Ys ic s  9.5 Home Plumbing

Consider the portion of a home plumbing system shown in 
Figure 9.39. The water trap in the pipe below the sink cap-
tures a plug of water that prevents sewer gas from finding 
its way from the sewer pipe, up the sink drain, and into the 
home. Suppose the dishwasher is draining and the water is 

moving to the left in the sewer pipe. What is the purpose 
of the vent, which is open to the air above the roof of the 
house? In which direction is air moving at the opening of 
the vent, upward or downward?

e Xp La n at i On   Imagine that the vent isn’t present so that 
the drainpipe for the sink is simply connected through the 
trap to the sewer pipe. As water from the dishwasher moves 
to the left in the sewer pipe, the pressure in the sewer pipe 
is reduced below atmospheric pressure, in accordance with 
Bernoulli’s principle. The pressure at the drain in the sink 
is still at atmospheric pressure. This pressure difference 
can push the plug of water in the water trap of the sink 
down the drainpipe and into the sewer pipe, removing it as 
a barrier to sewer gas. With the addition of the vent to the 
roof, the reduced pressure from the dishwasher water will 
result in air entering the vent pipe at the roof. This inflow 
of air will keep the pressure in the vent pipe and the right-
hand side of the sink drainpipe close to atmospheric pres-
sure so that the plug of water in the water trap will remain 
in place. 

Dishwasher

Sink

Vent

Sewer pipe

Trap

Figure 9.39  (Applying Physics 9.5)

a pp Lica t iOn
Rocket Engines
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If you look closely at a dewdrop sparkling in the morning sunlight, you will find 
that the drop is spherical. The drop takes this shape because of a property of 
liquid surfaces called surface tension. In order to understand the origin of 
surface tension, consider a molecule at point A in a container of water, as in 
Figure 9.40. Although nearby molecules exert forces on this molecule, the net 
force on it is zero because it’s completely surrounded by other molecules and 
hence is attracted equally in all directions. The molecule at B, however, is not 
attracted equally in all directions. Because there are no molecules above it to 
exert upward forces, the molecule at B is pulled toward the interior of the liquid. 
The contraction at the surface of the liquid ceases when the inward pull exerted 
on the surface molecules is balanced by the outward repulsive forces that arise 
from collisions with molecules in the interior of the liquid. The net effect of this 
pull on all the surface molecules is to make the surface of the liquid contract 
and, consequently, to make the surface area of the liquid as small as possible.
Drops of water take on a spherical shape because a sphere has the smallest sur-
face area for a given volume.

If you place a sewing needle very carefully on the surface of a bowl of water, you 
will find that the needle floats even though the density of steel is about eight times 
that of water. This phenomenon can also be explained by surface tension. A close 
examination of the needle shows that it actually rests in a depression in the liquid 
surface as shown in Figure 9.41. The water surface acts like an elastic membrane 
under tension. The weight of the needle produces a depression, increasing the sur-
face area of the film. Molecular forces now act at all points along the depression, 
tending to restore the surface to its original horizontal position. The vertical com-
ponents of these forces act to balance the force of gravity on the needle. The float-
ing needle can be sunk by adding a little detergent to the water, which reduces the 
surface tension.

The surface tension g in a film of liquid is defined as the magnitude of the sur-
face tension force F divided by the length L along which the force acts:

 g ;
F
L

 [9.19]

The SI unit of surface tension is the newton per meter, and values for a few repre-
sentative materials are given in Table 9.4.

Surface tension can be thought of as the energy content of the fluid at its sur-
face per unit surface area. To see that this is reasonable, we can manipulate the 
units of surface tension g as follows:

N
m

5
N # m

m2 5
J

m2

In general, in any equilibrium configuration of an object, the energy is a mini-
mum. Consequently, a fluid will take on a shape such that its surface area is as 
small as possible. For a given volume, a spherical shape has the smallest surface 
area; therefore, a drop of water takes on a spherical shape.

An apparatus used to measure the surface tension of liquids is shown in 
Figure 9.42. A circular wire with a circumference L is lifted from a body of liquid. 
The surface film clings to the inside and outside edges of the wire, holding back 
the wire and causing the spring to stretch. If the spring is calibrated, the force 
required to overcome the surface tension of the liquid can be measured. In this 
case the surface tension is given by

g 5
F

2L

We use 2L for the length because the surface film exerts forces on both the inside 
and outside of the ring.

A

B

Figure 9.40  The net force on a 
molecule at A is zero because such a 
molecule is completely surrounded 
by other molecules. The net force 
on a surface molecule at B is down-
ward because it isn’t completely sur-
rounded by other molecules.

F
S

F
S

M gS 

The vertical components of 
the surface tension force 
balance the gravity force.

Figure 9.41  End view of a needle 
resting on the surface of water.

t able 9.4  Surface Tensions 
for Various Liquids

  Surface
  Tension
Liquid T (°C) (N/m)

Ethyl alcohol 20 0.022
Mercury 20 0.465
Soapy water 20 0.025
Water 20 0.073
Water 100 0.059
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The surface tension of liquids decreases with 
increasing temperature because the faster moving 
molecules of a hot liquid aren’t bound together as 
strongly as are those in a cooler liquid. In addition, 
certain ingredients called surfactants decrease sur-
face tension when added to liquids. For example, 
soap or detergent decreases the surface tension of 
water, making it easier for soapy water to penetrate 
the cracks and crevices of your clothes to clean them 
better than plain water does. A similar effect occurs 
in the lungs. The surface tissue of the air sacs in the 
lungs contains a fluid that has a surface tension of 
about 0.050 N/m. A liquid with a surface tension this 
high would make it very difficult for the lungs to expand during inhalation. How-
ever, as the area of the lungs increases with inhalation, the body secretes into the 
tissue a substance that gradually reduces the surface tension of the liquid. At full 
expansion, the surface tension of the lung fluid can drop to as low as 0.005 N/m.

 ■ e Xa Mp Le  9.16 Walking on Water  

g Oa L  Apply the surface tension equation.

pr Ob Le M  Many insects can literally walk on water, using 
surface tension for their support. To show this is feasible, 
assume the insect’s “foot” is spherical. When the insect steps 
onto the water with all six legs, a depression is formed in the 
water around each foot, as shown in Figure 9.43a. The surface 
tension of the water produces upward forces on the water that 
tend to restore the water surface to its normally flat shape. If 
the insect’s mass is 2.0 3 1025 kg and the radius of each foot 
is 1.5 3 1024 m, find the angle u.

s t r at e g Y  Find an expression for the magnitude of the 
net force F directed tangentially to the depressed part of the 
water surface, and obtain the part that is acting vertically, 
in opposition to the downward force of gravity. Assume the 
radius of depression is the same as the radius of the insect’s 
foot. Because the insect has six legs, one-sixth of the insect’s 
weight must be supported by one of the legs, assuming the 
weight is distributed evenly. The length L is just the distance 
around a circle. Using Newton’s second law for a body in equilibrium (zero acceleration), solve for u.

s OLUti On

Figure 9.43  (Example 9.16) (a) One foot of an insect resting on 
the surface of water. (b) This water strider resting on the surface 
of a lake remains on the surface, rather than sinking, because an 
upward surface tension force acts on each leg, balancing the force 
of gravity on the insect.
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Figure 9.42  An apparatus for 
measuring the surface tension of 
liquids. The force on the wire ring is 
measured just before the ring breaks 
free of the liquid.

a pp Lica t iOn
Air Sac Surface Tension

Start with the surface tension equation: F 5 gL

Focus on one circular foot, substituting L 5 2pr. Multiply 
by cos u to get the vertical component Fv:

Fv 5 g(2pr) cos u

Write Newton’s second law for the insect’s one foot, which 
supports one-sixth of the insect’s weight:

o F 5 Fv 2 Fgrav 5 0

g 12pr 2  cos u 2 1
6mg 5 0

Solve for cos u and substitute: (1) cos u 5
mg

12prg

5
12.0 3 1025 kg 2 19.80 m/s2 2

12p 11.5 3 1024 m 2 10.073 N/m 2 5 0.47

Take the inverse cosine of both sides to find the angle u: u 5 cos21 (0.47) 5   62°

(Continued)

Unless otherwise noted, all content on this page is © Cengage Learning.
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The Surface of Liquid
If you have ever closely examined the surface of water in a glass container, you 
may have noticed that the surface of the liquid near the walls of the glass curves 
upward as you move from the center to the edge, as shown in Figure 9.44a. How-
ever, if mercury is placed in a glass container, the mercury surface curves down-
ward, as in Figure 9.44b. These surface effects can be explained by considering 
the forces between molecules. In particular, we must consider the forces that the 
molecules of the liquid exert on one another and the forces that the molecules of 
the glass surface exert on those of the liquid. In general terms, forces between like 
molecules, such as the forces between water molecules, are called cohesive forces, 
and forces between unlike molecules, such as those exerted by glass on water, are 
called adhesive forces.

Water tends to cling to the walls of the glass because the adhesive forces 
between the molecules of water and the glass molecules are greater than the 
cohesive forces between the water molecules. In effect, the water molecules 
cling to the surface of the glass rather than fall back into the bulk of the liq-
uid. When this condition prevails, the liquid is said to “wet” the glass surface. 
The surface of the mercury curves downward near the walls of the container 
because the cohesive forces between the mercury atoms are greater than the 
adhesive forces between mercury and glass. A mercury atom near the surface 
is pulled more strongly toward other mercury atoms than toward the glass sur-
face, so mercury doesn’t wet the glass surface.

re Mar Ks  If the weight of the insect were great enough to make the right side of Equation (1) greater than 1, a solu-
tion for u would be impossible because the cosine of an angle can never be greater than 1. In this circumstance the insect 
would sink.

QUes t i On  9.16  True or False: Warm water gives more support to walking insects than cold water.

e Xe rc i s e  9.16  A typical sewing needle floats on water when its long dimension is parallel to the water’s surface. Esti-
mate the needle’s maximum possible mass, assuming the needle is two inches long. Hint: The cosine of an angle is never 
larger than 1.

a ns We r  0.8 g

Figure 9.44  A liquid in contact with a solid surface. (a) For water, the adhesive force is greater than the cohesive 
force. (b) For mercury, the adhesive force is less than the cohesive force. (c) The surface of mercury (left) curves 
downward in a glass container, whereas the surface of water (right) curves upward, as you move from the center to 
the edge.
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The angle f between the solid surface and a line drawn tangent to the liquid 
at the surface is called the contact angle (Fig. 9.45). The angle f is less than 90° 
for any substance in which adhesive forces are stronger than cohesive forces and 
greater than 90° if cohesive forces predominate. For example, if a drop of water is 
placed on paraffin, the contact angle is approximately 107° (Fig. 9.45a). If certain 
chemicals, called wetting agents or detergents, are added to the water, the con-
tact angle becomes less than 90°, as shown in Figure 9.45b. The addition of such 
substances to water ensures that the water makes thorough contact with a surface 
and penetrates it. For this reason, detergents are added to water to wash clothes 
or dishes.

On the other hand, it is sometimes necessary to keep water from making 
intimate contact with a surface, as in waterproof clothing, where a situation 
somewhat the reverse of that shown in Figure 9.45 is called for. The clothing 
is sprayed with a waterproofing agent, which changes f from less than 90° to 
greater than 90°. The water beads up on the surface and doesn’t easily pen-
etrate the clothing.

Capillary Action
In capillary tubes the diameter of the opening is very small, on the order of a hun-
dredth of a centimeter. In fact, the word capillary means “hairlike.” If such a tube 
is inserted into a fluid for which adhesive forces dominate over cohesive forces, 
the liquid rises into the tube, as shown in Figure 9.46. The rising of the liquid in 
the tube can be explained in terms of the shape of the liquid’s surface and surface 
tension effects. At the point of contact between liquid and solid, the upward force 
of surface tension is directed as shown in the figure. From Equation 9.19, the mag-
nitude of this force is

F 5 gL 5 g(2pr)

(We use L 5 2pr here because the liquid is in contact with the surface of the tube 
at all points around its circumference.) The vertical component of this force due 
to surface tension is

 Fv 5 g(2pr)(cos f) [9.20]

For the liquid in the capillary tube to be in equilibrium, this upward force must be 
equal to the weight of the cylinder of water of height h inside the capillary tube. 
The weight of this water is

 w 5 Mg 5 rVg 5 rg pr 2h [9.21]

Water
drop

Paraf�n

Wetted solid
surface

Water
drop

φ

φ

a b

Figure 9.45  (a) The contact angle 
between water and paraffin is about 
107°. In this case, the cohesive force 
is greater than the adhesive force. 
(b) When a chemical called a wetting 
agent is added to the water, it wets 
the paraffin surface, and f , 90°.  
In this case, the adhesive force is 
greater than the cohesive force.

a pp Lica t iOn
Detergents and Waterproofing 
Agents
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Figure 9.46  A liquid rises in a nar-
row tube because of capillary action, 
a result of surface tension and adhe-
sive forces.
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Equating Fv in Equation 9.20 to w in Equation 9.21 (applying Newton’s second law 
for equilibrium), we have

g(2pr)(cos f) 5 rg pr 2h

Solving for h gives the height to which water is drawn into the tube:

 h 5
2g

rg r
 cos f [9.22]

If a capillary tube is inserted into a liquid in which cohesive forces dominate over 
adhesive forces, the level of the liquid in the capillary tube will be below the surface 
of the surrounding fluid, as shown in Figure 9.47. An analysis similar to the above 
would show that the distance h to the depressed surface is given by Equation 9.22.

Capillary tubes are often used to draw small samples of blood from a needle 
prick in the skin. Capillary action must also be considered in the construction of 
concrete-block buildings because water seepage through capillary pores in the 
blocks or the mortar may cause damage to the inside of the building. To prevent 
such damage, the blocks are usually coated with a waterproofing agent either out-
side or inside the building. Water seepage through a wall is an undesirable effect 
of capillary action, but there are many useful effects. Plants depend on capillary 
action to transport water and nutrients, and sponges and paper towels use capil-
lary action to absorb spilled fluids.

F
S

F
S

h

Figure 9.47  When cohesive forces 
between molecules of a liquid exceed 
adhesive forces, the level of the liquid 
in the capillary tube is below the  
surface of the surrounding fluid.

 a pp Lica t iOn
Blood Samples with Capillary Tubes

 a pp Lica t iOn
Capillary Action in Plants

 ■ e Xa Mp Le  9.17 Rising Water

g Oa L Apply surface tension to capillary action.

pr Ob Le M Find the height to which water would rise in a capillary tube with a radius equal to 5.0 3 1025 m. Assume the 
contact angle between the water and the material of the tube is small enough to be considered zero.

s t r at e g Y This problem requires substituting values into Equation 9.22.

s OLUti On

Substitute the known values into Equation 9.22: h 5
2g cos 08

rgr

5
2 10.073 N/m 2

11.00 3 103 kg/m3 2 19.80 m/s2 2 15.0 3 1025 m 2
5   0.30 m

QUes t i On  9.17  Based on the result of this calculation, is capillary action likely to be the sole mechanism of water and 
nutrient transport in plants? Explain.

e Xe rc i s e  9.17  Suppose ethyl alcohol rises 0.250 m in a thin tube. Estimate the radius of the tube, assuming the con-
tact angle is approximately zero.

a ns We r  2.2 3 1025 m

Viscous Fluid Flow
It is considerably easier to pour water out of a container than to pour honey. This 
is because honey has a higher viscosity than water. In a general sense, viscosity 
refers to the internal friction of a fluid. It’s very difficult for layers of a viscous 
fluid to slide past one another. Likewise, it’s difficult for one solid surface to slide 
past another if there is a highly viscous fluid, such as soft tar, between them.

When an ideal (nonviscous) fluid flows through a pipe, the fluid layers slide 
past one another with no resistance. If the pipe has a uniform cross section, each 
layer has the same velocity, as shown in Figure 9.48a. In contrast, the layers of a 
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viscous fluid have different velocities, as Figure 9.48b indicates. The fluid has the 
greatest velocity at the center of the pipe, whereas the layer next to the wall doesn’t 
move because of adhesive forces between molecules and the wall surface.

To better understand the concept of viscosity, consider a layer of liquid between 
two solid surfaces, as in Figure 9.49. The lower surface is fixed in position, and the 
top surface moves to the right with a velocity vS under the action of an external force 
F
S

. Because of this motion, a portion of the liquid is distorted from its original shape, 
ABCD, to the shape AEFD a moment later. The force required to move the upper 
plate and distort the liquid is proportional to both the area A in contact with the 
fluid and the speed v of the fluid. Further, the force is inversely proportional to the 
distance d between the two plates. We can express these proportionalities as F ~ Av/d. 
The force required to move the upper plate at a fixed speed v is therefore

 F 5 h 
Av
d

 [9.23]

where h (the lowercase Greek letter eta) is the coefficient of viscosity of the fluid.
The SI units of viscosity are N ? s/m2. The units of viscosity in many reference 

sources are expressed in dyne ? s/cm2, called 1 poise, in honor of the French  
scientist J. L. Poiseuille (1799–1869). The relationship between the SI unit of vis-
cosity and the poise is

 1 poise 5 1021 N ? s/m2 [9.24]

Small viscosities are often expressed in centipoise (cp), where 1 cp 5 1022 poise. 
The coefficients of viscosity for some common substances are listed in Table 9.5.

Poiseuille’s Law
Figure 9.50 shows a section of a tube of length L and radius R containing a fluid 
under a pressure P1 at the left end and a pressure P2 at the right. Because of this 
pressure difference, the fluid flows through the tube. The rate of flow (volume per 
unit time) depends on the pressure difference (P1 2 P2), the dimensions of the 
tube, and the viscosity of the fluid. The result, known as Poiseuille’s law, is

 Rate of flow 5
DV
Dt

5
pR4 1P1 2 P2 2

8hL
 [9.25]

where h is the coefficient of viscosity of the fluid. We won’t attempt to derive this 
equation here because the methods of integral calculus are required. However, it 
is reasonable that the rate of flow should increase if the pressure difference across 
the tube or the tube radius increases. Likewise, the flow rate should decrease if 
the viscosity of the fluid or the length of the tube increases. So the presence of R 

b Poiseuille’s law

a

b

Non-viscous �ow 
velocity prole.

Viscous �ow 
velocity prole. 

Figure 9.48  (a) The particles 
in an ideal (nonviscous) fluid all 
move through the pipe with the 
same velocity. (b) In a viscous fluid, 
the velocity of the fluid particles is 
zero at the surface of the pipe and 
increases to a maximum value at the 
center of the pipe.

t able 9.5  Viscosities of Various Fluids

 Viscosity h
Fluid T (°C) (N ? s/m2)

Water 20 1.0 3 1023

Water 100 0.3 3 1023

Whole blood 37 2.7 3 1023

Glycerin 20 1 500 3 1023

10-wt motor oil 30 250 3 1023

B E C F

A D

d

∆x � v∆t

F
S

vS

Figure 9.49  A layer of liquid 
between two solid surfaces in 
which the lower surface is fixed 
and the upper surface moves to 
the right with a velocity vS.

P1 P2

R

L

vS

Fluid velocity is greatest in 
the middle of the pipe.

Figure 9.50  Velocity profile 
of a fluid flowing through a 
uniform pipe of circular cross 
section. The rate of flow is 
given by Poiseuille’s law.
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and the pressure difference in the numerator of Equation 9.25 and of L and h in 
the denominator make sense.

From Poiseuille’s law, we see that in order to maintain a constant flow rate, the 
pressure difference across the tube has to increase as the viscosity of the fluid 
increases. This fact is important in understanding the flow of blood through the 
circulatory system. The viscosity of blood increases as the number of red blood 
cells rises. Blood with a high concentration of red blood cells requires greater 
pumping pressure from the heart to keep it circulating than does blood of lower 
red blood cell concentration.

Note that the flow rate varies as the radius of the tube raised to the fourth 
power. Consequently, if a constriction occurs in a vein or artery, the heart will have 
to work considerably harder in order to produce a higher pressure drop and hence 
maintain the required flow rate.

a pp Lica t iOn
Poiseuille’s Law and Blood Flow

■ e Xa Mp Le  9.18 A Blood Transfusion 

g Oa L  Apply Poiseuille’s law.

pr Ob Le M  A patient receives a blood transfusion through a needle of radius 0.20 mm and length 2.0 cm. The density of 
blood is 1 050 kg/m3. The bottle supplying the blood is 0.500 m above the patient’s arm. What is the rate of flow through 
the needle?

s t r at e g Y  Find the pressure difference between the level of the blood and the patient’s arm. Substitute into Poiseuille’s 
law, using the value for the viscosity of whole blood in Table 9.5.

s OLUti On

Calculate the pressure difference: P1 2 P2 5 rgh 5 (1 050 kg/m3)(9.80 m/s2)(0.500 m) 

5 5.15 3 103 Pa

Substitute into Poiseuille’s law: DV
Dt

5
pR4 1P1 2 P2 2

8hL

5
p 12.0 3 1024 m 24 15.15 3 103 Pa 2

8 12.7 3 1023 N # s/m2 2 12.0 3 1022 m 2
5   6.0 3 1028 m3/s

re Mar Ks  Compare this to the volume flow rate in the absence of any viscosity. Using Bernoulli’s equation, the calcu-
lated volume flow rate is approximately five times as great. As expected, viscosity greatly reduces flow rate.

QUes t i On  9.18  If the radius of a tube is doubled, by what factor will the flow rate change for a viscous fluid?

e Xe rc i s e  9.18  A pipe carrying water from a tank 20.0 m tall must cross 3.00 3 102 km of wilderness to reach a remote 
town. Find the radius of pipe so that the volume flow rate is at least 0.050 0 m3/s. (Use the viscosity of water at 20°C.)

a ns We r  0.118 m

Reynolds Number
At sufficiently high velocities, fluid flow changes from simple streamline flow to 
turbulent flow, characterized by a highly irregular motion of the fluid. Experi-
mentally, the onset of turbulence in a tube is determined by a dimensionless factor 
called the Reynolds number, RN, given by

 RN 5
rvd
h

 [9.26]

where r is the density of the fluid, v is the average speed of the fluid along the 
direction of flow, d is the diameter of the tube, and h is the viscosity of the fluid. If 

 Reynolds number c
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RN is below about 2 000, the flow of fluid through a tube is streamline; turbulence 
occurs if RN is above 3 000. In the region between 2 000 and 3 000, the flow is 
unstable, meaning that the fluid can move in streamline flow, but any small distur-
bance will cause its motion to change to turbulent flow.

 ■ e Xa Mp Le  9.19 Turbulent Flow of Blood  

g Oa L  Use the Reynolds number to determine a speed associated with the onset of turbulence.

pr Ob Le M  Determine the speed at which blood flowing through an artery of diameter 0.20 cm will become turbulent.

s t r at e g Y  The solution requires only the substitution of values into Equation 9.26 giving the Reynolds number and 
then solving it for the speed v.

s OLUti On

re Mar Ks  Exercise 9.19 shows that rapid ingestion of soda through a straw may create a turbulent state.

QUes t i On  9.19  True or False: If the viscosity of a fluid flowing through a tube is increased, the speed associated with 
the onset of turbulence decreases.

e Xe rc i s e  9.19  Determine the speed v at which water at 20°C sucked up a straw would become turbulent. The straw 
has a diameter of 0.006 0 m.

a ns We r  v 5 0.50 m/s

Solve Equation 9.26 for v, and substitute the viscosity and 
density of blood from Example 9.18, the diameter d of the 
artery, and a Reynolds number of 3.00 3 103:

v 5
h 1RN 2

rd
5

12.7 3 1023 N # s/m2 2 13.00 3 103 2
11.05 3 103 kg/m3 2 10.20 3 1022 m 2

v 5   3.9 m/s

9.10    Transport Phenomena
Learning Objectives

1. Contrast diffusion and osmosis. State Fick’s Law of diffusion rate.

2. Describe the physical processes of sedimentation and centrifugation.

3. Understand the derivations of terminal speed through a viscous medium.

When a fluid flows through a tube, the basic mechanism that produces the flow 
is a difference in pressure across the ends of the tube. This pressure difference is 
responsible for the transport of a mass of fluid from one location to another. The 
fluid may also move from place to place because of a second mechanism—one 
that depends on a difference in concentration between two points in the fluid, as 
opposed to a pressure difference. When the concentration (the number of mol-
ecules per unit volume) is higher at one location than at another, molecules will 
flow from the point where the concentration is high to the point where it is lower. 
The two fundamental processes involved in fluid transport resulting from concen-
tration differences are called diffusion and osmosis.

Diffusion
In a diffusion process, molecules move from a region where their concentration 
is high to a region where their concentration is lower. To understand why diffu-
sion occurs, consider Figure 9.51, which depicts a container in which a high con-
centration of molecules has been introduced into the left side. The dashed line in 
the figure represents an imaginary barrier separating the two regions. Because the 
molecules are moving with high speeds in random directions, many of them will 

Figure 9.51  When the concentra-
tion of gas molecules on the left side 
of the container exceeds the con-
centration on the right side, there 
will be a net motion (diffusion) of 
molecules from left to right.
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cross the imaginary barrier moving from left to right. Very few molecules will pass 
through moving from right to left, simply because there are very few of them on the 
right side of the container at any instant. As a result, there will always be a net move-
ment from the region with many molecules to the region with fewer molecules. For 
this reason, the concentration on the left side of the container will decrease, and 
that on the right side will increase with time. Once a concentration equilibrium has 
been reached, there will be no net movement across the cross-sectional area: The 
rate of movement of molecules from left to right will equal the rate from right to left.

The basic equation for diffusion is Fick’s law,

 Diffusion rate 5
mass
time

5
DM
Dt

5 DAaC2 2 C1

L
b [9.27]

where D is a constant of proportionality. The left side of this equation is called the 
diffusion rate and is a measure of the mass being transported per unit time. The 
equation says that the rate of diffusion is proportional to the cross-sectional area A 
and to the change in concentration per unit distance, (C2 2 C1)/L, which is called 
the concentration gradient. The concentrations C1 and C2 are measured in kilograms 
per cubic meter. The proportionality constant D is called the diffusion coefficient 
and has units of square meters per second. Table 9.6 lists diffusion coefficients for 
a few substances.

The Size of Cells and Osmosis
Diffusion through cell membranes is vital in carrying oxygen to the cells of the body 
and in removing carbon dioxide and other waste products from them. Cells require 
oxygen for those metabolic processes in which substances are either synthesized 
or broken down. In such processes, the cell uses up oxygen and produces carbon 
dioxide as a by-product. A fresh supply of oxygen diffuses from the blood, where its  
concentration is high, into the cell, where its concentration is low. Likewise, carbon 
dioxide diffuses from the cell into the blood, where it is in lower concentration. 
Water, ions, and other nutrients also pass into and out of cells by diffusion.

A cell can function properly only if it can transport nutrients and waste prod-
ucts rapidly across the cell membrane. The surface area of the cell should be large 
enough so that the exposed membrane area can exchange materials effectively 
whereas the volume should be small enough so that materials can reach or leave 
particular locations rapidly. This requires a large surface-area-to-volume ratio.

Model a cell as a cube, each side with length L. The total surface area is 6L2 and 
the volume is L3. The surface area to volume is then

surface area
volume

5
6L2

L3 5
6
L

Because L is in the denominator, a smaller L means a larger ratio. This shows that the 
smaller the size of a body, the more efficiently it can transport nutrients and waste 
products across the cell membrane. Cells range in size from a millionth of a meter to 
several millionths, so a good estimate of a typical cell’s surface-to-volume ratio is 106.

The diffusion of material through a membrane is partially determined by the 
size of the pores (holes) in the membrane wall. Small molecules, such as water, 
may pass through the pores easily, while larger molecules, such as sugar, may pass 
through only with difficulty or not at all. A membrane that allows passage of some 
molecules but not others is called a selectively permeable membrane.

Osmosis is the diffusion of water across a selectively permeable membrane 
from a high water concentration to a low water concentration. As in the case of 
diffusion, osmosis continues until the concentrations on the two sides of the mem-
brane are equal.

To understand the effect of osmosis on living cells, consider a particular cell in 
the body with a sugar concentration of 1%. (A 1% solution is 1 g of sugar dissolved 
in enough water to make 100 ml of solution; “ml” is the abbreviation for milliliters, 
where 1 mL 5 1023 L 5 1 cm3.) Assume this cell is immersed in a 5% sugar solution 

 Fick’s law c

t able 9.6  Diffusion 
Coefficients of Various 
Substances at 20°C

Substance D (m2/s)

Oxygen  
 through air 6.4 3 1025

Oxygen  
through tissue 1 3 10211

Oxygen  
through water 1 3 1029

Sucrose  
through water 5 3 10210

Hemoglobin  
through water 76 3 10212

 a pp Lica t iOn
Effect of Osmosis on Living Cells
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(5 g of sugar dissolved in enough water to make 100 ml). Compared to the 1% solu-
tion, there are five times as many sugar molecules per unit volume in the 5% sugar 
solution, so there must be fewer water molecules. Accordingly, water will diffuse from 
inside the cell, where its concentration is higher, across the cell membrane to the 
solution, where the concentration of water is lower. This loss of water from the cell 
would cause it to shrink and perhaps become damaged through dehydration. If the 
concentrations were reversed, water would diffuse into the cell, causing it to swell and 
perhaps burst. If solutions are introduced into the body intravenously, care must be 
taken to ensure that they don’t disturb the osmotic balance of its cells, or damage can 
occur. For example, if a 9% saline solution surrounds a red blood cell, the cell will 
shrink. By contrast, if the solution is about 1%, the cell will eventually burst.

In the body, blood is cleansed of impurities by osmosis as it flows through the 
kidneys. (See Fig. 9.52a.) Arterial blood first passes through a bundle of capillaries 
known as a glomerulus, where most of the waste products and some essential salts 
and minerals are removed. From the glomerulus, a narrow tube emerges that is 
in intimate contact with other capillaries throughout its length. As blood passes 
through the tubules, most of the essential elements are returned to it; waste prod-
ucts are not allowed to reenter and are eventually removed in urine.

If the kidneys fail, an artificial kidney or a dialysis machine can filter the blood. 
Figure 9.52b shows how this is done. Blood from an artery in the arm is mixed with 
heparin, a blood thinner, and allowed to pass through a tube covered with a semi-
permeable membrane. The tubing is immersed in a bath of a dialysate fluid with 
the same chemical composition as purified blood. Waste products from the blood 
enter the dialysate by diffusion through the membrane. The filtered blood is then 
returned to a vein.

Motion Through a Viscous Medium
When an object falls through air, its motion is impeded by the force of air resis-
tance. In general, this force depends on the shape of the falling object and on its 
velocity. The force of air resistance acts on all falling objects, but the exact details 
of the motion can be calculated only for a few cases in which the object has a 
simple shape, such as a sphere. In this section we will examine the motion of a tiny 
spherical object falling slowly through a viscous medium.

In 1845 a scientist named George Stokes found that the magnitude of the resis-
tive force on a very small spherical object of radius r falling slowly through a fluid 
of viscosity h with speed v is given by

 Fr 5 6phrv [9.28]

a ba

Fresh
dialysate

Used
dialysate

Compressed
CO2 and air

Constant
temperature

bath

Artery

Vein
Bubble trap

membrane
Dialyzing

Glomerulus

Capillaries

Vein

Collecting
duct

To
renal
pelvis

Rotary pump

Figure 9.52  (a) Diagram of a sin-
gle nephron in the human excretory 
system. (b) An artificial kidney.

a pp Lica t iOn
Kidney Function and Dialysis
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This equation, called Stokes’s law, has many important applications. For example, 
it describes the sedimentation of particulate matter in blood samples. It was used 
by Robert Millikan (1886–1953) to calculate the radius of charged oil droplets fall-
ing through air. From this, Millikan was ultimately able to determine the charge of 
the electron, and was awarded the Nobel Prize in 1923 for his pioneering work on 
elemental charges.

As a sphere falls through a viscous medium, three forces act on it, as shown in 
Figure 9.53: F

S

r, the force of friction; B
S

, the buoyant force of the fluid; and wS, the 
force of gravity acting on the sphere. The magnitude of wS is given by

w 5 rgV 5 rg a4
3

 pr 3b

where r is the density of the sphere and 43 pr 3 is its volume. According to Archime-
des’s principle, the magnitude of the buoyant force is equal to the weight of the 
fluid displaced by the sphere,

B 5 rf gV 5 rf g a
4
3

 pr3b
where rf is the density of the fluid.

At the instant the sphere begins to fall, the force of friction is zero because the 
speed of the sphere is zero. As the sphere accelerates, its speed increases and so 
does F

S

r. Finally, at a speed called the terminal speed vt, the net force goes to zero. 
This occurs when the net upward force balances the downward force of gravity. 
Therefore, the sphere reaches terminal speed when

Fr 1 B 5 w
or

6phrvt 1 rf g a4
3

 pr 3b 5 rg a4
3

 pr 3b

When this equation is solved for vt, we get

 vt 5
2r2g

9h
 1r 2 rf 2  [9.29]

Sedimentation and Centrifugation
If an object isn’t spherical, we can still use the basic approach just described to 
determine its terminal speed. The only difference is that we can’t use Stokes’s law 
for the resistive force. Instead, we assume that the resistive force has a magnitude 
given by Fr 5 kv, where k is a coefficient that must be determined experimentally. 
As discussed previously, the object reaches its terminal speed when the downward 
force of gravity is balanced by the net upward force, or

 w 5 B 1 Fr [9.30]

where B 5 rf gV is the buoyant force. The volume V of the displaced fluid is related 
to the density r of the falling object by V 5 m/r. Hence, we can express the buoy-
ant force as

B 5
rf

r
 mg

We substitute this expression for B and Fr 5 kvt into Equation 9.30 (terminal speed 
condition):

mg 5
rf

r
 mg 1 kvt

or

 vt 5
mg

k
a1 2

rf

r
b [9.31]

 Terminal speed c

Fr
S

B
S

wS

Figure 9.53  A sphere falling 
through a viscous medium. The 
forces acting on the sphere are the 
resistive frictional force F

S

r, the buoy-
ant force B

S

, and the force of gravity 
wS acting on the sphere.
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The terminal speed for particles in biological samples is usually quite small. 
For example, the terminal speed for blood cells falling through plasma is about 
5 cm/h in the gravitational field of the Earth. The terminal speeds for the mol-
ecules that make up a cell are many orders of magnitude smaller than this because 
of their much smaller mass. The speed at which materials fall through a fluid is 
called the sedimentation rate and is important in clinical analysis.

The sedimentation rate in a fluid can be increased by increasing the effective 
acceleration g that appears in Equation 9.31. A fluid containing various biological 
molecules is placed in a centrifuge and whirled at very high angular speeds (Fig. 
9.54). Under these conditions, the particles gain a large radial acceleration ac 5 
v2/r 5 v2r that is much greater than the free-fall acceleration, so we can replace g 
in Equation 9.31 by v2r and obtain

 vt 5
mv2r
k

a1 2
rf

r
b [9.32]

This equation indicates that the sedimentation rate is enormously speeded up 
in a centrifuge (v2r .. g) and that those particles with the greatest mass will have 
the largest terminal speed. Consequently the most massive particles will settle out 
on the bottom of a test tube first.

 ■ s UMMar Y

9.1  States of Matter
Matter is normally classified as being in one of three states: 
solid, liquid, or gaseous. The fourth state of matter is called 
a plasma, which consists of a neutral system of charged par-
ticles interacting electromagnetically.

9.2  Density and Pressure
The density r of a substance of uniform composition is its 
mass per unit volume—kilograms per cubic meter (kg/m3)  
in the SI system:

 r ;  
M
V

 [9.1]

The pressure P in a fluid, measured in pascals (Pa), is 
the force per unit area that the fluid exerts on an object 
immersed in it:

 P ;  
F
A

 [9.2]

9.3  The Deformation of Solids
The elastic properties of a solid can be described using the 
concepts of stress and strain. Stress is related to the force 
per unit area producing a deformation; strain is a mea-
sure of the amount of deformation. Stress is proportional 
to strain, and the constant of proportionality is the elastic 
modulus:

 Stress 5 elastic modulus 3 strain [9.3]

 Three common types of deformation are (1) the resis-
tance of a solid to elongation or compression, characterized 
by Young’s modulus Y; (2) the resistance to displacement 
of the faces of a solid sliding past each other, characterized 

by the shear modulus S; and (3) the resistance of a solid 
or liquid to a change in volume, characterized by the bulk 
modulus B.

All three types of deformation obey laws similar to 
Hooke’s law for springs. Solving problems is usually a mat-
ter of identifying the given physical variables and solving 
for the unknown variable.

9.4  Variation of Pressure with Depth
The pressure in an incompressible fluid varies with depth h 
according to the expression

P 5 P0 1 rgh [9.11]

where P0 is atmospheric pressure (1.013 3 105 Pa) and r is 
the density of the fluid.
 Pascal’s principle states that when pressure is applied 
to an enclosed fluid, the pressure is transmitted undimin-
ished to every point of the fluid and to the walls of the con-
taining vessel.

9.6  Buoyant Forces and Archimedes’ Principle
When an object is partially or fully submerged in a fluid, 
the fluid exerts an upward force, called the buoyant force, 
on the object. This force is, in fact, due to the net differ-
ence in pressure between the top and bottom of the object. 
It can be shown that the magnitude of the buoyant force B 
is equal to the weight of the fluid displaced by the object, or

 B 5 rfluidVfluid g [9.12b]

Equation 9.12b is known as Archimedes’ principle.
 Solving a buoyancy problem usually involves putting the 
buoyant force into Newton’s second law and then proceed-
ing as in Chapter 4.

ω

Figure 9.54  Simplified diagram of 
a centrifuge (top view).

a pp Lica t iOn
Separating Biological Molecules
with Centrifugation
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2. The sum of the pressure, the kinetic energy per 
unit volume, and the potential energy per unit 
volume is the same at any two points along a 
streamline:

P1 1 1
2rv1

2 1 rg y1 5 P2 1 1
2rv2

2 1 rg y2 [9.16]

Equation 9.16 is known as Bernoulli’s equation. Solving 
problems with Bernoulli’s equation is similar to solving 
problems with the work–energy theorem, whereby two 
points are chosen, one point where a quantity is unknown 
and another where all quantities are known. Equation 9.16 
is then solved for the unknown quantity.

9.7  Fluids in Motion
Certain aspects of a fluid in motion can be understood by 
assuming the fluid is nonviscous and incompressible and 
that its motion is in a steady state with no turbulence:

1. The flow rate through the pipe is a constant, which 
is equivalent to stating that the product of the cross-
sectional area A and the speed v at any point is con-
stant. At any two points, therefore, we have

A1v1 5 A2v2 [9.15]

This relation is referred to as the equation of 
continuity.

 ■ Wa r M-Up eX e rc i s e s

1. Physics Review A soap bubble hovers motionlessly in 
the air. If the soap bubble’s mass, including the air 
inside it, is  2.00 3 1024 kg determine the magnitude of 
the upward force acting on it. (See Section 4.5.)

 2. Physics Review A team of huskies performs 7 440 J of 
work on a loaded sled of mass 124 kg, drawing it from 
rest up a 4.60-m high snow-covered rise while the sled 
loses 1 520 J due to friction. (a) What is the net work 
done on the sled by the huskies and friction? (b) What is 
the change in the sled’s potential energy? (c) What is the 
speed of the sled at the top of the rise? (See Section 5.5.)

 3. A 66.0-kg man lies on his back on a bed of nails, with 
1 208 of the nails in contact with his body. The end of 
each nail has area 1.00 3 1026 m2. What average pres-
sure is exerted by each nail on the man’s body? (See 
Section 9.2.)

 4. What is the mass of a solid gold rectangular bar that 
has dimensions of 4.50 cm 3 11.0 cm 3 26.0 cm? (See 
Section 9.2.)

 5. Humans can bite with a force of approximately 800 N. 
If a human tooth has the Young’s modulus of bone, 
a cross-sectional area of 1.0 cm2, and is 2.0 cm long, 
determine the change in the tooth’s length during an 
8.0 3 102 N bite. (See Section 9.3.)

 6. A hydraulic jack has an input piston of area 0.050 m2

and an output piston of area 0.70 m2. How much force 
on the input piston is required to lift a car weighing  
1.2 3 104 N? (See Section 9.4.)

 7. What is the pressure at the very bottom of Loch Ness, 
which is 754 ft deep? (Assume an air pressure of  
1.013 3 105 Pa.)  (See Section 9.4.)

 8. The mercury in the sealed, evacuated tube of a barom-
eter is 724 mm higher than the level of mercury exposed 
to the ambient air pressure. Calculate the ambient air 
pressure, P0. (See Figure 9.17b.) (See Section 9.5.)

 9. A 20.0-kg lead mass rests on the bottom of a pool.  
(a) What is the volume of the lead? (b) What buoyant 
force acts on the lead? (c) Find the lead’s weight. (d) What 
is the normal force acting on the lead? (See Section 9.6.)

 10. A horizontal pipe narrows from a radius of 0.250 m to 
0.100 m. If the speed of the water in the pipe is 1.00 m/s  
in the larger-radius pipe, what is the speed in the 
smaller pipe? (See Section 9.7.)

 11. A large water tank is 3.00 m high and filled to the brim, 
the top of the tank open to the air. A small pipe with 
a faucet is attached to the side of the tank, 0.800 m  
above the ground. If the valve is opened, at what speed 
will water come out of the pipe? (See Section 9.7.)

The warm-up exercises in this chapter may be assigned online in Enhanced WebAssign.

 ■ c On ce p t Ua L QUes t i Ons

The conceptual questions in this chapter may be assigned online in Enhanced WebAssign.

 1. A woman wearing high-heeled shoes is invited into a 
home in which the kitchen has vinyl floor covering. 
Why should the homeowner be concerned?

 2. The density of air is 1.3 kg/m3 at sea level. From your 
knowledge of air pressure at ground level, estimate the 
height of the atmosphere. As a simplifying assump-
tion, take the atmosphere to be of uniform density 

up to some height, after which the density rapidly 
falls to zero. (In reality, the density of the atmosphere 
decreases as we go up.) (This question is courtesy of 
Edward F. Redish. For more questions of this type, see 
http://www.physics.umd.edu/perg/.)

 3. Why do baseball home run hitters like to play in  
Denver, but curveball pitchers do not?
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4. Figure CQ9.4 shows aerial views from directly above 
two dams. Both dams are equally long (the vertical 
dimension in the diagram) and equally deep (into the 
page in the diagram). The dam on the left holds back a 
very large lake, while the dam on the right holds back a 
narrow river. Which dam has to be built more strongly?

reservoir, through pipes, and into your home when you 
turn the tap on your faucet. Why is the water flow more 
rapid out of a faucet on the first floor of a building 
than in an apartment on a higher floor?

 10. An ice cube is placed in a glass of water. What happens 
to the level of the water as the ice melts?

 11. Place two cans of soft drinks, one regular and one diet, 
in a container of water. You will find that the diet drink 
floats while the regular one sinks. Use Archimedes’ 
principle to devise an explanation. Broad Hint: The 
artificial sweetener used in diet drinks is less dense 
than sugar.

 12. Will an ice cube float higher in water or in an alcoholic 
beverage?

 13. Tornadoes and hurricanes often lift the roofs of 
houses. Use the Bernoulli effect to explain why. Why 
should you keep your windows open under these 
conditions?

 14. Once ski jumpers are airborne (Fig. CQ9.14), why do 
they bend their bodies forward and keep their hands 
at their sides?

Dam Dam

Figure c Q9.4

5. A typical silo on a 
farm has many bands 
wrapped around its 
perimeter, as shown 
in Figure CQ9.5. 
Why is the spacing 
between successive 
bands smaller at the 
lower portions of the 
silo?

6. Many people believe 
that a vacuum cre-
ated inside a vacuum 
cleaner causes par-
ticles of dirt to be 
drawn in. Actually, the dirt is pushed in. Explain.

7. Suppose a damaged ship just barely floats in the ocean 
after a hole in its hull has been sealed. It is pulled by a 
tugboat toward shore and into a river, heading toward 
a dry dock for repair. As the boat is pulled up the river, 
it sinks. Why?

8. During inhalation, the pressure in the lungs is 
slightly less than external pressure and the muscles 
controlling exhalation are relaxed. Under water, the 
body equalizes internal and external pressures. Dis-
cuss the condition of the muscles if a person under 
water is breathing through a snorkel. Would a snorkel 
work in deep water?

 9. The water supply for a city is often provided from  
reservoirs built on high ground. Water flows from the 

Figure c Q9.5
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15. A person in a boat floating in a small pond throws an 
anchor overboard. What happens to the level of the 
pond? (a) It rises. (b) It falls. (c) It remains the same.

16. One of the predicted problems due to global warm-
ing is that ice in the polar ice caps will melt and raise 
sea levels everywhere in the world. Is that more of a 
worry for ice (a) at the north pole, where most of the 
ice floats on water; (b) at the south pole, where most 
of the ice sits on land; (c) both at the north and south 
poles equally; or (d) at neither pole?

 ■ pr Ob Le Ms

denotes biomedical problems

denotes guided problems

denotes Master It tutorial available in Enhanced WebAssign

denotes asking for quantitative and conceptual reasoning

denotes symbolic reasoning problem

W denotes Watch It video solution available in Enhanced WebAssign

The problems in this chapter may be assigned online in 
Enhanced WebAssign. 

1. denotes straightforward problem; 2. denotes intermediate problem;

3. denotes challenging problem

1. denotes full solution available in Student Solutions Manual/ 
Study Guide

1. denotes problems most often assigned in Enhanced WebAssign
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10. Comic-book superheroes are sometimes able to 
punch holes through steel walls. (a) If the ultimate 
shear strength of steel is taken to be 2.50 3 108 Pa, 
what force is required to punch through a steel plate 
2.00 cm thick? Assume the superhero’s fist has cross-
sectional area of 1.00 3 102 cm2 and is approximately 
circular. (b) Qualitatively, what would happen to the 
superhero on delivery of the punch? What physical law 
applies?

 11. A plank 2.00 cm thick and 15.0 cm wide is firmly 
attached to the railing of a ship by clamps so that the 
rest of the board extends 2.00 m horizontally over the 
sea below. A man of mass 80.0 kg is forced to stand on 
the very end. If the end of the board drops by 5.00 cm 
because of the man’s weight, find the shear modulus of 
the wood.

 12. Assume that if the shear stress in steel exceeds 
about 4.00 3 108 N/m2, the steel ruptures. Determine 
the shearing force necessary to (a) shear a steel bolt 
1.00 cm in diameter and (b) punch a 1.00-cm-diameter 
hole in a steel plate 0.500 cm thick.

 13. For safety in climbing, a mountaineer uses a nylon 
rope that is 50 m long and 1.0 cm in diameter. When 
supporting a 90-kg climber, the rope elongates 1.6 m. 
Find its Young’s modulus.

 14. A stainless-steel orthodontic wire is applied to a 
tooth, as in Figure P9.14. The wire has an unstretched 
length of 3.1 cm and a radius of 0.11 mm. If the wire is 
stretched 0.10 mm, find the magnitude and direction 
of the force on the tooth. Disregard the width of the 
tooth and assume Young’s modulus for stainless steel is 
18 3 1010 Pa.

9.1  States of Matter

9.2  Density and Pressure

1. Suppose two worlds, each having mass M and 
radius R, coalesce into a single world. Due to gravita-
tional contraction, the combined world has a radius of 
only 3

4R . What is the average density of the combined 
world as a multiple of r0, the average density of the 
original two worlds?

 2. The British gold sovereign coin is an alloy of gold and 
copper having a total mass of 7.988 g, and is 22-karat gold. 
(a) Find the mass of gold in the sovereign in kilograms 
using the fact that the number of karats 5 24 3 (mass 
of gold)/(total mass). (b) Calculate the volumes of gold 
and copper, respectively, used to manufacture the coin. 
(c) Calculate the density of the British sovereign coin.

 3. Four acrobats of mass 75.0 kg, 68.0 kg, 62.0 kg, 
and 55.0 kg form a human tower, with each acrobat 
standing on the shoulders of another acrobat. The 
75.0-kg acrobat is at the bottom of the tower. (a) What 
is the normal force acting on the 75-kg acrobat? (b) If 
the area of each of the 75.0-kg acrobat’s shoes is 
425  cm2, what average pressure (not including atmo-
spheric pressure) does the column of acrobats exert on 
the floor? (c) Will the pressure be the same if a differ-
ent acrobat is on the bottom?

 4. Calculate the mass of a solid gold rectangular bar 
that has dimensions of 4.50 cm 3 11.0 cm 3 26.0 cm.

 5. The nucleus of an atom can be modeled as sev-
eral protons and neutrons closely packed together. 
Each particle has a mass of 1.67 3 10227 kg and radius 
on the order of 10215 m. (a) Use this model and the 
data provided to estimate the density of the nucleus of 
an atom. (b) Compare your result with the density of 
a material such as iron. What do your result and com-
parison suggest about the structure of matter?

 6. The four tires of an automobile are inflated to a gauge 
pressure of 2.0 3 105 Pa. Each tire has an area of 
0.024  m2 in contact with the ground. Determine the 
weight of the automobile.

 7. Suppose a distant world with surface gravity of  
7.44 m/s2 has an atmospheric pressure of 8.04 3 104 Pa 
at the surface. (a) What force is exerted by the atmo-
sphere on a disk-shaped region 2.00 m in radius at the 
surface of a methane ocean? (b) What is the weight 
of a 10.0-m deep cylindrical column of methane with 
radius 2.00 m? (c) Calculate the pressure at a depth of 
10.0 m in the methane ocean. Note: The density of liq-
uid methane is 415 kg/m3.

9.3  The Deformation of Solids

8. Evaluate Young’s modulus for the material whose 
stress–strain curve is shown in Figure 9.8.

9. A 200-kg load is hung on a wire of length 4.00 m, 
cross-sectional area 0.200 3 10–4 m2, and Young’s mod-
ulus 8.00 3 1010 N/m2. What is its increase in length?

30°30°

Figure p 9.14

15. Bone has a Young’s modulus of 18 3 109  Pa. 
Under compression, it can withstand a stress of 
about 160 3 106 Pa before breaking. Assume that a 
femur (thigh bone) is 0.50 m long, and calculate the 
amount of compression this bone can withstand before 
breaking.

 16. A high-speed lifting mechanism supports an 800-kg  
object with a steel cable that is 25.0 m long and 
4.00  cm2 in cross-sectional area. (a) Determine the 
elongation of the cable. (b) By what additional amount 
does the cable increase in length if the object is 
accelerated upward at a rate of 3.0 m/s2? (c) What is 
the greatest mass that can be accelerated upward at  
3.0 m/s2 if the stress in the cable is not to exceed the 
elastic limit of the cable, which is 2.2 3 108 Pa?

 17. A walkway suspended across a hotel lobby is supported 
at numerous points along its edges by a vertical cable 
above each point and a vertical column underneath. 
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area A1 of 10.0 cm2, and the right arm has a cross-
sectional area A2 of 5.00 cm2. One hundred grams of 
water are then poured into the right arm as shown in 
Figure P9.22b. (a) Determine the length of the water 
column in the right arm of the U-tube. (b) Given that 
the density of mercury is 13.6 g/cm3, what distance h 
does the mercury rise in the left arm?

 23.  A collapsible plastic bag (Fig. 
P9.23) contains a glucose solution. 
If the average gauge pressure in 
the vein is 1.33 3 103 Pa, what must 
be the minimum height h of the 
bag in order to infuse glucose into 
the vein? Assume the specific grav-
ity of the solution is 1.02.

 24. The deepest point in the ocean 
is in the Mariana Trench, about 
11 km deep. The pressure at the 
ocean floor is huge, about 1.13 3 
108 N/m2. (a) Calculate the change 
in volume of 1.00 m3 of water carried from the surface 
to the bottom of the Pacific. (b) The density of water 
at the surface is 1.03 3 103 kg/m3. Find its density at 
the bottom. (c) Explain whether or when it is a good 
approximation to think of water as incompressible.

 25. W  A container is filled to a depth of 20.0 cm with 
water. On top of the water floats a 30.0-cm-thick layer 
of oil with specific gravity 0.700. What is the abso-
lute pressure at the bottom of the 
container?

 26. Blaise Pascal duplicated Torricelli’s 
barometer using a red Bordeaux wine, 
of density 984 kg/m3 as the working 
liquid (Fig. P9.26). (a) What was the 
height h of the wine column for normal 
atmospheric pressure? (b)  Would you 
expect the vacuum above the column 
to be as good as for mercury?

 27. Figure P9.27 shows the 
essential parts of a hydraulic 
brake system. The area of the 
piston in the master cylinder 
is 1.8 cm2 and that of the pis-
ton in the brake cylinder is 
6.4 cm2. The coefficient of 
friction between shoe and 
wheel drum is 0.50. If the 
wheel has a radius of 34 cm,  
determine the frictional 
torque about the axle when a force of 44 N is exerted 
on the brake pedal.

 28. W  Piston � in Figure P9.28 has a diameter of 0.25 in.;  
piston � has a diameter of 1.5 in. In the absence of 
friction, determine the force F

S

 necessary to support 
the 500-lb weight.

The steel cable is 1.27 cm in diameter and is 5.75 m 
long before loading. The aluminum column is a hol-
low cylinder with an inside diameter of 16.14 cm, an 
outside diameter of 16.24 cm, and unloaded length 
of 3.25  m. When the walkway exerts a load force of 
8 500 N on one of the support points, how much does 
the point move down?

 18. The total cross-sectional area of the load-bearing 
calcified portion of the two forearm bones (radius and 
ulna) is approximately 2.4 cm2. During a car crash, 
the forearm is slammed against the dashboard. The 
arm comes to rest from an initial speed of 80 km/h in 
5.0 ms. If the arm has an effective mass of 3.0 kg and 
bone material can withstand a maximum compres-
sional stress of 16 3 107 Pa, is the arm likely to with-
stand the crash?

 19. Determine the elongation of the rod in Figure P9.19 if 
it is under a tension of 5.8 3 103 N.

1.3 m

CopperAluminum
0.20 cm

2.6 m

Figure p 9.19

9.4  Variation of Pressure with Depth

9.5  Pressure Measurements

20. The spring of the pres-
sure gauge shown in Figure 
P9.20 has a force constant of 
1 250 N/m, and the piston has a 
radius of 1.20 cm. As the gauge 
is lowered into water, what 
change in depth causes the pis-
ton to move in by 0.750 cm?

21. (a) Calculate the absolute 
pressure at the bottom of a fresh-water lake at a 
depth of 27.5 m. Assume the density of the water is 
1.00 3 103 kg/m3 and the air above is at a pressure of 
101.3 kPa. (b) What force is exerted by the water on the 
window of an underwater vehicle at this depth if the 
window is circular and has a diameter of 35.0 cm?

 22. Mercury is poured into a U-tube as shown in Figure 
P9.22a. The left arm of the tube has cross-sectional 

Vacuum

k

F
S

Figure p 9.20

h

Mercury

A1 A2 A1 A2
Water

a b

Figure p 9.22

Glucose
solution

h

Figure p 9.23

P0 h

Figure p 9.26

Wheel
drum

Shoe

Brake
cylinder

Master
cylinder

Pedal

Figure p 9.27
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34.  A large balloon of mass 226 kg is filled with helium 
gas until its volume is 325 m3. Assume the density of air 
is 1.29 kg/m3 and the density of helium is 0.179 kg/m3. 
(a) Draw a force diagram for the balloon. (b) Calculate 
the buoyant force acting on the balloon. (c) Find the net 
force on the balloon and determine whether the balloon 
will rise or fall after it is released. (d) What maximum 
additional mass can the balloon support in equilibrium? 
(e) What happens to the balloon if the mass of the load 
is less than the value calculated in part (d)? (f) What lim-
its the height to which the balloon can rise?

 35.  A spherical weather balloon is filled with hydro-
gen until its radius is 3.00 m. Its total mass including 
the instruments it carries is 15.0 kg. (a) Find the buoy-
ant force acting on the balloon, assuming the density of 
air is 1.29 kg/m3. (b) What is the net force acting on the 
balloon and its instruments after the balloon is released 
from the ground? (c) Why does the radius of the balloon 
tend to increase as it rises to higher altitude?

 36. A man of mass m 5 70.0 kg and having a density 
of r 5 1 050 kg/m3 (while holding his breath) is com-
pletely submerged in water. (a) Write Newton’s second 
law for this situation in terms of the man’s mass m, the 
density of water rw, his volume V, and g. Neglect any 
viscous drag of the water. (b) Substitute m 5 rV into 
Newton’s second law and solve for the acceleration a, 
canceling common factors. (c) Calculate the numeric 
value of the man’s acceleration. (d) How long does it 
take the man to sink 8.00 m to the bottom of the lake?

 37.  On October 21, 2001, Ian Ashpole of the  
United Kingdom achieved a record altitude of 3.35 km  
(11 000  ft) powered by 600 toy balloons filled with 
helium. Each filled balloon had a radius of about 
0.50 m and an estimated mass of 0.30 kg. (a) Estimate 
the total buoyant force on the 600 balloons. (b) Esti-
mate the net upward force on all 600 balloons. (c) Ash-
pole parachuted to Earth after the balloons began to 
burst at the high altitude and the system lost buoyancy. 
Why did the balloons burst?

 38. W  The gravitational force exerted on a solid object 
is 5.00  N as measured when the object is suspended 
from a spring scale as in Figure P9.38a. When the sus-
pended object is submerged in water, the scale reads 
3.50 N (Fig. P9.38b). Find the density of the object.

9.6  Buoyant Forces and Archimedes’ Principle

29. A table-tennis ball has a diameter of 3.80 cm and aver-
age density of 0.084 0 g/cm3. What force is required to 
hold it completely submerged under water?

 30.  The average human has a density of  
945 kg/m3 after inhaling and 1 020 kg/m3 after exhal-
ing. (a) Without making any swimming movements, 
what percentage of the human body would be above 
the surface in the Dead Sea (a body of water with a 
density of about 1 230 kg/m3) in each of these cases? 
(b) Given that bone and muscle are denser than fat, 
what physical characteristics differentiate “sinkers” 
(those who tend to sink in water) from “floaters” (those 
who readily float)?

 31. A small ferryboat is 4.00 m wide and 6.00 m long. 
When a loaded truck pulls onto it, the boat sinks an 
additional 4.00 cm into the river. What is the weight of 
the truck?

 32.  A 62.0-kg survivor of a cruise line disaster rests atop 
a block of Styrofoam insulation, using it as a raft. The 
Styrofoam has dimensions 2.00 m 3 2.00 m 3 0.090 0 m. 
The bottom 0.024 m of the raft is submerged. (a) Draw 
a force diagram of the system consisting of the survivor 
and raft. (b) Write Newton’s second law for the system in 
one dimension, using B for buoyancy, w for the weight of 
the survivor, and wr for the weight of the raft. (Set a 5 0.)  
(c) Calculate the numeric value for the buoyancy, B. 
(Seawater has density 1 025 kg/m3.) (d) Using the value 
of B and the weight w of the survivor, calculate the weight 
wr of the Styrofoam. (e) What is the density of the Sty-
rofoam? (f) What is the maximum buoyant force, cor-
responding to the raft being submerged up to its top 
surface? (g) What total mass of survivors can the raft 
support?

 33.  A wooden block of volume 5.24 3 1024 m3 floats 
in water, and a small steel object of mass m is placed 
on top of the block. When m 5 0.310 kg, the system 
is in equilibrium, and the top of the wooden block is 
at the level of the water. (a) What is the density of the 
wood? (b) What happens to the block when the steel 
object is replaced by a second steel object with a mass 
less than 0.310 kg? What happens to the block when 
the steel object is replaced by yet another steel object 
with a mass greater than 0.310 kg?
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area of 3.0 3 103 cm2. What is the flow speed in the 
capillaries?

 46. W  A liquid (r 5 1.65 g/cm3)  
flows through a horizontal 
pipe of varying cross sec-
tion as in Figure P9.46. In 
the first section, the cross-
sectional area is 10.0 cm2,  
the flow speed is 275 cm/s, and the pressure is  
1.20 3 105 Pa. In the second section, the cross- sectional 
area is 2.50 cm2. Calculate the smaller section’s (a) flow 
speed and (b) pressure.

 47. A hypodermic syringe contains a medicine with 
the density of water (Fig. P9.47). The barrel of the 
syringe has a cross-sectional area of 2.50 3 1025 m2. 
In the absence of a force on the plunger, the pressure 
everywhere is 1.00 atm. A force F

S

 of magnitude 2.00 N 
is exerted on the plunger, making medicine squirt 
from the needle. Determine the medicine’s flow speed 
through the needle. Assume the pressure in the nee-
dle remains equal to 1.00 atm and that the syringe is 
horizontal.

39. A cube of wood having an edge dimension of 
20.0  cm and a density of 650 kg/m3 floats on water. 
(a) What is the distance from the horizontal top sur-
face of the cube to the water level? (b) What mass of 
lead should be placed on the cube so that the top of 
the cube will be just level with the water surface?

 40. A light spring of force constant k 5 160 N/m rests ver-
tically on the bottom of a large beaker of water (Fig. 
P9.40a). A 5.00-kg block of wood (density 5 650 kg/m3)  
is connected to the spring, and the block–spring sys-
tem is allowed to come to static equilibrium (Fig. 
P9.40b). What is the elongation DL of the spring?

a b

k k

∆L

m

Figure p 9.40

41. A sample of an unknown material appears to weigh 
300 N in air and 200 N when immersed in alcohol of 
specific gravity 0.700. What are (a) the volume and 
(b) the density of the material?

42. An object weighing 300 N in air is immersed in water 
after being tied to a string connected to a balance. The 
scale now reads 265 N. Immersed in 
oil, the object appears to weigh 275 N. 
Find (a) the density of the object and 
(b) the density of the oil.

43. A 1.00-kg beaker containing 2.00  kg 
of oil (density 5 916 kg/m3) rests 
on a scale. A 2.00-kg block of iron is 
suspended from a spring scale and is 
completely submerged in the oil (Fig. 
P9.43). Find the equilibrium readings 
of both scales.

9.7  Fluids in Motion

9.8  Other Applications of Fluid Dynamics

44. Water flowing through a garden hose of diameter 
2.74 cm fills a 25.0-L bucket in 1.50 min. (a) What is 
the speed of the water leaving the end of the hose? 
(b) A nozzle is now attached to the end of the hose. If 
the nozzle diameter is one-third the diameter of the 
hose, what is the speed of the water leaving the nozzle?

45.  (a) Calculate the mass flow rate (in grams per sec-
ond) of blood (r 5 1.0 g/cm3) in an aorta with a cross-
sectional area of 2.0 cm2 if the flow speed is 40 cm/s. 
(b) Assume that the aorta branches to form a large 
number of capillaries with a combined cross-sectional 

Figure p 9.43

Figure p 9.46
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P2
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Figure p 9.47

48. When a person inhales, air moves down the bron-
chus (windpipe) at 15 cm/s. The average flow speed of 
the air doubles through a constriction in the bronchus. 
Assuming incompressible flow, determine the pressure 
drop in the constriction.

 49. A jet airplane in level flight has a mass of 8.66 3 
104 kg, and the two wings have an estimated total area 
of 90.0 m2. (a) What is the pressure difference between 
the lower and upper surfaces of the wings? (b) If the 
speed of air under the wings is 225 m/s, what is the 
speed of the air over the wings? Assume air has a den-
sity of 1.29 kg/m3. (c) Explain why all aircraft have a 
“ceiling,” a maximum operational altitude.

 50. An airplane has a mass M, and the two wings have 
a total area A. During level flight, the pressure on the 
lower wing surface is P1. Determine the pressure P2 on 
the upper wing surface.

 51.  In a water pistol, a piston drives water through 
a larger tube of radius 1.00 cm into a smaller tube of 
radius 1.00 mm as in Figure P9.51. (a) If the pistol is 
fired horizontally at a height of 1.50 m, use ballistics to 
determine the time it takes water to travel from the noz-
zle to the ground. (Neglect air resistance and assume 
atmospheric pressure is 1.00 atm.) (b) If the range  
of the stream is to be 8.00 m, with what speed must 
the stream leave the nozzle? (c) Given the areas of the 
nozzle and cylinder, use the equation of continuity to  
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55. The inside diameters of the larger portions of the 
horizontal pipe depicted in Figure P9.55 are 2.50 cm. 
Water flows to the right at a rate of 1.80 3 1024 m3/s. 
Determine the inside diameter of the constriction.

calculate the speed at which the plunger must be 
moved. (d) What is the pressure at the nozzle? (e) Use 
Bernoulli’s equation to find the pressure needed in the 
larger cylinder. Can gravity terms be neglected? (f) Cal-
culate the force that must be exerted on the trigger 
to achieve the desired range. (The force that must be 
exerted is due to pressure over and above atmospheric 
pressure.)

F
S

v1
S

v2
SA2

A1

Figure p 9.51

52. Water moves through 
a constricted pipe in 
steady, ideal flow. At the 
lower point shown in 
Figure P9.52, the pres-
sure is 1.75 3 105 Pa 
and the pipe radius is 
3.00  cm. At the higher 
point located at y 5 
2.50  m, the pressure is 1.20 3 105 Pa and the pipe 
radius is 1.50 cm. Find the speed of flow (a) in the 
lower section and (b) in the upper section. (c) Find the 
volume flow rate through the pipe.

 53. A jet of water squirts out horizontally from a hole 
near the bottom of the tank shown in Figure P9.53. If 
the hole has a diameter of 3.50 mm, what is the height 
h of the water level in the tank?

P1

P2

y

Figure p 9.52

h

0.600 m

1.00 m

Figure p 9.53

54. A large storage tank, open to the atmosphere at the 
top and filled with water, develops a small hole in its 
side at a point 16.0 m below the water level. If the rate 
of flow from the leak is 2.50 3 1023 m3/min, determine 
(a) the speed at which the water leaves the hole and 
(b) the diameter of the hole.

5.00 cm10.0 cm

Figure p 9.55

56. Water is pumped through a pipe of diameter 15.0 cm 
from the Colorado River up to Grand Canyon Village, 
on the rim of the canyon. The river is at 564 m eleva-
tion and the village is at 2 096 m. (a) At what mini-
mum pressure must the water be pumped to arrive at 
the village? (b) If 4 500 m3 are pumped per day, what is 
the speed of the water in the pipe? (c) What additional 
pressure is necessary to deliver this flow? Note: You may 
assume the free-fall acceleration and the density of air 
are constant over the given range of elevations.

 57. Old Faithful geyser in Yellowstone Park erupts at 
approximately 1-hour intervals, and the height of the 
fountain reaches 40.0 m (Fig. P9.57). (a) Consider the 
rising stream as a series of separate drops. Analyze  
the free-fall motion of one of the drops to deter-
mine the speed at which the water leaves the ground. 
(b) Treat the rising stream as an ideal fluid in stream-
line flow. Use Bernoulli’s equation to determine the 
speed of the water as it leaves ground level. (c) What 
is the pressure (above atmospheric pressure) in the 
heated underground chamber 175 m below the vent? 
You may assume the chamber is large compared with 
the geyser vent.

Figure p 9.57
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64. A thin 1.5-mm coating of glycerine has been placed 
between two microscope slides of width 1.0 cm and 
length 4.0 cm. Find the force required to pull one of 
the microscope slides at a constant speed of 0.30 m/s 
relative to the other slide.

65. A straight horizontal pipe with a diameter of 1.0 cm 
and a length of 50 m carries oil with a coefficient of 
viscosity of 0.12 N ? s/m2. At the output of the pipe, the 
flow rate is 8.6 3 1025 m3/s and the pressure is 1.0 atm. 
Find the gauge pressure at the pipe input.

 66. The pulmonary artery, which connects the heart 
to the lungs, has an inner radius of 2.6 mm and is 
8.4  cm long. If the pressure drop between the heart 
and lungs is 400 Pa, what is the average speed of blood 
in the pulmonary artery?

 67. Spherical particles of a protein of density 1.8 g/cm3 are 
shaken up in a solution of 20°C water. The solution is 
allowed to stand for 1.0 h. If the depth of water in the 
tube is 5.0 cm, find the radius of the largest particles 
that remain in solution at the end of the hour.

 68. A hypodermic needle is 3.0 cm in length and 
0.30  mm in diameter. What pressure difference 
between the input and output of the needle is required 
so that the flow rate of water through it will be 1 g/s? 
(Use 1.0 3 1023 Pa ? s as the viscosity of water.)

 69. What radius needle should be used to inject a vol-
ume of 500 cm3 of a solution into a patient in 30 min? 
Assume the length of the needle is 2.5 cm and the solu-
tion is elevated 1.0 m above the point of injection. Fur-
ther, assume the viscosity and density of the solution 
are those of pure water, and that the pressure inside 
the vein is atmospheric.

 70. Water is forced out of a 
fire extinguisher by air 
pressure, as shown in Fig-
ure P9.70. What gauge air 
pressure in the tank (above 
atmospheric pressure) is 
required for the water to 
have a jet speed of 30.0 m/s 
when the water level in the 
tank is 0.500 m below the nozzle?

 71. The aorta in humans has a diameter of about 
2.0 cm, and at certain times the blood speed through it 
is about 55 cm/s. Is the blood flow turbulent? The den-
sity of whole blood is 1 050 kg/m3, and its coefficient of 
viscosity is 2.7 3 1023 N ? s/m2.

 72. A pipe carrying 20°C water has a diameter of 2.5 cm. 
Estimate the maximum flow speed if the flow must be 
streamline.

9.10  Transport Phenomena

73.  Sucrose is allowed to diffuse along a 10-cm length 
of tubing filled with water. The tube is 6.0 cm2 in cross-
sectional area. The diffusion coefficient is equal to 5.0 3 
10210 m2/s, and 8.0 3 10214 kg is transported along the 

58. The Venturi tube shown 
in Figure P9.58 may be 
used as a fluid flowme-
ter. Suppose the device is 
used at a service station 
to measure the flow rate 
of gasoline (r  5 7.00 3  
102 kg/m3) through a 
hose having an outlet 
radius of 1.20 cm. If the difference in pressure is mea-
sured to be P1 2 P2 5 1.20 kPa and the radius of the 
inlet tube to the meter is 2.40 cm, find (a) the speed of 
the gasoline as it leaves the hose and (b) the fluid flow 
rate in cubic meters per second.

9.9   Surface Tension, Capillary Action,  
and Viscous Fluid Flow

59. A square metal sheet 3.0 cm on a 
side and of negligible thickness is 
attached to a balance and inserted 
into a container of fluid. The con-
tact angle is found to be zero, as 
shown in Figure P9.59a, and the 
balance to which the metal sheet 
is attached reads 0.40 N. A thin 
veneer of oil is then spread over 
the sheet, and the contact angle 
becomes 180°, as shown in Figure 
P9.59b. The balance now reads 0.39 N. What is the sur-
face tension of the fluid?

 60. To lift a wire ring of radius 1.75 cm from the sur-
face of a container of blood plasma, a vertical force 
of 1.61 3 1022 N greater than the weight of the ring 
is required. Calculate the surface tension of blood 
plasma from this information.

 61. A certain fluid has a density of 1 080 kg/m3 and is 
observed to rise to a height of 2.1 cm in a 1.0-mm-diameter 
tube. The contact angle between the wall and the fluid is 
zero. Calculate the surface tension of the fluid.

 62. Whole blood has a surface tension of 0.058 N/m 
and a density of 1 050 kg/m3. To what height can whole 
blood rise in a capillary blood vessel that has a radius 
of 2.0 3 1026 m if the contact angle is zero?

 63. The block of ice (temperature 0°C) shown in Figure 
P9.63 is drawn over a level surface lubricated by a layer 
of water 0.10 mm thick. Determine the magnitude of 
the force F

S

 needed to pull the block with a constant 
speed of 0.50 m/s. At 0°C, the viscosity of water has the 
value h 5 1.79 3 1023 N ? s/m2.

P1 P2

Figure p 9.58

T
S

T
S

a b

Figure p 9.59

0.800 m

0.10 m

1.20 m

F
S

Figure p 9.63

0.500 m

vS

Figure p 9.70
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cates that pumping blood from the extremities is very 
difficult for the heart. The veins in the legs have valves 
in them that open when blood is pumped toward the 
heart and close when blood flows away from the heart. 
Also, pumping action produced by physical activities 
such as walking and breathing assists the heart.

 81. The approximate diameter of the aorta is 0.50 cm;  
that of a capillary is 10 mm. The approximate average 
blood flow speed is 1.0 m/s in the aorta and 1.0 cm/s in 
the capillaries. If all the blood in the aorta eventually 
flows through the capillaries, estimate the number of 
capillaries in the circulatory system.

 82. Superman attempts to drink water 
through a very long vertical straw as in 
Figure P9.82. With his great strength, 
he achieves maximum possible suc-
tion. The walls of the straw don’t col-
lapse. (a) Find the maximum height 
through which he can lift the water. 
(b)  Still thirsty, the Man of Steel 
repeats his attempt on the Moon, 
which has no atmosphere. Find the 
difference between the water levels 
inside and outside the straw.

 83.  The human brain and spinal 
cord are immersed in the cerebrospinal fluid. The fluid is 
normally continuous between the cranial and spinal cavi-
ties and exerts a pressure of 100 to 200 mm of H2O above 
the prevailing atmo-
spheric pressure. In med-
ical work, pressures are 
often measured in units 
of mm of H2O because 
body fluids, including 
the cerebrospinal fluid, 
typically have nearly the 
same density as water. The pressure of the cerebrospinal 
fluid can be measured by means of a spinal tap. A hollow 
tube is inserted into the spinal column, and the height 
to which the fluid rises is observed, as shown in Figure 
P9.83. If the fluid rises to a height of 160 mm, we write its 
gauge pressure as 160 mm H2O. (a) Express this pressure 
in pascals, in atmospheres, and in millimeters of mer-
cury. (b) Sometimes it is necessary to determine whether 
an accident victim has suffered a crushed vertebra that 
is blocking the flow of cerebrospinal fluid in the spinal 
column. In other cases, a physician may suspect that 
a tumor or other growth is blocking the spinal column 
and inhibiting the flow of cerebrospinal fluid. Such con-
ditions can be investigated by means of the Queckensted 
test. In this procedure the veins in the patient’s neck are 
compressed, to make the blood pressure rise in the brain. 
The increase in pressure in the blood vessels is transmit-
ted to the cerebrospinal fluid. What should be the nor-
mal effect on the height of the fluid in the spinal tap?  
(c) Suppose compressing the veins had no effect on the level 
of the fluid. What might account for this phenomenon?

tube in 15 s. What is the difference in the concentration 
levels of sucrose at the two ends of the tube?

 74. Glycerin in water diffuses along a horizontal col-
umn that has a cross-sectional area of 2.0 cm2. The 
concentration gradient is 3.0 3 1022 kg/m4, and the 
diffusion rate is found to be 5.7 3 10215 kg/s. Deter-
mine the diffusion coefficient.

 75. The viscous force on an oil drop is measured to be 
equal to 3.0 3 10213 N when the drop is falling through 
air with a speed of 4.5 3 1024 m/s. If the radius of the 
drop is 2.5 3 1026 m, what is the viscosity of air?

 76. Small spheres of diameter 1.00 mm fall through 20°C 
water with a terminal speed of 1.10 cm/s. Calculate the 
density of the spheres.

Additional Problems

77. An iron block of volume 0.20 m3 is suspended from a 
spring scale and immersed in a flask of water. Then the 
iron block is removed, and an aluminum block of the 
same volume replaces it. (a) In which case is the buoy-
ant force the greatest, for the iron block or the alumi-
num block? (b) In which case does the spring scale 
read the largest value? (c) Use the known densities of 
these materials to calculate the quantities requested in 
parts (a) and (b). Are your calculations consistent with 
your previous answers to parts (a) and (b)?

 78. The true weight of an object can be measured in a 
vacuum, where buoyant forces are absent. A measure-
ment in air, however, is disturbed by buoyant forces. An 
object of volume V is weighed in air on an equal-arm 
balance with the use of counterweights of density r. 
Representing the density of air as rair and the balance 
reading as Fg9, show that the true weight Fg is

Fg 5 Fgr 1 aV 2
Fgr

rg
brairg

 79. As a first approximation, Earth’s continents may be 
thought of as granite blocks floating in a denser rock 
(called peridotite) in the same way that ice floats in water. 
(a) Show that a formula describing this phenomenon is

rg t 5 rpd

  where rg is the density of granite (2.8 3 103 kg/m3), rp

is the density of peridotite (3.3 3 103 kg/m3), t is the 
thickness of a continent, and d is the depth to which 
a continent floats in the peridotite. (b) If a continent 
sinks 5.0 km into the peridotite layer (this surface may 
be thought of as the ocean floor), what is the thickness 
of the continent?

 80. Take the density of blood to be r and the dis-
tance between the feet and the heart to be hH. Ignore 
the flow of blood. (a) Show that the difference in blood 
pressure between the feet and the heart is given by 
PF  2 PH 5 rghH. (b) Take the density of blood to be 
1.05 3 103 kg/m3 and the distance between the heart 
and the feet to be 1.20 m. Find the difference in blood 
pressure between these two points. This problem indi-

Figure p 9.83

�

Figure p 9.82
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shown in Figure P89.87b. Determine the extension dis-
tance L when the balloon is in equilibrium.

 88. A U-tube open at both ends is partially filled with 
water (Fig. P9.88a). Oil (r 5 750 kg/m3) is then 
poured into the right arm and forms a column  
L 5 5.00 cm high (Fig. P9.88b). (a) Determine the 
difference h in the heights of the two liquid surfaces.  
(b) The right arm is then shielded from any air 
motion while air is blown across the top of the left 
arm until the surfaces of the two liquids are at the 
same height (Fig. P9.88c). Determine the speed of 
the air being blown across the left arm. Assume the 
density of air is 1.29 kg/m3.

 84.   A hydrometer 
is an instrument used 
to determine liquid 
density. A simple one 
is sketched in Figure 
P9.84. The bulb of a 
syringe is squeezed and 
released to lift a sample 
of the liquid of interest 
into a tube containing a 
calibrated rod of known 
density. (Assume the 
rod is cylindrical.) The 
rod, of length L and average density r0, floats partially 
immersed in the liquid of density r. A length h of the rod 
protrudes above the surface of the liquid. Show that the 
density of the liquid is given by

r 5
r0L

L 2 h
 85. Figure P9.85 shows a water tank with a valve. If the valve 

is opened, what is the maximum height attained by 
the stream of water coming out of the right side of the 
tank? Assume h 5 10.0 m, L 5 2.00 m, and u 5 30.0°,  
and that the cross-sectional area at A is very large com-
pared with that at B.

L

h96

98
100
102
104

Figure p 9.84

A

h

Valve
L B

u

Figure p 9.85

86. A helium-filled balloon, whose enve-
lope has a mass of 0.25 kg, is tied to 
a 2.0-m-long, 0.050-kg string. The 
balloon is spherical with a radius of 
0.40 m. When released, it lifts a length 
h of the string and then remains in 
equilibrium, as in Figure P9.86. Deter-
mine the value of h. Hint: Only that 
part of the string above 
the floor contributes to the 
load being supported by 
the balloon.

 87. A light spring of constant 
k 5 90.0 N/m is attached 
vertically to a table (Fig. 
P9.87a). A 2.00-g balloon is 
filled with helium (density 
5 0.179 kg/m3) to a volume 
of 5.00 m3 and is then con-
nected to the spring, caus-
ing the spring to stretch as 

He

h

Figure p 9.86

k k

L

a b

Figure p 9.87

P0

Water

h
L

Oil

L

ShieldvS

a b c

Figure p 9.88

89. In about 1657, Otto von Guericke, inventor of the 
air pump, evacuated a sphere made of two brass hemi-
spheres (Fig. P9.89). Two teams of eight horses each 
could pull the hemispheres apart only on some trials 
and then “with greatest difficulty,” with the result-
ing sound likened to a cannon firing. Find the force 
F required to pull the thin-walled evacuated hemi-
spheres apart in terms of R, the radius of the hemi-
spheres, P the pressure inside the hemispheres, and 
atmospheric pressure P0.

P0
P

RF
S

F
S

Figure p 9.89

90. Oil having a density of 930 kg/m3 floats on water. A 
rectangular block of wood 4.00 cm high and with a 
density of 960 kg/m3 floats partly in the oil and partly 
in the water. The oil completely covers the block. How 
far below the interface between the two liquids is the 
bottom of the block?

 91. A water tank open to the atmosphere at the top has 
two small holes punched in its side, one above the 
other. The holes are 5.00 cm and 12.0 cm above the 
floor. How high does water stand in the tank if the two 
streams of water hit the floor at the same place?
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Thermal Physics
How can trapped water blow off the top of a volcano in a giant explosion? What causes a 
sidewalk or road to fracture and buckle spontaneously when the temperature changes? How 
can thermal energy be harnessed to do work, running the engines that make everything in 
modern living possible?

Answering these and related questions is the domain of thermal physics, the study of 
temperature, heat, and how they affect matter. Quantitative descriptions of thermal phe-
nomena require careful definitions of the concepts of temperature, heat, and internal energy. 
Heat leads to changes in internal energy and thus to changes in temperature, which cause the 
expansion or contraction of matter. Such changes can damage roadways and buildings, cre-
ate stress fractures in metal, and render flexible materials stiff and brittle, the latter resulting 
in compromised O-rings and the Challenger disaster. Changes in internal energy can also be 
harnessed for transportation, construction, and food preservation.

Gases are critical in the harnessing of thermal energy to do work. Within normal tempera-
ture ranges, a gas acts like a large collection of non-interacting point particles, called an ideal 
gas. Such gases can be studied on either a macroscopic or microscopic scale. On the macro-
scopic scale, the pressure, volume, temperature, and number of particles associated with a 
gas can be related in a single equation known as the ideal gas law. On the microscopic scale, 
a model called the kinetic theory of gases pictures the components of a gas as small particles. 
That model will enable us to understand how processes on the atomic scale affect macro-
scopic properties like pressure, temperature, and internal energy.

Pipelines carrying liquids 

often have loops to allow for 

expansion and contraction 

due to temperature changes. 

Without the loops, the pipes 

could buckle and burst. 

10
10.1 Temperature and the Zeroth 

Law of Thermodynamics

10.2 Thermometers and 
Temperature Scales

10.3 Thermal Expansion of Solids 
and Liquids

10.4 Macroscopic Description  
of an Ideal Gas

10.5 The Kinetic Theory of Gases
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10.1     Temperature and the Zeroth Law  
of Thermodynamics
Learning Objectives

1. Define thermal contact, thermal equilibrium, and heat.

2. State the zeroth law of thermodynamics and explain how it allows a definition 
of temperature.

Temperature is commonly associated with how hot or cold an object feels when 
we touch it. While our senses provide us with qualitative indications of tempera-
ture, they are unreliable and often misleading. A metal ice tray feels colder to the 
hand, for example, than a package of frozen vegetables at the same temperature, 
because metals conduct thermal energy more rapidly than a cardboard package. 
What we need is a reliable and reproducible method of making quantitative mea-
surements that establish the relative “hotness” or “coldness” of objects—a method 
related solely to temperature. Scientists have developed a variety of thermometers 
for making such measurements.

When placed in contact with each other, two objects at different initial tem-
peratures will eventually reach a common intermediate temperature. If a cup of 
hot coffee is cooled with an ice cube, for example, the ice rises in temperature and 
eventually melts while the temperature of the coffee decreases.

Understanding the concept of temperature requires understanding thermal con-
tact and thermal equilibrium. Two objects are in thermal contact if energy can be 
exchanged between them. Two objects are in thermal equilibrium if they are in 
thermal contact and there is no net exchange of energy.

The exchange of energy between two objects due to differences in their tem-
peratures is called heat, a concept examined in more detail in Chapter 11.

Using these ideas, we can develop a formal definition of temperature. Consider 
two objects A and B that are not in thermal contact with each other, and a third 
object C that acts as a thermometer—a device calibrated to measure the tempera-
ture of an object. We wish to determine whether A and B would be in thermal 
equilibrium if they were placed in thermal contact. The thermometer (object C) 
is first placed in thermal contact with A until thermal equilibrium is reached, 
as in Figure 10.1a, whereupon the reading of the thermometer is recorded. The 
thermometer is then placed in thermal contact with B, and its reading is again 
recorded at equilibrium (Fig. 10.1b). If the two readings are the same, then A 
and B are in thermal equilibrium with each other. If A and B are placed in ther-
mal contact with each other, as in Figure 10.1c, there is no net transfer of energy 
between them.

A

C C

A B

The temperatures of A and B are measured 
to be the same by placing them in thermal 
contact with a thermometer (object C).

No energy will be 
exchanged 
between A and B 
when they are 
placed in thermal 
contact with each 
other.

B

a b c

Figure 10.1  The zeroth law of 
thermodynamics.
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We can summarize these results in a statement known as the zeroth law of ther-
modynamics (the law of equilibrium):

If objects A and B are separately in thermal equilibrium with a third object 
C, then A and B are in thermal equilibrium with each other.

This statement is important because it makes it possible to define temperature.
We can think of temperature as the property that determines whether or not an 
object is in thermal equilibrium with other objects. Two objects in thermal equi-
librium with each other are at the same temperature.

■ Quick Quiz

10.1  Two objects with different sizes, masses, and temperatures are placed in ther-
mal contact. Choose the best answer: Energy travels (a) from the larger object to the 
smaller object (b) from the object with more mass to the one with less mass (c) from 
the object at higher temperature to the object at lower temperature.

10.2     Thermometers and  
Temperature Scales
Learning Objectives

1. Describe the operating principles of common thermometers.

2. Explain the origin of the absolute temperature scale.

3. Convert temperatures from one temperature scale to any other temperature 
scale.

Thermometers are devices used to measure the temperature of an object or a sys-
tem. When a thermometer is in thermal contact with a system, energy is exchanged 
until the thermometer and the system are in thermal equilibrium with each other. 
For accurate readings, the thermometer must be much smaller than the system, 
so that the energy the thermometer gains or loses doesn’t significantly alter the 
energy content of the system. All thermometers make use of some physical prop-
erty that changes with temperature and can be calibrated to make the tempera-
ture measurable. Some of the physical properties used are (1) the volume of a 
liquid, (2) the length of a solid, (3) the pressure of a gas held at constant volume, 
(4) the volume of a gas held at constant pressure, (5) the electric resistance of a 
conductor, and (6) the color of a very hot object.

One common thermometer in everyday use consists of a mass of liquid—usually 
mercury or alcohol—that expands into a glass capillary tube when its temperature 
rises (Fig. 10.2). In this case the physical property that changes is the volume of a 
liquid. To serve as an effective thermometer, the change in volume of the liquid 
with change in temperature must be very nearly constant over the temperature 
ranges of interest. When the cross-sectional area of the capillary tube is constant 
as well, the change in volume of the liquid varies linearly with its length along 
the tube. We can then define a temperature in terms of the length of the liquid 
column. The thermometer can be calibrated by placing it in thermal contact with 
environments that remain at constant temperature. One such environment is a 
mixture of water and ice in thermal equilibrium at atmospheric pressure. Another 
commonly used system is a mixture of water and steam in thermal equilibrium at 
atmospheric pressure.

Once we have marked the ends of the liquid column for our chosen environ-
ment on our thermometer, we need to define a scale of numbers associated with 
various temperatures. An example of such a scale is the Celsius temperature scale, 
formerly called the centigrade scale. On the Celsius scale, the temperature of the 
ice–water mixture is defined to be zero degrees Celsius, written 0°C and called the 

Zeroth law of  c

thermodynamics

100°C0°C

Figure 10.2  Schematic diagram 
of a mercury thermometer. Because 
of thermal expansion, the level of 
the mercury rises as the temperature 
of the mercury changes from 0°C 
(the ice point) to 100°C (the steam 
point).
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ice point or freezing point of water. The temperature of the water–steam mixture 
is defined as 100°C, called the steam point or boiling point of water. Once the 
ends of the liquid column in the thermometer have been marked at these two 
points, the distance between marks is divided into 100 equal segments, each cor-
responding to a change in temperature of one degree Celsius.

Thermometers calibrated in this way present problems when extremely accu-
rate readings are needed. For example, an alcohol thermometer calibrated at the 
ice and steam points of water might agree with a mercury thermometer only at the 
calibration points. Because mercury and alcohol have different thermal expansion 
properties, when one indicates a temperature of 50°C, say, the other may indicate 
a slightly different temperature. The discrepancies between different types of ther-
mometers are especially large when the temperatures to be measured are far from 
the calibration points.

The Constant-Volume Gas Thermometer and the Kelvin Scale
We can construct practical thermometers such as the mercury thermometer, but 
these types of thermometers don’t define temperature in a fundamental way. One 
thermometer, however, is more fundamental, and offers a way to define tempera-
ture and relate it directly to internal energy: the gas thermometer. In a gas ther-
mometer, the temperature readings are nearly independent of the substance used 
in the thermometer. One type of gas thermometer is the constant-volume unit 
shown in Figure 10.3. The behavior observed in this device is the variation of pres-
sure with temperature of a fixed volume of gas. When the constant-volume gas 
thermometer was developed, it was calibrated using the ice and steam points of 
water as follows (a different calibration procedure, to be discussed shortly, is now 
used): The gas flask is inserted into an ice–water bath, and mercury reservoir B is 
raised or lowered until the volume of the confined gas is at some value, indicated 
by the zero point on the scale. The height h, the difference between the levels in 
the reservoir and column A, indicates the pressure in the flask at 0°C. The flask 
is inserted into water at the steam point, and reservoir B is readjusted until the 
height in column A is again brought to zero on the scale, ensuring that the gas 
volume is the same as it had been in the ice bath (hence the designation “con-
stant-volume”). A measure of the new value for h gives a value for the pressure at 
100°C. These pressure and temperature values are then plotted on a graph, as in 
Figure 10.4. The line connecting the two points serves as a calibration curve for 
measuring unknown temperatures. If we want to measure the temperature of a 
substance, we place the gas flask in thermal contact with the substance and adjust 
the column of mercury until the level in column A returns to zero. The height of 
the mercury column tells us the pressure of the gas, and we could then find the 
temperature of the substance from the calibration curve.

Now suppose that temperatures are measured with various gas thermometers 
containing different gases. Experiments show that the thermometer readings are 
nearly independent of the type of gas used, as long as the gas pressure is low and 
the temperature is well above the point at which the gas liquefies.

We can also perform the temperature measurements with the gas in the flask 
at different starting pressures at 0°C. As long as the pressure is low, we will gener-
ate straight-line calibration curves for each starting pressure, as shown for three 
experimental trials (solid lines) in Figure 10.5 (page 340).

If the lines in Figure 10.5 are extended back toward negative temperatures, we 
find a startling result: In every case, regardless of the type of gas or the value of 
the low starting pressure, the pressure extrapolates to zero when the temperature 
is 2273.15°C. This fact suggests that this particular temperature is universal in its 
importance, because it doesn’t depend on the substance used in the thermometer. 
In addition, because the lowest possible pressure is P 5 0, a perfect vacuum, the 
temperature 2273.15°C must represent a lower bound for physical processes. We 
define this temperature as absolute zero.

A B

The volume of gas in the �ask is 
kept constant by raising or 
lowering reservoir B to keep the 
mercury level in column A 
constant.

h

Scale

0

Mercury
reservoir

Flexible
hose

Bath or
environment
to be measured

P
Gas

P0

Figure 10.3  A constant-volume 
gas thermometer measures the pres-
sure of the gas contained in the flask 
immersed in the bath.

1000
T (�C)

P

Pressure at 
the freezing 
point of 
water.

Pressure at 
the boiling 
point of 
water.

Figure 10.4  A typical graph 
of pressure versus temperature 
taken with a constant-volume gas 
thermometer.
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Absolute zero is used as the basis for the Kelvin temperature scale, which sets 
2273.15°C as its zero point (0 K). The size of a “degree” on the Kelvin scale is cho-
sen to be identical to the size of a degree on the Celsius scale. The relationship 
between these two temperature scales is

TC 5 T 2 273.15 [10.1]

where TC is the Celsius temperature and T is the Kelvin temperature (sometimes 
called the absolute temperature).

Technically, Equation 10.1 should have units on the right-hand side so that it 
reads TC 5 T °C/K 2 273.15°C. The units are rather cumbersome in this context, 
so we will usually suppress them in such calculations except in the final answer. 
(This will also be the case when discussing the Celsius and Fahrenheit scales.)

Early gas thermometers made use of ice and steam points according to the pro-
cedure just described. These points are experimentally difficult to duplicate, how-
ever, because they are pressure-sensitive. Consequently, a procedure based on two 
new points was adopted in 1954 by the International Committee on Weights and 
Measures. The first point is absolute zero. The second point is the triple point of 
water, which is the single temperature and pressure at which water, water vapor, 
and ice can coexist in equilibrium. This point is a convenient and reproducible 
reference temperature for the Kelvin scale; it occurs at a temperature of 0.01°C 
and a pressure of 4.58 mm of mercury. The temperature at the triple point of 
water on the Kelvin scale occurs at 273.16 K. Therefore, the SI unit of tempera-
ture, the kelvin, is defined as 1/273.16 of the temperature of the triple point of 
water. Figure 10.6 shows the Kelvin temperatures for various physical processes 
and structures. Absolute zero has been closely approached but never achieved.

What would happen to a substance if its temperature could reach 0 K? As  
Figure 10.5 indicates, the substance would exert zero pressure on the walls of its 
container (assuming the gas doesn’t liquefy or solidify on the way to absolute zero). 
In Section 10.5 we show that the pressure of a gas is proportional to the kinetic 
energy of the molecules of that gas. According to classical physics, therefore, the 
kinetic energy of the gas would go to zero and there would be no motion at all of 
the individual components of the gas. According to quantum theory, however (to 
be discussed in Chapter 27), the gas would always retain some residual energy, 
called the zero-point energy, at that low temperature.

The Celsius, Kelvin, and Fahrenheit Temperature Scales
Equation 10.1 shows that the Celsius temperature TC is shifted from the absolute 
(Kelvin) temperature T by 273.15. Because the size of a Celsius degree is the 
same as a Kelvin, a temperature difference of 5°C is equal to a temperature dif-
ference of 5 K. The two scales differ only in the choice of zero point. The ice 
point (273.15 K) corresponds to 0.00°C, and the steam point (373.15 K) is equiva-
lent to 100.00°C.

The most common temperature scale in use in the United States is the Fahr-
enheit scale. It sets the temperature of the ice point at 32°F and the temperature 
of the steam point at 212°F. The relationship between the Celsius and Fahrenheit 
temperature scales is

 TF 5 95TC 1 32 [10.2a]

For example, a temperature of 50.0°F corresponds to a Celsius temperature of 
10.0°C and an absolute temperature of 283 K.

Equation 10.2a can be inverted to give Celsius temperatures in terms of Fahren-
heit temperatures:

 TC 5 59(TF 2 32) [10.2b]

Trial 2

Trial 3

Trial 1
P

200
T (�C)

1000�100�200

For all three trials, the pressure 
extrapolates to zero at the 
temperature �273.15�C.

Figure 10.5  Pressure versus 
temperature for experimental tri-
als in which gases have different 
pressures in a constant-volume gas 
thermometer.
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Figure 10.6  Absolute tempera-
tures at which various selected physi-
cal processes take place. 
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Equation 10.2 can also be used to find a relationship between changes in tempera-
ture on the Celsius and Fahrenheit scales. In a problem at the end of the chapter 
you will be asked to show that if the Celsius temperature changes by DTC, the Fahr-
enheit temperature changes by the amount

 DTF 5 9
5DTC [10.3]

Figure 10.7 compares the Celsius, Fahrenheit, and Kelvin scales. Although less 
commonly used, other scales do exist, such as the Rankine scale. That scale has 
Fahrenheit degrees and a zero point at absolute zero.

Celsius

Steam point 100°

0°Ice point

Fahrenheit

212°

32°

Kelvin

373.15

273.15

Figure 10.7  A comparison of the 
Celsius, Fahrenheit, and Kelvin tem-
perature scales.

 ■ e Xa Mp Le  10.1 Skin Temperature 

g Oa L  Apply the temperature conversion formulas.

pr Ob Le M  The temperature gradient between the skin and the air is regulated by cutaneous (skin) blood flow. If the 
cutaneous blood vessels are constricted, the skin temperature and the temperature of the environment will be about 
the same. When the vessels are dilated, more blood is brought to the surface. Suppose during dilation the skin warms 
from 72.0°F to 84.0°F. (a) Convert these temperatures to Celsius and find the difference. (b) Convert the temperatures to  
Kelvin, again finding the difference.

s t r at e g Y  This is a matter of applying the conversion formulas, Equations 10.1 and 10.2. For part (b) it’s easiest to use 
the answers for Celsius rather than develop another set of conversion equations.

s OLUti On

(Continued)

(a) Convert the temperatures from Fahrenheit to Celsius 
and find the difference.

Convert the lower temperature, using Equation 10.2b: TC 5 5
9 1TF 2 32.0 2 5 5

9 172.0 2 32.0 2 5  22.2°C

Convert the upper temperature: TC 5 5
9 1TF 2 32.0 2 5 5

9 184.0 2 32.0 2 5  28.9°C

Find the difference of the two temperatures: DTC 5 28.9°C 2 22.2°C 5   6.7°C

(b) Convert the temperatures from Fahrenheit to Kelvin 
and find their difference.

Convert the lower temperature, using the answers for  
Celsius found in part (a):

TC 5 T 2 273.15 S T 5 TC 1 273.15

T 5 22.2 1 273.15 5   295.4 K
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re Mar Ks  The change in temperature in Kelvin and Celsius is the same, as it should be.

QUes t i On  10.1  Which represents a larger temperature change, a Celsius degree or a Fahrenheit degree?

e Xe rc i s e  10.1  Core body temperature can rise from 98.6°F to 107°F during extreme exercise, such as a marathon 
run. Such elevated temperatures can also be caused by viral or bacterial infections or tumors and are dangerous if sus-
tained. (a) Convert the given temperatures to Celsius and find the difference. (b) Convert the temperatures to Kelvin, 
again finding the difference.

a ns We r s (a) 37.08C, 41.78C, 4.78C (b) 310.2 K, 314.9 K, 4.7 K

Find the change in temperature in °E between the freez-
ing and boiling points of water:

DTE 5 3258E 2 (2758E) 5 4008E

Find the change in temperature in °C between the 
freezing and boiling points of water:

DTC 5 1008C 2 08C 5 1008C

Form the ratio of these two quantities.
DTE

DTC
5

4008E
1008C

5 4 
8E
8C

This ratio is the same between any other two 
temperatures—say, from the freezing point to an 
unknown final temperature. Set the two ratios equal  
to each other:

DTE

DTC
5

TE 2 12758E 2
TC 2 08C

5 4 
8E
8C

Solve for TE: TE 2 (2758E) 5 4(8E/8C)(TC 2 08C)

TE 5    4TC 2 75

re Mar Ks  The relationship between any other two temperatures scales can be derived in the same way.

QUes t i On  10.2  True or False: Finding the relationship between two temperature scales using knowledge of the freez-
ing and boiling point of water in each system is equivalent to finding the equation of a straight line.

e Xe rc i s e  10.2  Find the equation converting °F to °E.

a ns We r TE 5 20
9 TF 2 146

 ■ e Xa Mp Le  10.2 Extraterrestrial Temperature Scale

g Oa L Understand how to relate different temperature scales.

pr Ob Le M An extraterrestrial scientist invents a temperature scale such that water freezes at 275°E and boils 
at 325°E, where E stands for an extraterrestrial scale. Find an equation that relates temperature in °E to temperature 
in °C.

s t r at e gY Using the given data, find the ratio of the number of °E between the two temperatures to the number 
of °C. This ratio will be the same as a similar ratio for any other such process—say, from the freezing point to an 
unknown temperature—corresponding to TE and TC. Setting the two ratios equal and solving for TE in terms of TC

yields the desired relationship. For clarity, the rules of significant figures will not be applied here.

s OLUti On

Convert the upper temperature: T 5 28.9 1 273.15 5   302.1 K

Find the difference of the two temperatures: DT 5 302.1 K 2 295.4 K 5   6.7 K
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10.3     Thermal Expansion  
of Solids and Liquids
Learning Objectives

1. Explain the physical origins of thermal expansion.

2. Apply the equations of thermal expansion to physical systems.

Our discussion of the liquid thermometer made use of one of the best-known 
changes that occur in most substances: As temperature of the substance increases, 
its volume increases. This phenomenon, known as thermal expansion, plays an 
important role in numerous applications. Thermal expansion joints, for example, 
must be included in buildings, concrete highways, and bridges to compensate for 
changes in dimensions with variations in temperature (Fig. 10.8).

The overall thermal expansion of an object is a consequence of the change in 
the average separation between its constituent atoms or molecules. To understand 
this idea, consider how the atoms in a solid substance behave. These atoms are 
located at fixed equilibrium positions; if an atom is pulled away from its position, 
a restoring force pulls it back. We can imagine that the atoms are particles con-
nected by springs to their neighboring atoms. (See Fig. 9.1 in the previous chapter.) 
If an atom is pulled away from its equilibrium position, the distortion of the springs 
provides a restoring force.

At ordinary temperatures, the atoms vibrate around their equilibrium posi-
tions with an amplitude (maximum distance from the center of vibration) of about 
10211 m, with an average spacing between the atoms of about 10210 m. As the tem-
perature of the solid increases, the atoms vibrate with greater amplitudes and the 
average separation between them increases. Consequently, the solid as a whole 
expands.

If the thermal expansion of an object is sufficiently small compared with the 
object’s initial dimensions, then the change in any dimension is, to a good approx-
imation, proportional to the first power of the temperature change. Suppose an 
object has an initial length L0 along some direction at some temperature T0. Then 
the length increases by DL for a change in temperature DT. So for small changes 
in temperature,

 DL 5 aL0 DT [10.4]

or

L 2 L0 5 aL0(T 2 T0)

where L is the object’s final length, T is its final temperature, and the proportion-
ality constant a is called the coefficient of linear expansion for a given material 
and has units of (°C)21.

Table 10.1 lists the coefficients of linear expansion for various materials. Note 
that for these materials a is positive, indicating an increase in length with increas-
ing temperature.

Thermal expansion affects the choice of glassware used in kitchens and labo-
ratories. If hot liquid is poured into a cold container made of ordinary glass, the 
container may well break due to thermal stress. The inside surface of the glass 
becomes hot and expands, while the outside surface is at room temperature, and 
ordinary glass may not withstand the difference in expansion without breaking. 
Pyrex- glass has a coefficient of linear expansion of about one-third that of ordi-
nary glass, so the thermal stresses are smaller. Kitchen measuring cups and labora-
tory beakers are often made of Pyrex so they can be used with hot liquids.

Figure 10.8  Thermal expansion 
joints in (a) bridges and (b) walls.

The long, vertical joint is �lled 
with a soft material that allows the 
wall to expand and contract as the 
temperature of the bricks changes.
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 ■ e Xa Mp Le  10.3 Expansion of a Railroad Track

g Oa L  Apply the concept of linear expansion and relate it to stress.

pr Ob Le M  (a) A steel railroad track has a length of 30.000 m when 
the temperature is 0°C. What is its length on a hot day when the tem-
perature is 40.0°C? (b) Suppose the track is nailed down so that it 
can’t expand. What stress results in the track due to the temperature 
change?

s t r at e g Y (a) Apply the linear expansion equation, using Table 
10.1 and Equation 10.4. (b) A track that cannot expand by DL due to 
external constraints is equivalent to compressing the track by DL, cre-
ating a stress in the track. Using the equation relating tensile stress to 
tensile strain together with the linear expansion equation, the amount of (compressional) stress can be calculated using 
Equation 9.5.

s OLUti On

t able 10.1  Average Coefficients of Expansion for Some Materials Near Room 
Temperature

 Average Coefficient  Average Coefficient
 of Linear Expansion  of Volume Expansion
Material [(°C)21] Material [(°C)21]

Aluminum 24 3 1026 Acetone 1.5 3 1024

Brass and bronze 19 3 1026 Benzene 1.24 3 1024

Concrete 12 3 1026 Ethyl alcohol 1.12 3 1024

Copper 17 3 1026 Gasoline 9.6 3 1024

Glass (ordinary) 9 3 1026 Glycerin 4.85 3 1024

Glass (Pyrex-) 3.2 3 1026 Mercury 1.82 3 1024

Invar (Ni–Fe alloy) 0.9 3 1026 Turpentine 9.0 3 1024

Lead 29 3 1026 Aira at 0°C 3.67 3 1023

Steel 11 3 1026 Helium 3.665 3 1023

aGases do not have a specific value for the volume expansion coefficient because the amount of expansion  
depends on the type of process through which the gas is taken. The values given here assume the gas undergoes  
an expansion at constant pressure.

t ip 10.1  Coefficients 
of Expansion Are Not 
Constants
The coefficients of expansion can 
vary somewhat with temperature, 
so the given coefficients are actu-
ally averages.

(a) Find the length of the track at 40.0°C.

Substitute given quantities into Equation 10.4, finding 
the change in length:

Add the change to the original length to find the final 
length:

(b) Find the stress if the track cannot expand.

Substitute into Equation 9.5 to find the stress:

DL 5 aL0DT 5 [11 3 1026(°C)21](30.000 m)(40.0°C)
5 0.013 m

(Example 10.3) Thermal 
expansion: The extreme 
heat of a July day in 
Asbury Park, New Jersey, 
caused these railroad 
tracks to buckle. A
P/

W
id

e 
W

or
ld

 P
ho

to
s

re Mar Ks  Repeated heating and cooling is an important part of the weathering process that gradually wears things 
out, weakening structures over time.

QUes t i On  10.3  What happens to the tension of wires in a piano when the temperature decreases?

e Xe rc i s e  10.3  What is the length of the same railroad track on a cold winter day when the temperature is 0°F?

a ns We r 29.994 m

L 5 L0 1 DL 5    30.013 m

F
A

5 Y 
DL
L

5 12.00 3 1011 Pa 2 a0.013 m
30.0 m

b
5   8.7 3 107 Pa
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 ■ a pp LYi ng  ph Ys ic s  10.1 Bimetallic Strips and Thermostats

How can different coefficients of expansion for metals 
be used as a temperature gauge and control electronic 
devices such as air conditioners?

e Xp La n at i On  When the temperatures of a brass rod 
and a steel rod of equal length are raised by the same 
amount from some common initial value, the brass rod 
expands more than the steel rod because brass has a 

larger coefficient of expansion than steel. A simple device 
that uses this principle is a bimetallic strip. Such strips can 
be found in the thermostats of certain home heating sys-
tems. The strip is made by securely bonding two different 
metals together. As the temperature of the strip increases, 
the two metals expand by different amounts and the strip 
bends, as in Figure 10.9. The change in shape can make or 
break an electrical connection. 

It may be helpful to picture a thermal expansion as a magnification or a photo-
graphic enlargement. For example, as the temperature of a metal washer increases 
(Fig. 10.10), all dimensions, including the radius of the hole, increase according to 
Equation 10.4.

One practical application of thermal expansion is the common technique of 
using hot water to loosen a metal lid stuck on a glass jar. This works because the 
circumference of the lid expands more than the rim of the jar.

Because the linear dimensions of an object change due to variations in tem-
perature, it follows that surface area and volume of the object also change. Con-
sider a square of material having an initial length L0 on a side and therefore an 
initial area A0 5 L0

2. As the temperature is increased, the length of each side 
increases to

L 5 L0 1 aL0 DT

The new area A is

A 5 L2 5 (L0 1 aL0 DT)(L0 1 aL0 DT) 5 L0
2 1 2aL0

2 DT 1 a2L0
2(DT)2

The last term in this expression contains the quantity aDT raised to the second 
power. Because aDT is much less than one, squaring it makes it even smaller. Con-
sequently, we can neglect this term to get a simpler expression:

A 5 L0
2 1 2aL0

2 DT

A 5 A0 1 2aA0 DT

so that

 DA 5 A 2 A0 5 gA0 DT [10.5]

where g 5 2a. The quantity g (Greek letter gamma) is called the coefficient of 
area expansion.

Figure 10.9  (Applying Physics 
10.1) (a) A bimetallic strip bends as 
the temperature changes because 
the two metals have different coeffi-
cients of expansion. (b) A bimetallic 
strip used in a thermostat to break 
or make electrical contact. (c) The 
interior of a thermostat, showing the 
coiled bimetallic strip. Why do you 
suppose the strip is coiled?
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As the washer is heated, all 
dimensions increase, including 
the radius of the hole.

Figure 10.10
Thermal expansion of a homoge-
neous metal washer. (Note that the 
expansion is exaggerated in this 
figure.)
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 ■ e Xa Mp Le  10.4 Rings and Rods

g Oa L  Apply the equation of area expansion.

pr Ob Le M  (a) A circular copper ring at 20.0°C has a hole with an area of 9.980 cm2. What minimum temperature must it 
have so that it can be slipped onto a steel metal rod having a cross-sectional area of 10.000 cm2? (b) Suppose the ring and 
the rod are heated simultaneously. What minimum change in temperature of both will allow the ring to be slipped onto 
the end of the rod? (Assume no significant change in the coefficients of linear expansion over this temperature range.)

s t r at e g Y  In part (a), finding the necessary temperature change is just a matter of substituting given values into Equa-
tion 10.5, the equation of area expansion. Remember that g 5 2a. Part (b) is a little harder because now the rod is also 
expanding. If the ring is to slip onto the rod, however, the final cross-sectional areas of both ring and rod must be equal. 
Write this condition in mathematical terms, using Equation 10.5 on both sides of the equation, and solve for DT.

s OLUti On
(a) Find the temperature of the ring that will 
allow it to slip onto the rod.

Write Equation 10.5 and substitute known  
values, leaving DT as the sole unknown:

DA 5 gA0 DT

0.020 cm2 5 [34 3 1026 (°C)21](9.980 cm2)(DT)

re Mar Ks  Warming and cooling strategies are sometimes useful for separating glass parts in a chemistry lab, such as 
the glass stopper in a bottle of reagent.

QUes t i On  10.4  If instead of heating the copper ring in part (a) the steel rod is cooled, would the magnitude of the 
required temperature change be larger, smaller, or the same? Why? (Don’t calculate it!)

e Xe rc i s e  10.4  A steel ring with a hole having area of 3.990 cm2 is to be placed on an aluminum rod with cross- 
sectional area of 4.000 cm2. Both rod and ring are initially at a temperature of 35.0°C. At what common temperature can 
the steel ring be slipped onto one end of the aluminum rod?

a ns We r  261°C

Solve for DT, then add this change to 
the initial temperature to get the final 
temperature:

DT 5 59°C

T 5 T0 1 DT 5 20.0°C 1 59°C 5   79°C

(b) If both ring and rod are heated, find the 
minimum change in temperature that will 
allow the ring to be slipped onto the rod.

Set the final areas of the copper ring and 
steel rod equal to each other:

AC 1 DAC 5 AS 1 DAS

Substitute for each change in area, DA: AC 1 gCAC DT 5 AS 1 gAS DT

Rearrange terms to get DT on one side only, 
factor it out, and solve:

gCAC DT 2 gSAS DT 5 AS 2 AC

(gCAC 2 gSAS) DT 5 AS 2 AC

DT 5
AS 2 AC

gC AC 2 gS AS

5
10.000 cm2 2 9.980 cm2

134 3 1026 8C21 2 19.980 cm2 2 2 122 3 1026 8C21 2 110.000 cm2 2
DT 5   170°C

We can also show that the increase in volume of an object accompanying a change in 
temperature is

DV 5 bV0 DT [10.6]

where b, the coefficient of volume expansion, is equal to 3a. (Note that g 5 2a 
and b 5 3a only if the coefficient of linear expansion of the object is the same in 
all directions.) The proof of Equation 10.6 is similar to the proof of Equation 10.5.
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As Table 10.1 indicates, each substance has its own characteristic coefficients of 
expansion.

The thermal expansion of water has a profound influence on rising ocean lev-
els. At current rates of global warming, scientists predict that about one-half of the 
expected rise in sea level will be caused by thermal expansion; the remainder will 
be due to the melting of polar ice.

■ Quick Quiz

10.2  If you quickly plunge a room-temperature mercury thermometer into very hot 
water, the mercury level will (a) go up briefly before reaching a final reading, (b) go 
down briefly before reaching a final reading, or (c) not change.

10.3  If you are asked to make a very sensitive glass thermometer, which of the  
following working fluids would you choose? (a) mercury (b) alcohol (c) gasoline  
(d) glycerin

10.4  Two spheres are made of the same metal and have the same radius, but one is 
hollow and the other is solid. The spheres are taken through the same temperature 
increase. Which sphere expands more? (a) solid sphere, (b) hollow sphere, (c) they 
expand by the same amount, or (d) not enough information to say.

a pp Lica t iOn
Rising Sea Levels

 ■ e Xa Mp Le  10.5 Global Warming and Coastal Flooding 

g Oa L  Apply the volume expansion equation together with linear expansion.

pr Ob Le M  (a) Estimate the fractional change in the volume of Earth’s oceans due to an average temperature change  
of 1°C. (b) Use the fact that the average depth of the ocean is 4.00 3 103 m to estimate the change in depth. Note that  
bwater 5 2.07 3 1024(°C)21.

s t r at e g Y  In part (a) solve the volume expansion expression, Equation 10.6, for DV/V. For part (b) use linear expan-
sion to estimate the increase in depth. Neglect the expansion of landmasses, which would reduce the rise in sea level only 
slightly.

s OLUti On
(a) Find the fractional change in volume.

Divide the volume expansion equation by V0 and 
substitute:

DV 5 bV0 DT

DV
V0

5 b DT 5 12.07 3 1024 1 8C 221 2 118C 2  5   2 3 1024

(b) Find the approximate increase in depth.

Use the linear expansion equation. Divide the volume 
expansion coefficient of water by 3 to get the equivalent 
linear expansion coefficient:

DL 5 aL0 DT 5 ab

3
b L 0 DT

DL 5 (6.90 3 1025(°C)21)(4 000 m)(1°C) <   0.3 m

re Mar Ks  Three-tenths of a meter may not seem significant, but combined with increased melting of land-based polar 
ice, some coastal areas could experience flooding. An increase of several degrees increases the value of DL several times 
and could significantly reduce the value of waterfront property.

QUes t i On  10.5  Assuming all have the same initial volume, rank the following substances by the amount of volume 
expansion due to an increase in temperature, from least to most: glass, mercury, aluminum, ethyl alcohol.

e Xe rc i s e  10.5  A 1.00-liter aluminum cylinder at 5.00°C is filled to the brim with gasoline at the same temperature. If 
the aluminum and gasoline are warmed to 65.0°C, how much of the gasoline spills out? Hint: Be sure to account for the 
expansion of the container. Also, ignore the possibility of evaporation, and assume the volume coefficients are good to 
three digits.

a ns We r  The volume spilled is 53.3 cm3. Forgetting to take into account the expansion of the cylinder results in a 
(wrong) answer of 57.6 cm3.
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■ Quick Quiz

10.5  Why doesn’t the melting of ocean-based ice raise as much concern as the melt-
ing of land-based ice?

The Unusual Behavior of Water
Liquids generally increase in volume with increasing temperature and have vol-
ume expansion coefficients about ten times greater than those of solids. Over a 
small temperature range, water is an exception to this rule, as we can see from 
its density-versus-temperature curve in Figure 10.11. As the temperature increases 
from 0°C to 4°C, water contracts, so its density increases. Above 4°C, water exhibits 
the expected expansion with increasing temperature. The density of water reaches 
its maximum value of 1 000 kg/m3 at 4°C.

We can use this unusual thermal expansion behavior of water to explain why a 
pond freezes slowly from the top down. When the atmospheric temperature drops 
from 7°C to 6°C, say, the water at the surface of the pond also cools and conse-
quently decreases in volume. This means the surface water is more dense than the 
water below it, which has not yet cooled nor decreased in volume. As a result, the 
surface water sinks and warmer water from below is forced to the surface to be 
cooled, a process called upwelling. When the atmospheric temperature is between 
4°C and 0°C, however, the surface water expands as it cools, becoming less dense 
than the water below it. The sinking process stops, and eventually the surface water 
freezes. As the water freezes, the ice remains on the surface because ice is less dense 
than water. The ice continues to build up on the surface, and water near the bot-
tom of the pool remains at 4°C. Further, the ice forms an insulating layer that slows 
heat loss from the underlying water, offering thermal protection for marine life.

Without buoyancy and the expansion of water upon freezing, life on Earth may 
not have been possible. If ice had been more dense than water, it would have sunk 
to the bottom of the ocean and built up over time. This could have led to a freez-
ing of the oceans, turning Earth into an icebound world similar to Hoth in the 
Star Wars epic The Empire Strikes Back.

The same peculiar thermal expansion properties of water sometimes cause 
pipes to burst in winter. As energy leaves the water through the pipe by heat and is 
transferred to the outside cold air, the outer layers of water in the pipe freeze first. 
The continuing energy transfer causes ice to form ever closer to the center of the 
pipe. As long as there is still an opening through the ice, the water can expand 
as its temperature approaches 0°C or as it freezes into more ice, pushing itself 
into another part of the pipe. Eventually, however, the ice will freeze to the center 

 a pp Lica t iOn
The Expansion of Water on 
Freezing and Life on Earth

a pp Lica t iOn
Bursting Water Pipes in Winter
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Figure 10.11  The density of water 
as a function of temperature.
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somewhere along the pipe’s length, forming a plug of ice at that point. If there is 
still liquid water between this plug and some other obstruction, such as another 
ice plug or a spigot, then no additional volume is available for further expansion 
and freezing. The pressure in the pipe builds and can rupture the pipe.

10.4     Macroscopic Description  
of an Ideal Gas
Learning Objectives

1. State the properties that define an ideal gas.

2. Apply the ideal gas law to systems of gases.

The properties of gases are important in a number of thermodynamic processes. 
Our weather is a good example of the types of processes that depend on the behav-
ior of gases.

If we introduce a gas into a container, it expands to fill the container uniformly, 
with its pressure depending on the size of the container, the temperature, and 
the amount of gas. A larger container results in a lower pressure, whereas higher 
temperatures or larger amounts of gas result in a higher pressure. The pressure P, 
volume V, temperature T, and amount n of gas in a container are related to each 
other by an equation of state.

The equation of state can be very complicated, but is found experimentally to 
be relatively simple if the gas is maintained at a low pressure (or a low density). 
Such a low-density gas approximates what is called an ideal gas. Most gases at 
room temperature and atmospheric pressure behave approximately as ideal gases. 
An ideal gas is a collection of atoms or molecules that move randomly and exert 
no long-range forces on each other. Each particle of the ideal gas is individually 
pointlike, occupying a negligible volume.

A gas usually consists of a very large number of particles, so it’s convenient to 
express the amount of gas in a given volume in terms of the number of moles, n. 
A mole is a number. The same number of particles is found in a mole of helium as 
in a mole of iron or aluminum. This number is known as Avogadro’s number and is 
given by

NA 5 6.02 3 1023 particles/mole

Avogadro’s number and the definition of a mole are fundamental to chemistry 
and related branches of physics. The number of moles of a substance is related to 
its mass m by the expression

 n 5
m

molar mass
 [10.7]

where the molar mass of the substance is defined as the mass of one mole of that 
substance, usually expressed in grams per mole.

There are lots of atoms in the world, so it’s natural and convenient to choose 
a very large number like Avogadro’s number when describing collections 
of atoms. At the same time, Avogadro’s number must be special in some way 
because otherwise why not just count things in terms of some large power of 
ten, like 1024?

It turns out that Avogadro’s number was chosen so that the mass in grams of 
one Avogadro’s number of an element is numerically the same as the mass of one 
atom of the element, expressed in atomic mass units (u).

This relationship is very convenient. Looking at the periodic table of the ele-
ments in the back of the book, we find that carbon has an atomic mass of 12 u, so 
12 g of carbon consists of exactly 6.02 3 1023 atoms of carbon. The atomic mass of 
oxygen is 16 u, so in 16 g of oxygen there are again 6.02 3 1023 atoms of oxygen. 
The same holds true for molecules: The molecular mass of molecular hydrogen, 

b  Avogadro’s number
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H2, is 2 u, and there is an Avogadro’s number of molecules in 2 g of molecular 
hydrogen.

The technical definition of a mole is as follows: One mole (mol) of any 
substance is that amount of the substance that contains as many particles 
(atoms, molecules, or other particles) as there are atoms in 12 g of the isotope 
carbon-12.

Taking carbon-12 as a test case, let’s find the mass of an Avogadro’s number of 
carbon-12 atoms. A carbon-12 atom has an atomic mass of 12 u, or 12 atomic mass 
units. One atomic mass unit is equal to 1.66 3 10224 g, about the same as the mass 
of a neutron or proton—particles that make up atomic nuclei. The mass m of an 
Avogadro’s number of carbon-12 atoms is then given by

m 5 NA 112 u 2 5 6.02 3 1023 112 u 2 a1.66 3 10224 g
u b 5 12.0 g

So we see that Avogadro’s number is deliberately chosen to be the inverse of 
the number of grams in an atomic mass unit. In this way the atomic mass of an 
atom expressed in atomic mass units is numerically the same as the mass of an 
Avogadro’s number of that kind of atom expressed in grams. Because there are 
6.02 3 1023 particles in one mole of any element, the mass per atom for a given 
element is

m atom 5
molar mass

NA

For example, the mass of a helium atom is

mHe 5
4.00 g/mol

6.02 3 1023 atoms/mol
5 6.64 3 10224 g/atom

Now suppose an ideal gas is confined to a cylindrical container with a volume 
that can be changed by moving a piston, as in Figure 10.12. Assume that the cyl-
inder doesn’t leak, so the number of moles remains constant. Experiments yield 
the following observations: First, when the gas is kept at a constant temperature, 
its pressure is inversely proportional to its volume (Boyle’s law). Second, when the 
pressure of the gas is kept constant, the volume of the gas is directly proportional 
to the temperature (Charles’s law). Third, when the volume of the gas is held con-
stant, the pressure is directly proportional to the temperature (Gay-Lussac’s law). 
These observations can be summarized by the following equation of state, known 
as the ideal gas law:

 PV 5 nRT [10.8]

In this equation R is a constant for a specific gas that must be determined from 
experiments, whereas T is the temperature in kelvins. Each point on a P versus V 
diagram would represent a different state of the system. Experiments on several 
gases show that, as the pressure approaches zero, the quantity PV/nT approaches 
the same value of R for all gases. For this reason, R is called the universal gas 
constant. In SI units, where pressure is expressed in pascals and volume in cubic 
meters,

 R 5 8.31 J/mol ? K [10.9]

If the pressure is expressed in atmospheres and the volume is given in liters (recall 
that 1 L 5 103 cm3 5 1023 m3), then

R 5 0.082 1 L ? atm/mol ? K

Using this value of R and Equation 10.8, the volume occupied by 1 mol of any ideal 
gas at atmospheric pressure and at 0°C (273 K) is 22.4 L.

t ip 10.2  Only Kelvin 
Works!
Temperatures used in the ideal 
gas law must always be in Kelvins.

Equation of state for c

 an ideal gas

 The universal gas constant c

t ip 10.3  Standard 
Temperature and Pressure
Chemists often define standard 
temperature and pressure (STP) 
to be 20°C and 1.0 atm. We 
choose STP to be 0°C and 1.0 atm.

Gas

Figure 10.12
A gas confined to a cylinder whose 
volume can be varied with a movable 
piston.
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 ■ e Xa Mp Le  10.6 An Expanding Gas

g Oa L  Use the ideal gas law to analyze a system of gas.

pr Ob Le M  An ideal gas at 20.0°C and a pressure of 1.50 3 105 Pa is in a container having a volume of 1.00 L. (a) Deter-
mine the number of moles of gas in the container. (b) The gas pushes against a piston, expanding to twice its original 
volume, while the pressure falls to atmospheric pressure. Find the final temperature.

s t r at e g Y  In part (a) solve the ideal gas equation of state for the number of moles, n, and substitute the known quan-
tities. Be sure to convert the temperature from Celsius to Kelvin! When comparing two states of a gas as in part (b) it’s 
often most convenient to divide the ideal gas equation of the final state by the equation of the initial state. Then quanti-
ties that don’t change can immediately be cancelled, simplifying the algebra.

s OLUti On
(a) Find the number of moles of gas.

Convert the temperature to kelvins: T 5 TC 1 273 5 20.0 1 273 5 293 K

Solve the ideal gas law for n and substitute: PV 5 nRT

n 5
PV
RT

5
11.50 3 105 Pa 2 11.00 3 1023 m3 2

18.31 J/mol # K 2 1293 K 2
5   6.16 3 1022 mol

(b) Find the temperature after the gas expands to 2.00 L.

Divide the ideal gas law for the final state by the ideal gas 
law for the initial state:

PfVf

PiVi
5

nRTf

nRTi

re Mar Ks  Remember the trick used in part (b); it’s often useful in ideal gas problems. Notice that it wasn’t necessary to 
convert units from liters to cubic meters because the units were going to cancel anyway.

QUes t i On  10.6  Assuming constant temperature, does a helium balloon expand, contract, or remain at constant vol-
ume as it rises through the air?

e Xe rc i s e  10.6  Suppose the temperature of 4.50 L of ideal gas drops from 375 K to 275 K. (a) If the volume remains 
constant and the initial pressure is atmospheric pressure, find the final pressure. (b) Find the number of moles of gas.

a ns We r s  (a) 7.41 3 104 Pa (b) 0.146 mol

Cancel the number of moles n and the gas constant R, 
and solve for Tf :

PfVf

PiVi
5

Tf

Ti
 

Tf 5
PfVf

PiVi
 Ti 5

11.01 3 105 Pa 2 12.00 L 2
11.50 3 105 Pa 2 11.00 L 2  1293 K 2

5   395 K

 ■ e Xa Mp Le  10.7 Message in a Bottle

g Oa L Apply the ideal gas law in tandem with Newton’s second law.

pr Ob Le M  A beachcomber finds a corked bottle contain-
ing a message. The air in the bottle is at atmospheric pressure 
and a temperature of 30.0°C. The cork has a cross-sectional 
area of 2.30 cm2. The beachcomber places the bottle over a 
fire, figuring the increased pressure will push out the cork. At 
a temperature of 99°C the cork is ejected from the bottle. (a) 
What was the pressure in the bottle just before the cork left it? 
(b) What force of friction held the cork in place? Neglect any 
change in volume of the bottle.

s t r at e g Y  In part (a) the number of moles of air in the 
bottle remains the same as it warms over the fire. Take the 
ideal gas equation for the final state and divide by the ideal 
gas equation for the initial state. Solve for the final pres-
sure. In part (b) there are three forces acting on the cork: 
a friction force, the exterior force of the atmosphere push-
ing in, and the force of the air inside the bottle pushing 
out. Apply Newton’s second law. Just before the cork begins 
to move, the three forces are in equilibrium and the static 
friction force has its maximum value.

(Continued)
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s OLUti On
(a) Find the final pressure.

Divide the ideal gas law at the final point by the ideal gas 
law at the initial point:

(1) 
PfVf

PiVi
5

nRTf

nRTi
 

Cancel n, R, and V, which don’t change, and solve for Pf :
Pf

Pi
5

Tf

Ti

S Pf 5 Pi 
Tf

Ti
 

Substitute known values, obtaining the final pressure: Pf 5 11.01 3 105 Pa 2  372 K
303 K

5    1.24 3 105 Pa

(b) Find the magnitude of the friction force acting on the 
cork.

Apply Newton’s second law to the cork just before it leaves 
the bottle. P in is the pressure inside the bottle, and Pout is 
the pressure outside.

o F 5 0 S P inA 2 PoutA 2 Ffriction 5 0

Ffriction 5 P inA 2 PoutA 5 (P in 2 Pout)A

5 (1.24 3 105 Pa 2 1.01 3 105 Pa)(2.30 3 1024 m2)

Ffriction 5    5.29 N

re Mar Ks  Notice the use, once again, of the ideal gas law in Equation (1). Whenever comparing the state of a gas at two 
different points, this is the best way to do the math. One other point: Heating the gas blasted the cork out of the bottle, 
which meant the gas did work on the cork. The work done by an expanding gas—driving pistons and generators—is one 
of the foundations of modern technology and will be studied extensively in Chapter 12.

QUes t i On  10.7  As the cork begins to move, what happens to the pressure inside the bottle?

e Xe rc i s e  10.7  A tire contains air and a gauge pressure of 5.00 3 104 Pa and a temperature of 30.0°C. After nightfall, 
the temperature drops to 210.0°C. Find the new gauge pressure in the tire. (Recall that gauge pressure is absolute pres-
sure minus atmospheric pressure. Assume constant volume.)

a ns We r  3.01 3 104 Pa

 ■ e Xa Mp Le  10.8 Submerging a Balloon

g Oa L  Combine the ideal gas law with the equation of hydrostatic equilibrium and buoyancy.

pr Ob Le M  A sturdy balloon with volume 0.500 m3 is 
attached to a 2.50 3 102-kg iron weight and tossed over-
board into a freshwater lake. The balloon is made of a 
light material of negligible mass and elasticity (although it 
can be compressed). The air in the balloon is initially at 
atmospheric pressure. The system fails to sink and there 
are no more weights, so a skin diver decides to drag it 
deep enough so that the balloon will remain submerged. 
(a) Find the volume of the balloon at the point where the 
system will remain submerged, in equilibrium. (b) What’s 
the balloon’s pressure at that point? (c) Assuming constant 
temperature, to what minimum depth must the balloon be 
dragged?

s t r at e g Y  As the balloon and weight are dragged deeper 
into the lake, the air in the balloon is compressed and the 
volume is reduced along with the buoyancy. At some depth 
h the total buoyant force acting on the balloon and weight, 
Bbal 1 BFe, will equal the total weight, wbal 1 wFe, and the 
balloon will remain at that depth. Substitute these forces 
into Newton’s second law and solve for the unknown vol-
ume of the balloon, answering part (a). Then use the ideal 
gas law to find the pressure, and the equation of hydro-
static equilibrium to find the depth.

s OLUti On
(a) Find the volume of the balloon at the equilib-
rium point.

Find the volume of the iron, VFe: VFe 5
m Fe

rFe
5

2.50 3 102 kg

7.86 3 103 kg/m3 5 0.031 8 m3
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As previously stated, the number of molecules contained in one mole of any gas 
is Avogadro’s number, NA 5 6.02 3 1023 particles/mol, so

 n 5
N
NA

 [10.10]

where n is the number of moles and N is the number of molecules in the gas. With 
Equation 10.10, we can rewrite the ideal gas law in terms of the total number of 
molecules as

PV 5 nRT 5
N
NA

 RT

or

Find the mass of the balloon, which is equal to 
the mass of the air if we neglect the mass of the 
balloon’s material:

mbal 5 rair Vbal 5 (1.29 kg/m3)(0.500 m3)5 0.645 kg

Apply Newton’s second law to the system when 
it’s in equilibrium:

BFe 2 wFe 1 Bbal 2 wbal 5 0

Substitute the appropriate expression for each 
term:

rwatVFe g 2 mFe g 1 rwatVbal g 2 mbal g 5 0

Cancel the g’s and solve for the volume of the 
balloon, Vbal:

Vbal 5
m bal 1 m Fe 2 rwatVFe

rwat

5
0.645 kg 1  2.50 3 102 kg 2 11.00 3 103 kg/m3 2 10.031 8 m3 2

1.00 3 103kg/m3

Vbal 5    0.219 m3

(b) What’s the balloon’s pressure at the 
equilibrium point?

Now use the ideal gas law to find the pressure, 
assuming constant temperature, so that Ti 5 Tf .

PfVf

PiVi
5

nRTf

nRTi
5 1

Pf 5
Vi

Vf
 Pi 5

0.500 m3

0.219 m3 11.01 3 105 Pa 2

5    2.31 3 105 Pa

re Mar Ks   Once again, the ideal gas law was used to good effect. This problem shows how even answering a fairly sim-
ple question can require the application of several different physical concepts: density, buoyancy, the ideal gas law, and 
hydrostatic equilibrium.

QUes t i On  10.8  If a glass is turned upside down and then submerged in water, what happens to the volume of the 
trapped air as the glass is pushed deeper under water?

e Xe rc i s e  10.8  A boy takes a 30.0-cm3 balloon holding air at 1.00 atm at the surface of a freshwater lake down to a 
depth of 4.00 m. Find the volume of the balloon at this depth. Assume the balloon is made of light material of little elas-
ticity (although it can be compressed) and the temperature of the trapped air remains constant.

a ns We r  21.6 cm3

(c) To what minimum depth must the balloon be 
dragged?

Use the equation of hydrostatic equilibrium to find the 
depth:

Pf 5 Patm 1 rgh

h 5
Pf 2 Patm

rg
5

2.31 3 105 Pa 2 1.01 3 105 Pa
11.00 3 103 kg/m3 2 19.80 m/s2 2

5    13.3 m
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PV 5 NkBT [10.11]

where

 kB 5
R
NA

5 1.38 3 10223 J/K [10.12]

is Boltzmann’s constant. This reformulation of the ideal gas law will be used in 
the next section to relate the temperature of a gas to the average kinetic energy of 
particles in the gas.

10.5    The Kinetic Theory of Gases
Learning Objectives

1. State the assumptions of the kinetic theory of gases model.

2. Relate the pressure and temperature to the average kinetic energy of a mol-
ecule in a gas and other variables.

3. Define and calculate the internal energy of a system of gas.

4. Explain the origin of the root mean square speed of a gas and calculate root 
mean square speeds of gas molecules.

In Section 10.4 we discussed the macroscopic properties of an ideal gas, including 
pressure, volume, number of moles, and temperature. In this section we consider 
the ideal gas model from the microscopic point of view. We will show that the mac-
roscopic properties can be understood on the basis of what is happening on the 
atomic scale. In addition, we reexamine the ideal gas law in terms of the behavior 
of the individual molecules that make up the gas.

Using the model of an ideal gas, we will describe the kinetic theory of gases. 
With this theory we can interpret the pressure and temperature of an ideal gas in 
terms of microscopic variables. The kinetic theory of gases model makes the fol-
lowing assumptions:

1. The number of molecules in the gas is large, and the average separation 
between them is large compared with their dimensions. Because the num-
ber of molecules is large, we can analyze their behavior statistically. The 
large separation between molecules means that the molecules occupy a neg-
ligible volume in the container. This assumption is consistent with the ideal 
gas model, in which we imagine the molecules to be pointlike.

2. The molecules obey Newton’s laws of motion, but as a whole they move 
randomly. By “randomly” we mean that any molecule can move in any direc-
tion with equal probability, with a wide distribution of speeds.

3. The molecules interact only through short-range forces during elastic col-
lisions. This assumption is consistent with the ideal gas model, in which the 
molecules exert no long-range forces on each other.

4. The molecules make elastic collisions with the walls.
5. All molecules in the gas are identical.

Although we often picture an ideal gas as consisting of single atoms, molecular 
gases exhibit ideal behavior at low pressures. On average, effects associated with 
molecular structure have no effect on the motions considered, so we can apply 
the results of the following development to both molecular gases and mona-
tomic gases.

Molecular Model for the Pressure of an Ideal Gas
As a first application of kinetic theory, we derive an expression for the pressure of 
an ideal gas in a container in terms of microscopic quantities. The pressure of the 

 Ideal gas law c

 Boltzmann’s constant c

Assumptions of kinetic c 

theory for an ideal gas

37027_ch10_ptg01_hr_336-366.indd   354 19/08/13   2:44 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



10.5 | The Kinetic Theory of Gases  355

Unless otherwise noted, all content on this page is © Cengage Learning.

gas is the result of collisions between the gas molecules and the walls of the con-
tainer. During these collisions, the gas molecules undergo a change of momentum 
as a result of the force exerted on them by the walls.

We now derive an expression for the pressure of an ideal gas consisting of N 
molecules in a container of volume V. In this section we use m to represent the 
mass of one molecule. The container is a cube with edges of length d (Fig. 10.13). 
Consider the collision of one molecule moving with a velocity 2vx toward the left-
hand face of the box (Fig. 10.14). After colliding elastically with the wall, the mole-
cule moves in the positive x -direction with a velocity 1vx. Because the momentum 
of the molecule is 2mvx before the collision and 1mvx afterward, the change in its 
momentum is

Dpx 5 mvx 2 (2mvx) 5 2mvx

If F1 is the magnitude of the average force exerted by a molecule on the wall in the 
time Dt, then applying Newton’s second law to the wall gives

F1 5
Dpx
Dt

5
2mvx

Dt

For the molecule to make two collisions with the same wall, it must travel a dis-
tance 2d along the x -direction in a time Dt. Therefore, the time interval between 
two collisions with the same wall is Dt 5 2d/vx, and the force imparted to the wall 
by a single molecule is

F1 5
2mvx

Dt
5

2mvx

2d/vx
5

mvx
2

d

The total force F exerted by all the molecules on the wall is found by adding the 
forces exerted by the individual molecules:

F 5
m
d

 1v1x
2 1 v2x

2 1 # # # 2
In this equation v1x is the x-component of velocity of molecule 1, v2x is the 
x- component of velocity of molecule 2, and so on. The summation terminates 
when we reach N molecules because there are N molecules in the container.

Note that the average value of the square of the velocity in the x -direction for N 
molecules is

vx
2 5

v1x
2 1 v2x

2 1 # # # 1 vNx
2

N

where vx
2 is the average value of vx

2. The total force on the wall can then be  
written

F 5
Nm
d

 vx
2

Now we focus on one molecule in the container traveling in some arbitrary direc-
tion with velocity vS  and having components vx, vy, and vz. In this case we must express 
the total force on the wall in terms of the speed of the molecules rather than just a 
single component. The Pythagorean theorem relates the square of the speed to the 
square of these components according to the expression v2 5 vx

2 1 vy
2 1 vz

2. Hence, 
the average value of v2 for all the molecules in the container is related to the aver-
age values vx

2, vy
2, and vz

2 according to the expression v2 5 vx
2 1 vy

2 1 vz
2. Because  

the motion is completely random, the average values vx
2, vy

2, and vz
2 are equal to each 

other. Using this fact and the earlier equation for vx
2, we find that

vx
2 5 1

3 v 2

The total force on the wall, then, is

F 5
N
3

 amv
2

d
b

d

d d
z x

y

m
vx

vS

A gas molecule moves at 
velocity v toward a wall.S

Figure 10.13  A cubical box with 
sides of length d containing an ideal 
gas. 

+vx

–vx

Before collision

After collision

Figure 10.14  A molecule moving 
along the x -axis in a container col-
lides elastically with a wall, reversing 
its momentum and exerting a force 
on the wall.

The glass vessel contains dry ice 
(solid carbon dioxide). Carbon diox-
ide gas is denser than air, hence falls 
when poured from the cylinder. The 
gas is colorless, but is made visible 
by the formation of tiny ice crystals 
from water vapor.
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This expression allows us to find the total pressure exerted on the wall by dividing 
the force by the area:

P 5
F
A

5
F
d2 5 1

3a
N
d3 mv 2b 5 1

3a
N
V
bmv 2

P 5 2
3a

N
V
b 11

2mv
2 2  [10.13]

Equation 10.13 says that the pressure is proportional to the number of mole-
cules per unit volume and to the average translational kinetic energy of a mol-
ecule, 12mv2. With this simplified model of an ideal gas, we have arrived at an 
important result that relates the large-scale quantity of pressure to an atomic 
quantity: the average value of the square of the molecular speed. This relation-
ship provides a key link between the atomic world and the large-scale world.

Equation 10.13 captures some familiar features of pressure. One way to increase 
the pressure inside a container is to increase the number of molecules per unit 
volume in the container. You do this when you add air to a tire. The pressure in the 
tire can also be increased by increasing the average translational kinetic energy 
of the molecules in the tire. As we will see shortly, this can be accomplished by 
increasing the temperature of the gas inside the tire. That’s why the pressure 
inside a tire increases as the tire warms up during long trips. The continuous flex-
ing of the tires as they move along the road transfers energy to the air inside them, 
increasing the air’s temperature, which in turn raises the pressure.

 Pressure of an ideal gas c

 ■ e Xa Mp Le  10.9 High-Energy Electron Beam

g Oa L  Calculate the pressure of an electron particle beam.

pr Ob Le M  A beam of electrons moving in the positive x -direction impacts a target in a vacuum chamber. (a) If  
1.25 3 1014 electrons traveling at a speed of 3.00 3 107 m/s strike the target during each brief pulse lasting 5.00 3 1028 s,  
what average force is exerted on the target during the pulse? Assume all the electrons penetrate the target and are 
absorbed. (b) What average pressure is exerted on the beam spot, which has radius 4.00 mm? Note: The beam spot is the 
region of the target struck by the beam.

s t r at e g Y  The average force exerted by the target on an electron is the change in electron’s momentum divided by 
the time required to bring the electron to rest. By the third law, an equal and opposite force is exerted on the target. 
During the pulse, N such collisions take place in a total time Dt, so multiplying the negative of a single electron’s change 
in momentum by N and dividing by the pulse duration Dt gives the average force exerted on the target during the pulse. 
Dividing that force by the area of the beam spot yields the average pressure on the beam spot.

s OLUti On
(a) The force on the target is equal to the negative of the 
change in momentum of each electron multiplied by the 
number N of electrons and divided by the pulse duration:

F 5 2
NDp

Dt

Substitute the expression Dp 5 mvf 2mvi and note that  
vf 5 0 by assumption:

F 5 2
N 1mvf 2 mvi 2

Dt
5 2

Nm 10 2 vi 2
Dt

Substitute values: F 5 2
11.25 3 1014 2 19.11 3 10231 kg 2 10 2 3.00 3 107 m/s 2

15.00 3 1028 s 2
5    0.068 3 N

(b) Calculate the pressure of the beam.

Use the definition of average pressure, the force divided 
by area:

P 5
F
A

5
F

pr 2 5
0.068 3 N

p 10.004 00 m 22

5   1.36 3 103 Pa
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re Mar Ks  High-energy electron beams  can be used for welding and shock strengthening of materials. Relativistic 
effects (see Chapter 26) were neglected in this calculation, and would be relatively small in any case at a tenth the speed 
of light. This example illustrates how numerous collisions by atomic or, in this case, subatomic particles can result in mac-
roscopic physical effects such as forces and pressures.

QUes t i On  10.9  If the same beam were directed at a material that reflected all the electrons, how would the final pres-
sure be affected?

e Xe rc i s e  10.9  A beam of protons traveling at 2.00 3 106 m/s strikes a target during a brief pulse that lasts 7.40 3 1029 s.  
(a) If there are 4.00 3 109 protons in the beam and all are assumed to be reflected elastically, what force is exerted on the 
target? (b) What average pressure is exerted on the beam spot, which has radius of 2.00 mm?

a ns We r s  (a) 0.003 61 N (b) 287 Pa

Molecular Interpretation of Temperature
Having related the pressure of a gas to the average kinetic energy of the gas mol-
ecules, we now relate temperature to a microscopic description of the gas. We can 
obtain some insight into the meaning of temperature by multiplying Equation 
10.13 by the volume:

PV 5 2
3 N 11

2mv 2 2
Comparing this equation with the equation of state for an ideal gas in the form of 
Equation 10.11, PV 5 NkBT, we note that the left-hand sides of the two equations 
are identical. Equating the right-hand sides, we obtain

 T 5
2

3kB

11
2mv 2 2  [10.14]

This means that the temperature of a gas is a direct measure of the average 
molecular kinetic energy of the gas. As the temperature of a gas increases, the 
molecules move with higher average kinetic energy.

Rearranging Equation 10.14, we can relate the translational molecular kinetic 
energy to the temperature:

 1
2mv 2 5 3

2kBT  [10.15]

So the average translational kinetic energy per molecule is 3
2kBT . The total trans-

lational kinetic energy of N molecules of gas is simply N times the average energy 
per molecule,

 KEtotal 5 N 11
2mv

2 2 5 3
2NkBT 5 3

2nRT  [10.16]

where we have used kB 5 R/NA for Boltzmann’s constant and n 5 N/NA for the 
number of moles of gas. From this result, we see that the total translational kinetic 
energy of a system of molecules is proportional to the absolute temperature of 
the system.

For a monatomic gas, translational kinetic energy is the only type of energy 
the molecules can have, so Equation 10.16 gives the internal energy U for a mona-
tomic gas:

 U 5 3
2nRT  (monatomic gas) [10.17]

For diatomic and polyatomic molecules, additional possibilities for energy storage 
are available in the vibration and rotation of the molecule.

b  Temperature is proportional 
to the average kinetic energy

b  Average kinetic energy per 
molecule

b  Total kinetic energy of  
N molecules
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The square root of v 2  is called the root-mean-square (rms) speed of the mol-
ecules. From Equation 10.15, we get, for the rms speed,

 vrms 5 "v2 5 Å
3kBT
m

5 Å
3RT
M

 [10.18]

where M is the molar mass in kilograms per mole, if R is given in SI units. Equation 
10.18 shows that, at a given temperature, lighter molecules tend to move faster 
than heavier molecules. For example, if gas in a vessel consists of a mixture of 
hydrogen and oxygen, the hydrogen (H2) molecules, with a molar mass of 2.0 3 
1023 kg/mol, move four times faster than the oxygen (O2) molecules, with molar 
mass 32 3 1023 kg/mol. If we calculate the rms speed for hydrogen at room tem-
perature (,300 K), we find

v rms 5 Å
3RT
M

5 Å
3 18.31 J/mol # K 2 1300 K 2

2.0 3 1023 kg/mol
5 1.9 3 103 m/s

This speed is about 17% of the escape speed for Earth, as calculated in  
Chapter 7. Because it is an average speed, a large number of molecules have much 
higher speeds and can therefore escape from Earth’s atmosphere. This is why Earth’s 
atmosphere doesn’t currently contain hydrogen: it has all bled off into space.

Table 10.2 lists the rms speeds for various molecules at 20°C. A system of gas 
at a given temperature will exhibit a variety of speeds. This distribution of speeds 
is known as the Maxwell velocity distribution. An example of such a distribution for 
nitrogen gas at two different temperatures is given in Figure 10.15. The horizontal 
axis is speed, and the vertical axis is the number of molecules per unit speed. 
Notice that three speeds are of special interest: the most probable speed, corre-
sponding to the peak in the graph; the average speed, which is found by aver-
aging over all the possible speeds; and the rms speed. For every gas, note that  
vmp , vav , vrms. As the temperature rises, these three speeds shift to the right.

■ Quick Quiz

10.6  One container is filled with argon gas and another with helium gas. Both 
containers are at the same temperature. Which atoms have the higher rms speed? 
(a) argon, (b) helium, (c) they have the same speed, or (d) not enough information 
to say.

Root-mean-square speed c

t able 10.2  Some rms Speeds

vrms at
 Molar Mass 20°C
Gas (kg/mol) (m/s)

H2 2.02 3 1023 1 902
He 4.0 3 1023 1 352
H2O 18 3 1023 637
Ne 20.2 3 1023 602
N2 and 
 CO 28.0 3 1023 511
NO 30.0 3 1023 494
O2 32.0 3 1023 478
CO2 44.0 3 1023 408
SO2 64.1 3 1023 338

t ip 10.4  Kilograms Per 
Mole, Not Grams Per Mole
In the equation for the rms speed, 
the units of molar mass M must 
be consistent with the units of 
the gas constant R. In particu-
lar, if R is in SI units, M must be 
expressed in kilograms per mole, 
not grams per mole.
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equal to N, the total number of 
molecules. In this case, N � 105.

Note that vmp � vav � vrms.

vav

Figure 10.15
The Maxwell speed distribution for 
105 nitrogen molecules at 300 K and 
900 K.
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 ■ e Xa Mp Le  10.10 A Cylinder of Helium

g Oa L  Calculate the internal energy of a system and the average kinetic energy per molecule.

pr Ob Le M  A cylinder contains 2.00 mol of helium gas at 20.0°C. Assume the helium behaves like an ideal gas. (a) Find 
the total internal energy of the system. (b) What is the average kinetic energy per molecule? (c) How much energy would 
have to be added to the system to double the rms speed? The molar mass of helium is equal to 4.00 3 1023 kg/mol.

s t r at e g Y  This problem requires substitution of given information into the appropriate equations: Equation 10.17 for 
part (a) and Equation 10.15 for part (b). In part (c) use the equations for the rms speed and internal energy together. A 
change in the internal energy must be computed.

s OLUti On

 ■ a pp LYi ng  ph Ys ic s  10.2 Expansion and Temperature

Imagine a gas in an insulated cylinder with a movable pis-
ton. The piston has been pushed inward, compressing the 
gas, and is now released. As the molecules of the gas strike 
the piston, they move it outward. Explain, from the point 
of view of the kinetic theory, how the expansion of this gas 
causes its temperature to drop.

e Xp La n at i On   From the point of view of kinetic theory, 
a molecule colliding with the piston causes the piston to 

move with some velocity. According to the conservation of 
momentum, the molecule must rebound with less speed 
than it had before the collision. As these collisions occur, 
the average speed of the collection of molecules is there-
fore reduced. Because temperature is related to the aver-
age speed of the molecules, the temperature of the gas 
drops. 

(a) Find the total internal energy of the system.

Substitute values into Equation 10.17 with n 5 2.00 and  
T 5 293 K:

U 5 3
2 12.00 mol 2 18.31 J/mol # K 2 1293 K 2 5   7.30 3 103 J

(b) What is the average kinetic energy per molecule?

Substitute given values into Equation 10.15: 1
2mv 2 5 3

2kBT 5 3
2 11.38 3 10223 J/K 2 1293 K 2

5   6.07 3 10221 J

(c) How much energy must be added to double the rms 
speed?

From Equation 10.18, doubling the rms speed requires 
quadrupling T. Calculate the required change of inter-
nal energy, which is the energy that must be put into the 
system:

DU 5 Uf 2 Ui 5 3
2nRTf 2 3

2nRTi 5 3
2nR 1Tf 2 Ti 2

DU 5 3
2 12.00 mol 2 18.31 J/mol # K 2 3 14.00 3 293 K 2 2 293 K 4

5   2.19 3 104 J

re Mar Ks  Computing changes in internal energy will be important in understanding engine cycles in Chapter 12.

QUes t i On  10.10  True or False: At the same temperature, 1 mole of helium gas has the same internal energy as 1 mole 
of argon gas.

e Xe rc i s e  10.10  The temperature of 5.00 moles of argon gas is lowered from 3.00 3 102 K to 2.40 3 102 K. (a) Find the 
change in the internal energy, DU, of the gas. (b) Find the change in the average kinetic energy per atom.

a ns We r s  (a) DU 5 23.74 3 103 J (b) 21.24 3 10221 J

 ■ s UMMar Y

10.1   Temperature and the Zeroth  
Law of Thermodynamics

Two systems are in thermal contact if energy can be 
exchanged between them, and in thermal equilibrium if 
they’re in contact and there is no net exchange of energy. 
The exchange of energy between two objects because of 
differences in their temperatures is called heat.

The zeroth law of thermodynamics states that if two 
objects A and B are separately in thermal equilibrium 
with a third object, then A and B are in thermal equilib-
rium with each other. Equivalently, if the third object is 
a thermometer, then the temperature it measures for A 
and B will be the same. Two objects in thermal equilib-
rium are at the same temperature.
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10.4  Macroscopic Description of an Ideal Gas
Avogadro’s number is NA 5 6.02 3 1023 particles/mol. A 
mole of anything, by definition, consists of an Avogadro’s 
number of particles. The number is defined so that one 
mole of carbon-12 atoms has a mass of exactly 12 g. The 
mass of one mole of a pure substance in grams is the same, 
numerically, as that substance’s atomic (or molecular) mass.

An ideal gas obeys the equation

 PV 5 nRT [10.8]

where P is the pressure of the gas, V is its volume, n is the 
number of moles of gas, R is the universal gas constant 
(8.31 J/mol ? K), and T is the absolute temperature in kel-
vins. A real gas at very low pressures behaves approximately 
as an ideal gas.

Solving problems usually entails comparing two differ-
ent states of the same system of gas, dividing the ideal gas 
equation for the final state by the ideal gas equation for 
the initial state, canceling factors that don’t change, and 
solving for the unknown quantity.

10.5  The Kinetic Theory of Gases
The pressure of N molecules of an ideal gas contained in a 
volume V is given by

P 5
2
3 a

N
V
b 11

2 mv2 2  [10.13]

where 1
2mv 2  is the average kinetic energy per molecule.

The average kinetic energy of the molecules of a gas is 
directly proportional to the absolute temperature of the 
gas:

 1
2mv 2 5 3

2kBT  [10.15]

The quantity kB is Boltzmann’s constant (1.38 3 10223 J/K).
The internal energy of n moles of a monatomic ideal gas is

 U 5 3
2nRT  [10.17]

The root-mean-square (rms) speed of the molecules of a 
gas is

 vrms 5 Å
3kBT
m 5 Å

3RT
M

 [10.18]

10.2  Thermometers and Temperature Scales
Thermometers measure temperature and are based on 
physical properties, such as the temperature-dependent 
expansion or contraction of a solid, liquid, or gas. These 
changes in volume are related to a linear scale, the most 
common being the Fahrenheit, Celsius, and Kelvin scales. 
The Kelvin temperature scale takes its zero point as abso-
lute zero (0 K 5 2273.15°C), the point at which, by extrap-
olation, the pressure of all gases falls to zero.

The relationship between the Celsius temperature TC

and the Kelvin (absolute) temperature T is

 TC 5 T 2 273.15 [10.1]

 The relationship between the Fahrenheit and Celsius 
temperatures is

 TF 5 9
5TC 1 32 [10.2a]

10.3  Thermal Expansion of Solids and Liquids
Ordinarily a substance expands when heated. If an object 
has an initial length L0 at some temperature and under-
goes a change in temperature DT, its linear dimension 
changes by the amount DL, which is proportional to the 
object’s initial length and the temperature change:

 DL 5 aL0 DT [10.4]

The parameter a is called the coefficient of linear expan-
sion. The change in area of a substance with change in 
temperature is given by

 DA 5 gA0 DT [10.5]

where g 5 2a is the coefficient of area expansion. Simi-
larly, the change in volume with temperature of most sub-
stances is proportional to the initial volume V0 and the 
temperature change DT :

 DV 5 bV0 DT [10.6]

where b 5 3a is the coefficient of volume expansion.
 The expansion and contraction of material due to 
changes in temperature create stresses and strains, some-
times sufficient to cause fracturing.

 ■ Wa r M-Up eX e rc i s e s

The warm-up exercises in this chapter may be assigned online in Enhanced WebAssign.

1. Math Review A meterologist is inflating a spherical bal-
loon to carry an instrument package aloft. If the bal-
loon’s radius increases from 0.200 m to 0.500 m, what is 
the ratio of its final volume to its initial volume?

 2. Physics Review A baseball player hits a 0.142-kg ball 
into the air at a speed of 25.0 m/s and angle of 30.0°. 
Neglecting air drag, what is (a) the initial velocity of the 
ball in the x -direction? (b) In the y -direction? (c) What 
is the ball’s initial kinetic energy? (See Section 3.4.)

 3. On a very cold day in upstate New York, the tempera-
ture is 225.0°C. What is the equivalent temperature on 
(a) the Fahrenheit scale and (b) the Kelvin scale? (See 
Section 10.2.)

 4. An electrician is wiring new electrical outlets in a house 
and has stored a 50.0-m length of copper wire outside 
where the temperature is 215.0°C. When the wire is 
brought inside and warmed to 23.0°C, by what amount 
in centimeters will the wire’s length increase due to the 
temperature change? (See Section 10.3.)
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8. A container holds 0.500 m3 of oxygen at an absolute 
pressure of 4.00 atm. A valve is opened, allowing the 
gas to drive a piston, increasing the volume of the gas 
until the pressure drops to 1.00 atm. If the tempera-
ture remains constant, what new volume does the gas 
occupy? (See Section 10.4.)

 9. Suppose 26.0 g of neon gas are stored in a tank at a 
temperature of 152°C. (a) What is the temperature 
of the gas on the Kelvin scale? (See Section 10.2.)  
(b) How many moles of gas are in the tank? (See Sec-
tion 10.4.) (c) What is the internal energy of the gas? 
(See Section 10.5.)

 10. (a) What is the average kinetic energy per molecule of 
helium gas at 20.0°C? (b) What is the root mean square 
speed of a helium atom at that same temperature? (See 
Section 10.5.)

 5. A chef moves a copper saucepan of radius 10.0 cm 
from a 21.0°C shelf and places it on a 129°C stove.  
(a) Determine the coefficient of area expansion for  
copper. (b) Calculate the change in the saucepan’s area 
after it has come to thermal equilibrium with the stove. 
(See Section 10.3.)

 6. A cylinder of volume 50.0 cm3 made of Pyrex® glass is 
full to the brim with acetone. If the cylinder and acetone 
are warmed by 30.0°C, (a) what is the change in volume 
of the glass? (b) Of the acetone? (c) Will any acetone 
spill out of the cylinder? (See Section 10.3.)

 7. One way to cool a gas is to let it expand. When a cer-
tain gas under a pressure of 5.00 3 106 Pa at 25.0°C is 
allowed to expand to 3.00 times its original volume, its 
final pressure is 1.07 3 106 Pa. (a) What is the initial 
temperature of the gas in Kelvin? (b) What is the final 
temperature of the system? (See Section 10.4.)

  the food, they notice that the bags of chips are puffed 
up like balloons. Why did this happen?

 10. Why do small planets tend to have little or no 
atmosphere?

 11. Metal lids on glass jars can often be loosened by run-
ning hot water over them. Why does that work?

 12. Suppose the volume of an ideal gas is doubled while 
the pressure is reduced by half. Does the internal 
energy of the gas increase, decrease, or remain the 
same? Explain.

 13. An automobile radiator is filled to the brim with water 
when the engine is cool. What happens to the water 
when the engine is running and the water has been 
raised to a high temperature?

 14. When the metal ring and metal sphere in Figure 
CQ10.14 are both at room temperature, the sphere can 
barely be passed through the ring. (a) After the sphere 
is warmed in a flame, it cannot be passed through the  
ring. Explain. (b) What if the ring is warmed and  
the sphere is left at room temperature? Does the 
sphere pass through the ring?

 1. (a) Why does an ordinary glass dish usually break when 
placed on a hot stove? (b) Dishes made of Pyrex glass 
don’t break as easily. What characteristic of Pyrex pre-
vents breakage?

 2. Why is a power line more likely to break in winter than 
in summer, even if it is loaded with the same weight?

 3. Some thermometers are made of a mercury column in 
a glass tube. Based on the operation of these common 
thermometers, which has the larger coefficient of linear 
expansion, glass or mercury? (Don’t answer this ques-
tion by looking in a table.)

 4. A rubber balloon is blown up and the end tied. Is the 
pressure inside the balloon greater than, less than, or 
equal to the ambient atmospheric pressure? Explain.

 5. Objects deep beneath the surface of the ocean are sub-
jected to extremely high pressures, as we saw in Chapter 
9. Some bacteria in these environments have adapted 
to pressures as much as a thousand times atmospheric 
pressure. How might such bacteria be affected if they 
were rapidly moved to the surface of the ocean?

 6. After food is cooked in a pressure cooker, why is it very 
important to cool the container with cold water before 
attempting to remove the lid?

 7. Why do vapor bubbles in a pot of boiling water get 
larger as they approach the surface?

 8. Markings to indicate length are placed on a steel tape in 
a room that is at a temperature of 22°C. Measurements 
are then made with the same tape on a day when the 
temperature is 27°C. Are the measurements too long, 
too short, or accurate?

 9. Some picnickers stop at a convenience store to buy food, 
including bags of potato chips. They then drive up into 
the mountains to their picnic site. When they unload 

 ■ c On ce p t Ua L QUes t i Ons

The conceptual questions in this chapter may be assigned online in Enhanced WebAssign.
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10.1   Temperature and the Zeroth  
Law of Thermodynamics

10.2  Thermometers and Temperature Scales

1. For each of the following temperatures, find the equiva-
lent temperature on the indicated scale: (a) 2273.15°C 
on the Fahrenheit scale, (b) 98.6°F on the Celsius scale, 
and (c) 100 K on the Fahrenheit scale.

 2. The pressure in a constant-volume gas thermometer 
is 0.700 atm at 100°C and 0.512 atm at 0°C. (a) What 
is the temperature when the pressure is 0.040 0 atm? 
(b) What is the pressure at 450°C?

 3. The boiling point of liquid hydrogen is 20.3 K at atmo-
spheric pressure. What is this temperature on (a) the 
Celsius scale and (b) the Fahrenheit scale?

 4. W Death Valley holds the record for the high-
est recorded temperature in the United States. On  
July 10, 1913, at a place called Furnace Creek Ranch, 
the temperature rose to 134°F. The lowest U.S. temper-
ature ever recorded occurred at Prospect Creek Camp 
in Alaska on January 23, 1971, when the temperature 
plummeted to 279.8° F. (a)  Convert these tempera-
tures to the Celsius scale. (b) Convert the Celsius tem-
peratures to Kelvin.

 5. Show that the temperature 240° is unique in that  
it has the same numerical value on the Celsius and 
Fahrenheit scales.

 6. In a student experiment, a constant-volume gas 
thermometer is calibrated in dry ice (278.5°C) and in 
boiling ethyl alcohol (78.0°C). The separate pressures 
are 0.900 atm and 1.635 atm. (a) What value of abso-
lute zero in degrees Celsius does the calibration yield? 
(b) What pressures would be found at (b) the freezing 
and (c) boiling points of water? Hint: Use the linear 
relationship P 5 A 1 BT, where A and B are constants.

 7. Show that if the temperature on the Celsius scale 
changes by DTC, the Fahrenheit temperature changes 
by DTF 5

9
5 DTC

8. The temperature difference between the inside and 
the outside of a home on a cold winter day is 57.0°F. 
Express this difference on (a) the Celsius scale and 
(b) the Kelvin scale.

9. A nurse measures the temperature of a patient  
to be 41.5°C. (a) What is this temperature on the  
Fahrenheit scale? (b) Do you think the patient is seri-
ously ill? Explain.

 10. Temperature differences on the Rankine scale are 
identical to differences on the Fahrenheit scale, but 
absolute zero is given as 0°R. (a) Find a relationship 
converting the temperatures TF  of the Fahrenheit scale 
to the corresponding temperatures TR of the Rankine 
scale. (b) Find a second relationship converting tem-
peratures TR of the Rankine scale to the temperatures 
TK of the Kelvin scale.

10.3  Thermal Expansion of Solids and Liquids

11. The New River Gorge bridge in West Virginia is a 
518-m-long steel arch. How much will its length change 
between temperature extremes of 220°C and 35°C?

 12. A grandfather clock is controlled by a swinging 
brass pendulum that is 1.3 m long at a temperature 
of 20°C. (a) What is the length of the pendulum rod 
when the temperature drops to 0.0°C? (b) If a pendu-
lum’s period is given by T 5 2p!L/g , where L is its 
length, does the change in length of the rod cause the 
clock to run fast or slow?

 13. A pair of eyeglass frames are made of epoxy plastic 
(coefficient of linear expansion 5 1.30 3 1024 °C21). At 
room temperature (20.0°C), the frames have circular 
lens holes 2.20 cm in radius. To what temperature must 
the frames be heated if lenses 2.21 cm in radius are to 
be inserted into them?

 14. A spherical steel ball bearing has a diameter of 
2.540  cm at 25.00°C. (a) What is its diameter when 
its temperature is raised to 100.0°C? (b) What tem-
perature change is required to increase its volume by 
1.000%?

 15. A brass ring of diameter 10.00 cm at 20.0°C is heated 
and slipped over an aluminum rod of diameter 
10.01 cm at 20.0°C. Assuming the average coefficients 
of linear expansion are constant, (a) to what tempera-
ture must the combination be cooled to separate the 
two metals? Is that temperature attainable? (b) What if 
the aluminum rod were 10.02 cm in diameter?

 ■ pr Ob Le Ms

denotes biomedical problems

denotes guided problems

denotes Master It tutorial available in Enhanced WebAssign

denotes asking for quantitative and conceptual reasoning

denotes symbolic reasoning problem

W denotes Watch It video solution available in Enhanced WebAssign

The problems in this chapter may be assigned online in 
Enhanced WebAssign. 
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1. denotes full solution available in Student Solutions Manual/ 
Study Guide

1. denotes problems most often assigned in Enhanced WebAssign
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23. The band in Figure P10.23 is stainless 
steel (coefficient of linear expansion 5 
17.3 3 1026 °C21; Young’s modulus 5 
18 3 1010 N/m2). It is essentially circular 
with an initial mean radius of 5.0 mm, 
a height of 4.0 mm, and a thickness of 
0.50 mm. If the band just fits snugly 
over the tooth when heated to a tem-
perature of 80°C, what is the tension in 
the band when it cools to a temperature of 37°C?

 24. The Trans-Alaskan pipeline is 1 300 km long, 
reaching from Prudhoe Bay to the port of Valdez, 
and is subject to temperatures ranging from 273°C to 
135°C. (a) How much does the steel pipeline expand 
due to the difference in temperature? (b) How can one 
compensate for this expansion?

 25. The average coefficient of volume expansion for car-
bon tetrachloride is 5.81 3 1024 (°C)21. If a 50.0-gal 
steel container is filled completely with carbon tetra-
chloride when the temperature is 10.0°C, how much 
will spill over when the temperature rises to 30.0°C?

 26.   The density of gasoline is 7.30 3 102 kg/m3 at 
0°C. Its average coefficient of volume expansion is  
9.60 3 1024(°C)21, and note that 1.00 gal 5 0.003 80 m3. 
(a) Calculate the mass of 10.0 gal of gas at 0°C. (b) If 
1.000 m3 of gasoline at 0°C is warmed by 20.0°C, cal-
culate its new volume. (c) Using the answer to part  
(b), calculate the density of gasoline at 20.0°C. (d) Calcu-
late the mass of 10.0 gal of gas at 20.0°C. (e) How many 
extra kilograms of gasoline would you get if you bought 
10.0 gal of gasoline at 0°C rather than at 20.0°C from a 
pump that is not temperature compensated?

 27. Figure P10.27 shows a circular 
steel casting with a gap. If the 
casting is heated, (a) does the 
width of the gap increase or 
decrease? (b) The gap width is 
1.600 cm when the temperature is 
30.0°C. Determine the gap width 
when the temperature is 190°C.

 28. W  The concrete sections of a 
certain superhighway are designed to have a length of 
25.0 m. The sections are poured and cured at 10.0°C. 
What minimum spacing should the engineer leave 
between the sections to eliminate buckling if the con-
crete is to reach a temperature of 50.0°C?

10.4  Macroscopic Description of an Ideal Gas

 29. One mole of oxygen gas is at a pressure of 6.00 atm 
and a temperature of 27.0°C. (a) If the gas is heated at 
constant volume until the pressure triples, what is the 
final temperature? (b) If the gas is heated so that both 
the pressure and volume are doubled, what is the final 
temperature?

16. A solid substance has a density r0 at a tempera-
ture T0. If its temperature is increased by an amount  
DT, show that its density at the higher temperature is 
given by

r 5
r0

1 1 bDT

 17. Lead has a density of 11.3 3 103 kg/m3 at 0°C. 
(a) What is the density of lead at 90°C? (b) Based on 
your answer to part (a), now consider a situation in 
which you plan to invest in a gold bar. Would you be 
better off buying it on a warm day? Explain.

 18. The Golden Gate Bridge in San Francisco has 
a main span of length 1.28 km, one of the longest in 
the world. Imagine that a steel wire with this length 
and a cross-sectional area of 4.00 3 1026 m2 is laid on 
the bridge deck with its ends attached to the towers  
of the bridge, on a summer day when the tempera-
ture of the wire is 35.0°C. (a) When winter arrives, 
the towers stay the same distance apart and the bridge 
deck keeps the same shape as its expansion joints 
open. When the temperature drops to 210.0°C, what 
is the tension in the wire? Take Young’s modulus for 
steel to be 20.0 3 1010 N/m2. (b) Permanent deforma-
tion occurs if the stress in the steel exceeds its elastic 
limit of 3.00 3 108 N/m2. At what temperature would 
the wire reach its elastic limit? (c) Explain how your 
answers to (a) and (b) would change if the Golden 
Gate Bridge were twice as long.

 19.  An underground gasoline tank can hold 1.00 3 103

gallons of gasoline at 52.0°F. If the tank is being filled 
on a day when the outdoor temperature (and the gaso-
line in a tanker truck) is 95.0°F, how many gallons from 
the truck can be poured into the tank? Assume the 
temperature of the gasoline quickly cools from 95.0°F 
to 52.0°F upon entering the tank.

 20. Show that the coefficient of volume expansion, 
b, is related to the coefficient of linear expansion, a, 
through the expression b 5 3a.

 21. A hollow aluminum cylinder 20.0 cm deep has an inter-
nal capacity of 2.000 L at 20.0°C. It is completely filled 
with turpentine at 20.0°C. The turpentine and the alu-
minum cylinder are then slowly warmed together to 
80.0°C. (a) How much turpentine overflows? (b) What 
is the volume of the turpentine remaining in the cylin-
der at 80.0°C? (c) If the combination with this amount 
of turpentine is then cooled back to 20.0°C, how far 
below the cylinder’s rim does the turpentine’s surface 
recede?

 22. A construction worker uses a steel tape to measure 
the length of an aluminum support column. If the 
measured length is 18.700 m when the temperature is 
21.2°C, what is the measured length when the tempera-
ture rises to 29.4°C? Note: Don’t neglect the expansion 
of the tape.

Figure p 10.23

Figure p 10.27
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38.  The ideal gas law can be recast in terms of the 
density of a gas. (a) Use dimensional analysis to find an 
expression for the density r of a gas in terms of the 
number of moles n, the volume V, and the molecular 
weight M in kilograms per mole. (b) With the expres-
sion found in part (a), show that

P 5
r

M
 RT

  for an ideal gas. (c) Find the density of the carbon diox-
ide atmosphere at the surface of Venus, where the pres-
sure is 90.0 atm and the temperature is 7.00 3 102 K. 
(d) Would an evacuated steel shell of radius 1.00 m and 
mass 2.00 3 102 kg rise or fall in such an atmosphere? 
Why?

10.5  The Kinetic Theory of Gases

 39. W  What is the average kinetic energy of a molecule 
of oxygen at a temperature of 300 K?

 40. A sealed cubical container 20.0 cm on a side contains 
three times Avogadro’s number of molecules at a tem-
perature of 20.0°C. Find the force exerted by the gas 
on one of the walls of the container.

 41. Use Avogadro’s number to find the mass of a helium 
atom.

 42. Two gases in a mixture pass through a filter at rates 
proportional to the gases’ rms speeds. (a) Find the 
ratio of speeds for the two isotopes of chlorine, 35Cl 
and 37Cl, as they pass through the air. (b) Which iso-
tope moves faster?

 43. At what temperature would the rms speed of  
helium atoms equal (a) the escape speed from 
Earth, 1.12 3 104 m/s and (b) the escape speed from 
the Moon, 2.37 3 103 m/s? (See Chapter 7 for a dis-
cussion of escape speed.) Note: The mass of a helium 
atom is 6.64 3 10227 kg.

 44. A 7.00-L vessel contains 3.50 moles of ideal gas at 
a pressure of 1.60 3 106 Pa. Find (a) the temperature 
of the gas and (b) the average kinetic energy of a gas 
molecule in the vessel. (c) What additional informa-
tion would you need if you were asked to find the aver-
age speed of a gas molecule?

 45. Superman leaps in front of Lois Lane to save her from 
a volley of bullets. In a 1-minute interval, an automatic 
weapon fires 150 bullets, each of mass 8.0 g, at 400 m/s. 
The bullets strike his mighty chest, which has an area 
of 0.75 m2. Find the average force exerted on Super-
man’s chest if the bullets bounce back after an elastic, 
head-on collision.

 46. In a period of 1.0 s, 5.0 3 1023 nitrogen molecules 
strike a wall of area 8.0 cm2. If the molecules move 
at 300 m/s and strike the wall head-on in a perfectly 
elastic collision, find the pressure exerted on the wall. 
(The mass of one N2 molecule is 4.68 3 10226 kg.)

30.   A 20.0-L tank of carbon dioxide gas (CO2) is at a 
pressure of 9.50 3 105 Pa and temperature of 19.0°C. 
(a) Calculate the temperature of the gas in Kelvin. 
(b)  Use the ideal gas law to calculate the number of 
moles of gas in the tank. (c) Use the periodic table 
to compute the molecular weight of carbon dioxide, 
expressing it in grams per mole. (d) Obtain the num-
ber of grams of carbon dioxide in the tank. (e) A fire 
breaks out, raising the ambient temperature by 224.0 K 
while 82.0 g of gas leak out of the tank. Calculate the 
new temperature and the number of moles of gas 
remaining in the tank. (f) Using a technique analo-
gous to that in Example 10.6b, find a symbolic expres-
sion for the final pressure, neglecting the change in 
volume of the tank. (g) Calculate the final pressure in 
the tank as a result of the fire and leakage.

 31. (a) An ideal gas occupies a volume of 1.0 cm3 at 20°C 
and atmospheric pressure. Determine the number of 
molecules of gas in the container. (b) If the pressure 
of the 1.0-cm3 volume is reduced to 1.0 3 10211  Pa 
(an extremely good vacuum) while the temperature 
remains constant, how many moles of gas remain in 
the container?

 32. An automobile tire is inflated with air originally at 
10.0°C and normal atmospheric pressure. During the 
process, the air is compressed to 28.0% of its original 
volume and the temperature is increased to 40.0°C. 
(a) What is the tire pressure in pascals? (b) After the 
car is driven at high speed, the tire’s air temperature 
rises to 85.0°C and the tire’s interior volume increases 
by 2.00%. What is the new tire pressure (absolute) in 
pascals?

 33. Gas is confined in a tank at a pressure of 11.0 atm and 
a temperature of 25.0°C. If two-thirds of the gas is with-
drawn and the temperature is raised to 75.0°C, what is 
the new pressure of the gas remaining in the tank?

 34. Gas is contained in an 8.00-L vessel at a temperature of 
20.0°C and a pressure of 9.00 atm. (a) Determine the 
number of moles of gas in the vessel. (b) How many 
molecules are in the vessel?

 35. W A weather balloon is designed to expand to a max-
imum radius of 20 m at its working altitude, where the 
air pressure is 0.030 atm and the temperature is 200 K. 
If the balloon is filled at atmospheric pressure and 
300 K, what is its radius at liftoff?

 36. The density of helium gas at 0°C is r0 5 0.179 kg/m3. 
The temperature is then raised to T 5 100°C, but the 
pressure is kept constant. Assuming the helium is an 
ideal gas, calculate the new density rf of the gas.

 37. An air bubble has a volume of 1.50 cm3 when it is 
released by a submarine 100 m below the surface of a 
lake. What is the volume of the bubble when it reaches 
the surface? Assume the temperature and the number 
of air molecules in the bubble remain constant during 
its ascent.
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54.  A vertical cylinder of 
cross-sectional area A is fitted 
with a tight-fitting, frictionless 
piston of mass m (Fig. P10.54). 
(a) If n moles of an ideal gas 
are in the cylinder at a temper-
ature of T, use Newton’s second 
law for equilibrium to show that 
the height h at which the piston 
is in equilibrium under its own 
weight is given by

h 5
nRT

mg 1 P0A

where P0 is atmospheric pres-
sure. (b) Is the pressure inside the cylinder less than, 
equal to, or greater than atmospheric pressure? (c) If 
the gas in the cylinder is warmed, how would the 
answer for h be affected?

 55. A flask made of Pyrex is calibrated at 20.0°C. It is filled 
to the 100-mL mark on the flask with 35.0°C acetone. 
(a) What is the volume of the acetone when both it 
and the flask cool to 20.0°C? (b) Would the temporary 
increase in the Pyrex flask’s volume make an apprecia-
ble difference in the answer? Why or why not?

 56. The pressure gauge on a cylinder of gas registers 
the gauge pressure, which is the difference between 
the interior and exterior pressure, P0. When the cylin-
der is full, the mass of the gas in it is mi at a gauge pres-
sure of Pi. Assuming the temperature of the cylinder 
remains constant, use the ideal gas law and a relation-
ship between moles and mass to show that the mass of 
the gas remaining in the cylinder when the gauge pres-
sure reading is Pf is given by

mf 5 mi a
Pf 1 P0

Pi 1 P0
b

57.  A liquid with a 
coefficient of volume expan-
sion of b just fills a spherical 
flask of volume V0 at tem-
perature Ti (Fig. P10.57). 
The flask is made of a mate-
rial that has a coefficient of 
linear expansion of a. The 
liquid is free to expand into 
a capillary of cross- sectional 
area A at the top. (a) Show 
that if the temperature increases by DT, the liquid rises 
in the capillary by the amount Dh 5 (V0 /A)(b 2 3a)DT.  
(b) For a typical system, such as a mercury thermom-
eter, why is it a good approximation to neglect the 
expansion of the flask?

 58. Before beginning a long trip on a hot day, a driver 
inflates an automobile tire to a gauge pressure of 
1.80  atm at 300 K. At the end of the trip, the gauge 
pressure has increased to 2.20 atm. (a) Assuming the 
volume has remained constant, what is the tempera-

Additional Problems

47. Inside the wall of a house, an 
L-shaped section of hot-water pipe 
consists of three parts: a straight 
horizontal piece h 5 28.0 cm long, 
an elbow, and a straight, vertical 
piece , 5 134 cm long (Fig. P10.47). 
A stud and a second-story floor-
board hold the ends of this section 
of copper pipe stationary. Find the 
magnitude and direction of the dis-
placement of the pipe elbow when 
the water flow is turned on, raising 
the temperature of the pipe from 
18.0°C to 46.5°C.

48. The active element of a certain laser is made of 
a glass rod 30.0 cm long and 1.50 cm in diameter. 
Assume the average coefficient of linear expansion 
of the glass is 9.00 3 1026 (°C)21. If the temperature 
of the rod increases by 65.0°C, what is the increase in 
(a) its length, (b) its diameter, and (c) its volume?

 49. A popular brand of cola contains 6.50 g of carbon diox-
ide dissolved in 1.00 L of soft drink. If the evaporating 
carbon dioxide is trapped in a cylinder at 1.00 atm and 
20.0°C, what volume does the gas occupy?

 50. Consider an object with any one of the shapes dis-
played in Table 8.1. What is the percentage increase in 
the moment of inertia of the object when it is warmed 
from 0°C to 100°C if it is composed of (a) copper or 
(b)  aluminum? Assume the average linear expansion 
coefficients shown in Table 10.1 do not vary between 
0°C and 100°C. (c) Why are the answers for parts (a) 
and (b) the same for all the shapes?

 51. A steel beam being used in the construction of a sky-
scraper has a length of 35.000 m when delivered on 
a cold day at a temperature of 15.000°F. What is the 
length of the beam when it is being installed later on a 
warm day when the temperature is 90.000°F?

 52. A 1.5-m-long glass tube that is closed at one end is 
weighted and lowered to the bottom of a freshwater 
lake. When the tube is recovered, an indicator mark 
shows that water rose to within 0.40 m of the closed 
end. Determine the depth of the lake. Assume con-
stant temperature.

 53. Long-term space missions require reclamation of the 
oxygen in the carbon dioxide exhaled by the crew. In 
one method of reclamation, 1.00 mol of carbon diox-
ide produces 1.00 mol of oxygen, with 1.00 mol of 
methane as a by-product. The methane is stored in a 
tank under pressure and is available to control the atti-
tude of the spacecraft by controlled venting. A single 
astronaut exhales 1.09 kg of carbon dioxide each day. 
If the methane generated in the recycling of three 
astronauts’ respiration during one week of flight is 
stored in an originally empty 150-L tank at 245.0°C, 
what is the final pressure in the tank?
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61.   A bimetallic strip of length 
L is made of two ribbons of differ-
ent metals bonded together. (a) First 
assume the strip is originally straight. 
As the strip is warmed, the metal 
with the greater average coefficient 
of expansion expands more than the 
other, forcing the strip into an arc, 
with the outer radius having a greater 
circumference (Fig. P10.61). Derive an expression for the 
angle of bending, u, as a function of the initial length 
of the strips, their average coefficients of linear expan-
sion, the change in temperature, and the separation of 
the centers of the strips (Dr 5 r2 2 r1). (b) Show that 
the angle of bending goes to zero when DT goes to zero 
and also when the two average coefficients of expansion 
become equal. (c) What happens if the strip is cooled?

 62. A 250-m-long bridge is improperly designed so that it can-
not expand with temperature. It is made of concrete with 
a 5 12 3 1026 °C21. (a) Assuming the maximum change 
in temperature at the site is expected to be 20°C, find 
the change in length the span would undergo if it were 
free to expand. (b) Show that the stress on an object with 
Young’s modulus Y when raised by DT with its ends firmly 
fixed is given by aY DT. (c) If the maximum stress the 
bridge can withstand without crumbling is 2.0 3 107 Pa,  
will it crumble because of this temperature increase? 
Young’s modulus for concrete is about 2.0 3 1010 Pa.

 63. Following a collision in outer space, a copper 
disk at 850°C is rotating about its axis with an angular 
speed of 25.0 rad/s. As the disk radiates infrared light, 
its temperature falls to 20.0°C. No external torque acts 
on the disk. (a) Does the angular speed change as the 
disk cools? Explain how it changes or why it does not. 
(b) What is its angular speed at the lower temperature?

 64. Two small containers, each with a volume of 100 cm3, 
contain helium gas at 0°C and 1.00 atm pressure. The 
two containers are joined by a small open tube of neg-
ligible volume, allowing gas to flow from one container 
to the other. What common pressure will exist in the 
two containers if the temperature of one container is 
raised to 100°C while the other container is kept at 0°C?

ture of the air inside the tire? (b) What percentage of 
the original mass of air in the tire should be released 
so the pressure returns to its original value? Assume 
the temperature remains at the value found in part (a) 
and the volume of the tire remains constant as air is 
released.

 59. Two concrete spans of  
a 250-m-long bridge are 
placed end to end so 
that no room is allow-
ed for expansion (Fig. 
P10.59a). If the tempera-
ture increases by 20.0°C, 
what is the height y to 
which the spans rise 
when they buckle (Fig. 
P10.59b)?

 60. An expandable cylinder has its top connected to 
a spring with force constant 2.00 3 103 N/m (Fig. 
P10.60). The cylinder is filled with 5.00 L of gas with 
the spring relaxed at a pressure of 1.00 atm and a 
temperature of 20.0°C. (a) If the lid has a cross-
sectional area of 0.010 0 m2 and negligible mass, 
how high will the lid rise when the temperature is 
raised to 250°C? (b) What is the pressure of the gas 
at 250°C?

T

250 m

T � 20�C
y

a

b

Figure p 10.59

k

h

T � 20.0�C T � 250�C

Figure p 10.60

r 2
r 1

u

Figure p 10.61
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When two objects with different temperatures are placed in thermal contact, the temperature 
of the warmer object decreases while the temperature of the cooler object increases. With 
time they reach a common equilibrium temperature somewhere in between their initial tem-
peratures. During this process, we say that energy is transferred from the warmer object to 
the cooler one.

Until about 1850 the subjects of thermodynamics and mechanics were considered two 
distinct branches of science, and the principle of conservation of energy seemed to describe 
only certain kinds of mechanical systems. Experiments performed by English physicist James 
Joule (1818–1889) and others showed that the decrease in mechanical energy (kinetic plus 
potential) of an isolated system was equal to the increase in internal energy of the system. 
Today, internal energy is treated as a form of energy that can be transformed into mechanical 
energy and vice versa. Once the concept of energy was broadened to include internal energy, 
the law of conservation of energy emerged as a universal law of nature.

This chapter focuses on some of the processes of energy transfer between a system and 
its surroundings.

11.1    Heat and Internal Energy
Learning Objectives

1. Define heat and internal energy and distinguish between them.

2. Convert between different systems of energy units.

A major distinction must be made between heat and internal energy. These terms 
are not interchangeable: Heat involves a transfer of internal energy from one loca-
tion to another. The following formal definitions will make the distinction precise.

Energy transferred to water 

through radiation, convection, 

and conduction results in 

evaporation, a change of phase 

in which liquid water becomes 

a gas. Through convection 

this vapor is carried upward, 

where it changes phase again, 

condensing into extremely 

small droplets or ice crystals, 

visible as clouds.

11Energy in Thermal 
Processes

11.1 Heat and Internal Energy

11.2 Specific Heat

11.3 Calorimetry

11.4 Latent Heat and Phase 
Change

11.5 Energy Transfer

11.6 Global Warming and 
Greenhouse Gases
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Internal energy U is the energy associated with the atoms and molecules of 
the system. The internal energy includes kinetic and potential energy asso-
ciated with the random translational, rotational, and vibrational motion of 
the particles that make up the system, and any potential energy bonding the 
particles together.

In Chapter 10 we showed that the internal energy of a monatomic ideal gas 
is associated with the translational motion of its atoms. In this special case, 
the internal energy is the total translational kinetic energy of the atoms; the 
higher the temperature of the gas, the greater the kinetic energy of the atoms 
and the greater the internal energy of the gas. For more complicated diatomic 
and polyatomic gases, internal energy includes other forms of molecular 
energy, such as rotational kinetic energy and the kinetic and potential energy 
associated with molecular vibrations. Internal energy is also associated with 
the intermolecular potential energy (“bond energy”) between molecules in a 
liquid or solid.

Heat was introduced in Chapter 5 as one possible method of transferring 
energy between a system and its environment, and we provide a formal defini-
tion here:

Heat is the transfer of energy between a system and its environment due to a 
temperature difference between them.

The symbol Q is used to represent the amount of energy transferred by heat 
between a system and its environment. For brevity, we will often use the phrase 
“the energy Q transferred to a system . . .” rather than “the energy Q transferred by 
heat to a system . . .”

If a pan of water is heated on the burner of a stove, it’s incorrect to say more 
heat is in the water. Heat is the transfer of thermal energy, just as work is the trans-
fer of mechanical energy. When an object is pushed, it doesn’t have more work; 
rather, it has more mechanical energy transferred by work. Similarly, the pan of 
water has more thermal energy transferred by heat.

Units of Heat
Early in the development of thermodynamics, before scientists realized the con-
nection between thermodynamics and mechanics, heat was defined in terms 
of the temperature changes it produced in an object, and a separate unit of 
energy, the calorie, was used for heat. The calorie (cal) is defined as the energy 
necessary to raise the temperature of 1 g of water from 14.5°C to 15.5°C. (The 
“Calorie,” with a capital “C,” used in describing the energy content of foods, is 
actually a kilocalorie.) Likewise, the unit of heat in the U.S. customary system, 
the British thermal unit (Btu), was defined as the energy required to raise the 
temperature of 1 lb of water from 63°F to 64°F.

In 1948 scientists agreed that because heat (like work) is a measure of the trans-
fer of energy, its SI unit should be the joule. The calorie is now defined to be 
exactly 4.186 J:

1 cal ; 4.186 J [11.1]

This definition makes no reference to raising the temperature of water. 
The calorie is a general energy unit, introduced here for historical reasons, 
although we will make little use of it. The definition in Equation 11.1 is known, 
from the historical background we have discussed, as the mechanical equiva-
lent of heat.

 Internal energy c

 Definition of the calorie c

The mechanical equivalent c
of heat

j ames p rescott j oule
British physicist (1818–1889)
Joule received some formal education 
in mathematics, philosophy, and chem-
istry from John Dalton, but was in large 
part self-educated. Joule’s most active 
research period, from 1837 through 
1847, led to the establishment of the 
principle of conservation of energy 
and the relationship between heat and 
other forms of energy transfer. His 
study of the quantitative relationship 
among electrical, mechanical, and 
chemical effects of heat culminated 
in his announcement in 1843 of the 
amount of work required to produce a 
unit of internal energy.
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 ■ e Xa Mp Le  11.1 Working Off Breakfast 

g Oa L  Relate caloric energy to mechanical energy.

pr Ob Le M  A student eats a breakfast consisting of a bowl of cereal and milk, 
containing a total of 3.20 3 102 Calories of energy. He wishes to do an equiva-
lent amount of work in the gymnasium by performing curls with a 25.0-kg barbell 
(Fig. 11.1). How many times must he raise the weight to expend that much energy? 
Assume he raises it through a vertical displacement of 0.400 m each time, the dis-
tance from his lap to his upper chest.

s t r at e gY  Convert the energy in Calories to joules, then equate that energy to the 
work necessary to do n repetitions of the barbell exercise. The work he does lifting 
the barbell can be found from the work-energy theorem and the change in poten-
tial energy of the barbell. He does negative work on the barbell going down, to keep 
it from speeding up. The net work on the barbell during one repetition is zero, but 
his muscles expend the same energy both in raising and lowering.

s OLUti On

h

Figure 11.1  (Example 11.1)

Convert his breakfast Calories, E, to joules: E 5 13.20 3 102Cal 2  a1.00 3 103cal
1.00 Cal

b a4.186 J

cal
b

5 1.34 3 106 J

Use the work–energy theorem to find the work necessary 
to lift the barbell up to its maximum height:

W 5 DKE 1 DPE 5 (0 2 0) 1 (mgh 2 0) 5 mgh

The student must expend the same amount of energy 
lowering the barbell, making 2mgh per repetition. 
Multiply this amount by n repetitions and set it equal  
to the food energy E:

n(2mgh) 5 E

Solve for n, substituting the food energy for E: n 5
E

2mgh
5

1.34 3 106 J

2 125.0 kg 2 19.80 m/s2 2 10.400 m 2
5   6.84 3 103 times

re Mar Ks  If the student does one repetition every 5 seconds, it will take him 9.5 hours to work off his breakfast! In 
exercising, a large fraction of energy is lost through heat, however, due to the inefficiency of the body in doing work. The 
efficiency depends on the metabolic rate, which increases as activity becomes more vigorous. The transfer of energy dra-
matically reduces the exercise requirement by at least three-quarters, a little over two hours. Further, some small fraction of 
the energy content of the cereal may not actually be absorbed. All the same, it might be best to forgo a second bowl of cereal!

QUes t i On  11.1  From the point of view of physics, does the answer depend on how fast the repetitions are performed? 
How do faster repetitions affect human metabolism?

e Xe rc i s e  11.1  How many sprints from rest to a speed of 5.0 m/s would a 65-kg woman have to complete to burn off 
5.0 3 102 Calories? (Assume 100% efficiency in converting food energy to mechanical energy.)

a ns We r   2.6 3 103 sprints

Getting proper exercise is an important part of staying healthy and keeping 
weight under control. As seen in the preceding example, the body expends energy 
when doing mechanical work, and these losses are augmented by the inefficiency 
of converting the body’s internal stores of energy into useful work, with three-
quarters or more leaving the body through heat. In addition, exercise tends to 
elevate the body’s general metabolic rate, which persists even after the exercise 
is over. The increase in metabolic rate due to exercise, more so than the exercise 
itself, is helpful in weight reduction.

a pp Lica t iOn
Physiology of Exercise
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11.2    Specific Heat
Learning Objectives

1. Define specific heat and discuss its physical origins.

2. Evaluate the energy required to change the temperature of thermal systems.

The historical definition of the calorie is the amount of energy necessary to raise 
the temperature of one gram of a specific substance—water—by one degree. 
That amount is 4.186 J. Raising the temperature of one kilogram of water by 1°C 
requires 4 186 J of energy. The amount of energy required to raise the tempera-
ture of one kilogram of an arbitrary substance by 1°C varies with the substance. 
For example, the energy required to raise the temperature of one kilogram of cop-
per by 1.0°C is 387 J. Every substance requires a unique amount of energy per unit 
mass to change the temperature of that substance by 1.0°C.

If a quantity of energy Q is transferred to a substance of mass m, changing its 
temperature by DT 5 Tf 2 Ti, the specific heat c of the substance is defined by

 c ;  
Q

m DT
 [11.2]

SI unit: Joule per kilogram-degree Celsius (J/kg ? °C)

Table 11.1 lists specific heats for several substances. From the definition of the 
calorie, the specific heat of water is 4 186 J/kg?°C. The values quoted are typical, 
but vary depending on the temperature and whether the matter is in a solid, liq-
uid, or gaseous state.

From the definition of specific heat, we can express the energy Q needed to 
raise the temperature of a system of mass m by DT as

 Q 5 mc DT [11.3]

The energy required to raise the temperature of 0.500 kg of water by 3.00°C, for 
example, is Q 5 (0.500 kg)(4 186 J/kg?°C)(3.00°C) 5 6.28 3 103 J. Note that when 
the temperature increases, DT and Q are positive, corresponding to energy flow-
ing into the system. When the temperature decreases, DT and Q are negative, and 
energy flows out of the system.

Table 11.1 shows that water has the highest specific heat relative to most other  
temperatures found in regions near large bodies of water. As the temperature of a 
body of water decreases during winter, the water transfers energy to the air, which 
carries the energy landward when prevailing winds are toward the land. Off the 
western coast of the United States, the energy liberated by the Pacific Ocean is car-
ried to the east, keeping coastal areas much warmer than they would be otherwise. 
Winters are generally colder in the eastern coastal states, because the prevailing 
winds tend to carry the energy away from land.

The fact that the specific heat of water is higher than the specific heat of sand 
is responsible for the pattern of airflow at a beach. During the day, the Sun adds 
roughly equal amounts of energy to the beach and the water, but the lower specific 
heat of sand causes the beach to reach a higher temperature than the water. As a 
result, the air above the land reaches a higher temperature than the air above the 
water. The denser cold air pushes the less dense hot air upward (due to Archime-
des’ principle), resulting in a breeze from ocean to land during the day. Because 
the hot air gradually cools as it rises, it subsequently sinks, setting up the circula-
tion pattern shown in Figure 11.2.

A similar effect produces rising layers of air called thermals that can help eagles 
soar higher and hang gliders stay in flight longer. A thermal is created when a por-
tion of the Earth reaches a higher temperature than neighboring regions. Thermals 
often occur in plowed fields, which are warmed by the Sun to higher temperatures 

t able 11.1  Specific Heats 
of Some Materials at 
Atmospheric Pressure

Substance J/kg ? °C cal/g ? °C

Aluminum 900 0.215
Beryllium 1 820 0.436
Cadmium 230 0.055
Copper 387 0.092 4
Ethyl 2 430 0.581
    Alcohol
Germanium 322 0.077
Glass 837 0.200
Gold 129 0.030 8
Human  3 470 0.829
 tissue
Ice 2 090 0.500
Iron 448 0.107
Lead 128 0.030 5
Mercury 138 0.033
Silicon 703 0.168
Silver 234 0.056
Steam 2 010 0.480
Tin 227 0.054 2
Water 4 186 1.00

t ip 11.1  Finding DT
In Equation 11.3, be sure to 
remember that DT is always the 
final temperature minus the ini-
tial temperature: DT 5 Tf 2 Ti .

Beach
Water

Figure 11.2    Circulation of air 
at the beach. On a hot day, the air 
above the sand warms faster than 
the air above the cooler water. The 
warmer air floats upward due to 
Archimedes’s principle, resulting in 
the movement of cooler air toward 
the beach.

a pp Lica t iOn
Sea Breezes and Thermals
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than nearby fields shaded by vegetation. The cooler, denser air over the vegetation-
covered fields pushes the expanding air over the plowed field upward, and a thermal 
is formed.

■ Quick Quiz

11.1  Suppose you have 1 kg each of iron, glass, and water, and all three samples 
are at 10°C. (a) Rank the samples from lowest to highest temperature after 100 J of 
energy is added to each by heat. (b) Rank them from least to greatest amount of 
energy transferred by heat if enough energy is transferred so that each increases in 
temperature by 20°C.

■ e Xa Mp Le  11.2 Stressing a Strut

g Oa L  Use the energy transfer equation in the context of linear expansion and compressional stress.

pr Ob Le M  A steel strut near a ship’s furnace is 2.00 m 
long, with a mass of 1.57 kg and cross-sectional area of 
1.00 3 1024 m2. During operation of the furnace, the strut 
absorbs a net thermal energy of 2.50 3 105 J. (a) Find the 
change in temperature of the strut. (b) Find the increase in 
length of the strut. (c) If the strut is not allowed to expand 
because it’s bolted at each end, find the compressional 
stress developed in the strut.

s t r at e g Y  This problem can be solved by substituting 
given quantities into three different equations. In part (a), 

the change in temperature can be computed by substitut-
ing into Equation 11.3, which relates temperature change 
to the energy transferred by heat. In part (b), substituting 
the result of part (a) into the linear expansion equation 
yields the change in length. If that change of length is 
thwarted by poor design, as in part (c), the result is com-
pressional stress, found with the compressional stress–
strain equation. Note: The specific heat of steel may be 
taken to be the same as that of iron.

s OLUti On
(a) Find the change in temperature.

Solve Equation 11.3 for the change in temperature and 
substitute:

Q 5 mscs DT S DT 5
Q
mscs

DT 5
12.50 3 105 J 2

11.57 kg 2 1448 J/kg # 8C 2 5 ˜ 355°C

(b) Find the change in length of the strut if it’s allowed to 
expand.

Substitute into the linear expansion equation: DL 5 aL0DT 5 (11 3 1026 °C21)(2.00 m)(355°C)

5    7.8 3 1023 m

(c) Find the compressional stress in the strut if it is not 
allowed to expand.

Substitute into the compressional stress–strain equation: F
A

5 Y  
DL
L

5 12.00 3 1011 Pa 2  7.8 3 1023 m
2.01 m

5   7.8 3 108 Pa

re Mar Ks  Notice the use of 2.01 m in the denominator 
of the last calculation, rather than 2.00 m. This is because, 
in effect, the strut was compressed back to the original 
length from the length to which it would have expanded. 
(The difference is negligible, however.) The answer exceeds 
the ultimate compressive strength of steel and underscores  
the importance of allowing for thermal expansion. Of 
course, it’s likely the strut would bend, relieving some of the 
stress (creating some shear stress in the process). Finally, if 
the strut is attached at both ends by bolts, thermal expansion 

and contraction would exert sheer stresses on the bolts, pos-
sibly weakening or loosening them over time.

QUes t i On  11.2  Which of the following combinations 
of properties will result in the smallest expansion of a 
substance due to the absorption of a given amount Q  of 
thermal energy? (a) small specific heat, large coefficient 
of expansion (b) small specific heat, small coefficient of 
expansion (c) large specific heat, small coefficient of expan-
sion (d) large specific heat, large coefficient of expansion

(Continued)
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11.3    Calorimetry
Learning Objectives

1. Describe calorimetry and relate it to conservation of energy.

2. Apply calorimetry techniques to systems of two or more substances.

One technique for measuring the specific heat of a solid or liquid is to raise the tem-
perature of the substance to some value, place it into a vessel containing cold water 
of known mass and temperature, and measure the temperature of the combination 
after equilibrium is reached. Define the system as the substance and the water. If the 
vessel is assumed to be a good insulator, so that energy doesn’t leave the system, then 
we can assume the system is isolated. Vessels having this property are called calori-
meters, and analysis performed using such vessels is called calorimetry.

The principle of conservation of energy for this isolated system requires that the 
net result of all energy transfers is zero. If one part of the system loses energy, another 
part has to gain the energy because the system is isolated and the energy has nowhere 
else to go. When a warm object is placed in the cooler water of a calorimeter, the warm 
object becomes cooler while the water becomes warmer. This principle can be written

Q cold 5 2Q hot [11.4]

Q cold is positive because energy is flowing into cooler objects, and Q hot is negative 
because energy is leaving the hot object. The negative sign on the right-hand side of 
Equation 11.4 ensures that the right-hand side is a positive number, consistent with 
the left-hand side. The equation is valid only when the system it describes is isolated.

Calorimetry problems involve solving Equation 11.4 for an unknown quantity, 
usually either a specific heat or a temperature.

e Xe rc i s e  11.2  Suppose a steel strut having a cross- 
sectional area of 5.00 3 1024 m2 and length 2.50 m 
is bolted between two rigid bulkheads in the engine 
room of a submarine. Assume the density of the steel is  
the same as that of iron. (a) Calculate the change in  

temperature of the strut if it absorbs 3.00 3 105 J of ther-
mal energy. (b) Calculate the compressional stress in the 
strut.

a ns We r s  (a) 68.2°C (b) 1.50 3 108 Pa

 ■ e Xa Mp Le  11.3 Finding a Specific Heat

g Oa L Solve a calorimetry problem involving only two substances.

pr Ob Le M A 125-g block of an unknown substance with a temperature of 90.0°C is placed in a Styrofoam cup contain-
ing 0.326 kg of water at 20.0°C. The system reaches an equilibrium temperature of 22.4°C. What is the specific heat, cx, of 
the unknown substance if the heat capacity of the cup is neglected?

s t r at e g Y The water gains thermal energy Q cold while the block loses thermal energy Q hot. Using Equation 11.3, sub-
stitute expressions into Equation 11.4 and solve for the unknown specific heat, cx.

s OLUti On

Let T be the final temperature, and let Tw and Tx be the 
initial temperatures of the water and block, respectively. 
Apply Equations 11.3 and 11.4:

Q cold 5 2Q hot

mwcw(T 2 Tw) 5 2mxcx(T 2 Tx)

Solve for cx and substitute numerical values: cx 5
mwcw 1T 2 Tw 2
mx 1Tx 2 T 2

5
10.326 kg 2 14 190 J/kg # 8C 2 122.48C 2 20.08C 2

10.125 kg 2 190.08C 2 22.48C 2
cx 5   388 J/kg ? °C →   390 J/kg ? °C

(Continued)
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As long as there are no more than two substances involved, Equation 11.4 can 
be used to solve elementary calorimetry problems. Sometimes, however, there may 
be three (or more) substances exchanging thermal energy, each at a different 
temperature. If the problem requires finding the final temperature, it may not be 
clear whether the substance with the middle temperature gains or loses thermal 
energy. In such cases, Equation 11.4 can’t be used reliably.

For example, suppose we want to calculate the final temperature of a system 
consisting initially of a glass beaker at 25°C, hot water at 40°C, and a block of 
aluminum at 37°C. We know that after the three are combined, the glass beaker 
warms up and the hot water cools, but we don’t know for sure whether the alumi-
num block gains or loses energy because the final temperature is unknown.

Fortunately, we can still solve such a problem as long as it’s set up correctly. With 
an unknown final temperature Tf , the expression Q 5 mc(Tf 2 Ti) will be positive if 
Tf . Ti and negative if Tf , Ti. Equation 11.4 can be written as

 o Q k 5 0 [11.5]

where Q k is the energy change in the kth object. Equation 11.5 says that the sum of 
all the gains and losses of thermal energy must add up to zero, as required by the 
conservation of energy for an isolated system. Each term in Equation 11.5 will have 
the correct sign automatically. Applying Equation 11.5 to the water, aluminum, 
and glass problem, we get

Q w 1 Q al 1 Q g 5 0

There’s no need to decide in advance whether a substance in the system is gaining 
or losing energy. This equation is similar in style to the conservation of mechani-
cal energy equation, where the gains and losses of kinetic and potential energies 
sum to zero for an isolated system: DK 1 DPE 5 0. As will be seen, changes in ther-
mal energy can be included on the left-hand side of this equation.

When more than two substances exchange thermal energy, it’s easy to make 
errors substituting numbers, so it’s a good idea to construct a table to organize and 
assemble all the data. This strategy is illustrated in the next example.

re Mar Ks  Comparing our results to values given in Table 11.1, the unknown substance is probably copper. Note that 
because the factor (22.4°C 2 20.0°C) 5 2.4°C has only two significant figures, the final answer must similarly be rounded 
to two figures, as indicated.

QUes t i On  11.3  Objects A, B, and C are at different temperatures, A lowest and C highest. The three objects are put in 
thermal contact with each other simultaneously. Without doing a calculation, is it possible to determine whether object 
B will gain or lose thermal energy?

e Xe rc i s e  11.3  A 255-g block of gold at 85.0°C is immersed in 155 g of water at 25.0°C. Find the equilibrium tempera-
ture, assuming the system is isolated and the heat capacity of the cup can be neglected.

a ns We r  27.9°C

t ip 11.2  Celsius Versus 
Kelvin
In equations in which T appears, 
such as the ideal gas law, the Kel-
vin temperature must be used. In 
equations involving DT, such as 
calorimetry equations, it’s possi-
ble to use either Celsius or Kelvin 
temperatures because a change in 
temperature is the same on both 
scales. When in doubt, use Kelvin.

■ e Xa Mp Le  11.4 Calculate an Equilibrium Temperature

g Oa L  Solve a calorimetry problem involving three substances at three different temperatures.

pr Ob Le M  Suppose 0.400 kg of water initially at 40.0°C is poured into a 0.300-kg glass beaker having a temperature of 
25.0°C. A 0.500-kg block of aluminum at 37.0°C is placed in the water and the system insulated. Calculate the final equi-
librium temperature of the system.

s t r at e g Y  The energy transfer for the water, aluminum, and glass will be designated Q w, Q al, and Q g, respectively. 
The sum of these transfers must equal zero, by conservation of energy. Construct a table, assemble the three terms from 
the given data, and solve for the final equilibrium temperature, T.

(Continued)
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11.4   Latent Heat and Phase Change
Learning Objectives

1. Explain the terms phase change and latent heat.

2. Describe the physical origins of the latent heats of fusion, vaporization and 
sublimation.

3. Solve calorimetry problems that include phase changes.

A substance usually undergoes a change in temperature when energy is trans-
ferred between the substance and its environment. In some cases, however, the 
transfer of energy doesn’t result in a change in temperature. This can occur when 
the physical characteristics of the substance change from one form to another, 
commonly referred to as a phase change. Some common phase changes are solid 
to liquid (melting), liquid to gas (boiling), and a change in the crystalline struc-
ture of a solid. Any such phase change involves a change in the internal energy, 
but no change in the temperature.

The energy Q needed to change the phase of a given pure substance is

 Q 5 6mL [11.6]

where L, called the latent heat of the substance, depends on the nature of 
the phase change as well as on the substance.

Latent heat c

s OLUti On

Apply Equation 11.5 to the system: (1) Q w 1 Q al 1 Q g 5 0

(2) mwcw(T 2 Tw) 1 malcal(T 2 Tal) 1 mgcg(T 2 Tg) 5 0

re Mar Ks  The answer turned out to be very close to the aluminum’s initial temperature, so it would have been impos-
sible to guess in advance whether the aluminum would lose or gain energy. Notice the way the table was organized, mir-
roring the order of factors in the different terms. This kind of organization helps prevent substitution errors, which are 
common in these problems.

QUes t i On  11.4  Suppose thermal energy Q leaked from the system. How should the right side of Equation (1) be 
adjusted? (a) No change is needed. (b) 1Q   (c) 2Q .

e Xe rc i s e  11.4  A 20.0-kg gold bar at 35.0°C is placed in a large, insulated 0.800-kg glass container at 15.0°C and 2.00 kg  
of water at 25.0°C. Calculate the final equilibrium temperature.

a ns We r  26.6°C

Construct a data table: Q (J) m (kg) c (J/kg ? °C) Tf Ti

Q w 0.400 4 190 T 40.0°C
 Q al 0.500 9.00 3 102 T 37.0°C
 Q g 0.300   837 T 25.0°C

Using the table, substitute into Equation (2): (1.68 3 103 J/°C)(T 2 40.0°C) 

1 (4.50 3 102 J/°C)(T 2 37.0°C) 

1 (2.51 3 102 J/°C)(T 2 25.0°C) 5 0

(1.68 3 103 J/°C 1 4.50 3 102 J/°C 1 2.51 3 102 J/°C)T 

 5 9.01 3 104 J

T 5   37.8°C
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The unit of latent heat is the joule per kilogram (J/kg). The word latent means 
“lying hidden within a person or thing.” The positive sign in Equation 11.6 is cho-
sen when energy is absorbed by a substance, as when ice is melting. The negative 
sign is chosen when energy is removed from a substance, as when steam condenses 
to water.

The latent heat of fusion Lf is used when a phase change occurs during melt-
ing or freezing, whereas the latent heat of vaporization Lv is used when a phase 
change occurs during boiling or condensing.1 For example, at atmospheric pres-
sure the latent heat of fusion for water is 3.33 3 105 J/kg and the latent heat of 
vaporization for water is 2.26 3 106 J/kg. The latent heats of different substances 
vary considerably, as can be seen in Table 11.2.

Another process, sublimation, is the passage from the solid to the gaseous 
phase without going through a liquid phase. The fuming of dry ice (frozen carbon 
dioxide) illustrates this process, which has its own latent heat associated with it, 
the heat of sublimation.

To better understand the physics of phase changes, consider the addition 
of energy to a 1.00-g cube of ice at 230.0°C in a container held at constant 
pressure. Suppose this input of energy turns the ice to steam (water vapor) at 
120.0°C. Figure 11.3 (page 376) is a plot of the experimental measurement of 
temperature as energy is added to the system. We examine each portion of the 
curve separately.

Part A    During this portion of the curve, the temperature of the ice changes 
from 230.0°C to 0.0°C. Because the specific heat of ice is 2 090 J/kg ? °C, we can 
calculate the amount of energy added from Equation 11.3:

Q 5 mcice DT 5 (1.00 3 1023 kg)(2 090 J/kg ? °C)(30.0°C) 5 62.7 J

Part B    When the ice reaches 0°C, the ice–water mixture remains at that tem-
perature—even though energy is being added—until all the ice melts to become 
water at 0°C. According to Equation 11.6, the energy required to melt 1.00 g of ice 
at 0°C is

Q 5 mLf 5 (1.00 3 1023 kg)(3.33 3 105 J/kg) 5 333 J

t ip 11.3  Signs Are Critical
For phase changes, use the cor-
rect explicit sign in Equation 11.6, 
positive if you are adding energy 
to the substance, negative if 
you’re taking it away.

1When a gas cools, it eventually returns to the liquid phase, or condenses. The energy per unit mass given up during 
the process is called the heat of condensation, and it equals the heat of vaporization. When a liquid cools, it eventu-
ally solidifies, and the heat of solidification equals the heat of fusion.

t able 11.2  Latent Heats of Fusion and Vaporization

Latent Heat Latent Heat 
 of Fusion  of Vaporization

Substance Melting Point (°C) (J/kg) cal/g Boiling Point (°C) (J/kg) cal/g

Helium 2269.65 5.23 3 103 1.25 2268.93 2.09 3 104 4.99
Nitrogen 2209.97 2.55 3 104 6.09 2195.81 2.01 3 105 48.0
Oxygen 2218.79 1.38 3 104 3.30 2182.97 2.13 3 105 50.9
Ethyl alcohol 2114 1.04 3 105 24.9 78 8.54 3 105 204
Water 0.00 3.33 3 105 79.7 100.00 2.26 3 106 540
Sulfur 119 3.81 3 104 9.10 444.60 3.26 3 105 77.9
Lead 327.3 2.45 3 104 5.85 1 750 8.70 3 105 208
Aluminum 660 3.97 3 105 94.8 2 450 1.14 3 107 2 720
Silver 960.80 8.82 3 104 21.1 2 193 2.33 3 106 558
Gold 1 063.00 6.44 3 104 15.4 2 660 1.58 3 106 377
Copper 1 083 1.34 3 105 32.0 1 187 5.06 3 106 1 210
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Part C    Between 0°C and 100°C, no phase change occurs. The energy added to 
the water is used to increase its temperature, as in part A. The amount of energy 
necessary to increase the temperature from 0°C to 100°C is

 Q 5 mcwater DT 5 (1.00 3 1023 kg)(4.19 3 103 J/kg ? °C)(1.00 3 102 °C)

 Q 5 4.19 3 102 J

Part D    At 100°C, another phase change occurs as the water changes to steam 
at 100°C. As in Part B, the water–steam mixture remains at constant temperature, 
this time at 100°C—even though energy is being added—until all the liquid has 
been converted to steam. The energy required to convert 1.00 g of water at 100°C 
to steam at 100°C is

Q 5 mLv 5 (1.00 3 1023 kg)(2.26 3 106 J/kg) 5 2.26 3 103 J

Part E    During this portion of the curve, as in parts A and C, no phase change 
occurs, so all the added energy goes into increasing the temperature of the steam. 
The energy that must be added to raise the temperature of the steam to 120.0°C is

Q 5 mcsteam DT 5 (1.00 3 1023 kg)(2.01 3 103 J/kg ? °C)(20.0°C) 5 40.2 J

The total amount of energy that must be added to change 1.00 g of ice at 
230.0°C to steam at 120.0°C is the sum of the results from all five parts of the 
curve, 3.11 3 103 J. Conversely, to cool 1.00 g of steam at 120.0°C to the point at 
which it becomes ice cooled to 230.0°C, 3.11 3 103 J of energy must be removed.

Phase changes can be described in terms of rearrangements of molecules when 
energy is added to or removed from a substance. Consider first the liquid-to-gas 
phase change. The molecules in a liquid are close together, and the forces between 
them are stronger than the forces between the more widely separated molecules of 
a gas. Work must therefore be done on the liquid against these attractive molecu-
lar forces so as to separate the molecules. The latent heat of vaporization is the 
amount of energy that must be added to the one kilogram of liquid to accomplish 
this separation.

Similarly, at the melting point of a solid, the amplitude of vibration of the atoms 
about their equilibrium positions becomes great enough to allow the atoms to pass 
the barriers of adjacent atoms and move to their new positions. On average, these 
new positions are less symmetrical than the old ones and therefore have higher 
energy. The latent heat of fusion is equal to the work required at the molecular level 
to transform the mass from the ordered solid phase to the disordered liquid phase.

The average distance between atoms is much greater in the gas phase than in 
either the liquid or the solid phase. Each atom or molecule is removed from its neigh-
bors, overcoming the attractive forces of nearby neighbors. Therefore, more work is 
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Figure 11.3  A plot of temperature 
versus energy added when 1.00 g of 
ice, initially at 230.0°C, is converted 
to steam at 120°C.
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11.4 | Latent Heat and Phase Change  377

required at the molecular level to vaporize a given mass of a substance than to melt 
it, so in general the latent heat of vaporization is much greater than the latent heat of 
fusion (see Table 11.2).

■ Quick Quiz

11.2  Calculate the slopes for the A, C, and E portions of Figure 11.3. Rank the 
slopes from least to greatest and explain what your ranking means. (a) A, C, E  
(b) C, A, E (c) E, A, C (d) E, C, A

 ■ pr Ob Le M-s OLv i ng  s t r at e g Y

Calorimetry with Phase Changes

1. Make a table for all data. Include separate rows for different phases and for 
any transition between phases. Include columns for each quantity used and 
a final column for the combination of the quantities. Transfers of thermal 
energy in this last column are given by Q 5 mc DT, whereas phase changes are 
given by Q 5 6mLf for changes between liquid and solid and by Q 5 6mLv  
for changes between liquid and gas.

2. Apply conservation of energy. If the system is isolated, use oQ k 5 0 (Eq. 11.5). 
For a nonisolated system, the net energy change should replace the zero on the 
right-hand side of that equation. Here, oQ k is just the sum of all the terms in 
the last column of the table.

3. Solve for the unknown quantity.

 ■ e Xa Mp Le  11.5 Ice Water

g Oa L  Solve a problem involving heat transfer and a phase change from solid to liquid.

pr Ob Le M  At a party, 6.00 kg of ice at 25.00°C is added to a cooler holding 30.0 liters of water at 20.0°C. What is the 
temperature of the water when it comes to equilibrium?

s t r at e g Y  In this problem, it’s best to make a table. With the addition of thermal energy Q ice the ice will warm to 0°C, 
then melt at 0°C with the addition of energy Q melt. Next, the melted ice will warm to some final temperature T by absorb-
ing energy Q ice–water, obtained from the energy change of the original liquid water, Q water. By conservation of energy, 
these quantities must sum to zero.

s OLUti On

Calculate the mass of liquid water: mwater 5 rwaterV

5 11.00 3 103 kg/m3 2 130.0 L 2  1.00 m3

1.00 3 103 L
5 30.0 kg

Write the equation of thermal equilibrium: (1) Q ice 1 Q melt 1 Q ice–water 1 Q water 5 0

Construct a comprehensive table:

Q m (kg) c (J/kg ? °C) L (J/kg) Tf  (°C) Ti (°C) Expression

Q ice 6.00 2 090  0 25.00 micecice(Tf 2 Ti)
Q melt 6.00  3.33 3 105 0 0 miceLf

Q ice–water 6.00 4 190  T 0 micecwater(Tf 2 Ti)
Q water 30.0 4 190  T 20.0 mwatercwater(Tf 2 Ti)

Substitute all quantities in the second through sixth 
columns into the last column and sum, which is the 
evaluation of Equation (1), and solve for T:

6.27 3 104 J 1 2.00 3 106 J

1 (2.51 3 104 J/°C)(T 2 0°C) 

1 (1.26 3 105 J/°C)(T 2 20.0°C) 5 0

T 5   3.03°C

(Continued)
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re Mar Ks  Making a table is optional. However, simple substitution errors are extremely common, and the table makes 
such errors less likely.

QUes t i On  11.5  Can a closed system containing different substances at different initial temperatures reach an equilib-
rium temperature that is lower than all the initial temperatures?

e Xe rc i s e  11.5  What mass of ice at 210.0°C is needed to cool a whale’s water tank, holding 1.20 3 103 m3 of water, 
from 20.0°C to a more comfortable 10.0°C?

a ns We r  1.27 3 105 kg

 ■ e Xa Mp Le  11.6 Partial Melting

g Oa L  Understand how to handle an incomplete phase change.

pr Ob Le M  A 5.00-kg block of ice at 0°C is added to an insulated container partially filled with 10.0 kg of water at 15.0°C. 
(a) Find the final temperature, neglecting the heat capacity of the container. (b) Find the mass of the ice that was melted.

s OLUti On

s t r at e g Y  Part (a) is tricky because the ice does not 
entirely melt in this example. When there is any doubt con-
cerning whether there will be a complete phase change, 
some preliminary calculations are necessary. First, find 
the total energy required to melt the ice, Q melt, and then 
find Q water, the maximum energy that can be delivered by 

the water above 0°C. If the energy delivered by the water is 
high enough, all the ice melts. If not, there will usually be 
a final mixture of ice and water at 0°C, unless the ice starts 
at a temperature far below 0°C, in which case all the liquid 
water freezes.

(a) Find the equilibrium temperature.

First, compute the amount of energy necessary to com-
pletely melt the ice:

Q melt 5 miceLf 5 (5.00 kg)(3.33 3 105 J/kg)

5 1.67 3 106 J

Next, calculate the maximum energy that can be lost by 
the initial mass of liquid water without freezing it:

Q water 5 mwaterc DT

5 (10.0 kg)(4 190 J/kg ? °C)(0°C 2 15.0°C)

5 26.29 3 105 J

This result is less than half the energy necessary to melt 
all the ice, so the final state of the system is a mixture of 
water and ice at the freezing point:

T 5   0°C

(b) Compute the mass of ice melted.

Set the total available energy equal to the heat of fusion 
of m grams of ice, mLf , and solve for m:

6.29 3 105 J 5 mLf 5 m(3.33 3 105 J/kg)

m 5   1.89 kg

re Mar Ks  If this problem is solved assuming (wrongly) that all the ice melts, a final temperature of T 5 216.5°C is 
obtained. The only way that could happen is if the system were not isolated, contrary to the statement of the problem. In 
Exercise 11.6, you must also compute the thermal energy needed to warm the ice to its melting point.

QUes t i On  11.6  What effect would doubling the initial amount of liquid water have on the amount of ice melted?

e Xe rc i s e  11.6  If 8.00 kg of ice at 25.00°C is added to 12.0 kg of water at 20.0°C, compute the final temperature. How 
much ice remains, if any?

a ns We r  T 5 0°C, 5.23 kg

Sometimes problems involve changes in mechanical energy. During a collision, 
for example, some kinetic energy can be transformed to the internal energy of 
the colliding objects. This kind of transformation is illustrated in Example 11.7, 
which involves a possible impact of a comet on Earth. In this example, a number of 
liberties will be taken in order to estimate the magnitude of the destructive power 
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of such a catastrophic event. The specific heats depend on temperature and pres-
sure, for example, but that will be ignored. Also, the ideal gas law doesn’t apply at 
the temperatures and pressures attained, and the result of the collision wouldn’t 
be superheated steam, but a plasma of charged particles. Despite all these simplifi-
cations, the example yields good order-of-magnitude results.

 ■ e Xa Mp Le  11.7 Armageddon!

g Oa L  Link mechanical energy to thermal energy, phase changes, and the ideal gas law to create an estimate.

pr Ob Le M  A comet half a kilometer in radius consisting 
of ice at 273 K hits Earth at a speed of 4.00 3 104 m/s. For 
simplicity, assume all the kinetic energy converts to ther-
mal energy on impact and that all the thermal energy goes 
into warming the comet. (a) Calculate the volume and 
mass of the ice. (b) Use conservation of energy to find the 
final temperature of the comet material. Assume, contrary 
to fact, that the result is superheated steam and that the 
usual specific heats are valid, although in fact they depend 
on both temperature and pressure. (c) Assuming the steam 
retains a spherical shape and has the same initial volume 
as the comet, calculate the pressure of the steam using the 
ideal gas law. This law actually doesn’t apply to a system at 
such high pressure and temperature, but can be used to 
get an estimate.

s t r at e gY  Part (a) requires the volume formula for 
a sphere and the definition of density. In part (b) con-
servation of energy can be applied. There are four  
processes involved: (1) melting the ice, (2) warming the 
ice water to the boiling point, (3) converting the boiling 
water to steam, and (4) warming the steam. The energy 
needed for these processes will be designated Q melt, Q water, 
Q vapor, and Q steam, respectively. These quantities plus 
the change in kinetic energy DK sum to zero because 
they are assumed to be internal to the system. In this 
case, the first three Q’s can be neglected compared to 
the (extremely large) kinetic energy term. Solve for the 
unknown temperature and substitute it into the ideal gas 
law in part (c).

s OLUti On
(a) Find the volume and mass of the ice.

Apply the volume formula for a sphere: V 5
4
3

 pr 3 5
4
3
13.14 2 15.00 3 102 m 23

5    5.23 3 108 m3

Apply the density formula to find the mass of the ice: m 5 rV 5 (917 kg/m3)(5.23 3 108 m3)

5    4.80 3 1011 kg

(b) Find the final temperature of the cometary material.

Use conservation of energy: (1) Q melt 1 Q water 1 Q vapor 1 Q steam 1 DK 5 0

(2) mLf 1 mcwaterDTwater 1 mLv 1 mcsteamDTsteam

1 10 2 1
2mv

2 2 5 0

The first three terms are negligible compared to the 
kinetic energy. The steam term involves the unknown 
final temperature, so retain only it and the kinetic energy, 
canceling the mass and solving for T :

mc steam 1T 2 373 K 2 2 1
2mv

2 5 0

T 5

1
2v 2

c steam
1 373 K 5

1
2 14.00 3 104 m/s 22

2 010 J/kg # K
1 373 K

T 5    3.98 3 105 K

(c) Estimate the pressure of the gas, using the ideal  
gas law.

First, compute the number of moles of steam: n 5 14.80 3 1011kg 2 a 1 mol
0.018 kg

b 5 2.67 3 1013 mol

Solve for the pressure, using PV 5 nRT : P 5
nRT
V

  

5
12.67 3 1013 mol 218.31 J/mol # K 2 13.98 3 105 K 2

5.23 3 108 m3

P 5   1.69 3 1011 Pa

(Continued)
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11.5    Energy Transfer
Learning Objectives

1. Define conduction, convection, and radiation and discuss the physical  
mechanisms associated with each of them.

2. Calculate the rate of energy transfer by conduction through one or more  
layers of material.

3. State and apply Stefan’s law, calculating the rate of energy transfer by  
radiation from different systems.

For some applications it’s necessary to know the rate at which energy is transferred 
between a system and its surroundings and the mechanisms responsible for the 
transfer. This information is particularly important when weatherproofing build-
ings or in medical applications, such as approximating human survival time when 
exposed to the elements.

Earlier in this chapter we defined heat as a transfer of energy between a system 
and its surroundings due to a temperature difference between them. In this sec-
tion we take a closer look at heat as a means of energy transfer and consider the 
processes of thermal conduction, convection, and radiation.

Thermal Conduction
The energy transfer process most closely associated with a temperature differ-
ence is called thermal conduction or simply conduction. In this process the 
transfer can be viewed on an atomic scale as an exchange of kinetic energy 
between microscopic particles—molecules, atoms, and electrons—with less 
energetic particles gaining energy as they collide with more energetic particles. 
An inexpensive pot, as in Figure 11.4, may have a metal handle with no sur-
rounding insulation. As the pot is warmed, the temperature of the metal han-
dle increases, and the cook must hold it with a cloth potholder to avoid being 
burned.

The way the handle warms up can be understood by looking at what happens 
to the microscopic particles in the metal. Before the pot is placed on the stove, the 
particles are vibrating about their equilibrium positions. As the stove coil warms 
up, those particles in contact with it begin to vibrate with larger amplitudes. These 
particles collide with their neighbors and transfer some of their energy in the 
collisions. Metal atoms and electrons farther and farther from the coil gradually 

re Mar Ks  The estimated pressure is several hundred times greater than the ultimate shear stress of steel! This high-
pressure region would expand rapidly, destroying everything within a very large radius. Fires would ignite across a conti-
nent-sized region, and tidal waves would wrap around the world, wiping out coastal regions everywhere. The Sun would 
be obscured for at least a decade, and numerous species, possibly including Homo sapiens, would become extinct. Such 
extinction events are rare, but in the long run represent a significant threat to life on Earth.

QUes t i On  11.7  Why would a nickel–iron asteroid be more dangerous than an asteroid of the same size made mainly 
of ice?

e Xe rc i s e  11.7  Suppose a lead bullet with mass 5.00 g and an initial temperature of 65.0°C hits a wall and completely 
liquefies. What minimum speed did it have before impact? (Hint: The minimum speed corresponds to the case where all 
the kinetic energy becomes internal energy of the lead and the final temperature of the lead is at its melting point. Don’t 
neglect any terms here!)

a ns We r  341 m/s

Figure 11.4   Conduction makes 
the metal handle of a cooking pan 
hot.
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t ip 11.4  Blankets and 
Coats in Cold Weather
When you sleep under a blanket 
in the winter or wear a warm coat 
outside, the blanket or coat serves 
as a layer of material with low 
thermal conductivity that reduces 
the transfer of energy away from 
your body by heat. The primary 
insulating medium is the air 
trapped in small pockets within 
the material.
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increase the amplitude of their vibrations, until eventually those in the handle are 
affected. This increased vibration represents an increase in temperature of the 
metal (and possibly a burned hand!).

Although the transfer of energy through a substance can be partly explained 
by atomic vibrations, the rate of conduction depends on the properties of the 
substance. For example, it’s possible to hold a piece of asbestos in a flame indef-
initely, which implies that very little energy is conducted through the asbestos. 
In general, metals are good thermal conductors because they contain large 
numbers of electrons that are relatively free to move through the metal and can 
transport energy from one region to another. In a good conductor such as cop-
per, conduction takes place via the vibration of atoms and the motion of free 
electrons. Materials such as asbestos, cork, paper, and fiberglass are poor ther-
mal conductors. Gases are also poor thermal conductors because of the large 
distance between their molecules.

Conduction occurs only if there is a difference in temperature between two 
parts of the conducting medium. The temperature difference drives the f low 
of energy. Consider a slab of material of thickness Dx and cross-sectional area 
A with its opposite faces at different temperatures Tc and Th, where Th . Tc
(Fig. 11.5). The slab allows energy to transfer from the region of higher tem-
perature to the region of lower temperature by thermal conduction. The rate 
of energy transfer, P 5 Q /Dt, is proportional to the cross-sectional area of the 
slab and the temperature difference and is inversely proportional to the thick-
ness of the slab:

P 5
Q

Dt
 ~  A 

DT
Dx

 

Note that P has units of watts when Q is in joules and Dt is in seconds.
Suppose a substance is in the shape of a long, uniform rod of length L, as in 

Figure 11.6. We assume the rod is insulated, so thermal energy can’t escape by 
conduction from its surface except at the ends. One end is in thermal contact with 
an energy reservoir at temperature Tc and the other end is in thermal contact with 
a reservoir at temperature Th . Tc. When a steady state is reached, the tempera-
ture at each point along the rod is constant in time. In this case DT 5 Th 2 Tc and  
Dx 5 L, so

DT
Dx

5
Th 2 Tc

L

The rate of energy transfer by conduction through the rod is given by

P 5 kA 
1Th 2 Tc 2

L
 [11.7]

where k, a proportionality constant that depends on the material, is called the 
thermal conductivity. Substances that are good conductors have large thermal 
conductivities, whereas good insulators have low thermal conductivities. Table 11.3 
lists the thermal conductivities for various substances.

■ Quick Quiz

11.3  Will an ice cube wrapped in a wool blanket remain frozen for (a) less time, 
(b) the same length of time, or (c) a longer time than an identical ice cube exposed 
to air at room temperature?

11.4  Two rods of the same length and diameter are made from different materials. 
The rods are to connect two regions of different temperature so that energy will 
transfer through the rods by heat. They can be connected in series, as in Figure 
11.7a (page 382), or in parallel, as in Figure 11.7b. In which case is the rate of energy 
transfer by heat larger? (a) When the rods are in series (b) When the rods are in 
parallel (c) The rate is the same in both cases.

The opposite faces are at different 
temperatures, with Th � Tc .

Tc

Energy transfer
for Th � Tc 

Th
A

�x

Figure 11.5  Energy transfer 
through a conducting slab of cross-
sectional area A and thickness Dx.

The opposite ends of the rod 
are in thermal contact with 
energy reservoirs at different 
temperatures.

Th

Insulation  

Tc

L

Energy
transfer

Th � Tc

Figure 11.6  Conduction of energy 
through a uniform, insulated rod of 
length L.

t able 11.3  Thermal 
Conductivities

 Thermal
 Conductivity
Substance (J/s ? m ? °C)

Metals (at 25°C)
 Aluminum 238

Copper 397
Gold 314
Iron 79.5
Lead 34.7
Silver 427

Gases (at 20°C)
 Air 0.023 4

Helium 0.138
 Hydrogen 0.172
 Nitrogen 0.023 4
 Oxygen 0.023 8
Nonmetals
 (approximate values)
  Asbestos 0.08
  Concrete 0.8
  Glass 0.8
  Ice 2
  Rubber 0.2
  Water 0.6
  Wood 0.08
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a b

Rod 1 Rod 2 
Th

Rod 1

Rod 2 
Th TcTc

Figure 11.7  (Quick Quiz 11.4) 
In which case is the rate of energy 
transfer larger?

 ■ e Xa Mp Le  11.8 Conductive Losses from the Human Body 

g Oa L  Apply the conduction equation to a human being.

pr Ob Le M  In a human being, a layer of fat and muscle 
lies under the skin having various thicknesses depending 
on location. In response to a cold environment, capillaries 
near the surface of the body constrict, reducing blood flow 
and thereby reducing the conductivity of the tissues. These 
tissues form a shell up to an inch thick having a thermal 
conductivity of about 0.21 W/m ? K, the same as skin or 
fat. (a) Estimate the rate of loss of thermal energy due to 
conduction from the human core region to the skin sur-
face, assuming a shell thickness of 2.0 cm and a skin tem-
perature of 33.0°C. (Skin temperature varies, depending 
on external conditions.) (b) Calculate the thermal energy 

lost due to conduction in 1.0 h. (c) Estimate the change in 
body temperature in 1.0 h if the energy is not replenished. 
Assume a body mass of 75 kg and a skin surface area of 
1.73 m2.

s t r at e g Y  The solution to part (a) requires applying 
Equation 11.7 for the rate of energy transfer due to con-
duction. Multiplying the power found in part (a) by the 
elapsed time yields the total thermal energy transfer in the 
given time. In part (c), an estimate for the change in tem-
perature if the energy is not replenished can be developed 
using Equation 11.3, Q 5 mc DT.

s OLUti On
(a) Estimate the rate of loss of thermal energy due to 
conduction.

Write the thermal conductivity equation: P 5
kA 1Th 2 Tc 2

L

Substitute values: P 5
10.21 J/m # K 2 11.73 m2 2 137.08C 2 33.08C 2

2.0 3 1022 m
5   73 W

(b) Calculate the thermal energy lost due to conduction 
in 1.0 h.

Multiply the power P by the time Dt : Q 5 P Dt 5 (73 W)(3 600 s) 5   2.6 3 105 J

(c) Estimate the change in body temperature in 1.0 h if 
the energy is not replenished.

Write Equation 11.3 and solve it for DT : Q 5 mc DT

DT 5  
Q
mc

5
2.6 3 105 J

175 kg 2 13 470 J/kg # K 2 5  1.0°C

re Mar Ks  The calculation doesn’t take into account the 
thermal gradient, which further reduces the rate of con-
duction through the shell. Whereas thermal energy trans-
fers through the shell by conduction, other mechanisms 
remove that energy from the body’s surface because air is a 
poor conductor of thermal energy. Convection, radiation, 
and evaporation of sweat are the primary mechanisms that 
remove thermal energy from the skin. The calculation 
shows that even under mild conditions the body must con-
stantly replenish its internal energy. It’s possible to die of 
exposure even in temperatures well above freezing.

QUes t i On  11.8  Why does a long distance runner 
require very little in the way of warm clothing when run-

ning in cold weather, but puts on a sweater after finishing 
the run?

e Xe rc i s e  11.8   A female minke whale has a core 
body temperature of 35°C and a core/blubber interface 
temperature of 29°C, with an average blubber thickness of 
4.0 cm and thermal conductivity of 0.25 W/m?K. (a) At what 
rate is energy lost from the whale’s core by conduction from 
the core/blubber interface through the blubber to the skin? 
Assume a skin temperature of 12°C and a total body area of 
22 m2. (b) What percent of the daily energy budget is this 
number? (The average female minke whale requires 8.0 3 
108 J of energy per day—that’s a lot of plankton and krill.)

a ns We r s  (a) 2.3 3 103 W (b) 25%
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Home Insulation
To determine whether to add insulation to a ceiling or some other part of a build-
ing, the preceding discussion of conduction must be extended for two reasons:

1. The insulating properties of materials used in buildings are usu-
ally expressed in engineering (U.S. customary) rather than SI units. 
Measurements stamped on a package of fiberglass insulating board will  
be in units such as British thermal units, feet, and degrees Fahrenheit.

2. In dealing with the insulation of a building, conduction through a com-
pound slab must be considered, with each portion of the slab having a cer-
tain thickness and a specific thermal conductivity. A typical wall in a house 
consists of an array of materials, such as wood paneling, drywall, insulation, 
sheathing, and wood siding.

The rate of energy transfer by conduction through a compound slab is

Q

Dt
5

A 1Th 2 Tc 2
a
i
L i/k i

 [11.8]

where Th and Tc are the temperatures of the outer extremities of the slab and the 
summation is over all portions of the slab. This formula can be derived algebra-
ically, using the facts that the temperature at the interface between two insulating 
materials must be the same and that the rate of energy transfer through one insu-
lator must be the same as through all the other insulators. If the slab consists of 
three different materials, the denominator is the sum of three terms. In engineer-
ing practice, the term L/k for a particular substance is referred to as the R-value of 
the material, so Equation 11.8 reduces to

 
Q

Dt
5

A 1Th 2 Tc 2
a
i
R i

 [11.9]

The R-values for a few common building materials are listed in Table 11.4. Note 
the unit of R and the fact that the R-values are defined for specific thicknesses.

t able 11.4  R-Values for Some Common Building Materials

R valuea

Material (ft2 ? °F ? h/Btu)

Hardwood siding (1.0 in. thick) 0.91
Wood shingles (lapped) 0.87
Brick (4.0 in. thick) 4.00
Concrete block (filled cores) 1.93
Styrofoam (1.0 in. thick) 5.0
Fiberglass batting (3.5 in. thick) 10.90
Fiberglass batting (6.0 in. thick) 18.80
Fiberglass board (1.0 in. thick) 4.35
Cellulose fiber (1.0 in. thick) 3.70
Flat glass (0.125 in. thick) 0.89
Insulating glass (0.25-in. space) 1.54
Vertical air space (3.5 in. thick) 1.01
Stagnant layer of air 0.17
Drywall (0.50 in. thick) 0.45
Sheathing (0.50 in. thick) 1.32
a The values in this table can be converted to SI units by multiplying the values by 
0.1761.

A worker installing fiberglass insula-
tion in a home. The mask protects 
the worker against the inhalation of 
microscopic fibers, which could be 
hazardous to his health.
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Next to any vertical outside surface is a very thin, stagnant layer of air that must 
be considered when the total R-value for a wall is computed. The thickness of this 
stagnant layer depends on the speed of the wind. As a result, energy loss by con-
duction from a house on a day when the wind is blowing is greater than energy loss 
on a day when the wind speed is zero. A representative R-value for a stagnant air 
layer is given in Table 11.4. The values are typically given in British units, but they 
can be converted to the equivalent metric units by multiplying the values in the 
table by 0.176 1.)

 ■ e Xa Mp Le  11.9 Construction and Thermal Insulation

g Oa L  Calculate the R-value of several layers of insulating 
material and its effect on thermal energy transfer.

pr Ob Le M (a) Find the energy transferred in 1.00 h by 
conduction through a concrete wall 2.0 m high, 3.65 m long, 
and 0.20 m thick if one side of the wall is held at 5.00°C 
and the other side is at 20.0°C (Fig. 11.8). Assume the con-
crete has a thermal conductivity of 0.80 J/s ? m ? °C. (b) The 
owner of the home decides to increase the insulation, so 
he installs 0.50 in of thick sheathing, 3.5 in of fiberglass  
batting, and a drywall 0.50 in thick. Calculate the R-factor. 
(c) Calculate the energy transferred in 1.00 h by conduc-
tion. (d) What is the temperature between the concrete wall 
and the sheathing? Assume there is an air layer on the exte-
rior of the concrete wall but not between the concrete and 
the sheathing.

s t r at e g Y  The R-value of the concrete wall is given by 
L/k. Add this to the R-value of two air layers and then substitute into Equation 11.8, multiplying by the seconds in an 
hour to get the total energy transferred through the wall in an hour. Repeat this process, with different materials, for 
parts (b) and (c). Part (d) requires finding the R-value for an air layer and the concrete wall and then substituting into 
the thermal conductivity equation. In this problem metric units are used, so be sure to convert the R-values in the table. 
(Converting to SI requires multiplication of the British units by 0.176 1.)

s OLUti On

a b

Concrete
Sheathing

Fiberglass batting Drywall

Initially, air layers are 
on either side of the 
concrete wall.

5.00�C
5.00�C

20.0�C
20.0�C

Figure 11.8  (Example 11.9) A cross-sectional view of (a) a con-
crete wall with two air spaces and (b) the same wall with sheathing, 
fiberglass batting, drywall, and two air layers.

(a) Find the energy transferred in 1.00 h by conduc-
tion through a concrete wall.

Calculate the R-value of concrete plus two air layers: aR 5
L
k

1 2Rair layer 5
0.20 m

0.80 J/s # m # 8C
1 2a0.030 

m2

J/s # 8C
b

5 0.31 
m2

J/s # 8C

Write the thermal conduction equation: P 5
A 1Th 2 Tc 2

aR

Substitute values: P 5
17.3 m2 2 120.08C 2 5.008C 2

0.31 m2 # s # 8C/J
5 353 W S 350 W

Multiply the power in watts times the seconds in an 
hour:

Q 5 P Dt 5 (350 W)(3 600 s) 5   1.3 3 106 J

(b) Calculate the R-factor of the newly insulated wall.

Refer to Table 11.4 and sum the appropriate quantities 
after converting them to SI units:

Rtotal 5 Routside air layer 1 Rconcrete 1 Rsheath 

1 Rfiberglass 1 Rdrywall 1 R inside air layer 

5 (0.030 1 0.25 1 0.232 1 1.92 1 0.079 1 0.030)

5   2.5 m2 ? 8C ? s/J

(Continued)
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Convection
When you warm your hands over an open flame, as illustrated in Figure 11.9, the 
air directly above the flame, being warmed, expands. As a result, the density of 
this air decreases and the air rises, warming your hands as it flows by. The transfer 
of energy by the movement of a substance is called convection. When the move-
ment results from differences in density, as with air around a fire, it’s referred to as 
natural convection. Airflow at a beach is an example of natural convection, as is the 
mixing that occurs as surface water in a lake cools and sinks. When the substance 
is forced to move by a fan or pump, as in some hot air and hot water heating sys-
tems, the process is called forced convection.

Convection currents assist in the boiling of water. In a teakettle on a hot 
stovetop, the lower layers of water are warmed first. The warmed water has a lower 
density and rises to the top, while the denser, cool water at the surface sinks to the 
bottom of the kettle and is warmed.

The same process occurs when a radiator raises the temperature of a room. The 
hot radiator warms the air in the lower regions of the room. The warm air expands 
and, because of its lower density, rises to the ceiling. The denser, cooler air from 
above sinks, setting up the continuous air current pattern shown in Figure 11.10.

(c) Calculate the energy transferred in 1.00 h by 
conduction.

Write the thermal conduction equation: P 5
A 1Th 2 Tc 2

aR

Substitute values: P 5
17.3 m2 2 120.08C 2 5.008C 2

2.5 m2 # s # 8C/J
5 44 W

Multiply the power in watts times the seconds in an 
hour:

Q 5 PDt 5 (44 W)(3 600 s) 5   1.6 3 105 J

(d) Calculate the temperature between the concrete 
and the sheathing.

Write the thermal conduction equation: P 5
A 1Th 2 Tc 2

aR

Solve algebraically for Th by multiplying both sides by 
oR and dividing both sides by area A:

PaR 5 A 1Th 2 Tc 2 S 1Th 2 Tc 2 5
PaR

A

Add Tc to both sides: Th 5
PaR

A
1 Tc

Substitute the R-value for the concrete wall from part 
(a), but subtract the R-value of one air layer from that 
calculated in part (a):

Th 5
144 W 2 10.31 m2 # s # 8C/J 2 0.03 m2 # s # 8C/J 2

7.3 m2 1 5.008C

 5   6.7°C

re Mar Ks  Notice the enormous energy savings that can be realized with good insulation!

QUes t i On  11.9  Which of the following choices results in the best possible R-value? (a) Use material with a small ther-
mal conductivity and large thickness. (b) Use thin material with a large thermal conductivity. (c) Use material with a 
small thermal conductivity and small thickness.

e Xe rc i s e  11.9  Instead of the layers of insulation, the owner installs a brick wall on the exterior of the concrete wall. 
(a) Calculate the R-factor, including the two stagnant air layers on the inside and outside of the wall. (b) Calculate the 
energy transferred in 1.00 h by conduction, under the same conditions as in the example. (c) What is the temperature 
between the concrete and the brick?

a ns We r s  (a) 1.01 m2 ? °C ? s/J (b) 3.9 3 105 J (c) 16°C

Figure 11.9  Warming a hand by 
convection.
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An automobile engine is maintained at a safe operating temperature by a com-
bination of conduction and forced convection. Water (actually, a mixture of water 
and antifreeze) circulates in the interior of the engine. As the metal of the engine 
block increases in temperature, energy passes from the hot metal to the cooler 
water by thermal conduction. The water pump forces water out of the engine and 
into the radiator, carrying energy along with it (by forced convection). In the radi-
ator the hot water passes through metal pipes that are in contact with the cooler 
outside air, and energy passes into the air by conduction. The cooled water is then 
returned to the engine by the water pump to absorb more energy. The process of 
air being pulled past the radiator by the fan is also forced convection.

The algal blooms often seen in temperate lakes and ponds during the spring 
or fall are caused by convection currents in the water. To understand this process, 
consider Figure 11.11. During the summer, bodies of water develop temperature 
gradients, with a warm upper layer of water separated from a cold lower layer by 
a buffer zone called a thermocline. In the spring and fall temperature changes in 
the water break down this thermocline, setting up convection currents that mix 
the water. The mixing process transports nutrients from the bottom to the sur-
face. The nutrient-rich water forming at the surface can cause a rapid, temporary 
increase in the algae population.

Photograph of a teakettle, showing 
steam and turbulent convection air 
currents.
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Figure 11.10  Convection currents 
are set up in a room warmed by a 
radiator.

a pp Lica t iOn
Cooling Automobile Engines

 a pp Lica t iOn
Algal Blooms in Ponds and Lakes

Warm Layer 25°C–22°C
Thermocline 20°C–10°C

Cool layer 5°C–4°C

Summer layering of water

Fall and spring upwelling

a

b

Figure 11.11  (a) During the sum-
mer, a warm upper layer of water is 
separated from a cooler lower layer 
by a thermocline. (b) Convection 
currents during the spring and fall 
mix the water and can cause algal 
blooms.
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 ■ a pp LYi ng  ph Ys i c s 11.1 Body Temperature  

The body temperature of mammals ranges from about 
35°C to 38°C, whereas that of birds ranges from about 40°C 
to 43°C. How can these narrow ranges of body tempera-
ture be maintained in cold weather?

e Xp La n at i On  A natural method of maintaining body 
temperature is via layers of fat beneath the skin. Fat pro-
tects against both conduction and convection because of its 
low thermal conductivity and because there are few blood 

vessels in fat to carry blood to the surface, where energy 
losses by convection can occur. Birds ruffle their feathers 
in cold weather to trap a layer of air with a low thermal con-
ductivity between the feathers and the skin. Bristling the 
fur produces the same effect in fur-bearing animals. 
 Humans keep warm with wool sweaters and down jack-
ets that trap the warmer air in regions close to their bod-
ies, reducing energy loss by convection and conduction. 

Radiation
Another process of transferring energy is through radiation. Figure 11.12 shows 
how your hands can be warmed by a lamp through radiation. Because your hands 
aren’t in physical contact with the lamp and the conductivity of air is very low, con-
duction can’t account for the energy transfer. Nor can convection be responsible 
for any transfer of energy because your hands aren’t above the lamp in the path of 
convection currents. The warmth felt in your hands must therefore come from the 
transfer of energy by radiation.

All objects radiate energy continuously in the form of electromagnetic waves 
due to thermal vibrations of their molecules. These vibrations create the orange 
glow of an electric stove burner, an electric space heater, and the coils of a toaster.

The rate at which an object radiates energy is proportional to the fourth power of 
its absolute temperature. This is known as Stefan’s law, expressed in equation form as

P 5 sAeT 4 [11.10]

where P is the power in watts (or joules per second) radiated by the object, s is the 
Stefan–Boltzmann constant, equal to 5.669 6 3 1028 W/m2 ? K4, A is the surface 
area of the object in square meters, e is a constant called the emissivity of the 
object, and T is the object’s Kelvin temperature. The value of e can vary between 
zero and one, depending on the properties of the object’s surface.

Approximately 1 370 J of electromagnetic radiation from the Sun passes through 
each square meter at the top of the Earth’s atmosphere every second. This radia-
tion is primarily visible light, accompanied by significant amounts of infrared and 
ultraviolet light. We will study these types of radiation in detail in Chapter 21. Some 
of this energy is reflected back into space, and some is absorbed by the atmosphere, 
but enough arrives at the surface of the Earth each day to supply all our energy 
needs hundreds of times over, if it could be captured and used efficiently. The 
growth in the number of solar houses in the United States is one example of an 
attempt to make use of this abundant energy. Radiant energy from the Sun affects 
our day-to-day existence in a number of ways, influencing Earth’s average tempera-
ture, ocean currents, agriculture, and rain patterns. It can also affect behavior.

As another example of the effects of energy transfer by radiation, consider what 
happens to the atmospheric temperature at night. If there is a cloud cover above 
the Earth, the water vapor in the clouds absorbs part of the infrared radiation 
emitted by the Earth and re-emits it back to the surface. Consequently, the tem-
perature at the surface remains at moderate levels. In the absence of cloud cover, 
there is nothing to prevent the radiation from escaping into space, so the tempera-
ture drops more on a clear night than on a cloudy night.

As an object radiates energy at a rate given by Equation 11.10, it also absorbs 
radiation. If it didn’t, the object would eventually radiate all its energy and its tem-
perature would reach absolute zero. The energy an object absorbs comes from its 
environment, which consists of other bodies that radiate energy. If an object is at a 
temperature T and its surroundings are at a temperature T0, the net energy gained 
or lost each second by the object as a result of radiation is

 Pnet 5 sAe(T 4 2 T0
4) [11.11]

b Stefan’s law

Figure 11.12  Warming hands by 
radiation.
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When an object is in equilibrium with its surroundings, it radiates and absorbs energy 
at the same rate, so its temperature remains constant. When an object is hotter than 
its surroundings, it radiates more energy than it absorbs and therefore cools.

An ideal absorber is an object that absorbs all the light radiation incident on it, 
including invisible infrared and ultraviolet light. Such an object is called a black 
body because a room-temperature black body would look black. Because a black 
body doesn’t reflect radiation at any wavelength, any light coming from it is due to 
atomic and molecular vibrations alone. A perfect black body has emissivity e 5 1. 
An ideal absorber is also an ideal radiator of energy. The Sun, for example, is 
nearly a perfect black body. This statement may seem contradictory because the 
Sun is bright, not dark; the light that comes from the Sun, however, is emitted, not 
reflected. Black bodies are perfect absorbers that look black at room temperature 
because they don’t reflect any light. All black bodies, except those at absolute zero, 
emit light that has a characteristic spectrum, discussed in Chapter 27. In contrast 
to black bodies, an object for which e 5 0 absorbs none of the energy incident on 
it, reflecting it all. Such a body is an ideal reflector.

White clothing is more comfortable to wear in the summer than black clothing. 
Black fabric acts as a good absorber of incoming sunlight and as a good emitter 
of this absorbed energy. About half of the emitted energy, however, travels toward 
the body, causing the person wearing the garment to feel uncomfortably warm. 
White or light-colored clothing reflects away much of the incoming energy.

The amount of energy radiated by an object can be measured with temperature-
sensitive recording equipment via a technique called thermography. An image of 
the pattern formed by varying radiation levels, called a thermogram, is brightest 
in the warmest areas. Figure 11.13 reproduces a thermogram of a house. More 
energy escapes in the lighter regions, such as the door and windows. The own-
ers of this house could conserve energy and reduce their heating costs by adding 
insulation to the attic area and by installing thermal draperies over the windows. 
Thermograms have also been used to image injured or diseased tissue in medi-
cine, because such areas are often at a different temperature than surrounding 
healthy tissue, although many radiologists consider thermograms inadequate as a 
diagnostic tool.
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Figure 11.13  This thermogram of a house, made during cold weather.

Thermogram of a woman’s breasts. 
Her left breast is diseased (red and 
orange) and her right breast (blue) 
is healthy.
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Thermography

 a pp Lica t iOn
Radiation Thermometers for 

Measuring Body Temperature

Blue and purple indicate 
areas of least energy loss.

White and yellow indicate 
areas of greatest energy loss.
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Figure 11.14 shows a recently developed radiation thermometer that has removed 
most of the risk of taking the temperature of young children or the aged with a 
rectal thermometer, such as bowel perforation or bacterial contamination. The 
instrument measures the intensity of the infrared radiation leaving the eardrum 
and surrounding tissues and converts this information to a standard numerical 
reading. The eardrum is a particularly good location to measure body temperature 
because it’s near the hypothalamus, the body’s temperature control center.

■ Quick Quiz

11.5  Stars A and B have the same temperature, but star A has twice the radius of 
star B. (a) What is the ratio of star A’s power output to star B’s output due to electro-
magnetic radiation? The emissivity of both stars can be assumed to be 1. (b) Repeat 
the question if the stars have the same radius, but star A has twice the absolute tem-
perature of star B. (c) What’s the ratio if star A has both twice the radius and twice 
the absolute temperature of star B?

Figure 11.14  A radiation ther-
mometer measures a patient’s tem-
perature by monitoring the intensity 
of infrared radiation leaving the ear.
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 ■ a pp LYi ng  ph Ys i c s 11.2 Thermal Radiation and Night Vision

How can thermal radiation be used to see objects in near 
total darkness?

e Xp La n at i On  There are two methods of night vision, 
one enhancing a combination of very faint visible light and 
infrared light, and another using infrared light only. The 
latter is valuable for creating images in absolute darkness. 
Because all objects above absolute zero emit thermal radiation 

due to the vibrations of their atoms, the infrared (invisible) 
light can be focused by a special lens and scanned by an 
array of infrared detector elements. These elements create a 
thermogram. The information from thousands of separate 
points in the field of view is converted to electrical impulses 
and translated by a microchip into a form suitable for dis-
play. Different temperature areas are assigned different col-
ors, which can then be easily discerned on the display. 

 ■ e Xa Mp Le  11.10 Polar Bear Club 

g Oa L  Apply Stefan’s law.

pr Ob Le M  A member of the Polar Bear Club, dressed only in bathing trunks of negligible size, prepares to plunge into 
the Gulf of Finland from the beach in St. Petersburg, Russia. The air is calm, with a temperature of 5°C. If the swimmer’s 
surface body temperature is 25°C, compute the net rate of energy loss from his skin due to radiation. How much energy is 
lost in 10.0 min? Assume his emissivity is 0.900 and his surface area is 1.50 m2.

s t r at e g Y  Use Equation 11.11, the thermal radiation equation, substituting the given information. Remember to con-
vert temperatures to Kelvin by adding 273 to each value in degrees Celsius!

s OLUti On

Convert temperatures from Celsius to Kelvin: T5°C 5 TC 1 273 5 5 1 273 5 278 K

T25°C 5 TC 1 273 5 25 1 273 5 298 K

Compute the net rate of energy loss, using Equation 11.11: Pnet 5 sAe(T 4 2 T0
4)

5 (5.67 3 1028 W/m2 ? K4)(1.50 m2)

3 (0.900)[(298 K)4 2 (278 K)4]

Pnet 5   146 W

Multiply the preceding result by the time, 10 minutes, to 
get the energy lost in that time due to radiation:

Q 5 Pnet 3 Dt 5 (146 J/s)(6.00 3 102 s) 5   8.76 3 104 J

re Mar Ks  Energy is also lost from the body through convection and conduction. Clothing traps layers of air next to the 
skin, which are warmed by radiation and conduction. In still air these warm layers are more readily retained. Even a Polar 
Bear Club member enjoys some benefit from the still air, better retaining a stagnant air layer next to the surface of his skin.

(Continued)
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QUes t i On  11.10  Suppose that at a given temperature the rate of an object’s energy loss due to radiation is equal to its 
loss by conduction. When the object’s temperature is raised, is the energy loss due to radiation (a) greater than, (b) equal 
to, or (c) less than the rate of energy loss due to conduction? (Assume the temperature of the environment is constant.)

e Xe rc i s e  11.10  Repeat the calculation when the man is standing in his bedroom, with an ambient temperature of 
20.0°C. Assume his body surface temperature is 27.0°C, with emissivity of 0.900.

a ns We r  55.9 W, 3.35 3 104 J

 ■ e Xa Mp Le  11.11 Planet of Alpha Centauri B 

gO a L Apply Stefan’s law to stars and their planets.

p r Ob Le M The star Alpha Centauri B is one member of the triple star system, 
Alpha Centauri AB-C, the closest star system to Earth. (a) Calculate the power 
output P of Alpha Centauri B, given its surface temperature of 5 790 K and radius  
R � 6.02 � 108 m. (b) Calculate the power PI intercepted by a possible Earth-
sized planet, Alpha Centauri Bb, with radius r � 6.64 � 106 m, orbiting its star at 
a distance of rO � 6.00 � 109 m. (c) Estimate the temperature of the planet using 
Stefan’s equation. Assume all worlds are black bodies, with e � 1.

s t r at e g Y Calculating the power output in part (a) is a matter of sub-
stitution. To solve part (b), it’s necessary to find the fraction of the star’s 
power intercepted by the planet. The star’s energy crosses a sphere of area 
AO � 4pr 2

O , where radius rO is the planet’s distance from Alpha Centauri B. 
The cross-sectional area of the planet’s disk, Apd � pr 2, intercepts a frac-
tion of this energy given by Apd/AO. (See Figure 11.15.) Multiplying the star’s 
power output by the fraction gives the amount of power the planet must both 
absorb and emit if in equilibrium, which is the answer to part (b). Substitute 
it into Stefan's equation and solve for the planet's temperature, the answer 
for part (c).

s OLUti On

R

4prO
2

rO

pr2
Alpha Centauri B

Alpha Centauri Bb

Figure 11.15  (Example 11.11) The power 
emitted by Alpha Centauri B travels radially 
outward, crossing a sphere with the same 
radius, rO, as Alpha Centauri Bb’s orbital 
radius. The cross-sectional area of the planet 
intercepts a small part of that radiation. 
(Note: Figure not drawn to scale)

(a) Calculate the power output of Alpha Centauri B.

Compute the surface area of Alpha Centauri B: A � 4pR2 � 4p(6.02 � 108 m)2 � 4.55 � 1018 m2

Write Stefan’s equation and substitute values: P � σAeT 4 � (5.67 � 10�8 W/m2 � K4)(4.55 � 1018 m2)
(1.00)(5 790 K)4 � 2.90 � 1026 W 

(b) Calculate the power PI intercepted by a possible Earth-
sized planet, Alpha Centauri Bb.

Calculate the area of the planet’s disk, Apd, and the area 
of a sphere, AO, with the same radius as the planet’s 
orbital radius:

Apd � pr2 � p(6.64 � 106 m)2 � 1.39 � 1014 m2

AO � 4prO
2 � 4p(6.00 � 109 m)2 � 4.52 � 1020 m2

Find the fraction of the star’s power intercepted by the 
planet: PI 5 °

Apd

AO
¢

 

P 5 ° 1.39 3 1014 m2

4.52 3 1020 m2 ¢ 12.90 3 1026 W 2

5  8.92 3 1019 W
(c) Estimate the temperature of the planet using Stefan’s 
equation.
Write Stefan’s equation, set it equal to the intercepted 
power, PI, and solve for the temperature. Note that the full 
planetary area, 4pr2, not just the disk area, must be used:

PI � sAeT 4 � (5.67 � 10�8 W/m2 � K4)(5.54 � 1014 m2)(1.00)T 4  
    � (3.15 � 107 W/K4)T 4 � 8.92 � 1019 W

T �  1.30 � 103 K

r e Mar Ks  This calculation is only an estimate because the planet may not be a perfect black body, and the effects 
of an atmosphere—unlikely in this case—can greatly affect the typical average temperature on a given world.

37027_ch11_ptg01_hr_367-401.indd   390 22/08/13   2:07 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Unless otherwise noted, all content on this page is © Cengage Learning.

11.6 | Global Warming and Greenhouse Gases   391

The Dewar Flask
The Thermos bottle, also called a Dewar flask (after its inventor), is designed to 
minimize energy transfer by conduction, convection, and radiation. The insulated 
bottle can store either cold or hot liquids for long periods. The standard vessel 
(Fig. 11.16) is a double-walled Pyrex glass with silvered walls. The space between 
the walls is evacuated to minimize energy transfer by conduction and convection. 
The silvered surface minimizes energy transfer by radiation because silver is a very 
good reflector and has very low emissivity. A further reduction in energy loss is 
achieved by reducing the size of the neck. Dewar flasks are commonly used to 
store liquid nitrogen (boiling point 77 K) and liquid oxygen (boiling point 90 K).

To confine liquid helium (boiling point 4.2 K), which has a very low heat of 
vaporization, it’s often necessary to use a double Dewar system in which the Dewar 
flask containing the liquid is surrounded by a second Dewar flask. The space 
between the two flasks is filled with liquid nitrogen.

Some of the principles of the Thermos bottle are used in the protection of sensi-
tive electronic instruments in orbiting space satellites. In half of its orbit around the 
Earth a satellite is exposed to intense radiation from the Sun, and in the other half 
it lies in the Earth’s cold shadow. Without protection, its interior would be subjected 
to tremendous extremes of temperature. The interior of the satellite is wrapped 
with blankets of highly reflective aluminum foil. The foil’s shiny surface reflects 
away much of the Sun’s radiation while the satellite is in the unshaded part of the 
orbit and helps retain interior energy while the satellite is in the Earth’s shadow.

11.6     Global Warming and  
Greenhouse Gases 

Learning Objective

1. Describe the greenhouse effect and the role of greenhouse gases in global 
warming.

Many of the principles of energy transfer, and opposition to it, can be understood 
by studying the operation of a glass greenhouse. During the day, sunlight passes 
into the greenhouse and is absorbed by the walls, soil, plants, and so on. This 
absorbed visible light is subsequently reradiated as infrared radiation, causing the 
temperature of the interior to rise.

In addition, convection currents are inhibited in a greenhouse. As a result, 
warmed air can’t rapidly pass over the surfaces of the greenhouse that are exposed 
to the outside air and thereby cause an energy loss by conduction through those 
surfaces. Most experts now consider this restriction to be a more important warm-
ing effect than the trapping of infrared radiation. In fact, experiments have shown 
that when the glass over a greenhouse is replaced by a special glass known to trans-
mit infrared light, the temperature inside is lowered only slightly. On the basis of 
this evidence, the primary mechanism that raises the temperature of a greenhouse 
is not the trapping of infrared radiation, but the inhibition of airflow that occurs 
under any roof (in an attic, for example).

QUes t i On  11.11 An implicit premise of Example 11.11 
is that the planet will radiate away all the energy that it 
intercepts. Why is this a reasonable assumption?

eX e r c i s e  11.11 (a) Calculate how much power Earth 
emits, using Stefan’s equation and the Earth’s average 
temperature of about 15.0°C. (b) Assuming a planet with 

identical characteristics to Earth orbits Alpha Centauri 
B and intercepts the power calculated in part (a) with its 
disk, estimate how far it must be from Alpha Centauri B. 
(The answer is a little greater than the distance from the 
Sun to Venus.)

a ns Wer s  (a) 2.00 � 1017 W (b) 1.21 � 1011 m

Vacuum 
(white 
area)

Hot or 
cold 
liquid

Silvered surfaces

Figure 11.16  A cross-sectional 
view of a Thermos bottle designed to 
store hot or cold liquids.

a pp Lica t iOn
Thermos Bottles
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A phenomenon commonly known as the greenhouse effect can also play a major 
role in determining the Earth’s temperature. First, note that the Earth’s atmosphere 
is a good transmitter (and hence a poor absorber) of visible radiation and a good 
absorber of infrared radiation. The visible light that reaches the Earth’s surface is 
absorbed and reradiated as infrared light, which in turn is absorbed (trapped) by 
the Earth’s atmosphere. An extreme case is the warmest planet, Venus, which has a 
carbon dioxide (CO2) atmosphere and temperatures approaching 850°F.

As fossil fuels (coal, oil, and natural gas) are burned, large amounts of car-
bon dioxide are released into the atmosphere, causing it to retain more energy. 
These emissions are of great concern to scientists and governments throughout 
the world. Many scientists are convinced that the 10% increase in the amount of 
atmospheric carbon dioxide since 1970 could lead to drastic changes in world 
climate. The increase in concentration of atmospheric carbon dioxide in the lat-
ter part of the 20th century and the first years of the 21st century is shown in  
Figure 11.17. According to one estimate, doubling the carbon dioxide content in 
the atmosphere will cause temperatures to increase by 2°C. In temperate regions 
such as Europe and the United States, a 2°C temperature rise would save billions 
of dollars per year in fuel costs. Unfortunately, it would also melt a large amount 
of land-based ice from Greenland and Antarctica, raising the level of the oceans 
and destroying many coastal regions. A 2°C rise would also increase the frequency 
of droughts and consequently decrease already low crop yields in tropical and sub-
tropical countries. Even slightly higher average temperatures might make it impos-
sible for certain plants and animals to survive in their customary ranges.

At present, about 3.5 3 1011 tons of CO2 are released into the atmosphere each 
year. Most of this gas results from human activities such as the burning of fossil 
fuels, the cutting of forests, and manufacturing processes. Another greenhouse 
gas is methane (CH4), which is released in the digestive process of cows and other 
ruminants. This gas originates from that part of the animal’s stomach called the 
rumen, where cellulose is digested. Termites are also major producers of this gas. 
Finally, greenhouse gases such as nitrous oxide (N2O) and sulfur dioxide (SO2) 
are increasing due to automobile and industrial pollution.

Whether the increasing greenhouse gases are responsible or not, there is con-
vincing evidence that global warming is under way. The evidence comes from the 
melting of ice in Antarctica and the retreat of glaciers at widely scattered sites 
throughout the world (see Fig. 11.18). For example, satellite images of Antarctica 
show James Ross Island completely surrounded by water for the first time since 
maps were made, about 100 years ago. Previously, the island was connected to the 
mainland by an ice bridge. In addition, at various places across the continent, ice 
shelves are retreating, some at a rapid rate.

Perhaps at no place in the world are glaciers monitored with greater interest 
than in Switzerland. There, it is found that the Alps have lost about 50% of their 
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Figure 11.17  The concentration 
of atmospheric carbon dioxide in 
parts per million (ppm) of dry air as 
a function of time during the latter 
part of the 20th century. These data 
were recorded at Mauna Loa Obser-
vatory in Hawaii. The yearly varia-
tions (rust-colored curve) coincide 
with growing seasons because veg-
etation absorbs carbon dioxide from 
the air. The steady increase (black 
curve) is of concern to scientists.
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glacial ice compared to 130 years ago. The retreat of glaciers on high-altitude 
peaks in the tropics is even more severe than in Switzerland. The Lewis glacier on 
Mount Kenya and the snows of Kilimanjaro are two examples. In certain regions 
of the planet where glaciers are near large bodies of water and are fed by large 
and frequent snows, however, glaciers continue to advance, so the overall picture 
of a catastrophic global-warming scenario may be premature. In about 50 years, 
though, the amount of carbon dioxide in the atmosphere is expected to be about 
twice what it was in the preindustrial era. Because of the possible catastrophic 
consequences, most scientists voice the concern that reductions in greenhouse gas 
emissions need to be made now.
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Figure 11.18  Death of an ice shelf. 
The image in (a), taken on Janu-
ary 9, 1995 in the near-visible part 
of the spectrum, shows James Ross 
Island (spidery-shaped, just off 
center) before the iceberg calved, 
but after the disintegration of the 
ice shelf between James Ross Island 
and the Antarctic peninsula. In the 
image in part (b), taken on February 
12, 1995, the iceberg has calved and 
begun moving away from land. The 
iceberg is about 78 km by 27 km  
and 200 m thick. A century ago 
James Ross Island was completely 
surrounded in ice that joined it to 
Antarctica.

 ■ s UMMar Y

11.1  Heat and Internal Energy
Internal energy is associated with a system’s microscopic 
components. Internal energy includes the kinetic energy of 
translation, rotation, and vibration of molecules, as well as 
potential energy.
 Heat is the transfer of energy across the boundary of 
a system resulting from a temperature difference between 
the system and its surroundings. The symbol Q represents 
the amount of energy transferred.
 The calorie is the amount of energy necessary to raise 
the temperature of 1 g of water from 14.5°C to 15.5°C. The 
mechanical equivalent of heat is 4.186 J/cal.

11.2  Specific Heat

11.3  Calorimetry
The energy required to change the temperature of a sub-
stance of mass m by an amount DT is

Q 5 mc DT [11.3]

where c is the specific heat of the substance. In calorim-
etry problems the specific heat of a substance can be 
determined by placing it in water of known temperature, 
isolating the system, and measuring the temperature at 
equilibrium. The sum of all energy gains and losses for all 
the objects in an isolated system is given by

 o Q k 5 0 [11.5]

where Q k is the energy change in the kth object in the sys-
tem. This equation can be solved for the unknown specific 
heat, or used to determine an equilibrium temperature.

11.4  Latent Heat and Phase Change
The energy required to change the phase of a pure sub-
stance of mass m is

 Q 5 6mL [11.6]

where L is the latent heat of the substance. The latent heat 
of fusion, Lf , describes an energy transfer during a change 
from a solid phase to a liquid phase (or vice versa), while 
the latent heat of vaporization, Lv, describes an energy 
transfer during a change from a liquid phase to a gas-
eous phase (or vice versa). Calorimetry problems involving 
phase changes are handled with Equation 11.5, with latent 
heat terms added to the specific heat terms.

11.5  Energy Transfer
Energy can be transferred by several different processes, 
including work, discussed in Chapter 5, and by conduction, 
convection, and radiation. Conduction can be viewed as an 
exchange of kinetic energy between colliding molecules or 
electrons. The rate at which energy transfers by conduc-
tion through a slab of area A and thickness L is

 P 5 kA 
1Th 2 Tc 2

L
 [11.7]
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Energy is transferred by convection as a substance 
moves from one place to another.
 All objects emit radiation from their surfaces in the 
form of electromagnetic waves at a net rate of

Pnet 5 sAe(T 4 2 T0
4) [11.11]

where T is the temperature of the object and T0 is the tem-
perature of the surroundings. An object that is hotter than 
its surroundings radiates more energy than it absorbs, 
whereas a body that is cooler than its surroundings absorbs 
more energy than it radiates.

where k is the thermal conductivity of the material making 
up the slab.

Th

Tc

Energy
transfer
for Th � Tc 

A

L

Energy transfer through a slab 
is proportional to the cross-
sectional area and temperature 
difference, and inversely propor-
tional to the thickness.

 ■ War M-Up  e Xe rc i s e s

The warm-up exercises in this chapter may be assigned online in Enhanced WebAssign.

 1. Math Review Solve the following equation for T, given 
that M 5 4m, c 5 4 186 J/kg � K, and Lf 5 3.33 3 105 J/kg:

 mLf 1 mcT 1 Mc(T 2 30.0°C) 5 0

 2. Physics Review An athlete lifts a 175-kg barbell through 
a vertical displacement of 2.00 m, requiring 4.30 s for 
the lift. (a) Calculate the average mechanical power  
he must deliver to the barbell during the lift. (b) For a 
short period he lifts the barbell at a constant speed of 
0.600 m/s. What instantaneous power does he deliver to 
the barbell during that time? (See Section 5.6.)

 3. Physics Review A small cylinder of copper has length 
0.200 m and cross-sectional area of 2.50 3 10–5 m2. 
The cylinder is placed in a hydraulic vise that applies 
a force of 9.30 3 103 N. By what length does this force 
compress the cylinder? (See Section 9.3.)

 4. Convert 3.50 3 103 cal to the equivalent number of 
(a) kilocalories (also known as the Calorie, used to 
describe the energy content of food), and (b) joules. 
(See Section 11.1.)

 5. Determine the amount of energy required to raise  
the temperature of 1.00 g of silicon by 20.0°C. (See 
Section 11.2.)

 6. Suppose 9.30 3 105 J of energy are transferred to 2.00 kg 
of ice at 0°C. (a) Calculate the energy required to melt 
all the ice into liquid water. (b) How much energy 
remains to raise the temperature of the liquid water? 
(c) Determine the final temperature of the liquid 
water in Celsius. (See Sections 11.2 and 11.4.)

 7. A large room in a house holds 950 kg of dry air at 30.0°C. 
A woman opens a window briefly and a cool breeze 
brings in an additional 50.0 kg of dry air at 18.0°C. At 
what temperature will the two air masses come into 
thermal equilibrium, assuming they form a closed sys-
tem? (The specific heat of dry air is 1 006 J/kg � °C,  
although that value will cancel out of the calorimetry 
equation.) (See Section 11.3.)

 8. A wooden wall 4.00 cm thick made of pine with thermal 
conductivity 0.12 W/m � K) has an area of 48.0 m2. If 
the temperature inside is 25°C and the temperature out-
side is 14°C, at what rate is thermal energy transferred 
through the wall by conduction? (See Section 11.5.)

 9. A granite ball of radius 2.00 m and emissivity 0.450 is 
heated to 135°C. (a) Convert the given temperature 
to Kelvin. (b) What is the surface area of the ball?  
(c) If the ambient temperature is 25.0°C, what net 
power does the ball radiate?

 ■ c On ce p t Ua L QUes t i Ons

The conceptual questions in this chapter may be assigned online in Enhanced WebAssign.

 1. Rub the palm of your hand on a metal surface for 30 
to 45 seconds. Place the palm of your other hand on 
an unrubbed portion of the surface and then on the 
rubbed portion. The rubbed portion will feel warmer. 
Now repeat this process on a wooden surface. Why 
does the temperature difference between the rubbed 
and unrubbed portions of the wood surface seem 
larger than for the metal surface?

 2. In winter, why did the pioneers store an open barrel of 
water alongside their produce?

 3. In warm climates that experience an occasional hard 
freeze, fruit growers will spray the fruit trees with 

water, hoping that a layer of ice will form on the fruit. 
Why would such a layer be advantageous?

 4. It is the morning of a day that will become hot. You 
just purchased drinks for a picnic and are loading 
them, with ice, into a chest in the back of your car. 
(a) You wrap a wool blanket around the chest. Does 
doing so help to keep the beverages cool, or should 
you expect the wool blanket to warm them up? 
Explain your answer. (b) Your younger sister suggests 
you wrap her up in another wool blanket to keep her 
cool on the hot day like the ice chest. Explain your 
response to her.
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11. Concrete has a higher specific heat than does soil. Use 
this fact to explain (partially) why a city has a higher 
average temperature than the surrounding country-
side. Would you expect evening breezes to blow from 
city to country or from country to city? Explain.

 12. You need to pick up a very hot cooking pot in your 
kitchen. You have a pair of hot pads. Should you soak 
them in cold water or keep them dry in order to pick 
up the pot most comfortably?

 13. A poker is a stiff, nonflammable rod used to push 
burning logs around in a fireplace. Suppose it is to  
be made of a single material. For best functionality  
and safety, should the poker be made from a material 
with (a) high specific heat and high thermal conduc-
tivity, (b) low specific heat and low thermal conductiv-
ity, (c) low specific heat and high thermal conductivity,  
(d) high specific heat and low thermal conductivity, or 
(e) low specific heat and low density?

 14. Star A has twice the radius and twice the absolute tem-
perature of star B. What is the ratio of the power output 
of star A to that of star B? The emissivity of both stars can 
be assumed to be 1. (a) 4 (b) 8 (c) 16 (d) 32 (e) 64

 15. A person shakes a sealed, insulated bottle containing 
coffee for a few minutes. What is the change in the 
temperature of the coffee? (a) a large decrease (b) a 
slight decrease (c) no change (d) a slight increase (e) a 
large increase

 5. On a clear, cold night, why does frost tend to form on 
the tops, rather than the sides, of mailboxes and cars?

 6. The U.S. penny is now made of copper-coated zinc. 
Can a calorimetric experiment be devised to test for 
the metal content in a collection of pennies? If so, 
describe the procedure.

 7. Cups of water for coffee or tea can be warmed with a 
coil that is immersed in the water and raised to a high 
temperature by means of electricity. (a) Why do the 
instructions warn users not to operate the coils in the 
absence of water? (b) Can the immersion coil be used 
to warm up a cup of stew?

 8. The air temperature above coastal areas is profoundly 
influenced by the large specific heat of water. One 
reason is that the energy released when 1 cubic meter 
of water cools by 1.0°C will raise the temperature of 
an enormously larger volume of air by 1.0°C. Esti-
mate that volume of air. The specific heat of air is 
approximately 1.0 kJ/kg ? °C. Take the density of air 
to be 1.3 kg/m3.

 9. A tile floor may feel uncomfortably cold to your bare 
feet, but a carpeted floor in an adjoining room at the 
same temperature feels warm. Why?

 10. On a very hot day, it’s possible to cook an egg on the 
hood of a car. Would you select a black car or a white 
car on which to cook your egg? Why?

11.1  Heat and Internal Energy

11.2  Specific Heat

1. The highest recorded waterfall in the world is found 
at Angel Falls in Venezuela. Its longest single waterfall 
has a height of 807 m. If water at the top of the falls 
is at 15.0°C, what is the maximum temperature of the 
water at the bottom of the falls? Assume all the kinetic 
energy of the water as it reaches the bottom goes into 
raising the water’s temperature.

2. The temperature of a silver bar rises by 10.0°C 
when it absorbs 1.23 kJ of energy by heat. The mass of 
the bar is 525 g. Determine the specific heat of silver 
from these data.

 3. Lake Erie contains roughly 4.00 3 1011 m3 of water. 
(a)  How much energy is required to raise the  

temperature of that volume of water from 11.0°C to 
12.0°C? (b)  How many years would it take to supply 
this amount of energy by using the 1 000-MW exhaust 
energy of an electric power plant?

 4. An aluminum rod is 20.0 cm long at 20°C and has a 
mass of 350 g. If 10 000 J of energy is added to the rod 
by heat, what is the change in length of the rod?

 5. A 3.00-g copper coin at 25.0°C drops 50.0 m to 
the ground. (a) Assuming 60.0% of the change in grav-
itational potential energy of the coin–Earth system 
goes into increasing the internal energy of the coin, 
determine the coin’s final temperature. (b) Does the 
result depend on the mass of the coin? Explain.

 6. A 55-kg woman cheats on her diet and eats a 
540-Calorie (540 kcal) jelly doughnut for breakfast. 
(a)  How many joules of energy are the equivalent of 

 ■ pr Ob Le Ms

denotes biomedical problems

denotes guided problems

denotes Master It tutorial available in Enhanced WebAssign

denotes asking for quantitative and conceptual reasoning

denotes symbolic reasoning problem

W denotes Watch It video solution available in Enhanced WebAssign

The problems in this chapter may be assigned online in 
Enhanced WebAssign. 

1. denotes straightforward problem; 2. denotes intermediate problem;

3. denotes challenging problem

1. denotes full solution available in Student Solutions Manual/ 
Study Guide

1. denotes problems most often assigned in Enhanced WebAssign

37027_ch11_ptg01_hr_367-401.indd   395 22/08/13   2:07 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



396  c hap t e r  11 | Energy in Thermal Processes

Unless otherwise noted, all content on this page is © Cengage Learning.

11. A 200-g aluminum cup contains 800 g of water in ther-
mal equilibrium with the cup at 80°C. The combination 
of cup and water is cooled uniformly so that the tem-
perature decreases by 1.5°C per minute. At what rate is 
energy being removed? Express your answer in watts.

12. A 1.5-kg copper block is given an initial speed of 
3.0 m/s on a rough horizontal surface. Because of fric-
tion, the block finally comes to rest. (a) If the block 
absorbs 85% of its initial kinetic energy as internal 
energy, calculate its increase in temperature. (b) What 
happens to the remaining energy?

13. A certain steel railroad rail is 13 yd in length and weighs 
70.0 lb/yd. How much thermal energy is required to 
increase the length of such a rail by 3.0  mm? Note: 
Assume the steel has the same specific heat as iron.

14.   In the summer of 1958 in St. Petersburg, Florida, 
a new sidewalk was poured near the childhood home 
of one of the authors. No expansion joints were sup-
plied, and by mid-July the sidewalk had been com-
pletely destroyed by thermal expansion and had to 
be replaced, this time with the important addition of 
expansion joints! This event is modeled here.

   A slab of concrete 4.00 cm thick, 1.00 m long, and 
1.00 m wide is poured for a sidewalk at an ambient 
temperature of 25.0°C and allowed to set. The slab is 
exposed to direct sunlight and placed in a series of 
such slabs without proper expansion joints, so linear 
expansion is prevented. (a) Using the linear expan-
sion equation (Eq. 10.4), eliminate DL from the 
equation for compressive stress and strain (Eq. 9.3).  
(b) Use the expression found in part (a) to eliminate 
DT from Equation 11.3, obtaining a symbolic equa-
tion for thermal energy transfer Q. (c) Compute the 
mass of the concrete slab given that its density is  
2.40 3 103 kg/m3. (d) Concrete has an ultimate com-
pressive strength of 2.00 3 107 Pa, specific heat of 
880 J/kg ? °C, and Young’s modulus of 2.1 3 1010 Pa. 
How much thermal energy must be transferred to the 
slab to reach this compressive stress? (e) What tem-
perature change is required? (f) If the Sun delivers 
1.00 3 103 W of power to the top surface of the slab 
and if half the energy, on the average, is absorbed 
and retained, how long does it take the slab to reach 
the point at which it is in danger of cracking due to 
compressive stress?

11.3  Calorimetry

15. What mass of water at 25.0°C must be allowed to come 
to thermal equilibrium with a 1.85-kg cube of alumi-
num initially at 1.50 3 102°C to lower the temperature 
of the aluminum to 65.0°C? Assume any water turned 
to steam subsequently recondenses.

 16. Lead pellets, each of mass 1.00 g, are heated to 200°C. 
How many pellets must be added to 500 g of water that 
is initially at 20.0°C to make the equilibrium tempera-
ture 25.0°C? Neglect any energy transfer to or from the 
container.

one jelly doughnut? (b) How many stairs must the 
woman climb to perform an amount of mechanical 
work equivalent to the food energy in one jelly dough-
nut? Assume the height of a single stair is 15 cm. (c) If 
the human body is only 25% efficient in converting 
chemical energy to mechanical energy, how many 
stairs must the woman climb to work off her breakfast?

 7.  A 75-kg sprinter accelerates from rest to a 
speed of 11.0 m/s in 5.0 s. (a) Calculate the mechani-
cal work done by the sprinter during this time. (b) Cal-
culate the average power the sprinter must generate. 
(c) If the sprinter converts food energy to mechanical 
energy with an efficiency of 25%, at what average rate 
is he burning Calories? (d) What happens to the other 
75% of the food energy being used?

 8.  A sprinter of mass m accelerates uniformly 
from rest to velocity v in t seconds. (a) Write a symbolic 
expression for the instantaneous mechanical power P 
required by the sprinter in terms of force F and velocity 
v. (b) Use Newton’s second law and a kinematics equa-
tion for the velocity at any time to obtain an expres-
sion for the instantaneous power in terms of m, a, 
and t only. (c) If a 75.0-kg sprinter reaches a speed of 
11.0 m/s in 5.00 s, calculate the sprinter’s acceleration, 
assuming it to be constant. (d) Calculate the 75.0-kg 
sprinter’s instantaneous mechanical power as a func-
tion of time t and (e) give the maximum rate at which 
he burns Calories during the sprint, assuming 25% 
efficiency of conversion form food energy to mechani-
cal energy.

 9. W  A 5.00-g lead bullet traveling at 300 m/s is stopped 
by a large tree. If half the kinetic energy of the bullet is 
transformed into internal energy and remains with the 
bullet while the other half is transmitted to the tree, 
what is the increase in temperature of the bullet?

 10. The apparatus shown in  
Figure P11.10 was used 
by Joule to measure the 
mechanical equivalent of 
heat. Work is done on the 
water by a rotating paddle 
wheel, which is driven by two 
blocks falling at a constant 
speed. The temperature of 
the stirred water increases 
due to the friction between 
the water and the paddles. If 
the energy lost in the bear-
ings and through the walls 
is neglected, then the loss 
in potential energy associ-
ated with the blocks equals 
the work done by the paddle 
wheel on the water. If each block has a mass of 1.50 kg 
and the insulated tank is filled with 200 g of water, 
what is the increase in temperature of the water after 
the blocks fall through a distance of 3.00 m?

Thermal
insulator

m m

Figure p 11.10  The falling 
weights rotate the paddles, 
causing the temperature of 
the water to increase.
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dropped into a calorimeter made of aluminum con-
taining 0.285 kg of water initially at 25.0°C. The mass 
of the aluminum container is 0.150 kg, and the tem-
perature of the calorimeter increases to a final equi-
librium temperature of 32.0°C. Assuming no thermal 
energy is transferred to the environment, calculate the 
specific heat of the unknown substance.

11.4  Latent Heat and Phase Change

25. A 75-g ice cube at 0°C is placed in 825 g of water at 
25°C. What is the final temperature of the mixture?

26. A 50-g ice cube at 0°C is heated until 45 g has become 
water at 100°C and 5.0 g has become steam at 100°C. 
How much energy was added to accomplish the 
transformation?

27. W  A 100-g cube of ice at 0°C is dropped into 1.0 kg 
of water that was originally at 80°C. What is the final 
temperature of the water after the ice has melted?

 28. How much energy is required to change a 40-g ice 
cube from ice at 210°C to steam at 110°C?

 29.  A 75-kg cross-country skier glides over snow as in  
Figure P11.29. The coefficient of friction between skis 
and snow is 0.20. Assume all the snow beneath her skis is 
at 0°C and that all the internal energy generated by fric-
tion is added to snow, which sticks to her skis until it melts. 
How far would she have to ski to melt 1.0 kg of snow?

17. W An aluminum cup contains 225 g of water and a 
40-g copper stirrer, all at 27°C. A 400-g sample of silver 
at an initial temperature of 87°C is placed in the water. 
The stirrer is used to stir the mixture until it reaches 
its final equilibrium temperature of 32°C. Calculate 
the mass of the aluminum cup.

 18. In a showdown on the streets of Laredo, the good guy 
drops a 5.00-g silver bullet at a temperature of 20.0°C 
into a 100-cm3 cup of water at 90.0°C. Simultaneously, 
the bad guy drops a 5.00-g copper bullet at the same 
initial temperature into an identical cup of water. 
Which one ends the showdown with the coolest cup of 
water in the West? Neglect any energy transfer into or 
away from the container.

 19. An aluminum calorimeter with a mass of 100 g con-
tains 250 g of water. The calorimeter and water are in 
thermal equilibrium at 10.0°C. Two metallic blocks are 
placed into the water. One is a 50.0-g piece of copper at 
80.0°C. The other has a mass of 70.0 g and is originally 
at a temperature of 100°C. The entire system stabilizes 
at a final temperature of 20.0°C. (a) Determine the spe-
cific heat of the unknown sample. (b) Using the data in 
Table 11.1, can you make a positive identification of the 
unknown material? Can you identify a possible material? 
(c) Explain your answers for part (b).

 20. A 1.50-kg iron horseshoe initially at 600°C is 
dropped into a bucket containing 20.0 kg of water at 
25.0°C. What is the final temperature of the water–
horseshoe system? Ignore the heat capacity of the  
container and assume a negligible amount of water 
boils away.

 21. A student drops two metallic objects into a 120-g steel 
container holding 150 g of water at 25°C. One object is 
a 200-g cube of copper that is initially at 85°C, and the 
other is a chunk of aluminum that is initially at 5.0°C. 
To the surprise of the student, the water reaches a final 
temperature of 25°C, precisely where it started. What is 
the mass of the aluminum chunk?

 22. When a driver brakes an automobile, the friction between 
the brake drums and the brake shoes converts the car’s 
kinetic energy to thermal energy. If a 1 500-kg automo-
bile traveling at 30 m/s comes to a halt, how much does 
the temperature rise in each of the four 8.0-kg iron brake 
drums? (The specific heat of iron is 448 J/kg ? °C.)

 23. Equal 0.400-kg masses of lead and tin at 60.0°C are 
placed in 1.00 kg of water at 20.0°C. (a) What is the equi-
librium temperature of the system? (b) If an alloy is half 
lead and half tin by mass, what specific heat would you 
anticipate for the alloy? (c) How many atoms of tin NSn

are in 0.400 kg of tin, and how many atoms of lead NPb

are in 0.400 kg of lead? (d) Divide the number NSn of 
tin atoms by the number NPb of lead atoms and compare 
this ratio with the specific heat of tin divided by the spe-
cific heat of lead. What conclusion can be drawn?

 24. An unknown substance has a mass of 0.125 kg and an 
initial temperature of 95.0°C. The substance is then 

Figure p 11.29
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30.  Into a 0.500-kg aluminum container at 20.0°C is 
placed 6.00 kg of ethyl alcohol at 30.0°C and 1.00 kg 
ice at 210.0°C. Assume the system is insulated from 
its environment. (a) Identify all five thermal energy 
transfers that occur as the system goes to a final equi-
librium temperature T. Use the form “substance at 
X°C to substance at Y°C.” (b) Construct a table similar 
to the table in Example 11.5. (c) Sum all terms in the 
right-most column of the table and set the sum equal 
to zero. (d) Substitute information from the table into 
the equation found in part (c) and solve for the final 
equilibrium temperature, T.
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which it becomes embedded. (a) Describe the energy 
transformations that occur as the bullet is cooled. 
What is the final temperature of the bullet? (b) What 
quantity of ice melts?

11.5  Energy Transfer

38. A glass windowpane in a home is 0.62 cm thick and 
has dimensions of 1.0 m 3 2.0 m. On a certain day, 
the indoor temperature is 25°C and the outdoor tem-
perature is 0°C. (a) What is the rate at which energy is 
transferred by heat through the glass? (b) How much 
energy is lost through the window in one day, assuming 
the temperatures inside and outside remain constant?

39. A pond with a flat bottom has a surface area of 820 m2

and a depth of 2.0 m. On a warm day, the surface water is 
at a temperature of 25°C, while the bottom of the pond 
is at 12°C. Find the rate at which energy is transferred by 
conduction from the surface to the bottom of the pond.

 40.  The thermal conductivities of human tissues 
vary greatly. Fat and skin have conductivities of about 
0.20 W/m ? K and 0.020 W/m ? K, respectively, while other 
tissues inside the body have conductivities of about  
0.50 W/m ? K. Assume that between the core region of the 
body and the skin surface lies a skin layer of 1.0 mm, fat 
layer of 0.50 cm, and 3.2 cm of other tissues. (a) Find the 
R-factor for each of these layers, and the equivalent R-fac-
tor for all layers taken together, retaining two digits. (b) 
Find the rate of energy loss when the core temperature 
is 37°C and the exterior temperature is 0°C. Assume that 
both a protective layer of clothing and an insulating layer 
of unmoving air are absent, and a body area of 2.0 m2.

 41. A steam pipe is covered with 1.50-cm-thick insulating 
material of thermal conductivity 0.200 cal/cm ? °C ? s. 
How much energy is lost every second when the steam 
is at 200°C and the surrounding air is at 20.0°C? The 
pipe has a circumference of 800 cm and a length of 
50.0 m. Neglect losses through the ends of the pipe.

 42. The average thermal conductivity of the walls (includ-
ing windows) and roof of a house in Figure P11.42 is 
4.8 3 1024 kW/m ? °C, and their average thickness is 
21.0 cm. The house is heated with natural gas, with a 
heat of combustion (energy released per cubic meter of 
gas burned) of 9 300 kcal/m3. How many cubic meters 
of gas must be burned each day to maintain an inside 
temperature of 25.0°C if the outside temperature is 
0.0°C? Disregard surface air layers, radiation, and 
energy loss by heat through the ground.

31. A 40-g block of ice is cooled to 278°C and is then added 
to 560 g of water in an 80-g copper calorimeter at a tem-
perature of 25°C. Determine the final temperature of 
the system consisting of the ice, water, and calorimeter. 
(If not all the ice melts, determine how much ice is left.) 
Remember that the ice must first warm to 0°C, melt, 
and then continue warming as water. (The specific heat 
of ice is 0.500 cal/g ? °C 5 2 090 J/kg ? °C.)

 32. When you jog, most of the food energy you burn 
above your basal metabolic rate (BMR) ends up as 
internal energy that would raise your body tempera-
ture if it were not eliminated. The evaporation of per-
spiration is the primary mechanism for eliminating 
this energy. Determine the amount of water you lose 
to evaporation when running for 30 minutes at a rate 
that uses 400 kcal/h above your BMR. (That amount 
is often considered to be the “maximum fat-burning” 
energy output.) The metabolism of 1 gram of fat gen-
erates approximately 9.0 kcal of energy and produces 
approximately 1 gram of water. (The hydrogen atoms 
in the fat molecule are transferred to oxygen to form 
water.) What fraction of your need for water will be 
provided by fat metabolism? (The latent heat of vapor-
ization of water at room temperature is 2.5 3 106 J/kg.)

 33. A high-end gas stove usually has at least one burner 
rated at 14 000 Btu/h. (a) If you place a 0.25-kg alu-
minum pot containing 2.0 liters of water at 20°C on 
this burner, how long will it take to bring the water to 
a boil, assuming all the heat from the burner goes into 
the pot? (b) Once boiling begins, how much time is 
required to boil all the water out of the pot?

 34. A 60.0-kg runner expends 300 W of power while 
running a marathon. Assuming 10.0% of the energy 
is delivered to the muscle tissue and that the excess 
energy is removed from the body primarily by sweat-
ing, determine the volume of bodily fluid (assume it 
is water) lost per hour. (At 37.0°C, the latent heat of 
vaporization of water is 2.41 3 106 J/kg.)

 35. Steam at 100°C is added to ice at 0°C. (a) Find the 
amount of ice melted and the final temperature when 
the mass of steam is 10 g and the mass of ice is 50 g. 
(b) Repeat with steam of mass 1.0 g and ice of mass 50 g.

 36.  The excess internal energy of metabolism is 
exhausted through a variety of channels, such as 
through radiation and evaporation of perspiration. 
Consider another pathway for energy loss: moisture in 
exhaled breath. Suppose you breathe out 22.0 breaths 
per minute, each with a volume of 0.600 L. Suppose 
also that you inhale dry air and exhale air at 37°C con-
taining water vapor with a vapor pressure of 3.20 kPa. 
The vapor comes from the evaporation of liquid water 
in your body. Model the water vapor as an ideal gas. 
Assume its latent heat of evaporation at 37°C is the same 
as its heat of vaporization at 100°C. Calculate the rate at 
which you lose energy by exhaling humid air.

 37. A 3.00-g lead bullet at 30.0°C is fired at a speed of 
2.40 3 102 m/s into a large, fixed block of ice at 0°C, in 

5.00 m 

10.0 m 8.00 m 

37.0�

Figure p 11.42
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Additional Problems

51. The bottom of a copper kettle has a 10-cm radius and 
is 2.0 mm thick. The temperature of the outside sur-
face is 102°C, and the water inside the kettle is boiling 
at 1 atm of pressure. Find the rate at which energy is 
being transferred through the bottom of the kettle.

52. A family comes home from a long vacation with laun-
dry to do and showers to take. The water heater has 
been turned off during the vacation. If the heater has 
a capacity of 50.0 gallons and a 4 800-W heating ele-
ment, how much time is required to raise the tempera-
ture of the water from 20.0°C to 60.0°C? Assume the 
heater is well insulated and no water is withdrawn from 
the tank during that time.

 53. A 40-g ice cube floats in 200 g of water in a 100-g 
copper cup; all are at a temperature of 0°C. A piece 
of lead at 98°C is dropped into the cup, and the final 
equilibrium temperature is 12°C. What is the mass of 
the lead?

 54. The surface area of an unclothed person is 
1.50 m2, and his skin temperature is 33.0°C. The per-
son is located in a dark room with a temperature of 
20.0°C, and the emissivity of the skin is e 5 0.95. (a) At 
what rate is energy radiated by the body? (b) What is 
the significance of the sign of your answer?

 55. A 200-g block of copper at a temperature of 90°C is 
dropped into 400 g of water at 27°C. The water is con-
tained in a 300-g glass container. What is the final tem-
perature of the mixture?

 56. Liquid nitrogen has a boiling point of 77 K and a 
latent heat of vaporization of 2.01 3 105 J/kg. A 25-W 
electric heating element is immersed in an insulated 
vessel containing 25 L of liquid nitrogen at its boiling 
point. (a) Describe the energy transformations that 
occur as power is supplied to the heating element. 
(b) How many kilograms of nitrogen are boiled away 
in a period of 4.0 hours?

 57. A student measures the following data in a calo-
rimetry experiment designed to determine the specific 
heat of aluminum:

 Initial temperature of water  
  and calorimeter: 70.0°C
 Mass of water: 0.400 kg
 Mass of calorimeter: 0.040 kg
 Specific heat of calorimeter: 0.63 kJ/kg ? °C
 Initial temperature of aluminum: 27.0°C
 Mass of aluminum: 0.200 kg
 Final temperature of mixture: 66.3°C

  Use these data to determine the specific heat of alumi-
num. Explain whether your result is within 15% of the 
value listed in Table 11.1.

 58. Overall, 80% of the energy used by the body must 
be eliminated as excess thermal energy and needs to 

43. Consider two cooking pots of the same dimensions, 
each containing the same amount of water at the same 
initial temperature. The bottom of the first pot is 
made of copper, while the bottom of the second pot is 
made of aluminum. Both pots are placed on a hot sur-
face having a temperature of 145°C. The water in the 
 copper-bottomed pot boils away completely in 425  s. 
How long does it take the water in the aluminum- 
bottomed pot to boil away completely?

 44. A thermopane window consists of two glass panes, each 
0.50 cm thick, with a 1.0-cm-thick sealed layer of air in 
between. (a) If the inside surface temperature is 23°C 
and the outside surface temperature is 0.0°C, deter-
mine the rate of energy transfer through 1.0 m2 of the 
window. (b) Compare your answer to (a) with the rate 
of energy transfer through 1.0 m2 of a single 1.0-cm-
thick pane of glass. Disregard surface air layers.

 45. A copper rod and an aluminum rod of equal diam-
eter are joined end to end in good thermal contact. 
The temperature of the free end of the copper rod 
is held constant at 100°C and that of the far end of 
the aluminum rod is held at 0°C. If the copper rod is 
0.15 m long, what must be the length of the aluminum 
rod so that the temperature at the junction is 50°C?

 46. A Styrofoam box has a surface area of 0.80 m2 and a 
wall thickness of 2.0 cm. The temperature of the inner 
surface is 5.0°C, and the outside temperature is 25°C. 
If it takes 8.0 h for 5.0 kg of ice to melt in the container, 
determine the thermal conductivity of the Styrofoam.

 47. W A rectangular glass window pane on a house has 
a width of 1.0 m, a height of 2.0 m, and a thickness of  
0.40 cm. Find the energy transferred through the 
window by conduction in 12 hours on a day when the 
inside temperature of the house is 22°C and the out-
side temperature is 2.0°C. Take surface air layers into 
consideration.

 48. A solar sail is made of aluminized Mylar having an 
emissivity of 0.03 and reflecting 97% of the light that 
falls on it. Suppose a sail with area 1.00 km2 is ori-
ented so that sunlight falls perpendicular to its sur-
face with an intensity of 1.40 3 103 W/m2. To what 
temperature will it warm before it emits as much 
energy (from both sides) by radiation as it absorbs 
on the sunny side? Assume the sail is so thin that the 
temperature is uniform and no energy is emitted 
from the edges. Take the environment temperature 
to be 0 K.

 49. Measurements on two stars indicate that Star X has a 
surface temperature of 5 727°C and Star Y has a surface 
temperature of 11 727°C. If both stars have the same 
radius, what is the ratio of the luminosity (total power 
output) of Star Y to the luminosity of Star X? Both stars 
can be considered to have an emissivity of 1.0.

 50. The filament of a 75-W light bulb is at a temperature  
of 3 300 K. Assuming the filament has an emissivity  
e 5 1.0, find its surface area.
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temperature of 20.0°C.) (b) Identify some effects that 
are neglected in part (a), but are likely to be impor-
tant in a more realistic assessment of the temperature 
increase of the brakes.

 64. Three liquids are at temperatures of 10°C, 20°C, and 
30°C, respectively. Equal masses of the first two liq-
uids are mixed, and the equilibrium temperature is 
17°C. Equal masses of the second and third are then 
mixed, and the equilibrium temperature is 28°C. Find 
the equilibrium temperature when equal masses of the 
first and third are mixed.

 65. A flow calorimeter is an apparatus used to measure 
the specific heat of a liquid. The technique is to mea-
sure the temperature difference between the input 
and output points of a flowing stream of the liquid 
while adding energy at a known rate. (a) Start with 
the equations Q 5 mc(DT) and m 5 rV, and show that 
the rate at which energy is added to the liquid is given 
by the expression DQ /Dt 5 rc(DT)(DV/Dt). (b) In a 
particular experiment, a liquid of density 0.72 g/cm3

flows through the calorimeter at the rate of 3.5 cm3/s. 
At steady state, a temperature difference of 5.8°C is 
established between the input and output points when 
energy is supplied at the rate of 40 J/s. What is the spe-
cific heat of the liquid?

 66. A wood stove is used to heat a single room. The stove 
is cylindrical in shape, with a diameter of 40.0 cm and 
a length of 50.0 cm, and operates at a temperature of 
400°F. (a) If the temperature of the room is 70.0°F, 
determine the amount of radiant energy delivered to 
the room by the stove each second if the emissivity is 
0.920. (b) If the room is a square with walls that are 
8.00 ft high and 25.0 ft wide, determine the R-value 
needed in the walls and ceiling to maintain the inside 
temperature at 70.0°F if the outside temperature is 
32.0°F. Note that we are ignoring any heat conveyed by 
the stove via convection and any energy lost through 
the walls (and windows!) via convection or radiation.

 67. A “solar cooker” consists 
of a curved reflecting 
mirror that focuses sun-
light onto the object to 
be heated (Fig. P11.67). 
The solar power per 
unit area reaching the 
Earth at the location of 
a 0.50-m-diameter solar 
cooker is 600 W/m2.  
Assuming 50% of the 
incident energy is con-
verted to thermal energy, how long would it take to 
boil away 1.0 L of water initially at 20°C? (Neglect the 
specific heat of the container.)

 68. For bacteriological testing of water supplies and 
in medical clinics, samples must routinely be incubated 
for 24 h at 37°C. A standard constant-temperature bath 

be dissipated. The mechanisms of elimination are radi-
ation, evaporation of sweat (2 430 kJ/kg), evaporation 
from the lungs (38 kJ/h), conduction, and convection.

  A person working out in a gym has a metabolic 
rate of 2 500 kJ/h. His body temperature is 37°C, and 
the outside temperature 24°C. Assume the skin has an 
area of 2.0 m2 and emissivity of 0.97. (a) At what rate 
is his excess thermal energy dissipated by radiation? 
(b) If he eliminates 0.40 kg of perspiration during that 
hour, at what rate is thermal energy dissipated by evap-
oration of sweat? (c) At what rate is energy eliminated 
by evaporation from the lungs? (d) At what rate must 
the remaining excess energy be eliminated through 
conduction and convection?

 59. Liquid helium has a very low boiling point, 4.2 K, 
as well as a very low latent heat of vaporization,  
2.00 3 104 J/kg. If energy is transferred to a container 
of liquid helium at the boiling point from an immersed 
electric heater at a rate of 10.0 W, how long does it take 
to boil away 2.00 kg of the liquid?

 60. A class of 10 students taking an exam has a power out-
put per student of about 200 W. Assume the initial tem-
perature of the room is 20°C and that its dimensions 
are 6.0 m by 15.0 m by 3.0 m. What is the temperature 
of the room at the end of 1.0 h if all the energy remains 
in the air in the room and none is added by an outside 
source? The specific heat of air is 837 J/kg ? °C, and its 
density is about 1.3 3 1023 g/cm3.

 61. A bar of gold (Au) is in ther-
mal contact with a bar of sil-
ver (Ag) of the same length 
and area (Fig. P11.61). One 
end of the compound bar is 
maintained at 80.0°C, and 
the opposite end is at 30.0°C. 
Find the temperature at the 
junction when the energy flow 
reaches a steady state.

 62. An iron plate is held against 
an iron wheel so that a sliding frictional force of 50 N 
acts between the two pieces of metal. The relative 
speed at which the two surfaces slide over each other 
is 40 m/s. (a) Calculate the rate at which mechanical 
energy is converted to internal energy. (b) The plate 
and the wheel have masses of 5.0 kg each, and each 
receives 50% of the internal energy. If the system is run 
as described for 10 s and each object is then allowed 
to reach a uniform internal temperature, what is the 
resultant temperature increase?

 63. An automobile has a mass of 1 500 kg, and its alu-
minum brakes have an overall mass of 6.00 kg. 
(a)  Assuming all the internal energy transformed by 
friction when the car stops is deposited in the brakes 
and neglecting energy transfer, how many times could 
the car be braked to rest starting from 25.0 m/s before 
the brakes would begin to melt? (Assume an initial 

Insulation
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Figure p 11.61

0.50 m

Figure p 11.67
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required to evaporate a liquid at a particular tempera-
ture is approximately equal to the sum of the energy 
required to raise its temperature to the boiling point 
and the latent heat of vaporization (determined at the 
boiling point).

 71. At time t 5 0, a vessel contains a mixture of 10 kg of 
water and an unknown mass of ice in equilibrium at 
0°C. The temperature of the mixture is measured over 
a period of an hour, with the following results: Dur-
ing the first 50 min, the mixture remains at 0°C; from 
50  min to 60 min, the temperature increases steadily 
from 0°C to 2°C. Neglecting the heat capacity of the ves-
sel, determine the mass of ice that was initially placed 
in it. Assume a constant power input to the container.

 72. An ice-cube tray is filled with 75.0 g of water. 
After the filled tray reaches an equilibrium tempera-
ture 20.0°C, it is placed in a freezer set at 28.00°C to 
make ice cubes. (a) Describe the processes that occur 
as energy is being removed from the water to make ice. 
(b) Calculate the energy that must be removed from 
the water to make ice cubes at 28.00°C.

 73. An aluminum rod and an iron rod are joined end to 
end in good thermal contact. The two rods have equal 
lengths and radii. The free end of the aluminum rod 
is maintained at a temperature of 100°C, and the free 
end of the iron rod is maintained at 0°C. (a) Deter-
mine the temperature of the interface between the 
two rods. (b) If each rod is 15 cm long and each has a 
cross-sectional area of 5.0 cm2, what quantity of energy 
is conducted across the combination in 30 min?

with electric heating and thermostatic control is not 
suitable in developing nations without continuously 
operating electric power lines. Peace Corps volunteer 
and MIT engineer Amy Smith invented a low-cost, low-
maintenance incubator to fill the need. The device con-
sists of a foam-insulated box containing several packets 
of a waxy material that melts at 37.0°C, interspersed 
among tubes, dishes, or bottles containing the test 
samples and growth medium (food for bacteria). Out-
side the box, the waxy material is first melted by a stove 
or solar energy collector. Then it is put into the box 
to keep the test samples warm as it solidifies. The heat 
of fusion of the phase-change material is 205 kJ/kg.  
Model the insulation as a panel with surface area 
0.490  m2, thickness 9.50 cm, and conductivity 
0.012 0  W/m°C. Assume the exterior temperature is 
23.0°C for 12.0 h and 16.0°C for 12.0 h. (a) What mass 
of the waxy material is required to conduct the bacte-
riological test? (b) Explain why your calculation can be 
done without knowing the mass of the test samples or 
of the insulation.

 69. The surface of the Sun has a temperature of about 
5 800 K. The radius of the Sun is 6.96 3 108 m. Calcu-
late the total energy radiated by the Sun each second. 
Assume the emissivity of the Sun is 0.986.

 70. The evaporation of perspiration is the primary 
mechanism for cooling the human body. Estimate the 
amount of water you will lose when you bake in the sun 
on the beach for an hour. Use a value of 1 000 W/m2

for the intensity of sunlight and note that the energy 

37027_ch11_ptg01_hr_367-401.indd   401 22/08/13   2:07 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



402

According to the first law of thermodynamics, the internal energy of a system can be 
increased either by adding energy to the system or by doing work on it. That means the inter-
nal energy of a system, which is just the sum of the molecular kinetic and potential energies, 
can change as a result of two separate types of energy transfer across the boundary of the 
system. Although the first law imposes conservation of energy for both energy added by heat 
and work done on a system, it doesn’t predict which of several possible energy-conserving 
processes actually occur in nature.

The second law of thermodynamics constrains the first law by establishing which processes 
allowed by the first law actually occur. For example, the second law tells us that energy never 
flows by heat spontaneously from a cold object to a hot object. One important application 
of this law is in the study of heat engines (such as the internal combustion engine) and the 
principles that limit their efficiency.

12.1    Work in Thermodynamic Processes
Learning Objectives

1. Define the work done on an ideal gas in an isobaric (constant pressure) pro-
cess, and relate it to the work done by a gas on its environment.

2. Calculate the work done on a gas at constant pressure.

3. Evaluate the work done on a gas using a graph of the gas pressure versus its 
volume.

A cyclist is an engine: she 

requires fuel and oxygen to 

burn it, and the result is work 

that drives her forward as her 

excess waste energy is expelled 

in her evaporating sweat.

12 The Laws of 
Thermodynamics

12.1  Work in Thermodynamic 
Processes

12.2  The First Law of 
Thermodynamics

12.3 Thermal Processes

12.4  Heat Engines and the Second 
Law of Thermodynamics
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Energy can be transferred to a system by heat and by work done on the system. 
In most cases of interest treated here, the system is a volume of gas, which is 
important in understanding engines. All such systems of gas will be assumed to 
be in thermodynamic equilibrium, so that every part of the gas is at the same 
temperature and pressure. If that were not the case, the ideal gas law wouldn’t 
apply and most of the results presented here wouldn’t be valid. Consider a gas 
contained by a cylinder fitted with a movable piston (Fig. 12.1a) and in equilib-
rium. The gas occupies a volume V and exerts a uniform pressure P on the cyl-
inder walls and the piston. The gas is compressed slowly enough so the system 
remains essentially in thermodynamic equilibrium at all times. As the piston is 
pushed downward by an external force F through a displacement Dy, the work 
done on the gas is

W 5 2F Dy 5 2PADy

where we have set the magnitude F of the external force equal to PA, possible because 
the pressure is the same everywhere in the system (by the assumption of equilibrium). 
Note that if the piston is pushed downward, Dy 5 yf 2 yi is negative, so we need an 
explicit negative sign in the expression for W to make the work positive. The change 
in volume of the gas is DV 5 ADy, which leads to the following definition:

The work W done on a gas at constant pressure is given by

 W 5 2P DV [12.1]

where P is the pressure throughout the gas and DV  is the change in volume 
of the gas during the process.

If the gas is compressed as in Figure 12.1b, DV is negative and the work done on 
the gas is positive. If the gas expands, DV is positive and the work done on the gas 
is negative. The work done by the gas on its environment, Wenv, is simply the nega-
tive of the work done on the gas. In the absence of a change in volume, the work 
is zero.

The definition of work W in Equation 12.1 specifies work done on a gas. In 
many texts, work W is defined as work done by a gas. In this text, work done by a 
gas is denoted by Wenv. In every case, W 5 2Wenv, so the two definitions differ by a 
minus sign. The reason it’s important to define work W as work done on a gas is to 
make the concept of work in thermodynamics consistent with the concept of work 
in mechanics. In mechanics, the system is some object, and when positive work is 
done on that object, its energy increases. When work W done on a gas as defined 
in Equation 12.1 is positive, the internal energy of the gas increases, which is con-
sistent with the mechanics definition.

In Figure 12.2a the man pushes a crate, doing positive work on it, so the crate’s 
speed and therefore its kinetic energy both increase. In Figure 12.2b a man pushes 
a piston to the right, compressing the gas in the container and doing positive work 
on the gas. The average speed of the molecules of gas increases, so the tempera-
ture and therefore the internal energy of the gas increase. Consequently, just as 
doing work on a crate increases its kinetic energy, doing work on a system of gas 
increases its internal energy.

�y

P

A

V

a b

Figure 12.1 (a) A gas in a cylinder 
occupying a volume V  at a pressure 
P. (b) Pushing the piston down com-
presses the gas.

t ip 12.1  Work Done on 
Versus Work Done by
Work done on the gas is labeled 
W. That definition focuses on the 
internal energy of the system. 
Work done by the gas, say on a 
piston, is labeled Wenv, where the 
focus is on harnessing a system’s 
internal energy to do work on 
something external to the gas. W 
and Wenv are two different ways 
of looking at the same thing. It’s 
always true that W 5 2Wenv.

a b
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Figure 12.2  (a) When a force is 
exerted on a crate, the work done 
by that force increases the crate’s 
mechanical energy. (b) When a 
piston is pushed, the gas in the con-
tainer is compressed, increasing the 
gas’s thermal energy.
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Equation 12.1 can be used to calculate the work done on the system only
when the pressure of the gas remains constant during the expansion or 
compression. A process in which the pressure remains constant is called an 
isobaric process. The pressure vs. volume graph, or PV diagram, of an isobaric 
process is shown in Figure 12.3. The curve on such a graph is called the path
taken between the initial and final states, with the arrow indicating the direc-
tion the process is going, in this case from larger to smaller volume. The area 
under the graph is

Area 5 P (Vf 2 Vi) 5 P DV

The area under the graph in a PV diagram is equal in magnitude to the work 
done on the gas.

That statement is true in general, whether or not the process proceeds at con-
stant pressure. Just draw the PV diagram of the process, find the area underneath 
the graph (and above the horizontal axis), and that area will be the equal to the 
magnitude of the work done on the gas. If the arrow on the graph points toward 
larger volumes, the work done on the gas is negative. If the arrow on the graph 
points toward smaller volumes, the work done on the gas is positive.

Whenever negative work is done on a system, positive work is done by the system 
on its environment. The negative work done on the system represents a loss of 
energy from the system—the cost of doing positive work on the environment.

■ Quick Quiz

12.1  By visual inspection, order the PV diagrams shown in Figure 12.4 from the 
most negative work done on the system to the most positive work done on the sys-
tem. (a) a, b, c, d (b) a, c, b, d (c) d, b, c, a (d) d, a, c, b

 ■ e Xa Mp Le  12.1 Work Done by an Expanding Gas

g Oa L  Apply the definition of work at constant pressure.

pr Ob Le M  In a system similar to that shown in Figure 12.1, the gas in the cylinder is at a pressure equal to 1.01 3 105 Pa 
and the piston has an area of 0.100 m2. As energy is slowly added to the gas by heat, the piston is pushed up a distance of 
4.00 cm. Calculate the work done by the expanding gas on the surroundings, Wenv, assuming the pressure remains constant.

s t r at e g Y  The work done on the environment is the negative of the work done on the gas given in Equation 12.1. 
Compute the change in volume and multiply by the pressure.

s OLUti On

Find the change in volume of the gas, DV, which is the 
cross-sectional area times the displacement:

DV 5 A Dy 5 (0.100 m2)(4.00 3 1022 m)

5 4.00 3 1023 m3

Multiply this result by the pressure, getting the work the 
gas does on the environment, Wenv:

Wenv 5 P DV 5 (1.01 3 105 Pa)(4.00 3 1023 m3)

5    404 J

re Mar Ks  The volume of the gas increases, so the work done on the environment is positive. The work done on the 
system during this process is W 5 2404 J. The energy required to perform positive work on the environment must come 
from the energy of the gas. 

QUes t i On  12.1  If no energy were added to the gas during the expansion, could the pressure remain constant?

e Xe rc i s e  12.1  Gas in a cylinder similar to Figure 12.1 moves a piston with area 0.200 m2 as energy is slowly added to 
the system. If 2.00 3 103 J of work is done on the environment and the pressure of the gas in the cylinder remains con-
stant at 1.01 3 105 Pa, find the displacement of the piston.

a ns We r  9.90 3 1022 m

P

P

V
Vf Vi

if

The shaded area represents
the work done on the gas.

Figure 12.3  The PV diagram for 
a gas being compressed at constant 
pressure. 
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Notice that the graphs in Figure 12.4 all have the same endpoints, but the areas 
beneath the curves are different. The work done on a system depends on the path 
taken in the PV diagram.

1.00

2.00

3.00

P (105Pa)

1.00 2.00 3.00
V (m3)

A1

A2

1.00

2.00

3.00

P (105Pa)

1.00 2.00 3.00
V (m3)

A1

A2 1.00

2.00

3.00

P (105Pa)

1.00 2.00 3.00
V (m3)

1.00

2.00

3.00

P (105Pa)

1.00 2.00 3.00
V (m3)

a b c d

Figure 12.4  (Quick Quiz 12.1 and Example 12.2)

 ■ e Xa Mp Le  12.2 Work and PV Diagrams

g Oa L  Calculate work from a PV diagram.

pr Ob Le M  Find the numeric value of the work done on the gas in (a) Figure 12.4a and (b) Figure 12.4b.

s t r at e g Y  The regions in question are composed of rectangles and triangles. Use basic geometric formulas to find the 
area underneath each curve. Check the direction of the arrow to determine signs.

s OLUti On

(a) Find the work done on the gas in Figure 12.4a.

Compute the areas A1 and A2 in Figure 12.4a. A1 is a rect-
angle and A2 is a triangle.

A1 5 height 3 width 5 11.00 3 105 Pa 2 12.00 m3 2
5 2.00 3 105 J

A2 5 1
2 base 3 height

5 1
2 12.00 m3 2 12.00 3 105 Pa 2 5 2.00 3 105 J

Sum the areas (the arrows point to increasing volume, so 
the work done on the gas is negative):

Area 5 A1 1 A2 5 4.00 3 105 J

W 5   24.00 3 105 J

(b) Find the work done on the gas in Figure 12.4b.

Compute the areas of the two rectangular regions: A1 5 height 3 width 5 11.00 3 105 Pa 2 11.00 m3 2
5 1.00 3 105 J

A2 5 height 3 width 5 (2.00 3 105 Pa)(1.00 m3)

5 2.00 3 105 J

Sum the areas (the arrows point to decreasing volume, so 
the work done on the gas is positive):

Area 5 A1 1 A2 5 3.00 3 105 J

W 5    13.00 3 105 J

re Mar Ks  Notice that in both cases the paths in the PV diagrams start and end at the same points, but the answers are 
different.

QUes t i On  12.2  Is work done on a system during a process in which its volume remains constant?

e Xe rc i s e  12.2  Compute the work done on the system in Figures 12.4c and 12.4d.

a ns We r s  23.00 3 105 J, 14.00 3 105 J
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12.2    The First Law of Thermodynamics
Learning Objectives

1. State the first law of thermodynamics and discuss its physical origins.

2. Apply the first law of thermodynamics to simple systems and processes.

3. Define molar specific heat and the change of internal energy of an ideal gas.

4. Discuss the concept of degrees of freedom and their physical effect on the 
molar specific heat of a gas.

The first law of thermodynamics is another energy conservation law that relates 
changes in internal energy—the energy associated with the position and jiggling 
of all the molecules of a system—to energy transfers due to heat and work. The 
first law is universally valid, applicable to all kinds of processes, providing a con-
nection between the microscopic and macroscopic worlds.

There are two ways energy can be transferred between a system and its surround-
ing environment: by doing work, which requires a macroscopic displacement of an 
object through the application of a force, and by a direct exchange of energy across 
the system boundary, often by heat. Heat is the transfer of energy between a system 
and its environment due to a temperature difference and usually occurs through one 
or more of the mechanisms of radiation, conduction, and convection. For example, in 
Figure 12.5 hot gases and radiation impinge on the cylinder, raising its temperature, 
and energy Q is transferred by conduction to the gas, where it is distributed mainly 
through convection. Other processes for transferring energy into a system are pos-
sible, such as a chemical reaction or an electrical discharge. Any energy Q exchanged 
between the system and the environment and any work done through the expansion 
or compression of the system results in a change in the internal energy, DU, of the system. 
A change in internal energy results in measurable changes in the macroscopic vari-
ables of the system such as the pressure, temperature, and volume. The relationship 
between the change in internal energy, DU, energy Q , and the work W done on the 
system is given by the first law of thermodynamics:

If a system undergoes a change from an initial state to a final state, then the 
change in the internal energy DU is given by

 DU 5 Uf 2 Ui 5 Q 1 W [12.2]

where Q is the energy exchanged between the system and the environment, 
and W  is the work done on the system.

The quantity Q is positive when energy is transferred into the system and negative 
when energy is removed from the system.

Figure 12.5 illustrates the first law for a cylinder of gas and how the system inter-
acts with the environment. The gas cylinder contains a frictionless piston, and the 
block is initially at rest. Energy Q is introduced into the gas as the gas expands 

First law of c
 thermodynamics

Ui

Q

x

F
S�VUf

W � �P�V Wenv � �W � P�V � P(A�x) � F�x 

Q �x �x

x

vS

Figure 12.5  Thermal energy Q 
is transferred to the gas, increasing 
its internal energy. The gas presses 
against the piston, displacing it and 
performing mechanical work on the 
environment or, equivalently, doing 
negative work on the gas, reducing 
the internal energy.
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against the piston with constant pressure P. Until the piston hits the stops, it exerts 
a force on the block, which accelerates on a frictionless surface. Negative work W is 
done on the gas, and at the same time positive work Wenv 5 2W is done by the gas 
on the block. Adding the work done on the environment, Wenv, to the work done 
on the gas, W, gives zero net work, as it must because energy must be conserved.

From Equation 12.2 we also see that the internal energy of any isolated sys-
tem must remain constant, so that DU 5 0. Even when a system isn’t isolated, the 
change in internal energy will be zero if the system goes through a cyclic process 
in which all the thermodynamic variables—pressure, volume, temperature, and 
moles of gas—return to their original values.

It’s important to remember that the quantities in Equation 12.2 concern a system, not 
the effect on the system’s environment through work. If the system is hot gas expanding 
against a piston, as in Figure 12.5, the system work W is negative because the piston can 
only expand at the expense of the internal energy of the gas. The work Wenv done by 
the hot gas on the environment—in this case, moving a piston which moves the block—
is positive, but that’s not the work W  in Equation 12.2. This way of defining work in 
the first law makes it consistent with the concept of work defined in Chapter 5. In both 
the mechanical and thermal cases, the effect on the system is the same: positive work 
increases the system’s energy, and negative work decreases the system’s energy.

Some textbooks identify W as the work done by the gas on its environment. This 
is an equivalent formulation, but it means that W must carry a minus sign in the 
first law. That convention isn’t consistent with previous discussions of the energy of 
a system, because when W is positive the system loses energy, whereas in Chapter 5 
positive W means that the system gains energy. For that reason, the old convention 
is not used in this book.

t ip 12.2  Dual Sign 
Conventions
Many physics and engineering 
textbooks present the first law as 
DU 5 Q 2 W, with a minus sign 
between the heat and the work. 
The reason is that work is defined 
in these treatments as the work 
done by the system rather than on 
the system, as in our treatment. 
Using our notation, this equiva-
lent first law would read  
DU 5 Q 2 Wenv.

 ■ e Xa Mp Le  12.3 Heating a Gas

g Oa L  Combine the first law of thermodynamics with work done during a constant pressure process.

pr Ob Le M  An ideal gas absorbs 5.00 3 103 J of energy while doing 2.00 3 103 J of work on the environment during a 
constant pressure process. (a) Compute the change in the internal energy of the gas. (b) If the internal energy now drops 
by 4.50 3 103 J and 7.50 3 103 J is expelled from the system, find the change in volume, assuming a constant pressure 
process at 1.01 3 105 Pa.

s t r at e g Y  Part (a) requires substitution of the given information into the first law, Equation 12.2. Notice, however, 
that the given work is done on the environment. The negative of this amount is the work done on the system, representing 
a loss of internal energy. Part (b) is a matter of substituting the equation for work at constant pressure into the first law 
and solving for the change in volume.

s OLUti On

(a) Compute the change in internal energy of the gas.

Substitute values into the first law, noting that the work 
done on the gas is negative:

DU 5 Q 1 W 5 5.00 3 103 J 2 2.00 3 103 J

5   3.00 3 103 J

(b) Find the change in volume, noting that DU and Q are 
both negative in this case.

Substitute the equation for work done at constant pres-
sure into the first law:

DU 5 Q 1 W 5 Q 2 P DV

24.50 3 103 J 5 27.50 3 103 J 2 (1.01 3 105 Pa)DV

Solve for the change in volume, DV : DV 5   22.97 3 1022 m3

re Mar Ks  The change in volume is negative, so the system contracts, doing negative work on the environment, whereas 
the work W on the system is positive.

(Continued)
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Recall that an expression for the internal energy of an ideal gas is

U 5 3
2nRT  [12.3a]

This expression is valid only for a monatomic ideal gas, which means the particles 
of the gas consist of single atoms. The change in the internal energy, DU, for such 
a gas is given by

 DU 5 3
2nR DT  [12.3b]

The molar specific heat at constant volume of a monatomic ideal gas, Cv, is 
defined by

 Cv ;  32R  [12.4]

The change in internal energy of an ideal gas can then be written

 DU 5 nCv DT [12.5]

For ideal gases, this expression is always valid, even when the volume isn’t constant. 
The value of the molar specific heat, however, depends on the gas and can vary 
under different conditions of temperature and pressure.

A gas with a larger molar specific heat requires more energy to realize a given 
temperature change. The size of the molar specific heat depends on the structure 
of the gas molecule and how many different ways it can store energy. A mona-
tomic gas such as helium can store energy as motion in three different directions. 
A gas such as hydrogen, on the other hand, is diatomic in normal temperature 
ranges, and aside from moving in three directions, it can also tumble, rotating in 
two different directions. So hydrogen molecules can store energy in the form of 
translational motion and in addition can store energy through tumbling. Further, 
molecules can also store energy in the vibrations of their constituent atoms. A gas 
composed of molecules with more ways to store energy will have a larger molar 
specific heat.

Each different way a gas molecule can store energy is called a degree of freedom. 
Each degree of freedom contributes 1

2R  to the molar specific heat. Because an 
atomic ideal gas can move in three directions, it has a molar specific heat capacity 
Cv 5 3 11

2R 2 5 3
2R . A diatomic gas like molecular oxygen, O2, can also tumble in 

two different directions. This adds 2 3 1
2R 5 R  to the molar heat specific heat, so 

Cv 5 5
2R  for diatomic gases. The spinning about the long axis connecting the two 

atoms is generally negligible. Vibration of the atoms in a molecule can also con-
tribute to the heat capacity. A full analysis of a given system is often complex, so in 
general, molar specific heats must be determined by experiment. Some represen-
tative values of Cv can be found in Table 12.1.

12.3    Thermal Processes
Learning Objectives

1. Identify, define and discuss in physical terms the four most common thermal 
processes. 

2. Evaluate thermodynamic quantities for isobaric, adiabatic, isovolumetric,  
isothermal and general processes.

QUes t i On  12.3  True or False: When an ideal gas expands at constant pressure, the change in the internal energy must 
be positive.

e Xe rc i s e  12.3  Suppose the internal energy of an ideal gas rises by 3.00 3 103 J at a constant pressure of 1.00 3 105 Pa, 
while the system gains 4.20 3 103 J of energy by heat. Find the change in volume of the system.

a ns We r  1.20 3 1022 m3
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Engine cycles can be complex. Fortunately, they can often be broken down into a 
series of simple processes. In this section the four most common processes will be 
studied and illustrated by their effect on an ideal gas. Each process corresponds 
to making one of the variables in the ideal gas law a constant or assuming one of 
the three quantities in the first law of thermodynamics is zero. The four processes 
are called isobaric (constant pressure), adiabatic (no thermal energy transfer, or 
Q 5 0), isovolumetric (constant volume, corresponding to W 5 0) and isother-
mal (constant temperature, corresponding to DU 5 0). Naturally, many other pro-
cesses don’t fall into one of these four categories, so they will be covered in a fifth 
category, called a general process. What is essential in each case is to be able to 
calculate the three thermodynamic quantities from the first law: the work W, the 
thermal energy transfer Q , and the change in the internal energy DU.

Isobaric Processes
Recall from Section 12.1 that in an isobaric process the pressure remains constant 
as the gas expands or is compressed. An expanding gas does work on its environ-
ment, given by Wenv 5 P DV. The PV diagram of an isobaric expansion is given in 
Figure 12.3. As previously discussed, the magnitude of the work done on the gas 
is just the area under the path in its PV diagram: height times length, or P DV. The 
negative of this quantity, W 5 2P DV, is the energy lost by the gas because the gas 
does work as it expands. This is the quantity that should be substituted into the 
first law.

The work done by the gas on its environment must come at the expense of the 
change in its internal energy, DU. Because the change in the internal energy of 
an ideal gas is given by DU 5 nCv DT, the temperature of an expanding gas must 
decrease as the internal energy decreases. Expanding volume and decreasing tem-
perature means the pressure must also decrease, in conformity with the ideal gas 
law, PV 5 nRT. Consequently, the only way such a process can remain at constant 
pressure is if thermal energy Q is transferred into the gas by heat. Rearranging the 
first law, we obtain

Q 5 DU 2 W 5 DU 1 P DV

t able 12.1  Molar Specific Heats of Various Gases

Gas Molar Specific Heat (J/mol ? K)a

 Cp Cv Cp 2 Cv g 5 Cp /Cv

Monatomic Gases
He 20.8 12.5 8.33 1.67
Ar 20.8 12.5 8.33 1.67
Ne 20.8 12.7 8.12 1.64
Kr 20.8 12.3 8.49 1.69

Diatomic Gases
H2 28.8 20.4 8.33 1.41
N2 29.1 20.8 8.33 1.40
O2 29.4 21.1 8.33 1.40
CO 29.3 21.0 8.33 1.40
Cl2 34.7 25.7 8.96 1.35

Polyatomic Gases
CO2 37.0 28.5 8.50 1.30
SO2 40.4 31.4 9.00 1.29
H2O 35.4 27.0 8.37 1.30
CH4 35.5 27.1 8.41 1.31
aAll values except that for water were obtained at 300 K.

37027_ch12_ptg01_hr_402-444.indd   409 31/08/13   11:31 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



410  c hap t e r  12 | The Laws of Thermodynamics

Now we can substitute the expression in Equation 12.3b for DU and use the 
ideal gas law to substitute P DV 5 nR DT :

Q 5 3
2nR DT 1 nR DT 5 5

2nR DT

Another way to express this transfer by heat is

 Q 5 nCp DT [12.6]

where Cp 5 5
2R . For ideal gases, the molar heat capacity at constant pressure, Cp, is 

the sum of the molar heat capacity at constant volume, Cv, and the gas constant R:

 Cp 5 Cv 1 R [12.7]

This can be seen in the fourth column of Table 12.1, where Cp 2 Cv is calculated 
for a number of different gases. The difference works out to be approximately R in 
virtually every case.

 ■ e Xa Mp Le  12.4 Expanding Gas

g Oa L  Use molar specific heats and the first law in a constant pressure process.

pr ObLe M  Suppose a system of monatomic ideal gas at  
2.00 3 105 Pa and an initial temperature of 293 K slowly 
expands at constant pressure from a volume of 1.00 L to  
2.50 L. (a) Find the work done on the environment. (b) Find 
the change in internal energy of the gas. (c) Use the first law 
of thermodynamics to obtain the thermal energy absorbed 
by the gas during the process. (d) Use the molar heat capac-
ity at constant pressure to find the thermal energy absorbed. 
(e) How would the answers change for a diatomic ideal gas?

s t r at e gY  This problem mainly involves substituting 
values into the appropriate equations. Substitute into the 

equation for work at constant pressure to obtain the answer 
to part (a). In part (b) use the ideal gas law twice: to find 
the temperature when V 5 2.00 L and to find the number 
of moles of the gas. These quantities can then be used to 
obtain the change in internal energy, DU. Part (c) can then 
be solved by substituting into the first law, yielding Q , the 
answer checked in part (d) with Equation 12.6. Repeat 
these steps for part (e) after increasing the molar specific 
heats by R because of the extra two degrees of freedom 
associated with a diatomic gas.

s OLUti On

(a) Find the work done on the environment.

Apply the definition of work at constant pressure: Wenv 5 P DV 5 (2.00 3 105 Pa)(2.50 3 1023 m3

2 1.00 3 1023 m3)

Wenv 5    3.00 3 102 J

(b) Find the change in the internal energy of the gas.

First, obtain the final temperature, using the ideal gas 
law, noting that Pi 5 Pf :

PfVf

PiVi
5

Tf

Ti

S Tf 5 Ti 
Vf

Vi
5 1293 K 2  12.50 3 1023 m3 2

11.00 3 1023 m3 2
Tf 5 733 K

Again using the ideal gas law, obtain the number of moles 
of gas:

n 5
PiVi

RTi
5

12.00 3 105 Pa 2 11.00 3 1023 m3 2
18.31 J/K # mol 2 1293 K 2

5 8.21 3 1022 mol

Use these results and given quantities to calculate the 
change in internal energy, DU :

DU 5 nCvDT 5 3
2nRDT

5 3
2 18.21 3 1022 mol 2 18.31 J/K # mol 2 1733 K 2 293 K 2

DU 5    4.50 3 102 J

(c) Use the first law to obtain the energy transferred by 
heat.

Solve the first law for Q , and substitute DU and  
W 5 2Wenv 5 23.00 3 102 J:

DU 5 Q 1 W S Q 5 DU 2 W

Q 5 4.50 3 102 J 2 (23.00 3 102 J) 5   7.50 3 102 J
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Adiabatic Processes
In an adiabatic process, no energy enters or leaves the system by heat. Such a sys-
tem is insulated, thermally isolated from its environment. In general, however, the 
system isn’t mechanically isolated, so it can still do work. A sufficiently rapid pro-
cess may be considered approximately adiabatic because there isn’t time for any 
significant transfer of energy by heat.

For adiabatic processes Q 5 0, so the first law becomes

 DU 5 W (adiabatic processes)

The work done during an adiabatic process can be calculated by finding the 
change in the internal energy. Alternately, the work can be computed from a PV
diagram. For an ideal gas undergoing an adiabatic process, it can be shown that

PV g 5 constant [12.8a]

where

 g 5
Cp

Cv
 [12.8b]

is called the adiabatic index of the gas. Values of the adiabatic index for several 
different gases are given in Table 12.1. After computing the constant on the right-
hand side of Equation 12.8a and solving for the pressure P, the area under the 
curve in the PV diagram can be found by counting boxes, yielding the work.

If a hot gas is allowed to expand so quickly that there is no time for energy to 
enter or leave the system by heat, the work done on the gas is negative and the 

(d) Use the molar heat capacity at constant pressure to 
obtain Q .

Substitute values into Equation 12.6: Q 5 nCpDT 5 5
2nRDT

5 5
2 18.21 3 1022 mol 2 18.31 J/K # mol 2 1733 K 2 293 K 2

5   7.50 3 102 J
(e) How would the answers change for a diatomic gas?

Obtain the new change in internal energy, DU, noting 
that Cv 5 5

2R  for a diatomic gas:
DU 5 nCvDT 5 13

2 1 1 2nR DT

5 5
2 18.21 3 1022 mol 2 18.31 J/K # mol 2 1733 K 2 293 K 2

DU 5   7.50 3 102 J

re Mar Ks  Part (b) could also be solved with fewer steps by using the ideal gas equation PV 5 nRT once the work is 
known. The pressure and number of moles are constant, and the gas is ideal, so PDV 5 nRDT. Given that Cv 5 3

2R , the 
change in the internal energy DU can then be calculated in terms of the expression for work:

DU 5 nCvDT 5 3
2nRDT 5 3

2PDV 5 3
2W

Similar methods can be used in other processes.

QUes t i On  12.4  True or False: During a constant pressure compression, the temperature of an ideal gas must always 
decrease, and the gas must always exhaust thermal energy (Q  , 0).

e Xe rc i s e  12.4  Suppose an ideal monatomic gas at an initial temperature of 475 K is compressed from 3.00 L to  
2.00 L while its pressure remains constant at 1.00 3 105 Pa. Find (a) the work done on the gas, (b) the change in internal 
energy, and (c) the energy transferred by heat, Q.

a ns We r s  (a) 1.00 3 102 J (b) 21.50 3 102 J (c) 22.50 3 102 J

Obtain the new energy transferred by heat, Q : Q 5 nCpDT 5 15
2 1 1 2nRDT

5 7
2 18.21 3 1022 mol 2 18.31 J/K # mol 2 1733 K 2 293 K 2

Q 5   1.05 3 103 J
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internal energy decreases. This decrease occurs because kinetic energy is trans-
ferred from the gas molecules to the moving piston. Such an adiabatic expansion 
is of practical importance and is nearly realized in an internal combustion engine 
when a gasoline–air mixture is ignited and expands rapidly against a piston. The 
following example illustrates this process.

 ■ e Xa Mp Le  12.5 Work and an Engine Cylinder

g Oa L  Use the first law to find the work done in an adiabatic expansion.

pr Ob Le M  In a car engine operating at a frequency of 
1.80 3 103 rev/min, the expansion of hot, high- pressure 
gas against a piston occurs in about 10 ms. Because 
energy transfer by heat typically takes a time on the order 
of minutes or hours, it’s safe to assume little energy leaves 
the hot gas during the expansion. Find the work done 
by the gas on the piston during this adiabatic expansion 
by assuming the engine cylinder contains 0.100 moles of 

an ideal monatomic gas that goes from 1.200 3 103 K to 
4.00 3 102 K, typical engine temperatures, during the 
expansion.

s t r at e g Y  Find the change in internal energy using the 
given temperatures. For an adiabatic process, this equals 
the work done on the gas, which is the negative of the work 
done on the environment—in this case, the piston.

s OLUti On
Start with the first law, taking Q 5 0: W 5 DU 2 Q 5 DU 2 0 5 DU

re Mar Ks  The work done on the piston comes at the expense of the internal energy of the gas. In an ideal adiabatic 
expansion, the loss of internal energy is completely converted into useful work. In a real engine, there are always losses.

QUes t i On  12.5  In an adiabatic expansion of an ideal gas, why must the change in temperature always be negative?

e Xe rc i s e  12.5  A monatomic ideal gas with volume 0.200 L is rapidly compressed, so the process can be considered 
adiabatic. If the gas is initially at 1.01 3 105 Pa and 3.00 3 102 K and the final temperature is 477 K, find the work done 
by the gas on the environment, Wenv.

a ns We r  217.9 J

Find DU from the expression for the internal 
energy of an ideal monatomic gas:

DU 5 Uf 2 Ui 5 3
2nR 1Tf 2 Ti 2

5 3
2 10.100 mol 2 18.31 J/mol # K 2 14.00 3 102 K 2 1.20 3 103 K 2

DU 5 29.97 3 102 J

The change in internal energy equals the work 
done on the system, which is the negative of the 
work done on the piston:

Wpiston 5 2W 5 2DU 5   9.97 3 102 J

 ■ e Xa Mp Le  12.6 An Adiabatic Expansion

g Oa L  Use the adiabatic pressure vs. volume relation to 
find a change in pressure and the work done on a gas.

pr Ob Le M  A monatomic ideal gas at an initial pres-
sure of 1.01 3 105 Pa expands adiabatically from an ini-
tial volume of 1.50 m3, doubling its volume (Fig. 12.6). 
(a) Find the new pressure. (b) Sketch the PV diagram 
and estimate the work done on the gas.

s t r at e g Y  There isn’t enough information to solve 
this problem with the ideal gas law. Instead, use Equa-
tion 12.8a,b and the given information to find the adia-
batic index and the constant C for the process. For part 
(b), sketch the PV diagram and count boxes to estimate 
the area under the graph, which gives the work.

0.40

0.60

0.20

0.80

1.00

1.00 2.00 3.00
V (m3)

P (105Pa)

Figure 12.6  (Example 12.6) The 
PV diagram of an adiabatic expan-
sion: the graph of P 5 CV2g, where 
C is a constant and g 5 Cp/Cv.

37027_ch12_ptg01_hr_402-444.indd   412 31/08/13   11:31 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



12.3 | Thermal Processes  413

Isovolumetric Processes
An isovolumetric process, sometimes called an isochoric process (which is harder 
to remember), proceeds at constant volume, corresponding to vertical lines in a 
PV diagram. If the volume doesn’t change, no work is done on or by the system, so  
W 5 0 and the first law of thermodynamics reads

DU 5 Q (isovolumetric process)

This result tells us that in an isovolumetric process, the change in internal 
energy of a system equals the energy transferred to the system by heat. From 
Equation 12.5, the energy transferred by heat in constant volume processes is 
given by

 Q 5 nCv DT [12.9]

s OLUti On

(a) Find the new pressure.

First, calculate the adiabatic index: g 5
Cp

Cv
5

5
2R
3
2R

5
5
3

Use Equation 12.8a to find the constant C : C 5 P1V1
g 5 (1.01 3 105 Pa)(1.50 m3)5/3

5 1.99 3 105 Pa # m5

The constant C is fixed for the entire process and can be 
used to find P2:

C 5 P2V2
g 5 P2(3.00 m3)5/3

1.99 3 105 Pa ? m5 5 P2 (6.24 m5)

P2 5   3.19 3 104 Pa

(b) Estimate the work done on the gas from a PV diagram.

Count the boxes between V1 5 1.50 m3 and V2 5 3.00 m3 
in the graph of P 5 (1.99 3 105 Pa ? m5)V 25/3 in the PV 
diagram shown in Figure 12.6:

Number of boxes < 17

Each box has an ‘area’ of 5.00 3 103 J. W < 217 ? 5.00 3 103 J 5   28.5 3 104 J

re Mar Ks  The exact answer, obtained with calculus, is 28.43 3 104 J, so our result is a very good estimate. The answer is 
negative because the gas is expanding, doing positive work on the environment, thereby reducing its own internal energy.

QUes t i On  12.6  For an adiabatic expansion between two given volumes and an initial pressure, which gas does more 
work, a monatomic gas or a diatomic gas?

e Xe rc i s e  12.6  Repeat the preceding calculations for an ideal diatomic gas expanding adiabatically from an initial 
volume of 0.500 m3 to a final volume of 1.25 m3, starting at a pressure of P1 5 1.01 3 105 Pa. Use the same techniques as in 
the example.

a ns We r s  P2 5 2.80 3 104 Pa, W < 24 3 104 J

 ■ e Xa Mp Le  12.7 An Isovolumetric Process

g Oa L  Apply the first law to a constant-volume process.

pr Ob Le M  A monatomic ideal gas has a temperature T 5 3.00 3 102 K and a constant volume of 1.50 L. If there are 
5.00 moles of gas, (a) how much thermal energy must be added in order to raise the temperature of the gas to 3.80 3 102 K?  
(b) Calculate the change in pressure of the gas, DP. (c) How much thermal energy would be required if the gas were ideal 
and diatomic? (d) Calculate the change in the pressure for the diatomic gas.

(Continued)

37027_ch12_ptg01_hr_402-444.indd   413 31/08/13   11:31 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



414  c hap t e r  12 | The Laws of Thermodynamics

Unless otherwise noted, all content on this page is © Cengage Learning.

Isothermal Processes
During an isothermal process, the temperature of a system doesn’t change. In an 
ideal gas the internal energy U depends only on the temperature, so it follows that 
DU 5 0 because DT 5 0. In this case, the first law of thermodynamics gives

W 5 2Q (isothermal process)

We see that if the system is an ideal gas undergoing an isothermal process, the 
work done on the system is equal to the negative of the thermal energy transferred 
to the system. Such a process can be visualized in Figure 12.7. A cylinder filled 
with gas is in contact with a large energy reservoir that can exchange energy with 
the gas without changing its temperature. For a constant temperature ideal gas,

P 5
nRT
V

 

where the numerator on the right-hand side is constant. The PV diagram of a 
typical isothermal process is graphed in Figure 12.8, contrasted with an adiabatic 

s OLUti On

(a) How much thermal energy must be added in order to 
raise the temperature of the gas to 3.80 3 102 K?

Apply Equation 12.9, using the fact that Cv 5 3R/2 for an 
ideal monatomic gas:

(1) Q 5 DU 5 nCvDT 5 3
2nRDT

5 3
2 15.00 mol 2 18.31 J/K # mol 2 180.0 K 2

Q 5   4.99 3 103 J 

(b) Calculate the change in pressure, DP.

Use the ideal gas equation PV 5 nRT and Equation (1) to 
relate DP to Q :

D 1PV 2 5 1DP 2V 5 nRDT 5 2
3Q

Solve for DP : DP 5
2
3

  
Q

V
5

2
3

  
4.99 3 103 J

1.50 3 1023 m3

5 2.22 3 106 Pa

(c) How much thermal energy would be required if the 
gas were ideal and diatomic?

Repeat the calculation with Cv 5 5R/2: Q 5 DU 5 nCvDT 5 5
2 nRDT 5 8.31 3 103 J

(d) Calculate the change in the pressure for the diatomic gas.

Use the result of part (c) and repeat the calculation of part 
(b), with 2/3 replaced by 2/5 because the gas is diatomic:

DP 5
2
5

  
Q

V
5

2
5

  
8.31 3 103 J

1.50 3 1023 m3

5 2.22 3 106 Pa

re Mar Ks  The constant volume diatomic gas, under the same conditions, requires more thermal energy per degree of 
temperature change because there are more ways for the diatomic molecules to store energy. Despite the extra energy 
added, the diatomic gas reaches the same final pressure as the monatomic gas.

QUes t i On  12.7  If the same amount of energy as found in part (a) were transferred to 5.00 moles of carbon dioxide at 
the same initial temperature, would the final temperature be lower, higher, or unchanged?

e Xe rc i s e  12.7  (a) Find the change in temperature DT of 22.0 mol of a monatomic ideal gas if it absorbs 9 750 J at 
a constant volume of 2.40 L. (b) What is the change in pressure, DP ? (c) If the system is an ideal diatomic gas, find the 
change in its temperature. (d) Find the change in pressure of the diatomic gas.

a ns We r s  (a) 35.6 K (b) 2.71 3 106 Pa (c) 21.3 K (d) 1.63 3 106 Pa

Energy reservoir at Th

Q h

Isothermal
expansion

Figure 12.7  The gas in the cylin-
der expands isothermally while in 
contact with a reservoir at tempera-
ture Th.
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process. The pressure falls off more rapidly for an adiabatic expansion because 
thermal energy can’t be transferred into the system. In an isothermal expansion, 
the system loses energy by doing work on the environment but regains an equal 
amount of energy across the boundary.

Using methods of calculus, it can be shown that the work done on the environ-
ment during an isothermal process is given by

 Wenv 5 nRT ln a
Vf

Vi
b [12.10]

The symbol “ln” in Equation 12.10 is an abbreviation for the natural logarithm, 
discussed in Appendix A. The work W done on the gas is just the negative  
of Wenv.

0.25

0.50

0.75

1.00

P (105 Pa)

Isothermal

Adiabatic

1.0 2.0 3.0 4.0
V (m3)

Figure 12.8  The PV diagram of an isothermal expansion, 
graph of P 5 CV 21, where C is a constant, compared to an 
adiabatic expansion, P 5 CAV 2g. CA is a constant equal in 
magnitude to C in this case but carrying different units.

 ■ e Xa Mp Le  12.8 An Isothermally Expanding Balloon

g Oa L  Find the work done during an isothermal expansion.

pr Ob Le M  A balloon contains 5.00 moles of a monatomic ideal gas. As energy is added to the system by heat (say, by 
absorption from the Sun), the volume increases by 25% at a constant temperature of 27.0°C. Find the work Wenv done by 
the gas in expanding the balloon, the thermal energy Q transferred to the gas, and the work W done on the gas.

s t r at e g Y  Be sure to convert temperatures to kelvins. Use Equation 12.10 for isothermal work Wenv done on the envi-
ronment to find the work W done on the balloon, which satisfies W 5 2Wenv. Further, for an isothermal process, the ther-
mal energy Q transferred to the system equals the work Wenv done by the system on the environment.

s OLUti On

Substitute into Equation 12.10, finding the work  
done during the isothermal expansion. Note that  
T 5 27.0°C 5 3.00 3 102 K.

Wenv 5 nRT  ln a
Vf

Vi
b

5 (5.00 mol)(8.31 J/K ? mol)(3.00 3 102 K)

3 ln a1.25V0

V0
b

Wenv 5   2.78 3 103 J

Q 5 Wenv 5   2.78 3 103 J

The negative of this amount is the work done on the gas: W 5 2Wenv 5   22.78 3 103 J

re Mar Ks  Notice the relationship between the work done on the gas, the work done on the environment, and the 
energy transferred. These relationships are true of all isothermal processes.

QUes t i On  12.8  True or False: In an isothermal process no thermal energy transfer takes place.
(Continued)
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General Case
When a process follows none of the four given models, it’s still possible to use the 
first law to get information about it. The work can be computed from the area 
under the curve of the PV diagram, and if the temperatures at the endpoints can 
be found, DU follows from Equation 12.5, as illustrated in the following example.

e Xe rc i s e  12.8  Suppose that subsequent to this heating, 1.50 3 104 J of thermal energy is removed from the gas iso-
thermally. Find the final volume in terms of the initial volume of the example, V0. (Hint: Follow the same steps as in the 
example, but in reverse. Also note that the initial volume in this exercise is 1.25V0.)

a ns We r  0.375V0

 ■ e Xa Mp Le  12.9 A General Process

g Oa L  Find thermodynamic quantities for a process that 
doesn’t fall into any of the four previously discussed categories.

pr Ob Le M  A quantity of 4.00 moles of a monatomic ideal 
gas expands from an initial volume of 0.100 m3 to a final vol-
ume of 0.300 m3 and pressure of 2.5 3 105 Pa (Fig. 12.9a). 
Compute (a)  the work done on the gas, (b) the change in 
internal energy of the gas, and (c) the thermal energy trans-
ferred to the gas.

s t r at e g Y  The work done on the gas is equal to the neg-
ative of the area under the curve in the PV diagram. Use 
the ideal gas law to get the temperature change and, subse-
quently, the change in internal energy. Finally, the first law gives the thermal energy transferred by heat.

s OLUti On

1.00

2.00

3.00

P (105Pa)

B

b
A

0.100 0.200 0.300
V (m3)

h1

h2A2

1.00

2.00

3.00

P (105Pa)

B

A

0.100 0.200 0.300
V (m3)

A2

A1A1

a b

Figure 12.9  (a) (Example 12.9) (b) (Exercise 12.9)

(a) Find the work done on the gas by computing the area 
under the curve in Figure 12.9a.

Find A1, the area of the triangle: A1 5 1
2bh1 5 1

2 10.200 m3 2 11.50 3 105 Pa 2 5 1.50 3 104 J

Find A2, the area of the rectangle: A2 5 bh2 5 (0.200 m3)(1.00 3 105 Pa) 5 2.00 3 104 J

Sum the two areas (the gas is expanding, so the work 
done on the gas is negative and a minus sign must be 
supplied):

W 5 2(A1 1 A2) 5   23.50 3 104 J

(b) Find the change in the internal energy during the 
process.

Compute the temperature at points A and B with the 
ideal gas law:

TA 5
PAVA

nR
5

11.00 3 105 Pa 2 10.100 m3 2
14.00 mol 2 18.31 J/K # mol 2 5 301 K

TB 5
PBVB

nR
5

12.50 3 105 Pa 2 10.300 m3 2
14.00 mol 2 18.31 J/K # mol 2 5 2.26 3 103 K

Compute the change in internal energy: DU 5 3
2nR DT

5 3
2 14.00 mol 2 18.31 J/K # mol 2 12.26 3 103 K 2 301 K 2

DU 5    9.77 3 104 J

(c) Compute Q with the first law: Q 5 DU 2 W 5 9.77 3 104 J 2 (23.50 3 104 J)

5    1.33 3 105 J
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Given all the different processes and formulas, it’s easy to become confused when 
approaching one of these ideal gas problems, although most of the time only sub-
stitution into the correct formula is required. The essential facts and formulas are 
compiled in Table 12.2, both for easy reference and also to display the similarities 
and differences between the processes.

re Mar Ks  As long as it’s possible to compute the work, cycles involving these more exotic processes can be completely 
analyzed. Usually, however, it’s necessary to use calculus. Note that the solution to part (b) could have been facilitated by 
yet another application of PV 5 nRT:

DU 5 3
2nRDT 5 3

2D 1PV 2 5 3
2 1PBVB 2 PAVA 2

This result means that even in the absence of information about the number of moles or the temperatures, the problem 
could be solved knowing the initial and final pressures and volumes.

QUes t i On  12.9  For a curve with lower pressures but the same endpoints as in Figure 12.9a, would the thermal energy 
transferred be (a) smaller than, (b) equal to, or (c) greater than the thermal energy transfer of the straight-line path?

e Xe rc i s e  12.9  Figure 12.9b represents a process involving 3.00 moles of a monatomic ideal gas expanding from 
0.100 m3 to 0.200 m3. Find the work done on the system, the change in the internal energy of the system, and the thermal 
energy transferred in the process.

a ns We r s  W 5 22.00 3 104 J, DU 5 21.50 3 104 J, Q 5 5.00 3 103 J

A

B
C

D

V

P

T1

T3

T2

T4

Figure 12.10  (Quick Quiz 12.2) 
Identify the nature of paths A, B, C, 
and D.

t able 12.2  The First Law and Thermodynamic Processes (Ideal Gases)

Process DU Q W

Isobaric nCv DT nCp DT 2P DV
Adiabatic nCv DT 0 DU
Isovolumetric nCv DT DU 0

Isothermal 0 2W 2nRT ln a
Vf

Vi
b

General nCv DT DU 2 W (PV Area)

■ Quick Quiz

12.2  Identify the paths A, B, C, and D in Figure 12.10 as isobaric, isothermal, iso-
volumetric, or adiabatic. For path B, Q 5 0.

12.4     Heat Engines and the Second  
Law of Thermodynamics

Learning Objectives

1. Analyze heat engines using the first law of thermodynamics, and calculate 
their efficiency at converting thermal energy into work.

2. Analyze refrigerators and heat pumps and calculate their coefficients of 
performance.

3. State the second law of thermodynamics in two formulations, and interpret it 
and the first law in terms of the output of engines.

4. Explain the idea of a reversible process and how it relates to real processes.

5. Define and analyze an ideal (Carnot) engine, calculate its efficiency, and state 
the implications for real engines.

6. Explain the relationship between the ideal engine’s efficiency and the third 
law of thermodynamics.
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A heat engine takes in energy by heat and partially converts it to other forms, 
such as electrical and mechanical energy. In a typical process for producing 
electricity in a power plant, for instance, coal or some other fuel is burned, and 
the resulting internal energy is used to convert water to steam. The steam is 
then directed at the blades of a turbine, setting it rotating. Finally, the mechani-
cal energy associated with this rotation is used to drive an electric generator. In 
another heat engine—the internal combustion engine in an automobile—energy 
enters the engine as fuel is injected into the cylinder and combusted, and a frac-
tion of this energy is converted to mechanical energy.

In general, a heat engine carries some working substance through a cyclic 
process1 during which (1) energy is transferred by heat from a source at a  
high temperature, (2) work is done by the engine, and (3) energy is expelled 
from the engine by heat to a source at lower temperature. As an example,  
consider the operation of a steam engine in which the working substance  
is water. The water in the engine is carried through a cycle in which it first 
evaporates into steam in a boiler and then expands against a piston. After the 
steam is condensed with cooling water, it returns to the boiler, and the process 
is repeated.

It’s useful to draw a heat engine schematically, as in Figure 12.11. The engine 
absorbs energy Q h from the hot reservoir, does work Weng, then gives up energy  
Q c to the cold reservoir. (Note that negative work is done on the engine, so that  
W 5 2Weng.) Because the working substance goes through a cycle, always return-
ing to its initial thermodynamic state, its initial and final internal energies are 
equal, so DU 5 0. From the first law of thermodynamics, therefore,

DU 5 0 5 Q 1 W S Q net 5 2W 5 Weng

The last equation shows that the work Weng done by a heat engine equals the 
net energy absorbed by the engine. As we can see from Figure 12.11, Q net 5  
|Q h| 2 |Q c|. Therefore,

 Weng 5 |Q h| 2 |Q c| [12.11]

Ordinarily, a transfer of thermal energy Q can be either positive or negative, so the 
use of absolute value signs makes the signs of Q h and Q c explicit.

If the working substance is a gas, then the work done by the engine for  
a cyclic process is the area enclosed by the curve representing the process  
on a PV diagram. This area is shown for an arbitrary cyclic process in  
Figure 12.12.

The thermal efficiency e of a heat engine is defined as the work done by the 
engine, Weng, divided by the energy absorbed during one cycle:

  e ;  
Weng

0Qh 0
5

0Qh 0 2 0Qc 0
0Qh 0

5 1 2
0Qc 0
0Qh 0

 [12.12]

We can think of thermal efficiency as the ratio of the benefit received (work) 
to the cost incurred (energy transfer at the higher temperature). Equation 12.12 
shows that a heat engine has 100% efficiency (e 5 1) only if Q c 5 0, meaning no 
energy is expelled to the cold reservoir. In other words, a heat engine with perfect 
efficiency would have to use all the input energy for doing mechanical work. That 
isn’t possible, as will be seen in Section 12.5.

 Cyclic process c

1Strictly speaking, the internal combustion engine is not a heat engine according to the description of the cyclic 
process, because the air–fuel mixture undergoes only one cycle and is then expelled through the exhaust system.

Energy Qc 
leaves the 
engine. 

Qh

Q c

Hot reservoir
at Th

Cold reservoir
at Tc

Heat
engine

Weng

Energy Qh 
enters the 
engine. 

The engine does 
work Weng.

Figure 12.11
In this schematic representation of 
a heat engine, part of the thermal 
energy from the hot reservoir is 
turned into work while the rest is 
expelled to the cold reservoir.

P

V

Area = Weng

The enclosed area equals 
the net work done.

Figure 12.12  The PV diagram for 
an arbitrary cyclic process. 
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 ■ e Xa Mp Le  12.10 The Efficiency of an Engine

g Oa L  Apply the efficiency formula to a heat engine.

pr Ob Le M  During one cycle, an engine extracts 2.00 3 103 J of energy from a hot reservoir and transfers 1.50 3 103 J 
to a cold reservoir. (a) Find the thermal efficiency of the engine. (b) How much work does this engine do in one cycle?  
(c) What average power does the engine generate if it goes through four cycles in 2.50 s?

s t r at e g Y  Apply Equation 12.12 to obtain the thermal efficiency, then use the first law, adapted to engines (Eq. 12.11), 
to find the work done in one cycle. To obtain the power generated, divide the work done in four cycles by the time it takes 
to run those cycles.

s OLUti On

(a) Find the engine’s thermal efficiency.

Substitute Q c and Q h into Equation 12.12: e 5 1 2
0Q c 0
0Q h 0

5 1 2
1.50 3 103 J

2.00 3 103 J
5   0.250, or 25.0%

(b) How much work does this engine do in one cycle?

Apply the first law in the form of Equation 12.11 to find 
the work done by the engine:

Weng 5 |Q h| 2 |Q c| 5 2.00 3 103 J 2 1.50 3 103 J

5    5.00 3 102 J

(c) Find the average power output of the engine.

Multiply the answer of part (b) by four and divide by time:
P 5

W
Dt

 5
4.00 3 15.00 3 102 J 2

2.50 s
 5 ˜ 8.00 3 102 W

re Mar Ks  Problems like this usually reduce to solving two equations and two unknowns, as here, where the two equa-
tions are the efficiency equation and the first law and the unknowns are the efficiency and the work done by the engine.

QUes t i On  12.10  Can the efficiency of an engine always be improved by increasing the thermal energy put into the 
system during a cycle? Explain.

e Xe rc i s e  12.10  The energy absorbed by an engine is three times as great as the work it performs. (a) What is its ther-
mal efficiency? (b) What fraction of the energy absorbed is expelled to the cold reservoir? (c) What is the average power 
output of the engine if the energy input is 1 650 J each cycle and it goes through two cycles every 3 seconds?

a ns We r s  (a) 1@3 (b) 2@3 (c) 367 W

■ e Xa Mp Le  12.11 Analyzing an Engine Cycle

g Oa L  Combine several concepts to analyze an engine cycle.

pr Ob Le M  A heat engine contains an ideal monatomic gas 
confined to a cylinder by a movable piston. The gas starts 
at A, where T 5 3.00 3 102 K. (See Fig. 12.13a.) The process  
B S C is an isothermal expansion. (a) Find the number n of 
moles of gas and the temperature at B. (b) Find DU, Q , and 
W for the isovolumetric process A S B. (c) Repeat for the iso-
thermal process B S C. (d) Repeat for the isobaric process  
C S A. (e) Find the net change in the internal energy for 
the complete cycle. (f) Find the thermal energy Q h trans-
ferred into the system, the thermal energy rejected, Q c, the 
thermal efficiency, and net work on the environment per-
formed by the engine.

s t r at e g Y  In part (a) n and T can be found from the ideal gas law, which connects the equilibrium values of P, V, and 
T. Once the temperature T is known at the points A, B, and C, the change in internal energy, DU, can be computed from 

V (L)

P (atm)
3.00

5.00 10.0

B

A C

2.00

1.00

15.00
0 V (L)

P (atm)

2.00

1.00 2.00

B

A C1.00

0
0

a b

Figure 12.13 (a) (Example 12.11) (b) (Exercise 12.11)

(Continued)
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420  c hap t e r  12 | The Laws of Thermodynamics

the formula in Table 12.2 for each process. Q and W can be similarly computed, or deduced from the first law, using the 
techniques applied in the single-process examples.

s OLUti On

(a) Find n and TB with the ideal gas law: n 5
PAVA

RTA
5

11.00 atm 2 15.00 L 2
10.082 1 L # atm/mol # K 2 13.00 3 102 K 2

5    0.203 mol

TB 5
PBVB

nR
5

13.00 atm 2 15.00 L 2
10.203 mol 2 10.082 1 L # atm/mol # K 2

5    9.00 3 102 K

(b) Find DUAB, Q AB, and WAB for the constant volume 
process A S B.

Compute DUAB, noting that Cv 5 3
2R 5 12.5 J/mol # K: DUAB 5 nCv DT 5 (0.203 mol)(12.5 J/mol ? K)

3 (9.00 3 102 K 2 3.00 3 102 K)

DUAB 5   1.52 3 103 J

DV 5 0 for isovolumetric processes, so no work is done: WAB 5   0

We can find Q AB from the first law: Q AB 5 DUAB 5   1.52 3 103 J

(c) Find DUBC, Q BC, and WBC for the isothermal process  
B S C.

This process is isothermal, so the temperature doesn’t 
change, and the change in internal energy is zero:

DUBC 5 nCv DT 5   0

Compute the work done on the system, using the negative 
of Equation 12.10:

WBC 5 2nRT ln aVC

VB
b

5 2(0.203 mol)(8.31 J/mol ? K)(9.00 3 102 K)

3  ln a1.50 3 1022 m3

5.00 3 1023 m3b
WBC 5    21.67 3 103 J

Compute Q BC from the first law: 0 5 Q BC 1 WBC S Q BC 5 2WBC 5    1.67 3 103 J

(d) Find DUCA, Q CA, and WCA for the isobaric process  
C S A.

Compute the work on the system, with pressure constant: WCA 5 2P DV 5 2(1.01 3 105 Pa)(5.00 3 1023 m3

2 1.50 3 1022 m3)

WCA 5   1.01 3 103 J

Find the change in internal energy, DUCA: DUCA 5 3
2nR DT 5 3

2 10.203 mol 2 18.31 J/K # mol 2
3 (3.00 3 102 K 2 9.00 3 102 K)

DUCA 5   21.52 3 103 J

Compute the thermal energy, Q CA, from the first law: Q CA 5 DUCA 2 WCA 5 21.52 3 103 J 2 1.01 3 103 J

5    22.53 3 103 J

(e) Find the net change in internal energy, DUnet, for the 
cycle:

DUnet 5 DUAB 1 DUBC  1 DUCA

5 1.52 3 103 J 1 0 2 1.52 3 103 J 5   0
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Refrigerators and Heat Pumps
Heat engines can operate in reverse. In this case, energy is injected into the engine, 
modeled as work W in Figure 12.14, resulting in energy being extracted from the 
cold reservoir and transferred to the hot reservoir. The system now operates as a heat 
pump, a common example being a refrigerator (Fig. 12.15 on page 422). Energy Q c
is extracted from the interior of the refrigerator and delivered as energy Q h to the 
warmer air in the kitchen. The work is done in the compressor unit of the refrigera-
tor, compressing a refrigerant such as freon, causing its temperature to increase.

A household air conditioner is another example of a heat pump. Some homes 
are both heated and cooled by heat pumps. In winter, the heat pump extracts 
energy Q c from the cool outside air and delivers energy Q h to the warmer air 
inside. In summer, energy Q c is removed from the cool inside air, while energy Q h
is ejected to the warm air outside.

For a refrigerator or an air conditioner—a heat pump operating in cooling 
mode—work W is what you pay for, in terms of electrical energy running the com-
pressor, whereas Q c is the desired benefit. The most efficient refrigerator or air 
conditioner is one that removes the greatest amount of energy from the cold reser-
voir in exchange for the least amount of work.

The coefficient of performance (COP) for a refrigerator or an air condi-
tioner is the magnitude of the energy extracted from the cold reservoir, |Q c|, 
divided by the work W performed by the device:

 COP 1cooling mode 2 5
0Qc 0
W

 [12.13]

SI unit: dimensionless

re Mar Ks  Cyclic problems are rather lengthy, but the individual steps are often short substitutions. Notice that the 
change in internal energy for the cycle is zero and that the net work done on the environment is identical to the net ther-
mal energy transferred, both as they should be.

QUes t i On  12.11  If BC were a straight-line path, would the work done by the cycle be affected? How?

e Xe rc i s e  12.11  4.05 3 1022 mol of monatomic ideal gas goes through the process shown in Figure 12.13b. The tem-
perature at point A is 3.00 3 102 K and is 6.00 3 102 K during the isothermal process B S C. (a) Find Q , DU, and W  for 
the constant volume process A S B. (b) Do the same for the isothermal process B S C. (c) Repeat, for the constant pres-
sure process C S A. (d) Find Q h, Q c, and the efficiency. (e) Find Weng.

a ns We r s  (a) Q AB 5 DUAB 5 151 J, WAB 5 0   (b) DUBC 5 0, Q BC 5 2WBC 5 1.40 3 102 J   (c) Q CA 5 2252 J,  
DUCA 5 2151 J, WCA 5 101 J   (d) Q h 5 291 J, Q c 5 2252 J, e 5 0.134   (e) Weng 5 39 J

(f) Find the energy input, Q h; the energy rejected, Q c; the 
thermal efficiency; and the net work performed by the 
engine:

Sum all the positive contributions to find Q h: Q h 5 Q AB 1 Q BC 5 1.52 3 103 J 1 1.67 3 103 J 

5    3.19 3 103 J

Sum any negative contributions (in this case, there is only 
one):

Q c 5    22.53 3 103 J

Find the engine efficiency and the net work done by the 
engine:

e 5 1 2
0Qc 0
0Qh 0

5 1 2
2.53 3 103 J

3.19 3 103 J
5  0.207

Weng 5 2(WAB 1 WBC 1 WCA)

5 2(0 2 1.67 3 103 J 1 1.01 3 103 J)

5    6.60 3 102 J

Qh

Q c

Hot reservoir
at Th

Cold reservoir
at Tc

Heat
pump

W

Energy Qh 
is expelled 
to the hot 
reservoir.

Energy Qc 
is drawn 
from the 
cold 
reservoir.

Work W is done on 
the heat pump.

Figure 12.14
In this schematic representation 
of a heat pump, thermal energy is 
extracted from the cold reservoir 
and “pumped” to the hot reservoir.
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The coils on the back of
a refrigerator transfer 
energy by heat to the air.

Figure 12.15  The back of a house-
hold refrigerator. The air surround-
ing the coils is the hot reservoir.
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The larger this ratio, the better the performance, because more energy is being 
removed for a given amount of work. A good refrigerator or air conditioner will 
have a COP of 5 or 6.

A heat pump operating in heating mode warms the inside of a house in winter 
by extracting energy from the colder outdoor air. This statement may seem para-
doxical, but recall that this process is equivalent to a refrigerator removing energy 
from its interior and ejecting it into the kitchen.

The coefficient of performance of a heat pump operating in the heating 
mode is the magnitude of the energy rejected to the hot reservoir, |Q h|, 
divided by the work W done by the pump:

 COP 1heating mode 2 5
0Qh 0
W

 [12.14]

SI unit: dimensionless

In effect, the COP of a heat pump in the heating mode is the ratio of what you 
gain (energy delivered to the interior of your home) to what you give (work 
input). Typical values for this COP are greater than 1, because |Q h| is usually 
greater than W.

In a groundwater heat pump, energy is extracted in the winter from water 
deep in the ground rather than from the outside air, while energy is deliv-
ered to that water in the summer. This strategy increases the year-round effi-
ciency of the heating and cooling unit because the groundwater is at a higher 
temperature than the air in winter and at a cooler temperature than the air  
in summer.

 ■ e Xa Mp Le  12.12 Cooling the Leftovers

g Oa L  Apply the coefficient of performance of a refrigerator.

s OLUti On

pr Ob Le M  A 2.00-L container of leftover soup at a tem-
perature of 323 K is placed in a refrigerator. Assume the 
specific heat of the soup is the same as that of water and 
the density is 1.25 3 103 kg/m3. The refrigerator cools the 
soup to 283 K. (a) If the COP of the refrigerator is 5.00, 
find the energy needed, in the form of work, to cool the 
soup. (b) If the compressor has a power rating of 0.250 hp, 
for what minimum length of time must it operate to cool 
the soup to 283 K? (The minimum time assumes the soup 

cools at the same rate that the heat pump ejects thermal 
energy from the refrigerator.)

s t r at e g Y  The solution to this problem requires three 
steps. First, find the total mass m of the soup. Second, using 
Q 5 mc DT, where Q 5 Q c, find the energy transfer required 
to cool the soup. Third, substitute Q c and the COP into 
Equation 12.13, solving for W. Divide the work by the power 
to get an estimate of the time required to cool the soup.

(a) Find the work needed to cool the soup.

Calculate the mass of the soup: m 5 rV 5 (1.25 3 103 kg/m3)(2.00 3 1023 m3) 5 2.50 kg

Find the energy transfer required to cool the soup: Q c 5 Q 5 mc DT

5 (2.50 kg)(4 190 J/kg ? K)(283 K 2 323 K)

5 24.19 3 105 J

Substitute Q c and the COP into Equation 12.13: COP 5
0Q c 0
W

5
4.19 3 105 J

W
5 5.00

W 5    8.38 3 104 J

(b) Find the time needed to cool the soup.

Convert horsepower to watts: P 5 (0.250 hp)(746 W/1 hp) 5 187 W
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12.4 | Heat Engines and the Second Law of Thermodynamics   423

The Second Law of Thermodynamics
There are limits to the efficiency of heat engines. The ideal engine would convert 
all input energy into useful work, but it turns out that such an engine is impossible 
to construct. The Kelvin-Planck formulation of the second law of thermodynam-
ics can be stated as follows:

No heat engine operating in a cycle can absorb energy from a reservoir and 
use it entirely for the performance of an equal amount of work.

This form of the second law means that the efficiency e 5 Weng/|Q h| of engines 
must always be less than 1. Some energy |Q c| must always be lost to the environ-
ment. In other words, it’s theoretically impossible to construct a heat engine with 
an efficiency of 100%.

To summarize, the first law says we can’t get a greater amount of energy out of 
a cyclic process than we put in, and the second law says we can’t break even. No 
matter what engine is used, some energy must be transferred by heat to the cold 
reservoir. In Equation 12.11, the second law simply means |Q c| is always greater 
than zero.

There is another equivalent statement of the second law:

If two systems are in thermal contact, net thermal energy transfers spontane-
ously by heat from the hotter system to the colder system.

Here, spontaneous means the energy transfer occurs naturally, with no work 
being done. Thermal energy naturally transfers from hotter systems to colder sys-
tems. Work must be done to transfer thermal energy from a colder system to a 
hotter system, however. An example is the refrigerator, which transfers thermal 
energy from inside the refrigerator to the warmer kitchen.

Reversible and Irreversible Processes
No engine can operate with 100% efficiency, but different designs yield different 
efficiencies, and it turns out that one design in particular delivers the maximum 
possible efficiency. This design is the Carnot cycle, discussed in the next subsec-
tion. Understanding it requires the concepts of reversible and irreversible pro-
cesses. In a reversible process, every state along the path is an equilibrium state, so 
the system can return to its initial conditions by going along the same path in the 
reverse direction. A process that doesn’t satisfy this requirement is irreversible.

Most natural processes are known to be irreversible; the reversible process is an 
idealization. Although real processes are always irreversible, some are almost revers-
ible. If a real process occurs so slowly that the system is virtually always in equilibrium,  
the process can be considered reversible. Imagine compressing a gas very slowly by 

re Mar Ks  This example illustrates how cooling different substances requires differing amounts of work due to differ-
ences in specific heats. The problem doesn’t take into account the insulating properties of the soup container and of the 
soup itself, which retard the cooling process.

QUes t i On  12.12  If the refrigerator door is left open, does the kitchen become cooler? Why or why not?

e Xe rc i s e  12.12  (a) How much work must a heat pump with a COP of 2.50 do to extract 1.00 MJ of thermal energy 
from the outdoors (the cold reservoir)? (b) If the unit operates at 0.500 hp, how long will the process take? (Be sure to 
use the correct COP!)

a ns We r s  (a) 6.67 3 105 J (b) 1.79 3 103 s

Divide the work by the power to find the elapsed time: Dt 5
W
P

5
8.38 3 104 J

187 W
5   448 s

Lord Kelvin
British Physicist and Mathematician 
(1824–1907)
Born William Thomson in Belfast, Kel-
vin was the first to propose the use of 
an absolute scale of temperature. His 
study of Carnot’s theory led to the idea 
that energy cannot pass spontaneously 
from a colder object to a hotter object; 
this principle is known as the second 
law of thermodynamics.
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s adi c arnot
French Engineer (1796–1832)
Carnot is considered to be the founder 
of the science of thermodynamics. 
Some of his notes found after his death 
indicate that he was the first to rec-
ognize the relationship between work 
and heat.
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dropping grains of sand onto a frictionless piston, as in Figure 12.16. The tempera-
ture can be kept constant by placing the gas in thermal contact with an energy res-
ervoir. The pressure, volume, and temperature of the gas are well defined during 
this isothermal compression. Each added grain of sand represents a change to a new 
equilibrium state. The process can be reversed by slowly removing grains of sand 
from the piston.

The Carnot Engine
In 1824, in an effort to understand the efficiency of real engines, a French engi-
neer named Sadi Carnot (1796–1832) described a theoretical engine now called 
a Carnot engine that is of great importance from both a practical and a theoretical 
viewpoint. He showed that a heat engine operating in an ideal, reversible cycle—
now called a Carnot cycle—between two energy reservoirs is the most efficient 
engine possible. Such an engine establishes an upper limit on the efficiencies of 
all real engines. Carnot’s theorem can be stated as follows:

No real engine operating between two energy reservoirs can be more effi-
cient than a Carnot engine operating between the same two reservoirs.

In a Carnot cycle, an ideal gas is contained in a cylinder with a movable piston 
at one end. The temperature of the gas varies between Tc and Th. The cylinder 
walls and the piston are thermally nonconducting. Figure 12.17 shows the four 
stages of the Carnot cycle, and Figure 12.18 is the PV diagram for the cycle. The 
cycle consists of two adiabatic and two isothermal processes, all reversible:

1. The process A S B is an isothermal expansion at temperature Th in which 
the gas is placed in thermal contact with a hot reservoir (a large oven, 
for example) at temperature Th (Fig. 12.17a). During the process, the gas 
absorbs energy Q h from the reservoir and does work WAB in raising the 
piston.

2. In the process B S C, the base of the cylinder is replaced by a thermally 
nonconducting wall and the gas expands adiabatically, so no energy 
enters or leaves the system by heat (Fig. 12.17b). During the process,  
the temperature falls from Th to Tc and the gas does work WBC in raising 
the piston.

3. In the process C S D, the gas is placed in thermal contact with a cold reser-
voir at temperature Tc (Fig. 12.17c) and is compressed isothermally at tem-
perature Tc. During this time, the gas expels energy Q c to the reservoir and 
the work done on the gas is WCD.

4. In the final process, D S A, the base of the cylinder is again replaced by a 
thermally nonconducting wall (Fig. 12.17d), and the gas is compressed adia-
batically. The temperature of the gas increases to Th, and the work done on 
the gas is WDA.

For a Carnot engine, the following relationship between the thermal energy 
transfers and the absolute temperatures can be derived:

 
0Qc 0
0Qh 0

5
Tc

Th
   [12.15]

Substituting this expression into Equation 12.12, we find that the thermal effi-
ciency of a Carnot engine is

 eC 5 1 2
Tc

Th
 [12.16]

Energy reservoir

Individual grains of sand 
drop onto the piston, 
slowly compressing the gas.

Figure 12.16  A method for com-
pressing a gas in a reversible isother-
mal process.

t ip 12.3  Don’t Shop for a 
Carnot Engine
The Carnot engine is only an 
idealization. If a Carnot engine 
were developed in an effort to 
maximize efficiency, it would have 
zero power output because for all 
of the processes to be reversible, 
the engine would have to run infi-
nitely slowly.
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where T must be in kelvins. From this result, we see that all Carnot engines oper-
ating reversibly between the same two temperatures have the same efficiency.

Equation 12.16 can be applied to any working substance operating in a Carnot 
cycle between two energy reservoirs. According to that equation, the efficiency is 
zero if Tc 5 Th. The efficiency increases as Tc is lowered and as Th is increased. The 
efficiency can be one (100%), however, only if Tc 5 0 K. According to the third law 
of thermodynamics, it’s impossible to lower the temperature of a system to abso-
lute zero in a finite number of steps, so such reservoirs are not available and the 
maximum efficiency is always less than 1. In most practical cases, the cold reser-
voir is near room temperature, about 300 K, so increasing the efficiency requires 
raising the temperature of the hot reservoir. All real engines operate irreversibly, 
due to friction and the brevity of their cycles, and are therefore less efficient 
than the Carnot engine.

■ Quick Quiz

12.3  Three engines operate between reservoirs separated in temperature by 300 K. 
The reservoir temperatures are as follows:

Engine A: Th 5 1 000 K, Tc 5 700 K

Engine B: Th 5 800 K, Tc 5 500 K

Engine C: Th 5 600 K, Tc 5 300 K

Rank the engines in order of their theoretically possible efficiency, from highest to 
lowest. (a) A, B, C (b) B, C, A (c) C, B, A (d) C, A, B

b Third law of  

  thermodynamics

V

P

Weng

D

B

Qh

Th

TcQ c

C

A

Figure 12.18
The PV diagram for the Carnot 
cycle. The net work done, Weng, 
equals the net energy transferred 
into the Carnot engine in one cycle, 
|Q h| 2 |Q c|.

a

c

bd

CycleQ � 0 Q � 0

Hot reservoir at Th

Q h

Cold reservoir at Tc � Th

Q c

A S B
The gas expands 

isothermally, 
gaining energy 
from the hot 

reservoir.

Thermal insulationThermal insulation

B S C
The gas 
expands 

adiabatically.

D S A
The gas 

compresses
adiabatically.

C S D
The gas 

compresses 
isothermally, 

exhausting thermal 
energy to the cold 

reservoir.

Figure 12.17
The Carnot cycle. The letters A, B, 
C, and D refer to the states of the gas 
shown in Figure 12.18. The arrows 
on the piston indicate the direction 
of its motion during each process.
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12.5    Entropy
Learning Objectives

1. State the thermodynamic and the statistical definitions of entropy.

2. Calculate the change in entropy of various physical systems.

3. Relate entropy to disorder.

4. Discuss the degradation of energy and the entropy of the Universe.

Temperature and internal energy, associated with the zeroth and first laws of 
thermodynamics, respectively, are both state variables, meaning they can be 
used to describe the thermodynamic state of a system. A state variable called the 
entropy S is related to the second law of thermodynamics. We define entropy 

 ■ e Xa Mp Le  12.13 The Steam Engine

g Oa L  Apply the equations of an ideal (Carnot) engine.

pr Ob Le M  A steam engine has a boiler that operates at 5.00 3 102 K. The energy from the boiler changes water to 
steam, which drives the piston. The temperature of the exhaust is that of the outside air, 3.00 3 102 K. (a) What is the 
engine’s efficiency if it’s an ideal engine? (b) If the 3.50 3 103 J of energy is supplied from the boiler, find the energy 
transferred to the cold reservoir and the work done by the engine on its environment.

s t r at e g Y  This problem requires substitution into Equations 12.15 and 12.16, both applicable to a Carnot engine. The 
first equation relates the ratio Q c/Q h to the ratio Tc/Th, and the second gives the Carnot engine efficiency.

s OLUti On

(a) Find the engine’s efficiency, assuming it’s ideal.

Substitute into Equation 12.16, the equation for the  
efficiency of a Carnot engine:

eC 5 1 2
Tc

Th
5 1 2

3.00 3 102 K
5.00 3 102 K

5    0.400, or 40.0%

(b) Find the energy transferred to the cold reservoir 
and the work done on the environment if 3.50 3 103 J is 
delivered to the engine during one cycle.

Equation 12.15 shows that the ratio of energies equals the 
ratio of temperatures:

0Qc 0
0Qh 0

5
Tc

Th

S 0Qc 0  5 0Qh 0  
Tc

Th

Substitute, finding the energy transferred to the cold 
reservoir:

0Qc 0 5 13.50 3 103 J 2 a3.00 3 102 K
5.00 3 102 K

b 5   2.10 3 103 J

Use Equation 12.11 to find the work done by the engine: Weng 5 |Q h| 2 |Q c| 5 3.50 3 103 J 2 2.10 3 103 J

5   1.40 3 103 J

re Mar Ks  This problem differs from the earlier examples on work and efficiency because we used the special Carnot 
relationships, Equations 12.15 and 12.16. Remember that these equations can only be used when the cycle is identified as 
ideal or a Carnot.

QUes t i On  12.13  True or False: A nonideal engine operating between the same temperature extremes as a Carnot 
engine and having the same input thermal energy will perform the same amount of work as the Carnot engine.

e Xe rc i s e  12.13  The highest theoretical efficiency of a gasoline engine based on the Carnot cycle is 0.300, or 30.0%. 
(a) If this engine expels its gases into the atmosphere, which has a temperature of 3.00 3 102 K, what is the temperature 
in the cylinder immediately after combustion? (b) If the heat engine absorbs 837 J of energy from the hot reservoir during  
each cycle, how much work can it perform in each cycle?

a ns We r s  (a) 429 K (b) 251 J
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on a macroscopic scale as German physicist Rudolf Clausius (1822–1888) first 
expressed it in 1865:

Let Q r be the energy absorbed or expelled during a reversible, constant 
temperature process between two equilibrium states. Then the change in 
entropy during any constant temperature process connecting the two equi-
librium states is defined as

 DS ;  
Q r

T
 [12.17]

SI unit: joules/kelvin (J/K)

A similar formula holds when the temperature isn’t constant, but its derivation 
entails calculus and won’t be considered here. Calculating the change in entropy, 
DS, during a transition between two equilibrium states requires finding a revers-
ible path that connects the states. The entropy change calculated on that revers-
ible path is taken to be DS for the actual path. This approach is necessary because 
quantities such as the temperature of a system can be defined only for systems in 
equilibrium, and a reversible path consists of a sequence of equilibrium states. The 
subscript r on the term Q r emphasizes that the path chosen for the calculation 
must be reversible. The change in entropy DS, like changes in internal energy DU 
and changes in potential energy, depends only on the endpoints, and not on the 
path connecting them.

The concept of entropy gained wide acceptance in part because it provided 
another variable to describe the state of a system, along with pressure, volume, and 
temperature. Its significance was enhanced when it was found that the entropy of 
the Universe increases in all natural processes. This is yet another way of stating 
the second law of thermodynamics.

Although the entropy of the Universe increases in all natural processes, the 
entropy of a system can decrease. For example, if system A transfers energy Q to 
system B by heat, the entropy of system A decreases. This transfer, however, can 
only occur if the temperature of system B is less than the temperature of system 
A. Because temperature appears in the denominator in the definition of entropy, 
system B’s increase in entropy will be greater than system A’s decrease, so taken 
together, the entropy of the Universe increases.

For centuries, individuals have attempted to build perpetual motion machines 
that operate continuously without any input of energy or increase in entropy. The 
laws of thermodynamics preclude the invention of any such machines.

The concept of entropy is satisfying because it enables us to present the second 
law of thermodynamics in the form of a mathematical statement. In the next sec-
tion we find that entropy can also be interpreted in terms of probabilities, a rela-
tionship that has profound implications.

■ Quick Quiz

12.4  Which of the following is true for the entropy change of a system that under-
goes a reversible, adiabatic process? (a) DS , 0 (b) DS 5 0 (c) DS . 0

r udolf c lausius
German Physicist (1822–1888)
Born with the name Rudolf Gottlieb, he 
adopted the classical name of Clausius, 
which was a popular thing to do in his 
time. “I propose . . . to call S the entropy 
of a body, after the Greek word ‘trans-
formation.’ I have designedly coined 
the word ‘entropy’ to be similar to 
energy, for these two quantities are so 
analogous in their physical significance, 
that an analogy of denominations 
seems to be helpful.”
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t ip 12.4  Entropy 2 Energy
Don’t confuse energy and 
entropy. Although the names 
sound similar the concepts are 
different.

 ■ e Xa Mp Le  12.14 Melting a Piece of Lead

g Oa L  Calculate the change in entropy due to a phase change.

pr Ob Le M  (a) Find the change in entropy of 3.00 3 102 g of lead when it melts at 327°C. Lead has a latent heat of fusion 
of 2.45 3 104 J/kg. (b) Suppose the same amount of energy is used to melt part of a piece of silver, which is already at its 
melting point of 961°C. Find the change in the entropy of the silver.

s t r at e g Y  This problem can be solved by substitution into Equation 12.17. Be sure to use the Kelvin temperature scale.
(Continued)
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428  c hap t e r  12 | The Laws of Thermodynamics

s OLUti On

(a) Find the entropy change of the lead.

Find the energy necessary to melt the lead: Q 5 mLf 5 (0.300 kg)(2.45 3 104 J/kg) 5 7.35 3 103 J

Convert the temperature in degrees Celsius to Kelvins: T 5 TC 1 273 5 327 1 273 5 6.00 3 102 K

Substitute the quantities found into the entropy equation: DS 5
Q

T
5

7.35 3 103 J

6.00 3 102 K
5  12.3 J/K

(b) Find the entropy change of the silver.

The added energy is the same as in part (a), by supposi-
tion. Substitute into the entropy equation, after first con-
verting the melting point of silver to kelvins:

T 5 TC 1 273 5 961 1 273 5 1.234 3 103 K

DS 5
Q

T
5

7.35 3 103 J

1.234 3 103 K
5   5.96 J/K

re Mar Ks  This example shows that adding a given amount of energy to a system increases its entropy, but adding the 
same amount of energy to another system at higher temperature results in a smaller increase in entropy. This is because 
the change in entropy is inversely proportional to the temperature.

QUes t i On  12.14  If the same amount of energy were used to melt ice at 0°C to water at 0°C, rank the entropy changes 
for ice, silver, and lead, from smallest to largest.

e Xe rc i s e  12.14  Find the change in entropy of a 2.00-kg block of gold at 1 063°C when it melts to become liquid gold 
at 1 063°C. (The latent heat of fusion for gold is 6.44 3 104 J/kg.)

a ns We r  96.4 J/K

 ■ e Xa Mp Le  12.15 Ice, Steam, and the Entropy of the Universe

g Oa L  Calculate the change in entropy for a system and its environment.

pr Ob Le M  A block of ice at 273 K is put in thermal contact with a container of steam at 373 K, converting 25.0 g of ice 
to water at 273 K while condensing some of the steam to water at 373 K. Find (a) the change in entropy of the ice, (b) the 
change in entropy of the steam, and (c) the change in entropy of the Universe.

s t r at e g Y  First, calculate the energy transfer necessary to melt the ice. The amount of energy gained by the ice is lost 
by the steam. Compute the entropy change for each process and sum to get the entropy change of the Universe.

s OLUti On

(a) Find the change in entropy of the ice.

Use the latent heat of fusion, Lf , to compute the thermal 
energy needed to melt 25.0 g of ice:

Q ice 5 mLf 5 (0.025 kg)(3.33 3 105 J) 5 8.33 3 103 J

Calculate the change in entropy of the ice: DS ice 5
Q ice

Tice
5

8.33 3 103 J

273 K
5    30.5 J/K

(b) Find the change in entropy of the steam.

By supposition, the thermal energy lost by the steam is 
equal to the thermal energy gained by the ice:

DS steam 5
Q steam

Tsteam
5

28.33 3 103 J

373 K
5    222.3 J/K

(c) Find the change in entropy of the Universe.

Sum the two changes in entropy: DSuniverse 5 DS ice 1 DS steam 5 30.5 J/k 2 22.3 J/K

5    1 8.2 J/K

re Mar Ks  Notice that the entropy of the Universe increases, as it must in all natural processes.

QUes t i On  12.15  True or False: For a given magnitude of thermal energy transfer, the change in entropy is smaller for 
processes that proceed at lower temperature.
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12.5 | Entropy  429

e Xe rc i s e  12.15  A 4.00-kg block of ice at 273 K encased in a thin plastic shell of negligible mass melts in a large lake 
at 293 K. At the instant the ice has completely melted in the shell and is still at 273 K, calculate the change in entropy of 
(a) the ice, (b) the lake (which essentially remains at 293 K), and (c) the Universe.

a ns We r s  (a) 4.88 3 103 J/K (b) 24.55 3 103 J/K (c) 13.3 3 102 J/K

 ■ e Xa Mp Le  12.16 A Falling Boulder

g Oa L  Combine mechanical energy and entropy.

pr Ob Le M  A chunk of rock of mass 1.00 3 103 kg at 293 K falls from a cliff of height 125 m into a large lake, also at  
293 K. Find the change in entropy of the lake, assuming all the rock’s kinetic energy upon entering the lake converts to 
thermal energy absorbed by the lake.

s t r at e g Y  Gravitational potential energy when the rock is at the top of the cliff converts to kinetic energy of the rock 
before it enters the lake, then is transferred to the lake as thermal energy. The change in the lake’s temperature is neg-
ligible (due to its mass). Divide the mechanical energy of the rock by the temperature of the lake to estimate the lake’s 
change in entropy.

s OLUti On

Calculate the gravitational potential energy associated 
with the rock at the top of the cliff:

PE 5 mgh 5 (1.00 3 103 kg)(9.80 m/s2)(125 m)

5 1.23 3 106 J

This energy is transferred to the lake as thermal energy, 
resulting in an entropy increase of the lake:

DS 5
Q

T
5

1.23 3 106 J

293 K
5   4.20 3 103 J/K

re Mar Ks  This example shows how even simple mechanical processes can bring about increases in the Universe’s 
entropy.

QUes t i On  12.16  If you carefully remove your physics book from a shelf and place it on the ground, what happens to 
the entropy of the Universe? Does it increase, decrease, or remain the same? Explain.

e Xe rc i s e  12.16  Estimate the change in entropy of a tree trunk at 15.0°C when a bullet of mass 5.00 g traveling at 
1.00 3 103 m/s embeds itself in it. (Assume the kinetic energy of the bullet transforms to thermal energy, all of which is 
absorbed by the tree.)

a ns We r  8.68 J/K

Entropy and Disorder
A large element of chance is inherent in natural processes. The spacing between 
trees in a natural forest, for example, is random; if you discovered a forest where 
all the trees were equally spaced, you would conclude that it had been planted. 
Likewise, leaves fall to the ground with random arrangements. It would be highly 
unlikely to find the leaves laid out in perfectly straight rows. We can express the 
results of such observations by saying that a disorderly arrangement is much more 
probable than an orderly one if the laws of nature are allowed to act without 
interference.

Entropy originally found its place in thermodynamics, but its importance 
grew tremendously as the field of statistical mechanics developed. This analytical 
approach employs an alternate interpretation of entropy. In statistical mechanics, 
the behavior of a substance is described by the statistical behavior of the atoms and 
molecules contained in it. One of the main conclusions of the statistical mechani-
cal approach is that isolated systems tend toward greater disorder, and entropy is 
a measure of that disorder.
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430  c hap t e r  12 | The Laws of Thermodynamics

In light of this new view of entropy, Boltzmann found another method for calcu-
lating entropy through use of the relation

S 5 kB ln W [12.18]

where kB 5 1.38 3 10223 J/K is Boltzmann’s constant and W is a number propor-
tional to the probability that the system has a particular configuration. The sym-
bol “ln” again stands for natural logarithm, discussed in Appendix A.

Equation 12.18 could be applied to a bag of marbles. Imagine that you have 
100 marbles—50 red and 50 green—stored in a bag. You are allowed to draw four 
marbles from the bag according to the following rules: Draw one marble, record 
its color, return it to the bag, and draw again. Continue this process until four 
marbles have been drawn. Note that because each marble is returned to the bag 
before the next one is drawn, the probability of drawing a red marble is always the 
same as the probability of drawing a green one.

The results of all possible drawing sequences are shown in Table 12.3. For exam-
ple, the result RRGR means that a red marble was drawn first, a red one second, 
a green one third, and a red one fourth. The table indicates that there is only one 
possible way to draw four red marbles. There are four possible sequences that pro-
duce one green and three red marbles, six sequences that produce two green and 
two red, four sequences that produce three green and one red, and one sequence 
that produces all green. From Equation 12.18, we see that the state with the great-
est disorder (two red and two green marbles) has the highest entropy because it is 
most probable. In contrast, the most ordered states (all red marbles and all green 
marbles) are least likely to occur and are states of lowest entropy.

The outcome of the draw can range between these highly ordered (lowest-
entropy) and highly disordered (highest-entropy) states. Entropy can be regarded 
as an index of how far a system has progressed from an ordered to a disordered 
state.

The second law of thermodynamics is really a statement of what is most proba-
ble rather than of what must be. Imagine placing an ice cube in contact with a hot 
piece of pizza. There is nothing in nature that absolutely forbids the transfer of 
energy by heat from the ice to the much warmer pizza. Statistically, it’s possible for 
a slow-moving molecule in the ice to collide with a faster-moving molecule in the 
pizza so that the slow one transfers some of its energy to the faster one. When the 
great number of molecules present in the ice and pizza are considered, however, 
the odds are overwhelmingly in favor of the transfer of energy from the faster-
moving molecules to the slower-moving molecules. Furthermore, this example 
demonstrates that a system naturally tends to move from a state of order to a state 
of disorder. The initial state, in which all the pizza molecules have high kinetic 
energy and all the ice molecules have lower kinetic energy, is much more ordered 
than the final state after energy transfer has taken place and the ice has melted.

Even more generally, the second law of thermodynamics defines the direc-
tion of time for all events as the direction in which the entropy of the universe 
increases. Although conservation of energy isn’t violated if energy flows spontane-
ously from a cold object (the ice cube) to a hot object (the pizza slice), that event 

a pp Lica t iOn
The Direction of Time

t able 12.3  Possible Results of Drawing Four Marbles from a Bag

  Total Number
End Result Possible Draws of Same Results

All R RRRR 1
1G, 3R RRRG, RRGR, RGRR, GRRR 4
2G, 2R RRGG, RGRG, GRRG, RGGR, GRGR, GGRR 6
3G, 1R GGGR, GGRG, GRGG, RGGG 4
All G GGGG 1

t ip 12.5  Don’t Confuse  
the W’s
The symbol W used here is a prob-
ability, not to be confused with the 
same symbol used for work.
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12.5 | Entropy  431

violates the second law because it represents a spontaneous increase in order. Of 
course, such an event also violates everyday experience. If the melting ice cube is 
filmed and the film speeded up, the difference between running the film in for-
ward and reverse directions would be obvious to an audience. The same would be 
true of filming any event involving a large number of particles, such as a dish drop-
ping to the floor and shattering.

As another example, suppose you were able to measure the velocities of all 
the air molecules in a room at some instant. It’s very unlikely that you would 
find all molecules moving in the same direction with the same speed; that 
would be a highly ordered state, indeed. The most probable situation is a sys-
tem of molecules moving haphazardly in all directions with a wide distribution 
of speeds, a highly disordered state. This physical situation can be compared to 
the drawing of marbles from a bag: If a container held 1023 molecules of a gas, 
the probability of finding all the molecules moving in the same direction with 
the same speed at some instant would be similar to that of drawing a marble 
from the bag 1023 times and getting a red marble on every draw, clearly an 
unlikely set of events.

The tendency of nature to move toward a state of disorder affects the ability 
of a system to do work. Consider a ball thrown toward a wall. The ball has kinetic 
energy, and its state is an ordered one, which means that all the atoms and mol-
ecules of the ball move in unison at the same speed and in the same direction 
(apart from their random internal motions). When the ball hits the wall, however, 
part of the ball’s kinetic energy is transformed into the random, disordered, inter-
nal motion of the molecules in the ball and the wall, and the temperatures of the 
ball and the wall both increase slightly. Before the collision, the ball was capable of 
doing work. It could drive a nail into the wall, for example. With the transforma-
tion of part of the ordered energy into disordered internal energy, this capability 
of doing work is reduced. The ball rebounds with less kinetic energy than it origi-
nally had, because the collision is inelastic.

Various forms of energy can be converted to internal energy, as in the collision 
between the ball and the wall, but the reverse transformation is never complete. In 
general, given two kinds of energy, A and B, if A can be completely converted to B 
and vice versa, we say that A and B are of the same grade. However, if A can be com-
pletely converted to B and the reverse is never complete, then A is of a higher grade 
of energy than B. In the case of a ball hitting a wall, the kinetic energy of the ball 
is of a higher grade than the internal energy contained in the ball and the wall 
after the collision. When high-grade energy is converted to internal energy, it can 
never be fully recovered as high-grade energy.

This conversion of high-grade energy to internal energy is referred to as the 
degradation of energy. The energy is said to be degraded because it takes on a 
form that is less useful for doing work. In other words, in all real processes, the 
energy available for doing work decreases.

Finally, note once again that the statement that entropy must increase in all 
natural processes is true only for isolated systems. There are instances in which 
the entropy of some system decreases, but with a corresponding net increase in 
entropy for some other system. When all systems are taken together to form the 
Universe, the entropy of the Universe always increases.

Ultimately, the entropy of the Universe should reach a maximum. When it does, 
the Universe will be in a state of uniform temperature and density. All physical, 
chemical, and biological processes will cease, because a state of perfect disorder 
implies no available energy for doing work. This gloomy state of affairs is some-
times referred to as the ultimate “heat death” of the Universe.

■ Quick Quiz

12.5  Suppose you are throwing two dice in a friendly game of craps. For any given 
throw, the two numbers that are faceup can have a sum of 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 
or 12. Which outcome is most probable? Which is least probable?

b

(a) A royal flush is a highly ordered 
poker hand with a low probability of 
occurrence. (b) A disordered and 
worthless poker hand. The prob-
ability of this particular hand occur-
ring is the same as that of the royal 
flush. There are so many worthless 
hands, however, that the probabil-
ity of being dealt a worthless hand 
is much higher than that of being 
dealt a royal flush. Can you calculate 
the probability of being dealt a full 
house (a pair and three of a kind) 
from a standard deck of 52 cards?
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12.6    Human Metabolism 
Learning Objectives

1. Define metabolic rate and its relation to the physical rate of oxygen 
consumption.

2. Analyze the biological impacts of metabolic rate, physical activity and weight 
gain using thermodynamics.

3. Describe how the laws of thermodynamics can quantify physical fitness and 
the human body’s efficiency.

Animals do work and give off energy by heat, leading us to believe the first law of 
thermodynamics can be applied to living organisms to describe them in a general 
way. The internal energy stored in humans goes into other forms needed for main-
taining and repairing the major body organs and is transferred out of the body by 
work as a person walks or lifts a heavy object, and by heat when the body is warmer 
than its surroundings. Because the rates of change of internal energy, energy loss 
by heat, and energy loss by work vary widely with the intensity and duration of 
human activity, it’s best to measure the time rates of change of DU, Q , and W. 
Rewriting the first law, these time rates of change are related by

 
DU
Dt

5
Q

Dt
1

W
Dt

 [12.19]

On average, energy Q flows out of the body, and work is done by the body on its sur-
roundings, so both Q/Dt and W/Dt are negative. This means that DU/Dt would be 
negative and the internal energy and body temperature would decrease with time if a 
human were a closed system with no way of ingesting matter or replenishing internal 
energy stores. Because all animals are actually open systems, they acquire internal 
energy (chemical potential energy) by eating and breathing, so their internal energy 
and temperature are kept constant. Overall, the energy from the oxidation of food 
ultimately supplies the work done by the body and energy lost from the body by heat, 
and this is the interpretation we give Equation 12.19. That is, DU/Dt is the rate at 
which internal energy is added to our bodies by food, and this term just balances the 
rate of energy loss by heat, Q/Dt, and by work, W/Dt. Finally, if we have a way of mea-
suring DU/Dt and W/Dt for a human, we can calculate Q/Dt from Equation 12.19 and 
gain useful information on the efficiency of the body as a machine.

Measuring the Metabolic Rate DU/Dt
The value of W/Dt, the work done by a person per unit time, can easily be deter-
mined by measuring the power output supplied by the person (in pedaling a bike, 
for example). The metabolic rate DU/Dt is the rate at which chemical potential 
energy in food and oxygen are transformed into internal energy to just balance 
the body losses of internal energy by work and heat. Although the mechanisms 
of food oxidation and energy release in the body are complicated, involving many 
intermediate reactions and enzymes (organic compounds that speed up the chem-
ical reactions taking place at “low” body temperatures), an amazingly simple rule 
summarizes these processes: The metabolic rate is directly proportional to the 
rate of oxygen consumption by volume. It is found that for an average diet, the 
consumption of one liter of oxygen releases 4.8 kcal, or 20 kJ, of energy. We may 
write this important summary rule as

DU
Dt

5 4.8 
DVO2

Dt
 [12.20]

where the metabolic rate DU/Dt is measured in kcal/s and DVO2
/Dt, the volume rate 

of oxygen consumption, is in L/s. Measuring the rate of oxygen consumption during 

Figure 12.19  This bike rider 
is being monitored for oxygen 
consumption.
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various activities ranging from sleep to intense bicycle racing effectively measures the 
variation of metabolic rate or the variation in the total power the body generates. A 
simultaneous measurement of the work per unit time done by a person along with 
the metabolic rate allows the efficiency of the body as a machine to be determined. 
Figure 12.19 shows a person monitored for oxygen consumption while riding a bike 
attached to a dynamometer, a device for measuring power output.

Metabolic Rate, Activity, and Weight Gain
Table 12.4 shows the measured rate of oxygen consumption in milliliters per 
minute per kilogram of body mass and the calculated metabolic rate for a 65-kg 
male engaged in various activities. A sleeping person uses about 80 W of power, 
the basal metabolic rate, just to maintain and run different body organs such as 
the heart, lungs, liver, kidneys, brain, and skeletal muscles. More intense activity 
increases the metabolic rate to a maximum of about 1 600 W for a superb racing 
cyclist, although such a high rate can only be maintained for periods of a few sec-
onds. When we sit watching a riveting film, we give off about as much energy by 
heat as a bright (250-W) lightbulb.

Regardless of level of activity, the daily food intake should just balance the loss 
in internal energy if a person is not to gain weight. Further, exercise is a poor 
substitute for dieting as a method of losing weight, although it has other benefits. 
For example, the loss of 1 pound of body fat requires the muscles to expend 4 100 
kcal of energy. If the goal is to lose 1 pound of fat in 35 days, a jogger could run an 
extra mile a day, because a 65-kg jogger uses about 120 kcal to jog 1 mile (35 days 
3 120 kcal/day 5 4 200 kcal). An easier way to lose the pound of fat would be to 
diet and eat two fewer slices of bread per day for 35 days, because bread has a calo-
rie content of 60 kcal/slice (35 days 3 2 slices/day 3 60 kcal/slice 5 4 200 kcal).

t able 12.4  Oxygen Consumption and Metabolic Rates for Various Activities for a 65-kg Malea

O2 Use Rate Metabolic Rate Metabolic Rate
Activity (mL/min ? kg) (kcal/h) (W)

Sleeping 3.5 70 80
Light activity (dressing,  10 200 230
 walking slowly, desk work) 
Moderate activity (walking briskly) 20 400 465
Heavy activity (basketball,  30 600 700
 swimming a fast breaststroke) 
Extreme activity (bicycle racing) 70 1 400 1 600
aSource: A Companion to Medical Studies, 2/e, R. Passmore, Philadelphia, F. A. Davis, 1968.

 ■ e Xa Mp Le  12.17 Fighting Fat

g Oa L  Estimate human energy usage during a typical day.

pr Ob Le M  In the course of 24 hours, a 65-kg person spends 8 h at a desk, 2 h puttering around the house, 1 h jogging 
5 miles, 5 h in moderate activity, and 8 h sleeping. What is the change in his internal energy during this period?

s t r at e g Y  The time rate of energy usage—or power—multiplied by time gives the amount of energy used during a 
given activity. Use Table 12.4 to find the power Pi needed for each activity, multiply each by the time, and sum them all up.

s OLUti On

DU 5 2o Pi Dti 5 2(P1Dt1 1 P2Dt2 1 . . . 1 PnDtn)

5 2(200 kcal/h)(10 h) 2 (5 mi/h)(120 kcal/mi)(1 h) 2 (400 kcal/h)(5 h) 2 (70 kcal/h)(8 h)

DU 5    2 5 000 kcal

(Continued)
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Physical Fitness and Efficiency of the Human Body as a Machine
One measure of a person’s physical fitness is his or her maximum capacity 
to use or consume oxygen. This “aerobic” fitness can be increased and main-
tained with regular exercise, but falls when training stops. Typical maximum 
rates of oxygen consumption and corresponding fitness levels are shown 
in Table 12.5; we see that the maximum oxygen consumption rate varies from 
28 mL/min?kg of body mass for poorly conditioned subjects to 70 mL/min?kg 
for superb athletes.

We have already pointed out that the first law of thermodynamics can be rewrit-
ten to relate the metabolic rate DU/Dt to the rate at which energy leaves the body 
by work and by heat:

DU
Dt

5
Q

Dt
1

W
Dt

Now consider the body as a machine capable of supplying mechanical power to 
the outside world and ask for its efficiency. The body’s efficiency e is defined as the 
ratio of the mechanical power supplied by a human to the metabolic rate or the 
total power input to the body:

e 5 body>s efficiency 5

2 W
Dt

2

2 DU
Dt

2
 [12.21]

In this definition, absolute value signs are used to show that e is a positive num-
ber and to avoid explicitly using minus signs required by our definitions of W 
and Q in the first law. Table 12.6 shows the efficiency of workers engaged in 

re Mar Ks  If this is a typical day in the man’s life, he will have to consume less than 5 000 kilocalories on a daily basis in 
order to lose weight. A complication lies in the fact that human metabolism tends to drop when food intake is reduced.

QUes t i On  12.17  How could completely skipping meals lead to weight gain?

e Xe rc i s e  12.17  If a 60.0-kg man ingests 3 000 kcal a day and spends 6 h sleeping, 4 h walking briskly, 8 h sitting 
at a desk job, 1 h swimming a fast breaststroke, and 5 h watching action movies on TV, about how much weight will 
the man gain or lose every day? (Note: Recall that using about 4 100 kcal of energy will burn off a pound of fat.)

a ns We r  He’ll lose a little more than one-half a pound of fat a day.

t able 12.5  Physical Fitness 
and Maximum Oxygen 
Consumption Ratea

Maximum
Oxygen

Consumption
Rate

Fitness Level (mL/min ? kg)

Very poor 28
Poor 34
Fair 42
Good 52
Excellent 70
aSource: Aerobics, K. H. Cooper, Bantam 
Books, New York, 1968.

t able 12.6  Metabolic Rate, Power Output, and Efficiency for Different 
Activitiesa

Metabolic Rate Power Output

  
DU
Dt

   
W
Dt

 

Activity (watts) (watts) Efficiency e

Cycling 505 96 0.19
Pushing loaded coal cars in a mine 525 90 0.17
Shoveling 570 17.5 0.03
aSource: “Inter- and Intra-Individual Differences in Energy Expenditure and Mechanical Efficiency,” C. H. 
Wyndham et al., Ergonomics 9, 17 (1966).
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different activities for several hours. These values were obtained by measuring 
the power output and simultaneous oxygen consumption of mine workers and 
calculating the metabolic rate from their oxygen consumption. The table shows 
that a person can steadily supply mechanical power for several hours at about 
100 W with an efficiency of about 17%. It also shows the dependence of effi-
ciency on activity, and that e can drop to values as low as 3% for highly inef-
ficient activities like shoveling, which involves many starts and stops. Finally, it 
is interesting in comparison to the average results of Table 12.6 that a superbly 
conditioned athlete, efficiently coupled to a mechanical device for extracting 
power (a bike!), can supply a power of around 300 W for about 30 minutes at a 
peak efficiency of 22%.

 ■ s UMMar Y

12.1 Work in Thermodynamic Processes
The work done on a gas at a constant pressure is

W 5 2P DV [12.1]

12.3  Thermal Processes
An isobaric process is one that occurs at constant pressure. 
The work done on the system in such a process is 2P DV, 
whereas the thermal energy transferred by heat is given by

 Q 5 nCp DT [12.6]

with the molar heat capacity at constant pressure given by 
Cp 5 Cv 1 R.

�y

P

A

V

a b

Positive work is done on a 
gas by compressing it.

The work done on the gas is positive if the gas is com-
pressed (DV is negative) and negative if the gas expands 
(DV is positive). In general, the work done on a gas that 
takes it from some initial state to some final state is the 
negative of the area under the curve on a PV diagram.

12.2  The First Law of Thermodynamics
According to the first law of thermodynamics, when a sys-
tem undergoes a change from one state to another, the 
change in its internal energy DU is

DU 5 Uf 2 Ui 5 Q 1 W  [12.2]

where Q is the energy exchanged across the boundary 
between the system and the environment and W is the work 
done on the system. The quantity Q is positive when energy 
is transferred into the system by heating and negative when 
energy is removed from the system by cooling. W is positive 
when work is done on the system (for example, by compres-
sion) and negative when the system does positive work on 
its environment.
 The change of the internal energy, DU, of an ideal gas is 
given by

 DU 5 nCv DT [12.5]

where Cv is the molar specific heat at constant volume.

x

F
S�VUf

W � �P�V Wenv � �W � P�V � P(A�x) � F�x 

Q �x �x

x

vS

Ui

Q

Illustration of the first law of thermodynamics.

A

B
C

D

V

P

T1

T3

T2

T4

Four gas processes: A is an 
isochoric process (constant 
volume); B is an adiabatic 
expansion (no thermal 
energy transfer); C is an 
isothermal process (con-
stant temperature); D is an 
isobaric process (constant 
pressure).

In an adiabatic process no energy is transferred by heat 
between the system and its surroundings (Q 5 0). In this 
case the first law gives DU 5 W, which means the internal 
energy changes solely as a consequence of work being done 
on the system. The pressure and volume in adiabatic pro-
cesses are related by

 PV g 5 constant [12.8a]

where g 5 Cp /Cv is the adiabatic index.
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In an isovolumetric process the volume doesn’t change 
and no work is done. For such processes, the first law gives 
DU 5 Q.
 An isothermal process occurs at constant temperature. 
The work done by an ideal gas on the environment is

 Wenv 5 nRT ln a
Vf

Vi
b [12.10]

12.4   Heat Engines and the Second  
Law of Thermodynamics

In a cyclic process (in which the system returns to its ini-
tial state), DU 5 0 and therefore Q 5 Weng, meaning the 
energy transferred into the system by heat equals the work 
done on the system during the cycle.
 A heat engine takes in energy by heat and partially con-
verts it to other forms of energy, such as mechanical and 
electrical energy. The work Weng done by a heat engine 
in carrying a working substance through a cyclic process  
(DU 5 0) is

 Weng 5 0Qh 0 2 0Qc 0  [12.11]

where Q h is the energy absorbed from a hot reservoir and 
Q c is the energy expelled to a cold reservoir.
 The thermal efficiency of a heat engine is defined as 
the ratio of the work done by the engine to the energy 
transferred into the engine per cycle:

 e ;
Weng

0Qh 0
5 1 2

0Qc 0
0Qh 0

 [12.12]

Real processes proceed in an order governed by the second 
law of thermodynamics, which can be stated in two ways:

1. Energy will not flow spontaneously by heat from a 
cold object to a hot object.

2. No heat engine operating in a cycle can absorb 
energy from a reservoir and perform an equal 
amount of work.

 No real heat engine operating between the Kelvin tem-
peratures Th and Tc can exceed the efficiency of an engine 
operating between the same two temperatures in a Carnot 
cycle, given by

 eC 5 1 2
Tc

Th
 [12.16]

Energy Qc 
leaves the 
engine. 

Qh

Q c

Hot reservoir
at Th

Cold reservoir
at Tc

Heat
engine

Weng

Energy Qh 
enters the 
engine. 

The engine does 
work Weng.

Schematic diagram of a 
heat engine.

Heat pumps are heat engines in reverse. In a refrigerator 
the heat pump removes thermal energy from inside the 
refrigerator. Heat pumps operating in cooling mode have 
coefficient of performance given by

COP 1cooling mode 2 5
0Qc 0
W

 [12.13]

A heat pump in heating mode has coefficient of performance

 COP 1heating mode 2 5
0Qh 0
W

 [12.14]

Qh

Q c

Hot reservoir
at Th

Cold reservoir
at Tc

Heat
pump

W

Energy Qh 
is expelled 
to the hot 
reservoir.

Energy Qc 
is drawn 
from the 
cold 
reservoir.

Work W is done on 
the heat pump.

Schematic diagram of a 
heat pump.

V

P

Weng

D

B

Qh

Th

TcQ c

C

A

PV diagram of a Carnot 
cycle.

Perfect efficiency of a Carnot engine requires a cold res-
ervoir of 0 K, absolute zero. According to the third law of 
thermodynamics, however, it is impossible to lower the 
temperature of a system to absolute zero in a finite number 
of steps.

12.5  Entropy
The second law can also be stated in terms of a quantity 
called entropy (S). The change in entropy of a system 
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 | Warm-up Exercises  437

 One of the primary findings of statistical mechanics is 
that systems tend toward disorder, and entropy is a mea-
sure of that disorder. An alternate statement of the second 
law is that the entropy of the Universe increases in all natu-
ral processes.

is equal to the energy Q r flowing by heat into (or out of) the 
system as the system changes from one state to another by 
a reversible process, divided by the absolute temperature:

 DS ;  
Qr

T
 [12.17]

 ■ Wa r M-Up eX e rc i s e s

The warm-up exercises in this chapter may be assigned online in Enhanced WebAssign.

 1. Math Review For each of the following functions, 
graph pressure (P) versus volume (V) for 1.00 m3 � 
V � 3.00 m3 on the same set of axes. Use units of 105 

Pa for pressure and m3 for volume. (See also Section 
12.3.) (a) P 5 (3.00 3 105 Pa) (b) P 5 (3.00 3 105 Pa � 
m3) V 21 (c) P 5 (3.00 3 105 Pa � m5/3) V 25/3

 2. Math Review Let W 5 (2.30 3 105 J) ln (Vf /Vi ). Solve 
for the unknown quantity in each of the following 
cases: (a) the final volume Vf  is twice the initial volume 
Vi (b) the initial volume is 1.00 m3 and the work W is 
2.50 3 105 J. (See also Section 12.3.)

 3. Physics Review The specific heat of steam at atmo-
spheric pressure is 2 010 J/kg � oC. Evaluate the energy 
required to raise the temperature of 2.50 kg of steam 
from 105oC to 120oC. (See Section 11.2.)

 4. Physics Review An ideal gas has initial volume of 
0.400 m3 and pressure of 9.60 3 104 Pa. (a) If the ini-
tial temperature is 282 K, find the number of moles 
of gas in the system. (b) If the gas is heated at con-
stant volume to 382 K, what is the final pressure? 
(See Section 10.4.) 

 5. Physics Review (a) Calculate the internal energy of 
a 2.70 moles of a monatomic gas at a temperature of 
0oC. (b) By how much does the internal energy change 
if the gas is heated to 425 K? (See Section 10.5.)

 6. A monatomic ideal gas expands from 1.00 m3 to 2.50 m3 

at a constant pressure of 2.00 3 105 Pa. Find (a) the work 
done on the gas, (see Section 12.1), (b) the thermal 
energy Q transferred into the gas by heat (see Section 
12.3, subsection “Isobaric Processes”), and (c) the change 
in the internal energy of the gas. (See Section 12.2.)

 7. A 2.00-mole ideal gas system is maintained at a con-
stant volume of 4.00 liters. If 1.00 3 102 J of thermal 
energy is transferred to the system, find (a) the work 

done on the gas, (b) the change in the internal energy 
of the system, (c) the change in temperature of the gas 
in kelvin, if the gas is monatomic, and (d) the change 
in temperature if the gas is diatomic. (See Section 
12.3, subsection “Isovolumetric Processes”.)

 8. How much net work is done by the gas undergoing  
the cyclic process illustrated in (a) Figure WU12.8a, 
(b) Figure WU12.8b, and (c) Figure WU12.8c? Round 
your answer to two significant figures. (See Sections 
12.1 and 12.4.)

 9. A diatomic ideal gas expands adiabatically from a volume 
of 1.00 m3 to a final volume of 3.50 m3. If the initial pres-
sure is 1.00 3 105 Pa, find (a) the adiabatic index of the 
gas (see Sections 12.2 and 12.3), and (b) the final pres-
sure. (See Section 12.3, subsection “Adiabatic Processes”.)

 10. An ideal gas drives a piston as it expands isothermally 
from 1.00 m3 to 2.00 m3 at 850.0 K. If there are 3.90 3 
102 moles of gas in the piston, (a) what is the change 
in the internal energy of the gas? (b) How much work 
does the gas do in displacing the piston? (c) How 
much thermal energy is transferred by heat? (See 
Section 12.3, subsection “Isothermal Processes”.)

 11. An engine does 15.0 kJ of work while absorbing 75.0 kJ 
from the hot reservoir. Calculate (a)  the efficiency of 
the engine and (b) the energy it transfers to the cold 
reservoir. (See Section 12.4.)

 12. A refrigerator does 18.0 kJ of work while moving 115 kJ 
of thermal energy from inside the refrigerator. Calcu-
late (a) the refrigerator’s coefficient of performance 
and (b) the energy it transfers to its environment. (See 
Section 12.4.)

 13. A steam turbine operates at a boiler temperature 
of 450.0 K and an exhaust temperature of 300.0 K.  
(a) What is the maximum theoretical efficiency of this 
system? (b) If the system operates at maximum efficiency 

1.0

2.0

3.0

P (105 Pa)

1.0     2.0    3.0     4.0
V (m3)

a

1.0

2.0

3.0

P (105 Pa)

1.0     2.0    3.0     4.0
V (m3)

b

1.0

2.0

3.0

P (105 Pa)

1.0     2.0    3.0     4.0
V (m3)

c

Figure WU12.8
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 10. Give some examples of irreversible processes that occur 
in nature. Give an example of a process in nature that 
is nearly reversible.

 11. The first law of thermodynamics says we can’t get more 
out of a process than we put in, but the second law says 
that we can’t break even. Explain this statement.

 12. If a supersaturated sugar solution is allowed to evapo-
rate slowly, sugar crystals form in the container. Hence, 
sugar molecules go from a disordered form (in solution) 
to a highly ordered, crystalline form. Does this process 
violate the second law of thermodynamics? Explain.

 13. Using the first law of thermodynamics, explain why the 
total energy of an isolated system is always constant.

 14. What is wrong with the following statement: “Given any 
two bodies, the one with the higher temperature con-
tains more heat.”

 15. An ideal gas is compressed to half its initial volume by 
means of several possible processes. Which of the fol-
lowing processes results in the most work done on the 
gas? (a) isothermal (b) adiabatic (c) isobaric (d) The 
work done is independent of the process.

 16. A thermodynamic process occurs in which the entropy 
of a system changes by 26 J/K. According to the sec-
ond law of thermodynamics, what can you conclude 
about the entropy change of the environment? (a) It 
must be 16 J/K or less. (b) It must be equal to 6 J/K. 
(c) It must be between 16 J/K and 0. (d) It must be 0. 
(e) It must be 16 J/K or more.

 17. A window air conditioner is placed on a table inside 
a well-insulated apartment, plugged in and turned 
on. What happens to the average temperature of 
the apartment? (a) It increases. (b) It decreases. 
(c) It remains constant. (d) It increases until the 
unit warms up and then decreases. (e) The answer 
depends on the initial temperature of the apartment.

separate container. Suppose a distiller boils 10.0 kg 
of liquid water at 373.15 K into steam at the same tem-
perature. (a) Determine the amount of thermal energy 
added to the liquid water. (See Section 11.4.) (b) Evalu-
ate the water’s change in entropy. (See Section 12.5.)

 1. What are some factors that affect the efficiency of auto-
mobile engines?

 2. If you shake a jar full of jelly beans of different sizes, 
the larger beans tend to appear near the top and the 
smaller ones tend to fall to the bottom. (a) Why does 
that occur? (b) Does this process violate the second law 
of thermodynamics?

 3.  Consider the human body performing a strenu-
ous exercise, such as lifting weights or riding a bicycle. 
Work is being done by the body, and energy is leav-
ing by conduction from the skin into the surrounding 
air. According to the first law of thermodynamics, the 
temperature of the body should be steadily decreas-
ing during the exercise. That isn’t what happens, how-
ever. Is the first law invalid for this situation? Explain.

 4. Clearly distinguish among temperature, heat, and 
internal energy.

 5. For an ideal gas in an isothermal process, there is no 
change in internal energy. Suppose the gas does work 
W during such a process. How much energy is trans-
ferred by heat?

 6. A steam-driven turbine is one major component of an 
electric power plant. Why is it advantageous to increase 
the temperature of the steam as much as possible?

 7. Is it possible to construct a heat engine that creates no 
thermal pollution?

 8. In solar ponds constructed in Israel, the Sun’s energy 
is concentrated near the bottom of a salty pond. With 
the proper layering of salt in the water, convection is 
prevented and temperatures of 100°C may be reached. 
Can you guess the maximum efficiency with which use-
ful mechanical work can be extracted from the pond?

 9. When a sealed Thermos bottle full of hot coffee is 
shaken, what changes, if any, take place in (a) the tem-
perature of the coffee and (b) its internal energy?

and the boiler expels 10.0 kJ of energy to the cold reser-
voir, how much energy does it absorb from the hot reser-
voir? (See Section 12.4.)

 14. Distillers purify water by boiling contaminated water 
into purified steam and condensing the steam into a 

 ■ c On ce p t Ua L QUes t i Ons

The conceptual questions in this chapter may be assigned online in Enhanced WebAssign.

 ■ pr Ob Le Ms

denotes biomedical problems

denotes guided problems

denotes Master It tutorial available in Enhanced WebAssign

denotes asking for quantitative and conceptual reasoning

denotes symbolic reasoning problem

W denotes Watch It video solution available in Enhanced WebAssign

The problems in this chapter may be assigned online in 
Enhanced WebAssign. 

1. denotes straightforward problem; 2. denotes intermediate problem;

3. denotes challenging problem

1. denotes full solution available in Student Solutions Manual/ 
Study Guide

1. denotes problems most often assigned in Enhanced WebAssign
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 6. Sketch a PV diagram of the following processes: (a) A 
gas expands at constant pressure P1 from volume V1 
to volume V2. It is then kept at constant volume while 
the pressure is reduced to P2. (b) A gas is reduced in 
pressure from P1 to P2 while its volume is held constant 
at V1. It is then expanded at constant pressure P2 to a 
final volume V2. (c) In which of the processes is more 
work done by the gas? Why?

 7. A sample of helium behaves as an ideal gas as it is 
heated at constant pressure from 273 K to 373 K. If 
20.0 J of work is done by the gas during this process, 
what is the mass of helium present?

 8. (a) Find the work done 
by an ideal gas as it 
expands from point A to 
point B along the path 
shown in Figure P12.8. 
(b) How much work 
is done by the gas if it 
compressed from B to A 
along the same path?

 9. W  One mole of an ideal gas initially at a temperature of 
Ti 5 0°C undergoes an expansion at a constant pressure 
of 1.00 atm to four times its original volume. (a) Calcu-
late the new temperature Tf  of the gas. (b) Calculate the 
work done on the gas during the expansion.

 10. (a) Determine the work done on a fluid that expands 
from i to f as indicated in Figure P12.10. (b) How much 
work is done on the fluid if it is compressed from f to i 
along the same path?

12.1  Work in Thermodynamic Processes

 1.  An ideal gas is enclosed in a cylinder with a 
movable piston on top of it. The piston has a mass of 
8 000 g and an area of 5.00 cm2 and is free to slide up 
and down, keeping the pressure of the gas constant. 
(a) How much work is done on the gas as the tempera-
ture of 0.200 mol of the gas is raised from 20.0°C to 
300°C? (b) What does the sign of your answer to part 
(a) indicate?

 2. Sketch a PV diagram and find the work done by 
the gas during the following stages. (a) A gas is 
expanded from a volume of 1.0 L to 3.0 L at a con-
stant pressure of 3.0 atm. (b) The gas is then cooled 
at constant volume until the pressure falls to 2.0 atm.  
(c) The gas is then compressed at a constant pressure 
of 2.0 atm from a volume of 3.0 L to 1.0 L. Note: Be 
careful of signs. (d) The gas is heated until its pres-
sure increases from 2.0 atm to 3.0 atm at a constant  
volume. (e) Find the net work done during the com-
plete cycle.

 3.  Gas in a container is at a pressure of 1.5 atm and 
a volume of 4.0 m3. What is the work done on the gas 
(a) if it expands at constant pressure to twice its initial 
volume, and (b) if it is compressed at constant pressure 
to one-quarter its initial volume?

 4. A 40.0-g projectile is launched by the expansion of hot 
gas in an arrangement shown in Figure P12.4a. The 
cross-sectional area of the launch tube is 1.0 cm2, and 
the length that the projectile travels down the tube 
after starting from rest is 32 cm. As the gas expands, 
the pressure varies as shown in Figure P12.4b. The 
values for the initial pressure and volume are Pi 5 
11 3 105 Pa and Vi 5 8.0 cm3 while the final values are 
Pf 5 1.0 3 105 Pa and Vf 5 40.0 cm3. Friction between 
the projectile and the launch tube is negligible. (a) If 
the projectile is launched into a vacuum, what is the 
speed of the projectile as it leaves the launch tube? 
(b)  If instead the projectile is launched into air at 
a pressure of 1.0 3 105 Pa, what fraction of the work 
done by the expanding gas in the tube is spent by the 
projectile pushing air out of the way as it proceeds 
down the tube?

M

Gas

32 cm

V
V

fVi

P

P

i

Pf

8 cm

a b

Figure p 12.4

 5. A gas expands from I to F along the three paths indi-
cated in Figure P12.5. Calculate the work done on the 
gas along paths (a) IAF, (b) IF, and (c) IBF.

I A

F
B

P (atm)

4

3

2

1

0 1 42 3
V (liters)

Figure p 12.5  Problems 5 and 13.
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B
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Figure p 12.8

6 � 106

P (Pa)

4 � 106

2 � 106

i

f

V (m3)
43210

Figure p 12.10

12.2  The First Law of Thermodynamics

12.3  Thermal Processes

 11.  The only form of energy possessed by molecules of 
a monatomic ideal gas is translational kinetic energy. 
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the gas is positive, negative, 
or zero. Hint: The internal 
energy of a monatomic 
ideal gas at pressure P and 
occupying volume V is 
given by U 5 3

2PV .

 19. An ideal gas is com-
pressed from a volume of 
Vi  5 5.00 L to a volume 
of Vf 5 3.00 L while in thermal contact with a heat 
reservoir at T  5 295 K as in 
Figure P12.19. During the 
compression process, the pis-
ton moves down a distance of 
d 5 0.130 m under the action 
of an average external force 
of F  5 25.0  kN. Find (a) the 
work done on the gas, (b) the 
change in internal energy of 
the gas, and (c) the thermal 
energy exchanged between 
the gas and the reservoir.  
(d) If the gas is thermally 
insulated so no thermal energy could be exchanged, 
what would happen to the temperature of the gas dur-
ing the compression?

 20. A system consisting of 
0.025 6 moles of a dia-
tomic ideal gas is taken 
from state A to state C 
along the path in Figure 
P12.20. (a)  How much 
work is done on the  
gas during this process? 
(b) What is the lowest 
temperature of the gas 
during this process, and where does it occur? (c)  Find 
the change in internal energy of the gas and (d) the 
energy delivered to the gas in going from A to C. Hint: For 
part (c), adapt the equation in the remarks of Example 
12.9 to a diatomic ideal gas.

 21. An ideal monatomic gas expands isothermally from 
0.500 m3 to 1.25 m3 at a constant temperature of 675 K. 
If the initial pressure is 1.00 3 105 Pa, find (a) the work 
done on the gas, (b) the thermal energy transfer Q , 
and (c) the change in the internal energy.

 22. An ideal gas expands at constant pressure. 
(a) Show that PDV 5 nRDT. (b) If the gas is monatomic, 
start from the definition of internal energy and show 
that DU 5 3

2Wenv, where Wenv is the work done by the 
gas on its environment. (c) For the same monatomic 
ideal gas, show with the first law that Q 5 5

2Wenv. (d) Is 
it possible for an ideal gas to expand at constant pres-
sure while exhausting thermal energy? Explain.

 23.  An ideal monatomic gas is contained in a vessel 
of constant volume 0.200 m3. The initial temperature 

Using the results from the discussion of kinetic theory 
in Section 10.5, show that the internal energy of a mon-
atomic ideal gas at pressure P and occupying volume V 
may be written as U 5 3

2PV .

 12.  A cylinder of volume 0.300 m3 contains 10.0 mol 
of neon gas at 20.0°C. Assume neon behaves as an 
ideal gas. (a) What is the pressure of the gas? (b) Find 
the internal energy of the gas. (c) Suppose the gas 
expands at constant pressure to a volume of 1.000 m3. 
How much work is done on the gas? (d) What is the 
temperature of the gas at the new volume? (e) Find the 
internal energy of the gas when its volume is 1.000 m3. 
(f) Compute the change in the internal energy during 
the expansion. (g) Compute DU 2 W. (h) Must thermal 
energy be transferred to the gas during the constant 
pressure expansion or be taken away? (i) Compute Q , 
the thermal energy transfer. (j) What symbolic rela-
tionship between Q , DU, and W is suggested by the val-
ues obtained?

 13. A gas expands from I to F in Figure P12.5. The 
energy added to the gas by heat is 418 J when the gas 
goes from I to F along the diagonal path. (a) What 
is the change in internal energy of the gas? (b) How 
much energy must be added to the gas by heat for the 
indirect path IAF to give the same change in internal 
energy?

 14. In a running event, a sprinter does 4.8 3 105 J of 
work and her internal energy decreases by 7.5 3 105 J. 
(a) Determine the heat transferred between her body 
and surroundings during this event. (b) What does the 
sign of your answer to part (a) indicate?

 15. W  A gas is compressed at a constant pressure of  
0.800 atm from 9.00 L to 2.00 L. In the process, 400 J of 
energy leaves the gas by heat. (a) What is the work done 
on the gas? (b) What is the change in its internal energy?

 16. A quantity of a monatomic 
ideal gas undergoes a pro-
cess in which both its pres-
sure and volume are dou-
bled as shown in Figure 
P12.16. What is the energy 
absorbed by heat into the 
gas during this process? 
Hint: The internal energy 
of a monatomic ideal gas at 
pressure P and occupying volume V is given by U 5 3

2PV .

 17. A gas is enclosed in a container fitted with a piston of 
cross-sectional area 0.150 m2. The pressure of the gas 
is maintained at 6 000 Pa as the piston moves inward 
20.0 cm. (a) Calculate the work done by the gas. (b) If 
the internal energy of the gas decreases by 8.00 J, find 
the amount of energy removed from the system by heat 
during the compression.

 18. A monatomic ideal gas undergoes the thermody namic 
process shown in the PV diagram of Figure P12.18. 
Determine whether each of the values DU, Q, and W  for 
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15 billion light-years (1.4 3 1026 m), find the pressure 
of the Universe when it was the size of a nutshell, with 
radius 2.0 3 1022 m. (Be careful: Calculator overflow 
can occur.)

12.4  Heat Engines and the Second Law 
of Thermodynamics

29. A gas increases in pres-
sure from 2.00 atm to 
6.00 atm at a constant 
volume of 1.00 m3 and 
then expands at con-
stant pressure to a vol-
ume of 3.00 m3 before 
returning to its initial 
state as shown in Fig-
ure P12.29. How much 
work is done in one cycle?

 30. An ideal gas expands at a constant pressure of  
6.00 3 105 Pa from a volume of 1.00 m3 to a vol-
ume of 4.00 m3 and then is compressed to one-third 
that pressure and a volume of 2.50 m3 as shown in  
Figure P12.30 before returning to its initial state. How 
much work is done in taking a gas through one cycle of 
the process shown in the figure?

and pressure of the gas are 300 K and 5.00 atm, respec-
tively. The goal of this problem is to find the tempera-
ture and pressure of the gas after 16.0 kJ of thermal 
energy is supplied to the gas. (a) Use the ideal gas law 
and initial conditions to calculate the number of moles 
of gas in the vessel. (b) Find the specific heat of the 
gas. (c) What is the work done by the gas during this 
process? (d) Use the first law of thermodynamics to 
find the change in internal 
energy of the gas. (e) Find 
the change in temperature 
of the gas. (f) Calculate the 
final temperature of the 
gas. (g) Use the ideal gas 
expression to find the final 
pressure of the gas.

 24. Consider the cyclic process 
described by Figure P12.24. 
If Q is negative for the pro-
cess BC and DU is negative for the process CA, deter-
mine the signs of Q , W, and DU associated with each 
process.

 25. A 5.0-kg block of aluminum is heated from 20°C to 
90°C at atmospheric pressure. Find (a) the work done 
by the aluminum, (b) the amount of energy trans-
ferred to it by heat, and (c) the increase in its internal 
energy.

 26. One mole of gas ini-
tially at a pressure of 
2.00 atm and a volume 
of 0.300 L has an inter-
nal energy equal to 
91.0 J. In its final state, 
the gas is at a pressure 
of 1.50  atm and a vol-
ume of 0.800 L, and its 
internal energy equals 
182 J. For the paths IAF, IBF, and IF in Figure P12.26, 
calculate (a) the work done on the gas and (b) the net 
energy transferred to the gas by heat in the process.

 27. Consider the Universe to be an adiabatic expan-
sion of atomic hydrogen gas. (a) Use the ideal gas law 
and Equation 12.8a to show that TV g21 5 C, where C is 
a constant. (b) The current Universe extends at least 
15 billion light-years in all directions (1.4 3 1026 m), 
and the current temperature of the Universe is 2.7 K. 
Estimate the temperature of the Universe when it was 
the size of a nutshell, with a radius of 2 cm. (For this 
calculation, assume the Universe is spherical.)

 28. Suppose the Universe is considered to be an ideal gas 
of hydrogen atoms expanding adiabatically. (a) If the 
density of the gas in the Universe is one hydrogen 
atom per cubic meter, calculate the number of moles 
per unit volume (n/V). (b) Calculate the pressure of 
the Universe, taking the temperature of the Universe 
as 2.7 K. (c) If the current radius of the Universe is 
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31. A heat engine operates between a reservoir at 25°C and 
one at 375°C. What is the maximum efficiency possible 
for this engine?

32. A heat engine is being designed to have a Carnot 
efficiency of 65% when operating between two heat 
reservoirs. (a) If the temperature of the cold reservoir 
is 20°C, what must be the temperature of the hot res-
ervoir? (b) Can the actual efficiency of the engine be 
equal to 65%? Explain.

 33. The work done by an engine equals one-fourth the 
energy it absorbs from a reservoir. (a) What is its 
thermal efficiency? (b) What fraction of the energy 
absorbed is expelled to the cold reservoir?

 34. In each cycle of its operation, a heat engine expels 
2 400 J of energy and performs 1 800 J of mechanical 
work. (a) How much thermal energy must be added 
to the engine in each cycle? (b) Find the thermal effi-
ciency of the engine.

 35. One of the most efficient engines ever built is a coal-
fired steam turbine engine in the Ohio River valley, 
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a depth of about 1 km). (a) What is the maximum effi-
ciency of such a system? (b) If the useful power output 
of the plant is 75.0 MW, how much energy is absorbed 
per hour? (c) In view of your answer to part (a), do you 
think such a system is worthwhile (considering that 
there is no charge for fuel)?

 43. A certain nuclear power plant has an electrical power 
output of 435 MW. The rate at which energy must be 
supplied to the plant is 1 420 MW. (a) What is the ther-
mal efficiency of the power plant? (b) At what rate is 
thermal energy expelled by the plant?

 44. A heat engine operates in a Carnot cycle between 
80.0°C and 350°C. It absorbs 21 000 J of energy per 
cycle from the hot reservoir. The duration of each 
cycle is 1.00 s. (a) What is the mechanical power output 
of this engine? (b) How much energy does it expel in 
each cycle by heat?

12.5  Entropy

45. A Styrofoam cup holding 125 g of hot water at  
1.00 3 102°C cools to room temperature, 20.0°C. What 
is the change in entropy of the room? (Neglect the spe-
cific heat of the cup and any change in temperature of 
the room.)

 46. A 65-g ice cube is initially at 0.0°C. (a) Find the change 
in entropy of the cube after it melts completely at 
0.0°C. (b) What is the change in entropy of the envi-
ronment in this process? Hint: The latent heat of fusion 
for water is 3.33 3 105 J/kg.

 47. A freezer is used to freeze 1.0 L of water completely 
into ice. The water and the freezer remain at a constant 
temperature of T 5 0°C. Determine (a) the change in 
the entropy of the water and (b) the change in the 
entropy of the freezer.

 48. W What is the change in entropy of 1.00 kg of liquid 
water at 100°C as it changes to steam at 100°C?

 49. A 70.0-kg log falls from a height of 25.0 m into a lake. If 
the log, the lake, and the air are all at 300 K, find the 
change in entropy of the Universe during this process.

 50. If you roll a pair of dice, what is the total number of 
ways in which you can obtain (a) a 12? (b) a 7?

 51. The surface of the Sun is approximately at 5 700 K, 
and the temperature of the Earth’s surface is approxi-
mately 290 K. What entropy change occurs when 
1 000 J of energy is transferred by heat from the Sun to 
the Earth?

 52. When an aluminum bar is temporarily connected 
between a hot reservoir at 725 K and a cold reservoir at 
310 K, 2.50 kJ of energy is transferred by heat from the 
hot reservoir to the cold reservoir. In this irreversible 
process, calculate the change in entropy of (a) the hot 
reservoir, (b) the cold reservoir, and (c) the Universe, 
neglecting any change in entropy of the aluminum 
rod. (d) Mathematically, why did the result for the Uni-
verse in part (c) have to be positive?

driving an electric generator as it operates between 
1 870°C and 430°C. (a) What is its maximum theoreti-
cal efficiency? (b) Its actual efficiency is 42.0%. How 
much mechanical power does the engine deliver if it 
absorbs 1.40 3 105 J of energy each second from the 
hot reservoir.

 36. A gun is a heat engine. In particular, it is an internal 
combustion piston engine that does not operate in a 
cycle, but comes apart during its adiabatic expansion 
process. A certain gun consists of 1.80 kg of iron. It 
fires one 2.40-g bullet at 320 m/s with an energy effi-
ciency of 1.10%. Assume the body of the gun absorbs 
all the energy exhaust and increases uniformly in tem-
perature for a short time before it loses any energy 
by heat into the environment. Find its temperature 
increase.

 37. An engine absorbs 1.70 kJ from a hot reservoir at 277°C 
and expels 1.20 kJ to a cold reservoir at 27°C in each 
cycle. (a) What is the engine’s efficiency? (b)  How 
much work is done by the engine in each cycle? 
(c) What is the power output of the engine if each cycle 
lasts 0.300 s?

 38. A heat pump has a coefficient of performance of  
3.80 and operates with a power consumption of  
7.03  3 103  W. (a) How much energy does the heat 
pump deliver into a home during 8.00 h of continuous 
operation? (b) How much energy does it extract from 
the outside air in 8.00 h?

 39. A freezer has a coefficient of performance of 6.30. 
The freezer is advertised as using 457 kW-h/y. (a) On 
average, how much energy does the freezer use in a 
single day? (b) On average, how much thermal energy 
is removed from the freezer each day? (c) What maxi-
mum mass of water at 20.0°C could the freezer freeze 
in a single day? Note: One kilowatt-hour (kW-h) is an 
amount of energy equal to operating a 1-kW appliance 
for one hour.

 40. Suppose an ideal (Carnot) heat pump could 
be constructed. (a) Using Equation 12.15, obtain an 
expression for the coefficient of performance for such 
a heat pump in terms of Th and Tc. (b) Would such a 
heat pump work better if the difference in the operat-
ing temperatures were greater or smaller? (c) Compute 
the coefficient of performance for such a heat pump if 
the cold reservoir is 50.0°C and indoor temperature is 
70.0°C.

 41. In one cycle a heat engine absorbs 500 J from a high-
temperature reservoir and expels 300 J to a low- 
temperature reservoir. If the efficiency of this engine 
is 60% of the efficiency of a Carnot engine, what is the 
ratio of the low temperature to the high temperature 
in the Carnot engine?

 42. A power plant has been proposed that would 
make use of the temperature gradient in the ocean. 
The system is to operate between 20.0°C (surface 
water temperature) and 5.00°C (water temperature at 
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60. W A Carnot engine operates between 100°C and 
20°C. How much ice can the engine melt from its 
exhaust after it has done 5.0 3 104 J of work?

 61. A substance undergoes the cyclic process shown in Fig-
ure P12.61. Work output occurs along path AB while work 
input is required along path BC, and no work is involved 
in the constant volume process CA. Energy transfers  
by heat occur during each process involved in the cycle. 
(a) What is the work output during process AB? (b) How 
much work input is required during process BC ? (c) What 
is the net energy input Q during this cycle?

 53. Prepare a table like Table 12.3 for the following occur-
rence: You toss four coins into the air simultaneously 
and record all the possible results of the toss in terms 
of the numbers of heads and tails that can result. (For 
example, HHTH and HTHH are two possible ways 
in which three heads and one tail can be achieved.) 
(a) On the basis of your table, what is the most prob-
able result of a toss? In terms of entropy, (b) what 
is the most ordered state, and (c) what is the most 
disordered?

 54. This is a symbolic version of Problem 52. When a metal 
bar is temporarily connected between a hot reservoir 
at Th and a cold reservoir at Tc, the energy transferred 
by heat from the hot reservoir to the cold reservoir is 
Q h. In this irreversible process, find expressions for the 
change in entropy of (a) the hot reservoir, (b) the cold 
reservoir, and (c) the Universe.

12.6  Human Metabolism

55. On a typical day, a 65-kg man sleeps for 8.0 h, does 
light chores for 3.0 h, walks slowly for 1.0 h, and jogs 
at moderate pace for 0.5 h. What is the change in his 
internal energy for all these activities?

56.  A weightlifter has a basal metabolic rate 
of 80.0 W. As he is working out, his metabolic rate 
increases by about 650 W. (a) How many hours does 
it take him to work off a 450-Calorie bagel if he stays 
in bed all day? (b) How long does it take him if he’s 
working out? (c) Calculate the amount of mechanical 
work necessary to lift a 120-kg barbell 2.00 m. (d) He 
drops the barbell to the floor and lifts it repeatedly. 
How many times per minute must he repeat this pro-
cess to do an amount of mechanical work equivalent to 
his metabolic rate increase of 650 W during exercise? 
(e) Could he actually do repetitions at the rate found 
in part (d) at the given metabolic level? Explain.

 57. Sweating is one of the main mechanisms with 
which the body dissipates heat. Sweat evaporates with a 
latent heat of 2 430 kJ/kg at body temperature, and the 
body can produce as much as 1.5 kg of sweat per hour. 
If sweating were the only heat dissipation mechanism, 
what would be the maximum sustainable metabolic 
rate, in watts, if 80% of the energy used by the body 
goes into waste heat?

Additional Problems

58. A Carnot engine operates between the temperatures 
Th 5 100°C and Tc 5 20°C. By what factor does the the-
oretical efficiency increase if the temperature of the 
hot reservoir is increased to 550°C?

 59. A 1 500-kW heat engine operates at 25% efficiency. 
The heat energy expelled at the low temperature is 
absorbed by a stream of water that enters the cool-
ing coils at 20°C. If 60 L flows across the coils per 
second, determine the increase in temperature of  
the water.

50.010.0
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Figure p 12.61

62. When a gas follows path 123 
on the PV diagram in Fig-
ure P12.62, 418 J of energy 
flows into the system by 
heat and 2167 J of work is 
done on the gas. (a)  What 
is the change in the inter-
nal energy of the system? 
(b)  How much energy Q 
flows into the system if the gas follows path 143? The 
work done on the gas along this path is 263.0 J. What 
net work would be done on or by the system if the 
system followed (c) path 12341 and (d) path 14321? 
(e) What is the change in internal energy of the system 
in the processes described in parts (c) and (d)?

 63. A 100-kg steel support rod in a building has a length 
of 2.0 m at a temperature of 20°C. The rod supports 
a hanging load of 6 000 kg. Find (a) the work done on 
the rod as the temperature increases to 40°C, (b) the 
energy Q added to the rod (assume the specific heat of 
steel is the same as that for iron), and (c) the change in 
internal energy of the rod.

 64. An ideal gas initially 
at pressure P0, volume V0, 
and temperature T0 is taken 
through the cycle described 
in Figure P12.64. (a) Find the 
net work done by the gas per 
cycle in terms of P0 and V0. 
(b) What is the net energy Q 
added to the system per cycle? 
(c) Obtain a numerical value 
for the net work done per cycle for 1.00 mol of gas ini-
tially at 0°C. Hint: Recall that the work done by the sys-
tem equals the area under a PV curve.
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minute, with each step 8.00 inches high. If you weigh 
150 lb and the machine reports that 600 kcal have been 
burned at the end of the workout, what efficiency is the 
machine using in obtaining this result? If your actual 
efficiency is 0.18, how many kcal did you actually burn?

 70. Hydrothermal vents deep on the ocean floor 
spout water at temperatures as high as 570°C. This tem-
perature is below the boiling point of water because 
of the immense pressure at that depth. Because the 
surrounding ocean temperature is at 4.0°C, an organ-
ism could use the temperature gradient as a source of 
energy. (a) Assuming the specific heat of water under 
these conditions is 1.0 cal/g ? °C, how much energy is 
released when 1.0 liter of water is cooled from 570°C 
to 4.0°C? (b) What is the maximum usable energy 
an organism can extract from this energy source? 
(Assume the organism has some internal type of heat 
engine acting between the two temperature extremes.) 
(c) Water from these vents contains hydrogen sulfide 
(H2S) at a concentration of 0.90 mmole/liter. Oxida-
tion of 1.0 mole of H2S produces 310 kJ of energy. How 
much energy is available through H2S oxidation of 
1.0 L of water?

 71. An electrical power plant has an overall efficiency 
of 15%. The plant is to deliver 150 MW of electrical 
power to a city, and its turbines use coal as fuel. The 
burning coal produces steam at 190°C, which drives 
the turbines. The steam is condensed into water at 
25°C by passing through coils that are in contact with 
river water. (a) How many metric tons of coal does the 
plant consume each day (1 metric ton 5 1 3 103 kg)? 
(b)  What is the total cost of the fuel per year if the 
delivery price is $8 per metric ton? (c) If the river water 
is delivered at 20°C, at what minimum rate must it flow 
over the cooling coils so that its temperature doesn’t 
exceed 25°C? Note: The heat of combustion of coal is 
7.8 3 103 cal/g.

 72. A diatomic ideal gas 
expands from a vol-
ume of VA 5 1.00 m3

to VB  5 3.00 m3 along 
the path shown in Fig-
ure P12.72. If the ini-
tial pressure is PA 5 
2.00 3 105 Pa and there 
are 87.5 mol of gas, 
calculate (a) the work 
done on the gas during this process, (b) the change 
in temperature of the gas, and (c) the change in inter-
nal energy of the gas. (d) How much thermal energy is 
transferred to the system?

65. One mole of neon gas is heated from 300 K to 
420 K at constant pressure. Calculate (a) the energy 
Q transferred to the gas, (b) the change in the inter-
nal energy of the gas, and (c) the work done on  
the gas. Note that neon has a molar specific heat of  
c 5 20.79 J/mol ? K for a constant-pressure process.

 66. Every second at Niagara Falls, approximately 5 000 m3

of water falls a distance of 50.0 m. What is the increase 
in entropy per second due to the falling water? Assume 
the mass of the surroundings is so great that its tem-
perature and that of the water stay nearly constant 
at 20.0°C. Also assume a negligible amount of water 
evaporates.

 67. A cylinder containing 10.0 moles of a monatomic ideal 
gas expands from � to � along the path shown in 
Figure P12.67. (a) Find the temperature of the gas 
at point A and the temperature at point �. (b) How 
much work is done by the gas during this expansion? 
(c) What is the change in internal energy of the gas? 
(d) Find the energy transferred to the gas by heat in 
this process.
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1.00 2.00 3.00 4.00 5.00 6.00

� �

Figure p 12.67

68.  Two moles of molecular hydrogen (H2) react 
with 1 mole of molecular oxygen (O2) to produce 2 
moles of water (H2O) together with an energy release 
of 241.8 kJ/mole of water. Suppose a spherical vessel 
of radius 0.500 m contains 14.4 moles of H2 and 7.2 
moles of O2 at 20.0°C. (a) What is the initial pressure 
in the vessel? (b) What is the initial internal energy 
of the gas? (c) Suppose a spark ignites the mixture 
and the gases burn completely into water vapor. How 
much energy is produced? (d) Find the temperature 
and pressure of the steam, assuming it’s an ideal gas. 
(e)  Find the mass of steam and then calculate the 
steam’s density. (f) If a small hole were put in the 
sphere, what would be the initial exhaust velocity of 
the exhausted steam if spewed out into a vacuum? 
(Use Bernoulli’s equation.)

 69.  Suppose you spend 30.0 minutes on a stair- 
climbing machine, climbing at a rate of 90.0 steps per 

V (m3)
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37027_ch12_ptg01_hr_402-444.indd   444 31/08/13   11:32 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



445

Periodic motion, from masses on springs to vibrations of atoms, is one of the most important 
kinds of physical behavior. In this chapter we take a more detailed look at Hooke’s law, where 
the force is proportional to the displacement, tending to restore objects to some equilibrium 
position. A large number of physical systems can be successfully modeled with this simple 
idea, including the vibrations of strings, the swinging of a pendulum, and the propagation of 
waves of all kinds. All these physical phenomena involve periodic motion.

Periodic vibrations can cause disturbances that move through a medium in the form of 
waves. Many kinds of waves occur in nature, such as sound waves, water waves, seismic 
waves, and electromagnetic waves. These very different physical phenomena are described by 
common terms and concepts introduced here.

13.1    Hooke’s Law
Learning Objectives

1. Define Hooke’s force law for springs and describe the elements of simple  
harmonic motion that arise from it.

2. Apply Hooke’s law and the second law of motion to spring systems.

One of the simplest types of vibrational motion is that of an object attached to a 
spring, previously discussed in the context of energy in Chapter 5. We assume the 
object moves on a frictionless horizontal surface. If the spring is stretched or com-
pressed a small distance x from its unstretched or equilibrium position and then 

Ocean waves combine 

properties of both transverse 

and longitudinal waves. With 

proper balance and timing, a 

surfer can capture some of the 

wave’s energy and take it for a 

ride.
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released, it exerts a force on the object as shown in Figure 13.1. From experiment, 
the spring force Fs is found to obey the equation

 Fs 5 2kx [13.1]

where x is the displacement of the object from its equilibrium position (x 5 0) and 
k is a positive constant called the spring constant. This force law for springs was 
discovered by Robert Hooke in 1678 and is known as Hooke’s law. The value of k 
is a measure of the stiffness of the spring. Stiff springs have large k values, and soft 
springs have small k values.

The negative sign in Equation 13.1 means that the force exerted by the spring 
is always directed opposite the displacement of the object. When the object is to 
the right of the equilibrium position, as in Figure 13.1a, x is positive and Fs 
is negative. This means that the force is in the negative direction, to the left. 
When the object is to the left of the equilibrium position, as in Figure 13.1c, x 
is negative and Fs is positive, indicating that the direction of the force is to the 
right. Of course, when x 5 0, as in Figure 13.1b, the spring is unstretched and  
Fs 5 0. Because the spring force always acts toward the equilibrium position, it is 
sometimes called a restoring force. A restoring force always pushes or pulls the 
object toward the equilibrium position.

Suppose the object is initially pulled a distance A to the right and released 
from rest. The force exerted by the spring on the object pulls it back toward 
the equilibrium position. As the object moves toward x 5 0, the magnitude of 
the force decreases (because x decreases) and reaches zero at x 5 0. The object 
gains speed as it moves toward the equilibrium position, however, reaching its 
maximum speed when x 5 0. The momentum gained by the object causes it 
to overshoot the equilibrium position and compress the spring. As the object 
moves to the left of the equilibrium position (negative x -values), the spring 
force acts on it to the right, steadily increasing in strength, and the speed of the 
object decreases. The object finally comes briefly to rest at x 5 2A before accel-
erating back towards x 5 0 and ultimately returning to the original position at 
x 5 A. The process is then repeated, and the object continues to oscillate back 
and forth over the same path. This type of motion is called simple harmonic 
motion. Simple harmonic motion occurs when the net force along the direc-
tion of motion obeys Hooke’s law—when the net force is proportional to the 
displacement from the equilibrium point and is always directed toward the 
equilibrium point.

Not all periodic motions over the same path can be classified as simple har-
monic motion. A ball being tossed back and forth between a parent and a child 
moves repetitively, but the motion isn’t simple harmonic motion because the force 
acting on the ball doesn’t take the form of Hooke’s law, Equation 13.1.

The motion of an object suspended from a vertical spring is also simple har-
monic. In this case the force of gravity acting on the attached object stretches 
the spring until equilibrium is reached and the object is suspended at rest. By 
definition, the equilibrium position of the object is x 5 0. When the object 
is moved away from equilibrium by a distance x and released, a net force acts 
toward the equilibrium position. Because the net force is proportional to x, the 
motion is simple harmonic.

The following three concepts are important in discussing any kind of periodic 
motion:

 ■ The amplitude A is the maximum distance of the object from its equilibrium 
position. In the absence of friction, an object in simple harmonic motion 
oscillates between the positions x 5 2A and x 5 1A.

 ■ The period T is the time it takes the object to move through one complete 
cycle of motion, from x 5 A to x 5 2A and back to x 5 A.

 ■ The frequency f  is the number of complete cycles or vibrations per unit of 
time, and is the reciprocal of the period ( f 5 1/T).

Hooke’s law c

m

x
x

x

x
x

m

m

x � 0

x � 0

x � 0

Fs
S

Fs � 0
S

Fs
S

b

c

a

When x is positive (the 
spring is stretched), the 
spring force is to the left.

When x is zero (the 
spring is unstretched), 
the spring force is zero.

When x is negative (the 
spring is compressed), the 
spring force is to the right.

Figure 13.1 The force exerted by 
a spring on an object varies with the 
displacement of the object from the 
equilibrium position, x 5 0.
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The acceleration of an object moving with simple harmonic motion can be found 
by using Hooke’s law in the equation for Newton’s second law, F 5 ma. This gives

ma 5 F 5 2kx

 a 5 2
k
m

 x  [13.2]

Equation 13.2, an example of a harmonic oscillator equation, gives the acceleration 
as a function of position. Because the maximum value of x is defined to be the 
amplitude A, the acceleration ranges over the values 2kA/m to 1kA/m. In the next 
section we will find equations for velocity as a function of position and for position 
as a function of time. Springs satisfying Hooke’s law are also called ideal springs.  
In real springs, spring mass, internal friction, and varying elasticity affect the force 
law and motion.

■ Quick Quiz

13.1  A block on the end of a horizontal spring is pulled from equilibrium at x 5 0 
to x 5 A and released. Through what total distance does it travel in one full cycle of 
its motion? (a) A/2 (b) A (c) 2A (d) 4A

13.2  For a simple harmonic oscillator, which of the following pairs of vector quanti-
ties can’t both point in the same direction? (The position vector is the displacement 
from equilibrium.) (a) position and velocity (b) velocity and acceleration (c) position 
and acceleration

b  Acceleration in simple 
harmonic motion

 ■ e Xa Mp Le  13.1 Simple Harmonic Motion on a Frictionless Surface

g Oa L Calculate forces and accelerations for a horizontal spring system.

pr Ob Le M A 0.350-kg object attached to a spring of force constant 1.30 3 102 N/m is free to move on a frictionless hori-
zontal surface, as in Figure 13.1. If the object is released from rest at x 5 0.100 m, find the force on it and its acceleration 
at x 5 0.100 m, x 5 0.050 0 m, x 5 0 m, x 5 20.050 0 m, and x 5 20.100 m.

s t r at e g Y Substitute given quantities into Hooke’s law to find the forces, then calculate the accelerations with 
Newton’s second law. The amplitude A is the same as the point of release from rest, x 5 0.100 m.

s OLUti On
Write Hooke’s force law: Fs 5 2kx

Substitute the value for k and take x 5 A 5 0.100 m, 
finding the spring force at that point:

Fmax 5 2kA 5 2(1.30 3 102 N/m)(0.100 m)

5   213.0 N

Solve Newton’s second law for a and substitute to find the 
acceleration at x 5 A:

ma 5 Fmax

a 5
Fmax

m
5

213.0 N
0.350 kg

5   237.1 m/s2

Repeat the same process for the other four points, 
assembling a table:

Position (m) Force (N) Acceleration (m/s2)

 0.100 213.0 237.1
 0.050 26.50 218.6
 0 0 0
 20.050 16.50 118.6
 20.100 113.0 137.1

re Mar Ks  The table above shows that when the initial position is halved, the force and acceleration are also halved. 
Further, positive values of x give negative values of the force and acceleration, whereas negative values of x give positive 
values of the force and acceleration. As the object moves to the left and passes the equilibrium point, the spring force 
becomes positive (for negative values of x), slowing the object down.

(Continued)

t ip 13.1  Constant-
Acceleration Equations 
Don’t Apply
The acceleration a of a particle 
in simple harmonic motion is not 
constant; it changes, varying with 
x, so we can’t apply the constant 
acceleration kinematic equations 
of Chapter 2.
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QUes t i On  13.1  Will doubling a given displacement always result in doubling the magnitude of the spring force? 
Explain.

e Xe rc i s e  13.1  For the same spring and mass system, find the force exerted by the spring and the position x when the 
object’s acceleration is 19.00 m/s2.

a ns We r s  3.15 N, 22.42 cm

 ■ e Xa Mp Le  13.2 Mass on a Vertical Spring

g Oa L  Apply Newton’s second law together with the force of gravity and 
Hooke’s law.

pr ObLe M  A spring is hung vertically (Fig. 13.2a), and an object of mass 
m attached to the lower end is then slowly lowered a distance d to the equi-
librium point (Fig. 13.2b). (a) Find the value of the spring constant if the 
magnitude of the displacement d is 2.0 cm and the mass is 0.55 kg. (b) If 
a second identical spring is attached to the object in parallel with the first  
spring (Fig. 13.2d), where is the new equilibrium point of the system?  
(c) What is the effective spring constant of the two springs acting as one?

s t r at e g Y  This example is an application of Newton’s second law. 
The spring force is upward, balancing the downward force of gravity 
mg when the system is in equilibrium. (See Fig. 13.2c.) Because the sus-
pended object is in equilibrium, the forces on the object sum to zero, 
and it’s possible to solve for the spring constant k. Part (b) is solved the 
same way, but has two spring forces balancing the force of gravity. The 
spring constants are known, so the second law for equilibrium can be 
solved for the displacement of the spring. Part (c) involves using the dis-
placement found in part (b). Treating the two springs as one equivalent spring, the second law then leads to the effective 
spring constant of the two-spring system.

s OLUti On

d

mgS

Fs
S

The elongation d is 
caused by the weight mg 
of the attached object.

b c da

Figure 13.2  (Example 13.2) (a)–(c) Determining 
the spring constant. Because the upward spring force 
balances the weight when the system is in equilib-
rium, it follows that k = mg/d. (d) A system involving 
two springs in parallel.

(a) Find the value of the spring constant if the spring is 
displaced by 2.0 cm and the mass of the object is 0.55 kg.

Apply Newton’s second law to the object (with a = 0) and 
solve for the spring constant k :

o F 5 Fg 1 Fs 5 2mg 1 kd 5 0

k 5
mg

d
5

10.55 kg 2 19.80 m/s2 2
2.0 3 1022 m

5  2.7 3 102 N/m

(b) If a second identical spring is attached to the object 
in parallel with the first spring (Fig. 13.2d), find the new 
equilibrium point of the system.

Apply Newton’s second law, but with two springs acting on 
the object:

o F 5 Fg 1 Fs1 1 Fs2 5 2mg 1 kd2 1 kd2 5 0

Solve for d2: d2 5
mg

2k
5

10.55 kg 2 19.80 m/s2 2
2 12.7 3 102 N/m 2 5  1.0 3 1022 m

(c) What is the effective spring constant of the two springs 
acting as one?

Write the second law for the system, with an effective 
spring constant keff:

o F 5 Fg 1 Fs 5 2mg 1 keffd2 5 0

Solve for keff: k eff 5
mg

d2
5

10.55 kg 2 19.80 m/s2 2
1.0 3 1022 m

5 5.4 3 102 N/m
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13.2    Elastic Potential Energy
Learning Objective

1. Review the application of the work-energy theorem to systems involving 
spring potential energy.

In this section we review the material covered in Section 4 of Chapter 5.
A system of interacting objects has potential energy associated with the configu-

ration of the system. A compressed spring has potential energy that, when allowed 
to expand, can do work on an object, transforming spring potential energy into 
the object’s kinetic energy. As an example, Figure 13.3 shows a ball being pro-
jected from a spring-loaded toy gun, where the spring is compressed a distance 
x. As the gun is fired, the compressed spring does work on the ball and imparts 
kinetic energy to it.

Recall that the energy stored in a stretched or compressed spring or some other 
elastic material is called elastic potential energy, PEs, given by

 PEs ;  12kx
2  [13.3]

Recall also that the law of conservation of energy, including both gravitational and 
spring potential energy, is given by

 (KE 1 PEg 1 PEs)i 5 (KE 1 PEg 1 PEs)f [13.4]

If nonconservative forces such as friction are present, then the change in 
mechanical energy must equal the work done by the nonconservative forces:

 Wnc 5 (KE 1 PEg 1 PEs)f 2 (KE 1 PEg 1 PEs)i [13.5]

Rotational kinetic energy must be included in both Equation 13.4 and Equation 
13.5 for systems involving torques.

b Elastic potential energy

re Mar Ks  In this example, the spring force is positive 
because it’s directed upward. If the object were displaced 
from the equilibrium position and released, it would oscil-
late around that point, just like a horizontal spring. Notice 
that attaching an extra identical spring in parallel is  
equivalent to having a single spring with twice the force 
constant. With springs attached end to end in series,  
however, the exercise illustrates that, all other things 
being equal, longer springs have smaller force constants 
than shorter springs.

QUes t i On  13.2  Generalize: When two springs with 
force constants k1 and k2 act in parallel on an object, what 

is the spring constant keff of the single spring that would 
be equivalent to the two springs, in terms of k1 and k2?

e Xe rc i s e  13.2  When a 75.0-kg man slowly adds his 
weight to a vertical spring attached to the ceiling, he 
reaches equilibrium when the spring is stretched by 
6.50 cm. (a) Find the spring constant. (b) If a second, iden-
tical spring is hung on the first in series, and the man again 
adds his weight to the system, by how much does the system 
of springs stretch? (c) What would be the spring constant 
of a single, equivalent spring?

a ns We r s  (a) 1.13 3 104 N/m (b) 13.0 cm (c) 5.65 3 
103 N/m

Energy � elastic PEs 

x

Energy � KE 

Figure 13.3  A ball projected from 
a spring-loaded gun. The elastic 
potential energy stored in the spring 
is transformed into the kinetic 
energy of the ball.
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As an example of the energy conversions that take place when a spring is included 
in a system, consider Figure 13.4. A block of mass m slides on a frictionless horizontal 
surface with constant velocity vSi and  collides with a coiled spring. The description 
that follows is greatly simplified by assuming the spring is very light (an ideal spring) 
and therefore has negligible kinetic energy. As the spring is compressed, it exerts a 
force to the left on the block. At maximum compression, the block comes to rest for 
just an instant (Fig. 13.4c). The initial total energy in the system (block plus spring) 
before the collision is the kinetic energy of the block. After the block collides with the 
spring and the spring is partially compressed, as in Figure 13.4b, the block has kinetic 
energy 12mv

2 (where v , vi) and the spring has potential energy 12kx
2. When the block 

stops for an instant at the point of maximum compression, the kinetic energy is zero. 
Because the spring force is conservative and because there are no external forces 
that can do work on the system, the total mechanical energy of the system con-
sisting of the block and spring remains constant. Energy is transformed from the 
kinetic energy of the block to the potential energy stored in the spring. As the spring 
expands, the block moves in the opposite direction and regains all its initial kinetic 
energy, as in Figure 13.4d.

When an archer pulls back on a bowstring, elastic potential energy is stored in 
both the bent bow and stretched bowstring (Fig. 13.5). When the arrow is released, 
the potential energy stored in the system is transformed into the kinetic energy of 
the arrow. Devices such as crossbows and slingshots work the same way.

■ Quick Quiz

13.3  When an object moving in simple harmonic motion is at its maximum dis-
placement from equilibrium, which of the following is at a maximum? (a) velocity, 
(b) acceleration, or (c) kinetic energy

Figure 13.4  A block sliding on 
a frictionless horizontal surface 
collides with a light spring. In the 
absence of friction, the mechani-
cal energy in this process remains 
constant.

x � 0

mv2 � kx21
2

x

xm

vS

v � 0S

vi
S

�vi
S

E  – mvi
21

2�

E  – mvi
21

2�

kxm
2E  – 1

2�

E  – 1
2�  –

a

b

c

d

Initially, the mechanical energy is 
entirely the block’s kinetic energy. 

Here the mechanical energy is the 
sum of the block’s kinetic energy 
and the elastic potential energy 
stored in the compressed spring. 

When the block comes to rest, the 
mechanical energy is entirely 
elastic potential energy.

When the block leaves the spring, 
the mechanical energy is again 
solely the block’s kinetic energy.

a pp Lica t iOn
Archery

Figure 13.5  Elastic potential 
energy is stored in this drawn bow.
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 ■ e Xa Mp Le  13.3 Stop That Car!

g Oa L Apply conservation of energy and the work–energy theorem with spring and gravitational potential energy.

pr Ob Le M A 13 000-N car starts at rest and rolls down a hill from a height of 10.0 m (Fig. 13.6). It then moves across 
a level surface and collides with a light spring-loaded guardrail. (a) Neglecting any losses due to friction, and ignoring 
the rotational kinetic energy of the wheels, find the maximum distance the spring is compressed. Assume a spring con-
stant of 1.0 3 106 N/m. (b) Calculate the magnitude of the car's maximum acceleration after contact with the spring, 
assuming no frictional losses. (c) If the spring is compressed by only 0.30 m, find the change in the mechanical energy 
due to friction.
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s t r at e g Y  Because friction losses are neglected, use 
conservation of energy in the form of Equation 13.4 to 
solve for the spring displacement in part (a). The initial 
and final values of the car’s kinetic energy are zero, so 
the initial potential energy of the car–spring–Earth  
system is completely converted to elastic potential energy 
in the spring at the end of the ride. In part (b) apply 
Newton’s second law, substituting the answer to part (a) 
for x because the maximum compression will give the 
maximum acceleration. In part (c) friction is no longer 
neglected, so use the work–energy theorem, Equation 
13.5. The change in mechanical energy must equal the 
mechanical energy lost due to friction.

s OLUti On

10.0 m

k

Figure 13.6 (Example 13.3) A car starts from rest on a hill at the 
position shown. When the car reaches the bottom of the hill, it col-
lides with a spring-loaded guardrail.

(a) Find the maximum spring compression, assuming no 
energy losses due to friction.

Apply conservation of mechanical energy. Initially, there 
is only gravitational potential energy, and at maximum 
compression of the guardrail, there is only spring poten-
tial energy.

(KE 1 PEg 1 PEs)i 5 (KE 1 PEg 1 PEs)f

0 1 mgh 1 0 5 0 1 0 1 1
2kx

2

Solve for x: x 5 Å
2mgh

k
5 Å

2 113 000 N 2 110.0 m 2
1.0 3 106 N/m

5   0.51 m

(b) Calculate the magnitude of the car's maximum 
acceleration by the spring, neglecting friction.

Apply Newton’s second law to the car: ma 5 2kx S a 5 2
kx
m

5 2
kxg
mg

5 2
kxg
w

Substitute values: a 5 2
11.0 3 106 N/m 2 10.51 m 2 19.8 m/s2 2

13 000 N

5   2380 m/s2  → |a| 5  380 m/s2 

(c) If the compression of the guardrail is only 0.30 m, find 
the change in the mechanical energy due to friction.

Use the work–energy theorem: Wnc 5 (KE 1 PEg 1 PEs)f 2 (KE 1 PEg 1 PEs)i 

5 10 1 0 1 1
2kx

2 2 2 10 1 mgh 1 0 2
5 1

2 11.0 3 106 N/m 2 10.30 22 2 113 000 N 2 110.0 m 2
Wnc 5   28.5 3 104 J

re Mar Ks  The answer to part (b) is about 40 times greater than the acceleration of gravity, so we’d better be wearing 
our seat belts. Note that the solution didn’t require calculation of the velocity of the car.

QUes t i On  13.3  True or False: In the absence of energy losses due to friction, doubling the height of the hill doubles 
the maximum acceleration delivered by the spring.

e Xe rc i s e  13.3  A spring-loaded gun fires a 0.100-kg puck along a tabletop. The puck slides up a curved ramp and flies 
straight up into the air. If the spring is displaced 12.0 cm from equilibrium and the spring constant is 875 N/m, how high 
does the puck rise, neglecting friction? (b) If instead it only rises to a height of 5.00 m because of friction, what is the 
change in mechanical energy?

a ns We r s  (a) 6.43 m (b) 21.40 J
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In addition to studying the preceding example, it’s a good idea to review those 
given in Section 5.4.

Velocity as a Function of Position
Conservation of energy provides a simple method of deriving an expression for 
the velocity of an object undergoing periodic motion as a function of position. 
The object in question is initially at its maximum extension A (Fig. 13.7a) and is 
then released from rest. The initial energy of the system is entirely elastic potential 
energy stored in the spring, 1

2kA
2. As the object moves toward the origin to some 

new position x (Fig. 13.7b), part of this energy is transformed into kinetic energy, 
and the potential energy stored in the spring is reduced to 1

2kx
2. Because the total 

energy of the system is equal to 1
2kA

2 (the initial energy stored in the spring), we 
can equate this quantity to the sum of the kinetic and potential energies at the 
position x:

1
2kA

2 5 1
2mv

2 1 1
2kx

2

Solving for v, we get

 v 5 6Å
k
m
1A2 2 x2 2  [13.6]

This expression shows that the object’s speed is a maximum at x 5 0 and is zero at 
the extreme positions x 5 6A.

The right side of Equation 13.6 is preceded by the 6 sign because the square 
root of a number can be either positive or negative. If the object in Figure 13.7 is 
moving to the right, v is positive; if the object is moving to the left, v is negative.

x

m

A

kx2 mv2

E �

E �

kA21
2

1
2

1
2

m

x � 0

vS

v � 0S

�

a

b

Figure 13.7  (a) An object attached to a spring on 
a frictionless surface is released from rest with the 
spring extended a distance A. Just before the object is 
released, the total energy is the elastic potential energy 
1
2kA

2. (b) When the object reaches position x, it has 
kinetic energy 12mv

2 and the elastic potential energy has 
decreased to 12kx

2.

 ■ e Xa Mp Le  13.4 The Object–Spring System Revisited

g Oa L Apply the time-independent velocity expression, Equation 13.6, to an object–spring system.

pr Ob Le M  A 0.500-kg object connected to a light spring 
with a spring constant of 20.0 N/m oscillates on a friction-
less horizontal surface. (a) Calculate the total energy of the 
system and the maximum speed of the object if the ampli-
tude of the motion is 3.00 cm. (b) What is the velocity of 
the object when the displacement is 2.00 cm? (c) Compute 
the kinetic and potential energies of the system when the 
displacement is 2.00 cm.

s t r at e g Y  The total energy of the system can be found 
most easily at x 5 A, where the kinetic energy is zero. 
There, the potential energy alone is equal to the total 
energy. Conservation of energy then yields the speed at 
x 5 0. For part (b), obtain the velocity by substituting the 
given value of x into the time-independent velocity equa-
tion. Using this result, the kinetic energy asked for in part 
(c) can be found by substitution, and the potential energy 
can be found by substitution into Equation 13.3.
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(a) Calculate the total energy and maximum speed if the 
amplitude is 3.00 cm.

Substitute x 5 A 5 3.00 cm and k 5 20.0 N/m into the 
equation for the total mechanical energy E:

E 5 KE 1 PEg 1 PEs

5 0 1 0 1 1
2kA

2 5 1
2 120.0 N/m 2 13.00 3 1022 m 22   

5   9.00 3 1023 J

s OLUti On

re Mar Ks  With the given information, it is impossible to choose between the positive and negative solutions in part 
(b). Notice that the sum KE 1 PEs in part (c) equals the total energy E found in part (a), as it should (except for a small 
discrepancy due to rounding).

QUes t i On  13.4  True or False: Doubling the initial displacement doubles the speed of the object at the equilibrium 
point.

e Xe rc i s e  13.4  For what values of x is the speed of the object 0.10 m/s?

a ns We r  62.55 cm

Use conservation of energy with xi 5 A and xf 5 0 to 
compute the speed of the object at the origin:

(KE 1 PEg 1 PEs)i 5 (KE 1 PEg 1 PEs)f

0 1 0 1 1
2kA

2 5 1
2mvmax

2 1 0 1 0
1
2mv

2
max 5 9.00 3 1023 J

vmax 5 Å
18.0 3 1023 J

0.500 kg
5 0.190 m/s

(b) Compute the velocity of the object when the 
displacement is 2.00 cm.

Substitute known values directly into Equation 13.6: v 5 6Å
k
m

 1A2 2 x2 2

5 6Å
20.0 N/m
0.500 kg

 3 10.030 0 m 22 2 10.020 0 m 22 4

5   60.141 m/s

(c) Compute the kinetic and potential energies  
when the displacement is 2.00 cm.

Substitute into the equation for kinetic energy: KE 5 1
2mv

2 5 1
2 10.500 kg 2 10.141 m/s 22 5 4.97 3 1023 J

Substitute into the equation for spring potential energy: PEs 5 1
2kx

2 5 1
2 120.0 N/m 2 12.00 3 1022 m 22

5   4.00 3 1023 J

13.3     Comparing Simple Harmonic Motion 
with Uniform Circular Motion
Learning Objectives

1. Describe the relationship between simple harmonic motion and uniform  
circular motion.

2. Define and apply the related concepts of  the period, frequency, and angular 
frequency of a spring harmonic oscillator.

We can better understand and visualize many aspects of simple harmonic motion 
along a straight line by looking at its relationship to uniform circular motion. 
Figure 13.8 is a top view of an experimental arrangement that is useful for this 
purpose. A ball is attached to the rim of a turntable of radius A, illuminated from 
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the side by a lamp. We find that as the turntable rotates with constant angular 
speed, the shadow of the ball moves back and forth with simple harmonic motion.

This fact can be understood from Equation 13.6, which says that the velocity of 
an object moving with simple harmonic motion is related to the displacement by

v 5 C "A2 2 x2

where C is a constant. To see that the shadow also obeys this relation, consider  
Figure 13.9, which shows the ball moving with a constant speed v0 in a direction 
tangent to the circular path. At this instant, the velocity of the ball in the x-direction 
is given by v 5 v0 sin u, or

sin u 5
v
v0

From the larger triangle in Figure 13.9 we can obtain a second expression for sin u:

sin u 5
"A2 2 x2

A

Equating the right-hand sides of the two expressions for sin u, we find the follow-
ing relationship between the velocity v and the displacement x:

v
v0

5
"A2 2 x2

A

or

v 5
v0

A
 "A2 2 x2 5 C "A2 2 x2

The velocity of the ball in the x -direction is related to the displacement x in exactly 
the same way as the velocity of an object undergoing simple harmonic motion. The 
shadow therefore moves with simple harmonic motion.

A valuable example of the relationship between simple harmonic motion and 
circular motion can be seen in vehicles and machines that use the back-and-forth 
motion of a piston to create rotational motion in a wheel. Consider the drive wheel 
of a locomotive. In Figure 13.10, the rods are connected to a piston that moves 
back and forth in simple harmonic motion. The rods transform the back-and-forth 
motion of the piston into rotational motion of the wheels. A similar mechanism in 
an automobile engine transforms the back-and-forth motion of the pistons to rota-
tional motion of the crankshaft.

Period and Frequency
The period T of the shadow in Figure 13.8, which represents the time required 
for one complete trip back and forth, is also the time it takes the ball to make one 
complete circular trip on the turntable. Because the ball moves through the dis-
tance 2pA (the circumference of the circle) in the time T, the speed v0 of the ball 
around the circular path is

v0 5
2pA
T

and the period is

 T 5
2pA
v0

 [13.7]

Imagine that the ball moves from P to Q , a quarter of a revolution, in Figure 13.8. 
The motion of the shadow is equivalent to the horizontal motion of an object on 
the end of a spring. For this reason, the radius A of the circular motion is the 
same as the amplitude A of the simple harmonic motion of the shadow. During 
the quarter of a cycle shown, the shadow moves from a point where the energy of 

Lamp

A
P

Q

A
Screen

Turntable

As the ball rotates like a particle 
in uniform circular motion...

...the ball’s shadow on the 
screen moves back and forth 
with simple harmonic motion.

Figure 13.8 An experimental 
setup for demonstrating the con-
nection between simple harmonic 
motion and uniform circular 
motion.

A

v

x
x-axis

A2 – x2

u

u

v0
S

The x-component of the ball’s 
velocity equals the projection 
of v0 on the x-axis.S

Figure 13.9  The ball rotates with 
constant speed v0.

a pp Lica t iOn
Pistons and Drive Wheels

Figure 13.10  The drive wheel 
mechanism of an old locomotive.
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the system (ball and spring) is solely elastic potential energy to a point where the 
energy is solely kinetic energy. By conservation of energy, we have

1
2kA

2 5 1
2mv0

2

which can be solved for A/v0:

A
v0

5 Å
m
k

Substituting this expression for A/v0 in Equation 13.7, we find that the period is

 T 5 2pÅ
m
k

 [13.8]

Equation 13.8 represents the time required for an object of mass m attached to a 
spring with spring constant k to complete one cycle of its motion. The square root of 
the mass is in the numerator, so a large mass will mean a large period, in agreement 
with intuition. The square root of the spring constant k is in the denominator, so a 
large spring constant will yield a small period, again agreeing with intuition. It’s also 
interesting that the period doesn’t depend on the amplitude A.

The inverse of the period is the frequency of the motion:

 f 5
1
T

 [13.9]

Therefore, the frequency of the periodic motion of a mass on a spring is

 f 5
1

2p
 Å

k
m

 [13.10]

The units of frequency are cycles per second (s21), or hertz (Hz). The angular fre-
quency v is

 v 5 2pf 5 Å
k
m

 [13.11]

The frequency and angular frequency are actually closely related concepts. The 
unit of frequency is cycles per second, where a cycle may be thought of as a unit of 
angular measure corresponding to 2p radians, or 360°. Viewed in this way, angu-
lar frequency is just a unit conversion of frequency. Radian measure is used for 
angles mainly because it provides a convenient and natural link between linear 
and angular quantities.

Although an ideal mass–spring system has a period proportional to the square 
root of the object’s mass m, experiments show that a graph of T 2 versus m doesn’t 
pass through the origin. This is because the spring itself has a mass. The coils 
of the spring oscillate just like the object, except the amplitudes are smaller for 
all coils but the last. For a cylindrical spring, energy arguments can be used to 
show that the effective additional mass of a light spring is one-third the mass of the 
spring. The square of the period is proportional to the total oscillating mass, so a 
graph of T 2 versus total mass (the mass hung on the spring plus the effective oscil-
lating mass of the spring) would pass through the origin.

■ Quick Quiz

13.4  An object of mass m is attached to a horizontal spring, stretched to a displace-
ment A from equilibrium and released, undergoing harmonic oscillations on a fric-
tionless surface with period T0. The experiment is then repeated with a mass of 4m. 
What’s the new period of oscillation? (a) 2T0    (b) T0    (c) T0/2    (d) T0/4

13.5  Consider the situation in Quick Quiz 13.4. Is the subsequent total mechanical 
energy of the object with mass 4m (a) greater than, (b) less than, or (c) equal to the 
original total mechanical energy?

b  The period of an object– 

spring system moving with 
simple harmonic motion

b  Frequency of an object–
spring system

b  Angular frequency of an 
object–spring system

t ip 13.2  Twin Frequencies
The frequency gives the number 
of cycles per second, whereas the 
angular frequency gives the number 
of radians per second. These two 
physical concepts are nearly iden-
tical and are linked by the conver-
sion factor 2p rad/cycle.
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 ■ a pp LYi ng  ph Ys ic s  13.1 Bungee Jumping

A bungee cord can be roughly modeled as a spring. If 
you go bungee jumping, you will bounce up and down 
at the end of the elastic cord after your dive off a bridge 
(Fig. 13.11). Suppose you perform a dive and measure the 
frequency of your bouncing. You then move to another 
bridge, but find that the bungee cord is too long for dives 
off this bridge. What possible solutions might be applied? 
In terms of the original frequency, what is the frequency of 
vibration associated with the solution?

e Xp La n at i On  There are two possible solutions: Make 
the bungee cord smaller or fold it in half. The latter would 
be the safer of the two choices, as we’ll see. The force 
exerted by the bungee cord, modeled as a spring, is pro-
portional to the separation of the coils as the spring is 
extended. First, we extend the spring by a given distance 
and measure the distance between coils. We then cut the 
spring in half. If one of the half-springs is now extended by 
the same distance, the coils will be twice as far apart as 
they were for the complete spring. Therefore, it takes twice 
as much force to stretch the half-spring through the same 
displacement, so the half-spring has a spring constant twice 
that of the complete spring. The folded bungee cord can 
then be modeled as two half-springs in parallel. Each half 
has a spring constant that is twice the original spring con-
stant of the bungee cord. In addition, an object hanging 
on the folded bungee cord will experience two forces, one 
from each half-spring. As a result, the required force for a 
given extension will be four times as much as for the origi-
nal bungee cord. The effective spring constant of the 
folded bungee cord is therefore four times as large as the 

original spring constant. Because the frequency of oscilla-
tion is proportional to the square root of the spring con-
stant, your bouncing frequency on the folded cord will be 
twice what it was on the original cord.
 This discussion neglects the fact that the coils of a spring 
have an initial separation. It’s also important to remember 
that a shorter coil may lose elasticity more readily, possibly 
even going beyond the elastic limit for the material, with 
disastrous results. Bungee jumping is dangerous; discre-
tion is advised!

Figure 13.11  (Applying Physics 13.1) A bungee jumper relies on 
elastic forces to pull him up short of a deadly impact.
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 ■ e Xa Mp Le  13.5 That Car Needs Shock Absorbers!

g Oa L  Understand the relationships between period, frequency, and angular frequency.

pr Ob Le M  A 1.30 3 103-kg car is constructed on a frame supported by four springs. Each spring has a spring constant of 
2.00 3 104 N/m. If two people riding in the car have a combined mass of 1.60 3 102 kg, find the frequency of vibration of 
the car when it is driven over a pothole in the road. Find also the period and the angular frequency. Assume the weight 
is evenly distributed.

s t r at e g Y  Because the weight is evenly distributed, each spring supports one-fourth of the mass. Substitute this value 
and the spring constant into Equation 13.10 to get the frequency. The reciprocal is the period, and multiplying the fre-
quency by 2p gives the angular frequency.

s OLUti On
Compute one-quarter of the total mass: m 5 1

4 1m car 1 mpass 2 5 1
4 11.30 3 103 kg 1 1.60 3 102 kg 2

5 365 kg

Substitute into Equation 13.10 to find the frequency: f 5
1

2p
 Å

k
m

5
1

2p
 Å

2.00 3 104 N/m
365 kg

5   1.18 Hz

Invert the frequency to get the period: T 5
1
f

5
1

1.18 Hz
5   0.847 s

Multiply the frequency by 2p to get the angular 
frequency:

v 5 2pf 5 2p(1.18 Hz) 5   7.41 rad/s
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13.4     Position, Velocity, and Acceleration 
as a Function of Time
Learning Objective

1. Describe and apply the position, velocity, and acceleration of simple harmonic 
oscillators as functions of time.

We can obtain an expression for the position of an object moving with simple 
harmonic motion as a function of time by returning to the relationship between 
simple harmonic motion and uniform circular motion. Again, consider a ball on 
the rim of a rotating turntable of radius A, as in Figure 13.12. We refer to the circle 
made by the ball as the reference circle for the motion. We assume the turntable 
revolves at a constant angular speed v. As the ball rotates on the reference circle, 
the angle u made by the line OP with the x -axis changes with time. Meanwhile, the 
projection of P on the x -axis, labeled point Q , moves back and forth along the axis 
with simple harmonic motion.

From the right triangle OPQ, we see that cos u 5 x/A. Therefore, the x- coordinate 
of the ball is

x 5 A cos u

Because the ball rotates with constant angular speed, it follows that u 5 vt (see 
Chapter 7), so we have

x 5 A cos(vt) [13.12]

In one complete revolution, the ball rotates through an angle of 2p rad in a time 
equal to the period T. In other words, the motion repeats itself every T seconds. 
Therefore,

 v 5
Du

Dt
5

2p

T
5 2pf  [13.13]

where f is the frequency of the motion. The angular speed of the ball as it moves 
around the reference circle is the same as the angular frequency of the projected 
simple harmonic motion. Consequently, Equation 13.12 can be written

 x 5 A cos(2pft) [13.14a]

This cosine function represents the position of an object moving with simple har-
monic motion as a function of time, and is graphed in Figure 13.13a (page 458). 
Because the cosine function varies between 1 and 21, x varies between A and 2A. 
The shape of the graph is called sinusoidal.

Figures 13.13b and 13.13c represent curves for velocity and acceleration as a 
function of time. To find the equation for the velocity, use Equations 13.6 and 
13.14a (page 458) together with the identity cos2 u 1 sin2 u 5 1, obtaining

 v 5 2Av sin(2pft) [13.14b]

re Mar Ks  Solving this problem didn’t require any knowledge of the size of the pothole because the frequency doesn’t 
depend on the amplitude of the motion.

QUes t i On  13.5  True or False: The frequency of vibration of a heavy vehicle is greater than that of a lighter vehicle, 
assuming the two vehicles are supported by the same set of springs.

e Xe rc i s e  13.5  A 45.0-kg boy jumps on a 5.00-kg pogo stick with spring constant 3 650 N/m. Find (a) the angular fre-
quency, (b) the frequency, and (c) the period of the boy’s motion.

a ns We r s  (a) 8.54 rad/s (b) 1.36 Hz (c) 0.735 s

v

P

QO

Ay

x
u

As the ball at P rotates in a 
circle with uniform angular 
speed, its projection Q 
along the x-axis moves with 
simple harmonic motion.

Figure 13.12 A reference circle.
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where we have used the fact that v 5 !k/m. The 6 sign is no longer needed, 
because sine can take both positive and negative values. Deriving an expression 
for the acceleration involves substituting Equation 13.14a into Equation 13.2, New-
ton’s second law for springs:

 a 5 2Av2 cos(2pft) [13.14c]

The detailed steps of these derivations are left as an exercise for the student. 
Notice that when the displacement x is at a maximum, at x 5 A or x 5 2A, the 
velocity is zero, and when x is zero, the magnitude of the velocity is a maximum. 
Further, when x 5 1A, its most positive value, the acceleration is a maximum but 
in the negative x -direction, and when x is at its most negative position, x 5 2A, 
the acceleration has its maximum value in the positive x-direction. These facts are 
consistent with our earlier discussion of the points at which v and a reach their 
maximum, minimum, and zero values.

The maximum values of the position, velocity, and acceleration are always equal 
to the magnitude of the expression in front of the trigonometric function in each 
equation because the largest value of either cosine or sine is 1.

Figure 13.14 illustrates one experimental arrangement that demonstrates the 
sinusoidal nature of simple harmonic motion. An object connected to a spring has 
a marking pen attached to it. While the object vibrates vertically, a sheet of paper 
is moved horizontally with constant speed. The pen traces out a sinusoidal pattern.

■ Quick Quiz

13.6  If the amplitude of a system moving in simple harmonic motion is doubled, 
which of the following quantities doesn’t change? (a) total energy (b) maximum 
speed (c) maximum acceleration (d) period

T
2

T

x

O
t

3T
2

x = A cos t

T
2

T

v

t
3T
2

v = – A sin t

T
2

T

a

t
3T
2

a = – 2A cos t

A

–A
O�

O�

O�

ω

ω ω

ω ω

a

b

c

Figure 13.13 (a) Displacement, 
(b) velocity, and (c) acceleration ver-
sus time for an object moving with 
simple harmonic motion under the 
initial conditions x0 5 A and v0 5 0 
at t 5 0.

Motion
of paper

m

Figure 13.14  An experimental 
apparatus for demonstrating simple 
harmonic motion. A pen attached 
to the oscillating object traces out a 
sinusoidal wave on the moving chart 
paper.

 ■ e Xa Mp Le  13.6 The Vibrating Object–Spring System

g Oa L  Identify the physical parameters of a harmonic oscillator from its mathematical description.

pr Ob Le M  (a) Find the amplitude, frequency, and period 
of motion for an object vibrating at the end of a horizontal 
spring if the equation for its position as a function of time is

x 5 10.250 m 2  cos a p

8.00
 tb

(b) Find the maximum magnitude of the velocity and 
acceleration. (c) What are the position, velocity, and accel-
eration of the object after 1.00 s has elapsed?

s t r at e g Y  In part (a) the amplitude and frequency 
can be found by comparing the given equation with the 
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standard form in Equation 13.14a, matching up the numerical values with the corresponding terms in the standard 
form. In part (b) the maximum speed will occur when the sine function in Equation 13.14b equals 1 or 21, the 
extreme values of the sine function (and similarly for the acceleration and the cosine function). In each case, find the 
magnitude of the expression in front of the trigonometric function. Part (c) is just a matter of substituting values into 
Equations 13.14a–13.14c.

s OLUti On
(a) Find the amplitude, frequency, and period.

Write the standard form given by Equation 13.14a and 
underneath it write the given equation:

(1) x 5 A cos(2pft) 

(2) x 5 10.250 m 2  cos a p

8.00
 tb

Equate the factors in front of the cosine functions to find 
the amplitude:

A 5   0.250 m

re Mar Ks  In evaluating the sine or cosine function, the angle is in radians, so you should either set your calculator to 
evaluate trigonometric functions based on radian measure or convert from radians to degrees.

QUes t i On  13.6  If the mass is doubled, is the magnitude of the acceleration of the system at any position (a) doubled, 
(b) halved, or (c) unchanged?

e Xe rc i s e  13.6  If the object–spring system is described by x 5 (0.330 m) cos (1.50t), find (a) the amplitude, the angu-
lar frequency, the frequency, and the period, (b) the maximum magnitudes of the velocity and acceleration, and (c) the 
position, velocity, and acceleration when t 5 0.250 s.

a ns We r s  (a) A 5 0.330 m, v 5 1.50 rad/s, f 5 0.239 Hz, T 5 4.18 s (b) vmax 5 0.495 m/s, amax 5 0.743 m/s2  (c) x 5 
0.307 m, v 5 20.181 m/s, a 5 20.691 m/s2

The angular frequency v is the factor in front of t in 
Equations (1) and (2). Equate these factors:

v 5 2pf 5
p

8.00
 rad/s 5 0.393 rad/s

Divide v by 2p to get the frequency f : f 5
v

2p
5   0.062 5 Hz

The period T is the reciprocal of the frequency: T 5
1
f

5  16.0 s

(b) Find the maximum magnitudes of the velocity and the 
acceleration.

Calculate the maximum speed from the factor in front of 
the sine function in Equation 13.14b:

vmax 5 Av 5 (0.250 m)(0.393 rad/s) 5   0.098 3 m/s

Calculate the maximum acceleration from the factor in 
front of the cosine function in Equation 13.14c:

amax 5 Av2 5 (0.250 m)(0.393 rad/s)2 5   0.038 6 m/s2

(c) Find the position, velocity, and acceleration of the 
object after 1.00 s.

Substitute t 5 1.00 s in the given equation: x 5 (0.250 m) cos(0.393 rad) 5   0.231 m

Substitute values into the velocity equation: v 5 2Av sin(vt)

5 2(0.250 m)(0.393 rad/s) sin (0.393 rad/s ? 1.00 s)

v 5   20.037 6 m/s

Substitute values into the acceleration equation: a 5 2Av2 cos(vt)

5 2(0.250 m)(0.393 rad/s2)2 cos (0.393 rad/s ? 1.00 s)

a 5   20.035 7 m/s2
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13.5    Motion of a Pendulum
Learning Objectives

1. Define the simple pendulum and the condition under which it executes simple 
harmonic motion.

2. Define and apply the angular frequency, frequency, and period of a simple 
pendulum.

3. Generalize the concept of a pendulum to pendulums of arbitrary shape, called 
physical pendulums.

A simple pendulum is another mechanical system that exhibits periodic motion. 
It consists of a small bob of mass m suspended by a light string of length L fixed at 
its upper end, as in Figure 13.15. (By a light string, we mean that the string’s mass 
is assumed to be very small compared with the mass of the bob and hence can be 
ignored.) When released, the bob swings to and fro over the same path, but is its 
motion simple harmonic?

Answering this question requires examining the restoring force—the force 
of gravity—that acts on the pendulum. The pendulum bob moves along a circu-
lar arc, rather than back and forth in a straight line. When the oscillations are 
small, however, the motion of the bob is nearly straight, so Hooke’s law may apply 
approximately.

In Figure 13.15, s is the displacement of the bob from equilibrium along the  
arc. Hooke’s law is F 5 2kx, so we are looking for a similar expression involving 
s, Ft 5 2ks, where Ft is the force acting in a direction tangent to the circular arc. 
From the figure, the restoring force is

Ft 5 2mg sin u

Since s 5 Lu, the equation for Ft can be written as

Ft 5 2mg sin a s
L
b

This expression isn’t of the form Ft 5 2ks, so in general, the motion of a pendulum 
is not simple harmonic. For small angles less than about 15 degrees, however, the 
angle u measured in radians and the sine of the angle are approximately equal. For 
example, u 5 10.0° 5 0.175 rad, and sin (10.0°) 5 0.174. Therefore, if we restrict 
the motion to small angles, the approximation sin u < u is valid, and the restoring 
force can be written

Ft 5 2mg sin u < 2mg u

Substituting u 5 s/L, we obtain

Ft 5 2amg
L
b s

This equation follows the general form of Hooke’s force law Ft 5 2ks, with k 5 
mg/L. We are justified in saying that a pendulum undergoes simple harmonic 
motion only when it swings back and forth at small amplitudes (or, in this case, 
small values of u, so that sin u > u).

Recall that for the object–spring system, the angular frequency is given by Equa-
tion 13.11:

v 5 2pf 5 Å
k
m

Substituting the expression of k for a pendulum, we obtain

v 5 Å
mg/L
m

5 Å
g

L

L

s m

u

u

T
S

mgS

The restoring force causing 
the pendulum to oscillate 
harmonically is the tangential 
component of the gravity 
force �mg sin u.

�mg sin u

mg cos u

Figure 13.15
A simple pendulum consists of a bob 
of mass m suspended by a light string 
of length L. (L is the distance from 
the pivot to the center of mass of the 
bob.)

t ip 13.3  Pendulum Motion 
Is Not Harmonic
Remember that the pendulum 
does not exhibit true simple har-
monic motion for any angle. If the 
angle is less than about 15°, the 
motion can be modeled as approxi-
mately simple harmonic.
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This angular frequency can be substituted into Equation 13.12, which then 
mathematically describes the motion of a pendulum. The frequency is just 
the angular frequency divided by 2p, while the period is the reciprocal of the  
frequency, or

 T 5 2p Å
L
g

 [13.15]

This equation reveals the somewhat surprising result that the period of a simple 
pendulum doesn’t depend on the mass, but only on the pendulum’s length and 
on the free-fall acceleration. Further, the amplitude of the motion isn’t a factor as 
long as it’s relatively small. The analogy between the motion of a simple pendulum 
and the object–spring system is illustrated in Figure 13.16.

Galileo first noted that the period of a pendulum was independent of its ampli-
tude. He supposedly observed this while attending church services at the cathe-
dral in Pisa. The pendulum he studied was a swinging chandelier that was set in 
motion when someone bumped it while lighting candles. Galileo was able to mea-
sure its period by timing the swings with his pulse.

The dependence of the period of a pendulum on its length and on the free-
fall acceleration allows us to use a pendulum as a timekeeper for a clock. A 

b  The period of a simple 

pendulum depends only  
on L and g

a pp Lica t iOn
Pendulum Clocks

�A 0 A
x

max

max

maxθ

θ

θ

θ

x

vmax
S

vmax
S

amax
S

aS

aS

amax
S

vS

a

e

f

b

c

d

Figure 13.16
Simple harmonic motion for an 
object–spring system, and its 
analogy, the motion of a simple 
pendulum.
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number of clock designs employ a pendulum, with the length adjusted so that 
its period serves as the basis for the rate at which the clock’s hands turn. Of 
course, these clocks are used at different locations on the Earth, so there will 
be some variation of the free-fall acceleration. To compensate for this varia-
tion, the pendulum of a clock should have some movable mass so that the effec-
tive length can be adjusted.

Geologists often make use of the simple pendulum and Equation 13.15 when 
prospecting for oil or minerals. Deposits beneath the Earth’s surface can produce 
irregularities in the free-fall acceleration over the region being studied. A specially 
designed pendulum of known length is used to measure the period, which in turn 
is used to calculate g. Although such a measurement in itself is inconclusive, it’s an 
important tool for geological surveys.

■ Quick Quiz

13.7  A simple pendulum is suspended from the ceiling of a stationary elevator, 
and the period is measured. If the elevator moves with constant velocity, does the 
period (a) increase, (b) decrease, or (c) remain the same? If the elevator accelerates 
upward, does the period (a) increase, (b) decrease, or (c) remain the same?

13.8  A pendulum clock depends on the period of a pendulum to keep correct time. 
Suppose a pendulum clock is keeping correct time and then Dennis the Menace 
slides the bob of the pendulum downward on the oscillating rod. Does the clock run 
(a) slow, (b) fast, or (c) correctly?

13.9  The period of a simple pendulum is measured to be T on the Earth. If the 
same pendulum were set in motion on the Moon, would its period be (a) less than T, 
(b) greater than T, or (c) equal to T ?

a pp Lica t iOn
Use of Pendulum in Prospecting

 ■ e Xa Mp Le  13.7 Measuring the Value of g

g Oa L Determine g from pendulum motion.

pr Ob Le M Using a small pendulum of length 0.171 m, a geophysicist counts 72.0 complete swings in a time of 60.0 s. 
What is the value of g  in this location?

s t r at e g Y First calculate the period of the pendulum by dividing the total time by the number of complete swings. 
Solve Equation 13.15 for g  and substitute values.

s OLUti On

Calculate the period by dividing the total elapsed time by 
the number of complete oscillations:

T 5
time

# of oscillations
5

60.0 s
72.0

5 0.833 s

Solve Equation 13.15 for g and substitute values: T 5 2p Å
L
g

S T 2 5 4p2 
L
g

g 5
4p2L
T 2 5

139.5 2 10.171 m 2
10.833 s 22 5  9.73 m/s2

re Mar Ks  Measuring such a vibration is a good way of determining the local value of the acceleration of gravity.

QUes t i On  13.7  True or False: A simple pendulum of length 0.50 m has a larger frequency of vibration than a simple 
pendulum of length 1.0 m.

e Xe rc i s e  13.7  What would be the period of the 0.171-m pendulum on the Moon, where the acceleration of gravity is 
1.62 m/s2?

a ns We r  2.04 s
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The Physical Pendulum
The simple pendulum discussed thus far consists of a mass attached to a string. A 
pendulum, however, can be made from an object of any shape. The general case is 
called the physical pendulum.

In Figure 13.17 a rigid object is pivoted at point O, which is a distance L from 
the object’s center of mass. The center of mass oscillates along a circular arc, just 
like the simple pendulum. The period of a physical pendulum is given by

 T 5 2p Å
I

mgL
 [13.16]

where I is the object’s moment of inertia and m is the object’s mass. As a check, 
notice that in the special case of a simple pendulum with an arm of length L and 
negligible mass, the moment of inertia is I 5 mL2. Substituting into Equation 13.16 
results in

T 5 2p Å
mL2

mgL
5 2p Å

L
g

which is the correct period for a simple pendulum.

13.6    Damped Oscillations
Learning Objective

1. Describe and contrast the three classes of damped oscillations.

The vibrating motions we have discussed so far have taken place in ideal systems 
that oscillate indefinitely under the action of a linear restoring force. In all real 
mechanical systems, forces of friction retard the motion, so the systems don’t oscil-
late indefinitely. The friction reduces the mechanical energy of the system as time 
passes, and the motion is said to be damped.

Shock absorbers in automobiles (Fig. 13.18) are one practical application of 
damped motion. A shock absorber consists of a piston moving through a liquid 
such as oil. The upper part of the shock absorber is firmly attached to the body of 
the car. When the car travels over a bump in the road, holes in the piston allow it 
to move up and down through the fluid in a damped fashion.

Damped motion varies with the fluid used. For example, if the fluid has a rela-
tively low viscosity, the vibrating motion is preserved but the amplitude of vibra-
tion decreases in time and the motion ultimately ceases. This process is known as 
underdamped oscillation. The position vs. time curve for an object undergoing such 

Pivot O

L

L sin u
CM

mg

u

S

Figure 13.17  A physical pendu-
lum pivoted at O.

Figure 13.18  (a) A shock absorber 
consists of a piston oscillating in 
a chamber filled with oil. As the 
piston oscillates, the oil is squeezed 
through holes between the piston 
and the chamber, causing a damping 
of the piston’s oscillations. (b) One 
type of automotive suspension sys-
tem, in which a shock absorber is 
placed inside a coil spring at each 
wheel.

Shock absorber
Coil spring

a

b

Oil or
other viscous
�uid

Piston
with holes

Shock absorber
Coil spring

a

b

Oil or
other viscous
�uid

Piston
with holes

a pp Lica t iOn
Shock Absorbers
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oscillation appears in Figure 13.19. Figure 13.20 compares three types of damped 
motion, with curve (a) representing underdamped oscillation. If the fluid viscos-
ity is increased, the object returns rapidly to equilibrium after it’s released and 
doesn’t oscillate. In this case the system is said to be critically damped, and is shown 
as curve (b) in Figure 13.20. The piston returns to the equilibrium position in  
the shortest time possible without once overshooting the equilibrium position.  
If the viscosity is made greater still, the system is said to be overdamped. In this case 
the piston returns to equilibrium without ever passing through the equilibrium 
point, but the time required to reach equilibrium is greater than in critical damp-
ing, as illustrated by curve (c) in Figure 13.20.

To make automobiles more comfortable to ride in, shock absorbers are designed 
to be slightly underdamped. This can be demonstrated by a sharp downward push on 
the hood of a car. After the applied force is removed, the body of the car oscillates a 
few times about the equilibrium position before returning to its fixed position.

13.7    Waves
Learning Objectives

1. Describe the concept of a wave and discuss physical examples.

2. Contrast transverse and longitudinal waves.

The world is full of waves: sound waves, waves on a string, seismic waves, and elec-
tromagnetic waves, such as visible light, radio waves, television signals, and x-rays. 
All these waves have as their source a vibrating object, so we can apply the con-
cepts of simple harmonic motion in describing them.

In the case of sound waves, the vibrations that produce waves arise from sources 
such as a person’s vocal chords or a plucked guitar string. The vibrations of elec-
trons in an antenna produce radio or television waves, and the simple up-and-down 
motion of a hand can produce a wave on a string. Certain concepts are common to 
all waves, regardless of their nature. In the remainder of this chapter, we focus our 
attention on the general properties of waves. In later chapters we will study specific 
types of waves, such as sound waves and electromagnetic waves.

What Is a Wave?
When you drop a pebble into a pool of water, the disturbance produces water 
waves, which move away from the point where the pebble entered the water. A leaf 
floating near the disturbance moves up and down and back and forth about its 
original position, but doesn’t undergo any net displacement attributable to the dis-
turbance. This means that the water wave (or disturbance) moves from one place 
to another, but the water isn’t carried with it.

When we observe a water wave, we see a rearrangement of the water’s surface. 
Without the water, there wouldn’t be a wave. Similarly, a wave traveling on a string 
wouldn’t exist without the string. Sound waves travel through air as a result of pres-
sure variations from point to point. Therefore, we can consider a wave to be the 
motion of a disturbance. In Chapter 21 we discuss electromagnetic waves, which don’t 
require a medium.

The mechanical waves discussed in this chapter require (1) some source of dis-
turbance, (2) a medium that can be disturbed, and (3) some physical connection 
or mechanism through which adjacent portions of the medium can influence each 
other. All waves carry energy and momentum. The amount of energy transmitted 
through a medium and the mechanism responsible for the transport of energy 
differ from case to case. The energy carried by ocean waves during a storm, for 
example, is much greater than the energy carried by a sound wave generated by a 
single human voice.

A

x

0 t

The amplitude 
decreases with time.

Figure 13.19
A graph of displacement versus time 
for an underdamped oscillator.

x

a
b

c

t

Figure 13.20  Plots of displace-
ment versus time for (a) an  
underdamped oscillator, (b) a criti-
cally damped oscillator, and (c) an 
overdamped oscillator.
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Types of Waves
One of the simplest ways to demonstrate wave motion is to flip one end of a long 
string that is under tension and has its opposite end fixed, as in Figure 13.21. The 
bump (called a pulse) travels to the right with a definite speed. A disturbance of 
this type is called a traveling wave. The figure shows the shape of the string at 
three closely spaced times.

As such a wave pulse travels along the string, each segment of the string 
that is disturbed moves in a direction perpendicular to the wave motion.
Figure 13.22 illustrates this point for a particular tiny segment P. The string 
never moves in the direction of the wave. A traveling wave in which the particles 
of the disturbed medium move in a direction perpendicular to the wave velocity 
is called a transverse wave. Figure 13.23a illustrates the formation of transverse 
waves on a long spring.

In another class of waves, called longitudinal waves, the elements of the 
medium undergo displacements parallel to the direction of wave motion. 
Sound waves in air are longitudinal. Their disturbance corresponds to a series 
of high- and low-pressure regions that may travel through air or through any 
material medium with a certain speed. A longitudinal pulse can easily be pro-
duced in a stretched spring, as in Figure 13.23b. The free end is pumped back 
and forth along the length of the spring. This action produces compressed and 

 ■ a pp LYi ng  ph Ys ic s  11.2 Burying Bond

At one point in On Her Majesty’s Secret Service, a James Bond 
film from the 1960s, Bond was escaping on skis. He had a 
good lead and was a hard-to-hit moving target. There was 
no point in wasting bullets shooting at him, so why did the 
bad guys open fire?

e Xp La n at i On  These misguided gentlemen had a good 
understanding of the physics of waves. An impulsive sound, 

like a gunshot, can cause an acoustical disturbance that 
propagates through the air. If it impacts a ledge of snow 
that is ready to break free, an avalanche can result. Such 
a disaster occurred in 1916 during World War I when Aus-
trian soldiers in the Alps were smothered by an avalanche 
caused by cannon fire. So the bad guys, who have never 
been able to hit Bond with a bullet, decided to use the 
sound of gunfire to start an avalanche. ■

The shape of the pulse is 
approximately unchanged 
as it travels to the right.

Figure 13.21  A hand moves the 
end of a stretched string up and 
down once (red arrow), causing a 
pulse to travel along the string.

P

P

P

Any element P (black dot) on 
the rope moves in a direction 
perpendicular to the direction 
of propagation of the wave 
motion (red arrows).

Figure 13.22  A pulse traveling 
on a stretched string is a transverse 
wave. 

Compressed Compressed

StretchedStretched

Longitudinal wave

Transverse wave

As the hand pumps back and forth, compressed regions 
alternate stretched regions both in space and time.

a

b

Figure 13.23  (a) A transverse wave is set up in a spring by moving one end of the spring perpen-
dicular to its length. (b) A longitudinal wave along a stretched spring.
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stretched regions of the coil that travel along the spring, parallel to the wave 
motion.

Waves need not be purely transverse or purely longitudinal: ocean waves 
exhibit a superposition of both types. When an ocean wave encounters a cork, 
the cork executes a circular motion, going up and down while going forward 
and back.

Another type of wave, called a soliton, consists of a solitary wave front that prop-
agates in isolation. Ordinary water waves generally spread out and dissipate, but 
solitons tend to maintain their form. The study of solitons began in 1849, when 
Scottish engineer John Scott Russell noticed a solitary wave leaving the turbulence 
in front of a barge and propagating forward all on its own. The wave maintained 
its shape and traveled down a canal at about 10 mi/h. Russell chased the wave two 
miles on horseback before losing it. Only in the 1960s did scientists take solitons 
seriously; they are now widely used to model physical phenomena, from elemen-
tary particles to the Giant Red Spot of Jupiter.

Picture of a Wave
Figure 13.24 shows the curved shape of a vibrating string. This pattern is a sinu-
soidal curve, the same as in simple harmonic motion. The brown curve can be 
thought of as a snapshot of a traveling wave taken at some instant of time, say,  
t 5 0; the blue curve is a snapshot of the same traveling wave at a later time. 
This picture can also be used to represent a wave on water. In such a case, a 
high point would correspond to the crest of the wave and a low point to the 
trough of the wave.

The same waveform can be used to describe a longitudinal wave, even though 
no up-and-down motion is taking place. Consider a longitudinal wave traveling on 
a spring. Figure 13.25a is a snapshot of this wave at some instant, and Figure 13.25b 
shows the sinusoidal curve that represents the wave. Points where the coils of the 
spring are compressed correspond to the crests of the waveform, and stretched 
regions correspond to troughs.

The type of wave represented by the curve in Figure 13.25b is often called a den-
sity wave or pressure wave, because the crests, where the spring coils are compressed, 
are regions of high density, and the troughs, where the coils are stretched, are 
regions of low density. Sound waves are longitudinal waves, propagating as a series 
of high- and low-density regions.

13.8     Frequency, Amplitude,  
and Wavelength
Learning Objectives

1. Discuss the physical meaning of the term wavelength.

2. Relate the wave speed to its frequency and wavelength

Figure 13.26 illustrates a method of producing a continuous wave or a steady 
stream of pulses on a very long string. One end of the string is connected to a 
blade that is set vibrating. As the blade oscillates vertically with simple harmonic 
motion, a traveling wave moving to the right is set up in the string. Figure 13.26 
shows the wave at intervals of one-quarter of a period. Note that each small seg-
ment of the string, such as P, oscillates vertically in the y-direction with simple 
harmonic motion. That must be the case because each segment follows the sim-
ple harmonic motion of the blade. Every segment of the string can therefore be 
treated as a simple harmonic oscillator vibrating with the same frequency as the 
blade that drives the string.

t � 0 t

y

x

vt
vS

Figure 13.24
A one-dimensional sinusoidal wave 
traveling to the right with a speed 
v. The brown curve is a snapshot of 
the wave at t 5 0, and the blue curve 
is another snapshot at some later 
time t.

x

Equilibrium
density

Density

a

b

Figure 13.25  (a) A longitudinal 
wave on a spring. (b) The crests of 
the waveform correspond to com-
pressed regions of the spring, and 
the troughs correspond to stretched 
regions of the spring.
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The frequencies of the waves studied in this course will range from rather low 
values for waves on strings and waves on water, to values for sound waves between 
20 Hz and 20 000 Hz (recall that 1 Hz 5 1 s21), to much higher frequencies for 
electromagnetic waves. These waves have different physical sources, but can be 
described with the same concepts.

The horizontal dashed line in Figure 13.26 represents the position of  
the string when no wave is present. The maximum distance the string moves 
above or below this equilibrium value is called the amplitude A of the wave. 
For the waves we work with, the amplitudes at the crest and the trough will be 
identical.

Figure 13.26a illustrates another characteristic of a wave. The horizontal arrows 
show the distance between two successive points that behave identically. This dis-
tance is called the wavelength l (the Greek letter lambda).

We can use these definitions to derive an expression for the speed of a wave. We 
start with the defining equation for the wave speed v:

v 5
Dx
Dt

The wave speed is the speed at which a particular part of the wave—say, a crest—
moves through the medium.

A wave advances a distance of one wavelength in a time interval equal to one 
period of the vibration. Taking Dx 5 l and Dt 5 T, we see that

v 5
l

T

Because the frequency is the reciprocal of the period, we have

 v 5 f l [13.17]

This important general equation applies to many different types of waves, such as 
sound waves and electromagnetic waves.

b Wave speed

P

t = 0

t =     T

A

P

P

P

l

4
1

t =     T
2
1

t =     T
4
3

a

b

c

d

x

y

Figure 13.26 One method for 
producing traveling waves on a con-
tinuous string. The left end of the 
string is connected to a blade that is 
set vibrating. Every part of the string, 
such as point P, oscillates vertically 
with simple harmonic motion.

(Continued)

 ■ e Xa Mp Le  13.8 A Traveling Wave

g Oa L  Obtain information about a wave directly from its graph.

pr Ob Le M  A wave traveling in the positive x -direction is pic-
tured in Figure 13.27a. Find the amplitude, wavelength, speed, 
and period of the wave if it has a frequency of 8.00 Hz. In Figure 
13.27a, Dx 5 40.0 cm and Dy 5 15.0 cm.

s t r at e g Y  The amplitude and wavelength can be read directly 
from the figure: The maximum vertical displacement is the 
amplitude, and the distance from one crest to the next is the 
wavelength. Multiplying the wavelength by the frequency gives 
the speed, whereas the period is the reciprocal of the frequency.

s OLUti On

�x

�y

�x

�y
x

y y

x

a b

Figure 13.27  (a) (Example 13.8) (b) (Exercise 13.8)

The maximum wave displacement is the amplitude A: A 5 Dy 5 15.0 cm 5   0.150 m

The distance from crest to crest is the wavelength: l 5 Dx 5 40.0 cm 5   0.400 m

Multiply the wavelength by the frequency to get the speed: v 5 f l 5 (8.00 Hz)(0.400 m) 5   3.20 m/s

Take the reciprocal of the frequency to get the period: T 5
1
f

5
1

8.00 Hz
 5   0.125 s
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re Mar Ks  It’s important not to confuse the wave with the medium it travels in. A wave is energy transmitted through a 
medium; some waves, such as light waves, don’t require a medium.

QUes t i On  13.8  Is the frequency of a wave affected by the wave’s amplitude?

e Xe rc i s e  13.8  A wave traveling in the positive x -direction is pictured in Figure 13.27b. Find the amplitude, wave-
length, speed, and period of the wave if it has a frequency of 15.0 Hz. In the figure, Dx 5 72.0 cm and Dy 5 25.0 cm.

a ns We r s  A 5 0.250 m, l 5 0.720 m, v 5 10.8 m/s, T 5 0.006 7 s

 ■ e Xa Mp Le  13.9 Sound and Light

g Oa L Perform elementary calculations using speed, wavelength, and frequency.

pr Ob Le M A wave has a wavelength of 3.00 m. Calculate the frequency of the wave if it is (a) a sound wave and (b) a light 
wave. Take the speed of sound as 343 m/s and the speed of light as 3.00 3 108 m/s.

s OLUti On

(a) Find the frequency of a sound wave with l 5 3.00 m.

Solve Equation 3.17 for the frequency and substitute: (1) f 5
v
l

5
343 m/s
3.00 m

5  114 Hz

(b) Find the frequency of a light wave with l 5 3.00 m.

Substitute into Equation (1), using the speed of light for c: f 5
c
l

5
3.00 3 108 m/s

3.00 m
5  1.00 3 108 Hz

re Mar Ks  The same equation can be used to find the frequency in each case, despite the great difference between the 
physical phenomena. Notice how much larger frequencies of light waves are than frequencies of sound waves.

QUes t i On  13.9  A wave in one medium encounters a new medium and enters it. Which of the following wave proper-
ties will be affected in this process? (a) wavelength (b) frequency (c) speed

e Xe rc i s e  13.9  (a) Find the wavelength of an electromagnetic wave with frequency 9.00 GHz 5 9.00 3 109 Hz (G 5 
giga 5 109), which is in the microwave range. (b) Find the speed of a sound wave in an unknown fluid medium if a fre-
quency of 567 Hz has a wavelength of 2.50 m.

a ns We r s  (a) 0.033 3 m (b) 1.42 3 103 m/s

13.9    The Speed of Waves on Strings
Learning Objectives

1. Discuss the dependence of the speed of waves on a string on the string tension 
and linear mass density.

2. Calculate the speed of waves on strings.

In this section we focus our attention on the speed of a transverse wave on a 
stretched string.

For a vibrating string, there are two speeds to consider. One is the speed of 
the physical string that vibrates up and down, transverse to the string, in the 
y - direction. The other is the wave speed, which is the rate at which the disturbance 
propagates along the length of the string in the x -direction. We wish to find an 
expression for the wave speed.

If a horizontal string under tension is pulled vertically and released, it starts at its 
maximum displacement, y 5 A, and takes a certain amount of time to go to y 5 2A
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and back to A again. This amount of time is the period of the wave, and is the same as 
the time needed for the wave to advance horizontally by one wavelength. Dividing the 
wavelength by the period of one transverse oscillation gives the wave speed.

For a fixed wavelength, a string under greater tension F  has a greater wave 
speed because the period of vibration is shorter, and the wave advances one wave-
length during one period. It also makes sense that a string with greater mass per 
unit length, m, vibrates more slowly, leading to a longer period and a slower wave 
speed. The wave speed is given by

 v 5 Å
F
m

 [13.18]

where F is the tension in the string and m is the mass of the string per unit length, 
called the linear density. From Equation 13.18, it’s clear that a larger tension F 
results in a larger wave speed, whereas a larger linear density m gives a slower wave 
speed, as expected.

According to Equation 13.18, the propagation speed of a mechanical wave, such 
as a wave on a string, depends only on the properties of the string through which 
the disturbance travels. It doesn’t depend on the amplitude of the vibration. This 
turns out to be generally true of waves in various media.

A proof of Equation 13.18 requires calculus, but dimensional analysis can easily 
verify that the expression is dimensionally correct. Note that the dimensions of F 
are ML/T2, and the dimensions of m are M/L. The dimensions of F/m are there-
fore L2/T2, so those of !F/m are L/T, giving the dimensions of speed. No other 
combination of F and m is dimensionally correct, so in the case in which the ten-
sion and mass density are the only relevant physical factors, we have verified Equa-
tion 13.18 up to an overall constant.

According to Equation 13.18, we can increase the speed of a wave on a stretched 
string by increasing the tension in the string. Increasing the mass per unit length, 
on the other hand, decreases the wave speed. These physical facts lie behind the 
metallic windings on the bass strings of pianos and guitars. The windings increase 
the mass per unit length, m, decreasing the wave speed and hence the frequency, 
resulting in a lower tone. Tuning a string to a desired frequency is a simple matter 
of changing the tension in the string.

a pp Lica t iOn
Bass Guitar Strings

 ■ e Xa Mp Le  13.10 A Pulse Traveling on a String

g Oa L  Calculate the speed of a wave on a string.

pr Ob Le M  A uniform string has a mass M of 0.030 0 kg and a length L of 6.00 m. Ten-
sion is maintained in the string by suspending a block of mass m 5 2.00 kg from one end 
(Fig. 13.28). (a) Find the speed of a transverse wave pulse on this string. (b) Find the time 
it takes the pulse to travel from the wall to the pulley. Neglect the mass of the hanging part 
of the string.

s t r at e g Y  The tension F can be obtained from Newton’s second law for equilibrium 
applied to the block, and the mass per unit length of the string is m 5 M/L. With these quan-
tities, the speed of the transverse pulse can be found by substitution into Equation 13.18. 
Part (b) requires the formula d 5 vt.

s OLUti On

(Continued)

2.00 kg

1.00 m

5.00 m

Figure 13.28  (Example 
13.10) The tension F in the 
string is maintained by the 
suspended block. The wave 
speed is given by the expres-
sion v 5 !F/m.

(a) Find the speed of the wave pulse.

Apply the second law to the block: the tension F  is equal 
and opposite to the force of gravity.

o F 5 F 2 mg 5 0 S F 5 mg
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13.10    Interference of Waves
Learning Objective

1. Discuss the superposition principle and use it to explain the phenomena of 
both constructive and destructive interference of two waves passing through 
each other.

Many interesting wave phenomena in nature require two or more waves pass-
ing through the same region of space at the same time. Two traveling waves can 
meet and pass through each other without being destroyed or even altered. For 
instance, when two pebbles are thrown into a pond, the expanding circular waves 
don’t destroy each other. In fact, the ripples pass through each other. Likewise, 
when sound waves from two sources move through air, they pass through each 
other. In the region of overlap, the resultant wave is found by adding the displace-
ments of the individual waves. For such analyses, the superposition principle 
applies:

When two or more traveling waves encounter each other while moving 
through a medium, the resultant wave is found by adding together the dis-
placements of the individual waves point by point.

Experiments show that the superposition principle is valid only when the individ-
ual waves have small amplitudes of displacement, which is an assumption we make 
in all our examples.

Figures 13.29a and 13.29b show two waves of the same amplitude and frequency. 
If at some instant of time these two waves were traveling through the same region 
of space, the resultant wave at that instant would have a shape like that shown in 
Figure 13.29c. For example, suppose the waves are water waves of amplitude 1 m. 
At the instant they overlap so that crest meets crest and trough meets trough, the 
resultant wave has an amplitude of 2 m. Waves coming together like that are said 
to be in phase and to exhibit constructive interference.

Figures 13.30a and 13.30b show two similar waves. In this case, however, the 
crest of one coincides with the trough of the other, so one wave is inverted relative 

Substitute expressions for F and m into Equation 13.18: v 5 Å
F
m

5 Å
mg

M/L

5 Å
12.00 kg 2 19.80 m/s2 2
10.030 0 kg 2/ 16.00 m 2 5 Å

19.6 N
0.005 00 kg/m

5   62.6 m/s

(b) Find the time it takes the pulse to travel from the wall 
to the pulley.

Solve the distance formula for time: t 5
d
v

5
5.00 m

62.6 m/s
5  0.079 9 s

re Mar Ks  Don’t confuse the speed of the wave on the string with the speed of the sound wave produced by the vibrat-
ing string. (See Chapter 14.)

QUes t i On  13.10  If the mass of the block is quadrupled, what happens to the speed of the wave?

e Xe rc i s e  13.10  To what tension must a string with mass 0.010 0 kg and length 2.50 m be tightened so that waves will 
travel on it at a speed of 125 m/s?

a ns We r  62.5 N

a

b

c

Combining the two waves in 
parts (a) and (b) results in a 
wave with twice the amplitude.

Figure 13.29  Constructive inter-
ference. If two waves having the 
same frequency and amplitude are 
in phase, as in (a) and (b), the resul-
tant wave when they combine (c) has 
the same frequency as the individual 
waves, but twice their amplitude.
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to the other. The resultant wave, shown in Figure 13.30c, is seen to be a state of 
complete cancellation. If these were water waves coming together, one of the waves 
would exert an upward force on an individual drop of water at the same instant 
the other wave was exerting a downward force. The result would be no motion of 
the water at all. In such a situation the two waves are said to be 180° out of phase 
and to exhibit destructive interference. Figure 13.31 illustrates the interference of 
water waves produced by drops of water falling into a pond.

Figure 13.32 shows constructive interference in two pulses moving toward each 
other along a stretched string; Figure 13.33 shows destructive interference in two 
pulses. Notice in both figures that when the two pulses separate, their shapes are 
unchanged, as if they had never met!

a

b d

e

c

When the pulses overlap, as in parts (b), (c), and 
(d), the net displacement of the string equals the 
sum of the displacements produced by each pulse.

Figure 13.32 Two wave pulses traveling on a stretched string in opposite directions 
pass through each other.

Combining the waves in 
(a) and (b) results in 
complete cancellation.

a

b

c

Figure 13.30  Destructive interfer-
ence. The two waves in (a) and (b) 
have the same frequency and ampli-
tude but are 180° out of phase.

Figure 13.31  Interference 
patterns produced by outward- 
spreading waves from many drops of 
liquid falling into a body of water.
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When the pulses overlap, as in part (c), their 
displacements subtract from each other.

Figure 13.33 Two wave pulses 
traveling in opposite directions 
with displacements that are 
inverted relative to each other.

13.11    Reflection of Waves
Learning Objective

1. Describe qualitatively the reflection of waves on strings from fixed and free 
ends.

In our discussion so far, we have assumed waves could travel indefinitely without 
striking anything. Such conditions are not often realized in practice. Whenever a 
traveling wave reaches a boundary, part or all of the wave is reflected. For example, 
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consider a pulse traveling on a string that is fixed at one end (Fig. 13.34). When 
the pulse reaches the wall, it is reflected.

Note that the reflected pulse is inverted. This can be explained as follows: 
When the pulse meets the wall, the string exerts an upward force on the wall. 
According to Newton’s third law, the wall must exert an equal and opposite (down-
ward) reaction force on the string. This downward force causes the pulse to invert 
on reflection.

Now suppose the pulse arrives at the string’s end, and the end is attached to 
a ring of negligible mass that is free to slide along the post without friction (Fig. 
13.35). Again the pulse is reflected, but this time it is not inverted. On reaching 
the post, the pulse exerts a force on the ring, causing it to accelerate upward. The 
ring is then returned to its original position by the downward component of the 
tension in the string.

An alternate method of showing that a pulse is reflected without inversion when 
it strikes a free end of a string is to send the pulse down a string hanging vertically. 
When the pulse hits the free end, it’s reflected without inversion, like the pulse in 
Figure 13.35.

Finally, when a pulse reaches a boundary, it’s partly reflected and partly trans-
mitted past the boundary into the new medium. This effect is easy to observe in 
the case of two ropes of different density joined at some boundary.

c

Re�ected
pulse

e

d

Incident
pulse

a

b

Figure 13.34 The reflection of 
a traveling wave at the fixed end 
of a stretched string. Note that the 
reflected pulse is inverted, but its 
shape remains the same.

Incident
pulse

b

c
Re�ected

pulse

d

a

Figure 13.35 The reflection of a traveling wave at the free end of a stretched string. In this case 
the reflected pulse is not inverted.

 ■ s UMMar Y

13.1  Hooke’s Law
Simple harmonic motion occurs when the net force on an 
object along the direction of motion is proportional to the 
object’s displacement and in the opposite direction:

 Fs 5 2kx [13.1]

This equation is called Hooke’s law. The time required 
for one complete vibration is called the period of the 
motion. The reciprocal of the period is the frequency of 
the motion, which is the number of oscillations per second.
 When an object moves with simple harmonic motion, its 
acceleration as a function of position is

 a 5 2
k
m

 x [13.2]

13.2  Elastic Potential Energy
The energy stored in a stretched or compressed spring or 
in some other elastic material is called elastic potential 
energy:

PEs ;  12kx
2 [13.3]

The velocity of an object as a function of position, when 
the object is moving with simple harmonic motion, is

v 5 6Å
k
m
1A2 2 x2 2  [13.6]

13.3   Comparing Simple Harmonic Motion  
with Uniform Circular Motion

The period of an object of mass m moving with simple har-
monic motion while attached to a spring of spring constant 
k is

 T 5 2pÅ
m
k

 [13.8]

where T is independent of the amplitude A.
 The frequency of an object–spring system is f 5 1/T. 
The angular frequency v of the system in rad/s is

 v 5 2pf 5 Å
k
m

 [13.11]
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13.4   Position, Velocity, and Acceleration  
as a Function of Time

When an object is moving with simple harmonic motion, 
the position, velocity, and acceleration of the object as a 
function of time are given by

 x 5 A cos(2pft) [13.14a]

 v 5 2Av sin(2pft) [13.14b]

 a 5 2Av2 cos(2pft) [13.14c]

In a longitudinal wave the elements of the medium 
move parallel to the direction of the wave velocity. An 
example is a sound wave.

13.8  Frequency, Amplitude, and Wavelength
The relationship of the speed, wavelength, and frequency 
of a wave is

v 5 f l [13.17]

This relationship holds for a wide variety of different 
waves.

13.9  The Speed of Waves on Strings
The speed of a wave traveling on a stretched string of mass 
per unit length m and under tension F is

v 5 Å
F
m

 [13.18]

13.10  Interference of Waves
The superposition principle states that if two or more 
traveling waves are moving through a medium, the resul-
tant wave is found by adding the individual waves together 
point by point. When waves meet crest to crest and trough 
to trough, they undergo constructive interference. 
When crest meets trough, the waves undergo destructive 
interference.

13.11  Reflection of Waves
When a wave pulse reflects from a rigid boundary, the 
pulse is inverted. When the boundary is free, the reflected 
pulse is not inverted.

T
2

T

x

O
t

3T
2

x = A cos t

T
2

T
v

t
3T
2

v = – A sin t

T
2

T
a

t
3T
2

a = – 2A cos t

A

–A
O�

O�

O�

ω

ω ω

ω ω

a

b

c

(a) Displacement, (b) veloc-
ity, and (c) acceleration 
versus time for an object 
moving with simple har-
monic motion under the 
initial conditions x0 5 A and 
v0 5 0 at t 5 0.

13.5  Motion of a Pendulum
A simple pendulum of length L moves with simple har-
monic motion for small angular displacements from the 
vertical, with a period of

T 5 2p Å
L
g

 [13.15]

13.7  Waves
In a transverse wave the elements of the medium move in 
a direction perpendicular to the direction of the wave. An 
example is a wave on a stretched string.

 ■ War M-Up  e Xe rc i s e s

The warm-up exercises in this chapter may be assigned online in Enhanced WebAssign.

 1. Math Review Suppose a function is given by  
y(t) = (5.00 m) sin (8.00�t). Determine (a) the  
maximum value of y(t), (b) the minimum value of 
y(t), and (c) the period of the function.

 2. A horizontal spring system consists of a block of mass 
4.00 kg on a frictionless surface attached to a hori-
zontal spring with constant 624 N/m. (a) Calculate 
the magnitude of the spring force acting on the block 
when displaced from equilibrium by 0.250 m. (b) If the 
block is released, what is the magnitude of its initial 
acceleration? (See Section 13.1.)

 3. A light spring with force constant 575 N/m is hung verti-
cally from the ceiling. A 7.20-kg bowling ball is attached 
to the end of the spring and the ball is slowly lowered. 

How far does the spring stretch from its equilibrium 
position when the gravity and spring forces balance? 
(See Section 13.1.)

 4. A 5.00-kg mass attached to a horizontal spring oscil-
lates back and forth in simple harmonic motion with an 
amplitude of 0.200 m. If the spring has a force constant of  
75.0 N/m, find (a) the potential energy of the system at its 
maximum amplitude, and (b) the speed of the object as it 
passes through its equilibrium point. (See Section 13.2.)

 5. A 4.00-kg block is sliding on a frictionless surface at  
7.00 m/s toward a horizontal spring of constant 1 830 N/m 
that is attached to the wall. (a) Calculate the kinetic 
energy of the block. (b) By how much will the block com-
press the spring after striking it? (See Section 13.2.)
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(d) the maximum acceleration of the mass. (See Sec-
tions 13.3 and 13.4.)

 9. A simple pendulum has a period of 2.50 s. Find (a) 
the frequency, (b) the angular frequency, and (c) the 
length of the pendulum. (See Section 13.5.)

 10. A man on a dock observes that the distance between 
two successive crests of a water wave is 4.00 m. Just as 
a crest passes he starts a stopwatch, and finds it takes 
1.40 s for the next crest to reach him. Find (a) the wave-
length of the wave, (b) the frequency of the wave, and 
(c) the speed of the wave. (See Section 13.8.)

 11. A uniform string has mass 0.005 00 kg and length  
0.800 m. (a) Calculate the linear density, or mass 
divided by length, of the string. (b) If the string is 
under a tension of 275 N, find the velocity of waves on 
the string. (See Section 13.9.)

 6. A horizontal spring system has a spring with constant 628 
N/m and a block of mass 8.00 kg, lying on a frictionless 
surface, attached to the free end. The block is pulled a 
short distance from equilibrium and released. Calculate 
(a) the angular frequency, (b) the frequency, and (c) the 
period of the oscillating spring system. (See Section 13.3.)

 7. The position of a 5.00-kg object moving with simple 
harmonic motion is given by x = (4.00 m) cos(6.00�t), 
where x is in meters and t is in seconds. Find (a) the 
angular frequency, (b) the frequency, (c) the period, 
and (d) the spring constant. (See Section 13.4.) 

 8. A mass of 0.400 kg, hanging from a spring with a spring 
constant of 90.0 N/m, is displaced from equilibrium by 
0.200 m and released from rest. Find (a) the amplitude 
of the oscillations, (b) the angular frequency of the 
oscillations, (c) the maximum speed of the mass, and 

 6. If a pendulum clock keeps perfect time at the base of 
a mountain, will it also keep perfect time when it is 
moved to the top of the mountain? Explain.

 7. (a) Is a bouncing ball an example of simple harmonic 
motion? (b) Is the daily movement of a student from 
home to school and back simple harmonic motion?

 8. If a grandfather clock were running slow, how could we 
adjust the length of the pendulum to correct the time?

 9. What happens to the speed of a wave on a string when 
the frequency is doubled? Assume the tension in the 
string remains the same.

 10. If you stretch a rubber hose and pluck it, you can observe 
a pulse traveling up and down the hose. What happens to 
the speed of the pulse if you stretch the hose more tightly? 
What happens to the speed if you fill the hose with water?

 11. Explain why the kinetic and potential energies of an 
object–spring system can never be negative.

 12. A grandfather clock depends on the period of a pen-
dulum to keep correct time. Suppose such a clock is 
calibrated correctly and then the temperature of the 
room in which it resides increases. Does the clock run 
slow, fast, or correctly? Hint: A material expands when 
its temperature increases.

 1. An object–spring system undergoes simple harmonic 
motion with an amplitude A. Does the total energy 
change if the mass is doubled but the amplitude isn’t 
changed? Are the kinetic and potential energies at 
a given point in its motion affected by the change in 
mass? Explain.

 2. If an object–spring system is hung vertically and set 
into oscillation, why does the motion eventually stop?

 3. An object is hung on a spring, and the frequency of oscil-
lation of the system, f, is measured. The object, a second 
identical object, and the spring are carried to space in 
the space shuttle. The two objects are attached to the 
ends of the spring, and the system is taken out into space 
on a space walk. The spring is extended, and the system 
is released to oscillate while floating in space. The coils 
of the spring don’t bump into one another. What is the 
frequency of oscillation for this system in terms of f ?

 4. If a spring is cut in half, what happens to its spring 
constant?

 5. A pendulum bob is made from a sphere filled with 
water. What would happen to the frequency of vibra-
tion of this pendulum if the sphere had a hole in it that 
allowed the water to leak out slowly?

 ■ c On ce p t Ua L QUes t i Ons

The conceptual questions in this chapter may be assigned online in Enhanced WebAssign.

 ■ pr Ob Le Ms

denotes biomedical problems

denotes guided problems

denotes Master It tutorial available in Enhanced WebAssign

denotes asking for quantitative and conceptual reasoning

denotes symbolic reasoning problem

W denotes Watch It video solution available in Enhanced WebAssign

The problems in this chapter may be assigned online in 
Enhanced WebAssign. 

1. denotes straightforward problem; 2. denotes intermediate problem;

3. denotes challenging problem

1. denotes full solution available in Student Solutions Manual/ 
Study Guide

1. denotes problems most often assigned in Enhanced WebAssign
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7. A spring 1.50 m long with force constant 475 N/m 
is hung from the ceiling of an elevator, and a block of 
mass 10.0 kg is attached to the bottom of the spring. 
(a) By how much is the spring stretched when the block 
is slowly lowered to its equilibrium point? (b) If the 
elevator subsequently accelerates upward at 2.00 m/s2, 
what is the position of the block, taking the equilib-
rium position found in part (a) as y 5 0 and upwards 
as the positive y -direction. (c) If the elevator cable 
snaps during the acceleration, describe the subsequent 
motion of the block relative to the freely falling eleva-
tor. What is the amplitude of its motion?

13.2  Elastic Potential Energy

 8. A block of mass m 5 2.00 kg 
is attached to a spring of 
force constant k 5 5.00 3 
102 N/m that lies on a hori-
zontal frictionless surface as 
shown in Figure P13.8. The 
block is pulled to a position 
xi 5 5.00 cm to the right of 
equilibrium and released from rest. Find (a) the work 
required to stretch the spring and (b) the speed the 
block has as it passes through equilibrium.

 9. A slingshot consists of a light leather cup containing a 
stone. The cup is pulled back against two parallel rub-
ber bands. It takes a force of 15 N to stretch either one 
of these bands 1.0 cm. (a) What is the potential energy 
stored in the two bands together when a 50-g stone is 
placed in the cup and pulled back 0.20 m from the 
equilibrium position? (b) With what speed does the 
stone leave the slingshot?

 10. An archer pulls her bowstring back 0.400 m by exerting 
a force that increases uniformly from zero to 230  N.  
(a) What is the equivalent spring constant of the bow? 
(b) How much work is done in pulling the bow?

 11. A child’s toy consists of a piece 
of plastic attached to a spring 
(Fig. P13.11). The spring is com-
pressed against the floor a dis-
tance of 2.00 cm, and the toy is 
released. If the toy has a mass of 
100 g and rises to a maximum 
height of 60.0 cm, estimate the 
force constant of the spring.

 12. An automobile having a mass of 1 000 kg is driven into 
a brick wall in a safety test. The bumper behaves like 
a spring with constant 5.00 3 106 N/m and is com-
pressed 3.16 cm as the car is brought to rest. What 
was the speed of the car before impact, assuming no 
energy is lost in the collision with the wall?

 13. A 10.0-g bullet is fired into, and embeds itself in, a  
2.00-kg block attached to a spring with a force con-
stant of 19.6 N/m and whose mass is negligible. How 
far is the spring compressed if the bullet has a speed 
of 300 m/s just before it strikes the block and the block 

13.1  Hooke’s Law

1. A block of mass m 5 
0.60  kg attached to a 
spring with force con-
stant 130 N/m is free to 
move on a frictionless, 
horizontal surface as in  
Figure P13.1. The block is released from rest after the 
spring is stretched a distance A 5 0.13 m. At that instant, 
find (a) the force on the block and (b) its acceleration.

 2. A spring oriented vertically is 
attached to a hard horizontal 
surface as in Figure P13.2. The 
spring has a force constant 
of 1.46 kN/m. How much is 
the spring compressed when 
a object of mass m 5 2.30 kg 
is placed on top of the spring 
and the system is at rest?

 3. The force constant of a spring is 137 N/m. Find the mag-
nitude of the force required to (a) compress the spring 
by 4.80 cm from its unstretched length and (b) stretch 
the spring by 7.36 cm from its unstretched length.

 4. A load of 50 N attached to a spring hanging vertically 
stretches the spring 5.0 cm. The spring is now placed hor-
izontally on a table and stretched 11 cm. (a) What force is 
required to stretch the spring by that amount? (b) Plot a 
graph of force (on the y-axis) versus spring displacement 
from the equilibrium position along the x-axis.

 5. A spring is hung from a ceiling, 
and an object attached to its 
lower end stretches the spring 
by a distance d 5 5.00 cm from 
its unstretched position when 
the system is in equilibrium as 
in Figure P13.5. If the spring 
constant is 47.5 N/m, deter-
mine the mass of the object.

 6. An archer must exert a force of 375 N on the bowstring 
shown in Figure P13.6a such that the string makes an 
angle of u 5 35.0° with the vertical. (a) Determine the 
tension in the bowstring. (b) If the applied force is 
replaced by a stretched spring as in Figure P13.6b and 
the spring is stretched 30.0 cm from its unstretched 
length, what is the spring constant?

A

m

Figure p 13.1

m

Figure p 13.2

d

Figure p 13.5

θ θ

k

a b

Figure p 13.6

x � xi

k
m

x � 0

Figure p 13.8

Figure p 13.11
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equilibrium position. (d) For what value of x does the 
speed equal one-half the maximum speed?

 18. A horizontal object-spring system oscillates with an 
amplitude of 3.5 cm on a frictionless surface. If the 
spring constant is 250 N/m and the object has a mass 
of 0.50 kg, determine (a) the mechanical energy of 
the system, (b) the maximum speed of the object, and  
(c) the maximum acceleration of the object.

 19. At an outdoor market, a bunch of bananas 
attached to the bottom of a vertical spring of force con-
stant 16.0  N/m is set into oscillatory motion with an 
amplitude of 20.0 cm. It is observed that the maximum 
speed of the bunch of bananas is 40.0 cm/s. What is 
the weight of the bananas in newtons?

 20. A 50.0-g object is attached to a horizontal spring with a 
force constant of 10.0 N/m and released from rest with 
an amplitude of 25.0 cm. What is the velocity of the 
object when it is halfway to the equilibrium position if 
the surface is frictionless?

 21. A horizontal spring attached to a wall has a force con-
stant of k 5 850 N/m. A block of mass m 5 1.00 kg 
is attached to the spring and rests on a frictionless, 
horizontal surface as in Figure P13.21. (a) The block is 
pulled to a position xi 5 6.00 cm from equilibrium and 
released. Find the potential energy stored in the spring 
when the block is 6.00 cm from equilibrium. (b) Find 
the speed of the block as it passes through the equilib-
rium position. (c) What is the speed of the block when 
it is at a position xi/2 5 3.00 cm?

slides on a frictionless surface? Note: You must use con-
servation of momentum in this problem because of the 
inelastic collision between the bullet and block.

 14.  An object–spring system moving with simple har-
monic motion has an amplitude A. (a) What is the total 
energy of the system in terms of k and A only? (b) Sup-
pose at a certain instant the kinetic energy is twice the 
elastic potential energy. Write an equation describing 
this situation, using only the variables for the mass m, 
velocity v, spring constant k, and position x. (c) Using 
the results of parts (a) and (b) and the conservation of 
energy equation, find the positions x of the object when 
its kinetic energy equals twice the potential energy stored 
in the spring. (The answer should in terms of A only.)

 15.  A horizontal block–spring system with the block on 
a frictionless surface has total mechanical energy E 5 
47.0 J and a maximum displacement from equilibrium of 
0.240 m. (a) What is the spring constant? (b) What is the 
kinetic energy of the system at the equilibrium point?  
(c) If the maximum speed of the block is 3.45 m/s, what 
is its mass? (d) What is the speed of the block when its 
displacement is 0.160 m? (e) Find the kinetic energy of 
the block at x 5 0.160 m. (f) Find the potential energy 
stored in the spring when x 5 0.160 m. (g) Suppose the 
same system is released from rest at x 5 0.240 m on a 
rough surface so that it loses 14.0 J by the time it reaches 
its first turning point (after passing equilibrium at x 5 0). 
What is its position at that instant?

 16.  A 0.250-kg block rest-
ing on a frictionless, hori-
zontal surface is attached 
to a spring having force 
constant 83.8 N/m as 
in Figure P13.16. A horizontal force F

S

 causes the 
spring to stretch a distance of 5.46 cm from its equi-
librium position. (a) Find the value of F. (b) What is 
the total energy stored in the system when the spring 
is stretched? (c) Find the magnitude of the accelera-
tion of the block immediately after the applied force is 
removed. (d) Find the speed of the block when it first 
reaches the equilibrium position. (e) If the surface is 
not frictionless but the block still reaches the equi-
librium position, how would your answer to part (d) 
change? (f) What other information would you need to 
know to find the actual answer to part (d) in this case?

13.3   Comparing Simple Harmonic Motion  
with Uniform Circular Motion

13.4   Position, Velocity, and Acceleration  
as a Function of Time

 17. A 0.40-kg object connected to a light spring with a 
force constant of 19.6 N/m oscillates on a frictionless 
horizontal surface. If the spring is compressed 4.0 cm 
and released from rest, determine (a) the maximum 
speed of the object, (b) the speed of the object when 
the spring is compressed 1.5 cm, and (c) the speed  
of the object as it passes the point 1.5 cm from the 

F
S

Figure p 13.16

x � xix � xi/2

k
m

x � 0

Figure p 13.21

22. An object moves uniformly around a circular path 
of radius 20.0 cm, making one complete revolution 
every 2.00 s. What are (a) the translational speed of 
the object, (b) the frequency of motion in hertz, and 
(c) the angular speed of the object?

23. Consider the simplified single-piston engine in Figure 
P13.23. If the wheel rotates at a constant angular speed 
v, explain why the piston oscillates in simple harmonic 
motion.

A

Piston

x � �A x(t )

v

x � 0

Figure p 13.23
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24. The period of motion of an object–spring system is T 5 
0.528 s when an object of mass m 5 238 g is attached to 
the spring. Find (a) the frequency of motion in hertz 
and (b) the force constant of the spring. (c) If the total 
energy of the oscillating motion is 0.234 J, find the 
amplitude of the oscillations.

 25. A vertical spring stretches 3.9 cm when a 10-g 
object is hung from it. The object is replaced with a 
block of mass 25 g that oscillates up and down in sim-
ple harmonic motion. Calculate the period of motion.

 26. When four people with a combined mass of 320 kg sit 
down in a 2.0 3 103-kg car, they find that their weight 
compresses the springs an additional 0.80 cm. (a) What 
is the effective force constant of the springs? (b) The 
four people get out of the car and bounce it up and 
down. What is the frequency of the car’s vibration?

 27. A cart of mass 250 g is placed on a frictionless hori-
zontal air track. A spring having a spring constant 
of 9.5  N/m is attached between the cart and the left 
end of the track. If the cart is displaced 4.5 cm from 
its equilibrium position, find (a) the period at which 
it oscillates, (b) its maximum speed, and (c) its speed 
when it is located 2.0 cm from its equilibrium position.

 28. The position of an object connected to a spring  
varies with time according to the expression x 5  
(5.2 cm) sin (8.0pt). Find (a) the period of this motion, 
(b) the frequency of the motion, (c) the amplitude  
of the motion, and (d) the first time after t 5 0 that the 
object reaches the position x 5 2.6 cm.

 29. W A 326-g object is attached to a spring and executes 
simple harmonic motion with a period of 0.250 s. If the 
total energy of the system is 5.83 J, find (a) the maxi-
mum speed of the object, (b) the force constant of the 
spring, and (c) the amplitude of the motion.

 30. An object executes simple harmonic motion with 
an amplitude A. (a) At what values of its position does 
its speed equal half its maximum speed? (b) At what 
values of its position does its potential energy equal 
half the total energy?

 31. A 2.00-kg object on a frictionless horizontal track is 
attached to the end of a horizontal spring whose force 
constant is 5.00 N/m. The object is displaced 3.00 m 
to the right from its equilibrium position and then 
released, initiating simple harmonic motion. (a) What 
is the force (magnitude and direction) acting on the 
object 3.50 s after it is released? (b) How many times 
does the object oscillate in 3.50 s?

 32.  A spring of negligible mass stretches 3.00 cm from 
its relaxed length when a force of 7.50 N is applied. A 
0.500-kg particle rests on a frictionless horizontal sur-
face and is attached to the free end of the spring. The 
particle is displaced from the origin to x 5 5.00  cm 
and released from rest at t 5 0. (a) What is the force 
constant of the spring? (b) What are the angular fre-
quency v, the frequency, and the period of the motion? 
(c) What is the total energy of the system? (d) What is 

the amplitude of the motion? (e) What are the maxi-
mum velocity and the maximum acceleration of the 
particle? (f) Determine the displacement x of the 
particle from the equilibrium position at t 5 0.500 s. 
(g) Determine the velocity and acceleration of the par-
ticle when t 5 0.500 s.

 33. Given that x 5 A cos (vt) is a sinusoidal function of 
time, show that v (velocity) and a (acceleration) are 
also sinusoidal functions of time. Hint: Use Equations 
13.6 and 13.2.

13.5  Motion of a Pendulum

34. W A man enters a tall tower, needing to know its 
height. He notes that a long pendulum extends from 
the ceiling almost to the floor and that its period is 
15.5 s. (a) How tall is the tower? (b) If this pendulum 
is taken to the Moon, where the free-fall acceleration is  
1.67 m/s2, what is the period there?

 35. A simple pendulum has a length of 52.0 cm and makes 
82.0 complete oscillations in 2.00 min. Find (a) the 
period of the pendulum and (b) the value of g at the 
location of the pendulum.

 36. A “seconds” pendulum is one that moves through its 
equilibrium position once each second. (The period 
of the pendulum is 2.000 s.) The length of a seconds 
pendulum is 0.992 7 m at Tokyo and 0.994 2 m at Cam-
bridge, England. What is the ratio of the free-fall accel-
erations at these two locations?

 37. A pendulum clock that works perfectly on the Earth is 
taken to the Moon. (a) Does it run fast or slow there? 
(b) If the clock is started at 12:00 midnight, what will it 
read after one Earth day (24.0 h)? Assume the free-fall 
acceleration on the Moon is 1.63 m/s2.

 38. A coat hanger of mass 
m 5 0.238 kg oscillates on 
a peg as a physical pen-
dulum as shown in Fig-
ure P13.38. The distance 
from the pivot to the cen-
ter of mass of the coat 
hanger is d 5 18.0  cm 
and the period of the motion is T 5 1.25 s. Find the 
moment of inertia of the coat hanger about the pivot.

 39. The free-fall acceleration on Mars is 3.7 m/s2. 
(a)  What length of pendulum has a period of 1 s on 
Earth? (b) What length of pendulum would have a 1-s 
period on Mars? An object is suspended from a spring 
with force constant 10 N/m. Find the mass suspended 
from this spring that would result in a period of 1 s 
(c) on Earth and (d) on Mars.

 40. A simple pendulum is 5.00 m long. (a) What is the period 
of simple harmonic motion for this pendulum if it is 
located in an elevator accelerating upward at 5.00 m/s2? 
(b) What is its period if the elevator is accelerating down-
ward at 5.00 m/s2? (c) What is the period of simple har-
monic motion for the pendulum if it is placed in a truck 
that is accelerating horizontally at 5.00 m/s2?

d

CM

Pivot

Figure p 13.38
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8.50 cm. If the cork is 10.0 m from shore, how long does 
it take a ripple passing the cork to reach the shore?

 48. Ocean waves are traveling to the east at 4.0 m/s with a dis-
tance of 20 m between crests. With what frequency do the 
waves hit the front of a boat (a) when the boat is at anchor 
and (b) when the boat is moving westward at 1.0 m/s?

13.9  The Speed of Waves on Strings

49. An ethernet cable is 4.00 m long and has a mass of 
0.200 kg. A transverse wave pulse is produced by pluck-
ing one end of the taut cable. The pulse makes four 
trips down and back along the cable in 0.800 s. What is 
the tension in the cable?

50. A circus performer stretches a tightrope between two 
towers. He strikes one end of the rope and sends a wave 
along it toward the other tower. He notes that it takes 
the wave 0.800 s to reach the opposite tower, 20.0  m 
away. If a 1.00-m length of the rope has a mass of 
0.350 kg, find the tension in the tightrope.

51. A piano string of mass per unit length 5.00 3 10–3 kg/m 
is under a tension of 1 350 N. Find the speed with 
which a wave travels on this string.

 52.  A student taking a quiz finds on a reference 
sheet the two equations

f 5
1
T

 and v 5 Å
T
m

  She has forgotten what T represents in each equation. 
(a) Use dimensional analysis to determine the units 
required for T in each equation. (b) Explain how you 
can identify the physical quantity each T represents 
from the units.

 53. Transverse waves with a speed of 50.0 m/s are to be 
produced on a stretched string. A 5.00-m length of 
string with a total mass of 0.060 0 kg is used. (a) What 
is the required tension in the string? (b) Calculate the 
wave speed in the string if the tension is 8.00 N.

 54. W  An astronaut on the Moon wishes to measure the 
local value of g by timing pulses traveling down a wire 
that has a large object suspended from it. Assume a 
wire of mass 4.00 g is 1.60 m long and has a 3.00-kg 
object suspended from it. A pulse requires 36.1 ms to 
traverse the length of the wire. Calculate gMoon from 
these data. (You may neglect the mass of the wire when 
calculating the tension in it.)

 55. A simple pendulum consists of a ball of mass 5.00 kg 
hanging from a uniform string of mass 0.060 0 kg and 
length L. If the period of oscillation of the pendulum 
is 2.00 s, determine the speed of a transverse wave in 
the string when the pendulum hangs vertically.

 56. A string is 50.0 cm long and has a mass of 3.00 g. A wave 
travels at 5.00 m/s along this string. A second string 
has the same length, but half the mass of the first. If 
the two strings are under the same tension, what is the 
speed of a wave along the second string?

13.6  Damped Oscillations

13.7  Waves

13.8  Frequency, Amplitude, and Wavelength

41. The sinusoidal wave shown in Figure P13.41 is trav-
eling in the positive x -direction and has a frequency 
of 18.0  Hz. Find the (a) amplitude, (b) wavelength, 
(c) period, and (d) speed of the wave.

8.26 cm

5.20 cm

Figure p 13.41

42. An object attached to a spring vibrates with simple har-
monic motion as described by Figure P13.42. For this 
motion, find (a) the amplitude, (b) the period, (c) the 
angular frequency, (d) the maximum speed, (e) the 
maximum acceleration, and (f) an equation for its 
position x in terms of a sine function.

t (s)
1 2 3 4 5 6

1.00

2.00

–1.00

0.00

–2.00

x (cm)

Figure p 13.42

43. Light waves are electromagnetic waves that travel at 
3.00 3 108 m/s. The eye is most sensitive to light having 
a wavelength of 5.50 3 1027 m. Find (a) the frequency 
of this light wave and (b) its period.

 44. The distance between two successive minima of a 
transverse wave is 2.76 m. Five crests of the wave pass 
a given point along the direction of travel every 14.0 s. 
Find (a) the frequency of the wave and (b) the wave 
speed.

 45. W A harmonic wave is traveling along a rope. It is 
observed that the oscillator that generates the wave 
completes 40.0 vibrations in 30.0 s. Also, a given maxi-
mum travels 425 cm along the rope in 10.0 s. What is 
the wavelength?

 46.  A bat can detect small objects, such as an insect, 
whose size is approximately equal to one wavelength 
of the sound the bat makes. If bats emit a chirp at a 
frequency of 60.0 3 103 Hz and the speed of sound 
in air is 343 m/s, what is the smallest insect a bat can 
detect?

 47. A cork on the surface of a pond bobs up and down two 
times per second on ripples having a wavelength of 
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to a spring, what spring constant would result in the 
period of motion found in part (a)?

 66. A 500-g block is released from rest and slides down a fric-
tionless track that begins 2.00 m above the horizontal, 
as shown in Figure P13.66. At the bottom of the track, 
where the surface is horizontal, the block strikes and 
sticks to a light spring with a spring constant of 20.0 N/m. 
Find the maximum distance the spring is compressed.

57. Tension is maintained in a 
string as in Figure P13.57. The 
observed wave speed is v 5 
24.0 m/s when the suspended 
mass is m 5 3.00 kg. (a) What is 
the mass per unit length of the 
string? (b) What is the wave 
speed when the suspended 
mass is m 5 2.00 kg?

 58. The elastic limit of a piece of steel wire is 2.70 3 109 Pa. 
What is the maximum speed at which transverse  
wave pulses can propagate along the wire without 
exceeding its elastic limit? (The density of steel is 
7.86 3 103 kg/m3.)

 59. A 2.65-kg power line running between two towers 
has a length of 38.0 m and is under a tension of 12.5 N. 
(a) What is the speed of a transverse pulse set up on 
the line? (b) If the tension in the line was unknown, 
describe a procedure a worker on the ground might 
use to estimate the tension.

 60.  A taut clothesline has length L and a mass M. A 
transverse pulse is produced by plucking one end of the 
clothesline. If the pulse makes n round trips along the 
clothesline in t seconds, find expressions for (a) the speed 
of the pulse in terms of n, L, and t and (b) the tension F in 
the clothesline in terms of the same variables and mass M.

13.10  Interference of Waves

13.11  Reflection of Waves

61. A wave of amplitude 0.30 m interferes with a second 
wave of amplitude 0.20 m traveling in the same direc-
tion. What are (a) the largest and (b) the smallest 
resultant amplitudes that can occur, and under what 
conditions will these maxima and minima arise?

Additional Problems

62. The position of a 0.30-kg object attached to a spring is 
described by

x 5 (0.25 m) cos (0.4pt)

Find (a) the amplitude of the motion, (b) the spring 
constant, (c) the position of the object at t 5 0.30 s, 
and (d) the object’s speed at t 5 0.30 s.

 63. An object of mass 2.00 kg is oscillating freely on a ver-
tical spring with a period of 0.600 s. Another object 
of unknown mass on the same spring oscillates with 
a period of 1.05 s. Find (a) the spring constant k and 
(b) the unknown mass.

 64. A certain tuning fork vibrates at a frequency of 196 Hz 
while each tip of its two prongs has an amplitude of  
0.850 mm. (a) What is the period of this motion? (b) Find 
the wavelength of the sound produced by the vibrating 
fork, taking the speed of sound in air to be 343 m/s.

 65. A simple pendulum has mass 1.20 kg and length 
0.700 m. (a) What is the period of the pendulum near 
the surface of Earth? (b) If the same mass is attached 

m

Figure p 13.57

k2.00 m

500 g

Figure p 13.66

67. A 3.00-kg object is fastened to a light 
spring, with the intervening cord 
passing over a pulley (Fig. P13.67). 
The pulley is frictionless, and its 
inertia may be neglected. The 
object is released from rest when 
the spring is unstretched. If the 
object drops 10.0  cm before stop-
ping, find (a) the spring constant of 
the spring and (b) the speed of the 
object when it is 5.00  cm below its 
starting point.

 68. A 5.00-g bullet moving with an initial speed of 400 m/s 
is fired into and passes through a 1.00-kg block, as 
in Figure P13.68. The block, initially at rest on a fric-
tionless horizontal surface, is connected to a spring 
with a spring constant of 900 N/m. If the block moves 
5.00 cm to the right after impact, find (a) the speed at 
which the bullet emerges from the block and (b) the 
mechanical energy lost in the collision.

3.00 kg

k

Figure p 13.67

400 m/s

5.00 cm vS

Figure p 13.68

69.  A large block P executes horizontal simple harmonic 
motion as it slides across a frictionless surface with a 
frequency f 5 1.50 Hz. Block B rests on it, as shown in  
Figure P13.69 (page 480), and the coefficient of static 
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gravitation for an object at a distance r from the center 
of the Earth and show that the force on it is of the form  
of Hooke’s law, F 5 2kr, with an effective force constant of 
k 5 14

3 2prGm, where G is the gravitational constant.

 74. Figure P13.74 shows a crude model of an insect 
wing. The mass m represents the entire mass of the 
wing, which pivots about the fulcrum F. The spring 
represents the surrounding connective tissue. Motion 
of the wing corresponds to vibration of the spring. Sup-
pose the mass of the wing is 0.30 g and the effective 
spring constant of the tissue is 4.7 3 1024 N/m. If the 
mass m moves up and down a distance of 2.0 mm from 
its position of equilibrium, what is the maximum speed 
of the outer tip of the wing?

friction between the two 
is ms 5 0.600. What maxi-
mum amplitude of oscilla-
tion can the system have if 
block B is not to slip?

 70. A spring in a toy gun has a 
spring constant of 9.80 N/m 
and can be compressed 20.0 cm beyond the equilibrium 
position. A 1.00-g pellet resting against the spring is  
propelled forward when the spring is released. (a) Find 
the muzzle speed of the pellet. (b) If the pellet is fired 
horizontally from a height of 1.00 m above the floor, what 
is its range?

 71.  A light balloon filled with helium of density 
0.179 kg/m3 is tied to a light string of length L 5 3.00 m. 
The string is tied to the ground, forming an “inverted” 
simple pendulum (Fig. P13.71a). If the balloon is dis-
placed slightly from equilibrium, as in Figure P13.71b,  
(a) show that the motion is simple harmonic and  
(b) determine the period of the motion. Take the density 
of air to be 1.29 kg/m3. Hint: Use an analogy with the sim-
ple pendulum discussed in the text, and see Chapter 9.

m

B

P

s

Figure p 13.69

Air Air
He

He

L L
θ

gS gS

a b

Figure p 13.71

72. An object of mass m is connected to two rubber 
bands of length L, each under tension F, as in Figure 
P13.72. The object is displaced vertically by a small dis-
tance y. Assuming the tension does not change, show 
that (a) the restoring force is 2(2F/L)y and (b) the sys-
tem exhibits simple harmonic motion with an angular 
frequency v 5 !2F/mL.

y

L L

Figure p 13.72

73. Assume a hole is drilled 
through the center of the 
Earth. It can be shown that 
an object of mass m at a dis-
tance r from the center of 
the Earth is pulled toward 
the center only by the mate-
rial in the shaded portion of 
Figure P13.73. Assume Earth 
has a uniform density r. 
Write down Newton’s law of 

Earth

Tunnel

m
r

Figure p 13.73

1.50 cm3.00 mm

F

m

Figure p 13.74

75. A 2.00-kg block hangs without vibrating at the end of a 
spring (k 5 500 N/m) that is attached to the ceiling of 
an elevator car. The car is rising with an upward accel-
eration of g/3 when the acceleration suddenly ceases 
(at t 5 0). (a) What is the angular frequency of oscilla-
tion of the block after the acceleration ceases? (b) By 
what amount is the spring stretched during the time 
that the elevator car is accelerating?

76.   A system consists of a vertical spring with 
force constant k 5 1 250 N/m, length L 5 1.50 m, and 
object of mass m 5 5.00 kg attached to the end (Fig. 
P13.76). The object is placed at the level of the point 
of attachment with the spring unstretched, at posi-
tion yi  5 L, and then it is released so that it swings 
like a pendulum. (a) Write Newton’s second law sym-
bolically for the system as the object passes through 
its lowest point. (Note that at the lowest point, r 5  
L 2 yf .) (b) Write the conservation of energy equation 
symbolically, equating the total mechanical energies at 
the initial point and lowest point. (c) Find the coordinate 
position of the lowest point. (d) Will this pendulum’s 
period be greater or less than the period of a simple pen-
dulum with the same mass m and length L? Explain.

vS

y

yi � L

L � yf

yf

L
m

y � 0

Figure p 13.76
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Sound waves are the most important example of longitudinal waves. In this chapter we dis-
cuss the characteristics of sound waves: how they are produced, what they are, and how they 
travel through matter. We then investigate what happens when sound waves interfere with 
each other. The insights gained in this chapter will help you understand how we hear.

14.1    Producing a Sound Wave
Learning Objectives

1. Discuss the physical connection between sound waves and vibrating objects.

2. Explain the production of sound by molecular-scale compressions and rarefac-
tions caused by vibrating objects.

Whether it conveys the shrill whine of a jet engine or the soft melodies of a crooner, 
any sound wave has its source in a vibrating object. Musical instruments produce 
sounds in a variety of ways. The sound of a clarinet is produced by a vibrating reed, 
the sound of a drum by the vibration of the taut drumhead, the sound of a piano 
by vibrating strings, and the sound from a singer by vibrating vocal cords.

Sound waves are longitudinal waves traveling through a medium, such as air. 
In order to investigate how sound waves are produced, we focus our attention on 
the tuning fork, a common device for producing pure musical notes. A tuning fork 
consists of two metal prongs, or tines, that vibrate when struck. Their vibration 
disturbs the air near them, as shown in Figure 14.1 (page 482). (The amplitude of 
vibration of the tine shown in the figure has been greatly exaggerated for clarity.) 

Pianist Jamila Tekalli exploits 

the physics of vibrating strings 

to produce the great variety 

of sounds typical of a grand 

piano. Note that the strings are 

shorter on the left, where the 

higher frequencies originate, 

and longer on the right, 

where the lower frequencies 

are produced. The long bass 

strings are wound with wire to 

increase their linear density, 

which further lowers their 

natural frequencies. When 

any one string is struck by a 

hammer, other strings resonate 

in response, contributing to the 

piano’s characteristic sound.
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482  c hap t e r  14 | Sound

When a tine swings to the right, as in Figure 14.1a, the molecules in an element 
of air in front of its movement are forced closer together than normal. Such a 
region of high molecular density and high air pressure is called a compression.
This compression moves away from the fork like a ripple on a pond. When the tine 
swings to the left, as in Figure 14.1b, the molecules in an element of air to the right 
of the tine spread apart, and the density and air pressure in this region are then 
lower than normal. Such a region of reduced density is called a rarefaction (pro-
nounced “rare a fak9 shun”). Molecules to the right of the rarefaction in the figure 
move to the left. The rarefaction itself therefore moves to the right, following the 
previously produced compression.

As the tuning fork continues to vibrate, a succession of compressions and 
rarefactions forms and spreads out from it. The resultant pattern in the air is 
somewhat like that pictured in Figure 14.2a. We can use a sinusoidal curve to 
represent a sound wave, as in Figure 14.2b. Notice that there are crests in the 
sinusoidal wave at the points where the sound wave has compressions and troughs 
where the sound wave has rarefactions. The compressions and rarefactions of 
the sound waves are superposed on the random thermal motion of the atoms 
and molecules of the air (discussed in Chapter 10), so sound waves in gases travel 
at about the molecular rms speed.

14.2    Characteristics of Sound Waves
Learning Objectives

1. Define audible, infrasonic, and ultrasonic sound waves.

2. Discuss medical uses of ultrasound waves and describe their advantages over 
other techniques.

As already noted, the general motion of elements of air near a vibrating object is 
back and forth between regions of compression and rarefaction. This back-and-
forth motion of elements of the medium in the direction of the disturbance is 
characteristic of a longitudinal wave. The motion of the elements of the medium 
in a longitudinal sound wave is back and forth along the direction in which the 
wave travels. By contrast, in a transverse wave, the vibrations of the elements of 
the medium are at right angles to the direction of travel of the wave.

Categories of Sound Waves
Sound waves fall into three categories covering different ranges of frequencies. 
Audible waves are longitudinal waves that lie within the range of sensitivity of the 
human ear, approximately 20 to 20 000 Hz. Infrasonic waves are longitudinal 
waves with frequencies below the audible range. Earthquake waves are an example. 

Low-density
region

High-density
region

a

b

Figure 14.1  A vibrating tuning 
fork. (a) As the right tine of the 
fork moves to the right, a high-
density region (compression) of air 
is formed in front of its movement. 
(b) As the right tine moves to the 
left, a low-density region (rarefac-
tion) of air is formed behind it.

a

b

Figure 14.2  (a) As the tuning fork vibrates, a series of compres-
sions and rarefactions moves outward, away from the fork. (b) The 
crests of the wave correspond to compressions, the troughs to 
rarefactions.

Unless otherwise noted, all content on this page is © Cengage Learning.

37027_ch14_ptg01_hr_481-522.indd   482 31/08/13   11:33 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



14.2 | Characteristics of Sound Waves  483

Unless otherwise noted, all content on this page is © Cengage Learning.

Ultrasonic waves are longitudinal waves with frequencies above the audible range 
for humans and are produced by certain types of whistles. Animals such as dogs 
can hear the waves emitted by these whistles.

Applications of Ultrasound
Ultrasonic waves are sound waves with frequencies greater than 20 kHz. Because 
of their high frequency and corresponding short wavelengths, ultrasonic waves 
can be used to produce images of small objects and are currently in wide use in 
medical applications, both as a diagnostic tool and in certain treatments. Internal 
organs can be examined via the images produced by the reflection and absorp-
tion of ultrasonic waves. Although ultrasonic waves are far safer than x-rays, their 
images don’t always have as much detail. Certain organs, however, such as the liver 
and the spleen, are invisible to x-rays but can be imaged with ultrasonic waves.

Medical workers can measure the speed of the blood flow in the body with a 
device called an ultrasonic flow meter, which makes use of the Doppler effect (dis-
cussed in Section 14.6). The flow speed is found by comparing the frequency of 
the waves scattered by the flowing blood with the incident frequency.

Figure 14.3 illustrates the technique that produces ultrasonic waves for clinical 
use. Electrical contacts are made to the opposite faces of a crystal, such as quartz 
or strontium titanate. If an alternating voltage of high frequency is applied to 
these contacts, the crystal vibrates at the same frequency as the applied voltage, 
emitting a beam of ultrasonic waves. At one time, a technique like this was used 
to produce sound in nearly all headphones. This method of transforming electri-
cal energy into mechanical energy, called the piezoelectric effect, is reversible: If 
some external source causes the crystal to vibrate, an alternating voltage is pro-
duced across it. A single crystal can therefore be used to both generate and receive 
ultrasonic waves.

The primary physical principle that makes ultrasound imaging possible is the 
fact that a sound wave is partially reflected whenever it is incident on a boundary 
between two materials having different densities. If a sound wave is traveling in a 
material of density ri and strikes a material of density rt, the percentage of the inci-
dent sound wave intensity reflected, PR, is given by

PR 5 ari 2 rt

ri 1 rt
b

2

3 100

This equation assumes that the direction of the incident sound wave is perpendic-
ular to the boundary and that the speed of sound is approximately the same in the 
two materials. The latter assumption holds very well for the human body because 
the speed of sound doesn’t vary much in the organs of the body.

Physicians commonly use ultrasonic waves to observe fetuses. This technique 
presents far less risk than do x-rays, which deposit more energy in cells and can 
produce birth defects. First the abdomen of the mother is coated with a liquid, 
such as mineral oil. If that were not done, most of the incident ultrasonic waves 
from the piezoelectric source would be reflected at the boundary between the air 
and the mother’s skin. Mineral oil has a density similar to that of skin, and a very 
small fraction of the incident ultrasonic wave is reflected when ri < rt. The ultra-
sound energy is emitted in pulses rather than as a continuous wave, so the same 
crystal can be used as a detector as well as a transmitter. An image of the fetus is 
obtained by using an array of transducers placed on the abdomen. The reflected 
sound waves picked up by the transducers are converted to an electric signal, 
which is used to form an image on a fluorescent screen. Difficulties such as the 
likelihood of spontaneous abortion or of breech birth are easily detected with this 
technique. Fetal abnormalities such as spina bifida and water on the brain are also 
readily observed.

a pp Lica t iOn
Medical Uses of Ultrasound

Electrical
connections

Crystal

Direction of 
vibration

Figure 14.3  An alternating volt-
age applied to the faces of a piezo-
electric crystal causes the crystal to 
vibrate.

An ultrasound image of a human 
fetus in the womb.
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A relatively new medical application of ultrasonics is the cavitron ultrasonic surgi-
cal aspirator (CUSA). This device has made it possible to surgically remove brain 
tumors that were previously inoperable. The probe of the CUSA emits ultrasonic 
waves (at about 23 kHz) at its tip. When the tip touches a tumor, the part of the 
tumor near the probe is shattered and the residue can be sucked up (aspirated) 
through the hollow probe. Using this technique, neurosurgeons are able to remove 
brain tumors without causing serious damage to healthy surrounding tissue.

Ultrasound has been used not only for imaging purposes but also in surgery 
to destroy uterine fibroids and tumors of the prostate gland. A new ultrasound 
device developed in 2009 allows neurosurgeons to perform brain surgery without 
opening the skull or cutting the skin. High-intensity focused ultrasound (HIFU) 
is created with an array of a thousand ultrasound transducers placed on the 
patient’s skull. Each transducer can be individually focused on a selected region 
of the brain. The ultrasound heats the brain tissue in a small area and destroys it. 
Patients are conscious during the procedure and report momentary tingling or 
dizziness, sometimes a mild headache. A cooling system is required to keep the 
patient’s skull from overheating. The device can eliminate tumors and malfunc-
tioning neural tissue, and may have application in the treatment of Parkinson’s 
disease and strokes. It may also be possible to use HIFU to target the delivery of 
therapeutic drugs in specific brain locations.

Ultrasound is also used to break up kidney stones that are otherwise too large 
to pass. Previously, invasive surgery was often required.

Another interesting application of ultrasound is the ultrasonic ranging unit 
used in some cameras to provide an almost instantaneous measurement of the dis-
tance between the camera and the object to be photographed. The principal com-
ponent of this device is a crystal that acts as both a loudspeaker and a microphone. 
A pulse of ultrasonic waves is transmitted from the transducer to the object, which 
then reflects part of the signal, producing an echo that is detected by the device. 
The time interval between the outgoing pulse and the detected echo is electroni-
cally converted to a distance, because the speed of sound is a known quantity.

14.3    The Speed of Sound
Learning Objectives

1. Relate the speed of sound to physical properties of the propagation medium 
and its temperature.

2. Evaluate and apply the speed of sound in different media.

The speed of a sound wave in a fluid depends on the fluid’s compressibility and 
inertia. If the fluid has a bulk modulus B and an equilibrium density r, the speed 
of sound in it is

 v 5 Å
B
r

 [14.1]

Equation 14.1 also holds true for a gas. Recall from Chapter 9 that the bulk modu-
lus is defined as the ratio of the change in pressure, DP, to the resulting fractional 
change in volume, DV/V :

 B ;  2
DP

DV/V
 [14.2]

B is always positive because an increase in pressure (positive DP) results in a 
decrease in volume. Hence, the ratio DP/DV is always negative.

It’s interesting to compare Equation 14.1 with Equation 13.18 for the speed of 
transverse waves on a string, v 5 !F/m, discussed in Chapter 13. In both cases 

 a pp Lica t iOn
Cavitron Ultrasonic Surgical 

Aspirator

a pp Lica t iOn
High-intensity Focused Ultrasound 

(HIFU)

a pp Lica t iOn
Ultrasonic Ranging Unit for 

Cameras

 Speed of sound in a fluid c
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the wave speed depends on an elastic property of the medium (B or F) and on an 
inertial property of the medium (r or m). In fact, the speed of all mechanical waves 
follows an expression of the general form

 v 5 Å
elastic property

inertial property

Another example of this general form is the speed of a longitudinal wave in a 
solid rod, which is

v 5 Å
Y
r

 [14.3]

where Y is the Young’s modulus of the solid (see Eq. 9.3) and r is its density. This 
expression is valid only for a thin, solid rod.

Table 14.1 lists the speeds of sound in various media. The speed of sound is 
much higher in solids than in gases because the molecules in a solid interact more 
strongly with each other than do molecules in a gas. Striking a long steel rail with 
a hammer, for example, produces two sound waves, one moving through the rail 
and a slower wave moving through the air. A person with an ear pressed against 
the rail first hears the faster sound moving through the rail, then the sound mov-
ing through air. In general, sound travels faster through solids than liquids and 
faster through liquids than gases, although there are exceptions.

The speed of sound also depends on the temperature of the medium. For sound 
traveling through air, the relationship between the speed of sound and tempera-
ture is

 v 5 1331 m/s 2  Å
T

273 K
 [14.4]

where 331 m/s is the speed of sound in air at 0°C and T is the absolute (Kelvin) 
temperature. Using this equation, the speed of sound in air at 293 K (a typical 
room temperature) is approximately 343 m/s.

t able 14.1  Speeds of Sound 
in Various Media

Medium v (m/s)

Gases
 Air (0°C) 331
 Air (100°C) 386
 Hydrogen (0°C) 1 286
 Oxygen (0°C) 317
 Helium (0°C) 972
Liquids at 25°C 
 Water 1 493
 Methyl alcohol 1 143
 Sea water 1 533
Solidsa

Aluminum 6 420
Copper (rolled) 5 010

 Steel 5 950
 Lead (rolled) 1 960
 Synthetic rubber 1 600
aValues given are for propagation of 
longitudinal waves in bulk media. Speeds 
for longitudinal waves in thin rods are 
smaller, and speeds of transverse waves in 
bulk are smaller yet.

 ■ a pp LYi ng  ph Ys ic s  14.1 The Sounds Heard During a Storm

■ Quick Quiz

14.1 Which of the following actions will increase the speed of sound in air? 
(a) decreasing the air temperature (b) increasing the frequency of the sound 
(c) increasing the air temperature (d) increasing the amplitude of the sound wave 
(e) reducing the pressure of the air

How does lightning produce thunder, and what causes the 
extended rumble?

e Xp La n at i On  Assume you’re at ground level, and 
neglect ground reflections. When lightning strikes, a 
channel of ionized air carries a large electric current 
from a cloud to the ground. This results in a rapid tem-
perature increase of the air in the channel as the current 
moves through it, causing a similarly rapid expansion of 
the air. The expansion is so sudden and so intense that 
a tremendous disturbance—thunder—is produced in the 

air. The entire length of the channel produces the sound at 
essentially the same instant of time. Sound produced at the 
bottom of the channel reaches you first because that’s the 
point closest to you. Sounds from progressively higher por-
tions of the channel reach you at later times, resulting in 
an extended roar. If the lightning channel were a perfectly 
straight line, the roar might be steady, but the zigzag shape 
of the path results in the rumbling variation in loudness, 
with different quantities of sound energy from different 
segments arriving at any given instant. 
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 ■ e Xa Mp Le  14.1 Explosion over an Ice Sheet

g Oa L  Calculate time of travel for sound through various media.

pr Ob Le M  An explosion occurs 275 m above an 867-m-thick ice sheet that lies over ocean water. If the air temperature 
is 27.00°C, how long does it take the sound to reach a research vessel 1 250 m below the ice? Neglect any changes in the 
bulk modulus and density with temperature and depth. (Use Bice 5 9.2 3 109 Pa.)

s t r at e g Y  Calculate the speed of sound in air with Equation 14.4, and use d 5 vt to find the time needed for the sound 
to reach the surface of the ice. Use Equation 14.1 to compute the speed of sound in ice, again finding the time with the 
distance equation. Finally, use the speed of sound in salt water to find the time needed to traverse the water and then 
sum the three times.

s OLUti On
Calculate the speed of sound in air at 27.00°C, which is 
equivalent to 266 K:

vair 5 1331 m/s 2Å
T

273 K
5 1331 m/s 2Å

266 K
273 K

5 327 m/s

Calculate the travel time through the air: t air 5
d
vair

5
275 m

327 m/s
5 0.841 s

Compute the speed of sound in ice, using the bulk 
modulus and density of ice:

v ice 5 Å
B
r

5 Å
9.2 3 109 Pa
917 kg/m3 5 3.2 3 103 m/s

re Mar Ks  Notice that the speed of sound is highest in solid ice, second highest in liquid water, and slowest in air. The 
speed of sound depends on temperature, so the answer would have to be modified if the actual temperatures of ice and 
the sea water were known. At 0°C, for example, the speed of sound in sea water falls to 1 449 m/s.

QUes t i On  14.1  Is the speed of sound in rubber higher or lower than the speed of sound in aluminum? Explain.

e Xe rc i s e  14.1  Compute the speed of sound in the following substances at 273 K: (a) a thin lead rod (Y 5 1.6 3 1010 Pa), 
(b) mercury (B 5 2.8 3 1010 Pa), and (c) air at 215.0°C.

a ns We r s  (a) 1.2 3 103 m/s (b) 1.4 3 103 m/s (c) 322 m/s

Compute the travel time through the ice: t ice 5
d
v ice

5
867 m

3 200 m/s
5 0.27 s

Compute the travel time through the ocean water: twater 5
d

vwater
5

1 250 m
1 533 m/s

5 0.815 s

Sum the three times to obtain the total time of 
propagation:

ttot 5 tair 1 tice 1 twater 5 0.841 s 1 0.27 s 1 0.815 s

5    1.93 s

14.4     Energy and Intensity  
of Sound Waves
Learning Objectives

1. Define the average intensity of a wave, the threshold of hearing, and the 
threshold of pain. 

2. Define sound intensity level (decibel scale) and discuss the reason it’s required.

3. Apply the equations for sound intensity and decibel level to multiple sources 
of sound waves.

As the tines of a tuning fork move back and forth through the air, they exert a 
force on a layer of air and cause it to move. In other words, the tines do work on 
the layer of air. That the fork pours sound energy into the air is one reason the 
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vibration of the fork slowly dies out. (Other factors, such as the energy lost to fric-
tion as the tines bend, are also responsible for the lessening of movement.)

The average intensity I of a wave on a given surface is defined as the rate at 
which energy flows through the surface, DE/Dt, divided by the surface area A:

I ;  
1
A

 
DE
Dt

 [14.5]

where the direction of energy flow is perpendicular to the surface at every 
point.

SI unit: watt per meter squared (W/m2)

A rate of energy transfer is power, so Equation 14.5 can be written in the alter-
nate form

 I ;  
power
area

5
P
A

 [14.6]

where P is the sound power passing through the surface, measured in watts, and 
the intensity again has units of watts per square meter.

The faintest sounds the human ear can detect at a frequency of 1 000 Hz 
have an intensity of about 1 3 10212 W/m2. This intensity is called the threshold 
of hearing. The loudest sounds the ear can tolerate have an intensity of about 
1 W/m2 (the threshold of pain). At the threshold of hearing, the increase in 
pressure in the ear is approximately 3 3 1025 Pa over normal atmospheric pres-
sure. Because atmospheric pressure is about 1 3 105 Pa, this means the ear can 
detect pressure fluctuations as small as about 3 parts in 1010! The maximum dis-
placement of an air molecule at the threshold of hearing is about 1 3 10211 m,  
a remarkably small number! If we compare this displacement with the diameter 
of a molecule (about 10210 m), we see that the ear is an extremely sensitive detec-
tor of sound waves.

The loudest sounds the human ear can tolerate at 1 kHz correspond to a pres-
sure variation of about 29 Pa away from normal atmospheric pressure, with a maxi-
mum displacement of air molecules of 1 3 1025 m.

Intensity Level in Decibels
The loudest tolerable sounds have intensities about 1.0 3 1012 times greater than 
the faintest detectable sounds. The most intense sound, however, isn’t perceived 
as being 1.0 3 1012 times louder than the faintest sound because the sensation of 
loudness is approximately logarithmic in the human ear. (For a review of loga-
rithms, see Section A.3, heading G, in Appendix A.) The relative intensity of a 
sound is called the intensity level or decibel level, defined by

 b ;  10 log a I
I0
b  [14.7]

The constant I0 5 1.0 3 10212 W/m2 is the reference intensity, the sound intensity 
at the threshold of hearing, I is the intensity, and b is the corresponding inten-
sity level measured in decibels (dB). (The word decibel, which is one-tenth of a bel, 
comes from the name of the inventor of the telephone, Alexander Graham Bell 
(1847–1922).)

To get a feel for various decibel levels, we can substitute a few representative 
numbers into Equation 14.7, starting with I 5 1.0 3 10212 W/m2:

b 5 10 log a1.0 3 10212 W/m2

1.0 3 10212 W/m2b 5 10 log  11 2 5 0 dB

b Intensity of a wave

b Intensity level

t ip 14.1  Intensity Versus 
Intensity Level
Don’t confuse intensity with 
intensity level. Intensity is a physi-
cal quantity with units of watts 
per meter squared; intensity level, 
or decibel level, is a convenient 
mathematical transformation of 
intensity to a logarithmic scale.
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From this result, we see that the lower threshold of human hearing has been cho-
sen to be zero on the decibel scale. Progressing upward by powers of ten yields

b 5 10 log a1.0 3 10211 W/m2

1.0 3 10212 W/m2b 5 10 log  110 2 5 10 dB

b 5 10 log a1.0 3 10210 W/m2

1.0 3 10212 W/m2b 5 10 log  1100 2 5 20 dB

Notice the pattern: Multiplying a given intensity by ten adds 10 db to the intensity 
level. This pattern holds throughout the decibel scale. For example, a 50-dB sound 
is 10 times as intense as a 40-dB sound, whereas a 60-dB sound is 100 times as 
intense as a 40-dB sound.

On this scale, the threshold of pain (I 5 1.0 W/m2) corresponds to an intensity 
level of b 5 10 log (1/1 3 10212) 5 10 log (1012) 5 120 dB. Nearby jet airplanes can 
create intensity levels of 150 dB, and subways and riveting machines have levels of 
90-100 dB. The electronically amplified sound heard at rock concerts can attain 
levels of up to 120 dB, the threshold of pain. Exposure to such high intensity lev-
els can seriously damage the ear. Earplugs are recommended whenever prolonged 
intensity levels exceed 90 dB. Recent evidence suggests that noise pollution, which 
is common in most large cities and in some industrial environments, may be a con-
tributing factor to high blood pressure, anxiety, and nervousness. Table 14.2 gives 
the approximate intensity levels of various sounds.

 ■ e Xa Mp Le  14.2 A Noisy Grinding Machine

g Oa L  Working with watts and decibels.

pr Ob Le M  A noisy grinding machine in a factory produces a sound intensity of 1.00 3 1025 W/m2 at a certain loca-
tion. Calculate (a) the decibel level of this machine at that point and (b) the new intensity level when a second, identical 
machine is added to the factory. (c) A certain number of additional such machines are put into operation alongside these 
two machines. When all the machines are running at the same time the decibel level is 77.0 dB. Find the sound intensity. 
(Assume, in each part, that the sound intensity is measured at the same point, equidistant from all the machines.)

s t r at e g Y  Parts (a) and (b) require substituting into the decibel formula, Equation 14.7, with the intensity in part (b) 
twice the intensity in part (a). In part (c), the intensity level in decibels is given, and it’s necessary to work backwards, 
using the inverse of the logarithm function, to get the intensity in watts per meter squared.

s OLUti On

t able 14.2  Intensity Levels 
in Decibels for Different 
Sources

Source of Sound b(dB)

Nearby jet airplane 150
Jackhammer, machine 130
 gun 
Siren, rock concert 120
Subway, power mower 100
Busy traffic  80
Vacuum cleaner  70
Normal conversation  50
Mosquito buzzing  40
Whisper  30
Rustling leaves  10
Threshold of hearing 0

(b) Calculate the new intensity level when an additional 
machine is added.

Substitute twice the intensity of part (a) into the decibel 
formula:

b 5 10 log a 2.00 3 1025 W/m2

1.00 3 10212 W/m2b 5   73.0 dB

(c) Find the intensity corresponding to an intensity level 
of 77.0 dB.

Substitute 77.0 dB into the decibel formula and divide 
both sides by 10:

b 5 77.0 dB 5 10 log a I
I0
b

7.70 5 log a I
10212 W/m2b

(a) Calculate the intensity level of the single grinder.

Substitute the intensity into the decibel formula: b 5 10 log a 1.00 3 1025 W/m2

1.00 3 10212 W/m2b 5 10 log  1107 2

5   70.0 dB

Make each side the exponent of 10. On the right-hand 
side, 10log u 5 u, by definition of base 10 logarithms.

107.70 5 5.01 3 107 5
I

1.00 3 10212 W/m2

I 5    5.01 3 1025 W/m2
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re Mar Ks  The answer is five times the intensity of the single grinder, so in part (c) there are five such machines operat-
ing simultaneously. Because of the logarithmic definition of intensity level, large changes in intensity correspond to small 
changes in intensity level.

QUes t i On  14.2  By how many decibels is the sound intensity level raised when the sound intensity is doubled?

e Xe rc i s e  14.2  Suppose a manufacturing plant has an average sound intensity level of 97.0 dB created by 25 identi-
cal machines. (a) Find the total intensity created by all the machines. (b) Find the sound intensity created by one such 
machine. (c) What’s the sound intensity level if five such machines are running?

a ns We r s  (a) 5.01 3 1023 W/m2 (b) 2.00 3 1024 W/m2 (c) 90.0 dB

Federal OSHA regulations now demand that no office or factory worker be 
exposed to noise levels that average more than 85 dB over an 8-h day. From a 
management point of view, here’s the good news: one machine in the factory 
may produce a noise level of 70 dB, but a second machine, though doubling the 
total intensity, increases the noise level by only 3 dB. Because of the logarith-
mic nature of intensity levels, doubling the intensity doesn’t double the intensity 
level; in fact, it alters it by a surprisingly small amount. This means that equip-
ment can be added to the factory without appreciably altering the intensity level 
of the environment.

Now here’s the bad news: as you remove noisy machinery, the intensity level isn’t 
lowered appreciably. In Exercise 14.2, reducing the intensity level by 7 dB would 
require the removal of 20 of the 25 machines! To lower the level another 7 dB 
would require removing 80% of the remaining machines, in which case only one 
machine would remain.

14.5    Spherical and Plane Waves
Learning Objectives

1. Discuss wave fronts and rays and apply them to both spherical waves and 
plane waves.

2. Relate the intensity of a spherical sound wave to the distance from its point 
source.

If a small spherical object oscillates so that its radius changes periodically with 
time, a spherical sound wave is produced (Fig. 14.4). The wave moves outward 
from the source at a constant speed.

Because all points on the vibrating sphere behave in the same way, we con-
clude that the energy in a spherical wave propagates equally in all directions. This 
means that no one direction is preferred over any other. If Pav is the average power 
emitted by the source, then at any distance r from the source, this power must be 
distributed over a spherical surface of area 4pr 2, assuming no absorption in the 
medium. (Recall that 4pr 2 is the surface area of a sphere.) Hence, the intensity of 
the sound at a distance r from the source is

 I 5
average power

area
5

Pav

A
5

Pav

4pr 2  [14.8]

This equation shows that the intensity of a wave decreases with increasing distance 
from its source, as you might expect. The fact that I varies as 1/r 2 is a result of the 
assumption that the small source (sometimes called a point source) emits a spheri-
cal wave. (In fact, light waves also obey this so-called inverse-square relationship.) 
Because the average power is the same through any spherical surface centered at 

a pp Lica t iOn
OSHA Noise-Level Regulations

r2

r1

Spherical wave front

Figure 14.4  A spherical wave 
propagating radially outward from 
an oscillating sphere. The intensity 
of the wave varies as 1/r 2.
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the source, we see that the intensities at distances r1 and r2 (Fig. 14.4) from the 
center of the source are

I1 5
Pav

4pr1 

2 I2 5
Pav

4pr2 

2

The ratio of the intensities at these two spherical surfaces is

I1

I2
5

r2 

2
 

r1 

2 [14.9]

It’s useful to represent spherical waves graphically with a series of circular arcs 
(lines of maximum intensity) concentric with the source representing part of a 
spherical surface, as in Figure 14.5. We call such an arc a wave front. The distance 
between adjacent wave fronts equals the wavelength l. The radial lines pointing 
outward from the source and perpendicular to the arcs are called rays.

Now consider a small portion of a wave front that is at a great distance (relative 
to l) from the source, as in Figure 14.6. In this case the rays are nearly parallel to 
each other and the wave fronts are very close to being planes. At distances from the 
source that are great relative to the wavelength, therefore, we can approximate the 
wave front with parallel planes, called plane waves. Any small portion of a spherical 
wave that is far from the source can be considered a plane wave. Figure 14.7 illus-
trates a plane wave propagating along the x-axis. If the positive x-direction is taken 
to be the direction of the wave motion (or ray) in this figure, then the wave fronts 
are parallel to the plane containing the y- and z-axes.

 ■ e Xa Mp Le  14.3 Intensity Variations of a Point Source

g Oa L Relate sound intensities and their distances from a point source.

pr Ob Le M A small source emits sound waves with a power output of 80.0 W. (a) Find the intensity 3.00 m from the 
source. (b) At what distance would the intensity be one-fourth as much as it is at r 5 3.00 m? (c) Find the distance at which 
the sound intensity level is 40.0 dB.

s t r at e g Y The source is small, so the emitted waves are spherical and the intensity in part (a) can be found by sub-
stituting values into Equation 14.8. Part (b) involves solving for r in Equation 14.8 followed by substitution (although  
Eq. 14.9 can be used instead). In part (c), convert from the sound intensity level to the intensity in W/m2, using Equation 
14.7. Then substitute into Equation 14.9 (although Eq. 14.8 could be used instead) and solve for r2.

Ray

Source

l

Wave front

The rays are radial lines pointing 
outward from the source, 
perpendicular to the wave fronts.

Figure 14.5  Spherical waves emit-
ted by a point source. The circular 
arcs represent the spherical wave 
fronts concentric with the source.

Rays

Wave fronts

Figure 14.6  Far away from a point 
source, the wave fronts are nearly 
parallel planes and the rays are 
nearly parallel lines perpendicular 
to the planes. A small segment of a 
spherical wave front is approximately 
a plane wave.

y

x

z
λ

v

Plane 
wave front

The wave fronts are planes 
parallel to the yz -plane.

Figure 14.7  A representation of 
a plane wave moving in the positive 
x -direction with a speed v.
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s OLUti On
(a) Find the intensity 3.00 m from the source.

Substitute Pav 5 80.0 W and r 5 3.00 m into 
Equation 14.8:

I 5
Pav

4pr 2 5
80.0 W

4p 13.00 m 22 5  0.707 W/m2

(b) At what distance would the intensity be one-fourth as 
much as it is at r 5 3.00 m?

Take I 5 (0.707 W/m2)/4, and solve for r in Equation 14.8: r 5 a Pav

4pI
b

1/2

5 c 80.0 W
4p 10.707 W/m2 2/4.0

d
1/2

5  6.00 m

(c) Find the distance at which the intensity level is 40.0 dB.

Convert the intensity level of 40.0 dB to an intensity in  
W/m2 by solving Equation 14.7 for I:

40.0 5 10 log a I
I0
b S 4.00 5 log a I

I0
b

104.00 5
I
I0

S I 5 104.00I0 5 1.00 3 1028 W/m2

Solve Equation 14.9 for r2
2, substitute the intensity and 

the result of part (a), and take the square root:

I1

I2
5

r2
2

r1
2

S r2
2 5 r1

2 
I1

I2

r2
2 5 13.00 m 22 a 0.707 W/m2

1.00 3 1028 W/m2b
r2 5    2.52 3 104 m

re Mar Ks  Once the intensity is known at one position a certain distance away from the source, it’s easier to use 
Equation 14.9 rather than Equation 14.8 to find the intensity at any other location. This is particularly true for part 
(b), where, using Equation 14.9, we can see right away that doubling the distance reduces the intensity to one- fourth 
its previous value.

QUes t i On  14.3  The power output of a sound system is increased by a factor of 25. By what factor should you adjust 
your distance from the speakers so the sound intensity is the same?

e Xe rc i s e  14.3  Suppose a certain jet plane creates an intensity level of 125 dB at a distance of 5.00 m. What intensity 
level does it create on the ground directly underneath it when flying at an altitude of 2.00 km?

a ns We r  73.0 dB

14.6    The Doppler Effect
Learning Objectives

1. Discuss the physical origins of the Doppler effect.

2. Apply the equations for Doppler-shifted frequencies to moving sources and 
observers of sound.

3. Discuss the physical conditions that result in a shock wave and define the Mach 
number.

If a car or truck is moving while its horn is blowing, the frequency of the sound you 
hear is higher as the vehicle approaches you and lower as it moves away from you. 
This phenomenon is one example of the Doppler effect, named for Austrian physi-
cist Christian Doppler (1803–1853), who discovered it. The same effect is heard if 
you’re on a motorcycle and the horn is stationary: the frequency is higher as you 
approach the source and lower as you move away.

Although the Doppler effect is most often associated with sound, it’s common 
to all waves, including light.
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In deriving the Doppler effect, we assume the air is stationary and that all speed 
measurements are made relative to this stationary medium. In the general case, 
the speed of the observer vO, the speed of the source vS, and the speed of sound v 
are all measured relative to the medium in which the sound is propagated.

Case 1: The Observer Is Moving Relative to a Stationary Source
In Figure 14.8 an observer is moving with a speed of vO toward the source (consid-
ered a point source), which is at rest (vS 5 0).

We take the frequency of the source to be fS, the wavelength of the source to be 
lS, and the speed of sound in air to be v. If both observer and source are stationary, 
the observer detects fS wave fronts per second. (That is, when vO 5 0 and vS 5 0, 
the observed frequency fO equals the source frequency fS.) When moving toward the 
source, the observer moves a distance of vOt in t seconds. During this interval, the 
observer detects an additional number of wave fronts. The number of extra wave 
fronts is equal to the distance traveled, vOt, divided by the wavelength lS:

Additional wave fronts detected 5
vOt
lS

Divide this equation by the time t to get the number of additional wave fronts 
detected per second, vO/lS. Hence, the frequency heard by the observer is increased to

fO 5 fS 1
vO

lS

Substituting lS 5 v/fS into this expression for fO, we obtain

 fO 5 fS a
v 1 vO

v b  [14.10]

When the observer is moving away from a stationary source (Fig. 14.9), the observed 
frequency decreases. A derivation yields the same result as Equation 14.10, but 
with v 2 vO in the numerator. Therefore, when the observer is moving away from 
the source, substitute 2vO for vO in Equation 14.10.

Case 2: The Source Is Moving Relative to a Stationary Observer
Now consider a source moving toward an observer at rest, as in Figure 14.10. Here, 
the wave fronts passing observer A are closer together because the source is mov-
ing in the direction of the outgoing wave. As a result, the wavelength lO measured 

Observer
O

v

S
vS = 0

Source

Sλ

vO

Figure 14.8 An observer moving 
with a speed vO toward a stationary 
point source (S) hears a frequency 
fO that is greater than the source fre-
quency fS.

Observer
O

vO
v

S
vS = 0

Source

Sλ

Figure 14.9  An observer mov-
ing with a speed of vO away from a 
stationary source hears a frequency 
fO that is lower than the source fre-
quency fS.

Figure 14.10 (a) A source S mov-
ing with speed vS toward stationary 
observer A and away from stationary 
observer B. Observer A hears an 
increased frequency, and observer B 
hears a decreased frequency. (b) The 
Doppler effect in water, observed in 
a ripple tank.
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by observer A is shorter than the wavelength lS of the source at rest. During each 
vibration, which lasts for an interval T (the period), the source moves a distance 
vST 5 vS/fS and the wavelength is shortened by that amount. The observed wave-
length is therefore given by

lO 5 lS 2
vS

fS

Because lS 5 v/fS, the frequency observed by A is

fO 5
v

lO
5

v

lS 2
vS

fS

5
v

v
fS

2
vS

fS

or

fO 5 fS a v
v 2 vS

b  [14.11]

As expected, the observed frequency increases when the source is moving 
toward the observer. When the source is moving away from an observer at rest, 
the minus sign in the denominator must be replaced with a plus sign, so the  
factor becomes (v 1 vS).

General Case
When both the source and the observer are in motion relative to Earth, Equations 
14.10 and 14.11 can be combined to give

fO 5 fS a
v 1 vO

v 2 vS
b  [14.12]

In this expression, the signs for the values substituted for vO and vS depend on 
the direction of the velocity. When the observer moves toward the source, a positive 
speed is substituted for vO; when the observer moves away from the source, a nega-
tive speed is substituted for vO. Similarly, a positive speed is substituted for vS when 
the source moves toward the observer, a negative speed when the source moves away 
from the observer.

Choosing incorrect signs is the most common mistake made in working a Dop-
pler effect problem. The following rules may be helpful: The word toward is associ-
ated with an increase in the observed frequency; the words away from are associated 
with a decrease in the observed frequency.

These two rules derive from the physical insight that when the observer is 
moving toward the source (or the source toward the observer), there is a smaller 
observed period between wave crests, hence a larger frequency, with the reverse 
holding—a smaller observed frequency—when the observer is moving away from 
the source (or the source away from the observer). Keep the physical insight in 
mind whenever you’re in doubt about the signs in Equation 14.12: Adjust them as 
necessary to get the correct physical result.

The second most common mistake made in applying Equation 14.12 is to acci-
dentally reverse numerator and denominator. Some find it helpful to remember 
the equation in the following form:

fO
v 1 vO

5
fS

v 2 vS

The advantage of this form is its symmetry: both sides are very nearly the same, 
with O’s on the left and S’s on the right. Forgetting which side has the plus sign 
and which has the minus sign is not a serious problem as long as physical insight is 
used to check the answer and make adjustments as necessary.

t ip 14.2  Doppler Effect 
Doesn’t Depend on Distance
The sound from a source approach-
ing at constant speed will increase 
in intensity, but the observed 
(elevated) frequency will remain 
unchanged. The Doppler effect 
doesn’t depend on distance.

b  Doppler shift: observer and 
source in motion
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■ Quick Quiz

14.2  Suppose you’re on a hot air balloon ride, carrying a buzzer that emits a sound 
of frequency f. If you accidentally drop the buzzer over the side while the balloon 
is rising at constant speed, what can you conclude about the sound you hear as the 
buzzer falls toward the ground? (a) The frequency and intensity increase. (b) The 
frequency decreases and the intensity increases. (c) The frequency decreases and 
the intensity decreases. (d) The frequency remains the same, but the intensity 
decreases.

■ a pp LYi ng ph Ys ic s  14.2 Out-of-Tune Speakers

Suppose you place your stereo speakers far apart and run 
past them from right to left or left to right. If you run rap-
idly enough and have excellent pitch discrimination, you 
may notice that the music playing seems to be out of tune 
when you’re between the speakers. Why?

e Xp La n at i On  When you are between the speakers, 
you are running away from one of them and toward the 

other, so there is a Doppler shift downward for the sound 
from the speaker behind you and a Doppler shift upward 
for the sound from the speaker ahead of you. As a result, 
the sound from the two speakers will not be in tune. A sim-
ple calculation shows that a world-class sprinter could run 
fast enough to generate about a semitone difference in the 
sound from the two speakers. ■

 ■ e Xa Mp Le  14.4 Listen, but Don’t Stand on the Track

g Oa L  Solve a Doppler shift problem when only the source is moving.

pr Ob Le M  A train moving at a speed of 40.0 m/s sounds its whistle, which has a frequency of 5.00 3 102 Hz. Determine 
the frequency heard by a stationary observer as the train approaches the observer. The ambient temperature is 24.0°C.

s t r at e g Y  Use Equation 14.4 to get the speed of sound at the ambient temperature, then substitute values into Equa-
tion 14.12 for the Doppler shift. Because the train approaches the observer, the observed frequency will be larger. Choose 
the sign of vS to reflect this fact.

s OLUti On
Use Equation 14.4 to calculate the speed of sound in air 
at T 5 24.0°C:

v 5 1331 m/s 2  Å
T

273 K

5 1331 m/s 2  Å
1273 1 24.0 2  K

273 K
5  345 m/s

The observer is stationary, so vO 5 0. The train is 
moving toward the observer, so vS 5 140.0 m/s (positive). 
Substitute these values and the speed of sound into the 
Doppler shift equation:

fO 5 fS a
v 1 vO

v 2 vS
b

5 15.00 3 102 Hz 2  a 345 m/s
345 m/s 2 40.0 m/s

b
5    566 Hz

re Mar Ks  If the train were going away from the observer, vS 5 240.0 m/s would have been chosen instead.

QUes t i On  14.4  Does the Doppler shift change due to temperature variations? If so, why? For typical daily variations 
in temperature in a moderate climate, would any change in the Doppler shift be best characterized as (a) nonexistent, 
(b) small, or (c) large?

e Xe rc i s e  14.4  Determine the frequency heard by the stationary observer as the train recedes from the observer.

a ns We r  448 Hz
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 ■ e Xa Mp Le  14.5 The Noisy Siren

g Oa L  Solve a Doppler shift problem when both the source and observer are moving.

pr Ob Le M  An ambulance travels down a highway at a speed of 75.0 mi/h, its siren emitting sound at a frequency of 
4.00 3 102 Hz. What frequency is heard by a passenger in a car traveling at 55.0 mi/h in the opposite direction as the car 
and ambulance (a) approach each other and (b) pass and move away from each other? Take the speed of sound in air to be 
v 5 345 m/s.

s t r at e g Y  Aside from converting mi/h to m/s, this problem only requires substitution into the Doppler formula, but 
two signs must be chosen correctly in each part. In part (a) the observer moves toward the source and the source moves 
toward the observer, so both vO and vS should be chosen to be positive. Switch signs after they pass each other.

s OLUti On
Convert the speeds from mi/h to m/s: vS 5 175.0 mi/h 2  a0.447 m/s

1.00 mi/h
b 5 33.5 m/s

vO 5 155.0 mi/h 2  a0.447 m/s
1.00 mi/h

b 5 24.6 m/s

(a) Compute the observed frequency as the ambulance 
and car approach each other.

Each vehicle goes toward the other, so substitute  
vO 5 124.6 m/s and vS 5 133.5 m/s into the Doppler 
shift formula:

fO 5 fS  a
v 1 vO

v 2 vS
b

5 14.00 3 102 Hz 2  a345 m/s 1 24.6 m/s
345 m/s 2 33.5 m/s

b 5  475 Hz

(b) Compute the observed frequency as the ambulance 
and car recede from each other.

Each vehicle goes away from the other, so substitute  
vO 5 224.6 m/s and vS 5 233.5 m/s into the Doppler 
shift formula:

fO 5 fS a
v 1 vO

v 2 vS
b

5 14.00 3 102 Hz 2  a 345 m/s 1 1224.6 m/s 2
345 m/s 2 1233.5 m/s 2 b

5    339 Hz

re Mar Ks  Notice how the signs were handled. In part (b) the negative signs were required on the speeds because both 
observer and source were moving away from each other. Sometimes, of course, one of the speeds is negative and the other 
is positive.

QUes t i On  14.5  Is the Doppler shift affected by sound intensity level?

e Xe rc i s e  14.5  Repeat this problem, but assume the ambulance and car are going the same direction, with the ambu-
lance initially behind the car. The speeds and the frequency of the siren are the same as in the example. Find the fre-
quency heard by the observer in the car (a) before and (b) after the ambulance passes the car. Note: The highway patrol 
subsequently gives the driver of the car a ticket for not pulling over for an emergency vehicle!

a ns We r s  (a) 411 Hz (b) 391 Hz

Shock Waves
What happens when the source speed vS exceeds the wave velocity v? Figure 14.11 
(page 496) describes this situation graphically. The circles represent spherical wave 
fronts emitted by the source at various times during its motion. At t 5 0, the source 
is at point S0, and at some later time t, the source is at point Sn. In the interval t, the 
wave front centered at S0 reaches a radius of vt. In this same interval, the source trav-
els to Sn, a distance of vSt. At the instant the source is at Sn, the waves just beginning 
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to be generated at this point have wave fronts of zero radius. The line drawn from 
Sn to the wave front centered on S0 is tangent to all other wave fronts generated at 
intermediate times. All such tangent lines lie on the surface of a cone. The angle u 
between one of these tangent lines and the direction of travel is given by

sin u 5
v
vs

The ratio vS/v is called the Mach number. The conical wave front produced when 
vS . v (supersonic speeds) is known as a shock wave. An interesting example of a 
shock wave is the V-shaped wave front produced by a boat (the bow wave) when the 
boat’s speed exceeds the speed of the water waves (Fig. 14.12).

Jet aircraft and space shuttles traveling at supersonic speeds produce shock waves 
that are responsible for the loud explosion, or sonic boom, heard on the ground. A 
shock wave carries a great deal of energy concentrated on the surface of the cone, 
with correspondingly great pressure variations. Shock waves are unpleasant to hear 
and can damage buildings when aircraft fly supersonically at low altitudes. In fact, 
an airplane flying at supersonic speeds produces a double boom because two shock 
waves are formed: one from the nose of the plane and one from the tail (Fig. 14.13).

■ Quick Quiz

14.3  As an airplane flying with constant velocity moves from a cold air mass into a 
warm air mass, does the Mach number (a) increase, (b) decrease, or (c) remain the 
same?

vSt

vS

S1 S2S

Sn

0

vt
u

0
1

2

The envelope of the wave 
fronts forms a cone with 
half-angle of sin u � v/vS.

Figure 14.11  A representation 
of a shock wave, produced when a 
source moves from S0 to Sn with a 
speed vS that is greater than the wave 
speed v in that medium. 

Figure 14.12  The V-shaped bow 
wave is formed because the boat trav-
els at a speed greater than the speed 
of the water waves. A bow wave is 
analogous to a shock wave formed by 
a jet traveling faster than sound.
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Figure 14.13  (a) The two shock waves produced by the nose and tail of a jet 
airplane traveling at supersonic speed. (b) A shock wave due to a jet traveling at 
the speed of sound is made visible as a fog of water vapor.
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The large pressure variation 
in the shock wave condenses 
water vapor into droplets.
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14.7    Interference of Sound Waves
Learning Objectives

1. Describe the physical conditions required for constructive and for destructive 
interference of sound waves.

2. Apply the concepts of constructive and destructive interference to problems 
involving two wave sources.

Sound waves can be made to interfere with each other, a phenomenon that can 
be demonstrated with the device shown in Figure 14.14. Sound from a loud-
speaker at S is sent into a tube at P, where there is a T-shaped junction. The 
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sound splits and follows two separate pathways, indicated by the red arrows. 
Half of the sound travels upward, half downward. Finally, the two sounds merge 
at an opening where a listener places her ear. If the two paths r1 and r2 have 
the same length, waves that enter the junction will separate into two halves, 
travel the two paths, and then combine again at the ear. This reuniting of the 
two waves produces constructive interference, and the listener hears a loud sound. 
If the upper path is adjusted to be one full wavelength longer than the lower 
path, constructive interference of the two waves occurs again, and a loud sound  
is detected at the receiver. We have the following result: If the path difference 
r2 2 r1 is zero or some integer multiple of wavelengths, then constructive 
interference occurs and

 r2 2 r1 5 nl  (n 5 0, 1, 2, . . .) [14.13]

Suppose, however, that one of the path lengths, r2, is adjusted so that the upper 
path is half a wavelength longer than the lower path r1. In this case an entering 
sound wave splits and travels the two paths as before, but now the wave along the 
upper path must travel a distance equivalent to half a wavelength farther than 
the wave traveling along the lower path. As a result, the crest of one wave meets 
the trough of the other when they merge at the receiver, causing the two waves 
to cancel each other. This phenomenon is called totally destructive interference, and 
no sound is detected at the receiver. In general, if the path difference r2 2 r1 is 
1
2, 1

1
2, 2

1
2  . . .  wavelengths, destructive interference occurs and

 r2 2 r1 5 1n 1 1
2 2l   (n 5 0, 1, 2, . . .) [14.14]

Nature provides many other examples of interference phenomena, most nota-
bly in connection with light waves, described in Chapter 24.

In connecting the wires between your stereo system and loudspeakers, you may 
notice that the wires are usually color coded and that the speakers have positive and 
negative signs on the connections. The reason for this is that the speakers need to be 
connected with the same “polarity.” If they aren’t, then the same electrical signal fed 
to both speakers will result in one speaker cone moving outward at the same time 
that the other speaker cone is moving inward. In this case, the sound leaving the two 
speakers will be 180° out of phase with each other. If you are sitting midway between 
the speakers, the sounds from both speakers travel the same distance and preserve 
the phase difference they had when they left. In an ideal situation, for a 180° phase 
difference, you would get complete destructive interference and no sound! In reality, 
the cancellation is not complete and is much more significant for bass notes (which 
have a long wavelength) than for the shorter wavelength treble notes. Nevertheless, 
to avoid a significant reduction in the intensity of bass notes, the color-coded wires 
and the signs on the speaker connections should be carefully noted.

b   Condition for destructive 
interference

A sound wave from the speaker 
(S) enters the tube and splits 
into two parts at point P.

Path length r1

Path length r2

R

S

P

The two waves combine at the 
opposite side and are detected 
at the receiver (R).

Figure 14.14  An acoustical system 
for demonstrating interference of 
sound waves. The upper path length 
is varied by the sliding section.

■ e Xa Mp Le  14.6 Two Speakers Driven by the Same Source

g Oa L  Use the concept of interference to compute a frequency.

pr Ob Le M  Two speakers placed 3.00 m apart are driven 
by the same oscillator (Fig. 14.15). A listener is originally 
at point O, which is located 8.00 m from the center of the 
line connecting the two speakers. The listener then walks to 
point P, which is a perpendicular distance 0.350 m from O, 
before reaching the first minimum in sound intensity. What is 
the frequency of the oscillator? Take the speed of sound in 
air to be vs 5 343 m/s.

3.00 m

8.00 m 

r2

8.00 m 

r1 0.350 m 

1.85 m 

P
1.15 m 

O

Figure 14.15  (Example 14.6) Two loudspeakers driven by the 
same source can produce interference.

(Continued)

t ip 14.3  Do Waves Really 
Interfere?
In popular usage, to interfere 
means “to come into conflict 
with” or “to intervene to affect an 
outcome.” This differs from its 
use in physics, where waves pass 
through each other and interfere, 
but don’t affect each other in any 
way.

a pp Lica t iOn
Connecting Your Stereo Speakers
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s t r at e g Y  The position of the first minimum in sound intensity is given, which is a point of destructive interference. 
We can find the path lengths r1 and r2 with the Pythagorean theorem and then use Equation 14.14 for destructive inter-
ference to find the wavelength l. Using v 5 fl then yields the frequency.

s OLUti On
Use the Pythagorean theorem to find the path lengths r1 
and r2:

r1 5 "18.00 m 22 1 11.15 m 22 5 8.08 m

r2 5 "18.00 m 22 1 11.85 m 22 5 8.21 m

Substitute these values and n 5 0 into Equation 14.14, 
solving for the wavelength:

r2 2 r1 5 1n 1 1
2 2l

8.21 m 2 8.08 m 5 0.13 m 5 l/2 S l 5 0.26 m

Solve v 5 lf  for the frequency f and substitute the speed 
of sound and the wavelength:

f 5
v
l

5
343 m/s
0.26 m

5  1.3 kHz

re Mar Ks  For problems involving constructive interference, the only difference is that Equation 14.13, r2 2 r1 5 nl, 
would be used instead of Equation 14.14.

QUes t i On  14.6  True or False: In the same context, smaller wavelengths of sound would create more interference 
maxima and minima than longer wavelengths.

e Xe rc i s e  14.6  If the oscillator frequency is adjusted so that the location of the first minimum is at a distance of 
0.750 m from O, what is the new frequency?

a ns We r  0.62 kHz

14.8    Standing Waves
Learning Objectives

1. Describe the physical conditions that result in a standing wave and define the 
terms node and antinode.

2. For waves on a string with fixed ends, define the fundamental frequency and 
the relationship between wavelength and string length.

3. Derive the relationship of a string’s higher harmonics to its fundamental 
frequency.

4. Calculate the harmonics of strings and wires under tension.

Standing waves can be set up in a stretched string by connecting one end of the 
string to a stationary clamp and connecting the other end to a vibrating object, 
such as the end of a tuning fork, or by shaking the hand holding the string up 
and down at a steady rate (Fig. 14.16). Traveling waves then reflect from the ends 
and move in both directions on the string. The incident and reflected waves com-
bine according to the superposition principle. (See Section 13.10.) If the string 
vibrates at exactly the right frequency, the wave appears to stand still, hence its 
name, standing wave. A node occurs where the two traveling waves always have 
the same magnitude of displacement but the opposite sign, so the net displace-
ment is zero at that point. There is no motion in the string at the nodes, but 
midway between two adjacent nodes, at an antinode, the string vibrates with the 
largest amplitude.

Figure 14.17 shows snapshots of the oscillation of a standing wave during 
half of a cycle. The pink arrows indicate the direction of motion of different 
parts of the string. Notice that all points on the string oscillate together verti-
cally with the same frequency, but different points have different amplitudes 
of motion. The points of attachment to the wall and all other stationary points 

Vibrating
blade 

Large-amplitude standing 
waves result when the blade 
vibrates at a natural frequency 
of the string. 

Figure 14.16  Standing waves can 
be set up in a stretched string by con-
necting one end of the string to a 
vibrating blade.
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on the string are called nodes, labeled N in Figure 14.17a. From the figure, 
observe that the distance between adjacent nodes is one-half the wavelength of 
the wave:

dNN 5 1
2l

Consider a string of length L that is fixed at both ends, as in Figure 14.18. For a 
string, we can set up standing-wave patterns at many frequencies—the more loops, 
the higher the frequency. Figure 14.19 is a multiflash photograph of a standing 
wave on a string.

First, the ends of the string must be nodes, because these points are fixed. If 
the string is displaced at its midpoint and released, the vibration shown in Figure 
14.18b can be produced, in which case the center of the string is an antinode, 
labeled A. Note that from end to end, the pattern is N–A–N. The distance from a 
node to its adjacent antinode, N–A, is always equal to a quarter wavelength, l1/4. 

n  � 3

N N N NA A A

L  � – 3
3
2
l

f3

Third harmonic

d

N NA A N

n � 2 L � 2l

f2

Second harmonic

c

n � 1

N
A

N

L � – 1
1
2
l

f1

Fundamental, or �rst harmonic

b

L

a

Figure 14.18 (a) Standing waves in a stretched string of length L fixed at both ends. 
The characteristic frequencies of vibration form a harmonic series: (b) the fundamental 
frequency, or first harmonic; (c) the second harmonic; and (d) the third harmonic. Note 
that N denotes a node, A an antinode.

N N
t = 0

t = T/8

t = T/4

t = 3T/8

t = T/2

a

b

c

d

e

N

Figure 14.17  A standing-wave pat-
tern in a stretched string, shown by 
snapshots of the string during one-
half of a cycle. In part (a) N denotes 
a node.

Figure 14.19  Multiflash photo-
graph of a standing-wave two-loop 
pattern in a second harmonic 
(n 5 2), using a cord driven by a 
vibrator at the left end.

Antinode Antinode

Node

Node

The amplitude of the vertical oscillation of any element of the string 
depends on the horizontal position of the element. 
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There are two such segments, N–A and A–N, so L 5 2(l1/4) 5 l1/2, and l1 5 2L. 
The frequency of this vibration is therefore

 f1 5
v
l1

5
v

2L
 [14.15]

Recall that the speed of a wave on a string is v 5 !F/m, where F is the tension in 
the string and m is its mass per unit length (Chapter 13). Substituting into Equa-
tion 14.15, we obtain

 f1 5
1

2L
 Å

F
m

 [14.16]

This lowest frequency of vibration is called the fundamental frequency of the 
vibrating string, or the first harmonic.

The first harmonic has nodes only at the ends: the points of attachment, with 
node-antinode pattern of N–A–N. The next harmonic, called the second har-
monic (also called the first overtone), can be constructed by inserting an addi-
tional node–antinode segment between the endpoints. This makes the pattern 
N–A–N–A–N, as in Figure 14.18c. We count the node–antinode pairs: N–A, A–N, 
N–A, and A–N, four segments in all, each representing a quarter wavelength. We 
then have L 5 4(l2/4) 5 l2, and the second harmonic (first overtone) is

f2 5
v
l2

5
v
L

5 2 a v
2L

b 5 2f1

This frequency is equal to twice the fundamental frequency. The third harmonic (sec-
ond overtone) is constructed similarly. Inserting one more N–A segment, we obtain 
Figure 14.18d, the pattern of nodes reading N–A–N–A–N–A–N. There are six node–
antinode segments, so L 5 6(l3/4) 5 3(l3/2), which means that l3 5 2L/3, giving

f3 5
v
l3

5
3v
2L

5 3f1

All the higher harmonics, it turns out, are positive integer multiples of the 
fundamental:

 fn 5 nf1 5
n

2L
 Å

F
m

      n 5 1, 2, 3, . . .  [14.17]

The frequencies f1, 2f1, 3f1, and so on form a harmonic series.

■ Quick Quiz

14.4  Which of the following frequencies are higher harmonics of a string with 
fundamental frequency of 150 Hz? (a) 200 Hz (b) 300 Hz (c) 400 Hz (d) 500 Hz 
(e) 600 Hz

When a stretched string is distorted to a shape that corresponds to any one of its 
harmonics, after being released it vibrates only at the frequency of that harmonic. 
If the string is struck or bowed, however, the resulting vibration includes different 
amounts of various harmonics, including the fundamental frequency. Waves not 
in the harmonic series are quickly damped out on a string fixed at both ends. In 
effect, when disturbed, the string “selects” the standing-wave frequencies. As we’ll 
see later, the presence of several harmonics on a string gives stringed instruments 
their characteristic sound, which enables us to distinguish one from another even 
when they are producing identical fundamental frequencies.

The frequency of a string on a musical instrument can be changed by varying 
either the tension or the length. The tension in guitar and violin strings is varied 
by turning pegs on the neck of the instrument. As the tension is increased, the 
frequency of the harmonic series increases according to Equation 14.17. Once 

 Natural frequencies of a c

string fixed at both ends

a pp Lica t iOn
Tuning a Musical Instrument
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the instrument is tuned, the musician varies the frequency by pressing the strings 
against the neck at a variety of positions, thereby changing the effective lengths of 
the vibrating portions of the strings. As the length is reduced, the frequency again 
increases, as follows from Equation 14.17.

Finally, Equation 14.17 shows that a string of fixed length can be made to 
vibrate at a lower fundamental frequency by increasing its mass per unit length. 
This increase is achieved in the bass strings of guitars and pianos by wrapping the 
strings with metal windings.

(Continued)

 ■ e Xa Mp Le  14.7 Guitar Fundamentals

g Oa L  Apply standing-wave concepts to a stringed instrument.

pr Ob Le M  The high E string on a certain guitar measures 64.0 cm in 
length and has a fundamental frequency of 329 Hz. When a guitarist presses 
down so that the string is in contact with the first fret (Fig. 14.20a), the string 
is shortened so that it plays an F note that has a frequency of 349 Hz. (a) How 
far is the fret from the nut? (b) Overtones can be produced on a guitar string 
by gently placing the index finger in the location of a node of a higher har-
monic. The string should be touched, but not depressed against a fret. (Given 
the width of a finger, pressing too hard will damp out higher harmonics 
as well.) The fundamental frequency is thereby suppressed, making it pos-
sible to hear overtones. Where on the guitar string relative to the nut should 
the finger be lightly placed so as to hear the second harmonic of the high E 
string? The fourth harmonic? (This is equivalent to finding the location of 
the nodes in each case.)

s t r at e g Y  For part (a) use Equation 14.15, corresponding to the fun-
damental frequency, to find the speed of waves on the string. Shortening 
the string by playing a higher note doesn’t affect the wave speed, which 
depends only on the tension and linear density of the string (which are 
unchanged). Solve Equation 14.15 for the new length L, using the new fun-
damental frequency, and subtract this length from the original length to find the distance from the nut to the first fret. 
In part (b) remember that the distance from node to node is half a wavelength. Calculate the wavelength, divide it in two, 
and locate the nodes, which are integral numbers of half-wavelengths from the nut. Note: The nut is a small piece of wood 
or ebony at the top of the fret board. The distance from the nut to the bridge (below the sound hole) is the length of the 
string. (See Fig. 14.20b.)

s OLUti On

Nut

Bridge

1st fret

2nd fret

b

a

©
 C

ha
rle

s 
D.

 W
in

te
rs

/ 
Ce

ng
ag

e 
Le

ar
ni

ng

Figure 14.20  (Example 14.7) (a) Playing an F 
note on a guitar. (b) Some parts of a guitar.

(a) Find the distance from the nut to the first fret.

Substitute L0 5 0.640 m and f1 5 329 Hz into Equation 
14.15, finding the wave speed on the string:

f1 5
v

2L0

v 5 2L0 f1 5 2(0.640 m)(329 Hz) 5 421 m/s

Solve Equation 14.15 for the length L, and substitute the 
wave speed and the frequency of an F note.

L 5
v
2f

5
421 m/s

2 1349 Hz 2 5 0.603 m 5 60.3 cm

Subtract this length from the original length L0 to find 
the distance from the nut to the first fret:

Dx 5 L0 2 L 5 64.0 cm 2 60.3 cm 5    3.7 cm

(b) Find the locations of nodes for the second and fourth 
harmonics.

The second harmonic has a wavelength l2 5 L0 5 
64.0 cm. The distance from nut to node corresponds to 
half a wavelength.

Dx 5 1
2 l2 5 1

2L0 5 32.0 cm
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re Mar Ks  Placing a finger at the position Dx 5 32.0 cm damps out the fundamental and odd harmonics, but not all the 
higher even harmonics. The second harmonic dominates, however, because the rest of the string is free to vibrate. Plac-
ing the finger at Dx 5 16.0 cm or 48.0 cm damps out the first through third harmonics, allowing the fourth harmonic to 
be heard.

QUes t i On  14.7  True or False: If a guitar string has length L, gently placing a thin object at the position 11
2 2nL will 

always result in the sounding of a higher harmonic, where n is a positive integer.

e Xe rc i s e  14.7  Pressing the E string down on the fret board just above the second fret pinches the string firmly 
against the fret, giving an F-sharp, which has frequency 3.70 3 102 Hz. (a) Where should the second fret be located?  
(b) Find two locations where you could touch the open E string and hear the third harmonic.

a ns We r s  (a) 7.1 cm from the nut and 3.4 cm from the first fret. Note that the distance from the first to the second fret 
isn’t the same as from the nut to the first fret. (b) 21.3 cm and 42.7 cm from the nut

The fourth harmonic, of wavelength l4 5 1
2LO 5 32.0 cm, 

has three nodes between the endpoints:
Dx 5 1

2l4 5  16.0 cm  , Dx 5 2(l4/2) 5    32.0 cm  ,

Dx 5 3(l4/2) 5   48.0 cm

pr Ob Le M  (a) Find the frequencies of the fundamental, 
second, and third harmonics of a steel wire 1.00 m long 
with a mass per unit length of 2.00 3 1023 kg/m and under 
a tension of 80.0 N. (b) Find the wavelengths of the sound 
waves created by the vibrating wire for all three modes. 
Assume the speed of sound in air is 345 m/s. (c) Suppose 
the wire is carbon steel with a density of 7.80 3 103 kg/m3,  
a cross-sectional area A 5 2.56 3 1027 m2, and an elastic 
limit of 2.80 3 108 Pa. Find the fundamental frequency 
if the wire is tightened to the elastic limit. Neglect any 
stretching of the wire (which would slightly reduce the 
mass per unit length).

s t r at e g Y  (a) It’s easiest to find the speed of waves on 
the wire then substitute into Equation 14.15 to find the 
first harmonic. The next two are multiples of the first, 
given by Equation 14.17. (b) The frequencies of the sound 
waves are the same as the frequencies of the vibrating 
wire, but the wavelengths are different. Use vs 5 f l, where 
vs is the speed of sound in air, to find the wavelengths in 
air. (c)  Find the force corresponding to the elastic limit 
and substitute it into Equation 14.16.

s OLUti On
(a) Find the first three harmonics at the given tension.

Use Equation 13.18 to calculate the speed of the wave on 
the wire:

v 5 Å
F
m

5 Å
80.0 N

2.00 3 1023 kg/m
5 2.00 3 102 m/s

Find the wire’s fundamental frequency from 
Equation 14.15:

f1 5
v

2L
5

2.00 3 102 m/s
2 11.00 m 2 5  1.00 3 102 Hz

Find the next two harmonics by multiplication: f2 5 2f1 5   2.00 3 102 Hz , f3 5 3f1 5   3.00 3 102 Hz

(b) Find the wavelength of the sound waves produced.

Solve vs 5 fl for the wavelength and substitute the 
frequencies:

l1 5 vs/f1 5 (345 m/s)/(1.00 3 102 Hz) 5   3.45 m

l2 5 vs/f2 5 (345 m/s)/(2.00 3 102 Hz) 5   1.73 m

l3 5 vs/f3 5 (345 m/s)/(3.00 3 102 Hz) 5   1.15 m

(c) Find the fundamental frequency corresponding to the 
elastic limit.

Calculate the tension in the wire from the elastic limit:
F
A

5 elastic limit S F 5 1elastic limit 2A

F 5 (2.80 3 108 Pa)(2.56 3 1027 m2) 5 71.7 N

 ■ e Xa Mp Le  14.8 Harmonics of a Stretched Wire

g Oa L  Calculate string harmonics, relate them to sound, and combine them with tensile stress.
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re Mar Ks  From the answer to part (c), it appears we need to choose a thicker wire or use a better grade of steel with a 
higher elastic limit. The frequency corresponding to the elastic limit is smaller than the fundamental!

QUes t i On  14.8  A string on a guitar is replaced with one of lower linear density. To obtain the same frequency sound 
as previously, must the tension of the new string be (a) greater than, (b) less than, or (c) equal to the tension in the old 
string?

e Xe rc i s e  14.8  (a) Find the fundamental frequency and second harmonic if the tension in the wire is increased to 
115 N. (Assume the wire doesn’t stretch or break.) (b) Using a sound speed of 345 m/s, find the wavelengths of the sound 
waves produced.

a ns We r s  (a) 1.20 3 102 Hz, 2.40 3 102 Hz (b) 2.88 m, 1.44 m

Substitute the values of F, m, and L into Equation 14.16: f1 5
1

2L
 Å

F
m

f1 5
1

2 11.00 m 2  Å
71.7 N

2.00 3 1023 kg/m
5   94.7 Hz

14.9    Forced Vibrations and Resonance
Learning Objectives

1. Explain the concept of resonance as applied to forced vibrations.

2. Discuss physical examples of resonance.

In Chapter 13 we learned that the energy of a damped oscillator decreases over 
time because of friction. It’s possible to compensate for this energy loss by apply-
ing an external force that does positive work on the system.

For example, suppose an object–spring system having some natural frequency 
of vibration f0 is pushed back and forth by a periodic force with frequency f. The 
system vibrates at the frequency f of the driving force. This type of motion is 
referred to as a forced vibration. Its amplitude reaches a maximum when the fre-
quency of the driving force equals the natural frequency of the system f0, called 
the resonant frequency of the system. Under this condition, the system is said to 
be in resonance.

In Section 14.8 we learned that a stretched string can vibrate in one or more 
of its natural modes. Here again, if a periodic force is applied to the string, the 
amplitude of vibration increases as the frequency of the applied force approaches 
one of the string’s natural frequencies of vibration.

Resonance vibrations occur in a wide variety of circumstances. Figure 14.21 
illustrates one experiment that demonstrates a resonance condition. Several pen-
dulums of different lengths are suspended from a flexible beam. If one of them, 
such as A, is set in motion, the others begin to oscillate because of vibrations in the 
flexible beam. Pendulum C, the same length as A, oscillates with the greatest ampli-
tude because its natural frequency matches that of pendulum A (the driving force).

Another simple example of resonance is a child being pushed on a swing, which 
is essentially a pendulum with a natural frequency that depends on its length. The 
swing is kept in motion by a series of appropriately timed pushes. For its amplitude 
to increase, the swing must be pushed each time it returns to the person’s hands. 
This corresponds to a frequency equal to the natural frequency of the swing. If the 
energy put into the system per cycle of motion equals the energy lost due to fric-
tion, the amplitude remains constant.

Opera singers have been known to make audible vibrations in crystal goblets 
with their powerful voices. This is yet another example of resonance: The sound 

If pendulum A is set in 
oscillation, only pendulum C, 
with a length matching that of 
A, will eventually oscillate with 
a large amplitude, or resonate.

A

B C

D

Figure 14.21  A demonstration of 
resonance.

a pp Lica t iOn
Shattering Goblets with the Voice
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waves emitted by the singer can set up large-amplitude vibrations in the glass. If 
a highly amplified sound wave has the right frequency, the amplitude of forced 
vibrations in the glass increases to the point where the glass becomes heavily 
strained and shatters.

The classic example of structural resonance occurred in 1940, when the 
Tacoma Narrows bridge in the state of Washington was put into oscillation by 
the wind (Fig. 14.22). The amplitude of the oscillations increased rapidly and 
reached a high value until the bridge ultimately collapsed (probably because 
of metal fatigue). In recent years, however, a number of researchers have called 
this explanation into question. Gusts of wind, in general, don’t provide the peri-
odic force necessary for a sustained resonance condition, and the bridge exhib-
ited large twisting oscillations, rather than the simple up-and-down oscillations 
expected of resonance.

A more recent example of destruction by structural resonance occurred during 
the Loma Prieta earthquake near Oakland, California, in 1989. In a mile-long sec-
tion of the double-decker Nimitz Freeway, the upper deck collapsed onto the lower 
deck, killing several people. The collapse occurred because that particular section 
was built on mud fill, whereas other parts were built on bedrock. As seismic waves 
pass through mud fill or other loose soil, their speed decreases and their ampli-
tude increases. The section of the freeway that collapsed oscillated at the same 
frequency as other sections, but at a much larger amplitude.

14.10    Standing Waves in Air Columns
Learning Objectives

1. Contrast standing waves in air columns open at one end and at both ends.

2. Apply the equations for the frequencies of open and closed pipes to harmonic 
systems.

3. Discuss applications of sound waves in closed and open columns.

Standing longitudinal waves can be set up in a tube of air, such as an organ pipe, 
as the result of interference between sound waves traveling in opposite directions. 
The relationship between the incident wave and the reflected wave depends on 
whether the reflecting end of the tube is open or closed. A portion of the sound 
wave is reflected back into the tube even at an open end. If one end is closed, a 
node must exist at that end because the movement of air is restricted. If the end 
is open, the elements of air have complete freedom of motion, and an antinode 
exists.

Figure 14.23a shows the first three modes of vibration of a pipe open at both 
ends. When air is directed against an edge at the left, longitudinal standing waves 
are formed and the pipe vibrates at its natural frequencies. Note that, from end to 

Figure 14.22  (a) In 1940, turbu-
lent winds set up torsional vibrations 
in the Tacoma Narrows Bridge, caus-
ing it to oscillate at a frequency near 
one of the natural frequencies of the 
bridge structure. (b) Once estab-
lished, this resonance condition led 
to the bridge’s collapse. A number of 
scientists, however, have challenged 
the resonance interpretation.
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a pp Lica t iOn
Structural Integrity and Resonance
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end, the pattern is A–N–A, the same pattern as in the vibrating string, except node 
and antinode have exchanged positions. As before, an antinode and its adjacent 
node, A–N, represent a quarter-wavelength, and there are two, A–N and N–A, so 
L 5 2(l1/4) 5 l1/2 and l1 5 2L. The fundamental frequency of the pipe open at 
both ends is then f1 5 v/l1 5 v/2L. The next harmonic has an additional node 
and antinode between the ends, creating the pattern A–N–A–N–A. We count the 
pairs: A–N, N–A, A–N, and N–A, making four segments, each with length l2/4. 
We have L 5 4(l2/4) 5 l2, and the second harmonic (first overtone) is f2 5 v/l2 5 
v/L 5 2(v/2L) 5 2f1. All higher harmonics, it turns out, are positive integer mul-
tiples of the fundamental:

 fn 5 n 
v

2L
5 nf1        n 5 1, 2, 3, . . .  [14.18]

where v is the speed of sound in air. Notice the similarity to Equation 14.17, which 
also involves multiples of the fundamental.

If a pipe is open at one end and closed at the other, the open end is an anti-
node and the closed end is a node (Fig. 14.23b). In such a pipe, the fundamental 
frequency consists of a single antinode–node pair, A–N, so L 5 l1/4 and l1 5 4L. 
The fundamental harmonic for a pipe closed at one end is then f1 5 v/l1 5 v/4L. 
The first overtone has another node and antinode between the open end and 
closed end, making the pattern A–N–A–N. There are three antinode–node seg-
ments in this pattern (A–N, N–A, and A–N), so L 5 3(l3/4) and l3 5 4L/3. 
The first overtone therefore has frequency f3 5 v/l3 5 3v/4L 5 3f1. Similarly, 
f5 5 5f1. In contrast to the pipe open at both ends, there are no even multiples 
of the fundamental harmonic. The odd harmonics for a pipe open at one end 
only are given by

 fn 5 n 
v

4L
5 nf1         n 5 1, 3, 5, . . .  [14.19]

b  Pipe open at both ends;  
all harmonics are present

b  Pipe closed at one end; only 
odd harmonics are present

Third harmonic

L

First harmonic
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A pipe open at both ends. A pipe closed at one end.

a b

Figure 14.23  (a) Standing longi-
tudinal waves in an organ pipe open 
at both ends. The natural frequen-
cies f1, 2f1, 3f1 . . . form a harmonic 
series. (b) Standing longitudinal 
waves in an organ pipe closed at one 
end. Only odd harmonics are pres-
ent, and the natural frequencies are 
f1, 3f1, 5f1, and so on.

t ip 14.4  Sound Waves Are 
Not Transverse
The standing longitudinal waves 
in Figure 14.23 are drawn as 
transverse waves only because it’s 
difficult to draw longitudinal dis-
placements: they’re in the same 
direction as the wave propaga-
tion. In the figure, the vertical 
axis represents either pressure or 
horizontal displacement of the 
elements of the medium.
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■ Quick Quiz

14.5  A pipe open at both ends resonates at a fundamental frequency fopen. When 
one end is covered and the pipe is again made to resonate, the fundamental fre-
quency is fclosed. Which of the following expressions describes how these two reso-
nant frequencies compare? (a) fclosed 5 fopen (b) fclosed 5 3

2 fopen (c) fclosed 5 2 fopen  
(d) fclosed 5 1

2 fopen (e) none of these

14.6  Balboa Park in San Diego has an outdoor organ. When the air temperature 
increases, the fundamental frequency of one of the organ pipes (a) increases, 
(b) decreases, (c) stays the same, or (d) is impossible to determine. (The thermal 
expansion of the pipe is negligible.)

 ■ a pp LYi ng  ph Ys ic s  14.3 Oscillations in a Harbor

Why do passing ocean waves sometimes cause the water in 
a harbor to undergo very large oscillations, called a seiche 
(pronounced saysh)?

e Xp La n at i On  Water in a harbor is enclosed and pos-
sesses a natural frequency based on the size of the harbor. 
This is similar to the natural frequency of the enclosed 
air in a bottle, which can be excited by blowing across 

the edge of the opening. Ocean waves pass by the open-
ing of the harbor at a certain frequency. If this frequency 
matches that of the enclosed harbor, then a large standing 
wave can be set up in the water by resonance. This situation 
can be simulated by carrying a fish tank filled with water. If 
your walking frequency matches the natural frequency of 
the water as it sloshes back and forth, a large standing wave 
develops in the fish tank. ■

 ■ a pp LYi ng  ph Ys ic s  14.4 Why are Instruments Warmed Up?

Why do the strings go flat and the wind instruments go 
sharp during a performance if an orchestra doesn’t warm 
up beforehand?

e Xp La n at i On  Without warming up, all the instru-
ments will be at room temperature at the beginning of the 
concert. As the wind instruments are played, they fill with 
warm air from the player’s exhalation. The increase in tem-
perature of the air in the instruments causes an increase in 

the speed of sound, which raises the resonance frequencies 
of the air columns. As a result, the instruments go sharp. 
The strings on the stringed instruments also increase in 
temperature due to the friction of rubbing with the bow. 
This results in thermal expansion, which causes a decrease 
in tension in the strings. With the decrease in tension, the 
wave speed on the strings drops and the fundamental fre-
quencies decrease, so the stringed instruments go flat. ■

■ a pp LYi ng ph Ys ic s  14.5 How Do Bugles Work?

A bugle has no valves, keys, slides, or finger holes. How can 
it be used to play a song?

e Xp La n at i On  Songs for the bugle are limited to har-
monics of the fundamental frequency because there is 
no control over frequencies without valves, keys, slides, 
or finger holes. The player obtains different notes by 

changing the tension in the lips as the bugle is played, 
exciting different harmonics. The normal playing range 
of a bugle is among the third, fourth, fifth, and sixth har-
monics of the fundamental. “Reveille,” for example, is 
played with just the three notes G, C, and F, and “Taps” is 
played with these three notes and the G one octave above 
the lower G. ■

 ■ e Xa Mp Le  14.9 Harmonics of a Pipe

g Oa L  Find frequencies of open and closed pipes.

pr Ob Le M  A pipe is 2.46 m long. (a) Determine the frequencies of the first three harmonics if the pipe is open at both 
ends. Take 343 m/s as the speed of sound in air. (b) How many harmonic frequencies of this pipe lie in the audible range, 
from 20 Hz to 20 000 Hz? (c) What are the three lowest possible frequencies if the pipe is closed at one end and open at 
the other?
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s t r at e g Y  Substitute into Equation 14.18 for part (a) and Equation 14.19 for part (c). All harmonics, n 5 1, 2, 3 . . . are 
available for the pipe open at both ends, but only the harmonics with n 5 1, 3, 5, . . . for the pipe closed at one end. For 
part (b), set the frequency in Equation 14.18 equal to 2.00 3 104 Hz.

s OLUti On
(a) Find the frequencies if the pipe is open at both ends.

Substitute into Equation 14.18, with n 5 1: f1 5
v

2L
5

343 m/s
2 12.46 m 2 5  69.7 Hz

Multiply to find the second and third harmonics: f2 5 2f1 5   139 Hz    f3 5 3f1 5   209 Hz

(b) How many harmonics lie between 20 Hz and 
20 000 Hz for this pipe?

Set the frequency in Equation 14.18 equal to  
2.00 3 104 Hz and solve for n:

fn 5 n 
v

2L
5 n 

343 m/s
2 # 2.46 m

5 2.00 3 104 Hz

This works out to n 5 286.88, which must be truncated 
down (n 5 287 gives a frequency over 2.00 3 104 Hz):

n 5   286

(c) Find the frequencies for the pipe closed at one end.

Apply Equation 14.19 with n 5 1: f1 5
v

4L
5

343 m/s
4 12.46 m 2 5  34.9 Hz

The next two harmonics are odd multiples of the first: f3 5 3f1 5   105 Hz   f5 5 5f1 5   175 Hz

QUes t i On  14.9  True or False: The fundamental wavelength of a longer pipe is greater than the fundamental wave-
length of a shorter pipe.

e Xe rc i s e  14.9  (a) What length pipe open at both ends has a fundamental frequency of 3.70 3 102 Hz? Find the 
first overtone. (b) If the one end of this pipe is now closed, what is the new fundamental frequency? Find the first over-
tone. (c) If the pipe is open at one end only, how many harmonics are possible in the normal hearing range from 20 to 
20 000 Hz?

a ns We r s  (a) 0.464 m, 7.40 3 102 Hz (b) 185 Hz, 555 Hz (c) 54

 ■ e Xa Mp Le  14.10 Resonance in a Tube of Variable Length

g Oa L  Understand resonance in tubes and perform elementary 
calculations.

pr Ob Le M  Figure 14.24a shows a simple apparatus for demon-
strating resonance in a tube. A long tube open at both ends is par-
tially submerged in a beaker of water, and a vibrating tuning fork of 
unknown frequency is placed near the top of the tube. The length 
of the air column, L, is adjusted by moving the tube vertically. The 
sound waves generated by the fork are reinforced when the length 
of the air column corresponds to one of the resonant frequencies of 
the tube. Suppose the smallest value of L for which a peak occurs in 
the sound intensity is 9.00 cm. (a) With this measurement, deter-
mine the frequency of the tuning fork. (b) Find the wavelength and 
the next two air-column lengths giving resonance. Take the speed 
of sound to be 343 m/s.

s t r at e g Y  Once the tube is in the water, the setup is the same as 
a pipe closed at one end. For part (a), substitute values for v and L 
into Equation 14.19 with n 5 1, and find the frequency of the tun-
ing fork. (b) The next resonance maximum occurs when the water 

f � ?

First
resonance

Second
resonance

(third
harmonic)

Third
resonance

(�fth
harmonic)

/4

3 /4

5 /4

l

l

l

L

Water

a b

Figure 14.24  (Example 14.10) (a) Apparatus for dem-
onstrating the resonance of sound waves in a tube closed 
at one end. The length L of the air column is varied by 
moving the tube vertically while it is partially submerged in 
water. (b) The first three resonances of the system.

(Continued)
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14.11    Beats
Learning Objectives

1. Discuss the interference phenomenon of beats.

2. Apply the concept of beats to situations involving two frequencies.

The interference phenomena we have been discussing so far have involved the 
superposition of two or more waves with the same frequency, traveling in oppo-
site directions. Another type of interference effect results from the superposi-
tion of two waves with slightly different frequencies. In such a situation, the 
waves at some fixed point are periodically in and out of phase, corresponding 
to an alternation in time between constructive and destructive interference. 
To understand this phenomenon, consider Figure 14.25. The two waves shown 

level is low enough in the straw to allow a second node (see Fig. 14.24b), which is another half-wavelength in distance. The 
third resonance occurs when the third node is reached, requiring yet another half-wavelength of distance. The frequency 
in each case is the same because it’s generated by the tuning fork.

s OLUti On
(a) Find the frequency of the tuning fork.

Substitute n 5 1, v 5 343 m/s, and L1 5 9.00 3 1022 m 
into Equation 14.19:

f1 5
v

4L1
5

343 m/s
4 19.00 3 1022 m 2 5  953 Hz

(b) Find the wavelength and the next two water levels 
giving resonance.

Calculate the wavelength, using the fact that, for a tube 
open at one end, l 5 4L for the fundamental.

l 5 4L1 5 4(9.00 3 1022 m) 5   0.360 m

Add a half-wavelength of distance to L1 to get the next 
resonance position:

L2 5 L1 1 l/2 5 0.090 0 m 1 0.180 m 5   0.270 m

Add another half-wavelength to L2 to obtain the third 
resonance position:

L3 5 L2 1 l/2 5 0.270 m 1 0.180 m 5   0.450 m

re Mar Ks  This experimental arrangement is often used to measure the speed of sound, in which case the frequency of 
the tuning fork must be known in advance.

QUes t i On  14.10  True or False: The resonant frequency of an air column depends on the length of the column and 
the speed of sound.

e Xe rc i s e  14.10  An unknown gas is introduced into the aforementioned apparatus using the same tuning fork, and 
the first resonance occurs when the air column is 5.84 cm long. Find the speed of sound in the gas.

a ns We r  223 m/s

y

y

t

t

ta tb

a

b

Figure 14.25 Beats are formed 
by the combination of two waves of 
slightly different frequencies travel-
ing in the same direction. (a) The 
individual waves heard by an observer 
at a fixed point in space. (b) The 
combined wave has an amplitude 
(dashed line) that oscillates in time.
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in Figure 14.25a were emitted by two tuning forks having slightly different fre-
quencies; Figure 14.25b shows the superposition of these waves. At some time ta
the waves are in phase and constructive interference occurs, as demonstrated by 
the resultant curve in Figure 14.25b. At some later time, however, the vibrations 
of the two forks move out of step with each other. At time tb, one fork emits a 
compression while the other emits a rarefaction, and destructive interference 
occurs, as demonstrated by the curve shown. As time passes, the vibrations of 
the two forks move out of phase, then into phase again, and so on. As a conse-
quence, a listener at some fixed point hears an alternation in loudness, known 
as beats. The number of beats per second, or the beat frequency, equals the dif-
ference in frequency between the two sources:

 fb 5 | f2 2 f1| [14.20]

where fb is the beat frequency and f1 and f2 are the two frequencies. The abso-
lute value is used because the beat frequency is a positive quantity and will occur 
regardless of the order of subtraction.

A stringed instrument such as a piano can be tuned by beating a note on the 
instrument against a note of known frequency. The string can then be tuned to 
the desired frequency by adjusting the tension until no beats are heard.

■ Quick Quiz

14.7  You are tuning a guitar by comparing the sound of the string with that of a 
standard tuning fork. You notice a beat frequency of 5 Hz when both sounds are 
present. As you tighten the guitar string, the beat frequency rises steadily to 8 Hz. 
To tune the string exactly to the tuning fork, you should (a) continue to tighten 
the string, (b) loosen the string, or (c) impossible to determine from the given 
information.

b Beat frequency

 ■ e Xa Mp Le  14.11 Sour Notes

g Oa L  Apply the beat frequency concept.

pr Ob Le M  A certain piano string is supposed to vibrate 
at a frequency of 4.40 3 102 Hz. To check its frequency, a 
tuning fork known to vibrate at a frequency of 4.40 3 102 Hz 
is sounded at the same time the piano key is struck, and 
a beat frequency of 4 beats per second is heard. (a) Find 
the two possible frequencies at which the string could be 
vibrating. (b) Suppose the piano tuner runs toward the 
piano, holding the vibrating tuning fork while his assistant 
plays the note, which is at 436 Hz. At his maximum speed, 
the piano tuner notices the beat frequency drops from  
4 Hz to 2 Hz (without going through a beat frequency  
of zero). How fast is he moving? Use a sound speed of 
343 m/s. (c) While the piano tuner is running, what beat 

frequency is observed by the assistant? Note: Assume all 
numbers are accurate to two decimal places, necessary for 
this last calculation.

s t r at e g Y  (a) The beat frequency is equal to the abso-
lute value of the difference in frequency between the two 
sources of sound and occurs if the piano string is tuned 
either too high or too low. Solve Equation 14.20 for these 
two possible frequencies. (b) Moving toward the piano 
raises the observed piano string frequency. Solve the Dop-
pler shift formula, Equation 14.12, for the speed of the 
observer. (c) The assistant observes a Doppler shift for the 
tuning fork. Apply Equation 14.12.

a pp Lica t iOn
Using Beats to Tune a Musical 
Instrument

s OLUti On

(Continued)

(a) Find the two possible frequencies.

Case 1: f2 2 f1 is already positive, so just drop the 
 absolute-value signs:

fb 5 f2 2 f1 S 4 Hz 5 f2 2 4.40 3 102 Hz

f2 5   444 Hz

Case 2: f2 2 f1 is negative, so drop the absolute-value 
signs, but apply an overall negative sign:

fb 5 2( f2 2 f1) S 4 Hz 5 2( f2 2 4.40 3 102 Hz)

f2 5   436 Hz
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14.12    Quality of Sound
Learning Objective

1. Explain how mixtures of harmonics can produce sounds of differing quality or 
timbre.

The sound-wave patterns produced by most musical instruments are complex. 
Figure 14.26 shows characteristic waveforms (pressure is plotted on the verti-
cal axis, time on the horizontal axis) produced by a tuning fork, a f lute, and a 
clarinet, each playing the same steady note. Although each instrument has its 
own characteristic pattern, the figure reveals that each of the waveforms is 
periodic. Note that the tuning fork produces only one harmonic (the fun-
damental frequency), but the two instruments emit mixtures of harmonics. 
Figure 14.27 graphs the harmonics of the waveforms of Figure 14.26. When 
the note is played on the f lute (Fig. 14.26b), part of the sound consists of a 
vibration at the fundamental frequency, an even higher intensity is contrib-
uted by the second harmonic, the fourth harmonic produces about the same 
intensity as the fundamental, and so on. These sounds add together according 
to the principle of superposition to give the complex waveform shown. The 
clarinet emits a certain intensity at a frequency of the first harmonic, about 
half as much intensity at the frequency of the second harmonic, and so forth. 
The resultant superposition of these frequencies produces the pattern shown 

(b) Find the speed of the observer if running toward the 
piano results in a beat frequency of 2 Hz.

Apply the Doppler shift to the case where frequency  
of the piano string heard by the running observer is  
fO 5 438 Hz:

fO 5 fS a
v 1 vO

v 2 vS
b

438 Hz 5 1436 Hz 2  a343 m/s 1 vO

343 m/s
b

vO 5 a438 Hz 2 436 Hz
436 Hz

b 1343 m/s 2 5  1.57 m/s

(c) What beat frequency does the assistant observe?

Apply Equation 14.12. Now the source is the tuning fork, 
so fS 5 4.40 3 102 Hz.

fO 5 fS a
v 1 vO

v 2 vS
b

5 14.40 3 102 Hz 2  a 343 m/s
343 m/s 2 1.57 m/s

b 5 442 Hz

Compute the beat frequency: fb 5 f2 2 f1 5 442 Hz 2 436 Hz 5   6 Hz

re Mar Ks  The assistant on the piano bench and the tuner running with the fork observe different beat frequencies. 
Many physical observations depend on the state of motion of the observer, a subject discussed more fully in Chapter 26, 
on relativity.

QUes t i On  14.11  Why aren’t beats heard when two different notes are played on the piano?

e Xe rc i s e  14.11  The assistant adjusts the tension in the same piano string, and a beat frequency of 2.00 Hz is heard 
when the note and the tuning fork are struck at the same time. (a) Find the two possible frequencies of the string. 
(b) Assume the actual string frequency is the higher frequency. If the piano tuner runs away from the piano at 4.00 m/s 
while holding the vibrating tuning fork, what beat frequency does he hear? (c) What beat frequency does the assistant on 
the bench hear? Use 343 m/s for the speed of sound.

a ns We r s  (a) 438 Hz, 442 Hz (b) 3 Hz (c) 7 Hz

t ip 14.5  Pitch Is Not the 
Same as Frequency
Although pitch is related mostly 
(but not completely) to frequency, 
the two terms are not the same. 
A phrase such as “the pitch of the 
sound” is incorrect because pitch 
is not a physical property of the 
sound. Frequency is the physi-
cal measurement of the number 
of oscillations per second of the 
sound. Pitch is a psychological 
reaction to sound that enables a 
human being to place the sound 
on a scale from high to low or 
from treble to bass. Frequency 
is the stimulus and pitch is the 
response.
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in Figure 14.26c. The tuning fork (Figs. 14.26a and 14.27a) emits sound only at 
the frequency of the first harmonic.

In music, the characteristic sound of any instrument is referred to as the quality, 
or timbre, of the sound. The quality depends on the mixture of harmonics in the 
sound. We say that the note C on a flute differs in quality from the same C on a 
clarinet. Instruments such as the bugle, trumpet, violin, and tuba are rich in har-
monics. A musician playing a wind instrument can emphasize one or another of 
these harmonics by changing the configuration of the lips, thereby playing differ-
ent musical notes with the same valve openings.
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Figure 14.27  Harmonics of the waveforms in Figure 14.26. Note their variation in intensity.
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Figure 14.26  Sound wave patterns 
produced by various instruments.

■ a pp LYi ng ph Ys ic s  14.6 Why Does the Professor Sound Like Donald Duck?

A professor performs a demonstration in which he breathes 
helium and then speaks with a comical voice. One student 
explains, “The velocity of sound in helium is higher than 
in air, so the fundamental frequency of the standing waves 
in the mouth is increased.” Another student says, “No, the 
fundamental frequency is determined by the vocal folds 
and cannot be changed. Only the quality of the voice has 
changed.” Which student is correct?

e Xp La n at i On  The second student is correct. The fun-
damental frequency of the complex tone from the voice is 

determined by the vibration of the vocal folds and is not 
changed by substituting a different gas in the mouth. The 
introduction of the helium into the mouth results in har-
monics of higher frequencies being excited more than 
in the normal voice, but the fundamental frequency of 
the voice is the same, only the quality has changed. The 
unusual inclusion of the higher frequency harmonics 
results in a common description of this effect as a “high-
pitched” voice, but that description is incorrect. (It is really 
a “quacky” timbre.) ■

14.13    The Ear 
Learning Objectives

1. List the three main regions into which the human ear is divided, explain the 
functionality of each, and explain how the ear produces the sense of hearing.

2. Describe how a cochlear implant can enable the deaf to hear.

The human ear is divided into three regions: the outer ear, the middle ear, and 
the inner ear (Fig. 14.28). The outer ear consists of the ear canal (which is open 
to the atmosphere), terminating at the eardrum (tympanum). Sound waves travel 
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down the ear canal to the eardrum, which vibrates in and out in phase with the 
pushes and pulls caused by the alternating high and low pressures of the waves. 
Behind the eardrum are three small bones of the middle ear, called the hammer, 
the anvil, and the stirrup because of their shapes. These bones transmit the vibra-
tion to the inner ear, which contains the cochlea, a snail-shaped tube about 2 cm 
long. The cochlea makes contact with the stirrup at the oval window and is divided 
along its length by the basilar membrane, which consists of small hairs (cilia) and 
nerve fibers. This membrane varies in mass per unit length and in tension along 
its length, and different portions of it resonate at different frequencies. (Recall 
that the natural frequency of a string depends on its mass per unit length and on 
the tension in it.) Along the basilar membrane are numerous nerve endings, which 
sense the vibration of the membrane and in turn transmit impulses to the brain. 
The brain interprets the impulses as sounds of varying frequency, depending on 
the locations along the basilar membrane of the impulse-transmitting nerves and 
on the rates at which the impulses are transmitted.

Figure 14.29 shows the frequency response curves of an average human ear for 
sounds of equal loudness, ranging from 0 to 120 dB. To interpret this series of 
graphs, take the bottom curve as the threshold of hearing. Compare the intensity 

Hammer Anvil Stirrup Semicircular canals
(for balance)
Oval window

Vestibular nerve

Cochlear nerve

Cochlea

Eardrum
(tympanum)

Eustachian tube

Ear canal

Figure 14.28  The structure of the 
human ear. The three tiny bones 
(ossicles) that connect the eardrum 
to the window of the cochlea act as a 
double-lever system to decrease the 
amplitude of vibration and hence 
increase the pressure on the fluid in 
the cochlea.
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Figure 14.29  Curves of intensity 
level versus frequency for sounds 
that are perceived to be of equal 
loudness. Note that the ear is most 
sensitive at a frequency of about 
3 300 Hz. The lowest curve corre-
sponds to the threshold of hearing 
for only about 1% of the population.
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level on the vertical axis for the two frequencies 100 Hz and 1 000 Hz. The vertical 
axis shows that the 100-Hz sound must be about 38 dB greater than the 1 000-Hz 
sound to be at the threshold of hearing, which means that the threshold of hear-
ing is very strongly dependent on frequency. The easiest frequencies to hear are 
around 3 300 Hz; those above 12 000 Hz or below about 50 Hz must be relatively 
intense to be heard.

Now consider the curve labeled 80. This curve uses a 1 000-Hz tone at an 
intensity level of 80 dB as its reference. The curve shows that a tone of frequency  
100 Hz would have to be about 4 dB louder than the 80-dB, 1 000-Hz tone in order 
to sound as loud. Notice that the curves flatten out as the intensity levels of the 
sounds increase, so when sounds are loud, all frequencies can be heard equally 
well.

The small bones in the middle ear represent an intricate lever system that 
increases the force on the oval window. The pressure is greatly magnified because 
the surface area of the eardrum is about 20 times that of the oval window (in 
analogy with a hydraulic press). The middle ear, together with the eardrum and 
oval window, in effect acts as a matching network between the air in the outer ear 
and the liquid in the inner ear. The overall energy transfer between the outer ear 
and the inner ear is highly efficient, with pressure amplification factors of several 
thousand. In other words, pressure variations in the inner ear are much greater 
than those in the outer ear.

The ear has its own built-in protection against loud sounds. The muscles 
connecting the three middle-ear bones to the walls control the volume of the 
sound by changing the tension on the bones as sound builds up, thus hindering 
their ability to transmit vibrations. In addition, the eardrum becomes stiffer as 
the sound intensity increases. These two events make the ear less sensitive to 
loud incoming sounds. There is a time delay between the onset of a loud sound 
and the ear’s protective reaction, however, so a very sudden loud sound can still 
damage the ear.

The complex structure of the human ear is believed to be related to the fact 
that mammals evolved from seagoing creatures. In comparison, insect ears 
are considerably simpler in design because insects have always been land resi-
dents. A typical insect ear consists of an eardrum exposed directly to the air on 
one side and to an air-filled cavity on the other side. Nerve cells communicate 
directly with the cavity and the brain, without the need for the complex inter-
mediary of an inner and middle ear. This simple design allows the ear to be 
placed virtually anywhere on the body. For example, a grasshopper has its ears 
on its legs. One advantage of the simple insect ear is that the distance and ori-
entation of the ears can be varied so that it is easier to locate sources of sound, 
such as other insects.

One of the most amazing medical advances in recent decades is the cochlear 
implant, allowing the deaf to hear. Deafness can occur when the hairlike sen-
sors (cilia) in the cochlea break off over a lifetime or sometimes because of pro-
longed exposure to loud sounds. Because the cilia don’t grow back, the ear loses 
sensitivity to certain frequencies of sound. The cochlear implant stimulates the 
nerves in the ear electronically to restore hearing loss that is due to damaged or 
absent cilia.

a pp Lica t iOn
Cochlear Implants

 ■ s UMMar Y

14.2  Characteristics of Sound Waves
Sound waves are longitudinal waves. Audible waves are 
sound waves with frequencies between 20 and 20 000 Hz. 
Infrasonic waves have frequencies below the audible 
range, and ultrasonic waves have frequencies above the 
audible range.

14.3  The Speed of Sound
The speed of sound in a medium of bulk modulus B and 
density r is

v 5 Å
B
r

 [14.1]
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14.7  Interference of Sound Waves
When waves interfere, the resultant wave is found by adding 
the individual waves together point by point. When crest 
meets crest and trough meets trough, the waves undergo 
constructive interference, with path length difference

r2 2 r1 5 nl  n 5 0, 1, 2, . . . [14.13]

When crest meets trough, destructive interference occurs, 
with path length difference

 r2 2 r1 5 1n 1 1
2 2l   n 5 0, 1, 2, . . . [14.14]

14.8  Standing Waves
Standing waves are formed when two waves having the 
same frequency, amplitude, and wavelength travel in oppo-
site directions through a medium. The natural frequencies 
of vibration of a stretched string of length L, fixed at both 
ends, are

 fn 5 nf1 5
n

2L
 Å

F
m

   n 5 1, 2, 3, . . . [14.17]

where F is the tension in the string and m is its mass per 
unit length.

14.9  Forced Vibrations and Resonance
A system capable of oscillating is said to be in resonance 
with some driving force whenever the frequency of the 
driving force matches one of the natural frequencies of 
the system. When the system is resonating, it oscillates with 
maximum amplitude.

14.10  Standing Waves in Air Columns
Standing waves can be produced in a tube of air. If the 
reflecting end of the tube is open, all harmonics are present 
and the natural frequencies of vibration are

fn 5 n 
v

2L
5 nf1   n 5 1, 2, 3, . . . [14.18]

If the tube is closed at the reflecting end, only the odd  
harmonics are present and the natural frequencies of 
vibration are

 fn 5 n 
v

4L
5 nf1   n 5 1, 3, 5, . . . [14.19]

14.11  Beats
The phenomenon of beats is an interference effect that 
occurs when two waves with slightly different frequencies 
combine at a fixed point in space. For sound waves, the 
intensity of the resultant sound changes periodically with 
time. The beat frequency is

fb 5 | f2 2 f1| [14.20]

where f2 and f1 are the two source frequencies.

The speed of a longitudinal wave in a solid rod is

v 5 Å
Y
r

 [14.3]

where Y is Young’s modulus of the solid and r is its density. 
Equation 14.3 is only valid for a thin, solid rod.

The speed of sound also depends on the temperature of the 
medium. The relationship between temperature and the 
speed of sound in air is

 v 5 1331 m/s 2  Å
T

273 K
 [14.4]

where T is the absolute (Kelvin) temperature and 331 m/s 
is the speed of sound in air at 0°C.

14.4  Energy and Intensity of Sound Waves
The average intensity of sound incident on a surface is 
defined by

I ;  
power
area

5
P
A

 [14.6]

where the power P is the energy per unit time flowing 
through the surface, which has area A. The intensity level 
of a sound wave is given by

 b ;  10 log a I
I0
b  [14.7]

The constant I0 5 1.0 3 10212 W/m2 is a reference intensity, 
usually taken to be at the threshold of hearing, and I is the 
intensity at level b, with b measured in decibels (dB).

14.5  Spherical and Plane Waves
The intensity of a spherical wave produced by a point source 
is proportional to the average power emitted and inversely 
proportional to the square of the distance from the source:

I 5
Pav

4pr 2  [14.8]

14.6  The Doppler Effect
The change in frequency heard by an observer whenever 
there is relative motion between a source of sound and the 
observer is called the Doppler effect. If the observer is 
moving with speed vO and the source is moving with speed 
vS, the observed frequency is

 fO 5 fS a
v 1 vO

v 2 vS
b  [14.12]

where v is the speed of sound. A positive speed is substi-
tuted for vO when the observer moves toward the source, 
a negative speed when the observer moves away from the 
source. Similarly, a positive speed is substituted for vS when 
the sources moves toward the observer, a negative speed 
when the source moves away. Speeds are measured relative 
to the medium in which the sound is propagated.
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 ■ War M-Up  e Xe rc i s e s

The warm-up exercises in this chapter may be assigned online in Enhanced WebAssign.

 1. Math Review Determine the value of x in each of the 
following equations: (a) 10x 5 5 (b) log (3x) 5 2. (See 
also Section 14.4.)

 2. Math Review Determine the value of I  if 75 dB 5 

 10 log  a I
10212 W/m2 

b  . (See also Section 14.4.)

 3. Physics Review A piano tuning fork typically vibrates 
at 440 Hz. If the speed of sound is 343 m/s, what is the 
wavelength of the sound produced by the fork? (See 
Section 13.8.)

 4. Physics Review A string has a mass of 12.0 g and length 
of 1.50 m. (a) Calculate the string’s linear density, and  
(b) the speed of waves on the string, if it’s put under a 
tension of 85.0 N. (See Section 13.9.)

 5. The temperature at Furnace Creek in Death Valley 
reached 136°F (331 K) on July 10, 1913. What is the 
speed of sound in air at this temperature? (See Sec-
tion 14.3.)

 6. (a) Ethyl alcohol has a density of 0.806 3 103 kg/m3. 
Compute the speed of sound in ethyl alcohol, which 
has a bulk modulus of 1.0 3 1029 Pa. (b) Calculate the 
speed of sound in aluminum. (See Section 14.3.) 

 7. The sound intensity level of a jet plane going down the 
runway as observed from a certain location is 105 dB. 
Determine the physical intensity of the sound at this 
point. (See Section 14.4.)

 8. A rock band  creates a sound intensity level of 118 dB 
at a distance of 32.0 m. (a) Calculate the sound inten-
sity. (See Section 14.4.) (b) Assuming sound from the 
amplifiers travels as a spherical wave, what average 
power do the amplifiers generate? (See Section 14.5.)

 9. On a hot 95.0°F (308 K) day at a racetrack, a Formula One 
racecar is traveling at a speed of 1.50 3 102 mph (67.1 m/s) 
away from a stationary siren emitting sound waves at a 
frequency of 3.30 3 102 Hz. (a) Determine the sound 

speed for the given temperature. (See Section 14.3.)  
(b) What frequency did the racecar driver hear? (See Sec-
tion 14.6.)

 10. The driver of a car traveling 30.0 m/s sounds his horn 
as he approaches an intersection. If the horn has a fre-
quency of 675 Hz, what frequency does a pedestrian 
hear, if she is at rest at the intersection’s crosswalk? 
Assume a sound speed of 343 m/s. (See Section 14.6.)

 11. Two speakers, several meters apart and facing each 
other, emit identical sound waves at a frequency of 
225 Hz. Suppose the speed of sound in air is 331 m/s 
and a man is standing exactly half way between the 
two speakers, where the interference is constructive.  
(a) What is the wavelength for sound waves coming 
from each speaker? (See Section 13.8.) (b) What mini-
mum distance along the line between the speakers 
would the listener find the next point of constructive 
interference? (See Section 14.7.)

 12. A 2.00-m long string has a mass of 0.025 0 kg. If this 
string is pulled to a tension of 50.0 N and tied between 
two fixed supports, determine (a) the mass per unit 
length of the string, (b) the speed of the waves on the 
string, (c) the fundamental frequency for vibrations, 
and (d) the frequency of the second harmonic. (See 
Section 14.8.)

 13. The pipe of a f lute has a length of 58.0 cm, is closed 
at one end and is open at the other. If the speed of 
sound in air is 343 m/s, what is (a) the fundamen-
tal frequency of the flute? (b) the frequency of the 
next higher harmonic? (c) What is the fundamental 
frequency of the same pipe if it’s open at both ends? 
(See Section 14.10.)

 14. When two tuning forks are sounded at the same time, 
a beat frequency of 3 Hz occurs. If the first tuning fork 
has a frequency of 4.40 3 102 Hz, what are the two 
possible frequencies of the second tuning fork? (See  
Section 14.11.) 

vibrating source produces a range of frequencies, dis-
cuss the effect of changing the pipe’s length.

 3. Older auto-focus cameras sent out a pulse of sound 
and measured the time interval required for the 
pulse to reach an object, reflect off of it, and return 
to be detected. Can air temperature affect the cam-
era’s focus? New cameras use a more reliable infrared 
system.

 1. (a) You are driving down the highway in your car when 
a police car sounding its siren overtakes you and passes 
you. If its frequency at rest is f0, is the frequency you 
hear while the car is catching up to you higher or lower 
than f0? (b) What about the frequency you hear after 
the car has passed you?

 2. A crude model of the human throat is that of a pipe 
open at both ends with a vibrating source to introduce 
the sound into the pipe at one end. Assuming the 

 ■ c On ce p t Ua L QUes t i Ons

The conceptual questions in this chapter may be assigned online in Enhanced WebAssign.
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7. You are driving toward the base of a cliff and you 
honk your horn. (a) Is there a Doppler shift of the 
sound when you hear the echo? If so, is it like a 
moving source or moving observer? (b) What if the 
reflection occurs not from a cliff, but from the for-
ward edge of a huge alien spacecraft moving toward 
you as you drive?

8. The radar systems used by police to detect speeders are 
sensitive to the Doppler shift of a pulse of radio waves. 
Discuss how this sensitivity can be used to measure the 
speed of a car.

9. An archer shoots an arrow from a bow. Does the string 
of the bow exhibit standing waves after the arrow 
leaves? If so, and if the bow is perfectly symmetric so 
that the arrow leaves from the center of the string, 
what harmonics are excited?

 10. A soft drink bottle resonates as air is blown across its 
top. What happens to the resonant frequency as the 
level of fluid in the bottle decreases?

 11. An airplane mechanic notices that the sound from a 
twin-engine aircraft varies rapidly in loudness when 
both engines are running. What could be causing this 
variation from loud to soft?

 4. Explain how the distance to a lightning bolt (Fig. 
CQ14.4) can be determined by counting the seconds 
between the flash and the sound of thunder.

Figure c Q14.4
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5. Secret agents in the movies always want to get to a 
secure phone with a voice scrambler. How do these 
devices work?

6. Why does a vibrating guitar string sound louder when 
placed on the instrument than it would if allowed to 
vibrate in the air while off the instrument?

14.2  Characteristics of Sound Waves

14.3  The Speed of Sound

Note: Unless otherwise specified, assume the speed of 
sound in air is 343 m/s, its value at an air temperature 
of 20.0°C. At any other Celsius temperature TC , the 
speed of sound in air is described by Equation 14.4:

v 5 331Å1 1
TC

273

where v is in m/s and T is in °C. Use Table 14.1 to 
find speeds of sound in other media.

 1. Suppose you hear a clap of thunder 16.2 s after 
seeing the associated lightning stroke. The speed of 
light in air is 3.00 3 108 m/s. (a) How far are you from 
the lightning stroke? (b) Do you need to know the 
value of the speed of light to answer? Explain.

2. Earthquakes at fault lines in Earth’s crust create seis-
mic waves, which are longitudinal (P-waves) or trans-
verse (S-waves). The P-waves have a speed of about 
7 km/s. Estimate the average bulk modulus of Earth’s 
crust given that the density of rock is about 2 500 kg/m3.

 3. On a hot summer day, the temperature of air in Ari-
zona reaches 114°F. What is the speed of sound in air at 
this temperature?

 4. A dolphin located in seawater at a temperature of 
25°C emits a sound directed toward the bottom of the 
ocean 150 m below. How much time passes before it 
hears an echo?

 5. A group of hikers hears an echo 3.00 s after shouting. 
How far away is the mountain that reflected the sound 
wave?

 6. The range of human hearing extends from 
approximately 20 Hz to 20 000 Hz. Find the wave-
lengths of these extremes at a temperature of 27°C.

 ■ pr Ob Le Ms

  denotes biomedical problems

  denotes guided problems

  denotes Master It tutorial available in Enhanced WebAssign

  denotes asking for quantitative and conceptual reasoning

  denotes symbolic reasoning problem

 W  denotes Watch It video solution available in Enhanced WebAssign

The problems in this chapter may be assigned online in 
Enhanced WebAssign. 

 1. denotes straightforward problem; 2. denotes intermediate problem;

 3. denotes challenging problem

 1. denotes full solution available in Student Solutions Manual/ 
Study Guide

 1. denotes problems most often assigned in Enhanced WebAssign
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sound intensity of five trumpets at the location of the first 
row of an audience, 8.00 m away, assuming, for simplicity, 
the sound energy propagates uniformly in all directions.  
(d) Calculate the decibel level of the five trumpets in the 
first row. (e) If the trumpets are being played in an out-
door auditorium, how far away, in theory, can their com-
bined sound be heard? (f) In practice such a sound could 
not be heard once the listener was 2–3 km away. Why 
can’t the sound be heard at the distance found in part 
(e) Hint: In a very quiet room the ambient sound intensity 
level is about 30 dB.

 17. There is evidence that elephants communicate via in- 
frasound, generating rumbling vocalizations as low as 
14 Hz that can travel up to 10 km. The intensity level of  
these sounds can reach 103 dB, measured a distance 
of 5.0 m from the source. Determine the intensity level  
of the infrasound 10 km from the source, assuming the 
sound energy radiates uniformly in all directions.

 18. A family ice show is held at an enclosed arena. The 
skaters perform to music playing at a level of 80.0 dB. 
This intensity level is too loud for your baby, who yells 
at 75.0 dB. (a) What total sound intensity engulfs you? 
(b) What is the combined sound level?

 19.  A train sounds its horn as it approaches an intersec-
tion. The horn can just be heard at a level of 50 dB by an 
observer 10 km away. (a ) What is the average power gen-
erated by the horn? (b) What intensity level of the horn’s 
sound is observed by someone waiting at an intersection 
50 m from the train? Treat the horn as a point source and 
neglect any absorption of sound by the air.

 20. An outside loudspeaker (considered a small source) 
emits sound waves with a power output of 100 W. 
(a) Find the intensity 10.0 m from the source. (b) Find 
the intensity level in decibels at that distance. (c) At 
what distance would you experience the sound at the 
threshold of pain, 120 dB?

 21. Show that the difference in decibel levels b1 and b2

of a sound source is related to the ratio of its distances 
r1 and r2 from the receivers by the formula

b2 2 b1 5 20 logar1

r2
b

22. A skyrocket explodes 100 m above the ground  
(Fig. P14.22). Three observers are spaced 100 m apart, 
with the first (A) directly under the explosion. (a) What 

7. A sound wave propagating in air has a frequency of 
4.00 kHz. Calculate the change in wavelength when 
the wave, initially traveling in a region where T 5 
27.0°C, enters a region where T 5 10.0°C.

8. A stone is dropped from rest into a well. The sound of 
the splash is heard exactly 2.00 s later. Find the depth 
of the well if the air temperature is 10.0°C.

9. A hammer strikes one end of a thick steel rail of 
length 8.50 m. A microphone located at the opposite 
end of the rail detects two pulses of sound, one that 
travels through the air and a longitudinal wave that 
travels through the rail. (a) Which pulse reaches the 
microphone first? (b) Find the separation in time 
between the arrivals of the two pulses.

14.4  Energy and Intensity of Sound Waves

14.5  Spherical and Plane Waves

10.  The intensity level produced by a jet airplane at a 
certain location is 150 dB. (a) Calculate the intensity of 
the sound wave generated by the jet at the given location. 
(b) Compare the answer to part (a) to the threshold of 
pain and explain why employees directing jet airplanes at 
airports must wear hearing protection equipment.

 11. W One of the loudest sounds in recent history was 
that made by the explosion of Krakatoa on August 
26–27, 1883. According to barometric measurements, 
the sound had a decibel level of 180 dB at a distance of 
161 km. Assuming the intensity falls off as the inverse 
of the distance squared, what was the decibel level on 
Rodriguez Island, 4 800 km away?

 12. A sound wave from a siren has an intensity of 100.0 W/m2 

at a certain point, and a second sound wave from a nearby 
ambulance has an intensity level 10 dB greater than the 
siren’s sound wave at the same point. What is the intensity 
level of the sound wave due to the ambulance?

 13.  A person wears a hearing aid that uniformly 
increases the intensity level of all audible frequencies of 
sound by 30.0 dB. The hearing aid picks up sound having 
a frequency of 250 Hz at an intensity of 3.0 3 10211 W/m2. 
What is the intensity delivered to the eardrum?

 14. The area of a typical eardrum is about 5.0 3 
1025  m2. Calculate the sound power (the energy per 
second) incident on an eardrum at (a) the threshold of 
hearing and (b) the threshold of pain.

 15. The toadfish makes use of resonance in a closed 
tube to produce very loud sounds. The tube is its 
swim bladder, used as an amplifier. The sound level 
of this creature has been measured as high as 100 dB. 
(a) Calculate the intensity of the sound wave emitted. 
(b) What is the intensity level if three of these toadfish 
try to make a sound at the same time?

 16.  A trumpet creates a sound intensity level of 1.15 3  
102 dB at a distance of 1.00 m. (a) What is the sound inten-
sity of a trumpet at this distance? (b) What is the sound 
intensity of five trumpets at this distance? (c) Find the 

100 m

P

A B C

100 m100 m

Figure p 14.22

37027_ch14_ptg01_hr_481-522.indd   517 31/08/13   11:34 AM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



518  c hap t e r  14 | Sound

Unless otherwise noted, all content on this page is © Cengage Learning.

frequency different from the broadcast frequency, the 
motion detector can produce beeps of audible sound 
in synchrony with the fetal heartbeat.)

 31.  A supersonic jet traveling at Mach 3.00 at an altitude 
of h 5 20 000 m is directly over a person at time t 5 0  
as shown in Figure P14.31. Assume the average speed 
of sound in air is 335 m/s over the path of the sound. 
(a) At what time will the person encounter the shock 
wave due to the sound emitted at t 5 0? (b) Where will 
the plane be when this shock wave is heard?

is the ratio of the sound intensity heard by observer 
A to that heard by observer B? (b) What is the ratio 
of the intensity heard by observer A to that heard by 
observer C?

14.6  The Doppler Effect

23. A commuter train passes a passenger platform at a con-
stant speed of 40.0 m/s. The train horn is sounded at 
its characteristic frequency of 320 Hz. (a) What over-
all change in frequency is detected by a person on 
the platform as the train moves from approaching to 
receding? (b) What wavelength is detected by a person 
on the platform as the train approaches?

 24. An airplane traveling at half the speed of sound emits 
a sound of frequency 5.00 kHz. At what frequency does 
a stationary listener hear the sound (a) as the plane 
approaches? (b) After it passes?

 25. W Two trains on separate tracks move toward each 
other. Train 1 has a speed of 130 km/h; train 2, a 
speed of 90.0 km/h. Train 2 blows its horn, emitting 
a frequency of 500 Hz. What is the frequency heard by 
the engineer on train 1?

 26. At rest, a car’s horn sounds the note A (440 Hz). The 
horn is sounded while the car is moving down the 
street. A bicyclist moving in the same direction with 
one-third the car’s speed hears a frequency of 415 Hz. 
(a) Is the cyclist ahead of or behind the car? (b) What 
is the speed of the car?

 27. An alert physics student stands beside the tracks as a 
train rolls slowly past. He notes that the frequency of 
the train whistle is 465 Hz when the train is approach-
ing him and 441 Hz when the train is receding from 
him. Using these frequencies, he calculates the speed 
of the train. What value does he find?

 28.  A bat flying at 5.00 m/s is chasing an insect 
flying in the same direction. If the bat emits a 40.0-kHz 
chirp and receives back an echo at 40.4 kHz, (a) what 
is the speed of the insect? (b) Will the bat be able to 
catch the insect? Explain.

 29. A tuning fork vibrating at 512 Hz falls from rest and 
accelerates at 9.80 m/s2. How far below the point of 
release is the tuning fork when waves of frequency 
485 Hz reach the release point?

 30.  Expectant parents are thrilled to hear their 
unborn baby’s heartbeat, revealed by an ultrasonic 
motion detector. Suppose the fetus’s ventricular wall 
moves in simple harmonic motion with amplitude 
1.80  mm and frequency 115 beats per minute. The 
motion detector in contact with the mother’s abdo-
men produces sound at precisely 2 MHz, which travels 
through tissue at 1.50 km/s. (a) Find the maximum 
linear speed of the heart wall. (b) Find the maxi-
mum frequency at which sound arrives at the wall of 
the baby’s heart. (c) Find the maximum frequency 
at which reflected sound is received by the motion 
detector. (By electronically “listening” for echoes at a 

h

t � 0 t � ?

Observer
Observer hears
the “boom”

h

x

uu

a b

Figure p 14.31

32.  A yellow submarine traveling horizontally at 
11.0 m/s uses sonar with a frequency of 5.27 3 103 Hz. 
A red submarine is in front of the yellow submarine 
and moving 3.00 m/s relative to the water in the same 
direction. A crewman in the red submarine observes 
sound waves (“pings”) from the yellow submarine. 
Take the speed of sound in seawater as 1  533 m/s. 
(a) Write Equation 14.12. (b) Which submarine is the 
source of the sound? (c) Which submarine carries the 
observer? (d) Does the motion of the observer’s sub-
marine increase or decrease the time between the 
pressure maxima of the incoming sound waves? How 
does that affect the observed period? The observed 
frequency? (e) Should the sign of v0 be positive or 
negative? (f)  Does the motion of the source subma-
rine increase or decrease the time observed between 
the pressure maxima? How does this motion affect the 
observed period? The observed frequency? (g) What 
sign should be chosen for vs? (h) Substitute the appro-
priate numbers and obtain the frequency observed by 
the crewman on the red submarine.

14.7  Interference of Sound Waves

 33. Two small speakers are driven by a common oscillator 
at 8.00 3 102 Hz. The speakers face each other and are 
separated by 1.25 m. Locate the points along a line 
joining the two speakers where relative minima would 
be expected. (Use v 5 343 m/s.)

 34. The acoustical system shown in Figure P14.34 is driven 
by a speaker emitting sound of frequency 756 Hz. 
(a) If constructive interference occurs at a particular 
instant, by what minimum amount should the path 
length in the upper U-shaped tube be increased so 
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to the line joining  the 
speakers as in Figure 
P14.37. (a) How far must 
the observer walk before 
reaching a relative maxi-
mum in intensity? (b) 
How far will the observer 
be from the speaker 
when the first relative 
minimum is detected in 
the intensity?

14.8  Standing Waves

38. A steel wire in a piano has a length of 0.700 0 m and a 
mass of 4.300 3 1023 kg. To what tension must this wire 
be stretched so that the fundamental vibration corre-
sponds to middle C ( fC 5 261.6 Hz on the chromatic 
musical scale)?

 39. W A stretched string fixed at each end has a mass of 
40.0 g and a length of 8.00 m. The tension in the string 
is 49.0  N. (a) Determine the positions of the nodes 
and antinodes for the third harmonic. (b) What is the 
vibration frequency for this harmonic?

 40. How far, and in what direction, should a cellist move 
her finger to adjust a string’s tone from an out-of-tune 
449 Hz to an in-tune 440 Hz? The string is 68.0 cm 
long, and the finger is 20.0 cm from the nut for the 
449-Hz tone.

 41. A stretched string of length L is observed to vibrate in 
five equal segments when driven by a 630-Hz oscillator. 
What oscillator frequency will set up a standing wave 
so that the string vibrates in three segments?

 42. Two pieces of steel wire with identical cross sections 
have lengths of L and 2L. The wires are each fixed 
at both ends and stretched so that the tension in the 
 longer wire is four times greater than in the shorter 
wire. If the fundamental frequency in the shorter wire 
is 60 Hz, what is the frequency of the second harmonic 
in the longer wire?

 43. A steel wire with mass 25.0 g and length 1.35 m is 
strung on a bass so that the distance from the nut to 
the bridge is 1.10 m. (a) Compute the linear density 
of the string. (b) What velocity wave on the string will 
produce the desired fundamental frequency of the E1

string, 41.2 Hz? (c) Calculate the tension required to 
obtain the proper frequency. (d) Calculate the wave-
length of the string’s vibration. (e) What is the wave-
length of the sound produced in air? (Assume the 
speed of sound in air is 343 m/s.)

 44. A standing wave is set up in a string of variable 
length and tension by a vibrator of variable frequency. 
Both ends of the string are fixed. When the vibrator 
has a frequency fA, in a string of length LA and under 
tension TA, nA antinodes are set up in the string. 
(a) Write an expression for the frequency fA of a stand-
ing wave in terms of the number nA, length LA, tension 

that destructive interference occurs instead? (b) What 
minimum increase in the original length of the upper 
tube will again result in constructive interference?

Speaker

Receiver

Sliding section

Figure p 14.34

35. The ship in Figure P14.35 travels along a straight line 
parallel to the shore and a distance d 5 600 m from 
it. The ship’s radio receives simultaneous signals of the 
same frequency from antennas A and B, separated by 
a distance L 5 800 m. The signals interfere construc-
tively at point C, which is equidistant from A and B. 
The signal goes through the first minimum at point D, 
which is directly outward from the shore from point B. 
Determine the wavelength of the radio waves.

d

L

C D

A B

Figure p 14.35

36. Two loudspeakers are placed above and below each 
other, as in Figure P14.36 and driven by the same 
source at a frequency of 4.50 3 102 Hz. An observer is 
in front of the speakers (to the right) at point O, at the 
same distance from each speaker. What minimum ver-
tical distance upward should the top speaker be moved 
to create destructive interference at point O?

3.00 m

r2

8.00 m 

r1

O

Figure p 14.36

37. A pair of speakers separated by a distance d 5 0.700 m 
are driven by the same oscillator at a frequency of 
686  Hz. An observer originally positioned at one of 
the speakers begins to walk along a line perpendicular 

x

d

Figure p 14.37
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have to produce a high harmonic with what frequency in 
order to shatter the glass with a resonant vibration?

14.10  Standing Waves in Air Columns

49. The windpipe of a typical whooping crane is about 
5.0  ft. long. What is the lowest resonant frequency of 
this pipe, assuming it is closed at one end? Assume a 
temperature of 37°C.

50. The overall length of a piccolo is 32.0 cm. The reso-
nating air column vibrates as in a pipe that is open at 
both ends. (a) Find the frequency of the lowest note a 
piccolo can play. (b) Opening holes in the side effec-
tively shortens the length of the resonant column. If 
the highest note a piccolo can sound is 4 000 Hz, find 
the distance between adjacent antinodes for this mode 
of vibration.

51. W  The human ear canal is about 2.8 cm long. 
If it is regarded as a tube that is open at one end and 
closed at the eardrum, what is the fundamental fre-
quency around which we would expect hearing to be 
most sensitive?

 52.  A tunnel under a river is 2.00 km long. (a) At  
what frequencies can the air in the tunnel resonate?  
(b) Explain whether it would be good to make a rule 
against blowing your car horn when you are in the tunnel.

 53. A pipe open at both ends has a fundamental 
frequency of 300 Hz when the temperature is 0°C. 
(a) What is the length of the pipe? (b) What is the fun-
damental frequency at a temperature of 30.0°C?

 54. Two adjacent natural frequencies of an organ pipe are 
found to be 550 Hz and 650 Hz. (a) Calculate the fun-
damental frequency of the pipe. (b) Is the pipe open 
at both ends or open at only one end? (c) What is the 
length of the pipe?

14.11  Beats

55. In certain ranges of a piano keyboard, more than one 
string is tuned to the same note to provide extra loud-
ness. For example, the note at 1.10 3 102 Hz has two 
strings at this frequency. If one string slips from its nor-
mal tension of 6.00 3 102 N to 5.40 3 102 N, what beat 
frequency is heard when the hammer strikes the two 
strings simultaneously?

 56. The G string on a violin has a fundamental frequency 
of 196 Hz. It is 30.0 cm long and has a mass of 0.500 g. 
While this string is sounding, a nearby violinist effectively 
shortens the G string on her identical violin (by sliding 
her finger down the string) until a beat frequency of  
2.00 Hz is heard between the two strings. When that 
occurs, what is the effective length of her string?

 57. Two train whistles have identical frequencies of 1.80 3 
102 Hz. When one train is at rest in the station and 
the other is moving nearby, a commuter standing on 
the station platform hears beats with a frequency of 
2.00 beats/s when the whistles operate together. What 
are the two possible speeds and directions that the 
moving train can have?

TA, and linear density mA. (b) If the length of the string 
is doubled to LB 5 2LA, what frequency fB (written 
as a multiple of fA) will result in the same number of 
antinodes? Assume the tension and linear density are 
unchanged. Hint: Make a ratio of expressions for fB and 
fA. (c) If the frequency and length are held constant, 
what tension TB will produce nA 1 1 antinodes? (d) If 
the frequency is tripled and the length of the string is 
halved, by what factor should the tension be changed 
so that twice as many antinodes are produced?

 45. A 12.0-kg object hangs in equilibrium from a string  
with total length of L 5 5.00 m and linear mass density 
of m 5 0.001 00 kg/m. The string is wrapped around two 
light, frictionless pulleys that are separated by the dis-
tance d 5 2.00 m (Fig. P14.45a). (a) Determine the ten-
sion in the string. (b) At what frequency must the string 
between the pulleys vibrate in order to form the standing-
wave pattern shown in Figure P14.45b?

gS 

m

d

m

d

a b

Figure p 14.45

46. In the arrangement shown in Figure P14.46, an 
object of mass m 5 5.0 kg hangs from a cord around 
a light pulley. The length of the cord between point P 
and the pulley is L 5 2.0 m. (a) When the vibrator is 
set to a frequency of 150 Hz, a standing wave with six 
loops is formed. What must be the linear mass density 
of the cord? (b) How many loops (if any) will result if 
m is changed to 45 kg? (c) How many loops (if any) will 
result if m is changed to 10 kg?

L

P

Vibrator

PP
m

m

Figure p 14.46

47. A 60.00-cm guitar string under a tension of 
50.000 N has a mass per unit length of 0.100 00 g/cm. 
What is the highest resonant frequency that can be 
heard by a person capable of hearing frequencies up to 
20 000 Hz?

14.9  Forced Vibrations and Resonance

48. Standing-wave vibrations are set up in a crystal goblet with 
four nodes and four antinodes equally spaced around 
the 20.0-cm circumference of its rim. If transverse waves 
move around the glass at 900 m/s, an opera singer would 
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65. An interstate highway has been built through a neigh-
borhood in a city. In the afternoon, the sound level 
in an apartment in the neighborhood is 80.0 dB as 
100 cars pass outside the window every minute. Late 
at night, the traffic flow is only five cars per minute. 
What is the average late-night sound level?

66. A student uses an audio oscillator of adjustable fre-
quency to measure the depth of a water well. He 
reports hearing two successive resonances at 52.0 Hz 
and 60.0 Hz. How deep is the well?

67. A stereo speaker is placed between two observers who 
are 36 m apart, along the line connecting them. If one 
observer records an intensity level of 60 dB, and the 
other records an intensity level of 80 dB, how far is the 
speaker from each observer?

68.  Two ships are moving along a line due east (Fig. 
P14.68). The trailing vessel has a speed relative to a land-
based observation point of v1 5 64.0 km/h, and the lead-
ing ship has a speed of v2 5 45.0 km/h relative to that 
point. The two ships are in a region of the ocean where 
the current is moving uniformly due west at vcurrent 5 
10.0 km/h. The trailing ship transmits a sonar signal at 
a frequency of 1 200.0 Hz through the water. What fre-
quency is monitored by the leading ship?

58. Two pipes of equal length are each open at one end. 
Each has a fundamental frequency of 480 Hz at 300 K. 
In one pipe the air temperature is increased to 305 K. 
If the two pipes are sounded together, what beat fre-
quency results?

 59. A student holds a tuning fork oscillating at 256 Hz. He 
walks toward a wall at a constant speed of 1.33 m/s. 
(a)  What beat frequency does he observe between the 
tuning fork and its echo? (b) How fast must he walk away 
from the wall to observe a beat frequency of 5.00 Hz?

14.13  The Ear

60.  If a human ear canal can be thought of as resem-
bling an organ pipe, closed at one end, that resonates at 
a fundamental frequency of 3 000 Hz, what is the length 
of the canal? Use a normal body temperature of 37°C for 
your determination of the speed of sound in the canal.

 61.  Some studies suggest that the upper frequency limit 
of hearing is determined by the diameter of the eardrum. 
The wavelength of the sound wave and the diameter of 
the eardrum are approximately equal at this upper limit. 
If the relationship holds exactly, what is the diameter of 
the eardrum of a person capable of hearing 20 000 Hz? 
(Assume a body temperature of 37.0°C.)

Additional Problems

62. A typical sound level for a buzzing mosquito is 40 dB, and 
that of a vacuum cleaner is approximately 70 dB. Approx-
imately how many buzzing mosquitoes will produce a 
sound intensity equal to that of a vacuum cleaner?

 63. Assume a 150-W loudspeaker broadcasts sound equally 
in all directions and produces sound with a level of 
103 dB at a distance of 1.60 m from its center. (a) Find 
its sound power output. If a salesperson claims the 
speaker is rated at 150 W, he is referring to the maxi-
mum electrical power input to the speaker. (b) Find 
the efficiency of the speaker, that is, the fraction of 
input power that is converted into useful output power.

 64. Two small loudspeakers emit sound waves of different 
frequencies equally in all directions. Speaker A has 
an output of 1.00 mW, and speaker B has an output 
of 1.50  mW. Determine the sound level (in decibels) 
at point C in Figure P14.64 assuming (a) only speaker 
A emits sound, (b) only speaker B emits sound, and 
(c) both speakers emit sound.

C

A B

3.00 m 2.00 m

4.00 m

Figure p 14.64

v1

vcurrent

v2

Figure p 14.68

69. A quartz watch contains a crystal oscillator in the form 
of a block of quartz that vibrates by contracting and 
expanding. Two opposite faces of the block, 7.05 mm 
apart, are antinodes, moving alternately toward and 
away from each other. The plane halfway between 
these two faces is a node of the vibration. The speed 
of sound in quartz is 3.70 3 103 m/s. Find the fre-
quency of the vibration. An oscillating electric voltage 
accompanies the mechanical oscillation, so the quartz 
is described as piezoelectric. An electric circuit feeds in 
energy to maintain the oscillation and also counts the 
voltage pulses to keep time.

 70. A flowerpot is knocked off a window 
ledge from a height d 5 20.0 m above 
the sidewalk as shown in Figure 
P14.70. It falls toward an unsuspect-
ing man of height h 5 1.75 m who 
is standing below. Assume the man 
below requires 0.300 s to respond to 
a warning. How close to the sidewalk 
can the flowerpot fall before it is too 
late for a warning shouted from the 
window to reach the man in time?

 71. On a workday, the average decibel 
level of a busy street is 70 dB, with 100 cars passing 

d

h

Figure p 14.70
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74. A student stands several meters in front of a smooth 
reflecting wall, holding a board on which a wire  
is fixed at each end. The wire, vibrating in its third 
harmonic, is 75.0 cm long, has a mass of 2.25 g,  
and is under a tension of 400 N. A second student, 
moving toward the wall, hears 8.30 beats per sec-
ond. What is the speed of the student approaching  
the wall?

 75. By proper excitation, it is possible to produce both 
longitudinal and transverse waves in a long metal 
rod. In a particular case, the rod is 150 cm long and 
0.200 cm in radius and has a mass of 50.9 g. Young’s 
modulus for the material is 6.80 3 1010 Pa. Deter-
mine the required tension in the rod so that the ratio 
of the speed of longitudinal waves to the speed of 
transverse waves is 8.

 76. A 0.500-m-long brass pipe open at both ends has a fun-
damental frequency of 350 Hz. (a) Determine the tem-
perature of the air in the pipe. (b) If the temperature 
is increased by 20.0°C, what is the new fundamental 
frequency of the pipe? Be sure to include the effects of 
temperature on both the speed of sound in air and the 
length of the pipe.

a given point every minute. If the number of cars is 
reduced to 25 every minute on a weekend, what is the 
decibel level of the street?

 72. A flute is designed so that it plays a frequency of 261.6 Hz, 
middle C, when all the holes are covered and the temper-
ature is 20.0°C. (a) Consider the flute to be a pipe open at 
both ends and find its length, assuming the middle-C fre-
quency is the fundamental frequency. (b) A second player, 
nearby in a colder room, also attempts to play middle  
C on an identical flute. A beat frequency of 3.00 beats/s  
is heard. What is the temperature of the room?

 73. A block with a speaker bolted to it is connected to a spring 
having spring constant k 5 20.0 N/m, as shown in Figure 
P14.73. The total mass of the block and speaker is 5.00 kg, 
and the amplitude of the unit’s motion is 0.500 m. If the 
speaker emits sound waves of frequency 440 Hz, deter-
mine the (a) lowest and (b) highest frequencies heard by 
the person to the right of the speaker.

m
k

Figure p 14.73
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A.1  Mathematical Notation
Many mathematical symbols are used throughout this book. These symbols are 
described here, with examples illustrating their use.

Equals Sign: �
The symbol � denotes the mathematical equality of two quantities. In physics, it 
also makes a statement about the relationship of different physical concepts. An 
example is the equation E � mc2. This famous equation says that a given mass m, 
measured in kilograms, is equivalent to a certain amount of energy, E, measured in 
joules. The speed of light squared, c2, can be considered a constant of proportional-
ity, neccessary because the units chosen for given quantities are rather arbitrary, 
based on historical circumstances.

Proportionality: �
The symbol � denotes a proportionality. This symbol might be used when focus-
ing on relationships rather than an exact mathematical equality. For example, 
we could write E  �  m, which says “the energy E associated with an object is propor-
tional to the mass m of the object.” Another example is found in kinetic energy, 
which is the energy associated with an object’s motion, defined by KE � 1

2mv2,  
where m is again the mass and v is the speed. Both m and v are variables in this 
expression. Hence, the kinetic energy KE is proportional to m, KE  �  m, and at the 
same time KE is proportional to the speed squared, KE  �  v2. Another term used 
here is “directly proportional.” The density r of an object is related to its mass and 
volume by r  �  m/V. Consequently, the density is said to be directly proportional to 
mass and inversely proportional to volume.

Inequalities
The symbol � means “is less than,” and � means “is greater than.” For example, 
rFe � rAl means that the density of iron, rFe, is greater than the density of alu-
minum, rAl. If there is a line underneath the symbol, there is the possibility of 
equality: � means “less than or equal to,” whereas � means “greater than or equal 
to.” Any particle’s speed v, for example, is less than or equal to the speed of light,  
c: v � c.
 Sometimes the size of a given quantity greatly differs from the size of another 
quantity. Simple inequality doesn’t convey vast differences. For such cases, the  
symbol �� means “is much less than” and �� means “is much greater than.” The 
mass of the Sun, MSun, is much greater than the mass of the Earth, ME : M Sun �� M E . 
The mass of an electron, me, is much less than the mass of a proton, mp: me �� mp.

Approximately Equal: �
The symbol � indicates that two quantities are approximately equal to each other. 
The mass of a proton, mp, is approximately the same as the mass of a neutron, mn. 
This relationship can be written mp � mn.

Equivalence: �
The symbol � means “is defined as,” which is a different statement than a simple 
�. It means that the quantity on the left—usually a single quantity—is another way 

Mathematics Review ■ Appendix A

A.1
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A.2  APPENDIX A | Mathematics Review

of expressing the quantity or quantities on the right. The classical momentum of 
an object, p, is defined to be the mass of the object m times its velocity v, hence p � 
mv. Because this equivalence is by definition, there is no possibility of p being equal 
to something else. Contrast this case with that of the expression for the velocity v of  
an object under constant acceleration, which is v � at � v0. This equation would  
never be written with an equivalence sign because v in this context is not a defined  
quantity; rather it is an equality that holds true only under the assumption of con-
stant acceleration. The expression for the classical momentum, however, is always 
true by definition, so it would be appropriate to write p � mv the first time the 
concept is introduced. After the introduction of a term, an ordinary equals sign 
generally suffices.

Differences: �
The Greek letter � (capital delta) is the symbol used to indicate the difference in 
a measured physical quantity, usually at two different times. The best example is 
a displacement along the x -axis, indicated by �x (read as “delta x”). Note that �x 
doesn’t mean “the product of � and x.” Suppose a person out for a morning stroll 
starts measuring her distance away from home when she is 10 m from her doorway. 
She then continues along a straight-line path and stops strolling 50 m from the 
door. Her change in position during the walk is �x � 50 m � 10 m � 40 m. In sym-
bolic form, such displacements can be written

�x � xf � xi

In this equation, xf is the final position and xi is the initial position. There are 
numerous other examples of differences in physics, such as the difference (or 
change) in momentum, �p � pf � pi; the change in kinetic energy, �K � Kf � Ki; 
and the change in temperature, �T � Tf � Ti.

Summation: �
In physics there are often contexts in which it’s necessary to add several quantities. 
A useful abbreviation for representing such a sum is the Greek letter � (capital 
sigma). Suppose we wish to add a set of five numbers represented by x1, x2, x3, x4, 
and x5. In the abbreviated notation, we would write the sum as

x1 1 x2 1 x3 1 x4 1 x5 5 a
5

i51
 xi

where the subscript i on x represents any one of the numbers in the set. For exam-
ple, if there are five masses in a system, m1, m2, m3, m4, and m5, the total mass of the 
system M � m1 � m2 � m3 � m4 � m5 could be expressed as

M 5 a
5

i51
 mi

The x-coordinate of the center of mass of the five masses, meanwhile, could be 
written

xCM 5
a

5

i51
 mixi

M

with similar expressions for the y - and z-coordinates of the center of mass.

Absolute Value: |  |
The magnitude of a quantity x, written �x �, is simply the absolute value of that quan-
tity. The sign of �x � is always positive, regardless of the sign of x. For example, if  
x � �5, then �x � � 5; if x � 8, then �x � � 8. In physics this sign is useful whenever 
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A.2 | Scientific Notation  A. 3

the magnitude of a quantity is more important than any direction that might be 
implied by a sign.

A.2  Scientific Notation
Many quantities in science have very large or very small values. The speed of light 
is about 300 000 000 m/s, and the ink required to make the dot over an i in this 
textbook has a mass of about 0.000 000 001 kg. It’s very cumbersome to read, write, 
and keep track of such numbers because the decimal places have to be counted and 
because a number with one significant digit may require a large number of zeros. 
Scientific notation is a way of representing these numbers without having to write 
out so many zeros, which in general are only used to establish the magnitude of the 
number, not its accuracy. The key is to use powers of 10. The nonnegative powers 
of 10 are

100 5 1 

101 5 10 

102 5 10 3 10 5 100 

103 5 10 3 10 3 10 5 1 000 

104 5 10 3 10 3 10 3 10 5 10 000 

105 5 10 3 10 3 10 3 10 3 10 5 100 000

and so on. The number of decimal places following the first digit in the num-
ber and to the left of the decimal point corresponds to the power to which 10 is 
raised, called the exponent of 10. The speed of light, 300 000 000 m/s, can then 
be expressed as 3 � 108 m/s. Notice there are eight decimal places to the right of 
the leading digit, 3, and to the left of where the decimal point would be placed.
Some representative numbers smaller than 1 are

1021 5
1
10

5 0.1 

1022 5
1

10 3 10
5 0.01 

1023 5
1

10 3 10 3 10
5 0.001 

1024 5
1

10 3 10 3 10 3 10
5 0.000 1 

1025 5
1

10 3 10 3 10 3 10 3 10
5 0.000 01

In these cases, the number of decimal places to the right of the decimal point 
up to and including only the first nonzero digit equals the value of the (negative) 
exponent.
 Numbers expressed as some power of 10 multiplied by another number between 
1 and 10 are said to be in scienti�c notation. For example, Coulomb’s constant, 
which is associated with electric forces, is given by 8 987 551 789 N�m2/C2 and is 
written in scientific notation as 8.987 551 789 � 109 N�m2/C2. Newton’s constant of 
gravitation is given by 0.000 000 000 066 731 N�m2/kg2, written in scientific nota-
tion as 6.673 1 � 10�11 N�m2/kg2.
 When numbers expressed in scientific notation are being multiplied, the follow-
ing general rule is very useful:

 10n � 10m � 10n�m [A.1]

where n and m can be any numbers (not necessarily integers). For example,  
102 � 105 � 107. The rule also applies if one of the exponents is negative:  
103 � 10�8 � 10�5.
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When dividing numbers expressed in scientific notation, note that

10n

10m 5 10n 3 102m 5 10n2m [A.2]

Exercises
With help from the above rules, verify the answers to the following:

1. 86 400 � 8.64 � 104

2. 9 816 762.5 � 9.816 762 5 � 106

3. 0.000 000 039 8 � 3.98 � 10�8

4. (4 � 108)(9 � 109) � 3.6 � 1018

5. (3 � 107)(6 � 10�12) � 1.8 � 10�4

6. 
75 3 10211

5 3 1023 5 1.5 3 1027

7. 
13 3 106 2 18 3 1022 2
12 3 1017 2 16 3 105 2 5 2 3 10218

A.3  Algebra
A. Some Basic Rules
When algebraic operations are performed, the laws of arithmetic apply. Symbols 
such as x, y, and z are usually used to represent quantities that are not specified, 
what are called the unknowns.
 First, consider the equation

8x � 32

If we wish to solve for x, we can divide (or multiply) each side of the equation by 
the same factor without destroying the equality. In this case, if we divide both sides 
by 8, we have

8x
8

5
32
8

x � 4

Next consider the equation

x � 2 � 8

In this type of expression, we can add or subtract the same quantity from each 
side. If we subtract 2 from each side, we obtain

x 1 2 2 2 5 8 2 2

 x 5 6 

In general, if x � a � b, then x � b � a.
 Now consider the equation

x
5
5 9

If we multiply each side by 5, we are left with x on the left by itself and 45 on the 
right:

ax
5
b 15 2 5 9 3 5

 x 5 45 

In all cases, whatever operation is performed on the left side of the equality must 
also be performed on the right side.
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The following rules for multiplying, dividing, adding, and subtracting fractions 
should be recalled, where a, b, and c are three numbers:

Rule Example

Multiplying aa
b
b a c

d
b 5

ac
bd

 a2
3
b a4

5
b 5

8
15

Dividing 
1a/b 2
1c/d 2 5

ad
bc

    
2/3
4/5

5
12 2 15 2
14 2 13 2 5

10
12

5
5
6

Adding 
a
b
6

c
d
5

ad 6 bc
bd

 
2
3
2

4
5
5

12 2 15 2 2 14 2 13 2
13 2 15 2 5 2

2
15

Very often in physics we are called upon to manipulate symbolic expressions alge-
braically, a process most students find unfamiliar. It’s very important, however, 
because substituting numbers into an equation too early can often obscure mean-
ing. The following two examples illustrate how these kinds of algebraic manipula-
tions are carried out.

 ■ EXAmPl E
A ball is dropped from the top of a building 50.0 m tall. How long does it take the ball to fall to a height of 25.0 m?

So lu t Io N  First, write the general ballistics equation for this situation:

x 5 1
2at

2 1 v0t 1 x0

Here, a � �9.80 m/s2 is the acceleration of gravity that causes the ball to fall, v0 � 0 is the initial velocity, and x0 � 50.0 m 
is the initial position. Substitute only the initial velocity, v0 � 0, obtaining the following equation:

x 5 1
2at

2 1 x0

This equation must be solved for t. Subtract x0 from both sides:

x 2 x0 5
1
2at

2 1 x0 2 x0 5
1
2at

2

Multiply both sides by 2/a :

a2
a
b 1x 2 x0 2 5 a2

a
b1

2at
2 5 t 2

It’s customary to have the desired value on the left, so switch the equation around and take the square root of both sides:

t 5 6Åa2
a
b 1x 2 x0 2

Only the positive root makes sense. Values could now be substituted to obtain a final answer.

 ■ EXAmPl E
A block of mass m slides over a frictionless surface in the positive x-direction. It encounters a patch of roughness having 
coefficient of kinetic friction mk. If the rough patch has length �x, find the speed of the block after leaving the patch.

So lu t Io N  Using the work-energy theorem, we have
1
2mv

2 2 1
2mv0

2 5 2mkmg  Dx

Add 12mv  0
2 to both sides:

1
2mv

2 5 1
2mv0

2 2 mkmg  Dx

(Continued)
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Exercises
In Exercises 1–4, solve for x :

 Answers

1. a 5
1

1 1 x
 x 5

1 2 a
a

2. 3x 2 5 5 13 x 5 6

3. ax 2 5 5 bx 1 2 x 5
7

a 2 b

4. 
5

2x 1 6
5

3
4x 1 8

 x 5 2
11
7

5. Solve the following equation for v1:

P1 1
1
2rv1

2 5 P2 1
1
2rv2

2

 Answer:  v1 5 6Å
2
r
1P2 2 P1 2 1 v2

2

B. Powers
When powers of a given quantity x are multiplied, the following rule applies:

 xnxm � xn�m [A.3]

For example, x2x4 � x2�4 � x6.
 When dividing the powers of a given quantity, the rule is

 
xn

xm 5 xn2m [A.4]

For example, x8/x2 � x8�2 � x6.
A power that is a fraction, such as 13, corresponds to a root as follows:

 x1/n 5 !n x [A.5]

For example, 41/3 5
3"4 � 1.587 4. (A scientific calculator is useful for such  

calculations.)
 Finally, any quantity xn raised to the mth power is

 1xn 2m 5 xnm [A.6]

Table A.1 summarizes the rules of exponents.

Exercises
Verify the following:

1. 32 � 33 � 243
2. x5x�8 � x�3

3. x10/x�5 � x15

4. 51/3 � 1.709 975 (Use your calculator.)
5. 601/4 � 2.783 158 (Use your calculator.)
6. (x4)3 � x12

t able A.1 Rules of Exponents

 x0 5 1 
 x1 5 x 

 xnxm 5 xn1m

xn/xm 5 xn2m

 x1/n 5 !n x
 1xn 2m 5 xnm 

Multiply both sides by 2/m:

v2 5 v0
2 2 2mkg  Dx

Finally, take the square root of both sides. Because the block is sliding in the positive x -direction, the positive square root 
is selected.

v 5 "v0
2 2 2mkg  Dx
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A.3 | Algebra  A. 7

C. Factoring
The following are some useful formulas for factoring an equation:

ax � ay � az � a(x � y � z) common factor

 a2 � 2ab � b2 � (a � b)2 perfect square

 a2 � b2 � (a � b)(a � b) difference of squares

D. Quadratic Equations
The general form of a quadratic equation is

ax2 � bx � c � 0 [A.7]

where x is the unknown quantity and a, b, and c are numerical factors referred to 
as coefficients of the equation. This equation has two roots, given by

 x 5
2b 6 "b2 2 4ac

2a
 [A.8]

If b2 � 4ac � 0, the roots are real.

 ■ EXAmPl E
The equation x2 � 5x � 4 � 0 has the following roots corresponding to the two signs of the square-root term:

x 5
25 6 "52 2 14 2 11 2 14 2

2 11 2 5
25 6 "9

2
5

25 6 3
2

x1 5
25 1 3

2
5 21     x2 5

25 2 3
2

5 24

where x1 refers to the root corresponding to the positive sign and x2 refers to the root corresponding to the negative sign.

 ■ EXAmPl E
A ball is projected upwards at 16.0 m/s. Use the quadratic formula to determine the time necessary for it to reach a height 
of 8.00 m above the point of release.

So lu t Io N  From the discussion of ballistics in Chapter 2, we can write

(1) x 5 1
2at

2 1 v0t 1 x0

The acceleration is due to gravity, given by a � �9.80 m/s2; the initial velocity is v0 � 16.0 m/s; and the initial position is 
the point of release, taken to be x0 � 0. Substitute these values into Equation (1) and set x � 8.00 m, arriving at

x � �4.90t 2 � 16.00t � 8.00

where units have been suppressed for mathematical clarity. Rearrange this expression into the standard form of Equa-
tion A.7:

�4.90t 2 � 16.00t � 8.00 � 0

The equation is quadratic in the time, t. We have a � �4.9, b � 16, and c � �8.00. Substitute these values into Equation 
A.8:

t 5
216.0 6 "162 2 4 124.90 2 128.00 2

2 124.90 2 5
216.0 6 "99.2

29.80

 
5 1.63 7

"99.2
9.80

 � 0.614 s, 2.65 s

Both solutions are valid in this case, one corresponding to reaching the point of interest on the way up and the other to 
reaching it on the way back down.
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Exercises
Solve the following quadratic equations:

 Answers

1. x 2 � 2x � 3 � 0 x1 5 1 x2 5 23
2. 2x 2 � 5x � 2 � 0 x1 5 2 x2 5

1
2

3. 2x 2 � 4x � 9 � 0 x1 5 1 1 "22/2 x2 5 1 2 "22/2

4. Repeat the ballistics example for a height of 10.0 m above the point of release.
Answer:  t1 � 0.842 s    t2 � 2.42 s

E. Linear Equations
A linear equation has the general form

 y � mx � b [A.9]

where m and b are constants. This kind of equation is called linear because the 
graph of y versus x is a straight line, as shown in Figure A.1. The constant b, called 
the y -intercept, represents the value of y at which the straight line intersects the  
y -axis. The constant m is equal to the slope of the straight line. If any two points on 
the straight line are specified by the coordinates (x1, y1) and (x2, y2), as in Figure 
A.1, the slope of the straight line can be expressed as

 
Slope 5

y2 2 y1

x2 2 x1
5

Dy

Dx
 [A.10]

 Note that m and b can have either positive or negative values. If m � 0, the 
straight line has a positive slope, as in Figure A.1. If m � 0, the straight line has a 
negative slope. In Figure A.1, both m and b are positive. Three other possible situa-
tions are shown in Figure A.2.

 ■ EXAmPl E
Suppose the electrical resistance of a metal wire is 5.00 � at a temperature of 20.0�C and 6.14 � at 80.0�C. Assuming the 
resistance changes linearly, what is the resistance of the wire at 60.0�C?

So lu t Io N  Find the equation of the line describing the resistance R and then substitute the new temperature into it. 
Two points on the graph of resistance versus temperature, (20.0�C, 5.00 �) and (80.0�C, 6.14 �), allow computation of 
the slope:

(1) m 5
DR
DT

5
6.14 V 2 5.00 V
80.08C 2 20.08C

5 1.90 3 1022 V/8C

Now use the point-slope formulation of a line, with this slope and (20.0�C, 5.00 �):

(2) R � R0 � m(T � T0)

(3) R � 5.00 � � (1.90 � 10�2 �/°C)(T � 20.0°C)

Finally, substitute T � 60.0° into Equation (3) and solve for R, getting R � 5.76 �.

Figure A.1

y

(x1, y1)

(x2, y2)

y

x(0, b)

(0, 0)
x

�

�

Figure A.2

y

(1)

(2)

(3)

m � 0
b � 0

m � 0
b � 0

m � 0
b � 0

x

Exercises

1. Draw graphs of the following straight lines:
(a)  y 5 5x 1 3    (b)  y 5 22x 1 4    (c)  y 5 23x 2 6

2. Find the slopes of the straight lines described in Exercise 1.
Answers:  (a)  5    (b)  �2    (c)  �3

3.  Find the slopes of the straight lines that pass through the following sets of 
points: (a) (0, �4) and (4, 2)      (b) (0, 0)  and (2, �5)       (c) (�5, 2)  and (4, �2)

 Answers:  (a)  3/2    (b)  �5/2    (c)  �4/9
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4. Suppose an experiment measures the following displacements (in meters)  
from equilibrium of a vertical spring due to attaching weights (in Newtons):  
(0.025  0 m, 22.0 N), (0.075  0 m, 66.0 N). Find the spring constant, which is the 
slope of the line in the graph of weight versus displacement.

 Answer:  880 N/m

F. Solving Simultaneous Linear Equations
Consider the equation 3x � 5y � 15, which has two unknowns, x and y. Such an 
equation doesn’t have a unique solution. For example, note that (x � 0, y � 3),  
(x � 5, y � 0), and (x � 2, y � 9/5) are all solutions to this equation.
 If a problem has two unknowns, a unique solution is possible only if we have two 
equations. In general, if a problem has n unknowns, its solution requires n equa-
tions. To solve two simultaneous equations involving two unknowns, x and y, we 
solve one of the equations for x in terms of y and substitute this expression into the 
other equation.

 ■ EXAmPl E
Solve the following two simultaneous equations:

(1)  5x 1 y 5 28    (2)  2x 2 2y 5 4

So lu t Io N  From Equation (2), we find that x 5 y 1 2. Substitution of this value into Equation (1) gives

5 1y 1 2 2 1 y 5 28 

 6y 5 218

y �   �3

 x 5 y 1 2 5 21

Alt Er NAt E So lu t Io N  Multiply each term in Equation (1) by the factor 2 and add the result to Equation (2):

10x 1 2y 5 216

2x 2 2y 5 4

12x 5 212

x �   �1

y 5 x 2 2 5 23

Two linear equations containing two unknowns can also be solved by a graphical 
method. If the straight lines corresponding to the two equations are plotted in a 
conventional coordinate system, the intersection of the two lines represents the 
solution. For example, consider the two equations

 x 2 y 5 2 

x 2 2y 5 21

These equations are plotted in Figure A.3. The intersection of the two lines has 
the coordinates x � 5, y � 3, which represents the solution to the equations. You 
should check this solution by the analytical technique discussed above. Figure A.3

5
4
3
2
1

x � 2y � �1

2 3 4 5 6

(5, 3)

x

x � y � 2

y

1

 ■ EXAmPl E
A block of mass m � 2.00 kg travels in the positive x-direction at vi � 5.00 m/s, while a second block, of mass M � 4.00 kg 
and leading the first block, travels in the positive x-direction at 2.00 m/s. The surface is frictionless. What are the blocks’ 
final velocities if the collision is perfectly elastic?

(Continued)
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A.10  APPENDIX A | Mathematics Review

Exercises
Solve the following pairs of simultaneous equations involving two unknowns:

 Answers

1. x 1 y 5 8 x 5 5, y 5 3
 x 2 y 5 2
2. 98 2 T 5 10a T 5 65.3, a 5 3.27
 T 2 49 5 5a
3. 6x 1 2y 5 6 x 5 2, y 5 23
 8x 2 4y 5 28

G. Logarithms and Exponentials
Suppose a quantity x is expressed as a power of some quantity a:

 x � ay [A.11]

The number a is called the base number. The logarithm of x with respect to the 
base a is equal to the exponent to which the base must be raised so as to satisfy the 
expression x � ay:

 y � loga x [A.12]

Conversely, the antilogarithm of y is the number x:

 x � antiloga y [A.13]

The antilog expression is in fact identical to the exponential expression in Equa-
tion A.11, which is preferable for practical purposes.
 In practice, the two bases most often used are base 10, called the common loga-
rithm base, and base e � 2.718 . . . , called the natural logarithm base. When com-
mon logarithms are used,

 y 5 log10 x  1or x 5 10y 2  [A.14]

When natural logarithms are used,

 y 5 ln x  1or x 5 e y 2  [A.15]

For example, log10 52 � 1.716, so antilog10 1.716 � 101.716 � 52. Likewise, lne 52 � 
3.951, so antilne 3.951 � e3.951 � 52.
 In general, note that you can convert between base 10 and base e with the 
equality

 ln x 5 12.302 585 2 log10 x [A.16]

So lu t Io N  As can be seen in Chapter 6, a perfectly elastic collision involves equations for the momentum and energy. 
With algebra, the energy equation, which is quadratic in v, can be recast as a linear equation. The two equations are 
given by

(1) mvi � MVi � mvf � MVf

(2)  vi � Vi � �(vf � Vf)

Substitute the known quantities vi � 5.00 m/s and Vi � 2.00 m/s into Equations (1) and (2):

(3) 18 � 2vf � 4Vf

(4)   3 � �vf � Vf

Multiply Equation (4) by 2 and add to Equation (3):

18 � 2vf � 4Vf

06 � �2vf � 2Vf

24 � 6Vf  → Vf �   4.00 m/s

Substituting the solution for Vf back into Equation (4) yields vf �   1.00 m/s.
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A.3 | Algebra  A. 11

Finally, some useful properties of logarithms are

 log 1ab 2 5 log a 1 log b  ln e 5 1

log 1a/b 2 5 log a 2 log b ln ea 5 a 

log 1an 2 5 n log a ln a1
ab 5 2ln a

Logarithms in college physics are used most notably in the definition of decibel 
level. Sound intensity varies across several orders of magnitude, making it awkward 
to compare different intensities. Decibel level converts these intensities to a more 
manageable logarithmic scale.

 ■ EXAmPl E (l ogs)
Suppose a jet testing its engines produces a sound intensity of I � 0.750 W at a given location in an airplane hangar. What 
decibel level corresponds to this sound intensity?

So lu t Io N  Decibel level b is defined by

b 5 10 log a I
I0
b

where I0 � 1 � 10�12 W/m2 is the standard reference intensity. Substitute the given information:

b 5 10 log a0.750 W/m2

10212 W/m2b 5 119 dB

 ■ EXAmPl E (Antilogs)
A collection of four identical machines creates a decibel level of b � 87.0 dB in a machine shop. What sound intensity 
would be created by only one such machine?

So lu t Io N  We use the equation of decibel level to find the total sound intensity of the four machines, and then we 
divide by 4. From Equation (1):

87.0 dB 5 10 log a I
10212 W/m2b

Divide both sides by 10 and take the antilog of both sides, which means, equivalently, to exponentiate:

108.7 5 10log 1 I/102122 5
I

10212

I 5 10212 # 108.7 5 1023.3 5 5.01 3 1024 W/m2

There are four machines, so this result must be divided by 4 to get the intensity of one machine:

I � 1.25 � 10�4 W/m2

 ■ EXAmPl E (Exponentials)
The half-life of tritium is 12.33 years. (Tritium is the heaviest isotope of hydrogen, with a nucleus consisting of a proton 
and two neutrons.) If a sample contains 3.0 g of tritium initially, how much remains after 20.0 years?

So lu t Io N The equation giving the number of nuclei of a radioactive substance as a function of time is

N 5 N0 a1
2
b
n

(Continued)
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A.4  Geometry
Table A.2 gives the areas and volumes for several geometric shapes used through-
out this text. These areas and volumes are important in numerous physics appli-
cations. A good example is the concept of pressure P, which is the force per unit 
area. As an equation, it is written P � F/A. Areas must also be calculated in prob-
lems involving the volume rate of fluid flow through a pipe using the equation of 
continuity, the tensile stress exerted on a cable by a weight, the rate of thermal 
energy transfer through a barrier, and the density of current through a wire. There 
are numerous other applications. Volumes are important in computing the buoy-
ant force exerted by water on a submerged object, in calculating densities, and in 
determining the bulk stress of fluid or gas on an object, which affects its volume. 
Again, there are numerous other applications.

where N is the number of nuclei remaining, N0 is the initial number of nuclei, and n is the number of half-lives. Note 
that this equation is an exponential expression with a base of 1

2. The number of half-lives is given by n � t/T1/2 �  
20.0 yr/12.33 yr � 1.62. The fractional amount of tritium that remains after 20.0 yr is therefore

N
N0

5 a1
2
b

1.62

5 0.325

Hence, of the original 3.00 g of tritium, 0.325 � 3.00 g � 0.975 g remains.

t able A.2 Useful Information for Geometry

Surface area �
2(�h � �w � hw)
Volume � �wh

Area � �w

Area � �bh1
2

Area � pr2

Circumference � 2pr

Surface area � 4pr2

Volume � �4pr3
3

Volume � pr2�

Lateral surface
area � 2pr�

Rectangle

Shape Area or Volume Area or VolumeShape

w

r

Circle

Triangle

h

Sphere

r

Cylinder

Rectangular box

r

�

w
h

b �

�

A.5  Trigonometry
Some of the most basic facts concerning trigonometry are presented in Chapter 
1, and we encourage you to study the material presented there if you are having 
trouble with this branch of mathematics. The most important trigonometric con-
cepts include the Pythagorean theorem:

�s2 � �x2 � �y2 [A.17]

This equation states that the square distance along the hypotenuse of a right tri-
angle equals the sum of the squares of the legs. It can also be used to find distances 
between points in Cartesian coordinates and the length of a vector, where �x is 
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A.5 | Trigonometry  A. 13

replaced by the x-component of the vector and �y is replaced by the y-component 
of the vector. If the vector A

S

 has components Ax and Ay, the magnitude A of the 
vector satisfies

 A2 5 Ax
2 1 Ay

2 [A.18]

which has a form completely analogous to the form of the Pythagorean theorem. 
Also highly useful are the cosine and sine functions because they relate the length 
of a vector to its x - and y -components:

 Ax � A cos u [A.19]
 A y � A sin u [A.20]

The direction u of a vector in a plane can be determined by use of the tangent 
function:

 tan u 5
Ay

Ax
 [A.21]

A relative of the Pythagorean theorem is also frequently useful:

 sin2 u � cos2 u � 1 [A.22]

Details on the above concepts can be found in the extensive discussions in  
Chapters 1 and 3. The following are some other useful trigonometric identities:

 sin u 5 cos 1908 2 u 2

 cos u 5 sin 1908 2 u 2

 sin  2u 5 2 sin u cos u 

 cos  2u 5 cos2 u 2 sin2 u 

 sin 1u 6 f 2 5 sin  u cos  f 6 cos u sin f

 cos 1u 6 f 2 5 cos u cos f 6 sin u sin f

The following relationships apply to any triangle, as shown in Figure A.4:

 a 1 b 1 g 5 1808

 a2 � b2 � c2 � 2bc cos a

 b2 5 a2 1 c2 2 2ac cos b    law of cosines

 c2 � a2 � b2 � 2ab cos g

 
a

sin a
5

b
sin b

5
c

sin g
      law of sines

Figure A.4

a b

c

b a

g

Unless otherwise noted, all content on this page is © Cengage Learning.
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  Mass 
     Number    
 Atomic   Chemical (* Indicates   Half-Life 
 Number   Atomic Radioactive) Atomic Percent (If Radioactive) 

Z Element Symbol Mass (u) A Mass (u) Abundance T1/2

0 (Neutron) n     1* 1.008 665  10.4 min
 1 Hydrogen H 1.007 94  1 1.007 825 99.988 5
  Deuterium D   2 2.014 102 0.011 5
  Tritium T     3* 3.016 049  12.33 yr

2 Helium He 4.002 602   3 3.016 029 0.000 137
       4 4.002 603 99.999 863
 3 Lithium Li 6.941  6 6.015 122 7.5

     7 7.016 004 92.5
4 Beryllium Be 9.012 182     7* 7.016 929  53.3 days

        9 9.012 182 100
 5 Boron B 10.811  10 10.012 937 19.9
       11 11.009 306 80.1
 6 Carbon C 12.010 7   10* 10.016 853  19.3 s
        11* 11.011 434  20.4 min
      12 12.000 000 98.93
       13 13.003 355 1.07
       14* 14.003 242  5 730 yr
 7 Nitrogen N 14.006 7 13* 13.005 739  9.96 min
      14 14.003 074 99.632
      15 15.000 109 0.368
 8 Oxygen O 15.999 4   15* 15.003 065  122 s
      16 15.994 915 99.757
      18 17.999 160 0.205
 9 Fluorine F 18.998 403 2 19 18.998 403 100
 10 Neon Ne 20.179 7 20 19.992 440 90.48
      22 21.991 385 9.25
 11 Sodium Na 22.989 77   22* 21.994 437  2.61 yr
       23 22.989 770 100
        24* 23.990 963  14.96 h
 12 Magnesium Mg 24.305 0 24 23.985 042 78.99
      25 24.985 837 10.00
      26 25.982 593 11.01
 13 Aluminum Al 26.981 538 27 26.981 539 100
 14 Silicon Si 28.085 5 28 27.976 926 92.229 7
 15 Phosphorus P 30.973 761 31 30.973 762 100
        32* 31.973 907  14.26 days
 16 Sulfur S 32.066 32 31.972 071 94.93
        35* 34.969 032  87.5 days
 17 Chlorine Cl 35.452 7 35 34.968 853 75.78
       37 36.965 903 24.22
 18 Argon Ar 39.948 40 39.962 383 99.600 3
 19 Potassium K 39.098 3 39 38.963 707 93.258 1
        40* 39.963 999 0.011 7 1.28  �  109 yr
 20 Calcium Ca 40.078   40 39.962 591 96.941

 21 Scandium Sc 44.955 910   45 44.955 910 100

 22 Titanium Ti 47.867   48 47.947 947 73.72

�  Appendix B An Abbreviated Table of Isotopes

A.14
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  | An Abbreviated Table of Isotopes  A. 15

  Mass 
     Number    
 Atomic   Chemical (* Indicates   Half-Life 
 Number   Atomic Radioactive) Atomic Percent (If Radioactive) 
 Z Element Symbol Mass (u) A Mass (u) Abundance T1/2

23 Vanadium V 50.941 5   51 50.943 964 99.750

 24 Chromium Cr 51.996 1   52 51.940 512 83.789

 25 Manganese Mn 54.938 049   55 54.938 050 100

26 Iron Fe 55.845   56 55.934 942 91.754

 27 Cobalt Co 58.933 200   59 58.933 200 100

         60* 59.933 822  5.27 yr

28 Nickel Ni 58.693 4   58 57.935 348 68.076 9

        60 59.930 790 26.223 1

 29 Copper Cu 63.546   63 62.929 601 69.17

        65 64.927 794 30.83

 30 Zinc Zn 65.39   64 63.929 147 48.63

        66 65.926 037 27.90

        68 67.924 848 18.75

 31 Gallium Ga 69.723   69 68.925 581 60.108

        71 70.924 705 39.892

 32 Germanium Ge 72.61   70 69.924 250 20.84

        72 71.922 076 27.54

        74 73.921 178 36.28

 33 Arsenic As 74.921 60   75 74.921 596 100

 34 Selenium Se 78.96   78 77.917 310 23.77

        80 79.916 522 49.61

 35 Bromine Br 79.904   79 78.918 338 50.69

        81 80.916 291 49.31

 36 Krypton Kr 83.80   82 81.913 485 11.58

        83 82.914 136 11.49

        84 83.911 507 57.00

        86 85.910 610 17.30

 37 Rubidium Rb 85.467 8   85 84.911 789 72.17

         87* 86.909 184 27.83 4.75 � 1010 yr

 38 Strontium Sr 87.62   86 85.909 262 9.86

        88 87.905 614 82.58

         90* 89.907 738  29.1 yr

 39 Yttrium Y 88.905 85   89 88.905 848 100

 40 Zirconium Zr 91.224   90 89.904 704 51.45

        91 90.905 645 11.22

        92 91.905 040 17.15

        94 93.906 316 17.38

 41 Niobium Nb 92.906 38   93 92.906 378 100

 42 Molybdenum Mo 95.94   92 91.906 810 14.84

        95 94.905 842 15.92

        96 95.904 679 16.68

        98 97.905 408 24.13

(Continued)
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A.16  APPENDIX B | An Abbreviated Table of Isotopes

  Mass 
     Number    
 Atomic   Chemical (* Indicates   Half-Life 
 Number   Atomic Radioactive) Atomic Percent (If Radioactive) 

Z Element Symbol Mass (u) A Mass (u) Abundance T1/2

43 Technetium Tc     98* 97.907 216  4.2 � 106 yr

         99* 98.906 255  2.1 � 105 yr
 44 Ruthenium Ru 101.07   99 98.905 939 12.76
      100 99.904 220 12.60
      101 100.905 582 17.06
      102 101.904 350 31.55
      104 103.905 430 18.62
 45 Rhodium Rh 102.905 50 103 102.905 504 100
 46 Palladium Pd 106.42 104 103.904 035 11.14
      105 104.905 084 22.33
      106 105.903 483 27.33
      108 107.903 894 26.46
      110 109.905 152 11.72
 47 Silver Ag 107.868 2 107 106.905 093 51.839
      109 108.904 756 48.161
 48 Cadmium Cd 112.411 110 109.903 006 12.49
      111 110.904 182 12.80
      112 111.902 757 24.13
       113* 112.904 401 12.22 9.3 � 1015 yr
      114 113.903 358 28.73
 49 Indium In 114.818  115* 114.903 878 95.71 4.4 � 1014 yr
 50 Tin Sn 118.710 116 115.901 744 14.54
      118 117.901 606 24.22
      120 119.902 197 32.58
 51 Antimony Sb 121.760 121 120.903 818 57.21
      123 122.904 216 42.79
 52 Tellurium Te 127.60 126 125.903 306 18.84
       128* 127.904 461 31.74 � 8 � 1024 yr
       130* 129.906 223 34.08 � 1.25 � 1021 yr
 53 Iodine I 126.904 47 127 126.904 468 100
       129* 128.904 988  1.6 � 107 yr
 54 Xenon Xe 131.29 129 128.904 780 26.44
      131 130.905 082 21.18
      132 131.904 145 26.89
      134 133.905 394 10.44
      136* 135.907 220 8.87 � 2.36 � 1021 yr
 55 Cesium Cs 132.905 45 133 132.905 447 100
 56 Barium Ba 137.327 137 136.905 821 11.232
      138 137.905 241 71.698
 57 Lanthanum La 138.905 5 139 138.906 349 99.910
 58 Cerium Ce 140.116 140 139.905 434 88.450
       142* 141.909 240 11.114 � 5 � 1016 yr
 59 Praseodymium Pr 140.907 65 141 140.907 648 100
 60 Neodymium Nd 144.24 142 141.907 719 27.2
       144* 143.910 083 23.8 2.3 � 1015 yr
      146 145.913 112 17.2
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  | An Abbreviated Table of Isotopes  A. 17

  Mass 
     Number    
 Atomic   Chemical (* Indicates   Half-Life 
 Number   Atomic Radioactive) Atomic Percent (If Radioactive) 
 Z Element Symbol Mass (u) A Mass (u) Abundance T1/2

61 Promethium Pm   145* 144.912 744  17.7 yr
 62 Samarium Sm 150.36 147* 146.914 893 14.99 1.06 � 1011 yr
      149* 148.917 180 13.82 � 2 � 1015 yr
      152  151.919 728  26.75
      154  153.922 205 22.75
 63 Europium Eu 151.964 151  150.919 846 47.81
      153  152.921 226 52.19
 64 Gadolinium Gd 157.25 156  155.922 120 20.47
      158  157.924 100 24.84
      160  159.927 051 21.86
 65 Terbium Tb 158.925 34 159  158.925 343 100
 66 Dysprosium Dy 162.50 162  161.926 796 25.51
      163  162.928 728 24.90
      164  163.929 171 28.18
 67 Holmium Ho 164.930 32 165  164.930 320 100
 68 Erbium Er 167.6 166  165.930 290 33.61
      167  166.932 045 22.93
      168  167.932 368 26.78
 69 Thulium Tm 168.934 21 169  168.934 211 100
 70 Ytterbium Yb 173.04 172  171.936 378 21.83
      173  172.938 207 16.13
      174  173.938 858 31.83
 71 Lutecium Lu 174.967 175  174.940 768 97.41
 72 Hafnium Hf 178.49 177  176.943 220 18.60
      178  177.943 698 27.28
      179  178.945 815 13.62
      180  179.946 549 35.08
 73 Tantalum Ta 180.947 9 181  180.947 996 99.988
 74 Tungsten W 183.84 182  181.948 206 26.50
      (Wolfram)    183  182.950 224 14.31
      184* 183.950 933 30.64 � 3 � 1017 yr
      186  185.954 362 28.43
 75 Rhenium Re 186.207 185  184.952 956 37.40
      187* 186.955 751 62.60 4.4 � 1010 yr
 76 Osmium Os 190.23 188  187.955 836 13.24
      189  188.958 145 16.15
      190  189.958 445 26.26
      192  191.961 479 40.78
 77 Iridium Ir 192.217 191  190.960 591 37.3
      193  192.962 924 62.7
 78 Platinum Pt 195.078 194  193.962 664 32.967
      195  194.964 774 33.832
      196  195.964 935 25.242
 79 Gold Au 196.966 55 197  196.966 552 100
 80 Mercury Hg 200.59 199  198.968 262 16.87
      200  199.968 309 23.10
      201  200.970 285 13.18
      202  201.970 626 29.86

(Continued)
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A.18  APPENDIX B | An Abbreviated Table of Isotopes

  Mass 
     Number    
 Atomic   Chemical (* Indicates   Half-Life 
 Number   Atomic Radioactive) Atomic Percent (If Radioactive) 

Z Element Symbol Mass (u) A Mass (u) Abundance T1/2

81 Thallium Tl 204.383 3 203  202.972 329 29.524
      205  204.974 412 70.476
   (Th C�)  208* 207.982 005  3.053 min
   (Ra C�)  210* 209.990 066  1.30 min
 82 Lead Pb 207.2 204* 203.973 029 1.4 � 1.4 � 1017 yr
      206  205.974 449 24.1
      207  206.975 881 22.1
      208  207.976 636 52.4
   (Ra D)  210* 209.984 173  22.3 yr
   (Ac B)  211* 210.988 732  36.1 min
   (Th B)  212* 211.991 888  10.64 h
   (Ra B)  214* 213.999 798  26.8 min
 83 Bismuth Bi 208.980 38 209  208.980 383 100
   (Th C)  211* 210.987 258  2.14 min
 84 Polonium Po
   (Ra F)  210* 209.982 857  138.38 days
   (Ra C�)  214* 213.995 186  164 �s
 85 Astatine At  218* 218.008 682  1.6 s
 86 Radon Rn  222* 222.017 570  3.823 days
 87 Francium Fr
   (Ac K)  223* 223.019 731  22 min
 88 Radium Ra  226* 226.025 403  1 600 yr
   (Ms Th1)  228* 228.031 064  5.75 yr
 89 Actinium Ac  227* 227.027 747  21.77 yr
 90 Thorium Th 232.038 1
   (Rd Th)  228* 228.028 731  1.913 yr
   (Th)  232* 232.038 050 100 1.40 � 1010

 yr
 91 Protactinium Pa 231.035 88 231* 231.035 879  32.760 yr
 92 Uranium U 238.028 9 232* 232.037 146  69 yr
      233* 233.039 628  1.59 � 105 yr
   (Ac U)  235* 235.043 923 0.720 0 7.04 � 108 yr
      236* 236.045 562  2.34 � 107 yr
   (UI)  238* 238.050 783 99.274 5 4.47 � 109 yr
 93 Neptunium Np  237* 237.048 167  2.14 � 106 yr
 94 Plutonium Pu  239* 239.052 156  2.412 � 104 yr
      242* 242.058 737  3.73 � 106 yr
      244* 244.064 198  8.1 � 107 yr

Sources: Chemical atomic masses are from T. B. Coplen, “Atomic Weights of the Elements 1999,” a technical report to the International Union of Pure and 
Applied Chemistry, and published in Pure and Applied Chemistry, 73(4), 667–683, 2001. Atomic masses of the isotopes are from G. Audi and A. H. Wapstra, “The 
1995 Update to the Atomic Mass Evaluation,” Nuclear Physics, A595, vol. 4, 409–480, December 25, 1995. Percent abundance values are from K. J. R. Rosman and 
P. D. P. Taylor, “Isotopic Compositions of the Elements 1999,” a technical report to the International Union of Pure and Applied Chemistry, and published in 
Pure and Applied Chemistry, 70(1), 217–236, 1998.
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Table C.1  Mathematical Symbols Used in 
the Text and Their Meaning

Symbol Meaning

� is equal to
� is not equal to
� is defined as
� is proportional to
� is greater than
� is less than
�� is much greater than
�� is much less than
� is approximately equal to
� is on the order of magnitude of
�x change in x or uncertainty in x
� xi sum of all quantities xi
�x �  absolute value of x (always a
  positive quantity)

Some Useful Tables �  Appendix C

A.19

Table C.2 Standard Symbols for Units

Symbol Unit Symbol Unit

A ampere kcal kilocalorie
Å angstrom kg kilogram
atm atmosphere km kilometer
Bq bequerel kmol kilomole
Btu British thermal unit L liter
C coulomb lb pound
°C degree Celsius ly lightyear
cal calorie m meter
cm centimeter min minute
Ci curie mol mole
d day N newton
deg degree (angle) nm nanometer
eV electronvolt Pa pascal
°F degree Fahrenheit rad radian
F farad rev revolution
ft foot s second
G Gauss T tesla
g gram u atomic mass unit
H henry V volt
h hour W watt
hp horsepower Wb weber
Hz hertz yr year
in. inch mm micrometer
J joule � ohm
K kelvin 

Table C.3 The Greek Alphabet

Alpha � � Nu � �

Beta � � Xi � �

Gamma � � Omicron  �

Delta � � Pi 
 	

Epsilon � � Rho � �

Zeta � � Sigma � �

Eta � � Tau � �

Theta � � Upsilon �  

Iota  � Phi � �

Kappa � � Chi � �

Lambda � � Psi � �

Mu � � Omega � �

Table C.4  Physical Data Often Useda

Average Earth–Moon distance 3.84 � 108 m
Average Earth–Sun distance 1.496 � 1011 m
Equatorial radius of Earth 6.38 � 106 m
Density of air (20°C  and 1 atm) 1.20 kg/m3

Density of water (20°C and 1 atm) 1.00 � 103 kg/m3

Free-fall acceleration 9.80 m/s2

Mass of Earth 5.98 � 1024 kg
Mass of Moon 7.36 � 1022 kg
Mass of Sun 1.99 � 1030 kg
Standard atmospheric pressure 1.013 � 105 Pa
a  These are the values of the constants as used in the text.
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A.20  APPENDIX C | Some Useful Tables

Table C.5  Some Fundamental Constants

Quantity Symbol Valuea

Atomic mass unit u 1.660 538 782 (83) 3 10227 kg
  931.494 028 (23) MeV/c 2

Avogadro’s number NA 6.022 141 79 (30) 3 1023 particles/mol

Bohr magneton mB 5
e U

2me
 9.274 009 15 (23) 3 10224 J/T

Bohr radius a0 5
U2

mee
2ke

 5.291 772 085 9 (36) 3 10211 m

Boltzmann’s constant kB 5
R
NA

 1.380 650 4 (24) 3 10223 J/K

Compton wavelength lC 5
h
mec

 2.426 310 217 5 (33) 3 10212 m

Coulomb constant ke 5
1

4pP0
 8.987 551 788 . . . 3 109 N ? m2/C2 (exact)

Deuteron mass md 3.343 583 20 (17) 3 10227 kg
  2.013 553 212 724 (78) u
Electron mass me 9.109 382 15 (45) 3 10231 kg
  5.485 799 094 3 (23) 3 1024 u
  0.510 998 910 (13) MeV/c 2

Electron volt eV 1.602 176 487 (40) 3 10219 J

Elementary charge e 1.602 176 487 (40) 3 10219 C

Gas constant R 8.314 472 (15) J/mol ? K

Gravitational constant G 6.674 28 (67) 3 10211 N ? m2/kg2

Neutron mass mn 1.674 927 211 (84) 3 10227 kg
 1.008 664 915 97 (43) u
 939.565 346 (23) MeV/c 2

Nuclear magneton mn 5
e U

2mp
 5.050 783 24 (13) 3 10227 J/T

Permeability of free space m0 4p 3 1027 T ? m/A (exact)

Permittivity of free space P0 5
1

m0c
2 8.854 187 817 . . . 3 10212 C2/N ? m2 (exact)

Planck’s constant h 6.626 068 96 (33) 3 10234 J ? s

 U 5
h

2p
 1.054 571 628 (53) 3 10234 J ? s

Proton mass mp 1.672 621 637 (83) 3 10227 kg
  1.007 276 466 77 (10) u
  938.272 013 (23) MeV/c 2

Rydberg constant RH 1.097 373 156 852 7 (73) 3 107 m21

Speed of light in vacuum c 2.997 924 58 3 108 m/s (exact)

Note: These constants are the values recommended in 2006 by CODATA, based on a least-squares adjustment of data from different measurements. For a more 
complete list, see P. J. Mohr, B. N. Taylor, and D. B. Newell, “CODATA Recommended Values of the Fundamental Physical Constants: 2006.” Rev. Mod. Phys. 80:2, 
633–730, 2008.

aThe numbers in parentheses represent the uncertainties of the last two digits.
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Table D.1  SI Base Units

SI Base Unit
Base Quantity Name Symbol

Length meter m
Mass kilogram kg
Time second s
Electric current ampere A
Temperature kelvin K
Amount of substance mole mol
Luminous intensity candela c d

SI Units �  Appendix D

A.21

Table D.2  Derived SI Units

 Expression in Expression in 
   Terms of Base Terms of 
Quantity Name Symbol Units Other SI  Units

Plane angle radian rad m/m
Frequency hertz Hz s�1

Force newton N kg �m/s2 J/m
Pressure pascal Pa kg/m � s2 N/m2

Energy: work joule J kg �m2/s2 N �m
Power watt W kg �m2/s3 J/s
Electric charge coulomb C A � s
Electric potential (emf) volt V kg �m2/A � s3 W/A, J/C
Capacitance farad F A2� s4/kg �m2 C/V
Electric resistance ohm � kg �m2/A2� s3 V/A
Magnetic flux weber Wb kg �m2/A � s2 V � s, T �m2

Magnetic field intensity tesla T kg/A � s2 Wb/m2

Inductance henry H kg �m2/A2� s2 Wb/A
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Chap t e r  1

Example Questions
1. False

 2. True
 3. 2.6 3 102 m2

4. 28.0 m/s 5 a28.0
m
s
ba2.24 mi/h

1.00 m/s
b 5 62.7 mi/h

  The answer is slightly different because the different conver-
sion factors were rounded, leading to small, unpredictable 
differences in the final answers.

 5. a60.0 min
1.00 h

b
2

6. An answer of 1012 cells is within an order of magnitude of the 
given answer, corresponding to slightly different choices in 
the volume estimations. Consequently, 1012 cells is also a rea-
sonable estimate. An estimate of 109 cells would be suspect 
because (working backwards) it would imply cells that could 
be seen with the naked eye!

 7. , 4 3 1011

8. , 1012

9. Working backwards, r 5 4.998, which further rounds to 5.00, 
whereas u 5 37.03°, which further rounds to 37.0°. The slight 
differences are caused by rounding.

 10. Yes. The cosine function divided into the distance to the 
building will give the length of the hypotenuse of the tri-
angle in question.

 11. 540 km

Warm-Up Exercises
1. (a) 5.680 17 3 10 5  (b) 3.09 3 1024

3. 25.2 
km

min2

5. 132 m2

7. 58
 9. 22 m

Conceptual Questions
1. (a) ,0.1 m  (b) ,1 m  (c) Between 10 m and 100 m   

(d) ,10 m  (e) ,100 m
 3. ,109 s
 5. (a) ,106 beats  (b) ,109 beats
 7. The length of a hand varies from person to person, so it isn’t 

a useful standard of length.
 9. (a) A dimensionally correct equation isn’t necessarily true. 

For example, the equation 2 dogs 5 5 dogs is dimensionally 
correct, but isn’t true. (b) If an equation is not dimensionally 
correct, it cannot be true.

 11. An estimate, even if imprecise by an order of magnitude, 
greatly reduces the range of plausible answers to a given 
question. The estimate gives guidance as to what corrective 
measures might be feasible. For example, if you estimate that 
40 000 people in a country will die unless they have food 
assistance and if this number is reliable within an order of 
magnitude, you know that at most 400 000 people will need 
provisions.

 13. (a) yes  (b) no  (c) yes  (d) no  (e) yes

Problems
3. (b) Acylinder 5 pR2, Arectangular plate 5 length 3 width

 5. m3/(kg ? s2)
 7. 52 m2

9. (a) three significant figures (b) four significant figures
(c) three significant figures (d) two significant figures

11. (a) 35.7 cm2 (b) 99.2 cm3 (c) 17.7 cm2, 99.5 cm3 (d) In the 
rounding process, small amounts are either added to or 
subtracted from an answer to satisfy the rules of significant 
figures. For a given rounding, different small adjustments 
are made, introducing a certain amount of randomness in 
the last significant digit of the final answer.

 13. 5.9 3 103 cm3

 15. 2 3 108 fathoms
 17. 0.204 m3

 19. Yes. The speed of 38.0 m/s converts to a speed of 85.0 mi/h, 
so the driver exceeds the speed limit by 10 mi/h.

 21. (a) 6.81 cm  (b) 5.83 3 102 cm2  (c) 1.32 3 103 cm3

 23. 6.71 3 108 mi/h
 25. 3.08 3 104 m3

 27. 9.82 cm
 29. , 108 breaths
 31. (a) , 1014. Other answers are possible. This answer assumes 

an intestinal length of about 7 m and average diameter 
of about 4 cm. There are probably more bacteria in your 
intestinal tract than there are cells in your body! (b) The 
large number means that they are probably not dangerous. 
Intestinal bacteria help digest food and provide important 
nutrients. Humans and bacteria enjoy a mutually beneficial 
symbiotic relationship.

 33. ,107 rev
 35. (2.0 m, 1.4 m)
 37. r 5 2.2 m, u 5 27°
 39. 5.69 m
 41. (a) 6.71 m  (b) 0.894  (c) 0.746
 43. 3.41 m
 45. (a) 3.00  (b) 3.00  (c) 0.800  (d) 0.800  (e) 1.33
 47. 5.00/7.00; the angle itself is 35.5°
 49. 70.0 m
 51. (a) MLT22  (b) kg ? m/s2

 53. (a) 1.0 3 103 kg  (b) mcell 5 5.2 3 10216 kg  
(c) mkidney 5 0.27 kg  (d) mfly 5 1.3 3 1025 kg

 55. The value of k, a dimensionless constant, cannot be found by 
dimensional analysis.

 57. 152 mm
 59. 1 3 1010 gal/yr
 61. (a) 3.16 3 107 s  (b) Between 1010 yr and 1011 yr
 63. 1 3 105

Chap t e r  2

Quick Quizzes
 1. (a) 200 yd   (b) 0   (c) 0   (d) 8 yd/s
 2. (a) False   (b) True   (c) True
 3. The velocity vs. time graph (a) has a constant slope, indi-

cating a constant acceleration, which is represented by the 
acceleration vs. time graph (e).

 ■ Answers to Quick Quizzes, Example Questions,  
  Odd-Numbered Warm-Up Exercises,  
  Conceptual Questions, and Problems

A.23
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A.24  | Answers to Quick Quizzes, Questions, and Problems

Problems
1. < 0.02 s

 3. (a) 52.9 km/h   (b) 90.0 km
 5. (a) Boat A wins by 60 km   (b) 0
 7. (a) 180 km   (b) 63.4 km/h
 9. Yes. Taking the initial speed to be zero, the final speed as 

75 m/s, and a 5 1.3 m/s2, we find that the distance the plane 
travels before takeoff is x 5 vto

2/2a 5 2.2 km, which is less 
than the length of the runway.

 11. (a) 4.4 m/s2   (b) 27 m
 13. (a) 2.80 h   (b) 218 km
 15. 274 km/h
 17. (a) 5.00 m/s   (b) 22.50 m/s   (c) 0   (d) 5.00 m/s
 19. 0.18 mi west of the flagpole
 21. 0 a 0 5 1.34 3 104 m/s2

23. 3.7 s
25. (a) 70.0 mi/h ? s 5 31.3 m/s2 5 3.19g   (b) 321 ft 5 97.8 m
 27. 216.0 cm/s2

29. (a) 6.61 m/s   (b) 20.448 m/s2

31. (a) 2.32 m/s2   (b) 14.4 s
 33. (a) 8.14 m/s2   (b) 1.23 s   (c) Yes. For uniform acceleration, 

the velocity is a linear function of time.
 35. There will be a collision only if the car and the van meet at 

the same place at some time. Writing expressions for the 
position versus time for each vehicle and equating the two 
gives a quadratic equation in t whose solution is either 11.4 s 
or 13.6 s. The first solution, 11.4 s, is the time of the collision. 
The collision occurs when the van is 212 m from the original 
position of Sue’s car.

 37. 200 m
 39. (a) 1.5 m/s   (b) 32 m
 41. 958 m
 43. (a) 8.2 s   (b) 1.3 3 102 m
 45. (a) 31.9 m   (b) 2.55 s   (c) 2.55 s   (d) 225.0 m/s
 47. (a) 212.7 m/s   (b) 38.2 m
 49. Hardwood floor: a 5 2.0 3 103 m/s2, Dt 5 1.4 ms; carpeted 

floor: a 5 3.9 3 10 2 m/s2, Dt 5 7.1 ms
 51. (a) It is a freely falling object, so its acceleration is  

29.80 m/s2 (downward) while in flight.   (b) 0   (c) 9.80 m/s 
(d) 4.90 m

 53. (a) It continues upward, slowing under the influence of grav-
ity until it reaches a maximum height, and then it falls to 
Earth.   (b) 308 m   (c) 8.51 s   (d) 16.4 s

 55. 15.0 s
 57. (a) 23.50 3 105 m/s2   (b) 2.86 3 1024 s
 59. (a) 10.0 m/s upward   (b) 4.68 m/s downward
 61. (a) 4.0 m/s   (b) 1.0 ms   (c) 0.82 m
 63. 0.60 s
 65. (a) 0.231 m   (b) 0.364 m   (c) 0.399 m   (d) 0.175 m
 67. (a) 1.21 s after the first ball is dropped   (b) 7.18 m below the 

window
 69. No. In the time interval equal to David’s reaction time, the 

$1 bill (a freely falling object) falls a distance of gt 2/2 > 
20 cm, which is about twice the distance between the top of 
the bill and its center.

 71. (a) t1 5 5.0 s, t2 5 85 s   (b) 200 ft/s   (c) 18 500 ft from start-
ing point   (d) 10 s after starting to slow down (total trip 
time 5 100 s)

 73. (a) 5.5 3 103 ft   (b) 3.7 3 102 ft/s   (c) The plane would 
travel only 0.002 ft in the time it takes the light from the  
bolt to reach the eye.

 75. (a) 7.82 m   (b) 0.782 s

Chap t e r  3

Quick Quizzes
1. (c)

   Graph (b) represents an object with increasing speed, but 
as time progresses, the lines drawn tangent to the curve have 
increasing slopes. Since the acceleration is equal to the slope 
of the tangent line, the acceleration must be increasing, and 
the acceleration vs. time graph that best indicates this behav-
ior is (d).

   Graph (c) depicts an object which first has a velocity that 
increases at a constant rate, which means that the object’s 
acceleration is constant. The velocity then stops changing, 
which means that the acceleration of the object is zero. This 
behavior is best matched by graph (f).

 4. (b)
 5. (a) blue graph   (b) red graph   (c) green graph
 6. (e)
 7. (c)
 8. (a) and (f)

Example Questions
1. No. The object may not be traveling in a straight line. If the 

initial and final positions are in the same place, for example, 
the displacement is zero regardless of the total distance trav-
eled during the given time.

 2. No. A vertical line in a position vs. time graph would mean 
that an object had somehow traversed all points along the 
given path instantaneously, which is physically impossible.

 3. No. A vertical tangent line would correspond to an infinite 
acceleration, which is physically impossible.

 4. 35.0 m/s
 5. The graphical solution is the intersection of a straight line 

and a parabola.
 6. The coasting displacement would double to 143 m, with a 

total displacement of 715 m.
 7. The acceleration is zero wherever the tangent to the velocity 

versus time graph is horizontal. Visually, that occurs from 
250 s to 0 s and then again at approximately 180 s, 320 s, and 
330 s.

 8. The upward jump would slightly increase the ball’s initial 
velocity, slightly increasing the maximum height.

 9. 6
 10. The engine should be fired again at 235 m.

Warm-Up Exercises
1. t 5 4.10, 21.10

 3. (a) 10.3 s  (b) 3.20 3 102 m
 5. 30.5 m/s
 7. 1.00 s

Conceptual Questions
1. Yes. If the velocity of the particle is nonzero, the particle is in 

motion. If the acceleration is zero, the velocity of the particle 
is unchanging or is constant.

 3. Yes. If this occurs, the acceleration of the car is opposite to 
the direction of motion, and the car will be slowing down.

 5. No. Car B may be traveling at a lower velocity but have a 
greater acceleration at that instant.

 7. (a) Yes.   (b) Yes.
 9. (a) The car is moving to the east and speeding up.
  (b) The car is moving to the east but slowing down.
  (c) The car is moving to the east at constant speed.
  (d) The car is moving to the west but slowing down.
  (e) The car is moving to the west and speeding up.
  (f) The car is moving to the west at constant speed.
  (g) The car starts from rest and begins to speed up toward 

the east.
  (h) The car starts from rest and begins to speed up toward 

the west.
 11. (b)
 13. (d)
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 | Answers to Quick Quizzes, Questions, and Problems  A.25

likely result), then the acceleration would change direction 
and the motion could become very complicated.

 9. For angles u , 45°, the projectile thrown at angle u will be in 
the air for a shorter interval. For the smaller angle, the verti-
cal component of the initial velocity is smaller than that for 
the larger angle. Thus, the projectile thrown at the smaller 
angle will not go as high into the air and will spend less time 
in the air before landing.

 11. (a) Yes, the projectile is in free fall. (b) Its vertical compo-
nent of acceleration is the downward acceleration of gravity. 
(c) Its horizontal component of acceleration is zero.

 13. (b)
 15. (i) (a)  (ii) (b)

Problems
1. 43 units in the negative y -direction

 3. (a) Approximately 5.0 units at 253° (b) Approximately 
5.0 units at 153°

 5. Approximately 421 ft at 3° below the horizontal
 7. Approximately 310 km at 57° S of W
 9. Approximately 15 m at 58° S of E
 11. 28.7 units, 220.1 units
 13. (a) 5.00 blocks at 53.1° N of E (b) 13.0 blocks
 15. 47.2 units at 122° from the positive x -axis
 17. 157 km
 19. 245 km at 21.4° W of N
 21. 4.64 m at 78.6° N of E
 23. (a) (x, y) 5 (0, 50.0 m)    (b) v0x 5 18.0 m/s, v0y 5 0  

(c) vx 5 18.0 m/s, vy 5 2(9.80 m/s2)t     
(d) x 5 (18.0 m/s)t, y 5 2(4.90 m/s2)t2 1 50.0 m  
(e) 3.19 s    (f) 36.1 m/s, 260.1°

 25. 12 m/s
 27. (a) The ball clears by 0.89 m (b) while descending
 29. 25 m
 31. (a) 32.5 m from the base of the cliff (b) 1.78 s
 33. (a) 52.0 m/s horizontally (b) 212 m
 35. (a) 1 vSJA 2 x 5 3.00 3 102 mi/h, 1 vSJA 2 y 5 0,  

(b) 1 vSAE 2 x 5 86.6 mi/h, 1 vSAE 2 y 5 50.0 mi/h  
(c) vSJA 5 vSJE 2 vSAE  
(d) vSJE 5 3.90 3 102 mi/h, 7.36° N of E

 37. (a) 9.80 m/s2 down and 2.50 m/s2 south (b) 9.80 m/s2 down 
(c) The bolt moves on a parabola with a vertical axis.

 39. (a) 1.26 h    (b) 1.13 h    (c) 1.19 h
 41. (a) 2.02 3 103 s (b) 1.67 3 103 s (c) The time savings going 

downstream with the current is always less than the extra 
time required to go the same distance against the current.

 43. (a) 6.80 km    (b) 3.00 km vertically above the impact point 
(c) 66.2°

 45. 18.0 s
 47. (a) 40.5 m/s (b) Rather than falling like a rock, the skier 

glides through the air like a bird, prolonging the jump.
 49. 68.6 km/h
 51. (a) 1.53 3 103 m    (b) 36.2 s    (c) 4.04 3 103 m
 53. (a) Rmoon 5 18 m    (b) RMars 5 7.9 m
 55. (a) 42 m/s   (b) 3.8 s   (c) vx 5 34 m/s, vy 5 213 m/s;  

v 5 37 m/s
 57. (a) in the direction the ball was thrown   (b) 7.5 m/s
 61. R/2
 63. 7.5 min
 65. 10.8 m

 67. (b) y 5 Ax2 with A 5
g

2vi
2 where vi is the muzzle velocity 

(c) 14.5 m/s
 69. (a) 35.1° or 54.9° (b) 42.2 m or 85.4 m, respectively
 71. (a) 20.0° above the horizontal (b) 3.05 s
 73. (a) 23 m/s (b) 360 m horizontally from the base of cliff

2. Vector x-component y-component

A
S

 2 1

B
S

 1 2

A
S

1 B
S

 2 2

3. Vector B
S

4. (b)
5. (a)
6. (c)
7. (b)

Example Questions
1. If the vectors point in the same direction, the sum of the 

magnitudes of the two vectors equals the magnitude of the 
resultant vector.

 2. Because Bx , By, and B are all known, any of the trigonometric 
functions can be used to find the angle.

 3. The hikers’ displacement vectors are the same.
 4. The initial and final velocity vectors are equal in magni-

tude because the x -component doesn’t change and the 
y - component changes only by a sign.

 5. To the pilot, the package appears to drop straight down 
because the x -components of velocity for the plane and pack-
age are the same.

 6. False
 7. 45°
 8. False
 9. False
 10. To an observer on the ground, the ball drops straight down.
 11. The angle decreases with increasing speed.
 12. The angle is different because relative velocity depends on 

both the magnitude and the direction of the velocity vectors. 
In Example 3.12, the boat’s velocity vector forms the hypote-
nuse of a right triangle, whereas in Example 3.11, that vector 
forms a leg of a right triangle.

Warm-Up Exercises
1. (a) 10.3 m  (b) 1198

 3. (a) 6.0 m  (b) 16.0 m
 5. (a) 4.20 km/h  (b) 3.00 km/h
 7. (a) 0.808 s  (b) 17.8 m
 9. (a) 3.68 m/s  (b) 0.82 m/s

Conceptual Questions
1. The magnitudes add when A

S

 and B
S

 are in the same direc-
tion. The resultant will be zero when the two vectors are 
equal in magnitude and opposite in direction.

 3. (a) At the top of the projectile’s flight, its velocity is horizon-
tal and its acceleration is downward. This is the only point at 
which the velocity and acceleration vectors are perpendicu-
lar. (b) If the projectile is thrown straight up or down, then 
the velocity and acceleration will be parallel throughout the 
motion. For any other kind of projectile motion, the velocity 
and acceleration vectors are never parallel.

 5. (a) The acceleration is zero, since both the magnitude and 
direction of the velocity remain constant. (b) The particle 
has an acceleration because the direction of vS changes.

 7. The spacecraft will follow a parabolic path equivalent to that 
of a projectile thrown off a cliff with a horizontal velocity. As 
regards the projectile, gravity provides an acceleration that 
is always perpendicular to the initial velocity, resulting in a 
parabolic path. As regards the spacecraft, the initial velocity 
plays the role of the horizontal velocity of the projectile, and 
the leaking gas plays the role that gravity plays in the case 
of the projectile. If the orientation of the spacecraft were to 
change in response to the gas leak (which is by far the more 
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Conceptual Questions
1. The inertia of the suitcase would keep it moving forward as 

the bus stops. There would be no tendency for the suitcase to 
be thrown backward toward the passenger. The case should 
be dismissed.

 3. (a) w 5 mg and g decreases with altitude. Thus, to get a good 
buy, purchase it in Denver. (b) If gold were sold by mass, it 
would not matter where you bought it.

 5. (a) Two external forces act on the ball. (i) One is a down-
ward gravitational force exerted by Earth. (ii) The second 
force on the ball is an upward normal force exerted by the 
hand. The reactions to these forces are (i) an upward gravi-
tational force exerted by the ball on Earth and (ii) a down-
ward force exerted by the ball on the hand. (b) After the ball 
leaves the hand, the only external force acting on the ball is 
the gravitational force exerted by Earth. The reaction is an 
upward gravitational force exerted by the ball on Earth.

 7. The force causing an automobile to move is the friction 
between the tires and the roadway as the automobile 
attempts to push the roadway backward. The force driving a 
propeller airplane forward is the reaction force exerted by 
the air on the propeller as the rotating propeller pushes the 
air backward (the action). In a rowboat, the rower pushes the 
water backward with the oars (the action). The water pushes 
forward on the oars and hence the boat (the reaction).

 9. When the bus starts moving, Claudette’s mass is accelerated by 
the force exerted by the back of the seat on her body. Clark is 
standing, however, and the only force acting on him is the  
friction between his shoes and the floor of the bus. Thus, 
when the bus starts moving, his feet accelerate forward, but 
the rest of his body experiences almost no accelerating force 
(only that due to his being attached to his accelerating feet!). 
As a consequence, his body tends to stay almost at rest, accord-
ing to Newton’s first law, relative to the ground. Relative to 
Claudette, however, he is moving toward her and falls into her 
lap. Both performers won Academy Awards.

 11. (a) As the man takes the step, the action is the force his  
foot exerts on Earth; the reaction is the force exerted by 
Earth on his foot. (b) Here, the action is the force exerted 
by the snowball on the girl’s back; the reaction is the force 
exerted by the girl’s back on the snowball. (c) This action  
is the force exerted by the glove on the ball; the reaction is 
the force exerted by the ball on the glove. (d) This action  
is the force exerted by the air molecules on the window; the 
reaction is the force exerted by the window on the air mol-
ecules. In each case, we could equally well interchange the 
terms “action” and “reaction.”

 13. The tension in the rope is the maximum force that occurs in 
both directions. In this case, then, since both are pulling with 
a force of magnitude 200 N, the tension is 200 N. If the rope 
does not move, then the force on each athlete must equal 
zero. Therefore, each athlete exerts 200 N against the ground.

 15. (c)
 17. (b)
 19. (b)
 21. (b)

Problems
1. 2 3 104 N

 3. (a) 12 N  (b) 3.0 m/s2

5. 3.71 N, 58.7 N, 2.27 kg
7. 1.2 m/s2 upward

 9. (a) 13.5 m/s2  (b) 1.42 3 103 N
 11. (a) 0.200 m/s2  (b) 10.0 m  (c) 2.00 m/s
 13. 4.85 kN eastward
 15. 1.1 3 104 N
 17. (a) 600 N in vertical cable, 997 N in inclined cable, 796 N 

in horizontal cable (b) If the point of attachment were 

Chap t e r  4

Quick Quizzes
1. (a), (c), and (d) are true.

 2. (b)
 3. (a) False
  (b) True
  (c) False
  (d) False
 4. (c); (d)
 5. (c)
 6. (c)
 7. (b)
 8. (b)
 9. (b) By exerting an upward force component on the sled, you 

reduce the normal force on the ground and so reduce the 
force of kinetic friction.

Example Questions
1. Other than the forces mentioned in the problem, the force 

of gravity pulls downwards on the boat. Because the boat 
doesn’t sink, a force exerted by the water on the boat must 
oppose the gravity force. (In Chapter 9 this force will be 
identified as the buoyancy force.)

 2. False. The angles at which the forces are applied are also 
important in determining the magnitude of the acceleration 
vector.

 3. 0.2 N
 4. 3g
 5. The gravitational force of the Earth acts on the man, and an 

equal and opposite gravitational force of the man acts on the 
Earth. The normal force acts on the man, and the reaction 
force consists of the man pressing against the surface.

 6. The tensions would double.
 7. The magnitude of the tension force would be greater, and 

the magnitude of the normal force would be smaller.
 8. Doubling the weight doubles the mass, which halves both the 

acceleration and displacement.
 9. A gentler slope means a smaller angle and hence a smaller 

acceleration down the slope. Consequently, the car would 
take longer to reach the bottom of the hill.

 10. The scale reading is greater than the weight of the fish dur-
ing the first acceleration phase. When the velocity becomes 
constant, the scale reading is equal to the weight. When the 
elevator slows down, the scale reading is less than the weight.

 11. Attach one end of the cable to the object to be lifted and 
the other end to a platform. Place lighter weights on the 
platform until the total mass of the weights and platform 
exceeds the mass of the heavy object.

 12. A larger static friction coefficient would increase the maxi-
mum angle.

 13. The coefficient of kinetic friction would be larger than in 
the example.

 14. Both the acceleration and the tension increase when m2 is 
increased.

 15. The top block would slide off the back end of the lower 
block.

Warm-Up Exercises
1. (a) −0.800 m/s2  (b) 8.4 m/s  (c) 5.00 s

 3. (a) 3.75 m/s2  (b) 22.5 m/s
 5. 3.00
 7. (a) 147 N  (b) 127 N  (c) 192 N  (d) 84.5 N
 9. (a) −5.36 m/s2  (b) 4 690 N  (c) 84.0 m
 11. 0.272
 13. (a) 3.0 m/s2  (b) 48 N
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3. (c)
4. (c)

Example Questions
1. As long as the same displacement is produced by the same 

force, doubling the load will not change the amount of work 
done by the applied force.

 2. Doubling the displacement doubles the amount of work 
done in each case.

 3. The wet road would reduce the coefficient of kinetic friction, 
so the final velocity would be greater.

 4. (c)
 5. In each case the velocity would have an additional horizon-

tal component, meaning that the overall speed would be 
greater.

 6. A smaller angle means that a larger initial speed would be 
required to allow the grasshopper to reach the indicated 
height.

 7. In the presence of friction a different shape slide would 
result in different amounts of mechanical energy lost 
through friction, so the final answer would depend on the 
slide’s shape.

 8. In the crouching position there is less wind resistance. 
Crouching also lowers the skier’s center of mass, making it 
easier to balance.

 9. 73.5%
 10. If the acrobat bends her legs and crouches immediately after 

contacting the springboard and then jumps as the platform 
pushes her back up, she can rebound to a height greater 
than her initial height.

 11. The continuing vibration of the spring means that some 
energy wasn’t transferred to the block. As a result, the block 
will go a slightly smaller distance up the ramp.

 12. (a)
 13. The work required would quadruple but time would double, 

so overall the average power would double.
 14. The instantaneous power is 9.00 3 104 W, which is twice the 

average power.
 15. False. The correct answer is one-quarter.
 16. No. Using the same-size boxes is simply a matter of 

convenience.

Warm-Up Exercises
1. 1.79 3 104 N

 3. (a) 375 J  (b) 307 J
 5. (a) 4.90 m/s  (b) 5.66 m/s  (c) 6.32 m/s
 7. 11.7 m/s
 9. 82.6 W

Conceptual Questions
1. Because no motion is taking place, the rope undergoes no 

displacement and no work is done on it. For the same reason, 
no work is being done on the pullers or the ground. Work is 
being done only within the bodies of the pullers. For exam-
ple, the heart of each puller is applying forces on the blood 
to move blood through the body.

 3. (a) When the slide is frictionless, changing the length or 
shape of the slide will not make any difference in the final 
speed of the child, as long as the difference in the heights of 
the upper and lower ends of the slide is kept constant. (b) If 
friction must be considered, the path length along which 
the friction force does negative work will be greater when 
the slide is made longer or given bumps. Thus, the child will 
arrive at the lower end with less kinetic energy (and hence 
less speed).

 5. If we ignore any effects due to rolling friction on the tires 
of the car, we find that the same amount of work would be 
done in driving up the switchback and in driving straight 

moved higher up on the wall, the left cable would have a 
y - component that would help support the cat burglar, thus 
reducing the tension in the cable on the right.

 19. 150 N in vertical cable, 75 N in right-side cable, 130 N in left-
side cable

 21. (a) T1 5 79.8 N, T2 5 39.9 N  (b) 2.34 m/s2

23. 613 N
25. 64 N
27. (a) T1 5 3mg sin u  (b) T2 5 2mg sin u 
 29. (a) 7.0 m/s2 horizontal and to the right  (b) 21 N  (c) 14 N 

horizontal and to the right
 31. (a) 78.4 N  (b) 105 N
 33. (a) 4.90 kN  (b) 607 N
 35. (a) T . w  (b) T 5 w  (c) T , w  (d) 1.85 3 104 N; yes
  (e) 1.47 3 104 N; yes (f) 1.25 3 104 N; yes
 37. (a) 2.15 3 103 N forward  (b) 645 N forward  (c) 645 N 

rearward  (d) 1.02 3 104 N at 74.1° below horizontal and 
rearward

 39. ms 5 0.38, mk 5 0.31
 41. (a) 0.256  (b) 0.509 m/s2

43. (a) 14.7 m  (b) Neither mass is necessary
 45. mk 5 0.287
 47. 32.1 N
 49. (a) 33 m/s  (b) No. The object will speed up to 33 m/s 

from any lower speed and will slow down to 33 m/s from any 
higher speed.

 51. (a) 1.78 m/s2  (b) 0.368  (c) 9.37 N  (d) 2.67 m/s
 53. (a) 1.11 s  (b) 0.875 s
 55. (a) 0.404  (b) 45.8 lb
 57. (a) 

1 kg
2 kg

4 kg

(4 kg)

(1 kg)
(2 kg)

fk
S

gS
gS

gS

nS

T1
S

T2
S

T2
S

T1
S

(b) 2.31 m/s2, down for the 4.00-kg object, left for the 
1.00-kg object, up for the 2.00-kg object (c) 30.0 N in the 
left cord, 24.2 N in the right cord (d) Without friction, the 
4-kg block falls more freely, so the tension T1 in the string 
attached to it is reduced. The 2-kg block is accelerated 
upwards at a higher rate, hence the tension force T2 acting 
on it must be greater.

 59. (a) 84.9 N upward  (b) 84.9 N downward
 61. 50 m
 63. (a) friction between box and truck  (b) 2.94 m/s2

65. (a) 2.22 m  (b) 8.74 m/s down the incline
 67. (a) 0.23 m/s2  (b) 9.7 N
 69. (a) 1.7 m/s2, 17 N  (b) 0.69 m/s2, 17 N
 71. (a) 3.43 kN  (b) 0.967 m/s horizontally forward   

(c) Both would increase.
 73. (a) 30.7°  (b) 0.843 N
 75. 5.5 3 102 N
 77. 72.0 N
 79. (a) 7.1 3 102 N  (b) 8.1 3 102 N  (c) 7.1 3 102 N   

(d) 6.5 3 102 N
 81. (a) 0.408 m/s2 upward  (b) 83.3 N
 83. (b) If u is greater than tan21 (1/ms), motion is impossible.
 85. (M 1 m1 1 m2)(m1g/m2)

Chap t e r  5

Quick Quizzes
1. (c)

 2. (d)
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15. (a) 2.34 3 104 N   (b) 1.91 3 1024 s
 17. (a) 4.68 3 109 J   (b) 24.68 3 109 J   (c) 1.87 3 106 N
 19. (a) 2.5 J   (b) –9.8 J   (c) –12.3 J
 21. 7.37 N/m
 23. 878 kN up
 25. h 5 6.94 m
 27. Wbiceps 5 120 J, Wchin-up 5 290 J, additional muscles must be 

involved
 29. (a) 4.30 3 105 J   (b) 23.97 3 104 J   (c) 115 m/s
 31. (a) The mass, spring, and Earth (including the wall) consti-

tute the system. The mass and Earth interact through the 
spring force, gravity, and the normal force. (b) the point of 
maximum extension, x 5 0.060 0 m, and the equilibrium 
point, x 5 0   (c) 1.53 J at x 5 6.00 cm; 0 J at x 5 0

  (d) 12mv1
2 1 1

2kx1
2 5 1

2mv2
2 1 1

2kx2
2

S v2 5 Åv1
2 1

k
m
1x1

2 2 x2
2 2 ,

  1.75 m/s (e) 1.51 m/s. This answer is not one-half the first 
answer because the equation is not linear.

 33. 0.459 m
 35. (a) 0.350 m   (b) The result would be less than 0.350 m 

because some of the mechanical energy is lost as a result of 
the force of friction between the block and track.

 37. (a) 10.9 m/s   (b) 11.6 m/s
 39. (a) Initially, all the energy is stored in the compressed 

spring. After the gun is fired and the projectile leaves the 
gun, the energy is transferred to the kinetic energy of the 
projectile, resulting in a small increase in gravitational 
potential energy. Once the projectile reaches its maximum 
height, the energy is all associated with its gravitational 
potential energy.   (b) 544 N/m   (c) 19.7 m/s

 41. (a) Yes. There are no nonconservative forces acting on the 
child, so the total mechanical energy is conserved. (b) No. 
In the expression for conservation of mechanical energy, 
the mass of the child is included in every term and therefore 
cancels out. (c) The answer is the same in each case. (d) The 
expression would have to be modified to include the work 
done by the force of friction. (e) 15.3 m/s.

 43. (a) 372 N   (b) T1 5 372 N, T2 5 T3 5 745 N   (c) 1.34 kJ
 45. 3.8 m/s
 47. 289 m
 49. (a) 24.5 m/s   (b) Yes   (c) 206 m   (d) Unrealistic; the actual 

retarding force will vary with speed.
 51. 236 s or 3.93 min
 53. 8.01 W
 55. The power of the sports car is four times that of the older-

model car.
 57. (a) 2.38 3 104 W 5 32.0 hp   (b) 4.77 3 104 W 563.9 hp
 59. (a) 24.0 J   (b) 23.00 J   (c) 21.0 J
 61. (a) The graph is a straight line passing through the points  

(0 m, 216 N), (2 m, 0 N), and (3 m, 8 N).   (b) 212.0 J
 63. 0.265 m/s
 65. (a) PE� 5 3.94 3 105 J, PE� 5 0, DPE 5 23.94 3 105 J   

(b) PE� 5 5.63 3 105 J, PE� 5 1.69 3 105 J,  
DPE 5 23.94 3 105 J

 67. (a) 575 N/m   (b) 46.0 J
 69. (a) 4.4 m/s   (b) 1.5 3 105 N
 71. (a) 3.13 m/s   (b) 4.43 m/s   (c) 1.00 m
 73. (a) 0.588 J   (b) 0.588 J   (c) 2.42 m/s   (d) PEC 5 0.392 J   

(e) KEC 5 0.196 J
 75. (a) 0.020 4 m   (b) 7.20 3 102 N/m
 77. (a) 423 mi/gal   (b) 776 mi/gal
 79. (a) 28.0 m/s   (b) 30.0 m   (c) 88.9 m beyond the end of the 

track
 81. (a) 101 J   (b) 0.412 m   (c) 2.84 m/s   (d) 29.80 mm   

(e) 2.86 m/s
 83. 914 N/m

up the mountain because the weight of the car is moved 
upwards against gravity by the same vertical distance in 
each case. If we include friction, there is more work done in 
driving the switchback because the distance over which the 
friction force acts is much longer. So why do we use switch-
backs? The answer lies in the force required, not the work. 
The force required from the engine to follow a gentle rise 
is much smaller than that required to drive straight up the 
hill. To negotiate roadways running straight uphill, engines 
would have to be redesigned to enable them to apply much 
larger forces. (It is for much the same reason that ramps are 
designed to move heavy objects into trucks, as opposed to 
lifting the objects vertically.)

 7. (a) The tension in the supporting cord does no work, 
because the motion of the pendulum is always perpendicu-
lar to the cord and therefore to the tension force. (b) The 
air resistance does negative work at all times, because the 
air resistance is always acting in a direction opposite that of 
the motion. (c) The force of gravity always acts downwards; 
therefore, the work done by gravity is positive on the down-
swing and negative on the upswing.

 9. During the time that the toe is in contact with the ball, the 
work done by the toe on the ball is given by

Wtoe 5 1
2m ballv

2 2 0 5 1
2m ballv

2

where v is the speed of the ball as it leaves the toe. After the 
ball loses contact with the toe, only the gravitational force 
and the retarding force due to air resistance continue to do 
work on the ball throughout its flight.

11. (a) Yes, the total mechanical energy of the system is con-
served because the only forces acting are conservative: the 
force of gravity and the spring force. (b) There are two 
forms of potential energy in this case: gravitational potential 
energy and elastic potential energy stored in the spring.

 13. Let’s assume you lift the book slowly. In this case, there are 
two forces on the book that are almost equal in magnitude:  
the lifting force and the force of gravity. Thus, the positive 
work done by you and the negative work done by gravity 
cancel. There is no net work performed and no net change 
in the kinetic energy, so the work–energy theorem is 
satisfied.

 15. As the satellite moves in a circular orbit about the Earth, its 
displacement during any small time interval is perpendicu-
lar to the gravitational force, which always acts toward the 
center of the Earth. Therefore, the work done by the gravita-
tional force during any displacement is zero. (Recall that the 
work done by a force is defined to be FDx cos u, where u is the 
angle between the force and the displacement. In this case, 
the angle is 90°, so the work done is zero.) Because the work–
energy theorem says that the net work done on an object 
during any displacement is equal to the change in its kinetic 
energy, and the work done in this case is zero, the change in 
the satellite’s kinetic energy is zero: hence, its speed remains 
constant.

 17. (a)
 19. (d)

Problems
1. 700 J

 3. 2 3 104 J
 5. (a) 61.3 J   (b) 246.3 J   (c) 0 (d) The work done by gravity 

would not change, the work done by the friction force would 
decrease, and the work done by the normal force would not 
change.

 7. (a) 79.4 N   (b) 1.49 kJ   (c) 21.49 kJ
 9. (a) 2.00 m/s   (b) 200 N
 11. (a) 879 J   (b) His kinetic energy increases by a factor of 4.
 13. (a) 25.6 3 102 J   (b) 1.2 m
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Because of the Earth’s enormous mass, its recoil speed is too 
small to detect.

 7. As the water is forced out of the holes in the arm, the arm 
imparts a horizontal impulse to the water. The water then 
exerts an equal and opposite impulse on the spray arm, caus-
ing the spray arm to rotate in the direction opposite that of 
the spray.

 9. It will be easiest to catch the medicine ball when its speed 
(and kinetic energy) is lowest. The first option—throwing 
the medicine ball at the same velocity—will be the most 
difficult, because the speed will not be reduced at all. The 
second option, throwing the medicine ball with the same 
momentum, will reduce the velocity by the ratio of the 
masses. Since mtvt 5 mmvm, it follows that

vm 5 vt a
mt

mm
b

The third option, throwing the medicine ball with the same 
kinetic energy, will also reduce the velocity, but only by the 
square root of the ratio of the masses. Since

1
2mtvt

2 5 1
2mmvm

2

it follows that

vm 5 vtÅ
mt

mm

  The slowest and easiest throw will be made when the momen-
tum is held constant. If you wish to check this answer, try 
substituting in values of vt 5 1 m/s, mt 5 1 kg, and mm 5 
100 kg. Then the same-momentum throw will be caught 
at 1 cm/s, while the same-energy throw will be caught at 
10 cm/s.

 11. It is the product mv that is the same for both the bullet and 
the gun. The bullet has a large velocity and a small mass, 
while the gun has a small velocity and a large mass. Further-
more, the bullet carries much more kinetic energy than the 
gun.

 13. (a) The follow-through keeps the club in contact with the 
ball as long as possible, maximizing the impulse. Thus, the 
ball accrues a larger change in momentum than without  
the follow-through, and it leaves the club with a higher  
velocity and travels farther. (b) With a short shot to the 
green, the primary factor is control, not distance. Hence, 
there is little or no follow-through, allowing the golfer to 
have a better feel for how hard he or she is striking the ball.

 15. No. Impulse, F
S

Dt , depends on the force and the time interval 
during which it is applied.

 17. (c)

Problems
 1. (a) 8.35 3 10221 kg ? m/s   (b) 4.50 kg ? m/s   (c) 750 kg ? m/s 

(d) 1.78 3 1029 kg ? m/s
 3. (a) 31.0 m/s   (b) the bullet, 3.38 3 103 J versus 69.7 J
 5. (a) 0.42 N downward (b) The hailstones would exert a larger 

average force on the roof because they would bounce off 
the roof, and the impulse acting on the hailstones would be 
greater than the impulse acting on the raindrops. Newton’s 
third law then tells us that the hailstones exert a greater 
force on the roof.

 7. (a) 22.0 m/s   (b) 1.14 kg
 9. (a) 10.4 kg ? m/s in the direction of the final velocity of the 

ball   (b) 173 N
 11. 1.39 N ? s up
 13. (a) 364 kg ? m/s forward   (b) 438 N forward
 15. (a) 8.0 N ? s   (b) 5.3 m/s   (c) 3.3 m/s
 17. (a) 12 N ? s   (b) 8.0 N ? s   (c) 8.0 m/s   (d) 5.3 m/s
 19. (a) 9.60 3 1022 s   (b) 3.65 3 105 N   (c) 26.6g

 85. (a) Wnet 5 0   (b) Wgrav 5 22.0 3 104 J   (c) Wnormal 5 0,   
(d) Wfriction 5 2.0 3 104 J

 87. (a) 10.2 kW   (b) 10.6 kW   (c) 5.82 3 106 J
 89. 4.3 m/s
 91. between 25.2 km/h and 27.0 km/h

Chap t e r  6

Quick Quizzes
1. (b)

 2. (c)
 3. (c)
 4. (a)
 5. (a) Perfectly inelastic   (b) Inelastic   (c) Inelastic
 6. (a)

Example Questions
1. 44 m/s

 2. When one car is overtaking another, the relative velocity is 
small, so on impact the change in momentum is also small. 
In a head-on collision, however, the relative velocity is large 
because the cars are traveling in opposite directions. Conse-
quently, the change in momentum of a passenger in a head-
on collision is greater than when hit from behind, which 
implies a larger average force.

 3. Assuming the kinetic energies of the two arrows are identi-
cal, the heavier arrow would have a greater momentum, 
because p 2 5 2mK. Greater arrow momentum means greater 
recoil speed for the archer.

 4. The final velocity would be unaffected, but the change in 
kinetic energy would be doubled.

 5. Energy can be lost due to friction during the impact, work 
done in deforming the bullet and block, friction in the physi-
cal mechanisms, air drag, and the creation of sound waves.

 6. No. If that were the case, energy could not be conserved.
 7. The blocks cannot both come to rest at the same time 

because then by Equation (1) momentum would not be 
conserved.

 8. 45°
 9. m(a 1 g)

Warm-Up Exercises
1. (a) �0.800 m/s  (b) 3.20 m/s

 3. (a) 5.55  (b) 4.77 � 103 kg
 5. (a) 2.62 kg · m/s  (b) 43.7 N
 7. (a) 0.369 J  (b) 0.640 m/s  (c) 0.184 J
 9. (a) 15.0 m/s  (b) 26.0 m/s
 11. (a) 4.54 � 105 kg  (b) 2.16 � 105 kg 

Conceptual Questions
1. (a) No. It cannot carry more kinetic energy than it possesses. 

That would violate the law of energy conservation. (b) Yes. 
By bouncing from the object it strikes, it can deliver more 
momentum in a collision than it possesses in its flight.

 3. If all the kinetic energy disappears, there must be no motion 
of either of the objects after the collision. If neither is mov-
ing, the final momentum of the system is zero, and the initial 
momentum of the system must also have been zero. A situa-
tion in which this could be true would be the head-on colli-
sion of two objects having momenta of equal magnitude but 
opposite direction.

 5. Initially, the clay has momentum directed toward the wall. 
When it collides and sticks to the wall, neither the clay nor 
the wall appears to have any momentum. It is therefore 
tempting to (wrongfully) conclude that momentum is not 
conserved. The “lost” momentum, however, is actually 
imparted to the wall and the Earth, causing both to move. 
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the bullet. Then, you can use conservation of mechanical 
energy for the bullet–block–Earth system to relate the speed 
after the collision to the maximum height.   (b) 521 m/s 
upward

Chap t e r  7

Quick Quizzes
1. (c)

 2. (b)
 3. (b)
 4. (b)
 5. (a)
 6. 1. (e) 2. (a) 3. (b)
 7. (c)
 8. (b), (c)
 9. (e)
 10. (d)

Example Questions
1. Yes. The conversion factor is (180°/p rad) or 57.3° s21.

 2. All given quantities and answers are in angular units, so 
altering the radius of the wheel has no effect on the answers.

 3. In this case, doubling the angular acceleration doubles the 
angular displacement. That is true here because the initial 
angular speed is zero.

 4. The angular acceleration of a record player during play is 
zero. A CD player must have nonzero acceleration because 
the angular speed must change.

 5. (b)
 6. It would be increased.
 7. The angle of the bank, the coefficient of friction, and the 

radius of the circle determine the minimum and maximum 
safe speeds.

 8. The normal force is still zero.
 9. Yes. The force of gravity acting on each billiard ball holds 

the balls against the table and assists in creating friction 
forces that allow the balls to roll. The gravity forces between 
the balls are insignificant, however.

 10. First, most asteroids are irregular in shape, so Equation (1) 
will not apply because the acceleration may not be uniform. 
Second, the asteroid may be so small that there will be no 
significant or useful region where the acceleration is uni-
form. In that case, Newton’s more general law of gravitation 
would be required.

 11. (b)
 12. Mechanical energy is conserved in this system. Because the 

potential energy at perigee is lower, the kinetic energy must 
be higher.

 13. 5 days

Warm-Up Exercises
1. (a) 785 m  (b) 2.20 radians

 3. (a) 1.26 rad/s  (b) 24.5 rev/min
 5. 1.99 � 10�7 rad/s
 7. (a) 0.608 m/s2  (b) 28.9 rad/s  (c) 261 rad  (d) 99.2 m
 9. (a) 4.44 N  (b) 8.36 N
 11. 0.5g
 13. 1.34 � 104 m/s
 15. (a) 18.0 AU  (b) 35.4 AU

Conceptual Questions
1. (a) The head will tend to lean toward the right shoulder 

(that is, toward the outside of the curve). (b) When there 
is no strap, tension in the neck muscles must produce the 
centripetal acceleration. (c) With a strap, the tension in the 
strap performs this function, allowing the neck muscles to 
remain relaxed.

 21. 65 m/s
 23. (a) 1.15 m/s   (b) 0.346 m/s directed opposite to girl’s 

motion
 25. (a) 154 m   (b) By Newton’s third law, when the astronaut 

exerts a force on the tank, the tank exerts a force back on 
the astronaut. This reaction force accelerates the astronaut 
towards the spacecraft.

 27. vthrower 5 2.48 m/s, vcatcher 5 2.25 3 1022 m/s
 29. (a) 

m1
m2 m1

m2
vf
Sv2

Sv1
S

(b) The collision is best described as perfectly inelastic 
because the skaters remain in contact after the collision.
(c) m1v1 1 m2v2 5 (m1 1 m2)vf
(d) vf 5 (m1v1 1 m2v2)/(m1 1 m2)   (e) 6.33 m/s

 31. 15.6 m/s
 33. (a) 1.80 m/s   (b) 2.16 3 104 J
 35. (a) 1
 37. 1.32 m
 39. 57 m
 41. 273 m/s

 43. (a) He moves at a velocity of a
mg

mb
bvg toward the west.

  (b) KEg 5 1
2mgvg

2; KEb 5 a
mg

2

2mb
bvg

2 The ratio 
KEg

KEb
5

mb

mg
 

  is greater than 1 because mb . mg. Hence, the girl has  
more kinetic energy. (c) Work is done by both the boy and 
girl as they push each other apart and the origin of this work 
is chemical energy in their bodies.

 45. 17.1 cm/s (25.0-g object), 22.1 cm/s (10.0-g object)
 47. (a) Over a very short time interval, external forces have no 

time to impart significant impulse to the players during the 
collision. The two players move together after the tackle, 
so the collision is completely inelastic. (b) 2.88 m/s at 32.3° 
(c) 785 J. (d) The lost kinetic energy is transformed into 
other forms of energy such as thermal energy and sound.

 49. 5.59 m/s north
 51. (a) 2.50 m/s at 260°   (b) elastic collision
 53. 1.78 3 103 N on truck driver, 8.89 3 103 N on car driver
 55. (a) 8/3 m/s (incident particle), 32/3 m/s (target particle)
  (b) 216/3 m/s (incident particle), 8/3 m/s (target particle)
  (c) 7.1 3 1022 J in case (a), and 2.8 3 1023 J in case (b). The 

incident particle loses more kinetic energy in case (a), in 
which the target mass is 1.0 g.

 57. v1 5 21.7 m/s (to the left); v2 5 1.1 m/s (to the right)
 59. 62 s
 61. (a) 3   (b) 2
 63. (a) 22.33 m/s, 4.67 m/s   (b) 0.277 m   (c) 2.98 m   (d) 1.49 m
 65. (a) 20.667 m/s   (b) 0.952 m
 67. (a) 3.54 m/s   (b) 1.77 m   (c) 3.54 3 104 N   (d) No, the nor-

mal force exerted by the rail contributes upward momentum 
to the system.

 69. (a) 0.28 or 28%   (b) 1.1 3 10213 J for the neutron,  
4.5 3 10214 J for carbon

 71. (a) No. After colliding, the cars, moving as a unit, would 
travel northeast, so they couldn’t damage property on 
the southeast corner. (b) x -component: 16.3 km/h, 
y - component: 9.17 km/h, angle: the final velocity of the car 
is 18.7 km/h at 29.4° north of east, consistent with part (a).

 73. (a) 4.85 m/s   (b) 8.41 m

 75. v0 5 aM 1 m
m

b!2mgd

77. (a) 1.1 m/s at 30° below the positive x -axis   (b) 0.32 or 32%
79. (a) The momentum of the bullet-block system is conserved 

in the collision, so you can relate the speed of the block and 
bullet immediately after the collision to the initial speed of 
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3. The speedometer will be inaccurate. The speedometer mea-
sures the number of tire revolutions per second, so its read-
ings will be too low.

 5. (a) Point C. The total acceleration here is centripetal accel-
eration, straight up. (b) Point A. The speed at A is zero where 
the bob is reversing direction. The total acceleration here 
is tangential acceleration, to the right and downward per-
pendicular to the cord. (c) Point B. The total acceleration 
here is to the right and pointing in a direction somewhere in 
between the tangential and radial directions, depending on 
their relative magnitudes.

 7. Consider an individual standing against the inside wall of 
the cylinder with her head pointed toward the axis of the 
cylinder. As the cylinder rotates, the person tends to move 
in a straight-line path tangent to the circular path followed 
by the cylinder wall. As a result, the person presses against 
the wall, and the normal force exerted on her provides the 
radial force required to keep her moving in a circular path. 
If the rotational speed is adjusted such that this normal force 
is equal in magnitude to her weight on Earth, she will not 
be able to distinguish between the artificial gravity of the 
colony and ordinary gravity.

 9. The tendency of the water is to move in a straight-line path 
tangent to the circular path followed by the container. As 
a result, at the top of the circular path, the water presses 
against the bottom of the pail, and the normal force exerted 
by the pail on the water provides the radial force required to 
keep the water moving in its circular path.

 11. Any object that moves such that the direction of its velocity 
changes has an acceleration. A car moving in a circular path 
will always have a centripetal acceleration.

 13. The speed changes. The component of force tangential to 
the path causes a tangential acceleration.

Problems
1. (a) 7.27 3 1025 rad/s   (b) Because of its rotation about its 

axis, Earth bulges at the equator.
 3. (a) 3.2 3 108 rad   (b) 5.0 3 107 rev
 5. (a) 821 rad/s2   (b) 4.21 3 103 rad
 7. (a) 3.5 rad (b) The angular displacement increases by a fac-

tor of 4 because Equation 7.9 is quadratic in the angular 
velocities.

 9. Main rotor: 179 m/s 5 0.522vsound
Tail rotor: 221 m/s 5 0.644vsound

11. (a) 116 rev (b) 62.1 rad/s
 13. 13.7 rad/s2

15. (a) 6.53 m/s   (b) 0.285 m/s2 directed toward the center of 
the circular arc

 17. (a) 0.346 m/s2   (b) 1.04 m/s   (c) 0.346 m/s2   (d) 0.943 m/s2   
(e) 1.00 m/s2 at 20.1° forward with respect to the direction of aSc

19. (a) 20.6 N (b) 3.35 m/s2 downward tangent to the circle; 
32.0 m/s2 radially inward (c) 32.2 m/s2 at 5.98° to the cord, 
pointing toward a location below the center of the circle. 
(d) No change. (e) If the object is swinging down it is gain-
ing speed. If it is swinging up it is losing speed but its accel-
eration has the same magnitude and its direction can be 
described in the same terms.

 21. (a) 1.10 kN   (b) 2.04 times her weight
 23. 22.6 m/s
 25. (a) 18.0 m/s2   (b) 900 N   (c) 1.84; this large coefficient 

is unrealistic, and she will not be able to stay on the 
merry-go-round.

 27. (a) 9.8 N   (b) 9.8 N   (c) 6.3 m/s
 29. (a) The force of static friction acting toward the road’s 

center of curvature causes the briefcase’s centripetal accel-
eration. When the necessary centripetal force exceeds the 
maximum value of the static friction force, msn, the briefcase 
begins to slide. (b) 0.370

 31. (a) 1.58 m/s2   (b) 455 N upward   (c) 329 N upward    
(d) 397 N directed inward and 80.8° above horizontal

 33. 321 N toward Earth
 35. 1.1 3 10210 N at 72° above the 1x -axis
 37. (a) 2.50 3 1025 N toward the 500-kg object (b) between the 

two objects and 0.245 m from the 500-kg object

 39. (a) r 5
9
8
RE 5 7.18 3 106 m   (b) 7.98 3 105 m

 41. (a) 2.43 h   (b) 6.59 km/s   (c) 4.73 m/s2 toward the Earth
 43. 6.3 3 1023 kg

 45. 
TB

TA
5 Å

27
8

5 1.84

 47. (a) 1.90 3 1027 kg   (b) 1.89 3 1027 kg   (c) yes
 49. (a) 9.40 rev/s   (b) 44.2 rev/s2; ar 5 2 590 m/s2; at 5 206 m/s2   

(c) Fr 5 515 N; Ft 5 40.7 N
 51. (a) 2.51 m/s   (b) 7.90 m/s2   (c) 4.00 m/s
 53. (a) 7.76 3 103 m/s   (b) 89.3 min

 55. (a) n 5 mag 2
v 2

r
b   (b) 17.1 m/s

 57. (a) Fg, true 5 Fg, apparent 1 mREv2   (b) 732 N (equator), 735 N 
(either pole)

 59. 11.8 km/s
 61. 0.835 rev/s
 65. (a) 10.6 kN   (b) 14.1 m/s
 67. (a) 0.71 yr (b) The departure must be timed so that the 

spacecraft arrives at aphelion when the target planet is there.

 69. (a) t 5
2Rv

g
   (b) v 5 Å

pg

R
71. (a) 109 N   (b) 56.4 N
 73. (a) 106 N   (b) 0.396
 75. 0.131
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Quick Quizzes
1. (d)

 2. (b)
 3. (b)
 4. (a)
 5. (c)
 6. (a)

Example Questions
1. The revolving door begins to move counterclockwise instead 

of clockwise.
 2. Placing the wedge closer to the doorknob increases its 

effectiveness.
 3. If the woman leans backwards, the torque she exerts on the 

seesaw increases and she begins to descend.
 4. (b)
 5. The system would begin to rotate clockwise.
 6. The angle made by the biceps force would still not vary 

much from 90° but the length of the moment arm would be 
doubled, so the required biceps force would be reduced by 
nearly half.

 7. (c)
 8. The tension in the cable would increase.
 9. Lengthening the rod between balls 2 and 4 would create the 

larger change in the moment of inertia.
 10. Stepping forward transfers the momentum of the pitcher’s 

body to the ball. Without proper timing, the transfer will not 
take place or will have less effect.

 11. The magnitude of the acceleration would decrease; that of 
the tension would increase.

 12. Block, ball, cylinder
 13. The final answer wouldn’t change.
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force. Therefore, a ladder on a smooth floor cannot stand in 
equilibrium. However, a smooth wall can still exert a normal 
force to hold the ladder in equilibrium against horizontal 
motion. The counterclockwise torque of this force prevents 
rotation about the foot of the ladder. So you should choose a 
rough floor.

 15. (d)
 17. (e)

Problems
1. 168 N ? m

 3. (a) 30 N ? m (counterclockwise)    
(b) 36 N ? m (counterclockwise)

 5. (a) 5.1 N ? m   (b) The torque increases, because the torque 
is proportional to the moment arm, L sin u, and this factor 
increases as u increases.

 7. Ft 5 724 N, Fs 5 716 N
 9. 312 N
 11. xcg 5 3.33 ft, ycg 5 1.67 ft
 13. (21.5 m, 21.5 m)
 15. 1.01 m in Figure P8.15b; 0.015 m toward the head in  

Figure P8.15c.
 17. (a) T 5 2.71 kN   (b) Rx 5 2.65 kN
 19. (a) 443 N,   (b) 222 N (to the right), 216 N (upward)
 21. T1 5 501 N, T2 5 672 N, T3 5 384 N

 23. (a) d 5
mg

2k tan u
   (b) Rx 5

mg

2 tan u
; Ry 5 mg

 25. u 5 tan21aw
h
b

27. R 5 107 N, T 5 157 N
 29. 209 N
 31. (a) 99.0 kg ? m2   (b) 44.0 kg ? m2   (c) 143 kg ? m2

33. (a) 87.8 kg ? m2   (b) 1.61 3 103 kg   (c) 4.70 rad/s
 35. (a) 3.92 m/s2 (b) 9.80 rad/s2 (c) As the rope leaves the cylin-

der, the mass of the cylinder decreases, also decreasing the 
cylinder’s moment of inertia. At the same time, the mass of 
rope leaving the cylinder would increase the torque exerted 
on the cylinder. Hence, the acceleration of the system would 
increase in magnitude with time. (The increase would be 
slight in this case, given the large mass of the cylinder.)

 37. (a) 24.0 N ? m   (b) 0.035 6 rad/s2   (c) 1.07 m/s2

39. 177 N
41. 0.524
 43. 276 J
 45. (a) 5.47 J   (b) 5.99 J
 47. (a) 3.90 m/s   (b) 15.6 rad/s
 49. 149 rad/s
 51. (a) 500 J   (b) 250 J   (c) 750 J
 53. (a) 5.00 m   (b) 2.31 3 104 J   (c) 1.79 3 104 J   (d) 9.27 m/s
 55. (a) 7.08 3 1033 J ? s (b) 2.66 3 1040 J ? s
 57. 17.5 J ? s counterclockwise
 59. (a) 7md 2/3   (b) mgd counterclockwise   (c) 3g/7d counter-

clockwise   (d) 2g/7 upward (e) mgd (f) "6g/7d  
(g) m"14gd 3/3 (h) "2gd/21

61. 6.73 rad/s
 63. 5.99 3 1022 J

 65. (a) v 5 a I1

I1 1 I2
bv0   (b) 

KEf

KEi
5

I1

I1 1 I2
 , 1

 67. (a) 2.6 rad/s   (b) 5.1 3 105 kg ? m2   (c) 1.7 3 106 J
 69. (a) As the child walks to the right end of the boat, the boat 

moves left (toward the pier). (b) The boat moves 1.45 m 
closer to the pier, so the child will be 5.55 m from the pier. 
(c) No. He will be short of reaching the turtle by 0.45 m.

 71. 36.9°
 73. (a) Mvd   (b) Mv2   (c) Mvd   (d) 2v   (e) 4Mv2   (f) 3Mv2

75. (a) 6.73 N upward   (b) x 5 0.389 m

 14. His angular speed remains the same.
 15. Energy conservation is not violated. The positive net change 

occurs because the student is doing work on the system.

Warm-Up Exercises
1. (a) 36.0 N and (b) 24.0 N

 3. (a) �0.942 rad/s2  (b) 78.6 rad
 5. (a) 25.0 N ⋅ m  (b) 50.0 N ⋅ m
 7. (1.33 m, 2.00 m)
 9. (a) 8.57 rad/s  (b) 0 N ⋅ m
 11. (a) 0.331 kg ⋅ m2  (b) 0.248 N ⋅ m  (c) 0.709 N
 13. (a) 1.04 J  (b) 0.110 kg ⋅ m2/s

Conceptual Questions
1. In order for you to remain in equilibrium, your center of 

gravity must always be over your point of support, the feet. 
If your heels are against a wall, your center of gravity cannot 
remain above your feet when you bend forward, so you lose 
your balance.

 3. No, only if its angular velocity changes.
 5. The long pole has a large moment of inertia about an axis 

along the rope. An unbalanced torque will then produce 
only a small angular acceleration of the performer–pole sys-
tem, to extend the time available for getting back in balance. 
To keep the center of mass above the rope, the performer 
can shift the pole left or right, instead of having to bend his 
body around. The pole sags down at the ends to lower the 
system’s center of gravity, increasing the relative stability of 
the system.

 7. As the motorcycle leaves the ground, the friction between 
the tire and the ground suddenly disappears. If the motorcy-
cle driver keeps the throttle open while leaving the ground, 
the rear tire will increase its angular speed and, hence, its 
angular momentum. The airborne motorcycle is now an iso-
lated system, and its angular momentum must be conserved. 
The increase in angular momentum of the tire directed, say, 
clockwise must be compensated for by an increase in angular 
momentum of the entire motorcycle counterclockwise. This 
rotation results in the nose of the motorcycle rising and the 
tail dropping.

 9. The angular momentum of the gas cloud is conserved. Thus, 
the product Iv remains constant. As the cloud shrinks in 
size, its moment of inertia decreases, so its angular speed v 
must increase.

 11. We can assume fairly accurately that the driving motor will 
run at a constant angular speed and at a constant torque. 
(a) As the radius of the take-up reel increases, the tension in 
the tape will decrease, in accordance with the equation.

 T 5 tconst/Rtake-up (1)

  As the radius of the source reel decreases, given a decreas-
ing tension, the torque in the source reel will decrease even 
faster, as the following equation shows:

 tsource 5 TRsource 5 tconstRsource/Rtake-up (2)

  (b) In the case of a sudden jerk on the tape, the changing 
angular speed of the source reel becomes important. If the 
source reel is full, then the moment of inertia will be large 
and the tension in the tape will be large. If the source reel 
is nearly empty, then the angular acceleration will be large 
instead. Thus, the tape will be more likely to break when the 
source reel is nearly full. One sees the same effect in the case 
of paper towels: It is easier to snap a towel free when the roll 
is new than when it is nearly empty.

 13. When a ladder leans against a wall, both the wall and the 
floor exert forces of friction on the ladder. If the floor is 
perfectly smooth, it can exert no frictional force in the 
horizontal direction to counterbalance the wall’s normal 
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9. (a) 1.77 � 10−3 m3  (b) 17.3 N  (c) 196 N  (d) 179 N
 11. 6.57 m/s

Conceptual Questions
1. She exerts enough pressure on the floor to dent or punc-

ture the floor covering. The large pressure is caused by the 
fact that her weight is distributed over the very small cross- 
sectional area of her high heels. If you are the homeowner, 
you might want to suggest that she remove her high heels 
and put on some slippers.

 3. The density of air is lower in the mile-high city of Denver 
than it is at lower altitudes, so the effect of air drag is less 
in Denver than it would be in a city such as New York. The 
reduced air drag means a well-hit ball will go farther, ben-
efiting home-run hitters. On the other hand, curve ball 
pitchers prefer to throw at lower altitudes where the higher-
density air produces greater deflecting forces on a spinning 
ball.

 5. If you think of the grain stored in the silo as a fluid, the pres-
sure the grain exerts on the walls of the silo increases with 
increasing depth, just as water pressure in a lake increases 
with increasing depth. Thus, the spacing between bands is 
made smaller at the lower portions to counterbalance the 
larger outward forces on the walls in these regions.

 7. In the ocean, the ship floats due to the buoyant force from 
salt water, which is denser than fresh water. As the ship is 
pulled up the river, the buoyant force from the fresh water 
in the river is not sufficient to support the weight of the ship, 
and it sinks.

 9. At lower elevation the water pressure is greater because pres-
sure increases with increasing depth below the water surface 
in the reservoir (or water tower). The penthouse apartment 
is not so far below the water’s surface. The pressure behind 
a closed faucet is weaker there and the flow weaker from an 
open faucet. Your fire department likely has a record of the 
precise elevation of every fire hydrant.

 11. The two cans displace the same volume of water and hence 
are acted upon by buoyant forces of equal magnitude. The 
total weight of the can of diet cola must be less than this 
buoyant force, whereas the total weight of the can of regu-
lar cola is greater than the buoyant force. This is possible 
even though the two containers are identical and contain 
the same volume of liquid. Because of the difference in the 
quantities and densities of the sweeteners used, the volume V 
of the diet mixture will have less mass than an equal volume 
of the regular mixture.

 13. Opening the windows results in a smaller pressure differ-
ence between the exterior and interior of the house and, 
therefore, less tendency for severe damage to the structure 
due to the Bernoulli effect.

 15. (b)

Problems
1. 4.74r0
3. (a) 2 550 N   (b) 3.00 3 104 Pa   (c) No. The pressure will be 

the same only if the acrobats all wear the same-size shoe.
 5. (a) ,4 3 1017 kg/m3 (b) The density of an atom is about 1014 

times greater than the density of iron and other common 
solids and liquids. This shows that an atom is mostly empty 
space. Liquids and solids, as well as gases, are mostly empty 
space.

 7. (a) 1.01 3 106 N   (b) 3.88 3 105 N   (c) 1.11 3 105 Pa
 9. 4.90 mm
 11. 1.05 3 107 Pa
 13. 3.5 3 108 Pa
 15. 4.4 mm
 17. 8.6 3 1024 m
 19. 1.9 cm

 77. (a) 0 (b) 0; Because the monkey and the bananas are both 
moving upward with the same speed, the angular momen-
tum of the system is zero. (c) The monkey won’t reach the 
bananas until they become caught in the pulley.

 79. 1.09 m

 81. (a) T 5
Mmg

M 1 4m
   (b) a t 5

4mg

M 1 4m
83. 24.5 m/s
85. 9.3 kN
87. (a) 3.12 m/s2   (b) T1 5 26.7 N, T2 5 9.36 N
 89. (a) 0.73 m   (b) 1.6 m/s
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Quick Quizzes
1. (c)

 2. (a)
 3. (c)
 4. (b)
 5. (c)
 6. (b)
 7. (a)

Example Questions
1. Because water is more dense than oil, the pressure exerted 

by a column of water is greater than the pressure exerted by 
a column of oil.

 2. Tungsten, steel, aluminum, rubber
 3. The lineman’s skull and neck would undergo compressional 

stress.
 4. Steel, copper, mercury, water
 5. At higher altitude, the column of air above a given area is 

progressively shorter and less dense, so the weight of the air 
column is reduced. Pressure is caused by the weight of the 
air column, so the pressure is also reduced.

 6. As fluid pours out through a single opening, the air inside 
the can above the fluid expands into a larger volume, reduc-
ing the pressure to below atmospheric pressure. Air must 
then enter the same opening going the opposite direction, 
resulting in disrupted fluid flow. A separate opening for air 
intake maintains air pressure inside the can without disrupt-
ing the flow of the fluid.

 7. True
 8. False
 9. (a)
 10. The aluminum cube would float free of the bottom.
 11. The speed of the blood in the narrowed region increases.
 12. A factor of 2
 13. The speed decreases with time.
 14. The limit is v1 5 !2gh, called Torricelli’s Law. (See Example 

9.13).
 15. The pressure difference across the wings depends linearly 

on the density of air. At higher altitude, the air’s density 
decreases, so the lift force decreases as well.

 16. False
 17. No. There are many plants taller than 0.3 m, so there must 

be some additional explanation.
 18. A factor of 16
 19. False

Warm-Up Exercises
1. 1.96 � 10−3 N

 3. 5.35 � 105 Pa
 5. 8.9 � 10−6 m
 7. 2.35 � 106 Pa
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5. Unlike land-based ice, ocean-based ice already displaces 
water, so when it melts ocean levels won’t change much.

6. (b)

Example Questions
1. A Celsius degree

 2. True
 3. When the temperature decreases, the tension in the wire 

increases.
 4. The magnitude of the required temperature change would 

be larger because the linear expansion coefficient of steel is 
less than that of copper.

 5. Glass, aluminum, ethyl alcohol, mercury
 6. The balloon expands.
 7. The pressure is slightly reduced.
 8. The volume of air decreases.
 9. The pressure would increase, up to double if the reflections 

were all elastic.
 10. True

Warm-Up Exercises
1. 15.6
3. (a) 213.0°F (b) 248 K

 5. (a) 3.4 × 10–5 (°C)–1  (b) 1.2 × 10–4 m2

7. (a) 298 K (b) 191 K
 9. (a) 425 K (b) 1.29 mol (c) 6 830 J

Conceptual Questions
1. (a) An ordinary glass dish will usually break because of 

stresses that build up as the glass expands when heated. 
(b) The expansion coefficient for Pyrex glass is much lower 
than that of ordinary glass. Thus, the Pyrex dish will expand 
much less than the dish of ordinary glass and does not nor-
mally develop sufficient stress to cause breakage.

 3. Mercury must have the larger coefficient of expansion. As the 
temperature of a thermometer rises, both the mercury and 
the glass expand. If they both had the same coefficient of lin-
ear expansion, the mercury and the cavity in the glass would 
expand by the same amount, and there would be no apparent 
movement of the end of the mercury column relative to the 
calibration scale on the glass. If the glass expanded more 
than the mercury, the reading would go down as the temper-
ature went up! Now that we have argued this conceptually, we 
can look in a table and find that the coefficient for mercury 
is about 20 times as large as that for glass, so that the expan-
sion of the glass can sometimes be ignored.

 5. We can think of each bacterium as being a small bag of liquid 
containing bubbles of gas at a very high pressure. The ideal 
gas law indicates that if the bacterium is raised rapidly to the 
surface, then its volume must increase dramatically. In fact, the 
increase in volume is sufficient to rupture the bacterium.

 7. Additional water vaporizes into the bubble, so that the num-
ber of moles n increases.

 9. The bags of chips contain a sealed sample of air. When the 
bags are taken up the mountain, the external atmospheric 
pressure on them is reduced. As a result, the difference 
between the pressure of the air inside the bags and the 
reduced pressure outside results in a net force pushing the 
plastic of the bag outward.

 11. The coefficient of expansion for metal is generally greater 
than that of glass; hence, the metal lid loosens because it 
expands more than the glass.

 13. As the water rises in temperature, it expands or rises in pres-
sure or both. The excess volume would spill out of the cool-
ing system, or else the pressure would rise very high indeed. 
The expansion of the radiator itself provides only a little 
relief, because in general solids expand far less than liquids 
for a given positive change in temperature.

 21. (a) 3.71 3 105 Pa   (b) 3.57 3 104 N
 23. 0.133 m
 25. 1.05 3 105 Pa
 27. 27 N ? m
 29. 0.258 N down
 31. 9.41 kN
 33. (a) 408 kg/m3 (b) If the steel object’s mass is just slightly 

greater than 0.310 kg, then the block is submerged but 
the steel object and the block do not sink to the bottom, 
since the steel object starts to displace water and the buoy-
ant force is increasing. If the steel object is solid, it will 
displace a little more than 0.039 kg of water when fully 
submerged. The steel object and the block will sink to 
the bottom when the steel object’s mass exceeds about 
0.350. For values less than this, but greater than 0.310 kg, 
the block will be submerged and the steel object partially 
submerged.

 35. (a) 1.43 kN upward (b) 1.28 kN upward (c) The balloon 
expands because the external pressure declines with increas-
ing altitude.

 37. (a) 4.0 kN (b) 2.2 kN (c) The air pressure at this high alti-
tude is much lower than atmospheric pressure at the surface 
of Earth, so the balloons expanded and eventually burst.

 39. (a) 7.00 cm (b) 2.80 kg
 41. (a) 1.46 3 1022 m3   (b) 2.10 3 103 kg/m3

43. 17.3 N (upper scale), 31.7 N (lower scale)
45. (a) 80 g/s   (b) 0.27 mm/s
47. 12.6 m/s
 49. (a) 9.43 3 103 Pa (b) 255 m/s (c) The density of air decreases 

with increasing height, resulting in a smaller pressure differ-
ence. Beyond the maximum operational altitude, the pres-
sure difference can no longer support the aircraft.

 51. (a) 0.553 s (b) 14.5 m/s (c) 0.145 m/s (d) 1.013 3 105 Pa 
(e) 2.06 3 105 Pa; gravity terms can be neglected. (f) 33.0 N

 53. 9.00 cm
 55. 1.47 cm
 57. (a) 28.0 m/s   (b) 28.0 m/s   (c) 2.11 MPa
 59. 8.3 3 1022 N/m
 61. 5.6 3 1022 N/m
 63. 8.6 N
 65. 2.1 MPa
 67. 2.8 mm
 69. 0.21 mm
 71. RN 5 4.3 3 103; turbulent flow
 73. 1.8 3 1023 kg/m3

 75. 1.4 3 1025 N ? s/m2

 77. (a) The buoyant forces are the same because the two blocks 
displace equal amounts of water. (b) The spring scale reads 
largest value for the iron block. (c) B 5 2.0 3 103 N for both 
blocks, Tiron 5 13 3 103 N, Taluminum 5 3.3 3 103 N.

 79. (b) 5.9 km
 81. 2.5 3 107 capillaries
 83. (a) 1.57 kPa, 1.55 3 1022 atm, 11.8 mm of Hg (b) The fluid 

level in the tap should rise. (c) Blockage of flow of the cere-
brospinal fluid

 85. 2.25 m above the level of point B
 87. 0.605 m
 89. F 5 pR2(P0 2 P)
 91. 17.0 cm above the floor

Chap t e r  10

Quick Quizzes
 1. (c)
 2. (b)
 3. (c)
 4. (c)
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3. No
4. (c)
5. No
6. The mass of ice melted would double.
7. Nickel–iron asteroids have a higher density and therefore a 

greater mass, which means they can deliver more energy on 
impact for a given speed.

 8. A runner’s metabolism is much higher when he is running 
than when he is at rest, and because muscles are only about 
20% efficient, a great amount of random thermal energy is 
created through muscular exertion. Consequently, the run-
ner needs to eliminate far more thermal energy when run-
ning than when resting. Once the run is over, muscular exer-
tions cease and the metabolism starts to return to normal, so 
the runner begins to feel chilled.

 9. (a)
 10. (a)
 11. If the planet doesn’t reemit all the energy that it absorbs 

from its star, it will increase in temperature. As the tem-
perature increases, the planet will radiate at a greater and 
greater rate until it reaches thermal equilibrium, when it 
emits as much as it absorbs.

Warm-Up Exercises
1. 8.09°C

 3. 6.8 3 1024 m
 5. 14.1 J
 7. 29.4°C
 9. (a) 408 K   (b) 50.3 m2   (c) 2.54 3 104 W

Conceptual Questions
1. When you rub the surface, you increase the temperature 

of the rubbed region. With the metal surface, some of this 
energy is transferred away from the rubbed site by conduc-
tion. Consequently, the temperature in the rubbed area is 
not as high for the metal as it is for the wood, and it feels 
relatively cooler than the wood.

 3. The fruit loses energy into the air by radiation and convec-
tion from its surface. Before ice crystals can form inside the 
fruit to rupture cell walls, all of the liquid water on the skin 
will have to freeze. The resulting time delay may prevent 
damage within the fruit throughout a frosty night. Further, 
a surface film of ice provides some insulation to slow subse-
quent energy loss by conduction from within the fruit.

 5. One of the ways that objects transfer energy is by radiation. 
The top of the mailbox is oriented toward the clear sky. Radia-
tion emitted by the top of the mailbox goes upward and into 
space. There is little radiation coming down from space to the 
top of the mailbox. Radiation leaving the sides of the mailbox 
is absorbed by the environment. Radiation from the environ-
ment (tree, houses, cars, etc.), however, can enter the sides of 
the mailbox, keeping them warmer than the top. As a result, 
the top is the coldest portion and frost forms there first.

 7. (a) The operation of an immersion coil depends on the con-
vection of water to maintain a safe temperature. As the water 
near a coil warms up, the warmed water floats to the top due 
to Archimedes’ principle. The temperature of the coil can-
not go higher than the boiling temperature of water, 100°C. 
If the coil is operated in air, convection is reduced, and the 
upper limit of 100°C is removed. As a result, the coil can 
become hot enough to be damaged. (b) If the coil is used in 
an attempt to warm a thick liquid like stew, convection can-
not occur fast enough to carry energy away from the coil, so 
that it again may become hot enough to be damaged.

 9. Tile is a better conductor of energy than carpet, so the tile 
conducts energy away from your feet more rapidly than does 
the carpeted floor.

Problems
1. (a) 2460°C   (b) 37.0°C   (c) 2280°C

 3. (a) 2253°C   (b) 2423°F
 9. (a) 107°F (b) Yes; the normal body temperature is 98.6°F, so 

the patient has a high fever that needs immediate attention.
 11. 31 cm
 13. 55.0°C
 15. (a) 2179°C (attainable)   (b) 2376°C (below 0 K, 

unattainable)
 17. (a) 11.2 3 103 kg/m3 (b) No. Although the density of gold 

would be less on a warm day, the mass of the bar would be 
the same regardless of its temperature, and that is what you 
are paying for. (Note that the volume of the bar increases 
with increasing temperature, whereas its density decreases. 
Its mass, however, remains constant.)

 19. 1.02 3 103 gallons
 21. (a) 0.10 L   (b) 2.009 L   (c) 1.0 cm
 23. 2.7 3 102 N
 25. 0.548 gal
 27. (a) increases   (b) 1.603 cm
 29. (a) 627°C   (b) 927°C
 31. (a) 2.5 3 1019 molecules   (b) 4.1 3 10221 mol
 33. 4.28 atm
 35. 7.1 m
 37. 16.0 cm3

 39. 6.21 3 10221 J
 41. 6.64 3 10227 kg
 43. (a) 2.01 3 104 K   (b) 901 K
 45. 16 N
 47. 0.66 mm to the right at 78° below the horizontal
 49. 3.55 L
 51. 35.016 m
 53. 6.57 MPa
 55. (a) 99.8 mL (b) The change in volume of the flask is far 

smaller because Pyrex has a much smaller coefficient of 
expansion than acetone. Hence, the change in volume of the 
flask has a negligible effect on the answer.

 57. (b) The expansion of the mercury is almost 20 times that of 
the flask (assuming Pyrex glass).

 59. 2.7 m

 61. (a) u 5
1a2 2 a1 2L 0 1DT 2

Dr
 

  (c) The bar bends in the opposite direction.
 63. (a) No torque acts on the disk so its angular momentum is 

constant. Yes, the angular speed increases. As the disk cools, 
its radius, and hence, its moment of inertia, decreases. Con-
servation of angular momentum then requires that its angu-
lar speed increase. (b) 25.7 rad/s

Chap t e r  11

Quick Quizzes
 1. (a) Water, glass, iron. (b) Iron, glass, water.
 2. (b) The slopes are proportional to the reciprocal of the spe-

cific heat, so a larger specific heat results in a smaller slope, 
meaning more energy is required to achieve a given tem-
perature change.

 3. (c)
 4. (b)
 5. (a) 4 (b) 16 (c) 64

Example Questions
 1. From the point of view of physics, faster repetitions don’t 

affect the final answer; physiologically, however, the weight-
lifter’s metabolic rate would increase.

 2. (c)
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Chap t e r  12

Quick Quizzes
1. (b)

 2. A is isovolumetric, B is adiabatic, C is isothermal, D is 
isobaric.

 3. (c)
 4. (b)
 5. The number 7 is the most probable outcome. The numbers 2 

and 12 are the least probable outcomes.

Example Questions
1. No

 2. No
 3. True
 4. True
 5. The change in temperature must always be negative because 

the system does work on the environment at the expense of 
its internal energy and no thermal energy can be supplied to 
the system to compensate for the loss.

 6. A diatomic gas does more work under these assumptions.
 7. The carbon dioxide gas would have a final temperature 

lower than 380 K.
 8. False
 9. (a)
 10. No. The efficiency improves only if the ratio |Q c/Q h| 

becomes smaller. Further, too large an increase in Q h will 
damage the engine, so there is a limit even if Q c remains 
fixed.

 11. If the path from B to C were a straight line, more work would 
be done per cycle.

 12. No. The compressor does work and warms the kitchen. 
With the refrigerator door open, the compressor would run 
continuously.

 13. False
 14. Silver, lead, ice
 15. False
 16. The thermal energy created by your body during the exer-

tion would be dissipated into the environment, increasing 
the entropy of the Universe.

 17. Skipping meals can lower the basal metabolism, reducing 
the rate at which energy is used. When a large meal is eaten 
later, the lower metabolism means more food energy will be 
stored, and weight will be gained even if the same number of 
total calories is consumed in a day.

Warm-Up Exercises
1. 

1.0

2.0

3.0

P (105 Pa)

1.0     2.0    3.0
V (m3)

(a)

(b)
(c)

11. The large amount of energy stored in the concrete during 
the day as the Sun falls on it is released at night, resulting 
in an overall higher average temperature in the city than in 
the countryside. The heated air in a city rises as it’s displaced 
by cooler air moving in from the countryside, so evening 
breezes tend to blow from country to city.

 13. (d)
 15. (d)

Problems
1. 16.9°C

 3. (a) 1.67 3 1018 J   (b) 52.9 yr
 5. (a) 25.8°C   (b) No. Gravitational potential energy is propor-

tional to the mass, just like the temperature change.
 7. (a) 4.5 3 103 J (b) 910 W (c) 0.87 Cal/s (d) The excess ther-

mal energy is transported by conduction and convection to 
the surface of the skin and disposed of through the evapora-
tion of sweat.

 9. 176°C
 11. 88 W
 13. 4.2 3 106 J
 15. 0.845 kg
 17. 80 g
 19. (a) 1.82 3 103 J/kg ? °C (b) We cannot make a definite identi-

fication. It might be beryllium. (c) The material might be an 
unknown alloy or a material not listed in the table.

 21. 0.26 kg
 23. (a) 21.3°C (b) 178 J/kg ? K (c) NSn 5 2.03 3 1024 atoms;  

NPb 5 1.16 3 1024 atoms (d) NSn/NPb 5 1.75; cSn/cPb 5 1.77. 
The specific heat of an element is proportional to the num-
ber of atoms per unit mass of that element.

 25. 16°C
 27. 65°C
 29. 2.3 km
 31. 16°C
 33. (a) tboil 5 2.8 min   (b) tevaporate 5 18 min
 35. (a) all ice melts, Tf 5 40°C   (b) 8.0 g melts, Tf 5 0°C
 37. (a) The bullet loses all its kinetic energy as it is stopped by 

the ice. Also, thermal energy must be removed from the bul-
let to cool it from 30.0°C to 0°C. The sum of these two ener-
gies equals the energy it takes to melt part of the ice. The 
final temperature of the bullet is 0°C because not all the ice 
melts. (b) 0.294 g

 39. 3 3 103 W
 41. 402 MW
 43. 709 s
 45. 9.0 cm
 47. 2.7 3 107 J
 49. 16:1
 51. 12 kW
 53. 2.3 kg
 55. 29°C
 57. 8.00 3 102 J/kg ? °C. This value differs from the tabulated 

value by 11%, so they agree within 15%.
 59. 66.7 min
 61. 51.2°C
 63. (a) seven times (b) As the car stops, it transforms part of its 

kinetic energy into internal energy due to air resistance. As 
soon as the brakes rise above the air temperature, they trans-
fer energy by heat into the air. If they reach a high tempera-
ture, they transfer energy very quickly.

 65. (b) 2.7 3 103 J/kg ? °C
 67. 12 h
 69. 3.85 3 1026 J
 71. 1.4 kg
 73. (a) 75.0°C (b) 36 kJ

 3. 7.54 × 104  J
 5. (a) 9.19 × 103 J  (b) 5.12 × 103 J
 7. (a) 0 J  (b) 1.00 × 102 J  (c) 4.01 K  (d) 2.41 K
 9. (a) 1.40  (b) 1.73 × 104 Pa
 11. (a) 0.200  (b) 60.0 kJ
 13. (a) 0.333  (b) 15.0 kJ

Conceptual Questions
1. First, the efficiency of the automobile engine cannot exceed 

the Carnot efficiency: it is limited by the temperature of the 
burning fuel and the temperature of the environment into 
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31. 0.540 (or 54.0%)
 33. (a) 0.25 (or 25%)   (b) 3/4
 35. (a) 0.672 (or 67.2%)   (b) 58.8 kW
 37. (a) 0.294 (or 29.4%)   (b) 5.00 3 102 J   (c) 1.67 kW
 39. (a) 4.50 3 106 J   (b) 2.84 3 107 J   (c) 68.2 kg
 41. 1/3
 43. (a) 30.6%   (b) 985 MW
 45. 143 J/K
 47. (a) 21.2 kJ/K   (b) 1.2 kJ/K
 49. 57.2 J/K
 51. 3.27 J/K
 53. (a)

End  Total Number
Result Possible Tosses of Same Result

All H HHHH 1
1T, 3H HHHT, HHTH,  4
 HTHH, THHH
2T, 2H HHTT, HTHT,   6
 THHT, HTTH,
 THTH, TTHH
3T, 1H TTTH, TTHT, THTT, HTTT 4
All T TTTT 1

  (b) all H or all T (c) 2H and 2T
55.  26.5 MJ
 57. 1 300 W
 59. 18°C
 61. (a) 12.2 kJ   (b) 4.05 kJ   (c) 8.15 kJ
 63. (a) 26 J   (b) 9.0 3 105 J   (c) 9.0 3 105 J
 65. (a) 2.49 kJ   (b) 1.50 kJ   (c) 2990 J
 67. (a) T� 5 1.20 3 102 K; T� 5 722 K  

(b) 1.10 3 105 J   (c) 7.50 3 104 J   (d) 1.85 3 105 J
 69. 0.146; 486 kcal
 71. (a) 2.6 3 103 metric tons/day   (b) $7.6 3 106/yr  

(c) 4.1 3 104 kg/s

Chap t e r  13

Quick Quizzes
 1. (d)
 2. (c)
 3. (b)
 4. (a)
 5. (c)
 6. (d)
 7. (c), (b)
 8. (a)
 9. (b)

Example Questions
 1. No. If a spring is stretched too far, it no longer satisfies 

Hooke’s law and can become permanently deformed.
 2. keq 5 k1 1 k2
 3. False
 4. True
 5. False
 6. (b)
 7. True
 8. No
 9. (a), (c)
 10. The speed is doubled.

Warm-Up Exercises
 1. (a) 5.00 m (b) 25.00 m (c) 0.250 s
 3. 0.123 m
 5. (a) 98.0 J  (b) 0.327 m
 7. (a) 18.8 rad/s (b) 3.00 Hz (c) 0.333 s (d) 1.78 3 103 N/m

which the exhaust is dumped. Second, the engine block can-
not be allowed to exceed a certain temperature. Third, any 
practical engine has friction, incomplete burning of fuel, 
and limits set by timing and energy transfer by heat.

 3. The energy that is leaving the body by work and heat is 
replaced by means of biological processes that transform 
chemical energy in the food that the individual ate into 
internal energy. Thus, the temperature of the body can be 
maintained.

 5. If there is no change in internal energy, then, according 
to the first law of thermodynamics, the heat is equal to the 
negative of the work done on the gas (and thus equal to the 
work done by the gas). Thus, Q 5 2W 5 Wby gas.

 7. Practically speaking, it isn’t possible to create a heat engine 
that creates no thermal pollution, because there must be 
both a hot heat source (energy reservoir) and a cold heat 
sink (low-temperature energy reservoir). The heat engine 
will warm the cold heat sink and will cool down the heat 
source. If either of those two events is undesirable, then 
there will be thermal pollution.

   Under some circumstances, the thermal pollution 
would be negligible. For example, suppose a satellite in space 
were to run a heat pump between its sunny side and its dark 
side. The satellite would intercept some of the energy that 
gathered on one side and would ‘dump’ it to the dark side. 
Since neither of those effects would be particularly undesir-
able, it could be said that such a heat pump produced no 
thermal pollution.

 9. Although no energy is transferred into or out of the system 
by heat, work is done on the system as the result of the agita-
tion. Consequently, both the temperature and the internal 
energy of the coffee increase.

 11. The first law is a statement of conservation of energy that 
says that we cannot devise a cyclic process that produces 
more energy than we put into it. If the cyclic process takes 
in energy by heat and puts out work, we call the device a 
heat engine. In addition to the first law’s limitation, the 
second law says that, during the operation of a heat engine, 
some energy must be ejected to the environment by heat. 
As a result, it is theoretically impossible to construct a heat 
engine that will work with 100% efficiency.

 13. If the system is isolated, no energy enters or leaves the system 
by heat, work, or other transfer processes. Within the system 
energy can change from one form to another, but since 
energy is conserved these transformations cannot affect the 
total amount of energy. The total energy is constant.

 15. (b)
 17. (a)

Problems
1. (a) 2465 J   (b) The negative sign for work done on the gas 

indicates that the expanding gas does positive work on the 
surroundings.

 3. (a) 26.1 3 105 J   (b) 4.6 3 105 J
 5. (a) 2810 J   (b) 2507 J   (c) 2203 J
 7. 96.3 mg
 9. (a) 1.09 3 103 K   (b) 26.81 kJ
 13. (a) 288.5 J   (b) 722 J
 15. (a) 567 J   (b) 167 J
 17. (a) 2180 J   (b) 1188 J
 19. (a) 3.25 kJ   (b) 0   (c) 23.25 kJ (d) The internal energy 

would increase, resulting in an increase in temperature of 
the gas.

 21. (a) 24.58 3 104 J   (b) 4.58 3 104 J   (c) 0
 23. (a) 40.6 moles   (b) 506 J/K   (c) W 5 0   (d) 16.0 kJ    

(e) 31.6 K   (f) 332 K   (g) 5.53 atm
 25. (a) 0.95 J   (b) 3.2 3 105 J   (c) 3.2 3 105 J
 27. (b) 1.3 3 1056 K
 29. 405 kJ
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A.38  | Answers to Quick Quizzes, Questions, and Problems

23. The horizontal displacement is described by x(t) 5 A cos vt, 
where A is the distance from the center of the wheel to the 
crankpin.

25. 0.63 s
27. (a) 1.0 s   (b) 0.28 m/s   (c) 0.25 m/s
 29. (a) 5.98 m/s   (b) 206 N/m   (c) 0.238 m
 31. (a) 11.0 N toward the left   (b) 0.881 oscillations
 33. v 5 6vA sin vt, a 5 2v2A cos vt
 35. (a) 1.46 s   (b) 9.59 m/s2

 37. (a) slow   (b) 9:47
 39. (a) LEarth 5 25 cm   ( b) LMars 5 9.4 cm   (c) mEarth 5 0.25 kg
  (d) mMars 5 0.25 kg
 41. (a) 4.13 cm   (b) 10.4 cm   (c) 5.56 31022 s   (d) 187 cm/s
 43. (a) 5.45 3 1014 Hz   (b) 1.83 3 10215 s
 45. 31.9 cm
 47. 58.8 s
 49. 80.0 N
 51. 5.20 3 102 m/s
 53. (a) 30.0 N   (b) 25.8 m/s
 55. 28.5 m/s
 57. (a) 0.051 0 kg/m   (b) 19.6 m/s
 59. (a) 13.4 m/s (b) The worker could throw an object such as a 

snowball at one end of the line to set up a pulse and then use 
a stopwatch to measure the time it takes the pulse to travel 
the length of the line. From this measurement, the worker 
would have an estimate of the wave speed, which in turn can 
be used to estimate the tension.

 61. (a) Constructive interference gives A 5 0.50 m (b) Destruc-
tive interference gives A 5 0.10 m

 63. (a) 219 N/m   (b) 6.12 kg
 65. (a) 1.68 s   (b) 16.8 N/m
 67. (a) 588 N/m   (b) 0.700 m/s
 69. 6.62 cm
 71. (a) Using s for the displacement from equilibrium along 

the arc, the restoring force on the balloon takes the form of 
Hooke’s law: Ftangential 5 2[(rair 2 rHe)Vg/L]s  (b) T 5 1.40 s

 75. (a) 15.8 rad/s (b) 5.23 cm

Chap t e r  14

Quick Quizzes
1. (c)

 2. (c)
 3. (b)
 4. (b), (e)
 5. (d)
 6. (a)
 7. (b)

Example Questions
1. Rubber is easier to compress than solid aluminum, so alu-

minum must have the larger bulk modulus and by Equa-
tion 14.1, a higher sound speed. 

 2. 3.0 dB
 3. You should increase your distance from the sound source by 

a factor of 5.
 4. Yes. It changes because the speed of sound changes with 

temperature. Answer (b) is correct.
 5. No
 6. True
 7. True
 8. (b)
 9. True
 10. True
 11. The notes are so different from each other in frequency 

that the beat frequency is very high and cannot be 
distinguished.

 9. (a) 0.400 Hz (b) 2.51 rad/s (c) 1.56 m
 11. (a) 0.006 25 kg/m (b) 2.10 3 102 m/s

Conceptual Questions
1. No. Because the total energy is E 5 1

2kA
2, changing the mass 

of the object while keeping A constant has no effect on the 
total energy. When the object is at a displacement x from 
equilibrium, the potential energy is 12kx

2, independent of the 
mass, and the kinetic energy is KE 5 E 2 1

2kx
2, also indepen-

dent of the mass.
 3. When the spring with two objects on opposite ends is set into 

oscillation in space, the coil at the exact center of the spring 
does not move. Thus, we can imagine clamping the center 
coil in place without affecting the motion. If we do this, we 
have two separate oscillating systems, one on each side of the 
clamp. The half-spring on each side of the clamp has twice 
the spring constant of the full spring, as shown by the follow-
ing argument: The force exerted by a spring is proportional 
to the separation of the coils as the spring is extended. Imag-
ine that we extend a spring by a given distance and measure 
the distance between coils. We then cut the spring in half. If 
one of the half-springs is now extended by the same distance, 
the coils will be twice as far apart as they were in the com-
plete spring. Thus, it takes twice as much force to stretch the 
half-spring, from which we conclude that the half-spring has 
a spring constant which is twice that of the complete spring. 
Hence, our clamped system of objects on two half-springs 
will vibrate with a frequency that is higher than f  by a factor 
of the square root of two.

 5. We assume that the buoyant force acting on the sphere is 
negligible in comparison to its weight, even when the sphere 
is empty. We also assume that the bob is small compared 
with the pendulum length. Then, the frequency of the pen-
dulum is f 5 1/T 5 11/2p 2 !g/L, which is independent of 
mass. Thus, the frequency will not change as the water leaks 
out.

 7. (a) The bouncing ball is not an example of simple harmonic 
motion. The ball does not follow a sinusoidal function for its 
position as a function of time. (b) The daily movement of a 
student is also not simple harmonic motion, because the stu-
dent stays at a fixed location, school, for a long time. If this 
motion were sinusoidal, the student would move more and 
more slowly as she approached her desk, and as soon as she 
sat down at the desk, she would start to move back toward 
home again.

 9. The speed of a wave on a string is given by v 5 !F/m. This 
says the speed is independent of the frequency of the wave. 
Thus, doubling the frequency leaves the speed unaffected.

 11. The kinetic energy is proportional to the square of the 
speed, and the potential energy is proportional to the 
square of the displacement. Therefore, both must be positive 
quantities.

Problems
1. (a) 17 N to the left   (b) 28 m/s2 to the left

 3. (a) 6.58 N   (b) 10.1 N
 5. 0.242 kg
 7. (a) 0.206 m   (b) 20.042 1 m   (c) The block oscillates 

around the unstretched position of the spring with an ampli-
tude of 0.248 m.

 9. (a) 60 J   (b) 49 m/s
 11. 2.94 3 103 N/m
 13. 0.478 m
 15. (a) 1 630 N/m    (b) 47.0 J   (c) 7.90 kg   (d) 2.57 m/s    

(e) 26.1 J   (f) 20.9 J   (g) 20.201 m
 17. (a) 0.28 m/s   (b) 0.26 m/s   (c) 0.26 m/s   (d) 3.5 cm
 19. 39.2 N
 21. (a) 1.53 J   (b) 1.75 m/s   (c) 1.51 m/s
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 | Answers to Quick Quizzes, Questions, and Problems  A.39

Problems
1. (a) 5.56 km (b) No. The speed of light is much greater than 

the speed of sound, so the time interval required for the 
light to reach you is negligible compared to the time interval 
for the sound.

 3. 358 m/s
 5. 515 m
 7. The wavelength decreases by 2.5 mm.
 9. (a) The pulse that travels through the rail   (b) 23.4 ms
 11. 150 dB
 13. 3.0 3 1028 W/m2

15. (a) 1.00 3 1022 W/m2   (b) 105 dB
 17. 37 dB
 19. (a) 1.3 3 102 W   (b) 96 dB
 23. (a) 75 Hz drop   (b) 0.948 m
 25. 596 Hz
 27. 9.09 m/s
 29. 19.7 m
 31. (a) 56.3 s   (b) 56.6 km farther along
 33. At distances of 0.089 m, 0.303 m, 0.518 m, 0.732 m, 0.947 m, 

and 1.16 m from either speaker
 35. 800 m
 37. (a) 0.240 m   (b) 0.855 m
 39. (a) Nodes at 0, 2.67 m, 5.33 m, and 8.00 m; antinodes at 

1.33 m, 4.00 m, and 6.67 m   (b) 18.6 Hz
 41. 378 Hz
 43. (a) 1.85 3 1022 kg/m   (b) 90.6 m/s   (c) 152 N   (d) 2.20 m   

(e) 8.33 m
 45. (a) 78.9 N   (b) 211 Hz
 47. 19.976 kHz
 49. 58 Hz
 51. 3.1 kHz
 53. (a) 0.552 m   (b) 316 Hz
 55. 5.64 beats/s
 57. 3.85 m/s away from the station or 3.77 m/s toward the 

station
 59. (a) 1.99 beats/s   (b) 3.38 m/s
 61. 1.76 cm
 63. (a) 0.642 W   (b) 0.43%
 65. 67.0 dB
 67. r1 5 3.3 m and r2 5 32.7 m
 69. 262 kHz
 71. 64 dB
 73. (a) 439 Hz   (b) 441 Hz
 75. 1.34 3 104 N

Warm-Up Exercises
1. (a) 0.699  (b) 33.3

 3. 0.780 m
 5. 364 m/s
 7. 3.16 3 1022 W/m2

9. (a) 352 m/s  (b) 267 Hz
 11. (a) 1.47 m  (b) 0.735 m
 13. (a) 148 Hz  (b) 444 Hz  (c) 296 Hz

Conceptual Questions
1. (a) higher (b) lower

 3. Yes. The speed of sound in air is proportional to the square  
root of the absolute temperature, !T . The speed of sound 
is greater in warmer air, so the pulse from the camera would 
return sooner than it would on a cooler day from an object at 
the same distance. The camera would interpret an object as 
being closer than it actually is on a hot day.

 5. Sophisticated electronic devices break the frequency range 
used in telephone conversations into several frequency 
bands and then mix them in a predetermined pattern so 
that they become unintelligible. The descrambler moves the 
bands back into their proper order.

 7. (a) The echo is Doppler shifted, and the shift is like both 
a moving source and a moving observer. The sound that 
leaves your horn in the forward direction is Doppler 
shifted to a higher frequency, because it is coming from 
a moving source. As the sound reflects back and comes 
toward you, you are a moving observer, so there is a second 
Doppler shift to an even higher frequency. (b) If the sound 
reflects from the spacecraft coming toward you, there is a 
different moving-source shift to an even higher frequency. 
The reflecting surface of the spacecraft acts as a moving 
source.

 9. The bowstring is pulled away from equilibrium and released, 
in a manner similar to the way a guitar string is pulled and 
released when it is plucked. Thus, standing waves will be 
excited in the bowstring. If the arrow leaves from the exact 
center of the string, then a series of odd harmonics will be 
excited. Even harmonics will not be excited, because they 
have a node at the point where the string exhibits its maxi-
mum displacement.

 11. The two engines are running at slightly different  
frequencies, thus producing a beat frequency between 
them.
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I.1

Note: Page numbers followed by f and t refer to 
figures and tables respectively.

A
Absolute pressure, 297
Absolute temperature, 339–340
Absorber, ideal, 388
Absolute value (u u), A.2–A.3, A.19t
Absolute zero, 339–340
Acceleration (a)

angular, 205–206, 205f
average, 205–206
constant, rotational motion under, 206–208
instantaneous, 206
rotational analog of Newton’s second law, 254, 

256–259
tangential acceleration relationship to, 209
torque and, 241, 252–259

average (a)
defined, 64
in one dimension, 34–35, 34f
SI (Système International) units, 34, 64
in two dimensions, 64

centripetal, 7, 211–219
constant

angular, rotational motion under, 206–208
equations for, 40t
in one dimension, 38–44, 38f, 40t
problem solving strategy, 40
in two dimensions, 72–73, 72f

deceleration, 35
defined, 34
dimensions of, 5–6, 5t
free-fall, 45, 220, 220t, 461–462
of gravity, 95
instantaneous

defined, 64
in one dimension, 35–37, 36f
SI (Système International) units, 35, 64
in two dimensions, 63
from velocity-time graph, 36–37, 36f

mass relationship to, 92
in motion diagrams, 37–38, 37f
negative, 35, 38
Newton’s second law of motion and, 92, 100, 104–107
in one dimension, 34–37, 34f, 36f
peak, 43–44, 43f
positive, 38
projectile motion and, 65–68, 65f
in simple harmonic motion, 446–447, 450, 454, 

458, 466,
as function of position, 447–448
as function of time, 457–459, 458f

tangential, 209, 213
total, 213
translational, 245
in two dimensions, 63–65
uniform, 36
as vector quantity, 35
velocity vs., 34–35, 34f

Acceleration-time graph, 36, 36f
for motion with constant acceleration, 38, 38f

Accuracy in measurement, 7–11
Acetone, coefficient of volume expansion for,  

344t
Acrobatics, 146–147, 146f, 264
Addition

commutative law of, 58
of fractions, A.5

scalar, 58
significant figures and, 9
triangle method of, 58
of vectors

algebraically, 62–63, 62f
geometrical, 58, 58f, 59, 59f

Adhesive forces, 316–319, 316f–318f
Adiabatic index of a gas (g), 411
Adiabatic processes, 411–413, 417t
Air. See also Air flow; Air resistance

coefficient of volume expansion, 344t
density, 284t
R -value of stagnant, 383t, 384
speed of sound in, 484–486, 485t
thermal conductivity, 381t

Air bags, automobile, 175
Air circulation at the beach, 370, 370f, 385
Air columns, standing waves in, 504–508, 505f
Air conditioner, 421
Air drag. See Air resistance
Air flow

around airplane wing, 311–312, 311f
around spinning golf or tennis ball, 311

Airplanes
coasting and braking distances for, 42–43, 42f
lift on airplane wing, 311–312, 311f
runway length problem, 42–43, 42f
sonic boom produced by, 496
sound intensity levels of, 488, 488t
vertical loop, 218, 218f

Air resistance (air drag), 114–115, 114f
on airplane wing, 311, 311f
on moving automobile, 114, 114f
as nonconservative force, 135
skydiving and, 114–115, 114f
terminal speed, 114

Alcohol thermometer, 338, 339
Algal blooms in ponds and lakes, 386–387, 386f
Algebra, review of, A.4–A.12
Aluminum (Al)

boiling point, 375t
coefficient of linear expansion, 344t
density, 284t
elastic modulus, 288t
latent heat of fusion, 375t
latent heat of vaporization, 375t
melting point, 375t
specific heat, 370t
thermal conductivity, 381t
ultimate strength, 290t

Amorphous solid, 283, 283f
Amplitude

interference of waves and, 470, 470f, 471f
in periodic motion, 446
of waves, 467, 467f

Aneurysms, 311
Angular acceleration, 205–206, 205f

average (aav), 205–206
constant, rotational motion under, 206–208
instantaneous (a), 206
rotational analog of Newton’s second law, 254, 

256–259
tangential acceleration relationship to, 209
torque and, 241, 252–259

Angular displacement (�u), 203–204, 203f
Angular frequency (v)

frequency and, 455
in pendulums, 460–461
in simple harmonic motion, 455–457

Angular momentum (L), 262–267
conservation of, 227, 263–267
defined, 263
torque and, 262–263, 262f

Angular position (u) , 203, 203f
Angular quantities

relation to linear quantities, 208–211
as vectors, 214, 214f

Angular speed
average (vav), 204
helicopter, 204–205
instantaneous (v), 204
moment of inertia and, 263–266, 263f, 265f, 266f
of phonograph records and compact discs, 

210–211
rotational kinetic energy and, 259–260, 260f
tangential speed relationship to, 208

Angular velocity (vS)
right-hand rule for, 214, 214f
as vector quantity, 214

Antifreeze, 301, 301f
Antilogarithms, A.10–A.11
Antinode, of standing wave, 498–500, 499f, 

504–505
Approximately equal (<), A.1, A.19t
Archery, 177–179, 177f, 450, 450f
Arches, 292–293, 293f
Archimedes, 299
Archimedes’ principle, 299–304, 324
Architecture

arches, 292–293, 293f
maximum load of steel beams, 290
post-and-beam construction, 292, 293f
pyramids, level construction of, 297
ultimate strength of building materials, 290t

Area
of common geometric shapes, A.12t
dimension of, 5t
expansion (g), 345, 346

Argon (Ar), molar specific heat of, 409t
Aristarchus, 26
Aristotle, 26, 45
Arteriosclerosis, 311, 311f
Artificial gravity, 215
Asbestos, thermal conductivity of, 381, 381t
Asteroids

Ceres, 221–222
impact of, 150
map of inner solar system, 150f
work done by falling near-earth asteroid, 223–224

Astronomy and astrophysics. See also Moon; 
Planets; Sun; Universe; specific planets

asteroids, 150, 150f, 221–222, 223–224
galaxies

estimated number in universe, 14
Milky Way, mass of, 3t

Kepler’s laws, 226–229
pulsars, 264, 264f
solar system

asteroid map of inner, 150f
geocentric model of, 26, 226
heliocentric model of, 26, 45, 226

stars
dark, 88
neutron, 264, 264f
radiation and, 390–391, 390f
supernova, 264, 264f

Atmosphere (atm), 298
Atmospheric pressure, 285, 294, 297–298, A.19t

■ Index
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I.2   | Index

Breaking point, 288
Brick, ultimate strength of, 290t
Bridges

thermal expansion joints, 343, 343f
British thermal unit (Btu), 368
Bronze, coefficient of linear expansion for, 344t
Bugles, 506
Buildings

arch structures in, 292–293, 293f
bursting of water pipes in winter, 348–349
home insulation, 383–385, 383t
radiator heating of, 385–386, 386f
R -values for common building materials, 383t
thermal expansion joints, 343, 343f
thermogram, 388, 388f

Bulk modulus (B), 289–290, 484
Bulk strain, 291–292
Bulk stress, 289, 289f, 291–292
Bungee jumping, 456, 456f
Buoyant forces (B), 299–304, 299f–304f

applications of, 301
defined, 299
on floating object, 300–301, 301f, 303–304, 304f
on submerged object, 300, 300f, 302–303, 302f, 

352–353
Bursting of water pipes in winter, 348–349

C
Cadmium (Cd), specific heat of, 370t
Calculations. See also Measurement

order-of-magnitude, 12–14
Calculators

inverse tangent function on, 60
significant figures on, 7, 8

Calculus, invention of, 88
Calorie (cal.), (food), 155, 368
Calorie (C), (heat unit), 368
Calorimeters, 372
Calorimetry, 372–374

problem-solving strategy, 377
Camera

ultrasonic ranging unit, 484
Capacitance (C)

SI units of, A.21
Car. See Automobile
Carbon (C), atomic mass of, 349, 350
Carbon dioxide (CO2)

atmospheric concentration of, 392–393, 392f
dry ice, 355, 375
molar specific heat, 409t
root-mean-square (rms) speed, 358t

Carbon monoxide (CO), molar specific heat of, 
409t

Carburetor, 311
Carnot, Jadi, 424, 425f
Carnot cycle, 424–425
Carnot engine, 424–426, 424f, 425f
Carnot theorem, 424
Cartesian coordinate system, 15, 15f. See also 

Rectangular coordinate system
conversion to/from polar coordinates, 16–17, 16f

Cavendish, Henry, 220
Cavitron ultrasonic surgical aspirator (CUSA), 484
Cells

osmosis and, 322–323
size of, 3, 322

Celsius temperature scale, 338–339, 340–342, 
341f, 373

Center of gravity, 246–249, 246f–248f
Center of mass (CM), 154

in vertical jump, 154
Centimeter (cm), 4
Centipoise (cp), 319
Centrifugal force, as fictitious force, 219
Centrifugation, 324–325, 325f
Centripetal acceleration (ac), 7, 211–219

Atom(s)
origin of term, 4
structure of, 4–5, 5
vibrating, 283

Atomic clock, 2f, 3, 4
Atomic mass, 349

of selected elements, A.14–A.18
Atomic mass units (u), 349–350, A.20
Atomizers, 311, 311f
Atwood’s machine, 107, 107f
Audible waves, 482
Automobile(s)

accident reconstruction, 148
air bags, 175
air resistance on moving, 114, 114f
antifreeze, 301, 301f
battery charge, checking, 301, 301f
bumpers, 174
car lift, 296, 296f
collisions

accident reconstruction, 148
analysis of, 134
crash test, 174, 174f
force on car versus time, 175, 175f
with guard rail, spring-loaded, 450–451, 451f
injury in, 148, 174–175
Newton’s third law and, 99
perfectly inelastic, 180–181
two-dimensional inelastic collision, 187–188, 

187f
crash test, 174, 174f
Doppler effect in sirens, 495
engines

conversion of simple harmonic ro circular 
motion in, 454

cooling, 386
fluid dynamics in, 311
as heat engine, 418
work done in adiabatic expansion, 412

friction and, 114
motion and

acceleration, 34–36, 34f, 36f
average speed, 29–30
average velocity, 30, 31
on banked, curved track, 217–218, 217f
car chase problem, 41–42, 41f
displacement, 27–28, 28f
friction, 114
instantaneous velocity, 32, 32t, 33f
motion diagrams, 37–38, 37f

seat belts, 91, 91f, 175
shock absorbers, 463, 463f
skid marks, 133
spring constants of, 148
streamline flow around, 305f

Avalanche, 465
Average acceleration (a)

defined, 34, 64
in one dimension, 34–35, 34f
SI (Système International) units, 34, 64
in two dimensions, 64

Average angular acceleration (aav), 205–206
Average angular speed (vav), 204
Average force (F

S

av), 172, 173, 174
Average power (P), 150–151, 152
Average speed, 29–30

average velocity vs., 31
Average velocity (v)

average speed vs., 31
in constant acceleration, 39, 40t
defined, 30, 64
in one dimension, 30–31, 30f–31f
from position vs. time graph, 31, 31f
SI (Système International) units, 30, 64
in two dimensions, 64

Avogadro’s number (NA), 349–350, A.20

Axis of rotation
selecting for problem solving, 247
torque and, 243–244, 253

Axis of symmetry, 247

B
Bacteria

bioluminescence in, 149
mass of, 3t

Ballast, lead, 291–292
Ballistic pendulum, 181–182, 182f
Balloons, hot air, 282, 300
Ballpoint pens, 298
Barometer, 297, 297f
Base number, A.10
Basilar membrane, ear, 512
Baton twirling, 254–256, 254f–256f
Battery charge, checking automobile, 301, 301f
Beach, air circulation at, 370, 370f, 385
Beat(s), 508–510, 508f
Beat frequency, 509–510
Bed of nails, 286, 286f
Bell, Alexander Graham, 487
Benzene

coefficient of volume expansion, 344t
density, 284t

Bernoulli, Daniel, 307, 308f
Bernoulli’s equation, 307–313

applications of, 309–313
aneurysms, 311
atomizers, 311, 311f
finding speed of a fluid, 309–310
golf ball flight, 311
home plumbing, 313
lift on airplane wing, 311–312, 311f
rocket engines, 313
sailing upwind, 312
vascular flutter, 311, 311f

Venturi tube and, 308, 309f
Beryllium (Be), specific heat of, 370t
Bicycle gears, 254, 254f
Bimetallic strips, 345, 345f
Black body, 388
Black holes, 88
Blood

dialysis, 323, 323f
flow

Poiseuille’s law and, 320
turbulent, 321

skin temperature and, 341
viscosity of, 319t, 320

Blood pressure measurement, 298, 298f
Body temperature, maintaining, 387
Bohr, Niels, 4
Bohr magneton, A.20
Bohr radius, (a0), A.20
Boiling point of water, 339
Boltzmann’s constant (kB), 354, 430, A.20
Bond energy, 368
Bone

elastic modulus of, 288t
fractures, in automobile collisions, 174–175
ultimate strength, 290t

Boxing and brain injury, 172–173
Boyle’s law, 350
Brache, Tycho, 226
Brachial artery, 298
Brain

boxing injury to, 172–173
cerebrospinal fluid, 301
estimated number of cells, 13
high-intensity focused ultrasound (HIFU)  

use on, 484
Brass

coefficient of linear expansion, 344t
elastic modulus, 288t
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 | Index  I.3

Concrete
coefficient of linear expansion, 344t
thermal conductivity, 381t
ultimate strength of, 290t

Conduction. See Thermal conduction
Conservation

of angular momentum, 227, 263–267
defined, 138
of energy, 149–150, 158

applied to ideal fluid, 307
in biological systems, 149
calorimetry and, 372
defined, 149
Earth escape speed and, 225
energy transfer to/from system and, 148–149
Sun formation and, 224

in isolated system, 176–177, 176f
of mechanical energy

gravity and, 138–141
problem examples, 140–141, 140f, 145–148, 

145f–147f
problem-solving strategy, 139
in rotational motion, 260–261
in springs, 145–148
in vertical jump, 154

of momentum, 170, 176–179, 176f, 177f
in collisions, 79–188, 176, 176f
defined, 176
recoil and, 177–179
in rocket propulsion, 189
squid propulsion and, 177, 177f

Conservative forces, 134–135, 135f, 148, 158
Constant acceleration

in one dimension, 38–44, 38f, 40t
problem solving strategy, 40
rotational motion under constant angular 

acceleration, 206–208
in two dimensions, 72–73, 72f

Constant of gravitation (G), 95, 219, 220, 220f, A.20
Constant-volume gas thermometer, 339–340, 339f, 

340f
Constructive interference, 470–471, 470f–471f, 

497, 509
Contact angle, 317, 317f
Continuity, equation of, 305–307
Convection, 385–387, 385f–386f
Conversion

Calories to joules, 369
of Cartesian coordinates to/from polar 

coordinates, 16–17, 16f
of force units, 92
radians to/from degrees, 203, 204
SI (Système International) units to/from U.S. 

customary units, 11–12
of temperature scales, 341–342

Coordinate system
Cartesian, 15, 15f
components of, 15
conversion between, 16–17, 16f
frame of reference, 27
plane polar, 15, 15f
vector components on, 60–61

COP (coefficient of performance)
heat pumps, 421–422
refrigerators, 421–422

Copernicus, Nicolas
heliocentric model of the solar system, 27, 45, 226

Copper (Cu)
boiling point, 375t
coefficient of linear expansion, 344t
density, 284t
as ductile metal, 288
elastic modulus, 288t
latent heat of fusion, 375t
latent heat of vaporization, 375t
melting point, 375t

defined, 212
forces causing, 214–219, 215f
problem-solving strategy, 215–216

Centripetal force (Fc ), 214–219, 215f
Cerebrospinal fluid, 301
Ceres (asteroid), 221–222
Cesium atomic clock, 2f, 3
cgs. See Gaussian (cgs) system of units
Challenger disaster, 336
Change in, symbol for (�), A.2, A.19t
Charles’s law, 350
Chlorine (Cl), molar specific heat of, 409t
Circle, reference, 457, 457f
Clarinet, 510, 511f
Clausius, Rudolf, 427
Clock

cesium atomic, 2f, 3
pendulum, 461–462

Clothing, color of, 388
Coastal flooding, 347
Cochlea, 512–513, 512f
Cochlear implant, 513
Coefficient of area expansion (g), 345, 346
Coefficient of linear expansion (a), 343, 344t, 347
Coefficient of performance (COP)

heat pumps, 421–422
refrigerators, 421–422

Coefficient of viscosity (h), 319, 319t
Coefficient of volume expansion (b), 344t, 346–347
Cohesive forces, 316–319, 316f–318f
Collisions. See also Automobile(s), collisions

comet impacting Earth, 378–380
conservation of momentum and, 176, 176f, 

179–188
elastic

defined, 179, 180
in one dimension, 183–185, 183f
in two dimensions, 187–188

glancing, 186–188, 186f
inelastic

defined, 179, 180
glaucoma testing, 179–180
perfectly inelastic compared to, 179
in two dimensions, 186–188, 187f

kinetic energy in, 179–181, 183, 378–379
in one dimension

elastic, 183–185, 183f
perfectly inelastic, 180–183, 180f, 182f
problem-solving strategy, 184

perfectly inelastic
defined, 179, 180
inelastic compared to, 179
in one dimension, 180–183, 180f, 182f

in two dimensions, 186–188, 186f
elastic, 187–188
inelastic, 186–188, 187f
problem-solving strategy, 187

Comet impacting Earth, 378–380
Common logarithm base, A.10-A.11
Commutative law of addition, 58
Compact discs (CDs), angular and tangential 

speeds of, 210–211
Components, vector, 60–63, 60f–62f
Compressibility of materials, 290
Compression

due to tensile stress and maximum load, 
calculating, 290

in sound waves, 482, 482f
Young’s modulus and, 288, 290

Compressive strain, 290
Compressive strength, 290t
Compressive stress, 290, 371
Compton wavelength (h/meC), A.20
Concentration

diffusion and, 321–322, 321f
gradient, 322

specific heat, 370t
thermal conductivity, 381t

Cosine (cos), 15f, 16
Coulomb constant (ke ), A.20
Crash test, automobile, 174, 174f
Crystal, piezoelectric, 483, 483f
Crystalline solids, 283, 283f
CUSA (cavitron ultrasonic surgical aspirator), 484

D
Damped oscillations, 463–464, 464f
Dark energy, 284
Dark matter, 283–284
Day, time interval for one, 3t
Daytona International Speedway, banked curves 

at, 214
Deafness, 513
Deceleration, 35
Decibels, intensity of sound waves in, 487–489, 488t
Decompression, injury from, 298
Deformation

of objects by force, 90
of solids, 287–293

Degree of freedom, 408
Degrees

converting radians to/from, 203, 204
setting calculator to, 16

Delta (�), A.2, A.19t
Democritus, 4
Density (r), 284, 286–287

of common substances, 284t
defined, 284
specific gravity and, 284
units of, 284

Density waves, 466
Depth, pressure variation with, 293–297, 293f, 294f
Destructive interference, 471, 471f, 497, 509
Detergents, 317
Deuterium, 4
Deuteron mass (md), A.20
Dewar flask, 391, 391f
Dialysis, kidney, 323, 323f
Diatomic gases, molar specific heat of, 408, 409t
Diet vs. exercise in weight loss programs, 154–155
Difference in, symbol for (�), A.2, A.19t
Diffusion, 321–322, 321f, 322t

coefficient, 322, 322t
concentration and, 321–322, 321f
Fick’s law, 322
osmosis, 322–323, 323f

Diffusion rate, 322
Dimensional analysis, 5–7, 5t
Dimensions as algebraic quantities, 5
Disorder and entropy, 429–431
Displacement. See also Linear displacement; Position

angular (� u), 203–204, 203f
defined, 27, 64
distance distinct from, 28
as function of time, 39, 40t
Hooke’s law and, 446, 446f
in one dimension, 27–28, 28f, 39, 40t
resultant, 59, 59f
runway length problem, 42–43, 42f
SI (Système International) units, 27, 64
in two dimensions, 63–64, 63f
as vector quantity, 28
velocity as function of, 39, 40t
work and, 128–130f, 128f–130f
work done by a varying force and, 155–156, 155f

Dissipative forces
nonconservative force as, 135
work and, 131–132

Distance (d)
dimension of, 5–6
displacement distinct from, 28

Diving, 135, 135f, 140, 140f

37027_indx_ptg01_hr_I1-I14.indd   3 29/08/13   3:29 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



I.4   | Index

Division
of fractions, A.5
and scientific notation, A.4
significant figures and, 8
of vector by a scalar, 59

Doppler, Christian, 491
Doppler effect

general equation for, 493
independence from distance, 493
problem-solving strategies, 493–495
sound waves, 491–496, 492f, 509–510

observer moving relative to stationary source, 
492, 492f

source moving relative to stationary observer, 
492–493, 492f

ultrasound and, 483
Doppler shift, 493–495
Drive wheel mechanism of locomotives, 454,  

454f
Dry ice, 355, 375
Dynamics. See also Thermodynamics

defined, 26
fluid, applications of, 311–313
kinematics, 26
rotational, 240

E
Ear anatomy and function, 511–513, 512f
Ear canal, 511–512, 512f
Eardrum, 512–513, 512f

pressure on while swimming, 295
Earplugs, 488
Earth

age of, 3t
atmospheric pressure, 285, 294, 297–298
comet impacting, 378–380
distance to moon from, A.19t
distance to sun from, A.19t
escape speed, 225, 225t, 358
geocentric model of universe, 26, 226
geosynchronous orbits of telecommunications 

satellites, 229
global warming, 391–393, 392f, 393f

coastal flooding, 347
greenhouse gases, 392–393, 392f

heliocentric model of solar system, 26, 45
mass of, 3t, 228t, A.19t
planetary data, 228t
radius of, A.19t
tangential speed of rotating surface, 209

Earthquake waves, 482
Eddy currents, 305
Efficiency. See also Thermal efficiency

of heat engine, 418–419, 423, 424–425
of human body, 434–435, 434t

Elastic collisions
defined, 179, 180
in one dimension, 183–185, 183f
in two dimensions, 187–188

Elasticity of solids, 283, 283f
Elastic limit, 288, 288f
Elastic modulus, 287–288, 288t
Elastic potential energy (PEs), 449–453, 449f–452f

defined, 144
spring potential energy, 143–148
work done by, 144
work-energy theorem, 144–145

Elastic property of medium, wave speed and, 485
Electrical transmission and energy transfer to/

from system, 149
Electric charge, SI units of, A.21
Electric current, SI unit of, A.21
Electric force (Fe ), as field force, 89
Electricity, generation by heat engine, 418
Electromagnetic force, as field force, 89
Electromagnetic radiation, 387

energy transfer to/from system, 149

Electron(s)
in atomic structure, 4
charge of, 324
mass of, 3t, A.20

Electron particle beam, pressure of, 356–357
Electron Volt, A.20
Elements, periodic table of, 349

abbreviated table of isotopes, A.14–A.18
periodic table of, 349

Elementary charge (e), A.20
Elevator, power delivered by motor, 151–152, 151f
Elliptical orbits, 227–228, 227f
Emissivity, 387
Energy, 127–157. See also Elastic potential 

energy; Gravitational potential energy; 
Heat; Internal energy; Kinetic energy; 
Mechanical energy; Potential energy

bond, 368
chemical, 154–155
dark, 284
degradation of, 431
elastic potential energy, 144, 449–453, 449f–452f
in food, 154–155
forms of, 127–157
of sound waves, 486–487
spring potential energy, 143–148
in thermal processes, 367–393
transfer

heat engine, 417–426
minimizing with Dewar flask (Thermos 

bottle), 391
power, 150–155, 158
thermal energy, 372–374, 380–391
to/from system, 148–149, 368, 406–407

in vertical jump, 153–155, 154f
Engines

automobile
cooling, 386
fluid dynamics in, 311
as heat engine, 418
work done in adiabatic expansion, 412

heat engine, 417–426
applications of, 418
Carnot engine, 424–426, 424f, 425f
cyclic process in, 418, 419–421
defined, 418
PV diagram for, 418, 418f
refrigerators and heat pumps as, 421–423, 

421f–422f
second law of thermodynamics and, 423
thermal efficiency of, 418–419, 423, 424–425
work done by, 418–419, 423

rocket, 313
Entropy (S), 426–431

change
calculating, 427–429
with phase change, 427–429

defined, 426–427
disorder and, 429–431
of a system, 427
of Universe, 427, 431

Environment
energy transfer to/from system, 148–149
work done by gas on, 403, 404, 407, 409, 410

Equal sign (�), A.1, A.19t
Equation of continuity, 305–307
Equation of hydrostatic equilibrium, 294, 352–353
Equation of state, 349

for ideal gas, 350
Equations, 5–7
Equilibrium

equation of hydrostatic equilibrium, 294, 352–353
mechanical

conditions for, 245–246, 249
examples of objects in, 249–252, 250f
problem-solving strategy, 249

Newton’s second law and, 101–104

spring position, 143–145
static in fluids, 293, 293f
temperature, 373–374
thermal, 337–338, 337f

zeroth law of thermodynamics, 337f, 338
translational, 245

Equivalence (;), A.1–A.2, A.19t
Escape speed, 225–226, 225t, 358
Estimates, 12–14
Ethyl alcohol

boiling point, 375t
coefficient of volume expansion, 344t
density, 284t
latent heat of fusion, 375t
latent heat of vaporization, 375t
melting point, 375t
specific heat, 370t
surface tension of, 314t

European Space Agency launch site, 209
Exercise

calories burned in, 154–155
diet vs. exercise in weight loss programs, 

154–155
physiology of, 369
power output, 154–155, 155t

Exhaust speed, 189, 313
Expansion, thermal. See Thermal expansion
Explosion

over an ice sheet, 486
sonic boom, 496

Exponent(s)
defined, A.3
logarithms and, A.10–A.11
rules for, A.6

Eye, glaucoma testing of, 179–180

F
Factoring, review of, A.7
Fahrenheit temperature scale, 340–342, 341f
Faraday, Michael, 89
Fetus, ultrasound imaging of, 483, 483f
Fiberglass insulation, 383, 383t
Fick’s law, 322
Fictitious force(s), 219
Field, introduction of concept, 89
Field forces, 89–90, 89f
Fifth harmonic, 505f
Figure skating, 263–264, 263f
First harmonic (fundamental frequency), 499f, 

500–503, 505–508, 505f
First law of motion (Newton’s), 88, 90–91, 90f–91f

application of, 91, 91f
mass and inertia, 91

First law of thermodynamics, 402, 406–408, 406f
in adiabatic processes, 411–413, 417t
in general processes, 416–417
human metabolism and, 432
in isobaric processes, 409–411, 417t
in isothermal processes, 414–416, 417t
in isovolumetric processes, 413–414, 417t

First overtone (second harmonic), 499f, 500–503, 
505, 505f

Fish
bioluminescent, 149
buoyancy control in, 301

Flagella, 149
Floating object, buoyant forces on, 300–301, 301f, 

303–304, 304f
Flow rate, 306, 307
Fluid(s). See also Fluids in motion; Liquids

buoyant forces, 299–304, 299f–304f
compressibility of, 484
damped oscillations and, 463–464, 463f
ideal, 305
inertia of, 484
pressure and, 285, 285f, 286–287

Bernoulli’s equation, 307–310
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Poiseuille’s law, 319–320, 319f
variation with depth, 293–297, 293f, 294f

speed of sound in, 484–486, 485t
static equilibrium, 293, 293f
transport phenomena, 321–325

diffusion, 321–322, 321f, 322t
motion through a viscous medium, 323–324, 

324f
osmosis, 322–323, 323f
sedimentation and centrifugation, 324–325

viscosity of, 318–320, 319f, 319t
Fluid dynamics, applications of, 311–313. See also 

Fluids in motion
aneurysms, 311
atomizers, 311, 311f
golf ball flight, 311
home plumbing, 313
lift on airplane wing, 311–312, 311f
rocket engines, 313
sailing upwind, 312
vascular flutter, 311, 311f

Fluids in motion, 304–310
Bernoulli’s equation, 307–313

applications of, 309–313
Venturi tube and, 308, 309f

equation of continuity, 305–307
flow rate, 306, 307
ideal fluid, characteristics of, 305
Poiseuille’s law, 319–320, 319f
streamline (laminar) flow, 305, 305f
turbulent flow, 305, 305f

Reynolds number, 320–321
viscous flow, 318–320, 319f, 319t

Flute, 510, 511f
Flying buttress, 293, 293f
Focal points (foci), ellipses and, 227, 227f
Food

chemical energy in, 154–155
diet vs. exercise in weight loss programs, 

154–155
Foot (ft), 4
Football injuries, 291
Foot-pound, 129
Force(s). See also Air resistance; Buoyant forces; 

Dissipative forces; Electric force; 
Electromagnetic force; Friction; 
Gravitational force; Newton’s laws

action, 98–100
adhesive, 316–319, 316f–318f
in automobile collisions, 174–175, 175f
average (F

S

av), 172, 173, 174
centrifugal, as fictitious force, 219
centripetal, 214–219, 215f
cohesive, 316–318, 316f–318f
conservative, 134–135, 135f, 148, 158
contact, 89, 89f
defined, 89
deformation of objects by, 90
fictitious, 219
field, 89–90, 89f
fundamental, 89, 95
Hooke’s law, 446–448, 446f
Newton’s second law of motion and, 88, 91–94, 

92f
nonconservative, 135, 135f

work done by, 131–132, 141–143, 141f, 142f, 148
normal (nS), 99
range of, 89–90
reaction

Newton’s third law and, 98–100, 98f, 99f
rocket propulsion and, 188, 188f

restoring force
of pendulum, 460, 460f
of spring, 143, 446
units of, A.21

spring, 143–148
strong nuclear, 4

torque and, 241–246, 241f–244f
as vector quantity, 285
work done by

constant force
at angle to displacement, 129, 129f, 130–131
in linear displacement, 128–129, 129f, 

130–131
dissipative forces, 131–132
friction, 131–132, 142–143, 142f
gravity, 136–137, 136f
nonconservative forces, 131–132, 141–143, 

141f, 142f, 148
spring force, 144
varying force, 155–157, 155f–157f

Forced convection, 385
Forced vibration, 503
Fossil fuels, burning of, 392
Fourth harmonic, 501–502, 505f
Fractions, mathematical operations with, A.5
Fractures, in automobile collisions, 174–175
Frame of reference, 27, 27f, 73

moving, 73
stationary, 73

Free-body diagram, 100f, 101, 216, 216f
Free fall, 44–49

acceleration, 45, 461–462, A.19t
variation with altitude, 220, 220t

defined, 45
example problems, 46–49, 46f, 48f
Galileo Galilei and, 45

Freezing point of water, 339
Frequency (ƒ)

angular, 455
in pendulums, 460–461
in simple harmonic motion, 455–457

beat, 509
computation using interference, 497–498, 497f
fundamental (first harmonic), 499f, 500–503
interference and, 470, 470f, 471f
in pendulums, 461
in periodic motion, 446
pitch distinct from, 510
resonant, 503
of simple harmonic motion, 455–457
of waves, 466–468

Friction, 108–115
air drag, 114–115, 114f
coefficient of kinetic friction (mk), 109, 109t
coefficient of static friction (ms), 109, 109t
defined, 108
kinetic ( f

S

k ), 108f, 109, 111
as nonconservative force, 135, 135f
static ( f

S

s), 108–109, 108f, 110, 113
coefficient of, 250–251

system approach, 111–113
thermal energy created by, 149
viscosity and, 318
work done by, 131–132, 142–143, 142f

Fundamental forces, 89, 95
Fundamental frequency (first harmonic), 499f, 

500–503, 505–508, 505f
Fusion, latent heat of, 375–377, 375t

G
Galaxy

estimated number in universe, 14
Milky Way, mass of, 3t

Galileo Galilei, 27, 45, 90, 461
Gas(es). See also Ideal gas

adiabatic index of, 411
Bernoulli’s principle for, 308
Boyle’s law, 350
characteristics of, 282–283
Charles’s law, 350
density, 284
Gay-Lussac’s law, 350
greenhouse, 392–393, 392f

internal energy for monoatomic, 357
kinetic theory of gases, 336, 354–359
molar specific heat, 408, 409t
phase change, 374–380
root-mean-square (rms) speed, 358, 358t
speed of sound in, 485–486, 485t
storage of energy as motion, 48
thermal conductivity, 381, 381t
universal gas constant, 350
work done by gas on its environment, 403, 404, 

407, 409, 410
work done on

in adiabatic processes, 411–413, 417t
calculating from PV diagram, 404, 405
in general thermodynamic processes, 416–417
in isobaric processes, 409–411, 417t
in isothermal processes, 414–416, 417t
in isovolumetric processes, 413–414, 417t
work done by a gas compared, 403

Gas constant (R), 350, A.20
Gasoline, coefficient of volume expansion for, 344t
Gas thermometer, 339–340, 339f, 340f
Gauge pressure, 297
Gauss, Karl Fredrich, 200
Gaussian (cgs) system of units

acceleration, 5t
area, 5t
average velocity, 30
density, 284
length, 4
mass, 4
prefixes for, 4, 4t
time, 4
velocity, 5t
volume, 5t

Gauss’s law, 200
Gay-Lussac’s law, 350
Gears, bicycle, 254, 254f
Geocentric model of universe, 26, 226
Geometric shapes, common, areas and volumes, 

A.12t
Glaciers, 392–393
Glancing collisions, 186–188, 186f
Glass

elastic modulus, 288t
specific heat, 370t
thermal conductivity, 381t
thermal expansion, 343, 344f

Glaucoma testing, 179–180
Global warming, 347, 391–393, 392f, 393f
Glomerulus, 323, 323f
Glycerin

coefficient of volume expansion, 344t
density, 284t
viscosity of, 319t

Goddard, Robert, 188, 313
Gold

boiling point, 375t
density, 284t
as ductile metal, 288
latent heat of fusion, 375t
latent heat of vaporization, 375t
melting point, 375t
specific heat, 370t
thermal conductivity, 381t

Golf, 173, 311
Gram (gm), 4
Gravitation, Newton’s law of, 88, 89, 95, 96–97, 

219–226, 227
Gravitational constant (G), 95, 219, 220, 220f, A.20
Gravitational force (Fg)

described, 95, 95f
escape speed and, 225–226, 225t
as field force, 89, 158
Gauss’s law and, 200
gravitational constant, 95, 219, 220, 220f

measurement of, 220, 220f
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law of universal gravitation (Newton), 88, 89, 95, 
96–97, 219–226, 227

problem examples, 220–222, 220f, 223–224, 
225–226

projectile motion and, 65
torque and, 245–249, 246f
universal gravitation constant (G), A.20
variation with altitude, 220, 220f
weight and, 95, 95f, 97
work done by, 136–137, 136f, 158, 223–224

Gravitational potential energy (PEg), 135–143, 158
conservation of mechanical energy and, 138–141
defined, 136
fluid flow and, 308
gravitational work and, 136–137, 136f, 158, 

223–224
for high objects, 222–224, 222f
nonconservative forces and, 141–143
reference levels for, 137–138, 137f
relating to mgh, 224, 224f
in rotational motion, 260–262
SI (Système International) units, 136, 222
Sun formation and, 224
as system property, 222–223
work-energy theorem and, 136–137, 158

with elastic (spring) potential energy 
component, 144–148

Gravitational work (Wg), 136–137, 136f, 158, 
223–224

Gravity
artificial, 215
center of, 246–249, 246f–248f
conservation of mechanical energy and,  

138–141
as conservative force, 134–135, 135f, 136
nonconservative forces and, 141–143
work done by, 136–137, 136f

Greater than (�), A.1, A.19t
Greek alphabet, A.19t
Green, Andy, 26
Greenhouse effect, 392
Greenhouse gases, 392–393, 392f
Grinding machine, sound intensity of, 488–489
Guitar, 469, 501–502, 501f, 509

H
Half-life (T1/2), of selected elements, A.14-A.18
Harmonic oscillator equation, 447
Harmonics

in air column waves, 505–507, 505f
quality of sound and, 510–511, 511f
in string waves, 499f, 500–503

Harmonic series, 500
Hearing, human

damage from high intensity sound, 488–489
ear anatomy and physiology, 511–513, 512f
frequency response curves, 512–513, 512f
sensitivity range of, 482
threshold of hearing, 487–488, 512–513, 512f
threshold of pain, 487–488, 512f

Heart beats, time between, 3t
Heat (Q)

convection, 385–387, 385f–386f
defined, 337, 368, 406
energy transfer to/from system, 149
in first law of thermodynamics, 406–407
ideal absorber, 388
ideal reflector, 388
internal energy distinct from, 367–368
mechanical equivalent of, 368
radiation, 387–391, 387f–390f
specific (c), 370–372

air circulation/flow and, 370–371, 370f
defined, 370
finding with calorimetry, 372
values for selected substances, 370t

thermal conduction, 380–385, 380f–381f
conductivity of selected substances, 381t
defined, 380
home insulation and, 383–385, 383t
losses from human body, 382

units of, 368
Heat capacity and vibration, 408
Heat engine, 417–426

applications of, 418
Carnot engine, 424–426, 424f, 425f
cyclic process in, 418, 419–421
defined, 418
PV diagram for, 418, 418f
refrigerators and heat pumps as, 421–423, 

421f–422f
second law of thermodynamics and, 423
thermal efficiency of, 418–419, 423, 424–425
work done by, 418–419, 423

Heat pumps, 421–423, 421f
Height of building, measuring, 17, 17f
Helicopter, 204–205

flight and Newton’s third law, 98–99
Heliocentric model of solar system, 26, 45, 226
Helium (He)

affect on voice, 511
boiling point, 375t
coefficient of volume expansion, 344t
density, 284t
latent heat of fusion, 375t
latent heat of vaporization, 375t
liquid, 391
melting point, 375t
molar specific heat, 409t
root-mean-square (rms) speed, 358t
storage of energy as motion, 408
thermal conductivity, 381t

Hemoglobin, diffusion coefficient of, 322t
High-intensity focused ultrasound (HIFU), 484
Hockey, 111, 111f
Home insulation, 383–385, 383t
Home plumbing, use of vent in, 313
Hooke, Robert, 143, 446
Hooke’s law, 445–449

pendulum motion and, 460
springs and, 143, 445–449, 446f

Horsepower (hp), 151
Hot air balloons, 282, 300
Human metabolism, 432–435

basal metabolic rate, 433
estimating energy daily energy usage, 433–434
first law of thermodynamics and, 432
metabolic rate measurement, 432–433, 432f, 

433t
oxygen consumption

metabolic rate and, 432–433, 432f, 433t
physical fitness and, 434–435

weight gain and, 433
work done by body on its surroundings, 432

Human tissue
specific heat of, 370t
thermal conductivity, 382

Hydraulic press, 295–296, 296f
Hydrogen

density, 284t
molar specific heat, 409t
molecular mass, 349–350
root-mean-square (rms) speed, 358t
storage of energy as motion, 408
thermal conductivity, 381t

Hydrogen atom(s)
diameter of, 3t
isotopes, 4
mass of, 3t
size of, 3t, 4

Hydrostatic equilibrium, equation of, 294, 
352–353

I
Ice

density, 284t
as insulating layer over water, 348
phase change, 375–379, 376f, 428–429
specific heat, 370t
thermal conductivity, 381t

Iceberg, 300
Ice point of water, 339
Ice sheet, explosion over an, 486
Ideal absorber, 388
Ideal gas, 336

defined, 349
equation of state for, 350
first law and thermodynamic processes, 417t
internal energy of, 408
kinetic theory of gases, 354–359
macroscopic description of, 349–354
molar specific heat at constant volume for, 408
molecular models for, 354–359
pressure of, 354–357

Ideal gas law
applying in example problems, 351–353
Boltzmann’s constant, 354
defined, 350
kinetic theory of gases, 354–359

Ideal reflector, 388
Ideal springs, 447
Imaging, ultrasound, 483–484, 483f
Impending motion, 109
Impulse (I

S

), 172–174
Impulse-momentum theorem, 172–174, 176
Inelastic collisions

defined, 179, 180
glaucoma testing, 179–180
perfectly inelastic

defined, 179, 180
inelastic compared to, 179
in one dimension, 180–183, 180f, 182f

in two dimensions, 186–188, 187f
Inertia, 91
Inertia property of medium, wave speed and,  

485
Inequalities, A.1, A.19t
Infrasonic waves, 482
Inner ear, 512–513, 512f
Insects, walking on water by, 315–316
Instantaneous acceleration (a)

defined, 35, 64
in one dimension, 35–37, 36f
SI (Système International) units, 35, 64
in two dimensions, 63
from velocity-time graph, 36–37, 36f

Instantaneous angular acceleration (a), 206
Instantaneous angular speed (v), 204
Instantaneous power (P), 150
Instantaneous speed (y), 33
Instantaneous thrust, 189
Instantaneous velocity

in one dimension (v), 32-34, 32t, 33f
from position-time graph, 32-34, 33f
SI (Système International) units, 32, 64
 in two dimensions (vS), 64 

Insulation, home, 383–385, 383t
Intensity (I)

of sound waves, 487–490, 488t
hearing damage from, 488–489
intensity level in decibels, 487–489, 488t
threshold of hearing, 487–488
threshold of pain, 487–488
variation with distance, 489–491, 489f

of wave defined, 487
Intensity level in decibels, 487–489, 488t
Interference

constructive, 470–471, 470f–471f, 497, 509
destructive, 471, 471f, 497, 509

Gravitational force (Continued)
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frequency computation using, 497–498, 497f
of sound waves, 496–498, 497f

beats, 508–510, 508f
of waves, generally, 470–471, 470f–471f

Internal energy (U)
change in

adiabatic processes, 411–413, 417t
first law of thermodynamics, 406–407
general thermodynamic processes, 416–417
isobaric processes, 409–411, 417t
isothermal processes, 414–416, 417t
isovolumetric processes, 413–414, 417t

conservation of energy and, 149
defined, 368
heat distinct from, 367–368
in human body, 432
of ideal gas, 408
for monoatomic gas, 357
of system, calculating, 359
total translational kinetic energy as, 357, 368

International Bureau of Weights and Measures, 2
International Space Station, 202
Invar, coefficient of linear expansion, 344t
Inverse sine function, 16
Inverse-square law, 219–220
Inverse tangent function, 16, 60
Inverse trigonometric functions, 16
Iron (Fe)

density, 284t
specific heat, 370t
thermal conductivity, 381t
ultimate strength, 290t

Irreversible process, 423
Isobaric (constant pressure) process, 403–404, 

407–408, 409–411, 417t
Isochoric (isovolumetric) processes, 413–414, 417t
Isothermal processes, 414–416, 417t, 424, 424f
Isotopes

abbreviated table of, A.14t–A.18t
of hydrogen, 4

Isovolumetric processes, 413–414, 417t

J
Jet airplanes

coasting and braking distances for, 42–43, 42f
runway length problem, 42–43, 42f
sonic boom produced by, 496
sound intensity levels of, 488, 488t
vertical loop, 218, 218f

Josephson frequency-voltage ratio, A.20
Joule (J), 128, 129
Joule, James Prescott, 367, 368
Joule per kilogram, 375
Jump, energy and power in vertical, 153–155, 154f
Jupiter

escape speed, 225t
planetary data, 228t

K
Kelvin (K), 340
Kelvin, Lord (William Thomson), 423
Kelvin temperature scale, 340–342, 341f, 350, 373
Kepler, Johannes, 226
Kepler’s laws, 226–229

first, 227, 227f
second, 227, 227f
third, 227–229

Kidneys
dialysis, 323, 323f
structure and function, 323, 323f
ultrasonic disruption of stones, 484

Killer whale, power generated by, 152
Kilogram (kg), 2, 2f, 3, 91, 93t
Kilogram-meter per second, 171
Kilogram per meter cubed, 284
Kilowatt-hour (kWh), 151
Kinematics, 26. See also Motion

Kinetic energy (KE), 157–158
in Bernoulli’s equation, 308
in collisions, 179–181, 183, 378–379
conservation of mechanical energy and, 138–141
defined, 133
fluid flow and, 308
momentum and, 171
temperature of the Sun and, 224
translational, 357, 368
in vertical jump, 154–155

Kinetic friction ( f
S

k ), 108f, 109, 111
coefficient of (mk), 109, 109t

Kinetic theory of gases, 336, 354–359
Knievel, Evel, 73
Krypton (Kr), molar specific heat of, 409t

L
Laminar flow, 305, 305f
Latent heat (L)

defined, 374
of fusion, 375–377, 375t
of sublimation, 375
units of, 375
of vaporization, 375–377, 375t

Laws of motion (Newton’s)
applications of, 100–107, 100f, 102f–107f
first, 88, 90–91, 90f–91f

application of, 91, 91f
mass and inertia, 91

second, 88, 91–94, 92f
accelerating objects, 104–107
applications of, 100–107, 100f, 102f–107f
described, 88, 91–94, 92f
example problems, 93–94, 93f–94f, 102–107, 

102f–107f
free-body diagram and, 100f, 101
momentum and, 171
objects in equilibrium, 101–104
problem-solving strategy for, 101
rotational analog of, 254, 256–259
as vector equation, 92, 93

third, 88, 97–100, 98f–99f, 176
applications of, 98–99
gravitational force and, 219–220, 219f
snowshoes and, 285

Lead (Pb)
ballast, 291–292
boiling point, 375t
coefficient of linear expansion, 344t
density, 284t
latent heat of fusion, 375t
latent heat of vaporization, 375t
melting an entropy change, 427–428
melting point, 375t
specific heat, 370t
thermal conductivity, 381t

Length (L)
approximate values of examples, 3, 3t
dimensions, 5–6, 5t
units of, 1, 2, 3–4, A.21

Length elasticity in solids, 287–288, 287f, 288f,  
288t

Less than (�), A.1, A.19t
Leucippus, 4
Lever arm, 243
Lift on airplane wing, 311–312, 311f
Light, speed of (c), 2, A.20
Lightning and thunder, 485
Light year, 3t
Linear density, 469
Linear displacement

defined, 27, 64
distance distinct from, 28
as function of time, 39, 40t
Hooke’s law and, 446, 446f
in one dimension, 27–28, 28f, 39, 40t
resultant, 59, 59f

runway length problem, 42–43, 42f
SI (Système International) units, 27, 64
in two dimensions, 63–64, 63f
as vector quantity, 28
velocity as function of, 39, 40t
work and, 128–130f, 128f–130f
work done by a varying force and, 155–156, 155f

Linear equations
review of, A.8–A.9
solving simultaneous equations, A.9-A.10

Linear expansion (a), 343–344, 344t, 347, 371
Linear momentum (pS), 170–179

conservation of, 170, 176–179, 176f, 177f
in collisions, 79–188, 176, 176f
defined, 176
recoil and, 177–179
in rocket propulsion, 189
squid propulsion and, 177, 177f

defined, 171
impulse and, 172–174
kinetic energy and, 171
Newton’ second law and, 171
in rocket propulsion, 188–191
SI (Système International) units, 171

Linear quantities, relation to angular quantities, 
208–211

Liquids. See also Fluid(s); Fluids in motion
adhesive forces, 316–319, 316f–318f
capillary action of, 317–318
characteristics of, 282–283
cohesive forces, 316–318, 316f–318f
density, 284
fluid dynamics, applications of, 311–313
phase change, 374–380
speed of sound in, 484–486, 485t
surface of, 316–317, 316f–317f
surface tension of (g), 314–316, 314f–315f, 314t
volume expansion of, 344t, 347, 348–349

Logarithms, review of, A.10–A.11
Loma Prieta earthquake, 504
Longitudinal waves

described, 465–466, 465f–466f
motion of elements in, 482
sound wave as, 481, 482–483
speed in a solid rod, 485

Long jump, 69–70, 69f
Lungs

injury from decompression, 298
surface tension in air sacs, 315

M
Machinery, sound intensity of, 488–489
Mach number, 496
Magnetic field(s) (B

S

)
SI units of, A.21

Magnetic flux (FB )
SI unit of, A.21

Magnetic flux quantum (F0 ), A.20
Manometer

open-tube, 297, 297f
sphygmomanometer, 298, 298f

Marble, ultimate strength of, 290t
Mars

escape speed, 225t
orbit of, 226
planetary data, 228t

Mass(m)
acceleration relationship to, 92
approximate values of examples, 3, 3t
center of (CM), 154
inertia and, 91
linear density, 469
moment of inertia vs., 256
sample values of, A.19t
units of, 1, 2, 2f, 3–4, 92, 93t, A.20, A.21t

Mathematical notation, review of, A.1–A.3, A.19t
Mathematics, review of, A.1–A.3, A.19t
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Matter
dark, 283–284
levels of organization, 4–5, 5f
phase change, 374–380
states of, 282–284
vibrations in, 283

Maximum load, 290
Maxwell velocity distribution, 358, 358f
Measurement. See also Gaussian (cgs) system of 

units; SI (Système International) units; 
U.S. customary units

dimensional analysis, 5–7, 5t
significant figures, 7–11
uncertainty in, 7–11

Mechanical energy (E), 127
calorie energy related to, 369
change in system, 148, 158
conservation of, 138–141

in rotational motion, 260–261
entropy and, 429

Mechanical equilibrium
conditions for, 245–246
examples of objects in, 249–252, 250f
rigid bodies in, 249–252, 250f

Mechanical equivalent of heat, 368
Mechanical power. See Power
Mechanical waves

energy transfer to/from system, 149
requirements for, 464

Medicine and biology
algal blooms in ponds and lakes, 386–387, 386f
aneurysms, 311
arteriosclerosis, 311, 311f
bioluminescence, 149
blood

dialysis, 323, 323f
flow, 320, 321
skin temperature and, 341
viscosity, 319t, 320

blood pressure measurement, 298, 298f
body temperature, maintaining, 387
boxing and brain injury, 172–173
brain

cerebrospinal fluid, 301
estimated number of cells, 13
high-intensity focused ultrasound (HIFU) use 

on, 484
injury, 172–173, 174

buoyancy control in fish, 301
calorie energy related to mechanical energy, 369
capillary action in, 318
cavitron ultrasonic surgical aspirator (CUSA), 

484
cell size, 322
centrifugation, 325, 325f
cerebrospinal fluid, 301
cochlear implant, 513
conductive losses from human body, 382
deafness, 513
diet vs. exercise in weight loss programs, 

154–155
ear anatomy and physiology, 511–513, 512f
eardrum, pressure on while swimming, 295
exercise

calories burned in, 154–155
diet vs. exercise in weight loss programs, 

154–155
physiology of, 369
power output, 154–155, 155t

fetus, ultrasound imaging of, 483, 483f
flagellar movement, 149
fractures, in automobile collisions, 174–175
glaucoma testing, 179–180
global warming and coastal flooding, 347
global warming and greenhouse gases, 391–393, 

392f, 393f

hearing, human
damage from high intensity sound, 488–489
ear anatomy and physiology, 511–513, 512f
sensitivity range of, 482
threshold of hearing, 487–488, 512–513, 512f
threshold of pain, 487–488, 512f

heart beats, time between, 3t
high-intensity focused ultrasound (HIFU), 484
injury

in automobile collisions, 148, 174–175
boxing and brain injury, 172–173
football, 291
to lungs with decompression, 298

insects, walking on water by, 315–316
kidneys

dialysis, 323, 323f
structure and function, 323, 323f
ultrasonic disruption of stones, 484

killer whale, power generated by, 152
mechanical equilibrium conditions applied to 

human body, 249–250, 259f
metabolism, human, 432–435

basal metabolic rate, 433
estimating energy daily energy usage, 433–434
first law of thermodynamics and, 432
metabolic rate measurement, 432–433, 432f, 

433t
oxygen consumption and metabolic rate, 

432–433, 432f, 433t
physical fitness and oxygen consumption, 

434–435, 434t
weight gain and, 433
work done by body on its surroundings, 432

osmosis, 322–323, 323f
power, human output of, 154–155, 155t
radiant thermometer, 389, 389f
squid propulsion, 177, 177f
surface tension in air sacs, 315
thermal protection of ice over water, 348
thermogram, 388, 388f
ultrasound applications, 483–484, 483f
vascular flutter, 311, 311f
vertical jump, energy and power in, 153–155
voice, shattering of glass, 503–504

Membrane, selectively permeable, 322
Mercury (Hg)

coefficient of volume expansion, 344t
density, 284t
elastic modulus, 288t
in pressure measurement devices, 297, 297f
specific heat, 370t
surface of, in glass container, 316, 316f
surface tension of, 314t

Mercury (planet)
escape speed, 225, 225t
planetary data, 228t

Merry-go-round, 219, 219f, 241, 265–267, 266f
Metabolic rate, 369

basal, 433
equation, 432
measurement, 432–433, 432f, 433t
oxygen consumption and, 432–433, 432f, 433t
physical activities and, 434t

Metabolism, human, 432–435
basal metabolic rate, 433
estimating energy daily energy usage, 433–434
first law of thermodynamics and, 432
metabolic rate measurement, 432–433, 432f, 

433t
oxygen consumption

metabolic rate and, 432–433, 432f, 433t
physical fitness and, 434–435

weight gain and, 433
work done by body on its surroundings, 432

Metals, thermal conductivity of, 381, 381t
Meter (m), 2, 3, 27

Methane (CH4)
as greenhouse gas, 392
molar specific heat, 409t

Middle ear, 512–513, 512f
Milky Way galaxy, mass of, 3t
Millikan, Robert, 324
Mineral oil, use in ultrasound imaging, 483
Molar specific heat, 408, 409t
Molecular mass, 349–350
Moles, 349–350
Moment of inertia (I), 254–258, 254f

angular speed and, 263–266, 263f, 265f, 266f
of composite object, 254–256, 255f
defined, 253
for extended objects, 256–259, 256f, 257f
mass vs., 256
rotational analog of Newton’s second law, 254, 

256–259
SI units, 254
of system, 255

Momentum, 170–179
conservation of, 170, 176–179, 176f, 177f

in collisions, 79–188, 176, 176f
defined, 176
recoil and, 177–179
in rocket propulsion, 189
squid propulsion and, 177, 177f

defined, 171
impulse and, 172–174
kinetic energy and, 171
Newton’ second law and, 171
in rocket propulsion, 188–191
SI (Système International) units, 171

Monoatomic gas
internal energy of, 357
molar specific heat of, 408, 409t

Moon
distance from Earth, 3t, A.19t
escape speed, 225t
mass of, 3t, 228t, A.19t

Motion. See also Acceleration; Laws of motion; 
Projectile motion; Simple harmonic 
motion; Speed; Velocity

energy stored as, in gases, 408
history of study, 26–27
impending, 109
in one dimension, 36–49

acceleration, 34–37, 34f, 36f
with constant acceleration, 38–44, 38f, 40t
displacement, 27–28, 27f–28f, 39, 40t
free fall, 44–49
motion diagrams, 37–38, 37f
velocity, 28–34, 30f–31f, 30t, 32t, 33f

through a viscous medium, 323–324, 324f
in two dimensions, 63–77

constant acceleration, 72–73, 72f
projectile motion, 65–72, 65f–69f, 71f
relative velocity, 73–77, 74f–76f

Motion diagram
described, 37–38, 37f
projectile motion in, 67–68, 67f

Motor oil, viscosity of, 319t
Moving frame of reference, 73
Multiplication

of fractions, A.5
in scientific notation, A.3
significant figures and, 8
of vector by a scalar, 59

Musical instruments. See also Sound waves
bugle, 506
clarinet, 510, 511f
flute, 510, 511f
organ pipe, standing waves in, 504–506, 505f
piano, 481, 509–510
quality (timbre) of sound, 510–511, 511f
strings
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guitar, 469, 501–502, 501f, 509
sound production in, 481
tuning of, 500–501, 509

tuning of, 500–501, 509
warming up, 506

N
Natural logarithm base, A.10–A.11
Negative acceleration, 35, 38
Neon (Ne)

molar specific heat, 409t
root-mean-square (rms) speed, 358t

Neptune
escape speed, 225t
planetary data, 228t

Nuclear magneton (mh), A.20
Neutrons

in atomic structure, 4, 5f
in isotopes, 4
mass, A.20
quarks in, 5, 5f

Neutron star, 264, 264f
Newton (N), 92, 93t, 95
Newton, Isaac, 92
Newton-meter, 128, 129, 241, 243, 314
Newton’s law of universal gravitation, 88, 89, 95, 

96–97, 219–226, 227
Newton’s laws of motion

applications of, 100–107, 100f, 102f–107f
first, 88, 90–91, 90f–91f

application of, 91, 91f
mass and inertia, 91

second, 88, 91–94, 92f
accelerating objects, 104–107
applications of, 100–107, 100f, 102f–107f
described, 88, 91–94, 92f
example problems, 93–94, 93f–94f, 102–107, 

102f–107f
free-body diagram and, 100f, 101
momentum and, 171
objects in equilibrium, 101–104
problem-solving strategy for, 101
rotational analog of, 254, 256–259
as vector equation, 92, 93

third, 88, 97–100, 98f–99f, 176
applications of, 98–99
gravitational force and, 219–220, 219f
snowshoes and, 285

Niagara Falls, 306
Night vision, thermal radiation and, 389
Nitrogen (N)

boiling point, 375t
latent heat of fusion, 375t
latent heat of vaporization, 375t
liquid, 391
Maxwell speed distribution for, 358f
melting point, 375t
molar specific heat, 409t
root-mean-square (rms) speed, 358t
thermal conductivity, 381t

Nitrous oxide, as greenhouse gas, 392
Node, of standing wave, 498–502, 499f, 505
Noise-level regulations, OSHA, 489
Noise pollution, 488
Nonconservative force, 135, 135f, 158

work done by, 131–132, 141–143, 141f,  
142f, 148

Nonmetals, thermal conductivity of, 381, 381t
Normal force (n

S

), 99
Notation

for instantaneous acceleration, 35
for instantaneous velocity, 32
for many-digit numbers, 2
mathematical symbols, A.1–A.3, A.19t
powers of 10, 3, 4, 4t
scientific, 8–9

significant figures, 7–11
for vector, 28, 58

Nuclear magneton (mh), A.20
Nucleus, atomic

diameter of, 3t
discovery of, 4
strong nuclear force, 4, 89, 90
structure of, 4–5, 5f
weak nuclear force, 89, 90

O
Ocean sea levels, rising, 347
Ocean waves, 445, 464, 466, 506
Open-tube manometer, 297, 297f
Orbits

geosynchronous, 229
Kepler’s laws and, 226–229

Order-of-magnitude calculations, 12–14
Organ pipe, standing waves in, 504–506, 505f
Oscillations. See also Waves

damped, 463–464, 464f
standing waves

in air columns, 504–508, 505f
on strings, 498–503, 498f, 499f

OSHA noise-level regulations, 489
Osmosis, 322–323, 323f
Outer ear, 511–513, 512f
Overtones, 500
Oxygen (O)

atomic mass of, 349
boiling point, 375t
consumption and human metabolism

metabolic rate and, 432–433, 432f,  
433t

physical fitness and, 434–435
density, 284t
diffusion coefficient, 322t
latent heat of fusion, 375t
latent heat of vaporization, 375t
melting point, 375t
molar specific heat, 408, 409t
root-mean-square (rms) speed, 358t
thermal conductivity, 381t

P
Pain, threshold of, 487–488, 512f
Pascal (unit of pressure/stress), 285, 288
Pascal, Blaise, 295
Pascal’s principle, 295–297
Pendulums

applications, 461–462
ballistic pendulum, 181–182, 182f
physical, 463, 463f
resonance in, 503
simple, 460–462, 460f, 461f
simple harmonic motion compared to, 460–461, 

461f
Pens, ballpoint, 298
Perfectly inelastic collisions

defined, 179, 180
inelastic compared to, 179
in one dimension, 180–183, 180f, 182f

Period (T)
in pendulums, 461–463
in periodic motion, 446
of planet, 227, 228t
of simple harmonic motion, 454–457

Periodic motion, 445–446. See also Simple 
harmonic motion

pendulums, 460–463, 460f, 461f, 463f
terminology, 446
velocity as function of position, 452

Periodic table of elements, 349
Permeability of free space (m0), A.20
Permittivity of free space (P0), A.20
Perpetual motion machines, 427

Phase change, 374–380
defined, 374
entropy change with, 427–429
incomplete, 378
latent heat of fusion, 375–377, 375t
latent heat of sublimation, 375
latent heat of vaporization, 375–377, 375t
problem-solving strategy, 377
in water, 375–378, 376f

Phonograph record, angular and tangential 
speeds, 210

Physical fitness, 434–435, 434t
Physical pendulum, 463, 463f
Physical quantities

conservation of, 138
conversion of units, 11–12
dimensional analysis of, 5–7, 5t
estimates, 12–14
uncertainty in measurement, 7–11

Physiology of exercise, 369
Piano, 481, 509–510
Piezoelectric effect, 483, 483f
Pipe organ, standing waves in, 504–506, 505f
Pipes

harmonics of, 506–507
resonance in, 507–508, 507f
standing waves in, 504–506, 505f

Pistons, simple harmonic motion and, 454
Pitch, 510
Planck’s constant (h), A.20
Plane polar coordinates (r, u), 15, 15f

conversion to/from Cartesian coordinates, 
16–17, 16f

Planets. See also specific planets
escape speeds, 225, 225t
orbits of, 227–228, 227f
periods of, 227, 228t
planetary data, 228t
radiation and, 390–391, 390f

Plane waves, 490, 490f
Plants, capillary action in, 318
Plaque, arterial, 311, 311f
Plasma, 282, 283
Platform diving, 140, 140f
Platinum (Pt), density of, 284t
Plumb bob, 247
Pluto

escape speed, 225t
planetary data, 228t

Pogo-stick, 127
Pointed (Gothic) arch, 293, 293f
Point source, sound waves from, 489–491, 490f
Poise (unit), 319
Poiseuille, J.L., 319
Poiseuille’s law, 319–320, 319f
Poker hands, 431
Polyatomic gases, molar specific heat of, 409t
Pool/billiards, 179, 184–185, 220–221
Position. See also Displacement

acceleration as function of, 447–448
angular, 203, 203f
equilibrium position of springs, 143–145
as function of time, 457–459, 458f
velocity as function of, 452, 454

Position-time graph, 38
average velocity from, 31, 31f
instantaneous velocity from, 32–34, 33f
for motion with constant acceleration, 38f, 39
slope, 31

Post-and-beam construction, 292, 293f
Potential energy (PE). See also Gravitational 

potential energy
conservative forces and, 135
defined, 135
elastic, 449–453, 449f–452f
as property of a system, 135–136
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as scalar quantity, 136
of springs, 143–148

Potential energy function, 136
Pound (lb), 92, 93t
Pound per inch squared, 285
Power (P), 150–155, 158

average (P), 150–151, 152}
commercial units of (kilowatt-hour), 151
defined, 150
delivered by electric motor, 151–152
human output of, 154–155, 155t
instantaneous, 150
output of human body, 434–435, 434t
problem examples, 151–153
SI (Système International) units, 150–151, A.21
sound wave, 487
in vertical jump, 153–155, 154f

Powers of ten
rules for, A.6

Pressure (P)
absolute, 297
atmospheric, 285, 294, 297–298
defined, 285
of fluid

Bernoulli’s equation, 307–313
Pascal’s principle, 295–297
Poiseuille’s law, 319–320, 319f
variation with depth, 293–297, 293f, 294f
of water, 286–287, 286f

force and, 285
of gas

Boyle’s law, 350
Gay-Lussac’s law, 350
ideal gas law, 350
molecular model for ideal gas, 354–357

gauge, 297
isobaric (constant pressure) process, 403–404, 

407–408, 409–411, 417t
measurement of, 297–298

with barometer, 297, 297f
blood pressure, 298, 298f
with open-tube manometer, 297, 297f

one atmosphere, definition of, 298
as scalar quantity, 285
standard temperature and pressure (STP), 350
units of, 285, A.21

Pressure waves, 466
Problem-solving strategies

algebraic order of calculations, 10
calorimetry with phase change, 377
centripetal acceleration, forces causing,  

215–216
collisions in one dimension, 184
collisions in two dimensions, 187
conservation of mechanical energy, 139
constant acceleration in one dimension, 40
conversion of units, 11–12
Doppler effect, 493–495
energy methods and rotation, 260
general strategy, 18–19
Newton’s second law, 101
objects in equilibrium, 249
projectile motion, 68
relative velocity, 74
rotational motion, 260
rounding, 8, 10–11
spring potential energy, 145
symbol use, 19
work-energy theorem, 157–158

Projectile motion, 65–72
described, 65–67, 65f, 66f
example problems, 47–49, 67–72
height maximum, 47–48
independence of horizontal and vertical 

motions, 65
in motion diagram, 67–68, 67f
parabolic path of, 65, 65f

powered ascent followed by free fall, 48–49, 48f
problem-solving strategy, 68
projection angle, 65f, 66
range, 70–71
summary of important facts, 67

Projection angle, 65f, 66
Proportionality (~), A.1, A.19t
Propulsive force, as nonconservative force, 135
Prospecting, pendulum use in, 462
Proton(s)

in atomic structure, 4, 5f
diameter of, 3t
mass, A.20
quarks in, 5, 5f

Ptolemy, Claudius, 26, 226
Pulsars, 264, 264f
PV diagram, 404–405, 404f–405f

for adiabatic expansion, 412–413, 412f
for Carnot engine, 425, 425f
for general thermodynamic process, 416, 416f
for heat engine, 418, 418f
for isothermal expansion, 414–415, 415f

Pyramids, level construction of, 297
Pyrex®, 343, 344f, 391
Pythagorean theorem, 16–17, 60, 213, 355

Q
Quadratic equations, review of, A.7–A.8
Quality (timbre) of sound, 510–511, 511f
Quarks, 5, 5f
Quartz, 283f

elastic modulus, 288t

R
Racetrack, banked, 217–218, 217f
Radians (rad)

converting degrees to/from, 203, 204
defined, 203, 203f
setting calculator to, 16
as unit of angular displacement, 204

Radiant thermometer, 389, 389f
Radiation, thermal, 387–391, 387f–390f
Radiator

automobile, 386
home heating, 385–386, 386f

Raft, buoyancy of, 303, 303f
Railroads

Acela train, 43–44, 44f
Doppler effect and, 494
drive wheel mechanism of locomotives, 454, 454f
track, expansion of, 344, 344f

Rankine scale, 341
Rarefaction, in sound waves, 482, 482f
Razor blades, 131
Reaction force

Newton’s third law and, 98–100, 98f, 99f
rocket propulsion and, 188, 188f

Recoil, 177–179
Rectangular coordinate system, 15, 15f

conversion to/from polar coordinates, 16–17, 16f
vector components on, 60–61

Reference circle, 457, 457f
Reference frame, 27, 27f, 73
Reference levels for gravitational potential energy, 

137–138, 137f
Reflection

of sound waves, 483
of waves, generally, 471–472, 472f

Reflector, ideal, 388
Refrigerators, 421–423, 422f
Relative velocity, 73–77, 74f–76f

problem-solving strategy, 74
Resistance (R)

SI units of, A.21
Resonance, 503–504, 503f, 504f, 507–508, 507f

in pendulum, 503, 503f
singers and shattered glass, 503–504

structural, 504, 504f
tube of variable length, 507–508, 507f

Restoring force
of pendulum, 460, 460f
of springs, 143, 446

Resultant vector, 58, 58f, 59, 59f, 62–63, 62f
Reversible process, 423–424, 424f
Revolving door, torque and, 242, 242f
Reynolds number (RN), 320–321
Rib cartilage, elastic modulus of, 288t
Right-hand rule, 214, 214f

for torque, 243–244, 243f
Right triangle, trigonomic functions of,  

15–16, 15f
Rock concert, sound intensity levels of, 488, 488t
Rocket engines, 313
Rockets

with acceleration in two dimensions, 72–73, 72f
European Space Agency launch site, 209
exhaust speed, 189
flight, analysis of, 48–49, 48f
instantaneous thrust, 189
multistage, 190
propulsion, 188–191, 188f, 189f
single stage to orbit (SSTO), 190–191

Roller-coaster, circular loop in, 218, 218f
Root-mean-square (rms) speed, 358, 358t
Rotational dynamics, applications of, 240
Rotational equilibrium

applications of, 240
conditions for, 245–246

Rotational kinetic energy (KEr), 259–262, 260f
Rotational motion, 202–219. See also Centripetal 

acceleration; Torque
basic concepts, 203–206
conservation of mechanical energy, 260–261
under constant angular acceleration, 206–208
kinematic equations for, 206–207
problem-solving strategy, 260
relations between angular and linear quantities, 

208–211
work-energy theorem and, 260, 261–262
under zero torque, 249

Rounding, 8, 10–11
Rubber

elastic modulus, 288t
thermal conductivity, 381t

Runway length problem, 42–43, 42f
Russell, John Scott, 466
R -values, for insulation materials, 383–385, 383t
Rydberg constant (RH), A.20

S
Sailing upwind, 312
Satellites

altitude of orbiting, 3t
European Space Agency launch site, 209
geosynchronous orbit, 229
protection from thermal radiation, 391

Saturn
escape speed, 225t
planetary data, 228t

Scalar quantity
instantaneous speed, 33
speed as, 28
vector quantity compared to, 28, 57

Schmitt, Harrison, 95
Scientific notation, 8–9, A.3–A.4
Scott, David, 45
Seat belts, automobile, 91, 91f, 175
Second (s), 3, 4
Second harmonic (first overtone), 499f, 500–503, 

505, 505f
Second law of motion (Newton’s), 88, 91–94, 92f

accelerating objects, 104–107
applications of, 100–107, 100f, 102f–107f
described, 88, 91–94, 92f
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conversion of units, 11–12
density, 284
dimensions in, 5t
displacement, 27, 64
electric charge, A.21
electric current, A.21
electric potential, A.21
energy, A.21
force, 92, 93t, 95, A.21
gravitational potential energy, 136, 222
heat, 368
impulse, 172
inductance, A.21
instantaneous acceleration, 35, 64
instantaneous angular acceleration, 206
instantaneous angular speed, 204
instantaneous velocity, 32, 64
latent heat, 375
length, 2, 3–4, A.21
luminous intensity, A.21
magnetic field, A.21
magnetic flux, A.21
mass, 2, 2f, 3–4, 91, 92, 93t, A.20, A.21
moment of inertia, 254
momentum, 171
power, 150–151, A.21
prefixes for, 4, 4t
pressure, 285, A.21
resistance, A.21
specific heat, 370
stress, 288
surface tension, 314
temperature, A.21
time, 2–4, A.21
torque, 241, 243
velocity, 5t
viscosity, 319
volume, 5t
watt per meter squared (W/m2), 487
work, 128, 129, 136, A.21

Skid marks, automobile, 133
Skiing, 137–138, 137f, 142–143, 142f
Skin temperature, 341
Skydiving, 114–115, 114f
Slope

defined, 31
from position vs. time graph, 31

Slug (unit of mass), 4, 93t
Smith, Dave, 57
Snowshoes, 285, 285f
Sodium chloride (NaCl), 283, 283f
Solar day, 2
Solar system. See also specific planets

asteroid map of inner, 150f
geocentric model of, 26, 226
heliocentric model of, 26, 45, 226
Kepler’s laws and, 226–229

Solid(s)
amorphous, 283, 283f
characteristics of, 282–283, 283f
crystalline, 283, 283f
deformation of, 287–293
density, 284
elasticity of, 283, 283f, 287–290

in length, 287–288, 287f, 288f, 288t
of shape, 288t, 289, 289f
volume, 288t, 289–290, 289f

phase change, 374–380
speed of sound in, 485–486, 485t
thermal conductivity, 381, 381t

Soliton, 466
Sonic boom, 496
Sound waves, 481–513

audible, 482
beats, 508–510, 508f
categories of, 482–483
characteristics of, 482–484

example problems, 93–94, 93f–94f, 102–107, 
102f–107f

free-body diagram and, 100f, 101
momentum and, 171
objects in equilibrium, 101–104
problem-solving strategy for, 101
rotational analog of, 254, 256–259
as vector equation, 92, 93

Second law of thermodynamics, 402
direction of time and, 430–431
entropy and, 426, 427, 430
heat engines and, 423
Lord Kelvin and, 423
as statement of the most probable, 430–431

Second overtone (third harmonic), 499f, 500–503, 
505f

Sedimentation rate, 325
See-saw, 245–246
Seiche, 506
Selectively permeable membrane, 322
Semicircular arch, 292–293, 293f
Shape

deformation of objects by force, 90
elasticity in solids, 288t, 289, 289f

Shear modulus (S), 288t, 289
Shear strain, 289
Shear stress, 289, 289f, 291
Shock absorbers, 463, 463f
Shock waves, 495–496, 496f
Significant figures, 7–11
Silicon (Si), specific heat of, 370t
Silver (Ag)

boiling point, 375t
density, 284t
latent heat of fusion, 375t
latent heat of vaporization, 375t
melting point, 375t
specific heat, 370t
thermal conductivity, 381t

Simple harmonic motion, 446–447
acceleration

as function of position, 447–448
as function of time, 457–459, 458f

angular frequency of, 455–457
bungee jumping, 456, 456f
defined, 446
frequency of, 455–457
on frictionless surface, 447–448
Hooke’s law and, 446–447
pendulum motion compared to, 460–461, 461f
period of, 454–457
pistons and drive wheels, 454, 454f
position as function of time, 457–459, 458f
sinusoidal nature of, 457–459, 458f
uniform circular motion compared to, 453–457, 

454f
velocity

as function of displacement, 454
as function of position, 452, 454
as function of time, 457–459, 458f

Sine (sin), 15–16, 15f
Singers and shattered glass, 503–504
Sinusoidal motion

simple harmonic motion as, 457–459, 458f
sound wave as, 482, 482f
waves as, 466, 466f

Siren, Doppler shift and, 495
SI (Système International) units, A.21

acceleration, 5t, 92, 93t
angular displacement, 204
area, 5t
average acceleration, 34, 64
average angular acceleration, 205
average angular speed, 204
average speed, 29
average velocity, 30, 64
capacitance, A.21

Doppler effect, 491–496, 492f
energy of, 486–487
forced vibration, 503
human ear and, 511–513, 512f
infrasonic, 482
intensity of, 487–490, 488t
interference of, 496–498, 497f
as longitudinal wave, 481, 482–483
OSHA noise-level regulations, 489
pitch, 510
plane, 490, 490f
producing, 481–482, 482f
quality (timbre) of, 510–511, 511f
reflection of, 483
resonance, 503–504, 503f, 504f, 507–508, 507f
shock waves, 495–496, 496f
speed of sound, 484–486, 485t
spherical, 489–490, 489f–490f
standing

in air columns, 504–508, 505f
on strings, 498–503, 498f, 499f

thunder, 485
ultrasonic, 483
ultrasound

applications of, 483–484, 483f
production of, 483, 483f

Space shuttle, sonic boom produced by, 496
Space travel

artificial gravity, 215
International Space Station, 202
Newton’s first law of motion and, 91

Speakers
Doppler shift and, 494
interference and, 497–498, 497f

Specific gravity, 284
Specific heat (c), 370–372

air circulation/flow and, 370–371, 370f
defined, 370
finding with calorimetry, 372
molar specific heat, 408
values for selected substances, 370t

Speed
angular

average, 204
helicopter, 204–205
instantaneous, 204
moment of inertia and, 263–266, 263f, 265f, 

266f
of phonograph records and compact discs, 

210–211
rotational kinetic energy and, 259–260, 260f
tangential speed relationship to, 208

average, 29–30
changes in, 35
escape, 225–226, 225t, 358
exhaust speed of rockets, 189, 313
of a fluid, finding with Bernoulli’s equation, 

309–310
instantaneous, 33
Maxwell speed distribution, 358, 358f
root-mean-square (rms), 358, 358t
tangential

angular speed relationship to, 208
centripetal acceleration and, 212, 213
defined, 208
of phonograph records and compact discs, 

210–211
of rotating Earth surface, 209

terminal (yt), 114, 324, 325
velocity versus, 28–30

Speed of light, 2, A.20
Speed of sound, 484–486, 485t
Spherical sound waves, 489–490, 489f–490f
Sphygmomanometer, 298, 298f
Sports

acrobatics, 146–147, 146f, 264
archery, 177–179, 177f, 450, 450f

37027_indx_ptg01_hr_I1-I14.indd   11 29/08/13   3:29 PM

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



I.12   | Index

bicycling, 254, 254f
boxing, 172–173
bungee jumping, 456, 456f
diving, 135, 135f, 140, 140f, 263f, 264
figure skating, 263–264, 263f
football, 291
golf, 173, 311
hockey, 111, 111f
long jump, 69–70, 69f
pool/billiards, 179, 184–185, 220–221
skiing, 137–138, 137f, 142–143, 142f
skydiving, 114–115, 114f
swimming, 295
tennis, 240, 311

Spring(s)
bungee jumping modeled as, 456, 456f
elastic potential energy, 449–453, 449f–452f
equilibrium position, 143–145
Hooke’s law and, 143, 445–449, 446f
ideal, 447
longitudinal wave on, 466, 466f
mass on vertical, 448–449, 448f
restoring force of, 143, 446
simple harmonic motion on a frictionless 

surface, 447–448
work to stretch a spring, 156–157, 156f

Spring constant (k), 143, 148, 446, 448
Spring force, 143–148
Spring potential energy, 143–148, 158

problem examples, 145–148
problem-solving strategy for, 145
work-energy theorem, 144–145, 158

Squid propulsion, 177, 177f
Standard temperature and pressure (STP), 350
Standing waves

in air columns, 504–508, 505f
seiche, 506
on strings, 498–503, 498f, 499f

Stars
dark, 88
neutron, 264, 264f
radiation and, 390–391, 390f
supernova, 264, 264f

Static equilibrium in fluids, 293, 293f
Static friction ( f

S

s), 108–109, 108f, 110, 113
coefficient of (ms ), 109, 109t, 250–251

Stationary frame of reference, 73
Steam

phase change in water, 375–376, 376f
specific heat of, 370t
superheated, 379

Steam point of water, 339
Steel

coefficient of linear expansion, 344t
elastic modulus, 288t
maximum load of steel beams, 290
ultimate strength, 290t

Stefan-Boltzmann constant, 387
Stefan’s law, 387, 389–391
Stethoscope, 298, 298f
Stokes, George, 323
Stoke’s law, 324
Strain

bulk, 291–292
compressive, 290
defined, 287
shear, 289
tensile, 288
volume, 289

Streamline (laminar) flow, 305, 305f
Stress

bulk, 289, 289f, 291–292
compressive, 290, 371
defined, 287
as proportional to strain, 287

shear, 289, 289f, 291
SI units, 288
tensile, 288
thermal, 343
volume, 289

Stress-strain curve, 288, 288f
Stretching, Young’s modulus and, 288
Strings, waves on, 465–467, 467

interference, 471, 471f
reflection of, 471–472, 472f
speed of, 468–470, 469f
standing waves, 498–503, 498f, 499f

Strong nuclear force, 4, 89, 90
Sublimation, 375
Submerged object, buoyant forces on, 300, 300f, 

302–303, 302f, 352–353
Subtraction

of fractions, A.5
significant figures and, 9
vector, 59, 59f

Sucrose, diffusion coefficient of, 322t
Sulfur (S)

boiling point, 375t
latent heat of fusion, 375t
latent heat of vaporization, 375t
melting point, 375t

Sulfur dioxide (SO2)
as greenhouse gas, 392
molar specific heat, 409t
root-mean-square (rms) speed of, 358t

Summation (�), A.2, A.19t
Sun

distance to Earth from, A.19t
formation of, 224
geocentric model of solar system, 26, 226
gravitational force, 89, 96–97
heliocentric model of solar system, 26, 45, 226
Kepler’s laws and orbits around, 226–228, 227f
mass of, 3t, 228, 228t, A.19t
radiant energy of, 387
temperature of, 224

Supernova, 264, 264f
Superposition principle

beats and, 508–510, 508f
defined, 470
interference and, 470–471
quality of sound and, 510–511
standing waves on string, 498

Supersonic speeds, 496
Surface tension (g), 314–316, 314f–315f, 314t

in air sacs, 315
defined, 314
insects walking on water and, 315–316
SI units, 314
surfactant effect on, 315
temperature and, 315
values for common liquids, 314t

Surfactants, 315
Surgery

cavitron ultrasonic surgical aspirator (CUSA), 
484

high-intensity focused ultrasound (HIFU), 484
Swim bladder, in fish, 301
Swimming, 295
Symbol use in problem solving, 19
System

defined, 135–136
energy transfer to/from, 148–149, 368 (see also 

Heat)
entropy of, 427
internal energy of, calculating, 359
moment of inertia of, 255
translational kinetic energy of, 357

System approach, 111–113
Système International. See SI (Système 

International) units

T
Tacking, by sailboats, 312, 312f
Tacoma Narrows bridge, 504, 504f
Tangent (tan), 15f, 16
Tangential acceleration, 209, 213
Tangential speed

angular speed relationship to, 208
centripetal acceleration and, 212, 213
defined, 208
of phonograph records and compact discs, 210–211
of rotating Earth surface, 209

Tekalli, Jamila, 481f
Telecommunications satellites, geosynchronous 

orbits of, 229
Temperature (T)

body temperature, maintaining, 387
Celsius scale, 338–339, 340–342, 341f, 373
definition of, 337–338
density of water and, 348, 348f
equilibrium, 373–374
expansion and, 359 (see also Thermal expansion)
Fahrenheit scale, 340–342, 341f
of gas

Charles’s law, 350
Gay-Lussac’s law, 350
ideal gas law, 350
molecular interpretation of, 357–359

internal energy and, 149
isothermal processes, 414–416, 417t, 424, 424f
Kelvin scale, 340–342, 341f, 350, 373
measurement of, 337–340, 338f, 339f
molecular interpretation of, 357–359
speed of sound and, 485
standard temperature and pressure (STP), 350
of Sun, 224
surface tension and, 315
volume expansion in liquids and, 348–349

Tendon, elastic modulus of, 288t
Tennis, 240, 311
Tensile strain, 288
Tensile strength, 290t
Tensile stress, 288
Tension (T), 100–101, 100f

on string and speed of waves, 468–470
Terminal speed (yt), 114, 324, 325
Thermal conduction, 380–385, 380f–381f

conductivity of selected substances, 381t
defined, 380
home insulation and, 383–385, 383t
losses from human body, 382

Thermal conductivity (k), 381, 381t
Thermal contact, 337
Thermal efficiency (e)

defined, 418
of heat engine, 418–419, 423, 424–425
of human body, 434–435, 434t

Thermal energy
created by friction, 149
global warming and greenhouse gases, 391–393, 

392f, 393f
transfer, 380–391 (see also Heat)

calorimetry and, 372–374
conduction, 380–385, 380f–381f
convection, 385–387, 385f–386f
minimizing, 391, 391f
radiation, 387–391, 387f–390f

Thermal equilibrium, 337–338, 337f
Thermal expansion, 343–349

area expansion (g), 345, 346
bimetallic strips, 345, 345f
coefficient of linear expansion (a), 343–344, 

344t, 347, 371
coefficient of volume expansion (b), 344t, 346–347
defined, 343
joints, 343, 343f
of water, 347, 348–349

Sports (Continued)
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Thermal physics, 336–359. See also Temperature; 
Thermodynamics

Thermal processes, 408–417
adiabatic processes, 411–413, 417t
general processes, 416–417
isobaric processes, 409–411, 417t
isothermal processes, 414–416, 417t
isovolumetric processes, 413–414, 417t

Thermal processes, energy in, 367–393
Thermal radiation, 387–391, 387f–390f
Thermals, 370–371
Thermal stress, 343
Thermoclines, 386–387, 386f
Thermodynamics, 402–435

Carnot as founder of science of, 425
first law of, 402, 406–408, 406f

in adiabatic processes, 411–413, 417t
in general processes, 416–417
human metabolism and, 432
in isobaric processes, 409–411, 417t
in isothermal processes, 414–416, 417t
in isovolumetric processes, 413–414, 417t

second law of, 402
direction of time and, 430–431
entropy and, 426, 427, 430
heat engines and, 423
Lord Kelvin and, 423
as statement of the most probable, 430–431

third law of, 425
work in thermodynamic processes, 402–405
zeroth law of, 337f, 338

Thermogram, 388, 388f
Thermography, 388
Thermometers, 337–340, 337f–340

alcohol, 338, 339
calibration of, 338, 339
constant-volume gas, 339–340, 339f, 340f
defined, 337
mercury, 338–339, 338f
radiant, 389, 389f

Thermos bottle, 391, 391f
Thermostats, 345, 345f
Third harmonic (second overtone), 499f, 500–503, 

505f
Third law of motion (Newton’s), 88, 97–100, 

98f–99f, 176
applications of, 98–99
gravitational force and, 219–220, 219f
snowshoes and, 285

Third law of thermodynamics, 425
Thrust, 189
Thunder, 485
Time (t)

approximate values of examples, 3, 3t
dimensions, 5–6, 5t
direction of, 430–431
position, velocity, and acceleration as function 

of in simple harmonic motion, 457–459, 
458f

units of, 2–4, A.21
Tin, specific heat of, 370t
Tonometer, 179–180
Torque (tS), 241–246, 241f

angular acceleration and, 241, 252–259
angular momentum and, 262–263, 262f
axis of rotation and, 243–244, 253
bicycle gears and, 254, 254f
center of gravity and, 246–249
definition

basic, 241, 242
general, 243, 244

direction
positive and negative, 241–242
right-hand rule for, 243–244, 243f

equilibrium conditions, 245–246
force and, 241–246, 241f–244f

moment of inertia, 254–258, 254f
objects in equilibrium, 249–252, 250f
point of application, 241
on rotating object, 253–254, 253f–254f
rotational analog of Newton’s second law, 254, 

256–259
rotational motion under zero torque, 249
SI units, 241, 243

Torricelli, Evangelista, 297
Total acceleration, 213
Trains

Acela, 43–44, 44f
Doppler effect and, 494
drive wheel mechanism of locomotives, 454,  

454f
railroad track, expansion of, 344, 344f

Translational acceleration, 245
Translational equilibrium, 245
Translational kinetic energy (KEt ), 357, 368
Transport phenomena in fluids, 321–325

diffusion, 321–322, 321f, 322t
motion through a viscous medium, 323–324, 

324f
osmosis, 322–323, 323f
sedimentation and centrifugation, 324–325

Transverse waves
described, 465–466, 465f
motion of elements in, 482

Traveling waves
described, 465–468, 465f–466f
reflection of, 472, 472f
speed of pulse on, 469–470

Triangle, trigonomic functions of, 15–16, 15f
Triangle method of addition, 58
Trigonometry, 15–17, 15f, 17f, A.13
Triple point of water, 340
Tritium, 4
Tubes, resonance in, 507–508, 507f
Tungsten, elastic modulus of, 288t
Tuning fork, 481–482, 482f, 486–487, 509–511,  

511f
Tuning musical instruments, 500–501, 509
Turbulent flow, 305, 305f

of blood, 321
Reynolds number, 320–321

Turntable, 453–454, 454f
Turpentine, coefficient of volume expansion for, 

344t

U
Ultimate strength, 288, 290t
Ultrasonic flow meter, 483
Ultrasonic ranging unit, 484
Ultrasonic waves, 483
Ultrasound

applications of, 483–484, 483f
production of, 483, 483f

Uncertainty in measurement, 7–11
Uniform circular motion, compared to  

simple harmonic motion, 453–457,  
454f

Units. See also Gaussian (cgs) system of units; 
SI (Système International) units; U.S. 
customary units

conversion of, 11–12
dimensional, 5–7, 5t
prefixes for, 4, 4t
symbols for, A.19t

Universal gas constant (R), 350
Universal gravitation, Newton’s law of, 88, 89, 95, 

96–97, 219–226, 227
Universal gravitation constant (G), 95, 219, 220, 

220f, A.20
Universe

age of, 3t
dark energy in, 284

dark matter in, 283–284
distances, sample, 3t
entropy of, 427, 431
estimated number of galaxies in, 14
geocentric model, 26, 226
heliocentric model, 26, 45, 226
mass of, 3t

Unknowns, defined, A.4
Upwelling, 348
Uranium (U), density of, 284t
Uranus

escape speed, 225t
planetary data, 228t

U.S. customary units
acceleration, 5t, 35, 92, 93t
area, 5t
average velocity, 30
conversion of units, 11–12
force, 92, 93t
heat, 368
length, 4
mass, 4, 92, 93t
power, 151
pressure, 285
time, 4
velocity, 5t
volume, 5t
work, 129

V
Vaporization, latent heat of, 375–377, 375t
Vascular flutter, 311, 311f
Vector(s)

addition of
algebraically, 62–63, 62f
geometrical, 58, 58f, 59, 59f

angular quantities as, 214, 214f
components of, 60–63, 60f–62f
defined, 28
displacement, velocity, and acceleration in two 

dimensions, 63–65
equality of two, 58
negative of, 59
notation for, 28, 58
properties of, 57–59
resultant, 58, 58f, 59, 59f, 62–63, 62f
subtraction of, 59, 59f

Vector quantity
defined, 57
examples of, 58
notation for, 58
scalar quantity compared to, 28, 57

Velocity
acceleration vs., 34–35, 34f
angular (vS)

right-hand rule for, 214, 214f
as vector quantity, 214

average (y) 
in constant acceleration, 39, 40t
defined, 64
in one dimension, 30–31, 30f–31f
from position-time graph, 31, 31f
SI (Système International) units, 30, 64
in two dimensions (vSav), 64

dimensions of, 5–6, 5t
as function of displacement in constant 

acceleration, 39, 40t
as function of time in constant acceleration, 38f, 

39, 40t
graphical interpretation of, 31, 31f
instantaneous

in one dimension (v), 32-34, 32t, 33f
from position-time graph, 32-34, 33f
SI (Système International) units, 32, 64
in two dimensions (vS), 64 

Maxwell velocity distribution, 358, 358f
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I.14   | Index

in motion diagrams, 37–38, 37f
Newton’s first law of motion and, 90–91, 90f–91f
in one dimension, 28–34, 30f–31f, 30t, 32t, 33f
projectile motion and, 65f, 66–69, 66f
recoil, 177–179
relative, 73–77, 74f–76f

problem solving, 74–77
in simple harmonic motion

displacement and, 454
as function of time, 457–459, 458f
position and, 452, 454

speed versus, 28–30
in two dimensions, 63–64
as vector, 28–29

Velocity-time graph
for Acela train, 43–44, 44f
instantaneous acceleration from, 36–37, 36f
for motion with constant acceleration, 38f, 39

Venturi tube, 308, 309f
Venus

escape speed, 225, 225t
planetary data, 228t

Vertical jump, energy and power in, 153–155, 154f
Vibration

damped oscillations, 463–464, 464f
forced, 503
heat capacity and, 408
in matter, 283
sound and (see Sound waves)
standing waves on strings, 498–503, 498f, 499f
tuning fork, 481–482, 482f, 486–487, 509–511, 

511f
Viscosity, 318–320, 319f, 319t

coefficient of (h), 319, 319t
Poiseuille’s law and, 319–320, 319f
SI units, 319

Voice
helium affect on, 511
shattering of glass, 503–504

Volume (V)
of common geometric shapes, A.12t
dimension of, 5t
of gas

Boyle’s law, 350
Charles’s law, 350
ideal gas law, 350

isovolumetric processes, 413–414, 417t
Volume elasticity of solids, 288t, 289–290, 289f
Volume expansion (b), 344t, 346–347, 348–349
Volume strain, 289
Volume (bulk) stress, 289

W
Water

adhesive forces, 316–317, 316f–317f
algal blooms in ponds and lakes, 386–387, 386f
boiling point (steam point) of, 339, 375t
cohesive forces, 316–317, 316f–317f
convection in boiling, 385
density, 284t, 348, 348t
elastic modulus, 288t
freezing point (ice point) of, 339

latent heat of fusion, 375, 375t
latent heat of vaporization, 375, 375t
melting point, 375t
molar specific heat, 409t
phase change in, 375–378, 376f, 428–429
pressure and weight of, 286–287, 286f
root-mean-square (rms) speed, 358t
specific heat, 370, 370t
speed of sound in, 485t, 486
surface tension of, 314, 314f, 314t, 315–316, 315f
thermal conductivity, 381t
thermal expansion of, 347, 348–349
triple point of, 340
viscosity of, 319t

Water pipes, bursting in winter, 348–349
Waterproofing agents, 317
Waterslides, 141–142, 141f
Watt (W), 150–151
Watt, James, 151
Watt per meter squared (W/m2), 487
Wave(s), 464–472. See also Sound waves

amplitude of, 467, 467f
defined, 464
density (pressure), 466
energy transfer to/from system, 149
frequency of, 466–468
graphical representations of, 466, 466f
interference (see Interference)
longitudinal, 465–466, 465f–466f
ocean, 445, 464, 466, 506
plane, 490, 490f
reflection of, 471–472, 472f
resonance, 503–504, 503f, 504f, 507–508, 507f
shock, 495–496, 496f
soliton, 466
speed on strings, 468–470, 469f
spherical, 489–490, 489f–490f
standing

in air columns, 504–508, 505f
seiche, 506
on strings, 498–503, 498f, 499f

transverse, 465–466, 465f
traveling, 465–470, 465f–466f, 472, 472f
types of, 465–466, 465f
water

interference, 470–471, 471f
ocean waves, 445, 464, 466, 506
solitons, 466
wave production, 464

Wave front, of spherical wave, 490, 490f
Wavelength (l), of linear wave, 467–468, 467f
Wave speed (y), 484–485

equation for, 467
shock waves, 495–496, 496f
on strings, 468–470, 469f

Weak nuclear force, 89, 90
Weight, 89

gravitational force and, 95, 95f, 97
of water, 286–287, 286f

Weight gain, human, 433
Weight loss programs, diet vs. exercise in, 154–155
Wetting agents, 317
Whale, power generated by, 152

Wind turbine, 240
Wood, thermal conductivity of, 381t
Work (W), 128–132, 157

by body on its surroundings, 432
calculating from PV diagram, 404, 405
coefficient of performance (COP), 421–422
conservative and nonconservative forces, 134–

135, 135f, 148, 158
by constant force

at angle to displacement, 129, 129f, 130–131
in linear displacement, 128–129, 129f, 130–131

defined, 128–129
dissipative forces and, 131–132
by elastic potential energy, 144
energy transfer to/from system, 149
estimating by counting boxes in graphical 

method, 157
in first law of thermodynamics, 406–407
fluid flow and, 308, 308f
by friction, 131–132, 142–143, 142f
on gas

in adiabatic processes, 411–413, 417t
calculating from PV diagram, 404, 405
in general thermodynamic processes, 416–417
in isobaric processes, 409–411, 417t
in isothermal processes, 414–416, 417t
in isovolumetric processes, 413–414, 417t
work done by a gas compared, 403

by gas on its environment (Wenv), 403, 404, 407, 
409, 410

gravitational, 136–137, 136f, 158
by gravity and gravitational potential energy, 

136, 144
by heat engine, 418–419, 423
as scalar quantity, 128, 129
SI (Système International) units, 128, 129, 136
by spring force, 144
by springs and spring potential energy, 144
to stretch a spring, 156–157, 156f
in thermodynamic processes, 402–405
units of, A.21
by a varying force, 155–157, 155f–157f

Work-energy theorem, 157–158
applying, 134
conservative and nonconservative forces, 135, 

148, 158
described, 133
fluid flow and, 308f
with gravitational potential energy and elastic 

(spring) potential energy components, 
144–148, 158

with gravitational potential energy component, 
136–137, 158

problem-solving strategy for, 157–158
rotational motion and, 260, 261–262

Y
Year, time interval for one, 3t
Young’s modulus (Y), 287–288, 288t, 485

Z
Zeros, as significant figures, 8
Zeroth law of thermodynamics, 337f, 338

Velocity (Continued)
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 ■ Ph y s ic a l  c o n st a n ts

Quantity Symbol Value SI unit

Avogadro’s number NA 6.02 � 1023 particles/mol
Bohr radius a 0 5.29 � 10�11 m
Boltzmann’s constant kB 1.38 � 10�23 J/K
Coulomb constant, 1/4pP0 ke 8.99 � 109 N � m2/C2

Electron Compton wavelength h/mec 2.43 � 10�12 m
Electron mass me 9.11 � 10�31 kg
  5.49 � 10�4 u
  0.511 MeV/c 2

Elementary charge e 1.60 � 10�19 C
Gravitational constant G 6.67 � 10�11 N � m2/kg2

Mass of Earth ME 5.98 � 1024 kg
Mass of Moon MM 7.36 � 1022 kg
Molar volume of ideal gas at STP V 22.4 L/mol
  2.24 � 10�2 m3/mol
Neutron mass mn 1.674 93 � 10�27 kg
  1.008 665 u
  939.565 MeV/c 2

Permeability of free space m0 1.26 � 10�6 T � m/A
  (4p � 10�7 exactly)
Permittivity of free space P0 8.85 � 10�12 C2/N � m2

Planck’s constant h 6.63 � 10�34 J � s
 � � h/2p 1.05 � 10�34 J � s
Proton mass mp 1.672 62 � 10�27 kg
  1.007 276 u
  938.272 MeV/c 2

Radius of Earth (at equator) RE 6.38 � 106 m
Radius of Moon RM 1.74 � 106 m
Rydberg constant RH 1.10 � 107 m�1

Speed of light in vacuum c 3.00 � 108 m/s
Standard free-fall acceleration g 9.80 m/s2

Stefan-Boltzmann constant s 5.67 � 10�8 W/m2 � K4

Universal gas constant R 8.31 J/mol � K
The values presented in this table are those used in computations in the text. Generally, the physical constants are known to much better  precision.
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