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Preface

Welcome to Understanding Physics. This book is built on the foundations of the 6th
Edition of Halliday, Resnick, and Walker’s Fundamentals of Physics which we
often refer to as HRW 6th. The HRW 6th text and its ancestors, first written by David
Halliday and Robert Resnick, have been best-selling introductory physics texts for
the past 40 years. It sets the standard against which many other texts are judged. You
are probably thinking, “Why mess with success?” Let us try to explain.

Why a Revised Text?

A physics major recently remarked that after struggling through the first half of his
junior level mechanics course, he felt that the course was now going much better.
What had changed? Did he have a better background in the material they were cov-
ering now? “No,” he responded. “I started reading the book before every class. That
helps me a lot. I wish I had done it in Physics One and Two.” Clearly, this student
learned something very important. It is something most physics instructors wish they
could teach all of their students as soon as possible. Namely, no matter how smart
your students are, no matter how well your introductory courses are designed and
taught, your students will master more physics if they learn how to read an “under-
standable” textbook carefully.

We know from surveys that the vast majority of introductory physics students do
not read their textbooks carefully. We think there are two major reasons why: (1)
many students complain that physics textbooks are impossible to understand and too
abstract, and (2) students are extremely busy juggling their academic work, jobs, per-
sonal obligations, social lives and interests. So they develop strategies for passing
physics without spending time on careful reading. We address both of these reasons
by making our revision to the sixth edition of Fundamentals of Physics easier for stu-
dents to understand and by providing the instructor with more Reading Exercises
(formerly known as Checkpoints) and additional strategies for encouraging students
to read the text carefully. Fortunately, we are attempting to improve a fine textbook
whose active author, Jearl Walker, has worked diligently to make each new edition
more engaging and understandable.

In the next few sections we provide a summary of how we are building upon
HRW 6th and shaping it into this new textbook.

A Narrative That Supports Student Learning

One of our primary goals is to help students make sense of the physics they are learn-
ing. We cannot achieve this goal if students see physics as a set of disconnected mathe-
matical equations that each apply only to a small number of specific situations. We
stress conceptual and qualitative understanding and continually make connections be-
tween mathematical equations and conceptual ideas. We also try to build on ideas that
students can be expected to already understand, based on the resources they bring
from everyday experiences.



In Understanding Physics we have tried to tell a story that flows from one chap-
ter to the next. Each chapter begins with an introductory section that discusses why
new topics introduced in the chapter are important, explains how the chapter builds
on previous chapters, and prepares students for those that follow. We place explicit
emphasis on basic concepts that recur throughout the book. We use extensive for-
ward and backward referencing to reinforce connections between topics. For exam-
ple, in the introduction of Chapter 16 on Oscillations we state: “Although your study
of simple harmonic motion will enhance your understanding of mechanical systems
it is also vital to understanding the topics in electricity and magnetism encountered
in Chapters 30-37. Finally, a knowledge of SHM provides a basis for understanding
the wave nature of light and how atoms and nuclei absorb and emit energy.”

Emphasis on Observation and Experimentation 

Observations and concrete everyday experiences are the starting points for develop-
ment of mathematical expressions. Experiment-based theory building is a major fea-
ture of the book. We build ideas on experience that students either already have or
can easily gain through careful observation.

Whenever possible, the physical concepts and theories developed in Understand-
ing Physics grow out of simple observations or experimental data that can be ob-
tained in typical introductory physics laboratories. We want our readers to develop
the habit of asking themselves: What do our observations, experiences and data imply
about the natural laws of physics? How do we know a given statement is true? Why
do we believe we have developed correct models for the world? 

Toward this end, the text often starts a chapter by describing everyday observa-
tions with which students are familiar. This makes Understanding Physics a text that is
both relevant to students’ everyday lives and draws on existing student knowledge.
We try to follow Arnold Arons’ principle “idea first, name after.” That is, we make
every attempt to begin a discussion by using everyday language to describe common
experiences. Only then do we introduce formal physics terminology to represent the
concepts being discussed. For example, everyday pushes, pulls, and their impact on the
motion of an object are discussed before introducing the term “force” or Newton’s
Second Law. We discuss how a balloon shrivels when placed in a cold environment
and how a pail of water cools to room temperature before introducing the ideal gas
law or the concept of thermal energy transfer.

The “idea first, name after” philosophy helps build patterns of association be-
tween concepts students are trying to learn and knowledge they already have. It
also helps students reinterpret their experiences in a way that is consistent with
physical laws.

Examples and illustrations in Understanding Physics often present data from
modern computer-based laboratory tools. These tools include computer-assisted
data acquisition systems and digital video analysis software. We introduce students
to these tools at the end of Chapter 1. Examples of these techniques are shown in
Figs. P-1 and P-2 (on the left) and Fig. P-3 on the next page. Since many instructors
use these computer tools in the laboratory or in lecture demonstrations, these tools
are part of the introductory physics experience for more and more of our students.
The use of real data has a number of advantages. It connects the text to the stu-
dents’ experience in other parts of the course and it connects the text directly to
real world experience. Regardless of whether data acquisition and analysis tools
are used in the student’s own laboratory, our use of realistic rather that idealized
data helps students develop an appreciation of the role that data evaluation and
analysis plays in supporting theory.
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FIGURE P-1 ■ A video analysis shows 
that the center of mass of a two-puck 
system moves at a constant velocity.
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FIGURE P-2 ■ Electronic temperature
sensors reveal that if equal amounts of hot
and cold water mix the final temperature is
the average of the initial temperatures.



Using Physics Education Research

In re-writing the text we have taken advantage of two valuable findings of physics ed-
ucation research. One is the identification of concepts that are especially difficult for
many students to learn. The other is the identification of active learning strategies to
help students develop a more robust understanding of physics.

Addressing Learning Difficulties
Extensive scholarly research exists on the difficulties students have in learning
physics.1 We have made a concerted effort to address these difficulties. In Under-
standing Physics, issues that are known to confuse students are discussed with care.
This is true even for topics like the nature of force and its effect on velocity and
velocity changes that may seem trivial to professional physicists. We write about
subtle, often counter-intuitive topics with carefully chosen language and examples
designed to draw out and remediate common alternative student conceptions. For
example, we know that students have trouble understanding passive forces such as
normal and friction forces.2 How can a rigid table exert a force on a book that rests
on it? In Section 6-4 we present an idealized model of a solid that is analogous to an
inner spring mattress with the repulsion forces between atoms acting as the springs.
In addition, we invite our readers to push on a table with a finger and experience
the fact that as they push harder on the table the table pushes harder on them in the
opposite direction.

Incorporating Active Learning Opportunities 
We designed Understanding Physics to be more interactive and to foster thoughtful
reading. We have retained a number of the excellent Checkpoint questions found at
the end of HRW 6th chapter sections. We now call these questions Reading Exercises.
We have created many new Reading Exercises that require students to reflect on the
material in important chapter sections. For example, just after reading Section 6-2 that
introduces the two-dimensional free-body diagram, students encounter Reading
Exercise 6-1. This multiple-choice exercise requires students to identify the free-body
diagram for a helicopter that experiences three non-collinear forces. The distractors
were based on common problems students have with the construction of free-body
diagrams. When used in “Just-In-Time Teaching” assignments or for in-class group
discussion, this type of reading exercise can help students learn a vital problem solv-
ing skill as they read.
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FIGURE P-3 ■ A video analysis of human
motion reveals that in free fall the center
of mass of an extended body moves in a
parabolic path under the influence of the
Earth’s gravitational force.

FIGURE P-4 ■ Compressing an
innerspring mattress with a force. The
mattress exerts an oppositely directed
force, with the same magnitude, back on
the finger.

1 L. C. McDermott and E. F. Redish, “Resource Letter PER-1: Physics Education Research,” Am. J. Phys.
67, 755-767 (1999)

2 John J. Clement, “Expert novice similarities and instruction using analogies,” Int. J. Sci. Ed. 20, 1271-1286
(1998)



We also created a set of Touchstone Examples. These are carefully chosen sample
problems that illustrate key problem solving skills and help students learn how to use
physical reasoning and concepts as an essential part of problem solving. We selected
some of these touchstone examples from the outstanding collection of sample problems
in HRW 6th and we created some new ones. In order to retain the flow of the narrative
portions of each chapter, we have reduced the overall number of sample problems to
those necessary to exemplify the application of fundamental principles. Also, we chose
touchstone examples that require students to combine conceptual reasoning with math-
ematical problem-solving skills. Few, if any, of our touchstone examples are solvable us-
ing simple “plug-and-chug” or algorithmic pattern matching techniques.

Alternative problems have been added to the extensive, classroom tested end-
of-chapter problem sets selected from HRW 6th. The design of these new problems are
based on the authors’ knowledge of research on student learning difficulties. Many of
these new problems require careful qualitative reasoning. They explicitly connect con-
ceptual understanding to quantitative problem solving. In addition, estimation problems,
video analysis problems, and “real life” or “context rich” problems have been included.

The organization and style of Understanding Physics has been modified so that it
can be easily used with other research-based curricular materials that make up what
we call The Physics Suite. The Suite and its contents are explained at length at the end
of this preface.

Reorganizing for Coherence and Clarity

For the most part we have retained the organization scheme inherited from HRW
6th. Instructors are familiar with the general organization of topics in a typical course
sequence in calculus-based introductory physics texts. In fact, ordering of topics and
their division into chapters is the same for 27 of the 38 chapters. The order of some
topics has been modified to be more pedagogically coherent. Most of the reorganiza-
tion was done in Chapters 3 through 10 where we adopted a sequence known as New
Mechanics. In addition, we decided to move HRW 6th Chapter 25 on capacitors so it
becomes the last chapter on DC circuits. Capacitors are now introduced in Chapter 28
in Understanding Physics.

The New Mechanics Sequence
HRW 6th and most other introductory textbooks use a familiar sequence in the treat-
ment of classical mechanics. It starts with the development of the kinematic equations
to describe constantly accelerated motion. Then two-dimensional vectors and the
kinematics of projectile motion are treated. This is followed by the treatment of dy-
namics in which Newton’s Laws are presented and used to help students understand
both one- and two-dimensional motions. Finally energy, momentum conservation, and
rotational motion are treated.

About 12 years ago when Priscilla Laws, Ron Thornton, and David Sokoloff were
collaborating on the development of research-based curricular materials, they became
concerned about the difficulties students had working with two-dimensional vectors
and understanding projectile motion before studying dynamics.

At the same time Arnold Arons was advocating the introduction of the concept
of momentum before energy.3 Arons argued that (1) the momentum concept is sim-
pler than the energy concept, in both historical and modern contexts and (2) the study
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(Addison-Wesley, Reading MA, 1965)



of momentum conservation entails development of the concept of center-of-mass
which is needed for a proper development of energy concepts. Additionally, the
impulse-momentum relationship is clearly an alternative statement of Newton’s
Second Law. Hence, its placement immediately after the coverage of Newton’s laws is
most natural.

In order to address these concerns about the traditional mechanics sequence, a
small group of physics education researchers and curriculum developers convened in
1992 to discuss the introduction of a new order for mechanics.4 One result of the con-
ference was that Laws, Sokoloff, and Thornton have successfully incorporated a new
sequence of topics in the mechanics portions of various curricular materials that are
part of the Physics Suite discussed below.5 These materials include Workshop Physics,
the RealTime Physics Laboratory Module in Mechanics, and the Interactive Lecture
Demonstrations. This sequence is incorporated in this book and has required a signifi-
cant reorganization and revisions of HRW 6th Chapters 2 through 10.

The New Mechanics sequence incorporated into Chapters 2 through 10 of under-
standing physics includes:

■ Chapter 2: One-dimensional kinematics using constant horizontal accelerations
and vertical free fall as applications.

■ Chapter 3: The study of one-dimensional dynamics begins with the application of
Newton’s laws of motion to systems with one or more forces acting along a single
line. Readers consider observations that lead to the postulation of “gravity” as a
constant invisible force acting vertically downward.

■ Chapter 4: Two-dimensional vectors, vector displacements, unit vectors and the
decomposition of vectors into components are treated.

■ Chapter 5: The study of kinematics and dynamics is extended to two-dimensional
motions with forces along only a single line. Examples include projectile motion
and circular motion.

■ Chapter 6: The study of kinematics and dynamics is extended to two-dimensional
motions with two-dimensional forces.

■ Chapters 7 & 8: Topics in these chapters deal with impulse and momentum
change, momentum conservation, particle systems, center of mass, and the motion
of the center-of-mass of an isolated system.

■ Chapters 9 & 10: These chapters introduce kinetic energy, work, potential energy,
and energy conservation.

Just-in-Time Mathematics
In general, we introduce mathematical topics in a “just-in-time” fashion. For example,
we treat one-dimensional vector concepts in Chapter 2 along with the development of
one-dimensional velocity and acceleration concepts. We hold the introduction of two-
and three-dimensional vectors, vector addition and decomposition until Chapter 4,
immediately before students are introduced to two-dimensional motion and forces in
Chapters 5 and 6. We do not present vector products until they are needed. We wait to
introduce the dot product until Chapter 9 when the concept of physical work is pre-
sented. Similarly, the cross product is first presented in Chapter 11 in association with
the treatment of torque.
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4 The New Mechanics Conference was held August 6-7, 1992 at Tufts University. It was attended by Pat
Cooney, Dewey Dykstra, David Hammer, David Hestenes, Priscilla Laws, Suzanne Lea, Lillian McDermott,
Robert Morse, Hans Pfister, Edward F. Redish, David Sokoloff, and Ronald Thornton.

5 Laws, P. W. “A New Order for Mechanics” pp. 125-136, Proceedings of the Conference on the Introduc-
tory Physics Course, Rensselaer Polytechnic Institute, Troy New York, May 20-23, Jack Wilson, Ed. 1993
(John Wiley & Sons, New York 1997)



Notation Changes
Mathematical notation is often confusing, and ambiguity in the meaning of a mathe-
matical symbol can prevent a student from understanding an important relationship.
It is also difficult to solve problems when the symbols used to represent different
quantities are not distinctive. Some key features of the new notation include:

■ We adhere to recent notation guidelines set by the U.S. National Institute of Stan-
dard and Technology Special Publication 811 (SP 811).

■ We try to balance our desire to use familiar notation and our desire to avoid us-
ing the same symbol for different variables. For example, p is often used to denote
momentum, pressure, and power. We have chosen to use lower case p for momen-
tum and capital P for pressure since both variables appear in the kinetic theory
derivation. But we stick with the convention of using capital P for power since it
does not commonly appear side by side with pressure in equations.

■ We denote vectors with an arrow instead of bolding so handwritten equations can
be made to look like the printed equations.

■ We label each vector component with a subscript that explicitly relates it to its coor-
dinate axis. This eliminates the common ambiguity about whether a quantity repre-
sents a magnitude which is a scalar or a vector component which is not a scalar.

■ We often use subscripts to spell out the names of objects that are associated with
mathematical variables even though instructors and students will tend to use ab-
breviations. We also stress the fact that one object is exerting a force on another
with an arrow in the subscript. For example, the force exerted by a rope on a
block would be denoted as .

Our notation scheme is summarized in more detail in Appendix A4.

Encouraging Text Reading

We have described a number of changes that we feel will improve this textbook and
its readability. But even the best textbook in the world is of no help to students who
do not read it. So it is important that instructors make an effort to encourage busy
students to develop effective reading habits. In our view the single most effective way
to get students to read this textbook is to assign appropriate reading, reading exer-
cises, and other reading questions after every class. Some effective ways to follow up
on reading question assignments include:

1. Employ a method called “Just-In-Time-Teaching” (or JiTT) in which students
submit their answers to questions about reading before class using just plain
email or one of the many available computer based homework systems (Web
Assign or E-Grade for example). You can often read enough answers before class
to identify the difficult questions that need more discussion in class;

2. Ask students to bring the assigned questions to class and use the answers as a ba-
sis for small group discussions during the class period;

3. Assign multiple choice questions related to each section or chapter that can be
graded automatically with a computer-based homework system; and

4. Require students to submit chapter summaries. Because this is a very effective as-
signment, we intentionally avoided doing chapter summaries for students.

Obviously, all of these approaches are more effective when students are given
some credit for doing them. Thus you should arrange to grade all, or a random sam-
ple, of the submissions as incentives for students to read the text and think about the
answers to Reading Exercises on a regular basis.

F
:
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The Physics Suite

In 1997 and 1998, Wiley’s physics editor, Stuart Johnson, and an informally constituted
group of curriculum developers and educational reformers known as the Activity
Based Physics Group began discussing the feasibility of integrating a broad array of
curricular materials that are physics education research-based. This led to the assem-
bly of an Activity Based Physics Suite that includes this textbook. The Physics Suite
also includes materials that can be combined in different ways to meet the needs of
instructors working in vastly different learning environments. The Interactive Lecture
Demonstration Series6 is designed primarily for use in lecture sessions. Other Suite
materials can be used in laboratory settings including the Workshop Physics Activity
Guide,7 the Real Time Physics Laboratory modules,8 and Physics by Inquiry.9 Addi-
tional elements in the collection are suitable for use in recitation sessions such as the
University of Washington Tutorials in Introductory Physics (available from Prentice
Hall)10 and a set of Quantitative Tutorials11 developed at the University of Maryland.
The Activity Based Physics Suite is rounded out with a collection of thinking problems
developed at the University of Maryland. In addition to this Understanding Physics
text, the Physics Suite elements include:

1. Teaching Physics with the Physics Suite by Edward F. Redish (University of
Maryland). This book is not only the “Instructors Manual” for Understanding
Physics, but it is also a book for anyone who is interested in learning about
recent developments in physics education. It is a handbook with a variety of
tools for improving both teaching and learning of physics — from new kinds of
homework and exam problems, to surveys for figuring out what has happened
in your class, to tools for taking and analyzing data using computers and video.
The book comes with a Resource CD containing 14 conceptual and 3 attitude
surveys, and more than 250 thinking problems covering all areas of introductory
physics, resource materials from commercial vendors on the use of computer-
ized data acquisition and video, and a variety of other useful reference materi-
als. (Instructors can obtain a complimentary copy of the book and Resource
CD, from John Wiley & Sons.)

2. RealTime Physics by David Sokoloff (University of Oregon), Priscilla Laws
(Dickinson College), and Ronald Thornton (Tufts University). RealTime Physics
is a set of laboratory materials that uses computer-assisted data acquisition to
help students build concepts, learn representation translation, and develop an un-
derstanding of the empirical base of physics knowledge. There are three modules
in the collection: Module 1: Mechanics (12 labs), Module 2: Heat and Thermody-
namics (6 labs), and Module 3: Electric Circuits (8 labs). (Available both in print
and in electronic form on The Physics Suite CD.)
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6David R. Sokoloff and Ronald K. Thornton, “Using Interactive Lecture Demonstrations to Create an
Active Learning Environment.” The Physics Teacher, 35, 340-347, September 1997.

7Priscilla W. Laws, Workshop Physics Activity Guide, Modules 1-4 w/ Appendices (John Wiley & Sons, New
York, 1997).

8David R. Sokoloff, RealTime Physics, Modules 1-2, (John Wiley & Sons, New York, 1999).

9Lillian C. McDermott and the Physics Education Group at the University of Washington, Physics by
Inquiry (John Wiley & Sons, New York, 1996).

10Lillian C. McDermott, Peter S. Shaffer, and the Physics Education Group at the University of Washington,
Tutorials in Introductory Physics, First Edition (Prentice-Hall, Upper Saddle River, NJ, 2002).

11Richard N. Steinberg, Michael C. Wittmann, and Edward F. Redish, “Mathematical Tutorials in Introduc-
tory Physics,” in, The Changing Role Of Physics Departments In Modern Universities, Edward F. Redish
and John S. Rigden, editors, AIP Conference Proceedings 399, (AIP, Woodbury NY, 1997), 1075-1092.



3. Interactive Lecture Demonstrations by David Sokoloff (University of Oregon)
and Ronald Thornton (Tufts University). ILDs are worksheet-based guided
demonstrations designed to focus on fundamental principles and address specific
naïve conceptions. The demonstrations use computer-assisted data acquisition
tools to collect and display high quality data in real time. Each ILD sequence is
designed for delivery in a single lecture period. The demonstrations help students
build concepts through a series of instructor led steps involving prediction, discus-
sions with peers, viewing the demonstration and reflecting on its outcome. The
ILD collection includes sequences in mechanics, thermodynamics, electricity, op-
tics and more. (Available both in print and in electronic form on The Physics
Suite CD.)

4. Workshop Physics by Priscilla Laws (Dickinson College). Workshop Physics con-
sists of a four part activity guide designed for use in calculus-based introductory
physics courses. Workshop Physics courses are designed to replace traditional lec-
ture and laboratory sessions. Students use computer tools for data acquisition,
visualization, analysis and modeling. The tools include computer-assisted data
acquisition software and hardware, digital video capture and analysis software,
and spreadsheet software for analytic mathematical modeling. Modules include
classical mechanics (2 modules), thermodynamics & nuclear physics, and electric-
ity & magnetism. (Available both in print and in electronic form on The Physics
Suite CD.)

5. Tutorials in Introductory Physics by Lillian C. McDermott, Peter S. Shaffer and
the Physics Education Group at the University of Washington. These tutorials
consist of a set of worksheets designed to supplement instruction by lectures and
textbook in standard introductory physics courses. Each tutorial is designed for
use in a one-hour class session in a space where students can work in small groups
using simple inexpensive apparatus. The emphasis in the tutorials is on helping
students deepen their understanding of critical concepts and develop scientific
reasoning skills. There are tutorials on mechanics, electricity and magnetism,
waves, optics, and other selected topics. (Available in print from Prentice Hall,
Upper Saddle River, New Jersey.)

6. Physics by Inquiry by Lillian C. McDermott and the Physics Education Group at
the University of Washington. This self-contained curriculum consists of a set of
laboratory-based modules that emphasize the development of fundamental con-
cepts and scientific reasoning skills. Beginning with their observations, students
construct a coherent conceptual framework through guided inquiry. Only simple
inexpensive apparatus and supplies are required. Developed primarily for the
preparation of precollege teachers, the modules have also proven effective in
courses for liberal arts students and for underprepared students. The amount of
material is sufficient for two years of academic study. (Available in print.) 

7. The Activity Based Physics Tutorials by Edward F. Redish and the University of
Maryland Physics Education Research Group. These tutorials, like those devel-
oped at the University of Washington, consist of a set of worksheets developed to
supplement lectures and textbook work in standard introductory physics courses.
But these tutorials integrate the computer software and hardware tools used in
other Suite elements including computer data acquisition, digital video analysis,
simulations, and spreadsheet analysis. Although these tutorials include a range of
classical physics topics, they also include additional topics in modern physics.
(Available only in electronic form on The Physics Suite CD.)

8. The Understanding Physics Video CD for Students by Priscilla Laws, et. al.: This
CD contains a collection of the video clips that are introduced in Understanding
Physics narrative and alternative problems. The CD includes a number of Quick-
Time movie segments of physical phenomena along with the QuickTime player
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software. Students can view video clips as they read the text. If they have video
analysis software available, they can reproduce data presented in text graphs or
complete video analyses based on assignments designed by instructors.

9. The Physics Suite CD. This CD contains a variety of the Suite Elements in elec-
tronic format (Microsoft Word files). The electronic format allows instructors to
modify and reprint materials to better fit into their individual course syllabi.
The CD contains much useful material including complete electronic versions
of the following: RealTime Physics, Interactive Lecture Demonstrations, Workshop
Physics, Activity Based Physics Tutorials.

A Final Word to the Instructor
Over the past decade we have learned how valuable it is for us as teachers to focus on
what most students actually need to do to learn physics, and how valuable it can be for
students to work with research-based materials that promote active learning. We hope
you and your students find this book and the other Physics Suite materials helpful in
your quest to make physics both more exciting and understandable to your students.

Supplements for Use with Understanding Physics

Instructor Supplements
1. Instructor’s Solution Manual prepared by Anand Batra (Howard University). This

manual provides worked-out solutions for most of the end-of-chapter problems.

2. Test Bank by J. Richard Christman (U. S. Coast Guard Academy). This manual in-
cludes more than 2500 multiple-choice questions adapted from HRW 6th. These
items are also available in the Computerized Test Bank (see below).

3. Instructor’s Resource CD. This CD contains: The entire Instructor’s Solutions
Manual in both Microsoft Word© (IBM and Macintosh) and PDF files. A Com-
puterized Test Bank, for use with both PCs and Macintosh computers with full
editing features to help you customize tests. And all text illustrations, suitable for
classroom projection, printing, and web posting.

4. Online Homework and Quizzing: Understanding Physics supports WebAssign
and eGrade, two programs that give instructors the ability to deliver and grade
homework and quizzes over the Internet.

5. The Wiley Physics Demonstration Videos by David Maiullo of Rutgers Univer-
sity consist of over a hundred classic physics demonstrations that will engage and
instruct your students. Filmed, edited and produced by a professional film crew,
the demonstrations include lying on a bed of nails, breaking glass with sound, and,
in a show of atmospheric pressure, crushing a 55-gallon drum. Each demonstra-
tion is labeled according to the Physics Instructional Resource Association’s
demonstration classifying system. This system identifies the area, topic and con-
cept presented in each demonstration. Go to www.pira.nu for more information
about the Physics Instructional Resources Association and to download a spread-
sheet of the demonstration classification systems.

6. Wiley Physics Simulations CD-ROM contains 50 interactive simulations (Java 
applets) that can be used for classroom demonstrations.

Student Supplements
1. Student Study Guide by J. Richard Christman (U. S. Coast Guard Academy). This

student study guide provides chapter overviews, hints for solving selected end-of-
chapter problems, and self-quizzes.
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2. Student Solutions Manual by J. Richard Christman (U. S. Coast Guard Academy).
This manual provides students with complete worked-out solutions for approxi-
mately 450 of the odd-numbered end-of-chapter problems.
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Introduction

The test of all knowledge is experiment. But what is the

source of knowledge? Where do the laws that are to be

tested come from? . . . Experiment, itself, helps to produce

these laws, in the sense that it gives us hints. But also

needed is imagination to create from these hints the great

generalizations—to guess at the wonderful, simple, but very

strange patterns beneath them all, and then to experiment

to check again whether we have made the right guess.1

1R. P. Feynman, The Feynman Lectures on Physics, Ch. 1, (Addison-Wesley, Reading, MA, 1964).



The Nature of Physics and Learning Physics

Welcome to the study of physics. Physics is a process of learning about the physical
world by finding ways to make sense of what we observe and measure. As the inspir-
ing teacher Richard Feynman wrote, “Progress in all of the natural sciences depends
on this interaction between experiment and theory.”2

The point here is that to learn physics you must continually compare and contrast
your observations to your intuitions and expectations. Sometimes your intuitions will
be right, sometimes they’ll be partially right, and sometimes they’ll be dead wrong.
Comparing observations to your intuitions will not only help you learn more physics,
it will help you to understand how scientific knowledge is created.

Physics is supposed to help you make sense of the physical world. If a physical
phenomenon doesn’t make sense at first, keep thinking. Keep analyzing observations
and experiments and considering what they mean. Einstein said, “Physics is the refine-
ment of common sense.” The key here is on the word “refinement.” Physics is more
than common sense. It’s common sense made consistent by continued reference to
both theory and experiment.

In some ways learning physics may seem much simpler than learning biology or
chemistry. There are fewer things to consider and the systems we study are simpler. If
you write down all the most basic equations you encounter in a physics course there
are far fewer to remember than the number of organisms you encounter in a general
biology course or the number of reactions you encounter in general chemistry. Also,
many physical phenomena seem relatively simple. A system consisting of a ball rolling
down an inclined plane or a battery connected to a bulb is a lot simpler than an octo-
pus or the chemical cyclohexane. But many students complain that introductory
physics is harder to learn than other sciences. What’s going on? One problem is that it
is easy to fall into the trap of thinking of physics as a jumble of separate equations to
be memorized. This is not so! Most equations used in introductory physics courses can
be derived from a relatively small number of fundamental relationships.

If you focus your efforts on trying to memorize the properties of hundreds of spe-
cific systems you will quickly get overwhelmed. Instead, you should focus on the na-
ture of the scientific process by studying the behavior of a limited number of ideal sys-
tems. How can you tell whether a prediction you have made about the behavior of a
physical system is correct? How do investigators discover or create “scientific laws?”
How can we be sure a law or theory is valid? These questions are critical to solving
real-world scientific problems such as how to create a new computer chip, diagnose an
illness, or improve the performance of an athlete. Your efforts to learn fundamental
relationships and to apply them to new scientific problems are the key to understand-
ing physics.

The Art of Simplifying

In physics, we try to understand the rules that govern the way the natural world be-
haves. But the natural world is a very complex place. So, we start by considering the
simplest system that allows us to observe and explain a type of behavior. For example,
when studying motion we start with a small object whose structure and shape we can
ignore. We pretend a football is just a tiny blob. We figure out how it moves after be-
ing thrown and under the influence of gravity only—pretending that it is in a vacuum
and that it never rotates or deforms. These are clearly not good assumptions for a real
football! But they provide an excellent starting point for making sense of its basic
motion. Over small distances (a few feet), and for reasonably low speeds (below
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about 20 miles/hour) the idealized description works very well. As you get up to
higher speeds and distances, the effects of the air grow in importance. However, this
additional complication is manageable. Once you understand the basic principles of
motion, you can add details to your “model” to account for the effects of air and
thereby make the situations you understand more realistic and extend the number of
cases you can treat.

A typical physicist’s initial strategy is to understand simple systems as completely
as possible by constructing physical laws that describe them. Once that is accom-
plished, the next step is to add more and more real-world complexity to the system
one step at a time. This is the process investigators use to contribute to the powerful
body of knowledge that is physics. This is the process we suggest you also use to
construct and extend your knowledge of physics.

Using This Book as a Learning Tool   3

FIGURE I-1 ■ Jason being explicit about all the simplifications he is being asked to make.

Expect Surprises

You will probably find many surprises in your study of physics, and you don’t need to
wait until you study relativity or quantum mechanics to do so (though both topics are
really interesting and lots of fun). Even the physics phenomena that we present in the
early chapters of this book will reveal some facts about our everyday world that many
people find surprising. For example, if you take a ball made of lead and a similar ball
made of plastic, the lead ball may weigh 20 times as much as the plastic ball. Yet if you
stand on a chair that is perched on a sturdy table and drop the two balls at the same
time, they fall ten feet to the ground in almost exactly the same time. Why doesn’t the
lead ball go faster? Or, when an object is immersed in water, it seems to weigh less—
and its weight reduction is equal to the weight of the water that it pushed out of the
way. What could that water have to do with anything? That water is gone! When you
connect two identical bulbs up to a battery, if you connect them in one way they’ll
both have the same brightness as a single bulb connected to the battery. But, if you
connect them in another way, they both get much dimmer. Huh? Why does that hap-
pen? This book is full of such surprises.

Using This Book as a Learning Tool

This textbook is one of many resources that you will need to make use of in order to
learn physics. It is very important that you read this textbook on a regular basis and

FIGURE I-2 ■ Two balls with different
masses fall with the same acceleration
whenever air drag is negligible.



do the Reading Exercises at the end of many sections in each chapter. We attempt to
present both the experimental results that support theories and some of the reasoning
that has gone into the development of theories. However, you will understand the
physics only when you make your own observations and are actively engaged in rea-
soning. So, it is critical that you observe a physical phenomenon directly or ponder the
outcome of an experiment that we describe. Then you need to think about whether
the explanation of the phenomenon we present makes sense. In addition, you must
test and refine your understanding of theoretical concepts by applying them to solving
problems included at the end of each chapter. Solving problems requires you to use
both the physical principles you have learned and the mathematical relationships that
describe these principles. Finally, if possible, you will want to test your understanding
of physical systems by predicting the outcomes of experiments that you can perform
in a basic introductory physics laboratory.

We hope this book will help you enjoy the practice of physics as much as we do.

4 Introduction
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and Patrick J. Cooney. Photo by
David Hildebrand.
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1 Measurement

You can watch the Sun set and disappear over a calm

ocean, once while lying on the beach, and then once again

if you stand up. This is a surprising observation!

Furthermore, if you measure the time between the two

sunsets, you can approximate the Earth’s radius by using an

understanding of the shape and motion of the Earth

relative to the Sun along with some basic high school

mathematics.

How can such a simple
observation be used to
measure the Earth? 

The answer is in this chapter.



1-1 Introduction

Physics is the study of the basic components of the universe and their interactions.
The fact that you can use the time difference between sunsets while lying on the
beach and then standing to estimate the size of the earth is indeed surprising to most
people. It is one example of how the interplay between mathematics, theoretical prin-
ciples, and observations allow us to develop a deeper understanding of the physical
world. In fact, the ongoing quest of physics is to develop a unified set of ideas to ex-
plain apparently different phenomena. Scientific theories are only valid if they serve
to explain and predict the outcomes of new observations and experiments. Many the-
ories in physics are expressed in mathematical equations, and predictions usually in-
volve quantities that can be measured.

Measurement is the process of associating numbers with physical quantities. In
fact, physical quantities are defined in terms of the procedures used to measure them.
But the numbers that result from measurements are not meaningful unless people
who are using and interpreting them know what was measured and what units were
used to obtain the numbers. For example, if you were asked to go to a store to buy 27,
you would immediately ask 27 of what? If you were told 27 containers of milk, you
might ask 27 of what size or unit—pints, quarts, or gallons? Unambiguous communi-
cation with others about the results of a scientific measurement requires agreement
on (1) the definition of the physical quantity and (2) the basic units used for compari-
son when the measurements are made.

The focus in this chapter will be on the fundamental physical quantities and mea-
surement processes used to study motion. Later on we introduce additional physical
quantities defined for the study of thermal interactions, electricity, magnetism, and
light. You will learn about common elements of physical measurements, reasons why
precise measurements are highly valued, and the international system of standard ba-
sic units that allows scientists all over the world to communicate with each other.

1-2 Basic Measurements in the Study of Motion 

A long jumper speeds up along a runway, leaps into the air, and then comes to a sud-
den stop in a sand pit. How can such a motion be described and studied scientifically?

In studying motion, at least three questions come to mind. How far has something
moved and in what directions? How long did it take? How much stuff was moved?
Let’s consider length, time, and mass, the three basic physical quantities used in the
study of motion. How are they usually defined? What procedures are used to measure
them on an everyday basis? 

Length: Our “How far?” question involves being able to measure the distance
between two points. Suppose you had no measuring instrument. Is there any way you
could meaningfully ask and answer the question, “What is the total distance that the
jumper ran?” The only approach possible would be to compare this distance to
the size of one of your body parts such as your hand or foot. It is not surprising that
the hand and the foot have been used throughout history as basic units of measure-
ment. The distance can then be described as a ratio between it and a convenient item
chosen to be a length standard.

Time: To answer the question, “How long did it take?” you need to be able to mea-
sure a time interval. To do this, you define the time between repetitive events as a
standard. Historically, repetitive events that have been used as time standards have in-
cluded the day (the time it takes for the Sun to appear to revolve around the Earth),
the year, and the time it takes for a pendulum of a certain length to swing back and
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forth. A time interval, or time duration, is measured by determining how many years
have passed or how many swings of a pendulum have occurred during the interval be-
ing measured.

Mass: Mass is a measure of “amount of stuff.” Throughout recorded history,
merchants and scientists have used balances to determine how many units of “stan-
dard mass” are needed to balance whatever is being measured. (See Fig. 1-1.) A stan-
dard of mass can be a certain object that everyone agrees should be used. Replicas of
the standard mass that balance with it can be passed around and used by many people.

The everyday procedures outlined above for measuring length, time, and mass
share common elements that characterize all physical quantities.

1. These quantities are defined by the procedures used to measure them.

2. Their measurement always involves the determination of a ratio between a unit,
known as a base quantity, and the quantity being measured.

3. Such comparisons can only be made with limited precision.

As you will see, there are often many alternative procedures that can be used to
measure the same quantity. Indeed, a major factor in the progress of science and tech-
nology has been the discovery of better, more precise methods of measurement.

READI NG EXERC IS E  1-1 : List one common base unit used for time, for length, and
for mass not mentioned in the discussion in this section. ■

READI NG EXERC IS E  1-2 : What is a more precise base unit for length measurement
that is reliable over a period of years—a 12-inch ruler or your foot? Explain the reason for
your answer. ■

READI NG EXERC IS E  1-3 : What problems might arise when using the length of the
day as a standard unit of time? ■

1-3 The Quest for Precision

Using a grocery store spring scale to find an apple’s mass is fine for shopping
purposes. But a mass can be determined to a far greater precision with a chemical
microbalance. At best, the apple’s mass can only be determined to the nearest 
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FIGURE 1-1 ■ A common method of de-
termining mass assumes two objects have
the same mass if they balance each other.



gram, whereas the chemistry lab sample can be determined to the nearest hundred-
thousandth of a gram.

Throughout history people have sought to measure physical quantities as pre-
cisely as possible, because reducing measurement uncertainties has been of tremen-
dous importance in commerce, navigation, astronomical observation, engineering, and
scientific research. For example, in 1707, the British navy lost almost 2000 men when
four warships ran aground because navigators were unable to measure longitude with
sufficient precision. In 1714, as a result of this mishap and others, the British govern-
ment offered a prize of £20,000 (current value about $12 million) to anyone who
could devise a scheme to measure longitude to within half a degree. John Harrison, a
self-educated clockmaker, collected the prize in 1765 after designing a series of elabo-
rate chronometers. His early models were driven by a combination of rust-proof brass
and self-lubricating wooden gears that kept time to within 1 second per day.

HOW CAN TIME MEASUREMENTS BE USED TO DETERMINE LONGITUDE? Harrison’s measure-
ment technique is one of several examples of how a time standard and a knowledge of how
fast something is moving are used to measure distance more precisely. In this case, since the
Earth turns through 360° on its axis in 24 hours, a precise chronometer can be set so that it
reads exactly noon when the Sun is at its highest point in a port with known longitude. Out
at sea, the clock time that was set in port will differ from the local solar time by 4 minutes
for each degree of longitude difference. Thus, the difference between the observed local
noon and the clock reading can then be used to calculate longitude.

Of all the measured quantities, time and other measurements based on time are
the most precise. By the end of the 20th century, many of us were wearing inexpensive
digital watches driven by the oscillations of quartz crystals. These watches are 1000
times better than John Harrison’s chronometer, since they are accurate to within 1
part in 108 or 1 thousandth of a second per day. Atomic clocks, precise to 3 billionths
of a second per day, are now being used as time standards in many countries.

READI NG EXERC IS E  1-4 : A ship embarks from Southampton, England where its
clock was set to 12:00:00 at local noon. After 14 days under sail its chronometer reads 12 h 20
min 13 s at the moment the Sun is highest in the sky (local noon). (a) By how many degrees has
the ship’s longitude changed? (b) Suppose the clock is not precise and has gained 2 minutes out
of the 20 160 minutes that have elapsed since it set sail. How far off will the longitude measure-
ment be? (c) The circumference of the Earth is 24 000 nautical miles. Suppose the ship was
traveling along the equator. How many miles off  course could the ship be if the uncertainty of
longitude is 0.5°? ■

1-4 The International System of Units

In the past, communication between scientists was complicated by the fact that for
every physical quantity there were a multitude of measurement procedures and ba-
sic units of comparison. In addition, there are so many physical quantities that it is
a problem to organize them. Fortunately, these quantities are not all independent;
for example, speed is the ratio of a length to a time. Thus, what we do is pick out —
by international agreement — a small number of physical quantities, such as length
and time, and assign standards to them alone. We then define all other physical
quantities in terms of these base quantities and their standards (which we now call
base standards). Speed, for example, is defined in terms of the base quantities
length and time.
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WHY IS IT IMPORTANT TO HAVE A STANDARD SYSTEM OF UNITS THAT IS USED BY ALL
SCIENTISTS AND ENGINEERS? In December 1998, the National Aeronautics and Space Ad-
ministration launched the Mars Climate Orbiter on a scientific mission to collect Martian
climate data. Nine months later, on September 23, 1999, the Orbiter disappeared while ap-
proaching Mars at an unexpectedly low altitude. (See Fig. 1-2). An investigation revealed
that the orbital calculations were incorrect due to an error in the transfer of information be-
tween the spacecraft’s team in Colorado and the mission navigation team in California. One
team was using English units such as feet and pounds for a critical calculation, while the
other group assumed the result of the calculation was being reported in metric units such as
meters and kilograms. This misunderstanding about the units being used cost U.S. taxpayers
approximately 125 million dollars.

In 1971, the 14th General Conference on Weights and Measures recognized the
need to use standard units for physical quantities. Conference attendees chose seven
physical quantities as base quantities and defined a standard unit of measure for each
one. Although other sets of physical quantities could be defined, the seven shown in
Table 1-1 form the basis of the widely accepted International System of Units. The
system is popularly known as the metric system or by its abbreviation, SI, which de-
rives from its French name, Système International.

All other SI units are known as derived units because they can be expressed in
terms of the base units. For example, the SI unit for power, called the watt (symbol:
W), is defined in terms of the base units for mass, length, and time. As you will see in
Chapter 9,

1 watt � 1 W � 1 kg � m2/s3. (1-1)

The fact that the dozens of units used in different branches of physics can all be de-
rived from a set of seven base units seems incredible and is a profound testimonial to
the unity of physics.

To express the very large and very small quantities that we often run into in
physics, we use scientific notation, which employs powers of 10. In this notation,

3 560 000 000 m � 3.56 � 109 m (1-2)

and 0.000 000 492 s � 4.92 � 10�7 s. (1-3)

Scientific notation on computers sometimes takes on an even briefer look, as in 3.56
E9 and 4.92 E-7, where E stands for “exponent of ten.” It is briefer still on some cal-
culators, where E is replaced with an empty space.

The International System of Units   9

FIGURE 1-2 ■ The Mars Climate Orbiter
failed to go into orbit around Mars and
disappeared due to a miscalculation that
resulted from confusion about what units
were being used.

TA B L E 1 - 1
The SI Base Units

Quantity Unit Name Unit Symbol

Length meter m

Time second s

Mass kilogram kg

Amount of substance mole mol

Electric current ampere A

Thermodynamic temperature kelvin K

Luminous intensity candela cd



When reporting the results of very large or very small measurements, it is conve-
nient to define prefixes that designate what power of ten a number has. For example,
we can use the prefix kilo-, which represents 103, to express 1.0 � 103 grams as 1.0
kilogram. Some of the most common prefixes used in physics and engineering are
listed in Table 1-2. A complete list of SI prefixes is included on the inside front cover.
As you can see, each prefix represents a certain power of 10 as a factor. Attaching a
prefix to an SI unit has the effect of multiplying it by the associated factor. Thus, we
can express a particular electric power as

1.27 � 109 watts � 1.27 gigawatts � 1.27 GW, (1-4)

or a particular length as

2.35 � 10�9 m � 2.35 nanometers � 2.35 nm. (1-5)

Some prefixes, as used in milliliter, centimeter, kilogram, and megabyte, may be
familiar to you.

Once we have set up a standard unit—say, for length—we must work out proce-
dures by which any length, be it the distance to a star or the radius of a hydrogen
atom, can be expressed in terms of the standard. Rulers, which approximate our
length standard, give us one such procedure for measuring length. We can use a ruler
to measure another length by counting how many times the standard can be fit, laid
end-to-end, to the other length. The count is our assigned length and is given in terms
of the standard’s unit. However, many of our comparisons must be indirect. You can-
not use a ruler, for example, to measure the distance to a star or the radius of an atom.
Figure 1-3 shows an image of the surface of a crystal of silicon obtained with a mod-
ern scanning probe microscope.

Base standards must be both accessible and invariable. If we define the length
standard as the distance between one’s nose and the index finger on an outstretched
arm, we certainly have an accessible standard—but it will, of course, vary from per-
son to person. The demand for precision in science and engineering pushes us to aim
first for invariability. We then exert great effort to make duplicates of the base stan-
dards that are accessible to those who need them. In the United States, the National
Institute of Standards and Technology (NIST) is responsible for maintaining base
standards and researching issues related to measurement.

The topics that we will investigate first, those related to the physics of forces and
motion, require that we make measurements of time, length, and mass. Therefore, we
begin by discussing the formal SI definitions of these quantities.
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TA B L E 1 - 2
Common Prefixes for SI Units

Factor Prefix Symbol Factor Prefix Symbol

1012 tera- T 10�15 femto- f

109 giga- G 10�12 pico- p

106 mega- M 10�9 nano- n

103 kilo- k 10�6 micro- �

10�3 milli- m

10�2 centi- c

10�1 deci- d

FIGURE 1-3 ■ Two different surfaces of a
crystal of pure silicon.



1-5 The SI Standard of Time

Time has two separate aspects that are important in physics. We may want to note at
what moment an event occurred or began, or we may want to know how long the
event lasted. These are two very different aspects of the measurement of time. For ex-
ample, the moment at which your physics teacher walks into the room for class on a
given day will be measured differently by different students because their watches
will not all be synchronized. However, the measured duration of the class will not be
affected by the fact that the watches are not synchronized. Thus, “When did it hap-
pen?” and “What is its duration?” are two different questions.

Any phenomenon that regularly repeats itself is a possible time standard. The
Earth’s rotation, which determines the length of the day, has been used in this way for
centuries. Originally the second was defined as the fraction 1�86 400 of a “mean solar
day.” Figure 1-4 shows a two-century-old example of a time-keeping instrument used
to measure the Earth’s rotation in terms of a 20-hour day. A quartz clock, in which a
quartz ring is made to vibrate continuously, can be calibrated against Earth’s rotation
via astronomical observations and used to measure time intervals in the laboratory.
However, even this calibration cannot be carried out with the accuracy called for by
modern scientific and engineering technology.

To meet the need for more accuracy in the measurement of time, atomic clocks
have been developed that replace the use of Earth’s rotation in the definition of our
time standard. In 1967, the 13th General Conference on Weights and Measures
adopted a standard second based on the radiation absorption characteristics of the ce-
sium-133 atom. Like other atoms, a cesium-133 atom can absorb electromagnetic radi-
ation that has a very precise frequency when the atom makes a transition between
two of its well-defined energy states known in technical jargon as “hyperfine levels.”
The fixed frequency of this external radiation is used to drive a cesium clock. Such a
precisely repetitive event is just what is needed for a high-precision timekeeper. Al-
though the technical details of how a cesium clock works is beyond the scope of this
text, interested readers can consult the NIST web site at http://www.nist.gov for more
information about how the cesium clock is used as a time standard. (See Fig. 1-5.) This
new SI standard of time defines the second as follows:

One second is the duration of 9 192 631 770 periods of the radiation corresponding to the
transition between the two hyperfine levels of the ground state of the cesium-133 atom.

An atomic clock at NIST is the standard for Coordinated Universal Time (CUT)
in the United States. Its time signals are available from NIST’s Web site listed previ-
ously. You can also download a Java program from this site that will synchronize your
computer’s clock to Coordinated Universal Time so you can use your computer as a
time standard by which to set other clocks.

Atomic clocks are so consistent that, in principle, two cesium clocks would have
to run for 6000 years before their readings would differ by more than 1 second. This
amounts to a precision better than 1 part in 1011. Even such accuracy pales in compar-
ison to that of clocks currently being developed; their precision may be as fine as 1
part in 1018.

READI NG EXERC IS E  1-5 : (a) You and a friend are observing a storm. Each of you
has your own watch. Describe under what conditions you will both measure the same time for a
flash of lightning. Describe under what conditions you will both measure the same duration of
time between the lightning flash and the clap of thunder. (b) Look at Fig. 1-4. Do the 10-hour
and 12-hour clocks really show the same time? ■
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FIGURE 1-5 ■ The cesium fountain atomic
frequency standard developed at the 
National Institute of Standards and 
Technology in Boulder, Colorado. It is the
primary standard for the unit of time in 
the United States. To set your watch by it,
call (303) 499-7111,
or call (900) 410-8463 or
http://tycho.usno.navy.mil/time.html for
Naval Observatory time signals.

FIGURE 1-4 ■ When the metric system
was proposed in 1792, the hour was rede-
fined to provide a 20-hour day. The idea
did not catch on. The maker of this watch
wisely provided a small dial that kept both
10-hour and conventional 12-hour time.
Do the two dials indicate the same time?

http://www.nist.gov
http://tycho.usno.navy.mil/time.html


1-6 The SI Standards of Length

In 1792, the newly born Republic of France established a new system of weights
and measures. Its cornerstone was the meter, defined to be one ten-millionth of
the distance from the North Pole to the equator. However, the first prototype of a 
1-meter-long rod was short by 0.2 millimeter, because researchers miscalculated the
flattening of the Earth due to its rotation. Nonetheless, this shortened length became
the standard meter. For practical reasons, the meter came to be defined as the dis-
tance between two fine lines engraved near the ends of a special platinum-iridium
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Suppose that while lying on a beach watching the Sun set over a
calm ocean, you start a stopwatch just as the top of the Sun disap-
pears. You then stand, elevating your eyes by a height h � 1.70 m,
and stop the watch when the top of the Sun again disappears. If the
elapsed time on the watch is t � 11.1 s, what is the radius r of
Earth?

S O L U T I O N ■ A Ke y  I d e a here is that just as the Sun disap-
pears, your line of sight to the top of the Sun is tangent to Earth’s
surface. Two such lines of sight are shown in Fig. 1-6. There your
eyes are located at point A while you are lying, and at height h
above point A while you are standing. For the latter situation, the
line of sight is tangent to Earth’s surface at point B. Let d represent
the distance between point B and the location of your eyes when
you are standing, and draw radii r as shown in Fig. 1-6. From the
Pythagorean theorem, we then have

d 2 � r2 � (r � h)2 � r2 � 2rh � h2,

or d 2 � 2rh � h2. (1-6)

Because the height h is so much smaller than Earth’s radius r, the
term h2 is negligible compared to the term 2rh, and we can rewrite
Eq. 1-6 as

d 2 � 2rh. (1-7)

In Fig. 1-6, the angle between the radii to the two tangent points A
and B is �, which is also the angle through which the Sun moves
about Earth during the measured time t � 11.1 s. During a full day,
which is approximately 24 h, the Sun moves through an angle of
360° about Earth. This allows us to write 

which, with t � 11.1 s, gives us

Again in Fig. 1-6, we see that d � r tan �. Substituting this for d in
Eq. 1-7 gives us

r2 tan2 � � 2rh,

or

Substituting � � 0.04625° and h � 1.70 m, we find

(Answer)

which is within 20% of the accepted value (6.37 � 106 m) for the
mean radius of Earth.

r �
(2)(1.70 m)

tan2 (0.04625	)
� 5.22 � 106 m,

r �
2h

tan2 �
.

� �
(360	)(11.1 s)

(24 h)(60 min/h)(60 s/min)
� 0.04625	.

�

360	
�

t
24 h

,

TOUCHSTONE EXAMPLE 1-1*: Sunset

*Adapted from “Doubling Your Sunsets, or How Anyone Can Measure the
Earth’s Size with a Wristwatch and Meter Stick,” by Dennis Rawlins,
American Journal of Physics, Feb. 1979, Vol. 47, pp. 126–128. This technique
works best at the equator.

First sunset

r

d

θ

θ

r
B

A

Second sunset

Distant Sun

Line of sight to
top of the Sun

h

Center of Earth

FIGURE 1-6 ■ Your line of sight to the top of the setting Sun ro-
tates through the angle � when you stand up at point A, and elevate
your eyes by a distance h. (Angle � and distance h are exaggerated
here for clarity.)



bar, the standard meter bar, which was kept at the International Bureau of Weights
and Measures near Paris. Accurate copies of the bar have been sent to standards labo-
ratories throughout the world including NIST.

Eventually, modern science and technology required an even more precise stan-
dard. Today, the length standard is based on the speed of light. As you will learn in
Chapter 38, one of the landmark discoveries of the 20th century was Einstein’s recog-
nition that the speed of light in a vacuum is the same for all observers. Since the speed
of light can be measured to very high precision, it was adopted as a defined quantity
in 1983. Time measurements with atomic clocks are also very precise, so it made sense
to redefine the meter in terms of the time it takes light to travel 1 meter. By defining
the speed of light c to be exactly

c � 299 792 458 m�s, (1-8)

light would travel 1 meter in a time period equal to 1�299 792 458 of a second. That is,
if one takes this speed and multiplies by this time period, then the distance traveled
by the light is exactly 1 meter. According to the 17th General Conference on Weights
and Measures:

The meter is the length of the path traveled by light in a vacuum during a time interval of
1�299 792 458 of a second.

This approach of measuring lengths in terms of a speed and time is similar to that
taken by John Harrison in the 18th century when he proposed measuring longitude in
terms of the angular speed of the Earth’s rotation and time.

Defining the standard meter in terms of the time it takes light to travel a meter
has not done away with the need for secondary standards like bars of metal with fine
lines delineating the beginning and end points of a meter. We currently use the metal
bar as a secondary standard against which we can easily compare other objects. Defin-
ing the meter in terms of the speed of light simply gives us a more precise way to ver-
ify that our secondary standard is correct.

1-7 SI Standards of Mass

Currently there are two accepted base units for mass—one suitable for determining
large masses and the other for determining masses on an atomic scale.

The Standard Kilogram
The initial SI standard of mass is a platinum-iridium cylinder (Fig. 1-7) kept at the In-
ternational Bureau of Weights and Measures near Paris. By international agreement,
it is defined as a mass of 1 kilogram. Accurate replicas have been sent to standards
laboratories in other countries, and the masses of other bodies can be determined by
balancing them against a replica. The United States copy of the standard kilogram is
housed in a vault at NIST. It is removed, no more than once a year, for the purpose of
checking replicas used elsewhere. Since 1889, the U.S. replica of the standard kilogram
has been taken to France twice for comparison with the primary standard.

The Atomic Mass Unit
The mass of the known universe is estimated to be 1 � 1053 kg. In contrast, the elec-
tron, which plays a vital role in chemical bonding, has a mass of 9 � 10�31 kg. Obvi-
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FIGURE 1-7 ■ The international 1 kg stan-
dard of mass is a cylinder 39 mm in both
height and diameter.



Sensor

Interface

Computer with
data acquisition
software

ously, the masses of electrons and atoms can be compared with each other more pre-
cisely than they can be compared with the standard kilogram. For this reason, we have
a second mass standard. It is the carbon-12 atom, which, by international agreement,
has been assigned a mass of 12 atomic mass units (u). The relation between the atomic
mass unit and the kilogram is

1 u � 1.660 538 73 � 10�27 kg, (1-9)

with an uncertainty of 
13 in the last two decimal places. Scientists can determine the
masses of other atoms relative to the mass of carbon-12 with much better precision
than they can using a standard kilogram.

We presently lack a reliable way to extend the precision of the atomic mass unit
to more common units of mass, such as the kilogram. However, it is not hard to imag-
ine how one might do this. If we had an object made up of carbon-12 atoms and knew
the exact number of atoms in the object, than we could build a precise standard kilo-
gram based on the atomic unit. Work on this is currently underway at NIST and other
similar institutions.

READI NG EXERC IS E  1-6 : Describe a procedure for determining the mass of the ob-
ject that has a mass much less than 1 kilogram. Assume that you have a balance, a replica of a
standard kilogram, and a big blob of clay available to you. ■

1-8 Measurement Tools for Physics Labs 

Institutions like NIST and the International Bureau of Weights and Measures in Paris
have many exotic instruments for performing extremely precise measurements. Tradi-
tionally, physics students use more common measuring tools in the laboratory, such as
meter sticks, vernier calipers (Fig. 1-8), mechanical and electronic balances, digital
stopwatches, and multimeters. With careful use, these tools provide adequate preci-
sion for studying the time durations and distances investigated in introductory physics
laboratories.

In the past few years, new computer tools have become popular in introductory
laboratories and in interactive lecture demonstrations. These tools greatly enhance
the speed and precision of measurements while allowing students to make many mea-
surements easily and accurately. These tools include computer data acquisition
systems (Fig. 1-9) and video capture and analysis tools. Data obtained using these new
computer tools will be shown throughout this text. These data will be used to provide
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FIGURE 1-8 ■ Vernier calipers are cleverly
designed to make length measurements to
within 1/10 of a millimeter.

FIGURE 1-9 ■ The photo shows a computer data acquisition system consisting of a sensor, an
interface, a computer, and software for real-time data collection.



experimental evidence to motivate and test various theories presented in this book.
You may be replicating some of these experiments in laboratory or lecture sessions.

Computer Data Acquisition System 
When a sensor is attached to a computer through an interface, a very powerful data
collection, analysis, and display system is created.* Computers coupled with appropri-
ate software packages are capable of analyzing signals and displaying them on the
screen in easily understood formats. Using these capabilities, a graphical representa-
tion of data can be displayed in “real time.”

A number of different sensors are used in contemporary introductory physics lab-
oratories (Fig. 1-10). These include sensors for the detection of linear and rotational
motion (Fig. 1-11), acceleration, force, temperature, pressure, voltage, current, and
magnetic field. To determine distances, the most popular motion sensor emits pulses
of ultra high frequency sound. Although these ultrasonic pulses are above the range
of human hearing, the motion sensor can detect reflections of these pulses after they
bounce off objects within the sensor’s field of “view.”

Since the speed of ultrasound in room temperature air is known, the computer
motion software can calculate the distance to an object by recording how long the
pulse takes to reflect off the object and return to the sensor. This is similar to how a
bat “sees,” and how some auto-focus cameras determine the distance to an object.
This approach to measuring a distance or length is not unlike that used by interna-
tional standards organizations to define the meter in terms of the speed of light. Since
ultrasonic motion detectors can send and receive short pulses up to 50 times a second,
the computer software can also make rapid calculations of velocities and accelera-
tions of slowly moving objects “on the fly,” and graph them in real time. Sample
graphs are shown in Fig. 1-12.

Digital Video Capture and Analysis Tools 
Software and hardware enable student investigators to digitize images from a video
camera, VCR, or videodisc. Once a digital video movie is created, it can be analyzed
using video analysis software. Video data are collected by locating items of interest in
each frame of a movie as it is displayed on a computer screen. Video analysis is a use-
ful tool for studying one- and two-dimensional motions, electrostatics, and digital sim-
ulations of molecular motions. Examples of digital video clips and their analysis will
be presented in this text from time to time. (See Figs. 1-13 and 1-14).
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FIGURE 1-11 ■ Two electronic interfaces used in popular intro-
ductory physics computer data acquisition systems: The LabPro
Interface (Vernier Software and Technology) and the Science
Workshop 500 Interface (PASCO scientific).

* These systems go by many names, such as computer-based data collection system, e-measure, CADAA
(computer-assisted data acquisition and analysis system), or MBL system (Microcomputer Based Labora-
tory system).

FIGURE 1-10 ■ An ultrasonic motion
detector.
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FIGURE 1-12 ■ Real-time graphs of posi-
tion, velocity, or acceleration, as a function
of time, can be generated by an ultrasonic
motion detector.



1-9 Changing Units

An American traveling overseas notices a road sign indicating that the distance to the
next town is 32 km. She wants to get a feel for how far away the town is, and needs to
convert the kilometers to the more familiar units of miles. How would she go about
doing that?

We often need to change the units in which a physical quantity is expressed. A
good method is called chain-link conversion. In this method, we multiply the original
measurement by one or more conversion factors. A conversion factor is defined as a
ratio of units that is equal to 1. For example, because 1 mile and 1.61 kilometers are
identical distances, we have 

and also . (1-10)

Thus, the ratios (1 mi)/(1.61 km) and (1.61 km)/(1 mi) can be used as conversion
factors. This is not the same as writing 1/1.61 � 1 or 1.61 � 1; each number and its unit
must be treated together. Because multiplying any quantity by one leaves it un-
changed, we can introduce such conversion factors wherever we find them useful. In
chain-link conversion, we use the factors to cancel unwanted units. For example, to
convert 32 kilometers to miles, we have 

32 km � (32 km) � 20 mi. (1-11)

Suppose instead that our traveler wanted to know how many feet there are in 32 kilo-
meters. Then two conversion factors would be needed, so that

32 km � (32 km) � 1.05 � 105 ft. (1-12)

The number of feet is expressed in scientific notation so that the correct number
of significant figures can be represented. See the next section and Appendix A for
more details on how to represent significant figures properly.

Appendix D and the inside back cover give conversion factors between SI and
other systems of units, including many of the non-SI units still used in the United
States. However, the conversion factors are written in the style of “1 mi � 1.61 km”
rather than the ratios we show here.

It is important to note that the value of a physical quantity is actually the product
of a number and a unit. Thus, the number associated with a particular physical quan-
tity depends on the unit in which it is expressed. For example, the distance to the trav-

� 1 mi
1.61 km �� 5280 ft

1 mi �

� 1 mi
1.61 km �

1.61 km
1 mi

� 1
1 mi

1.61 km
� 1
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FIGURE 1-13 ■ An overlay of five digital
video frames showing a ballet dancer mov-
ing toward the left while performing a
grand jeté.
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FIGURE 1-14 ■ A video analysis of the
motion of the dancer reveals that while
performing the grand jeté depicted in Fig.
1-13, her head is moving in a straight hori-
zontal line between the times 0.180 s and
0.330 s. To observers following the motion
of her head, the dancer appears to be float-
ing for this short period of time. How does
she accomplish this? In Chapter 8 we de-
scribe how video analysis helps us explore
this question.



READI NG EXERC IS E  1-7 : (a) Explain why it is correct to write 1 min�60 s � 1, but
it is not correct to write 1�60 � 1. (b) Use the relevant conversion factors and the method of
chain-link conversions to calculate how many seconds there are in a day. ■

1-10 Calculations with Uncertain Quantities 

Issue 1: Significant Figures and Decimal Places 
In July 1988, in Indianapolis, Indiana, the U.S.’s Florence Griffith Joyner set a
world record in the women’s 100-meter dash with an official time of 10.49 seconds
(Fig. 1-15). The timing in the race is considered good to the nearest 1�100 of a second.
Suppose you had been asked to report the time in minutes instead of seconds. If you
used a calculator to transform the 10.49 seconds into minutes by multiplying by (1
min)�(60 s), you might report the following by copying all the digits on your display:

10.49 s � (10.49 s) � 0.174 833 333 min. (1-13)

No matter how precise a measuring instrument is, all measured quantities have
uncertainties associated with them. The precision implied by the calculated time in
minutes shown above is both meaningless and misleading! We should have rounded
the answer to four significant digits, 0.1748 min, so as not to imply that it is more pre-
cise than the given data. The given time of 10.49 seconds consists of four digits, called
significant figures. This tells us we should round the answer to four significant figures.
In this text, final results of calculations are often rounded to match the least number
of significant figures in the given data. Significant figures should not be confused with
decimal places. Consider the lengths 35.6 mm, 3.56 cm, and 0.0356 m. They all have
three significant figures, but they have one, two, and four decimal places, respectively.

� 1 min
60 s �
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FIGURE 1-15 ■ The late Florence Griffith
Joyner set a world’s record in the women’s
100-meter dash in 1988.

When Pheidippides ran from Marathon to Athens in 490 B.C.E. to
bring word of the Greek victory over the Persians, he probably ran
at a speed of about 23 rides per hour (rides/h). The ride is an an-
cient Greek unit for length, as are the stadium and the plethron: 1
ride was defined to be 4 stadia, 1 stadium was defined to be 6
plethra, and, in terms of a modern unit, 1 plethron is 30.8 m. How
fast did Pheidippides run in kilometers per second (km/s)?

S O L U T I O N ■ The Ke y  I d e a in chain-link conversions is to
write the conversion factors as ratios that will eliminate unwanted

units. Here we write

(Answer)

� 4.7227 � 10�3 km/s � 4.7 � 10�3 km/s.

� 30.8 m
1 plethron ��

 1 km
1000 m �� 1 h

3600 s �
23 rides/h � �23

rides
h �� 4 stadia

1 ride �� 6 plethra
1 stadium �

TOUCHSTONE EXAMPLE 1-2: Marathon

eler’s town has a value of 32 km. The numerical component of its value expressed in
the unit “kilometers” is 32. However, the value of the distance when expressed in
miles is 20 mi, and the numerical component of its value when expressed in miles is
20. Since 20 miles is actually the same distance as 32 kilometers, it is meaningful to
write 32 km � 20 mi. In this context the equal sign (�) signifies that 32 km is the same
distance as 20 mi expressed in different units. However, it is totally meaningless to
write 32 � 20. Thus it is extremely important to include appropriate units in all calcu-
lations.



As you work with scientific calculations in data analysis in the laboratory or com-
plete the problems in this text, it is important to pay strict attention to reporting your
answer to the same precision as the lowest precision in any of the factors used in your
calculation. Information on how to keep track of significant figures and measurement
uncertainties in calculations is included in Appendix A, and a table of fundamental
constants that have been measured to high precision is in Appendix B.

Issue 2: Order of Magnitude
In order to make estimations, engineering and science professionals will sometimes
round a number to be used in a calculation up or down to the nearest power of ten.
This makes the number very easy to use in calculations. The result of this rounding
procedure is known as the order of magnitude of a number. To determine an order of
magnitude, we start by expressing the number of interest in scientific notation. Next,
the mantissa is rounded up to 10 or down to 1 depending on which is closest. For ex-
ample, if A � 2.3 � 104, then the order of magnitude of A is 104 (ten to the fourth)
since 2.3 is closer to 1 than it is to 10. On the other hand, if B � 7.8 � 104, then the
order of magnitude of B is 105 (ten to the fifth) since 7.8 is closer to 10 than it is to 1.
Order of magnitude estimations are common when detailed or precise data are not
required in a calculation or are not known.

READI NG EXERC IS E  1-8 : Using the method outlined in Appendix A, determine the
number of significant figures in each of the following numbers: (a) 27 meters, (b) 27 cows, (c)
0.003 429 87 second, (d) �1.970 500 � 10�11 coulombs, (e) 5280 ft�mi. (Note: By definition
there are exactly 5280 feet in a mile.) ■

READI NG EXERC IS E  1-9 : A popular science book lists the radius of the Earth as
20 900 000 000 ft. (a) How many significant figures does this number have if you apply the
method described in Appendix A for determining the number of significant figures? (b) How
many significant figures did the author probably intend to report? (c) How could you rewrite
this number so that it represents three significant figures? (d) What order of magnitude is the
radius of the Earth in feet? ■
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The world’s largest ball of string is about 2 m in radius. To the near-
est order of magnitude, what is the total length L of the string in the
ball?

S O L U T I O N ■ We could, of course, take the ball apart and mea-
sure the total length L, but that would take great effort and make
the ball’s builder most unhappy. A Ke y  I d e a here is that, because
we want only the nearest order of magnitude, we can estimate any
quantities required in the calculation.

Let us assume the ball is spherical with radius R � 2 m. The
string in the ball is not closely packed (there are uncountable gaps
between nearby sections of string). To allow for these gaps, let us
somewhat overestimate the cross-sectional area of the string by as-
suming the cross section is square, with an edge length d � 4 mm.
Then, with a cross-sectional area of d2 and a length L, the string oc-
cupies a total volume of 

V � (cross-sectional area)(length) � d 2L.

This is approximately equal to the volume of the ball, given by ,
which is about 4R3 because � is about 3. Thus, we have

d 2L � 4R3,

or (Answer)

(Note that you do not need a calculator for such a simplified calcu-
lation.) Thus, to the nearest order of magnitude, the ball contains
about 1000 km of string!

� 2 � 106 m � 106 m � 103 km.

L �
4 R3

d2 �
4(2 m)3

(4 � 10�3 m)2

4
3�R3

TOUCHSTONE EXAMPLE 1-3: Ball of String



READI NG EXERC IS E  1-10: Suppose you are to calculate the volume of a cube that
is L � 1.4 cm on a side and you start by calculating the area, A, of a face of the cube A � L2

and then calculating V � AL. (a) What intermediate value for A should you use in the calcula-
tion for V? (b) What is the value of the volume to the correct number of significant figures? (c)
What value do you get for V if you incorrectly retain only two significant figures after you cal-
culate A? ■

READI NG EXERC IS E  1-11: Perform the following calculations and express the an-
swers to the correct number of significant figures. (a) Multiply 3.4 by 7.954. (b) Add 99.3 and
98.7. (c) Subtract 98.7 from 99.3. (d) Evaluate the cosine of 3°. (e) If five railroad track seg-
ments have an average length of 2.134 meters, what is the total length of these five rails when
they lie end to end? ■

READI NG EXERC IS E  1-12: Suppose you measure a time to the nearest 1/100 of a
second and get a value of 1.78 s. (a) What is the absolute precision of your measurement? (b)
What is the relative precision of your measurement? ■

Problems 19

SEC. 1-5 ■ THE SI STANDARD OF TIME

1. Speed of Light Express the speed of light, 3.0 � 108 m/s, in
(a) feet per nanosecond and (b) millimeters per picosecond.

2. Fermi Physicist Enrico Fermi once pointed out that a standard
lecture period (50 min) is close to 1 microcentury. (a) How long is a
microcentury in minutes? (b) Using

percentage difference �

find the percentage difference from Fermi’s approximation.

3. Five Clocks Five clocks are being tested in a laboratory. Exactly
at noon, as determined by the WWV time signal, on successive days
of a week the clocks read as in the following table. Rank the five
clocks according to their relative value as good timekeepers, best to
worst. Justify your choice.

Clock Sun. Mon. Tues. Wed. Thurs. Fri. Sat.

A 12:36:40 12:36:56 12:37:12 12:37:27 12:37:44 12:37:59 12:38:14

B 11:59:59 12:00:02 11:59:57 12:00:07 12:00:02 11:59:56 12:00:03

C 15:50:45 15:51:43 15:52:41 15:53:39 15:54:37 15:55:35 15:56:33

D 12:03:59 12:02:52 12:01:45 12:00:38 11:59:31 11:58:24 11:57:17

E 12:03:59 12:02:49 12:01:54 12:01:52 12:01:32 12:01:22 12:01:12

4. The Shake A unit of time sometimes used in microscopic
physics is the shake. One shake equals 10�8 s. (a) Are there more
shakes in a second than there are seconds in a year? (b) Humans
have existed for about 106 years, whereas the universe is about 1010

years old. If the age of the universe now is taken to be 1 “universe
day,’’ for how many “universe seconds’’ have humans existed?

5. Astronomical Units An astronomical unit (AU) is the average
distance of Earth from the Sun, approximately 1.50 � 108 km. The

� actual � approximation
actual � 100,

speed of light is about 3.0 � 108 m/s. Express the speed of light in
terms of astronomical units per minute.

6. Digital Clocks Three digital clocks A, B, and C run at different
rates and do not have simultaneous readings of zero. Figure 1-16
shows simultaneous readings on pairs of the clocks for four occa-
sions. (At the earliest occasion, for example, B reads 25.0 s and C
reads 92.0 s.) If two events are 600 s apart on clock A, how far apart
are they on (a) clock B and (b) clock C? (c) When clock A reads
400 s, what does clock B read? (d) When clock C reads 15.0 s, what
does clock B read? (Assume negative readings for prezero times.)

FIGURE 1-16 ■ Problem 6.

7. Length of Day Assuming the length of the day uniformly in-
creases by 0.0010 s per century, calculate the cumulative effect on
the measure of time over 20 centuries. (Such slowing of Earth’s ro-
tation is indicated by observations of the occurrences of solar
eclipses during this period.)

8. Time Zones Until 1883, every city and town in the United States
kept its own local time. Today, travelers reset their watches only
when the time change equals 1.0 h. How far, on the average, must
you travel in degrees of longitude until your watch must be reset by
1.0 h? (Hint: Earth rotates 360° in about 24 h.)

9. A Fortnight A fortnight is a charming English measure of time
equal to 2.0 weeks (the word is a contraction of “fourteen nights’’).
That is a nice amount of time in pleasant company but perhaps a
painful string of microseconds in unpleasant company. How many
microseconds are in a fortnight?

Problems

A (s)

B (s)

C (s)

312 512

29020012525.0

92.0 142
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10. Time Standards Time standards are now based on atomic
clocks. A promising second standard is based on pulsars, which are
rotating neutron stars (highly compact stars consisting only of neu-
trons). Some rotate at a rate that is highly stable, sending out a
radio beacon that sweeps briefly across Earth once with each rota-
tion, like a lighthouse beacon. Pulsar PSR 1937 � 21 is an example;
it rotates once every 1.557 806 448 872 75 
 3 ms, where the trailing

3 indicates the uncertainty in the last decimal place (it does not
mean 
3 ms). (a) How many times does PSR 1937 � 21 rotate in
7.00 days? (b) How much time does the pulsar take to rotate 1.0 �
106 times, and (c) what is the associated uncertainty?

SEC. 1-6 ■ THE SI STANDARDS OF LENGTH

11. Furlongs Horses are to race over a certain English meadow for
a distance of 4.0 furlongs. What is the race distance in units of (a)
rods and (b) chains? (1 furlong � 201.168 m, 1 rod � 5.0292 m, and
1 chain � 20.117 m.)

12. Types of Barrels Two types of barrel units were in use in the
1920s in the United States. The apple barrel had a legally set vol-
ume of 7056 cubic inches; the cranberry barrel, 5826 cubic inches. If
a merchant sells 20 cranberry barrels of goods to a customer who
thinks he is receiving apple barrels, what is the discrepancy in the
shipment volume in liters?

13. The Earth Earth is approximately a sphere of radius 6.37 �
106 m. What are (a) its circumference in kilometers, (b) its surface
area in square kilometers, and (c) its volume in cubic kilometers?

14. Points and Picas Spacing in this book was generally done in
units of points and picas: 12 points � 1 pica, and 6 picas � 1 inch. If
a figure was misplaced in the page proofs by 0.80 cm, what was the
misplacement in (a) points and (b) picas?

15. Antarctica Antarctica is roughly
semicircular, with a radius of 2000
km (Fig. 1-17). The average thickness
of its ice cover is 3000 m. How many
cubic centimeters of ice does Antarc-
tica contain? (Ignore the curvature
of Earth.)

16. Roods and Perches An old manuscript reveals that a
landowner in the time of King Arthur held 3.00 acres of plowed
land plus a livestock area of 25.0 perches by 4.00 perches. What was
the total area in (a) the old unit of roods and (b) the more modern
unit of square meters? Here, 1 acre is an area of 40 perches by 4
perches, 1 rood is 40 perches by 1 perch, and 1 perch is 16.5 ft.

17. The Acre-Foot Hydraulic engineers in the United States often
use, as a unit of volume of water, the acre-foot, defined as the vol-
ume of water that will cover 1 acre of land to a depth of 1 ft. A se-
vere thunderstorm dumped 2.0 in. of rain in 30 min on a town of
area 26 km2. What volume of water, in acre-feet, fell on the town?

18. A Doll House In the United States, a doll house has the scale
of 1:12 of a real house (that is, each length of the doll house is 
that of the real house) and a miniature house (a doll house to fit
within a doll house) has the scale of 1:144 of a real house. Suppose
a real house (Fig. 1-18) has a front length of 20 m, a depth of 12 m,
a height of 6.0 m, and a standard sloped roof (vertical triangular
faces on the ends) of height 3.0 m. In cubic meters, what are the
volumes of the corresponding (a) doll house and (b) miniature
house?

1
12

FIGURE 1-18 ■ Problem 18.

SEC. 1-7 ■ THE SI STANDARDS OF MASS

19. Earth’s Mass Earth has a mass of 5.98 � 1024 kg. The average
mass of the atoms that make up Earth is 40 u. How many atoms are
there in Earth?

20. Gold Gold, which has a mass of 19.32 g for each cubic cen-
timeter of volume, is the most ductile metal and can be pressed
into a thin leaf or drawn out into a long fiber. (a) If 1.000 oz of
gold, with a mass of 27.63 g, is pressed into a leaf of 1.000 �m
thickness, what is the area of the leaf? (b) If, instead, the gold is
drawn out into a cylindrical fiber of radius 2.500 �m, what is the
length of the fiber?

21. Mass of Water (a) Assuming that each cubic centimeter of wa-
ter has a mass of exactly 1 g, find the mass of one cubic meter of
water in kilograms. (b) Suppose that it takes 10.0 h to drain a con-
tainer of 5700 m3 of water. What is the “mass flow rate,’’ in kilo-
grams per second, of water from the container?

22. The Thunderstorm What mass of water fell on the town in
Problem 17 during the thunderstorm? One cubic meter of water
has a mass of 103 kg.

23. Iron Iron has a mass of 7.87 g per cubic centimeter of volume,
and the mass of an iron atom is 9.27 � 10�26 kg. If the atoms are
spherical and tightly packed, (a) what is the volume of an iron atom
and (b) what is the distance between the centers of adjacent atoms?

24. Grains of Sand Grains of fine California beach sand are ap-
proximately spheres with an average radius of 50 �m and are made
of silicon dioxide. A solid cube of silicon dioxide with a volume of
1.00 m3 has a mass of 2600 kg. What mass of sand grains would have
a total surface area (the total area of all the individual spheres)
equal to the surface area of a cube 1 m on an edge?

SEC. 1-9 ■ CHANGING UNITS

25. A Diet A person on a diet might lose 2.3 kg per week. Express
the mass loss rate in milligrams per second, as if the dieter could
sense the second-by-second loss.

26. Cats and Moles A mole of atoms is 6.02 � 1023 atoms. To the
nearest order of magnitude, how many moles of atoms are in a
large domestic cat? The masses of a hydrogen atom, an oxygen
atom, and a carbon atom are 1.0 u, 16 u, and 12 u, respectively.
(Hint: Cats are sometimes known to kill moles.)

27. Sugar Cube A typical sugar cube has an edge length of 1 cm. If
you had a cubical box that contained a mole of sugar cubes, what
would its edge length be? (One mole � 6.02 � 1023 units.)

3000 m
2000 km

FIGURE 1-17 ■ Problem 15.

6.0 m

12 m

20 m

3.0 m
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28. Micrometer The micrometer (1 �m) is often called the micron.
(a) How many microns make up 1.0 km? (b) What fraction of a
centimeter equals 1.0 �m? (c) How many microns are in 1.0 yd?

29. Hydrogen Using conversions and data in the chapter, deter-
mine the number of hydrogen atoms required to obtain 1.0 kg of
hydrogen. A hydrogen atom has a mass of 1.0 u.

30. A Gry A gry is an old English measure for length, defined as
1/10 of a line, where line is another old English measure for length,
defined as 1/12 inch. A common measure for length in the publish-
ing business is a point, defined as 1/72 inch. What is an area of 0.50
gry2 in terms of points squared (points2)?

Additional Problems

31. Harvard Bridge Harvard Bridge, which connects MIT with its
fraternities across the Charles River, has a length of 364.4 Smoots
plus one ear. The unit of one Smoot is based on the length of Oliver
Reed Smoot, Jr., class of 1962, who was carried or dragged length
by length across the bridge so that other pledge members of the
Lambda Chi Alpha fraternity could mark off (with paint) 1-Smoot
lengths along the bridge. The marks have been repainted biannually
by fraternity pledges since the initial measurement, usually during
times of traffic congestion so that the police could not easily inter-
fere. (Presumably, the police were originally upset because a Smoot
is not an SI base unit, but these days they seem to have accepted
the unit.) Figure 1-19 shows three parallel paths, measured in
Smoots (S), Willies (W), and Zeldas (Z). What is the length of 50.0
Smoots in (a) Willies and (b) Zeldas?

If mesospheric clouds are spotted 38 min after sunset and then
quickly dim, what is their altitude if they are directly over the ob-
server?

34. Staircase A standard interior staircase has steps each with a
rise (height) of 19 cm and a run (horizontal depth) of 23 cm. Re-
search suggests that the stairs would be safer for descent if the run
were, instead, 28 cm. For a particular staircase of total height
4.57 m, how much farther would the staircase extend into the room
at the foot of the stairs if this change in run were made?

35. Large and Small As a contrast between the old and the mod-
ern and between the large and the small, consider the following: In
old rural England 1 hide (between 100 and 120 acres) was the area
of land needed to sustain one family with a single plough for one
year. (An area of 1 acre is equal to 4047 m2.) Also, 1 wapentake was
the area of land needed by 100 such families. In quantum physics,
the cross-sectional area of a nucleus (defined in terms of the chance
of a particle hitting and being absorbed by it) is measured in units
of barns, where 1 barn is 1 � 10�28 m2. (In nuclear physics jargon, if
a nucleus is “large,’’ then shooting a particle at it is like shooting a
bullet at a barn door, which can hardly be missed.) What is the ratio
of 25 wapentakes to 11 barns?

36. Cumulus Cloud A cubic centimeter in a typical cumulus cloud
contains 50 to 500 water droplets, which have a typical radius of
10 �m. (a) How many cubic meters of water are in a cylindrical
cumulus cloud of height 3.0 km and radius 1.0 km? (b) How many
1-liter pop bottles would that water fill? (c) Water has a mass per
unit volume (or density) of 1000 kg/m3. How much mass does the
water in the cloud have?

37. Oysters In purchasing food for a political rally, you erro-
neously order shucked medium-size Pacific oysters (which come 8
to 12 per U.S. pint) instead of shucked medium-size Atlantic oysters
(which come 26 to 38 per U.S. pint). The filled oyster container de-
livered to you has the interior measure of 1.0 m � 12 cm � 20 cm,
and a U.S. pint is equivalent to 0.4732 liter. By how many oysters is
the order short of your anticipated count?

38. U.K. Gallons A tourist purchases a car in England and ships it
home to the United States. The car sticker advertised that the car’s
fuel consumption was at the rate of 40 miles per gallon on the open
road. The tourist does not realize that the U.K. gallon differs from
the U.S. gallon:

1 U.K. gallon � 4.545 963 1 liters
1 U.S. gallon � 3.785 306 0 liters.

For a trip of 750 miles (in the United States), how many gallons of
fuel does (a) the mistaken tourist believe she needs and (b) the car
actually require?

S

W

Z

0 32

60

212

258

216

0

FIGURE 1-19 ■ Problem 31.

32. Little Miss Muffet An old English children’s rhyme states,
“Little Miss Muffet sat on her tuffet, eating her curds and whey,
when along came a spider who sat down beside her. . . .’’ The spider
sat down not because of the curds and whey but because Miss Muf-
fet had a stash of 11 tuffets of dried flies. The volume measure of a
tuffet is given by 1 tuffet � 2 pecks � 0.50 bushel, where 1 Imperial
(British) bushel � 36.3687 liters (L). What was Miss Muffet’s stash
in (a) pecks, (b) bushels, and (c) liters?

33. Noctilucent Clouds During the summers at high latitudes,
ghostly, silver-blue clouds occasionally appear after sunset when
common clouds are in Earth’s shadow and are no longer visible.
The ghostly clouds have been called noctilucent clouds (NLC),
which means “luminous night clouds,” but now are often called
mesospheric clouds, after the mesosphere, the name of the atmo-
sphere at the altitude of the clouds.

These clouds were first seen in June 1885, after dust and water
from the massive 1883 volcanic explosion of Krakatoa Island (near
Java in the Southeast Pacific) reached the high altitudes in the
Northern Hemisphere. In the low temperatures of the mesosphere,
the water collected and froze on the volcanic dust (and perhaps on
comet and meteor dust already present there) to form the particles
that made up the first clouds. Since then, mesospheric clouds have
generally increased in occurrence and brightness, probably because
of the increased production of methane by industries, rice paddies,
landfills, and livestock flatulence. The methane works its way into
the upper atmosphere, undergoes chemical changes, and results in
an increase of water molecules there, and also in bits of ice for the
mesospheric clouds.



39. Types of Tons A ton is a measure of volume frequently used in
shipping, but that use requires some care because there are at least
three types of tons: A displacement ton is equal to 7 barrels bulk, a
freight ton is equal to 8 barrels bulk, and a register ton is equal to 20
barrels bulk. A barrel bulk is another measure of volume: 1 barrel
bulk � 0.1415 m3. Suppose you spot a shipping order for “73 tons’’
of M&M candies, and you are certain that the client who sent the
order intended “ton’’ to refer to volume (instead of weight or mass,
as discussed in Chapter 6). If the client actually meant displacement
tons, how many extra U.S. bushels of the candies will you erro-
neously ship to the client if you interpret the order as (a) 73 freight
tons and (b) 73 register tons? One cubic meter is equivalent to
28.378 U.S bushels.

40. Wine Bottles The wine for a large European wedding recep-
tion is to be served in a stunning cut-glass receptacle with the inte-
rior dimensions of 40 cm � 40 cm � 30 cm (height). The receptacle
is to be initially filled to the top. The wine can be purchased in bot-
tles of the sizes given in the following table, where the volumes of
the larger bottles are given in terms of the volume of a standard
wine bottle. Purchasing a larger bottle instead of multiple smaller
bottles decreases the overall cost of the wine. To minimize that
overall cost, (a) which bottle sizes should be purchased and how
many of each should be purchased, and (b) how much wine is left
over once the receptacle is filled?

1 standard

1 magnum � 2 standard

1 jeroboam � 4 standard

1 rehoboam � 6 standard

1 methuselah � 8 standard

1 salmanazar � 12 standard

1 balthazar � 16 standard � 11.356 L

1 nebuchadnezzar � 20 standard

41. The Corn–Hog Ratio The corn-hog ratio is a financial term
commonly used in the pig market and presumably is related to the
cost of feeding a pig until it is large enough for market. It is defined
as the ratio of the market price of a pig with a mass of 1460 slugs to
the market price of a U.S. bushel of corn. The slug is the unit of
mass in the English system. (The word “slug’’ is derived from an old
German word that means “to hit’’; we have the same meaning for
“slug’’ as a verb in modern English.) A U.S. bushel is equal to
35.238 L. If the corn–hog ratio is listed as 5.7 on the market ex-
change, what is it in the metric units of

(Hint: See the Mass table in Appendix D.)

42. Volume Measures in Spain You can easily convert common
units and measures electronically, but you still should be able to use
a conversion table, such as those in Appendix D. Table 1-3 is part of
a conversion table for a system of volume measures once common
in Spain; a volume of 1 fanega is equivalent to 55.501 dm3 (cubic
decimeters). (a) Complete the table, using three significant figures.

price of 1 kilogram of pig
price of 1 liter of corn

?

Then express 7.00 almude in terms of (b) medio, (c) cahiz, and (d)
cubic centimeters (cm3).

43. Pirate Ship You receive orders to sail due east for 24.5 mi to
put your salvage ship directly over a sunken pirate ship. However,
when your divers probe the ocean floor at that location and find no
evidence of a ship, you radio back to your source of information,
only to discover that the sailing distance was supposed to be 24.5
nautical miles, not regular miles. Use the Length table in Appendix
D to calculate how far horizontally you are from the pirate ship in
kilometers.

44. The French Revolution For about 10 years after the French
revolution, the French government attempted to base measures of
time on multiples of ten: One week consisted of 10 days, 1 day con-
sisted of 10 hours, 1 hour consisted of 100 minutes, and 1 minute
consisted of 100 seconds. What are the ratios of (a) the French deci-
mal week to the standard week and (b) the French decimal second
to the standard second?

45. Heavy Rain During heavy rain, a rectangular section of a
mountainside measuring 2.5 km wide (horizontally), 0.80 km long
(up along the slope), and 2.0 m deep suddenly slips into a valley in
a mud slide. Assume that the mud ends up uniformly distributed
over a valley section measuring 0.40 km � 0.40 km and that the
mass of a cubic meter of mud is 1900 kg. What is the mass of the
mud sitting above an area of 4.0 m2 in that section?

46. Liquid Volume Prior to adopting metric systems of measure-
ment, the United Kingdom employed some challenging measures
of liquid volume. A few are shown in Table 1-4. (a) Complete the
table, using three significant figures. (b) The volume of 1 bag is
equivalent to a volume of 0.1091 m3. If an old British story has a
witch cooking up some vile liquid in a cauldron with a volume of
1.5 chaldrons, what is the volume in terms of cubic meters?

47. The Dbug Traditional units of time have been based on astro-
nomical measurements, such as the length of the day or year. How-
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TA B L E 1 - 3
Problem 42

cahiz fanega cuartilla almude medio

1 cahiz � 1 12 48 144 288

1 fanega � 1 4 12 24

1 cuartilla � 1 3 6

1 almude � 1 2

1 medio � 1

TA B L E 1 - 4
Problem 46

wey chaldron bag pottle gill

1 wey � 1 10/9 40/3 640 120 240

1 chaldron �

1 bag �

1 pottle �

1 gill �
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ever, one human-based measure of time can be found in Tibet,
where the dbug is the average time between exhaled breaths. Esti-
mate the number of dbugs in a day.

48. Tower of Pisa The following photograph of the Leaning Tower
of Pisa was taken from an advertisement found in a 1994 airline
magazine. Assume that the photo of the man talking on the tele-
phone to the left has been dubbed in and is not part of the original
photograph.

FIGURE 1-20 ■ Problem 48.

(a) Examine the photograph. Take the measurements in centimeters
that are needed to find a scale factor that enables you to estimate
the length of the tower in meters (i.e., its height if it were standing
up straight.) Use only the evidence in the photograph—no other
data are allowed. Then estimate the tower length in meters.
(b) According to data published in Sir Bannester Fletcher’s A His-
tory of Architecture (U. of London Athlone Press, 1975, p. 470) the
diameter of the lower part of the tower is 16.0 m. Using these data,
find another scale factor for estimating the length of the tower, and
then re-estimate the length of the tower using this new scale factor.
(c) Which of the scale factors (a) or (b) do you think will give the
best estimate of the length of the tower? Explain the reasons for
your answer.
(d) Using the scale factor you found in part (b), what is the length
of the tower without the belfry or narrow top segment (i.e., just
consider the bottom 7 stories)?

49. Mexican Food You are to fix dinners for 400 people at a con-
vention of Mexican food fans. Your recipe calls for 2 jalapeño pep-
pers per serving (one serving per person). However, you have only
habanero peppers on hand. The spiciness of peppers is measured in
terms of the scoville heat unit (SHU). On average, one jalapeño
pepper has a spiciness of 4000 SHU and one habanero pepper has a
spiciness of 300 000 SHU. To salvage the situation, how many (total)
habanero peppers should you substitute for the jalapeño peppers in
the recipe for the convention?

50. Big or Small? Discuss the question: “Is 500 feet big or small?”
Before you do so, carry out the following estimates.

(a) You are on the top floor of a 500-ft-tall building. A fire breaks
out in the building and the elevator stops working. You have to
walk down to the ground floor. Estimate how long this would take
you. (Your stairwell is on the other side of the building from the
fire.)
(b) You are hiking the Appalachian Trail on a beautiful fall morn-
ing as part of a 10 mi hike with a group of friends. You are walking

along a well-tended, level part of the trail. Estimate how long it
would take you to walk 500 ft.
(c) You are driving on the New Jersey Turnpike at 65 mi/hr. You
pass a sign that says “Lane ends 500 feet.” How much time do you
have in order to change lanes?

51. Doubling System Historically the English had a doubling sys-
tem when measuring volumes; 2 mouthfuls equal 1 jigger, 2 jiggers
equal 1 jack (also called a jackpot); 2 jacks equal 1 jill; 2 jills �
1 cup; 2 cups � 1 pint; 2 pints � 1 quart; 2 quarts � 1 pottle; 2 pot-
tles � 1 gallon; 2 gallons � 1 pail. (The nursery rhyme “Jack and
Jill” refers to these units and was a protest against King Charles I of
England for his taxes on the jacks of liquor sold in the tavern. (See
A. Kline, The World of Measurement, New York: Simon and Schus-
ter, 1975, pp. 32–39.) American and British cooks today use tea-
spoons, tablespoons, and cups; 3 teaspoons � 1 tablespoon; 4 table-
spoons � 1/4 cup. Assume that you find an old English recipe
requiring 3 jiggers of milk. How many cups does this represent?
How many tablespoons? You can assume that the cups in the two
systems represent the same volume.

52. Fuel Efficiency In America, we measure fuel efficiency of our
cars by citing the number of miles you can drive on 1 gallon of gas
(miles/gallon). In Europe, the same information is given by quoting
how many liters of gas it takes to go 100 kilometers (liter/100 kilo-
meters).

(a) My current car gets 21 miles/gallon in highway travel. What
number (in liter/100 kilometers) should I give to my Swedish friend
so that he can compare it to the mileage for his Volvo?
(b) The car I drove in England last summer needed 6 liters of gas to
go 100 kilometers. How many miles/gallon did it get?
(c) If my car has a fuel efficiency, f, in miles/gallon, what is its Euro-
pean efficiency, e, in liters/100 kilometers? (Write an equation that
would permit an easy conversion.)

53. Pizza Sale Two terrapins decide to go to Jerry’s for a pizza.
When they get there they find that Jerry’s is having a special:

SPECIAL TODAY: one 20� pizza $15

REGULAR PRICE one 10� pizza $5

one 20� pizza $18

Raphael: “Great! Let’s get a large one.”

Donatello: “Don’t be dumb. Let’s get three of the small ones for the
same price. That’ll give us more pizza and be cheaper.”

Raphael: “Why would it be a special if it’s more than we could get
for the regular price? Let’s get the large.”

Who’s right? Which would you buy? What would the difference be
if you were buying them at Ledo’s (square pizzas)?

54. Dollar and Penny A student makes the following argument: “I
can prove a dollar equals a penny. Since a dime (10 cents) is one-
tenth of a dollar, I can write:

10 c/ � $0.1.

Square both sides of the equation. Since squares of equals are
equal,

100 c/ � $0.1.

Little “man”
nearest the Tower
used for scaling
in part (a)

Length of Tower
w/o the belfry

Reported over
hang is 4.2 meters
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* Testudo is the statue of a terrapin (the university mascot) in front of the
main library on the University of Maryland campus.

Since 100 c/ � $1 and $0.01 � 1 c/, it follows that $1 � 1 c/ .”

What’s wrong with the argument?

55. Scaling Up Here are two related problems—one precise, one
an estimation.

(a) A sculptor builds a
model for a statue of
a terrapin to replace
Testudo.* She discov-
ers that to cast her
small scale model she
needs 2 kg of bronze.
When she is done, she
finds that she can give
it two coats of finish-
ing polyurethane var-
nish using exactly one
small can of varnish.
The final statue is supposed to be 5 times as large as the model in
each dimension. How much bronze will she need? How much var-
nish should she buy? (Hint: If this seems difficult, you might start by
writing a simpler question that is easier to work on before tackling
this one.)
(b) The human brain has 1000 times the surface area of a mouse’s
brain. The human brain is convoluted, the mouse’s is not. How
much of this factor is due just to size (the human brain is bigger)?
How sensitive is your result to your estimations of the approximate
dimensions of a human brain and a mouse brain?

56. Finding the Right Dose We know from our dimensional analy-
sis that if an object maintains its shape but changes its size, its area
changes as the square of its length and its volume changes as the
cube of its length. Suppose you are a parent and your child is sick
and has to take some medicine. You have taken this medicine previ-
ously and you know its dose for you. You are 510 � tall and weigh
180 lb, and your child is 211� tall and weighs 30 lb. Estimate an ap-
propriate dosage for your child’s medicine in the following cases.
Be sure to discuss your reasoning.

(a) The medicine is one that will enter the child’s bloodstream and
reach every cell in the body. Your dose is 250 mg.
(b) The medicine is one that is meant to coat the child’s throat.
Your dose is 15 ml.

57. Ping-Pong Ball Packing Estimate how many Ping-Pong balls it
would take to fill your classroom (assuming all the doors and win-
dows are closed).

58. Feeding the Cougar When visiting the Como Park Zoo in St.
Paul, Minnesota, with my young grandson, we encountered the
sign shown at the right on the cage of the mountain lion. The de-
tailed numbers surprised me. The amount of food given to the cat
was specified to the tenth of a gram and the average cat’s weight
was specified to within 10 grams—about 1/3 of an ounce. This
seemed to be overly precise. Can you figure out what they were
trying to say and what a plausible accuracy might be for those
two numbers—the amount of food given and the average cat’s
weight?

FIGURE 1-22 ■ Problem 58.

59. Blowing Off the Units. Throughout your physics course, your
instructor will expect you to be careful with the units in your calcu-
lations. Yet, some students tend to neglect them and just trust that
they always work out properly. Maybe this real-world example will
keep you from such a sloppy habit.

On July 23, 1983, Air Canada Flight 143 was being readied
for its long trip from Montreal to Edmonton when the flight crew
asked the ground crew to determine how much fuel was already on-
board the airplane. The flight crew knew that they needed to begin
the trip with 22 300 kg of fuel. They knew that amount in kilograms
because Canada had recently switched to the metric system: previ-
ously fuel had been measured in pounds. The ground crew could
measure the onboard fuel only in liters, which they reported as 
7 682 L. Thus, to determine how much fuel was onboard and how
much additional fuel must be added, the flight crew asked the
ground crew for the conversion factor from liters to kilograms of
fuel. The response was 1.77, which the flight crew used (1.77 kg cor-
responds to 1 L). (a) How many kilograms of fuel did the flight crew
think they had? (In this problem, take all the given data as being ex-
act.) (b) How many liters did they ask to be added to the airplane?

Unfortunately, the response from the ground crew was based
on pre-metric habits—the number 1.77 was actually the conversion
factor from liters to pounds of fuel (1.77 lb corresponds to 1 L). (c)
How many kilograms of fuel were actually onboard? (Except for
the given 1.77, use four significant figures for other conversion fac-
tors.) (d) How many liters of additional fuel were actually needed?
(e) When the airplane left Montreal, what percentage of the re-
quired fuel did it actually have?

On route to Edmonton, at an altitude of 7.9 km, the airplane
ran out of fuel and began to fall. Although the airplane then had no
power, the pilot somehow managed to put it into a downward glide.
However, the nearest working airport was too far to reach by only
gliding, so the pilot somehow angled the glide toward an old non-
working airport.

Unfortunately, the runway at that airport had been converted to
a track for race cars, and a steel barrier had been constructed across it.
Fortunately, as the airplane hit the runway, the front landing gear col-
lapsed, dropping the nose of the airplane onto the runway. The skid-
ding slowed the airplane so that it stopped just short of the steel bar-
rier, with stunned race drivers and fans looking on. All on board the
airplane emerged safely. The point here is this: Take care of the units.

FIGURE 1-21 ■ Problem 55.

Natural Diet: Hoofed animals, small animals

Zoo diet: 1.3608 kg. commercially prepared diet for large
cats, six days a week

Average Weight: 90.72 kg.

Average Lifespan: 20 years

The cougar is also called mountain lion or puma.

It is the only large cat at Como Zoo that purrs.

Cougars are very solitary animals. They are seldom seen by humans.

COUGAR
North America
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2 Motion Along a 
Straight Line

On September 26, 1993, Dave Munday, a diesel mechanic

by trade, went over the Canadian edge of Niagara Falls for

the second time, freely falling 48 m to the water (and rocks)

below. On this attempt, he rode in a steel chamber with an

airhole. Munday, keen on surviving this plunge that had

killed other stuntmen, had done considerable research on

the physics and engineering aspects of the plunge.

If he fell straight down, how
could he predict the speed
at which he would hit the
water?

The answer is in this chapter.



2-1 Motion

The world, and everything in it, moves. Even a seemingly stationary thing, such as a
roadway, moves because the Earth is moving. Not only is the Earth rotating and orbit-
ing the Sun, but the Sun is also moving through space. The motion of objects can take
many different forms. For example, a moving object’s path might be a straight line, a
curve, a circle, or something more complicated. The entity in motion might be some-
thing simple, like a ball, or something complex, like a human being or galaxy.

In physics, when we want to understand a phenomenon such as motion, we begin
by exploring relatively simple motions. For this reason, in the study of motion we start
with kinematics, which focuses on describing motion, rather than on dynamics, which
deals with the causes of motion. Further, we begin our study of kinematics by devel-
oping the concepts required to measure motion and mathematical tools needed to
describe them in one dimension (or in 1D). Only then do we extend our study to in-
clude a consideration of the causes of motion and motions in two and three dimen-
sions. Further simplifications are helpful. Thus, in this chapter, our description of the
motion of objects is restricted in two ways:

1. The motion of the object is along a straight line. The motion may be purely verti-
cal (that of a falling stone), purely horizontal (that of a car on a level highway), or
slanted (that of an airplane rising at an angle from a runway), but it must be a
straight line.

2. The object is effectively a particle because its size and shape are not important to
its motion. By “particle” we mean either: (a) a point-like object with dimensions
that are small compared to the distance over which it moves (such as the size of
the Earth relative to its orbit around the Sun), (b) an extended object in which
all its parts move together (such as a falling basketball that is not spinning), or
(c) that we are only interested in the path of a special point associated with the
object (such as the belt buckle on a walking person).

We will start by introducing very precise definitions of words commonly used to
describe motion like speed, velocity, and acceleration. These definitions may conflict
with the way these terms are used in everyday speech. However, by using precise defi-
nitions rather than our casual definitions, we will be able to describe and predict the
characteristics of common motions in graphical and mathematical terms. These math-
ematical descriptions of phenomena form the basic vocabulary of physics and engi-
neering.

Although our treatment may seem ridiculously formal, we need to provide a
foundation for the analysis of more complex and interesting motions.

READING EXERCISE 2-1: Which of the following motions are along a straight line: (a) a
string of carts traveling up and down along a roller coaster, (b) a cannonball shot straight up,
(c) a car traveling along a straight city street, (d) a ball rolling along a straight ramp tilted at a
45° angle. ■

READING EXERCISE 2-2: In reality there are no point particles. Rank the following
everyday items from most particle-like to least particle-like: (a) a 2-m-tall long jumper relative
to a 25 m distance covered in a jump, (b) a piece of lead shot from a shotgun shell relative to its
range of 5 m, (c) the Earth of diameter 13 � 106 m relative to the approximate diameter of its
orbit about the Sun of 3 � 1011 m. ■
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FIGURE 2-1 ■ Position is determined on
an axis that is marked in units of meters
and that extends indefinitely in opposite
directions.

2-2 Position and Displacement Along a Line

Defining a Coordinate System
In order to study motion along a straight line, we must be able to specify the location
of an object and how it changes over time. A convenient way to locate a point of in-
terest or an object is to define a coordinate system. Houses in Costa Rican towns are
commonly located with addresses such as “200 meters east of the Post Office.” In or-
der to locate a house, a distance scale must be agreed upon (meters are used in the ex-
ample), and a reference point or origin (in this case the Post Office), and a direction
(in this case east) must be specified. Thus, in locating an object that can move along a
straight line, it is convenient to specify its position by choosing a one-dimensional
coordinate system. The system consists of a point of reference known as the origin (or
zero point), a line that passes through the chosen origin called a coordinate axis, one
direction along the coordinate axis, chosen as positive and the other direction as nega-
tive, and the units we use to measure a quantity. We have labeled the coordinate axis
as the x axis, in Fig. 2-1, and placed an origin on it. The direction of increasing num-
bers (coordinates) is called the positive direction, which is toward the right in Fig. 2-1.
The opposite direction is the negative direction.

Figure 2-1 is drawn in the traditional fashion, with negative coordinates to the left
of the origin and positive coordinates to the right. It is also traditional in physics to
use meters as the standard scale for distance. However, we have freedom to choose
other units and to decide which side of the origin is labeled with negative coordinates
and which is labeled with positive coordinates. Furthermore, we can choose to define
an x axis that is vertical rather than horizontal, or inclined at some angle. In short, we
are free to make choices about how we define our coordinate system.

Good choices make describing a situation much easier. For example, in our con-
sideration of motion along a straight line, we would want to align the axis of our one-
dimensional coordinate system along the line of motion. In Chapters 5 and 6, when
we consider motions in two dimensions, we will be using more complex coordinate
systems with a set of mutually perpendicular coordinate axes. Choosing a coordinate
system that is appropriate to the physical situation being described can simplify your
mathematical description of the situation. To describe a particle moving in a circle,
you would probably choose a two-dimensional coordinate system in the plane of the
circle with the origin placed at its center.

Defining Position as a Vector Quantity
The reason for choosing our standard one-dimensional coordinate axis and orienting
it along the direction of motion is to be able to define the position of an object rela-
tive to our chosen origin, and then be able to keep track of how its position changes
as the object moves. It turns out that the position of an object relative to a coordinate
system can be described by a mathematical entity known as a vector. This is because,
in order to find the position of an object, we must specify both how far and in which
direction the object is from the origin of a coordinate system.

A VECTOR is a mathematical entity that has both a magnitude and a direction. Vectors can
be added, subtracted, multiplied, and transformed according to well-defined mathematical
rules.

There are other physical quantities that also behave like vectors such as velocity, ac-
celeration, force, momentum, and electric and magnetic fields.

However, not all physical quantities that have signs associated with them are vec-
tors. For example, temperatures do not need to be described in terms of a coordinate
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FIGURE 2-2 ■ A position vector can be
represented by an arrow pointing from the
origin of a chosen coordinate system to the
location of the object.

system, and single numbers, such as T � �5°C or T � 12°C, are sufficient to describe
them. The minus sign, in this case, does not signify a direction. Mass, distance, length,
area, and volume also have no directions associated with them and, although their val-
ues depend on the units used to measure them, their values do not depend on the ori-
entation of a coordinate system. Such quantities are called scalars.

A SCALAR is defined as a mathematical quantity whose value does not depend on the orien-
tation of a coordinate system and has no direction associated with it.

In general, a one-dimensional vector can be represented by an arrow. The length of
the arrow, which is inherently positive, represents the magnitude of the vector and
the direction in which the arrow points represents the direction associated with the
vector.

We begin this study of motion by introducing you to the properties of one-
dimensional position and displacement vectors and some of the formal methods for
representing and manipulating them. These formal methods for working with vectors
will prove to be very useful later when working with two- and three-dimensional
vectors.

A one-dimensional position vector is defined by the location of the origin of a
chosen one-dimensional coordinate system and of the object of interest. The magni-
tude of the position vector is a scalar that denotes the distance between the object
and the origin. For example, an object that has a position vector of magnitude 5 m
could be located at the point �5 m or �5 m from the origin.

On a conventional x axis, the direction of the position vector is positive when the
object is located to the right of the origin and negative when the object is located to
the left of the origin. For example, in the system shown in Fig. 2-1, if a particle is lo-
cated at a distance of 3 m to the left of the origin, its position vector has a magnitude
of 3 m and a direction that is negative. One of many ways to represent a position vec-
tor is to draw an arrow from the origin to the object’s location, as shown in Fig. 2-2,
for an object that is 1.5 m to the left of the origin. Since the length of a vector arrow
represents the magnitude of the vector, its length should be proportional to the dis-
tance from the origin to the object of interest. In addition, the direction of the arrow
should be from the origin to the object.

Instead of using an arrow, a position vector can be represented mathematically. In
order to develop a useful mathematical representation we need to define a unit vector
associated with our x axis.

A UNIT VECTOR FOR A COORDINATE AXIS is a dimensionless vector that points in the direc-
tion along a coordinate axis that is chosen to be positive.

It is customary to represent a unit vector that points along the positive x axis with the
symbol î (i-hat), although some texts use the symbol x̂ (x-hat) instead. When consider-
ing three-dimensional vectors, the unit vectors pointing along the designated positive
y axis and z axis are denoted by ĵ and k̂, respectively.

These vectors are called “unit vectors” because they have a dimensionless value
of one. However, you should not confuse the use of word “unit” with a physical unit.
Unit vectors should be shown on coordinate axes as small pointers with no physical
units, such as meters, associated with them. This is shown in Fig. 2-3 for the x axis unit
vector. Since the scale used in the coordinate system has units, it is essential that the
units always be associated with the number describing the location of an object along
an axis. Figure 2-3 also shows how the unit vector is used to create a position vector
corresponding to an object located at position �1.5 meters on our x axis. To do this
we stretch or multiply the unit vector by the magnitude of the position vector, which

–2 m –1 m 2 m0 m 1 m
x

Position vector
of magnitude 1.5 m
pointing in a negative direction
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is 1.5 m. Note that we are using the coordinate axis to describe a position in meters
relative to an origin, so it is essential to include the units with the number. This multi-
plication of the dimensionless unit vector by 1.5 m creates a 1.5-m-long vector that
points in the same direction as the unit vector. It is denoted by (1.5 m)î . However, the
vector we want to create points in the negative direction, so the vector pointing in
the positive direction must be inverted using a minus sign. The position vector we
have created is denoted as . It can be divided into two parts—a vector component
and a unit vector,

� (�1.5 m)î.

In this example, the x-component of the position vector, denoted as x, is �1.5 m.
Here the quantity 1.5 m with no minus sign in front of it is known as the

magnitude of this position vector. In general, the magnitude is denoted as � �. Thus,
the one-dimensional position vector for the situation shown in Fig. 2-3 is denoted
mathematically using the following symbols:

� xî � (�1.5 m)î.

The x-component of a position vector, denoted x, can be positive or negative de-
pending on which side of the origin the particle is. Thus, in one dimension in terms of
absolute values, the vector component x is either ��x� or ��x�, depending on the ob-
ject’s location.

In general, a component of a vector along an axis, such as x in this case, is not a
scalar since our x-component will change sign if we choose to reverse the orientation
of our chosen coordinate system. In contrast, the magnitude of a position vector is al-
ways positive, and it only tells us how far away the object is from the origin, so the mag-
nitude of a vector is always a scalar quantity. The sign of the component (� or �) tells
us in which direction the vector is pointing. The sign will be negative if the object is to
the left of the origin and positive if it is to the right of the origin.

Defining Displacement as a Vector Quantity
The study of motion is primarily about how an object’s location changes over time un-
der the influence of forces. In physics the concept of change has an exact mathemati-
cal definition.

CHANGE is defined as the difference between the state of a physical system (typically called
the final state) and its state at an earlier time (typically called the initial state).

This definition of change is used to define displacement.

DISPLACEMENT is defined as the change of an object’s position that occurs during a period
of time.

x:

x:

x:

x:

–2 m –1 m 2 m0 m

x = (–1.5 m) 

1 m
x

Dimensionless “unit”
vector pointing in
the positive direction

î

î (1.5 m)î

FIGURE 2-3 ■ Arrows representing: (1) a dimensionless unit vector, î, pointing in
the positive x direction; (2) a vector representing the unit vector multiplied by 1.5
meters; and (3) a vector multiplied by 1.5 meters and inverted by multiplication by
�1 to create the position vector x: � (�1.5 m)î. This position vector has a magni-
tude of 1.5 meters and points in a negative direction.
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FIGURE 2-4 ■ The wide arrow shows the
displacement vector �r: for three situations
leading to: (a) a positive displacement,
(b) a negative displacement, and
(c) zero displacement.

Since position can be represented as a vector quantity, displacement is the difference
between two vectors, and thus, is also a vector. So, in the case of motion along a line,
an object moving from an “initial” position to another “final” position at a later
time is said to undergo a displacement � given by the difference of two position
vectors

� � � � �x î (displacement vector), (2-1)

where the symbol � is used to represent a change in a quantity, and the symbol “�”
signifies that the displacement � is given by � because we have chosen to de-
fine it that way.

As you will see when we begin to work with vectors in two and three dimensions,
it is convenient to consider subtraction as the addition of one vector to another that
has been inverted by multiplying the vector component by �1. We can use this idea of
defining subtraction as the addition of an inverted vector to find displacements. Let’s
consider three situations:

(a) A particle moves along a line from � (5 m)î to � (12 m)î. Since 
� � � � � (� ),

� � (12 m)î � (5 m)î � (12 m)î � (�5 m)î � (7 m)î.

The positive result indicates that the motion is in the positive direction (to-
ward the right in Fig. 2-4a).

(b) A particle moves from � (12 m)î to � (5 m)î. Since � � � � 
� (� ),

� � (5 m)î � (12 m)î � (5 m)î � (�12 m)î � (�7 m)î.

The negative result indicates that the displacement of the particle is in the
negative direction (toward the left in Fig. 2-4b).

(c) A particle starts at 5 m, moves to 2 m, and then returns to 5 m. The
displacement for the full trip is given by � � � � � (� ), where

� (5 m)î and � (5 m)î :

� � (5 m)î � (�5 m)î � (0 m)î

and the particle’s position hasn’t changed, as in Fig. 2-4c. Since displacement
involves only the original and final positions, the actual number of meters
traced out by the particle while moving back and forth is immaterial.

If we ignore the sign of a particle’s displacement (and thus its direction), we are
left with the magnitude of the displacement. This is the distance between the original
and final positions and is always positive. It is important to remember that displace-
ment (or any other vector) has not been completely described until we state its 
direction.

We use the notation � for displacement because when we have motion in more
than one dimension, the notation for the position vector is For a one-dimensional
motion along a straight line, we can also represent the displacement as � The mag-
nitude of displacement is represented by surrounding the displacement vector symbol
with absolute value signs:

{magnitude of displacement} � �� � or �� �

READI NG EXERC IS E  2-3 : Can a particle that moves from one position with a nega-
tive value, to another position with a negative value, undergo a positive displacement? ■
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Three pairs of initial and final positions along an x axis represent the
location of objects at two successive times: (pair 1) �3 m, �5 m;
(pair 2) �3 m, �7 m; (pair 3) 7 m, �3 m.

(a) Which pairs give a negative displacement?

S O L U T I O N ■ The Ke y  I d e a here is that the displacement is
negative when the final position lies to the left of the initial position.
As shown in Fig. 2-5, this happens when the final position is more
negative than the initial position. Looking at pair 1, we see that the
final position, �5 m, is positive while the initial position, �3 m, is
negative. This means that the displacement is from left (more nega-
tive) to right (more positive) and so the displacement is positive for
pair 1. (Answer)

For pair 2 the situation is different. The final position, �7 m, lies to
the left of the initial position, �3 m, so the displacement is negative.

(Answer)

For pair 3 the final position, �3 m, is to the left of the origin while
the initial position, �7 m, is to the right of the origin. So the dis-
placement is from the right of the origin to its left, a negative dis-
placement. (Answer)

(b) Calculate the value of the displacement in each case using vec-
tor notation.

S O L U T I O N ■ The Ke y  I d e a here is to use Eq. 2-1 to calculate
the displacement for each pair of positions. It tells us the difference
between the final position and the initial position, in that order,

� � � (displacement). (2-2)

For pair 1 the final position is � (�5 m)î and the initial
position is � (�3 m)î , so the displacement between these two
positions is just

x:1

x:2

x:1x:2x:

� � (�5 m)î � (�3 m)î � (�5 m)î � (3 m)î � (�8 m)î.
(Answer)

For pair 2 the same argument yields

� � (�7 m)î � (�3 m)î � (�7 m)î � (3 m)î � (�4 m)î.
(Answer)

Finally, the displacement for pair 3 is

� � (�3 m)î � (�7 m)î � (�3 m)î � (�7 m)î � (�10 m)î.
(Answer)

(c) What is the magnitude of each position vector?

S O L U T I O N ■ Of the six position vectors given, one of them—
namely � (�3 m)î—appears in all three pairs. The remaining three
positions are � (�5 m)î, � (�7 m)î, and � (�7 m)î. The Key
Idea here is that the magnitude of a position vector just tells us how
far the point lies from the origin without regard to whether it lies to
the left or to the right of the origin. Thus the magnitude of our first
position vector is 3 m (Answer) since the position specified by 

� (�3 m)î is 3 m to the left of the origin. It’s not �3 m, because
magnitudes only specify distance from the origin, not direction.

For the same reason, the magnitude of the second position vec-
tor is just 5 m (Answer) while the magnitude of the third and the
fourth are each 7 m. (Answer) The fact that the third point lies 7 m
to the left of the origin while the fourth lies 7 m to the right doesn’t
matter here.

(d) What is the value of the x-component of each of these position
vectors?

S O L U T I O N ■ To answer this question you need to remember
what is meant by the component of a vector. The key equation re-
lating a vector in one dimension to its component along its direc-
tion is � x î, where (with the arrow over it) is the vector itself
and x (with no arrow over it) is the component of the vector in the
direction specified by the unit vector î. So the component of �
(�3 m)î is �3 m, while that of � (�5 m)î is just �5 m, and �
(�7 m)î has as its component along the î direction (�7 m) while for

� (�7 m)î it’s just (�7 m). In other words, the component of a
vector in the direction of î is just the signed number (with its units)
that multiplies î. (Answer)
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TOUCHSTONE EXAMPLE 2-1: Displacements
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FIGURE 2-5 ■ Displacement associated with three pairs of initial
and final positions along an x axis.

2-3 Velocity and Speed

Suppose a student stands still or speeds up and slows down along a straight line. How
can we describe accurately and efficiently where she is and how fast she is moving?
We will explore several ways to do this.



Representing Motion in Diagrams and Graphs
Motion Diagrams: Now that you have learned about position and displacement, it is
quite easy to describe the motion of an object using pictures or sketches to chart how
position changes over time. Such a representation is called a motion diagram. For ex-
ample, Fig. 2-6 shows a student whom we treat as if she were concentrated into a par-
ticle located at the back of her belt. She is standing still at a position � (�2.00 m)î
from a point on a sidewalk that we choose as our origin. Figure 2-7 shows a more
complex diagram describing the student in motion. Suppose we see that just as we
start timing her progress with a stopwatch (so t � 0.0 s), the back of her belt is 2.47 m
to the left of our origin. The x-component of her position is then x � �2.47 m. The
student then moves toward the origin, almost reaches the origin at t � 1.5 s, and then
continues moving to the right so that her x-component of position has increasingly
positive values. It is important to recognize that just as we chose an origin and direc-
tion for our coordinate axis, we also chose an origin in time. If we had chosen to start
our timing 12 seconds earlier, then the new motion diagram would show the back of
her belt as being at x � �2.47 m at t � 12 s.

Graphs: Another way to describe how the position of an object changes as time
passes is with a graph. In such a graph, the x-component of the object’s position, x, can
be plotted as a function of time, t. This position–time graph has alternate names such
as a graph of x as a function of t, x(t), or x vs. t. For example, Fig. 2-8 shows a graph of
the student standing still with the back of her belt located at a horizontal position of
�2.00 m from a spot on the sidewalk that is chosen as the origin.

The graph of no motion shown in Fig. 2-8 is not more informative than the 
picture or a comment that the student is standing still for 3 seconds at a certain loca-
tion. But it’s another story when we consider the graph of a motion. Figure 2-9 is a
graph of a student’s x-component of position as a function of time. It represents the
same information depicted in the motion diagram in Fig. 2-7. Data on the student’s
motion are first recorded at t � 0.0 s when the x-component of her position is x �
�2.47 m. The student then moves toward x � 0.00 m, passes through that point at
about t � 1.5 s, and then moves on to increasingly larger positive values of x while
slowing down.

x:
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FIGURE 2-6 ■ A motion diagram of a stu-
dent standing still with the back of her belt
at a horizontal distance of 2.00 m to the
left of a spot of the sidewalk designated as
the origin. 1 m

x
0 m

Origin

–1 m–2 m

1 m
x

0 m

Origin

–1 m–3 m –2 m

t = 0.0 s t = 1.0 s t = 2.0 s

FIGURE 2-7 ■ A motion diagram of a stu-
dent starting to walk slowly. The horizontal
position of the back of her belt starts at a
horizontal distance of 2.47 m to the left of
a spot designated as the origin. She is
speeding up for a few seconds and then
slowing down.
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FIGURE 2-8 ■ The graph of the x-compo-
nent of position for a student who is stand-
ing still at x � �2.0 m for at least 3 sec-
onds.



Although the graph of the student’s motion in Fig. 2-9 seems abstract and quite
unlike a motion diagram, it is richer in information. For example, the graph allows us
to estimate the motion of the student at times between those for which position mea-
surements were made. Equally important, we can use the graph to tell us how fast the
student moves at various times, and we deal with this aspect of motion graphs next.

What can motion diagrams and x vs. t graphs tell us about how fast and in what
direction something moves along a line? It is clear from an examination of the motion
diagram at the bottom of Fig. 2-9 that the student covers the most distance and so ap-
pears to be moving most rapidly between the two times t1 � 1.0 s and t2 � 1.5 s. But
this time interval is also where the slope (or steepness) of the graph has the greatest
magnitude. Recall from mathematics that the average slope of a curve between two
points is defined as the ratio of the change in the variable plotted on the vertical axis
(in this case the x-component of her position) to the change in the variable plotted on
the horizontal axis (in this case the time). Hence, on position vs. time graphs (such as
those shown in Fig. 2-8 and Fig. 2-9),

(definition of average slope). (2-3)

Since  time moves forward, t2 � t1, so �t always has a positive value. Thus, a slope
will be positive whenever x2 � x1, so �x is positive. In this case a straight line connect-
ing the two points on the graph slants upward toward the right when the student is
moving along the positive x-direction. On the other hand, if the student were to move
“backwards” in the direction along the x axis we chose to call negative, then x2 � x1.
In this case, the slope between the two times would be negative and the line connect-
ing the points would slant downward to the right.

Average Velocity
For motion along a straight line, the steepness of the slope in an x vs. t graph over a
time interval from t1 to t2 tells us “how fast” a particle moves. The direction of motion
is indicated by the sign of the slope (positive or negative). Thus, this slope or ratio
�x/�t is a special quantity that tells us how fast and in what direction something
moves. We haven’t given the ratio �x/�t a name yet. We do this to emphasize the fact

average slope �
�x
�t

�
x 2 � x 1

t2 � t1
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FIGURE 2-9 ■ A graph that repre-
sents how the position component,
x, of the walking student shown in
Fig. 2-7 changes over time. The mo-
tion diagram, shown below the
graph, is associated with the graph
at three points in time as indicated
by the arrows.
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FIGURE 2-10 ■ Calculation of the slope of
the line that connects the points on the
curve at t1 � 1.0 s and t2 � 1.5 s. The x-
component of the average velocity is given
by this slope.

that the ideas associated with figuring out how fast and in what direction something
moves are more important than the names we assign to them. However, it is inconve-
nient not to have a name. The common name for this ratio is average velocity, which is
defined as the ratio of displacement vector � for the motion of interest to the time
interval �t in which it occurs. This vector can be expressed in equation form as

(definition of 1D average velocity), (2-4)

where x2 and x1 are components of the position vectors at the final and initial times.
Here we use angle brackets � � to denote the average of a quantity. Also, we use the
special symbol “�” for equality to emphasize that the term on the left is equal to the
term on the right by definition. The time change is a positive scalar quantity because
we never need to specify its direction explicitly. In defining � � we are basically multi-
plying the displacement vector, � by the scalar (1/�t). This action gives us a new
vector that points in the same direction as the displacement vector.

Figure 2-10 shows how to find the average velocity for the student motion repre-
sented by the graph shown in Fig. 2-9 between the times t1 � 1.0 s and t2 � 1.5 s. The
average velocity during that time interval is

The x-component of the average velocity along the line of motion, �vx � � 2.04 m/s,
is simply the slope of the straight line that connects the point on the curve at the be-
ginning of our chosen interval and the point on the curve at the end of the interval.
Since our student is speeding up and slowing down, the values of � � and �vx� will in
general be different when calculated using other time intervals.

Average Speed 
Sometimes we don’t care about the direction of an object’s motion but simply want to
keep track of the distance covered. For instance, we might want to know the total dis-
tance a student walks (number of steps times distance covered in each step). Our stu-
dent could be pacing back and forth wearing out her shoes without having a vector
displacement. Similarly, average speed, �s�, is a different way of describing “how fast”
an object moves. Whereas the average velocity involves the particle’s displacement 
� , which is a vector quantity, the average speed involves the total distance covered
(for example, the product of the length of a step and the number of steps the student
took), which is independent of direction. So average speed is defined as
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x:,
v:

�	:� �
�x:

�t
�

�x
�t

 î �
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(definition of average speed). (2-5)

Since neither the total distance traveled nor the time interval over which the
travel occurred has an associated direction, average speed does not include direction
information. Both the total distance and the time period are always positive, so aver-
age speed is always positive too. Thus, an object that moves back and forth along a
line can have no vector displacement, so it has zero velocity but a rather high average
speed. At other times, while the object is moving in only one direction, the average
speed �s� is the same as the magnitude of the average velocity � �. However, as you can
demonstrate in Reading Exercise 2-4, when an object doubles back on its path, the av-
erage speed is not simply the magnitude of the average velocity �� ��.

Instantaneous Velocity and Speed
You have now seen two ways to describe how fast something moves: average velocity
and average speed, both of which are measured over a time interval �t. Clearly, how-
ever, something might speed up and slow down during that time interval. For exam-
ple, in Fig. 2-9 we see that the student is moving more slowly at t � 0.0 s than she is at
t � 1.5 s, so her velocity seems to be changing during the time interval between 0.0 s
and 1.5 s. The average slope of the line seems to be increasing during this time in-
terval. Can we refine our definition of velocity in such a way that we can determine
the student’s true velocity at any one “instant” in time? We envision something
like the almost instantaneous speedometer readings we get as a car speeds up and
slows down.

Defining an instant and instantaneous velocity is not a trivial task. As we noted in
Chapter 1, the time interval of 1 second is defined by counting oscillations of radiation
absorbed by a cesium atom. In general, even our everyday clocks work by counting
oscillations in an electronic crystal, pendulum, and so on. We associate “instants in
time” with positions on the hands of a clock, and “time intervals” with changes in the
position of the hands.

For the purpose of finding a velocity at an instant, we can attempt to make the
time interval we use in our calculation so small that it has almost zero duration. Of
course the displacement we calculate also becomes very small. So instantaneous ve-
locity along a line—like average velocity—is still defined in terms of the ratio of 
� /�t. But we have this ratio passing to a limit where �t gets closer and closer to zero.
Using standard calculus notation for this limit gives us the following definition:

(definition of 1D instantaneous velocity). (2-6)

In the language of calculus, the INSTANTANEOUS VELOCITY is the rate at which a particle’s
position vector, , is changing with time at a given instant.

In passing to the limit the ratio � /�t is not necessarily small, since both the nu-
merator and denominator are getting small together. The first part of this expression,

tells us that we can find the (instantaneous) velocity of an object by taking the slope
of a graph of the position component vs. time at the point associated with that

v:� vx î � lim
�t : 0

�x:

�t
 or lim

�t : 0

�x
�t

î,

x:

x:

v: � lim
�t : 0

�x:

�t
�

dx:

dt

x:

v:

v:

� s � �
total distance

�t
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moment in time. If the graph is a curve rather than a straight line, the slope at a point
is actually the tangent to the line at that point. Alternatively, the second part of the
expression, shown in Eq. 2-6,

indicates that, if we can approximate the relationship between and t as a continuous
mathematical function such as � (3.0 m/s2)t2, we can also find the object’s instanta-
neous velocity by taking a derivative with respect to time of the object’s position .
When varies continuously as time marches on, we often denote as a position
function (t) to remind us that it varies with time.

Instantaneous speed, which is typically called simply speed, is just the magnitude
of the instantaneous velocity vector, � � . Speed is a scalar quantity consisting of the
velocity value that has been stripped of any indication of the direction the object is
moving, either in words or via an algebraic sign. A velocity of (�5 m/s)î and one of
(�5 m/s)î both have an associated speed of 5 m/s.

READI NG EXERC IS E  2-4 : Suppose that you drive 10 mi due east to a store. You
suddenly realize that you forgot your money. You turn around and drive the 10 mi due west
back to your home and then return to the store. The total trip took 30 min. (a) What is your av-
erage velocity for the entire trip? (Set up a coordinate system and express your result in vector
notation.) (b) What was your average speed for the entire trip? (c) Discuss why you obtained
different values for average velocity and average speed. ■

READI NG EXERC IS E  2-5 : Suppose that you are driving and look down at your
speedometer. What does the speedometer tell you—average speed, instantaneous speed, aver-
age velocity, instantaneous velocity—or something else? Explain. ■

READI NG EXERC IS E  2-6 : The following equations give the position component,
x(t), along the x axis of a particle’s motion in four situations (in each equation, x is in meters, t is
in seconds, and t � 0): (1) x � (3 m/s)t � (2 m) ; (2) x � (�4 m/s2)t2 � (2 m);
(3) x � (�4 m/s2)t2; and (4) x � �2 m.
(a) In which situations is the velocity of the particle constant? (b) In which is the vector 
pointing in the negative x direction? ■

v:v:

v:

x:
x:x:

x:
x:

x:

v: �
dx:

dt
,

TOUCHSTONE EXAMPLE 2-2: Out of Gas

READI NG EXERC IS E  2-7 : In Touchstone Example 2-2, suppose that right after
refueling the truck you drive back to x1 at 35 km/h. What is the average velocity for your entire
trip? ■

You drive a beat-up pickup truck along a straight road for 8.4 km at
70 km/h, at which point the truck runs out of gasoline and stops.
Over the next 30 min, you walk another 2.0 km farther along the
road to a gasoline station.

(a) What is your overall displacement from the beginning of your
drive to your arrival at the station?

S O L U T I O N ■ Assume, for convenience, that you move in the
positive direction along an x axis, from a first position of x1 � 0 to a
second position of x2 at the station. That second position must be at

x2 � 8.4 km � 2.0 km � 10.4 km. Then the Ke y  I d e a here is that
your displacement �x along the x axis is the second position minus
the first position. From Eq. 2-1, we have

�x � x2 � x1 � 10.4 km � 0 � 10.4 km (Answer)

Thus, your overall displacement is 10.4 km in the positive direction
of the x axis.

(b) What is the time interval �t from the beginning of your drive to
your arrival at the station?
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S O L U T I O N ■ We already know the time interval �twlk (� 0.50 h)
for the walk, but we lack the time interval �tdr for the drive. However,
we know that for the drive the displacement �xdr is 8.4 km and the av-
erage velocity �vdr x� is 70 km/h. A Ke y  I d e a to use here comes
from Eq. 2-4: This average velocity is the ratio of the displacement for
the drive to the time interval for the drive,

Rearranging and substituting data then give us

Therefore, �t � �tdr � �twlk

� 0.12 h � 0.50 h � 0.62 h.

(c) What is your average velocity �vx� from the beginning of your
drive to your arrival at the station? Find it both numerically and
graphically.

S O L U T I O N ■ The Ke y  I d e a here again comes from Eq. 2-4:
�vx� for the entire trip is the ratio of the displacement of 10.4 km for
the entire trip to the time interval of 0.62 h for the entire trip. With
Eq. 2-4, we find it is

(Answer)

To find �vx� graphically, first we graph x(t) as shown in Fig. 2-11,
where the beginning and arrival points on the graph are the origin
and the point labeled “Station.” The Ke y  I d e a here is that your
average velocity in the x direction is the slope of the straight line

connecting those points; that is, it is the ratio of the rise (�x �
10.4 km) to the run (�t � 0.62 h), which gives us �vx� � 16.8 km/h.

(d) Suppose that to pump the gasoline, pay for it, and walk back to
the truck takes you another 45 min. What is your average speed
from the beginning of your drive to your return to the truck with
the gasoline?

S O L U T I O N ■ The Ke y  I d e a here is that your average speed
is the ratio of the total distance you move to the total time inter-
val you take to make that move. The total distance is 8.4 km �
2.0 km � 2.0 km � 12.4 km. The total time interval is 0.12 h �
0.50 h � 0.75 h � 1.37 h. Thus, Eq. 2-5 gives us

(Answer)�s� �
12.4 km
1.37 h

� 9.1 km/h.

� 16.8 km/h � 17 km/h.

�vx� �
�x
�t

�
10.4 km
0.62 h

�tdr �
�xdr

�vdr x�
�

8.4 km
70 km�h

� 0.12 h.

�vdr x� �
�xdr

�tdr
.

2-4 Describing Velocity Change

The student shown in Fig. 2-9 is clearly speeding up and slowing down as she walks.
We know that the slope of her position vs. time graph over small time intervals keeps
changing. Now that we have defined velocity, it is meaningful to develop a mathemati-
cal description of how fast velocity changes. We see two approaches to describing ve-
locity change. We could determine velocity change over an interval of displacement
magnitude, and use � /��x � as our measure. Alternatively, we could use the ratio
of velocity change to the interval of time, �t, over which the change occurs or (� /�t).
This is analogous to our definition of velocity.

Both of our proposals are possible ways of describing velocity change—neither is
right or wrong. In the fourth century B.C.E., Aristotle believed that the ratio of velocity
change to distance change was probably constant for any falling objects. Almost 2000
years later, the Italian scientist Galileo did experiments with ramps to slow down
the motion of rolling objects. Instead he found that it was the second ratio, � /�t, that
was constant.
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FIGURE 2-11 ■ The lines marked “Driving” and “Walking” are the
position–time plots for the driving and walking stages. (The plot for
the walking stage assumes a constant rate of walking.) The slope of
the straight line joining the origin and the point labeled “Station” is
the average velocity for the trip, from beginning to station.



Our modern definition of acceleration is based on Galileo’s idea that � /�t is the
most useful concept in the description of velocity changes in falling objects.

Whenever a particle’s velocity changes, we define it as having an acceleration. The
average acceleration, , over an interval �t is defined as

(definition of 1D average acceleration). (2-7)

When the particle moves along a line (that is, an x axis in one-dimensional motion),

It is important to note that an object is accelerated even if all that changes is only the
direction of its velocity and not its speed. Directional changes are important as well.

Instantaneous Acceleration
If we want to determine how velocity changes during an instant of time, we need to
define instantaneous acceleration (or simply acceleration) in a way that is similar to
the way we defined instantaneous velocity:

(definition of 1D instantaneous acceleration). (2-8)

In the language of calculus, the ACCELERATION of a particle at any instant is the rate at
which its velocity is changing at that instant.

Using this definition, we can determine the acceleration by taking a time derivative of
the velocity, . Furthermore, since velocity of an object moving along a line is the de-
rivative of the position, , with respect to time, we can write

(1D instantaneous acceleration). (2-9)

Equation 2-9 tells us that the instantaneous acceleration of a particle at any instant is
equal to the second derivative of its position, , with respect to time. Note that if the
object is moving along an x axis, then its acceleration can be expressed in terms of the
x-component of its acceleration and the unit vector î along the x axis as

Figure 2-12c shows a plot of the x-component of acceleration of an elevator cab.
Compare the graph of the x-component of acceleration as a function of time (ax vs. t)
with the graph of the x-component of velocity as a function of time (vx vs. t) in part b.
Each point on the ax vs. t graph is the derivative (slope or tangent) of the correspond-
ing point on the vx vs. t graph. When vx is constant (at either 0 or 4 m/s), its time deriv-
ative is zero and hence so is the acceleration. When the cab first begins to move, the vx

vs. t graph has a positive derivative (the slope is positive), which means that ax is posi-
tive. When the cab slows to a stop, the derivative or slope of the vx vs. t graph is nega-
tive; that is, ax is negative. Next compare the slopes of the vx vs. t graphs during the

a: � ax î �
dvx

dt
 î  so  ax �

dvx

dt
.

x:

a: �
dv:

dt
�

d
dt 	

dx:

dt 
 �
d 2 x:

dt 2

x:
v:

a: � lim
�t : 0

�v:

�t
�

dv:

dt

�a:� �
(v2 x � v1 x)

(t2 � t1)
 î.
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v:2 � v:1
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�

�v:

�t

�a:�
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two acceleration periods. The slope associated with the cab’s stopping is steeper, be-
cause the cab stops in half the time it took to get up to speed. The steeper slope
means that the magnitude of the stopping acceleration is larger than that of the accel-
eration as the car is speeding up, as indicated in Fig. 2-12c.

Acceleration has both a magnitude and a direction and so it is a vector quantity.
The algebraic sign of its component ax represents the direction of velocity change
along the chosen vx axis. When acceleration and velocity are in the same direction
(have the same sign) the object will speed up. If acceleration and velocity are in oppo-
site directions (and have opposite signs) the object will slow down.

It is important to realize that speeding up is not always associated with an acceleration that
is positive. Likewise, slowing down is not always associated with an acceleration that is neg-
ative. The relative directions of an object’s velocity and acceleration determine whether the
object will speed up or slow down.

Since acceleration is defined as any change in velocity over time, whenever an ob-
ject moving in a straight line has an acceleration it is either speeding up, slowing
down, or turning around. Beware! In listening to common everyday language, you will
probably hear the word acceleration used only to describe speeding up and the word
deceleration to mean slowing down. It’s best in studying physics to use the more for-
mal definition of acceleration as a vector quantity that describes both the magnitude
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FIGURE 2-12 ■ (a) The x vs. t graph for an elevator cab that moves upward
along an x axis. (b) The vx vs. t graph for the cab. Note that it is the derivative
of the x vs. t graph (vx � dx/dt). (c) The ax vs. t graph for the cab. It is the de-
rivative of the vx vs. t graph (ax � dvx/dt). The stick figures along the bottom
suggest times that a passenger might feel light and long as the elevator accel-
erates downward or heavy and squashed as the elevator accelerates upward.
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FIGURE 2-13 ■ Colonel J.P. Stapp in a
rocket sled as it is brought up to high
speed (acceleration out of the page) and
then very rapidly braked (acceleration into
the page).

and direction of any type of velocity change. In short, an object is accelerating when it
is slowing down as well as when it is speeding up. We suggest avoiding the use of the
term deceleration while trying to learn the formal language of physics.

The fundamental unit of acceleration must be a velocity (displacement/time)
divided by a time, which turns out to be displacement divided by time squared.
Displacement is measured in meters and time in seconds in the SI system described in
Chapter 1. Thus, the “official” unit of acceleration is m/s2. You may encounter other
units. For example, large accelerations are often expressed in terms of “g” units where
g is directly related to the magnitude of the acceleration of a falling object near the
Earth’s surface. A g unit is given by

1 g � 9.8 m�s2. (2-10)

On a roller coaster, you have brief accelerations up to 3g, which, in standard SI
units, is (3)(9.8 m/s2) or about 29 m/s2. A more extreme example is shown in the pho-
tographs of Fig. 2-13, which were taken while a rocket sled was rapidly accelerated
along a track and then rapidly braked to a stop.

READI NG EXERC IS E  2-8 : A cat moves along an x axis. What is the sign of its accel-
eration if it is moving (a) in the positive direction with increasing speed, (b) in the positive di-
rection with decreasing speed, (c) in the negative direction with increasing speed, and (d) in the
negative direction with decreasing speed? ■

TOUCHSTONE EXAMPLE 2-3: Position and Motion 

A particle’s position on the x axis of Fig. 2-1 is given by

x � 4 m �(27 m �s) t � (1 m �s3)t3,

with x in meters and t in seconds.

(a) Find the particle’s velocity function vx(t) and acceleration func-
tion ax(t).

S O L U T I O N ■ One Ke y  I d e a is that to get the velocity func-

tion vx(t), we differentiate the position function x(t) with respect to
time. Here we find

(Answer)

with vx in meters per second.
Another Ke y  I d e a is that to get the acceleration function

ax(t), we differentiate the velocity function vx(t) with respect to
time. This gives us

vx � �(27 m�s) � 3 
(1 m�s3)t 2 � �(27 m�s) � (3 m�s3) t 2
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2-5 Constant Acceleration: A Special Case

If you watch a small steel ball bobbing up and down at the end of a spring, you will
see the velocity changing continuously. But instead of either increasing or decreasing
at a steady rate, we have a very nonuniform pattern of motion. First the ball speeds up
and slows down moving in one direction, then it turns around and speeds up and then
slows down in the other direction, and so on. This is an example of a nonconstant ac-
celeration that keeps changing in time.

Although there are many examples of nonconstant accelerations, we also observe
a surprising number of examples of constant or nearly constant acceleration. As we
already discussed, Galileo discovered that if we choose to define acceleration in terms
of the ratio � /�t, then a falling ball or a ball tossed into the air that slows down,
turns around, and speeds up again is always increasing its velocity in a downward
direction at the same rate— provided the ball is moving slowly enough that air drag is
negligible.

There are many other common motions that involve constant accelerations. Sup-
pose you measure the times and corresponding positions for an object that you sus-
pect has a constant acceleration. If you then calculate the velocities and accelerations
of the object and make graphs of them, the graphs will resemble those in Fig. 2-14.
Some examples of motions that yield similar graphs to those shown in Fig. 2-14 in-
clude: a car that you accelerate as soon as a traffic light turns green; the same car
when you apply its brakes steadily to bring it to a smooth stop; an airplane when first
taking off or when completing a smooth landing; or a dolphin that speeds up suddenly
after being startled.

Derivation of the Kinematic Equations 
Because constant accelerations are common, it is useful to derive a special set of kine-
matic equations to describe the motion of any object that is moving along a line with
a constant acceleration. We can use the definitions of acceleration and velocity and an
assumption about average velocity to derive the kinematic equations. These equations
allow us to use known values of the vector components describing positions, veloci-
ties, and accelerations, along with time intervals to predict the motions of constantly
accelerated objects.

v:

(Answer)

with ax in meters per second squared.

(b) Is there ever a time when vx � 0?

S O L U T I O N ■ Setting vx(t) � 0 yields

which has the solution 

(Answer)

Thus, the velocity is zero both 3 s before and 3 s after the clock
reads 0.

(c) Describe the particle’s motion for t � 0.

S O L U T I O N ■ The Ke y  I d e a is to examine the expressions
for x(t), vx(t), and ax(t).

At t � 0, the particle is at x(0) � �4 m and is moving with a
velocity of vx(0) � �27 m/s—that is, in the negative direction of
the x axis. Its acceleration is ax(0) � 0, because just then the parti-
cle’s velocity is not changing.

For 0 � t � 3 s, the particle still has a negative velocity, so it
continues to move in the negative direction. However, its accelera-
tion is no longer 0 but is increasing and positive. Because the signs
of the velocity and the acceleration are opposite, the particle must
be slowing.

Indeed, we already know that it turns around at t � 3 s. Just
then the particle is as far to the left of the origin in Fig. 2-1 as it will
ever get. Substituting t � 3 s into the expression for x(t), we find
that the particle’s position just then is x � �50 m. Its acceleration is
still positive.

For t � 3 s, the particle moves to the right on the axis. Its accel-
eration remains positive and grows progressively larger in magni-
tude. The velocity is now positive, and it too grows progressively
larger in magnitude.

t � �3 s.

0 � �(27 m�s) � (3 m�s3)t 2,

ax � 2 
3 
(1 m�s3)t � �(6 m�s3)t,
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FIGURE 2-14 ■ (a) The position compo-
nent x(t) of a particle moving with constant
acceleration. (b) Its velocity component
vx(t), given at each point by the slope of
the curve in (a). (c) Its (constant) compo-
nent of acceleration, ax, equal to the (con-
stant) slope of vx(t).
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FIGURE 2-15 ■ When the acceleration is
constant, then we assume (without rigor-
ous proof) that the average velocity com-
ponent in a time interval is the average of
the velocity components at the beginning
and end of the interval.

Let’s start the derivation by noting that when the acceleration is constant, the av-
erage and instantaneous accelerations are equal. As usual we place our x axis along
the line of the motion. We can now use vector notation to write 

(2-11)

so that

where ax is the component of acceleration along the line of motion of the object. We
can use the definition of average acceleration (Eq. 2-7) to express the acceleration
component ax in terms of the object’s velocity components along the line of motion,
where v2 x and v1 x are the object’s velocity components along the line of motion,

(2-12)

This expression allows us to derive the kinematic equations in terms of the vector
components needed to construct the actual one-dimensional velocity and acceleration
vectors. The subscripts 1 and 2 in most of the equations in this chapter, including
Eq. 2-12, refer to initial and final times, positions, and velocities.

If we solve Eq. 2-12 for v2 x, then the x-component of velocity at time t2 is

(primary kinematic [ax � constant] equation),

or (2-13)

This equation is the first of two primary equations that we will derive for use in ana-
lyzing motions involving constant acceleration. Before we move on, we should think
carefully about what the expression t2 � t1 represents in this equation: It represents the
time interval in which we are tracking the motion.

In a manner similar to what we have done above, we can rewrite Eq. 2-4, the ex-
pression for the average velocity along the x axis,

Hence, the x-component of the average velocity is given by 

Solving for x2 gives

(2-14)

In this equation x1 is the x-component of the position of the particle at t � t1 and is
the component along the x axis of average velocity between t � t1 and a later time
t � t2. Note that unless the velocity is constant, the average velocity component along
the x axis, �vx�, is not equal to the instantaneous velocity component, vx.

However, we do have a plausible alternative for expressing the average velocity
component in the special case when the acceleration is constant. Figure 2-15 depicts
the fact that velocity increases in a linear fashion over time for a constant accelera-
tion. It seems reasonable to assume that the component along the x axis of the
average velocity over any time interval is the average of the components for the in-

�vx�

x 2 � x 1 � �vx�(t2 � t1).

�vx� �
(x 2 � x 1)
(t2 � t1)

.

�v:� � �vx� î �
�x
�t

 î �
(x 2 � x 1)

t2 � t1
 î.

�vx � a�t.

v2 x � v1 x � ax(t2 � t1) � v1 x � ax�t

ax �
(v2 x � v1 x)

t2 � t1
.

�a:� �
(v2 x � v1 x)

t2 � t1
 î,

a: � ax î � �a:�,

t1

v2x

v1x

<vx>

<vx> =
v1x + v2x________

2
v

t2
t<t >
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FIGURE 2-16 ■ A fan on a low-friction cart is being held in place about 1.2 s but isn’t 
released fully until t1 = 1.4 s. Data for the graph were collected with a computer data 
acquisition system outfitted with an ultrasonic motion detector. Between 1.4 s and about 5.4 s
the cart appears to be undergoing a constant acceleration as it slows down, turns around, and
speeds up again. Thus, the constant acceleration kinematic equations can be used to describe
its motion but only during motion within that time interval. Thus, we can set t1 to 1.4 s and x1

to 1.8 m.

stantaneous velocity at the beginning of the interval, v1 x, and the instantaneous veloc-
ity component at the end of the interval, v2 x. So we expect that when a velocity in-
creases linearly, the average velocity component over a given time interval will be

(2-15)

Using Eq. 2-13, we can substitute v1 x � ax(t2 � t1) for v2 x to get 

(2-16)

Finally, substituting this equation into Eq. 2-14 yields

(primary kinematic [ax � constant] equation), (2-17)

or

This is our second primary equation describing motion with constant acceleration.
Figures 2-14a and 2-16 show plots of Eq. 2-17.

These two equations are very useful in the calculation of unknown quantities that
can be used to characterize constantly accelerated motion. There are five or six quan-
tities contained in our primary equations (Eqs. 2-13 and 2-17). The simplest kinematic
calculations involve situations in which all but one of the quantities is known in one of
the primary equations. In more complex situations, both equations are needed. Typi-
cally for a complex situation, we need to calculate more than one unknown. To do
this, we find the first unknown using one of the primary equations and use the result
in the other equations to find the second unknown. This method is illustrated in the
next section and in Touchstone Examples 2-4 and 2-6.

The primary equations above, v2 x � v1 x � ax(t2 � t1) � v1 x � ax�t (Eq. 2-13), and
x2 � x1 � v1 x(t2 � t1) � ax(t2 � t1)2 (Eq. 2-17), are derived directly from the defini-
tions of velocity and acceleration, with the condition that the acceleration is constant.
These two equations can be combined in three ways to yield three additional equa-
tions. For example, solving for t2 � t1 in v2 x � v1 x � ax(t2 � t1) and substituting the re-
sult into x2 � x1 � v1 x(t2 � t1) � ax(t2 � t1)2 gives us 

We recommend that you learn the two primary equations and use them to derive
other equations as needed. Then you will not need to remember so much. Table 2-1
lists our two primary equations. Note that a really nice alternative to using the two

v2
2 x � v2

1 x � 2ax(x 2 � x 1).

1
2

1
2

�x � v1 x�t � 1
2ax�t 2

x2 � x1 � v1 x(t2 � t1) � 1
2 ax(t2 � t1)2

�vx� � 1
2�v1 x � v1 x � ax(t2 � t1)� � v1 x � 1

2 ax(t2 � t1).

�vx� �
v1 x � v2 x

2
.

2.5
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1.5

1.0
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t(s)

x(
m

)
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x1 = 1.8m

t1 = 1.4s
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equations in Table 2-1 is to use the first of the equations (Eq. 2-13) along with the
expression for the average velocity component in Eq. 2-15,

(an alternative “primary” equation),

to derive all the other needed equations. The derivations of the kinematic equations
that we present here are not rigorous mathematical proofs but rather what we call plau-
sibility arguments. However, we know from the application of the kinematic equations
to constantly accelerated motions that they do adequately describe these motions.

Analyzing the Niagara Falls Plunge 
At the beginning of this chapter we asked questions about the motion of the steel
chamber holding Dave Munday as he plunged into the water after falling 48 m from
the top of Niagara Falls. How long did the fall take? That is, what is �t? How fast was
the chamber moving when it hit the water? (What is ?) As you will learn in Chapter 3,
if no significant air drag is present, objects near the surface of the Earth fall at a con-
stant acceleration of magnitude �ax � � 9.8 m/s2. Thus, the kinematic equations can be
used to calculate the time of fall and the impact speed.

Let’s start by defining our coordinate system. We will take the x axis to be a verti-
cal or up–down axis that is aligned with the downward path of the steel chamber. We
place the origin at the bottom of the falls and define up to be positive as shown in
Fig. 2-17. (Later when considering motions in two and three dimensions, we will often
denote vertical axes as y axes and horizontal axes as x axes, but these changes in sym-
bols will not affect the results of calculations.)

We know that the value of the vertical displacement is given by 

x2 � x1 � (0 m) � (�48 m) � �48 m 

and that the velocity is getting larger in magnitude in the downward (negative direc-
tion). Since the velocity is downward and the object is speeding up, the vertical
acceleration is also downward (in the negative direction). Its component along the
axis of motion is given by ax � �9.8 m/s2. Finally, we assume that Dave Munday’s cap-
sule dropped from rest, so v1 x � 0 m/s. Thus we can find the time of fall (�t � t2 � t1)
using Eq. 2-17. Solving this equation for the time elapsed during the fall (t2 � t1) when
the initial velocity v1 x is zero gives

This is a fast trip indeed!

�t � t2 � t1 � √ 2(x 2 � x 1)
ax

� √ 2(�48 m)
�9.8 m/s2 � 3.13 s � 3.1 s.

v:

�vx� �
�x
�t

�
v1 x � v2 x

2
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Equation
Number Primary Vector Component Equation*

2-13

2-17

*A reminder: In cases where the initial time t1 is chosen to be zero it is impor-
tant to remember that whenever the term (t2 � t1) is replaced by just t, then
t actually represents a time interval of �t � t � 0 over which the motion of
interest takes place.

x 2 � x 1 � v1 x (t2 � t1)�1
2 ax (t2 � t1)2

v2 x � v1 x � ax (t2 � t1)

TA B L E 2 - 1
Equations of Motion with Constant Acceleration

x = 0 m

x axis

Origin

x = 48 m

FIGURE 2-17 ■ A coordinate system cho-
sen to analyze the fall of a steel chamber
holding a man who falls 48 m from the top
to the bottom of Niagara Falls.



Next we can use the time interval of the fall in the other primary kinematic equa-
tion, Eq. 2-13, to find the velocity at impact. This gives a component of impact velocity
at the end of the fall of

The minus sign indicates that the impact velocity component is negative and is, there-
fore, in the downward direction. In vector notation, the velocity � vx î is thus �
(�31 m/s)î. Note that this is a speed of about 69 mi/hr. Since the time interval was put
into the calculation of velocity of impact as an intermediate value, we retained an ex-
tra significant figure to use in the next calculation.

READI NG EXERC IS E  2-9 : The following equations give the x-component of posi-
tion x(t) of a particle in meters (denoted m) as a function of time in seconds for four situations:
(1) x � (3 m/s)t � 4 m; (2) x � (�5 m/s3)t3 � (4 m/s)t � 6 m; (3) x � (2 m/s2)t2 � (4 m/s)t;
(4) x � (5 m/s2)t2 � 3 m. To which of these situations do the equations of Table 2-1 apply?
Explain. ■

v:v:

v2 x � v1 x � ax(t2 � t1) � 0 m/s � (�9.8 m/s2)(3.13 s) � �31 m/s.
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TOUCHSTONE EXAMPLE 2-4: Slowing Down

Spotting a police car, you brake your Porsche from a speed of 100
km/h to a speed of 80.0 km/h during a displacement of 88.0 m, at a
constant acceleration.

(a) What is that acceleration?

S O L U T I O N ■ Assume that the motion is along the positive di-
rection of an x axis. For simplicity, let us take the beginning of the
braking to be at time t1 � 0, at position x1. The Ke y  I d e a  here is
that, with the acceleration constant, we can relate the car’s accelera-
tion to its velocity and displacement via the basic constant accelera-
tion equations (Eqs. 2-13 and 2-17). The initial velocity is v1 x �
100 km/h � 27.78 m/s, the displacement is x2 � x1 � 88.0 m, and
the velocity at the end of that displacement is v2 x � 80.0 km/h �
22.22 m/s. However, we do not know the acceleration ax and time t2,
which appear in both basic equations, so we must solve those equa-
tions simultaneously.

To eliminate the unknown t2, we use Eq. 2-13 to write

(2-18)

and then we substitute this expression into Eq. 2-17 to write

Solving for ax and substituting known data then yields

(Answer)

(b) How much time is required for the given decrease in speed?

S O L U T I O N ■ Now that we know ax, we can use Eq. 2-18 to
solve for t2:

(Answer)

If you are initially speeding and trying to slow to the speed limit,
there is plenty of time for the police officer to measure your excess
speed.

You can use one of the alternate equations for motion with a
constant acceleration, Eq. 2-15, to check this result. The Ke y  I d e a
here is that the distance traveled is just the product of the average
velocity and the elapsed time, when the acceleration is constant.
The Porsche traveled 88.0 m while it slowed from 100 km/h down to
80 km/h. Thus its average velocity while it covered the 88.0 m was 

so the time it took to slow down was just

(Answer)

which still isn’t enough time to avoid that speeding ticket!

t2 � t1 �
x 2 � x 1

�vx�
�

88.0 m
25.0 m/s

� 3.52 s,

� 90
km
h


 	 1000 m
1 km 

	 1 h

3600 s 
 � 25.0 m/s,

�vx� �
(100 km/h � 80 km/h)

2

t2 � t1 �
v2 x � v1 x

ax
�

22.22 m/s � 27.78 m/s2

�1.58 m/s2 � 3.52 s.

� �1.58 m/s2.

ax �
v2

2 x � v2
1 x

2(x 2 � x 1)
�

(22.22 m/s)2 � (27.78 m/s)2

2(88.0 m)

x2 � x1 � v1 x 	 v2 x � v1 x

ax

 � 1

2 ax 	 v2 x � v1 x

ax



2

.

t2 � t1 �
v2 x � v1 x

ax
,
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TOUCHSTONE EXAMPLE 2-5: Motion Data

Suppose that you gave a box sitting on a carpeted floor a push and
then recorded its position three times per second as it slid to a stop.
The table gives the results of such a measurement. Let’s analyze the
position vs. time data for the box sliding on the carpet and use
curve fitting and calculus to obtain the velocity measurements. We
will use Excel spreadsheet software to perform our analysis, but
other computer- or calculator-based fitting or modeling software
can be used.

Box Sliding on Carpet
t[s] x[m]

0.000 0.537

0.033 0.583

0.067 0.623

0.100 0.659

0.133 0.687

0.167 0.705

0.200 0.719

0.233 0.720

(a) Draw a graph of the x vs. t data and discuss whether the rela-
tionship appears to be linear or not.

S O L U T I O N ■ The Ke y  I d e a  here is that the relationship
between two variables is linear if the graph of the data points lie
more or less along a straight line. There are many ways to graph the
data for examination: by hand, with a graphing calculator, with a
spreadsheet graphing routine, or with other graphing software such
as Data Studio (available from PASCO scientific) or Graphical
Analysis (available from Vernier Software and Technology). The
graph in Fig. 2-18 that shows a curve and so the relationship be-
tween position, x, and time is not linear.

(b) Draw a motion diagram of the box as it comes to rest on the
carpet.

S O L U T I O N ■ The Ke y  I d e a here is to use the data to sketch
the position along a line at equal time intervals. In Fig. 2-19, the
black circles represent the location of the rear of the box at inter-
vals of 1/30 of a second.

(c) Is the acceleration constant? If so, what is its component along
the x axis?

S O L U T I O N ■ The Ke y  I d e a here is to explore whether or
not the relationship between position and time of the box as it
slides to a stop can be described with a quadratic (parabolic) func-
tion of time as described in Eq. 2-17. This can be done by entering
the data that are given into a spreadsheet or graphing calculator
and either doing a quadratic model or a fit to the data. The outcome
of a quadratic model is shown in Fig. 2-20. The x-model column
contains the results of calculating x using the equation x2 � x1 �
v1 x(t2 � t1) � ax(t2 � t1)2 for each of the times in the first col-
umn using the initial position, velocity and acceleration data shown
in the boxes. The line shows the model data. If the kinematic equa-
tion fits the data, then we can conclude that the acceleration com-
ponent is a constant given by ax � �6.6 m/s2. Thus the acceleration
is in the negative y direction.

1
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0.000
0.033
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x -data (m) x -model (m)

0.537 (m)

Box Sliding on Carpet

FIGURE 2-18 ■ Solution to Touchstone Example 2-5(a). A graph of
position versus time for a box sliding across a carpet.

FIGURE 2-20 ■ Solution to Touchstone Example (c). Data and a
graph of position as function of time for a box sliding over carpet.
Actual data is compared to a model of what is expected from Eq. 2-
17 (assumed constant acceleration). The value of acceleration which
produced the best match between the model and actual data is �6.6
m/s2.

FIGURE 2-19 ■ Solution to Touchstone Example 2-5(b). A motion
diagram for a box sliding across a carpet.
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In several of the problems that follow you are asked to graph posi-
tion, velocity, and acceleration versus time. Usually a sketch will suf-
fice, appropriately labeled and with straight and curved portions ap-
parent. If you have a computer or graphing calculator, you might use
it to produce the graph.

SEC. 2-3 ■ VELOCITY AND SPEED

1. Fastball If a baseball pitcher throws a fastball at a horizontal
speed of 160 km/h, how long does the ball take to reach home plate
18.4 m away?

2. Fastest Bicycle A world speed record for bicycles was set in
1992 by Chris Huber riding Cheetah, a high-tech bicycle built by
three mechanical engineering graduates. The record (average)
speed was 110.6 km/h through a measured length of 200.0 m on a
desert road. At the end of the run, Huber commented, “Cogito ergo
zoom!” (I think, therefore I go fast!) What was Huber’s elapsed
time through the 200.0 m?

3. Auto Trip An automobile travels on a straight road for 40 km at
30 km/h. It then continues in the same direction for another 40 km
at 60 km/h. (a) What is the average velocity of the car during this
80 km trip? (Assume that it moves in the positive x direction.)
(b) What is the average speed? (c) Graph x vs. t and indicate how
the average velocity is found on the graph.

4. Radar Avoidance A top-gun pilot, practicing radar avoidance
maneuvers, is manually flying horizontally at 1300 km/h, just 35 m
above the level ground. Suddenly, the plane encounters terrain that
slopes gently upward at 4.3°, an amount difficult to detect visually
(Fig. 2-22). How much time does the pilot have to make a correc-
tion to avoid flying into the ground?

FIGURE 2-22 ■ Problem 4.

TOUCHSTONE EXAMPLE 2-6: Distance Covered

Figure 2-21b shows a graph of a person riding on a low-friction cart
being pulled along with a bungee cord as shown in Fig. 2-21a. Use
information from the two graphs and the kinematic equations to
determine approximately how far the student moved in the time in-
terval between 1.1 s and 2.0 s.

S O L U T I O N ■ The Ke y  I d e a is that the initial velocity can be
determined from the velocity vs. time graph on the left and the
acceleration during the time interval can be determined from
the acceleration vs. time graph on the right (or by finding the slope
of the velocity vs. time graph on the left during the time interval).
Note that the velocity at t1 � 1.1 s is given by v1 x � 0.4 m/s. The

acceleration during the time interval of interest is given by ax � 0.4
m/s2. Since the acceleration is constant over the time interval of in-
terest, we can use the data in Eq. 2-17 to get

� 0.5 m. (Answer)

Half a meter is not very far!

� (0.4 m/s)(2.0 s � 1.1 s) � 1
2 (0.4 m/s2)(2.0 s � 1.1 s)2

x2 � x1 � v1 x(t2 � t1) � 1
2 ax(t2 � t1)2
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FIGURE 2-21 ■ (a) A person riding on a low-friction cart
is pulled by another person who exerts a constant force
along a straight line by keeping the length of a bungee
cord constant. (b) These graphs show velocity and accel-
eration components vs. time for a rider on a cart. For the
first 0.5 s (region A) the cart is at rest. Between 0.5 s and
1.1 s (region B) the cord is beginning to stretch. Between
1.1 s and 2.0 s (region C) a constant force is acting and
the acceleration is also constant.

4.3°
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5. On Interstate 10 You drive on Interstate 10 from San Antonio
to Houston, half the time at 55 km/h and the other half at 90 km/h.
On the way back you travel half the distance at 55 km/h and the
other half at 90 km/h. What is your average speed (a) from San
Antonio to Houston, (b) from Houston back to San Antonio, and
(c) for the entire trip? (d) What is your average velocity for the en-
tire trip? (e) Sketch x vs. t for (a), assuming the motion is all in the
positive x direction. Indicate how the average velocity can be found
on the sketch.

6. Walk Then Run Compute your average velocity in the following
two cases: (a) You walk 73.2 m at a speed of 1.22 m/s and then run
73.2 m at a speed of 3.05 m/s along a straight track. (b) You walk for
1.00 min at a speed of 1.22 m/s and then run for 1.00 min at 3.05 m/s
along a straight track. (c) Graph x vs. t for both cases and indicate
how the average velocity is found on the graph.

7. Position and Time The position of an object moving along an x
axis is given by where x is in
meters and t in seconds. (a) What is the position of the object at t �
1, 2, 3, and 4 s? (b) What is the object’s displacement between t1 � 0 s
and t2 � 4 s? (c) What is the average velocity between the time in-
terval from t1 � 2 s to t2 � 4 s? (d) Graph x vs. t for 0  t  4 s and
indicate how the answer for (c) can be found on the graph.

8. Two Trains and a Bird Two trains, each having a speed of
30 km/h, are headed at each other on the same straight track.
A bird that can fly 60 km/h flies off the front of one train when they
are 60 km apart and heads directly for the other train. On reaching
the other train it flies directly back to the first train, and so forth.
(We have no idea why a bird would behave in this way.) What is the
total distance the bird travels?

9. Two Winners On two different tracks, the winners of the 1 kilom-
eter race ran their races in 2 min, 27.95 s and 2 min, 28.15 s. In order
to conclude that the runner with the shorter time was indeed faster,
how much longer can the other track be in actual length?

10. Scampering Armadillo The
graph in Fig. 2-23 is for an armadillo
that scampers left (negative direc-
tion of x) and right along an x axis.
(a) When, if ever, is the animal to the
left of the origin on the axis? When,
if ever, is its velocity component (b)
negative, (c) positive, or (d) zero?

11. Position and Time (a) If a parti-
cle’s position is given by

(where t is in seconds and x is in
meters), what is its velocity at t1 � 1 s? (b) Is it moving in the posi-
tive or negative direction of x just then? (c) What is its speed just
then? (d) Is the speed larger or smaller at later times? (Try answer-
ing the next two questions without further calculation.) (e) Is there
ever an instant when the velocity is zero? (f) Is there a time after 
t3 � 3 s when the particle is moving in the negative direction of x?

12. Particle Position and Time The position of a particle moving
along the x axis is given in meters by 
where t is in seconds. Calculate (a) the average velocity during the
time interval t � 2.00 s to t � 3.00 s; (b) the instantaneous velocity
at t � 2.00 s; (c) the instantaneous velocity at t � 3.00 s; (d) the in-
stantaneous velocity at t � 2.50 s; and (e) the instantaneous velocity
when the particle is midway between its positions at t � 2.00 s and
t � 3.00 s (f) Graph x vs. t and indicate your answers graphically.

1 3 . Ve l o c i t y – Ti m e
Graph How far does
the runner whose veloc-
ity–time graph is shown
in Fig. 2-24 travel in the
time interval between
(a) t2 � 2 s and 10 s; (b)
t12 � 12 s and t16 � 16 s?

SEC. 2-4 ■ DESCRIBING VELOCITY CHANGE

14. Various Motions Sketch a graph that is a possible description
of position as a function of time for a particle that moves along the
x axis and, at t � 1 s, has (a) zero velocity and positive acceleration;
(b) zero velocity and negative acceleration; (c) negative velocity
and positive acceleration; (d) negative velocity and negative accel-
eration. (e) For which of these situations is the speed of the particle
increasing at t � 1 s?
15. Two Similar Expressions What do the quantities (a) (dx/dt)2

and (b) d2x/dt2 represent? (c) What are their SI units?
16. Frightened Ostrich A fright-
ened ostrich moves in a straight line
with velocity described by the ve-
locity– time graph of Fig. 2-25.
Sketch acceleration vs. time.
17. Speed Then and Now A parti-
cle had a speed of 18 m/s at a
certain time, and 2.4 s later its speed
was 30 m/s in the opposite
direction. What were the magnitude
and direction of the average accel-
eration of the particle during this
2.4 s interval?
18. Stand Then Walk From t0 � 0 to t5 � 5.00 min, a man stands
still, and from t5 � 5.00 min to t10 � 10.0 min, he walks briskly in a
straight line at a constant speed of 2.20 m/s. What are (a) his average
velocity � � and (b) his average acceleration � � in the time interval
2.00 min to 8.00 min? What are (c) � � and � � in the time interval
3.00 min to 9.00 min? (d) Sketch x vs. t and v vs. t, and indicate how
the answers to (a) through (c) can be obtained from the graphs.
19. Particle Position and Time The position of a particle moving
along the x axis depends on the time according to the equation x �
ct2 � bt3, where x is in meters and t in seconds. (a) What units must
c and b have? Let their numerical values be 3.0 and 2.0.
respectively. (b) At what time does the particle reach its maximum
positive x position? From t0 � 0.0 s to t4 � 4.0 s, (c) what distance
does the particle move and (d) what is its displacement? At t � 1.0,
2.0, 3.0, and 4.0 s, what are (e) its velocities and (f) its accelerations?

SEC. 2-5 ■ CONSTANT ACCELERATION: A SPECIAL CASE

20. Driver and Rider An automobile driver on a straight road
increases the speed at a constant rate from 25 km/h to 55 km/h in
0.50 min. A bicycle rider on a straight road speeds up at a constant
rate from rest to 30 km/h in 0.50 min. Calculate their accelerations.
21. Stopping a Muon A muon (an elementary particle) moving in
a straight line enters a region with a speed of 5.00 � 106 m/s and

a:v:
a:v:
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FIGURE 2-23 ■ Problem 10.
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then is slowed at the rate of 1.25 � 1014 m/s2. (a) How far does the
muon take to stop? (b) Graph x vs. t and v vs. t for the muon.

22. Rattlesnake Striking The head of a rattlesnake can accelerate
at 50 m/s2 in striking a victim. If a car could do as well, how long
would it take to reach a speed of 100 km/h from rest?

23. Accelerating an Electron An electron has a constant accelera-
tion of �3.2 m/s2 î. At a certain instant its velocity is �9.6 m/s î.
What is its velocity (a) 2.5 s earlier and (b) 2.5 s later?

24. Speeding Bullet The speed of a bullet is measured to be
640 m/s as the bullet emerges from a barrel of length 1.20 m. As-
suming constant acceleration, find the time that the bullet spends in
the barrel after it is fired.

25. Comfortable Acceleration Suppose a rocket ship in deep space
moves with constant acceleration equal to 9.8 m/s2, which gives the
illusion of normal gravity during the flight. (a) If it starts from rest,
how long will it take to acquire a speed one-tenth that of light, which
travels at 3.0 � 108 m/s? (b) How far will it travel in so doing?

26. Taking Off A jumbo jet must reach a speed of 360 km/h on the
runway for takeoff. What is the least constant acceleration needed
for takeoff from a 1.80 km runway?

27. Even Faster Electrons An
electron with initial velocity v1

� 1.50 � 105 m/s enters a region
1.0 cm long where it is electri-
cally accelerated (Fig. 2-26). It
emerges with velocity v2 � 5.70
� 106 m/s. What is its accelera-
tion, assumed constant? (Such a
process occurs in conventional
television sets.)

28. Stopping Col. Stapp A
world’s land speed record was
set by Colonel John P. Stapp
when in March 1954 he rode a
rocket-propelled sled that
moved along a track at 1020 km/h. He and the sled were brought to
a stop in 1.4 s. (See Fig. 2-13) In g units, what acceleration did he ex-
perience while stopping?

29. Speed Trap The brakes on your automobile are capable of
slowing down your car at a rate of 5.2 m/s2. (a) If you are going
137 km/h and suddenly see a state trooper, what is the minimum
time in which you can get your car under the 90 km/h speed limit?
The answer reveals the futility of braking to keep your high speed
from being detected with a radar or laser gun.) (b) Graph x vs. t and
v vs. t for such a deceleration.

30. Judging Acceleration Figure 2-27
depicts the motion of a particle moving
along an x axis with a constant acceler-
ation. What are the magnitude and di-
rection of the particle’s acceleration?

31. Hitting a Wall A car traveling 56.0
km/h is 24.0 m from a barrier when the
driver slams on the brakes. The car hits
the barrier 2.00 s later. (a) What is the
car’s constant acceleration before im-
pact? (b) How fast is the car traveling
at impact?

32. Red and Green Trains A red train traveling at 72 km/h and a
green train traveling at 144 km/h are headed toward one another
along a straight, level track. When they are 950 m apart, each engi-
neer sees the other’s train and applies the brakes. The brakes slow
each train at the rate of 1.0 m/s2. Is there a collision? If so, what is
the speed of each train at impact? If not, what is the separation be-
tween the trains when they stop?

33. Between Two Points A car moving with constant acceleration
covered the distance between two points 60.0 m apart in 6.00 s. Its
speed as it passes the second point was 15.0 m/s. (a) What was the
speed at the first point? (b) What was the acceleration? (c) At what
prior distance from the first point was the car at rest? (d) Graph
x vs. t and v vs. t for the car from rest (t1 � 0 s).

34. Chasing a Truck At the instant the traffic light turns green, an
automobile starts with a constant acceleration a of 2.2 m/s2. At the
same instant a truck, traveling with a constant speed of 9.5 m/s,
overtakes and passes the automobile. (a) How far beyond the traffic
signal will the automobile overtake the truck? (b) How fast will the
car be traveling at that instant?

35. Reaction Time To stop a car, first you require a certain reac-
tion time to begin braking; then the car slows under the constant
braking. Suppose that the total distance moved by your car during
these two phases is 56.7 m when its initial speed is 80.5 km/h, and
24.4 m when its initial speed is 48.3 km/h. What are (a) your reac-
tion time and (b) the magnitude of the braking acceleration?

36. Avoiding a Collision When a high-speed passenger train trav-
eling at 161 km/h rounds a bend, the engineer is shocked to see that
a locomotive has improperly entered the track from a siding and is
a distance D � 676 m ahead (Fig. 2-28). The locomotive is moving
at 29.0 km/h. The engineer of the high-speed train immediately ap-
plies the brakes. (a) What must be the magnitude of the resulting
constant acceleration if a collision is to be just avoided? (b) Assume
that the engineer is at x � 0 when, at t � 0, he first spots the loco-
motive. Sketch the x(t) curves representing the locomotive and,
high-speed train for the situations in which a collision is just
avoided and is not quite avoided.

FIGURE 2-28 ■ Problem 36.

37. Going Up An elevator cab in the New York Marquis Marriott
has a total run of 190 m. Its maximum speed is 305 m/min. Its accel-
eration (both speeding up and slowing) has a magnitude of
1.22 m/s2. (a) How far does the cab move while accelerating to full
speed from rest? (b) How long does it take to make the nonstop
190 m run, starting and ending at rest?

38. Shuffleboard Disk A shuffleboard disk is accelerated at a con-
stant rate from rest to a speed of 6.0 m/s over a 1.8 m distance by a
player using a cue. At this point the disk loses contact with the cue
and slows at a constant rate of 2.5 m/s2 until it stops. (a) How much
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time elapses from when the disk begins to accelerate until it stops?
(b) What total distance does the disk travel?

39. Electric Vehicle An electric vehicle starts from rest and accel-
erates at a rate of 2.0 m/s2 in a straight line until it reaches a speed
of 20 m/s. The vehicle then slows at a constant rate of 1.0 m/s2 until
it stops. (a) How much time elapses from start to stop? (b) How far
does the vehicle travel from start to stop?

40. Red Car–Green Car In Fig. 2-29 a red car and a green car,
identical except for the color, move toward each other in adjacent
lanes and parallel to an x axis. At time t1 � 0 s, the red car is at xr �
0 m and the green car is at xg � 220 m. If the red car has a constant
velocity of 20 km/h, the cars pass each other at x � 44.5 m, and if it
has a constant velocity of 40 km/h, they pass each other at x � 76.6
m. If the green car has a constant acceleration, what are (a) its ini-
tial velocity and (b) its acceleration?

FIGURE 2-29 ■ Problem 40.

41. Position Function The position of a particle moving along an x
axis is given by , where x is in meters and
t is in seconds. (a) Determine the position, velocity, and acceleration
of the particle at t3 � 3.0 s. (b) What is the maximum positive coordi-
nate reached by the particle and at what time is it reached? (c) What
is the maximum positive velocity reached by the particle and at what
time is it reached? (d) What is the acceleration of the particle at the
instant the particle is not moving (other than at t0 � 0)? (e) Deter-
mine the average velocity of the particle between t0 � 0 and t3 � 3 s.
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Additional Problems

42. Kids in the Back! An unrestrained child is playing on the front
seat of a car that is traveling in a residential neighborhood at
35 km/h. (How many mi/h is this? Is this car going too fast?) A
small dog runs across the road and the driver applies the brakes,
stopping the car quickly and missing the dog. Estimate the speed
with which the child strikes the dashboard, presuming that the car
stops before the child does so. Compare this speed with that of the
world-record 100 m dash, which is run in about 10 s.

43. The Passat GLX Test results (Car & Driver, February 1993, p. 48)
on a Volkswagen Passat GLX show that when the brakes are fully ap-
plied it has an average braking acceleration of magnitude 8.9 m/s2. If a
preoccupied driver who is moving at a speed of 42 mph looks up sud-
denly and sees a stop light 30 m in front of him, will he have sufficient
time to stop? The weight of the Volkswagen is 3 152 lb.

44. Velocity and Pace When we drive a car we usually describe our
motion in terms of speed or velocity. A speed limit, such as 60 mi/h, is
a speed. When runners or joggers describe their motion, they often
do so in terms of a pace—how long it takes to go a given distance. A
4-min mile (or better,“4 minutes/mile”) is an example of a pace.

(a) Express the speed 60 mi/h as a pace in min/mi.
(b) I walk on my treadmill at a pace of 17 min/mi. What is my
speed in mi/h?
(c) If I travel at a speed, v, given in mi/h, what is my pace, p,
given in min/mi? (Write an equation that would permit easy con-
version.)

45. Spirit of America The 9000 lb Spirit of America (designed to
be the world’s fastest car) accelerated from rest to a final velocity of
756 mph in a time of 45 s. What would the acceleration have been in
meters per second? What distance would the driver, Craig
Breedlove, have covered?

46. Driving to New York You and a friend decide to drive to New
York from College Park, Maryland (near Washington, D.C.) on Sat-
urday over the Thanksgiving break to go to a concert with some
friends who live there. You figure you have to reach the vicinity of
the city at 5 P.M. in order to meet your friends in time for dinner be-
fore the concert. It’s about 220 mi from the entrance to Route 95 to
the vicinity of New York City. You would like to get on the highway
about noon and stop for a bite to eat along the way. What does your

average velocity have to be? If you keep an approximately constant
speed (not a realistic assumption!), what should your speedometer
read while you are driving?

47. NASA Internship You are working as a student intern for the
National Aeronautics and Space Administration (NASA) and your
supervisor wants you to perform an indirect calculation of the up-
ward velocity of the space shuttle relative to the Earth’s surface just
5.5 s after it is launched when it has an altitude of 100 m. In order
to obtain data, one of the engineers has wired a streamlined flare to
the side of the shuttle that is gently released by remote control after
5.5 s. If the flare hits the ground 8.5 s after it is released, what is the
upward velocity of the flare (and hence of the shuttle) at the time
of its release? (Neglect any effects of air resistance on the flare.)
Note: Although the flare idea is fictional, the data on a typical 
shuttle altitude and velocity at 5.5 s are straight from NASA!

48. Cell Phone Fight You are arguing over a cell phone while trail-
ing an unmarked police car by 25 m; both your car and the police
car are traveling at 110 km/h. Your argument diverts your attention
from the police car for 2.0 s (long enough for you to look at the
phone and yell, “I won’t do that!”). At the beginning of that 2.0 s,
the police officer begins emergency braking at 5.0 m/s2. (a) What is
the separation between the two cars when your attention finally re-
turns? Suppose that you take another 0.40 s to realize your danger
and begin braking. (b) If you too brake at 5.0 m/s2, what is your
speed when you hit the police car?

49. Reaction Distance When a driver brings a car to a stop by
braking as hard as possible, the stopping distance can be regarded
as the sum of a “reaction distance,” which is initial speed multiplied
by the driver’s reaction time, and a “braking distance,” which is the
distance traveled during braking. The following table gives typical
values. (a) What reaction time is the driver assumed to have? (b)
What is the car’s stopping distance if the initial speed is 25 m/s?

Initial Reaction Braking Stopping

Speed (m/s) Distance (m) Distance (m) Distance (m)

10 7.5 5.0 12.5

20 15 20 35

30 22.5 45 67.5
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50. Tailgating In this problem we analyze the phenomenon of
“tailgating” in a car on a highway at high speeds. This means travel-
ing too close behind the car ahead of you. Tailgating leads to multi-
ple car crashes when one of the cars in a line suddenly slows down.
The question we want to answer is: “How close is too close?”

To answer this question, let’s suppose you are driving on the
highway at a speed of 100 km/h (a bit more than 60 mi/h). The dri-
ver ahead of you suddenly puts on his brakes. We need to calculate
a number of things: how long it takes you to respond; how far you
travel in that time, and how far the other car travels in that time.

(a) First let’s estimate how long it takes you to respond. Two times
are involved: how long it takes from the time you notice something
happening till you start to move to the brake, and how long it takes
to move your foot to the brake. You will need a ruler to do this.
Take the ruler and have a friend hold it from the one end hanging
straight down. Place your thumb and forefinger opposite the bot-
tom of the ruler. As your friend releases the ruler suddenly, try to
catch it with your thumb and forefinger. Measure how far it falls be-
fore you catch it. Do this three times and take the average distance.
Assuming the ruler is falling freely without air resistance (not a bad
assumption), calculate how much time it takes you to catch it, t1.
Now estimate the time, t2, it takes you to move your foot from the
gas pedal to the brake pedal. Your reaction time is t1 � t2.
(b) If you brake hard and fast, you can bring a typical car to rest
from 100 km/h (about 60 mi/h) in 5 seconds.

1. Calculate your acceleration, �a0, assuming that it is constant.
2. Suppose the driver ahead of you begins to brake with an ac-
celeration �a0. How far will he travel before he comes to a
stop? (Hint: How much time will it take him to stop? What will
be his average velocity over this time interval?)

(c) Now we can put these results together into a fairly realistic situ-
ation. You are driving on the highway at 100 km/hr and there is a
driver in front of you going at the same speed.

1. You see him start to slow immediately (an unreasonable but
simplifying assumption). If you are also traveling 100 km/h,
how far (in meters) do you travel before you begin to brake? If
you can also produce the acceleration �a0 when you brake,
what will be the total distance you travel before you come to a
stop?
2. If you don’t notice the driver ahead of you beginning to
brake for 1 s, how much additional distance will you travel?
3. Discuss, on the basis of these calculations, what you think is
a safe distance to stay behind a car at 60 mi/h. Express your dis-
tance in “car lengths” (about 15 ft). Would you include a safety
factor beyond what you have calculated here? How much?

51. Testing the Motion Detector A mo-
tion detector that may be used in physics
laboratories is shown in Fig. 2-30. It mea-
sures the distance to the nearest object
by using a speaker and a microphone.
The speaker clicks 30 times a second. The
microphone detects the sound bouncing
back from the nearest object in front of
it. The computer calculates the time delay
between making the sound and receiving
the echo. It knows the speed of sound
(about 343 m/s at room temperature),
and from that it can calculate the dis-
tance to the object from the time delay.

(a) If the nearest object in front of the detector is too far away, the
echo will not get back before a second click is emitted. Once that
happens, the computer has no way of knowing that the echo isn’t an
echo from the second click and that the detector isn’t giving correct
results any more. How far away does the object have to be before
that happens?
(b) The speed of sound changes a little bit with temperature. Let’s
try to get an idea of how important this is. At room temperature
(72 °F) the speed of sound is about 343 m/s. At 62 °F it is about 1%
smaller. Suppose we are measuring an object that is really 1.5 me-
ters away at 72 °F. What is the time delay �t that the computer de-
tects before the echo returns? Now suppose the temperature is 62
°F. If the computer detects a time delay of �t but (because it doesn’t
know the temperature) calculates the distance using the speed of
sound appropriate for 72 °F, how far away does the computer re-
port the object to be?

52. Hitting a Bowling Ball A bowling ball sits on a hard floor at a
point that we take to be the origin. The ball is hit some number of
times by a hammer.The ball moves along a line back and forth across
the floor as a result of the hits. (See Fig. 2-31.) The region to the right
of the origin is taken to be positive, but during its motion the ball is
at times on both sides of the origin. After the ball has been moving
for a while, a motion detector like the one discussed in Problem 51 is
started and takes the following graph of the ball’s velocity.

FIGURE 2-31 ■ Problem 52.

Answer the following questions with the symbols L (left), R
(right), N (neither), or C (can’t say which). Each question refers
only to the time interval displayed by the computer.

(a) At which side of the origin is the ball for the time marked A?
(b) At the time marked B, in which direction is the ball moving?
(c) Between the times A and C, what is the direction of the ball’s
displacement?
(d) The ball receives a hit at the time marked D. In what direction
is the ball moving after that hit?
53. Waking the Balrog In The Fellowship of the Ring, the hobbit
Peregrine Took (Pippin for short) drops a rock into a well while the
travelers are in the caves of Moria. This wakes a balrog (a bad
thing) and causes all kinds of trouble. Pippin hears the rock hit the
water 7.5 s after he drops it.

(a) Ignoring the time it takes the sound to get back up, how deep is
the well?
(b) It is quite cool in the caves of Moria, and the speed of sound in
air changes with temperature. Take the speed of sound to be 340
m/s (it is pretty cool in that part of Moria). Was it OK to ignore the
time it takes sound to get back up? Discuss and support your an-
swer with a calculation.

54. Two Balls, Passing in the Night* Figure 2-32 represents the
position vs. clock reading of the motion of two balls, A and B,

FIGURE 2-30 ■ Prob-
lem 51.
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*From A. Arons, A Guide to Introductory Physics Teaching (New York: John
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moving on parallel tracks. Carefully
sketch the figure on your homework
paper and answer the following
questions:

(a) Along the t axis, mark with the
symbol tA any instant or instants at
which one ball is passing the other.
(b) Which ball is moving faster at
clock reading tB?
(c) Mark with the symbol tC any in-
stant or instants at which the balls have the same velocity.
(d) Over the period of time shown in the diagram, which of the
following is true of ball B? Explain your answer.

1. It is speeding up all the time.
2. It is slowing down all the time.
3. It is speeding up part of the time and slowing down part of
the time.

55. Graph for a Cart on a Tilted Airtrack—with Spring The graph
in Fig. 2-33 below shows the velocity graph of a cart moving on an air
track. The track has a spring at one end and has its other end raised.
The cart is started sliding up the track by pressing it against the
spring and releasing it. The clock is started just as the cart leaves the
spring. Take the direction the cart is moving in initially to be the posi-
tive x direction and take the bottom of the spring to be the origin.

FIGURE 2-33 ■ Problem 55
Letters point to six points on the velocity curve. For the physi-

cal situations described below, identify which of the letters corre-
sponds to the situation described. You may use each letter more
than once, more than one letter may be used for each answer, or
none may be appropriate. If none is appropriate, use the letter N.

(a) This point occurs when the cart is at its highest point on the
track.
(b) At this point, the cart is instantaneously not moving.
(c) This is a point when the cart is in contact with the spring.
(d) At this point, the cart is moving down the track toward the
origin.
(e) At this point, the cart has acceleration of zero.

56. Rolling Up and Down A ball is launched up a ramp by a spring
as shown in Fig. 2-34. At the time when the clock starts, the ball is
near the bottom of the ramp and is rolling up the ramp as shown. It
goes to the top and then rolls back down. For the graphs shown in
Fig. 2-34, the horizontal axis represents the time. The vertical axis is
unspecified.

For each of the following quantities, select the letter of the
graph that could provide a correct graph of the quantity for the ball
in the situation shown (if the vertical axis were assigned the proper
units). Use the x and y coordinates shown in the picture. If none of
the graphs could work, write N.

(a) The x-component of the ball’s position 
(b) The y-component of the ball’s velocity 
(c) The x-component of the ball’s acceleration 
(d) The y-component of the normal force the ramp exerts on the
ball
(e) The x-component of the ball’s velocity 
(f) The x-component of the force of gravity acting on the 
ball

FIGURE 2-34 ■ Problem 56
57. Model Rocket A model rocket, propelled by burning fuel,
takes off vertically. Plot qualitatively (numbers not required)
graphs of y, v, and a versus t for the rocket’s flight. Indicate when
the fuel is exhausted, when the rocket reaches maximum height,
and when it returns to the ground.

58. Rock Climber At time t �
0, a rock climber accidentally
allows a piton to fall freely
from a high point on the rock
wall to the valley below him.
Then, after a short delay, his
climbing partner, who is 10 m
higher on the wall, throws a
piton downward. The positions
y of the pitons versus t during
the fall are given in Fig. 2-35.
With what speed was the sec-
ond piton thrown?

59. Two Trains As two
trains move along a track,
their conductors suddenly
notice that they are headed
toward each other. Figure
2-36 gives their velocities v
as functions of time t as the
conductors slow the trains.
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FIGURE 2-32 ■ Problem 54.
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The slowing processes begin when the trains are 200 m apart. What
is their separation when both trains have stopped?

60. Runaway Balloon As a runaway
scientific balloon ascends at 19.6 m/s,
one of its instrument packages breaks
free of a harness and free-falls. Figure
2-37 gives the vertical velocity of the
package versus time, from before it
breaks free to when it reaches the
ground. (a) What maximum height
above the break-free point does it
rise? (b) How high was the break-free
point above the ground?

61. Position Function Two A parti-
cle moves along the x axis with posi-
tion function x(t) as shown in Fig. 2-
38. Make rough sketches of the
particle’s velocity versus time and
its acceleration versus time for this
motion.

62. Velocity Curve Figure 2-39 gives
the velocity v(m/s) versus time t (s) for
a particle moving along an x axis. The
area between the time axis and the
plotted curve is given for the two por-
tions of the graph. At t � tA (at one of
the crossing points in the plotted fig-
ure), the particle’s position is x � 14
m. What is its position at 
(a) t � 0 and (b) t � tB?

63. The Motion Detector Rag This assignment is based on the
Physics Pholk Song CD distributed by Pasco scientific. The words to
these songs are also available through the Dickinson College Web
site at http://physics.dickinson.edu.

(a) Refer to the motion described in the first verse of the Motion
Detector Rag; namely, you are moving for the same amount of time
that you are standing. Sketch a position vs. time graph for this mo-
tion. Also, describe the shape of the graph in words.
(b) Refer to the motion described in the second verse of the Mo-
tion Detector Rag. In this verse, you are making a “steep down-
slope,” then a “gentle up-slope,” and last a flat line. You spend the
same amount of time engaged in each of these actions. Sketch a
position vs. time graph of this motion. Also, describe what you are
doing in words. That is, are you standing still, moving away from the
origin (or motion detector), moving toward the origin (or motion
detector)? Which motion is the most rapid, and so on?
(c) Refer to the motion described in the third verse of the Motion
Detector Rag. You start from rest and move away from the motion
detector at an acceleration of �1.0 m/s2 for 5 seconds. Sketch the
acceleration vs. time graph to this motion. Sketch the corresponding
velocity vs. time graph. Sketch the shape of the corresponding posi-
tion vs. time graph.

64. Hockey Puck At time t � 0, a hockey puck is sent sliding
over a frozen lake, directly into a strong wind. Figure 2-40 gives
the velocity v of the puck vs. time, as the puck moves along a
single axis. At t � 14 s, what is its position relative to its posi-
tion at t � 0?

FIGURE 2-40 ■ Problem 64.

65. Describing One-Dimensional Velocity Changes In each of the
following situations you will be asked to refer to the mathematical
definitions and the concepts associated with the number line. Note
that being more positive is the same as being less negative, and so
on.

(a) Suppose an object undergoes a change in velocity from �1 m/s
to �4 m/s. Is its velocity becoming more positive or less positive?
What is meant by more positive? Less positive? Is the acceleration
positive or negative?
(b) Suppose an object undergoes a change in velocity from �4 m/s
to �1 m/s. Is its velocity becoming more positive or less positive?
What is meant by more positive? Less positive? Is the acceleration
positive or negative?
(c) Suppose an object is turning around so that it undergoes a
change in velocity from �2 m/s to �2 m/s. Is its velocity becoming
more positive or less positive than it was before? What is meant by
more positive? Less positive? Is it undergoing an acceleration while
it is turning around? Is the acceleration positive or negative?
(d) Another object is turning around so that it undergoes a change
in velocity from �1 m/s to �1 m/s. Is its velocity becoming more
positive or less positive than it was before? What is meant by
more positive? Less positive? Is it undergoing an acceleration while
it is turning around? Is the acceleration positive or negative?

66. Bowling Ball Graph A bowling
ball was set into motion on a fairly
smooth level surface, and data were
collected for the total distance cov-
ered by the ball at each of four times.
These data are shown in the table.

(a) Plot the data points on a graph.
(b) Use a ruler to draw a straight line that passes as close as possi-
ble to the data points you have graphed.
(c) Using methods you were taught in algebra, calculate the value
of the slope, m, and find the value of the intercept, b, of the line you
have sketched through the data.

67. Modeling Bowling Ball Motion A bowling ball is set into mo-
tion on a smooth level surface, and data were collected for the total
distance covered by the ball at each of four times. These data are
shown in the table in Problem 66. Your job is to learn to use a
spreadsheet program — for example, Microsoft Excel—to create a
mathematical model of the bowling ball motion data shown. You
are to find what you think is the best value for the slope, m, and
the y-intercept, b. Practicing with a tutorial worksheet entitled
MODTUT.XLS will help you to learn about the process of
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modeling for a linear relationship. Ask your instructor where to find
this tutorial worksheet.

After using the tutorial, you can create a model for the bowl-
ing ball data given above. To do this:

(a) Open a new worksheet and enter a title for your bowling ball
graph.
(b) Set the y-label to Distance (m) and the x-label to Time (s).
(c) Refer to the data table above. Enter the measured times for the
bowling ball in the Time (s) column (formerly x-label).
(d) Set the y-exp column to D-data (m) and enter the measured
distances for the bowling ball (probably something like 0.00 m, 2.00
m, 4.00 m, and 6.00 m.).
(e) Place the symbol m (for slope) in the cell B1. Place the symbol
b (for y-intercept) in cell B2.
(f) Set the y-theory column to D-model (m) and then put the ap-
propriate equation for a straight line of the form Distance �
m*Time � b in cells C7 through C12. Be sure to refer to cells C1
for slope and C2 for y-intercept as absolutes; that is, use $C$l and
$C$2 when referring to them.
(g) Use the spreadsheet graphing feature to create a graph of the
data in the D-exp and D-theory columns as a function of the data in
the Time column.
(h) Change the values in cells Cl and C2 until your theoretical line
matches as closely as possible your red experimental data points in
the graph window.
(i) Discuss the meaning of the slope of a graph of distance vs. time.
What does it tell you about the motion of the bowling ball?

68. A Strange Motion After doing a number of the exercises with
carts and fans on ramps, it is easy to draw the conclusion that every-
thing that moves is moving at either a constant velocity or a
constant acceleration. Let’s examine the horizontal motion of a tri-
angular frame with a pendulum at its center that has been given a
push. It undergoes an unusual motion. You should determine

whether or not it is moving at either a constant velocity or constant
acceleration. (Note: You may want to look at the motion of the tri-
angular frame by viewing the digital movie entitled PASCO070.
This movie is included on the VideoPoint compact disk. If you are
not using VideoPoint, your instructor may make the movie avail-
able to you some other way.)

The images in Fig. 2-41 are taken from the 7th, 16th, and 25th
frames of that movie.

Data for the position of the center of the horizontal bar of the
triangle were taken every tenth of a second during its first second
of motion. The origin was placed at the zero centimeter mark of a
fixed meter stick. These data are in the table below.
(a) Examine the position vs. time graph of the data shown above.
Does the triangle appear to have a constant velocity throughout the
first second? A constant acceleration? Why or why not?
(b) Discuss the nature of the motion based on the shape of the
graph. At approximately what time, if any, is the triangle changing
direction? At approximately what time does it have the greatest
negative velocity? The greatest positive velocity? Explain the rea-
sons for your answers.
(c) Use the data table and the definition of average velocity to cal-
culate the average velocity of the triangle at each of the times be-
tween 0.100 s and 0.900 s. In this case you should use the position
just before the indicated time and the position just after the indi-
cated time in your calculation. For example, to calculate the aver-
age velocity at t2 � 0.100 seconds, use x3 � 44.5 cm and x1 � 52.1
cm along with the differences of the times at t3 and t1. Hint: Use
only times and positions in the gray boxes to get a velocity in a gray
box and use only times and positions in the white boxes to get a ve-
locity in a white box.
(d) Since people usually refer to velocity as distance divided by time,
maybe we can calculate the average velocities as simply x1/t1, x2/t2,
x3/t3, and so on. This would be easier. Is this an equivalent method for
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FIGURE 2-41 ■ Problem 68.
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finding the velocities at the different times? Try using this method of
calculation if you are not sure. Give reasons for your answer.
(e) Often, when an oddly shaped but smooth graph is obtained
from data it is possible to fit a polynomial to it. For example, a
fourth-order polynomial that fits the data is

Using this polynomial approximation, find the instantaneous veloc-
ity at t � 0.700 s. Comment on how your answer compares to the
average velocity you calculated at 0.700 s. Are the two values close?
Is that what you expect?

69. Cedar Point At the Cedar Point Amusement Park in Ohio, a
cage containing people is moving at a high initial velocity as the re-
sult of a previous free fall. It changes direction on a curved track
and then coasts in a horizontal direction until the brakes are ap-
plied. This situation is depicted in a digital movie entitled
DSON002. (Note: This movie is included on the VideoPoint com-
pact disk. If you are not using VideoPoint, your instructor may
make the movie available to you some other way.)

(a) Use video analysis software to gather data for the horizontal
positions of the tail of the cage in meters as a function of time.
Don’t forget to use the scale on the title screen of the movie so
your results are in meters rather than pixels. Summarize this data in
a table or in a printout attached to your homework.
(b) Transfer your data to a spreadsheet and do a parabolic model to
show that within 5% or better x � (�7.5 m/s2)t2 � (22.5 m/s)t �
2.38 m. Please attach a printout of this model and graph with your
name on it to your submission as “proof of completion.”(Note: Your
judgments about the location of the cage tail may lead to slightly dif-
ferent results.)
(c) Use the equation you found along with its interpretation as em-
bodied in the first kinematic equation to determine the horizontal
acceleration, a, of the cage as it slows down. What is its initial hori-
zontal velocity, v1, at time t � 0 s? What is the initial position, x1, of
the cage?
(d) The movie ends before the cage comes to a complete stop. Use
your knowledge of a, v1, and x1 along with kinematic equations to
determine the horizontal position of the cage when it comes to
a complete stop so that the final velocity of the cage is given by v2 �
v � 0.00 m/s.

70. Three Digital Movies Three digital movies depicting the mo-
tions of four single objects have been selected for you to examine
using a video-analysis program. They are as follows:

PASCO004: A cart moves on an upper track while another moves
on a track just below.

PASCO153: A metal ball attached to a string swings gently.

HRSY003: A boat with people moves in a water trough at Hershey
Amusement Park.

Please examine the horizontal motion of each object carefully by
viewing the digital movies. In other words, just examine the motion
in the x direction (and ignore any slight motions in the y direction).
You may use LoggerPro 3, VideoPoint, VideoGraph, or World-in-
Motion digital analysis software and a spreadsheet to analyze the
motion in more detail if needed. Based on what you have learned
so far, there is more than one analysis method that can be used to
answer the questions that follow. Note: Since we are interested only
in the nature of these motions (not exact values) you do not need
to scale any of the movies. Working in pixel units is fine.

x � {(�376 cm/s4)t 4 � (719 cm/s3)t 3 � (347 cm/s2)t 2 � (5.63 cm/s)t � 52.1 cm}

(a) Which of these four objects (upper cart, lower cart, metal ball,
or boat), if any, move at a constant horizontal velocity? Cite the evi-
dence for your conclusions.
(b) Which of these four objects, if any, move at a constant horizon-
tal acceleration? Cite the evidence for your conclusions.
(c) Which of these four objects, if any, move at neither a constant
horizontal velocity nor acceleration? Cite the evidence for your
conclusions.
(d) The kinematic equations are very useful for describing motions.
Which of the four motions, if any, cannot be described using the
kinematic equations? Explain the reasons for your answer.

71. Speeding Up or Slowing Down Figure 2-42 shows the velocity
vs. time graph for an object constrained to move in one dimension.
The positive direction is to the right.

FIGURE 2-42 ■ Problems 71– 74.

(a) At what times, or during what time periods, is the object speed-
ing up?
(b) At what times, or during what time periods, is the object slow-
ing down?
(c) At what times, or during what time periods, does the object
have a constant velocity?
(d) At what times, or during what time periods, is the object at
rest?

If there is no time or time period for which a given condition exists,
state that explicitly.

72. Right or Left Figure 2-42 shows the velocity vs. time graph for
an object constrained to move along a line. The positive direction is
to the right.

(a) At what times, or during what time periods, is the object speed-
ing up and moving to the right?
(b) At what times, or during what time periods, is the object slow-
ing down and moving to the right?
(c) At what times, or during what time periods, does the object
have a constant velocity to the right?
(d) At what times, or during what time periods, is the object speed-
ing up and moving to the left?
(e) At what times, or during what time periods, is the object slow-
ing down and moving to the left?
(f) At what times, or during what time periods, does the object
have a constant velocity to the left?

If there is no time or time period for which a given condition exists,
state that explicitly.

73. Constant Acceleration Figure 2-42 shows the velocity vs. time
graph for an object constrained to move along a line. The positive
direction is to the right.

(a) At what times, or during what time periods, is the object’s
acceleration zero?

3

2

1

0

–1

–2

–3
0 2 41 3 5 7 9 116

Time (s)
8 10 12

Ve
lo

ci
ty

 (
m

/s
)



56 CHAPTER 2 Motion Along a Straight Line

(b) At what times, or during what time periods, is the object’s
acceleration constant?
(c) At what times, or during what time periods, is the object’s
acceleration changing?

If there is no time or time period for which a given condition exists,
state that explicitly.

74. Acceleration to the Right or Left Figure 2-42 shows the veloc-
ity vs. time graph for an object constrained to move along a line.
The positive direction is to the right.

(a) At what times, or during what time periods, is the object’s ac-
celeration increasing and directed to the right?

(b) At what times, or during what time periods, is the object’s ac-
celeration decreasing and directed to the right?
(c) At what times, or during what time periods, does the object
have a constant acceleration to the right?
(d) At what times, or during what time periods, is the object’s ac-
celeration increasing and directed to the left?
(e) At what times, or during what time periods, is the object’s ac-
celeration decreasing and directed to the left?
(d) At what times, or during what time periods, does the object
have a constant acceleration to the left?

If there is no time or time period for which a given condition exists,
state that explicitly.
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3 Forces and Motion 
Along a Line

This photo shows a flea pulling a toy cart. In 1996 and 1997

Maria Fernanda Cardoso, a contemporary Colombian artist,

created a circus of trained fleas and toured with them. Car-

doso used a thin wire to attach Brutus, “the strongest flea

on Earth,” to a toy train car. She then used sound and car-

bon dioxide to induce Brutus to hop. Videos show that

when Brutus hops, the train car jerks through a distance of

about one centimeter. This is an amazing feat because the

mass of the toy train car is 160,000 times greater than that

of a flea.

How is it possible for a flea
to pull 160 000 times its
mass?

The answer is in this chapter.



3-1 What Causes Acceleration?

As part of our study of the kinematics of one-dimensional motion, we have intro-
duced definitions of position, velocity, and acceleration. We have used these defini-
tions to describe motion scientifically with graphs and equations. We now turn our at-
tention to dynamics—the study of causes of motion. The central question in dynamics
is: What causes a body to change its velocity or accelerate as it moves?

Everyday experience tells us that under certain circumstances an object can
change its velocity when you interact with it with a push or pull of some sort. We call
such a push or pull a force. For example, the velocity of a pitched baseball can sud-
denly change direction when a batter hits it, and a train can slow down when the engi-
neer applies the brakes. However, at times an obvious interaction with an object does
not cause a velocity change. Hitting or pushing on a massive object such as a brick
wall does not cause it to move. To make matters more complex, many objects seem to
undergo velocity changes even when no obvious interaction is present—a car rolls to
a stop when you take your foot off the accelerator, and a falling object speeds up.

The laws of motion that relate external interactions between objects to their ac-
celerations were first developed by Isaac Newton, pictured in Fig. 3-1. These laws lie
at the heart of our modern interpretation of classical mechanics. Newton’s laws are
not absolute truths to be found in nature. Instead, they are part of a logically consis-
tent conceptual framework that has emerged from the historical development of con-
cepts, definitions, and measurement procedures.

Newton’s laws have attained universal acceptance because they agree with count-
less observations made by scientists during the past 300 years. They have enabled us
to learn about the fundamental nature of gravitational, electrical, and magnetic inter-
actions. Engineers use the laws of motion and a knowledge of forces to predict pre-
cisely what motions will occur in the design of industrial-age devices such as engines,
bridges, roadways, airplanes, and power plants.

In this chapter we begin our study of the causes of motion along a straight line. In
chapters that follow we will extend this study to motions in two and eventually three
dimensions.

3-2 Newton’s First Law

In order to start thinking about what causes changes in an object’s velocity, let’s set up
a thought experiment in which a small object sitting on a level surface is given a swift
kick. How would you describe its motion in everyday language? Perhaps you might
say something like, “The object speeds up quickly during the kick, but afterward, it
begins to slow down as it slides or rolls along the surface, and eventually it comes to a
stop.” What caused the object to speed up (to change velocity) in the first place? The
force of your kick did that. But after the kick is over, what caused the object to slow
down? Before Newton’s Principia was published in 1689, most scientists believed that
the natural state of motion is rest and that a sliding object slows down and stops be-
cause there is no force to keep it moving.

Let’s try to figure out whether this belief that a force is needed to keep an object
in motion makes sense by looking at the outcome of an experiment. In the experi-
ment, an object is given a kick and then its velocity is measured as a function of time
as it slows down. In particular, the velocities of a plastic box and a small cart are mea-
sured as the object moves on different level surfaces—a rough carpet and a smooth
track. In each case, the velocity of the slowing object is recorded by a motion detector
attached to a microcomputer-based laboratory system. Figure 3-2 shows the experi-
mental setup for two situations of interest—a cart rolling on a track and a plastic box
sliding to a stop along a carpet.
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FIGURE 3-1 ■ Isaac Newton (1642–1727)
was the primary developer of the laws of
classical mechanics.



Figure 3-3 shows what happens to the x-components of velocity of the plastic box
and cart in different situations. Each object is given roughly the same initial kick, but
the objects slow down differently. The box sliding on the carpet comes to a stop in just
over 0.2 s, but the cart rolling on the carpet takes 1.1 s to come to a full stop. Finally
we see that the cart rolling on the smooth track still has 80% of its original speed.
What enables the cart even after 1.2 s to move so much more freely on the track than
the objects in the other situations? 

Let’s return to the question that motivated the experiment: Is a force required to
keep an object moving at a constant velocity? At first glance, the answer is yes, since
the object of interest slows down after the kick in each case. But wait a minute! After
the kick, the rate of slowing is different in each case. This suggests that the slowing is
caused by different forces between the object and the surface over which it moves. We
associate the longer slowing time with a smaller frictional force exerted on the object
by the surface. A reasonable inference is that it doesn’t require a force to keep an ob-
ject moving at a constant velocity. Rather, forces are present that are causing it to
slow down. So what is the natural state of motion in the absence of forces?

Imagine what would happen if we could make the surface that the cart and plastic
box move on smoother and smoother or minimize the horizontal friction forces on an
object by using an air track, hovercraft, or moving it in outer space. The object would
move farther and farther. What if we could observe an object in motion that has no
interactions with its surroundings and hence no forces on it? Our experiment suggests
that it could move forever at a constant velocity. This was Newton’s answer to this
question and is embodied in his First Law of Motion, expressed here in contemporary
English rather than 17th-century Latin:

NEWTON’S FIRST LAW: Consider a body on which no force acts. If the body is at rest, it will
remain at rest. If the body is moving, it will continue to move with a constant velocity.
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FIGURE 3-2 ■ Two objects are moving
away from a motion detector. The cart on a
level track is slowing down very little (top
panel), and a plastic box sliding on a carpet
is slowing to a stop much sooner than the
cart on the track (bottom panel).
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FIGURE 3-3 ■ An overlay graph of the x-component of velocity vs.
time for objects slowing to a stop in three different situations. Al-
though the rate of velocity decrease is linear in each case, the slowing
rate is distinctly different for each object/surface combination. Note:
Data for position vs. time were obtained using an ultrasonic motion
detector. In each case, the position vs. time data were fit very accu-
rately with a quadratic function and the first time derivative of each x
vs. t fit equation was used to determine instantaneous velocity vs. time
equations. Each of these v vs. t equations was plotted at the times that
position data were recorded.



What is force? Clearly Newton is defining force here to be an agent acting on a
body that changes its velocity. In the absence of force, a body’s velocity will not
change. We can state this definition of force more formally.

FORCE is that which causes the velocity of an object to change.

Newton’s First Law and his definition of force seem sensible when applied to an
object at rest or moving at a constant velocity in a typical physics laboratory.
However, in order to measure the velocity of an object, we must choose a coordinate
system or reference frame to measure the positions as a function of time. As you saw
in Chapter 2, these measurements are needed to calculate velocities and accelerations.

Can we expect Newton’s First Law to hold in any reference frame? It turns out
that Newton’s First Law doesn’t hold in all frames of reference. For example, consider
what happens to an object in a frame of reference that is accelerating. It is common to
see pencils and other small objects that were at rest in a car’s frame of reference
spontaneously begin to roll around on a dashboard when a car suddenly speeds up or
slows down. In this case, Newton’s First Law doesn’t appear to hold. For this reason,
Newton’s First Law is often called the law of inertia. Reference frames in which it
holds are called inertial frames. Thus, any accelerating frame of reference, in which
resting objects appear to start moving spontaneously such as those in a vehicle that is
speeding up, slowing down, or turning, is a noninertial frame. Newton’s First Law only
holds in inertial reference frames. As we develop Newton’s other laws of motion, we
will restrict ourselves to working in inertial reference frames in which the first law is
valid.

READI NG EXERC IS E  3-1 : Consider the graph shown in Fig. 3-3. (a) Roughly how
many seconds does it take the cart rolling on the rough carpet to come to a complete stop? (b)
Assuming the cart traveling on the smooth track has a speed of 0.8 m/s at t � 0.0 s, what per-
cent of its initial speed does the cart rolling on the track still have just as the cart on the carpet
has come to rest? ■

READI NG EXERC IS E  3-2 : (a) Describe a noninertial reference frame that you have
been “at rest” in. (b) What observations did you make in that frame to lead you to conclude
that it was noninertial? ■

3-3 A Single Force and Acceleration Along a Line 

We will simplify our investigation of force and the changes in velocity that it produces
by first considering situations in which a single force acts on an object in an inertial
reference frame. After we study how a single force affects the motion of an object, we
will investigate what happens to an object’s motion when two or more forces are act-
ing on an object along its line of motion.

Consider the motion of a person riding on a low-friction cart that can roll easily
under the influence of a force. A steady pulling force is applied to the cart and rider.
The force acts along the line of the cart’s motion. The person who is pulling maintains
a steady force on the cart and rider by keeping a short piece of bungee cord stretched
to a constant length as shown in Fig. 3-4. By directing a motion detector toward the
back of the cart rider, we can track the motion with a computer data acquisition
system. If the pulling force is the only significant force on the rider in the direction
of his motion, then the results displayed in Fig. 3-5 lead us to make the following
observation.
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OBSERVATION: A constant force acting on an object causes it to move along a straight line
with a constant acceleration that is in the same direction as the force.

This observation has been verified many times for different objects moving under the
influence of a constant push or pull when friction forces are small.

Many people believe that a constant force will cause a body to move at a constant
velocity. This common belief stems from everyday experiences such as driving a car
along a highway or sliding a heavy box along a floor. It takes a steady flow of gasoline
to move the car at a constant velocity. Thus, the experimental result that a constant
force causes a constant acceleration, as shown in Fig. 3-5, is surprising. Remember that
we have designed our experiment to apply a single force to a low-friction cart so
that there are no significant friction forces acting. Later in this chapter, we will discuss
how contact forces, involving a direct push or pull or friction between surfaces like
those experienced by a sliding box or a car moving along a highway, can cancel each
other to yield zero net force on an object. This can then lead us to situations in which
pushing or pulling forces, when counteracted by friction forces, do indeed cause bod-
ies to move at a constant velocity.

READI NG EXERC IS E  3-3 : (a) Describe an experience you have had in which
applying what seems like a steady force to an object did not cause it to accelerate. (b) Describe
a situation in which an object accelerated when you applied what seemed to be a steady force
to it. Note: You can experiment with applying a steady force to some objects readily available
to you. ■

3-4 Measuring Forces

As we discussed in Chapter 1, in order to allow us to communicate with others precisely
and unambiguously, we need to define a standard unit and a scale for force just as we
did for distance, mass, and time. Since all physical quantities are defined by the proce-
dures developed for measuring them, we must start by defining a procedure for measur-
ing our standard unit of force. Our qualitative definition of force is that it is an interac-
tion that causes acceleration, so our standard method for measuring force involves
measuring how much acceleration a given force imparts to a standard object. We need
to decide, as an international community of scientist and engineers, what the standard
object we accelerate will be. It turns out that what we have chosen to use is the interna-
tional standard kilogram discussed in Chapter 1.The SI unit of force is the newton.

DEFINITION OF THE STANDARD FORCE UNIT: One newton of force is defined to be the
force necessary to impart an acceleration of 1 m/s2 to the international standard kilogram.

This definition of the newton assumes, of course, that all other forces experienced
by the standard mass are small enough to be neglected. To measure any other force in
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FIGURE 3-4 ■ A person riding on a low-friction cart is pulled by
another person who exerts a constant force along a straight line by
keeping the length of a bungee cord constant.
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FIGURE 3-5 ■ These graphs show velocity
and acceleration components vs. time for a
rider on a cart. For the first 0.5 s (region A)
the cart is at rest. Between 0.5 s and 1.1 s
(region B) the cord is beginning to stretch.
Between 1.1 s and 2.0 s (region C) a con-
stant force is acting and the acceleration is
observed to be constant as well.



newtons, we simply need to measure the acceleration of our standard object in a low-
friction setting and compare its acceleration to 1 m/s2.

Other units of force that are still used in the United States are summarized in Ap-
pendix D. These include the dyne, the pound, and the ton.

In order to measure a force in standard units, we must allow it to accelerate a 1 kg
object that is free to move without experiencing significant friction forces. For practi-
cal reasons we have chosen to measure force by accelerating a low-friction cart on a
smooth, level track instead of the actual standard kilogram. We start by adjusting the
cart’s mass so that it balances with a facsimile of the international standard kilogram.

Next we set up an ultrasonic motion detector with a computer data acquisition
system to measure the change in position of the cart as a function of time as it acceler-
ates. The computer data acquisition software can then be used to calculate velocity
and acceleration values as a function of time from the position data.

Suppose that someone pulls our low friction cart along a track by means of a
spring attached to one end of the cart. Assuming the spring is not yet stretched so far
as to be permanently deformed, then the farther it is stretched the greater the size or
magnitude of the pull force. The different strengths of pull impart different accelera-
tions to our cart. For a certain strength of pull we find that we can impart an accelera-
tion of 1 m/s2 to the cart—measured by the computer data acquisition system. Of
course, this length of the spring is by definition acting on the standard cart with a
force of 1 N.

How could we exert a force on the cart of 2 N, 3 N, and so on? We can pull harder
on the spring so it stretches enough to cause the cart to accelerate at 2 m/s2. The
process can be repeated to yield an acceleration of 3 m/s2, and so on as illustrated in
Fig. 3-6.

Thus, a force can be measured by the acceleration it produces on a standard 1 kg
object.

Acceleration is a vector quantity that has both a magnitude and direction. Is force
also a vector quantity? Does it have a direction as well as a size associated with it? In
order to answer the question of whether force is a vector quantity, consider the fol-
lowing question: Is a force of 1 N directed to the right different from a force of 1 N di-
rected to the left? If so, how? The answer is “yes,” these forces are different. A force
directed to the right will cause an object to accelerate to the right, and a force di-
rected to the left will cause an object to accelerate to the left. Thus, a force has both a
magnitude and a direction associated with it. As we discussed in Section 2-2, to qualify
as a vector, a force must also have certain other properties that we have not yet speci-
fied. However, it is reasonable for now to assume that force behaves like a vector.

Measuring force by setting up a system for measuring the acceleration of a stan-
dard object is very impractical. Most investigators take advantage of the fact that elas-
tic devices such as springs, rubber bands, and electronic strain gauges (used in the
electronic force sensor in Fig. 3-8) stretch more and more as greater forces are ex-
erted on them. These devices can be calibrated “properly” by using the “official”
method for measuring force. We can designate a 1 newton force as that which causes
our standard mass to accelerate at 1 m/s2 and record the amount of stretch or the elec-
tronic reading for the new device. Then we can designate a 2 newton force as that
which leads to an acceleration of 2 m/s2 and record the response of the new device
and so on for other forces. More often, a secondary calibration can be performed by
comparing the readings of a given force-measuring device to that of another force-
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FIGURE 3-6 ■ An experiment in which a
spring is used to apply steady forces to a 1
kg cart. First the spring is stretched enough
to yield an acceleration of 1 m/s2, so by de-
finition the force applied to the 1 kg cart is
1 N. As the spring is stretched more and
more, the forces on the cart become larger
and accelerations of 2 m/s2 and then 3 m/s2

can be created.
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FIGURE 3-7 ■ Two types of spring scales
that can be calibrated to measure forces in
newtons by relating the gravitational force
exerted by the Earth on a 1 kg weight to
the amount of spring stretch.



measuring device that has already been properly calibrated. Spring scales, like those
shown in Fig. 3-7, are very popular devices for measuring force. This popularity stems
from the fortunate fact that the amount by which a spring stretches is directly propor-
tional to the magnitude of the force acting on the spring—provided the spring is not
overstretched. This proportionality was discovered in the 17th century by Robert
Hooke, and will be discussed more formally in Chapter 9. The proportionality
between spring stretch and force is a convenient property, but not necessary. We could
just as well use a nonlinear device such as a piece of bungee cord.

READI NG EXERC IS E  3-4 : A typical rubber band does not obey Hooke’s law. How-
ever, it can be used as a force scale if not stretched to its limit. Describe how you might use a
properly calibrated spring scale, like one of those shown in Fig. 3-7, to create a device that uses
the elasticity of a rubber band to measure force. ■

3-5 Defining and Measuring Mass 

We know from experience that if we push steadily on a wheelbarrow it is much harder
to get it moving when it’s full than when it’s empty. We also know that it is much
harder to lift a wheelbarrow when it’s full. We can summarize these observations with
the statement that a large amount of stuff is harder to move than a small amount of
stuff. But how do we measure how much larger “an amount of stuff” on a loaded
wheelbarrow is than on an unloaded one? Suppose we pile our wheelbarrow with a
huge mound of hay and try to lift it or pull on it. What happens if we replace the hay
with a relatively small lead brick? How much hay is the same amount of stuff as a
small lead brick? How do we know?

In Section 1-2 we introduced the term mass as a measure of “amount of stuff” and
stated that quantities are defined by the procedures used to measure them. In the last
section we defined force in terms of basic procedures for measuring it. In this section
we will do the same for mass. We introduce two quite different procedures for mea-
suring mass based on two questions: How hard is it to lift a certain pile of stuff? And
how hard is it to accelerate the pile of stuff with a standard force?

Measuring Gravitational Mass
As we mentioned in Chapter 1, the most common historical procedure for measuring
mass is to compare the effect of the gravitational forces on two objects using a bal-
ance. As early as 5000 B.C.E., ancient Egyptians used the equal arm balance for com-
paring masses to a standard mass (Fig. 3-9).

We assume that two objects have the same mass if they balance with each other.
If two masses balance, they are experiencing the same gravitational force. The mass of
replicas of the standard 1 kg mass are adjusted using a balance. We can create a mass
scale by assuming that masses add so that two replicas of the standard 1 kg mass have
a combined mass of 2 kg, and so on. We can also create masses that are fractions of a
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FIGURE 3-8 ■ An electronic force sensor
that can be used with a computer data ac-
quisition system. When the hook at the
bottom is pushed or pulled, a metal ele-
ment is compressed or flexed. This is de-
tected by an electronic strain gauge, which
puts out a voltage proportional to force.

FIGURE 3-9 ■ An old fashioned balance is
used to measure gravitational mass using
1 and then 2 replicas of a standard 1 kg
mass. So the sphere has a gravitational
mass of 1 kg. The cart loaded with extra
mass has a gravitational mass of 2 kg.
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FIGURE 3-12 ■ Graphs of measured force and acceleration as a function of time. An
accelerometer is attached to a force sensor as shown in Fig. 3-11. The combination is being
pushed and pulled. Signals from these sensors were sent to a computer via a computer data
acquisition interface. The similarity in the shapes of the real-time computer graphs reveal a
moment-by-moment proportionality between force and acceleration.

kilogram. For example, we can create 1/2 kg masses by creating two less massive ob-
jects that balance with each other, but combine to balance with a standard 1 kg mass.
Because this procedure for determining a mass involves balancing gravitational
forces, we call this type of mass gravitational mass.

In modern laboratories, triple beam balances, spring scales, and electronic scales
(Fig. 3-10) are used instead of the old-fashioned balance for measuring gravitational
mass. As the Earth attracts a mass hanging from a spring, the spring will stretch. A
mass on an electronic scale causes an electrical strain gauge to compress.

Measuring Inertial Mass
As we mentioned, another “measure” of how much stuff we have is to observe how
hard it is to get an object moving, or accelerate it, with a known force. We know that
by definition a 1 N force will cause a standard 1 kg mass to accelerate at 1 m/s2. In
general, when m � 1 kg, the magnitude of the acceleration is the same as that of the
force. What happens to the relationship between a single force and acceleration when
the mass is different from the standard mass?

If we set up a system to measure acceleration and force, such as the computer in-
terface system shown in Fig. 3-11 with an accelerometer and an electronic force
sensor attached firmly together, we can study how mass affects the relationship
between force and acceleration. We do this by pushing and pulling in a horizontal
direction on the force sensor–accelerometer system. We can then tape some addi-
tional mass on the system and repeat this procedure.

Figure 3-12 shows graphs of both the x-component of force vs. time and the
x-component of acceleration vs. time for a system that has a gravitational mass of
150 g. We find that the force and acceleration components are directly proportional to
each other on a moment-by-moment basis. The evidence for this is the fact that the
graphs of force vs. time and acceleration vs. time have the same basic shape and are
zero at the same times. By the same “graph shape” we mean that if the force is twice
as large at one time than another, then so is the acceleration.
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FIGURE 3-10 ■ A modern electronic bal-
ance uses an internal electronic strain
gauge to measure gravitational mass. Al-
though the principle on which it works is
not obvious, it gives the same result as
spring scales do.

x axis

Force
sensor

Accelerometer

To computer

To computer

FIGURE 3-11 ■ Setup showing an electronic accelerometer tracking the accel-
eration as a function of the forces of a push or pull on a system consisting of it-
self, a force sensor, and additional mass. The system is held firmly by the hook
that is attached to the sensitive area of the force sensor. It is then pushed and
pulled horizontally in mid-air with gentle but rather erratic motions.



In Figure 3-13 we use the same data displayed in Fig. 3-12 for the 150 g gravita-
tional mass to graph the x-component of force as a function of the x-component of ac-
celeration. The fact that this new graph is a straight line that passes through the origin
is additional evidence that there is a direct proportionality between force and acceler-
ation. The constant of proportionality is given by the slope of the graph.

We define the INERTIAL MASS of a system as the constant of proportionality between accel-
eration and the force that causes it.

Indeed, we see that if we now do the experiment shown in Fig. 3-13 with a 200 g
gravitational mass we get a larger slope. This indicates that when there is more mass it
takes more force to get the same acceleration. Perhaps the most interesting feature of
Fig. 3-13 is that the inertial masses measured as the slopes of the graphs are
the same as the values of the gravitational masses measured with a balance—at least
within the limits of experimental uncertainty.

The inertial mass of an object tells us how much it resists acceleration, whereas
the gravitational mass is a measure of how hard the Earth pulls on an object. Sophisti-
cated experiments involving precise measurements of the gravitational forces be-
tween two objects in a laboratory using a device known as a Cavendish balance have
shown that there is no difference between the two types of mass to within less than
one part in 1012. Since the two types of mass seem to have the same values, we will
drop the distinction between them and just refer to mass.

3-6 Newton’s Second Law for a Single Force 

The general relationship between force, mass, and acceleration discussed in Section
3-5 is known as Newton’s Second Law. By pulling together conclusions we have
reached so far, we will state this law for the case of a single force that acts alone
along a line. We will then proceed, in this chapter and those that follow, to show that
this law is also valid when more than one force acts and when forces act in two di-
mensions.

How is the acceleration of a body related to its mass and the force acting on it?
The experimental evidence presented in Figs. 3-12 and 3-13 shows that the accelera-
tion of a body is directly proportional to the force acting on it. The experimental re-
sults in Fig. 3-13 show acceleration to be inversely proportional to the mass of the
body. That is, looking at the graph, we can see that for a given force acting on a body,
the acceleration imparted to it is less when the body’s mass is large than when it is
small. Combining these two relations with our definition of the unit force as produc-
ing a unit acceleration of a unit mass, we can summarize what we now know in the
single equation

(3-1)

The arrows shown in Eq. 3-1 serve as a reminder that we believe that both force
and acceleration are vector quantities that have magnitude and direction. The force
on a body and acceleration caused by it are in the same direction. Mass is a scalar
quantity that does not have a direction associated with it. Newton’s Second Law can
also be put in words:

NEWTON’S SECOND LAW FOR A SINGLE FORCE: When a single force acts on an object, it
will cause the object to accelerate in the direction of the force. The amount of acceleration
is given by the acting force divided by the object’s mass.

a: �
F
:

m
.

Fx vs. ax
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ax(m/s2)

F(
N
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m = 0.21 kg
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m = 0.15 kg
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FIGURE 3-13 ■ Graphs of the horizontal
force vs. acceleration components for the
accelerometer– force sensor system
(shown in Fig. 3-11) as it is being pushed
and pulled in a horizontal direction. Two
system masses were used, 0.150 kg and
0.200 kg. The resulting slopes for the Fx vs.
ax graphs show a proportionality between
force and acceleration with the constant of
proportionality being equal, within the lim-
its of experimental uncertainty, to the grav-
itational mass of the system in each case.



Because it is easier to write, the most common way to refer to Newton’s Second
Law is in the form

(3-2)

If the force lies along the x axis, then and . So we can also express
the Second Law in terms of the force and acceleration components as Fx � max.

Equations 3-1 and 3-2 represent an interesting combination of definitions and a
law of nature. In both Eqs. 3-1 and 3-2, the equality sign does not mean that the two
sides of an equation are the same physical quantities or that force is defined as the
product of mass and acceleration. But, Eq. 3-1 provides a method for predicting the
acceleration of an object when its mass and the force acting on it are known. Alterna-
tively, Eq. 3-2 tells us that a measurement of acceleration and mass can be used to de-
termine the force on a body that is causing it to accelerate.

For standard SI units, tells us that

1 N � (1 kg)(1 m�s2) � 1 kg � m �s2. (3-3)

Force units common in other systems of units are given in Appendix D.
So far we have been studying the relationship between motion and force under

very limited circumstances. We have restricted our study to forces acting along a line
in an inertial reference frame. We have also restricted ourselves to observations in
which we think that the applied force acting on an object, such as a low-friction cart, is
the only significant interaction the object is experiencing. By applying this rather un-
realistic set of restrictions, we were able to formulate initial definitions of force and
mass. We then combined these definitions with observations to develop two of New-
ton’s three laws of motion.

As we already suggested, Newton’s first two laws are not simply valid by defini-
tion in the way that or are. Rather, they represent a combina-
tion of definitions and natural laws. Can we refine these laws so they are valid in
more complicated situations that describe forces and motion along a line? In particu-
lar, what happens when more than one force is acting at the same time? How do
forces combine? What other forces besides the forces we apply can act on a body?
What evidence is there that these forces are real? When forces are obviously due to
interactions between two or more bodies, does a body acted upon also exert forces
on the body acting on it? How are these related? The rest of this chapter will be de-
voted to dealing with these questions. Chapters 5 and 6 will deal with how to use
Newton’s laws to predict motions that result from forces that act in two and three di-
mensions.

The Flea Pulling a Train
Let us return to the question we asked at the beginning of the chapter. How can a
jumping flea with a tiny mass pull an object that is 160,000 times more massive? When
it comes to jumping, insects have a big advantage over larger animals. The strength of
their legs increases as the square of the diameter of their legs while the mass that they
push off with goes as the cube of their body dimensions. Thus the ratio of the mass
they lift with their legs to their cross-sectional area is much smaller than it is for a
large animal. While a world-class high jumper can barely jump his or her own height,
a flea can jump up to 150 times its own height. So a 2-mm-tall flea can jump to a
height of about 30 cm.

The flea’s secret is that he can launch himself at a high speed. Suppose Brutus,
whose mass is only about 2 � 10�3 g, starts a 30-cm high hop that takes him up and
forward at the same time. Our flea will be moving at a pretty high horizontal speed.
Using kinematic equations, we can estimate its initial hopping speed to be over 2 m/s.

a: � d v:/dtv: � d x:/dt

F
:

� m a:.

a: � ax îF
:

� Fx î

F
:

� m a:.
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Before the flea completes his hop, it will be rudely interrupted as he comes to the end
of the wire. The wire begins to stretch and the wire then pulls Brutus to a sudden stop.
But the force that Brutus exerts on his end of the wire while he is being stopped will
be transmitted along the wire to the train. This causes the train, which has a mass of
32 g, to jerk forward. While Brutus is falling down, the friction in its wheels causes it
to roll to a stop also.

Because Brutus is not pulling with a steady force, it is difficult to make
detailed calculations of the motion of the train he is pulling on. Instead, in Touchstone
Example 3-1 we calculate what happens to a man who pulls steadily on a pair of real
passenger cars.

READI NG EXERC IS E  3-5 : A student sitting on a skateboard is pulled with a hori-
zontal force to the left of magnitude 26 N and accelerates at 0.42 m/s2. (a) Write the expressions
for force and acceleration in vector notation using the unit vector. (b) What is the combined
mass of the student and skateboard? (c) The mass of a student and her skateboard is measured
using a European bathroom scale calibrated to read in kilograms. What is the scale reading? ■

READI NG EXERC IS E  3-6 : Consider your answers to Reading Exercise 3-5. (a)
Which mass measurement is a determination of inertial mass, the one made in part (b) or part
(c)? Explain. (b) What assumption did you make in determining your answer to part (c)? ■
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John Massis is shown in the photo pulling two passenger cars by
applying a steady force to them at an angle of about 30° with re-
spect to the horizontal. Assume instead that Massis had pulled the
two cars of mass 8.0 � 104 kg with a horizontal force of 2.0 � 103 N.
If there was no friction in the rails, what speed would the cars
have after Massis moves them a distance of 1.0 m from their resting
location?

S O L U T I O N ■ A Ke y  I d e a here is that, from Newton’s Second
Law, the constant horizontal pulling force on the cars that Massis ex-
erts causes a constant horizontal acceleration of the cars. Because the
force is constant, and the motion is assumed to be one-dimensional,
we can use the kinematic equations to find the horizontal velocity
component v2 x at location x2 (where x2 � x1 � �1.0 m).

Place an x axis along the direction of motion, as shown in 
Fig. 3-14. We know that the initial velocity component along 
the horizontal axis v1 x is 0, and that the displacement is
�1.0 m. However, we need to find the x-component of accelera-
tion, ax.

We can relate the x-component of the acceleration of the cars,
ax, to the pulling force on the cars from the rope by using Newton’s
Second Law. If we assume there are no friction forces, we can note
that a single pulling force acting along the horizontal axis in
Fig. 3-14 is

(3-2)

where M is the mass of the cars and and ax are the x-compo-
nents of the force and acceleration vectors.

In Fig. 3-14, we see that Massis is pulling in the x-direction, so
. Since the mass of the railroad cars, M, is

we can find ax by rearranging Eq. 3-2 and substituting
for and M. The acceleration component becomes

Next we use Eq. 2-13 

(3-4)

to find the velocity of the train after it has moved 1.0 m. Since
, we find that in this case.

To find �t, we can use the fact that the train’s average velocity is

�vx� �
�x
�t

�
v1 x � v2 x

2
,

v2 x � ax�tv1 x � 0

v2 x � v1 x � ax(t2 � t1) � v1 x � ax�t

ax �
F pull

x

M
�

2.0 � 103 N
8.0 � 104 kg

� 0.025 m/s2.

F pull
x

8.0 � 104 kg
F pull

x � 2.0 � 103 N

F pull
x

F pull
x � Max

x 2 � x 1

TOUCHSTONE EXAMPLE 3-1: Pulling a Train 

In 1974, John Massis of Belgium managed to move two passenger
cars belonging to New York’s Long Island Railroad. He did so by
clamping his teeth down on a bit that was attached to the cars with
a rope and then leaning backward while pressing his feet against
the railway ties. The cars together weighed about 80 tons, which is
almost 1000 times more than the man’s mass.



FIGURE 3-15 ■ Pulling to the right on a
low-friction cart with a force of +4.0 N. If
the cart has a mass of 0.50 kg, then it will
accelerate to the right at �8.0 m/s2.
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3-7 Combining Forces Along a Line

We have discussed how a single applied force, such as a push or pull, affects the mo-
tion of an object. Now let’s go one step further and think about what happens if a sec-
ond applied force also acts on a body.

Suppose that you have a spring attached to a low friction cart like that shown in
Fig. 3-15. You pull on the cart using the spring, keeping the spring constantly stretched
to produce a constant force of magnitude 4.0 N to the right. Since you are applying a
constant force to the cart, it will speed up with a constant acceleration. That is, the
cart’s velocity will increase at a constant rate.

What do you think would happen if a friend simultaneously pulled on the cart in
the same manner, with the same magnitude of force, but in the opposite direction as
shown in Fig. 3-16? Would the cart still accelerate? Clearly the answer is “no.” How is
the motion of the cart affected if you and your friend each apply a 2.0 N force to the
cart in the same direction? Measurement reveals two things. First, the acceleration
produced by a single 4.0 N force is twice that produced by a single 2.0 N force. Sec-
ond, a single 4.0 N force produces the same acceleration as two 2.0 N forces applied in
the same direction, as shown in Fig. 3-17.

FIGURE 3-16 ■ (a) Pulling to the right on
a low-friction cart with a force as someone
pulls to the left with the same magnitude
of force. Thus, , so the forces
cancel and the cart doesn’t move. (b) A
simple diagram representing the forces
acting on the cart. Such a diagram is called
a free-body diagram.

F
:

R � F
:

L � 0

FA = (4.0 N)î

FR = (+4.0 N)i

FRFL

FL = (–4.0 N)i

(a)

(b)

ˆ ˆ

F

F

(a)

(c)

FB =

F

(b)

(d)

1__
2

F1__
2

F1__
2

FA = F1__
2FIGURE 3-17 ■ (a) and (b): Pulling to the

right on a low-friction cart with one force
yields the same acceleration on it as two
forces pulling to the right do when each
has half the magnitude of the single force.
(c) and (d): Free-body diagrams of situa-
tions (a) and (b).

then solve this equation for �t. Again using v1 x � 0, this yields
. By substituting back into Eq. 3-4, we find that

or, more simply,

(Answer)

We assumed in this calculation that the force Massis exerted on the
railroad cars was horizontal. Actually his pull was not quite hori-
zontal. This made his job harder. Can you see why?

v2 x � √2ax�x � √(2)(0.025m/s2)(1.0 m) � 0.22m/s .

v2 x � ax�x/(v2 x/ 2)
�t�t � �x/(v2 x/ 2)

ax= axi

Fx
pull = Fx

pull i

x

ˆ

ˆ
FIGURE 3-14 ■ Force diagram for the passenger cars
attached to a rope. The rope is pulled by Massis with
his teeth. We assume that Massis was pulling horizon-
tally in a positive x-direction.



These observations indicate that keeping track of the magnitudes and directions
of all the forces acting on an object is very important if we want to be able to make
predictions about the object’s subsequent motion. A special type of diagram, called a
free-body diagram, is an especially useful technique for doing this. Figures 3-16b and
3-17c and d show free-body diagrams that represent various situations.

We construct a free-body diagram by representing each object we are investi-
gating as a point. For example, in Fig. 3-17, we are interested in the motion of the
cart (not the hand) and so we represent the cart as a point. We then draw a force
vector (as an arrow) for each force acting on the object. We place the tail of each
force vector (arrow) on the point and draw the vector in the direction of the force.
The relative magnitude of the forces is represented by the relative lengths of the ar-
rows. Hence, the two equal force vectors in Fig. 3-17 are shown to have the same
length. Finally, we label the force vectors so that we know which force each arrow
represents.

Free-body diagrams help us to translate pictures or statements of a situation into
mathematical expressions. That is, they help us to generate mathematical expressions
in which we treat a force as a vector quantity with both a magnitude and a direction.
As we discussed in Section 3-4, by normal convention, a horizontal force directed to
the right has a positive x-component and one directed to the left has a negative x-
component. Thus, each of the one-dimensional vectors we discussed can be repre-
sented as the combination of its magnitude and direction as follows:

Two 4.0 N forces acting in opposite directions:

Two 2.0 N forces acting in the same direction:

The plus or minus sign carried with the vector components to denote the direc-
tion of vectors makes it easy for us to remember in what direction the forces and ac-
celeration point along a chosen x axis. The signs make it possible to combine forces
mathematically using the rules of vector mathematics. As long as we denote direction
with signs as we did above, we can determine the combined effect of multiple forces
acting on an object simply by adding up the force components acting along a single
line. For example, in the case of our two forces that are applied in opposite directions,
we can determine the combined force, usually called the vector sum of the forces or
net force, by calculating the vector sum, so that

The net force or vector sum of the forces for the situation depicted in Fig. 3-17b can
be calculated as

When the forces do not have the same magnitude or direction, we can still use
vector sums. For instance, consider a 3 newton force to the right, denoted by its x-
component of �3 N, and a 2 newton force to the left, denoted by its x-component of
–2 N. These two forces combine to give a net force of 

F
: net � F

:

A � F
:

B � (�3 N � 2 N) î � (�1 N) î.

F
: net � (FA x � FB x) î � [�2.0 N � 2.0 N] î � (�4.0 N) î.

F
: net � F

:

A � F
:

B � FA x î � FB x î � (FA x � FB x) î � (�4.0 � 4.0 N) î � 0.

F
:

A � FA x î � (�2.0 N)î F
:

B � FB x î � (�2.0 N)î

F
:

A � FA x î � (�4.0 N)î F
:

B � FB x î � (�4.0 N)î
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This means that part of the influence of the 3 N force to the right is counteracted
by the application of a 2 N force to the left. In the end, an object with these two forces
acting on it behaves as if only a 1 N force, directed to the right, is present. So,

When two or more forces act on a body, we can find their net force or resultant force by
adding the individual forces as vectors taking direction into account.

A single force with the magnitude and direction of the net force has the same ef-
fect on the body as all the individual forces together. This fact is called the principle of
superposition for forces. The world would be quite strange if, for example, you and a
friend were to pull on the cart in the same direction, each with a force of 5 N, and yet
somehow the net pull was 20 N.

In this book a net force is represented with the vector symbol . Instead of
what was previously given, the proper statement of Newton’s First and Second Laws
should now be rephrased in terms of net forces.

NEWTON’S FIRST LAW: Consider a body on which no net force acts so that . If the
body is at rest, it will remain at rest. If the body is moving, it will continue to move with a
constant velocity.

This statement means that there may be multiple forces acting on a body, but if
the net force (the vector sum of the forces) is zero, then the body will not accelerate.
Remember, this doesn’t mean that the object is stationary. It simply means that the
object will not speed up or slow down.

We can also rewrite Newton’s Second Law in terms of net force.

NEWTON’S SECOND LAW FOR MULTIPLE FORCES: The acceleration of a body is the net
force acting on the body divided by the body’s mass.

This statement can be expressed mathematically by replacing the force in Eq. 3-1 with
net force, so that

(Newton’s Second Law). (3-5)

Once again, because it is easier to write down, a common way to write Newton’s
Second Law for multiple forces in vector form is

or

where

Hence, if we want to know the acceleration of an object on which more than one
force acts, we can find it using the following procedure:

1. Draw a free-body diagram for the object of interest.

2. Determine the net force acting on the object.

3. Take the ratio of the net force to the mass of the object.

This procedure is used in the examples that follow. You will find it useful in complet-
ing many of the end-of-chapter problems as well.

F
: net � F

:

A � F
:

B � F
:

C � � � F
:

N.

F net
x � max,F

: net � ma:

a: �
F
: net

m

F
: net � 0

F
: net
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READI NG EXERC IS E  3-7 : The figure shows
two horizontal forces moving a cart along a frictionless
track. Suppose a third horizontal force could act on
the cart. What are the magnitude and direction of 
when the cart is (a) not moving and (b) moving to the left
with a constant speed of 5 m/s? ■

READI NG EXERC IS E  3-8 : The figures that follow show overhead views of four situ-
ations in which two forces accelerate the same cart along a frictionless track. Rank the situa-
tions according to the magnitudes of (a) the net force on the cart and (b) the acceleration of the
cart, greatest first. ■

F
:

C

F
:

C
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FA = (–1N)i FB = (+3 N)îˆ

(–2 N)i (+6 N)i

(–4 N)i (+4 N)i
(–3 N)i

(+2 N)i

(–2 N)i

ˆ ˆ

ˆ
ˆ

(–3 N)î

ˆ

ˆ

ˆ

In the overhead view of Fig. 3-18, a 2.0 kg cookie tin is accelerated
at in the direction shown by , over a frictionless horizon-
tal surface. The acceleration is caused by three horizontal forces,
only two of which are shown: with a magnitude of 10 N and 
with a magnitude of 20 N. Choose a coordinate system and then use
it to express the third force in unit-vector notation.

S O L U T I O N ■ The Ke y  I d e a here is that the net force on
the tin is the sum of the three forces and is related to the accelera-
tion of the tin via Newton’s Second Law ( ). Thus,

which gives us

(3-6)

A second Ke y  I d e a is that this is a one-dimensional problem for
which two of the forces and the acceleration are all along the same
line. This means that the third force must also lie along the line of
the acceleration. Thus we are able to choose a coordinate system in
which the three forces lie along a single axis. If we choose our x axis
to align with these forces, we have

Choosing the positive direction to be in the direction of the acceler-
ation, components ax and FB x are positive and the component
FA x is negative. Thus , , and 
(�10 N) .

Then, substituting known data and factoring out of the equa-
tion, we find

(Answer)
F
:

C � [(2.0 kg)(3.0 m/s2) � (�10 N) � (�20 N)] î � (�4 N) î.

î
î

F
:

A �F
:

B � (�20 N) îa: � (�3.0 m/s2) î

� (max � FA x � FB x) î.

F
:

C � ma: � F
:

A � F
:

B � (max) î � FA x î � FB x î

F
:

C � ma: � F
:

A � F
:

B.

F
:

A � F
:

B � F
:

C � ma:,

F
: net � ma:a:

F
: net

F
:

C

F
:

BF
:

A

a:3.0 m/s2

TOUCHSTONE EXAMPLE 3-2: Three Forces

FB

FA

a

FIGURE 3-18 ■ Three forces act to pro-
duce an acceleration in the direction
shown. Only two of the three forces caus-
ing this acceleration are included in this
picture.

3-8 All Forces Result from Interaction

Careful observation of everyday motions should convince you that objects do not
spontaneously speed up, slow down, or change direction. Clearly, pushes, pulls, bumps,
winds, interactions with a surface during sliding motion, and so on, will influence
an object’s velocity by changing the object’s speed, direction, or both. According to
Newton’s Second Law, changes in velocity (accelerations) occur only when the ob-
ject experiences forces. Forces are always due to the presence of one or more other
objects.



FIGURE 3-19 ■ Two low-friction carts are
outfitted with neodymium magnets that re-
pel each other. Initially the cart on the left
bears down on the stationary cart on the
right. (a) A video frame shows the carts in-
teracting briefly at about 0.960 s but never
touching. (b) Graphs of position vs. time
for the two carts were obtained using
video analysis. An examination of the
changes in the slopes for each cart repre-
senting their velocity components enables
us to deduce that the carts undergo veloc-
ity changes due to forces acting in opposite
directions. A force to the left on the large
cart slows it down. A force to the right on
the small stationary cart starts it moving to
the right.
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In the course of your study of physics, you will be reading and hearing about
dozens of forces. Adjectives such as net, combined, total, friction, contact, collision,
normal, tension, spring, gravitational, electrostatic, magnetic, atomic, molecular, and
so on, will be bandied about. It turns out that currently there are only four fundamen-
tal forces that are known: gravitational, electromagnetic, weak nuclear, and strong
nuclear. However, essentially all of the types of forces introduced in this book (includ-
ing “friction forces,” “contact forces,” and “collision forces”) are actually fundamental
forces (either electromagnetic or gravitational.) These other descriptive adjectives are
used only to help us understand the physical situation in which various forces occur.

For example, in the first experiment we presented in this chapter, we tracked the
motion of objects that roll or slide to a stop on different horizontal surfaces after a
kick. Figure 3-3 showed that the rate of decrease of velocity for each of these objects
was a constant. In other words, each object experienced a constant acceleration until
it came to rest (or, in the case of the cart on the track, until data were no longer col-
lected). What causes the objects to slow down? Consider Newton’s Second Law and
our definition of force (as an agent that causes an acceleration). We must conclude
that each of the objects experienced a force. The only obvious interactions are inter-
actions with the surface along which it was sliding or rolling. We call this type of con-
tact interaction a friction force or, informally, friction. We found that in these cases the
direction of the friction force on an object is opposite to the direction of the object’s
motion. We know this because the object slows down.

Forces like pushes, pulls, those experienced in a collision, and the friction force on
a sliding or rolling object that moves over a surface are called contact forces because
the objects involved appear to touch. The interactions that cause contact forces are ul-
timately due to a superposition of many small electromagnetic forces between the
electrons and protons that the materials “in contact” are made of. Thus, contact forces
are ultimately electromagnetic forces! 

Another important contact force is a pull force exerted through a string, rope, ca-
ble, or rod attached to an object. This type of pulling force has a special name. It is
called tension. Tension is always a pull force. Hence, the direction of a tension force is
always the direction in which one would pull the object with a string or rope. The fun-
damental nature and origin of tension forces and frictional forces are discussed in
more detail in Chapter 6.

Many other forces seem much less obvious than contact forces because they act
at a distance. Electromagnetic and gravitational forces are capable of acting over
large distances. But as you will learn in this chapter and later in this book, the source
of these invisible or noncontact forces are not totally mysterious. If an everyday ob-
ject experiences an “invisible force,” we are always able to find it interacting with
other objects that have some combination of electrical charges, magnets, electrical
currents, or masses. An example of this is shown in Fig. 3-19, where two carts interact
“at-a-distance” by means of magnetic forces that act in opposite directions.

READI NG EXERC IS E  3-9 : Consider Fig. 3-3 depicting the results of measurements
on the motion of objects just after they have been given swift kicks along a positive x axis.
Assume that the cart and the box both have the same mass of 0.5 kg. (a) What is the accelera-
tion of the box on the carpet? Is it positive or negative? (b) What is the acceleration of the cart
on the track? Is it positive or negative? ■

READI NG EXERC IS E  3-10: Consider your answers to Reading Exercise 3-9. As-
sume that the cart and the box both have the same mass of 0.5 kg. (a) In each case is the fric-
tion force on the object constant or changing as the box or cart slows down? Cite evidence for
your answer. (b) What is the magnitude of the friction force on the box due to its interaction
with the carpet? Does it point to the right or the left? (c) What is the magnitude of the friction
force on the cart due to the combined interaction of the cart wheels with the track and the cart
axle? Does it point to the right or the left? ■
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3-9 Gravitational Forces and Free Fall Motion 

We now consider the forces the Earth exerts on objects near its surface. These forces
are called “gravitational forces.” Since we don’t want to complicate our exploration
with air resistance, we will limit ourselves to considering the motions of bodies that
are relatively dense, small, and smooth like balls and coins. Also, assume that these
objects are not moving at high speeds—say, in excess of about 5 m/s. In Chapter 6 we
discuss situations where air resistance is a significant factor, and in Chapter 14, we ex-
plore the question of how masses such as galaxies and planets exert gravitational
forces on each other in more general circumstances.

The Gravitational Acceleration Constant
We know that any object dropped near the Earth’s surface falls, but the fall is so rapid
that we can’t easily describe it. Does the object suddenly speed up to a natural veloc-
ity and then fall at that rate or does it keep speeding up? A casual observation tells
the story. Imagine lying on the floor while someone drops an apple on your forehead
from different heights. The impact of the apple will feel harder when the apple is
dropped from a greater height, so the apple must keep speeding up. The strobe photo
in Fig. 3-20 confirms that an apple and a feather falling in a vacuum keep speeding up.

At the end of Section 2-5 we asserted without any evidence that if there are no
other forces on an object, it would move downward with a magnitude of acceleration

. But how do we know this? Back in the early 17th century Galileo rolled
small balls of different masses down a ramp to slow their falling rates. He found that
the velocities of all the balls increased at the same rate.

Today we can use modern technology such as ultrasonic motion detectors, video
analysis, and strobe photos to make high-speed measurements of the position and
time of an object falling straight down like the tossed ball in Fig. 3-21. For example,
Figure 3-22 shows an analysis of a video clip of a small plastic ball shot vertically into
the air with a spring-loaded launcher. The graph of the y-component of velocity vs.
time was produced assuming that the y axis is pointing up. The graph shows that the
ball is changing its velocity at the same constant rate when the ball is moving upward,
turning around and moving downward. The measured acceleration component is the
slope of the vy vs. t graph, and a linear fit to the graph yields a vertical gravitational ac-
celeration component of . Within the limits of experimental uncertainty, we
obtain the same result if we use a lead ball instead of a plastic one or for that matter
any other object that doesn’t experience much air resistance.

The magnitude of the acceleration we measured, denoted as or a, is known as
the gravitational acceleration constant given by a � 9.8 m/s2. If air resistance is signifi-
cant, as is the case for a feather or sheet of paper falling through air, we will not ob-
tain the gravitational acceleration constant from an experiment like the one we just
described. However, the fact that the gravitational acceleration is independent of an
object’s mass, density, or shape can be verified by removing air in the vicinity of a
falling object. In Fig. 3-20, a feather and an apple are shown accelerating downward at
the same rate in a vacuum in spite of the fact that they have very different masses,
shapes, and sizes.

Gravitational Force and Mass Revisited
Since acceleration requires a net force, and the Earth doesn’t need to touch an object
to make it accelerate, we conclude that “gravity” is a noncontact force. Another piece
of evidence that this force of attraction exists is that if you hang an object vertically
from the spring force scale we developed in Section 3-4, the spring will be stretched.
The stretch of the spring implies that there is something pulling down on the object
and that the spring stretches just enough to pull the object up with the same magni-

� a: �

�9.8 m/s2

a � 9.8 m/s2
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FIGURE 3-20 ■ This strobe photo shows a
feather and an apple, undergoing free fall
in a vacuum. The time interval between
each exposure and the next is constant.
The feather and the apple appear to be
speeding up at the same rate, as evidenced
by the increase in distance between the
successive images.

FIGURE 3-21 ■ A ball of arbitrary mass is
tossed in the air near the surface of the
Earth. What is its acceleration?



FIGURE 3-23 ■ Depiction of a spring
scale used to determine the gravitational
force on an object near the surface of the
Earth. The scale reading is essentially the
same at all heights reasonably near the
Earth’s surface (including those found in
high flying passenger jets).

tude of force. If we use a spring scale like that shown in Fig. 3-23 to measure the gravi-
tational force on an object, we find that it is directly proportional to the mass. This is
not surprising since we know by experience that a bigger mass is harder to lift. We can
express the proportionality between mass and gravitational force in terms of the
force magnitude as

F grav � mg, so that (3-7)

where this constant of proportionality g is defined as the local gravitational strength.
The magnitude of the gravitational force F grav is commonly referred to as weight. Up
to an altitude of 16 km or so, g can be expressed to two significant figures as 

g � 9.8 N�kg (the Earth’s local gravitational strength).

Newton’s Second Law predicts that, for an object of mass m that has no other
forces on it except the gravitational force, the object will fall with an acceleration of
magnitude

(gravitational acceleration constant). (3-8)

Thus we see that a and g have the same value and different but dimensionally
equivalent units. We use m/s2 when describing the gravitational acceleration a. We use
the units N/kg when describing the local gravitational strength, g.

Equation 3-7 tells us that the Earth pulls harder on a larger mass, whereas Eq. 3-8
tells us the larger mass is harder to accelerate. These two mass-dependent effects can-
cel each other! Thus, near the Earth’s surface,

The magnitude of the acceleration of any falling object is that of the GRAVITATIONAL ACCEL-
ERATION CONSTANT , independent of the mass of the falling object.

Other Properties of the Local Gravitational Force
So what are the characteristics of the gravitational force of attraction exerted by the
Earth on objects near its surface? Does this force change as time passes or if the posi-
tion of the object changes? The answers to these questions become clear if we consider
an object hanging vertically from our spring force scale at different times and places.

Time Dependence: What we see when performing force measurements with a
spring scale is that, for a given object, the amount that the spring stretches changes

9.8 m/s2

a � F grav/m � 9.8 m/s2

g �
F grav

m

F
: grav
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FIGURE 3-22 ■ Video analysis software is used to perform a frame-by-frame analysis of a
digital movie depicting the motion of a small tossed ball. Graphs of position vs. time and the
calculated average velocity vs. time are shown. A fit of the velocity vs. time graph reveals that
the ball undergoes a constant acceleration in the downward direction of magnitude 9.8 m/s2.



very little as time passes. Hence, we conclude that, at least over the span of a human
life, the force of gravitational attraction does not appear to be changing over time.

Height Dependence: How does the gravitational force on a given object change
with its height above the Earth’s surface or its location? The stretch of a spring scale
is approximately the same if we are standing at sea level, on top of a table, on top of a
tall building, on top of a mountain, or inside of a high-flying passenger jet. This idea is
pictured in Fig. 3-23. The gravitational force actually decreases with distance from the
surface of the Earth, but the percentage change over the range of elevations that we
have described is not measurable to the two significant figures that we have been us-
ing to describe g. There turns out to be a slight dependence on location and height.
But for all heights and locations where people normally travel, the magnitude of the
gravitational force of attraction the Earth exerts on another object is the same to two
significant figures.

Direction: The direction of the gravitational force is apparently down. Since the
Earth is approximately spherical, if we look at the Earth’s gravitational force from the
perspective of outer space, its direction changes from place to place. It will be differ-
ent in Australia than in the United States.

Using the Kinematic Equations
Because the constant force of gravity near the surface of the Earth imparts a constant
acceleration to objects on which it acts, the kinematic equations of motion derived in
Chapter 2 (Table 2-1) can be used to describe free fall near the Earth’s surface, but
only as long as there are no other nonconstant forces present. The kinematic equa-
tions that you worked with in the last chapter describe motion along a line with con-
stant acceleration.

Though the value of g does vary slightly with latitude and elevation, you may
safely use a value of 9.8 m/s2 (or 32 ft/s2) in free fall calculations near the Earth’s sur-
face as long as air resistance is considered negligible. For many calculations, 10 m/s2 is
a convenient approximation, since it varies by only 2% from the more precise value.

When we introduced one-dimensional motion in Chapter 2, we noted that when
thinking about the motion of objects, we have freedom to choose our coordinate system.
However, to make communicating about these ideas easier, for now we will continue to
use a vertical y axis that points up as shown in Fig. 3-24. In this coordinate system

(3-9)

where is the y-component of the falling object’s acceleration and the dimension-
less unit vector associated with the y axis.

We can easily construct kinematic equations to describe the relationships be-
tween vertical vector components for a freely falling object close to the Earth’s
surface. We simplify writing the equations in Table 2-1 in Chapter 2 by: (1) replacing
position component x with the symbol y; (2) adding the subscript y to the velocity
component to remind us that it is the component of velocity along the y axis; (3) re-
placing the component of acceleration along the vertical axis that was denoted ax with
ay � �g. Note: We have chosen upward to be positive.

READI NG EXERC IS E  3-11: Suppose that you throw an object upward and can ig-
nore air resistance to the motion of the object. At the highest point in this motion, the object’s
velocity is instantaneously zero as it reverses direction. Does this mean that the object’s accel-
eration is zero at that point? Explain how your answer is consistent with: (a) the definitions of
instantaneous velocity and acceleration that you have learned; (b) the graphs in Fig. 3-22. ■

READI NG EXERC IS E  3-12: Rewrite the equations in Table 2-1 so they describe the
motion of an object in vertical free fall. Use a conventional coordinate system with the y axis
pointing up. ■

ĵay

F
: grav � �mg ĵ � may ĵ,
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FIGURE 3-24 ■ It is customary to desig-
nate a vertical axis as the y axis, reserving
the term x axis for the horizontal direction.
The upward direction is typically given as
positive. The unit vector is labeled rather
than , and it points upward in the
positive y direction.
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3-10 Newton’s Third Law

Newton’s first two laws of motion describe what happens to a single object that has
forces acting on it. We made the claim in Section 3-8 that for every object that experi-
ences a force there is another object causing that force. Further, we claimed that inter-
actions between two objects always seem to go two ways. We begin this section with a
discussion of observations Newton made of the two-way interaction between hanging
magnets. We can then state Newton’s Third Law, which deals with the relationship
between the forces objects exert on each other. We end the section by presenting ex-
perimental evidence for the validity of Newton’s Third Law using measurements of
contact forces.
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A model rocket with a mass of 0.50 kg is fired vertically from the
ground. Assume that it is streamlined enough that air resistance can
be ignored. Suppose it ascends under the influence of a constant net
force of 2.0 N acting in a vertical direction and travels for 6.0 s be-
fore its fuel is exhausted. Then it keeps moving as a particle-like ob-
ject in free fall as it continues upward, turns around, and falls back
down.

(a) How high is the rocket when it runs out of fuel? What is its ve-
locity at that time?

S O L U T I O N ■ The net force on the rocket is a combination of
the upward thrust of the rocket engine and the downward pull of
the Earth. The Ke y  I d e a here is that we can use Newton’s Sec-
ond Law and our knowledge of the constant net force to find the
rocket’s constant acceleration and then use a kinematic equation to
find out how high it will go in 6.0 seconds with that constant accel-
eration.

Using Eq. 3-5 for Newton’s Second Law we get

Thus the vertical component of acceleration is .
The elapsed time since take-off is given by . Since the
rocket is fired at the ground level, and .
Thus we can put numbers in the primary kinematic equation
(Eq. 2-17) to get the height of the rocket at the time the fuel has
run out,

(Answer)

We need to find the y-component of velocity just as the rocket’s
fuel runs out. This is given by the other primary kinematic equation
(Eq. 2-13) with respect to time to get 

(Answer)

(b) What is the total height that the rocket rises?

S O L U T I O N ■ The rocket is now at 72 m above the ground,
moving upward with a velocity component of 24 m/s. We need to

know how much higher it will go when the only significant force
acting on it is the gravitational pull of the Earth. Let’s do this by us-
ing only the primary kinematic equations for free fall with 
so that

(Eq. 2-13)

and (Eq. 2-17)

The Ke y  I d e a here is to use Eq. 2-13 to find the time it takes the
rocket to go from its new initial velocity of 24 m/s to its “final” ve-
locity of 0 m/s and then use Eq. 2-17 to find the additional distance
moved in the upward direction. Solving for the
elapsed time gives 

Solving Eq. 2-17 for the additional rise of the rocket using
gives

When added to the previous rise of the rocket under thrust we get 

(Answer)

(c) What is the net force on the rocket when it continues upward as
a free fall particle? As it turns around? When it is traveling back to-
ward the ground?

S O L U T I O N ■ A Ke y  I d e a here is that the only force on the
rocket in free fall is the gravitational force. A second Ke y  I d e a is
that this force is the same whether the rocket is moving up, turning
around, or falling down. Its magnitude is given by the mass of the
rocket times the gravitational constant g. In vector notation, the
force is

F
:

� ma: � m(�g) ĵ �  (0.50 kg)(�9.8 N/kg) ĵ � (�4.9 N) ĵ.

maximum height � 72 m � 29 m � 101 m.

� (24 m/s)(2.45 s) � 1
2 9.8(2.45 s)2 � 29.4 m.

(y2 � y1) � v1 y�t � 1
2 g(�t)2

�t � 2.45 s

�t �
v2 y � v1 y

� g
�

(0 � 24) m/s
� 9.8 m/s2 � 2.45 s.

�t
v2 y � v1 y � g�t

(y2 � y1) � v1 y(t2 � t1) � 1
2 g(t2 � t1)2.

v2 y � v1y � g�t

ay � �g

v2 y � v1 y � ay�t � 0.0 m/s � (4.0 m/s2)(6.0 s) � 24 m/s.

� 0.0 m � 1
2(4.0 m/s2)(6.0 s)2 � 72 m.

(y2 � y1) � v1y(t2 � t1) � 1
2 ay(t2 � t1)2

v1 y � 0.0 m/sy1 � 0.0 m
t2 � t1 � 6.0 s

ay � �4.0 m/s2

a: �
F
: net

m
�

(2.0 N) ĵ
0.50 kg

� (�4.0 m/s2) ĵ � ay ĵ.

TOUCHSTONE EXAMPLE 3-3: Model Rocket 



Qualitative Considerations
Suppose that you hang two strong magnets side by side from long strings with their
north poles facing each other as shown in Fig. 3-25. Many of us have observed that the
north poles of magnets repel one another. If you were to hold the two north poles
very close to each other and let go of the magnets, they would start to accelerate away
from each other. The fact that both magnets are repelled and begin to accelerate im-
plies that each magnet has a force acting on it. If you were to do this with magnets of
the same mass, you would observe that the magnitudes of the two accelerations are
identical. Observations of the accelerations of the magnets suggest that they are expe-
riencing magnetic forces that have the same magnitude but are oppositely directed.
(Actually, to get good measurements we should either mount our magnets on low-
friction carts or hang them from long strings so the strings don’t exert net horizontal
forces on the magnets.)

This notion of equal and opposite forces is familiar to us in the case of contact
forces. If you push on a wall it pushes back. This doesn’t hurt if you push gently, but if
you punch a wall hard it hurts very much. Newton hypothesized that any time two ob-
jects interact in such a way that a force is exerted on one of them, there is always a
force that is equal in magnitude exerted in the opposite direction on the other object.
This hypothesis is called Newton’s Third Law, and we can state it simply in modern
language.

NEWTON’S THIRD LAW: If one object is exerting a force on a second object, then the sec-
ond object is also exerting a force back on the first object. The two forces have exactly the
same magnitude but act in opposite directions.

The most significant idea contained in Newton’s Third Law is that forces always exist
in pairs. It is very important that we realize we are talking about two different forces
acting on two different objects.

In trying to visualize the application of this concept in the situation involving the
magnets, it is helpful to draw a force vector at the center of each magnet showing the
horizontal force it is experiencing from the other magnet. (Drawing the net force vec-
tor at the center of the object on which it acts is another of our many idealizations.
The rod-shaped magnets are not really point particles, and each part of one magnet
may be exerting forces on each part of the other and vice versa. However, in this situ-
ation, it turns out that assuming the rods are particle-like leads us to the same conclu-
sions that treating them like rods would.) 

Figure 3-26 shows the force diagrams for the two magnets discussed above, as-
suming that there are no other forces acting on them. The force exerted on object A
by object B is denoted and the force exerted on object B by object A is de-
noted . This notation allows us to write an equation that summarizes Newton’s
Third Law as follows:

(Newton’s Third Law in equation form). (3-10)

The order of the letters in the subscripts on the force is very important because they
tell us which object the force is acting on and the origin of the force. The first letter

F
:

B:A � �F
:

A:B

F
:

A:B

F
:

B:A
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Magnet A Magnet BS N N S

FIGURE 3-25 ■ Two magnets of different masses hang from long strings. They
are pushed together and released. What happens to them as a result of magnetic
repulsion forces?



FIGURE 3-27 ■ Two people are playing
tug-of-war with electronic force sensors
hooked together.
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denotes the object that exerts the force and the second letter denotes the object that
feels the force. We call the forces shown in Eq. 3-10 between the two interacting mag-
nets a third-law force pair. In situations where Newton’s laws apply, we believe that if
any two bodies are interacting, a third-law force pair is always present.

Experimental Verification for Contact Forces
We have developed Newton’s Third Law in a qualitative fashion by doing a thought
experiment. No measurements were taken to verify the law quantitatively. We have
asserted that it holds whenever two bodies interact with each other. Now, let’s con-
sider whether the Third Law applies to objects that interact via contact (touching)
forces. This time we will make measurements to verify the Third Law in a quantitative
fashion.

Suppose two people hook the ends of two force sensors together as shown in
Fig. 3-27 and have a back-and-forth tug of war. What happens?

If we interface these force sensors to a computer for data collection, the result
would look something like what is shown in Fig. 3-28. This graph verifies that on a
moment-by-moment basis the force ( ) exerted on the person on the left by the
person on the right is equal in magnitude but opposite in direction to the force 
( ) exerted on the person on the right by the person on the left.

We have considered magnetic forces (one form of electromagnetic force) and
contact forces (another form of electromagnetic force). Does Newton’s Third Law
also apply to cases where masses are very different and when gravitational forces are
present? Is it true for high-speed collisions? Is it true when one object is stationary
and the other is not moving at first? For example, is it true for a very heavy truck trav-
eling at high speed that collides head-on with a small car that is at rest? Is it true for a
baseball in free fall interacting with the Earth? The answer to all these questions is
“yes.” We will return to them in Chapter 7, where we discuss the experimental evi-
dence that Newton’s Third Law can help us predict the outcomes of collisions be-
tween objects.

F
:

A:B

F
:

B:A
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Force on magnet B
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FIGURE 3-26 ■ We can draw an interac-
tion force vector at the center of each mag-
net (assuming that Newton’s Third Law
describes the interactions between two
magnets and that the magnets are particle-
like in their mutual interaction).
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FIGURE 3-28 ■ A graph of the measured
force vs. time for two people playing tug-
of-war for 10 seconds. A computer data ac-
quisition system was used to collect and
display the data at a rate of 100 readings
per second. is exerted on the per-
son on the left and on the person 
on the right.

F
:

A:B

F
:

B:A



READI NG EXERC IS E  3-13: Suppose that the magnet on the left in Fig. 3-25 is re-
placed by a steel paper clip that is not magnetized. (a) What can you say about the force that the
initially unmagnetized paper clip exerts on the magnet on the right compared to the force the mag-
net on the right exerts on the paper clip? (b) Do you think Newton’s Third Law holds? Explain. ■
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In Fig. 3-29a, a constant horizontal force of magnitude 20 N is
applied to block A of mass , which pushes against
block B of mass . The blocks slide over a frictionless
surface, along an x axis.

(a) What is the acceleration of the blocks?

S O L U T I O N ■ We shall first examine a solution with a serious
error, then a dead-end solution, and then a successful solution.

Serious Error: Because force is applied directly to block
A, we use Newton’s Second Law to relate that force to the accelera-
tion of block A. Because the motion is along the x axis, we use
that law for x-components , writing it as

However, this is seriously wrong because is not the only hori-
zontal force acting on block A. There is also the force from
block B (as shown in Fig. 3-29b).

Dead-End Solution: Let us now include force by writing,
again for the x axis,

where is positive, but is negative. However, is a
second unknown, so we cannot solve this equation for the desired
acceleration ax.

Successful Solution: The Ke y  I d e a here is that, because of
the direction in which force is applied, the two blocks form a
rigidly connected system. We can relate the net force on the system
to the acceleration of the system with Newton’s Second Law. Here,
once again for the x axis, we can write that law as

where now we properly apply to the system with total mass
. Solving for ax and substituting known values, we find

Thus, the acceleration of the system and of each block is in the posi-
tive direction of the x axis and has the magnitude .

(b) What is the force on block B from block A (Fig. 3-29c)?

S O L U T I O N ■ The Ke y  I d e a here is that we can relate the net
force on block B to the block’s acceleration with Newton’s Second
Law. Here we can write that law, still for components along the x
axis, as

which, with known values, gives

Thus, force is in the positive direction of the x axis and has a
magnitude of 12 N.

F
:

A:B

FA:B x � (6.0 kg)(2.0 m/s2) � 12 N.

FA:B x � mB ax,

F
:

A:B

2.0 m/s2

ax �
F app

x

mA � mB
�

20 N
4.0 kg � 6.0 kg

� 2.0 m/s2.

mA � mB

F
: app

F app
x � (mA � mB)ax,

F
: app

FB:AxFB:AxF app
x

F app
x � FB:Ax � mA ax

F
:

B:A

F
:

B:A

F
: app

F net
x � mA ax.

(F net
x � max)

a:

F
: app

mB � 6.0 kg
mA � 4.0 kg

F
: app

TOUCHSTONE EXAMPLE 3-4: Pushing Two Blocks

(a)

x
A

B

(b)

xA FB     A

(c)

x

B

F app F app FA     B

FIGURE 3-29 ■ (a) A constant horizontal force is applied to
block A, which pushes against block B. (b) Two horizontal forces
act on block A: applied force and force from block B.
(c) Only one horizontal force acts on block B: force from
block A.

F
:

A:B

F
:

B:AF
: app

F
: app

Two blocks connected by a string are being pulled to the right
across a horizontal frictional surface by another string, as shown in
Fig. 3-30. The strings are horizontal and their masses are negligible
compared to those of the blocks. The tension in the rightmost string
is a constant 35 N. Find the tension in the other string if the mass of
the left block is four times that of the right block.

S O L U T I O N ■ Note that we do not need to consider the tension
in the rope between the objects when we treat them as a system,

so as in the previous touchstone example, we choose to apply
Newton’s Second Law to the two-block system to find its accelera-
tion. Although we don’t know the masses of the individual blocks,
we do know that . If we set , then
Newton’s Second Law tells us that 

Solving for ax, we learn that

F app
x � (m � 4m)ax.

m right � m(m left/m right) � 4

TOUCHSTONE EXAMPLE 3-5: Pulling Two Blocks
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Figure 3-31 shows a man raising a load of bricks from the ground to
the first floor of a building using a rope hung over a pulley. Suppose
the load of bricks weighs 900 N and the man weighs 1200 N. What is
the maximum upward acceleration that the man can give to the
load of bricks by pulling downward on his side of the rope?

S O L U T I O N ■ One Ke y  I d e a here is that whatever force the
man exerts downward on the rope, the rope in turn exerts upward
on the man. Thus, if the man is not to accelerate upward, the max-
imum force he can exert downward on the rope is 1200 N. If he
exceeds this, then he will experience a net upward force and accel-
erate upward. Thus the tension in the rope cannot exceed 1200 N.

Another Ke y  I d e a is that the tension in the rope is the same
on each side of the pulley; ideal pulleys, such as this one, change the
direction of the forces that ropes exert on objects but do not affect
the magnitude of those forces. Thus the maximum upward force
that the rope can exert on the load of bricks is 1200 N. Since gravity
exerts a constant 900 N downward on the bricks, this limits the max-
imum vertical force on the bricks to

Newton’s Second Law then tells us that the maximum upward
acceleration of the bricks is

(Answer)

To find the mass of the bricks here, we have used the fact that the
weight of the brick is equal to their mass times the local value of

.g � 9.80N/kg � 9.80m/s2

� 3.26 m/s2.

� 1
3 g

a max
y �

F netmax
y

mbricks
�

300 N
(900 N/g)

� 300 N.

� 1200 N � 900 N

F net max
y � F max

rope:bricksy � F grav
bricksy

TOUCHSTONE EXAMPLE 3-6: Raising Bricks

To find the tension, T, in the string between the two blocks, the
Ke y  I d e a is to shift our attention from the two-block system to
just the left-hand block. Its acceleration is the same as that of the
two-block system, since they are joined by a string of constant
length.

The second Ke y  I d e a is that the magnitude of the net force
acting on the left block is equal to the tension, TA, in the string join-
ing the two blocks and that this force is directed to the right; that is,

. Applying Newton’s Second Law to the left block yields

But we’ve already seen that . Combining these two
results tells us that

(Answer)

We now see that TA depends only on and on the ratio of the
two masses; we did not need to know the individual masses to solve
the problem.

� F
: app �

� 28 N.

� 4
5 (35 N)

TA � 4max �
4mF app

x

5m
� 4

5 F app
x

ax � F app
x /5m

FAx � TA � 4max.

F
:

A � TA î

ax �
F app

x

5m
.

Weight of man = 1200 N

Weight of bricks = 900 N

FIGURE 3-31

4m 1m

1m System of 4m + m

TA

35 N

4m

TA F app F app

FIGURE 3-30
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3-11 Comments on Classical Mechanics

A word of caution—classical mechanics does not apply to all situations. For instance,
physicists know that if the speeds of the interacting bodies are very large—an appre-
ciable fraction of the speed of light—we must replace Newtonian mechanics with
Einstein’s special theory of relativity. In addition, if the interacting bodies are mole-
cules, atoms, or electrons within atoms, there are situations in which we must replace
classical mechanics with quantum mechanics. Physicists now view Newtonian mechan-
ics as a special case of these two more comprehensive theories. Still, classical mechan-
ics is a very important special case of these other theories because it applies to the
motion of objects ranging in size from that of large molecules to that of astronomical
objects such as galaxies and galactic clusters. The domain of Newton’s laws encom-
passes our everyday world including the translational, rotational and vibrational mo-
tions of cars, ships, airplanes, elevators, steam engines, our bodies, fluids, glaciers, the
atmosphere, and oceans.

In the next chapter, we will introduce elements of vector mathematics that allow
us to extend and apply Newtonian mechanics to more realistic situations involving
motions in two dimensions. In spite of the limitations of Newton’s laws, you will see
throughout our study of basic classical physics that these laws are extraordinarily
powerful in helping us describe, understand, and predict events involving motion in
our everyday world and beyond.

SEC. 3-6 ■ NEWTON’S SECOND LAW FOR A SINGLE FORCE

1. Stopping a Neutron When a nucleus captures a stray neutron, it
must bring the neutron to a stop within the diameter of the nucleus
by means of the strong force. That force, which “glues” the nucleus
together, is approximately zero outside the nucleus. Suppose that a
stray neutron with an initial speed of 1.4 � 107 m/s is just barely
captured by a nucleus with diameter d � 1.0 � 10�14 m. Assuming
that the strong force on the neutron is constant, find the magnitude
of that force. The neutron’s mass is 1.67 � 10�27 kg.

2. Riding the Elevator A 50 kg passenger rides in an elevator that
starts from rest on the ground floor of a building at t � 0 and rises
to the top floor during a 10 s interval. The acceleration of the eleva-
tor as a function of the time is shown in Fig. 3-32, where positive
values of the acceleration mean that it is directed upward. Give the
magnitude and direction of the following forces: (a) the maximum
force on the passenger from the floor, (b) the minimum force on
the passenger from the floor, and (c) the maximum force on the
floor from the passenger.

FIGURE 3-32 ■ Problem 2.

3. Sunjamming A “sun yacht” is a spacecraft with a large sail that is
pushed by sunlight. Although such a push is tiny in everyday circum-
stances, it can be large enough to send the spacecraft outward from
the Sun on a cost-free but slow trip. Suppose that the spacecraft has a
mass of 900 kg and receives a push of 20 N. (a) What is the magni-
tude of the resulting acceleration? If the craft starts from rest, (b)
how far will it travel in 1 day and (c) how fast will it then be moving?

4. Stopping a Salmon The tension at which a fishing line snaps is
commonly called the line’s “strength.” What minimum strength is
needed for a line that is to stop a salmon of weight 85 N in 11 cm if
the fish is initially drifting at 2.8 m/s? Assume a constant acceleration.

5. Rocket Sled An experimental rocket sled can be accelerated at
a constant rate from rest to 1600 km/h in 1.8 s. What is the magni-
tude of the required net force if the sled has a mass of 500 kg?

6. Stopping a Car A car with a mass of 1300 kg is initially moving
at a speed of 40 km/h when the brakes are applied and the car is
brought to a stop  in 15 m. Assuming that the force that stops the
car is constant, find (a) the magnitude of that force and (b) the time
required for the change in speed. If the initial speed is doubled and
the car experiences the same force during the braking, by what fac-
tors are (c) the stopping distance and (d) the stopping time multi-
plied? (There could be a lesson here about the danger of driving at
high speeds.)

7. Rocket and Payload A rocket and its payload have a total mass
of 5.0 � 104 kg. How large is the force produced by the engine (the
thrust) when (a) the rocket is “hovering” over the launchpad just
after ignition, and (b) the rocket is accelerating upward at 20 m/s2?

8. Car Wreck A car traveling at 53 km/h hits a bridge abutment. A
passenger in the car moves forward a distance of 65 cm (with re-

Problems
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spect to the road) while being brought to rest by an inflated air bag.
What magnitude of force (assumed constant) acts on the passen-
ger’s upper torso, which has a mass of 41 kg?

9. The Fall An 80 kg man drops to a concrete patio from a window
only 0.50 m above the patio. He neglects to bend his knees on land-
ing, taking 2.0 cm to stop. (a) What is his average acceleration from
when his feet first touch the patio to when he stops? (b) What is the
magnitude of the average stopping force?

10. Starship An interstellar ship has a mass of 1.20 � 106 kg and is
initially at rest relative to a star system. (a) What constant accelera-
tion is needed to bring the ship up to a speed of 0.10c (where c is
the speed of light, 3.0 � 108 m/s) relative to the star system in
3.0 days? (b) What is that acceleration in g units? (c) What force is
required for the acceleration? (d) If the engines are shut down
when 0.10c is reached (the speed then remains constant), how long
does the ship take (start to finish) to journey 5.0 light-months, the
distance that light travels in 5.0 months?

11. Force vs. Time Figure
3-33 gives, as a function of
time t, the force component
Fx that acts on a 3.00 kg ice
block, which can move only
along the x axis. At t � 0,
the block is moving in the
positive direction of the
axis, with a speed of 3.0 m/s.
What are its (a) speed and
(b) direction of travel at t
� 11 s?

12. Variable Force A 2.0 kg particle moves along an x axis, being
propelled by a variable force directed along that axis. Its position is
given by

x � 3.0 m � (4.0 m/s)t � ct2 � (2.0 m/s3)t3,

with x in meters and t in seconds. The factor c is a constant. At t �
3.0 s, the force on the particle has a magnitude of 36 N and is in the
negative direction of the axis. What is c? (Include units.)

SEC. 3-8 ■ ALL FORCES RESULT FROM INTERACTION

13. Two People Pull Two people pull with 90 N and 92 N in oppo-
site directions on a 25 kg sled on frictionless ice. What is the sled’s
acceleration magnitude?

14. Take Off A Navy jet
(Fig. 3-34) with a mass of
2.3 � 104 kg requires an
airspeed of 85 m/s for
liftoff. The engine develops
a maximum force of 1.07 �
105 N, but that is insuffi-
cient for reaching takeoff
speed in the 90 m runway
available on an aircraft car-
rier. What minimum force
(assumed constant) is needed from the catapult that is used to help
launch the jet? Assume that the catapult and the jet’s engine each
exert a constant force over the 90 m distance used for takeoff.

15. Loaded Elevator An elevator and its load have a combined mass
of 1600 kg. Find the pull (or tension) force supplied by in the support-
ing cable when the elevator, originally moving downward at 12 m/s, is
brought to rest with constant acceleration in a distance of 42 m.

16. Four Penguins Figure 3-35 shows four penguins that are being
playfully pulled along very slippery (frictionless) ice by a curator.
The masses of three penguins and the tension in two of the cords
are given. Find the penguin mass that is not given.

FIGURE 3-35 ■ Problem 16.

17. Elevator An elevator with a mass of 2840 kg is given an up-
ward acceleration of 1.22 m/s2 by a cable. (a) Calculate the tension
in the cable. (b) What is the tension when the elevator is slowing at
the rate of 1.22 m/s2 but is still moving upward?

18. Three Blocks In Fig. 3-36 three blocks are connected and pulled
to the right on a horizontal frictionless table by a force with a mag-
nitude of T3 � 65.0 N. If mA � 12.0 kg, mB � 24.0 kg, and mC � 31.0
kg, calculate (a) the acceleration of the system and the magnitudes
of the tensions (b) T1 and (c) T2 in the interconnecting cords.

FIGURE 3-36 ■ Problem 18.

19. Hot-Air Balloon A hot-air balloon of mass M is descending
vertically with downward acceleration of magnitude a. How much
mass (ballast) must be thrown out to give the balloon an upward
acceleration of magnitude a (same magnitude but opposite direc-
tion)? Assume that the upward force from the air (the lift) does not
change because of the decrease in mass.

20. Lamp in Elevator A lamp hangs vertically from a cord in a
descending elevator that slows down at 2.4 m/s2. (a) If the tension in
the cord is 89 N, what is the lamp’s mass? (b) What is the cord’s tension
when the elevator ascends with an upward acceleration of 2.4 m/s2?

21. Two Forces, Two Blocks In Fig. 3-37 forces act on blocks A and
B, which are connected by string. Force � (12 N)î acts on block
A, with mass 4.0 kg. Force � (24 N)î acts on block B, with mass
6.0 kg. What is the tension in the string?

FIGURE 3-37 ■ Problem 21.

22. Coin Drop An elevator cab is pulled directly upward by a sin-
gle cable. The elevator cab and its single occupant have a mass of
2000 kg. When that occupant drops a coin, its acceleration relative
to the cab is 8.00 m/s2 downward. What is the tension in the cable?

23. Links In Fig. 3-38, a chain consisting of five links, each of mass
0.100 kg, is lifted vertically with a constant acceleration of 2.50 m/s2.

F
:

B

F
:

A

6

0
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–4

t (s)

Fx (N)

FIGURE 3-34 ■ Problem 14.

Tension = 111 N Tension = 222 N

12 kg
15 kg

20 kg

mA
mB mC

T1 T2 T3

x

A BFA FB

FIGURE 3-33 ■ Problem 11.
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Find the magnitudes of (a) the force
on link 1 from link 2, (b) the force
on link 2 from link 3, (c) the force
on link 3 from link 4, and (d) the
force on link 4 from link 5. Then
find the magnitudes of (e) the force
F
:

on the top link from the person
lifting the chain and (f) the net force
accelerating each link.

SEC. 3-9 ■ GRAVITATIONAL

FORCES AND FREEFALL

MOTION

24. Raindrops Raindrops fall 1700 m from a cloud to the ground.
(a) If they were not slowed by air resistance, how fast would the
drops be moving when they struck the ground? (b) Would it be safe
to walk outside during a rainstorm?

25. Falling Rock A rock is dropped from a 100-m-high cliff. How
long does it take to fall (a) the first 50 m and (b) the second 50 m?

26. Long Drop The Zero Gravity Research Facility at the NASA
Lewis Research Center includes a 145 m drop tower. This is an
evacuated vertical tower through which, among other possibilities, a
1 m diameter sphere containing an experimental package can be
dropped. (a) How long is the sphere in free fall? (b) What is its
speed just as it reaches a catching device at the bottom of the
tower? (c) When caught, the sphere experiences an average acceler-
ation of 25g as its speed is reduced to zero. Through what distance
does it travel while stopping?

27. Leaping Armadillo A startled armadillo leaps upward, rising
0.544 m in the first 0.200 s. (a) What is its initial speed as it leaves
the ground? (b) What is its speed at the height of 0.544 m? (c) How
much higher does it go?

28. Ball Thrown Downward A ball is thrown down vertically with
an initial speed of v1 from a height of h. (a) What is its speed just
before it strikes the ground? (b) How long does the ball take to
reach the ground? What would be the answers to (c) part a and (d)
part b if the ball were thrown upward from the same height and
with the same initial speed? Before solving any equations, decide
whether the answers to (c) and (d) should be greater than, less
than, or the same as in (a) and (b).

29. Boat and Key A key falls from a bridge that is 45 m above the
water. It falls directly into a model boat, moving with constant ve-
locity, that is 12 m from the point of impact when the key is re-
leased. What is the speed of the boat?

30. Downward-Speeding Ball A ball is thrown vertically down-
ward from the top of a 36.6-m-tall building. The ball passes the top
of a window that is 12.2 m above the ground 2.00 s after being
thrown. What is the speed of the ball as it passes the top of the
window?

31. Drips Water drips from the nozzle of a shower onto the floor
200 cm below. The drops fall at regular (equal) intervals of time, the
first drop striking the floor at the instant the fourth drop begins to
fall. Find the locations of the second and third drops when the first
strikes the floor.

32. Hang Time A basketball player, standing near the basket to
grab a rebound, jumps 76.0 cm vertically. How much (total) time
does the player spend (a) in the top 15.0 cm of this jump and (b) in

the bottom 15.0 cm? Does this help explain why such players seem
to hang in the air at the tops of their jumps?

33. Air Express A hot-air balloon is ascending at the rate of 12 m/s
and is 80 m above the ground when a package is dropped over the
side.

(a) How long does the package take to reach the ground?
(b) With what speed does it hit the ground?

34. Other-Worldly Pitch A ball is shot vertically upward from the
surface of a planet in a distant solar system. A plot of y versus t for
the ball is shown in Fig. 3-39, where y is the height of the ball above
its starting point and t � 0 at the instant the ball is shot. What are
the magnitudes of (a) the free-fall acceleration on the planet and
(b) the initial velocity of the ball?

FIGURE 3-39 ■ Problem 34.

35. Reaction Time Figure 3-40 shows a simple device for measur-
ing your reaction time. It consists of a cardboard strip marked with
a scale and two large dots. A friend holds the strip vertically, with
thumb and forefinger at the dot on the right in Fig. 3-40. You then
position your thumb and forefinger at the other dot (on the left in
Fig. 3-40), being careful not to touch the strip. Your friend releases
the strip, and you try to pinch it as soon as possible after you see it
begin to fall. The mark at the place where you pinch the strip gives
your reaction time. (a) How far from the lower dot should you
place the 50.0 ms mark? (b) How much higher should the marks for
100, 150, 200, and 250 ms be? (For example, should the 100 ms
marker be two times as far from the dot as the 50 ms marker? Can
you find any pattern in the answers?)

FIGURE 3-40 ■ Problem 35.

36. Juggling A certain juggler usually tosses balls vertically to a
height H. To what height must they be tossed if they are to spend
twice as much time in the air?

37. Dropping a Wrench At a construction site a pipe wrench
struck the ground with a speed of 24 m/s. (a) From what height was
it inadvertently dropped? (b) How long was it falling? (c) Sketch
graphs of y, vy, and ay vs. t for the wrench.

38. Two Stones A stone is dropped into a river from a bridge
43.9 m above the water. Another stone is thrown vertically down
1.00 s after the first is dropped. Both stones strike the water at
the same time. (a) What is the initial speed of the second stone?
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FIGURE 3-38 ■ Problem 23.
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(b) Plot velocity vs. time on a graph for each stone, taking zero time
as the instant the first stone is released.

39. Callisto Imagine a landing craft approaching the surface of
Callisto, one of Jupiter’s moons. If the engine provides an upward
force (thrust) of 3260 N, the craft descends at constant speed; if the
engine provides only 2200 N, the craft accelerates downward at 0.39
m/s2. (a) What is the weight of the landing craft in the vicinity of
Callisto’s surface? (b) What is the mass of the craft? (c) What is the
magnitude of the free-fall acceleration near the surface of Callisto?

40. Rising Stone A stone is thrown vertically upward. On its way
up it passes point A with speed v, and point B, 3.00 m higher than
A, with speed v. Calculate (a) the speed v and (b) the maximum
height reached by the stone above point B.

41. Parachuting A parachutist bails out and freely falls 50 m. Then
the parachute opens, and thereafter she slows at 2.0 m/s2. She
reaches the ground with a speed of 3.0 m/s. (a) How long is the
parachutist in the air? (b) At what height does the fall begin?

42. Space Ranger’s Weight Compute the weight of a 75 kg space
ranger (a) on Earth, (b) on Mars, where g � 3.8 m/s2, and (c) in in-
terplanetary space, where g � 0. (d) What is the ranger’s mass at
each of these locations?

43. Different g’s A certain particle has a weight of 22 N at a point
where g � 9.8 m/s2. What are its (a) weight and (b) mass at a point
where g � 4.9 m/s2? What are its (c) weight and (d) mass if it is
moved to a point in space where g � 0?

SEC. 3-10 ■ NEWTON’S THIRD LAW

44. A Child Stands Then Jumps A 29.0 kg child, with a 4.50 kg back-
pack on his back, first stands on a sidewalk and then jumps up into
the air. Find the magnitude and direction of the force on the sidewalk
from the child when the child is (a) standing still and (b) in the air.
Now find the magnitude and direction of the net force on Earth due
to the child when the child is (c) standing still and (d) in the air.

45. Sliding Down a Pole A firefighter with a weight of 712 N slides
down a vertical pole with an acceleration of 3.00 m/s2, directed
downward. What are the magnitudes and directions of the vertical
forces (a) on the firefighter from the pole and (b) on the pole from
the firefighter?

46. Block A, Block B In Fig. 3-41a, a constant horizontal force is
applied to block A, which pushes against block B with a 20.0 N force
horizontally to the right. In Fig. 3-41b, the same force is applied to
block B; now block A pushes on block B with a 10.0 N force hori-
zontally to the left. The blocks have a total mass of 12.0 kg. What are
the magnitudes of (a) their acceleration in Fig. 3-41a and (b) force ?

FIGURE 3-41 ■ Problem 46.

47. Two Blocks Two blocks are in contact on a frictionless table. A
horizontal force is applied to the larger block, as shown in Fig. 3-42.

F
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a

F
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a

F
:

a

1
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(a) If mA � 2.3 kg, mB � 1.2 kg, and F � 3.2
N, find the magnitude of the force between
the two blocks. (b) Show that if a force of
the same magnitude F is applied to the
smaller block but in the opposite direction,
the magnitude of the force between the
blocks is 2.1 N, which is not the same value
calculated in (a). (c) Explain the difference.

48. Parachuting Two An 80 kg person is parachuting and experi-
encing a downward acceleration of 2.5 m/s2. The mass of the para-
chute is 5.0 kg. (a) What is the upward force on the open parachute
from the air? (b) What is the downward force on the parachute
from the person?

49. Getting Down An 85 kg man lowers himself to the ground
from a height of 10.0 m by holding onto a rope that runs over a fric-
tionless pulley to a 65 kg sandbag. With what speed does the man
hit the ground if he started from rest?

50. Climbing a Rope A 10 kg
monkey climbs up a massless rope
that runs over  a frictionless tree
limb and back down to a 15 kg
package on the ground (Fig. 3-43).
(a) What is the magnitude of the
least acceleration the monkey must
have if it is to lift the package off
the ground? If, after the package
has been lifted, the monkey stops
its climb and holds onto the rope,
what are (b) the magnitude and (c)
the direction of the monkey’s accel-
eration, and (d) what is the tension
in the rope?

51. Bosun’s Chair Figure 3-44
shows a man sitting in a bosun’s
chair that dangles from a massless
rope, which runs over a massless,
frictionless pulley and back down to
the man’s hand. The combined mass
of man and chair is 95.0 kg. With
what force magnitude must the man
pull on the rope if he is to rise (a)
with a constant velocity and (b)
with an upward acceleration of 1.30
m/s2? (Hint: A free-body diagram
can really help.)

52. Girl and Sled A 40 kg girl and
an 8.4 kg sled are on the frictionless
ice of a frozen lake, 15 m apart but
connected by a rope of negligible
mass. The girl exerts a horizontal 5.2
N force on the rope. (a) What is the
acceleration of the sled? (b) What is
the acceleration of the girl? (c) How
far from the girl’s initial position do
they meet?
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FIGURE 3-42 ■

Problem 47.

Bananas

FIGURE 3-43 ■ Problem 50.

FIGURE 3-44 ■ Problem 51.
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53. Why Bother with N1? Newton’s First Law states that an object
will move with a constant velocity if nothing acts on it. This seems to
contradict our everyday experience that a moving object comes to a
rest unless something acts on it to keep it going. Does this everyday
experience contradict Newton’s First Law? If it does not, explain
how this experience is consistent with Newton’s First Law. If it does,
explain why we bother to teach Newton’s First Law anyway.

54. When Does N3 Hold? Newton’s Third Law says that objects
that touch each other exert forces on each other. These forces sat-
isfy the rule:

If object A exerts a force on object B, then object B exerts a force
back on object A and the two forces are equal in magnitude but op-
posite in direction.

Consider the following three situations concerning two identical
cars and a much heavier truck.

(a) One car is parked and the other car crashes into it.
(b) One car is parked and the truck crashes into it.
(c) The truck is pushing the car, because the car’s engine cannot
start. The two are touching and the truck is speeding up.

For each situation, do you think Newton’s Third Law holds or does
not hold? Explain your reasons for saying so.

55. Why Bother with N2? Newton’s Second Law written in equa-
tion form states 

Your roommate says “That’s silly. Everyone knows it takes a force to
keep something moving at a constant velocity, even when there’s no
acceleration.” Do you agree with your roommate? If so, explain why
physics classes bother to teach the law. If you disagree, how would
you try to convince your roommate of the error of his/her ways?

56. Weight vs. Force A Frenchman, filling out a form, writes
“78 kg” in the space marked poids (weight). However weight is a
force and kg is a mass unit. What do the French (among others)
have in mind when they use mass to report their weight? Why don’t
they report their weight in newtons? How many newtons does this
Frenchman weigh? How many pounds?

57. Amy Is Pulled A student named Amy is being pulled across a
smooth floor with a big rubber band that is stretched to a constant
length. In one case she is riding on a low-friction cart and in the
other case she is sliding along the floor. A motion detector is set
up to track her motion in each case. The position–time graphs of
her motion are shown in Fig. 3 -45.

a: �
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(a) Which graph depicts motion at a constant velocity? Pull Project 1
(on the right) or Pull Project 2 (on the left)? Explain.
(b) Which graph depicts motion at a roughly constant accelera-
tion? Explain.
(c) Which graph demonstrates that something pulled with a con-
stant force moves with a constant velocity? Explain.
(d) Which graph demonstrates that something pulled with a con-
stant force moves with a constant acceleration? Explain.
(e) Which graph is most likely to show Amy’s motion when she is
rolling on the cart? Please justify your answer.
(f) Explain why it is possible to get two different types of motion
even though Amy is being pulled with a constant force in both
cases.

58. Inertial vs. Gravitational Mass Suppose you have the following
equipment available: an electronic balance, a motion detector and
an electronic force sensor attached to a computer-based laboratory
system. You would like to determine the mass of a block of ice that
can slide smoothly along a very level table top without noticeable
friction.

(a) Describe how you would use some of the equipment to find the
gravitational mass of the ice.
(b) Describe how you would use some of the equipment to find the
inertial mass of the ice.
(c) Which of the two types of masses can be measured in outer
space where gravitational forces are very small?

59. Free Fall Acceleration Your roommate peeks over your shoul-
der while you are reading a physics text and notices the following
sentence: “In free fall the acceleration is always g and always
straight downward regardless of the motion.” Your roommate finds
this peculiar and raises three objections:

(a) If I drop a balloon or a feather, it doesn’t fall nearly as fast as a
brick.
(b) Not everything falls straight down; if I throw a ball it can go
sideways.
(c) If I hold a wooden ball in one hand and a steel ball in the other,
I can tell that the steel ball is being pulled down much more
strongly than the wooden one. It will probably fall faster.

How would you respond to these statements? Discuss the extent to
which they invalidate the quoted statement. If they don’t invalidate
the statement, explain why.

60. Velocity and Force Graphs In the following situations friction
is small and can be ignored. Consider whether the net or combined
force on a small cart needs to be positive, negative, or zero to create
the following motions. Sketch graphs that show the shapes of the
velocity and force functions in each case. Use the format shown in
Fig. 3 -46. By convention, an object moving away from the origin
has a positive velocity. (Draw a separate set of velocity vs. time and
force vs. time graph for each of part (a) through (d).)

(a) The cart is moving away from the origin at a constant velocity.
(b) The cart moves toward the origin, speeding up at a steady rate
until it reaches a constant velocity after 3 s.
(c) The cart moves toward the origin, slowing down at a steady
rate, turns around after 2 s, and then moves away from the origin,
speeding up at the same steady rate.

Additional Problems
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FIGURE 3-45 ■ Problem 57.



61. Toy Cars (a) Suppose a toy
car moves along a horizontal
line without friction and a con-
stant force is applied to the car
toward the left.

Sketch a set of axes like those shown in Fig. 3 -48, and sketch the
shape of the acceleration–time graph of the car using a solid line

(b) What if two more identical cars are piled/glued on top of the
first car and the same constant force is applied to the three cars?
Use a dashed line to sketch the acceleration–time graph of the
“triple-car.” Explain any differences between this graph and the ac-
celeration–time graph of the single car.

62. Rocket Thrust and Acceleration A wise being has placed a
standard physics coordinate system in outer space far away from
any massive bodies. A specially designed space cylinder that experi-
ences no gravitational or frictional forces is moving along the x axis
of this coordinate system. It has two identical rocket engines on
each end. These engines can apply thrust forces that act in opposite
directions but have equal magnitudes as shown in Fig. 3-49. Dia-
gram A has engines on both ends on, diagram B has all engines off,
diagram C has only the left engines on, and diagram D has only the
right engines on.

FIGURE 3-49 ■ Problem 62.

Choose all the force combinations (A through D) which could keep
the rocket moving as described in each statement below. You may
use a choice more than once or not at all. If you think that none is
correct, answer choice E.

(a) Which force combinations could keep the rocket moving toward
the right and speeding up at a steady rate (constant acceleration)?
(b) Which force combinations could keep the rocket moving
toward the right at a steady (constant) velocity?
(c) The rocket is moving toward the right. Which force combina-
tions could slow it down at a steady rate (constant acceleration)?
(d) Which force combinations could keep the rocket moving toward
the left and speeding up at a steady rate (constant acceleration)?
(e) The rocket was started from rest and pushed until it reached a
steady (constant) velocity toward the right. Which force combina-
tions could keep the rocket moving at this velocity?
(f) The rocket is slowing down at a steady rate and has an accelera-
tion to the right. Which force combinations could account for this
motion?
(g) The rocket is moving toward the left. Which force combinations
could slow it down at a steady rate (constant acceleration)?

63. Two Carts Two low-friction carts A and B have masses of
2.5 kg and 5.0 kg, respectively. Initially a student is pushing them
with an applied force of B � �20.0 N, which is exerted on cart B
as shown in Fig. 3 -50a.

FIGURE 3-50 ■ Problem 63.

(a) Find the magnitude and direction of the interaction forces be-
tween the two carts B:A and A:B where B:A represents
the force on cart A due to cart B and A:B represents the force on
cart B due to cart A.
(b) If the student pushes on cart A with an applied force of �
�20.0 N instead, as shown in part (b) of Fig. 3 -50, determine the
magnitude and direction of the interaction forces between the two
carts B:A and A:B for this situation.
(c) Explain why the interaction forces are different in the two cases.
Hint: If you consider the two carts together as a system with mass
7.5 kg, what is the acceleration of each of carts A and B? What does
the net force on cart A have to be to result in this acceleration?

64. Spring Scale One The spring
scale in Fig. 3 -51 reads 10.5 N.
The cart moves toward the right
with an acceleration of 3.5 m/s2.

(a) Suppose a second spring scale is
combined with the first and acts in
the same direction as shown in Fig.
3 -52. The spring scale still reads
10.5 N.
The cart now moves toward the
right with an acceleration of
4.50 m/s2. What is the net force on
the cart? What does spring scale 
read? Show your calculations and
explain.
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FIGURE 3-51 ■ Problem 64.

FIGURE 3-52 ■ Problem 64.

FIGURE 3-48 ■

Problem 61.

(d) The cart moves away from the origin, slows down for 3 s, and
then speeds up for 3 seconds.



Additional Problems 87

(b) Suppose a second spring scale is combined with the first and
acts in the opposite direction as shown in Fig. 3 -53. The spring scale

still reads 10.5 N.

FIGURE 3-53 ■ Problem 64.

The cart now moves toward the right with an acceleration of
2.50 m/s2. What is the net force on the cart? What does spring scale

read? Show your calculations and explain.
(c) Which of Newton’s first two laws apply to the situations in this
problem?

65. Spring Scale Two Two forces are applied to a cart with two differ-
ent spring scales as shown in Fig. 3-54. The spring scale reads 15 N.

FIGURE 3-54 ■ Problem 65.

(a) The cart had an initial velocity of 0.00 m/s when the two forces
were applied. It remains at rest after the combined forces are ap-
plied. What is the net force on the cart? What does spring scale 
read? Show your calculations and explain.
(b) The cart had an initial velocity of �0.75 m/s and so it was mov-
ing to the right when the two forces were applied. It continues mov-
ing to the right at that same velocity after the combined forces are
applied. What is the net force on the cart? What does spring scale

read? Show your calculations and explain.
(c) The cart had an initial velocity of �0.39 m/s and so it was mov-
ing to the left when the two forces were applied. It continues
moving to the left at that same velocity after the combined forces
are applied. What is the net force on the cart? What does spring
scale read? Show your calculations and explain.

66. Fire Ladder A physics student is standing on one of the steps
of the fire ladder behind a building on campus doing a physics ex-
periment. From there she drops a stone (without giving it any initial
velocity) and notes that it takes approximately 2.45 s to hit the
ground. The second time she throws the stone vertically upward
and notes that it takes approximately 5.16 s for it to hit the ground.

(a) Calculate the height above the parking lot from which she re-
leases the first stone.
(b) Calculate the initial velocity with which she has thrown the sec-
ond stone upward.
(c) How high above the parking lot did the second stone rise be-
fore it started falling again?

Star Trek Problem Problems 67 and 68 both involve the following:
“You are at the helm of the starship Defiant (NCC-1764), currently
in orbit around the planet Iconia, near the Neutral Zone. Your mis-
sion: to rendezvous with a supply vessel at the other end of this so-
lar system . . . You direct the impulse drive to be set at full power
for leisurely half-light-speed travel . . . which should bring you to
your destination in a few hours.”* Assume that the diameter of the
Iconian solar system is 100 Astronomical Units (an AU is the mean
radius of the Earth’s orbit about the Sun: 1AU � 1.49 � 1011 m).
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67. Can You Stand the G-Forces? In order to minimize the g-
forces on you, suppose you decide to accelerate with a constant ac-
celeration such that you reach half the speed of light (c/2 � 1.5 �
108 m/s) at the midpoint of your trip and then start slowing down so
you are at rest just in time to dock with the supply vessel at the
other end of this solar system.

(a) Draw a single motion diagram showing the speeding-up and
slowing-down processes.
(b) In a coordinate system in which you move along the positive x
axis, what is the direction and magnitude of your initial accelera-
tion? In other words, is your acceleration positive or negative?
(c) In a coordinate system in which you move along the positive x
axis, what is the direction and magnitude of your acceleration while
you are slowing down for your rendezvous with the supply vessel?
In other words, is your acceleration positive or negative? (Hint: The
answer to part (b) and a symmetry argument can save you some 
effort.)
(d) How long will your overall trip take?
(e) If the Defiant has a mass of M � 2.850 � 108 kg, what is the
thrust force (in newtons) needed to accelerate your starship?
(f) The amount of force you feel being impressed on you by the
back of your seat as the starship picks up speed is proportional to
your acceleration. A common way to measure typical forces you
might feel is to calculate g-forces. This is done by comparing the ac-
celeration you experience to the acceleration you would experience
while falling freely close to the surface of the Earth. Thus, you can
find g-forces by dividing your acceleration by 9.8 m/s2. What
g-forces would you experience while accelerating in the Defiant?
(g) The maximum sustained g-force that a human can stand is
about 3 g. What would happen to you during your leisurely acceler-
ation to half the speed of light?

68. How Long Would a Trip Take If the Forces Were Bearable?
Let’s take the trip at a more reasonable acceleration of 3 g.

(a) What would your acceleration be in m/s2?
(b) How long would it take you, starting from rest, to get halfway
(i.e., d � 50 AU) across the Iconian solar system at this 3 g acceler-
ation?
(c) What would your maximum speed be (i.e., the speed when you
pass the d � 50 AU mark)?
(d) How long would it take you to slow down at a 3 g acceleration
for docking with the supply vessel? What is the total trip time? Is
this feasible?

69. The Demon Drop The Demon Drop is a popular ride at the
Cedar Point Amusement Park in Ohio. It allows four people to
get into a little cage and fall freely for a while. Physics professor
Bob Speers of Firelands College in Huron, Ohio, took a video
tape of the drop. It is called DSON001. Use VideoPoint and Ex-
cel to analyze and develop a mathematical model that describes
the fall.

(a) Include a printout of your spreadsheet model along with the
answers to questions (b) through (e).
(b) According to your model, what is the equation you think de-
scribes the vertical position of the bottom of the cage as a function
of time?
(c) According to your model, what is the acceleration of the cage?
(d) Can you find values of initial position and velocity that allow
you to obtain a good agreement between your model graph and the
graph of the data using the accepted value of the free fall accelera-
tion close to the surface of the Earth of � �g � �9.8 m/s2?a:

FAFB

?

FA = (+15 N) iFB

?

ˆ

*Krauss, Lawrence, The Physics of Star Trek (New York: Harper Perennial,
1996), p. 3.
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(e) Suppose a group of four people with an average mass of 65 kg
each are put in the Demon Drop cage of mass 2.0 � 103 lb. What is
the force on the whole falling system consisting of the cage and the
people? Be sure to indicate the direction of the force.

70. Force, Acceleration, and Velocity Graphs (a) A force is applied
to an object that experiences very little friction. This force causes the
object to move resulting in the acceleration vs. time graph shown in
Fig. 3 -55. Draw a set of graph axes with the same number of time
units as that shown in the acceleration graph and carefully sketch
the shape of a possible graph of the force vs. time for the object.

FIGURE 3-55 ■ Problem 70.

(b) A force is applied to an object that experiences very little fric-
tion. This force causes the object to move resulting in the velocity
vs. time graph shown in Fig. 3 -56. Draw a set of axes with the same
number of time units as that shown in the velocity graph and care-
fully sketch the shape of a possible graph of acceleration vs. time
for the object.
(c) Refer to the velocity vs. time graph shown in part (b) and the
acceleration vs. time graph you sketched. Draw a set of graph axes
with the same number of time units as that shown in the velocity
graph and carefully sketch the shape of a possible graph of force vs.
time for the object.

FIGURE 3-56 ■ Problem 70.

FIGURE 3-57 ■ Problems 71 and 72.

71. Force from Velocity One Figure 3 -57 shows the velocity vs.
time graph for an object constrained to move along a line. The posi-
tive direction is to the right.

(a) At what times, or during what time periods, is the net force act-
ing on the object zero?
(b) At what times, or during what time periods, is the net force act-
ing on the object constant and nonzero.
(c) At what times, or during what time periods, is the net force act-
ing on the object changing?

In each case, explain your reasoning. Describe how your reasoning
is consistent or inconsistent with Newton’s Laws of Motion. If there
is no time or time period for which a given condition exists, state
that explicitly.

72. Force from Velocity Two Figure 3 -57 shows the velocity vs.
time graph for an object constrained to move along a line. The posi-
tive direction is to the right.

(a) At what times, or during what time periods, is the net force on
the object increasing and directed to the right?
(b) At what times, or during what time periods, is the net force on
the object decreasing and directed to the right?
(c) At what times, or during what time periods, is the net force on
the object constant and directed to the right?
(d) At what times, or during what time periods, is the net force on
the object increasing and directed to the left?
(e) At what times, or during what time periods, is the net force on
the object decreasing and directed to the left?
(f) At what times, or during what time periods, is the net force on
the object constant and directed to the left?

In each case, explain your reasoning. Describe how your reasoning
is consistent or inconsistent with Newton’s Laws of Motion. If there
is no time or time period for which a given condition exists, state
that explicitly.
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4 Vectors

For two decades, spelunking

teams crawled, climbed, and

squirmed through 200 km of

Mammoth Cave and the Flint

Ridge cave system, seeking a

connection. The photograph

shows Richard Zopf pushing

his pack through the Tight

Tube, far inside the Flint Ridge

system. After 12 hours of “cav-

ing” along a labyrinthine route,

Zopf and six others waded

through a stretch of chilling

water and found themselves in

Mammoth Cave. Their break-

through established the Mam-

moth-Flint cave system as the

longest cave in the world.

How can their final
point be related to
their initial point
other than in terms of
the actual route they
covered?

The answer is found in
this chapter.



4-1 Introduction

As you already learned in Chapters 2 and 3, it is useful to use vectors to represent
several of the physical quantities that were used in our study of one-dimensional mo-
tion. These quantities include position, displacement, velocity, acceleration, and force.
In Chapters 5 and 6, vector mathematics will be used in conjunction with Newton’s
Laws to study two-dimensional motions such as that of objects that move horizontally
while falling (projectile motion), circular motion, motion when friction forces are pre-
sent, and motions on inclined surfaces.

In order to study motion in two dimensions, you must learn to represent and add
two-dimensional vectors both graphically and mathematically. This is not as simple as it
is in one dimension. For example, you learned in Chapter 2 that when an x axis (or y
axis) is assigned to describe a particle-like object moving along a line, the sign (� or �)
of the x-component of its velocity vector indicates the direction of motion. However, if
the particle is not moving along a straight line, then keeping track of the changes in the
direction of its velocity is not just a matter of using a single plus or minus sign.

We will start our general consideration of vectors and vector operations by ex-
tending the definitions of vectors developed in Chapter 2 to two dimensions. We only
discuss three-dimensional vectors very briefly in this chapter. However, we will return
to them later in the book.

4-2 Vector Displacements 

In order to define velocity and acceleration in more than one dimension, we need to
start with the general definition of displacement. As is true in one dimension, it is use-
ful to represent displacement vectors in two or three dimensions by arrows. For exam-
ple, if a particle changes its position by moving from point A point C, it turns out that
its displacement, , can be represented by an arrow that points directly from A to C,
as shown in Fig. 4-1a. Remember, a displacement vector tells us nothing about the ac-
tual path that the particle takes. Thus both the curved path and the two straight paths
from A to B and B to C, shown in Fig. 4-1a, can lead a particle from point A to point
C, so the displacement vector between A and C is the same in both cases.

In Figure 4-1b, the arrows pointing from A to C and from A� to C� have the same
magnitude and direction. Thus, they represent identical displacement vectors because
they signify the same change of position for the particle. Thus a displacement vector
that is shifted in space without changing its magnitude (length) and direction is the
same vector.

The fact that a displacement vector represents only the overall effect of a motion,
and not its detailed path, can lead to miscommunication. The Foxtrot cartoon, Fig. 4-2,
shows what can happen when one person assumes that getting from point A to point
B is what counts, while another cares how one gets there. Figure 4-3 is a vector dia-
gram of the path Jason takes vs. the path Peter wants him to take.

READI NG EXERC IS E  4-1 : A soccer field has goals on its north and south end. Con-
sider the following displacement of a soccer ball.

The ball is initially sitting in the center of the field. It is kicked toward the west. After traveling
3 m, it is kicked toward the north. It travels 6 m before a player stops it.

Which of the following displacements, if any, are identical to the displacement described above?

(1) The ball is initially sitting directly in front of the south goal. It is kicked toward the east. Af-
ter traveling 9 m it is kicked toward the north. It travels 6 m before a player kicks it due west.
After it travels for 12 m, another player stops it.
(2) The ball is initially sitting in the center of the field. It is kicked toward the east. After travel-
ing 3 m, it is kicked toward the south. It travels 6 m before a player stops it. ■

� r:

90 CHAPTER 4 Vectors

FIGURE 4-1 ■ (a) A displacement vector
for a particle’s motion between points A
and C can be represented by an arrow
pointing from A to C. Since displacement
depends only on the relative locations of A
and C, both paths shown result in the same
displacement. (b) The vectors pointing
from A to C and from A� to C� also repre-
sent the same displacement, , since dis-
placement represents a change in position
rather than the positions themselves, so

.� r: � � r:�

� r:
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TOUCHSTONE EXAMPLE 4-1: Jogging in a Circle

Sara is running laps on a circular track. Each full lap is 400 m. If she
starts at the northernmost point on the track, initially going east,
find her displacement (magnitude and direction) after she has run
(a) 100 m, (b) 200 m, (c) 300 m, and (d) 400 m.

S O L U T I O N ■ The Ke y  I d e a here is that Sara’s displacement
is a vector whose magnitude is the straight-line distance from her
starting position to her current position. The direction of her dis-
placement vector points straight from her starting point to her cur-
rent location.

(a) When Sara has gone 100 m, she has gone one-quarter of the way
around the track, as shown in Fig. 4-4a. As you can see there, her
current position is the same as it would have been if she had gone a
distance of one radius of the track due south and then the same
distance due east. Since the angle between lines AP and PB in
Fig. 4-4a is 90�, we can use the Pythagorean theorem to find the
straight-line distance from A to B. This distance is just

Since the track has a circumference of 400 m, its radius is
. So the magnitude of Sara’s displacement

after she has run the 100 m from A to B is

(2�) � 90.0 m. (Answer)

The direction of her displacement is seen from Fig. 4-4a to be
due southeast. (Answer)

(b) When Sara has run 200 m from her starting point, we can see in
Fig. 4-4b that she has covered exactly half the circumference of the
track. This places her a distance 2R � 127 m away from her starting
point and due south of it. (Answer)

(c) Now Sara has covered three-quarters of the track’s circumfer-
ence, as shown in Fig. 4-4c. Her distance from her starting point is
the same as it was when she had run only one-quarter of the way
around the track, so now the magnitude of her displacement is once
again . But the direction of her displacement from her
starting point is due southwest.

(d) Now that Sara has run 400 m, she has “come full circle” and re-
turned to her starting point. Since her current position is the same
as her starting position, her displacement from her starting position
is now zero. (Answer)

√2R � 90.0 m

� �:r �AB � (√2)(400 m)/

R � 400 m /(2�) � 63.6 m

�
:rAB � √R2 � R2 � √2R2 � √2R.
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Next, Peter wants Jason to
move 10 yards right.

Jason calculates
the vector sum &
moves directly
from A to C.

First Peter wants Jason
to move 10 yards out.

45°

CB

A

FIGURE 4-2 ■ Foxtrot cartoon in which Jason is using physics to focus on the path indepen-
dence of displacement, while his brother Peter is interested in both Jason’s displacement and
his actual path. FOXTROT © 1999 Bill Amend. Reprinted with permission of UNIVERSAL PRESS SYNDICATE.

All rights reserved.

FIGURE 4-3 ■ Depiction of a vector sum
of two successive displacements.
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FIGURE 4-4 ■ (a) After Sara has run 100 m from A to B. (b)
After she has run 200 m from A to C. (c) After she has run 300
m from A to D.



4-3 Adding Vectors Graphically 

The basic method for graphical addition of displacement vectors involves considering
a single vector that describes the final outcome of two displacements. For example, in
Fig. 4-2 big brother, coach Peter, wanted Jason to get from point A to point C by un-
dergoing first one displacement by moving outward (forward along the field) for 10
yards from point A to B, and then moving to the right for 10 yards from point B to C.
Instead Jason used the rules of vector addition to go directly from A to C by traveling
a distance of yards at an angle of 45 degrees with respect to the outward direc-
tion as shown in Fig. 4-3.

Addition
Suppose that, as in the vector diagram of Fig. 4-5a, a particle moves from A to B and
then later from B to C.We can represent its overall displacement (no matter what its ac-
tual path) with two successive displacement vectors, AB and BC. The net displacement
of these two displacements is a single displacement from A to C. We call AC the vector
sum (or resultant) of the vectors AB and BC.This sum is not the usual algebraic sum.

In Figure 4-5b, we redraw the vectors of Figure 4-5a and relabel them in the way
that we shall use from now on—namely, with an arrow over a symbol, as in . In
adding two or more vectors, it’s OK to move them to make the addition simpler, as
long as the length of each vector and its orientation don’t change. Recall from
Chapter 2 that if we want to indicate only the magnitude or size of the vector (a quan-
tity that lacks a sign or direction), we shall use the absolute value symbol, as in , or
drop the arrow, as in a.

We can represent the relationship among the three vectors in Figure 4-5b with the
vector equation

(4-1)

which says that the vector is the vector sum or resultant of vectors and . The
symbol � in and the words “sum” and “add” have different meanings for
vectors than they do in algebra because they involve both magnitude and direction.

Figure 4-5 suggests a general procedure for adding two vectors and graphi-
cally: (1) On paper, sketch vector to some convenient scale and at the proper angle.
(2) Sketch vector to the same scale, with its tail at the head of vector , again at the
proper angle. (3) The vector sum is the vector that extends from the tail of to the
head of .

Vector addition, defined in this way, has two important properties. First, the order
of addition does not matter. That is,

(commutative law). (4-2)

Second, when there are more than two vectors, we can group them in any order as we
add them, so

(associative law). (4-3)

A vector is not simply any entity that has both magnitude and direction. In fact, the
rules for vector addition and the associative and commutative properties of vector ad-
dition are defining characteristics of vectors.

Subtraction
Subtracting one vector from another can be considered as the addition of one vector
to the additive inverse of the other. The additive inverse (sometimes known as the

�a: � b
:� � c: � a: � �b

:
� c:�

a: � b
:

� b
:

� a:

b
:

a:s:
a:b

:
a:

b
:

a:

s: � a: � b
:

b
:

a:s:

s: � a: � b
:

,

� a: �

a:

10√2
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FIGURE 4-5 ■ (a) AC is the sum of the
vectors AB and BC. (b) The same vectors
with alternate labels , and .s:b

:
a:

A C

B

(a)

(b)

a b

s



“negative of a vector”) is simply the vector we must add to the original vector to get
zero. If we want to define the additive inverse of a vector , denoted as , we can
start with the understanding that � ( ) should equal zero. Using the graphical
method of adding vectors that we discussed above, this demands that the vector 
has the same magnitude as , but points in the opposite direction so that the two vec-
tors cancel, as shown in Fig. 4-6. Thus, adding vector to its additive inverse gives

Finding an additive inverse is commonly referred to as inverting a vector. Adding 
has the effect of subtracting . We use this property to define the difference between
any two vectors such as as

(vector subtraction as a form of addition). (4-4)

That is, we find the difference vector by adding the vector to the vector .
Figure 4-7 shows how this is done geometrically.

As another example, consider a car that speeds up (accelerates) along a straight
road. The change in the car’s velocity is given by and the car’s average
acceleration by . The use of vectors to depict how can be found by
vector subtraction is illustrated in Fig. 4-8.

As in scalar algebra, we can move a term that includes a vector symbol from one
side of a vector equation to the other, but we must change its sign. For example, if we
are given and need to solve for , we can rearrange the equation as

. Remember, although we have used displacement vectors here, the rules
for addition and subtraction hold for vectors of all kinds, whether they represent ve-
locities, accelerations, forces, or any other vector quantity. However, we can add only
vectors of the same kind. For example, we can add two displacements, or two veloci-
ties, but adding a displacement and a velocity makes no sense. In the arithmetic of
scalars, that would be like trying to add 21 s and 12 m.

READI NG EXERC IS E  4-2 : The magnitudes of displacements and are 3 m and
4 m, respectively, and . Considering various orientations of and , what are (a) the
maximum possible magnitude for and (b) the minimum possible magnitude? ■c:

b
:

a:c: � a: � b
:

b
:

a:

a: � d
:

� b
:

a:d
:

� a: � b
:

�v:�a:� � �v:/�t
�v: � v:2 � v:1

a:�b
:

d
:

d
:

� a: � b
:

� a: � (�b
:

)

d
:

� a: � b
:

b
:

�b
:

b
:

� (�b
:

) � 0.

b
:

b
:

�b
:

�b
:

b
:

�b
:

b
:
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FIGURE 4-6 ■ The vectors and have
the same magnitude and opposite direc-
tions.

�b
:

b
:

b

–b

d = a – b

(a) (b)

Note head-to-tail
arrangement for

addition

a
ab

–b

–b

FIGURE 4-7 ■ Consider the vectors and . To subtract vector from
vector , create vector from vector as shown in Fig. 4-6. Then add
vector to vector .a:�b

:
b
:

�b
:

a:
b
:

b
:

a:

v1 v2v2

v1

t2t1

–vΔ

FIGURE 4-8 ■ Diagram showing
how to find the change in velocity of
a race car by taking a one-dimen-
sional vector difference in which 

is added to to get .�v:�v:1v:2



4-4 Rectangular Vector Components 

You have learned a method to find the vector sum or resultant of two vectors that do
not point along the same line. Many times it is useful to do the opposite and decom-
pose or resolve a vector into two or more vectors, which can be added to create the
original vector. For example, consider what happens to the motion of a particle-like
object when two forces that are not acting in the same direction are applied to it. It
turns out that the object will accelerate as if a single force that is the vector sum of the
forces is acting on it. In cases where a force vector can be resolved into two or more
vectors, it is possible to break down even complex situations into simpler one-dimen-
sional ones, so the skill of resolving vectors is very powerful. We will begin by consid-
ering how to describe a two-dimensional vector in a rectangular coordinate system as
the sum of two one-dimensional vectors.

Resolving a Vector
It is typical to describe two dimensional vectors in a coordinate system in which the x
and y axes are drawn in the plane of the page. We choose axes that are parallel to the
edges of the paper as shown in Fig. 4-9a.

We already know how to represent, add, and subtract vectors that are parallel to
an x axis or y axis. For this reason, it is convenient to decompose our vector into two
component vectors—one parallel to the x axis and the other parallel to the y axis. In
this case, the vector is the sum of two component vectors and as shown in
Fig. 4-9a. Therefore, .

As you can see in Fig. 4-9a, we have chosen the length of the component vectors
and so that they conveniently add up to form vector . Since and

(Section 3-2), we can say that we have expressed the component vectors in
terms of their components ax and ay. Note that these components have no arrows. We
define the rectangular component of a vector to be the projection of the vector on an
axis. In Fig. 4-9a, for example, ax is the component of vector on (or along) the x axis
and ay is the component along the y axis. The practical way to get the projection or
component of a vector along an axis is to draw lines from the two ends of the vector
perpendicular to that axis, as shown in Fig. 4-9b or c.

In order to understand the idea of a vector component as the projection of the vec-
tor onto an axis, think about taking a distant spotlight and shining it onto the vector.
The component (or projection) is the length of the shadow that is cast by the vector on
one of the axes. For example, take a light and shine it straight down on the vector shown
in Fig. 4-9b from the top of the page. The shadow of the vector will fall along the x axis.
The length of the shadow is the x-component of this vector as shown in Fig. 4-9b. We
would make the y-component of the vector visible as the length of a shadow by shining
a light on the vector from the right side of the page. Then the shadow of the vector falls
along the y axis and its length is the vector’s y-component.

a:

a:y � ay ĵ
a:x � ax îa:a:ya:x

a: � a:x � a:y

a:ya:xa:
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FIGURE 4-9 ■ (a) The component vectors
form the legs of a right triangle whose vec-
tor sum is the original vector. (b) The com-
ponents and of vector are deter-
mined by projections of the tail and tip of
the vector on each axis. (c) The values of
the components are unchanged if the vec-
tor is shifted, as long as its magnitude and
orientation are the same.
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Figure 4-9 illustrates that the components (projections) of the vector do not
change if we simply move the vector around within our coordinate system. In other
words, when you shift a vector without changing its direction, its components,
which are lengths, do not change. The length and direction of the projection on an axis
tells what the vector component is. The projection of a vector on an x axis is called
its x-component and is denoted as ax. The projection on the y axis is called its
y-component and is denoted ay. We call the process of finding the components of a
vector in a chosen coordinate system resolving the vector.

Positive and Negative Components
The components of a vector can be positive or negative depending on the overall
orientation of the vector we are resolving relative to the coordinate system we have
chosen. In a standard coordinate system, we indicate this by designating components
that point up or to the right as positive; then those that point down or to the left
are negative. Graphically, small arrowheads on each component can represent its
direction. For example, in Fig. 4-9, ax and ay are both positive because extends in the
positive direction of both axes. (Note the small arrowheads on the components, to in-
dicate their direction.) If we were to reverse vector , then both components would
be negative and their arrowheads would point toward negative x and y. Resolving a
different vector shown in Fig. 4-10 yields a positive component bx and a negative
component by if we stick with the standard coordinate system.

Using Sines and Cosines to Find Components
In general, a two-dimensional vector has two components. As Figs. 4-9b and c imply,
we can find the value of the components of in Fig. 4-9b using the sine and cosine re-
lations. Since 

for the right triangle in Fig. 4-9a, the magnitude of the vector is the hypotenuse, and

where 	 is the angle that the vector makes with the positive direction of the x axis.
Remember, the symbols a and provide alternate notations for the magnitude of ,
and ax and ay are the x- and y-components of , respectively. Rearranging these rela-
tionships, we find

(4-5)

Reconstructing a Vector from Components
Look at Fig. 4-9a again. It shows that and its x- and y-components form a right tri-
angle. That means that we can reconstruct a vector from its components. Graphi-
cally, we can arrange the components head to tail and then find by completing a
right triangle with the vector forming the hypotenuse, from the tail of one component
to the head of the other component. We can also get the magnitude of algebraically
by using the Pythagorean theorem. That is,

a � � a: � � √ax
2 � ay

2.

a:

a:
a:

a:

ax � a cos	 and ay � a sin	.

a:
a:� a: �

a:

cos	 �
ax

a
 and sin	 �

ay

a
,

a:

cos	 �
adjacent side
hypotenuse

 and sin	 �
opposite side
hypotenuse

,

a:

b
:

a:

a:
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FIGURE 4-10 ■ The component of on
the x axis is positive, and the component
on the y axis is negative.
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Once a vector has been resolved into its components along a set of axes, the com-
ponents themselves can be used in place of the vector. For example, in Fig. 4-9b is
represented (completely determined) by and 	. It can also be completely deter-
mined by its components ax and ay. Both pairs of values contain the same information.
If we know a vector in component notation (ax and ay) and want it in magnitude-angle
notation (a and 	), we can use the equations

and (4-6)

to transform the components into a magnitude and direction. Thus, it is common to
represent a two-dimensional vector by ordered rectangular components such as ax

and ay. However, in studying circular motion, it is more convenient to use polar coor-
dinates (a, 	) to describe a vector. Finding 	 using the inverse tangent must be done
with care since the calculated value of 	 must be replaced with 	 � � if the vector is
in the second (II) or third (III) quadrants as shown in Fig. 4-10.

In the more general three-dimensional case, when using rectangular coordinates,
we need to consider another axis, called the z axis, that is mutually perpendicular to
the other two axes. In three dimensions the components ax, ay, and az can be used to
represent a vector in a rectangular coordinate system. If a spherical coordinate system
is used instead, then a magnitude and two angles (say, , 	, and 
) can be used to
represent a vector. Three-dimensional vectors are used in the study of rotational mo-
tion. However, you will not be using three-dimensional vectors in the next few
chapters.

READI NG EXERC IS E  4-3 : In the figures that follow, which of the indicated methods
for combining the x- and y-components of vector are correct?

■

READI NG EXERC IS E  4-4 :  Consider the following standard vector. Which vectors
have been correctly repositioned so their components are the same as those of the original
vector?

■

a:

� a: �

a:

	 � tan�1 � � ay

ax
�a � � a: � � √ax

2 � ay
2

� a: �
a:
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TOUCHSTONE EXAMPLE 4-2: Spelunking

The 1972 team that connected the Mammoth-Flint cave system
went from Austin Entrance in the Flint Ridge system to Echo River
in Mammoth Cave (Fig. 4-11a). Their horizontal travel (parallel to
the Earth’s surface) was a net 1.0 km westward and 4.2 km south-
ward. What was their horizontal displacement vector from start to
finish?

S O L U T I O N ■ The Ke y  I d e a here is that we have the compo-
nents of a two-dimensional vector, and we need to find each vec-
tor’s magnitude and direction to specify the displacement vector.
We first choose a two-dimensional coordinate axis and then draw
the x- and y-components of displacement as in Fig. 4-11b. The com-
ponents (�x � 1.0 km west and �y � 4.2 km south) form the legs
of a horizontal right triangle. The team’s horizontal displacement
forms the hypotenuse of the triangle, and its magnitude is
given by the Pythagorean theorem:

Also from Fig. 4-11b, we see that this horizontal displacement is di-
rected south of due west by an angle 	 given by

so

. (Answer)

In summary, the team’s horizontal displacement vector had a
magnitude of 4.3 km and was at an angle of 77� south of west. The
team also traveled a net distance of 25 m upward. The net vertical
motion was insignificant compared to the horizontal motion, so we
ignored it. However, the relatively small net vertical displacement
was of no comfort to the team. They had to climb up and down
countless times to get through the cave. The route they actually cov-
ered was quite different from the horizontal displacement vector,
which merely points in a straight line from start to finish.

	 � tan�1 4.2 km
1.0 km

� 77�

tan 	 �
�y
�x

�
4.2 km
1.0 km

,

�r � � � r: � � √(1.0 km)2 � (4.2 km)2 � 4.3 km.

� �:r �
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(a)

(b)
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FIGURE 4-11 ■ (a) Part of the Mammoth-Flint cave system, with the spelunking
team’s route from Austin Entrance to Echo River indicated in red. (b) The compo-
nents of the team’s horizontal displacement �x and �y. They are to scale, but at a
different scale than in part (a). (Adapted from a map by the Cave Research Foun-
dation.)



4-5 Unit Vectors 

In Section 2-2, we defined a unit vector as a dimensionless vector that points in the di-
rection along a coordinate axis that is chosen to be positive. Its sole purpose is to
point—that is, to specify a direction. The unit vectors that point in the positive direc-
tions of the x, y, and z axes are labeled , , and (Fig. 4-12), where the hat ˆ (or caret)
is used to note that these vectors are special.

The arrangement of axes in Fig. 4-12 is called a right-handed coordinate system
because it can be constructed using the thumb and fingers of the right hand. There are
several legitimate ways to construct a right-handed coordinate system using the right
hand. One method is depicted in Fig. 4-12. The system remains right-handed if it is
rotated rigidly to any new orientation. If we used the left hand to construct a co-
ordinate system, would point in the opposite direction than it does in Fig. 4-12 while
the relative orientations of and would remain unchanged as in Fig. 4-13. Since the
use of a right-handed system is standard in the scientific community, we use it exclu-
sively in this book.

Unit vectors are very useful for expressing three-dimensional vectors; for exam-
ple, we can express any vector in terms of the coordinate system in Fig. 4-12 as

. (4-7)

The quantities , , and are vectors called the component vectors of . The
quantities ax, ay, and az are called, respectively, the x-component, y-component, and
z-component of (or, as before, simply its components along the axes).

Note: The components ax, ay, and az are sometimes referred to in other books and
articles by different names. They have been called “vector components” since the sub-
scripts x, y, and z reveal what unit vectors can be used to construct the vectors that lie
along each axis. Also they have incorrectly been called “scalar components.” However,
they are not scalars. Real scalars do not change when the coordinate axes are rotated,
and the x-component, y-component, and z-component of a vector can change when-
ever a coordinate axis is rotated.

READI NG EXERC IS E  4-5 : (a) Using the procedure outlined in Fig. 4-12 and your
left hand, sketch a left-handed coordinate system that depicts the positive x, y, and z axes and
put the unit vectors, , in place. (b) Describe how the left-handed system differs from the
right-handed one. ■

4-6 Adding Vectors Using Components 

There are many different physical situations in which you will need to be able to add
vectors in order to understand what is going on. For example, in Chapter 3 we found
that we needed to add together force vectors to understand the motion of an object
on which more than one force acts. Although we can add vectors geometrically using
a sketch, or, if we have a vector-capable calculator, we can add them directly on the
screen, perhaps the most practical method for finding the sum, , of two vectors is to
combine their components, axis by axis.

To start, consider the mathematical statement for a vector sum in two dimensions

(4-8)

This statement implies that the vector is the same as the vector . If this is so,
then we can derive the relationships between the components of and those of and

mathematically as follows:b
:

a:s:
(a: � b

:
)s:

s: � a: � b
:

.

s:

î, ĵ, k̂

a:

a:az k̂ay ĵax î

a: � ax î � ay ĵ � azk̂

k̂ĵ
î

k̂ĵî
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FIGURE 4-12 ■ Unit vectors , , and de-
fine the directions of a standard right-
handed coordinate system. This system
gets its name from the fact that the posi-
tive directions of the x, y, and z axes can be
determined by the directions of fingers on
a right hand. For example when the thumb,
index finger, and middle finger of a right
hand are arranged so they are at right an-
gles to each other, they determine the di-
rections of the positive x, y, and z axes, re-
spectively.

k̂ĵî
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Left
index
finger

Left
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FIGURE 4-13 ■ A nonstandard left-
handed coordinate system that is con-
structed using the same procedures shown
in Fig. 4-12, using the left hand.



.

Thus, each component of must be the same as the corresponding component of
:

(4-9)

(4-10)

In other words, to add vectors and , we must first resolve the vectors into their
components. Next we must combine these components—taking direction (and thus
sign) into account—axis by axis. This gives us the components of the sum vector .
This is shown in Fig. 4-14. Once we get to this point, we have to make a choice about
how to express the result. We can either:

(a) express in unit-vector notation as , or

(b) combine the components of to get itself and express the vector in magnitude-
angle notation, where and .

This procedure for adding vectors by components also applies to vector subtractions.
Recall that a subtraction such as can be rewritten as an addition

. To subtract, we simply add and by components to get

, (4-11)

and (4-12)

where

READI NG EXERC IS E  4-6 : (a) In the figure, what are
the signs of the x-components of and ? (b) What are the
signs of the y-components of and ? (c) What are the signs
of the x- and y-components of ?

■

d
:

1 � d
:

2

d
:

2d
:

1

d
:

2d
:

1

d
:

� dx î � dy ĵ.

dy � ay � by,

dx � ax � bx

�b
:

a:d
:

� a: � (�b
:

)
d
:

� a: � b
:

tan	 � sy /sx� s: � � √sx
2 � sy

2
s:s:

s: � sx î � sy ĵs:

s:

b
:

a:

sy � ay � by.

sx � ax � bx,

(a: � b
:

)
s:

s: � (sx î � sy ĵ) � a: � b
:

� (ax î � ay ĵ) � (bx î � by ĵ) � (ax � bx)î � (ay � by)ĵ
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FIGURE 4-14 ■ Diagram showing how a
vector sum can be constructed by adding
component vectors.
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TOUCHSTONE EXAMPLE 4-3: Three Vectors

Figure 4-15a shows the following three vectors:

and

What is their vector sum , which is also shown?

S O L U T I O N ■ The Ke y  I d e a here is that we can add the three
vectors by components, axis by axis. For the x axis, we add the
x-components of , , and to get the x-component of :

.

Similarly, for the y axis,

.

Another Ke y  I d e a is that we can combine these components of
to write the vector in unit-vector notation:

r: � (2.6 m) î � (2.3 m) ĵ,

r:

� �1.5 m �  2.9 m �  3.7 m � �2.3 m

ry � ay � by � cy

� 4.2 m � 1.6 m �  0 � 2.6 m

rx � ax � bx � cx

r:c:b
:

a:

r:

c: � (�3.7 m)ĵ.

b
:

� (�1.6 m)î � (2.9 m)ĵ,

a: � (4.2 m)î � (1.5 m)ĵ,
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where is the vector component of along the x axis and
is that along the y axis. Figure 4-15b shows one way to

arrange these vector components to form . (Can you sketch the
other way?)

A third Ke y  I d e a is that we can also answer the question by
giving the magnitude and an angle for . From Eq. 4-6, the magni-
tude is 

(Answer)

and the angle (measured from the positive direction of x) is 

, (Answer)

where the minus sign means that the angle is in the fourth quadrant.

	 � tan�1� �2.3 m
2.6 m � � �41�

r � √(2.6 m)2 � (�2.3 m)2 � 3.5 m,

r:

r:
�(2.3 m) ĵ

r:(2.6 m)î
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FIGURE 4-15 ■ Vector is the vector sum
of the other three vectors.

r:

4-7 Multiplying and Dividing a Vector by a Scalar

We have encountered situations in which we need to multiply or divide a vector by a
scalar. For example, we must divide a one-dimensional force vector by a scalar mass
to predict the acceleration of an object. Conversely, if we measure an object’s acceler-
ation vector in one dimension, we need to multiply the vector by its mass to deter-
mine the net force acting on the object. The use of a time interval, , to create a ve-
locity vector from a displacement vector is another example of a scalar being divided
into a vector. According to the rules of mathematics, if we multiply or divide a vector
by a scalar we should get a new vector. Dividing a vector by a scalar s, can always be
transformed into a multiplication. This is because dividing by s is the same as multi-
plying by .

As shown in Fig. 4-16, multiplication of a vector by a scalar simply changes the
magnitude of a vector without changing the “line” it lies along.

Although we have used familiar one-dimensional examples, it turns out that these
rules for the multiplication of a vector by a scalar also work in two and three dimen-
sions when using either graphical or component representations of vectors. The multi-
plication or division is distributive over addition so that the product of a scalar e and a
vector , expressed in terms of its rectangular coordinates, can be expressed as

.

There are two other types of vector multiplication that are commonly used in physics,
but these both involve the product of two vectors. We call one the dot product, intro-
duced in Section 9-8, and we call the other the cross product, introduced in Section

eV
:

� e(V
:

x � V
:

y) � e(Vx î � Vy ĵ) � eVx î � eVy ĵ

V
:

1/s

�t

a

a0.5

a–1.5

FIGURE 4-16 ■ The product of a scalar
and a vector results in a new vector that is
still pointing along the same line but has a
new length.



12-4.* These vector-vector products will be explained in later chapters when they will
be needed for the study of work, energy, rotational, and magnetic phenomena.

READI NG EXERC IS E  4-7 : Use the rules governing multiplication and division of a
vector by a scalar to sketch the indicated product vectors with proper magnitude and direc-
tions. Note that the average velocity and the force are given by

and

Using the vectors in the diagram: (a) Multiply the acceleration vector by
and sketch the vector representing the force acting on the parti-

cle. (b) Divide the displacement vector by the scalar time interval
to sketch a vector describing a particle-like object’s average ve-

locity vector in cm/s.

■

READI NG EXERC IS E  4-8 : Use the rules governing multiplication and division of a
vector by a scalar to calculate the indicated product vectors in terms of its rectangular compo-
nents and unit vectors. Don’t forget to include units! Note that the average velocity and the
force are given by

and

Multiply the acceleration vector by to cal-
culate the vector representing the force acting on the particle. (b) Divide the displacement vec-
tor by the time interval to calculate the
vector describing a particle-like object’s average velocity.

■

4-8 Vectors and the Laws of Physics 

So far, in every figure that includes a coordinate system, the x and y axes are paral-
lel to the edges of the book page. Thus, when a vector is included, its components
ax and ay are also parallel to the edges as in Fig. 4-17a. However, there are times
when it is more convenient to choose a tilted coordinate system. For example, in
studying the motion of a cart rolling down an inclined plane, it is easier to rotate the
coordinate system so that one of the axes is aligned with the motion. If we choose to
rotate the axes (but not the vector ) through an angle 
 in the x-y plane as in
Fig. 4-17b, the components will have new values — call them and . Since there
are an infinite number of choices of 
, there are an infinite number of different
pairs of components for .a:

a�ya�x

a:

a:

�t � 0.5 s� r: � �rx î � �ry ĵ � (3.2 m) î � (�0.8 m) ĵ

m � 3 kga: � ax î � ay ĵ � (1.8 m/s2) î � (1.0 m/s2) ĵ

F
:
� ma:.�v:� �

�r:

�t

F
:

� v: �

�t � 0.5 s
� r:

m � 3 kg
a:

F
:

� ma:.�v:� �
�r:

�t

F
:

� v: �
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a

rΔ

a

y

xax

ay

Acceleration vector

y

x
Δry

Δrx

Δr

Displacement vector

*The dot product is sometimes called the scalar product because even though it involves a multiplication of
two vectors, this product is a scalar. This name can cause confusion since it does not represent the multipli-
cation of a vector by a scalar, which we just discussed. See Section 9-8 for details.



Problems

Which then is the “right” pair of components? The answer is that they are all
equally valid mathematically. Each pair (with its axes) just gives us a different way of
describing the same vector . All produce the same magnitude. In Fig. 4-17 we have

. (4-13)

Although the direction that the vector points in space does not change with coordi-
nate rotation, the angle used to relate it to a new coordinate system is changed to

	� � 	 � 
. (4-14)

In Section 2-2, we defined a scalar as a mathematical quantity whose value does not
depend on the orientation of a coordinate system. The magnitude of a vector is a true
scalar since it does not change when the coordinate axis is rotated. However, the angles
	 and 	�, as well as the rectangular components (ax, ay) and ( ), are not scalars.

The point is that we really do have great freedom in choosing a coordinate system,
because the mathematical relations among vectors (including, for example, vector ad-
dition) do not depend on the location of the origin or the orientation of the axes.

In Chapter 5, you will use the definitions of position, displacement, velocity, accel-
eration, and force vectors developed in Chapters 2 and 3 along with what we have
learned in this chapter to study motion in two dimensions.

a�x, a�y

� a: � � √a2
x � a2

y � √a�2
x � a�2

y

a:
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FIGURE 4-17 ■ (a) The vector and its
components. (b) The same vector, with the
axes of the coordinate system rotated
through an angle 
.

a:

SEC. 4-3 ■ ADDING VECTORS GRAPHICALLY

1. Two Displacements Consider two displacements, one of magni-
tude 3 m and another of magnitude 4 m. Show at least one example
of how the displacement vectors may be combined to get a result-
ant displacement of magnitude (a) 7 m, (b) 1 m, and (c) 5 m.

2. Bank Robbery A bank in downtown Boston is  robbed (see the
map in Fig. 4-18. To elude police, the robbers escape by helicopter,
making three successive flights described by the following displace-
ments: 32 km, 45� south of east; 53 km, 26� north of west; 26 km, 18�
east of south. At the end of the third flight they are captured. In
what town are they apprehended? (Use the geometrical method to
add these displacements on the map.)

a a

y y

xax

ay

θ

(a)

x

a'x

(b)

x'

θ
a'y φ

O O

y'

'

BOSTON
and Vicinity

Wellesley

Waltham

Brookline
Newton

Arlington

Lexington
Woburn

Medford

Lynn

Salem

Quincy

5 10 km

BOSTON
Massachusetts

Bay

Bank

Walpole

Framingham

Weymouth

Dedham

Winthrop

N

FIGURE 4-18 ■ Problem 2.
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3. Velocity Vector Changes The motion of three objects is shown
in the motion diagrams (a), (b), and (c) of Fig. 4-19. In each case the
object is shown at three equally spaced times. A circle with no
arrow indicates a velocity of zero magnitude, such as the final veloc-
ity in diagram (a). Indicate for each part which number is next to
the arrow on the right side of the diagram that best shows the
direction of the change in velocity. (Hint: Use the techniques devel-
oped in Section 4-3 to draw vectors representing the difference in
velocity in each case.) Note: This exercise is adapted from a concep-
tual exercise developed by Dennis Albers of Columbia College.

FIGURE 4-19 ■ Problem 3.

4. The Pea Shooter A pea leaves a pea shooter at a speed of
5.4 m/s. It makes an angle of �30� with respect to the horizontal.

(a) Calculate the x-component of the pea’s initial velocity.
(b) Calculate the y-component of the pea’s initial velocity.
(c) Write an expression for the pea’s velocity, , using unit vectors
for the x direction and the y direction.

SEC. 4-4 ■ RECTANGULAR VECTOR COMPONENTS

5. Components What are (a) the x-component and (b) the 
y-component of a vector in the xy plane if its direction is 250�
counterclockwise from the positive direction of the x axis and its
magnitude is 7.3 m?

6. Radians and Degrees Express the following angles in radians:
(a) 20.0�, (b) 50.0�, (c) 100�. Convert the following angles to
degrees: (d) 0.330 rad, (e) 2.10 rad, (f) 7.70 rad.

7. Magnitude and Angle The x-component of vector A is �25.0 m
and the y-component is �40.0 m. (a) What is the magnitude of ?
(b) What is the angle between the direction of and the positive
direction of x?

8. Displacement Vector A displacement
vector in the xy plane is 15 m long and
directed as shown in Fig. 4-20. Determine
(a) the x-component and (b) the y-compo-
nent of the vector.

9. Rolling Wheel A wheel with a
radius of 45.0 cm rolls without slip-
ping along a horizontal floor (Fig. 4-
21). At time t1, the dot P painted on
the rim of the wheel is at the point
of contact between the wheel and
the floor. At a later time t2, the
wheel has rolled through one-half of
a revolution. What are (a) the mag-
nitude and (b) the angle (relative to
the floor) of the displacement of P
during this interval?

r:

A
:

A
:

a:

v:

10. Rock Faults Rock faults are ruptures along which opposite
faces of rock have slid past each other. In Fig. 4-22 points A and B
coincided before the rock in the foreground slid down to the right.
The net displacement is along the plane of the fault. The hori-
zontal component of is the strike-slip AC. The component of 
that is directly down the plane of the fault is the dip-slip AD. (a)
What is the magnitude of the net displacement if the strike-slip
is 22.0 m and the dip-slip is 17.0 m? (b) If the plane of the fault is in-
clined 52.0� to the horizontal, what is the vertical component of ?

FIGURE 4-22 ■ Problem 10.

11. A Room A room has dimensions 3.00 m (height) � 3.70 m �
4.30 m. A fly starting at one corner flies around, ending up at the
diagonally opposite corner. (a) What is the magnitude of its dis-
placement? (b) Could the length of its path be less than this magni-
tude? (c) Greater than this magnitude? (d) Equal to this
magnitude? (e) Choose a suitable coordinate system and find the
components of the displacement vector in that system. (f) If the fly
walks rather than flies, what is the length of the shortest path it can
take? (Hint: This can be answered without calculus. The room is like
a box. Unfold its walls to flatten them into a plane.)

SEC. 4-6 ■ ADDING VECTORS USING COMPONENTS

12. The Drive A car is driven east for a distance of 50 km, then
north for 30 km, and then in a direction 30� east of north for 25 km.
Sketch the vector diagram and determine (a) the magnitude and
(b) the angle of the car’s total displacement from its starting point.

13. A Walk A woman walks 250 m in the direction 30� east of
north, then 175 m directly east. Find (a) the magnitude and (b) the
angle of her final displacement from the starting point. (c) Find the
distance she walks. (d) Which is greater, that distance or the magni-
tude of her displacement?

14. Another Walk A person walks in the following pattern: 3.1 km
north, then 2.4 km west, and finally 5.2 km south. (a) Sketch the
vector diagram that represents this motion. (b) How far and (c) in
what direction would a bird fly in a straight line from the same
starting point to the same final point?

15. Unit-vector (a) In unit-vector notation, what is the sum of

What are (b) the magnitude and (c) the direction of � (rela-
tive to î)?

16. Find the Components Find the (a) x- (b) y- and (c) z-compo-
nents of the sum � of the displacements � and � whose compo-
nents in meters along the three axes are �cx � 7.4, �cy � �3.8,
�cz � �6.1; �dx � 4.4, �dy � �2.0, �dz � 3.3.

d
:

c:r:

b
:

a:

a: � (4.0 m)î � (3.0 m)ĵ and b
:

� (�13.0 m)î � (7.0 m)ĵ?

AB
:

AB
:

AB
:

AB
:

AB
:

6 8

4 2

15

7

3

(a)

(c)

(b)

y

x

r

30°

P

At time t1 At time t2

P

FIGURE 4-20 ■

Problem 8.

FIGURE 4-21 ■ Problem 9.
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Strike-slip

Dip-slip
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B
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17. Two Vectors Vector has a magnitude of 5.0 m and is directed
east. Vector has a magnitude of 4.0 m and is directed 35� west of
north. What are (a) the magnitude and (b) the direction of � ?
What are (c) the magnitude and (d) the direction of � ?
(e) Draw a vector diagram for each combination.

18. For the Vectors For the vectors

give � in (a) unit-vector notation, and as (b) a magnitude and
(c) an angle (relative to î). Now give � in (d) unit-vector nota-
tion, and as (e) a magnitude and (f) an angle.

19. Two Vectors Two Two vectors are given by

and

In unit-vector notation, find (a) � , (b) � , and (c) a third
vector such that � � � 0.

20. Two Vectors Three Here are two vectors:

What are (a) the magnitude and (b) the angle (relative to î) of ?
What are (c) the magnitude and (d) the angle of ? What are (e) the
magnitude and (f) the angle of � ; (g) the magnitude and (h) the
angle of � ; and (i) the magnitude and (j) the angle of � ?
(k) What is the angle between the directions of � and � ?

21. Three Vectors Three vectors , and , and each have a mag-
nitude of 50 m and lie in an xy plane. Their directions relative to the
positive direction of the x axis are 30�, 195�, and 315�, respectively.
What are (a) the magnitude and (b) the angle of the vector � �

, and (c) the magnitude and (d) the angle of � � ? What
are (e) the magnitude and (f) the angle of a fourth vector such that
( � ) � ( � ) � 0.

22. Four Vectors What is the sum of the following four vectors in
(a) unit-vector notation and (b) magnitude-angle notation? For the
latter, give the angle in both degrees and radians. Positive angles
are counterclockwise from the positive direction of the x axis; nega-
tive angles are clockwise.

23. Two Vectors Four The two vec-
tors and in Fig. 4-23 have equal
magnitudes of 10.0 m. Find (a) the
x-component and (b) the y-compo-
nent of their vector sum , (c) the
magnitude of , and (d) the angle 
makes with the positive direction of
the x axis.

24. The Sum In the sum � �
, vector has a magnitude of 12.0

m and is angled 40.0� counterclock-
wise from the �x direction, and vec-

tor has a magnitude of 15.0 m and is angled 20.0� counterclock-
wise from the �x direction. What are (a) the magnitude and (b) the
angle (relative to �x) of ?

25. Prove Prove that two vectors must have equal magnitudes if
their sum is perpendicular to their difference.

26. The Sum of Four Find the sum of the following four vectors in
(a) unit-vector notation, and as (b) a magnitude and (c) an angle
relative to �x.

: 10.0 m, at 25.0� counterclockwise from �x

: 12.0 m, at 10.0� counterclockwise from �y

: 8.00 m, at 20.0� clockwise from �y

: 9.00 m, at 40.0� counterclockwise from �y

27. Prove by Components Two vectors of magnitudes a and b
make an angle 	 with each other when placed tail to tail. Prove, by
taking components along two perpendicular axes, that

gives the magnitude of the sum of the two vectors.
28. The Sum of Four Again What is the sum of the following four
vectors in (a) unit-vector notation, and as (b) a magnitude and (c)
an angle? Positive angles are counterclockwise from the positive
direction of the x axis; negative angles are clockwise.

29. A Cube (a) Using unit vectors, write expressions for the four
body diagonals (the straight lines from one corner to another
through the center) of a cube in terms of its edges, which have
length a. (b) Determine the angles that the body diagonals make
with the adjacent edges. (c) Determine the length of the body diag-
onals in terms of a.

30. Oasis Oasis B is 25 km due east of oasis A. Starting from oasis
A, a camel walks 24 km in a direction l5� south of east and then
walks 8.0 km due north. How far is the camel then from oasis B?

31. A Plus B If is added to , the result is 6.0 î � 1.0 ĵ. If is
subtracted from , the result is �4.0 î � 7.0 ĵ. What is the magni-
tude of ?

32. If-Then If 1 � 2 � 5 3, 1 � 2 � 3 3, and 3 � 2 î � 4 ĵ,
then what are (a) 1 and (b) 2?

33. Sailing A sailboat sets out from the U.S. side of Lake Erie for a
point on the Canadian side, 90.0 km due north. The sailor, however,
ends up 50.0 km due east of the starting point. (a) How far and (b)
in what direction must the sailor now sail to reach the original des-
tination?

SEC. 4-7 ■ MULTIPLYING AND DIVIDING A

VECTOR BY A SCALAR

34. Vector by Scalar The three vectors in Fig. 4-24 have magni-
tudes a � 3.00 m, b � 4.00 m, and c � 10.0 m. What are (a) the

d
:

d
:

d
:

d
:

d
:

d
:

d
:

d
:

d
:

A
:

A
:

B
:

A
:

B
:

C
:

� (�4.00 m)î � (6.00 m)ĵ  D
:

: 5.00 m, at �235�

A
:

� (2.00 mi)î � (3.00 mi)ĵ  B
:

: 4.00 m, at �65.0�

r:

r � √a2 � b2 � 2ab cos 	

S
:

R
:

Q
:

P
:

B
:

C
:

A
:

C
:

B
:

A
:

r:r:
r:

b
:

a:

G
:

: 4.00 m at �1.20 rad  H
:

: 6.00 m at �210�

E
:

: 6.00 m at �0.900 rad  F
:

: 5.00 m at �75.0�

d
:

c:b
:

a:
d
:

c:b
:

a:c:
b
:

a:

c:b
:

a:
b
:

a:a:b
:

b
:

a:a:b
:

b
:

a:
b
:

a:

a: � (4.0 m)î � (3.0 m)ĵ and b
:

� (6.0 m)î � (8.0 m)ĵ.

c:b
:

a:c:
b
:

a:b
:

a:

b
:

� (�1.0 m)î � (1.0 m)ĵ � (4.0 m) k̂.

a: � (4.0 m)î � (3.0 m) ĵ � (1.0 m) k̂

a:b
:

b
:

a:

a: � (3.0 m)î � (4.0 m)ĵ and b
:

� (5.0 m)î � (�2.0 m)ĵ,

a:b
:

b
:

a:
b
:

a:

O x

y

105°

30°
a

b

FIGURE 4-23 ■

Problem 23.
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x-component and (b) the y-compo-
nent of ; (c) the x-component and
(d) the y-component of ; and (e)
the x-component and (f) the y-com-
ponent of ? If � p � q , what
are the values of (g) p and (h) q?

b
:

a:c:c:

b
:

a:
35. Five Times A vector has a magnitude 3.0 m and is directed
south. What are (a) the magnitude and (b) the direction of the vec-
tor 5.0 ? What are (c) the magnitude and (d) the direction of the
vector �2.0 ?

36. The Sum Is a Third Vector , which is directed along an x axis,
is to be added to vector , which has a magnitude of 7.0 m. The sum
is a third vector that is directed along the y axis, with a magnitude
that is 3.0 times that of . What is that magnitude of ?A

:
A
:

B
:

A
:

d
:

d
:

d
:

a

c

b

x

y

30°

FIGURE 4-24 ■ Problem 34.

Additional Problems
37. Explorer An explorer is caught in a whiteout (in which the
snowfall is so thick that the ground cannot be distinguished from
the sky) while returning to base camp. He was supposed to travel
due north for 5.6 km, but when the snow clears, he discovers that he
actually traveled 7.8 km at 50� north of due east. (a) How far and
(b) in what direction must he now travel to reach base camp?

38. Bowling Balls In each case below, sketch the velocity vector.
Find the magnitude and direction of motion with respect to the x
axis of the coordinate system:

(a) � (2.45 m/s)î � (3.67 m/s)ĵ
(b) � (�2.45 m/s)î � (5.20 m/s)ĵ

39. Lawn Chess In a game of lawn chess, where pieces are moved
between the centers of squares that are each 1.00 m on edge, a
knight is moved in the following way: (1) two squares forward, one
square rightward; (2) two squares leftward, one square forward; (3)
two squares forward, one square leftward. What are (a) the magni-
tude and (b) the angle (relative to “forward”) of the knight’s over-
all displacement for the series of three moves?

40. Fire Ant A fire ant, searching for hot sauce in a picnic area,
goes through three displacements along level ground: 1 for 0.40 m
southwest (that is, at 45� from directly south and from directly
west), 2 for 0.50 m due east (that is, directly east), 3 for 0.60 m at
60� north of east (that is 60.0� toward the north from due east). Let
the positive x direction be east and the positive y direction
be north. What are (a) the x-component and (b) the y-component
of 1? What are (c) the x-component and (d) the y-component of 

2? What are (e) the x-component and (f) the y-component of 3?
What are (g) the x-component, (h) the y-component, (i) the

magnitude, and (j) the direction of the ant’s net displacement? If
the ant is to return directly to the starting point, (k) how far and (l)
in what direction should it move?

41. A Heavy Object A heavy
piece of machinery is raised by
sliding it 12.5 m along a plank
oriented at 20.0� to the hori-
zontal, as shown in Fig. 4-25. (a)
How high above its original po-
sition is it raised? (b) How far
is it moved horizontally?

42. Two Beetles Two beetles
run across flat sand, starting at

d
:

d
:

d
:

d
:

d
:

d
:

v:
v:

the same point. Beetle 1 runs 0.50 m due east, then 0.80 m at 30�
north of due east. Beetle 2 also makes two runs; the first is 1.6 m at
40° east of due north. What must be (a) the magnitude and (b) the
direction of its second run if it is to end up at the new location of
beetle 1?

43. Four Moves You are to make four straight-line moves over a
flat desert floor, starting at the origin of an xy coordinate system
and ending at the xy coordinates (�140 m, 30 m). The x-component
and y-component of your moves are the following, respectively, in
meters: (20 and 60), then (bx and �70), then (�20 and cy), then
(�60 and �70). What are (a) component bx and (b) component cy?
What are (c) the magnitude and (d) the angle (relative to the posi-
tive direction of the x axis) of the overall displacement?

44. Vector C The magnitude and angle of , which lies in an xy
plane, are 4.00 and 130�, respectively. What are the components (a)
Ax and (b) Ay? Vector also lies in the xy plane, and it has compo-
nents Bx � �3.86 and By � �4.60. What is � in (c) magni-
tude-angle notation and (d) unit-vector notation? In (e) unit-vector
notation and (f) magnitude-angle notation, find such that �
� . (g) Which of the vector diagrams in Fig. 4-26 correctly show
the relationship between those three vectors?

FIGURE 4-26 ■ Problem 44.
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FIGURE 4-25 ■ Problem 41.
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45. Twice the Magnitude A vector , with a magnitude of 8.0 m, is
added to a vector , which lies along an x axis. The sum of these two
vectors is a third vector that lies along the y axis and has a magnitude
that is twice the magnitude of .What is the magnitude of ?

46. To Reach a Point A person desires to reach a point that is
3.40 km from her present location and in a direction that is 35.0�
north of east. However, she must travel along streets that are
oriented either north–south or east–west. What is the minimum
distance she could travel to reach her destination?

47. A Golfer A golfer takes three putts to get the ball into the
hole. The first putt displaces the ball 3.66 m north, the second
1.83 m southeast, and the third 0.91 m southwest. What are (a) the
magnitude and (b) the direction of the displacement needed to get
the ball into the hole on the first putt?

48. Protestor’s Sign A protester carries his sign of protest 40 m
along a straight path, then 20 m along a perpendicular path to his
left, and then 25 m up a water tower. (a) Choose and describe a co-
ordinate system for this motion. In terms of that system and in unit-
vector notation, what is the displacement of the sign from start to
end? (b) The sign then falls to the foot of the tower. What is the
magnitude of the displacement of the sign from start to this new
end?

49. Rotated Coordinate System In Fig. 4.27, a vector with a mag-
nitude of 17.0 m is directed 56.0� counterclockwise from the �x
axis, as shown. What are the components (a) ax and (b) ay of the
vector? A second coordinate system is inclined by 18.0� with
respect to the first. What are the components (c) a�x and (d) a�y in
this primed coordinate system?

a:

A
:

A
:

A
:

B
:

FIGURE 4-27 ■ Problem 49.

50. Shifted Coordinate System Consider how the components of a
vector in the plane change if I change the reference point. Suppose
I start with a coordinate system with an origin at O. An arbitrary
vector � x î � y ĵ with coordinates (x, y) specifies a point in this
system. Suppose also that I have another point O� specified in this
coordinate system by a vector � Ax î � Ay ĵ. If I change my origin
to O� (without rotating the axes), what would the coordinates be
for the point specified by ?
51. A New System has the magnitude 12.0 m and is angled 60.0�
counterclockwise from the positive direction of the x axis of an xy
coordinate system. Also, � (12.0 m) î � (8.00 m) ĵ on that same
coordinate system. We now rotate the system, counterclockwise
about the origin by 20.0�, to form an x�y� system. On this new sys-
tem, what are (a) and (b) , both in unit-vector notation?B

:
A
:

B
:

A
:

r:

A
:

r:

O
x

y
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x'
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5 Net Force and 
Two-Dimensional Motion 

In 1922, one of the Zacchinis, a

famous family of circus

performers, was the first hu-

man cannon ball to be shot

across an arena into a net. To

increase the excitement, the

family gradually increased the

height and distance of the

flight until, in 1939 or 1940,

Emanuel Zacchini soared

over three Ferris wheels and

through a horizontal distance

of 69 m.

How could he know
where to place the
net, and how could he
be certain he would
clear the Ferris
wheels?

The answer is in this
chapter.



5-1 Introduction

In this chapter, we will apply Newton’s Second Law of motion developed in Chapter 3
to the analysis of familiar two-dimensional motions. We start with an exploration of
projectile motion. When a particle-like object is launched close to the surface of the
Earth with a horizontal component of velocity and allowed to fall freely, we say it un-
dergoes projectile motion. The second two-dimensional motion we consider is uni-
form circular motion in which a particle-like object moves in a circle at a constant
speed. This motion can be produced by twirling a ball attached to a string in a circle or
by watching a point on the edge of a spinning wheel.

You will use the vector algebra introduced in Chapter 4 and extend the concepts
introduced in Chapters 2 and 3 to two dimensions. As you work with this chapter, you
will want to review relevant sections in these chapters.

5-2 Projectile Motion

Projectile motion occurs near the Earth’s surface whenever a ball rolls off a table, a
basketball arcs toward a basket, a hailstone rolls off a steep roof, or a ball bounces
(Fig. 5-1). All of these motions have curved paths. But why are the paths curved, and
what sort of curves are they? In Section 3-2 we presented data on objects moving hor-
izontally that provided evidence that in the absence of forces, moving objects tend to
continue moving at a constant velocity (Newton’s First Law). In Section 3-9 we pre-
sented data indicating that near the Earth’s surface, objects fall freely in a vertical di-
rection with an acceleration of magnitude 9.8 m/s2. Projectile motions from basket-
balls to hailstones all involve a combination of horizontal and vertical motions.
Galileo was the first to discover how to treat two-dimensional projectile motion as a
combination of horizontal and vertical motions.

Galileo’s Hypothesis
In his Dialog Concerning Two New Sciences published in 1632, Galileo (Fig. 5-2) ob-
serves:

“ . . . we have discussed the properties of uniform motion and of motion
naturally accelerated along planes of all inclinations. I now propose to set
forth those properties which belong to a body whose motion is compounded
of two other motions, namely, one uniform and one naturally accelerated. . . .
This is the kind of motion seen in a moving projectile; its origin I conceive to
be as follows:

Imagine any particle projected along a horizontal plane without friction;
then we know . . . that this particle will move along this same plane with a
motion which is uniform and perpetual. . . . But if the plane is limited and ele-
vated, then the moving particle . . . will on passing over the edge of the plane
acquire, in addition to its previous uniform and perpetual motion, a down-
ward propensity due to its own weight; so that the resulting motion which I
call projection is compounded of one which is uniform and horizontal and of
another which is vertical and naturally accelerated.”

Galileo went on to predict that the curve that describes projectile motion is the
parabola. He deduces this using a construction (Fig. 5-3) which shows how uniform
horizontal motion and uniformly accelerated vertical motion with displacements in-
creasing in proportion to the square of time can be combined or superimposed to
form a parabola. The superposition is not unlike that introduced in Chapter 3 with re-
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FIGURE 5-1 ■ A stroboscopic photograph
of a golf ball bouncing off a hard surface.
Between impacts, the ball undergoes pro-
jectile motion that is characterized by
curved paths.

FIGURE 5-2 ■ Galileo (1564–1642) was
the first scientist to deduce that projectile
motion could be analyzed as a combina-
tion of two independent linear motions.



gard to the combination of forces. However, in this case the quantities must be at right
angles to each other.

Experimental Evidence for Galileo’s Hypothesis
Galileo’s hypothesis was based on both observations and reasoning. By observing
balls accelerating slowly on inclines and balls in free fall, he knew that their positions
increased as the square of time. He determined the constant velocity of a ball rolling
along a level ramp. Knowing the height of the ramp, he could predict how long the
vertical falling motion should take and hence how far in a horizontal direction the
ball should travel before it hit the floor, assuming the horizontal velocity was undis-
turbed by the introduction of the vertical falling motion. Since Galileo did not have
contemporary technology such as strobe photography or video analysis at his dis-
posal, his approach to understanding projectile motion was extraordinary.

It is instructive to confirm Galileo’s hypothesis regarding a body moving off the
edge of a ramp by using a digital video camera to record this motion, as in Fig. 5-4.
What would Galileo have observed? If he had drawn the horizontal position compo-
nent of the ball along the line of its original motion as shown in Fig. 5-4, he would see
that the horizontal distance the ball traveled each time period remains constant. That
is, the horizontal velocity is constant both before and after the ball reaches the edge
of the table. Thus, the horizontal motion must be independent of the falling motion.

Since our image shows that the ball has fallen a distance of approximately
(y2 � y1) � �0.85 m in a time interval of (t2 � t1) � 0.40 s, we see that these quanti-
ties are consistent with the kinematic equation 2-17 given by (y2 � y1) �
v1 y (t2 � t1) � 1/2 ay(t2 � t1)2. For this situation, the y-component of velocity equals
zero at time t1 (so that v1 y � 0.0 m/s) with the vertical acceleration component given
by ay � �9.8 m/s. This calculation suggests that the vertical motion is independent of
the horizontal motion.

Perhaps the most compelling evidence for the independence of the vertical mo-
tion is a stroboscopic photograph of a ball that is released electronically just at the
moment that a projectile is shot horizontally, as shown in Fig. 5-5. The vertical position
components of these two balls are identical.

In summary, using new technology we can easily conclude, as Galileo did about
400 years ago, that 

The horizontal and vertical motions of a projectile (at right angles to each other) are indepen-
dent, and the path of such a projectile can be found by combining its horizontal and vertical
position components.

Ideal Projectile Motion
When Galileo wrote about projectiles in the Two Sciences, he made it quite clear that
the moving object should be heavy and that friction should be avoided. In the next
section, as we use vector mathematics to consider projectile motion, we will limit
ourselves to “ideal” situations. We also assume the only significant force on an object
is a constant gravitational force acting vertically downward. For example, the bounc-
ing golf ball is undergoing ideal projectile motion between bounces because it is mov-
ing slowly enough that air resistance forces are negligible. On the other hand, flying
airplanes and ducks are not ideal projectiles because their sustained flight depends on
getting lift forces from air. Examples of ideal and nonideal projectile motion are
shown in Fig. 5-6. Ideal projectile motion can be defined as follows:

A particle-like object undergoes IDEAL PROJECTILE MOTION if the only significant force that
acts on it is a constant gravitational force.
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FIGURE 5-3 ■ Galileo’s diagram showing
how a parabola can be formed by a set of
linearly increasing horizontal coordinates
(b : e) and a set of vertical coordinates
that increase as the square of time (o : n).
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FIGURE 5-4 ■ Performing Galileo’s
thought experiment with modern equip-
ment. This digital video image shows the
location of a golf ball in the last frame,
along with white markers left by the soft-
ware showing the ball’s location every
tenth of a second as it rolls off the edge of
a table and falls toward the floor.

FIGURE 5-5 ■ One ball is released from
rest at the same instant that another ball is
shot horizontally to the right.



READI NG EXERC IS E 5-1: (a) Consider the light-colored falling golf ball on the
right in Fig. 5-5. Does its horizontal velocity change its vertical acceleration and the vertical ve-
locities it normally acquires in free fall along a straight vertical line? Explain. (b) Does the fact
that the light-colored golf ball on the right is falling have any effect on the rate that it is moving
in the x direction? Explain. ■

READI NG EXERC IS E 5-2: How does the fact that the skateboarder in Fig. 5-7 has a
vertical acceleration and, therefore, vertical velocity affect his horizontal velocity while he is
“flying” above his skateboard? ■
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In Figure 5-4, a golf ball is rolling off a tabletop which is 1.0 meter
above the floor. The golf ball has an initial horizontal velocity com-
ponent of v1 x � 1.3 m/s. Its location has been marked at 0.100 s in-
tervals.

(a) How long should the ball take to fall on the floor from the time
it leaves the edge of the table?

S O L U T I O N ■ The Ke y  I d e a here is that the golf ball under-
goes ideal projectile motion. Therefore, its horizontal and vertical
motions are independent and can be considered separately (we
need not consider the actual curved path of the ball). We choose a
coordinate system in which the origin is at floor level and upward is
the positive direction. Then, the first vertical position component of
interest in our fall is y1 � 1.0 m and our last vertical position of in-
terest is y2 � 0.0 m. We can use kinematic equation 2-17 to describe
the descent along the y axis, so

(y2 � y1) � v1 y(t2 � t1) � (t2 � t1)2.

Noting that at the table’s edge the vertical velocity is zero, so 
v1 y � 0.00 m/s, we can solve our equation for (t2 � t1) to get

,

where in free fall the only force is the gravitational force, and so 

t2 � t1 � √ 2(y2 � y1)
ay

1
2 ay

ay � �g � �9.8 m/s2

and (y2 � y1) � (0.0 m � 1.0 m) � �1.0 m.

This gives

� 0.45 s.

(b) How far will the ball travel in the horizontal direction from the
edge of the table before it hits the floor?

S O L U T I O N ■ The Ke y  I d e a is that the ball will hit the floor
after it has fallen for (t2 � t1) � 0.45 s. Since its horizontal velocity
component doesn’t change, its average velocity is the same as its in-
stantaneous velocity. We can use the definition of average velocity
to calculate the horizontal distance it travels, since

we can solve this equation for x2 � x1 to get our distance:

(x2 � x1) � v1 x (t2 � t1) � (1.3 m/s)(0.45 s)

� 0.59 m.

An examination of Fig. 5-4 shows that this distance is reasonable.

v1 x � �vx� �
(x2 � x1)

t2 � t1
;

(t2 � t1) � √ 2(y2 � y1)
�g

� √ 2(�1.0 m)
�9.8 m/s2

TOUCHSTONE EXAMPLE 5-1: Golf Ball

FIGURE 5-6 ■ Video analysis software is used to trace the paths of two small balls of the same
size shot from a projectile launcher.The dots mark the location of the ball every 1/30 of a second.
(a) The left video frame shows the path of a dense plastic ball. (b) The right video frame shows a
Styrofoam ball path that is not as long or symmetric because it is influenced by air drag forces.

(a) Dense Ball (b ) Styrofoam Ball

FIGURE 5-7 ■ The vertical component of
this skateboarder’s velocity is changing.
However, during the entire time he is in
the air, the skateboard stays underneath
him, allowing him to land on it.
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5-3 Analyzing Ideal Projectile Motion

Now that we have established the independence of the horizontal and vertical com-
ponents of the motion of an ideal projectile, we can analyze these motions mathe-
matically. To do this we use the vector algebra we have developed to express the ef-
fect of the gravitational force on velocity components along horizontal and vertical
axes.

Velocity Components and Launch Angle
A ball rolling off a level ramp has a launch angle of zero degrees with respect to the
horizontal. In general, projectiles are launched at some angle � with respect to the hor-
izontal as shown in Fig 5-6(a). Suppose a projectile is launched at an angle �1 relative
to the horizontal direction with an initial magnitude of velocity . If we use a
standard rectangular coordinate system, then we can use the definitions of sine and co-
sine to find the initial x- and y-components of velocity at time t1 (Fig. 5-8). These com-
ponents are

v1 x � v1cos �1 and v1 y � v1sin �1. (5-1)

Alternatively, if the components of the initial velocity are known, we can rearrange
Eq. 5-1 to determine the initial velocity vector, , and the angle of launch, �1,

and . (5-2)

Solving for the launch angle at time t1 gives

. (5-3)

During two-dimensional motion, an ideal projectile’s position vector and velocity
vector change continuously, but its acceleration vector is constant—its value
doesn’t change and it is always directed vertically downward.

Position and Velocity Versus Time
In our standard coordinate system an ideal projectile experiences no net force in the
x direction , so its horizontal acceleration stays constant at zero during its
flight. The projectile experiences a constant gravitational force in the y di-
rection, so the y-component of its acceleration is a constant with a value of �g. Since
zero acceleration is a form of constant acceleration, the acceleration is constant in
both directions. The object’s projectile motion acceleration is given by

(projectile motion accelerations).

From Chapter 2 (Eq. 2-17) we know that (with ax � 0) the changes in the object’s
position components are given by 

x2 � x1 � v1 x (t2 � t1) and y2 � y1 � v1 y(t2 � t1) � (position change),

(2-17)

while the object’s velocity component changes are given by Eq. 2-13 as

v2 x � v1 x � ax(t2 � t1) and v2 y � v1 y � ay(t2 � t1) (velocity change). (2-13)

1
2 ay(t2 � t1)2

a:x � 0 î  and  a:y � �g ĵ

F
:

y � �mg ĵ
(F

:

x � (0)î)

a:v:
r:

�1 � tan�1 � v1 sin �1

v1 cos �1
� � tan�1 � v1 y

v1 x
�

tan�1 �
v1 sin �1

v1 cos �1
�

v1 y

v1 x
v:1 � v1 x î � v1 y ĵ

v:1

�v:1 � � v1

x

v1

1

v1y

y

v1x

θ

FIGURE 5-8 ■ If a projectile is launched at
an initial angle �1 with respect to the hori-
zontal with a magnitude v1, its components
can be calculated by using the trigonomet-
ric functions.



If we call the time that we start measuring t1 � 0, then the equations are somewhat
simplified. However, independent of what time we start measuring, these two equa-
tions describe the motion of the object during a specified interval of time t2 � t1. They
are our primary equations of motion and are valid for every situation involving con-
stant acceleration, including cases where the acceleration is zero.

The Horizontal Motion
Suppose that at an initial time t � t1 the projectile has a position component along the x
axis of x1 and a velocity component of v1 x. We must now use the notation , v1 x, v1 y so
we can distinguish the initial velocity vector from its x- and y-components. We must
also specify which component of acceleration, ax or ay, we are using in an equation. Us-
ing our new notation, we can find the x-component of the projectile’s horizontal
displacement x2 at any later time t2 using x2 � x1 � v1 x(t2 � t1) � . How-
ever, since there are no forces and hence no acceleration in the horizontal direction,
the x-component of acceleration is zero. Noting that the only part of the initial veloc-
ity that affects the horizontal motion is its horizontal component v1 x, we can write this
as:

x2 � x1 � v1 x (t2 � t1) (horizontal displacement). (5-4)

Because the horizontal component of the object’s initial velocity is given by
v1 x � v1cos �1, this equation for the displacement in the x direction can also be writ-
ten as 

x2 � x1 � (v1cos �1)(t2 � t1). (5-5)

But the ratio of the displacement to the time interval over which it occurs,
(x2 � x1)/(t2 � t1), is just the x-component of average velocity . If the average ve-
locity in the x direction is constant, this means that the instantaneous and average ve-
locities in the x direction are the same. Thus Eq. 5-5 becomes 

(5-6)

Experimental verification of the constancy of the horizontal velocity component for
ideal projectile motion is present in Figs. 5-4 and 5-5. As additional verification we can
draw a graph of the x-component of position as a function of time for the projectile
path depicted in Fig. 5-6a. This is shown in Fig. 5-9.

The Vertical Motion
The vertical motion of an ideal projectile was discussed in Section 3-9 for a particle
close to the surface of the Earth. Most important is that the acceleration resulting

�vx� �
x2 � x1

t2 � t1
� v1 x � v1 cos �1 �  a constant. 

�vx�

1
2ax(t2 � t1)2

v:1

v:1
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FIGURE 5-9 ■ A graph constructed from a video analysis of the
motion of the projectile depicted in Fig. 5-6a. The x-component
of position is plotted as a function of time. The coordinate system
is chosen so that the initial value x1 is zero at the launcher muz-
zle. The linearity of the graph confirms that the projectile’s x-
component of velocity is a constant given by the slope of the line
so that �vx� � v1 x � 2.3 m/s.
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FIGURE 5-10 ■ A graph constructed from
a video analysis of the motion of the projec-
tile depicted in Fig. 5-6a.The y-component
of position is plotted as a function of time.
The coordinate system is chosen so that the
initial value of the vertical position y1 is
zero at the launcher muzzle.A fit to the
curve is parabolic and gives a y-component
of acceleration of �9.7 m/s2 and an initial
vertical velocity component of �3.5 m/s.

from the attractive gravitational force that the Earth exerts on the object is constant
and directed downward. We denote its magnitude as g and recall that it has a value of
9.8 m/s2. If, as usual, we take upward to be the positive y direction, then since the grav-
itational force points downward we can replace the y-component of acceleration, ay,
for position change along the y axis with �g. This allows us to rewrite our primary
kinematic equation shown in Eq. 2-17 [(x2 � x1) � v1 x(t2 � t1) � ] for
motion along a y axis as

y2 � y1 � v1 y(t2 � t1) � where ay � �g.

Note that we used only the y-component of the initial velocity in this equation. This is
because the vertical acceleration affects only the vertical velocity and position compo-
nents. Making the substitution v1 y � v1 sin �1 from Eq. 5-1, we get 

y2 � y1 � (v1 sin �1)(t2 � t1) � where ay � �g. (5-7)

Similarly, (primary equation 2-13) can be rewritten as

v2 y � v1 y � ay(t2 � t1),

or v2 y � (v1 sin �1) � ay(t2 � t1) where ay � �g. (5-8)

As is illustrated in Fig. 5-10, the vertical velocity component behaves just like that for
a ball thrown vertically upward. At the instant the velocity is zero, the object must be
at the highest point on its path, since the object then starts moving down. The magni-
tude of the velocity becomes larger with time as the projectile speeds up as it moves
back down.

The velocity components for a projectile shot from a small vertical cannon
mounted on a cart are shown in Fig. 5-11. Note that the horizontal velocity compo-
nent does not change. The vertical component decreases in magnitude and becomes
zero at the top of the path. This magnitude starts increasing again as the projectile de-
scends and is finally “recaptured” by the cannon.

In the experimental results presented in this section, the effect of the air on the
motion was negligible. Thus, we ignored air resistance and performed a mathematical
analysis for ideal projectiles. Ignoring the effects of air works well for a compact, dense
object such as a marble or a bowling ball, provided it is not launched at very high
speeds. However, air resistance cannot be ignored for a less dense object like a crum-
pled piece of paper thrown rapidly or the styrofoam ball shown in Fig. 5-6b. Remem-
ber that the ideal projectile motion equations 5-4 through 5-8 have been derived
assuming that resistance is negligible. These ideal projectile equations are summarized
in Table 5-1.We shall discuss details of the effect of the air on motion in Chapter 6.

v2 � v1 � ax(t2 � t1)

1
2ay(t2 � t1)2

1
2 (ay)(t2 � t1)2

1
2 ax(t2 � t1)2
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FIGURE 5-11 ■ Diagram showing sketches
of three video frames. The actual movie
recorded the motion of a cannon that
shoots a projectile while moving. The pro-
jectile path and velocity vector components
were calculated by modeling data acquired
using digital video analysis software.

TA B L E 5 - 1
Kinematic Equations for Ideal Projectile Motion 

Quantity Horizontal Vertical

Forces (Eq. 3-7)

Acceleration Components

Velocity components at t1 (Eq. 5-1) (Eq. 5-1)

Position component Change between t1 and t2 (Eq. 5-4) (Eq. 5-7)

Velocity component Change between t1 and t2 (Eq. 5-8)

Note: Since g (the local gravitational field strength) is always positive, it is not a vector component. There
fore, if we follow the standard practice of defining the negative y axis as down, we must put an explicit 
minus sign in front of it.

v2 y � v1y � ay (t2 � t1)v2 x � v1x � 0

y2 � y1 � v1y (t2 � t1) � 1
2 ay (t2 � t1)2x2 � x1 � v1 x(t2 � t1)

v1 y � v1 sin�1v1 x � v1 cos�1

ay � �g � �9.8 m/s2ax � 0

F
:

y � (�mg)ĵF
:

x � (0)î



In Fig. 5-12, a rescue plane flies at 198 km/h (� 55.0 m/s) and a con-
stant elevation of 500 m toward a point directly over a boating
accident victim struggling in the water. The pilot wants to release a
rescue capsule so that it hits the water very close to the victim.

(a) What should be the angle � of the pilot’s line of sight to the vic-
tim when the release is made?

S O L U T I O N ■ The Ke y  I d e a here is that, once released, the
capsule is a projectile, so its horizontal and vertical motions are in-
dependent and can be considered separately (we need not consider
the actual curved path of the capsule). Figure 5-12 includes a coor-
dinate system with its origin at the point of release, and we see
there that � is given by

� � tan�1 (5-9)
(x2 � x1)

h
,

where x2 is the horizontal coordinate of the victim at release (and
of the capsule when it hits the water), and h is the elevation of the
plane. That elevation is 500 m, so we need only x2 in order to find �.
We should be able to find x2 with Eq. 5-4: x2 � x1 � v1 x(t2 � t1).
This can be written as

(5-10)

where �1 is the angle between the initial velocity and the positive
x axis. For this problem, �1 � 0°.

We know x1 � 0 because the origin is placed at the point of
release. Because the capsule is released and not shot from the plane,
its initial velocity is equal to the plane’s velocity. Thus, we know
also that the initial velocity has magnitude v1 � 55.0 m/s and
angle �1 � 0� (measured relative to the positive direction of the x
axis). However, we do not know the elapsed time t2 � t1 the capsule
takes to move from the plane to the victim.

To find t2 � t1, we next consider the vertical motion and specifi-
cally Eq. 5-7:

(5-11)

Here the vertical displacement y2 � y1 of the capsule is �500 m
(the negative value indicates that the capsule moves downward).
Putting this and other known values into Eq. 5-7 gives us

�500 m � (55.0 m/s)(sin 0°)(t2 � t1)

Solving for t2 � t1, we find t2 � t1 � 10.1 s. Using that value in 
Eq. 5-10 yields

x2 � 0 m � (55.0 m/s)(cos 0°)(10.1 s),

or x2 � 555.5 m.

� 1
2(9.8 m/s2)(t2 � t1)2.

y2 � y1 � (v1 sin�1)(t2 � t1) � 1
2 g(t2 � t1)2.

v:1

v:1

x 2 � x 1 � (v1 cos�1)(t2 � t1),
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TOUCHSTONE EXAMPLE 5-2: Rescue Plane

READI NG EXERCIS E 5-3: Consider three points along an ideal
projectile’s path in space as shown in the figure and make three separate
sketches of: (a) the force vectors showing the net force on the projectile at
each point, (b) the acceleration vectors showing the acceleration of the
projectile at each point, (c) the approximate horizontal and vertical components of velocity at
each of the three points along with the velocity vector that is determined by these components. ■

READI NG EXERC IS E  5-4 : Consider the projectile launch shown in Fig. 5-6a. (a) Ac-
cording to the data in Figs. 5-9 and 5-10 the initial x- and y-components of the velocity are v1x �
2.3 m/s and v1y � �3.5 m/s . Use these values to find the launch angle of the projectile. (b) Use
a protractor to measure the launch angle as indicated by the angle of the launcher shown in Fig.
5-6a. How do your calculated and measured launch angles compare? They should be approxi-
mately the same. ■

READI NG EXERC IS E  5-5 : A fly ball is hit to the outfield. During its flight (ignore
the effects of the air), what happens to its (a) horizontal and (b) vertical components of veloc-
ity? What are the (c) horizontal and (d) vertical components of its acceleration during its ascent
and its descent, and at the topmost point of its flight? ■

y

θ

φ
O

v1

Trajectory
Line of sight

h

x

v2

FIGURE 5-12 ■ A plane drops a rescue capsule while moving at
constant velocity in level flight. While the capsule is falling, its hori-
zontal velocity component remains equal to the velocity of the
plane.
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Then Eq. 5-9 gives us

� � tan�1 . (Answer)

(b) As the capsule reaches the water, what is its velocity in unit-
vector notation and as a magnitude and an angle?

S O L U T I O N ■ Again, we need the Ke y  I d e a that during the
capsule’s flight, the horizontal and vertical components of the cap-
sule’s velocity are independent of each other.

A second Ke y  I d e a is that the horizontal component of
velocity vx does not change from its initial value v1 x � v1 cos �1 be-
cause there is no horizontal acceleration. Thus, when the capsule
reaches the water,

v2 x � v1 x � v1 cos�1 � (55.0 m/s)(cos 0°) � 55.0 m/s.

v2
:

555.5 m
500 m

� 48�

A third Ke y  I d e a is that the vertical component of velocity
vy changes from its initial value v1 y � v1 sin�1 because there is a
vertical acceleration. Using Eq. 5-8 and the capsule’s time of fall
t2 � t1 � 10.1 s, we find that when the capsule reaches the water,

Thus, when the capsule reaches the water, it has the velocity

(Answer)

Using either the techniques developed in Section 4-4, or a vector-
capable calculator, we find that the magnitude of the final velocity v2

and the angle �2 are

v2 � 113 m/s and �2 � �61°. (Answer)

v:2 � (55.0 m/s)iˆ � (99.0 m/s)ĵ.

� �99.0 m/s.

� (55.0 m/s)(sin 0�) � (9.8 m/s2)(10.1s)

v2 y � v1 sin�1 � g(t2 � t1)

Figure 5-13 illustrates the flight of Emanuel Zacchini over three
Ferris wheels, located as shown, and each 18 m high. Zacchini is
launched with speed v1 � 26.5 m/s, at an angle �1 � 53° up from the
horizontal and with an initial height of 3.0 m above the ground. The
net in which he is to land is at the same height.

(a) Does he clear the first Ferris wheel?

S O L U T I O N ■ A Ke y  I d e a here is that Zacchini is a human
projectile, so we can use the projectile equations. To do so, we place
the origin of an xy coordinate system at the cannon muzzle. Then
x1 � 0 and y1 � 0 and we want his height y2 when x2 � 23 m. How-
ever, we do not know the elapsed time t2 � t1 when he reaches that
height. To relate y2 to x2 without t2 � t1, we can solve Eq. 5-5 for
t2 � t1, which gives us 

Then we can replace t2 � t1 everywhere that it appears in Eq. 5-7,

(t2 � t1) �
x 2 � x 1

(v1 cos�1)
.

y2 � y1 � ( (t2 � t1)

We note that � tan �1 to obtain:

� 20.3 m.

Since he begins 3.0 m off the ground, he clears the first Ferris wheel
by about 5.3 m.

(b) If he reaches his maximum height when he is over the middle
Ferris wheel, what is his clearance above it?

S O L U T I O N ■ A Ke y  I d e a here is that the vertical compo-
nent vy of his velocity is zero when he reaches his maximum height.
We can combine Eqs. 5-7 and 5-8 to relate vy and his height y3 � y1

to obtain:

� 2g(y3 � y1) � (v1 sin �1)2 � 2g(y3 � y1) � 0.

Solving for y3 � y1 gives us

which means that he clears the middle Ferris wheel by 7.9 m.

(c) How far from the cannon should the center of the net be posi-
tioned?

y3 � y1 �
(v1 sin�1)2

2g
�

(26.5 m/s)2(sin 53�)2

(2)(9.8 m/s2)
� 22.9 m,

v3 y
2 � v1 y

2

� (tan 53�)(23 m) �
(9.8 m/s2)(23 m)2

2(26.5 m/s)2 (cos 53�)2

y2 � y1 � (tan �1)(x2 � x1) �
g(x2 � x1)2

2(v1 cos �1)2

(v1 sin �1)/(v1 cos �1)

� 1
2 g(t2 � t1)2.v1 sin �1)

TOUCHSTONE EXAMPLE 5-3: Ballistic Zacchini

18 m

23 m23 m

3.0 m 3.0 m
1 = 53°

v1

θ
Net

x1 x2 x3 x4

FIGURE 5-13 ■ The flight of a human cannonball over three Ferris
wheels and into a net.
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S O L U T I O N ■ The additional Ke y  I d e a here is that, because
Zacchini’s initial and landing heights are the same, the horizontal
distance from cannon muzzle to net is the value of x4 � x1 where
time t � t4 is when y4 is once again zero. Then, since y1 � 0
Eq. 5-7 becomes

Since t4 � t1 � 0 we can divide both sides of this equation by t4 � t1

and solve for the time he is airborne:

Substituting this time interval in x4 � x1 � (t4 � t1)
(Eq. 5-5) gives us the total horizontal distance he traveled:

� 69 m.

x4 � x1 �
2v2

1

g
 sin�1 cos�1 �

2(26.5 m/s)2

9.8 m/s2  sin(53�) cos(53�)

( v:1 cos�1)

t4 � t1 �
2v1 sin �1

g
.

0 � y4 � y1 � (v1 sin�1)(t4 � t1) � 1
2g(t4 � t1)2.

We can now answer the questions that opened this chapter:
How could Zacchini know where to place the net, and how could
he be certain he would clear the Ferris wheels? He (or someone)
did the calculations as we have here. Although he could not take
into account the complicated effects of the air on his flight, Zacchini
knew that the air would slow him, and thus decrease his range from
the calculated value. So, he used a wide net and biased it toward the
cannon. He was then relatively safe whether the effects of the air in
a particular flight happened to slow him considerably or very little.
Still, the variability of this factor of air effects must have played on
his imagination before each flight.

Zacchini still faced a subtle danger. Even for shorter flights, his
propulsion through the cannon was so severe that he underwent a
momentary blackout. If he landed during the blackout, he could
break his neck. To avoid this, he had trained himself to awake
quickly. Indeed, not waking up in time presents the only real danger
to a human cannonball in the short flights today.

5-4 Displacement in Two Dimensions

We conclude this chapter with an exploration of objects that move in a circle at a con-
stant speed. Before we begin this exploration, we need to learn more about finding dis-
placement vectors in two dimensions—a task we began in Sections 2-2, 4-2, and 4-3.

How can we track the motion of a particle-like object that moves in a two-dimen-
sional plane instead of being constrained to move along a line? As was the case for
tracking motion along a line (treated in Chapter 2), it is useful to define a position
vector, , that extends from the origin of a chosen coordinate system to the object.
But this time, we have to choose a two-dimensional coordinate system. However, we
can use the vector algebra introduced in the last chapter to resolve (decompose) the
position vector into component vectors. This allows us to treat the two-dimensional
motions using the techniques developed to describe one-dimensional motions.

Using Rectangular Coordinates
If we decide to use rectangular coordinates, then we denote the rectangular compo-
nents of as x and y. We can use the unit-vector notation of Section 4-5 to resolve the
position vector into

(5-12)

where xî and yĵ are the rectangular component vectors. Note that for a rectangular co-
ordinate system, the components x and y are the same as the coordinates of the ob-
ject’s location (x, y).

The coordinates x and y specify the particle’s location along the coordinate axes
relative to the origin. For instance, Fig. 5-14 shows a particle with rectangular coordi-
nates (�3 m, 2 m) that has a position vector given by

The particle is located 3 meters from the y axis in the �î direction and 2 meters from
the x axis in the �ĵ direction.

r: � (�3 m)î � (2 m)ĵ.

r: � x î � y ĵ,

r:

r:

x = –3 m
x

y

y = 2 mr

FIGURE 5-14 ■ The position vector for a
particle that has coordinates (�3 m, 2 m).

r:
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FIGURE 5-15 ■ Polar coordinates provide
an alternative way to locate a particle that
is confined to move in two dimensions.
These coordinates are especially useful in
the description of circular motion where
the distance of a particle from the origin
does not change.

As a particle moves, its position vector changes in such a way that the vector al-
ways extends to the particle from the reference point (the origin). If the position vec-
tor changes—say, from to during a certain time interval—then the particle’s
displacement during that time interval is

(5-13)

Using unit-vector notation for and we can rewrite this displacement as

.

By grouping terms having the same unit vector, we get

(5-14)

where the components (x1, y1) correspond to position vector and components 
(x2, y2) correspond to position vector . We can also rewrite the displacement by sub-
stituting 	x for (x2 � x1), and 	y for ( y2 � y1), so that

(5-15)

This expression is another example of a very important aspect of motion in more
than one dimension. Notice that the coordinates of the displacement in each direction
(	x, 	y) depend only on the change in the object’s position in that one direction, and
are independent of changes in position in the other directions. In other words, we
don’t have to simultaneously consider the change in the object’s position in every
direction. We can break the motion into two parts (motion in the x direction and mo-
tion in the y direction) and consider each direction separately. For motion in three
dimensions we could add a z direction and do equivalent calculations.

Using Polar Coordinates
In dealing with circular motions or rotations it is often useful to describe positions
and displacements in polar coordinates. In this case we locate a particle using r or
which represents the magnitude of its position vector and its angle �1 which is mea-
sured in a counterclockwise direction from a chosen axis. The relationship between
two-dimensional rectangular coordinates and polar coordinates is shown in Fig. 5-15.
The transformation between these coordinate systems is based on the definitions of
sine and cosine, so that

x � r cos(�) and y � r sin(�). (5-16)

Conversely, and (5-17)

In circular motion the distance of a particle from the center of the circle defining its
motion does not change. So the magnitude of displacement 	r or depends only
on the change in angle and is given by

	r � r(�2 � �1) (small angle circular displacement magnitude). (5-18)

for small angular differences. This expression should look familiar from mathematics
classes. There you learned that the relationship between arc length, s, the radius, r, and
angular displacement, 	� is s � r	�.

�	 r: �

� � tan�1� y
x �.r � √x2 � y2

r:
� r: �

	 r: � 	x î � 	y ĵ.

r:2

r:1

	 r: � (x2 � x1) î � (y2 � y1) ĵ,

	 r: � (x2î � y2 ĵ ) � (x1î � y1 ĵ)

r:1,r:2

	 r: � r:2 � r:1.

r:
r:2r:1

y axis

x axis

x

y
r

0

θ
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In Fig. 5-16, the position vector for a particle is initially

and then later is

What is the particle’s displacement from to ?

S O L U T I O N ■ The Ke y  I d e a is that the displacement is
obtained by subtracting the initial position vector from the later
position vector . That is most easily done by components:

� [9.0 � (�3.0)](m)î � [�3.5 � 4.0](m)ĵ (Answer)

� (12 m)î � (�7.5 m)ĵ.

	 r: � r:2 � r:1

r:2

r:1

	 r:

r:2r:1	 r:

r:2 � (9.0 m)î � (�3.5 m)ĵ.

r:1 � (�3.0 m)î � (4.0 m)ĵ

TOUCHSTONE EXAMPLE 5-4: Displacement

A rabbit runs across a parking lot on which a set of coordinate axes
has, strangely enough, been drawn. The coordinates of the rabbit’s
position as functions of time t are given by

x � (�0.31 m/s2)t2 � (7.2 m/s)t � 28 m (5-19)

and y � (0.22 m/s2)t2 � (�9.1 m/s)t � 30 m. (5-20)

(a) At t � 15 s, what is the rabbit’s position vector in unit-vector
notation and as a magnitude and an angle?

S O L U T I O N ■ The Key Idea here is that the x and y coordi-
nates of the rabbit’s position, as given by Eqs. 5-19 and 5-20, are
the components of the rabbit’s position vector . Thus, we can
write

(5-21)r:(t) � x(t)î � y(t)ĵ.

r:

r:

TOUCHSTONE EXAMPLE 5-5: Rabbit’s Trajectory

READI NG EXERC IS E  5-6 : (a) If a wily bat flies from x, y coordinates (�2 m, 4 m) to
coordinates (6 m, �2 m), what is its displacement in rectangular unit-vector notation? (b) Is

parallel to one of the two coordinate axes? If so, which axis? ■	r:
	r:

Earlier
position

Actual path
of the particle

Later
position

y

x

r1

r2

rΔ

FIGURE 5-16 ■ The displacement extends from the
head of the initial position vector to the head of a later position
vector regardless of what path is actually taken.r:2

r:1

	 r: � r:2 � r:1

x (m)
0

20

40

–20

–40

–60

y (m)

20 40 60 80

(a)

–41°

r

x (m)
0

20

40

–20

–40

–60

y (m)

20 40 60 80

(b)

25 s
20 s

15 s

10 s

5 s

t = 0 s

FIGURE 5-17 ■ (a) A rabbit’s position vector at
time t � 15 s. The components of are shown along
the axes. (b) The rabbit’s path and its position at five
values of t.

r:
r:
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(We write rather than because the components are functions
of t, and thus is also.)

At t � 15 s, the components of the position vector are

x � (�0.31 m/s2)(15 s)2 � (7.2 m/s)(15 s) � 28 m � 66 m,

and y � (0.22 m/s2)(15 s)2 � (�9.1 m/s)(15 s) � 30 m � �57 m.

Thus, at t � 15 s,

which is drawn in Fig. 5-17a.
To get the magnitude and angle of , we can use a vector-capable

calculator, or we can be guided by the Pythagorean theorem to write

� 87 m,

r � √x2 � y2 � √(66 m)2 � (�57 m)2

r:

r: � (66 m)î � (57 m)ĵ,

r:
r:r:(t) and from trigonometric definition,

� �41�

(Although � � 139° has the same tangent as �41°, study of the
signs of the components of rules out 139°.)

(b) Graph the rabbit’s path for t � 0 to t � 25 s.

S O L U T I O N ■ We can repeat part (a) for several values of t and
then plot the results. Figure 5-17b shows the plots for five values of t
and the path connecting them. We can also use a graphing calcula-
tor to make a parametric graph; that is, we would have the calcula-
tor plot y versus x, where these coordinates are given by Eqs. 5-19
and 5-20 as functions of time t.

r:

� � tan�1 y
x

� tan�1� �57 m
66 m �

5-5 Average and Instantaneous Velocity 

We have just shown that when tracking motions occurring in more than one dimen-
sion, position and displacement vectors can be resolved into rectangular component
vectors. Can this also be done with velocity vectors? As is the case for motion in one
dimension, if a particle moves through a displacement in a time interval 	t (as
shown in Fig. 5-18), then its average velocity is defined as 

or using familiar symbols

(5-22)

This tells us the direction of must be the same as the displacement . Using our
new definition of displacement in two dimensions (Eq. 5-15), we can rewrite this as 

. (5-23)

This equation can be simplified by noting that 	x /	t is defined in Chapter 2 as the
component of average velocity in the x direction. If we use appropriate definitions for
average velocity components in the y direction, then

. (5-24)

Here we are using the same notation introduced in Chapter 2 to denote the aver-
age velocity components. We use subscripts x and y to distinguish each of the average
velocity components. Also the angle brackets are used to distinguish average veloc-
ity from instantaneous velocity.

As we mentioned in Chapter 2, when we speak of the velocity of a particle, we
usually mean the particle’s instantaneous velocity . represents the limit the aver-v:v:

� �

� v:� �
	x
	t

î �
	y
	t

ĵ � �vx� î � �vy�ĵ

� v:� �
	x î � 	y ĵ

	t
�

	x
	t

î �
	y
	t

ĵ

	 r:� v:�

� v:� �
	 r:

	t
.

average velocity �
displacement
time interval

,

� v:�
	 r:
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For the rabbit in Touchstone Example 5-5, find the velocity at time
t � 15 s, in unit-vector notation and as a magnitude and an angle.

S O L U T I O N ■ There are two Ke y  I d e a s here: (1) We can find
the rabbit’s velocity by first finding the velocity components.v:

v: (2) We can find those components by taking derivatives of the
components of the rabbit’s position vector. Applying 
(Eq. 5-26) with vx � dx/dt to the expression for the rabbit’s x posi-
tion from Touchstone Example 5-5 (Eq. 5-19), we find the x-compo-
nent of to bev:

v: � vxî � vyĵ

TOUCHSTONE EXAMPLE 5-6: A Rabbit’s Velocity

age velocity approaches as we shrink the time interval 	t to zero. Using the lan-
guage of calculus, we can also write as the derivative

. (5-25)

If we substitute , then in unit-vector notation:

This equation can be simplified by recognizing that dx/dt is vx and so on. Thus,

(5-26)

where vx is the component of along the x axis and vy is the component of along
the y axis. The direction of is tangent to the particle’s path at the instant in question.

Figure 5-19 shows a velocity vector of a moving particle and its x- and y-
components. Caution: When a position vector is drawn as in Fig. 5-14, it is represented
by an arrow that extends from one point (a “here”) to another point (a “there”).
However, when a velocity vector is drawn as in Fig. 5-19, it does not extend from one
point to another. Rather, it shows the direction of travel of a particle at that instant,
and the length of the arrow is proportional to the velocity magnitude. Since the unit
for a velocity is a distance per unit time and is not a length, you are free to define a
scale to use in depicting the relative magnitudes of a set of velocity vectors. For in-
stance, each 2 cm of length on a velocity vector on a diagram could represent a veloc-
ity magnitude of 1 m/s.

Equations 5-24 and 5-26, developed in this section, show that the component of
velocity of the object in one direction, such as the horizontal or x direction, can be
considered completely separately from the component of velocity of the object in an-
other direction, such as the vertical or y direction.

We assume that a curve that traces out a particle’s motion is continuous. Mathe-
matically, the tangent to the curve, its slope, and the instantaneous velocity are differ-
ent names for the same quantity. Thus, we see that the velocity vector in Fig. 5-19
points along the tangent line that describes the slope of the graph at that point.

READI NG EXERC IS E  5-7 : The figure below shows a
circular path taken by a particle about an origin. If the instanta-
neous velocity of the particle is , through
which quadrant is the particle moving when it is traveling (a)
clockwise and (b) counterclockwise around the circle? For both
cases, draw on the figure.

■

v:

v: � (2m/s)î � (2m/s)ĵ

v:
v:

v:v:

v: � vx î � vy ĵ,

v: �
d
dt

(x î � y ĵ) �
dx
dt

î �
dy
dt

ĵ.

r: � x î � y ĵ

v: � lim
	t:0

	 r:

	t
�

d r:

dt

v:
� v:�

r1
r2

Path
0

y

x

1
2

rΔ

FIGURE 5-18 ■ The displacement of a
particle during a time interval 	t from po-
sition 1 with position vector at time t1 to
position 2 with position vector at time
t2.

r:2

r:1

	 r:

Path

0

y

x

Tangent to curve at t

vy

vx

v

v = v(t)

FIGURE 5-19 ■ A particle moves in a
curved path. At a time t, the velocity of a
particle is shown along with its compo-
nents vx and vy. The velocity vector points
in the same direction as the tangent to the
curve that traces the particle’s motion.

v:

y

II I

III IV
x
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� (�0.62 m/s2)t � 7.2 m/s.
(5-27)

At t � 15 s, this gives vx � �2.1 m/s. Similarly, since vy � dy/dt,
using the expression for the rabbit’s y position from Touchstone
Example 5-5 (Eq. 5-20), we find that the y-component is

� (0.44 m/s2)t � 9.1 m/s.
(5-28)

At t � 15 s, this gives vy � �2.5 m/s. Thus, by Equation 5-26,

(Answer)

which is shown in Fig. 5-20, tangent to the rabbit’s path and in the
direction the rabbit is running at t � 15 s.

To get the magnitude and angle of , either we use a vector-
capable calculator or we use the Pythagorean theorem and trigonom-
etry to write

� 3.3 m/s,
(Answer)

v � √v2
x � v2

y � √(�2.1 m/s)2 � (�2.5 m/s)2

v:

v: � �(2.1 m/s)î � (2.5 m/s)ĵ,

vy �
dy
dt

�
d
dt

[(0.22 m/s2)t 2 � (�9.1 m/s)t � 30 m]

vx �
dx
dt

�
d
dt

[(�0.31 m/s2)t2 � (7.2 m/s)t � 28 m)] and

� tan�1 1.19 � �130°.
(Answer)

(Although 50° has the same tangent as �130°, inspection of the
signs of the velocity components indicates that the desired angle is
in the third quadrant, given by 50° � 180° � �130°.)

� � tan�1 vy

vx
� tan�1� �2.5 m/s

�2.1 m/s �

–130°

x (m)
0

20

40

–20

–40

–60

y (m)

20 40 60 80

x

v

Tangent FIGURE 5-20 ■ The rab-
bit’s velocity at t � 15
s. The velocity vector is
tangent to the path at the
rabbit’s position at that
instant. The components
of are shown.v:

v:

5-6 Average and Instantaneous Acceleration 

We have just shown that velocity vectors can be resolved into rectangular component
vectors. Can this also be done with acceleration vectors? As is the case for motion in
one dimension, if a particle-like object undergoes a velocity change from to in a
time interval 	t, its average acceleration during 	t is

or (5-29)

If we shrink 	t to zero about some instant, then in the limit the average acceleration 
approaches the instantaneous acceleration (or just acceleration) at that instant.That is,

(5-30)

If the velocity changes in either magnitude or direction (or both), the particle is accel-
erating. For example, a particle that moves in a circle at a constant speed (velocity
magnitude) is always changing direction and hence accelerating. We can write this
equation in unit-vector form by substituting for to obtain

.a: �
d
dt

(vxî � vy ĵ) �
dvx

dt
î �

dvy

dt
ĵ

v: � vx î � vy ĵ

a: � lim
	t : 0

	v:

	t
�

dv:

dt
.

a:
�a:�

�a:� �
v:2 � v:1

t2 � t1
�

	v:

	t
.

�a:� � 
change in velocity

time interval
,

�a:�
v:2v:1
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FIGURE 5-21 ■ A two-dimensional accel-
eration of a particle at a time t is shown
along with its x- and y-components.

a:

For the rabbit in Touchstone Examples 5-5 and 5-6, find the acceler-
ation at time t � 15 s, in unit-vector notation and as a magnitude
and an angle.

S O L U T I O N ■ There are two Ke y  I d e a s here: (1) We can find
the rabbit’s acceleration by first finding the acceleration compo-
nents. (2) We can find those components by taking derivatives of
the rabbit’s velocity components. Applying ax = dvx /dt (Eq. 5-32) to
vx = (�0.62 m/s2)t � 7.2 m/s (Eq. 5-27 giving the rabbit’s x velocity
in Touchstone Example 5-6), we find the x-component of to be

ax �
dvx

dt
�

d
dt

[(�0.62 m/s2)t � 7.2 m/s)] � �0.62 m/s2.

a:

a:

a:
Similarly, applying ay � dvy /dt (Eq. 5-32) to the rabbit’s y velocity
from Touchstone Example 5-6 (Eq. 5-28) yields the y-component as

We see that the acceleration does not vary with time (it is a con-
stant) because the time variable t does not appear in the expression
for either acceleration component. Therefore, by Eq. 5-31,

(Answer)

which is shown superimposed on the rabbit’s path in Fig. 5-22.

a: � (�0.62 m/s2)î � (0.44 m/s2)ĵ,

ay �
dvy

dt
�

d
dt

[(0.44 m/s2)t�9.1 m/s] � 0.44 m/s2.

TOUCHSTONE EXAMPLE 5-7: Rabbit’s Acceleration

We can rewrite this as

(5-31)

where the components of in two dimensions are given by

and (5-32) 

Thus, we can find the components of by differentiating the components of . As is
the case for multidimensional position, displacement, and velocity vectors, an acceler-
ation vector can be resolved mathematically into component vectors in a rectangular
coordinate system.

As we saw in Chapter 2, the algebraic sign of an acceleration component (plus or
minus) represents the direction of velocity change. Speeding up is not always associ-
ated with a positive acceleration component. Just as we discussed for one-dimensional
motion, if the velocity and acceleration components along a given axis have the same
sign then they are in the same direction. In this case, the object will speed up. If the ac-
celeration and velocity components have opposite signs, then they are in opposite di-
rections. Under these conditions, the object will slow down. So slowing down is not al-
ways associated with an acceleration that is negative. It is the relative directions of an
object’s velocity and acceleration that determine whether the object will speed up or
slow down.

Figure 5-21 shows an acceleration vector and its components for a particle
moving in two dimensions. Again, when an acceleration vector is drawn as in Fig. 5-21,
although its tail is located at the particle, the vector arrow does not extend from one
position to another. Rather, it shows the direction of acceleration for the particle, and
its length represents the acceleration magnitude. The length can be drawn to any con-
venient scale.

READI NG EXERC IS E  5-8 : In Fig. 5-21 the particle is moving along a curved trajec-
tory and its acceleration is not tangent to the curve of the particle’s trajectory. Under what cir-
cumstances, if any, would be tangent to the trajectory? Under what circumstances if any, could

be perpendicular to a tangent to the trajectory? In order to answer these questions, you might
want to examine the direction of the components of and use what you learned in Chapter 2
about the relationship between velocity and acceleration. ■

a:
a:

a:
a:

a:

v:a:

ay �
dvy

dt
.ax �

dvx

dt

a:

a: � axî � ay ĵ,

0

y

x

ay

ax

Path

a

a = a(t)
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A particle with velocity at t � 0 un-
dergoes a constant acceleration of magnitude a � 3.0 m/s2 at an
angle � � 130� from the positive direction of the x axis. What is the
particle’s velocity at t � 5.0 s, in unit-vector notation and as a
magnitude and an angle?

S O L U T I O N ■ We first note that this is two-dimensional motion,
in the xy plane. Then there are two Ke y  I d e a s here. One is that,
because the acceleration is constant, Eq. 2-13 (v2 x � v1 x � ax	t)
applies. The second is that, because Eq. 2-13 applies only to
straight-line motion, we must apply it separately for motion parallel
to the x axis and motion parallel to the y axis. That is, we must find
the velocity components vx and vy from the equations

v2 x � v1 x � ax 	t and v2 y � v1 y � ay 	t.

In these equations, v1 x (� �2.0 m/s) and v1 y (� 4.0 m/s) are the x-
and y-components of , and ax and ay are the x- and y-components
of . To find ax and ay, we resolve either with a vector-capable
calculator or with trigonometry:

ax � a cos � � (3.0 m/s2)(cos 130�) � �1.93 m/s2,

ay � a sin � � (3.0 m/s2)(sin 130�) � �2.30 m/s2.

a:a:
v:1

v:2

a:
v:1 � (�2.0 m/s)î � (4.0 m/s)ĵ When these values are inserted into the equations for vx and vy, we

find that, at time t � 5.0 s,

v2 x ��2.0 m/s � (�1.93 m/s2)(5.0 s) � �11.65 m/s,

v2 y � 4.0 m/s � (2.30 m/s2)(5.0 s) � 15.50 m/s.

Thus, at t � 5.0 s, we have, after rounding,

(Answer)

We find that the magnitude and angle of are

(Answer)

and (Answer)

Check the last line with your calculator. Does 127° appear on the
display, or does �53° appear? Now sketch the vector v with its
components to see which angle is reasonable.

�2 � tan�1 v2 y

v2 x
� 127� �  130�.

v2 � √v2
2 x � v2

2 y � 19.4 m/s �  19 m/s,

v:2

v:2 � (�12 m/s)î � (16 m/s)ĵ.

TOUCHSTONE EXAMPLE 5-8: Changing Velocity

To get the magnitude and angle of , either we use a vector-
capable calculator or we use the Pythagorean theorem and
trigonometry. For the magnitude we have

� 0.76 m/s2.
(Answer)

For the angle we have

However, this last result, which is what would be displayed on your
calculator if you did the calculation, indicates that is directed to
the right and downward in Fig. 5-22. Yet, we know from the compo-
nents above that must be directed to the left and upward. To find
the other angle that has the same tangent as �35°, but is not dis-
played on a calculator, we add 180°:

(Answer)�35� � 180� � 145�.

a:

a:

� � tan�1 ay

ax
� tan�1� 0.44 m/s2

�0.62 m/s2 � � �35�.

a � √a2
x � a2

y � √(�0.62 m/s2)2 � (0.44 m/s2)2

a: This is consistent with the components of . Note that has the
same magnitude and direction throughout the rabbit’s run because,
as we noted previously, the acceleration is constant.

a:a:

x (m)
0

20

40

–20

–40

–60

y (m)

20 40 60 80

x

145°a

FIGURE 5-22 ■ The ac-
celeration of the rabbit
at t � 15 s. The rabbit
happens to have this
same acceleration at all
points along its path.

a:

5-7 Uniform Circular Motion 

If a single Olympic event best captures the motions described in this chapter, it’s the
hammer throw. In this event an athlete spins a heavy steel ball attached to a wire rope
with a handle in a circle. An athlete gains maximum distance by swinging a 16 lb ham-
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FIGURE 5-23 ■ A Scotsman twirls a mas-
sive steel ball (called a “hammer”) in a cir-
cle at a highland games competition. When
he releases the hammer, it will travel in a
direction that is tangent to its original cir-
cular path and undergo projectile motion.

mer repeatedly around his head while standing still to build up speed (Fig. 5-23). Fi-
nally, the athlete rotates quickly with the hammer before releasing it at the front of a
throwing circle. Once the athlete releases the hammer, it begins to travel along a line
tangent to the circle in which it was spinning and undergoes projectile motion.

Circular motion, like that of the spinning hammer, is another motion in two di-
mensions that can be analyzed using Newton’s Second Law. Examples of motion that
are approximately circular include the revolution of the Earth around the Sun, a race
car zooming around a circular track, an electron moving near the center of a large
electromagnet, and a stone tied to the end of a string that is twirled in a circle above
one’s head. In all of these cases if the object’s speed is constant, we define its motion
as uniform circular motion.

A particle that travels around a circle or a circular arc at constant (uniform) speed is said to
be undergoing UNIFORM CIRCULAR MOTION.

Not all circular motion is uniform. For example, a Hot Wheels® car or roller coaster
cart doing a loop-the-loop slows down near the top of the loop and speeds up near
the bottom. Analyzing loop-the-loop motions is more complex than analyzing uni-
form circular motion. For this reason, we start with the ideal case of uniform circular
motion.

Centripetal Force
Consider an object, such as an ice hockey puck, that glides along a frictionless surface.
Newton’s First Law tells us that you cannot change either its direction or its speed
without exerting a force on it. Giving the puck a kick along its line of motion will
change its speed but not its direction. How can you have the opposite effect? How
can you change the puck’s direction without changing its speed? To do this you have
to kick perpendicular to its direction of motion. This is an important statement re-
garding the accelerations that result when we apply a force.

If a nonzero net force acts on an object, at any instant it can be decomposed into a compo-
nent along the line of motion and a component perpendicular to the motion. The compo-
nent of the net force that is in line with the object’s motion produces only changes in the
magnitude of the object’s velocity (its speed). The component of the net force that is perpen-
dicular to the line of motion produces only changes in the direction of the object’s velocity.

What happens if you give the puck a series of short kicks but adjust their direc-
tions constantly so the kicks are always perpendicular to the current direction of
motion? Does this lead to circular motion? We can use Newton’s Second Law to an-
swer this question. To help visualize the net force needed to maintain uniform circular
motion, we consider a similar situation to that of the puck. Imagine twirling a ball at
the end of a string in a perfectly horizontal circle of radius r. In order to keep the ball
moving in a circle, you are constantly changing the direction of the force that the
string exerts on the spinning ball. That is, there must constantly be a component of the
net force that is perpendicular to the motion. The situation is complicated by the fact
that there are actually two forces on the ball as shown in Fig. 5-24—the string force
and the gravitational force.

To apply Newton’s Second Law to the analysis of this motion, we must find the
net force on the ball by taking the vector sum of the two forces acting on it. We start
by resolving the string force into horizontal and vertical components, as shown in Fig.
5-24. Since the ball is rotating horizontally and so does not move up or down in a
vertical direction, the net vertical force on it must be zero. Since the vertical force
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FIGURE 5-24 ■ If you spin a ball in a cir-
cle, the net force on the ball consists of a
central or centripetal force that lies
in a horizontal plane. It points toward the
center of the circular path.

F
: string

x

components cancel, the net force is just the horizontal component of the string force
vector, . If you carefully consider the situation depicted in Fig. 5-24, you should
be convinced of two important points. First, the direction of the net force on the ball
( ) is always perpendicular to the line of motion of the ball. This means that the
force results only in changes in the direction of the object’s velocity. It does not cause
changes in the object’s speed. Second, the direction of the net force, , is con-
stantly changing so that it always points toward the center of the circle in which the
ball moves. We use the adjective centripetal to describe any force with this character-
istic. The word centripetal comes from Latin and means “center-seeking.”

Centripetal is an adjective that describes any force or superposition of forces that is directed
toward the center of curvature of the path of motion.

It is important to note that the horizontal component of the string force is the
centripetal force involved in the ball’s motion. There is not another force, “the cen-
tripetal force,” that must be added to the free-body diagram in Fig. 5-24.

If you suddenly let go of the string, the ball will fly off along a straight path that is
tangent to the circle at the moment of release. This “linear flying off” phenomenon
provides evidence that you cannot maintain circular motion without a centripetal or
center-seeking force.

If we use a polar coordinate system with its origin at the center of the circular
path, we can consider the centripetal force to be a kind of anti-radial force that points
inward rather than outward in the direction of the circle’s radius vector .

Centripetal Acceleration
A very simple example of uniform circular motion is shown in Fig. 5-25. There, an air
hockey puck moves around in a circle at constant speed v while tied to a string looped
around a central peg. Is this accelerated motion? We can predict that it is for two
reasons:

• First, there is a net force on the puck due to the force exerted by the string. There
is no vertical acceleration, so the upward force of the air jets and the downward
gravitational force must cancel each other. According to Newton’s Second Law, if
there is a net force on an object there must be an acceleration.

• Second, although the puck moves with constant speed, the direction of the puck
velocity is continuously changing. Recall that acceleration is related to the
change in velocity (not speed), so we conclude that this motion is indeed acceler-
ated motion.

What direction is this acceleration? Newton’s Second Law tells us that the accel-
eration of an object of mass m is in the same direction as the force causing it and is

r:

F
: string

x

F
: string

x

F
: string
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FIGURE 5-25 ■ A sketch of the locations
of an air hockey puck of mass m moving
with constant speed v in a circular path of
radius r on a horizontal frictionless air
table. The centripetal force on the puck,

, is the pull from the string directed in-
ward toward the center of the circle traced
out by the path of the puck.

F
:cent
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FIGURE 5-26 ■ (a) Sketch based on a
video of an object moving counterclock-
wise on an airtable with constant speed in
a circular path with the velocity vectors
corresponding to its location at times t1

and t2. (b) Shows vectors and and
their sum 	 at the location of the object
at an average time of (t1 � t2)/2.

v:
�v:1v:2

given by Eq. 3-1, which is . This suggests that, in uniform circular motion, the
acceleration should also be directed radially inward. An acceleration that is directed
radially inward is called a centripetal acceleration.

Next we will use the general definition of acceleration, a knowledge of geometry,
and Newton’s Second Law to show that uniform circular motion requires a cen-
tripetal acceleration of constant magnitude that depends on the radius of the path of
a rotating object as well as its speed.

Proof that the acceleration is centripetal and has a constant magnitude: Let’s start
by considering the definition of average acceleration in Eq. 5-29,

(average acceleration).

Since 	t is a scalar, the acceleration must have the same direction as the difference
between the two velocity vectors, . As usual the difference between the veloc-
ity vectors is actually the vector sum of and the additive inverse of . Since the
speed is constant (as indicated by the equally-spaced, “frame-by-frame” position
markers in Fig. 5-26), the length of the velocity vectors and their additive inverses are
the same at times t1 and t2. Another consequence of the speed being constant is that
halfway between times t1 and t2, the puck is also midway between the two positions. If
we place the tails of and arrows at the midpoint between the two locations, we
find that the vector sum points toward the center of the circular path taken by the ob-
ject. This is shown in Fig. 5-26. So the acceleration is indeed centripetal (center-seek-
ing). Furthermore, we could have created the same construction using any two points
corresponding to other times that have the same difference 	t. It is obvious that the
direction of the velocity change would be different, but it would still point toward the
center. Furthermore, the magnitude of the 	v vector, and hence the acceleration mag-
nitude, would be constant.

How does the centripetal acceleration depend on speed and path radius? We will
prove that the magnitude of the acceleration of an object in uniform circular motion
is given by 

(magnitude of centripetal acceleration), (5-33)

where R is the radius of the circular path of the object and or v represents its
speed. Here we start our proof by considering an object in Fig. 5-27, which happens to
be moving in a circle in a counterclockwise direction at a constant speed. We choose
to describe its motion in polar coordinates. We define �1 as zero at time t1 and denote
its location as . The object then moves at constant speed v through an angle �2 � �
to a new location at time t2. Note that, in circular motion, velocity vectors are al-
ways perpendicular to their position vectors. This means that the angle between posi-
tion vectors and is the same as the angle between velocity vectors and .
Furthermore, we note that if then . Also, .
Thus the triangles shown in Fig. 5-27 are similar. According to Eq. 5-15 for small an-
gles, 	r � r(�2 � �1) � r�. So we can write the ratio of magnitudes as

.

We can solve the similar triangle ratios for the change in velocity and substitute into
the expression that defines the magnitude of acceleration in terms of the magnitude
of velocity change over a change in time to get 

.a �
	v
	t

�
(	r)(v)
(	t)(R)

	v
v

�
	r
R

r:2 � 	 r: � r:1v:2 � 	v: � v:1	v: � v:2 � v:1

v:2v:1r:2r:1
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FIGURE 5-27 ■ Between times t1 and t2, a
particle: (a) moves from location to .
The enclosed arc length 	s is curved and
slightly longer than the magnitude of the
vector displacement . (b) The velocity
vector, which is always perpendicular to
the position vector, changes direction but
not magnitude. (c) Because the velocity
vector is always perpendicular to the posi-
tion vectors, the angle � between them is
the same as the angle between the position
vectors.

� 	 r: �

r:2r:1

However, the speed v is given by the arc length 	s along the circular path divided by
the time interval, so that v � 	s/	t. In the limit where the change in time is very small,
the change in arc length 	s and the magnitude of the displacement 	r are essentially
the same, so

(when the time interval becomes small).

So, we can replace 	r/	t in the expression for acceleration with the particle speed v to
get

(centripetal acceleration). (5-34)

Determining Average Speed, Period, and 
Frequency of Rotation
Often, we want to know how long it will take an object undergoing uniform circular
motion to complete an entire revolution. For example, we might want to know how
long it takes a race car on a circular track to complete one lap. This calculation is sim-
plified because objects in uniform circular motion are moving at constant speeds. This
means that the magnitude of velocity is constant, and therefore average and instanta-
neous values are the same. We can then use the relation for the speed of an object,

The distance traveled in one revolution is just the circumference of the circle
(2
r). The time for a particle to go around a closed path exactly once has a special
name. It is called the period of revolution, or simply the period of the motion. The pe-
riod is represented with the symbol T, so,

(average speed).

Recalling that the magnitudes of the average and instantaneous velocities are the
same since the object is moving at constant speed, we can solve this expression for the
period:

(period of revolution). (5-35)T �
2
r

v

v � �v� �
distance traveled
time for the travel

�
2
r
T

v � �v� �
distance traveled
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Another way to describe the motion of a particle moving in a circle is to cite the
number of revolutions that the particle makes in a specific amount of time. This num-
ber of revolutions in a given time is known as the frequency, f, of revolution. From the
definitions we have given for period and frequency, they are related by the expression

(frequency).

Examples of Centripetal Forces
What are the forces involved in uniform circular motion? Suppose you were to un-
dergo two different types of uniform circular motion—traveling in a tight circle while
driving a car and orbiting the Earth in the space shuttle. You are experiencing cen-
tripetal forces that cause you to undergo a centripetal acceleration. In one case you
feel that you are being rammed against the car door. In the other case you feel
“weightless.” Let us examine the forces involved in these two examples of uniform
circular motion more closely.

Rounding a curve in a car : You are sitting in the center of the rear seat of a car
moving at a constant high speed along a flat road. When the driver suddenly turns left,
rounding a corner in a circular arc, you slide across the seat toward the right and then
jam against the car door for the rest of the turn. What is going on?

While the car moves in the circular arc, it is in uniform circular motion. That is, it
has an acceleration that is directed toward the center of the circle. By Newton’s
Second Law, , a force must cause this acceleration. Moreover, the force must
also be directed toward the center of the circle. Thus, it is a centripetal force, where
the adjective (centripetal) indicates the direction. In this example, the centripetal
force is a frictional force on the tires from the road. Without it, the turn would not be
possible. For example, imagine what would happen if you hit a patch of low-friction
ice while trying to make such a turn.

If you are to move in uniform circular motion along with the car, there must also
be a centripetal force on you as well. In our case, apparently the frictional force on
you from the seat was not great enough to make you go in a circle with the car. Thus,
the seat slid beneath you, until the right door of the car jammed into you. Then its
push on you provided the needed centripetal force on you, and you joined the car’s
uniform circular motion. For you, the centripetal force is the push from the car door.

Orbiting the Earth: This time you are a passenger in the space shuttle Atlantis. As
it (and you) orbit Earth, you float through your cabin. What is going on?

Both you and the shuttle are in uniform circular motion and have accelerations di-
rected toward the center of the orbital circle. Again by Newton’s Second Law, cen-
tripetal forces must cause these accelerations. This time the centripetal forces are grav-
itational pulls (the pull on you and the pull on the shuttle) by Earth, radially inward,
toward the center of the Earth. You feel weightless, even though the Earth is pulling
on you, because both you and the space shuttle are accelerating at the same rate. This
is like feeling lighter when you descend in the elevator discussed in Section 2-4.

Differences between centripetal forces: In both car and shuttle, you are in uniform cir-
cular motion, acted on by a centripetal force—yet your sensations in the two situations
are quite different. In the car, jammed up against the door, you are aware of being com-
pressed by the door. In the orbiting shuttle, however, you are floating around with no
sensation of any force acting on you. Why this difference? The difference is due to the
nature of the two centripetal forces. In the car, the centripetal force is due to the push on
the part of your body touching the car door. You can sense the compression on that part
of your body. In the shuttle, the centripetal force is due to Earth’s gravitational pull on
every atom of your body. Thus, there is no compression (or pull) on any one part of your
body and no sensation of force acting on you. (The sensation is said to be one of “weight-
lessness,” but that description is tricky. The Earth’s pull on you has certainly not disap-
peared and, in fact, is only a little less than it would be when you are on the ground.)

F
:

� ma:

f �
1
T
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Recall also the example of a centripetal force shown in Fig. 5-25. There a hockey
puck moves around a circle at constant speed v while tied to a string looped around a
central peg. In this case the centripetal force is the radially inward pull on the puck
from the string. Without that force, the puck would go off in a straight line instead of
moving in a circle.

In the examples discussed above, the source of the centripetal force was different
in each situation. The frictional force, the push of the right door of the car, the gravita-
tional attraction of Earth, and the pull of a string, were all centripetal forces that we
considered. This is an important point that was made earlier but is worth repeating. A
centripetal force is not a new kind of force. It is not an additional force. The name
merely indicates the direction in which the force acts. Under the right circumstances, a
frictional force, a gravitational force, the force from a car door or a string, or any
other kind of force can be centripetal. However, for any situation:

A centripetal force accelerates a body by changing the direction of the body’s velocity with-
out changing the body’s speed.

From Newton’s Second Law with the centripetal acceleration given by a � v2/r,
we can determine what magnitude of the centripetal force, , is needed to keep an
object moving in a circle at a constant speed v. This is given by

(magnitude of centripetal force). (5-36)

Because the speed v and radius r are constant, so are the magnitudes of the accel-
eration and the force. However, the directions of the centripetal acceleration and
force change continuously so as to always point toward the center of a circle. There-
fore, unlike the situation for ideal projectile motion, the motions in a chosen x and y
direction cannot be treated as independent of each other.

Centripetal Versus Linear Forces and Accelerations
We find it interesting to contrast the forces involved in projectile motion with those of
uniform circular motion. In both situations, a particle experiences a net force and
accelerates. In projectile motion, the net force is linear with only a vertical component
in rectangular coordinates. The acceleration results from a change in the magnitude of
vertical velocity vectors and no change in direction.

In uniform circular motion, we can describe the forces in polar coordinates. In
this case, we have a constant force pointing inward antiparallel to the r axis and no
force in the direction of increasing �. But since the r axis is changing direction at a
constant rate, the magnitude of the velocity is the same and its acceleration is due to
direction changes.

In summary, linear accelerations are due purely to changes in the magnitude of the velocity,
whereas uniform circular accelerations are due purely to changes in the direction of the
velocity.

READI NG EXERC IS E  5-9 : Some people say that a centripetal force throws objects
outward. For instance, in the example of the car rounding a turn in the discussion above, some
might say that the passenger is thrown right when the car turns left. Is it true that centripetal
forces throw objects outward? If so, explain how. If not, explain what is really going on. ■

F cent � ma �
mv2

r

F
: cent
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Little Casey Jones is getting an electric train set for Christmas. In
the box, he finds 8 pieces of track—4 pieces of straight track and 4
quarter-circle tracks. The straight tracks are 50 cm long, and the
quarter-circle tracks will form a circle of radius 50 cm if they are all
put together. Casey assembles them into the figure shown at the
right in Fig. 5-28. Casey sets the engine on the track and brings it up
to a constant speed. The engine has a mass M, and once it is up to
speed, it takes 2.0 seconds to make one circuit of the track (at the
speed Casey likes to use).

(a) Without actually calculating values, compare the instantaneous
velocities of the engine and when it is at points A, B,
C, and D.

S O L U T I O N ■ Since the engine is traveling at a constant speed,
this tells us that the magnitudes of these four velocity vectors are all
the same; , the speed at which the
engine is moving.

However, each of these four velocity vectors has a different di-
rection from each of the other three. A Key  Idea here is that at
each instant in time, the engine’s velocity vector points in the direc-
tion that the engine is moving. We are not told whether the engine is
going around the track in a clockwise or a counterclockwise sense.
Let’s say it is going around in a clockwise sense, as shown in Fig. 5-29.

A second Key  I dea is that the velocity vector is always tan-
gent to the path that the object is following. Thus, would point
upward along the track; would point upward and to the right,
tangent to the curved track; would point downward, antiparallel
to ; and would point downward and to the left, antiparallel to

. The directions of these four vectors are shown in Fig. 5-29.
(Answer)

v:A

v:Bv:C

v:D

v:A

v:C

� v:A � � � v:B � � � v:C � � � v:D � � v

v:Dv:A, v:B, v:C,

(b) Calculate the average velocity of the engine, , for the time
interval it takes to go from point C to point D.

S O L U T I O N ■ The Ke y  I d e a here is that the average velocity
is given by Eq. 5-22:

From the dimensions of the track given in Fig. 5-28, we see that
point D is 50 cm (from the straight segment) � 100 cm (from the
two curved segments added together) � 150 cm to the right of
point C. We also see that the distance along the track from C to D is
one-half of the length of one full circuit of the track. Since the en-
gine is traveling at a constant speed, this means that it must take
one-half of the time for one full circuit to go from C to D. Thus
	tCD � So the magnitude of the engine’s average
velocity here is

directed to the right in Fig. 5-29. (Answer)

(c) Calculate the instantaneous acceleration and of the en-
gine when it is at points A and C.

S O L U T I O N ■ The Ke y  I d e a here is that the instantaneous
acceleration is The acceleration will be zero only when
both the magnitude and the direction of the velocity remain con-
stant. If either the magnitude or the direction of the velocity are
changing, then the acceleration will not be zero.

As the engine goes around the track, we are told that the mag-
nitude of its velocity remains constant. On a straight track segment,
such as at point C, the direction of travel of the engine is also con-
stant, so (Answer)

On a curve, such as point A, the engine’s direction of travel is
changing, since it is turning right. In this case since the train is mo-
mentarily moving in a circle, we can use the expression for cen-
tripetal acceleration (Eq. 5-34) to determine that and
that is directed down and to the right, as shown in Fig. 5-29.

To calculate the magnitude of , we note that the total length
of track is 
so that

and since the radius of the circle the train is momentarily moving in
is 50 cm,

directed inward toward the center of the curve. (Answer)

aA �
v2

A

rA
�

(257 cm/s)2

50 cm
� 1322 cm/s2,

vA �
514 cm

2 s
� 257 cm/s,

2
r � 4L � (2
 � 50 cm) � (4 � 50 cm) � 514 cm,
a:c

a:A

�a:A� � v2
A/rA

a:C � 0.

a: � dv:/dt.

a:Ca:A

� �v:�CD � �
� 	r:CD �
	tCD

�
150 cm

1.0 s
� 150 cm/s,

1
2 (2.0 s) � 1.0 s.

�v:�CD �
	 r:CD

	tCD
�

r:D � r:C

tD � tC
.

�v:�CD

TOUCHSTONE EXAMPLE 5-9: Little Casey Jones
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FIGURE 5-28 ■ Little Casey Jones’ new train set.
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(aC = 0)

FIGURE 5-29 ■ The directions
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Problems 131

SEC. 5-3 ■ ANALYZING IDEAL PROJECTILE MOTION

In some of these problems, exclusion of the effects of the air is un-
warranted but helps simplify the calculations.

1. Rifle and Bullet A rifle is aimed horizontally at a target 30 m
away. The bullet hits the target 1.9 cm below the aiming point. What
are (a) the bullet’s time of flight and (b) its speed as it emerges
from the rifle?

2. A Small Ball A small ball rolls horizontally off the edge of a
tabletop that is 1.20 m high. It strikes the floor at a point 1.52 m
horizontally away from the edge of the table. (a) How long is the
ball in the air? (b) What is its speed at the instant it leaves the
table?

3. Baseball A baseball leaves a pitcher’s hand horizontally at a
speed of 161 km/h. The distance to the batter is 18.3 m. (Ignore the
effect of air resistance.) (a) How long does the ball take to travel
the first half of that distance? (b) The second half? (c) How far does
the ball fall freely during the first half? (d) During the second half?
(e) Why aren’t the quantities in (c) and (d) equal?

4. Dart A dart is thrown horizontally with an initial speed of
10 m/s toward point P, the bull’s-eye on a dart board. It hits at point
Q on the rim, vertically below P 0.19 s later. (a) What is the distance
PQ? (b) How far away from the dart board is the dart released?

5. An Electron An electron, with an initial horizontal velocity of
magnitude 1.00 � 109 cm/s, travels into the region between two hor-
izontal metal plates that are electrically charged. In that region, it
travels a horizontal distance of 2.00 cm and has a constant down-
ward acceleration of magnitude 1.00 � 1017 cm/s2 due to the
charged plates. Find (a) the time required by the electron to travel
the 2.00 cm and (b) the vertical distance it travels during that time.
Also find the magnitudes of the (c) horizontal and (d) vertical ve-
locity components of the electron as it emerges.

6. Mike Powell In the 1991 World Track
and Field Championships in Tokyo, Mike
Powell (Fig. 5-30) jumped 8.95 m, break-
ing the 23-year long-jump record set by
Bob Beamon by a full 5 cm. Assume that
Powell’s speed on takeoff was 9.5 m/s
(about equal to that of a sprinter) and that
g � 9.80 m/s2 in Tokyo. How much less
was Powell’s horizontal range than the
maximum possible horizontal range (ne-
glecting the effects of air) for a particle
launched at the same speed of 9.5 m/s?

7. Catapulted A stone is catapulted at
time t1 � 0, with an initial velocity of mag-
nitude 20.0 m/s and at an angle of 40.0° above the horizontal. What
are the magnitudes of the (a) horizontal and (b) vertical compo-
nents of its displacement from the catapult site at t2 � 1.10 s? Re-
peat for the (c) horizontal and (d) vertical components at t3 � 1.80 s,
and for the (e) horizontal and (f) vertical components at t4 � 5.00 s.

8. Golf Ball A golf ball is struck at ground level. The speed of the
golf ball as a function of the time is shown in Fig. 5-31, where t � 0
at the instant the ball is struck. (a) How far does the golf ball travel

horizontally before returning to
ground level? (b) What is the maxi-
mum height above ground level at-
tained by the ball?

9. Fast Bullets A rifle that shoots bul-
lets at 460 m/s is to be aimed at a target
45.7 m away and level with the rifle.
How high above the target must the ri-
fle barrel be pointed so that the bullet
hits the target?

10. Slow-Pitch The pitcher in a slow-pitch softball game releases
the ball at a point 3.0 ft above ground level. A stroboscopic plot of
the position of the ball is shown in Fig. 5-32, where the readings are
0.25 s apart and the ball is released at t � 0. (a) What is the initial
speed of the ball? (b) What is the speed of the ball at the instant it
reaches its maximum height above ground level? (c) What is that
maximum height?

FIGURE 5-32 ■ Problem 10.

11. Maximum Height Show that the maximum height reached by a
projectile is ymax � (v1 sin �1)2/2g.

12. You Throw a Ball You throw a
ball toward a wall with a speed of
25.0 m/s and at an angle of 40.0°
above the horizontal (Fig. 5-33). The
wall is 22.0 m from the release point
of the ball. (a) How far above the re-
lease point does the ball hit the
wall? (b) What are the horizontal
and vertical components of its veloc-
ity as it hits the wall? (c) When it
hits, has it passed the highest point
on its trajectory?

13. Shot into the Air A ball is shot from the ground into the air. At
a height of 9.1 m. Its velocity is observed to be � (7.6 m/s) �
(6.1 m/s) ( horizontal, upward). (a) To what maximum height
does the ball rise? (b) What total horizontal distance does the ball
travel? What are (c) the magnitude and (d) the direction of the
ball’s velocity just before it hits the ground?

14. Two Seconds Later Two seconds after being projected from
ground level, a projectile is displaced 40 m horizontally and 53 m ver-
tically above its point of projection. What are the (a) horizontal and
(b) vertical components of the initial velocity of the projectile? (c) At
the instant the projectile achieves its maximum height above ground
level, how far is it displaced horizontally from its point of projection? 

ĵîĵ
îv:FIGURE 5-30 ■
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15. Football Player A football player punts the football so that it
will have a “hang time” (time of flight) of 4.5 s and land 46 m away.
If the ball leaves the player’s foot 150 cm above the ground, what
must be (a) the magnitude and (b) the direction of the ball’s initial
velocity?

16. Launching Speed The launching speed of a certain projectile is
five times the speed it has at its maximum height. Calculate the ele-
vation angle �1 at launching.

17. Airplane and Decoy A certain
airplane has a speed of 290.0 km/h
and is diving at an angle of 30.0° be-
low the horizontal when the pilot re-
leases a radar decoy (Fig. 5-34). The
horizontal distance between the re-
lease point and the point where the
decoy strikes the ground is 700 m.
(a) How long is the decoy in the air?
(b) How high was the released
point?

18. Soccer Ball A soccer ball is
kicked from the ground with an ini-
tial speed of 19.5 m/s at an upward angle of 45°. A player 55 m away
in the direction of the kick starts running to meet the ball at that in-
stant. What must be his average speed if he is to meet the ball just
before it hits the ground? Neglect air resistance.

19. Stairway A ball rolls horizontally off the top of a stairway with
a speed of 1.52 m/s. The steps are 20.3 cm high and 20.3 cm wide.
Which step does the ball hit first?

20. Volleyball For women’s volleyball the top of the net is 2.24 m
above the floor and the court measures 9.0 m by 9.0 m on each side
of the net. Using a jump serve, a player strikes the ball at a point
that is 3.0 m above the floor and a horizontal distance of 8.0 m from
the net. If the initial velocity of the ball is horizontal, (a) what mini-
mum magnitude must it have if the ball is to clear the net and (b)
what maximum magnitude can it have if the ball is to strike the
floor inside the back line on the other side of the net?

21. Airplane An airplane, diving at an angle of 53.0° with the verti-
cal, releases a projectile at an altitude of 730 m. The projectile hits
the ground 5.00 s after being released. (a) What is the speed of the
aircraft? (b) How far did the projectile travel horizontally during its
flight? What were the (c) horizontal and (d) vertical components of
its velocity just before striking the ground?

22. Tennis Match During a tennis match, a player serves the ball at
23.6 m/s, with the center of the ball leaving the racquet horizontally
2.37 m above the court surface. The net is 12 m away and 0.90 m
high. When the ball reaches the net, (a) does the ball clear it and (b)
what is the distance between the center of the ball and the top of
the net? Suppose that, instead, the ball is served as before but now
it leaves the racquet at 5.00° below the horizontal. When the ball
reaches the net, (c) does the ball clear it and (d) what now is the
distance between the center of the ball and the top of the net?

23. The Batter A batter hits a pitched ball when the center of the
ball is 1.22 m above the ground. The ball leaves the bat at an angle
of 45° with the ground. With that launch, the ball should have a hor-
izontal range (returning to the launch level) of 107 m. (a) Does the
ball clear a 7.32-m-high fence that is 97.5 m horizontally from the
launch point? (b) Either way, find the distance between the top of
the fence and the center of the ball when the ball reaches the fence.

24. Detective Story In a detective story, a body is found 4.6 m from
the base of a building and 24 m below an open window. (a) Assum-
ing the victim left that window horizontally, what was the victim’s
speed just then? (b) Would you guess the death to be accidental?
Explain your answer.

25. Football Kicker A football kicker can give the ball an initial
speed of 25 m/s. Within what two elevation angles must he kick the
ball to score a field goal from a point 50 m in front of goalposts
whose horizontal bar is 3.44 m above the ground? (If you want to
work this out algebraically, use sin2� � cos2� � 1 to get a relation
between tan2� and 1/cos2�, substitute, and then solve the resulting
quadratic equation.)

SEC. 5-4 ■ DISPLACEMENT IN TWO DIMENSIONS

26. Position Vector for an Electron The position vector for an elec-
tron is � (5.0 m) î � (3.0 m) . (a) Find the magnitude of . (b)
Sketch the vector on a coordinate system.

27. Watermelon Seed A watermelon seed has the following coordi-
nates: x � �5.0 m and y � 8.0 m. Find its position vector (a) in
unit-vector notation and as (b) a magnitude and (c) an angle rela-
tive to the positive direction of the x axis. (d) Sketch the vector on a
coordinate system. If the seed is moved to the coordinates (3.00 m,
0 m), what is its displacement (e) in unit-vector notation and as (f) a
magnitude and (g) an angle relative to the positive direction of the
x axis?

28. Radar Station A radar station detects an airplane approaching
directly from the east. At first observation, the range to the plane is
360 m at 40° above the horizon. The airplane is tracked for another
123° in the vertical east–west plane, the range at final contact being
790 m. See Fig. 5-35. Find the displacement of the airplane during
the period of observation.

FIGURE 5-35 ■ Problem 28.

29. Position Vector for a Proton The position vector for a proton 
is initially 1 � (5.0 m)î � (�6.0 m) and then later is 2 �
(�2.0 m)î � (6.0 m) . (a) What is the proton’s displacement vector,
and (b) to what axis (if any) is that vector parallel?

30. Kidnapped You are kidnapped by armed political-science ma-
jors (who are upset because you told them that political science is
not a real science). Although blindfolded, you can tell the speed of
their car (by the whine of the engine), the time of travel (by men-
tally counting off seconds), and the direction of travel (by turns
along the rectangular street system). From these clues, you know
that you are taken along the following course: 50 km/h for 2.0
min, turn 90° to the right, 20 km/h for 4.0 min, turn 90° to the
right, 20 km/h for 60 s, turn 90° to the left, 50 km/h for 60 s, turn
90° to the right, 20 km/h for 2.0 min, turn 90° to the left, 50 km/h
for 30 s. At that point, (a) how far are you from your starting point
and (b) in what direction relative to your initial direction of travel
are you?

ĵ
r:ĵr:

r:ĵr:
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31. Drunk Skunk Figure 5-36
shows the path taken by my drunk
skunk over level ground, from initial
point i to final point f. The angles are
�1 � 30.0°, �2 � 50.0°, and �3 �
80.0°, and the distances are d1 �
5.00 m, d2 � 8.00 m, and d3 � 12.0
m. In magnitude-angle notation,
what is the skunk’s displacement
from i to f ?

SEC. 5-5 ■ AVERAGE AND

INSTANTANEOUS VELOCITY

32. Squirrel Path Figure
5-37 gives the path of a
squirrel moving about
on level ground, from
point A (at time t1 � 0),
to points B (at t2 � 5.00
min), C (at t3 � 10.0
min), and finally D (at
t4 � 15.0 min). Consider
the average velocities of
the squirrel from point
A to each of the other
three points. (a) Of those
three average velocities,
which has the least mag-
nitude, and what is the
average velocity in magnitude-angle notation? (b) Which has the
greatest magnitude, and what is the average velocity in magnitude-
angle notation?

33. Train A train moving at a constant speed of 60.0 km/h moves
east for 40.0 min. then in a direction 50.0° east of north for
20.0 min, and finally west for 50.0 min. What is the average velocity
of the train during this trip?

34. Ion’s Position An ion’s position vector is initially 1 �
(5.0 m)î � (�6.0 m) , and 10 s later it is 2 � (�2.0 m)î � (8.0 m) .
What is its average velocity during the 10 s?

35. Electron’s Position The position of an electron is given by
(a) What is the elec-

tron’s velocity (t)? At t � 2.00 s, what is (b) in unit-vector nota-
tion and as (c) a magnitude and (d) an angle relative to the positive
direction of the x axis?

36. Oasis Oasis A is 90 km west of oasis B. A camel leaves oasis A
and during a 50 h period walks 75 km in a direction 37° north of
east. The camel then walks toward the south a distance of 65 km in
a 35 h period after which it rests for 5.0 h. (a) What is the camel’s
displacement with respect to oasis A after resting? (b) What is the
camel’s average velocity from the time it leaves oasis A until it fin-
ishes resting? (c) What is the camel’s average speed from the time it
leaves oasis A until it finishes resting? (d) If the camel is able to go
without water for five days (120 h), what must its average velocity
be after resting if it is to reach oasis B just in time?

37. Jet Ski You are to ride a jet-cycle over a lake, starting from rest
at point 1: First, moving at 30° north of due east:

1. Increase your speed at 0.400 m/s2 for 6.00 s.

2. With whatever speed you then have, move for 8.00 s.
3. Then slow at 0.400 m/s2 for 6.00 s.

Immediately next, moving due west:

4. Increase your speed at 0.400 m/s2 for 5.00 s.
5. With whatever speed you then have, move for 10.0 s.
6. Then slow at 0.400 m/s2 until you stop.

In magnitude-angle notation, what then is your average velocity for
the trip from point 1?

SEC. 5-6 ■ AVERAGE AND INSTANTANEOUS ACCELERATION

38. A Proton A proton initially has 1 � (4.0 m/s)î � (�2.0 m/s)
and then 4.0 s later has 2 � (�2.0 m/s)î � (�2.0 m/s) . For that 
4.0 s. what is the proton’s average acceleration � � (a) in unit-vector
notation and (b) as a magnitude and a direction?

39. Particle in xy Plane The position of a particle moving in
an xy plane is given by 

. Calculate (a) , (b) , and (c) for 
t � 2.00 s.

40. Iceboat An iceboat sails across the surface of a frozen lake with
constant acceleration produced by the wind. At a certain instant the
boat’s velocity is 1 � (6.30 m/s) î � (�8.42 m/s) . Three seconds
later, because of a wind shift, the boat is instantaneously at rest.
What is its average acceleration for this 3 s interval?

41. Particle Leaves Origin A particle leaves the origin with an 
initial velocity 1 � (3.00 m/s)î and a constant acceleration �
(�1.00 m/s2)î � (�0.500 m/s2) . When the particle reaches its 
maximum x coordinate, what are (a) its velocity and (b) its position
vector?

42. Particle A Particle B Particle A
moves along the line y � 30 m with
a constant velocity of magnitude
3.0 m/s and directed parallel to the
positive x axis (Fig. 5-38). Particle B
starts at the origin with zero speed
and constant acceleration (of mag-
nitude 0.40 m/s2) at the same instant
that particle A passes the y axis.
What angle � between and the
positive y axis would result in a colli-
sion between these two particles? (If
your computation involves an equa-
tion with a term such as t 4, substitute u � t 2 and then consider solv-
ing the resulting quadratic equation to get u.)

43. Particle Starts from Origin A particle starts from the origin at
t � 0 with a velocity of 1 � (8.0 m/s) and moves in the xy plane
with a constant acceleration of � (4.0 m/s2)î � (2.0 m/s2) . At the
instant the particle’s x coordinate is 29 m, what are (a) its y coordi-
nate and (b) its speed?

44. The Wind and a Pebble A moderate wind accelerates a smooth
pebble over a horizontal xy plane with a constant acceleration

.

At time t � 0, its velocity is (4.00 m/s) î. In magnitude-angle nota-
tion, what is its velocity when it has been displaced by 12.0 m paral-
lel to the x axis?

a: � (5.00 m/s2) î � (7.00 m/s2) ĵ

ĵa:
ĵv:

a:

a:

v:

ĵ
a:v:

ĵv:

a:v:r:[(6.00 m) � (7.00 m/s4) t 4] ĵ

r:(t) � [(2.00 m/s3) t 3 � (5.00 m/s) t] î �
r:

a:
ĵv:

ĵv:

v:v:
r:(t) � [(3.00 m/s) t] î � [(�4.00 m/s2) t 2] ĵ.
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45. Particle Acceleration A particle moves so that its position as a
function of time is . Write expressions
for (a) its velocity and (b) its acceleration as functions of time.

SEC. 5-7 ■ UNIFORM CIRCULAR MOTION

46. Sprinter What is the magnitude of the acceleration of a sprinter
running at 10 m/s when rounding a turn with a radius of 25 m?

47. Sprinter on Circular Path A sprinter runs at 9.2 m/s around a
circular track with a centripetal acceleration of magnitude 3.8 m/s2.
(a) What is the track radius? (b) What is the period of the motion?

48. Rotating Fan A rotating fan completes 1200 revolutions every
minute. Consider the tip of a blade, at a radius of 0.15 m. (a)
Through what distance does the tip move in one revolution? What
are (b) the tip’s speed and (c) the magnitude of its acceleration? (d)
What is the period of the motion?

49. An Earth Satellite An Earth satellite moves in a circular orbit
640 km above Earth’s surface with a period of 98.0 min. What are
(a) the speed and (b) the magnitude of the centripetal acceleration
of the satellite?

50. Merry-Go-Round A carnival merry-go-round rotates about a
vertical axis at a constant rate. A passenger standing on the edge of
the merry-go-round has a constant speed of 3.66 m/s. For each of
the following instantaneous situations, state how far the passenger
is from the center of the merry-go-round, and in which direction.
(a) The passenger has an acceleration of 1.83 m/s2, east. (b) The pas-
senger has an acceleration of 1.83 m/s2, south.

51. Astronaut An astronaut is rotated in a horizontal centrifuge at
a radius of 5.0 m. (a) What is the astronaut’s speed if the centripetal
acceleration has a magnitude of 7.0g? (b) How many revolutions
per minute are required to produce this acceleration? (c) What is
the period of the motion?

52. TGV The fast French train known as the TGV (Train à Grande
Vitesse) has a scheduled average speed of 216 km/h. (a) If the train
goes around a curve at that speed and the magnitude of the acceler-
ation experienced by the passengers is to be limited to 0.050g, what
is the smallest radius of curvature for the track that can be toler-
ated? (b) At what speed must the train go around a curve with a
1.00 km radius to be at the acceleration limit?

53. Object on the Equator (a) What is the magnitude of the cen-
tripetal acceleration of an object on Earth’s equator due to the ro-
tation of Earth? (b) What would the period of rotation of Earth
have to be for objects on the equator to have a centripetal accelera-
tion with a magnitude of 9.8 m/s2?

54. Supernova When a large star becomes a supernova, its core
may be compressed so tightly that it becomes a neutron star, with a
radius of about 20 km (about the size of the San Francisco area). If
a neutron star rotates once every second, (a) what is the speed of a

particle on the star’s equator and (b) what is the magnitude of the
particle’s centripetal acceleration? (c) If the neutron star rotates
faster, do the answers to (a) and (b) increase, decrease, or remain
the same?

55. Ferris Wheel A carnival Ferris wheel has a 15 m radius and
completes five turns about its horizontal axis every minute. (a)
What is the period of the motion? What is the centripetal accelera-
tion of a passenger at (b) the highest point and (c) the lowest point,
assuming the passenger is at a 15 m radius?

56. A Particle at Constant Speed A
particle P travels with constant
speed on a circle of radius r � 3.00
m (Fig. 5-39) and completes one rev-
olution in 20.0 s. The particle passes
through O at time t � 0. State the
following vectors in magnitude-an-
gle notation (angle relative to the
positive direction of x). With respect
to O, find the particle’s position vec-
tor at the times t of (a) 5.00 s,
(b) 7.50 s, and (c) 10.0 s. (d) For the 
5.00 s interval from the end of the
fifth second to the end of the tenth
second, find the particle’s displacement. (e) For the same interval,
find its average velocity. Find its velocity at (f) the beginning and
(g) the end of that 5.00 s interval. Next, find the acceleration at 
(h) the beginning and (i) the end of that interval.

57. Stone on a String A boy whirls a stone in a horizontal circle
of radius 1.5 m and at height 2.0 m above level ground. The string
breaks, and the stone flies off horizontally and strikes the ground af-
ter traveling a horizontal distance of 10 m. What is the magnitude of
the centripetal acceleration of the stone while in circular motion?

58. Cat on a Merry-Go-Round A cat rides a merry-go-round while
turning with uniform circular motion. At time t1 � 2.00 s, the cat’s
velocity is

measured on a horizontal xy coordinate system. At time t2 � 5.00 s,
its velocity is

What are (a) the magnitude of the cat’s centripetal acceleration and
(b) the cat’s average acceleration during the time interval t2 � t1?

59. Center of Circular Path A particle moves horizontally in uni-
form circular motion, over a horizontal xy plane. At one instant, it
moves through the point at coordinates (4.00 m, 4.00 m) with a ve-
locity of (�5.00 m/s) î and an acceleration of (12.5 m/s2)ĵ. What are
the coordinates of the center of the circular path?

v:2 � (�3.00 m/s)î � (�4.00 m/s)ĵ.

v:1 � (3.00 m/s)î � (4.00 m/s)ĵ,

r:(t) � (1 m) î � [(4 m/s2) t 2] ĵ
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60. Keeping Mars in Orbit Although the planet Mars orbits the
Sun in a Kepler ellipse with an eccentricity of 0.09, we can approxi-
mate its orbit by a circle. If you have faith in Newton’s laws then
you must conclude that there is an invisible centripetal force hold-
ing Mars in orbit. The data on the orbit of Mars around the sun are
shown in the Fig. 5-40.

FIGURE 5-40 ■ Problem 60.

(a) Calculate the magnitude of the centripetal force needed to hold
Mars in its circular orbit. Please use the proper number of signifi-
cant figures. (b) What is the direction of the force as Mars orbits
around the Sun? (c) What is the most likely source of this force?
(d) Could this force have anything in common with the force that
attracts objects to the Earth?

61. Playing Catch A boy and a girl are tossing an
apple back and forth between them. Figure 5-41
shows the path the apple followed when watched
by an observer looking on from the side. The
apple is moving from left to right. Five points are
marked on the path. Ignore air resistance.
(a) Make a copy of this figure. At each of the
marked points, draw an arrow that indicates the
magnitude and direction of the force on the apple when it passes
through that point. (b) Make a second copy of the figure. This time, at
each marked point, place an arrow indicating the magnitude and di-
rection of the apple’s velocity at the instant it passes that point.
(c) Did you change your answer to the first question after solving the
second? If so, explain what you were thinking at first and why you
changed it.

62. The Cut Pendulum A pendulum (i.e., a string with a ball at the
end) is set swinging by holding it at the point marked A in Fig. 5-42a

and releasing it. The x and y coordinates
are shown with the origin at the crossing
point of the axes and the positive direc-
tions indicated by the arrowheads. (a) Dur-
ing one swing, the string breaks exactly at
the bottom-most point of the swing (the
point labeled B in the figure) as the ball is
moving from A to B toward C. Make a
copy of this figure. Using solid lines, sketch
on the figure the path of the ball after the
string has broken. Sketch qualitatively the x and y coordinates of the
ball and the x- and y-components of its velocity on graphs like those
shown in Fig. 5-42b. Take t � 0 to be the instant the string breaks. (b)
During a second trial, the string breaks again, but this time at the top-
most point of the swing (the point labeled C in the figure). Using
dashed lines, sketch on the figure the path of the ball after the string
has broken. Sketch qualitatively the x and y coordinates of the ball
and the x- and y-components of its velocity on graphs like those
shown in Fig. 5-42b.Take t � 0 to be the instant the string breaks.

FIGURE 5-42b ■ Problem 62.
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distance from the sun (= radius of circular orbit)

<v> = 24.13 km/s (mean orbital speed)

FIGURE 5-41 ■

Problem 61.
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63. Projectile Graphs A pop-
gun is angled so that it shoots a
small dense ball through the air
as shown in Fig. 5-43a.

(a) Sketch the path that the
ball will follow on the figure.
For the graphs shown in Fig. 5-
43b, the horizontal axis repre-
sents the time. The vertical axis
is unspecified. For each of the
following quantities, select the
letter of the graph that could
provide a correct graph of the quantity for the ball in the situation
shown (if the vertical axis were assigned the proper units). Use the
x and y coordinates shown in the picture. The arrow heads point in
the positive direction. If none of the graphs could work, write N.
The time graphs begin just after the ball leaves the gun.

(b) y coordinate
(c) x-component of the velocity
(d) y-component of the net force
(e) y-component of the velocity
(f) x coordinate
(g) y-component of the acceleration
(h) x-component of the net force

FIGURE 5-43b ■ Problem 63.

64. Shoot and Drop In the demon-
stration discussed in Section 5-2, two
identical objects were dropped, one
straight down and the other shot off
to the side by a spring. Both objects
seemed to hit the ground at about
the same time. Explain why this hap-
pens in terms of the physics we have
learned. Does it matter how fast we
shoot the one launched sideways?
How would the outcome of this ex-
periment change if the objects had
different masses? (Hint: See Fig. 5-5.)

65. Billiards over the Edge Two identical billiard balls are labeled
A and B. Maryland Fats places ball A at the very edge of the table.

He places ball B at the other side.
He strikes ball B with his cue so
that it flies across the table and off
the edge. As it passes A, it just
touches ball A lightly, knocking it
off. Figure 5-45a shows the balls
just at the instant they have left
the table. Ball B is moving with a
speed v1, and ball A is essentially
at rest.

(a) Which ball do you think will hit
the ground first? Explain your rea-
sons for thinking so.

Figure 5-45b shows a number of graphs of a quantity vs. time.
In each case, the horizontal axis is the time axis. The vertical axis is
unspecified. For each of the items below, select which graph could
be a plot of that quantity vs. time. If none of the graphs are possible,
write N. The time axes are taken to have t � 0 at the instant both
balls leave the table. Use the x and y axes shown in the figure.
(b) the x-component of the velocity of ball B? (c) the y-component
of the velocity of ball A? (d) the y-component of the acceleration of
ball A? (e) the y-component of the force on ball B? (f) the y-com-
ponent of the force on ball A? (g) the x-component of the velocity
of ball A? (h) the y-component of the acceleration of ball B?

FIGURE 5-45b ■ Problem 65.
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66. Properties of a Projectile A heavy
projectile is thrown and follows a path
something like the one shown in Fig. 5-
46. For each of the quantities in the list
(a)–(d) below, select a direction from
the list (A–G) that describes it. If you
think that none of the choices apply,
write N.

Quantities:

(a) The projectile’s velocity when it is at the highest point
(b) The force on the projectile when it is part way up
(c) The force on the projectile when it is at the highest point
(d) The projectile’s acceleration when it is part way down

Choices:

A. Points straight up

B. Points straight down

C. Points directly to the left

D. Points directly to the right

E. Is equal to zero

F. Points somewhat upward and to the right

G. Points somewhat upward and to the left

N. None of the above

67. Passing by the Spanish Guns In C. S. Forster’s novel Lieutenant
Hornblower (set in the early 1800s), a British naval vessel tries to
sneak by a Spanish garrison. The ship passes as far away from the
Spanish guns as it can—a distance s. The Spanish gunner knows
that his gun has a muzzle velocity whose magnitude is equal to v1.
(a) Once the gun is fired, what controls the motion of the cannon-
ball? Write the equations that determine the vector position of the
cannonball after it leaves the cannon. You may ignore air resis-
tance. (b) Suppose the gunner inclines his gun upward at an angle �
to the horizontal. Solve the equations you have written in part (a)
to obtain expressions that can be evaluated to give the position of
the cannonball at any time, t. (c) If the gunner wants the cannonball
to hit the ship, he must choose his angle correctly. Explain how he
can calculate the correct angle. (Again, you may ignore air resis-
tance.) (d) If the muzzle velocity of the cannonball has a magnitude
of 100 m/s and the ship is a distance of half a kilometer away, find
the angle the gunner should use. (Take g to be 10 m/s2.)

FIGURE 5-47 ■ Problem 67.

You may need one or more of the following trigonometric identities
(i.e., these are true for all angles, �):

sin2 � � cos2 � � 1 cos2 � � sin2 � � cos2�

tan � � (sin �)/(cos �) 2 sin � cos � � sin2�

68. Who Killed Adam Able? A person shoved out of a window
makes just as good a projectile as a golf ball rolling off a table.

Read the murder mystery entitled A Damnable Man that follows.
In order to solve the crime, read the section on projectile motion in
your text carefully and reason out for yourself what variables might
be important in solving the crime. In fact, not all of the information
given in the mystery is relevant and some information, which you
can find for yourself by observation and experiment, is missing.
Solve the crime by presenting a clear explanation of the equations
and calculations you used. (Hint: If you are in the physics lab and
shove your lab partner fairly hard, you will likely find that your
partner ends up with a speed of about 2 m/s.)

A Damnable Man
by Kevin Laws

It is a warm, quiet, humid night in the city—the traffic has died
away and there isn’t even a cooling breeze. There is a busy hotel
that is so well built that sounds don’t carry through the windows.
The hotel has impressively large rooms. This is obvious from the
outside because there is more space between floors and rooms than
normal. The rooms appear to have 14-foot-high ceilings, nice plate
glass windows that slide open, and fully two-foot-thick floors for
ducting and sound insulation. This is the type of hotel that people
like to stay at when someone else is paying the bill.

Outside the hotel, a man is speaking quietly with the doorman,
then begins to measure the plush runway carpet for replacement.
He is reeling out the tape measure between the hotel and the curb
when a scream breaks the quiet. Looking up, he sees a man falling
toward him. Stunned, he drops the tape measure and runs for the
safety of the hotel. The doorman stands, horrified, as the man com-
pletes his fall with a sickening sound, ensuring that the carpet must
be replaced. At intense times, people can think of the strangest
things, and the carpet-man finds this to be true . . . all he can think
of are the bloodstains left on his tape measure. Even if they are
cleaned off, he doesn’t think he can use it again without thinking of
tonight. Even measuring with another will be hard, and 18 feet will
be indelibly marked in his memory—that’s where the blood stains
are.

The police arrive and quickly conclude that it is not a suicide—
among the victim’s personal effects, they find pictures and records
that indicate he has been blackmailing four other occupants of the
hotel. He also has bruises on his shins where the ledge at the bot-
tom of the tall hotel window would have hit them; he must have
been pushed pretty hard. Adam Able is the dead man’s name, as it
appears on the driver’s license in his wallet. His license indicates
that Adam was 5' 11" tall and weighed 160 lb. He has been black-
mailing Adrianna Myers, a frail widow in Room 356; Steven Caine,
a newspaper reporter in Room 852; Mark Johnson, a body builder
in Room 1956; and Stanley Michaels, an actor in Room 2754. All of
the suspects admit they were in their rooms at the time of the mur-
der. WHO KILLED ADAM ABLE?

69. Digital Projectile One In this problem and the one that follows
you will be asked to use VideoPoint, VideoGraph, or some other
video analysis program and a spreadsheet to explore and analyze
the nature of a projectile launch depicted in a digital movie. If you
use VideoPoint, one appropriate movie has filename PASCO106. In
this movie a small ball of mass 9.5 g is launched at an angle, �, with
respect to the horizontal. Your instructor may suggest an alterna-
tive file for your use.

Open the movie PASCO106. For simplicity you might want to set
the origin in the video analysis at the location of the ball at time t �
0. Also, for immediate visual feedback on your results you should

FIGURE 5-46 ■

Problem 66.
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use the View Window to set up graphs of x vs. t and y vs. t before
you begin the analysis.

(a) What is the approximate launch angle �? Measure this angle
with respect to the horizontal. Explain how you found the angle.
(b) Explain in which direction, x or y, the ball has a constant veloc-
ity and cite the real evidence (not just theoretical) for this constant
velocity. (Hint: Use markers of various sorts on the digital movie to
demonstrate that the ball is moving at a constant velocity in one of
the directions and not in the other.)
(c) Explain in which direction, x or y, the ball is accelerating. Cite
real evidence (not just theoretical) for this acceleration. (Hint: Use
markers of various sorts on the digital movie.)
(d) Theoretically, what is the net vertical force on the 9.5 g ball
when it is rising? Falling? Turning around? What is the observa-
tional basis for this theoretical assumption?
(e) Theoretically, what is the net horizontal force on the 9.5 g ball
when it is rising? Falling? Turning around? What is the observa-
tional basis for this theoretical assumption?
(f) What do you predict will happen to the shapes of the x vs. t and
y vs. t graphs if you rotate your coordinate system so that the x axis
points in the vertical direction and the y axis points in the horizon-
tal direction?
(g) Rotate your coordinate system so that the x axis points in the
vertical direction and the y axis points in the horizontal direction.
What happens to the shapes of the graphs? Is this what you pre-
dicted?

70. Digital Projectile Two In this problem you will use Video-
Point, VideoGraph, or some other video analysis program and a
spreadsheet to explore and analyze the nature of a projectile
launch depicted in a digital movie. If you use VideoPoint, one ap-
propriate movie has filename PASCO106. In this movie a small
ball of mass 9.5 g is launched at an angle, �, with respect to the
horizontal. Your instructor may suggest an alternative file for
your use.

Open the movie PASCO106. Use the VideoPoint software and
spreadsheet modeling to find the equation that describes: the hori-
zontal motion x vs. t and the equations that describe the vertical
motion y vs. t.

(a) Hand in the printout of your two models. Place your name, date
and section # on it, and answer questions (b) through (d) at the bot-
tom of the page.

(b) According to your horizontal model, what is the equation that
describes the horizontal position of the ball, x, as a function of
time? What is its horizontal acceleration, ax? What is its initial hori-
zontal velocity, v1 x?
(c) According to your vertical model, what is the equation that de-
scribes the vertical position, y, of the ball as a function of time?
What is the value of the ball’s vertical acceleration, ay? What is its
initial vertical velocity, v1 y?
(d) Use the components v1 x and v1 y to compute the initial speed of
the ball. What is the launch angle with respect to the horizontal?
(e) Compare your answer to part (d) to your approximation from
part (a) of the previous problem.

71. Curtain of Death A large metallic asteroid strikes Earth and
quickly digs a crater into the rocky material below ground level by
launching rocks upward and outward. The following table gives five
pairs of launch speeds and angles (from the horizontal) for such
rocks, based on a model of crater formation. (Other rocks, with in-
termediate speeds and angles, are also launched.) Suppose that you
are at x � 20 km when the asteroid strikes the ground at time t1 �
0 and position x � 0 (Fig. 5-48). (a) At t2 � 20 s, what are the x and
y coordinates of the rocks headed in your direction from launches
A through E? (b) Plot these coordinates and then sketch a curve
through the points to include rocks with intermediate launch
speeds and angles. The curve should give you an idea of what you
would see as you look up into the approaching rocks and what di-
nosaurs must have seen during asteroid strikes long ago.

FIGURE 5-48 ■ Problem 71.

Launch Speed (m/s) Angle (degrees)

A 520 14.0

B 630 16.0

C 750 18.0

D 870 20.0

E 1000 22.0
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6 Identifying and Using
Forces

Cats, who enjoy sleeping on

window sills, are often kept in

apartment buildings. When a

cat accidentally falls out of a

window and onto a sidewalk,

the extent of injury (such as

the number of fractured bones

or the certainty of death) de-

creases with height if the fall is

more than seven or eight

floors. (There is even a record

of a cat who fell 32 floors and

suffered only slight damage to

its thorax and one tooth.)

How can the damage 
possibly decrease
with height?

The answer is in this
chapter.



6-1 Combining Everyday Forces

It is common for objects to experience multiple forces that do not act along the same
line. We saw examples of this in Section 5-2 in our brief consideration of the motion of
a ball falling under the influence of both a gravitational force and air drag forces. In
Section 5-7 we discussed the motion involved in the hammer throw and that of a rock
rotating on a string. The hammer and the rock experience both a vertical gravitational
force and changing centripetal forces that are almost horizontal.

The bola shown in Fig. 6-1 is another example of a system that experiences multi-
ple forces acting in more than one dimension. The bola is a prehistoric weapon
devised for capturing relatively large animals. The analysis of the bola’s motion as it is
whirled about, released, and encounters an animal is very complex. At any given mo-
ment the spherical end of a flying bola experiences a gravitational force, the pull of
the rope, and an air drag force.

In this chapter, you will learn more about the characteristics of these everyday
forces and how they can be superimposed using vector addition to find net forces. In
addition, we will consider how to apply Newton’s laws to predict motion and to iden-
tify hidden forces. As you will see, the ability to identify forces and use them along with
Newton’s laws to predict motion is extremely useful for two reasons. First, engineers
can use their knowledge of the forces on a system to predict the motion of system com-
ponents. This ability is vital in the design of a range of devices from bridges to aircraft.
Second, the belief physicists have in the validity of Newton’s laws of motion leads them
to combine acceleration measurements with Newtonian analysis techniques to identify
and characterize invisible forces. This approach to the discovery of forces was intro-
duced in Section 3-9.

6-2 Net Force as a Vector Sum

In Chapter 3 we presented experiments that demonstrate that when two or more
forces act on an object that moves in a straight line, it is the net force that determines
how the object’s motion will change. For one-dimensional motion the net force turns
out to be the vector sum of the forces acting on the object. We call this the principle of
superposition for forces. If we use the rules of two-dimensional vector addition that
we learned about in Chapter 4, can we apply the principle of superposition in cases
where the forces do not lie along a single line?

Countless experiments have demonstrated that the principle of superposition also
works in two (and three) dimensions. For example, consider the rotating rock discussed
in Fig. 5-24. As the rock rotates, it experiences both a gravitational and a string force as
shown in Fig. 6-2. We already know that where m is the mass of the
rock. If we attach a spring scale between the rock and the string, we can measure the
string force . If the rock is rotating in a circle in a horizontal plane and we mea-
sure its centripetal acceleration, we find that it is related to the forces on the rock by

(6-1)

Here the net force that leads to the measured acceleration turns out indeed to be the
two-dimensional vector sum (or superposition) of the two forces acting on the rock.
We can find the vector sum of two or more force vectors by using the graphical
method explained in Section 4-3, or we can resolve the vectors into components using
the method presented in Section 4-4.

Another way to verify experimentally that the superposition of force vectors in
two dimensions is a vector sum is to set up a situation in which the net force in a plane
is zero. For example, we can pull on a ring with three spring scales in such a way that
the ring is stationary. In this case, we know the acceleration of the ring, and hence the

F
: net � F

: grav � F
: string � ma:.

F
: string

F
: grav � �mg ĵ
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FIGURE 6-1 ■ (a) A modern Inuit bola.
(b) A sketch of a gaucho using a bola.

(a)

(b)

FIGURE 6-2 ■ (a) At any particular mo-
ment there are two forces on a rock
twirled on the end of a string—a gravita-
tional force and a string force. Here the di-
rections of the forces are indicated for the
case where the rock rotates in a horizontal
plane. (b) A free-body diagram showing
the tails of the two force vectors at a point
that represents the rock on which they act.

(b)

F string

F string

F grav

F grav

(a)



net force on the ring is zero. Every time we do this, we find that the vector sum of
three forces is zero. An example is shown in Fig. 6-3. Here the sum of FA x and FB x

gives us a vector component that has the same magnitude as FC x but has the oppo-
site sign so as to cancel it. Thus, the net force is zero as shown in Fig. 6-3d. After many
such experiments, we become convinced that the net force on an object is the vector
sum of the individual forces acting on the object, even if those forces do not act along
a single line.

Free-Body Diagrams in Two Dimensions
In Chapter 3 we found that it was important to keep track of the magnitudes and di-
rections of the forces acting on an object if we wanted to use Newton’s Second Law
( ) to determine the object’s acceleration. The same is true for cases in
which the forces do not lie along a single line. We introduced the idea of using a free-
body diagram for this purpose in Section 3-7. The procedures for drawing free-body
diagrams for two- and three-dimensional forces are similar to those used for one-di-
mensional forces: (1) Identify the object for which the motion is to be analyzed and
represent it as a point. (2) Identify all the forces acting on the object and represent
each force vector with an arrow. The tail of each force vector should be on the point.
Draw the arrow in the direction of the force. Represent the relative magnitudes of the
forces through the relative lengths of the arrows. (3) Label each force vector so that it
is clear which force it represents.

Figures 6-2b and 6-3b are free-body diagrams for the situations depicted in the
first part of those figures.

Newton’s Second Law in Multiple Dimensions
The preceding example hints at another important point regarding multiple forces
acting along different lines. Namely, forces (or components of forces) in perpendicular
dimensions are independent and separable. That is, Newton’s Second Law 
can be written as two (or three) component equations:

� max, � may, and � maz.

We will focus on two-dimensional examples in this chapter.
This statement regarding the separable nature of forces and components of forces

should not be especially surprising. Recall from Chapter 5 that horizontal and vertical
motions are independent and separable. That is, an acceleration in one dimension
only affects the motion in that dimension. Therefore, we could treat two-dimensional

F net
zF net

yF net
x

F
:net � ma:

F
: net � ma:

î
îî
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FIGURE 6-3 ■ (a) If the ring does not ac-
celerate under the influence of the three
forces, we conclude that the net force on it
is zero, hence the vector sum of , ,
and is zero. (b) A free-body diagram
showing the tails of the three vectors at a
point that represents the center of the ring
on which they act. (c) Using the compo-
nent method of resolving the vectors ,

, and verifies that their sum is zero.
(d) The sum of the x-components of FA x

and FB x is �FC x.
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motions as two separate one-dimensional cases. Since net force and acceleration are
directly related, the independent and separable nature of acceleration is a direct hint
that forces behave this way.

If three forces act on an object, then we can expand � max to get

where FA x is the x-component of force A, FB x is the x-component of force B, and so
on. The x-component of the acceleration is ax. These components are signed quanti-
ties. This means that although the components are not vectors, they can still be either
positive or negative. So, we need to be careful when we begin substituting in actual
values for the components that we include the correct sign.

We can use a similar expansion to find may and so on.

A Word about Notation
Recall from earlier chapters that represents a vector. The magnitude (that is, size)
of the vector is represented by when we want to stress that the value is always
positive. More commonly, the magnitude is simply represented as F. That is, a vector
quantity represented without the arrow over it is the magnitude of the vector, which is
always positive. Fx and Fy represent vector components and may be positive or nega-
tive depending on what direction points in relation to the chosen coordinate
system.

We have already introduced several different forces including gravitational,
tension, and friction forces. These are important, everyday forces. In the rest of this
chapter, we will add to our list of common forces and discuss those we have already
introduced in more detail.

READI NG EXERC IS E  6-1 : A helicopter is moving to the right at a constant horizon-
tal velocity due to the force on it caused by its rotor. It also experiences a downward gravita-
tional force and a horizontal drag force as shown in the diagram below. Which of the following
diagrams is a correct free-body diagram representing the forces on the helicopter?

■

F
:

�F
:

�
F
:

FA x � FB x � FC x � max,

F net
x
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In a two-dimensional tug-of-war, Alex, Betty, and Charles pull hori-
zontally on an automobile tire at the angles shown in the overhead
view of Fig. 6-4a. The tire remains stationary in spite of the three
pulls. Alex pulls with a force of magnitude 220 N, and Charles
pulls with force of magnitude 170 N. The direction of is not
given. What is the magnitude of Betty’s force ?

S O L U T I O N ■ Because the three forces pulling on the tire do
not accelerate the tire, the tire’s acceleration is (that is, the
forces are in equilibrium). The Ke y  I d e a here is that we can re-
late that acceleration to the net force on the tire with Newton’s
Second Law ( ), which we can write as

or . (6-2)

The free-body diagram for the tire is shown in Fig. 6-4b, where we
have conveniently centered a coordinate system on the tire and as-
signed � to the angle between the x axis and .

We want to solve for the magnitude of . Although we know
both magnitude and direction for , we know only the magnitude
of and not its direction. Thus, with unknowns on both sides of
Eq. 6-2, we cannot directly solve it on a vector-capable calculator.

Instead we must rewrite Eq. 6-2 in terms of components for either
the x or the y axis. If the sum of the forces is zero, it must also be
that the sum of the x-components of the forces is zero and the sum
of the y-components is zero. Since is directed along the y axis,
we choose that axis and write

Note that we have dropped the arrows over our symbols and added
a subscript “y” here. We did this because we are now dealing with
components of the vectors as opposed to the vectors themselves.
Evaluating these components with their angles and using the angle
133° ( � 180° � 47.0°) for , we obtain

where FA, FB, and FC denote vector magnitudes (not components).
Using the given data for the magnitudes, yields

(6-3)

However, we do not know �.
We can find � by rewriting Eq. 6-2 for the x axis as

and then as

which gives us

and

Inserting this into Eq. 6-3, we find

. (Answer)FB � 241 N

� � cos�1 �
(220 N)(cos 133�)

170 N
� 28.04�.

0 � �(220 N)(cos 133�) � (170 N) cos �

FB cos(�90�) � �FA cos 133� � FC cos �,

FB x � �FA x � FC x

�FB � �(220 N)(sin 133�) � (170 N) sin �.

FB sin(�90�) � �FA sin 133� � FC sin �,
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TOUCHSTONE EXAMPLE 6-1: Tug-of-War

Alex
Charles

Betty

FA
FC

FB

Tire

47.0° φ

y

x

137°

(a) (b)

FIGURE 6-4 ■ (a) An overhead view of three people pulling on a
tire. (b) A free-body diagram for the tire.

6-3 Gravitational Force and Weight

Gravitational Force 
As we discussed in Section 3-9, gravitational forces result from interactions between
masses and can act over long distances. Although gravitational interactions between
any two masses are always present, they are only noticeable when at least one of the
masses is very large. We have already presented experimental evidence in Section 3-9
that the gravitational pull of the Earth on an object is directly proportional to the



object’s mass. We use the constant of proportionality, denoted g, to relate the gravita-
tional force to mass from Eq. 3-9:

, (6-4)

where the constant g, known as the local gravitational strength, is a positive scalar and
is a unit vector that points up. The minus sign tells us that the gravitational force

points down. Close to the Earth’s surface, the value of g is 9.8 N/kg.

Weight
Weight is a commonly used synonym for the magnitude of the gravitational force act-
ing on an object.

The weight W of a body is a scalar quantity that equals the magnitude of the local
gravitational force exerted by the Earth or some other massive astronomical object (such as
the moon) on the body.

(weight) (6-5)

To weigh a body means to measure its weight. As we mentioned in Section 3-9, we
can measure gravitational force and hence weight, using a balance, a spring scale, or
an electronic scale. Sometimes scales are marked in mass units. Since the value of g
changes as we move away from the Earth, scales are only accurate for measuring mass
when the value of g is the same as it is where the scale was calibrated.

Weight must be measured when the body is not accelerating vertically relative to
the astronomical object attracting it. For example, you can accurately measure your
weight on a scale in your bathroom or on a fast train moving horizontally. However, if
you repeat the measurement with the scale in an accelerating elevator, the reading on
the scale differs from your weight because of the vertical acceleration. This was first
discussed in Section 2-4.

Note that the weight W, which has SI units of newtons, and the local gravitational
strength g, which has SI units of newtons per kilogram, are not components of vectors,
which can be positive or negative. Instead they are both magnitudes and are always
positive.

Mass Versus Weight
Unfortunately, everyday speech sometimes leads us to believe that the terms “weight”
and “mass” are interchangeable. Although the weight of a body (given by W � mg) is
proportional to its mass, weight and mass are not the same thing. Mass has a standard
unit of kilograms whereas weight is the magnitude of a force, with a standard unit of
newtons. If you move a body to a location such as the surface of the Moon where the
value of the local gravitational strength g is different, the body’s mass (how much
“stuff” the object is made up of) is not different, but its weight is. For example, the
weight of a bowling ball with a mass of 7.2 kg is 71 N on Earth. On the Moon, this
same bowling ball would have the same mass, but a weight of only 12 N. This is be-
cause the local gravitational strength is only about one-sixth of its value on Earth.

READI NG EXERC IS E  6-2 : Suppose you are given two different objects, a balance like
the one shown in Fig. 3-9, and a spring scale like the one shown in Fig. 3-23. Describe how you
could determine whether the two objects have the same mass. What might you do to determine
the weight of one of the objects? Is the weight of each object the same as the mass of the object?
Is the ratio of the masses the same as the ratio of the weights? ■
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READI NG EXERC IS E  6-3 : Comment on the accuracy of the statement the patient is
making in the Frank & Ernest cartoon.

. ■

6-4 Contact Forces

As we have mentioned, the gravitational force can act over large distances and exists
even if the two interacting objects are not touching. Hence, we sometimes refer to the
gravitational force as an “action at a distance” force. In contrast, forces such as ten-
sion and frictional forces only exist when there is contact between interacting objects.
We call forces of this kind “contact” forces. In order to understand the nature of con-
tact forces between solid objects, it is helpful to learn more about the atomic nature of
solids.

An Idealized Model of a Solid 
Modern scientists have strong evidence that solids in our everyday world are made of
atoms. It is very hard to compress a solid object or pull it apart. The forces between
atoms seem to behave like springs. When you push on a spring that is at its natural or
equilibrium length, it resists compression by pushing back on you. But when you pull
on a spring, it also resists stretching by pulling back on you. This has led physicists to
create an idealized model for a solid as an array of atoms held together by forces that
behave like very stiff springs, each having an equilibrium length of about 10�10 m.
A three-dimensional model of a possible array of atoms in a simple solid is shown in
Fig. 6-5a. This model is explained in more detail in Section 13-5. (As we will see in
Chapter 22, the force between atoms in a solid can be understood in terms of the elec-
tromagnetic forces between the charged particles in atoms.)

Using the Model to Understand Contact Forces 
How can we use this simplified model to help us understand contact forces? Let’s
consider what happens when you push on an innerspring mattress (Fig. 6-6). As you
push, the springs in the mattress become compressed under your finger and push back
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FIGURE 6-5 ■ An idealized model of a solid consisting of atoms
separated by tiny springs. (a) A model consisting of stiff springs
(“atomic bonds”) holding balls (“atoms”) together. (b) Eight
atoms at the corner of a cube show the three-dimensional nature
of a small hunk of the idealized solid. (c) A depiction of a few of
the atoms that lie in the plane of the paper.(b)(a) (c)

L     10–10 m



on your finger. According to Newton’s Third Law, the force you exert on the mattress
springs is equal in magnitude and opposite in direction to the force the mattress
springs exert on your finger.

Similarly, if you push on a wall it compresses (it is deformed, bent, or buckled
ever so slightly), and it pushes back on you (Fig. 6-7). The compression of the wall is
hard to see because its billions and billions of tiny atomic springs are much stiffer
than the mattress springs. But the harder you push, the more compressed the wall be-
comes and the larger the force the wall exerts on your finger. When you push harder,
it hurts, because in accord with Newton’s Third Law, the surface is also pushing back
on your finger with a larger force. You can feel (and see) your finger becoming more
and more compressed due to the force exerted on it by the wall. Try it.

We call a force exerted perpendicular to a surface a normal force and denote it as
. Note that in this context normal is a technical term that derives from a Latin term

norma meaning “carpenter’s square.” It is a synonym for perpendicular and does not
mean “ordinary.”

When one object, such as a wall, exerts a contact force on another object, such as
your finger, the force is not necessarily perpendicular to the surfaces in contact. How-
ever, you can decompose the force vector into a parallel component and a perpendic-
ular component as shown in Fig. 6-8b. We call the component vector perpendicular to
the surfaces in contact the normal force. We call the component vector parallel to the
surfaces the friction force and denote it as .

In mathematical terms the decomposition of the contact force on your finger,

, is given by the sum of the two perpendicular force vectors,

. (6-6)

The Normal Force
Let’s consider a couple of situations in which normal forces are exerted on stationary
blocks as shown in Fig. 6-9. The normal force exerted on one object by another object
is always directed perpendicular to the surfaces that are in contact and away from the
surface of the object exerting the force. We can use our idealized atomic model to ex-
plain this. The atoms at the surfaces of the objects that are in close contact interact so
as to oppose being pushed closer together. As a result of Newton’s Third Law, we can
see that:

When one body exerts a force with a component that is perpendicular to the surface of an-
other body, the other body (even one with a seemingly rigid surface) deforms and pushes
back on the first body with an opposing normal force that is also perpendicular to the
surfaces that are in contact.

1. A Vertical Wall: A block that is pushed against a wall experiences a normal force
from the wall. An example of this is shown in Fig. 6-9a. Since the block is not moving,
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FIGURE 6-6 ■ This physical model of a solid as a matrix of atoms separated by tiny
springs behaves rather like an innerspring mattress. Our “solid” is compressed just
slightly by the force exerted on it by a finger. According to Newton’s Third Law the
“solid” then exerts an equal and opposite upward force back on the finger.

FIGURE 6-7 ■ Compressing an idealized
solid wall with a force exerted by a finger.
The deformation of the wall is exagger-
ated. The wall exerts an oppositely di-
rected force with the same magnitude back
on the finger.

FIGURE 6-8 ■ (a) Compressing an idealized
solid surface with a contact force that is nei-
ther purely perpendicular nor purely paral-
lel to the surface. (b) This force exerted by
the wall on the finger can be decomposed
into parallel and perpendicular components.

(a)

(b)
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the net force on it must be zero. For now we will just consider the horizontal forces on
the block given by

(special case 1). (6-7)

2. A Horizontal Table: Likewise, any object that rests on a table, shelf, or the ground
near the Earth’s surface experiences a normal force. Figure 6-9b shows an example. A
block of mass m lies on a table’s horizontal surface. It is not moving in spite of the fact
that it has a gravitational force on it due to the Earth. In other words, the block
should fall but the table is in the way! We must conclude that if the block does not ac-
celerate, the net force on the block must be zero,

or (special case 2).

So the table must be pushing up on the block with normal force that is equal
to . A free-body diagram for the block is shown in Fig. 6-9c. Forces and

are the only two forces on the block, and they are both vertical. We can
write Newton’s Second Law in terms of components along a positive upward y axis.

The component, , of the gravitational force is �mg. So, if there is no vertical
acceleration and no other vertical forces act on the object, the magnitude of the nor-
mal force on an object resting on a horizontal surface is mg. Since its direction is up, if
we use the coordinates shown in Fig. 6-9c, then

(special case 2). (6-8)

Single Normal Force as an Idealization: The normal force exerted by the surface of
the table on the block is actually the sum of billions of contact interactions between
surface atoms in the table and block. However, the use of a single force vector to
summarize external forces that act in the same direction as shown in Fig. 6-9 is a use-
ful simplification. It is conventional to draw a single upward arrow at the point where
the middle of the bottom surface of the block touches the table, as shown in Fig. 6-10.

Normal Force in an Elevator: Suppose a block is placed in an elevator that is acceler-
ating in an upward direction. How would that change the normal force it experiences?
In Chapter 2, we discussed how a person riding in such an elevator would feel heavy
while accelerating upward and feel light while accelerating downward (see Fig. 2-12).
This brings us to the idea of apparent weight. A common bathroom scale reading is a
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FIGURE 6-9 ■ (a) A hand pushes a block into a wall with a force
. Since the block can’t move, it compresses the wall, which

pushes back on it with a normal force . (b) A block resting on a
tabletop experiences a normal force perpendicular to the tabletop.
(c) The corresponding free-body diagram for the block.
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FIGURE 6-10 ■ For simplification, many small force vectors supporting the bottom of
the block are replaced by a single large force vector acting through the center of the
block.
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measurement of the normal force exerted by the scale on your feet. In normal usage
of the scale (in other words, you are standing still on the scale in a space that is not ac-
celerating vertically), the scale will measure your weight. This is because the scale
reading (normal force from the scale on your feet) is related to your weight through
Newton’s � may relation.

READI NG EXERC IS E  6-4 : In Figure 6-9b, is the magnitude of the normal force 
greater than, less than, or equal to mg if the body and table are in an elevator that is moving
upward (a) at constant speed, (b) at increasing speed, and (c) at decreasing speed? ■

The Friction Force Component
Let’s consider the friction component of a general contact force. As we discussed ear-
lier, this is the component of the contact force that is parallel to the surface. Suppose
the tip of your finger is the object of interest. You would like to study the friction
component of the contact force that a fairly smooth table can exert on your fingertip
and how it might be related to the normal force. Tilt your left finger so it is vertical (is
at an angle of about 90� with the horizontal). Try the following activities while main-
taining the 90� angle with respect to the surface of the table:

Activity 1: Press on the table with your left index finger, first with a small force and
then a larger force, and feel the increase in the normal force the table exerts on your
fingertip.

Activity 2: Now take the index finger of your right hand and apply enough horizon-
tal force to your left index finger so that it glides along at a constant velocity. (See
Figure 6-11.) Is there a horizontal friction force acting? If so, why?

NOTE: In order to make your fingertip slide across the table at constant velocity, you must
continually push on it in a horizontal direction. Can your applied force be the only horizon-
tal force on your fingertip? No, because if it were, then your fingertip would accelerate.
Thus, if we are not willing to give up on Newton’s Second Law, we must assume that there
is a second force, directed opposite to the applied force but with the same magnitude,
so that the two forces balance out. This idea that a second force exists is represented in both
Fig. 6-11 and by the following x-component equations:

so

Since both forces are purely horizontal, this gives us

(6-9)

Activity 3: What happens to the friction force when the normal force on your fin-
gertip increases? Once again, adjust your constant applied force so that your left
fingertip is moving at a constant velocity. Next, increase the normal force on your
left fingertip just enough so your fingertip stops moving. Then get your left fingertip
moving at a constant velocity again by applying more horizontal force with your
right finger.

If you do Activity 3 carefully, you should conclude that the friction force on an
object opposes the direction of its slipping over the surface and that it is greater when
the normal force on the object becomes larger.

Contact friction forces are unavoidable in our daily lives. They are literally every-
where. If we were not able to counteract them, they would stop every moving object
and bring to a halt every rotating shaft. On the other hand, if friction were totally ab-
sent, we could not walk, travel in a car, or ride a bicycle. In some cases, the effects of
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FIGURE 6-11 ■ (a) Applying a horizontal
force toward the left to an object (such as
a fingertip) that is in contact with a surface.
(b) A free-body diagram showing the
forces on the left fingertip. If the object is
not accelerating, there must be a friction
force on it toward the right that is equal in
magnitude and opposite in direction to the
force applied on the left fingertip by the
right index finger.

Right index
finger

Left index
finger

(a)

(b)
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friction are very small compared to other forces and can be ignored. In other cases, to
simplify a situation, friction is assumed to be negligible even though it may not really
be. In either case, if the intention is to ignore the effects of friction, the interface be-
tween the object and the surface is called frictionless.

Contact friction depends on many factors, and it turns out that friction forces can
behave very differently depending on the normal force, the nature of the surfaces that
are in contact, and other factors. It is not always obvious when looking at surfaces
whether the friction forces will be large or small. Sometimes smooth surfaces have
greater friction forces than rough ones.

Understanding the relationship between friction forces and atomic and molecular
interactions is a very active field of research in both physics and the engineering sci-
ences. These relationships are not completely understood. Unlike Newton’s laws of
motion, which scientists believe hold to a high degree of accuracy when applied to
everyday objects in our surroundings, some of the characteristics of friction that we
describe here are only valid for certain common types of interacting surfaces. Thus,
the friction equations that we present here are sometimes useful approximations, but
they do not always apply.

In the next two subsections, we will explore some common characteristics of
kinetic friction, in which one surface moves relative to another, and of static friction, in
which the surfaces in contact are stationary relative to one another.

Kinetic Friction Forces
Imagine that you give a book a quick push and send it sliding across a long horizontal
countertop. As you expect, the book slows and then stops. We showed data on this be-
havior in Section 3-2. What does this observation tell us about the nature of the inter-
action between the book and the countertop? Based on our definition of velocity and
on the data shown in Fig. 3-3, we suspect that the book has a constant acceleration.
This acceleration is parallel to the surface, and in the direction opposite the book’s ve-
locity. Once again, we have no reason to believe that Newton’s Second Law is not
valid in this situation. Hence, from � max, we must assume that a contact friction
force that is constant acts on the book in the same direction as the acceleration (par-
allel to the counter surface, in the direction opposite the book’s velocity relative to
the table) as is shown in Fig. 6-12.

In both the example of keeping your fingertip moving at a constant velocity and
the example of watching a book with an initial velocity slide to a stop with a constant
acceleration, an object is experiencing a kinetic friction force . The word “ki-
netic” indicates that the object is moving relative to a surface. The phenomenon of
“contact friction” can be explained by assuming that there is an attractive force be-
tween the atoms at the surfaces of the two objects. The attraction between two very
smooth surfaces such as glass panes is consistent with this assumption and is known
as adhesion.

What might the kinetic friction force depend on? Imagine sending an object slid-
ing across a countertop as we discussed above. Would the book slow down more or
less quickly if we slide the book across a carpeted floor instead of the smooth counter-
top? Would it slow down more or less quickly if we slide it across ice instead? Does
the rate at which an object slows down seem to depend on its velocity? Would the
book slow down more or less quickly if it has more mass or an additional applied
downward force on it so the normal force between the surfaces is larger? 

We can answer some of these questions for several situations by looking at the
graph presented in Fig. 3-3. This graph shows the velocity as a function of time for
three situations where objects slide to a stop on surfaces. You will likely find it helpful
to refer back to that figure now (page 59). We can also draw inferences from the fin-
gertip motions earlier in this section. Here are some observations and conclusions
about kinetic friction.
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FIGURE 6-12 ■ A friction force op-
poses the slide of a body over a surface.
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KINETIC FRICTION—SOME OBSERVATIONS AND CONCLUSIONS

OBSERVATION 1 ON THE INFLUENCE OF THE RELATIVE VELOCITY BETWEEN SURFACES: The
graphs in Fig. 3-3 tell us that in three situations involving different combinations of objects
and surfaces, the objects all slow to a stop with constant acceleration and hence experience a
constant kinetic friction force. Conclusion: Kinetic friction forces appear to be independent of
the magnitude of the velocity of the object relative to the surface over which the object is slid-
ing, but act in a direction opposite to the direction of the velocity.

OBSERVATION 2 ON THE NATURE OF THE SLIDING SURFACES: The graphs in Fig. 3-3 tell us
that in three situations involving different combinations of object and surfaces, the rate of
the stopping acceleration is different. Conclusion: Kinetic friction forces appear to depend
on the nature of the surfaces that are in contact with one another.

OBSERVATION 3 ON THE INFLUENCE OF THE NORMAL FORCE: When you completed
Activity 3 earlier in this section, you observed that the applied force needed to keep your
fingertip moving at a constant velocity increases when the normal force on your fingertip
becomes larger. Conclusion: Kinetic friction forces appear to increase when the normal
force on a sliding object increases and thus depend on how hard the objects are being pushed
together.

Is there a mathematical relationship between the magnitude of the kinetic fric-
tion force on an object and the magnitude of the normal force the object experiences?
A plausible relationship would be that these two force magnitudes are proportional
to each other. Let’s look at the results of a simple experiment in which we can mea-
sure the kinetic friction force as a function of the normal force on a sliding block. In
this experiment, we use a spring scale to measure how much horizontal force we need
to apply to pull a wooden block along at a constant velocity. (See Fig. 6-13.) We can
determine the magnitude of the friction force by using the fact that it must be equal
to the magnitude of the applied force if the moving block doesn’t accelerate (Eq. 6-9).
If the table surface is horizontal, and the only other vertical force on the block is
the gravitational force, then the normal force is given by (Eq. 6-8). That is,
Ny � mg. The normal force can be changed by piling more mass on the block. We can
then measure the kinetic friction force again.

The data shown in Fig. 6-14 reveal that for a Velcro-covered wood block sliding
on a Formica table surface, the magnitude of the friction force is proportional to that
of the normal force with a constant of proportionality given by �kin � 0.21. Turning
the block on its side to reduce the area in contact does not affect this constant of pro-
portionality.

Results similar to those shown in Fig. 6-14 for many situations reveal that the
magnitude of the friction force for dry sliding is usually proportional to the magnitude
of the normal forces pressing surfaces together and does not depend on other factors.
Thus, for the purposes of the systems we will deal with in this book, the magnitude of
the kinetic friction force, , can be expressed as 

(6-10)f kin � � kinN,
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FIGURE 6-13 ■ A block is pulled along at
a constant velocity with a horizontal ap-
plied force, measured by a spring scale.
This force is countered by a kinetic friction
force of the same magnitude. Since the
tabletop is horizontal, the magnitude of
the normal force on the block is equal to
the product of its mass m and the gravita-
tional acceleration constant g.
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where � kin is the slope of the linear graph that relates the magnitude of the kinetic
friction force f kin and the magnitude of the normal force N. The slope �kin is called
the coefficient of kinetic friction.

The coefficient �kin is a dimensionless scalar that must be determined experi-
mentally. Its value depends on certain properties of both the body and the surface.
Hence, the coefficients are usually referred to with the preposition “between,” as in
“the value of �kin between a book and countertop is 0.04, but the value between rock-
climbing shoes and rock is as much as 0.9.” Based on our observations, we assume that
the value of �kin does not depend on the speed at which the body slides along the sur-
face. Note that f kin � �kinN is not a vector equation. The direction of is always
parallel to the surface and opposes the sliding motion.

Static Friction Forces 
Do friction forces continue to act on an object once it stops sliding? The answer to
this question is more complicated than simply “yes” or “no.” Start out by imagining a
large, heavy box sitting on a horizontal, carpeted floor. You push on the box, but the
box does not move. Unless we are to believe that Newton’s Second Law ( )
is not valid in this situation, we must assume that there is some other force acting on
the box that is counteracting the application of the push force. That is, there must be a
force acting in the opposite direction that is exactly equal in magnitude to the push
force. We will call this opposing force a static friction force. The word “static” is used
to signify that the object is not moving relative to the surface as shown in Fig. 6-15b-d.

Now imagine that you push even harder on the box as shown in Fig. 6-15c and d.
The box still does not move. Apparently the friction force can change in magnitude,
otherwise it would no longer balance your applied force. In other words, if you push
on an object in an attempt to slide it across a surface and the object does not slide,
then we know that there is a static friction force. This force acts in the direction oppo-
site the push with a matching magnitude, regardless of how hard you push. If you stop
pushing on the box, that oppositely directed force must disappear. How do we know
this? Because if you removed the push force, and the static friction force did not
disappear as well, then the box would accelerate in the direction of the friction force.
We know from everyday observation that this does not happen. So the static friction
force appears to be a very strange force that changes magnitude in response to other
forces.

This situation is in no way specific to the example of the box on carpet. At the inter-
face between any two solids prior to slipping, the static friction force starts at zero when
no applied force is present and increases as the force that tends to produce slipping in-
creases. The static friction force adjusts in magnitude to exactly counteract the applied
force (usually a push or pull) at every instant. The static friction force mirrors the ap-
plied force. If the applied force is zero, then the static friction force is zero. If the applied
force has a horizontal component that is 10 N, the static friction force has a horizontal
component that is 10 N. We call forces that behave like the static friction force passive
forces. Passive forces are forces that change in magnitude in response to other forces.
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FIGURE 6-14 ■ A graph of data showing
that when a block is pulled along at a con-
stant velocity, the magnitude of the kinetic
friction force is directly proportional to the
normal force exerted by the surface it
slides over.Normal Force [N]
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FIGURE 6-15 ■ (a) There are no horizon-
tal forces on a stationary block. (b–d) An
external force applied to the block is
balanced by a static friction force . As

is increased, also increases, until
reaches a certain maximum value. (e)

The block then “breaks away,” accelerating
suddenly in the direction of . (f) If the
block is now to move with constant veloc-
ity, the magnitude of the applied force
must be reduced from the maximum value
it had just before the block broke away.
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Now imagine that you push on the box with all your strength. Finally, the box be-
gins to slide. Evidently, there is a maximum magnitude of the static friction force.
When you exceed that maximum magnitude, your push force is larger than the oppos-
ing static friction force and the box accelerates in the direction of your push. A typical
sequence of static frictional force responses to applied forces is shown in Fig. 6-15.
This sequence is consistent with the experimental results obtained when an electronic
force sensor is used to monitor the force on a block as a function of time. The experi-
mental setup is shown in Fig. 6-16 and a graph of the results is shown in Fig. 6-17.

As the pulling force, , increases, the block remains at rest. Then, when a
“breakaway” force is reached, it moves very suddenly. That is, the magnitude of the
friction force, , keeps increasing to oppose the pulling force in accordance with
Newton’s Second Law until the object “breaks free” and starts to move. Hence, we ex-
press the magnitude of the static friction force as

(6-11)

where � stat is known as the coefficient of static friction and N is the magnitude of the
normal force on the body from the surface. Just as for kinetic friction, the coefficient
� stat is dimensionless and determined experimentally. Its value depends on certain
properties of both the body and the surface, and so is referred to with the preposition
“between.”

Usually, the magnitude of the kinetic friction force, which acts when there is mo-
tion, is less than the maximum magnitude of the static friction force, which acts when
there is no motion. We see this in the data shown in Fig. 6-17. Thus, if you wish the
block to move across the surface with a constant speed, you must usually decrease the
magnitude of the applied force once the block begins to move, as in Fig. 6-15f. An-
other common behavior for a certain range of applied forces is to see slip-and-stick
behavior in which an object breaks away, slides to a stop, breaks away again, and so
on. We will not deal with the slip-stick phenomenon in this book.
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FIGURE 6-16 ■ The apparatus used for
the static friction experiment includes an
electronic force sensor attached to a com-
puter data acquisition system (not pic-
tured).

FIGURE 6-17 ■ Graph of the magnitude of
the static friction force on a wooden block
as a function of time.This force opposes a
steadily increasing applied force between
0.0 s and 32 s.At 32 s the block suddenly
“breaks away” and starts moving.At about
40 s, it starts moving at a steady velocity as a
kinetic friction force with a magnitude that
is less than the static force starts acting.
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READI NG EXERC IS E  6-5 : Figure 6-17 shows the result of the experiment in which a
295.6 g block with a 500 g mass on it is pulled along a table with a steadily increasing force until
it breaks away at t � 32 s. (a) What is the coefficient of static friction, � stat, between the table
and the mass? (b) What is the coefficient of kinetic friction �kin? ■

READI NG EXERC IS E  6-6 : A block lies on a floor. (a) What is the magnitude of the
friction force exerted on it by the floor if the block is not being pushed? (b) If a horizontal
force of 5 N is now applied to the block, but the block does not move, what is the magnitude of
the friction force on it? (c) If the maximum value of the static friction force on the block
is 10 N, will the block move if the magnitude of the horizontally applied force is 8 N? (d) If the
magnitude is 12 N? (e) What is the magnitude of the friction force in part (c)? ■

READI NG EXERC IS E  6-7 : Discuss and explain the following statement using the
terms related to friction forces that are presented above: “If we were not able to counteract
them, frictional forces would stop every moving object and bring to a halt every rotating shaft.
On the other hand, if friction were totally absent, we could not walk or ride a bicycle.” ■

Tension 
So far we considered contact forces between objects that are not attached and that
can be pulled apart fairly easily. Let’s consider one more type of contact force—a
force that occurs when a long thin object such as a rod or string is attached to other
objects at each of its ends. For example, consider a leash with a dog straining at one
end and the dog’s owner pulling the other end, a handle bolted to a pot that is too
massive to move and is being pulled by a cook, or a string with one end attached to a
ceiling and the other end attached to a hanging mass. In all three cases, a long narrow
object that is stretched is transmitting forces from an object at one of its ends to an
object at its other end. We say that a long narrow object that is being pulled taut by
opposing forces is under tension. In order to use Newton’s laws of motion to analyze
the forces and motions of the objects that are attached to the ends of strings or rods,
we need to understand more about the phenomenon of tension.

What do we observe about tension? Let’s consider a stationary rubber band that
connects two force probes like that shown in Fig. 6-18. We observe that the forces the
rubber band exerts on the force probes at each end have the same magnitude but act
in opposite directions.

We also observe that the tension force is present everywhere along the rubber
band. Although it is not readily observable, the tension everywhere along the rubber
band is in fact equal in magnitude to the applied forces at the ends that caused the
rubber band or string to stretch. Thus, when a taut rubber band (that is not accelerat-
ing) is attached to an object, it exerts a tension force on the object that is directed
along the rubber band and away from the object. This tension expresses itself as a
pulling force, but only at the ends of the rubber band. These same observations hold
for most long thin connectors including strings, cords, and ropes.

f
:max
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FIGURE 6-18 ■ A rubber band is connecting two force probes. Each
probe detects the same magnitude of force, but the force on probe 1
is in the opposite direction of the force on probe 2. This observation
is not surprising as it is entirely consistent with Newton’s laws.

Force probe 1 Force probe 2



An Atomic Model for Tension Our simple model of solid matter, as consisting of
atoms connected by springs, is very helpful in understanding how objects that are un-
der tension can transmit forces. Suppose a very, very thin string, having only one
strand of atoms, is connected by small interatomic springs. Figure 6-19a shows the nat-
ural length of the string. Figure 6-19b shows the string when it is extended by equal
and opposite forces applied to its ends so that it is not accelerating.

In our idealization, we have assumed only one strand of atoms. Obviously, real
strings, cords, and ropes have many strands of molecules consisting of complex arrays
of atoms. Although many strands will make a string or rope stronger, it will not
change the ideas presented in our simple model.

Assuming that our ideal string is not accelerating, each atom must have zero net
force on it. The atom on the left end of the string must be experiencing an attractive
force from the neighboring atom to its right that is equal in magnitude and opposite
in direction to the applied force on the end. However, each stretched spring repre-
sents a force of interaction between neighboring atoms that must obey Newton’s
Third Law. Thus, the leftmost atom must be exerting an attractive force on its neigh-
boring atom that is “equal and opposite” to the force that atom exerts on it. These
pairs of mutual interaction forces exist throughout the string, as shown in Fig. 6-19c.
The magnitude of these interaction forces each atom experiences has been given a
special name. It is called the tension in the string, which we denote as T. In contrast to
the tension force, tension, which we often denote with a T, is a scalar quantity that is
always positive with no inherent direction associated with it. Hence, we will often de-
note a tension force that points (for example) in the positive y direction as

and one that points in a negative direction as .
Next, let’s use Newton’s laws to examine the effect of tension associated with the

motion of a skier being towed by a snowmobile by means of a nylon cord as depicted
in Fig. 6-20. We consider two situations—one in which the system is not accelerating
and the other in which it is. The snowmobile moves forward when its treads, which are
turning, dig into the snow and push against it. However, assume for now that the run-
ners on the skis and those at the front of the snowmobile experience no friction
forces.

Tension for a Nonaccelerating System Remember that if the system is not accelerat-
ing, then it moves at a constant velocity. Furthermore, Newton’s Third Law tells us
that the force between any two objects in the system that are in contact is equal and
opposite. For example, at the left end of the cord, the skier feels a pulling force acting
along the direction of the cord, which we denote as , and the cord experi-
ences an oppositely directed force from the skier, denoted by . A similar sit-
uation applies to the interaction forces at the right end of the cord, so that

and . (6-12)F
:

cord:mobile � �F
:

mobile:cordF
:

cord:skier � �F
:

skier:cord

F
:

skier:cord

F
:

cord:skier

T
:

� �T ĵT
:

� �T ĵ
T
:
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FIGURE 6-19 ■ A string is idealized as a
line of atoms with springs representing the
mutual interaction forces between them.

(a)

(b)

(c)

FIGURE 6-20 ■ The cord connecting a
skier and a snowmobile exerts oppositely
directed forces on the skier and the snow-
mobile.

Fcord     skier Fcord     mobile



But we already know from Newton’s Second Law for that the net force on the
cord must be zero. Since the net force is zero, (the sum of the x-components of
the forces) must be zero. Hence,

or .

The forces the skier and snowmobile exert on the cord are purely horizontal. So we
have

. (6-13)

This result agrees with the observation reported in Fig. 6-18. Namely, forces exerted
by the ends of a taut cord have the same magnitude. Even more significantly, we can
combine Eqs. 6-12 and 6-13 to show that

.

When nonaccelerating objects are connected by a string, cord, or rope, they interact in accor-
dance with Newton’s Third Law through the connector as if they are in direct contact.

An Accelerating System Suppose the snowmobile driver pushes in his throttle and
increases his velocity at a constant rate. Now the system has an acceleration , and
the cord connecting the skier to the snowmobile must experience the same accelera-
tion. In terms of the x-components we get

. (6-14)

This tells us that if the cord has a nonzero mass, then the force of the snowmobile on
the right end of the cord must be greater than the force on the left end to maintain an
acceleration. However, in many situations, including this one showing the snowmobile
pulling a skier, the mass of the cord is so much less than the mass of the entire system
that it can be taken to be zero.

Taking the direction of motion to be along the positive x axis, we can write the
tension forces in terms of the positive scalar T representing the tension,

and , (6-15)

where TL is the tension on the left side of the cord and TR is the tension on the right
side of the cord. Then we can rewrite Eq. 6-14 in terms of the tension difference and
the x-component of acceleration to get TR � TL � mcord ax. But the snowmobile force,
which serves to accelerate the entire system, is given by . Solving
the last two equations for ax and rearranging terms gives us the ratio

(6-16)

Let’s consider the implications of this equation. In most situations, the mass of the
cord is much less than the mass of the system. Whenever that is true, the difference in
tension at the ends of the cord is much smaller than the force that accelerates the sys-
tem. For example, assume the skier’s mass and the snowmobile’s mass together total
200 kg, and the mass of the cord she grips is 1 kg. The ratio of these masses gives us
only a 0.5% difference in tension forces at the ends of the cord. For most everyday
purposes, this force difference at the ends of an accelerating cord is negligible. In
laboratory experiments, masses of between 100 g and 2 kg are typically connected by

TL � TR

Fmobile:sys x
�

mcord

mtot .

Fmobile:sys x � mtotax

F
:

mobile:cord � �TRîF
:

skier:cord � �TLî

F net
cord x � Fskier:cord x � Fmobile:cord x � mcord ax

a:

F
:

skier:mobile � �F
:

mobile:skier

F
:

skier:cord � �F
:

mobile:cord

Fskier:cord x � �Fmobile:cord xF net
cord x � Fskier:cord x � Fmobile:cord x � 0

F net
x

a: � 0
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TOUCHSTONE EXAMPLE 6-2: Einstein’s Elevator

In Fig. 6-23a, a passenger of mass m � 72.2 kg stands on a platform
scale in an elevator cab. We are concerned with the scale readings
when the cab is stationary and when it is moving up or down.

(a) Find a general solution for the scale reading, whatever the verti-
cal motion of the cab happens to be.

S O L U T I O N ■ One Ke y  I d e a here is that the scale reading is
equal to the magnitude of the normal force the scale exerts on
the passenger. The only other force acting on the passenger is the
gravitational force , as shown in the free-body diagram of the
passenger in Fig. 6-23b.

A second Ke y  I d e a is that we can relate the forces on the
passenger to the acceleration of the passenger with Newton’s
Second Law ( ). However, recall that we can use this law
only in an inertial frame. If the cab accelerates, then it is not an in-
ertial frame. So we choose the ground to be our inertial frame and
make any measure of the passenger’s acceleration relative to it.

F
: net � ma:

a:

F
: grav

N
:

Because the two forces on the passenger and the passenger’s
acceleration are all directed vertically, along the y axis shown in Fig.
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fishing line capable of sustaining tensions of well over 100 N. A 1 m length of this type
of fishing line has a mass of about 0.25 g, so the force differences are usually less than
1%. For cases where the mass of a connecting cord is very small compared to the
masses of the objects attached to its ends, we can assume that the tension is essentially
the same at all points along the cord. When we can legitimately make this simplifying
approximation, we say that we have a massless string.

Pulleys and Direction Change What happens if a “massless” cord stretched over a
“massless” pulley changes direction as shown in Fig. 6-21b and c? Is the tension still
the same everywhere in the cord? Let’s examine our atomic model. If a string is
wrapped around a pulley, its direction is different at one end than at the other. How-
ever, each tiny segment of the string only changes direction ever so slightly. The direc-
tion change is less than it is in Fig. 6-22 where we have only placed eight atoms in the
chain. We conclude that the magnitude of the tension forces that are spread through-
out the string also do not change significantly when the string bends around other ob-
jects. This conclusion is supported by experiments in which spring scales are inserted
in various places along a string that bends while it is under tension.

Any solid object that is attached at two ends and pulled can transmit tension
forces from one end to another. Some objects are quite elastic, such as rubber bands
or weak springs, others are more rigid, such as strings and rods. Small rubber bands,
light-duty springs, and strings cannot stand compressive forces. They are so long and
narrow that they buckle under compression. Alternatively, rods and heavy springs do
not buckle under compression. In some of the analyses that follow, you will be dealing
with “massless” strings and springs that buckle under compression forces.

READI NG EXERC IS E  6-8 : Consider Figure 6-21c and assume that the pulley is
massless but the cord is not. Is the magnitude of the pull force on the cord exerted by the hand
equal to (�), less than (	), or greater than (
) the magnitude of the pull force exerted by the
block when the block is moving upward (a) at constant speed, (b) at increasing speed, and (c) at
decreasing speed? Explain. ■

FIGURE 6-21 ■ (a) The cord, pulled taut,
is under tension. If its mass is negligible, it
pulls on the body and the hand with force
of magnitude T � , even if it runs
around a massless, frictionless pulley as in
(b) and (c).

� T
:

�

(a)

(b) (c)

TL = +T î

TL = +T î TR = –T î

ˆTR = +T j

ˆTL = +T j ˆTR = +T j

FIGURE 6-22 ■ Tension in a taut string
still exists even when it undergoes direc-
tion changes.

y

(b )(a)

Passenger

F grav

N

FIGURE 6-23 ■ (a) A pas-
senger stands on a platform
scale that indicates his
weight or apparent weight.
(b) The free-body diagram
for the passenger, showing
the normal force on him
from the scale and the gravi-
tational force .F

:grav

N
:
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6-23b, we can use Newton’s Second Law written for y-components
( ) to get

or . (6-17)

This tells us that the scale reading, which is equal to Ny (provided
Ny � 0), depends on the vertical acceleration ay of the cab.
Since , the y-component of the gravitational force,

. This gives us

. (Answer) (6-18)

This tells us that the scale reading is larger than the passenger’s
static weight, mg, when the elevator accelerates upward, since then
ay 
 0. But if the elevator is accelerating downward, then ay is nega-
tive and the scale reads less than the passenger’s static weight. This
is true, as long as the downward acceleration is smaller than g. If the
downward acceleration is greater than g, (g � ay) in Eq. 6-18 is a
negative value. In that case, Ny � 0, since Ny can never be negative.
(Why not?)

(b) What does the scale read if the cab is stationary or moving up-
ward at a constant 0.50 m/s?

S O L U T I O N ■ The Ke y  I d e a here is that for any constant ve-
locity (zero or otherwise), the acceleration ay of the passenger is
zero. Substituting this and other known values into Eq. 6-18, we find

. (Answer)

This is just the weight of the passenger and is equal to the magni-
tude F grav of the gravitational force on him.

(c) What does the scale read if the cab accelerates upward at 
3.20 m/s2 and downward at 3.20 m/s2?

Ny � (72.2 kg)(9.8 m/s2 � 0) �  708 N

Ny � m(g � ay)

F grav
y � �mg

F
: grav � �mg ĵ

Ny � �F grav
y � may

Ny � F grav
y � may

F net
y � may

S O L U T I O N ■ For ay � �3.20 m/s2, Eq. 6-18 gives

(Answer)

and for ay � �3.20 m/s2, it gives

(Answer)

So for an upward acceleration (either the cab’s upward speed is in-
creasing or its downward speed is decreasing), the scale reading is
greater than the passenger’s weight. Similarly, for a downward
acceleration (either the cab’s upward speed is decreasing or its
downward speed is increasing), the scale reading is less than the
passenger’s weight.

(d) During the upward acceleration in part (c), what is the magni-
tude F net of the net force on the passenger, and what is the magni-
tude ap, cab of the passenger’s acceleration as measured in the frame
of the cab? Does ?

S O L U T I O N ■ One Ke y  I d e a here is that the magnitude F grav

of the gravitational force on the passenger does not depend on the
motion of the passenger or the cab, so from part (b), F grav is 708 N.
From part (c), the magnitude N of the normal force on the passen-
ger during the upward acceleration is the 939 N reading on the
scale. Thus, the net force on the passenger is

,
(Answer)

during the upward acceleration. However, the acceleration of
the passenger relative to the frame of the cab is zero. Thus, in the non-
inertial frame of the accelerating cab, is not equal to 
This is an example of the fact that Newton’s Second Law does not
hold in noninertial (that is, accelerating) frames of reference.

ma:p, cab.F
: net

a:p, cab

F net
y � Ny � F grav

y � N � F grav � 939 N � 708 N � 231 N

F
:net � ma:p, cab

� 477 N.

Ny � (72.2 kg)(9.8 m/s2 � 3.20 m/s2)

� 939 N,

Ny � (72.2 kg)(9.8 m/s2 � 3.20 m/s2)

TOUCHSTONE EXAMPLE 6-3: Pulling a Block

In Fig. 6-24a, a hand H pulls on a taut horizontal rope R (of mass
m � 0.200 kg) that is attached to a block B (of mass M � 5.00 kg).
The resulting acceleration of the rope and block across the fric-
tionless surface has constant magnitude 0.300 m/s2 and is directed
to the right. We will call this the positive direction for the x axis.
Note that this rope is not “massless;” we return to this feature in
part (d).

(a) Identify all the third-law force pairs for the horizontal forces in
Fig. 6-24a and show how the vectors in each pair are related.

S O L U T I O N ■ The Ke y  I d e a here is that a third-law force
pair arises when two bodies interact; the forces of the pair are equal
in magnitude and opposite in direction, and the force on each body
is due to the other body. The “exploded view” of Fig. 6-24b shows

a:
B

R

x

H

FB    R FR    HFH    RFR    B

(a)

(b)

x

FIGURE 6-24 ■ (a) Hand H pulls on rope R, which is attached to
block B. (b) An exploded view of block, rope, and hand, with the
forces between block and rope and between rope and hand.
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TOUCHSTONE EXAMPLE 6-4: Three Cords

In Fig. 6-25a, a block B of mass M � 15 kg hangs by a cord from a
knot K of mass mK, which hangs from a ceiling by means of two
other cords. The cords have negligible mass, and the magnitude of
the gravitational force on the knot is negligible compared to the
gravitational force on the block. What are the tensions in the three
cords?

S O L U T I O N ■ Let’s start with the block because it has only one
attached cord. The free-body diagram in Fig. 6-25b shows the forces
on the block: gravitational force (with a magnitude of Mg)
and force from the attached cord. A Ke y  I d e a is that we can
relate these forces to the acceleration of the block via Newton’s
Second Law ( ). Because the forces are both vertical, we
choose the vertical component version of the law, , and
write

.

Substituting 0 for the block’s acceleration ay, we find

TC y � Mg � M(0) � 0.

F net
y � TC y � F grav

y � TC � Mg � Ma y

F net
y � ma y

F
: net � ma:

T
:

C

F
: grav

This means that the two forces on the block are equal in magnitude.
Substituting for M (� 15.0 kg) and g and solving for TC y yields

. (Answer)

Note: Although and are equal in magnitude and opposite
in direction, they are not a Newton’s Third Law force pair. Why?

We next consider the knot in the free-body diagram of 
Fig. 6-25c, where the negligible gravitational force on the knot is
not included. The Ke y  I d e a here is that we can relate the three
other forces acting on the knot to the acceleration of the knot via
Newton’s Second Law by writing

.

Substituting 0 for the knot’s acceleration yields

, (6-20)T
:

A � T
:

B � T
:

C � 0

a:
K

T
:

A � T
:

B � T
:

C � mK a:
K

( F
: net � ma:)

F
: gravT

:

C

TC y � 147 N

that here there are two such force pairs for the horizontal forces. At
the hand-rope boundary, we have the force exerted by the
hand on the rope and the force exerted by the rope on the
hand. These forces are a Newton’s Third Law force pair and so are
equal in magnitude and opposite in direction. They are related by

. (Answer)

Similarly, at the rope–block boundary we have

. (Answer)

(b) What is the magnitude of the force that the rope exerts
on the block?

S O L U T I O N ■ We know that the block has an acceleration in
the positive direction of the x axis. The only force acting on the
block along that axis is . The Ke y  I d e a here is that we can
relate force to acceleration by Newton’s Second Law. Be-
cause both vectors are along the x axis, we use the x component
version of the law ( ), writing

.

Substituting known values, we find that the magnitude of ,
which we denote and is equal to , is

. (Answer)FR:B � (5.00 kg)(0.300 m/s2) � 1.50 N

FR:B xFR:B

F
:

R:B

FR:B x � Max

F net
x � max

a:F
:

R:B

F
:

R:B

a:

F
:

R:B

F
:

R:B � � F
:

B:R

F
:

H:R � � F
:

R:H

F
:

R:H

F
:

H:R

(c) What is the magnitude of the force that the block exerts
on the rope?

S O L U T I O N ■ From (a), we know that , so
has the magnitude

. (Answer)

(d) What is the magnitude of the force that the hand exerts
on the rope?

S O L U T I O N ■ A Ke y  I d e a here is that, with the rope taut, the
rope and block form a system on which acts. The mass of
the system is m � M. For this system, Newton’s Second Law for x-
components gives us

� 1.56 N (Answer) (6-19)

Now note that the magnitude of the force on the rope from
the hand (1.56 N) is greater than the magnitude of the force 
on the block from the rope [1.50 N, from part (b) above]. The rea-
son is that must accelerate only the block but must ac-
celerate both the block and the rope, and the rope’s mass m is not
negligible. If we let in Eq. 6-19, then we find 1.50 N, the same
magnitude as at the other end. We often assume that an intercon-
necting rope is massless so that we can approximate the forces at its
two ends as having the same magnitude.

m : 0

F
:

H:RF
:

R:B

F
:

R:B

F
:

H:R

� (0.200 kg � 5.00 kg)(0.300 m/s2)

FH:R x � (m � M)ax

F
:

H:R

F
:

H:R

FB:R � FR:B � 1.50 N

F
:

B:R

F
:

B:R � � F
:

R:B

F
:

B:R
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which means that the three forces on the knot are in equilibrium.
Although we know both magnitude and angle for , we know only
the angles and not the magnitudes for and . With unknowns
in two vectors, we cannot solve Eq. 6-20 for or directly on a
vector-capable calculator. Instead, we rewrite Eq. 6-20 in terms of
components along the x and y axes. For the x axis, we have

,

which, using the given data, yields

(6-21)

or alternatively

Similarly, for the y axis we rewrite Eq. 6-20 as

� T
:

A � cos 152� � � T
:

B � cos 47� � 0 � 0.

�� T
:

A � cos 28� � � T
:

B � cos 47� � 0 � 0,

TA x � TB x � TC x � 0

T
:

BT
:

A

T
:

BT
:

A

T
:

C or

Substituting our previous result for TC then gives us

(6-22)

We cannot solve Eq. 6-21 or Eq. 6-22 separately because each
contains two unknowns, but we can solve them simultaneously be-
cause they contain the same two unknowns. Doing so (either by
substitution, by adding or subtracting the equations appropriately,
or by using the equation-solving capability of a calculator), we
discover

and (Answer)

Thus, the magnitudes of the tensions in the cords are 104 N in cord
A, 134 N in cord B, and 147 N in cord C.

� T
:

B � � 134 N.� T
:

A � � 104 N

� T
:

A � sin 28� � � T
:

B � sin 47� � 147 N � 0.

� T
:

A � sin 28� � � T
:

B � sin 47� � � T
:

C � � 0.

TA y � TB y � TC y � 0

Cord C

Block B

Cord A Cord B

Knot K

M

28° 47°

(a)

FIGURE 6-25 ■ (a) A block of mass m
hangs from three cords. (b) A free-body di-
agram for the block. (c) A free-body dia-
gram for the knot at the intersection of the
three cords.

Block

TC

Knot

y

x28° 47°

(b) (c )

TA
TB

TC
F grav

6-5 Drag Force and Terminal Speed

If you are riding in a car and put your hand out the window, you feel nothing when
the car is first starting up. But as you speed up, the forces on your hand become larger
and larger. The force you feel on your hand is called air drag. The magnitude of the
air drag increases as the velocity of your hand relative to the air increases. Air drag is
another common force, but it is only important when an object is moving relatively
rapidly.

Air is a fluid. A fluid is anything that can flow—generally either a gas or a liquid.
When there is a relative velocity between a fluid and a body (either because the body
moves through the fluid or because the fluid moves past the body), the body experi-
ences a drag force that opposes the relative motion and points in the direction in
which the fluid flows relative to the body. Like contact forces, air drag forces are ulti-
mately the result of billions of tiny electromagnetic forces between air molecules and
another object.

Here we examine only cases in which air is the fluid, the body is blunt (like your
hand or a baseball) rather than slender (like a javelin), and the relative motion is fast
enough so that the air becomes turbulent (breaks up into swirls) behind the body. In
such cases, experiments reveal that the magnitude of the drag force is re-D � � D

:
�

D
:



lated to the relative speed by an experimentally determined drag coefficient
C according to

, (6-23)

where � is the air density (mass per volume) and A is the effective cross-sectional area
of the body (the area of a cross section taken perpendicular to the velocity ). The
drag coefficient C (typical values range from 0.4 to 1.0) is not truly a constant for a
given body, because if v varies significantly, the value of C can vary as well. Here, we
ignore such complications.

Downhill speed skiers know well that drag depends on the cross-sectional area
(A) and speed squared (v2). To reach high speeds a skier must reduce the drag force
as much as possible by, for example, riding the skis in the “egg position” (Fig. 6-26) to
minimize cross-sectional area A.

When a blunt body falls from rest through air, the drag force is directed up-
ward; its magnitude gradually increases from zero as the speed of the body increases.
This upward force opposes the downward gravitational force, , on
the body. We can relate these forces to the body’s acceleration by writing Newton’s
Second Law in terms of vector components for a vertical y axis ( ),

, (6-24)

where m is the mass of the body. Experience tells us that D increases as the velocity of
the falling object relative to the air increases. As suggested in Fig. 6-27, if the body
falls long enough the force magnitudes, D and F grav, eventually equal each other as
shown in Fig. 6-27c. According to Eq. 6-24, when this happens ay � 0, and the body’s
speed no longer increases. The body then falls at a constant speed, called the terminal
speed vt. To find the terminal speed, we set ay � 0 in Eq. 6-24 and use that relation for
the magnitude of the drag force given by (Eq. 6-23). Then the terminal
speed is given by

. (6-25)

Table 6-1 gives values of the terminal speed for some common objects.
According to calculations* based on the assumption that , a cat must

fall about six floors to reach terminal speed. Until it does so, mg 
 Dy and the cat ac-
D � 1

2CA�v2

vt � √ 2mg
C�A

D � 1
2C�Av2

F net
y � (Dy � F grav

y ) � (�D � mg) � may

F net
y � may

F
: grav � �mg ĵD

:

D
:

v:

D � 1
2C�Av2

v � � v: �
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FIGURE 6-26 ■ This skier crouches in an
“egg position” to minimize her effective
cross-sectional area and thus the air drag
acting on her.

FIGURE 6-27 ■ The forces that act on a
body falling through air: (a) the body when
it has just begun to fall and (b) the free-
body diagram a little later, after a drag
force has developed. (c) The drag force has
increased until it balances the gravitational
force on the body. The body now falls at its
constant terminal speed.

Falling
body

(b)(a) (c)

D
D

F gravF grav

F grav

TA B L E 6 - 1
Some Terminal Speeds in Air

Terminal 95% 
Object Speed (m/s) Distancea (m)

Shot (from shot put) 145 2500

Sky diver (typical) 60 430

Baseball 42 210

Tennis ball 31 115

Basketball 20 47

Ping-Pong ball 9 10

Raindrop (radius � 1.5 mm) 7 6

Parachutist (typical) 5 3

aThis is the distance through which the body must fall from rest to reach 95%
of its terminal speed.
Source: Adapted from Peter J. Brancazio, Sport Science New York: Simon &
Schuster (1984).



celerates downward because of the net downward force. Recall from Chapter 2 that
your body is an accelerometer, not a speedometer. Because the cat also senses the ac-
celeration, it is frightened and keeps its feet underneath its body, its head tucked in,
and its spine bent upward, making its cross-sectional area (A) small, so its terminal
speed vt becomes relatively large. If the cat maintains this position, it could be injured
on landing. However, if the cat shown at the top of the chapter opening photo reaches
vt, its acceleration vanishes so it relaxes, stretching its legs and neck horizontally out-
ward and straightening its spine (it then resembles a flying squirrel). These actions in-
crease its area A and hence the magnitude of the drag force Dy acting on it. The cat
begins to slow its descent because now the magnitude of its upward drag force is
greater than the downward gravitational force. Eventually, a new, smaller terminal ve-
locity is reached. The decrease in terminal velocity reduces the possibility of serious
injury on landing. Just before hitting the ground, the cat pulls its legs back beneath its
body to prepare for the landing.

Humans often fall from great heights for fun when sky diving. However, in April
1987, during a jump, sky diver Gregory Robertson noticed that fellow sky diver Deb-
bie Williams had been knocked unconscious in a collision with a third sky diver and
was unable to open her parachute. Robertson, who was well above Williams at the
time and who had not yet opened his parachute for the 4 km plunge, reoriented his
body head-down to minimize his cross-sectional area and maximize his downward
speed. Reaching an estimated terminal velocity of 320 km/h, he caught up with
Williams and then went into a horizontal “spread eagle” (as shown in Fig. 6-28) to
increase his drag force. He could then grab her. He opened her parachute and then,
after releasing her, his own, a scant 10 s before impact. Williams received extensive
internal injuries due to her lack of control on landing but survived.

READI NG EXERC IS E  6-9 : Near the ground, is the speed of large raindrops greater
than (
), less than (	), or equal to (�) the speed of small raindrops? Assume that all raindrops
are spherical and have the same drag coefficient C. Beware! More than one factor is involved.

■

6-6 Applying Newton’s Laws 

Now that you have learned about several types of forces that can act on an object, you
have the basic knowledge needed to analyze the accelerations and forces experienced
by bodies in an interacting system. However, you will need to use your knowledge in
an organized fashion to predict how a system will move or to identify unknown forces
based on observations of system motions.

There are several key steps that we suggest you use in performing an analysis.
These steps are an extension of those presented in Sections 3-7 and 6-2. The steps are
outlined in more detail in Touchstone Example 6-5:

1. Construct a diagram of the system you wish to analyze.

2. Isolate the bodies of interest in the system on your diagram. Identify the types,
directions, and approximate magnitudes of the forces acting on each body. Label
the forces to indicate the type of force .

3. Construct a free-body diagram representing each body as a point. Place the tails
of the labeled force vectors for that body at its point. If possible, show the angles
these vectors make with respect to each other as well as the relative magnitudes
of the vectors.

(F
: grav, N

:
, f

:
, T

:
)
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FIGURE 6-28 ■ A sky diver in a horizon-
tal “spread eagle” maximizes the air drag.

*W. O. Whitney and C. J. Mehlhaff, “High-Rise Syndrome in Cats,” The Journal of the American Veterinary
Medical Association, 1987, Vol. 191, pp. 1399–1403.
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TOUCHSTONE EXAMPLE 6-5: Sliding Up a Ramp

Figure 6-29 shows a 300 g block on a 30� incline. The block is mov-
ing up the incline at a constant velocity because a string that passes
over a pulley is attached to a falling mass. We assume that the mass
of the string and pulley are negligible and that there is no friction in
the pulley and no friction between the incline and the block. (a)
What force is the string exerting on the block during the time that
the block is moving up the plane at constant velocity? (b) What is
the normal force that the incline is exerting on the block?

S O L U T I O N ■ The Ke y  I d e a is that because the block is not
accelerating, the net force on it must be zero (according to New-
ton’s Second Law). If we follow the steps outlined in Section 6-6 we
can identify the forces on the block, choose a coordinate system,
and decompose the vectors into components. Since the components
along each axis must add up to zero, we can solve our equations for
the magnitude and direction of the force of the string on the block.

Step One: Construct a Diagram of the System Figure 6-30a shows
the essential features of the system of interest needed to answer
question (a) including the incline, the block, and the string pulling
on the block. The figure is more abstract than the photograph of
Fig. 6-29.

Step Two: Isolate the Objects of Interest and Identify the Forces
There is only one object of interest in this problem—the block.

Thus, we only need to diagram and identify the forces on it. There
are three forces acting on the block. First, there is the gravitational
force that the Earth exerts on the block that acts vertically down-
ward. Next, there is the normal force that is at right angles (normal)
to the surface of the incline. Finally, there is the tension force along
the direction of the string that is exerted on the upper end of the
block. These forces are shown in Fig. 6-30b. Note: Although each bit
of mass on the block is being pulled downward by the Earth, we
can idealize this force and assume it acts at the center of the block.
Likewise we assume that the normal force exerted on the block by
the inclined plane surface acts like a single force at the middle of
the surface of the block that is in contact with the incline. We real-
ize it is the vector sum of billions of smaller normal vectors acting
at all points along the surface of contact of the block.

Step Three: Construct a Free-Body Diagram To analyze a system
using Newton’s Second Law, we draw a free-body diagram for each
object in our system. Usually the object experiencing forces is rep-
resented by a dot. Then, a vector representing each force that acts
on that object is drawn with its tail on the dot. Each vector should
be pointing in the direction of the particular force being repre-
sented. Also, if the relative magnitudes of the forces are known, the

4. Predict the direction of the acceleration and draw a special acceleration vector in
that direction and label it with . Then choose a coordinate system so that one
axis lies parallel to the direction of the predicted acceleration.

5. Write down Newton’s Second Law in vector form for each body in the system.
Then decompose the vectors into a pair of one-dimensional equations for each
body,

and .

Remember that we drop the vector notation (arrows) when we write the one-
dimensional equations. These equations associate the components of vectors.

6. Solve the set of equations for each dimension (x and y) separately to find the un-
known vector components.

In Touchstone Example 6-5 we show how these six steps can be used to find the
forces that act on a block of known mass as it slides up an incline.

ay �
1
m

F net
yax �

1
m

F net
xa: �

1
m

F
: net Q

a:

FIGURE 6-29 ■ Photograph
of a block on an inclined
plane that is moving at a
constant velocity.

θ = 30°

(a) (b)

Fstring    block

F grav

N

FIGURE 6-30 ■ (a) Step one sketch of just those parts of the sys-
tem of interest for solving the problem. (b) Step two sketch of just
the block and the forces acting on it with labels.
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lengths of the vectors should represent those magnitudes. In this ex-
ample, we only need a free-body diagram for one object—the
block. A clearly labeled arrow showing the predicted direction of
the acceleration of the object should also be included. We have no
acceleration in this case, so no acceleration vector is included. The
free-body diagram for the block is shown in Fig. 6-31a.

Step Four: Predict the Direction of the Acceleration and Choose
a Coordinate System In choosing the coordinate system for this
particular situation, it is useful to break away from our standard
practice of having the y axis be a vertical axis and the x axis be hori-
zontal. In general, it is helpful to have one of the axes chosen so it
is in the direction of either the acceleration of the object of interest
or the forces we are trying to find. One force on the block points up
the incline (the string force). Another force is perpendicular to the
incline (the normal force). Let’s choose “up the incline” as the di-
rection of the positive x axis and a y axis that is perpendicular to
the incline (shown in Fig. 6-31b). In this coordinate system, only the
gravitational force vector will need to be decomposed. Note that
using a standard coordinate system would not be incorrect, just less
convenient.

We can use some basic geometry to convince ourselves that the
gravitational force vector makes an angle of 30� with respect to the
negative y axis.

Step Five: Apply Newton’s Second Law and Decompose the Force
Vectors Recall that the block is moving with constant velocity so
the vector sum of the forces acting on it must be zero. Thus we can
write

so .

But in order for we must have and .
Therefore,

and

.

Recall that here Fx
grav denotes the x-component of the gravita-

tional force, Nx denotes the x-component of the normal force, and

Fy
grav � Ny � Fstring:block y � 0

Fx
grav � Nx � Fstring:block x � 0

F net
y � 0F net

x � 0F
: net � 0

F
: grav � N

:
� F

:

string:block � 0F
:net � ma: � 0

so on. These components are not vectors and so do not have arrows
above them. The only vector that needs decomposition is the gravi-
tational force vector. This decomposition is shown in Fig. 6-32. Since
we know by inspection that the gravitational force components are
negative, they are expressed with explicit signs as

and .

The angle  between the downward-pointing force vector and the y
axis is 30�. By inspecting the diagram, we see that the normal force
vector points along the positive y axis and the tension force vector
points along the positive x axis. So, these vectors can be written as

and ,

where T is a positive scalar representing the tension in the
string and N is a positive scalar representing the magnitude of
the normal force. Our expression for � 0 then becomes

Our expression for then becomes
Thus,

,

and .

We know how to find the values of the gravitational force compo-
nents in terms of the mass of the block m, the local gravitational
strength constant g, and the angle  :

T � mg sin  � 0.300 kg � 9.8 m/s2 � sin 30� � 1.47 N

N � mg cos  � 0.300 kg � 9.8 m/s2 � sin 30� � 2.55 N.

Finally, rounding to 2 significant figures gives us

(Answer)

. (Answer)

A final note: This example shows the basics for a relatively simple
analysis. If we had taken friction into account and picked a part of
the motion that is accelerated, the problem would have been more
complicated. However, the basic steps would be exactly the same.
To master the techniques of analysis for more complex situations,
you will also need to study the rest of the of touchstone examples in
this chapter.

N
:

� �(2.5 N)ĵ

F
:

string:block � �T î � �(1.5 N)î

N � mg cos 

T � mg sin 

N � F grav cos  � 0.
F net

y � 0�T � F grav sin  � 0.
F net

x

F
:

string:block � �T îN
:

� � N ĵ

F grav
y � �F grav cos F grav

x � �F grav sin 

(a) (b)

Fstring    block

Fgrav

N
Fstring    block

F grav

N

θ

y

x

FIGURE 6-31 ■ Steps three and four free-body diagrams for the
forces on the block: (a) without a coordinate system and (b) with a
coordinate system.

Fstring    block

F grav

Fx
grav

Fy
grav

Ny
y

x

FIGURE 6-32 ■ Decomposition of the
gravitational force vector into compo-
nents along the chosen x and y axes.
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TOUCHSTONE EXAMPLE 6-7: Accelerated by Friction

TOUCHSTONE EXAMPLE 6-6: Breaking Loose

Figure 6-33a shows a coin of mass m at rest on a book that has been
tilted at an angle  with the horizontal. By experimenting, you find
that when  is increased to 13�, the coin is on the verge of sliding
down the book, which means that even a slight increase beyond 13�
produces sliding. What is the coefficient of static friction � stat be-
tween the coin and the book?

S O LUT I O N ■ If the book were frictionless, the coin would surely
slide down it for any tilt of the book because of the gravitational
force on the coin. Thus, one Key  I dea here is that a frictional
force f stat must be holding the coin in place. A second Key  I dea is
that, because the coin is on the verge of sliding down the book, that
force is at its maximum magnitude f max and is directed up the book.
Also, from Eq. 6-11, we know that f max � � stat N, where N is the
magnitude of the normal force on the coin from the book. Thus,

,

from which . (6-26)

To evaluate this equation, we need to find the force magni-
tudes f stat and N. To do that, we use another Ke y  I d e a : When the
coin is on the verge of sliding, it is stationary and thus its accelera-
tion is zero. We can relate this acceleration to the forces on the
coin with Newton’s Second Law . As shown in the free-
body diagram of the coin in Fig. 6-33b, these forces are (1) the fric-
tional force , (2) the normal force , and (3) the gravitational
force on the coin, with magnitude equal to mg. Then, from
Newton’s Second Law with , we havea: � 0

F
: grav

N
:

f
:stat

( F
: net � ma:)

a:

� stat �
f stat

N

f max � � stat N

N
:

(6-27)

To find f stat and N, we rewrite Eq. 6-27 for components along
the x and y axes of the tilted coordinate system in Fig. 6-33b. For
the x axis and with mg substituted for , we have 

,

so . (6-28)

Similarly, for the y axis we have

,

so . (6-29)

Substituting Eqs. 6-28 and 6-29 into Eq. 6-26 produces

, (6-30)

which here means

(Answer)

Actually, you do not need to measure  to get � stat. Instead, mea-
sure the two lengths shown in Fig. 6-33a and then substitute h/d for
tan  in Eq. 6-30.

� stat � tan 13� � 0.23.

� stat �
mg sin 
mg cos 

� tan 

N � �mg cos 

f stat
y � Ny � F grav

y � 0 � N � mg cos  � 0

f stat
x � f stat � �mg sin 

f stat
x � Nx � F grav

x � f stat
x � 0 � mg sin  � 0

� F
:grav�

f
:stat � N

:
� F

:grav � 0.

FIGURE 6-33 ■ (a) A coin on the verge of
sliding down a book. (b) A free-body dia-
gram for the coin, showing the three forces
(drawn to scale) that act on it. The gravita-
tional force is shown resolved into its
components along the x and the y axes,
whose orientations are chosen to simplify
the problem. Component 
��Fgrav�sin  tends to slide the coin down
the book. Component ��Fgrav�cos 
presses the coin onto the book.
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FIGURE 6-34

A 40 kg slab rests on a frictionless floor. A 10 kg block rests on top
of the slab (Fig. 6-34). The coefficient of static friction � stat between
the block and the slab is 0.60, whereas their kinetic friction coeffi-
cient �kin is 0.40. The 10 kg block is pulled by a horizontal force
with a magnitude of 100 N. What are the resulting accelerations of
(a) the slab and (b) the block?
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S O L U T I O N ■ The first Ke y  I d e a here is that we should apply
Newton’s Second Law separately to the slab (m slab � 40 kg) and to
the block (mblock � 10 kg) to obtain the acceleration of each:

and

To find the net force on each of these objects, we can draw a free-
body diagram for each, as shown in Fig. 6-35. The direction of the
frictional force from the slab on the block, , is determined
by considering the direction of the block’s impending motion. The
direction of the frictional force from the block on the slab,

, is inferred from Newton’s Third Law.

Since we expect the block and the slab to accelerate to the left,
let’s decide that the positive x axis is pointing to the left and the y
axis is pointing straight up. Then

so , (6-31)

and so . (6-32)

To calculate the horizontal accelerations of the block and the slab,
we must first determine whether the frictional force of interaction
between them is static or kinetic. The Ke y  I d e a here is that the
maximum static frictional force’s magnitude is limited to be no
larger than . Applying this to the slab, we find that

. (6-33)

Newton’s Third Law tells us that

, (6-34)

and Fig. 6-35b and Eq. 6-31 tell us that

. (6-35)

Combining these ideas yields

. � (0.60)(10 kg)(9.8 N/kg) � 59 N

f max
block:slab � �stat m block g

Nslab:block � F grav
block � m block g

Nblock:slab � Nslab:block

f max
block:slab � �statNblock:slab

f max � �stat N

F net
block y � 0ablock y � 0

F net
slab y � 0aslab y � 0

f
:

block:slab

f
:

slab:block

a:block �
F
:net

block

mblock
.

F
:net

slab

mslab
a:slab �

If this limit is not exceeded, then static friction would keep the
block and the slab locked together, accelerating with a common
acceleration

.

Newton’s Second Law (written in terms of x-components) tells us
that this acceleration requires � mslab ax � (40 kg)(2.00 m/s2) �
80.0 N. But Fig. 6-35a shows that the only horizontal force acting on
the slab is the frictional force from the block. Since 80 N are required
to accelerate the slab but we found the static frictional force is lim-
ited to 59 N, we can conclude that the block and the slab cannot be
locked together by static friction. The block must be sliding to the left
on top of the slab.This means that

, (6-36)

and (6-37)

Combining Eqs. 6-34, Eq. 6-35, and Eq. 6-37 yields �
�kinmblock g or

(6-38)

so

(Answer)

It’s interesting to note that a frictional force causes the slab to
speed up, not slow down. The same is true when you start running
from rest. To accelerate, you push backwards on the ground with
your shoes. The ground, courtesy of Newton’s Third Law, pushes
forward on you, accelerating you forward. It is actually the static
frictional force that the ground exerts on you that accelerates you.

Finally, to calculate the acceleration of the block, we note that
the net force on the block in the y direction is zero and that (by
Newton’s Third Law) . Therefore,

So

(Answer)� (�6.1 m/s2) î.

� [10 m/s2 � (0.4)(9.8 m/s2)] î

�
(100 N)î � (0.40)(10 kg)(9.8 m/s2) î

10 kg

a:
block �
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mblock
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FIGURE 6-35 ■ The free-body diagram showing all the forces act-
ing on (a) the 40 kg slab and (b) the 10 kg block. These forces are
not drawn to scale.



6-7 The Fundamental Forces of Nature

According to Newton’s Third Law, forces between two objects always act in pairs. In
the study of the structure of matter, physicists have used a belief in mutual interac-
tions to study the nature of forces. As we learn more about matter and how it be-
haves, we explore the nature of forces by observing changes in the motion of objects
that interact. Using these observations, scientists have identified only four types of
forces.

The most familiar of these forces are the gravitational force, of which falling and
weight are our most familiar examples, and the electromagnetic force, which, at a fun-
damental level, is the basis of all the other forces we considered in this chapter. The
electromagnetic force is the combination of electrical forces and magnetic forces.
Electromagnetic forces enable an electrically charged balloon to stick to a wall and a
magnet to pick up an iron nail. In fact, aside from the gravitational force, any force
that we can experience directly as a push or pull is electromagnetic in nature. That is,
all such forces, including friction forces, normal forces, contact forces, and tension
forces arise from electromagnetic forces exerted by one atom on another. For exam-
ple, the tension in a taut cord exists only because its atoms attract one another. When

166 CHAPTER 6 Identifying and Using Forces

TOUCHSTONE EXAMPLE 6-8: Banked Curve

You cannot always count on friction to get your car around a curve,
especially if the road is icy or wet. That is why highway curves are
banked. Suppose that a car of mass m moves at a constant speed v
of 20 m/s around a curve, now banked, whose radius R is 190 m
(Fig. 6-36a). What bank angle  makes reliance on friction unneces-
sary?

S O L U T I O N ■ A centripetal force must act on the car if the car
is to move along the circular path. A Ke y  I d e a is that the track is
banked so as to tilt the normal force on the car toward the center
of the circle (Fig. 6-36b). Thus, now has a centripetal component
Nr, directed inward along a radial axis r. We want to find the value
of the bank angle  such that this centripetal component keeps the
car on the circular track without need of friction.

A second Key  Idea is to keep the y axis vertical and the x axis
horizontal rather than in the direction of the incline. This enables us
to find the radial component of the normal force more easily.

As Fig. 6-36b shows (and as you should verify), the angle that
makes with the vertical is equal to the bank angle  of the track.

Thus, the radial component Nr is equal to �N sin  where N is the
magnitude of the normal force. We can now write Newton’s Second
Law for components along the r axis ( � mar) as

. (6-39)

We cannot solve this equation for the value of  because it also con-
tains the unknowns N and m.

We next consider the forces and acceleration along the y axis
in Fig. 6-36b. The vertical component of the normal force is 
Ny � N cos , the gravitational force on the car is (�mg) ,
and the acceleration of the car along the y axis is zero. Thus, we
can write Newton’s Second Law for components along the y axis

ĵF
:grav

�N sin  � m��
v2

R �

F net
r

N
:

N
:

N
:

( � may) as

from which

(6-40)

This too contains the unknowns N and m, but note that dividing
Eq. 6-39 by Eq. 6-40 neatly eliminates both those unknowns. Doing
so, replacing sin /cos  with tan  and solving for , then yield

(Answer)� tan�1 � (20 m/s)2

(9.8 m/s2)(190 m) � � 12�.

 � tan�1 � v2

gR �

N cos  � mg.

�N cos  � mg � m(0),

F net
y

(b)

y

m r
Nr

R

(a)

θ

Ny
θ

v
a

N

F grav

FIGURE 6-36 ■ (a) A car moves around a curved banked road at
constant speed. The bank angle is exaggerated for clarity. (b) A
free-body diagram for the car, assuming that friction between tires
and road is zero. The radially inward component of the normal
force provides the necessary centripetal force. The resulting accel-
eration is also radially inward.
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SEC. 6-2 ■ NET FORCE AS A VECTOR SUM

1. Standard Body If the 1 kg standard body has an acceleration of
2.00 m/s2 at 20° to the positive direction of the x axis, then what are
(a) the x-component and (b) the y-component of the net force on it,
and (c) what is the net force in unit-vector notation?

2. Chopping Block Two horizontal forces act on a 2.0 kg chopping
block that can slide over a frictionless kitchen counter, which lies
in an xy plane. One force is � (3.0 N) � (4.0 N) . Find the accel-
eration of the chopping block in unit-vector notation when the other
force is (a) � (�3.0 N) � (�4.0 N) , (b) � (�3.0 N) �
(4.0 N) , and (c) � (3.0 N) � (�4.0 N) .ĵîF

:

Bĵ
îF

:

BĵîF
:

B

ĵîF
:

A

Problems

pulled apart a bit, while normal forces result from atoms repelling each other when
being pushed together.

Only two other fundamental forces are known, and they both act over such short
distances that we cannot experience them directly through our senses. They are the
weak force, which is involved in certain kinds of radioactive decay, and the strong
force, which binds together the quarks that make up protons and neutrons and is the
“glue” that holds together an atomic nucleus.

Physicists have long believed that nature has an underlying simplicity and that the
number of fundamental forces can be reduced. Einstein spent most of his working life
trying to interpret these forces as different aspects of a single superforce. He failed,
but in the 1960s and 1970s, other physicists showed that the weak force and the elec-
tromagnetic force are different aspects of a single electroweak force. The quest for
further reduction continues today, at the very forefront of physics. Table 6-2 lists the
progress that has been made toward unification (as the goal is called) and gives some
hints about the future.

TA B L E 6 - 2
The Quest for the Superforce—A Progress Report

Date Researcher Achievement

1687 Newton Showed that the same laws apply to astronomical 
bodies and to objects on Earth. Unified celestial 
and terrestrial mechanics.

1820 Oersted Showed, by brilliant experiments, that the then 
1830s Faraday separate sciences of electricity and magnetism are 

intimately linked.

1873 Maxwell Unified the sciences of electricity, magnetism, and 
optics into the single subject of electromagnetism.

1979 Glashow, Salam, Received the Nobel Prize for showing that the weak 
Weinberg force and the electromagnetic force could be different 

aspects of a single electroweak force. This combination 
of forces reduced the number of forces viewed as 
fundamental forces from four to three.

1984 Rubbia, Received the Nobel Prize for verifying experimentally the 
van der Meer predictions of the theory of the electroweak force.

Work in Progress

Grand unification theories (GUTs): Seek to unify the electroweak force and the strong force.
Supersymmetry theories: Seek to unify all forces, including the gravitational force, within a
single framework.

Superstring theories: Interpret point-like particles, such as electrons, as being unimaginably
tiny, closed loops. Strangely, extra dimensions beyond the familiar four dimensions of space-
time appear to be required.



3. Two Horizontal Forces Only two horizontal forces act on a
3.0 kg body. One force is 9.0 N, acting due east, and the other is
8.0 N, acting 62° north of west. What is the magnitude of the body’s
acceleration?

4. Two Forces While two forces act on it, a particle is to move at
the constant velocity � (3 m/s) � (4 m/s) . One of the forces is

� (2 N) � (�6 N) . What is the other force?

5. Three Forces Three forces act on a particle that moves with
unchanging velocity � (2 m/s) � (7 m/s) . Two of the forces are

� (2 N) � (3 N) and � (�5 N) � (8 N) . What is the 
third force?

6. Three Astronauts Three astro-
nauts, propelled by jet backpacks,
push and guide a 120 kg asteroid to-
ward a processing dock, exerting the
forces shown in Fig. 6-37. What is
the asteroid’s acceleration (a) in
unit-vector notation and as (b) a
magnitude and (c) a direction?

7. The Box There are two forces
on the 2.0 kg box in the overhead
view of Fig. 6-38 but only one is
shown. The figure also shows the ac-
celeration of the box. Find the sec-
ond force (a) in unit-vector nota-
tion and as (b) a magnitude and (c)
a direction.

8. A Tire Figure 6-39 is an over-
head view of a 12 kg tire that is to
be pulled by three ropes. One force
( , with magnitude 50 N) is 
indicated. Orient the other two
forces and so that the magni-
tude of the resulting acceleration of
the tire is least, and find that magni-
tude if (a) � 30 N, � 20 N;
(b) � 30 N, � 10 N; and (c) 

� � 30 N.

SEC. 6-3 ■ GRAVITATIONAL FORCE AND WEIGHT

9. Salami on a Cord (a) An 11.0 kg salami is supported by a cord
that runs to a spring scale, which is supported by another cord from
the ceiling (Fig. 6-40a). What is the reading on the scale, which is
marked in weight units? (b) In Fig. 6-40b the salami is supported by
a cord that runs around a pulley and to a scale. The opposite end of
the scale is attached by a cord to a wall. What is the reading on the
scale? (c) In Fig. 6-40c the wall has been replaced with a second
11.0 kg salami on the left, and the assembly is stationary. What is
the reading on the scale now?

10. Spaceship on the Moon A spaceship lifts off vertically from the
Moon, where the freefall acceleration is 1.6 m/s2. If the spaceship has
an upward acceleration of 1.0 m/s2 as it lifts off, what is the magnitude
of the force of the spaceship on its pilot, who weighs 735 N on Earth?

SEC. ■ 6-4 CONTACT FORCES

11. A Bureau A bedroom bureau with a mass of 45 kg. including
drawers and clothing, rests on the floor. (a) If the coefficient of sta-
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ĵîF
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tic friction between the bureau and the floor is 0.45, what is the
magnitude of the minimum horizontal force that a person must ap-
ply to start the bureau moving? (b) If the drawers and clothing,
with 17 kg mass, are removed before the bureau is pushed, what is
the new minimum magnitude?

12. Scrambled Eggs The coefficient of static friction between
Teflon and scrambled eggs is about 0.04. What is the smallest angle
from the horizontal that will cause the eggs to slide across the bot-
tom of a Teflon-coated skillet?

13. Baseball Player A baseball player with mass m � 79 kg, sliding
into second base, is retarded by a frictional force of magnitude
470 N. What is the coefficient of kinetic friction �kin between the
player and the ground?

14. The Mysterious Sliding Stones Along the remote Racetrack
Playa in Death Valley. California, stones sometimes gouge out
prominent trails in the desert floor, as if they had been migrating
(Fig 6-41). For years curiosity mounted about why the stones
moved. One explanation was that strong winds during the occa-
sional rainstorms would drag the rough stones over ground soft-
ened by rain. When the desert dried out, the trails behind the stones
were hard-baked in place. According to measurements, the coeffi-
cient of kinetic friction between the stones and the wet playa
ground is about 0.80. What horizontal force is needed on a stone of
typical mass 20 kg to maintain the stone’s motion once a gust has
started it moving? (Story continues with Problem 42.)

168 CHAPTER 6 Identifying and Using Forces

x

y

32 N

55 N

41 N

60°
30°

x
FA = 20.0 N

y

30°

a = 12 m/s2

x
FA = 50 N

FIGURE 6-37 ■ Problem 6.

FIGURE 6-39 ■ Problem 8.

FIGURE 6-38 ■ Problem 7.

S
A

L A

M
I

G
ENO

A

S
A

L A

M
I

G
ENO

A

S
A

L A

M
I

G
ENO

A

S
A

L A

M
I

G
ENO

A
11 kg

Spring scale

11 kg

Spring scale

11 kg

Spring
scale

(b)

(c)

(a)
11 kg

FIGURE 6-40 ■ Problem 9.

FIGURE 6-41 ■

Problem 14.



15. A Crate A person pushes horizontally with a force of 220 N on
a 55 kg crate to move it across a level floor. The coefficient of ki-
netic friction is 0.35. (a) What is the magnitude of the frictional
force? (b) What is the magnitude of the crate’s acceleration?

16. A House on a Hill A house is built on the top of a hill with a
nearby 45° slope (Fig. 6-42). An engineering study indicates that the
slope angle should be reduced because the top layers of soil along
the slope might slip past the lower layers. If the static coefficient of
friction between two such layers is 0.5, what is the least angle �
through which the present slope should be reduced to prevent slip-
page?

FIGURE 6-42 ■ Problem 16.

17. Hockey Puck A 110 g hockey puck sent sliding over ice is
stopped in 15 m by the frictional force on it from the ice. (a) If its
initial speed is 6.0 m/s, what is the magnitude of the frictional force?
(b) What is the coefficient of friction between the puck and the ice?

18. Rock Climber In Fig. 6-43 a 49
kg rock climber is climbing a
“chimney” between two rock slabs.
The static coefficient of friction be-
tween her shoes and the rock is 1.2;
between her back and the rock it is
0.80. She has reduced her push
against the rock until her back and
her shoes are on the verge of slip-
ping. (a) Draw a free-body diagram
of the climber. (b) What is her push
against the rock? (c) What fraction
of her weight is supported by the
frictional force on her shoes?

19. Block Against a Wall A 12 N
horizontal force pushes a block
weighing 5.0 N against a vertical
wall (Fig. 6-44). The coefficient of
static friction between the wall and
the block is 0.60, and the coefficient
of kinetic friction is 0.40. Assume
that the block is not moving ini-
tially. (a) Will the block move? (b)
In unit-vector notation, what is the
force on the block from the wall?

20. Block on a Horizontal Surface
A 2.5 kg block is initially at rest on
a horizontal surface. A 6.0 N hori-
zontal force and a vertical force 
are applied to the block as shown in
Fig. 6-45. The coefficients of friction
for the block and surface are � stat

� 0.40 and � kin � 0.25. Determine

P
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F
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the magnitude and direction of the frictional force acting on the
block if the magnitude of is (a) 8.0 N, (b) 10 N, and (c) 12 N.

21. Pile of Sand A worker wishes
to pile a cone of sand onto a circu-
lar area in his yard. The radius of
the circle is R, and no sand is to spill
onto the surrounding area (Fig. 6-46).
If � stat is the static coefficient of
friction between each layer of sand
along the slope and the sand be-
neath it (along which is might slip),
show that the greatest volume of
sand that can be stored in this man-
ner is �� statR3/3. (The volume of a
cone is Ah/3, where A is the base
area and h is the cone’s height.)

22. Worker and Crate A worker pushes horizontally on a 35 kg
crate with a force of magnitude 110 N. The coefficient of static fric-
tion between the crate and the floor is 0.37. (a) What is the fric-
tional force on the crate from the floor? (b) What is the maximum
magnitude of the static frictional force under the circum-
stances? (c) Does the crate move? (d) Suppose, next, that a second
worker pulls directly upward on the crate to help out. What is the
least vertical pull that will allow the first worker’s 110 N push to
move the crate? (e) If, instead, the second worker pulls horizontally
to help out, what is the least pull
that will get the crate moving?

23. A Crate is Dragged A 68 kg
crate is dragged across a floor by
pulling on a rope attached to the
crate and inclined 15° above the hor-
izontal. (a) If the coefficient of static
friction is 0.50, what minimum force
magnitude is required from the rope
to start the crate moving? (b) If � kin

� 0.35, what is the magnitude of the
initial acceleration of the crate?

24. Pig on a Slide A slide-loving pig
slides down a certain 35° slide (Fig. 6-
47) in twice the time it would take to
slide down a frictionless 35° slide.
What is the coefficient of kinetic fric-
tion between the pig and the slide?

25. Blocks A and B In Fig. 6-48
blocks A and B have weights of 44 N
and 22 N, respectively. (a) Determine
the minimum weight of block C to
keep A from sliding if � stat between
A and the table is 0.20. (b) Block C
suddenly is lifted off A. What is the
acceleration of block A if � kin be-
tween A and the table is 0.15?

26. Block Pushed at an Angle A
3.5 kg block is pushed along a hori-
zontal floor by a force of magni-
tude 15 N at an angle  � 40° with
the horizontal (Fig. 6-49). The coeffi-
cient of kinetic friction between the
block and the floor is 0.25. Calculate
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the magnitudes of (a) the frictional force on the block from the
floor and (b) the acceleration of the block.

27. Mountain Side Figure 6-50 shows the cross section of a road
cut into the side of a mountain. The solid line AA� represents a
weak bedding plane along which
sliding is possible. Block B directly
above the highway is separated
from uphill rock by a large crack
(called a joint), so that only friction
between the block and the bedding
plane prevents sliding. The mass of
the block is 1.8 � l07 kg, the dip an-
gle  of the bedding plane is 24°,
and the coefficient of static friction
between block and plane is 0.63. (a) Show that the block will not
slide. (b) Water seeps into the joint and expands upon freezing, ex-
erting on the block a force parallel to AA�. What minimum value
of F will trigger a slide?

28. Penguin Sled A loaded penguin sled weighing 80 N rests on a
plane inclined at 20° to the hori-
zontal (Fig. 6-51). Between the
sled and the plane, the coefficient
of static friction is 0.25, and the co-
efficient of kinetic friction is 0.15.
(a) What is the minimum magni-
tude of the force , parallel to the
plane, that will prevent the sled
from slipping down the plane? (b) What is the minimum magnitude
F that will start the sled moving up the plane? (c) What value of F
is required to move the sled up the plane at constant velocity?
29. Block on a Table Block B in Fig. 6-52 weighs 711 N. The coeffi-
cient of static friction between
block and table is 0.25; assume that
the cord between B and the knot is
horizontal. Find the maximum
weight of block A for which the
system will be stationary.
30. Force Parallel to a Surface A
force , parallel to a surface in-
clined 15° above the horizontal,
acts on a 45 N block, as shown in
Fig. 6-53. The coefficients of friction
for the block and surface are � stat

� 0.50 and � kin � 0.34. If the block
is initially at rest, determine the
magnitude and direction of the fric-
tional force acting on the block for
magnitudes of of (a) 5.0 N, (b)
8.0 N, and (c) 15 N.
31. Body A–Body B Body A in
Fig. 6-54 weighs 102 N, and body B
weighs 32 N. The coefficients of
friction between A and the incline
are � stat � 0.56 and � kin � 0.25.
Angle  is 40°. Find the accelera-
tion of A if (a) A is initially at rest,
(b) A is initially moving up the in-
cline, and (c) A is initially moving
down the incline.
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32. Two Blocks and a Pulley In Fig. 6-54, two blocks are connected
over a pulley. The mass of block A is 10 kg and the coefficient of ki-
netic friction between A and the incline is 0.20. Angle  of the in-
cline is 30°. Block A slides down the incline at constant speed. What
is the mass of block B?

33. Two Blocks Massless String Two blocks of weights 3.6 N and
7.2 N are connected by a massless string and slide down a 30° in-
clined plane. The coefficient of kinetic friction between the lighter
block and the plane is 0.10; that between the heavier block and the
plane is 0.20. Assuming that the lighter block leads, find (a) the mag-
nitude of the acceleration of the blocks and (b) the tension in the
string. (c) Describe the motion if, instead, the heavier block leads.

34. Box of Cheerios® In Fig. 6-55,
a box of Cheerios® and a box of
Wheaties® are accelerated across a
horizontal surface by a horizontal
force applied to the Cheerios®
box. The magnitude of the fric-
tional force on the Cheerios® box
is 2.0 N, and the magnitude of the frictional force on the Wheaties®
box is 4.0 N. If the magnitude of is 12 N, what is the magnitude of
the force on the Wheaties® box from the Cheerios® box?

35. Blocks Not Attached The two
blocks (with m � 16 kg and M �
88 kg) shown in Fig. 6-56 are not at-
tached. The coefficient of static fric-
tion between the blocks is � stat �
0.38, but the surface beneath the
larger block is frictionless. What is
the minimum magnitude of the
horizontal force required to keep the smaller block from slipping
down the larger block?

36. Aunts and Uncles In Fig. 6-57,
a box of ant aunts (total mass mA �
1.65 kg) and a box of ant uncles
(total mass mB � 3.30 kg) slide
down an inclined plane while
attached by a massless rod parallel
to the plane. The angle of incline is
 � 30°. The coefficient of kinetic
friction between the aunt box and
the incline is � 0.226; that be-
tween the uncle box and the incline is � 0.113. Compute (a)
the tension in the rod and (b) the common acceleration of the two
boxes. (c) How would the an-
swers to (a) and (b) change if
the uncles trailed the aunts?

37. Block on a Slab A 40 kg
slab rests on a frictionless floor.
A 10 kg block rests on top of
the slab (Fig. 6-58). The coeffi-
cient of static friction � stat between the block and the slab is 0.60,
whereas their kinetic friction coefficient � kin is 0.40. The 10 kg
block is pulled by a horizontal force with a magnitude of 100 N.
What are the resulting accelerations of (a) the block and (b) the
slab?

38. A Locomotive A locomotive accelerates a 25-car train along a
level track. Every car has a mass of 5.0 � 104 kg and is subject to a
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frictional force f kin � (250 N � s/m) . At the instant when the speed
of the train is 30 km/h, the magnitude of its acceleration is 0.20 m/s2.
(a) What is the tension in the coupling between the first car and the
locomotive? (b) If this tension is equal to the maximum force the
locomotive can exert on the train, what is the steepest grade up
which the locomotive can pull the train at 30 km/h?

39. Crate in a Trough In Fig. 6-59, a crate slides down an inclined
right-angled trough. The coefficient of kinetic friction between the
crate and the trough is � kin. What is the acceleration of the crate in
terms of � kin, , and g?

FIGURE 6-59 ■ Problem 39.

40. Box of Sand An initially stationary box of sand is to be pulled
across a floor by means of a cable in which the tension should
not exceed 1100 N. The coefficient of static friction between the
box and the floor is 0.35. (a) What should be the angle between
the cable and the horizontal in order to pull the greatest possible
amount of sand, and (b) what is the weight of the sand and box in
that situation?

41. Boat with Engine Off A 1000 kg boat is traveling at 90 km/h
when its engine is shut off. The magnitude of the frictional force

between boat and water is proportional to the speed v of the
boat; � (70 N� s/m) . Find the time required for the boat to
slow to 45 km/h.

SEC. 6-5 ■ DRAG FORCE AND TERMINAL SPEED

42. Continuation of Problem 14 First reread the explanation of how
the wind might drag desert stones across the playa. Now assume that
Eq. 6-23 gives the magnitude of the air drag force on the typical 20 kg
stone, which presents a vertical cross-sectional area to the wind of
0.040 m2 and has a drag coefficient C of 0.80. Take the air density to
be 1.21 kg/m3, and the coefficient of kinetic friction to be 0.80. (a) In
kilometers per hour, what wind speed V along the ground is needed
to maintain the stone’s motion once it has started moving? Because
winds along the ground are retarded by the ground, the wind speeds
reported for storms are often measured at a height of 10 m. Assume
wind speeds are 2.00 times those along the ground, (b) For your an-
swer to (a), what wind speed would be reported for the storm and is
that value reasonable for a high-speed wind in a storm?

43. Missile Calculate the drag force on a missile 53 cm in diameter
cruising with a speed of 250 m/s at low altitude, where the density
of air is 1.2 kg/m3. Assume C � 0.75.

44. Sky Diver The terminal speed of a sky diver is 160 km/h in the
spread-eagle position and 310 km/h in the nosedive position. As-
suming that the diver’s drag coefficient C does not change from one
position to the other, find the ratio of the effective cross-sectional
area A in the slower position to that in the faster position.

45. Jet Vs. Prop-Driven Transport Calculate the ratio of the drag
force on a passenger jet flying with a speed of 1000 km/h at an alti-
tude of 10 km to the drag force on a prop-driven transport flying at
half the speed and half the altitude of the jet. At 10 km the density
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of air is 0.38 kg/m3, and at 5.0 km it is 0.67 kg/m3. Assume that the
airplanes have the same effective cross-sectional area and the same
drag coefficient C.

SEC. 6-6 ■ APPLYING NEWTON’S LAWS

46. Block on an Incline Refer to Fig. 6-29. Let the mass of the
block be 8.5 kg and the angle  be 30°. The block moves at constant
velocity. Find (a) the tension in the cord and (b) the normal force
acting on the block. (c) If the cord is cut, find the magnitude of the
block’s acceleration.

47. Electron Moving Horizontally An electron with a speed of
1.2 � 107 m/s moves horizontally into a region where a constant
vertical force of 4.5 � 10�16 N acts on it. The mass of the electron is
9.11 � l0�31 kg. Determine the vertical distance the electron is de-
flected during the time it has moved 30 mm horizontally.

48. Tarzan Tarzan, who weighs 820 N, swings from a cliff at the end
of a 20 m vine that hangs from a high tree limb and initially makes
an angle of 22° with the vertical. Immediately after Tarzan steps off
the cliff, the tension in the vine is 760 N. Choose a coordinate system
for which the x axis points horizontally away from the edge of the
cliff and the y axis points upward. (a) What is the force of the vine
on Tarzan in unit-vector notation? (b) What is the net force acting
on Tarzan in unit-vector notation? What are the (c) magnitude and
(d) direction of the net force acting on Tarzan? What are the (e)
magnitude and (f) direction of Tarzan’s acceleration?

49. Skier on a Rope Tow A 50 kg skier is pulled up a frictionless
ski slope that makes an angle of 8.0° with the horizontal by holding
onto a tow rope that moves parallel to the slope. Determine the
magnitude of the force of the rope on the skier at an instant when
(a) the rope is moving with a constant speed of 2.0 m/s and (b) the
rope is moving with a speed of 2.0 m/s but that speed is increasing
at a rate of 0.10 m/s2.

50. Running Armadillo For sport, a 12 kg armadillo runs onto a
large pond of level, frictionless ice with an initial velocity of 5.0 m/s
along the positive direction of an x axis. Take its initial position on
the ice as being the origin. It slips over the ice while being pushed
by a wind with a force of 17 N in the positive direction of the y axis.
In unit-vector notation, what are the animal’s (a) velocity and (b)
position vector when it has slid for 3.0 s?

51. Sphere Suspended from a Cord A sphere of mass 3.0 � 10�4 kg is
suspended from a cord. A steady horizontal breeze pushes the sphere
so that the cord makes a constant angle of 37° with the vertical. Find
(a) the magnitude of that push and (b) the tension in the cord.

52. Skier in the Wind A 40 kg skier comes directly down a friction-
less ski slope that is inclined at an angle of 10° with the horizontal
while a strong wind blows parallel to the slope. Determine the mag-
nitude and direction of the force of the wind on the skier if (a) the
magnitude of the skier’s velocity is constant, (b) the magnitude of
the skier’s velocity is increasing at a rate of 1.0 m/s2. and (c) the
magnitude of the skier’s velocity is increasing at a rate of 2.0 m/s2.

53. Jet Engine A 1400 kg jet engine is fastened to the fuselage of a
passenger jet by just three bolts (this is the usual practice). Assume
that each bolt supports one-third of the load. (a) Calculate the force
on each bolt as the plane waits in line for clearance to take off. (b)
During flight, the plane encounters turbulence, which suddenly im-
parts an upward vertical acceleration of 2.6 m/s2 to the plane. Cal-
culate the force on each bolt now.
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54. Pulling a Crate A worker drags a crate across a factory floor
by pulling on a rope tied to the crate (Fig. 6-60). The worker exerts
a force of 450 N on the rope, which is inclined at 38° to the horizon-
tal, and the floor exerts a horizontal force of 125 N that opposes the
motion. Calculate the magnitude of the acceleration of the crate if
(a) its mass is 310 kg or (b) its weight is 310 N.

FIGURE 6-60 ■ Problem 54.

55. Motorcycle Rider A motorcycle and 60.0 kg rider accelerate at
3.0 m/s2 up a ramp inclined 10° above the horizontal. (a) What is
the magnitude of the net force acting on the rider? (b) What is the
magnitude of the force on the rider from the motorcycle?

56. One on an Incline—One
Hanging A block of mass mA

� 3.70 kg on a frictionless in-
clined plane of angle 30.0° is
connected by a cord over a
massless, frictionless pulley to a
second block of mass mB � 2.30
kg hanging vertically (Fig. 6-
61). What are (a) the magnitude
of the acceleration of each block and (b) the direction of the accel-
eration of the hanging block? (c) What is the tension in the cord?

57. Pencil Box In Fig.
6-62, a 1.0 kg pencil
box on a 30° friction-
less incline is con-
nected to a 3.0 kg pen
box on a horizontal
frictionless surface.
The pulley is friction-
less and massless. (a) If
the magnitude of the applied force is 2.3 N, what is the tension in
the connecting cord? (b) What is the largest value that the magni-
tude of may have without the connecting cord becoming slack?

58. Projected Up an Incline A block is projected up a frictionless
inclined plane with initial speed v1 � 3.50 m/s. The angle of incline
is  � 32.0°. (a) How far up the plane does it go? (b) How long
does it take to get there? (c) What is its speed when it gets back to
the bottom?

59. Horse-Drawn Barge In earlier days, horses pulled barges down
canals in the manner shown in Fig. 6-63. Suppose the horse pulls on
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the rope with a force of 7900 N at an angle of 18° to the direction of
motion of the barge, which is headed straight along the canal. The
mass of the barge is 9500 kg, and its acceleration is 0.12 m/s2. What
are the (a) magnitude and (b) direction of the force on the barge
from the water?

60. Lifting a Block In Fig. 6-64,
a 5.00 kg block is pulled along a
horizontal frictionless floor by a
cord that exerts a force of mag-
nitude F � 12.0 N at an angle 
� 25.0° above the horizontal.
(a) What is the magnitude of the
block’s acceleration? (b) The
force magnitude F is slowly in-
creased. What is its value just before the block is lifted (completely)
off the floor? (c) What is the magnitude of the block’s acceleration
just before it is lifted (completely) off the floor?

61. A Rope Must Sag A block of
mass M is pulled along a horizontal
frictionless surface by a rope of
mass m, as shown in Fig. 6-65. A hor-
izontal force is applied to one end
of the rope. (a) Show that the rope
must sag, even if only by an imperceptible amount. Then, assuming
the sag is negligible, find (b) the acceleration of rope and block, (c)
the force on the block from the rope, and (d) the tension in the rope
at its midpoint.

62. Crate at Constant Speed In Fig.
6-66, a 100 kg crate is pushed at
constant speed up the frictionless
30.0° ramp by a horizontal force .
What are the magnitudes of (a) 
and (b) the force on the crate from
the ramp?

63. Alpine Cable Car Figure 6-67
shows a section of an alpine cable-car
system. The maximum permissible
mass of each car with occupants is
2800 kg. The cars, riding on a support
cable, are pulled by a second cable at-
tached to each pylon (support tower);
assume the cables are straight. What
is the difference in tension between
adjacent sections of pull cable if the
cars are at the maximum permissible
mass and are being accelerated up
the 35° incline at 0.81 m/s2?

64. Bobsled Run During an
Olympic bobsled run, the Jamaican
team makes a turn of radius 7.6 m at
a speed of 96.6 km/h. What is their
acceleration in g-units? (1 g-unit �
9.8 m/s2.)

65. Grand Prix Suppose the coefficient of static friction between
the road and the tires on a Formula One car is 0.6 during a Grand
Prix auto race. What speed will put the car on the verge of sliding as
it rounds a level curve of 30.5 m radius?

66. Roller Coaster A roller-coaster car has a mass of 1200 kg when
fully loaded with passengers. As the car passes over the top of a cir-
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cular hill of radius 18 m, its speed is not changing. What are the
magnitude and direction of the force of the track on the car at the
top of the hill if the car’s speed is (a) 11 m/s and (b) 14 m/s?

67. Flat Track What is the smallest radius of an unbanked (flat)
track around which a bicyclist can travel if her speed is 29 km/h and
the coefficient of static friction between tires and track is 0.32?

68. Amusement Park Ride An amusement park ride consists of a
car moving in a vertical circle on the end of a rigid boom of negligi-
ble mass. The combined weight of the car and riders is 5.0 kN, and
the radius of the circle is 10 m. What are the magnitude and direc-
tion of the force of the boom on the car at the top of the circle if
the car’s speed there is (a) 5.0 m/s and (b) 12 m/s?

69. Puck on a Table A puck of mass m
slides on a frictionless table while attached
to a hanging cylinder of mass M by a cord
through a hole in the table (Fig. 6-68).
What speed keeps the cylinder at rest?

70. Bicyclist A bicyclist travels in a cir-
cle of radius 25.0 m at a constant speed
of 9.00 m/s. The bicycle–rider mass is
85.0 kg. Calculate the magnitudes of (a)
the force of friction on the bicycle from
the road and (b) the total force on the bi-
cycle from the road.

71. Student on Ferris Wheel A student of weight 667 N rides a
steadily rotating Ferris wheel (the student sits upright). At the high-
est point, the magnitude of the normal force on the student from
the seat is 556 N. (a) Does the student feel “light” or “heavy” there?
(b) What is the magnitude of at the lowest point? (c) What is the
magnitude N if the wheel’s speed is doubled?

72. Old Streetcar An old streetcar rounds a flat corner of radius
9.1 m, at 16 km/h. What angle with the vertical will be made by the
loosely hanging hand straps?

73. Flying in a Circle An airplane is flying in a horizontal circle at a
speed of 480 km/h. If its wings are tilted 40° to the horizontal, what
is the radius of the circle in which the plane is flying? (See Fig. 6-69.)
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Assume that the required
force is provided entirely by an
“aerodynamic lift” that is per-
pendicular to the wing surface.

74. High-Speed Railway A
high-speed railway car goes
around a flat, horizontal circle
of radius 470 m at a constant
speed. The magnitudes of the
horizontal and vertical compo-
nents of the force of the car on
a 51.0 kg passenger are 210 N
and 500 N, respectively. (a) What is the magnitude of the net force (of
all the forces) on the passenger? (b) What is the speed of the car?

75. Ball Connected to a Rod As shown in Fig. 6-70, a 1.34 kg ball is
connected by means of two
massless strings to a vertical,
rotating rod. The strings are
tied to the rod and are taut.
The tension in the upper string
is 35 N. (a) Draw the free-body
diagram for the ball. What are
(b) the tension in the lower
string, (c) the net force on the
ball, and (d) the speed of the
ball?

block are connected by a string
and are pushed across a horizon-
tal surface by a force applied to
the 1.0 kg block as shown in Fig.
6-71. The coefficient of kinetic
friction between the blocks and
the horizontal surface is 0.20. If
the magnitude of is 20 N, what is the tension in the string that
connects the blocks?
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77. Engineering a High-
way Curve If a car goes
through a curve too fast,
the car tends to slide out
of the curve, as discussed
in Touchstone Example
6-8. For a banked curve
with friction, a frictional
force acts on a fast car to
oppose the tendency to slide out of the curve; the force is directed
down the bank (in the direction in which water would drain). Con-
sider a circular curve of radius R � 200 m and bank angle , where
the coefficient of static friction between tires and pavement is � stat.
A car is driven around the curve as shown in Fig. 6 -72. (a) Find an
expression for the car speed v max that puts the car on the verge of

sliding out. (b) On the same graph, plot v max versus angle  for the
range 0° to 50°, first for � stat � 0.60 (dry pavement) and then for
� stat � 0.050 (wet or icy pavement). In kilometers per hour, evalu-
ate v max for a bank angle of  � 10° and for (c) � stat � 0.60 and (d)
� stat � 0.050. (Now you can see why accidents occur in highway
curves when wet or icy conditions are not obvious to drivers, who
tend to drive at normal speeds.)

78. Change in Conditions In the early afternoon, a car is parked on
a street that runs down a steep hill, at an angle of 35.0° relative to
the horizontal. Just then the coefficient of static friction between
the tires and the street surface is 0.725. Later, after nightfall, a sleet
storm hits the area, and the coefficient decreases due to both the ice
and a chemical change in the road surface because of the tempera-
ture decrease. By what percentage must the coefficient decrease if
the car is to be in danger of sliding down the street?
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79. Moving People at the Air-
port While traveling, I passed
through Charles de Gaulle Air-
port in Paris, France. The airport
has some interesting devices, in-
cluding a “people mover”—a
moving strip of rubber like a
horizontal escalator without
steps. It became interesting when
the mover entered a plastic tube bent up at an angle to take me to
the next terminal. I managed to get a photograph of it (Fig. 6-73). If
you were building this people mover for the architect, what mater-
ial would you choose for the surface of the moving strip? (Hint:
You want to be sure that people standing on the strip do not tend
to slide down it. Figure out what coefficient of friction you need to
keep from sliding down and then look up coefficients of friction in
tables in reference books to get a material appropriate for the slip-
periest shoes.)

80. Expert Witness You testify as an expert witness in a case
involving an accident in which car A slid into the rear of car B,
which was stopped at a red light along a road headed down a hill
(Fig. 6-74). You find that the slope of the hill is  � 12.0°, that the
cars were separated by distance d � 24.0 m when the driver of car
A put the car into a slide (it lacked any automatic anti-brake-lock
system), and that the speed of car A at the onset of braking was
v1 � 18.0 m/s. With what speed did car A hit car B if the coefficient
of kinetic friction was (a) 0.60 (dry road surface) and (b) 0.10 (road
surface covered with wet leaves)?

FIGURE 6-74 ■ Problem 80.

81. Luggage Transport Luggage is transported from one location
to another in an airport by a conveyor belt. At a certain location,
the belt moves down an incline that makes an angle of 2.5° with the
horizontal. Assume that with such a slight angle there is no slipping
of the luggage. Determine the magnitude and direction of the fric-
tional force by the belt on a box weighing 69 N when the box is on
the inclined portion of the belt for the following situations: (a) The
belt is stationary. (b) The belt has a speed of 0.65 m/s that is con-
stant. (c) The belt has a speed of 0.65 m/s that is increasing at a rate
of 0.20 m/s2. (d) The belt has a speed of 0.65 m/s that is decreasing
at a rate of 0.20 m/s2. (e) The belt has a speed of 0.65 m/s that is in-
creasing at a rate of 0.57 m/s2.

82. Bolt on a Rod A bolt is threaded onto one end of a thin hori-
zontal rod, and the rod is then ro-
tated horizontally about its other
end. An engineer monitors the mo-
tion by flashing a strobe lamp onto
the rod and bolt, adjusting the
strobe rate until the bolt appears to
be in the same eight places during
each full rotation of the rod (Fig. 6-
75). The strobe rate is 2000 flashes
per second; the bolt has mass 30 g

and is at radius 3.5 cm. What is the
magnitude of the force on the bolt
from the rod?

83. From the Graph A 4.10 kg
block is pushed along a floor by a
constant applied force that is hori-
zontal and has a magnitude of 40.0
N. Figure 6-76 gives the block’s
speed v versus time t as the block
moves along an x axis on the floor.
What is the coefficient of kinetic
friction between the block and the floor?

84. Tapping a Rolling Ball Figure 6-77
shows a multiple exposure strobe pho-
tograph of a ball rolling on a horizontal
table. The image marked with a heavy
arrow occurs at time t � 0 and the ball
moves to the right at that instant. Each
image of the ball occurs 1/30 s later
than the one immediately to its left. Us-
ing the coordinate system shown in Fig. 6-77, sketch qualitatively ac-
curate (i.e., we don’t care about the values but we do care about the
shape) graphs of each of the following variables as a function of time:
x coordinate, y coordinate, x-component of velocity, y-component of
velocity, x-component of the net force on the ball, and y-component
of the net force on the ball. The time at which the “kink” in the path
occurs is t � t1. Be sure to note this important time on your graphs.

85. Ball on a Ramp Figure
6-78 shows a multiple-expo-
sure photograph of a ball
rolling up an inclined plane.
(The ball is rolling in the
dark, the camera lens is held
open, and a brief flash occurs
every 3/4 sec, four times in to-
tal.) The leftmost ball corresponds to an instant just after the ball was
released.The rightmost ball is at the highest point the ball reaches.

(a) Copy this picture on your paper. Draw an arrow at each of the
four ball locations to indicate the velocity of the ball at that instant.
Make the relative lengths of the arrows indicate the relative magni-
tudes of the velocities. Explain what is happening (“tell the story”
of the picture).
(b) For the instant of time when the ball is at the second position
shown from the left, draw a free-body diagram for the ball and indi-
cate all forces acting on it.
(c) If your force diagram doesn’t include an arrow pointing up the
ramp, explain why the ball keeps rolling up the ramp.
(d) If the mass of the ball is m, what is its acceleration?
(e) If the angle  is equal to 30°, how long is the distance s?

86. Motion Graphs (a) Suppose you were to push on a bowling ball
on a smooth floor at a 45° angle as shown in Fig. 6-79a and then leave
it alone to roll. Sketch a graph frame like that shown in Fig. 6-79a,
and then sketch a prediction of the ball’s motion both before and af-
ter you stop pushing. Note on your graph the point at which you stop
pushing and explain the basis for your prediction.

(b) If the initial speed of the ball is 3.5 m/s, what is the magnitude
of the x-component of velocity, v1 x? Is it positive or negative? What
is v1 y? Is it positive or negative?
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(c) Suppose you and your partner were to tap the ball very rapidly.
Each set of taps is at right angles to the other as shown in Fig. 6-79b.
Sketch a graph frame like that shown in Fig. 6-79b, and sketch a pre-
diction of the ball’s motion on your graph. Explain the basis for your
prediction.
(d) Suppose a rocket ship is thrust from a tower at a constant ac-
celeration that has a magnitude of about 9.8 m/s2 in the x direction
and is allowed to fall freely toward Earth in the y direction. Sketch
a graph frame like that shown in Fig. 6-79c, and sketch a prediction
of the rocket’s motion on your graph. Explain the basis for your
prediction.

87. Wanda Lifts Weights
Wanda is working out
with weights and man-
ages to lift a light rope
with a 10 kg mass hang-
ing from it. When she is
through lifting the right
side of the rope and the
left side of the rope each
make an angle of  � 15°
with respect to the hori-
zontal. See Fig. 6-80.

(a) Draw a free-body di-
agram showing the forces
on the midpoint of the
rope (where it is the low-
est).
(b) What are the magni-
tudes of each of her
pulling forces and ?
(c) How hard would Wanda have to pull with each hand to raise
the 10 kg mass so that
the rope becomes per-
fectly horizontal?

88. Constant Speed on a
Race Track The race
track shown in Fig. 6-81
has two straight sections
connected by semicircu-
lar ends. A car is travel-
ing in a clockwise direc-
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tion around the track at a constant speed. Assume that air resis-
tance is negligible. Draw three sketches of the race track.
(a) On the first sketch show the velocity vector at each of the num-
bered points 1–4. Make the relative lengths of the vectors consis-
tent with the relative magnitudes of the velocity at the four points.
(b) On the second sketch show the acceleration vectors at each of
the numbered points 1–4. Make the relative lengths of the vectors
consistent with the relative magnitudes of the acceleration at the
four points. Hint: Use the techniques developed in Chapter 5 to
draw vectors representing the acceleration or change in velocity.
(c) Horizontal forces are needed to maintain the car’s motion around
the track. These are provided by road friction and by road forces
where the track is banked at the curves. On the third sketch show the
vectors representing the required horizontal forces at each of the
numbered points 1–4. Make the relative lengths of the vectors consis-
tent with the relative magnitudes of the force at the four points.

Note: This exercise is adapted from A. Arons, Homework and
Test Questions for Introductory Physics Teaching (New York: Wiley,
1994), Chapter 3.

89. Pulling on the Ceiling Suppose a person ex-
erts a force of 50 N on one end of a rope as
shown in Fig. 6-82.

(a) What are the magnitude and direction of the
force at point A exerted on the rope by the ceiling?
(b) What are the magnitude and direction of the
force exerted on the ceiling by the rope? How
does the force get transmitted from one end of
the rope to the other? What does the stretching
of the rope have to do with this?
(c) What are the magnitude and direction of the force the rope ex-
erts on the person’s hand at point B?
(d) Draw a diagram with vector arrows indicating the relative mag-
nitudes and directions of the forces the rope exerts on the ceiling
at point A and the force the
rope exerts on the person’s
hand at point B.

90. Thinking About Normal
Forces Suppose you push on a
flexible piece of stretched fabric
with a force of 5.0 N as shown
in Fig. 6-83a. The fabric assem-
bly is fixed and does not move.
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him to carry!” On his way to the mill the farmer thought about
what his friend had said. On his way home, he passed his friend
again, confident that this time the friend would be satisfied. The
farmer still rode the donkey, but this time he carried the 100 pound
bag of flour on his own shoulder!

Our common sense and intuitions seem to suggest that it doesn’t
matter how you arrange things; they’ll weigh the same. Let’s be cer-
tain that the Newtonian framework we are developing yields our in-
tuitive result. Analyze the problem by considering the simplified pic-
ture shown in Fig. 6-85. Two blocks rest on a scale. One block weighs
10 N, the other 25 N. In case 1 the blocks are arranged on the scale as
shown in the figure on the left. In case 2 the blocks are arranged as
shown on the right. Each system has come to rest. Analyze the forces
on the blocks and on the scale in the two cases by isolating the ob-
jects—each block and the scale—and show that according to the
principles of Newton’s laws, the total force exerted on the scale by
both blocks together must be the same in both cases. (Note: It’s not
enough to say: “They have to be the same.” That’s just restating your
intuition. We need to see that reasoning using only the principles of
our Newtonian framework leads to the same conclusion.)

94. Pulling Two Boxes (a) A
worker is trying to pull a pair of
heavy crates along the floor
with a rope. The rope is at-
tached to the lower crate, which
has a mass M. The upper crate
has a mass m and the coeffi-
cient of static friction between the crate and the floor is �stat. If the
rope is held at an angle  as shown in Fig. 6-86, what is the magni-
tude of the maximum force the worker can exert without the lower
crate beginning to slide?
(b) The worker knows that the lower crate has a mass of 50 kg and
the upper crate has a mass of 10 kg. She finds that if she pulls with a
force of 120 N at an angle of 60° she can keep the crates sliding at a
constant speed. Can you use this information to find the coefficient
of kinetic friction �kin between the lower crate and the floor? If you
can, do it. If you can’t, explain why not.
(c) In a different situation, she finds that she can pull a lower crate
of mass 30 kg and an upper crate of mass 7.5 kg with a constant ve-
locity of 50 cm/s pulling at an angle of 45°. Can you use this informa-
tion to find the coefficient of kinetic friction �kin between the lower
crate and the floor? If you can, do it. If you can’t, explain why not.

95. Tricking Bill A student, whom we will
call Bill, was about to go out on a date when
his roommate, Bob, asked him to hold a pail
against the ceiling with a broom for a mo-
ment. After Bill complied, the roommate
mentioned that the pail was filled with water
and left. See Fig. 6-87.

(a) Draw a free-body diagram showing all
the forces acting on the pail. For each force,
be sure you identify the kind of force and the
object whose interaction with the pail is re-
sponsible for the force.
(b) Suppose Bill wants to slide the pail a few
feet to one side so he can get to a chair in the
room. Are there any other forces not speci-
fied in your answer to part (a) that become
relevant?

(a) What are the direction and magnitude of the normal force ex-
erted back on the finger by the sheet? Is this normal force zero? If
not, is it larger, smaller, or the same as the normal force would be if
the fabric did not stretch?
(b) Discuss the role the stretching of the fabric plays in regard to
this normal force.
(c) Suppose you push in the same way on a wall as shown in 
Fig. 6-83b. What are the direction and magnitude of the normal
force exerted back on the finger by the wall?
(d) Does the wall stretch noticeably? What causes the wall to be
able to exert a force on the finger? How does the wall “know” what
force to exert back on the hand?

91. Forces in a Car Suppose you are sitting in a car that is speeding
up. Assume the car has rear-wheel drive.

(a) Draw free-body diagrams for your own body, the seat in which
you are sitting (apart from the car), the car (apart from the seat),
and the road surface where the tires and the road interact.
(b) Describe each force in words; show larger forces with longer
arrows.
(c) Identify the third-law pairs of forces.
(d) Explain carefully in your own words the origin of the force im-
parting acceleration to the car.

92. The Sliding Pizza One day I was coming home late from work
and stopped to pick up a pizza for dinner. I put the pizza box on the
dashboard of my car and pushed it forward against the windshield
and left against the steering wheel to prevent it from falling. (See
Fig. 6-84.) Before I started driving, I realized that the box could still
slide to the right or back toward the seat. When driving, do I have
to worry more about it sliding when I turn left or when I turn right?
Do I have to worry more when I speed up or when I slow down?
Explain your answer in terms of the physics you have learned.

FIGURE 6-84 ■ Problem 92.

93. The Farmer and the Donkey
An old Yiddish joke is told about a
farmer in Chelm, a town famous for
the lack of wisdom of its inhabi-
tants. One day the farmer was going
to the mill to have a bag of wheat
ground into flour. He was riding to
the mill on his donkey, with the
sack of wheat thrown over the donkey’s back behind him. On his
way, he met a friend. His friend chastised him. “Look at you! You
must weigh 200 pounds and that sack of flour must weigh 100.
That’s a very small donkey! Together, you’re too much weight for

176 CHAPTER 6 Identifying and Using Forces

Reflection of
Pizza box in
windshield

Dashboard
(old car—
no air bag)

Steering wheel

Pizza box

CASE 1 CASE 2

FIGURE 6-85 ■ Problem 93.

M

m
θ

FIGURE 6-86 ■ Problem 94.

FIGURE 6-87 ■

Problem 95.



Additional Problems 177

(b) If the truck is accelerating uniformly over the 5 minutes, how
far does Al have to push the truck before George can engage the
clutch?
(c) Suppose the mass of the truck is 4000 kg, the mass of the car is
800 kg, and the coefficient of static friction between the vehicles
and the road is 0.1. At one instant when they are trying to get the
truck moving, the car is pushing the truck and exerting a force of
1000 N, but neither vehicle moves. What is the static frictional force
between the truck and the road? Explain your reasoning.

98. Pushing a Carriage A young man is pushing a baby carriage at
a constant velocity along a level street. A friend comes by to chat
and the young man lets go of the carriage. It rolls on for a bit, slows,
and comes to a stop. At time t � 0 the young man is walking with a
constant velocity. At time t1 he releases the carriage. At time t2 the
carriage comes to rest. Sketch qualitatively accurate (i.e., we don’t
care about the values but we do care about the shape) graphs of
each of the following variables versus time:

(a) position of the carriage, (b) velocity of the carriage, (c) accelera-
tion of the carriage, (d) net force on the carriage, (e) force the man
exerts on the carriage, (f) force of friction on the carriage. Be sure
to note the important times t � 0, t1, and t2 on the time axes of your
graphs. Take the positive direction to be the direction in which the
man was initially walking.
99. A Two-Stage Rocket Students in a school rocketry club have
prepared a two-stage rocket. The rocket has two small engines. The
first will fire for a time, getting the rocket up partway. Then the first-
stage engine drops off, revealing a second engine. After a little time,
that engine will fire and take the rocket up even higher.

The rocket starts firing its engines at a time t � 0. From that in-
stant, it begins to move upward with a constant acceleration. This
continues until time t1. The rocket drops the first stage and contin-
ues upward briefly until time t2, at which point the second stage be-
gins to fire and the rocket again accelerates upward, this time with a
larger (but again constant) acceleration. Sometime during this sec-
ond period of acceleration, our recording apparatus stops.

Sketch qualitatively accurate (i.e., we don’t care about the val-
ues but we do care about the shape) graphs of the height of the
rocket, y, its velocity, vy, its acceleration, ay, the force on the rocket
that results from the firing of the engine, , and the net force on
the rocket, . Take the positive direction as upward. Be sure to
note times t � 0, t1, and t2 on the time axes of your graphs.

100. Pushing a Cart A worker is pushing a cart along the floor. At
first, the worker has to push hard in order to get the cart moving.
After a while, it is easier to push. Finally, the worker has to pull
back on the cart in order to bring it to a stop before it hits the wall.
The force exerted by the worker on the cart is purely horizontal.
Take the direction the worker is going as positive.

Figure 6-90 shows graphs of some of the physical variables of
the problem. Match the graphs with the variables in the list at the
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(c) Suppose the pail weighs 1 pound, it has 6 pounds of water in it, the
maximum coefficient of static friction between the broom and
pail is 0.3, and the maximum coefficient of static friction be-
tween the pail and the ceiling is 0.5. Can Bill slide the pail? Explain.

96. Friction is Doing What? A large block is resting on the table. On
top of that block rests another, smaller block, as shown in Fig. 6-88.
You press on the larger block to
start it moving. After about 0.25
s, it is moving at a constant speed
and the block on the top is not
slipping.

(a) Draw a labeled free-body
diagram for the two blocks dur-
ing the time when they are accel-
erating, specifying all the forces
acting on the blocks. (Be sure to specify the type of force and the
object causing each force.) Wherever you can, compare the magni-
tudes of forces.
(b) Draw a labeled free-body diagram for the two blocks during
the time when they are moving at a constant speed, specifying all the
forces acting on the blocks. (Be sure to specify the type of force and
the object causing each force.) Wherever you can, compare the
magnitudes of forces.
(c) Suppose the bottom block has a mass of 0.4 kg and the coeffi-
cient of friction between the block and the table is 0.3. The top
block has a mass of 0.1 kg and the coefficient of friction between
the two blocks is 0.2. What force do you need to exert to keep the
blocks moving at a constant speed of 10 cm/s? (You may use g �
10 N/kg and you may treat kinetic and static friction as the same.)

97. Al and George Pushing the Truck George left the lights on in
his truck while at a truck stop in Kansas and his battery went dead.
Fortunately, his friend Al is there, although Al is driving his Geo
Metro. Since the road is very flat, George is able to convince Al to
give his truck a long, slow push to get it up to 20 miles/hour. At this
speed, George can engage the truck’s clutch and the truck’s engine
should start up. (See Fig. 6-89.)

FIGURE 6-89 ■ Problem 97.

(a) Al begins to push the truck. It takes him 5 minutes to get the
truck up to a speed of 20 miles/hour. Draw separate free-body dia-
grams for the Geo and for the truck during the time that Al’s Geo
is pushing the truck. List all the horizontal forces in order by mag-
nitude from largest to smallest. If any are equal, state that explicitly.
Explain your reasoning.
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FIGURE 6-88 ■ Problem 96.

t

+

–
0

+

–
0

4.

1.

t

t
+

–
0

3.

tt
+

–
0

+

–
0

5.

2.

FIGURE 6-90 ■ Problem 100.



Qualitatively (do not attempt a calculation!), what will the effect of
air resistance be on the ball’s motion?

103. Air Resistance 1: Dimensional Analysis We know that as an
object passes through the air, the air exerts a resistive force on it.
Suppose we have a spherical object of radius R and mass m. What
might the force plausibly depend on?

• It might depend on the properties of the object. The only ones
that seem relevant are m and R.

• It might depend on the object’s coordinate and its derivatives:
, , , . . . .

• It might depend on the properties of the air, such as the density, �.

(a) Explain why it is plausible that the force the air exerts on a
sphere depends on R but implausible that it depends on m.
(b) Explain why it is plausible that the force the air exerts depends
on the object’s speed through it, , but not on its position, , or
acceleration, .
(c) Dimensional analysis is the use of units (e.g., meters, seconds, or
newtons) associated with quantities to reason about the relation-
ship between the quantities. Using dimensional analysis, construct a
plausible form for the force that air exerts on a spherical body mov-
ing through it.

104. Counterweights The use of counterweights to help devices
move up and down with a minimum of effort is common in engi-
neering. For example, counterweights are used to help people open
and close old-fashioned windows and to move up and down in ele-
vators. Imagine that an engineer working for the Disney Epcot
Center is asked to design a ride that allows people to travel up and
down a sloped hill to get a view of the entire Epcot Center while
other tourists move straight up and down an artificial cliff on the
other side of the incline. Our engineer builds a small prototype of
his device using a low-friction cart on an inclined track attached
to a falling mass. His goal is to see whether he can actually apply
Newton’s laws to this situation and if it is okay to neglect the effects
of friction.

In this exercise
you will analyze data
collected from a digi-
tal movie of the situa-
tion discussed above
and shown in Fig. 6-
92a. If you have access
to VideoPoint you can
view the digital movie
yourself. It is entitled
PASCO098. Your in-
structor may provide you with a different but similar movie. The
cart in PASCO098 has a mass mc � .510 kg and is accelerated up a
ramp that has a 21° incline. A string attached to the cart exerts a
force on it. The string transmits a force to the cart because its other
end is attached by means of a pulley to a falling mass of mf � .184
kg.

Table 6-3 contains position vs. time measurements for the cart
in PASCO098 along an x axis. The x axis is rotated from the hori-
zontal direction so that it lies along the ramp. Using these data you
can determine the acceleration, if any, of the cart. (It is best to enter
the data into a spreadsheet for analysis.) Finally, you will use New-
ton’s laws along with the information on the angle of the incline
and the masses of the cart and the falling mass to determine (theo-
retically) what the acceleration of the cart is. Our goal is to deter-

a:
r:� v: �

a:v:r:

left below. You may use a graph more than once or not at all. Note:
The time axes are to the same scale, but the ordinates y axes are not.

(a) Friction force
(b) Force exerted by the worker
(c) Net force
(d) Acceleration
(e) Velocity

101. Comparing a Light and Heavy Object Consider a metal sphere
two inches in diameter and a feather. For each quantity in the list
below, indicate the relation between the quantity for the sphere and
feather. Is it the same, greater, or lesser? Explain in each case why
you gave the answer you did.

(a) The gravitational force
(b) The time it will take to fall a given distance in air
(c) The time it will take to fall a given distance in vacuum
(d) The total force on the object when falling in vacuum
(e) The total force on the object when falling in air

102. Hitting the Green A golfer is trying to hit a golf ball onto the
green as shown in Fig. 6-91. The green is a horizontal distance s
from his tee and it is up on the side of a hill a height h above his tee.
When he strikes the ball it leaves the tee at an angle  to the hori-
zontal. He wants to know with what speed, v1, the ball must leave
the tee in order to reach the height h at the distance s.

FIGURE 6-91 ■ Problem 102.

(a) Once he has struck the ball, what controls its motion? Write the
equations that determine the vector acceleration of the golf ball
afler it leaves the tee. Be sure to specify your coordinate system.
For this part of the problem you may ignore air resistance.
(b) Solve the equations you have written in (a) to obtain expres-
sions that can be evaluated to give the position of the ball at any
time, t.
(c) If the golfer wants his ball to land in the right place, he must hit
it so that it leaves the tee with the right speed. Explain how he can
calculate it. (Again, you may ignore air resistance.) Find an equa-
tion for the initial speed in terms of the problem’s givens.
(d) If the ball leaves the tee at an angle of 30°, s � 100 m, and h �
10 m, find the speed with which the ball leaves the tee.
(e) Now consider the effect of air resistance. Suppose that a good
model for the force of air resistance is Newton’s drag law,

where is the speed and b is a constant. Consider three points on
the ball’s trajectory: halfway up, at its highest point, and halfway
down. Discuss the direction of the resistance force at each point.

� v: �

F
:

� �b � v: � v:
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Origin 1 [x:27.0   y:201. (pixels)

Scale 1 A Scale 1 B

FIGURE 6-92a ■ Problem 104.
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mine whether the theoretically cal-
culated motion and the actual mo-
tion (as described by the data in
Table 6-3) agree.

(a) Enter the data in Table 6-3 into
a spreadsheet program. Determine
what kind of motion the cart experi-
ences. Is it a constant velocity? If so
what are the magnitude and direc-
tion of the velocity? Is the motion a
constant acceleration? If so, what
are the magnitude and direction of
the acceleration? (You may want to
use equation-fitting software in an-
swering this question). Cite the evi-
dence that leads you to give the an-
swers you did.
(b) What is the value of the net
force on the cart in the x direction
(along the incline)?
(c) Sketch a diagram of the cart like
that shown in Fig. 6-92b. Draw a
free-body diagram showing the di-
rections of all the forces on the cart including the gravitational
force, , the normal force, , and the string force due to its ten-
sion, T.
(d) Consider the situation in which the cart and falling mass move
with a constant velocity. Choose a coordinate system in which the
positive x axis is directed up along the ramp (rotated from the hori-
zontal). Assume that there is no friction in the pulley or cart bearings!
Show that by taking components of these forces along the x axis the

N
:

F
:grav

Time (sec) x(m)

0.000 0.002929

0.2050 0.03956

0.4100 0.08465

0.6150 0.1221

0.8200 0.1659

1.025 0.2038

1.230 0.2463

1.435 0.2885

1.640 0.3301

1.845 0.3676

2.050 0.4114

2.255 0.4472

2.460 0.4931

2.665 0.5297

2.870 0.5748

3.075 0.6165

3.280 0.6624
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FIGURE 6-92b ■

Problem 104.

magnitude, of the net force on the cart in the x direction, can 
be calculated using the equation

where the gravitational constant, g, is �9.8 N/kg.
(e) Assume that since the cart and falling mass are connected by
the string they have the same magnitude of velocity. Also assume
that the tension in the string is the same at all points along the
string so that the magnitude of the string force at point A on the
cart is the same as the magnitude of the string force at point B on
the falling mass. Show that if the net force on the falling mass is
zero, then where 
(f) Use the equations you derived in parts (d) and (e) to show that
if the velocity of the cart and falling mass system are constant, then
theoretically mfg ought to equal mcg sin .
(g) Use the given values of mc and mf (also available on the title
screen of the PASCO098 movie) along with the angle of the incline
to verify that m fg and m c g sin  have the same values to two signifi-
cant digits. This equality, if it exists, confirms the agreement be-
tween theory and experiment.
(h) Also discuss why the answers should only be good to two sig-
nificant figures.

F grav � mf g.T � F grav � 0,

F net
x � T � mc g sin � 0,

F net
x ,



A karate master 

undergoes extensive training

to thicken the bones and

strengthen the muscles in his

or her hands. This enables him

or her to break stacks of 

concrete patio blocks with a

single blow. Although novices

cannot perform this feat, they

are able to break 3/4-inch-thick

pine boards quite easily. For

example, Tom Casiani, an 

introductory physics student at

Dickinson College, broke a

stack of nine pine boards in

spite of the fact that he had

never done any karate before

taking physics.

How can novices
break pine boards,
but not concrete
slabs, without 
sustaining injuries?

The answer is in this
chapter.

7 Translational Momentum
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FIGURE 7-1 ■ Collisions range widely in
scale. (a) Meteor Crater in Arizona is
about 1200 m wide and 200 m deep. (b) An
alpha particle coming in from the left
bounces off a nitrogen nucleus that had
been stationary and that now moves to-
ward the bottom right. (c) In a tennis
match, the ball is in contact with the rac-
quet for about 4 ms in each collision (for a
cumulative time of approximately 1 s in a
set).

7-1 Collisions and Explosions

In the last few chapters, we have focused on understanding how forces affect the mo-
tion of an object. We have specifically discussed several common forces and practiced
using Newton’s Second Law, , to determine the acceleration of an object
that experiences steady forces. Although there are many situations in which one can
determine the acceleration of an object by summing the forces acting on it, there are
other situations in which using the equation is not possible. For example,
when objects collide or a large object explodes into smaller fragments, the event can
happen so rapidly that it is impossible to keep track of the interaction forces.

Collisions and explosions range from the microscopic scale of subatomic particles
(Fig. 7-1b) to the astronomic scale of colliding stars and galaxies, so an understanding
of these processes is of great interest to physicists. In fact, many physicists today
spend their time playing “the collision game.” The goal of this game is to find out as
much as possible about the forces that act during rapid interactions between particles
or during the explosion of a particle into fragments. We have developed techniques
for learning about rapid interactions by determining the state of the particles before
and after they interact. Indeed, most of our understanding of the subatomic world—
electrons, protons, neutrons, muons, quarks, and the like—comes from experiments
involving collisions and explosions.

In this chapter we will define a new quantity known as linear or translational mo-
mentum to help us study collision processes. Since explosions are actually collision
processes in reverse, it turns out that we can use the same methods in studying both
phenomena. We shall use the following formal definition of a collision.

A COLLISION or EXPLOSION is an isolated event in which two or more bodies exert rela-
tively strong forces on each other over a short time compared to the period over which their
motions take place.

By relatively strong forces we mean that the collision or explosion forces are consider-
ably larger than other forces that might be acting on the system. Similarly, a relatively
short time means that the weaker forces (other than the collision or explosion forces)
have not had enough time to accelerate the system elements noticeably.

In order to analyze collisions or explosions, we distinguish between times that are
before, during, and after an event, as suggested in Fig. 7-2. Figure 7-2 shows two collid-
ing bodies and indicates that the forces associated with the collision are forces that
the bodies exert on each other.

READI NG EXERC IS E  7-1 : According to our definition of collision, which, if any,
of the following events qualify as collisions? Explain. (a) Suppose it took the ocean liner Titanic
60 seconds to plow into an iceberg and come to a stop. (b) During a volley, a tennis ball usually is
in the air for less than a second. Suppose a tennis racket is in contact with a ball for 2 seconds. ■

7-2 Translational Momentum of a Particle

Consider a winter accident on a narrow icy road in which a compact car skids into a
loaded pickup truck that is moving toward it. If you want to predict the motions of the
vehicles after that crash, what do you need to know about the vehicles? Many people
would guess that both the mass and the velocity of each vehicle make a difference. It
turns out that the product of these two quantities, which we will soon begin calling by
the name momentum, is a very useful concept in predicting the outcome of collisions.

In fact, Newton did not use the ideas of acceleration and velocity in his original
descriptions of the laws of motion. He developed his laws, in part, by studying colli-

F
:net � ma:

F
:net � ma:

(a)

(b )

(c )



sions, and this led him to introduce the concept of momentum. As is the case for “ac-
celeration,” momentum is a word that has several meanings in everyday language but
only a single precise meaning in physics. The translational momentum of a particle is a
vector , defined as 

(definition of translational momentum), (7-1)

where m is the mass of the particle and is its instantaneous velocity. Since m is
always a positive scalar quantity, the momentum vector and the velocity vector are al-
ways in the same direction. This relation also tells us that the SI unit for momentum is
the kilogram-meter per second (the unit for mass multiplied by the unit for velocity).

Some people use the phrase “linear momentum” rather than the phase “transla-
tional momentum” when discussing the product . However, this momentum is as-
sociated with the movement of an object from one position to another, regardless of
whether the overall motion of the object occurs along a line. For example, the equa-
tion serves to define the momentum of a projectile following a parabolic
path or a small rock rotating in a circle. Hence, the term “translational” is a better ad-
jective than “linear.”

The adjective “translational” is often dropped, leaving us with just the term “mo-
mentum.” However, it serves to distinguish this type of momentum from rotational
momentum, which is introduced in Chapter 12.

Newton expressed his second law of motion in terms of momentum as follows:

The rate of change of the momentum of a particle is proportional to the net force acting on
the particle and is in the direction of that force.

In equation form this statement is 

(single particle). (7-2)

We can relate this statement of the second law to the familiar by substitut-
ing for and pulling the mass, which is a constant, out of the derivative so that

Thus, the equations and are equivalent expressions of
Newton’s Second Law of Motion as it applies to the motion of a particle whose mass
remains constant.

What these relations are telling us is that a nonzero net force on a body causes it
to undergo a momentum change. This should not come as a surprise. A nonzero net
force results in an acceleration of the object on which the force acts. That acceleration
produces a change in velocity, and the change in velocity is associated with a change
in momentum. Another way to think of this is that a nonzero net force—for example,
the push on a cart—is what “gives” the cart its change in momentum.

READI NG EXERC IS E  7-2 : The figure to the right
gives the x-component of translational momentum versus
time for a particle moving along an x-axis. A force directed
along the axis acts on the particle, causing its momentum to
change. (a) Rank the four regions indicated according to the
magnitude of the force, greatest first. (b) In which region is
the particle slowing down? ■

F
:net � ma:F

:net � dp:/dt

F
:net �

dp:

dt
�

d
dt

(mv:) � m
dv:

dt
� ma:.

p:mv:
F
:net � ma:

F
:net �

dp:

dt

p: � mv:

mv:

v:

p:� mv:

p:

182 CHAPTER 7 Translational Momentum

FIGURE 7-2 ■ Stages in a collision be-
tween two bodies.
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Isolation Systems of Particles   183

FIGURE 7-3 ■ The vector sum of the nor-
mal force on each cart and the gravita-
tional force on it is zero. If the track is also
essentially frictionless, the carts form an
isolated system. The collision forces they
exert on each other are inside the system
and can be studied fairly easily.

7-3 Isolated Systems of Particles 

We are often interested in the behavior of a collection of particles that interact only
with each other. We can draw an imaginary boundary around the particles, but com-
plications can arise if some of the particles experience net forces that originate out-
side the “system” boundary. In order to effectively study interactions between parti-
cles, we must limit our focus to isolated systems of particles. (See Fig. 7-3.)

An ISOLATED SYSTEM is defined as a collection of particles that can interact with each other
but whose interactions with the environment outside the collection have a negligible effect
on their motions.

Basically the particles in an isolated system experience no significant net external
forces. Two carts that are about to collide on a frictionless track form an isolated sys-
tem. Why? Because even though each cart experiences a normal force from the track
and a gravitational force from the Earth, the net force on each cart that originates
outside the system boundary is zero.

Let’s consider another example. Suppose two galaxies collide in outer space and
exert a complex series of gravitational and electromagnetic forces on each other. Let’s
take these two galaxies to be our system. If these galaxies are far from other astro-
nomical bodies, their gravitational interactions with entities outside the system will be
small—especially in comparison to the internal forces they exert on each other. These
galaxies can be considered to be an isolated system. If the particles in our two galaxies
are strongly attracted to neighboring galaxies, they do not form an isolated system.
Additional examples of isolated systems are shown in Fig. 7-4.

Momentum for a System of Particles
If we apply Newton’s Second and Third Laws to an isolated system of particles, we
can learn about changes in the total momentum of the system. Let’s consider a system
of n particles, each with its own mass, velocity, and translational momentum. The par-
ticles in the system may interact with each other. The system as a whole has a total
translational momentum , which is defined to be the vector sum of the individual
particles’ translational momenta. Thus,

(7-3)� mA v:A � mB v:B � mC v:C � � � � � mn v:n.

p:
sys

� p:A � p:B � p:C � � � � � p:n

p:sys

System boundary

FIGURE 7-4 ■ Examples of isolated
systems.

System
boundary

Pucks riding on a cushion of air on an air table interact with
each other before hitting the walls of the table. Friction
forces with the surface of the table are negligible. The system
is temporarily isolated—until a puck hits an air table wall.

An orbiting satellite and the Earth interact. Forces
between these objects and others such as the sun and
moon are considered to have negligible effect on
their motions.

Gas molecules interact with each other and with the
walls of their container. Other forces, such as those
of the table holding up the container and the
gravitational force, are considered to have a negligible
effect on the motions of the molecules and container.

System
boundary

System
boundary



FIGURE 7-5 ■ A lead ball (ba) of mass
0.850 kg collides with a pine board (bd).
During the collision, the lead ball exerts a
force of on the board and
the board exerts force � �F(t) on
the ball. Forces and are a
third-law force pair. Their magnitudes vary
with time during the collision, but at any
given instant those magnitudes are equal.
A digital video clip of the collision was
recorded at 250 frames/second. The ball
and the board are in contact for only about
0.012 s. (Courtesy of Robert Teese.)

�F
:

(t)F
:

(t)
F
:

bd:ba

F
:

ba:bd � �F
:

(t)

The translational momentum of a system is the vector sum of the momenta of the individual
particles.

If the system is not isolated, then external forces are also acting on the system.
Recall that for a single particle such as particle A,

.

Hence, we have a separate Newton’s Second Law equation for each of the n particles,
telling how that particle will respond to the forces it feels:

But the total momentum of the system, , is given by the sum of the momenta of
the particles in the system, so that

Since the derivative of a sum is the same as the sum of the derivatives, the rate of
change of the system momentum is given by 

(7-4)

However, according to Eq. 7-2, the net force on any one of the particles is given by
, so the rate of change of the total momentum of the system is equal to

the sum of the forces felt by each of the n particles:

.

In words, the sum of all forces acting on all the particles in the system is equal to the
time rate of change of the total momentum of the system. That leaves us with the gen-
eral statement:

(system of particles). (7-5)

In principle, is the sum of all forces on particles in the system. This includes
forces from particles within the system acting on other particles within the system
(called internal forces). It also includes forces from objects outside the system acting
on objects within the system (called external forces). In practice, all the internal forces
occur as third-law pairs that cancel. Thus, the contribution of the internal forces to the
overall net force is zero. Hence, is always just the sum of all external forces acting
on the system. This equation is the generalization of the single-particle equation

(Eq. 7-2) to a system of many particles.

7-4 Impulse and Momentum Change 

Although a pine board is not really very particle-like, it is instructive to consider a
two-body system consisting of a falling lead ball (ba) that collides with a pine board
(bd)  (shown in Fig. 7-5). At any given moment, the force that the board exerts on the
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ball can be denoted as . It is obvious that before the falling ball makes contact
with the board, the interaction forces are negligible. When the ball first makes contact
with the board, the magnitudes of the interaction forces are relatively small. As the
force magnitudes reach a maximum, the ball causes the board to flex and begin to
break. After the board breaks, the forces are zero again. Thus, we expect a graph of
the magnitude of the force exerted on the ball by the board to look something like
that shown in Fig. 7-6a.

A video analysis of the acceleration of the ball shows that the peak force exerted
on it by the board is about 800 N. This is also the peak force that a karate expert
breaking a board would experience. However, the fact that it takes less than one-hun-
dredth of a second (two frames in Fig. 7-5) helps prevent injury. Note that the gravita-
tional force is less than 10 N, so we can neglect it.

As the forces act over time they change the translational momentum of both
objects. The amount of change will depend on how the forces vary over time. To see
this quantitatively, let us apply Newton’s Second Law in the form to
the lead ball depicted in Fig. 7-5. If we denote the net force on the ball as

and , then

, (7-6)

in which is a time-varying force on the ball with magnitude given by the curve in
Fig. 7-6a. Let us integrate over the collision interval from an initial
time t1 (just before the collision) to a final time t2 (just after the collision).We obtain

(7-7)

where represents the momentum of the ball at time t1 just before the collision, and
represents the momentum at time t2 just after the collision. The left side of this

equation is , which is the change in translational momentum of the lead ball.
The right side of the equation is a measure of both the strength and the duration of
the collision force exerted on the ball by the board. It is defined as a vector quantity
called the impulse . In general, the impulse an object experiences due to a collision
force is defined as

(impulse defined). (7-8)

When does not change direction during the collision, this relation tells us that
the magnitude of the impulse is equal to the area under the curve of Fig. 7-6a.

When an object undergoes a collision it is considerably easier to measure its mo-
mentum change than it is to determine its impulse curve. Thus it is quite common to
consider the time interval over which the colliding objects are in contact with each
other. Then, if we assume that the force is constant during that time interval, we have
a feel for the magnitude of the average force that an object experiences. If we denote
the average net force during a collision as , then we can relate it to momentum
change using the expression

(average net force during a collision). (7-9)

Graphically we can represent the magnitude of the average force on an object as the
area within the rectangle of Fig. 7-6b that is equal to the area under the curve of
Fig. 7-6a over the same time interval.

In the case of the example in Fig. 7-5 of the ball (object ba) breaking the board
(object bd), the time period in which the ball is in contact with the board turns out to
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J
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F net

F

F net

FIGURE 7-6 ■ (a) The sketched graph is an
idealization of what the magnitude of the
time-varying net force that acts on an ob-
ject during a collision shown in Fig. 7-5
might look like. The time interval �t for
the collision is only about 1/100th of a sec-
ond for the ball falling on a board as
shown in Fig. 7-5. (b) The height of the rec-
tangle represents the magnitude of the av-
erage net force acting on an object during
the same time interval �t. The area within
the rectangle is equal to the area under the
curve (or integral) in (a).



be only while the magnitude of the momentum change is �
0.53 kg � m/s. This gives us an average net collision force on the ball of magnitude

The general relation

tells us that the change in the translational momentum of any object is equal to the
impulse that acts on that object. Thus, for an object in a collision:

(impulse-momentum theorem). (7-10)

This relation is called the impulse-momentum theorem; it tells us that impulse and
translational momentum are both vectors and have the same units and dimensions.
The impulse-momentum theorem can also be written in component form as

, (7-11)

, (7-12) 

and . (7-13)

In an isolated, two-body system, forces exerted between body A and body B form
third-law force pairs. That is, the force of body B on body A is equal and opposite to
the force of body A on body B. So the impulses on the two objects have the same
magnitudes but opposite directions. This can be represented by the expression

so that (isolated 2-body system).

READI NG EXERC IS E  7-3 : Have you ever been in an egg-tossing contest? The idea
of this adventure is to work as a team of two people tossing a raw egg back and forth. After
each successful toss (success � unbroken egg), each team member must take a step back.
Pretty soon, you have to throw the egg quite hard to get it across to your partner. If you catch
an egg of mass m that is coming toward you with velocity , what is the magnitude of the
change in momentum that the egg undergoes? Would this value change if you catch the egg
more quickly or more slowly? Explain. Suppose that the time it takes you to bring the egg to a
stop in your hand is Are you more likely to have a “successful” catch if is large or small?
Why? How do you physically react in order to make larger? ■

READI NG EXERC IS E  7-4 : The figure to the right shows an over-
head view of a ball bouncing from a vertical wall without any change in its
speed. Consider the change in the ball’s translational momentum. (a) Is
�px positive, negative, or zero? (b) Is �py positive, negative, or zero? 
(c) What is the direction of ?

■

�p:

�p:

�t
�t�t.

v:

J
:

B:A � � J
:

A:B

F
:

B:A � �F
:

A:B,

p2 z � p1 z � �pz � Jz

p2 y � p1 y � �py � Jy

p2 x � p1 x � �px � Jx

J
:

� p:
2

� p:
1

�p2
:

p1
:

dp: � �t2

t1

F
:net(t) dt

� �F
: net

ba � � �
� �p:ba �

�t
�

.53 kg�m/s
0.01 s

� 50 N.

� �p:ba ��t � 0.01 s
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TOUCHSTONE EXAMPLE 7-1: Ball and Bat

A pitched 140 g baseball, in horizontal flight with a speed v1 of
39.0 m/s, is struck by a bat. After leaving the bat, the ball travels in
the opposite direction with speed v2, also 39.0 m/s.

(a) What impulse acts on the ball while it is in contact with the
bat during the collision?

S O L U T I O N ■ The Ke y  I d e a here is that momentum is a vec-
tor quantity, so even though the magnitude of the momentum does
not change, there is a significant change in momentum due to the
direction change of the ball. We must calculate the impulse from
the change in the ball’s translational momentum, using Eq. 7-10 for
one-dimensional motion. Let us choose the direction in which the
ball is initially moving to be the negative direction. From Eq. 7-10
we have

(Answer)

With our sign convention, the initial velocity of the ball is negative
and the final velocity is positive. The impulse turns out to be posi-
tive, which tells us that the direction of the impulse vector acting on
the ball is the direction in which the bat is swinging.

(b) The impact time �t for the baseballl–bat collision is 1.20 ms.
What average net force acts on the baseball?

S O L U T I O N ■ The Ke y  I d e a here is that the average net
force is the ratio of the impulse to the duration �t of the collision
(see Eq. 7-9). Thus,

(Answer)

Note that this is the average net force. The maximum net force is
larger. The sign of the average force on the ball from the bat is posi-
tive, which means that the direction of the force vector is the same
as that of the impulse vector.

In defining a collision, we assumed that no significant external
force acts on the colliding bodies. The gravitational force always
acts on the ball, whether the ball is in flight or in contact with the
bat. However, this force, with a magnitude of mg = 1.37 N, is negligi-
ble compared to the average force exerted by the bat, which has a
magnitude of 9080 N. We are quite safe in treating the collision as
“isolated during the short collision time period.”

� 9080 N.

�F net
x � �

Jx

�t
�

10.9 kg�m/s
0.00120 s

J
:

� 10.9 kg �m/s.

� (0.140 kg)(39.0 m/s) � (0.140 kg)(�39.0 m/s)

Jx � p2 x � p1 x � mv2 x � mv1 x

J
:

(c) Now suppose the collision is not head-on, and the ball leaves
the bat with a speed v2 of 45.0 m/s at an upward angle of 30.0°
(Fig. 7-7). What now is the impulse on the ball?

S O L U T I O N ■ The Ke y  I d e a here is that now the collision is
two-dimensional because the ball’s outward path is not along the
same axis as its incoming path. Thus, we must use vectors to find the
impulse . From Eq. 7-10, we can write

Thus, (7-14)

We can evaluate the right side of this equation directly on a vector-
capable calculator, since we know that the mass m is 0.140 kg, the
final velocity is 45.0 m/s at 30.0°, and the initial velocity is 
39.0 m/s at 180°.

Instead, we can evaluate Eq. 7-14 in component form. To do so,
we first place an xy coordinate system as shown in Fig. 7-7. Then
along the x axis we have

Along the y axis,

The impulse is then 

(Answer)

and the magnitude and direction of are

and (Answer)� � tan�1 Jy

Jx
� 16�.

J � � J
:

� � √J 2
x � J 2

y � 11.4 kg �m/s

J
:

J
:

� (10.9 î �  3.15 ĵ) kg �m/s,

� 3.150 kg �m/s.

� (0.140 kg)[(45.0 m/s)(sin 30.0�) � 0]

Jy � p2 y � p1 y � m(v2 y � v1 y)

� 10.92 kg �m/s.

� (0.140 kg)[(45.0 m/s)(cos 30.0�) � (�39.0 m/s)]

Jx � p2 x � p1 x � m(v2 x � v1 x)

v:1v:2

J
:

� m(v:2 � v:1).

J
:

� p:2 � p:1 � mv:2 � mv:1.

J
:

30°
v1

v2

y

x

FIGURE 7-7 ■ A bat col-
lides with a pitched base-
ball, sending the ball off at
an angle of 30° from the
horizontal.
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TOUCHSTONE EXAMPLE 7-2: Carts Colliding 

A moving cart coming from the left has a mass of 1.8 kg and an ini-
tial velocity component of �0.3 m/s. It then collides with a station-
ary cart to its right with a mass of 0.8 kg. After the collision the
1.8 kg cart slows down and the 0.8 kg cart moves away from it at a
brisk velocity as shown in Fig. 7-8.

Let’s consider two collisions for which the right cart is given
the same momentum after the collision. In one case the right cart
has a deformable rubber stopper attached to its force sensor. In the
other case the rubber stopper is replaced with a more rigid metal
hook. What effect does the deformability of the surfaces in contact
during the collision have on the collision process? In particular, what
information do measured impulse curves give us about the duration
of the collision and the maximum force experienced by the right
cart? How can we use the impulse curve to estimate the momentum
transferred to the right cart during the collision?

(a) Use the measured impulse curves shown in Fig. 7-9 to find the
approximate collision times when the collision involves contact be-
tween a metal hook and a deformable rubber stopper (shown in
case a). Compare that to the collision time when the contact is be-
tween two metal hooks (shown in case b).

S O L U T I O N ■ The Ke y  I d e a here is that during the time that
the collision force is significantly above zero, the two colliding
objects are in contact. It is clear from the graph (case a) that the
collision time when the deformable rubber stopper is the point of
contact is about 22 ms or 22 	 10�3 s. When the rubber stopper is
replaced with a more rigid metal hook, the collision time, as shown
on the graph (case b), is reduced to about 15 ms or .
Another Ke y  I d e a is that the collision times for highly de-
formable objects are greater than they are for less deformable ob-
jects.

(b) Also use the measured impulse curves to compare the maxi-
mum forces experienced by the initially stationary cart for the two
types of collisions (metal–rubber and metal–metal). Use the im-
pulse-momentum theorem to explain why one maximum force is
greater than the other.

S O L U T I O N ■ It is clear from the graph (case a) that the peak
force when the deformable rubber stopper is the point of contact is
about 40 N (case a), while the peak force when the rubber stopper is
replaced with a more rigid metal hook is greater at approximately
49 N (case b). The Ke y  I d e a here is that if an object experiences a
certain momentum change, the impulse-momentum theorem can be
used to relate the momentum change to the impulse curve by the
equation

p2 x � p1 x � Jx � �t2

t1

Fx dt � �Fx��t.

15 	 10�3 s

Thus, since the duration of the contact, , is longer in a slow colli-
sion than in a fast one, the average force and hence the peak force
must be smaller in a slow collision. Conversely the peak force dur-
ing a rapid collision is greater than it would be in a slow collision.

(c) Use the measured impulse curves to estimate the magnitude of
the momentum transferred to the right cart during each type of col-
lision. You can approximate the impulse “curves” as triangles with
the base being the contact time and the height equal to the peak
force. Verify that both curves predict that approximately (in this
case, to one significant figure) the same momentum was imparted to
the cart in each case in spite of the fact that the collision times and
peak forces are different.

S O L U T I O N ■ The Ke y  I d e a s here are that the momentum
change of the right cart is equal to the impulse imparted to it and
that this impulse is an integral that can be calculated by finding the
area under the impulse or force vs. time curve. In the special case
where the right cart is initially at rest, this momentum change is
also the final momentum of the right cart. If we approximate this
curve as a triangle, this area can be computed using the familiar
equation Area � ( ) base 	 height.

Rubber stopper:

(Answer)

p2 x � 0.4 N�s � 0.4 kg�m/s.

p2 x � p1 x � p2 x � 0 � �px � Jx

� 0.4 N�s.

� 1
2 (22 	 10�3 s 	 40 N)

� 1
2 (22 ms 	 40 N)

Jx � Area � 1
2 bh � 1

2 �tF peak
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FIGURE 7-8 ■ A depiction of the motion
of two carts before and after a collision.

FIGURE 7-9 ■ Impulse curves when (a) the point of contact on the
force sensor is a deformable rubber stopper, and (b) the point of
contact on the force sensor is a piece of hard metal.
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Metal hook:

(Answer)

Note on Impulse and Karate Injuries: We can use the differ-
ences in the shapes of the two impulse curves to explain how it is
possible for beginners who are not trained in the art of karate to
break pine boards, but not patio blocks, without sustaining injuries.
Breaking a board is a complex process that must obey the law of
conservation of momentum that will be introduced in Section 7-5,

p2 x � 0.4 N�s � 0.4 kg �m/s.

p2 x � p1 x � p2 x � 0 � �px � Jx

� 0.4 N�s.

� 1
2 (15 	 10�3 s 	 49 N)

� 1
2 (15 ms 	 49 N)

Jx � Area � 1
2 bh � 1

2 �tF peak
x

and work and energy relationships that will be introduced in Chap-
ter 9. It turns out that the concept of impulse is one of the critical
factors in karate, so that in order to break a concrete block or a
board, a certain impulse must be imparted to it.

When struck, the board or block bends, storing energy like a
stretched spring does, until a critical deformation needed to break it
is reached. In fact, a clean, knot-free pine board that is hit along its
grain is relatively easy to break. One of several factors that make
breaking a pine board less injurious is the fact that a board deforms
much more than a concrete block before breaking. Thus, for a given
impulse, the duration of the collision is significantly longer when a
pine board breaks than when a concrete block breaks. As we saw in
part (b) of this touchstone example, this means that for a given im-
pulse much less peak force will be exerted on the board by the
hand. Since Newton’s Third Law holds, then it also means that the
hand experiences a much lower peak force than it would striking a
concrete block hard enough to break it. A lower peak force on the
hand reduces the chance that the fifth metacarpal bone in the hand
will break.

7-5 Newton’s Laws and Momentum Conservation 

What happens to the momentum, , of a system of particles that is isolated so there
is no net force acting? Assume that the particles are interacting with each other and
undergoing all sorts of collisions that obey Newton’s Third Law. What happens to the
momentum of the overall system if from all sources both external and inter-
nal? We know from Newton’s Second Law that

,

and so (for an isolated system). (7-15)

If no net external force acts on a system of particles, the total translational momentum 
of the system cannot change.

This result is called the law of conservation of translational momentum. It is a natural
consequence of Newton’s laws. This law can also be written in equation form as

(isolated system), (7-16)

where is the total momentum of all the particles in a system at time t1 and
is the system momentum at time t2. In words, this equation says that, for an isolated
system, the total translational momentum at any initial time t1 is equal to the total
translational momentum at any later time t2. This is not to say that the momenta of in-
dividual particles within the system do not change. Particles inside a system can un-
dergo changes in momentum. However, they must do so by exchanging momentum
with other particles in the system so that the total system momentum remains
constant.

In the next section we will consider two colliding carts that form an isolated sys-
tem and look at how they exchange their momenta in a way that conserves the total
momentum of the system.

p:sys2p:sys1

p:sys 1 � p:sys2

p:
sys

p:sys � constant

F
:net �

dp:sys

dt
� 0

F
: net � 0

p:sys



7-6 Simple Collisions and Conservation of Momentum

Suppose that two very low friction carts roll along a smooth, level track. What hap-
pens to them before, during, and after they collide? We know by analysis with
Newton’s Second Law that the external forces on the carts (the gravitational force
pulling downward and the normal forces of the track holding them up) cancel each
other out, so . Thus, the system is isolated, so we predict that the total mo-
mentum of the two-cart system will be conserved. In other words, each cart should
change its momentum in such a way that the total change in system momentum is
zero.

In this section, we will examine two different types of collisions for simple sys-
tems that are isolated: (1) a collision in which the hard rubber end of a more massive
cart hits the hard rubber end of a less massive cart and the two carts bounce off each
other, and (2) a collision in which the rubber ends are replaced with Velcro or clay so
that the carts stick together after the collision. Is it possible for momentum to be con-
served in these two very different situations?

A Bouncy Collision
Our first case, the bouncy collision, is depicted in Fig. 7-10. Two bodies having almost
the same speed but different masses are just about to have a one-dimensional collision
(meaning that the motions before and after the collision are along the same straight
line). Imagine that these two objects bounce off one another immediately following
their collision. What happens during the collision? Does the cart on the right with
more mass on it exert more force on the cart on the left? Less force? The same force?

These carts are outfitted with electronic force sensors, so we can measure the col-
lision forces. The impulse curves indicating the changes in forces on each of the carts
during the time of impact are shown in Fig. 7-11.

The fact that the interaction forces have equal magnitudes and are oppositely di-
rected at every moment of contact is yet another experimental verification of
Newton’s Third Law. It shows that there is no net internal force in this two “particle”
system. If the total momentum of the system is to be considered, we expect that the
change in momentum of the left cart will be equal and opposite to the change in
momentum of the right cart. However, since the mass of the right cart is greater and
momentum is the product of mass and velocity, the right cart must have a smaller
change in velocity than the less massive cart on the left. You are familiar with this fact.
When a massive bowling ball hits a bowling pin, the magnitude of the pin’s velocity is

F
: net � 0
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FIGURE 7-10 ■ Two carts of different
masses undergo a “bouncy” collision. The
collision forces can be measured 4000
times a second using electronic force sen-
sors attached to a computer data acquisi-
tion system.

–16
5 10 15

t [ms]
20 250

–8

0

8

16

F x
 [

N
]

FIGURE 7-11 ■ The top graph displays the
x-component of force the left cart exerts
on the right cart. The bottom graph shows
the force the right cart exerts on the left
cart. The collision forces for the two carts
are equal and opposite on a moment-by-
moment basis. The time of contact is less
25 ms or about 1/40th of a second.



much larger than that of the ball. An observation of the two carts bouncing off each
other confirms the prediction that the more massive cart on the right undergoes less
velocity change than the cart on the left.

This conclusion can be expressed mathematically. Using Eq. 7-16,

Total momentum (before the collision) = total momentum 
(after the collision).

We can also express this mathematically in terms of the momentum of each cart as

(conservation of translational momentum). (7-17)

Because the motion is one-dimensional, we can drop the vector arrows and use only
components along the direction of the motion. Thus, from , we can rewrite
this expression in terms of the masses and velocity components of the particles. For
example, if we choose an x axis along the line of motion, then

(x-component), (7-18)

where vA x(t1) is the x-component of object A’s velocity at time t1. As we discussed
while treating one-dimensional motions in previous chapters, it is essential when
substituting actual values for the components into an equation that we use the
correct sign (� or �) to denote the direction of motion of each object along the
chosen axis.

Here we have used an experimental verification of Newton’s Third Law and a be-
lief that Newton’s Second Law is valid to assert that momentum ought to be con-
served for an isolated system. Are we correct? Indeed, if we measure masses and use a
computer data acquisition system or video analysis software to find velocity compo-
nents before and after a collision, it is possible to verify momentum conservation ex-
perimentally for bouncy collisions. In the next subsection we will describe the details
of this type of experimental verification for a sticky collision.

A Sticky Collision
To discuss a collision in which the particles stick together, we can replace the rubber
cart bumpers with Velcro or gooey clay blobs. Another way to explore a sticky colli-
sion is to drop a stationary mass onto our low-friction cart. We can gently place the
stationary mass on top of the moving cart and record what happens to the cart veloc-
ity with a video camera. We will describe how a video analysis of the cart position on
video frames (1) enables us to confirm that momentum is conserved and (2) enables
us to use our knowledge of momentum conservation to predict the final velocity of
any sticky collision between two particle-like objects that form an isolated system.
(See Fig. 7-12.)

mAvA x(t1) � mBvB x(t1) � mAvA x(t2) � mBvB x(t2)

p: � mv:

p:A 1 � p:B 1 � p:A 2 � p:B 2

p:sys 2p:sys 1
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FIGURE 7-12 ■ A single frame of a video
clip shows two bricks being placed on top
of a cart as it moves toward the right with
an initial velocity component of 1.78 m/s.
The cart slows down noticeably once the
bricks are placed on top of it.
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FIGURE 7-13 ■ A graph based on video analysis shows how the position of
the moving cart in Fig. 7-12 changes before, during, and after bricks are
placed gently on top of it. The slope of the graph before the mass touches
the cart (0.00 to 0.33 s) gives the cart’s initial velocity. The slope of the
graph after the mass has fully settled on the cart (0.60 to 1.13 s) gives the fi-
nal velocity of the cart–mass system.



The Video Analysis: As we view the video frames and locate the cart position in each
frame, we see that in this case the two objects “stick” together following their gentle
“collision.” By determining the slope of the position vs. time graph for the first few
frames we find that the cart of mass mA � 2.84 kg  is moving from left to right with an
initial x-component of velocity of vA x(t1) � �1.78 m/s. (See Fig. 7-13.) After two
bricks of total mass mB � 4.26 kg are placed gently on the cart, the combined masses
continue to move more slowly from left to right with a system velocity component
given by vsys x(t2) � 0.712 m/s.

(1) Confirmation of Momentum Conservation: Let’s check to see that 
(that is, Eq. 7-16 holds). We use our data to find the initial momentum of the system.
The bricks (denoted as B) have no initial velocity, so

(7-19)

To find the final momentum of the system we note that after their collision, the cart
and the bricks move together with the same velocity. Thus

(7-20)

with

so

There is uncertainty associated with any experimental measurements. Even though
video analysis is a very fine tool for motion analysis, we were quite fortunate to have
our initial and final momentum values agree to three significant figures. That doesn’t
usually happen in momentum conservation experiments.

(2) Predicting the Final Velocity: If you can correctly identify an isolated system and
apply momentum conservation, a knowledge of the initial velocities of a two-particle
system can enable you to predict the velocities after a sticky collision. We merely need
to equate the last terms in Eqs. 7-19 and 7-20 and solve for the final velocity. For ex-
ample, with this gives 

(7-21)

For our cart–brick situation this would give us a predicted final velocity of

(predicted final speed).

Note that the speed of the combined masses after the collision must be less
than the speed of the mass that was moving before the collision, because the
mass ratio mA/(mA � mB) is always less than one.

Remember that regardless of whether the objects involved in the collision bounce
off one another or stick together, the total translational momentum of a system is

� v:
Ax(t1)�

� v:
sys x(t2)�

vsys x(t2) �
2.84 kg

2.84 kg � 4.26 kg
(1.78 m/s) � 0.712 m/s

vsys x(t2)î �
mA

mA � mB
vAx(t1)î.

v:
B x(t1) � 0,

� (5.06 kg�m/s)î.

� (2.84 kg � 4.26 kg)(0.712 m/s) î

p:sys x(t2) � p:sys 2 � (mA � mB)v:sys x(t2)

vA x(t2) � vB x(t2) � vsys x(t2),

p:
sys x

(t
2
) � p

A x
(t

2
)î � p

B x
(t

2
)î � m

A
v

A x
(t

2
)î � m

B
v

B x
(t

2
)î

p:sys x(t1) � p:sys 1 � (5.06 kg�m/s)î.

� (2.84 kg)(1.78 m/s) î � 0 î

p:
sys x

(t
1
) � p

A x
(t

1
)î � p

B x
(t

1
)î � m

A
v

A x
(t

1
)î � m

B
v

B x
(t

1
)î

p:sys 2 � p:sys1
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A fireworks box with mass m � 6.0 kg slides with speed v � 4.0 m/s
across a frictionless floor in the positive direction along an x axis. It
suddenly explodes into two pieces. One piece, with mass mA � 2.0 kg,
moves in the positive direction along the x axis with speed vA �
8.0 m/s.What is the velocity of the second piece, with mass mB?

S O L U T I O N ■ There are two Ke y  I d e a s here. First, we could
get the velocity of the second piece if we knew its momentum, be-
cause we already know its mass is mB � m � mA � 4.0 kg. Second,
we can relate the momenta of the two pieces to the original mo-
mentum of the box if momentum is conserved. Let’s check.

Our reference frame will be that of the floor. Our system con-
sists initially of the box and then of the two pieces. The box and
pieces each experience a normal force from the floor and a gravita-
tional force. However, those forces are both vertical and cancel out
(sum to zero). The forces produced by the explosion are internal to
the system. Thus, the horizontal component of the momentum of
the system is conserved, and we can apply momentum conservation
(Eq. 7-16) along the x axis.

The initial momentum of the system is that of the box:

Similarly, we can write the final momenta of the two pieces as

p:
A 2

� m
A

v:
A

  and  p:
B 2

� m
B

v:
B
.

p:
sys 1 � m v:.
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The final total momentum of the system is the vector sum of
the momenta of the two pieces:

Since all the velocities and momenta in this problem are vectors
along the x axis, we can write them in terms of their x-components.
Doing so, we now obtain

or

Inserting known data, we find

(6.0 kg)(4.0 m/s) � (2.0 kg)(8.0 m/s) � (4.0 kg)vB x(t2)

and thus vB x(t2) � 2.0 m/s.

Since all the momenta and velocities in the vertical direction are
zero, our final result is

(Answer)

and the second piece also moves in the positive direction along the
x axis.

v:
B

� v
B x

î � (2.0 m/s)î,

mvx(t1) � mAvA x(t2) � mBvB x(t2).

psys x(t1) � psys x(t2)

p:sys 2 � p:
A 2

� p:
B 2

� m
A

v:
A

� m
B

v:
B
.

p:
sys 2

TOUCHSTONE EXAMPLE 7-3: Exploding Box

conserved so long as there is no net external force acting on it. Friction is an external
force that often renders a system nonisolated and hence interferes with momentum
conservation.

Our consideration of bouncy and sticky collisions is enough to get us started ana-
lyzing collisions. However, many collisions are not completely bouncy or completely
sticky. In Chapter 10, we will use the concept of mechanical energy conservation to re-
fine our understanding of collisions.

READI NG EXERC IS E  7-5 : Consider two small frictionless carts of equal mass that
are resting on a level track with a firecracker wedged between them. When the firecracker ex-
plodes, the carts fly apart. Is translational momentum conserved in this case? (State any
assumptions you made in formulating your answer.) Explain in detail why momentum is con-
served or why it isn’t. ■

7-7 Conservation of Momentum in Two Dimensions

What happens when one object strikes another with a glancing blow? As shown in
Fig. 7-14, the objects can come off at an angle with respect to each other. Can we still
apply the law of conservation of momentum?

The principle of conservation of momentum is applicable to collisions in two or
three dimensions just as it is in one dimension, as long as the net force on the system
is zero in each of the dimensions. If the net force is not zero in one of the dimensions,
momentum is not conserved in that dimension in accordance with Eqs. 7-11, 7-12, and
7-13. For convenience, we choose a two-dimensional coordinate system. Then we can
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FIGURE 7-14 ■ A video analysis of a colli-
sion between two pucks. A puck traveling
on an air table hits another stationary puck
with a glancing blow. They both travel off
in different velocities in such a way that
momentum is conserved.

decompose the momentum conservation equation (Eq. 7-17)
into components. When conservation of momentum is applied to multidimensional
motion, it is applied in each direction separately. In other words, the single expression

can be replaced with up to three expressions that involve
unit vectors associated with three orthogonal coordinate axes directions. In the two-
dimensional case, these are

(7-22)

and (7-23)

where the subscripts denote the momenta for particles A and B along each of the co-
ordinate axes x and y.

This set of equations describes the relationships that have to be satisfied by the
initial and final momenta of the particles as a result of momentum conservation in
two dimensions. In terms of the object’s masses and velocities, the equations above
can be expressed in terms of components:

x-components: (7-24)

and y-components: (7-25)

We can use either set of two equations above (7-22 and 7-23 or 7-24 and 7-25) to analyze
a collision.We will choose which set to use based on the information available to us.

If we determine the angles that the objects make with respect to various axes be-
fore and after a collision, we can often calculate the x- and y-components of the mo-
menta or velocities using trigonometry. This is shown in Fig. 7-15 for two pucks that
have different masses. We also must take special care to associate the correct sign (to
denote direction) with each term in the expressions above. For example, Fig. 7-15 shows
a collision between a projectile body and a target body initially at rest. The impulses
between the bodies have sent the bodies off at angles �A and �B measured relative to
the x axis, along which object A initially traveled. In this situation, we would rewrite

for components along the x axis as

or

and along the y axis as

mAvA y(t1) � mBvB y(t1) � mAvA y(t2) � mBvB y(t2),

mA�v:A 1� � 0 � mA�v:A 2�cos �A � mB� v:B 2�cos �B,

mAvA x(t1) � mBvB x(t1) � mAvA x(t2) � mBvB x(t2),

p:
A 1

� p:
B 1

� p:
A 2

� p:
B 2

mAvA y(t1) � �mB vB y(t1) � mAvA y(t2) � mB vB y(t2).

mAvA x(t1) � mBvB x(t1) � mAvA x(t2) � mB vB x(t2),

pA y(t1)ĵ � pB y(t1)ĵ � pA y(t2)ĵ � pB y(t2)ĵ,

pA x(t1)î � pB x(t1)î � pA x(t2)î � pB x(t2)î,

p:A 1 � p:B 1 � p:A 2 � p:B 2

p:A 1 � p:B 1 � p:A 2 � p:B 2

x

y

θB

θA

vB2

mB

mA

vA2

vA1

FIGURE 7-15 ■ An object of mass mA hits
a second object of mass mB at a glancing
blow, and each object moves off at an an-
gle with respect to the original line of mo-
tion (defined here as the positive x axis).



or

The minus sign in the first term to the right of the equal sign above is very important.
It indicates that the y-component of velocity for mA is downward.

READI NG EXERC IS E  7-6 : An initially stationary device lying on a frictionless floor
explodes into two pieces, which then slide across the floor. One piece slides in the positive di-
rection along an x axis. (a) What is the sum of the momenta of the two pieces after the explo-
sion? (b) Can the second piece move at an angle to the x axis? Why or why not? (c) What is the
direction of the momentum of the second piece? ■

READI NG EXERC IS E  7-7 : Consider a system that contains the Earth and a grape-
fruit. The grapefruit starts off at rest and falls a certain distance, at which point its velocity has
increased to 2 m/s. What is the change in momentum of the grapefruit? What is the change in
momentum of the Earth? What is the approximate change in speed of the Earth associated
with this change in momentum? State any estimates you made in answering the question. ■

0 � 0 � �mA� v:A 2�sin �A � mB� v:B 2� sin �B.
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TOUCHSTONE EXAMPLE 7-4: Skaters Embrace

Two skaters collide and embrace, “sticking” together after impact,
as suggested by Fig. 7-16, where the origin is placed at the point of
collision. Alfred, whose mass mA is 83 kg, is originally moving east
with speed . Barbara, whose mass mB is 55 kg, is origi-
nally moving north with speed .

(a) What is the velocity of the couple after they collide?

S O L U T I O N ■ One Ke y  I d e a here is the assumption that the
two skaters form an isolated system. That is, during the collision we
assume no net external force acts on them. In particular, we neglect
any frictional force on their skates from the ice because the peak
collision forces are much larger than the friction forces. With that
assumption, we can apply conservation of the total translational
momentum by writing as

(7-26)mA v:A 1 � mB v:B 1 � (mA � mB) v:sys 2.

p:sys 1 � p:sys 2p:sys

v:sys 2

vB � 7.8 km/h
vA � 6.2 km/h

Solving for the system velocity after collision gives us

We can solve this directly on a vector-capable calculator by substi-
tuting given data for the symbols on the right side. We can also
solve it by applying a second Ke y  I d e a (one we have used be-
fore) and then some algebra: The idea is that the total translational
momentum of the system is conserved separately for components
along the x axis and y axis shown in Fig. 7-16. Writing Eq. 7-26 in
component form for the x axis and noting that yields

, (7-27)

and for the y axis, since 

(7-28)

We cannot solve either of these equations separately because they
both contain two unknowns ( and �), but we can solve them si-
multaneously by dividing Eq. 7-28 by Eq. 7-27. We get

Thus,

(Answer)

From Eq. 7-28, with , we then have a final sys-
tem speed of

(Answer)� 4.86 km/h �  4.9 km/h.

v � � v: � �
mBvB

(mA � mB) sin �
�

(55 kg)(7.8 km/h)
(138 kg)(sin 39.8�)

mA � mB � 138 kg

� � tan�1 0.834 � 39.8� � 40�.

tan � �
mBvB

mAvA
�

(55 kg)(7.8 km/h)
(83 kg)(6.2 km/h)

� 0.834.

� v: �

mA(0) � mBvB � (mA � mB)� v: �sin �.

v:B � 0 î � vB ĵ,

mAvA � mB(0) � (mA � mB)� v: � cos �

v:A � vAî � 0 ĵ

v: �
mA v:A � mB v:B

mA � mB
.

v:sys 2 � v:

x

y

mA + mB

θ

Path
 of c

om

vA

vB

mA

mB

v

FIGURE 7-16 ■ Two skaters, Alfred (A) and Barbara (B), repre-
sented by spheres in this simplified overhead view, have a “sticky”
collision. Afterward, they move off together at angle �, with speed v.



7-8 A System with Mass Exchange—A Rocket 
and Its Ejected Fuel

In the systems we have dealt with so far, we have assumed that the total mass of the
system remains constant; no mass is added or removed from the system. Such systems
are called closed. Sometimes, as in a rocket (Fig. 7-17), the mass does not stay con-
stant. Most of the mass of a rocket on its launching pad is fuel, all of which will
eventually be burned and ejected from the nozzle of the rocket engine. A rocket ac-
celerates by ejecting some of its own mass in the form of exhaust gases. It turns out
that both the rate at which the fuel burns and the velocity of the ejected fuel particles
relative to the rocket are constant.

We handle the variation of the mass of the rocket as the rocket accelerates by ap-
plying Newton’s Second Law, not to the rocket alone but to the rocket and its ejected
combustion products taken together. The mass of this system does not change as the
rocket accelerates.

Finding the Acceleration
Let’s consider the acceleration of this rocket in deep space with no gravitational or at-
mospheric drag forces acting on it. To simplify our observation of what happens, sup-
pose that at an arbitrary time t1 when the rocket has a total mass M, we happen to be
in an inertial reference frame that moves at a constant velocity that is exactly the
same as the rocket’s velocity. What do we observe in a short time interval dt?

At time t1 the rocket is not moving relative to us (see Fig. 7-18a). After a time in-
terval dt, the rocket has ejected a small amount of burned fuel of mass dm at a veloc-
ity relative to the rocket, which we call .

Our system consists of the rocket and the exhaust products released during inter-
val dt. The system is closed and isolated, so the translational momentum of the system
must be conserved during dt; that is,

. (7-29)

However, at time t1 when the rocket is not moving relative to us, we observe that the
initial momentum of the system is zero. Thus, at a later time dt the total momentum of
the system must still be zero. As the mass dm of burned fuel flies off at a velocity 
the rocket that now has a very slightly smaller mass of must recoil in the op-
posite direction with a small increase in its velocity of as shown in Fig. 7-18b. In or-
der to keep the total momentum of the rocket– fuel system zero we must have

(7-30)

Since the rocket mass , the total rocket mass M is always much greater than
the mass of fuel ejected in a short time, so we can rewrite the momentum conserva-
tion equation as

(7-31)

Dividing each term by dt and rearranging terms gives us

(7-32)

If we note that the change in the rocket mass due to the loss of the ejected fuel during
the time interval dt is given by we can replace �dm/dt with dM/dt. SincedM � �dm,

�
dm
dt

v: rel � M
dv:

dt
.

dm( v: rel) � Mdv: � 0.

M �� dm

p:sys 1 � 0 � p:sys 2 � dm( v: rel) � (M � dm)dv:.

dv:
M � dm

v: rel

p:sys 1 � p:sys 2

v: rel
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FIGURE 7-17 ■ Liftoff of Project Mercury
spacecraft.

x

v = 0
  at time t

M

System boundary

(a)

x

M – dm

System boundary

(b)

dm dv

v rel

FIGURE 7-18 ■ (a) An accelerating rocket
of mass M at time t1, as seen from an iner-
tial reference frame. (b) The same rocket,
but at time t1 � dt. The exhaust products
released during interval dt are shown.
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dv/dt is the acceleration of the rocket relative to the inertial reference, the expression
above becomes

(first rocket equation). (7-33)

This equation holds at any instant, with the mass M, the fuel consumption rate
, and the acceleration evaluated at that instant. Note that and 

point in opposite directions because we chose to be the velocity of the ejected gas
relative to the rocket rather than the other way around. This is not at first apparent in
Eq. 7-33 until you remember that dM/dt is negative. The left side of this equation has
the dimensions of a force and depends only on design characteristics
of the rocket engine—namely, the rate R at which it consumes fuel mass and the
speed with which that mass is ejected relative to the rocket.

We call the term the thrust of the rocket engine and represent it with
. Newton’s Second Law emerges clearly if we write as

, in which is the acceleration of the rocket at the time that its mass is
M. Notice that points in the same direction that the rocket is accelerating, even
though points in the opposite direction. Since dM/dt is intrinsically negative,

is positive.

Finding the Velocity Change
How will the velocity of a rocket change as it consumes its fuel? Recall that the
change in the rocket mass due to the loss of the ejected fuel during the time interval
dt is given by . Then we can rewrite Eq. 7-30, which is ,
and rearrange the terms to get 

where integrating gives us

in which represents the initial mass of the rocket at time t1 and
is the mass of the rocket at some later (“final”) time t2. Evaluating the in-

tegrals then gives

(second rocket equation), (7-34)

for the increase in the speed of the rocket during the change in mass from M1 to M2.
(The symbol “ln” in this equation means the natural logarithm.) The final mass is
always less than the initial mass so the natural log will always be positive. But the ve-
locity of the ejected fuel relative to the rocket is also in the opposite direction as the
velocity change of the rocket. This always gives us a velocity change in a direction op-
posite that of mass ejection.

We see here the advantage of multistage rockets, in which M2 is reduced by dis-
carding successive stages when their fuel is depleted. Discarding rocket stages means
there is less mass to accelerate. An ideal rocket would reach its destination with only
its payload remaining.

v:2 � v:1 � v: rel ln
M2

M1
� � v: rel ln

M1

M2

M2 � M(t2)
M1 � M(t1)

�v:2

v:1

dv: � v: rel�M2

M1

dM
M

,

dv: � v: rel dM
M

Mdv: � �(dm) v: reldM � �dm

R � �dM/dt
v: rel

F
: thrust

a:F
: thrust � Ma:

�Rv: rel � Ma:F
: thrust

�R v: rel
v: rel

(kg �m/s2 � N)

v: rel
a:v: rela:R � �dM/dt

dM
dt

v: rel � Ma:



Thrust Forces at Liftoff
In the first few seconds of liftoff, the fuel consumption rate is not large enough to
change the overall mass M of a typical modern rocket by a noticeable amount.
Thus, its mass M is approximately constant. We can use this fact along with Eq. 7-33
in the analysis of video images of a NASA rocket to find the thrust forces of the
rocket. As an example, we will do an analysis of the Mercury-Redstone rocket that
lifted Alan Shepard into space in 1961. An image of the rocket during liftoff is
shown in Fig. 7-19a. However, at liftoff we are not in deep space, so the net force
on the rocket is the vector sum of the thrust force of the rocket acting in an up-
ward direction and the downward force of the gravitational attraction of the Earth.
Therefore,

(at liftoff from the Earth’s surface).

Taking the positive y direction to be vertically upward, this simplifies to

.

The y position as a function of time of the Mercury-Redstone rocket liftoff is shown
in Fig. 7-19b.

Fitting the curve with a quadratic function gives an upward acceleration of mag-
nitude 1.1 m/s2. The mass of the Mercury-Redstone rocket with full fuel and payload
is . Thus, the y-component of the thrust force is given by 

If we know the fuel consumption rate we can also find the relative velocity with which
fuel is ejected from the rocket using the first rocket equation (Eq. 7-33) given by

.Rv: rel � Ma:

F thrust
y � M(ay � g) � (3.0 	 104 kg )(1.1 � 9.8) m/s2 � 33 	 105 N.

M � 3.0 	 104 kg

F thrust
y  ĵ � Mg ĵ � May ĵ

F
: thrust � F

: grav � Ma:
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FIGURE 7-19a ■ Liftoff of the Mercury-
Redstone rocket that sent the first Ameri-
can astronaut, Alan Shepard, into space in
1961.
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FIGURE 7-19b ■ A position vs. time graph
based on a VideoPoint analysis of the first
5 s of liftoff of the Mercury-Redstone
rocket that sent the first American astro-
naut, Alan Shepard, into space in 1961.
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TOUCHSTONE EXAMPLE 7-5: Rocket Thrust

A rocket whose initial mass M1 is 850 kg consumes fuel at the rate
. The speed v rel of the exhaust gases relative to the

rocket engine is 2800 m/s.

(a) What thrust does the rocket engine provide?

S O L U T I O N ■ The Ke y  I d e a here is that the magnitude of
the thrust is equal to the product of the fuel consumption
rate R and the relative speed vrel at which exhaust gases are
expelled:

(b) What is the initial acceleration of the rocket launched from a
spacecraft?

S O L U T I O N ■ We can relate the thrust of a rocket to the
resulting acceleration with , where M is the rocket’s
mass. The Ke y  I d e a , however, is that M decreases and the magni-
tude of the acceleration a increases as fuel is consumed. Because we
want the initial value of the acceleration here, we must use the ini-
tial value M1 of the mass, finding that

F
:thrust � Ma:a:

F
: thrust

� 6440 N �  6400 N.

F thrust � Rv rel � (2.3 kg/s)(2800 m/s)

F thrust

R � 2.3 kg/s (Answer)

(c) Suppose that the mass M2 of the rocket when its fuel is ex-
hausted is 180 kg. What is its speed relative to the spacecraft at that
time? Assume that the spacecraft is so massive that the launch does
not alter its speed.

S O L U T I O N ■ The Ke y  I d e a here is that the rocket’s final
speed v2 (when the fuel is exhausted) depends on the ratio 
of its initial mass to its final mass, as given by Eq. 7-34. With the ini-
tial speed , we have

(Answer)

Note that the ultimate speed of the rocket can exceed the exhaust
speed v rel.

� (2800 m/s) ln(4.72) î �  4300 m/s î.

� �(�2800 m/s î) ln� 850 kg
180 kg 	

v:2 � � v: rel ln � M1

M2
	

v1 � 0

M1/M2

a: �
F
: thrust

M1
�

6440 N î
850 kg

� (7.6 m/s2) î.

SEC. 7-2 ■ TRANSLATIONAL MOMENTUM OF A PARTICLE

1. Same Momentum Suppose that your mass is 80 kg. How fast
would you have to run to have the same translational momentum
as a 1600 kg car moving at 1.2 km/h?

2. VW Beetle How fast must an 816 kg VW Beetle travel to
have the same translational momentum as a 2650 kg Cadillac going
16 km/h?

3. Radar An object is tracked by a radar station and found to
have a position vector given by 
(2700 m) ĵ with in meters and t in seconds. The radar station’s x
axis points east, its y axis north, and its z axis vertically up. If the
object is a 250 kg meteorological missile, what are (a) its transla-
tional momentum and (b) its direction of motion?

SEC. 7-4 ■ IMPULSE AND MOMENTUM CHANGE

4. Ball Moving Horizontally A 0.70 kg ball is moving horizontally
with a speed of 5.0 m/s when it strikes a vertical wall. The ball re-
bounds with a speed of 2.0 m/s. What is the magnitude of the
change in translational momentum of the ball?

5. Cue Ball A 0.165 kg cue ball with an initial speed of 2.00 m/s
bounces off the rail in a game of pool, as shown from an overhead
view in Fig. 7 -20. For x and y axes located as shown, the bounce re-
verses the y-component of the ball’s velocity but does not alter the
x-component. (a) What is � in Fig 7-20? (b) What is the change in

r:
r: � [(3500 m) � (160 m/s)t] î �

the ball’s momentum in unit-vector
notation? (The fact that the ball
rolls is not relevant to either ques-
tion.)

6. Softball and Bat A 0.30 kg soft-
ball has a velocity of 15 m/s at an an-
gle of 35° below the horizontal just
before making contact with the bat.
What is the magnitude of the change
in momentum of the ball while it is
in contact with the bat if the ball
leaves the bat with a velocity of (a)
20 m/s, vertically downward and (b) 20 m/s, horizontally away from
the batter and back toward the pitcher?

7. Stationary Ball-Impulse A cue stick strikes a stationary pool
ball, with an average force of 50 N over a time of 10 ms. If the ball
has mass 0.20 kg, what speed does it have just after impact?

8. Average Force During Crash The National Transportation
Safety Board is testing the crash-worthiness of a new car. The
2300 kg vehicle, moving at 15 m/s, is allowed to collide with a bridge
abutment, which stops it in 0.56 s. What is the magnitude of the
average force that acts on the car during the impact?

9. Average Force of Bat A 150 g baseball pitched at a speed of
40 m/s is hit straight back to the pitcher at a speed of 60 m/s. What
is the magnitude of the average force on the ball from the bat if the
bat is in contact with the ball for 5.0 ms?

Problems
y

x

30° θ

FIGURE 7-20 ■ Problem 5.



10. Henri LaMothe Until he was
in his seventies, Henri LaMothe
excited audiences by belly-flop-
ping from a height of 12 m into
30 cm of water (Fig. 7-21). As-
suming that he stops just as he
reaches the bottom of the water
and estimating his mass, find the
magnitudes of (a) the average
force and (b) the average impulse
on him from the water.

11. Steel Ball A force magnitude
that averages 1200 N is applied to
a 0.40 kg steel ball moving at 14
m/s in a collision lasting 27 ms. If
the force is in a direction opposite
the initial velocity of the ball, find
the final speed and direction of the ball.

12. Chute Failure In February 1955, a paratrooper fell 370 m from
an airplane without being able to open his chute but happened to
land in snow, suffering only minor injuries. Assume that his speed at
impact was 56 m/s (terminal speed), that his mass (including gear)
was 85 kg, and that the magnitude of the force on him from the
snow was at the survivable limit of 1.2 	 105 N. What are (a) the
minimum depth of snow that would have stopped him safely and
(b) the magnitude of the impulse on him from the snow?

13. Rebounding Ball A 1.2 kg ball drops vertically onto a floor,
hitting with a speed of 25 m/s. It rebounds with a speed of 10 m/s.
(a) What impulse acts on the ball during the contact? (b) If the ball
is in contact with the floor for 0.020 s, what is the magnitude of the
average force on the floor from the ball?

14. Superman It is well known
that bullets and other missiles
fired at Superman simply bounce
off his chest (Fig.7-22). Suppose
that a gangster sprays Superman’s
chest with 3 g bullets at the rate
of 100 bullets/min, and the speed
of each bullet is 500 m/s. Suppose
too that the bullets rebound
straight back with no change in
speed. What is the magnitude of
the average force on Superman’s
chest from the stream of bullets?

15. Inattentive Driver A 1400 kg
car moving at 5.3 m/s is initially
traveling north in the positive y
direction. After completing a
90° right-hand turn to the positive x direction in 4.6 s, the inatten-
tive operator drives into a tree, which stops the car in 350 ms. In
unit-vector notation, what is the impulse on the car (a) due to the
turn and (b) due to the collision? What is the magnitude of the av-
erage force that acts on the car (c) during the turn and (d) during
the collision? (e) What is the angle between the average force in (c)
and the positive x direction?

16. Softball A 0.30 kg softball has a speed of 12 m/s at an angle of
35° below the horizontal just before making contact with a bat. The
ball leaves the bat 2.0 ms later with a vertical velocity of magnitude

10 m/s as shown in Fig. 7-23. What is
the magnitude of the average force
of the bat on the ball during the
ball–bat contact?

17. Force and Impulse The magni-
tude of an unbalanced force on a 10
kg object increases at a constant
rate from zero to 50 N in 4.0 s, caus-
ing the initially stationary object to
move. What is the object’s speed at end of the 4.0 s?

18. Thunderstorm During a violent thunderstorm, hail of diameter
1.0 cm falls directly downward at a speed of 25 m/s. There are esti-
mated to be 120 hailstones per cubic meter of air. (a) What is the
mass of each hailstone (density � 0.92 g/cm3)? (b) Assuming that
the hail does not bounce, find the magnitude of the average force
on a flat roof measuring 10 m 	 20 m due to the impact of the hail.
(Hint: During impact, the force on a hailstone from the roof is ap-
proximately equal to the net force on the hailstone, because the
gravitational force on it is small.)

19. Pellet Gun A pellet gun fires ten 2.0 g pellets per second with a
speed of 500 m/s. The pellets are stopped by a rigid wall. What are
(a) the momentum of each pellet and (b) the magnitude of the av-
erage force on the wall from the stream of pellets? (c) If each pellet
is in contact with the wall for 0.6 ms, what is the magnitude of the
average force on the wall from each pellet during contact? (d) Why
is this average force so different from the average force calculated
in (b)?

20. Superball Hits Wall Figure 7-24 shows an approximate plot of
force magnitude versus time during the collision of a 58 g Superball
with a wall. The initial velocity of the ball is 34 m/s perpendicular to
the wall; it rebounds directly back with approximately the same
speed, also perpendicular to the wall. What is F max, the maximum
magnitude of the force on the ball from the wall during the
collision?

FIGURE 7-24 ■ Problem 20.

21. Spacecraft A spacecraft is separated into two parts by detonat-
ing the explosive bolts that hold them together. The masses of the
parts are 1200 kg and 1800 kg; the magnitude of the impulse on
each part from the bolts is 300 N � s. With what relative speed do
the two parts separate because of the detonation?

22. Ball Strikes Wall In the
overhead of Fig. 7-25, a 300 g
ball with a speed v of 6.0 m/s
strikes a wall at an angle � of
30° and then rebounds with the
same speed and angle. It is in
contact with the wall for 10 ms.
(a) What is the impulse on the
ball from the wall? (b) What is the average force on the wall from
the ball?
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FIGURE 7-21 ■ Problem 10.

FIGURE 7-22 ■ Problem 14.

35°

12 m/s10 m/s

FIGURE 7-23 ■ Problem 16.
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23. Two Barges In Fig. 7-26, two long barges are moving in the
same direction in still water, one with a speed of 10 km/h and
the other with a speed of 20 km/h. While they are passing each
other, coal is shoveled from the slower to the faster one at a rate of
1000 kg/min. How much additional force must be provided by the
driving engines of (a) the fast barge and (b) the slow barge if nei-
ther is to change speed? Assume that the shoveling is always
perfectly sideways and that the frictional forces between the barges
and the water do not depend on the mass of the barges.

FIGURE 7-26 ■ Problem 23.

SEC. 7-6 ■ SIMPLE COLLISIONS AND CONSERVATION

OF MOMENTUM

24. Two Blocks Two blocks of masses 1.0 kg and 3.0 kg on a fric-
tionless surface are connected by a stretched spring and initially are
held at rest. Then the two blocks are simultaneously released from
rest. Shortly after the spring starts contracting we find that the 1.0
kg block is traveling toward the other at 1.7 m/s. What is the veloc-
ity of the other block at that moment?

25. Meteor Impact Meteor Crater in Arizona (Fig 7-1a) is thought
to have been formed by the impact of a meteor with Earth some
20,000 years ago. The mass of the meteor is estimated at 5 	 l010 kg,
and its speed at 7200 m/s. What speed would such a meteor give
Earth in a head-on collision?

26. Bullet Strikes Wooden Block A 5.20 g bullet moving at 672 m/s
strikes a 700 g wooden block at rest on a frictionless surface. The
bullet emerges, traveling in the same direction with its speed re-
duced to 428 m/s. What is the resulting speed of the block?

27. Man Throws Stone A 91 kg man lying on a surface of negligi-
ble friction shoves a 68 g stone away from him, giving it a speed of
4.0 m/s. What velocity does the man acquire as a result?

28. Mechanical Toys A mechanical toy slides along an x axis on a
frictionless surface with a velocity of (�0.40 m/s) when two inter-
nal springs separate the toy into three parts, as given in the table.
What is the velocity of part A?

Part Mass (kg) Velocity (m/s)

A 0.50 ?

B 0.60 0.20 î

C 0.20 0.30 î

29. Icy Road Two cars A and B slide on an icy road as they at-
tempt to stop at a traffic light. The mass of A is 1100 kg, and the

î
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mass of B is 1400 kg. The coefficient of kinetic friction between the
locked wheels of either car and the road is 0.13. Car A succeeds in
stopping at the light, but car B cannot stop and rear-ends car A.
After the collision, A stops 8.2 m ahead of its position at impact,
and B 6.1 m ahead; see Fig. 7-27. Both drivers had their brakes
locked throughout the incident. Using the material in Chapters 2
and 6, find the speed of (a) car A and (b) car B immediately after
impact. (c) Use conservation of translational momentum to find the
speed at which car B struck car A. On what grounds can the use of
momentum conservation be criticized here?

FIGURE 7-27 ■ Problem 29.

30. Bullet and Two Blocks In Fig. 7-28a, a 3.50 g bullet is fired hori-
zontally at two blocks at rest on a frictionless tabletop. The bullet
passes through the first block, with mass 1.20 kg, and embeds itself
in the second, with mass 1.80 kg. Speeds of 0.630 m/s and 1.40 m/s,
respectively, are thereby given to the blocks (Fig. 7-28b). Neglecting
the mass removed from the first block by the bullet, find (a) the
speed of the bullet immediately after it emerges from the first block
and (b) the bullet’s original speed.

FIGURE 7-28 ■ Problem 30.

31. Man on a Cart A 75 kg man is riding on a 39 kg cart traveling
at a speed of 2.3 m/s. He jumps off with zero horizontal speed rela-
tive to the ground. What is the resulting change in the speed of the
cart?

32. Block and Bullet A bullet of mass 4.5 g is fired horizontally into
a 2.4 kg wooden block at rest on a horizontal surface. The bullet is
embedded in the block. The speed of the block immediately after the
bullet stops relative to it is 2.7 m/s. At what speed is the bullet fired?

33. Water in a Rocket Sled A rocket sled with a mass of 2900 kg
moves at 250 m/s on a set of rails. At a certain point, a scoop on the
sled dips into a trough of water located between the tracks and
scoops water into an empty tank on the sled. By applying the prin-
ciple of conservation of translational momentum, determine the
speed of the sled after 920 kg of water has been scooped up. Ignore
any retarding force on the scoop.

A B

A B

8.2 m

6.1 m

Before

After

v1

1.20 kg 1.80 kg
Frictionless

(a)

(b)

0.630 m/s 1.40 m/s



34. Bullet Fired Upward A 10 g
bullet moving directly upward at
1000 m/s strikes and passes through
the center of a 5.0 kg block initially
at rest (Fig. 7-29). The bullet emerges
from the block moving directly up-
ward at 400 m/s. To what maximum
height does the block then rise
above its initial position? (Hint: Use
free-fall equations from Chapter 3.)

35. Projectile Body A projectile body of mass mA and initial veloc-
ity A 1 collides with an initially stationary target body of mass mB

in a one-dimensional collision. What are the velocities of the bodies
after the collision if they stick together?

36. Two Blocks Collide A 5.0 kg block with a speed of 3.0 m/s col-
lides with a 10 kg block that has a speed of 2.0 m/s in the same di-
rection. After the collision, the 10 kg block is observed to be travel-
ing in the original direction with a speed of 2.5 m/s. What is the
velocity of the 5.0 kg block immediately after the collision?

37. Last Stage of a Rocket The last stage of a rocket, which is trav-
eling at a speed of 7600 m/s, consists of two parts that are clamped
together: a rocket case with a mass of 290.0 kg and a payload
capsule with a mass of 150.0 kg. When the clamp is released, a com-
pressed spring causes the two parts to separate with a relative
speed of 910.0 m/s. What are the speeds of (a) the rocket case and
(b) the payload after they have separated? Assume that all veloci-
ties are along the same line.

38. Man on a Flatcar A railroad flatcar of weight W can roll with-
out friction along a straight horizontal track. Initially, a man of
weight w is standing on the car, which is moving to the right with
speed vc1 (see Fig. 7-30). What is the change in velocity of the car if
the man runs to the left (in the figure) so that his speed relative to
the car is v rel?

FIGURE 7-30 ■ Problem 38.

39. Space Vehicle A space vehicle is traveling at 4300 km/h rela-
tive to Earth when the exhausted rocket motor is disengaged and
sent backward with a speed of 82 km/h relative to the command
module. The mass of the motor is four times the mass of the mod-
ule. What is the speed of the command module relative to Earth
just after the separation?

40. Projectile Body Two A projectile body of mass mA and initial x-
component velocity vAx(t1) � 10.0 m/s collides with an initially station-
ary target body of mass mB � 2.00 mA in a one-dimensional collision.
What is the velocity of mB following the collision if the two masses
stick together?

SEC. 7-7 ■ CONSERVATION OF MOMENTUM IN TWO

DIMENSIONS

41. Ice-Skating Man A 60 kg man is ice-skating due north with a
velocity of 6.0 m/s when he collides with a 38 kg child. The man

:v

and child stay together and have a velocity of 3.0 m/s at an angle of
35° north of east immediately after the collision. What are the
magnitude and direction of the velocity of the child just before the
collision?

42. Barge Collision A
barge with mass 1.50 	
105 kg is proceeding
downriver at 6.2 m/s in
heavy fog when it collides
with a barge heading di-
rectly across the river
(see Fig. 7-31). The sec-
ond barge has mass 2.78
	 105 kg and before the
collision is moving at 4.3
m/s. Immediately after
impact, the second barge
finds its course deflected
by 18° in the downriver
direction and its speed in-
creased to 5.1 m/s. The
river current is approxi-
mately zero at the time of the accident. What are the speed and di-
rection of motion of the first barge immediately after the collision?

43. Package Explodes A 2.65 kg stationary package explodes into
three parts that then slide across a frictionless floor. The package
had been at the origin of a coordinate system. Part A has mass 
mA � 0.500 kg and velocity ( � 12.0 m/s ). Part B has
mass mB � 0.750 kg, a speed of 14.0 m/s, and travels at an angle
110° counterclockwise from the positive direction of the x axis. (a)
What is the speed of part C? (b) In what direction does it travel?

44. Particle Collision A 2.00 kg “particle” traveling with velocity
collides with a 4.00 kg “particle” traveling with ve-

locity . The collision connects the two particles.
What then is their velocity in (a) unit-vector notation and (b) mag-
nitude-angle notation?

45. Two Vehicles Two vehicles A and B are traveling west and
south, respectively, toward the same intersection, where they collide
and lock together. Before the collision, A (total weight 12.0 kN) has
a speed of 64.4 km/h, and B (total weight 16.0 kN) has a speed of
96.6 km/h. Find the (a) magnitude and (b) direction of the velocity
of the (interlocked) vehicles immediately after the collision, assum-
ing the collision is isolated.

46. Tin Cookie A 2.0 kg tin cookie, with an initial velocity of 
8.0 m/s to the east, collides with a stationary 4.0 kg cookie tin. Just
after the collision, the cookie has a velocity of 4.0 m/s at an angle of 
37° north of east. Just then, what are (a) the magnitude and (b) the
direction of the velocity of the cookie tin?

47. Colliding Balls A 5.0 kg ball moving due east at 4.0 m/s col-
lides with a 4.0 kg ball moving due west at 3.0 m/s. Just after the col-
lision, the 5.0 kg ball has a velocity of 1.2 m/s, due south. What is the
magnitude of the velocity of the 4.0 kg ball just after the collision?

48. Particle Collision Two A collision occurs between a 2.00 kg
particle traveling with velocity �
and a 4.00 kg particle traveling with velocity �

. The collision connects the two particles. What then is
their velocity in (a) unit-vector notation and (b) magnitude-angle
notation?

(�2.00 m/s)ĵ
v:

B1
� (6.00 m/s)î

(�5.00 m/s)ĵv:
A1

� (�4.00 m/s)î

v:
B1

� (2.0 m/s)ĵ
v:

A1
� (4.0 m/s)î

ĵ10.0 m/s î
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FIGURE 7-29 ■ Problem 34.
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FIGURE 7-31 ■ Problem 42.



49. Suspicious Package A suspicious package is sliding on friction-
less surface when it explodes into three pieces of equal masses and
with the velocities (1) 7.0 m/s, north, (2) 4.0 m/s, 30° south of west,
and (3) 4.0 m/s, 30° south of east. (a) What is the velocity (magni-
tude and direction) of the package before it exploded?

50. Mess Kit A 4.0 kg mess kit sliding on a frictionless surface ex-
plodes into two 2.0 kg parts, one moving at 3.0 m/s, due north, and
the other at 5.0 m/s, 30° north of east. What is the original speed of
the mess kit?

51. Radioactive Nucleus A certain radioactive nucleus can trans-
form to another nucleus by emitting an electron and a neutrino.
(The neutrino is one of the fundamental particles of physics.) Sup-
pose that in such a transformation, the initial nucleus is stationary,
the electron and neutrino are emitted along perpendicular paths,
and the magnitudes of the translational momenta are 1.2 	
10�22 kg � m/s for the electron and 6.4 	 10�23 kg � m/s for the neu-
trino. As a result of the emissions, the new nucleus moves (recoils).
(a) What is the magnitude of its translational momentum? What is
the angle between its path and the path of (b) the electron (c) the
neutrino?

52. Internal Explosion A 20.0 kg body is moving in the positive
x direction with a speed of 200 m/s when, due to an internal explo-
sion, it breaks into three parts. One part, with a mass of 10.0 kg,
moves away from the point of explosion with a speed of 100 m/s in
the positive y direction. A second fragment, with a mass of 4.00 kg,
moves in the negative x direction with a speed of 500 m/s. What is
the velocity of the third (6.00 kg) fragment?

53. Vessel at Rest Explodes A vessel at rest explodes, breaking
into three pieces. Two pieces, having equal mass, fly off perpendicu-
lar to one another with the same speed of 30 m/s. The third piece
has three times the mass of each other piece. What are the magni-
tude and direction of its velocity immediately after the explosion?

54. Proton–Proton Collision A proton with a speed of 500 m/s col-
lides with another proton initially at rest. The projectile and target
protons then move along perpendicular paths, with the projectile
path at 60° from the original direction. After the collision, what are
the speeds of (a) the target proton and (b) the projectile proton?

55. Box Sled A 6.0 kg box sled is coasting across frictionless ice at
a speed of 9.0 m/s when a 12 kg package is dropped into it from
above. What is the new speed of the sled?

56. Two Balls Two balls A and B, having different but unknown
masses, collide. Initially, A is at rest and B has speed vB. After the
collision, B has speed vB/2 and moves perpendicularly to its original
motion. (a) Find the direction in which ball A moves after the colli-
sion. (b) Show that you cannot determine the speed of A from the
information given.

57. Two Objects, Same Mass After a collision, two objects of the
same mass and same initial speed are found to move away together
at their initial speed. Find the angle between the initial velocities
of the objects.

58. Sliding on Ice Two 30 kg children, each with a speed of 4.0 m/s,
are sliding on a frictionless frozen pond when they collide and stick
together because they have Velcro straps on their jackets. The two
children then collide and stick to a 75 kg man who was sliding at
2.0 m/s. After this collision, the three-person composite is station-
ary. What is the angle between the initial velocity vectors of the two
children?

1
2
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59. Alpha Particle and Oxygen An alpha particle collides with an
oxygen nucleus that is initially at rest. The alpha particle is scattered
at an angle of 64.0° from its initial direction of motion, and the oxy-
gen nucleus recoils at an angle of 51.0° on the opposite side of that
initial direction. The final speed of the nucleus is 1.20 	 105 m/s. Find
(a) the final speed and (b) the initial speed of the alpha particle. (In
atomic mass units, the mass of an alpha particle is 4.0 u, and the
mass of an oxygen nucleus is 16 u.)

60. Two Bodies Collide Two 2.0 kg bodies, A and B, collide. The
velocities before the collision are 
and . After the collision,

. What is the final velocity of B?

61. Game of Pool In a game of pool, the cue ball strikes another
ball of the same mass and initially at rest. After the collision, the
cue ball moves at 3.50 m/s along a line making an angle of 22.0°
with its original direction of motion, and the second ball has a
speed of 2.00 m/s. Find (a) the angle between the direction of mo-
tion of the second ball and the original direction of motion of the
cue ball and (b) the original speed of the cue ball.

62. Billiard Ball A billiard ball moving at a speed of 2.2 m/s strikes
an identical stationary ball with a glancing blow. After the collision,
one ball is found to be moving at a speed of 1.1 m/s in a direction
making a 60° angle with the original line of motion. Find the veloc-
ity of the other ball.

63. Three Balls In Fig. 7-32,
ball A with an initial speed of
10 m/s collides with stationary
balls B and C, whose centers
are on a line perpendicular to
the initial velocity of ball A and
that are initially in contact with
each other. The three balls are identical. Ball A is aimed directly at
the contact point, and all motion is frictionless. After the collision,
balls B and C have the same speed 6.93 m/s, but ball B moves at an
angle of 30° above the horizontal and ball C moves at an angle of
30° below the horizontal. What is the velocity of ball A after the
collision?

SEC. 7-8 ■ A SYSTEM WITH MASS EXCHANGE—A ROCKET

AND ITS EJECTED FUEL

64. Railroad Car with Grain A railroad car moves at a constant
speed of 3.20 m/s under a grain elevator. Grain drops into it at the
rate of 540 kg/min. What is the magnitude of the force needed to
keep the car moving at constant speed if friction is negligible?

65. Space Probe A 6090 kg space probe, moving nose-first toward
Jupiter at 105 m/s relative to the Sun, fires its rocket engine, ejecting
80.0 kg of exhaust at a speed of 253 m/s relative to the space probe.
What is the final velocity of the probe?

66. Moving Away From Solar System A rocket is moving away
from the solar system at a speed of 6.0 	 l03 m/s. It fires its engine,
which ejects exhaust with a speed of 3.0 	 103 m/s relative to the
rocket. The mass of the rocket at this time is 4.0 	 l04 kg, and its
acceleration is 2.0 m/s2. (a) What is the thrust of the engine? (b)
At what rate, in kilograms per second is exhaust ejected during the
firing?

67. Deep Space A rocket, which is in deep space and initially at rest
relative to an inertial reference frame, has a mass of 2.55 	 105 kg, of

� (20 m/s) ĵ(�5.0 m/s) î
v:A 2 �v:B 1 � (�10 m/s) î � (5.0 m/s)ĵ

v:A 1 � (15 m/s) î � (30 m/s) ĵ

A

B

C

v1 x

FIGURE 7-32 ■ Problem 63.



which 1.81 	 105 kg is fuel. The rocket engine is then fired for 250 s,
during which fuel is consumed at the rate of 480 kg/s. The speed of
the exhaust products relative to the rocket is 3.27 km/s. (a) What is
the rocket’s thrust? After the 250 s firing, what are the (b) mass and
(c) speed of the rocket?

68. Mass Ratio Consider a rocket that is in deep space and at rest
relative to an inertial reference frame. The rocket’s engine is to be
fired for a certain interval. What must be the rocket’s mass ratio (ra-
tio of initial to final mass) over that interval if the rocket’s original
speed relative to the inertial frame is to be equal to (a) the exhaust
speed (speed of the exhaust products relative to the rocket) and (b)
2.0 times the exhaust speed?

72. Finding Momentum Change and Impulse Consider the graphs
shown in Fig. 7-33. These graphs depict two force magnitude vs.
time curves and several related momentum vs. time graphs. They
describe a low-friction cart traveling along an x axis with a force
sensor attached to it. The cart– force sensor system has a mass of
0.50 kg. The cart undergoes a series of collisions. It collides with a
hard wall and with a wall that is padded with soft foam. Sometimes
there is a small clay blob on the wall causing the cart– force sensor
system to stick to the wall after the collision.

(a) What is the approximate momentum change associated with
graph a? With graph d? Determine this change by taking approxi-
mate readings from the graphs. Show your calculations!
(b) Which of the two impulse curves, A or B, might lead to the mo-
mentum change depicted in graph a? In graph d? Explain the rea-
sons for your answer.
(c) Suppose the forces on the cart– force sensor system were de-
scribed by graph A. What would its velocity change be?

73. Relating Impulse Curves to Collisions Suppose you collected
vs. t and vs. t data for a series of collisions for an important

project report and then you lost your notes. Fortunately you still
pxFx
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69. Lunar Mission During a lunar mission, it is necessary to in-
crease the speed of a spacecraft by 2.2 m/s when it is moving at
400 m/s relative to the Moon. The speed of the exhaust products
from the rocket engine is 1000 m/s relative to the spacecraft. What
fraction of the initial mass of the spacecraft must be burned and
ejected to accomplish the speed increase?

70. Set for Vertical Firing A 6100 kg rocket is set for vertical firing
from the ground. If the exhaust speed is 1200 m/s, how much gas
must be ejected each second if the thrust (a) is to equal the magni-
tude of the gravitational force on the rocket and (b) is to give the
rocket an initial upward acceleration of 21 m/s2?

Additional Problems

71. Break a Leg (Not!) When jumping straight down, you can be
seriously injured if you land stiff-legged. One way to avoid injury is
to bend your knees upon landing to reduce the force of the impact.
Suppose you have a mass m and you jump off a wall of height h.

(a) Use what you learned about constant acceleration motion to
find the speed with which you hit the ground. Assume you simply
step off the wall, so your initial y velocity is zero. Ignore air resis-
tance. (Express your answer in terms of the symbols given.)
(b) Suppose that the time interval starting when your feet first
touch the ground until you stop is �t. Calculate the (average) net
force acting on you during that interval. (Again, express your an-
swer in terms of the symbols given.)
(c) Suppose h � 1 m. If you land stiff-legged, the time it takes you
to stop may be as short as 2 ms, whereas if you bend your knees, it
might be as long as 0.1 s. Calculate the average net force that would
act on you in the two cases.
(d) The net force on you while you are stopping includes both the
force of gravity and the force of the ground pushing up.Which of these
forces do you think does you the injury? Explain your reasoning.
(e) For the two cases in part (c), calculate the upward force the
ground exerts on you.
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have your data on a computer disk. You open up the files and find
the graphs shown in Fig. 7-33. You don’t know which graph corre-
sponds to which collision, but you are able to reconstruct some of
your work by asking and answering the following questions:

(a) Which vs. t graph, A or B, probably resulted from collisions
between the cart–force sensor system and a soft, padded wall?
Which one probably resulted from collisions between the force sen-
sor and a hard wall? Explain in words the reasons for your answer.
(b) Which px vs. t graphs probably resulted from collisions between
the cart– force sensor system and a padded wall? Which ones prob-
ably resulted from collisions between the cart– force sensor system
and a hard wall? Explain the reasons for your answers. (Hint: There
may be more than one graph for each type of collision.)
(c) Which px vs. t graphs correspond to a situation in which the cart
bounces back? Which px vs. t graphs correspond to a situation in
which you placed a small clay blob on the force sensor hook so the
cart sticks to the wall that it collides with? Explain the reasons for
your answers. (Hint: There may be more than one graph for each
type of collision.)

74. Carts and Graphs Two carts on an air track are pushed toward
each other. Initially, cart A moves in the positive x direction and
cart B moves in the negative x direction. The carts bounce off each
other. The graphs in Fig. 7-34 describe some of the variables associ-
ated with the motion as a function of time. For each item in the list
below, identify which graph is a possible display of that variable as a
function of time. If none apply, write N (for none).

(a) the momentum of cart A
(b) the force on cart B
(c) the force on cart A
(d) the position of cart A
(e) the position of cart B

FIGURE 7-34 ■ Problem 74.

75. Colliding Carts
Two carts are riding
on an air track as
shown in Fig. 7-35a.
At clock time t � 0,
cart B is at the origin
traveling in the nega-
tive x direction with
a velocity . Atv:B 1

Fx
net
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that time, cart A is at the position shown and is at rest. Cart B has
twice the mass of cart A. The carts “bump” each other, but don’t
stick.

The graphs shown in Fig. 7-35b are a number of possible plots for
the various physical parameters associated with the two carts. Each
graph has two curves, one for each cart and labeled with the cart’s
letter. For each property (a)–(e), select the number 1, 2, etc., of the
graphs that could be a plot of the property.

(a) The forces exerted by the carts
(b) The position of the carts
(c) The velocity of the carts
(d) The acceleration of the carts
(e) The momentum of the carts
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of her wagon. It attracts a
smaller magnet that she
has attached to the front
of her cart. Will she go
anywhere? If she moves,
what will her direction
be? Explain.
(c) In Fig. 7-36c, an astro-
naut is floating in outer
space and wants to move
backward. She tosses a
ball out in front of her.
Will she go anywhere? If
she moves, what will her
direction be? Explain.
(d) In Fig. 7-36d, a col-
lege student on roller
blades has a carbon diox-
ide container strapped to
her back. The carbon
dioxide jets out behind
her as shown. Will she go
anywhere? If she moves,
what will her direction
be? Explain.

79. The Ice-Skating Professor A professor of physics is going ice
skating for the first time. He has gotten himself into the middle of
an ice rink and cannot figure out how to make the skates work.
Every motion he makes simply causes his feet to slip on the ice and
leaves him in the same place he started. He decides that he can get
off the ice by throwing his gloves in the opposite direction.

(a) Suppose he has a mass M and his gloves have a mass m. If he
throws the gloves as hard as he can away from him, they leave his
hand with a velocity glove. Explain whether or not he will move. If
he does move, calculate his velocity, prof.
(b) Discuss his motion from the point of view of the forces acting
on him.
(c) If the ice rink is 10 m in diameter and the skater starts in the
center, estimate how long it will take him to reach the edge, assum-
ing there is no friction at all.

80. When Can You Conserve Momentum? The principle of con-
servation of momentum is useful in some situations and not in oth-
ers. Describe how you obtain the impulse-momentum theorem
from Newton’s Second Law and what situations lead to momentum
conservation. How would you decide whether conservation of mo-
mentum could be useful in a particular problem?

81. Momentum Conservation in Subsystems Can a system whose
momentum is conserved be made up of smaller systems whose indi-
vidual momenta are not conserved? Explain why or why not and
give an example.

82. The Rabbit and the Eagle You are working for the Defenders
of Wildlife on the protection of the bald eagle, an endangered
species. Walt Disney Productions, Inc. has agreed to help your cause
by producing an animated movie about the bald eagle. You have set
up a dramatic scene in which a young rabbit is frightened by the
shadow of the eagle and starts bounding toward the east at 30 m/s
as the eagle swoops down vertically at a speed of 15 m/s. A moment
before the eagle contacts it, the rabbit bounds off a cliff and is cap-
tured in mid-air. (See Fig. 7-37.) The animators want to know how

v:
v:

76. Could Newton Predict the “Third Law”? Isaac Newton stud-
ied many types of collisions and invented the definition of momen-
tum about twenty years before he developed his three laws of
motion. As a result of his observations of collision processes, he for-
mulated the law of conservation of momentum as a statement of
experimental fact.

Let’s assume for the sake of argument that Newton had al-
ready defined the concepts of force and momentum but had not yet
formulated his laws of motion. Also assume that he had an elec-
tronic force sensor and was able to verify the impulse-momentum
theorem. Explain in words how Newton could use the impulse-mo-
mentum theorem and the law of conservation of momentum to pre-
dict the existence of the third law of motion and to explain the
nature of the interaction forces between two colliding objects.

77. Taking Cyrano to the Moon In Edmund Rostand’s famous
play, Cyrano de Bergerac, Cyrano, in an attempt to distract a suitor
from visiting Roxanne, claims to have descended to Earth from the
Moon and proclaims to have invented six novel and fantastical
methods for traveling to the Moon. One is as follows.

Sitting on an iron platform—thence
To throw a magnet in the air. This is
A method well conceived—the magnet flown,
Infallibly the iron will pursue:
Then quick! relaunch your magnet, and you thus
Can mount and mount unmeasured distances!*

In an old cartoon, there is another version of this method. A char-
acter in the old West is on a hand-pumped, two-person rail car. Af-
ter getting tired of pumping the handle up and down to make the
car move along the rails, he takes out a magnet, hangs it from a fish-
ing pole, and holds it in front of the cart. The magnet pulls the cart
toward it, which pushes the magnet forward, and so on, so the cart
moves forward continu-
ally. What do you think of
these methods? Can some
version of them work?
Discuss in terms of the
physics you have learned.

78. Self Propulsion Peo-
ple have forever been
cooking up schemes for
low-energy propulsion. Of
course, we believe that
whatever is designed had
better be compatible with
the laws of physics. Several schemes
are shown below. Which ones do you
think will work? Answer the ques-
tions detailed in (a) through (d) by
referring to Fig. 7-36.

(a) In Fig. 7-36a, a lazy fisherman
turns on a battery-operated fan and
blows air onto the sail of his boat.
Will he go anywhere? If he moves,
what will his direction be? Explain.
(b) In Fig. 7-36b, a clever child is
dangling a large magnet out in front
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(a)

(b)

(c)

(d)

FIGURE 7-36c ■ Problem 78.

FIGURE 7-36a ■ Problem 78.

*Translated from the French by Gladys Thomas and Mary F. Guillemard,
e-text prepared by Sue Asscher, distributed by Project Gutenberg.

FIGURE 7-36b ■

Problem 78.

FIGURE 7-36d ■ Problem 78.
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to portray what hap-
pens just after the
capture. If the eagle
has a mass of 2.5 kg
and the rabbit has a
mass of 0.8 kg, what
is the velocity of the
eagle with the rabbit
in its talons just after
the capture? (Include a diagram of the situation before and after
capture with vectors showing the initial and final velocities.)

83. Air Resistance 1: Estimating the Effect The force of air resis-
tance on a sphere of radius R can plausibly be argued to have the
form

where is the vector velocity and is its magnitude (the speed).
The density of the air, �, is about 1 kg/m3—1/1000 that of water.
The parameter C is a dimensionless constant.

If we drop a steel ball and a styrofoam ball from a height of s,
the steel ball reaches the ground when the styrofoam ball is still a
bit above the ground . Call this distance h. Estimate the air resis-
tance coefficient C as follows:

(a) Assume the effect of air resistance on the steel sphere is negli-
gible. Calculate approximately how long the steel sphere takes to
fall to the ground ( ) and how fast it is traveling just before it
hits ( ). Express your answers in terms of s, g, and m.
(b) Since the steel and styrofoam were not very different, use

the average velocity of the steel ball during its fall to calcu-
late an average air resistance force, acting on the
styrofoam sphere during its fall. Express this force in terms of b, m
(the mass of the styrofoam sphere), g, s, and h.
(c) The average velocity of the steel ball is . The aver-
age velocity of the styrofoam sphere was � (s � h)/ .
Assume this difference, , is caused by the average air resistance
force acting over the time with our basic Newton’s law formula:

Use this to show that

(d) A styrofoam ball of radius R � 5 cm and mass m � 50 g is
dropped with a steel ball from a height of s � 2 m. When the steel
ball hits, the styrofoam is about h � 10 cm above the ground. Cal-
culate b (for the styrofoam sphere) and C (for any sphere).

84. Air Resistance 2: Deriving the Equation In this problem, you
will derive an explicit form of Newton’s drag law for air resistance,
whose structure we derived by dimensional analysis in Problem 
6-103. The derivation below will provide the dimensionless coeffi-
cient that we were unable to find by dimensional analysis.

(a) Consider a small particle of mass m that is initially at rest. (Ig-
nore gravity.) The particle is approached by a very massive wall
moving toward it along an x axis with a speed v. After the wall hits
it, what speed will the small particle have? (Hint: Consider first the
case of the small particle moving toward a stationary wall with a ve-
locity �v. Analyze what happens.)

b 

mh
s2 .

�F
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2C�R2 �v� v: � �b �v � v:,

(b) Suppose the moving wall is a disk of radius R moving at a
speed v in a direction perpendicular to the plane of the disk. If
there are N small particles per unit volume in the region of space
the disk is sweeping through, how many of them will the disk en-
counter in a small time �t?
(c) Calculate the total momentum transferred to the air in the time
�t by the disk, assuming that there are N air particles per unit vol-
ume and they each have mass m.
(d) Find the force the disk exerts on the air and the force the air
exerts on the disk. How do you know?
(e) Show that the force you calculated has the form

and find the dimensionless constant, C.

85. Juggler This problem is based on the analysis of a digital movie
depicting a juggler. If you are using VideoPoint, view the movie en-
titled DSON007. Your instructor may provide you with a different
movie to analyze or ask you to use the data presented in Fig. 7-38b.
We track the motion of the white baseball of mass 0.138 kg in
Fig. 7-38a, which is being caught and thrown in a smooth motion.
The figure shows alternate frames depicting the catch and throw
from just before to just after the juggler’s hand is in contact with
the ball. The data presented in Fig. 7-38b include a least-squares fit
for frames 33–39 of the digital video shown in Fig. 7-38a. During
all of these frames the ball is in contact with the juggler’s hand.
(Although the time codes are correct, the digital capture system
missed recording a few frames between t � 1.567 s and t � 1.700 s.)

The goal of this problem is to consider the catch–throw process as a
slow collision between the juggler’s hand and the ball. In particular
we would like you to verify that the impulse-momentum theorem
holds for this situation. You should assume that the data and analysis
presented here are correct and that Newton’s Second Law is valid.

(a) Examine the y position of the ball as a function of time for a
time period during which the ball is in the juggler’s hand (frames
33–39 in Fig. 7-38a). Express each fit coefficient and its uncertainty
(that is, the standard deviation of the mean) to the correct number
of significant figures. Write down the equation that allows you to
calculate y as a function of t.
(b) What is the nature of the vertical motion of the ball during the
time it is being caught and thrown? Is its vertical velocity compo-
nent zero, a constant, constantly changing, or is something else go-
ing on? Cite the reasons for your answer. What are the magnitude
and direction of the vertical acceleration, ay, of the ball?
(c) Calculate the instantaneous vertical velocity of the ball just as
it’s being caught (frame 33). Calculate the instantaneous vertical ve-
locity of the ball just as it’s being released (frame 39). (Hints: Use
three significant figures in your coefficients. You can either interpret
the physical meaning of the fit coefficient a1 and then use the kine-
matic equation relating velocity to acceleration, initial velocity (at t
� 0.000 s), and time, or you can take the derivative with respect to
time of the y vs. t equation you just wrote down in part (a).)
(d) Assuming the vertical acceleration of the ball is constant while
it is in the juggler’s hand, what is the net vertical force on the ball
during the entire catch–throw process? Draw a free-body diagram
showing the magnitudes and directions of the forces on the ball.
What are the magnitude and direction of the gravitational force on
the ball? What are the magnitude and direction of the vertical force
the juggler exerts on the ball?

F
: drag � �1

2C�R2 � v: �v:

Before
v2 = ?

 = ?θ

After

FIGURE 7-37 ■ Problem 82.



(e) Identify any Newton’s Third Law pairs for this situation. Identify
what object is exerting the gravitational force on the ball. According
to Newton’s Third Law, how is the ball interacting with that object?
(f) Find the vertical momentum of the ball when it first falls into the
juggler’s hand (as in frame 33). Also find the vertical momentum of
the ball when it is just about to leave the juggler’s hand (as in frame
39). What are the magnitude and direction of the momentum change,
�py, in the vertical direction that the ball undergoes during this time
period? Beware: Momentum is a vector quantity. Do not fall into the
trap of simply subtracting the magnitudes of the two momenta.
(g) How much time, �t, does the ball spend in the hand of the jug-
gler? Calculate the impulse transmitted to the ball by the net force
on it during the catch–throw “collision.”
(h) Compare the change in momentum to the impulse imparted to
the ball. Does the impulse-momentum theorem seem to hold to the
appropriate number of significant figures?

86. Momentum Before and After a Sticky Collision This problem
is based on the analysis of a digital movie depicting a collision be-
tween two carts. Before the collision, one cart is moving and one cart
is stationary. Following the collision, the two carts stick together. If
you are using VideoPoint, view the movie entitled PASCO028. It de-
picts a cart of mass 2 kg colliding with a stationary cart of mass 1 kg.
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Your instructor may provide you with a different movie to analyze.

(a) Use video analysis software and a spreadsheet to find the initial
momentum of the two-cart system before collision. Explain the
method you used and show all your data and calculations.
(b) Use video analysis software and a spreadsheet to find the final
momentum of the two-cart system after collision. Explain the
method you used and show all your data and calculations.
(c) What is the percent difference between the momentum of the
system before the collision and after the collision? Within the limits
of experimental uncertainty, is the total momentum of the two-cart
system conserved? Why or why not?
(d) If you found that the total momentum after collision is less than
that before the collision, you can either conclude that: (1) momen-
tum is still conserved but some of it is transferred to the track (that
is the whole Earth) or (2) the law of conservation of momentum has
failed. Assuming that the law of conservation of momentum still
holds, how much momentum is transferred to the track and Earth?
Remember that momentum is a vector quantity, and you must spec-
ify both the magnitude and direction of this momentum.
(e) Why don’t you see the track move just after the collision?

FIGURE 7-38a ■ Problem 85.

FIGURE 7-38b ■ Problem 85.

DSON007: Juggling Data

Frame t(s) y(m)

33 1.500 0.416

34 1.533 0.330

35 1.567 0.249

36 1.700 0.152

37 1.733 0.213

38 1.767 0.305

39 1.800 0.421

a0 � 34.7656 m

a1 � �41.9051 m/s

a2 � 12.6780 m/s2

The fit graph is given by yfit(m) �

a0 � a1t � a2t2.
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8 Extended Systems

If you leap forward, chances are that your head and torso

will follow a parabolic path, like a baseball thrown in from

the outfield. However, when a skilled ballet dancer leaps

across the stage in a grand jeté, the path taken by her head

and torso is nearly horizontal during much of the jump. She

seems to be floating across the stage. The audience may

not know much about projectile motion, but they still sense

that something unusual has happened.

How does the ballerina
seemingly “turn off” the
gravitational force?

The answer is in this chapter.
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FIGURE 8-1 ■ (a) A bouncing ball follows
a parabolic path. (b) A diver bounces off a
board. Even though many points on her
body that are not marked follow complex
paths, a special point that also follows a
parabolic path (shown by the dots) can be
calculated based on the positions of the
diver’s body parts.

8-1 The Motion of Complex Objects

Up to this point we have focused our discussions on objects that can be considered to
move as particles. In order to treat an object as a particle, every point on the object
must be moving with the same velocity and acceleration. Although this requirement
simplifies the analysis of motion, it is not commonly the case with everyday objects.

Here is an example. The motion of a rotating diver shown in Fig. 8-1b is clearly
more complicated than that of the bouncing ball in Fig. 8-1a. Every part of the diver
moves in a different manner than every other part, so we cannot describe her as a
tossed particle. Instead, we must consider her as a system of particles. In large, compli-
cated systems, it is often difficult to keep track of all the parts, and we cannot make
predictions about the motion of the parts using the physics we have learned for parti-
cles. In fact, even a baseball, which seems to move as a particle, is usually spinning as
it moves through the air.

So why is it that we have been able to treat objects like baseballs as particles in
the previous chapters? And how do we handle the analysis of more complex systems,
like divers and rotating baseball bats? We answer these questions in this chapter.

8-2 Defining the Position of a Complex Object 

Even if we only have two objects in a system, their motions can be quite complex.
Suppose two stars attract each other gravitationally so they are moving relative to one
another. At the same time that the stars are exerting forces on each other, external
forces could cause this two-star system to accelerate. But what is it that accelerates?
Where is this two-star system actually located? At the location of the first star? The
second star? Somewhere else? In this section we will show that we can define a posi-
tion that can be used to describe accurately where a system is located and how the
system accelerates.

Let’s start by considering two particles, A and B, that attract one another as
shown in Fig. 8-2. Suppose they have external forces and acting on them.
Applying Newton’s Second Law ( ) to each particle in this system gives us

(8-1)

and (8-2)

where and are the internal forces that the two particles in the system ex-
ert on each other. In order to get the net force acting on the “system,” we must add
Eqs. 8-1 and 8-2 together. Since and are equal and opposite forces (by
Newton’s Third Law), they cancel each other and we are left with an expression for
the net force on the system of

(8-3)

However, applying Newton’s Second Law directly to the entire system also gives us 

(8-4)

where is the total mass and is the acceleration of the system
taken as a whole. A look at Fig. 8-2 tells us that the particles could be in orbit about
each other or moving together while the system is rotating and accelerating along a
line. So what do we mean by the “acceleration of the system as a whole?” If we com-
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FIGURE 8-2 ■ Two particles connected by
a “massless” rod (not shown) can experi-
ence different external forces while exert-
ing equal and opposite internal forces on
each other.
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FIGURE 8-3 ■ If we choose a coordinate
system to describe our two particles math-
ematically, the position vectors describing
the location of each of the particles are 
and , respectively.r:B

r:A

bine Eqs. 8-3 and 8-4 we can use the result as a basis for defining a point in space that
represents the system’s acceleration. This result is given by

. (8-5)

Solving for the system acceleration gives us

(8-6)

This expression indicates that the acceleration of the system can be viewed as a
“weighted average” of the particle accelerations.

If we choose a coordinate system, we can locate the particles in the system in
terms of their position vectors and as shown in Fig. 8-3. Remember that accel-
eration is related to position by —our expression for the acceleration
suggests that we can define the effective “position” of the system as

(two particle system). (8-7)

We can verify that this expression for the position of the object makes sense by taking
its derivative with respect to time twice. When we do that, we find that we get back
the equation for the system acceleration that we derived in Eq. 8-6.

If we had considered a more complex system of N particles we would have come
to a similar expression for the effective position, , of the system in terms of the
system mass and the sum of the products of the individual masses and position
vectors,

(N particle system). (8-8)

In the next section we explore the properties of this expression and compare 
to the location of the balancing point for a system of objects.

8-3 The Effective Position—Center of Mass 

Consider the system shown in Fig. 8-4. If the two masses are equal, , then
from

we get (equal masses).

If we want to consider the two-particle system’s effective position quantitatively,
then we must pick a coordinate system to determine and . If we choose one of
the axes of the coordinate system to lie on a line connecting the particles, it is easy to
see that when the masses are equal, then , the effective position of the system, is
midway between the two objects on the line connecting them (Fig. 8-4a). If we imag-
ined that the system particles are connected by a massless rod and tried to balance
such an object on our finger, we would find that the balancing point is also halfway
between the two masses whenever mA is equal to mB (Fig. 8-4b). For this reason we
define the effective position of a system that is calculated using Eq. 8-8 as the center
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FIGURE 8-4 ■ (a) If the masses in a two-
particle system are equal, then the center
of mass of the system is always on a line
halfway between the two particles. (b) If
we connect the two particles having identi-
cal masses with a massless rod, the balance
point of the system also turns out to be
halfway between the particles.
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FIGURE 8-5 ■ (a) If the masses in a two-
particle system are not equal, then the cen-
ter of mass is always on a line between the
two particles but is closer to the more mas-
sive particle. (b) If we connect the two par-
ticles having unequal masses with a mass-
less rod, the balance point of the system
turns out to be at the same location as the
calculated center of mass of the system.

of mass (com) of the system. We denote the location of the center of mass as
. With experiment and careful observation, we can determine that special

balancing point or the center of mass of almost any system. In general:

The center of mass (com) of a body or a system of bodies is its balancing point. It is the
point that moves as though all of the mass were concentrated there and the system behaves
as if all the external forces are applied there.

What happens to the center of mass of a two-particle system if the masses are not
equal? If we let particle B be twice the mass of particle A so , we find that 

or (special case for mB � 2mA).

In words, the center of mass or “effective position” of this system is located along the
line joining the centers of the two masses, two-thirds of the way from the less massive
object mA and one-third of the way from the more massive object mB (Fig. 8-5a). If we
connected the two particles in the system with a massless rod and tried to balance it
on our finger, we would find that the center of mass is also the same as the balancing
point (Fig. 8-5b).

Physicists love to look at something complicated and find something simple and
familiar in it. Fortunately, this turns out to be the case with the complicated motions
of particle systems. For example, recall the diver who is rotating as she falls through
the air as shown in Fig. 8-1b. We can consider her body to be a system made up of
many individual particles that can exert internal forces on each other. If we neglect air
drag, then the only significant external force on her is a constant gravitational force
that acts downward. If we were to calculate the location of her center of mass at each
moment during her fall, we would find that the calculated center of mass of the diver
moves in a very simple parabolic path.

Actually calculating the center of mass of an athlete or dancer who is constantly
changing her configuration seems like an impossible task. However, we can think of
an athlete as a series of particles connected by massless rods. We locate each particle
near the center of a linear body segment (such as ankle to toe, knee to ankle, hip to
knee, and so on) and assign it the mass of the body part it represents. We find that we
can use the techniques described in the next section to perform computer-aided calcu-
lations of an athlete’s center of mass. Such an analysis performed on a series of video
frames always gives a parabolic path when the athlete or dancer is jumping. An exam-
ple of this is presented at the end of Section 8-5 for a ballerina performing a grand
jeté. This analysis and countless others provide us with experimental verification that
the concept of center of mass is useful when tracking the motion of complex systems
that experience external forces.

8-4 Locating a System’s Center of Mass

Let’s consider how to calculate the center of mass (com) for a system consisting of a
few particles that lie along a chosen x axis. Figure 8-5 shows two particles of masses
mA and mB separated by a distance d. Here, xA is the x coordinate of mA’s position and
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FIGURE 8-6 ■ Three pucks gliding on an air table form a system. Equation 8-11 can be used to
locate the center of mass of the system at x = 10.1 cm and y = 6.1 cm.

xB is the x coordinate of mB’s position. We can write the expression for the x coordi-
nate of the center of mass of this system as

(8-9)

in which Msys is the total mass of the system. (Here, .) We can extend
this equation to a more general situation in which N particles are strung out along the
x axis. Then the total mass is , and the location of the cen-
ter of mass is

(8-10)

If the particles are distributed in three dimensions, then we can start with our ex-
pression for (Eq. 8-8) and express each position vector in terms of its x-, y-, and
z-components. For example, the ith position vector is given by

It is not difficult to show that when all the position vectors in a system of N particles
are expressed in their rectangular coordinates using the equation above, then

The components of the center of mass of a system of particles are

(8-11)

We can use the equations for and to calculate the center of mass of a
system of three pucks on an air table that have masses of 100, 200, and 300 g. The loca-
tion of the center of each puck is shown in the data table in Fig. 8-6. The diagram
shows the locations of the pucks in a rectangular coordinate system along with the
calculated location of the center of mass of the system.
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Msys
.

Msys � mA � mB �� � �� mN

Msys � mA � mB

xcom �
mAxA � mBxB

Msys
,

m(g) x(cm) y(cm)

100 16.8 –16.8

200 –12.2 –9.4

300 22.7 24.1

Msys(g) Xcom(cm) Ycom(cm)

600 10.1 6.1

(center of mass vector
components-particle system).



Solid Bodies
Some systems have too many particles to keep track of individually. It would be an
enormous task to calculate the location of the center of mass using the summation
technique described above. A solid object can be treated as a “continuous distribu-
tion” of matter. The term continuous implies that the “particles” that make up the
object are no longer clearly separable. The particles then become differential mass
elements, dm, the sums (shown in Eq. 8-11) become integrals, and the coordinates of
the center of mass vector components are defined as

where Msys is the mass of the system.
If you are clever and don’t enjoy doing unnecessary integrations, you can bypass

one or more of the integrals above if an object has a point, a line, or a plane of sym-
metry. In these cases, the center of mass of such an object then lies at that point, on
that line, or in that plane. For example, the center of mass of a uniform sphere (which
has a point of symmetry) is at the center of the sphere (which is the point of symme-
try). The center of mass of a uniform cone (whose axis is a line of symmetry) lies on
the axis of the cone. The task required to determine the location of the center of mass
of the cone is then reduced to determining where along this axis the center of mass is
located. For example, the center of mass of a banana (which has a plane of symmetry
that splits it into two equal parts) lies somewhere in that plane.

The center of mass of an object need not lie within the object. There is no dough
at the center of mass of a doughnut, and no iron at the center of mass of a horseshoe.

Evaluating these integrals for most common objects (like a television set) would
be difficult, so here we shall consider only uniform solid objects. Such an object has
uniform density, or mass per unit volume. That is, the density � (Greek letter rho) is
the same for any given segment of the object as for the whole object:

(uniform object density), (8-13)

where dV is the volume occupied by a mass element dm, and V is the total volume of
the object. If we substitute into Eq. 8-12 we find that

(8-14)

READI NG EXERC IS E  8-1 : The figure shows a uniform
square plate from which four identical squares at the corners will be
removed. (a) Where is the center of mass of the plate originally?
Where is it after the removal of (b) square 1, (c) squares 1 and 2, (d)
squares 1 and 3, (e) squares 1, 2, and 3, (f) all four squares? Answer
in terms of quadrants, axes, or points (without calculation, of course).

■

Xcom �
1
V
�xdV,  Ycom �

1
V
�ydV,  Zcom �

1
V
�zdV.

dm � (Msys/V) dV

� �
dm
dV

�
Msys

V
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(8-12)Zcom �
1

Msys
� zdmXcom �

1
Msys

� xdm,  Ycom �
1

Msys
� ydm,

y

x

1 2

4 3

(center of mass vector components-continuous system),
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TOUCHSTONE EXAMPLE 8-1: Three Masses

Three particles of masses and
form an equilateral triangle of edge length 

Where is the center of mass of this three-particle system?

S O LUTI O N ■ A Key  I dea to get us started is that we are
dealing with particles instead of an extended solid body, so we can
use Eq. 8-11 to locate their center of mass. The particles are in the
plane of the equilateral triangle, so we need only the first two equa-
tions. A second Key  I dea is that we can simplify the calculations
by choosing the x and y axes so that one of the particles is located
at the origin and the x axis coincides with one of the triangle’s sides
(Fig. 8-7). The three particles then have the following coordinates:

Particle Mass (kg) X (cm) Y (cm)

A 1.2 0 0

B 2.5 140 0

C 3.4 70 121

The total mass Msys of the system is 7.1 kg.
From Eq. 8-11, the coordinates of the center of mass are

(Answer)� 83 cm,

�
(1.2 kg)(0) �  (2.5 kg)(140 cm) �  (3.4 kg)(70 cm)

7.1 kg

Xcom �
mAXA � mBXB � mCXC

Msys

a � 140 cm.mC � 3.4 kg
mB � 2.5 kg,mA � 1.2 kg,

and

(Answer)

In Fig. 8-7, the center of mass is located by the position vector ,
which has components Xcom and Ycom.

R
:

com

� 58 cm.

�
(1.2 kg)(0) � (2.5 kg)(0) � (3.4 kg)(121 cm)

7.1 kg

Ycom �
mAYA � mBYB � mCYC

Msys

y (cm)

x (cm)0
50 100 150

50

100

150

Ycom

XcommA

mB

mC

Rcom

a a

0

FIGURE 8-7 ■ Three particles form an equilateral triangle of edge
length a. The center of mass is located by the position vector .R

:

com

TOUCHSTONE EXAMPLE 8-2: U-Shaped Object

The U-shaped object pictured in Fig. 8-8 has outside dimensions of
100 mm on each side, and each of its three sides is 20 mm wide. It
was cut from a uniform sheet of plastic 6.0 mm thick. Locate the
center of mass of this object.

S O LUT I O N ■ A Ke y  I d e a here is to break the U-shaped ob-
ject up into pieces, each having an easily located center of mass. We
can then replace each piece by a point mass located at the center of
mass of that piece, and then use Eq. 8-11 to locate the center of
mass of the whole object.

As shown in Fig. 8-8, we can think of the U-shaped object as
made up of two vertical bars, each 100 mm long by 20 mm wide,
joined together by one horizontal bar 60 mm long and 20 mm wide.
Let’s place the origin of our coordinate system at the lower-left rear
corner of the U, with the x axis across its base and the y axis along
its left edge.

To locate the center of mass of each of the bars, we will use the
Ke y  I d e a that the center of mass of a symmetric object of uni-
form density is located at its geometric center. This means that the
center of mass of each bar is exactly halfway from either end,
halfway from either side, and halfway between the top and bottom
surfaces of the plastic sheet. Putting a dot at the center of each of

100

y (mm)

50

0
20 50 80 100

x (mm)

20

A B

C

FIGURE 8-8 ■ The U-shaped object can be broken up into three uni-
form rectangular bars, A, B, and C, as shown in the figure. For conve-
nience we’ll take the corners of the U to be square and not rounded.
The dot on each bar shows the location of its center of mass.We will
use the coordinate system shown to locate the center of mass of each
bar and then to locate the center of mass of the whole object.
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the bars, A, B, and C in Fig. 8-8, we can now write down their loca-
tions in the coordinate system pictured there:

Object Mass X Y Z

Left bar MA 10 mm 50 mm 3 mm

Right bar MB 90 mm 50 mm 3 mm

Bottom bar MC 50 mm 10 mm 3 mm

To learn more about the relative masses of the three bars, we can
use the Ke y  I d e a that the mass of each bar is proportional to its
volume since the bars have a uniform common density. In this case
the relationship is even simpler: since the three bars are each the
same width and thickness, each one’s mass is directly proportional
to its length, so

and

and

Replacing each bar by a point mass at its center of mass, Eq. 8-11
gives us the location of the center of mass of the entire U-shaped
object:

Msys � MA � MB � MC � M � M � 0.6M � 2.6M.

MC � M(60 mm)/(100 mm) � 0.6M,MA � MB � M

(Answer)

(Answer)

and

(Answer)

so (Answer)R
:

com � (50 mm)î � (41 mm)ĵ � (3 mm)k̂.

� 3 mm,

�
M (3 mm) � M (3 mm) � 0.6M (3 mm)

2.6M

Zcom �
MAZA � MBZB � MCZC

Msys

� 40.769 mm � 41 mm,

�
M (50 mm) � M (50 mm) � 0.6M (10 mm)

2.6M

Ycom �
MAYA � MBYB � MCYC

Msys

� 50 mm,

�
M(10 mm) � M (90 mm) � 0.6M (50 mm)

2.6M

Xcom �
MAXA � MBXB � MCXC

Msys

TOUCHSTONE EXAMPLE 8-3: Crescent-Shaped Object

Figure 8-9a shows a uniform
metal plate P of radius 2R
from which a disk of radius R
has been stamped out (re-
moved) in an assembly line.
Using the xy coordinate sys-
tem shown, locate the center
of mass, comP, of the plate.

SOLUTION ■ First, let us
roughly locate the center of
mass of plate P by using
the Key Idea of symmetry.
We note that the plate is

symmetric about the x axis (we get the portion below that axis by
rotating the upper portion about the axis). Thus, comP must be on
the x axis. The plate is not symmetric about the y axis. However,
because there is somewhat more mass on the right of the y axis,
comP must be somewhat to the right of that axis. Thus, the loca-
tion of comP should be roughly as indicated in Fig. 8-9a.

Another Ke y  I d e a here is that plate P is an extended solid
body, so we can use Eq. 8-14 to find the actual coordinates of comP.
However, that procedure is difficult. A much easier way is to use
this Ke y  I d e a : In working with centers of mass, we can take the
mass of any uniform object to be concentrated in a particle located
at the object’s center of mass. Here is how we do so:

First, put the stamped-out disk (call it disk S) back into place
(Fig. 8-9b) to form the original composite plate (call it plate C).
Because of its circular symmetry, the center of mass, comS, for disk
S is at the center of S, at (as shown). Similarly, the center of
mass, comC, for composite plate C is at the center of C, at the origin
(as shown). We then have the following:

Center of Location of 

Plate Mass of com Mass

P comP mP

S comS mS

C comC

Now we use the Ke y  I d e a of concentrated mass: Assume that
mass mS of disk S is concentrated in a particle at , and
mass mP is concentrated in a particle at XP (Fig. 8-9c). Next treat
these two particles as a two-particle system, using Eq. 8-9 to find
their center of mass XS+P. We get

XS � �R

mC � mS � mPXC � 0

XS � �R

XP � ?

x � �R

Plate P

2R

R

y

x

y

x
comP

comP

comCcomS

Plate P

Disk S

Composite plate
C = S + P

(a)

(b)

x
comPcomCcomS

(c)

FIGURE 8-9 ■ (a) Plate P is a
metal plate of radius 2R, with
a circular hole of radius R.
The center of mass of P is at
point comP. (b) Disk S has
been put back into place to
form a composite plate C.
The center of mass, comS, of
disk S and the center of mass,
comC, of plate C are shown.
(c) The center of mass,
comS+P, of the combination of
S and P coincides with comC,
which is at .x � 0
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(8-15)

Next note that the combination of disk S and plate P is composite
plate C. Thus, the position XS+P of comS+P must coincide with the
position XC of comC, which is at the origin, so . Sub-
stituting this into Eq. 8-15 and solving for XP, we get

(8-16)

Now we seem to have a problem, because we do not know the
masses in Eq. 8-16. However, we can relate the masses to the face
areas of S and P by noting that

XP � �XS
mS

mP
.

XS�P � XC � 0

XS�P �
mSXS � mPXP

mS � mP
. Mass � density � volume

� density � thickness � area.

Then

Because the plate is uniform, the densities and thicknesses are
equal; we are left with

Substituting this and into Eq. 8-16, we have

(Answer)XP � 1
3R.

XS � �R

mS

mP
�

areaS

areaP
�

areaS

areaC � areaS
�

�R2

�(2R)2 � �R2 �
1
3

.

mS

mP
�

densityS

densityP
�

thicknessS

thicknessP
�

areaS

areaP
.

8-5 Newton’s Laws for a System of Particles 

If you roll a billiard ball at a second billiard ball that is at rest, you expect that the
two-ball system will continue to have some forward motion after impact. You would
be surprised to see both balls come back toward you. But what do we actually observe
when one billiard ball rolling at a constant velocity hits another resting ball that has
the same mass?

What we observe is that the center of mass of the two-ball system continues to
move forward, its motion completely unaffected by the collision. If you focus on the
center of mass (which is always halfway between two particles that have the same
mass) you can easily convince yourself that this is so. No matter whether the collision
is glancing, head-on, or somewhere in between, the center of mass continues to move
forward, just as if the collision had never occurred. This is depicted in Fig. 8-10 for a
head-on collision.

Let’s consider another simple situation. Two pucks with the same mass are mov-
ing and collide with a glancing blow. Using a digital video clip of this collision, we can
track the locations of the two pucks frame by frame and mark a point halfway be-
tween the two puck centers. These halfway points, shown as white dots in Fig. 8-10,
represent the center of mass of the two-puck system. It is clear that the center of mass
of the system is moving in a straight line at constant speed.

Let us look into this center of mass motion theoretically. Why should we expect
the center of mass of the billiard balls or a collection of pucks on an air table to move
with a constant velocity? Let’s start with an assemblage of N particles of different
masses and shapes like those shown in Fig. 8-11. These objects are floating just above
a level air table. We are interested not in the individual motions of these particles, but
only in the motion of the center of mass of the system. We use balancing points to find
the center of mass of each of the oddly shaped objects in the system. We can then use
these locations for each object to calculate the center of mass of the system as a
whole. As we discussed in Section 8-2,

(system of particles), (8-17)

where Msys is the total mass of the system and as we now know, is the ac-
celeration of the system’s center of mass. This equation is Newton’s Second Law for
the motion of the center of mass of a system of particles. However, the meaning of the
three quantities that appear in must be carefully interpreted.F

: net
sys � Msys a: sys

a:sys � a:com

F
: net

sys � Msys a: sys

�A2

�A1

�B2

�B1

�com

FIGURE 8-10 ■ Two pucks of equal mass
glide along an air table. They strike each
other a glancing blow. A video analysis
shows a point halfway between them in
each frame moving at a constant velocity.

FIGURE 8-11 ■ Four shapes, each having a
different mass, collide in the center of an
air table. The path of the center of mass of
each shape is found using video analysis.
The calculated path of the center of mass
of the system is shown as diamonds. Note
that this calculated system center of mass
moves along a straight line at a constant
velocity before, during, and after the colli-
sions that take place between the various
objects.



1. is the sum of all external forces that act on the system. Forces on one part of
the system from another (internal forces) do not matter. (By Newton’s Third Law,
we know that the internal forces cancel each other out when the system is consid-
ered as a whole).

2. Msys is the total mass of the objects in the system. We assume that no mass enters
or leaves the system as it moves, so that Msys remains constant. Such a system is
said to be closed.

3. Although Newton’s Second Law allows us to determine the acceleration of the
center of mass, of the system from the net force on it, in some situations we
may have no information about the acceleration of any other point in the system.

is equivalent to three equations involving the components of 
and along three coordinate axes that can be chosen. These equations are

(8-18)

Application to the Air Table Objects Once the objects on the air table are set into
motion, no net external force acts on the system. This is because the external forces
consist of a downward gravitational force and the upward normal force on each ob-
ject. These forces cancel each other out. Thus there is no net force on the system.
Since , we know that also. Because acceleration is the rate of
change of velocity, we conclude that the velocity of the center of mass of the system of
four objects does not change. When various objects collide, the forces that come into
play are internal forces on one object from another. Such forces do not contribute to
the net force, which remains zero. Thus, even though the velocities of the four objects
change individually as a result of the forces the objects feel from within the system, the
center of mass of the system continues to move with unchanged velocity (Fig. 8-11).

Application to a Falling Person applies not only to a system of parti-
cles but also to a solid body, such as the diver in Fig. 8-1b. In that case, Msys in

(Eq. 8-4) is the mass of the diver and is the gravitational force
on the diver (ignoring air drag). This tells us that for a y axis pointing upward,

. In other words, the center of mass of the diver moves as if she were a sin-
gle particle of mass Msys, with a net force acting on it.

When the ballet dancer shown in the opening photograph leaps across the stage
in a grand jeté, she raises her arms and stretches her legs out horizontally as soon as
her feet leave the stage (Fig. 8-12). These actions shift her center of mass upward
through her body. Although the shifting center of mass faithfully follows a parabolic
path across the stage, its movement, relative to the body, decreases the height that is
attained by her head and torso, relative to that of a normal jump. The result is that the
head and torso follow a nearly horizontal path, giving an illusion that the dancer is
floating as shown in the Fig. 8-12 video analysis.

READI NG EXERC IS E  8-2 : The halfway point between the two pucks in Fig. 8-10 is
moving in a straight line. If each frame is exactly 1/15th of a second later than the previous frame,
(a) what evidence is there that the speed is constant? (b) If the distance between the first location
of the center of mass and the last location is 0.41 m, what is the speed of the center of mass? ■

READI NG EXERC IS E  8-3 : Two skaters on frictionless ice hold opposite ends of a
pole of negligible mass. An axis runs along the pole, and the origin of the axis is at the center of
mass of the two-skater system. One skater, Fred, weighs twice as much as the other skater,
Ethel. Where do the skaters meet if (a) Fred pulls hand over hand along the pole so as to draw
himself to Ethel, (b) Ethel pulls hand over hand to draw herself to Fred, and (c) both skaters
pull hand over hand? ■

F
: net

sys � F
: grav

a:sys � �g ĵ

F
: net

sysF
: net

sys � Msys a:com

F
: net

sys � Msys a:com

a:com � 0F
: net

sys � 0

F net
sys x � Msysacom x, F net

sys y � Msysacom y, F net
sys z � Msysacom z.

a:com

F
:netF

: net
sys � Msys a:com

a:com

F
: net

sys
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FIGURE 8-12 ■ A video analysis of the
grand jeté shows that the center of mass of
the dancer moves in a parabolic path while
her head moves horizontally at the peak of
her jump. (See Fig. 1-14 in Ch. 1 for more
details).

Head

Center of Mass
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The three particles in Fig. 8-13a are initially at rest. Each experi-
ences an external force due to bodies outside the three-particle sys-
tem. The directions are indicated, and the magnitudes are

, , and . What is the magnitude of
the acceleration of the center of mass of the system, and in what di-
rection does it move?

S O L U T I O N ■ The position of the center of mass, calculated by
the method of Touchstone Example 8-1, is marked by a dot in
Fig. 8-13. One Ke y  I d e a here is that we can treat the center of
mass as if it were a real particle, with a mass equal to the system’s
total mass Msys � 16 kg. We can also treat the three external forces
as if they act at the center of mass (Fig. 8-13b).

A second Ke y  I d e a is that we can now apply Newton’s Sec-
ond Law ( ) to the center of mass, writing

(8-19)

or

so (8-20)

Equation 8-19 tells us that the acceleration of the center of mass
is in the same direction as the net external force on the system
(Fig. 8-13b). Because the particles are initially at rest, the center of
mass must also be at rest. As the center of mass then begins to accel-
erate, it must move off in the common direction of and .

We can evaluate the right side of Eq. 8-20 directly on a vector-
capable calculator, or we can rewrite Eq. 8-20 in component form,
find the components of , and then find . Along the x axis,
we have

Along the y axis, we have

From these components, we find that has the magnitude

(Answer)

and the angle (from the positive direction of the x axis)

(Answer)	 � tan�1
acom y

acom x
� 27
.

� 1.16 m/s2 � 1.2 m/s2,

acom � √(acom x)2 � (acom y)2

a:com

�
0 � (12 N) sin 45
 �  0 

16 kg
� 0.530 m/s2.

acom y �
FA y � FB y � FC y

Msys

�
�6.0 N �  (12 N) cos 45
 �  14 N

16 kg
� 1.03 m/s2.

acom x �
FA x � FB x � FC x

Msys

a:coma:com

F
: net

sysa:com

F
: net

sys

a:com

a:com �
F
:

A � F
:

B � F
:

C

Msys
.

F
:

A � F
:

B � F
:

C � Msys a:com,

F
: net

sys � Msys a:com,

F
: net � ma:

FC � 14 NFB � 12 NFA � 6.0 N

TOUCHSTONE EXAMPLE 8-4: Center-of-Mass Acceleration

x (m)

y (m)

3

2

1

0

 –1

 –2

 –3

–3    –2     –1             1      2       3      4      5

x (m)

y

3

2

1

0
–3    –2     –1             1      2       3      4      5

45°

8.0 kgcom

4.0 kg

4.0 kg

com
θ

M = 16 kg

(b)

(a)

FA FB

FC

FC

FA

FB

Fnet

acom

FIGURE 8-13 ■ (a) Three particles, initially at rest in the positions
shown, are acted on by the external forces shown. The center of
mass, com, of the system is marked. (b) The forces are now trans-
ferred to the center of mass of the system, which behaves like a par-
ticle with a mass M equal to the total mass of the system. The net
external force and the acceleration of the center of mass
are shown.

a:comF
: net

8-6 The Momentum of a Particle System 

Since the effective position vector describing a system of N particles is the same as its
center of mass, we can express Eq. 8-8 as 

(8-21)R
:

com � R
: eff �

1
Msys

(mA r:A � mB r:B � mC r:C � � � �),
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in which Msys is the system’s total mass and and so on represent the
product of the mass and position vector of each of the particles in the system. This
expression can be rewritten as

(8-22)

Differentiating the expression above with respect to time gives

(8-23)

Here is the velocity of particle A and is the velocity of
the center of mass.

Now consider the translational momentum of this same system. The system as a
whole has a total translational momentum , which is defined to be the vector sum
of translational momenta of the particles in the system. Thus,

(8-24)

If we compare this equation with (Eq. 8-23),
we see that

(translational momentum, system of particles), (8-25)

which gives us another way to define the translational momentum of a system of
particles:

The translational momentum of a system of particles is equal to the product of the total
mass Msys of the system and the velocity of the center of mass.

So we can determine the total momentum of a system either by determining the vec-
tor sum of the individual momenta of parts or by taking the total mass of the system
and multiplying by the velocity of the center of mass of the system. Either path leads
us to the same value.

If we take the time derivative of , we find

(8-26)

or (8-27)

Comparing (Eq. 8-17) with Eq. 8-27 allows us to write Newton’s
Second Law for a system of particles in the equivalent form

(system of particles), (8-28)

where is the net external force acting on the particles in the system. As we dis-
cussed in Chapter 7, this equation is the generalization of the single-particle equation

to a system of many particles. In its new form, , the
introduction of the concept of the center of mass of a system gives us an additional
technique for determining the rate at which the total momentum of a system changes.

dp:sys/dt � Msys a:comF
: net � dp:/dt

F
: net

sys

F
: net

sys �
dp:sys

dt

F
: net

sys � M a:com

dp:sys

dt
� Msys a:com.

dp:sys

dt
� Msys

dv:com

dt
,

p:sys � Msys v:com

v:com

p:sys � Msys v:com

Msys v:com � mA v:A � mB v:B � mC v:C � � � �

� mA v:A � mB v:B � mC v:C � � � � .

p:sys � p:A � p:B � p:C � � � �

p:sys

v:com(�dR
:

com/dt)v:A(�d r:A/dt)

Msys v:com � mA v:A � mB v:B � mC v:C � � � � .

MsysR
:

com � mA r:A � mB r:B � mC r:C �� � � .

mA r:A, mB r:B,
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SEC. 8-4 ■ LOCATING A SYSTEM’S CENTER OF MASS

1. Particle-Like Object A 4.0 kg particle-like object is located at
x � 0, y � 2.0 m; a 3.0 kg particle-like object is located at x �
3.0 m, y � 1.0 m. At what (a) x and (b) y coordinates must a 2.0 kg
particle-like object be placed for the center of mass of the three-
particle system to be located at the origin?

2. 2D Center of Mass of
Three Objects Consider Fig.
8-14. Three masses located
in the x-y plane have the fol-
lowing coordinates; a 5 kg
mass has coordinates given
by (2, �3) m; a 4 kg mass
has coordinates (�4, 2) m; a
2 kg mass has coordinates
(3, 3) m. Find the coordi-
nates of the center of mass
to two significant figures.

3. Earth–Moon System (a)
How far is the center of
mass of the Earth–Moon system from the center of Earth? (Ap-
pendix C gives the masses of Earth and the Moon and the distance
between the two.) (b) Express the answer to (a) as a fraction of
Earth’s radius Re.

4. Carbon Monoxide A distance of
1.131 � 10�10 m lies between the
centers of the carbon and oxygen
atoms in a carbon monoxide (CO)
gas molecule. Locate the center of
mass of a CO molecule relative to
the carbon atom. (Find the masses
of C and O in Appendix F.)

5. Three-Particle System What are
(a) the x coordinate and (b) the y co-
ordinate of the center of mass of the
three-particle system shown in Fig. 8-
15? (c) What happens to the center
of mass as the mass of the topmost
particle is gradually increased?

6. Three Thin Rods Three thin
rods, each of length L, are arranged
in an inverted U, as shown in Fig. 8-
16. The two rods on the arms of the
U each have mass M; the third rod
has mass 3M. Where is the center of
mass of the assembly?

7. Uniform Square A uniform
square plate 6 m on a side has had a
square piece 2 m on a side cut out
of it (Fig. 8-17). The center of that
piece is at x � 2 m, y � 0. The cen-
ter of the square plate is at x � y �
0. Find (a) the x coordinate and (b)
the y coordinate of the center of
mass of the remaining piece.

8. Composite Slab Figure 8-18 shows the dimensions of a compos-
ite slab; half the slab is made of aluminum (density � 2.70 g/cm3)
and half is made of iron (density � 7.85 g/cm3). Where is the center
of mass of the slab?

FIGURE 8-18 ■ Problem 8.

9. Ammonia In the ammonia
(NH3) molecule (see Fig. 8-19),
the three hydrogen (H) atoms
form an equilateral triangle; the
center of the triangle is 9.40 �
10�11 m from each hydrogen
atom. The nitrogen (N) atom is
at the apex of a pyramid, with
the three hydrogen atoms form-
ing the base. The nitrogen-to-hy-
drogen atomic mass ratio is 13.9,
and the nitrogen-to-hydrogen
distance is 10.14 � 10�11 m. Lo-
cate the center of mass of the
molecule relative to the nitrogen
atom.

10. Metal Cube Figure 8-20
shows a cubical box that has
been constructed from a metal
plate of uniform density and neg-
ligible thickness. The box is open
at the top and has edge length 40
cm. Find (a) the x coordinate, (b)
the y coordinate, and (c) the z
coordinate of the center of mass
of the box.

11. Cylindrical Can A right
cylindrical can with mass M,
height H, and uniform density is
initially filled with soda of mass
m (Fig. 8-21). We punch small
holes in the top and bottom to
drain the soda; we then consider
the height h of the center of mass
of the can and any soda within it. What is h (a) initially and (b)
when all the soda has drained? (c) What happens to h during the
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draining of the soda? (d) If x is the height of the remaining soda at
any given instant, find x (in terms of M, H, and m) when the center
of mass reaches its lowest point.

12. Clustered Problem 1 In Fig. 8-22a, a uniform wire forms an
isosceles triangle of base B and height H. (a) Find the x and y coor-
dinates of the figure’s center of mass by assuming that each side can
be replaced with a particle of the same mass as that side and posi-
tioned at the center of the side. (Be careful: Note that the base and,
say, the left-hand side do not have the same mass.) (b) Use Eq. 8-12
to find the x and y coordinates of the center of mass of the left-hand
side.

FIGURE 8-22 ■ Problems 12 through 15.

13. Clustered Problem 2 Figure 8-22b shows a uniform, solid plate
in the shape of an isosceles triangle with base B and height H. What
are the x and y coordinates of the plate’s center of mass?

14. Clustered Problem 3 In Fig. 8-22c, a uniform wire forms a
semicircle of radius R. What are the x and y coordinates of the fig-
ure’s center of mass?

15. Clustered Problem 4 Figure 8-22d shows a uniform, solid plate
in the shape of a semicircle with radius R. What are the x and y co-
ordinates of the plate’s center of mass?

16. Great Pyramid The Great Pyramid of Cheops at El Gizeh,
Egypt (Fig. 8-23a), had height H � 147 m before its topmost stone
fell. Its base is a square with edge length L � 230 m (see
Fig. 8-23b). Its volume V is equal to L2H/3. Assuming � � 1.8 �
103 kg/m3 is its uniform density, find the original height of its center
of mass above the base.

17. Four Particles At a certain instant, four particles have the xy
coordinates and velocities given in the following table. At that in-
stant, what are (a) the coordinates of their center of mass and (b)
the velocity of their center of mass?

Particle Mass (kg) Position (m) Velocity (m/s)

1 2.0 0, 3.0 �9.0m/s

2 4.0 3.0, 0 6.0m/s

3 3.0 0, �2.0 6.0m/s

4 12 �1.0, 0 �2.0m/s

18. Inverse Ratios Show that the ratio of the distances of two par-
ticles from their center of mass is the inverse ratio of their masses.

19. xy Coordinates A 2.00 kg particle has the xy coordinates
(�1.20 m, 0.500 m) and a 4.00 kg particle has the xy coordinates
(0.600 m, �0.750 m).
Both lie on a horizon-
tal plane. At what xy
coordinates must you
place a 3.00 kg particle
such that the center of
mass of the three-par-
ticle system has the
coordinates (�0.500
m, �0.700 m)?

20. Uniform Plate
What are (a) the x co-
ordinate and (b) the y
coordinate of the cen-
ter of mass for the uni-
form plate shown in
Fig. 8-24?

SEC. 8-6 ■ MOMENTUM OF A PARTICLE SYSTEM

21. Peanut Butter and Jelly At t1 � 0, a 1.0 kg jelly jar is projected
vertically upward from the base of a 50-m-tall building with an ini-
tial velocity of 40 m/s. At the same instant and directly overhead, a
2.0 kg peanut butter jar is dropped from rest from the top of the
building. How far above ground level is the center of mass of the
two-jar system at t2 � 3.0 s?
22. Two Skaters With Pole Two skaters,
one with mass 65 kg and the other with
mass 40 kg, stand on an ice rink holding a
pole of length 10 m and negligible mass.
Starting from the ends of the pole, the
skaters pull themselves along the pole until
they meet. How far does the 40 kg skater
move?

23. Old Chrysler An old Chrysler with
mass 2400 kg is moving along a straight
stretch of road at 80 km/h. It is followed by
a Ford with mass 1600 kg moving at 60
km/h. How fast is the center of mass of the
two cars moving?

24. Ladder on a Balloon A man of mass m
clings to a rope ladder suspended below a
balloon of mass M; see Fig. 8-25. The bal-
loon is stationary with respect to the
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ground. (a) If the man begins to climb the ladder at speed v (with
respect to the ladder), in what direction and with what speed (with
respect to the ground) will the balloon move? (b) What is the state
of the motion after the man stops climbing?

25. A Stone is Dropped A stone is dropped at t1 � 0. A second
stone, with twice the mass of the first, is dropped from the same
point at t2 � 100 ms. (a) How far below the release point is the cen-
ter of mass of the two stones at t3 � 300 ms? (Neither stone has yet
reached the ground.) (b) How fast is the center of mass of the two-
stone system moving at that time?

26. Traffic Signal A 1000 kg automobile is at rest at a traffic sig-
nal. At the instant the light turns green, the automobile starts to
move with a constant acceleration of 4.0 m/s2. At the same instant a
2000 kg truck, traveling at a constant speed of 8.0 m/s, overtakes
and passes the automobile. (a) How far is the center of mass of
the automobile– truck system from the traffic light at t2 � 3.0 s?
(b) What is the speed of the center of mass of the automobile–
truck system then?

27. Shell Explodes A shell is shot with an initial velocity 1 of
20 m/s, at an angle of 60° with the horizontal. At the top of the
trajectory, the shell explodes into two fragments of equal mass
(Fig. 8-26). One fragment, whose speed immediately after the ex-
plosion is zero, falls vertically. How far from the gun does the other
fragment land, assuming that the terrain is level and that air drag is
negligible?

FIGURE 8-26 ■ Problem 27.

28. Big Olive A big olive (m � 0.50 kg) lies at the origin and a big
Brazil nut (M � 1.5 kg) lies at the point (1.0, 2.0) m in an xy plane.
At t1 � 0, a force begins to act on the
olive, and a force begins to act on the
nut. In unit-vector notation, what is the displacement of the center
of mass of the olive–nut system at t2 � 4.0 s, with respect to its po-
sition at t1 � 0?

29. Sugar Containers Two identical containers
of sugar are connected by a massless cord that
passes over a massless, frictionless pulley with a
diameter of 50 mm (Fig. 8-27). The two contain-
ers are at the same level. Each originally has a
mass of 500 g. (a) What is the horizontal position
of their center of mass? (b) Now 20 g of sugar is
transferred from one container to the other, but
the containers are prevented from moving. What
is the new horizontal position of their center of
mass, relative to the central axis through the
lighter container? (c) The two containers are
now released. In what direction does the center
of mass move? (d) What is its acceleration?

30. Ricardo and Carmelita Ricardo, of mass 80 kg, and Carmelita,
who is lighter, are enjoying Lake Merced at dusk in a 30 kg canoe.
When the canoe is at rest in the placid water, they exchange seats,
which are 3.0 m apart and symmetrically located with respect to the

F
:

n � (�3.0 N) î � (�2.0 N) ĵ
F
:

o � (2.0 N) î � (3.0 N) ĵ

v:
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canoe’s center. Ricardo notices that the canoe moves 40 cm relative
to a submerged log during the exchange and calculates Carmelita’s
mass, which she has not told him. What is it?

31. Dog in a Boat In Fig. 8-28a,
a 4.5 kg dog stands on an 18 kg
flatboat and is 6.1 m from the
shore. He walks 2.4 m along the
boat toward shore and then
stops. Assuming there is no fric-
tion between the boat and the
water, find how far the dog is
then from the shore. (Hint: See
Fig. 8-28b. The dog moves left-
ward and the boat moves right-
ward, but does the center of mass
of the boat � dog system move?)

32. A Certain Nucleus A certain
nucleus, at rest, transforms into
three particles. Two of them are
detected; their masses and veloci-
ties are as shown in Fig. 8-29. In
unit-vector notation, what is the
translational momentum of the
third particle, with a mass of 
11.7 � 10�27 kg?

33. Father and Child A 40 kg
child and her 75 kg father simul-
taneously dive from a 100 kg
boat that is initially motionless.
The child dives horizontally to-
ward the east with a speed of 2.0
m/s, and the father dives toward
the south with a speed of 1.5 m/s at an angle of 37° above the hori-
zontal. (Assume the boat’s vertical motion due to the father’s dive
does not alter its horizontal motion.) Determine the magnitude and
direction of the velocity of the boat along the water’s surface imme-
diately after their dives.

34. Sumo Wrestler A 2140 kg railroad flatcar, which can move with
negligible friction, is motionless next to a platform. A 242 kg sumo
wrestler runs at 5.3 m/s along the platform (parallel to the track)
and then jumps onto the flatcar. What is the speed of the flatcar if
he then (a) stands on it, (b) runs at 5.3 m/s relative to the flatcar in
his original direction, and (c) turns and runs at 5.3 m/s relative to
the flatcar opposite his original direction?

35. Block Released from Rest A 2.00 kg block is released from
rest over the side of a very tall building at time t1 � 0. At time t2 �
1.00 s, a 3.00 kg block is released from rest at the same point. The
first block hits the ground at t3 � 5.00 s. Plot, for the time interval
t1 � 0 to t4 � 6.00 s, (a) the position and (b) the speed of the center
of mass of the two-block system. Take y � 0 at the release point.

36. Speed of COM At the instant a 3.0 kg particle has a  velocity
of 6.0 m/s in the negative y direction, a 4.0 kg particle has a velocity
of 7.0 m/s in the positive x direction. What is the speed of the center
of mass of the two-particle system?

37. Car and Truck A 1500 kg car and a 4000 kg truck are moving
north and east, respectively, with constant velocities. The center of
mass of the car– truck system has a velocity of 11 m/s in a direction
55° north of east. (a) What is the magnitude of the car’s velocity?
(b) What is the magnitude of the truck’s velocity?
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39. Cannon Tilted Up A 1400 kg cannon, which fires a 70.0 kg shell
with a speed of 556 m/s relative to the muzzle, is set at an elevation
angle of 39.0° above the horizontal. The cannon is mounted on fric-
tionless rails so that it can recoil freely. (a) At what speed relative
to the ground is the shell fired? (b) At what angle with the ground
is the shell fired? (Hint: The horizontal component of the momen-
tum of the system remains unchanged as the cannon is fired.)

40. Table of Three The following table gives the masses of three
objects and, at a certain instant, the coordinates (x, y) and the
velocities of the objects. At that instant, what are the (a) position
and (b) velocity of the center of mass of the three-particle system,
and (c) what is the net translational momentum of the system?

Object Mass (kg) Coordinates (m) Velocity (m/s)

1 4.00 (0.00, 0.00) (1.50 m/s) – (2.50m/s)

2 3.00 (7.00, 3.00) 0.00

3 5.00 (3.00, 2.00) (2.00 m/s) – (1.00m/s)ĵî

ĵî

38. Cannon in a Flatcar A cannon and a supply of cannonballs are
inside a sealed railroad car of length L, as in Fig.8-30. The cannon
fires to the right, the car recoils to the left. Fired cannonballs travel
a horizontal distance L and remain in the car after hitting the far
wall and landing on the floor there. (a) After all the cannonballs
have been fired, what is the greatest distance the car could have
moved from its original position? (b) What is the speed of the car
just after the last cannonball has completed its motion?

FIGURE 8-30 ■ Problem 38.
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41. Iceboat You are on an iceboat on frictionless, flat ice; you and
the boat have a combined mass M. Along with you are two stones
with masses mA and mB such that M � 6.00mA � 12.0mB. To get the
boat moving, you throw the stones rearward, either in succession or
together, but in each case with a certain speed vrel relative to the
boat after the stone is thrown. What is the resulting speed of the
boat if you throw the stones (a) simultaneously, (b) in the order mA

and then mB, and (c) in the order mB and then mA?

42. P and Q Two particles P and Q are initially at rest 1.0 m apart. P
has a mass of 0.10 kg and Q a mass of 0.30 kg. P and Q attract each
other with a constant force of 1.0 � 10�2 N. No external forces act on
the system. (a) Describe the motion of the center of mass. (b) At
what distance from P’s original position do the particles collide?

43. Suspicious Package A suspicious package is sliding on a fric-
tionless surface when it explodes into three pieces of equal masses
and with the velocities (1) 7.0 m/s, north, (2) 4.0 m/s, 30° south of
west, and (3) 4.0 m/s, 30° south of east. (a) What is the velocity
(magnitude and direction) of the package before it explodes? (b)
What is the displacement of the center of mass of the three-piece
system (with respect to the point where the explosion occurs) 3.0 s
after the explosion?

44. Mass on an Air Track Figure 8-31 shows an arrangement with
an air track, in which a cart is connected by a cord to a hanging
block. The cart has mass mA � 0.600 kg and its center is initially at
xy coordinates (�0.500 m, 0.000 m); the block has mass mB � 0.400
kg and its center is initially at xy coordinates (0, �0.100 m). The
mass of the cord and pulley are negligible. The cart is released from
rest, and both cart and block move until the cart hits the pulley. The
friction between the cart and the air track and between the pulley
and its axle is negligible. (a) In unit-vector notation, what is the ac-
celeration of the center of mass of the cart–block system? (b) What
is the velocity of the center of mass as a function of time t? (c)
Sketch the path taken by the system’s center of mass. (d) If the path

is curved, does it bulge upward to the right or downward to the left?
If, instead, it is straight, give the angle between it and the x axis.

FIGURE 8-31 ■ Problem 44.

45. Left Alone, Write Your Own For one or more of the following
situations, write a problem involving physics in this chapter, using
the style of the Touchstone Examples and providing realistic data,
graphs of the variables, and explained solutions: (a) determining the
center of mass of a large object, (b) a system separated into parts by
an internal explosion, (c) someone climbing or descending a struc-
ture, (d) track and field events.

46. Car on a Boat The script for an
action movie calls for a small race
car (of mass 1500 kg and length 3.0
m) to accelerate along a flat-top
boat (of mass 4000 kg and length
14 m), from one end to the other. The car will then jump the gap be-
tween the boat and a somewhat lower dock.You are the technical ad-
visor for the movie. The boat will initially touch the dock as shown in
Fig. 8-32. Assume the boat can slide through the water without signif-
icant resistance, and that both the car and the boat can be approxi-
mated as uniform in their mass distribution. Determine what the
width of the gap will be just as the car is about to make the jump.

y
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A45678SF

Dock Boat

FIGURE 8-32 ■ Problem 46.
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47. Two Carts with Unequal Masses Suppose you examine a digital
movie of two carts with different masses that undergo a collision
(for example, PASCO020 in VideoPoint). You will find there is a
point between the two carts that moves at the same constant veloc-
ity both before and after the collision. We call this special point the

mA = 2m mB = m

1/3 2/3

x = 1.000xcom = 0.333x = 0.000

center of mass of the two-cart system. In the PASCO020 movie,
where one cart has twice the mass of the other, analysis of the video
indicates that the center of mass is one-third of the distance be-
tween the two carts (measured relative to the more massive cart).

A similar situation is depicted in Fig. 8-33. The figure shows a
moment in time when the cart centers just happen to be 1.000 m
apart. For the situation in Fig. 8-33, show that the equation

gives a center of mass for these two carts that is one-third of the
distance between them (measured from the more massive cart).

xcom �
mAxA � mB xB

mA � mB

FIGURE 8-33 ■ Problem 47.
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9
In the weight-lifting competi-

tion of the 1996 Olympics, 

Andrey Chemerkin lifted a

record-breaking 260.0 kg from

the floor to over his head

(about 2 m). In 1957, Paul

Anderson stooped beneath a

reinforced wood platform,

placed his hands on a short

stool to brace himself, and then

pushed upward on the

platform with his back, lifting

the platform and its load about

a centimeter. On the platform

were auto parts and a safe

filled with lead. The composite

weight of the load was 

27 900 N (6270 lb)!

Who did more work
on the objects he
lifted—Chemerkin or
Anderson?

The answer is in this
chapter.

Kinetic Energy and Work
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FIGURE 9-1 ■ It is difficult to use New-
ton’s Second Law to analyze the motion of
a ski jumper traveling down a curved ramp
and predict her velocity at the bottom of
the ramp.

9-1 Introduction

A ski jumper who wants to understand her motion along a curved track is presented
with a special challenge. If she tries to use Newton’s laws of motion to predict her
speed at each location along that track, she has to account for the fact that the net
force and her acceleration keep changing as the slope of the track changes. The goal
of this chapter is to devise a way to simplify the analysis of motions like those of our
ski jumper shown in Fig. 9-1.

We can begin by drawing on ideas presented in Chapter 7. There we introduce
two new concepts—momentum and impulse—and use them to derive an alternate
form of Newton’s Second Law known as the impulse–momentum theorem. This theo-
rem, expressed in Eq. 7-10, tells us that the impulse on a moving particle is equal to
its momentum change.

(impulse–momentum theorem). (7-10)

One of the most useful aspects of the impulse–momentum theorem is that we can use
it without having to keep track of the particle’s position.

Can we derive another alternate form of Newton’s law to relate a particle’s veloc-
ity and position changes without keeping track of time? In this chapter we simplify
the analysis of complex motions like that of the skier by proving an analogous theo-
rem called the net work–kinetic energy theorem. But, in order to “derive” our new
theorem we introduce two additional concepts—work and kinetic energy.

We will start our development of the new theorem by introducing the concept of
work, W, in analogy to the impulse represented by the integral in Eq. 7-10. Initially we
consider a very simple situation in which a net force acts along the line of motion of a
particle. In this case the concept of work as a one-dimensional analogy to impulse in-
volving position changes rather than time changes would be

(one-dimensional position analogy to impulse). (9-1)

Here Fx
net and dx are components of force and infinitesimal position change vectors

along an x axis, x1 is the initial position of the particle and x2 is its position at a later
time. In order for the integral to be unique and well defined we will also add the re-
quirement that the component of the force is either constant or only varies with x.
That is, we will consider the integral

where the x in parentheses signifies the force on the particle varies with location
along the x axis. After developing the concept of work we introduce the concept of
kinetic energy and then derive the net work–kinetic energy theorem for one-dimen-
sional motions. Next we apply the concept of work and the new theorem to the
analysis of some motions that result from the actions of common one-dimensional
forces.

Although we begin with one-dimensional situations, we will extend the equations
we derive to two (and three) dimensions. As part of this process we will also introduce
a method for finding a scalar product of two vectors. Then in Section 9-9 toward the
end of the chapter, we demonstrate how the two-dimensional form of our new net
work–kinetic energy theorem enables us to determine the speed of the skier as a
function of her location along a frictionless ramp in a very simple manner.

�x2
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9-2 Introduction to Work and Kinetic Energy

One-Dimensional Relationship for a Net Force
In order to find an alternative form of Newton’s Second Law that relates position and
velocity, suppose our particle is a bead moving along a wire, as in Fig. 9-2. Suppose the
net force on the bead is a combination of an applied force and a friction force that
acts as the bead slides along. We know that if a net force acts on the bead along its di-
rection of motion, its position will change in the direction of the force and its speed
will increase. If the direction of the net force is opposite to that of the bead’s motion,
the bead’s speed will decrease.

In our example, the force, , is directed along the wire as shown in 
Fig. 9-2. This force causes the bead to accelerate in the same direction as the force. We
can use Newton’s Second Law to relate the force and acceleration components as

, (9-2)

where m is the bead’s mass. As the bead moves through a displacement
, the force changes the bead’s velocity from an initial value to an-

other value we will call . Using the definition of acceleration as the rate of velocity
change over a short time interval dt, this gives us

In order to relate the velocity and position, we perform two mathematical operations:
First we multiply each term in the equation above by the x-component of velocity, vx.
Second, we use the definition of vx as dx /dt to substitute for vx on the left side of our
new equation. This gives us

(9-3)

Since the bead’s mass m is constant, we can use the chain rule of differentiation to see
that the term on the right can be rewritten as

(9-4)

If we substitute the expression on the right side of Eq. 9-4 for the term mvx dvx /dt in
Eq. 9-3, we get

Now we can eliminate dt from Eq. 9-3 by realizing that during the same infinitesimal
time interval dt the x-component of force times the infinitesimal change in x is equal
to the change in the expression . This gives us the following equality between
differentials

(9-5)

Because the net force on the bead and its velocity are not necessarily constant over the
full displacement shown in Fig. 9-2, we must integrate both sides of Eq. 9-5 to deter-
mine the relationship between position change and velocity change due to our variable
force.

F net
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FIGURE 9-2 ■ A simple situation showing
a bead on a wire that experiences a net
force that is directed along the wire. The
bead moves in the same direction as the
force.
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(9-6)

In summary, by using Newton’s Second Law, the definitions of velocity and accelera-
tion, and the rules of calculus, we have derived a new form of the second law that re-
lates how a variable force acting over a distance will change the speed of a particle of
mass m.

Note that the expression on the left side of this equation,

is identical to the expression we developed (in Eq. 9-1) as the one-dimensional (1D)
integral of force over position that is analogous to the integral of force over time used
in the impulse-momentum theorem.

Initial Definitions of Work and Kinetic Energy
The left and right sides of Eq. 9-6 are the basis for two new and very important defini-
tions. We define the integral as the net work, , done on a particle as it moves from
an initial to a final position, so that

(net work definition—1D net force and displacement). (9-7)

If the net force component along a line is made up of the sum of several force
components , we see that the contribution of each
force to the net work is

If we define the work associated with a single force component FA x(x) as 

(definition of work—1D single force and displacement), (9-8)

we see that the net work is given by

(9-9)

So there are two ways to calculate the net work. One is to sum the force components
before the net work is calculated. The other is to calculate the work associated with
each of the components separately. The net work is then determined by adding up the
work done by each force component.

The right side of Eq. 9-6 tells us how the speed of a particle of mass m is changed
by the net work done on it. This is the factor that is changed by the work done
on the bead. Because we are talking about translational motion (as distinct from rota-
tional motion), we call this factor translational kinetic energy (or often just 
“kinetic energy”). In the most general sense, kinetic energy is a quantity associated
with motion. However, in this chapter, we limit our discussion to the motion of a

1
2mv2

x

W net � WA � WB � WC � � � � .

WA ��x2

x1

FA x (x)dx

� �x2

x1

FA x(x)dx � �x2

x1

FB x(x)dx � �x2

x1

FC x(x)dx � ���.

W net ��x2

x1

F net
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single particle, or the center of mass of systems of particles and extended objects.
When we turn our attention to the study of thermodynamics later in the book, we will
have to revisit the concept of kinetic energy to take into account the fact that particles
within objects may well be moving, even if the center of mass is not. So we define the
translational kinetic energy, K, of a particle-like object in terms of its mass and the
square of the speed of its center of mass as

(definition of kinetic energy for 1D motion). (9-10)

According to this definition the term on the right side of Eq. 9-6 given by
represents the change in the object’s translational kinetic energy.

Using our new definitions for net work and translational kinetic energy, Eq. 9-6
can be rewritten in streamlined form as 

(the net work-energy theorem). (9-11)

Equation 9-11 is known as the net work-kinetic energy theorem. This theorem tells us
that when a net force acts along the direction of motion of a particle that moves from
one position to another, the particle’s kinetic energy changes by .
Equation 9-11 is known as a theorem because Eqs. 9-6 and 9-9 were derived mathe-
matically from Newton’s Second Law. It is analogous in many ways to the impulse-
momentum theorem (also derived from Newton’s Second Law) that relates the action
of a net force over time to the change in momentum of a particle.

Units of Work and Energy
The SI unit for both work and kinetic energy (and every other type of energy) is the
joule (J). It is defined directly from (Eq. 9-10) in terms of the units for mass
and velocity as kg � m2/s2. It is easy to show that the units for work, which is the prod-
uct of a force in newtons (N) and a distance in meters (m), are N � m, which also re-
duce to kg � m2/s2. In summary,

1 joule = 1 J = 1 kg � m2/s2 = 1 N � m (SI unit for energy).

Other units of energy which you may encounter are the erg (or g � cm2/s2) and the
foot-pound.

Generalizing Work and Kinetic Energy Concepts
So far we have only related position and velocity for the very special case of a net
force acting along a line of motion. What if the forces on a particle that make up the
net force have components that do not lie along the direction of motion of our body
of interest? If forces do not act parallel to a particle’s displacement, how can we mul-
tiply and then integrate two vectors such as force and displacement to calculate work?

The remainder of this chapter is devoted to understanding how to calculate the
work done by forces in some common situations. This will enable us to apply the net
work-kinetic energy theorem to relate how changes in a particle’s position due to a
net force are related to changes in its speed.

READI NG EXERC IS E  9-1 : A particle moves along an x axis. Does the kinetic energy
of the particle increase, decrease, or remain the same if the particle’s velocity changes (a) from
�3 m/s to �2 m/s and (b) from �2 m/s to 2 m/s? (c) In each situation, is the net work done on
the particle positive, negative, or zero? ■

K � 1
2mv2

1
2mv2

2 x � 1
2mv2

1 x

W net � K2 � K1 � �K

1
2 mv2

2 x � 1
2mv2

1 x

K � 1
2mv2

x

230 CHAPTER 9 Kinetic Energy and Work



The Concept of Physical Work   231

FIGURE 9-3 ■ Pushing one and then two
textbooks across a tabletop with a small
but steady force.

9-3 The Concept of Physical Work

So far we have only discussed the work done on small particles with no internal
structure. Now we would like to apply the concept of work to changes in motion of
familiar extended objects. If we push on an object that deforms and changes its
shape as it moves, then it’s impossible to describe its motion in terms of a single dis-
placement. For this reason, when we apply the concept of work to extended objects,
we are assuming that these objects are particle-like as defined in Section 2-1. Thus,
when we refer to doing work on an object, we assume the object is rigid enough that
the work done distorting it is negligible compared to the work that displaces its cen-
ter of mass.

Now let’s get back to work. In casual conversation, most of us think of work as an
expenditure of effort. It takes effort to push a rigid box down the hallway or to lift it.
But you also expend effort to hold a heavy object steady in midair or to shove against
a massive object that won’t budge. If we examine our expression for work (Eq. 9-7), we
see that at least for one-dimensional motion, work is given by the product of the com-
ponents of a force along the line of motion of a particle and the particle’s displacement
along that line. This means that even though shoving really hard on a massive object
that is at rest takes a lot of effort, no physical work is done on it unless it starts to move
in the direction of the force. As we examine ways to define work in more general situa-
tions, we will find that the definition of work in physics requires that

No work is done on a rigid object by a force unless there is a component of the force along
the object’s line of motion.

We have defined work in such a way that it requires a force and a displacement.
How do we know how much work is done? Let’s consider how much effort it takes to
push a heavy, very rigid box down a hallway with a steady force. In this special case
the force and the displacement of the box are in the same direction. In the next sec-
tion we will consider what happens when the force acting on an object is in the oppo-
site direction as its displacement.

Suppose you push the box to the right so the x-component of its displacement is
�x � x2 � x1. Now imagine that you use the same steady force to push the same box
through twice the distance so its displacement component is 2�x. How much more ef-
fort did this take? How much effort would it take to just watch the box? The answers
to these questions give us important insights into the nature of work. Namely, for a
given force the magnitude of physical work should be proportional to the distance
that an object is moved. This is consistent with the way we have defined work—so
that it is proportional to the distance an object moves under the influence of forces.

Imagine pushing another larger box through a rightward displacement of �x us-
ing twice the force. How much more effort would you guess it takes to push the larger
box than it takes to push the smaller box? You can get a feel for this by pushing one
and then two larger textbooks of identical mass across a tabletop as shown in Fig. 9-3.

If you took a moment to do this experiment, you found that it takes about twice
the effort to push two books through a displacement of �x using a force of as it
did to push one book through the same displacement with a force of . We can con-
clude that the amount (that is, the absolute value) of work done is not just propor-
tional to the distance an object is moved—it is also proportional to the magnitude of
the force acting on the object. The concepts of proportionality between displacement
force and the amount of physical work done can be summarized by the equation 

(amount of work done by a steady force along a line of motion).� W � � � Fx �x �

F
:

x
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In the next section we will use the mathematical definition of work to consider
how much work is done under the influence of a steady force and also the circum-
stances under which work is positive or negative.

READI NG EXERC IS E  9-2 : The figure shows four situations in which a force acts on
a box while the box either slides to the right with a displacement � or doesn’t budge as indi-
cated. The force on each box is shown. Rank the situations according to the amount of the work
done by the force on the box during its displacement from greatest to least.

■

9-4 Calculating Work for Constant Forces 

One-Dimensional Forces and Motions Along the Same Line
Let’s start by reconsidering the formal definition of the work associated with one-
dimensional motion (presented in Eq. 9-8),

(definition of work for a 1D motion and force). (9-12)

As we established in Section 9-1, Fx(x) denotes the x-component of a force that can
vary with x. However, if the force does not vary with x, then we can simply denote
Fx(x) as Fx and take it out of the integral. This allows us to write

so that W � Fx �x (work done by a constant force along a line of motion). (9-13)

Positive vs. Negative Work At the end of the last section we presented the equation
to represent the amount of work done on a rigid object. This is an in-

formal expression we developed by imagining the effort needed to slide rigid objects
on a table or down a hall. Equation 9-13 that we just derived is very similar except it
has no absolute value signs. Since both Fx and �x represent components of vectors
along an axis, either component can be positive or negative. If this is the case, then the
sign of the work, W, calculated as the products of these components can also be posi-
tive and negative. This raises some questions. How can we tell when the work done by
a force will be positive? Negative? Does this mean that work is a vector component?
To answer these questions let’s consider the work done on a puck that is free to move
along a line on a sheet of ice with no friction forces on it.

Imagine that the puck is initially at rest at your chosen origin. When you push it
to the right with a steady horizontal force component of Fx � �50 N, it speeds up
until its x position is �1 m (Fig. 9-4a). The work you do on the puck is positive since it
is given by 

(speeding up).W � Fx �x � Fx(x2 � x1) � (�50 N)(�1 m � 0 m) � �50 J

� W � � � Fx �x �

W � �x2

x1

Fx dx � Fx(x2 � x1) � Fx �x,

W ��x2

x1

Fx(x) dx

x:

Fx = (1 N) î

ˆx = (1 m) iΔ
(a)

Fx = (2 N) î

ˆx = (1 m) iΔ
(c)

Fy = (2 N) ĵ

ˆx = (2 m) iΔ
(d)

Fx = (3 N) î

ˆx = (0 m) iΔ
(b)

FIGURE 9-4 ■ (a) A puck is pushed from
rest with a positive force component. (b) A
puck that is already moving in a positive
direction is pushed with a force that has a
negative force component along a chosen
x axis.
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Suppose that now as the puck is moving away from the origin along your chosen
positive x axis, you suddenly take your other hand and push on it in the opposite di-
rection with a steady horizontal force component of Fx � �50 N. Since you are push-
ing the puck in a direction opposite to its motion, it starts slowing down and reaches a
zero velocity at a distance of 2.0 m from the origin (Fig. 9-4b). In this case the work
you do on the puck while slowing it down is negative since it is given by

(slowing down).

If we consider many similar situations with different types of forces acting, we can
make the following general statement about the sign of the work done by a single
force or net force acting on the center of mass of a rigid object:

POSITIVE VS. NEGATIVE WORK: If a single (or net) force has a component that acts in the
direction of the object’s displacement, the work that the force does is positive. If a single (or
net) force has a component that acts in a direction opposite to the object’s displacement,
the work it does is negative.

Work Is a Scalar Quantity Recall that in Section 2-2 we defined a scalar (unlike the
component of a vector) to be a quantity that is independent of coordinate systems.
Based on this definition, we can see that work is a scalar quantity even though it can
be positive or negative. If we rotate our x axis by 180° so that all the components of
force and displacement in our puck example above change sign, the sign of the work
(which is the product of components) would not change sign. So even though there
are directions associated with both force and displacement, there is no direction asso-
ciated with the positive or negative work done by a force on an object. Therefore,
work is a scalar quantity.

Work Done by a Gravitational Force 
We next examine the work done on an object by a particular type of constant force—
namely, the gravitational force. Suppose a particle-like object of mass m, such as
a tomato, is thrown upward with initial speed of v1 y as in Fig. 9–5a. As it rises, it is
slowed by a gravitational force that acts downward in the direction opposite the
tomato’s motion. We expect that does negative work on the tomato as it rises
because the force is in the direction opposite the motion.

To verify this, let’s choose our y axis to be positive in the upward direction, so that
the y-component of the gravitational force (acts downward) is given by 
We calculate the work done on the tomato as where the y-component
of displacement is given by .

Since during the rise y2 is greater than y1, �y is positive. The gravitational force
component is negative and so we can write

(rising object). (9-14)

After the object has reached its maximum height it begins falling back down. We
expect the work done by the gravitational force to be positive in this case because the
force and motion are in the same direction. Here y2 is less than y1 (Fig. 9-5b). Hence
both the y-component of the gravitational force and displacement �y � y2 � y1

are negative. This gives us an expression for positive work of

(falling object). (9-15)

Thus, as we saw for the puck on the ice, the work done by the gravitational force
is positive when the force and the displacement of the tomato are in the same direc-
tion and the work done by the force is negative when the force and displacement are
in opposite directions.

W grav � mg � �y �

F grav
y

W grav � �mg(y2 � y1) � �mg � �y �

�y � y2 � y1

W grav � F grav
y �y

F grav
y � �mg.

F
: grav

F
:grav

W � Fx �x � Fx(x2 � x1) � (�50 N)(�2 m � 1 m) � �50 J

F grav

yΔ

Tomato

(a)

F grav

yΔ

Tomato

(b)

FIGURE 9-5 ■ If the only force acting on a
tomato is gravitational: (a) As the tomato
rises, the gravitational force does negative
work on the object. (b) As the tomato falls
downward, the gravitational force does
positive work on it.



9-5 Work Done by a Spring Force

So far, we have limited our discussion to the work done by constant forces that do not
change with position or time. Our goal in this section and the next is to explore how
to calculate the work done by variable forces. A very common one-dimensional vari-
able force is the spring force. The spring force is of great interest because many forces
in our natural and man-made surroundings have the same mathematical form as the
spring force. Examples include the interaction between atoms bound in a solid, the
flexing of a bridge under the weight of vehicles, and the sway of a building during an
earthquake—as long as displacements remain small. Thus, by examining this one ide-
alized force, you can gain an understanding of many phenomena.

As you may have experienced, the magnitude of the force exerted by a spring
increases when it is stretched or compressed more. Figure 9-7a shows a spring in its
relaxed state—that is, neither compressed nor extended. One end is fixed, and a rigid
block is attached to the other, free end. If we stretch the spring by pulling the block to
the right, as in Fig. 9-7b, the spring pulls back on the block toward the left. (Because a
spring’s force acts to restore the relaxed state, it is sometimes said to be a restoring
force.) If we compress the spring by pushing the block to the left, as in Fig. 9-7c, the
spring now pushes on the block back toward the right.

To a good approximation for many springs, the force exerted by it is
proportional to the displacement of the free end from its relaxed position. As
usual, the fact that depends on x is symbolized by writing it as a function of x,

. If its displacement is not too large, many spring-like objects have a spring
force given by

(Hooke’s law for a 1D ideal spring). (9-16)

This “law” is named after Robert Hooke, an English scientist of the late 1600s. Since
Hooke’s law is based on the measured behavior of specific objects, it does not have
the same status as Newton’s laws.

F
:

x
spring(x) � �k �x:

F
:

x
spring(x)

F
:

x
spring

�x:
F
:

x
spring
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During a storm, a crate of crepe is sliding across a slick, oily parking
lot through a displacement while a steady wind
pushes against the crate with a force � . The situation
and coordinate axes are shown in Fig. 9-6.

(a) How much work does this force from the wind do on the crate
during the displacement?

S O L U T I O N ■ The Ke y  I d e a here is that, because we can treat
the crate as a particle and because the wind force is constant
(“steady”) in both magnitude and direction during the displace-
ment, we can use Eq. 9-13 (W � Fx �x) to calculate the work,

W � Fx �x

� (2.0 N)(�3.0 m) (Answer)

� �6.0 J.

So, the wind’s force does negative 6.0 J of work on the crate.

(2.0 N)îF
:

�x: � (�3.0 m)î

(b) If the crate has a kinetic energy of 10 J at the beginning of
displacement , what is its kinetic energy at the end of assum-
ing ? 

S O L U T I O N ■ The Key  I dea here is that, because the force
does negative work on the crate, it reduces the crate’s kinetic energy.
Using the work-kinetic energy theorem in the form of Eq. 9-11,
we have

K2 � K1 � W net � 10 J � (�6.0 J) � 4.0 J. (Answer)

Because the kinetic energy is decreased to 4.0 J, the crate has been
slowed.

F
:

� F
:net

�x:�x:

TOUCHSTONE EXAMPLE 9-1: Crepe Crate

FIGURE 9-6 ■ A constant
force created by the
wind slows a crate down as
it undergoes a displace-
ment .�x:

F
:

y

x
F

xΔ

FIGURE 9-7 ■ One end of a spring is at-
tached to a fixed wall and the other end to
a block that is free to slide. (a) The origin
of an x axis is located at the point where
the relaxed spring is connected to the
block. (b) The block and spring are given a
positive displacement. Note the direction
of the restoring force exerted by
the spring. (c) The spring is compressed by
a negative amount x. Again, note the direc-
tion of the restoring force.
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The minus sign in (Eq. 9-16) indicates that the spring force is
always opposite in direction from the displacement of the free end so the force is
“restoring.” The constant of proportionality k is called the spring constant. It is
always positive and is a measure of the stiffness of the spring. The larger k is, the
stiffer the spring—that is, the stronger will be its pull or push for a given displace-
ment. The SI unit for k is the N/m.

In Fig. 9-7, an x axis has been placed parallel to the length of a spring, with the
origin (x � 0) at the position of the free end when the spring is in its relaxed state. For
this coordinate system and arrangement, we can write in compo-
nent form as

(Hooke’s law for x � 0 in the relaxed state). (9-17)

The equation correctly describes ideal spring behavior. It tells us that if x is positive
(the spring is stretched toward the right on the x axis), then the component

is negative (it is a pull toward the left). If x is negative (the spring is com-
pressed toward the left), then the component is positive (it is a push
toward the right). Also note that Hooke’s law gives us a linear relationship between
Fx and x.

Work Done by a Spring Force
In the situation shown in Fig. 9-7, the spring force components and displacements lie
along the same line, so we can substitute the spring force in the more general
expression presented in Eq. 9-8 to determine the work done by a one-dimensional
variable force. We get

(Eq. 9-8)

To apply this equation to the work done by the spring force as the block in Fig. 9-7a
moves, let us make two simplifying assumptions about the spring and block. (1) The
spring is massless; that is, its mass is negligible compared to the block’s mass. (2) The
spring is ideal so it obeys Hooke’s law exactly. Making these simplifying assumptions
might seem to make the results unreal. But for many interesting cases, these simplifi-
cations give us results that agree fairly well with experimental findings.

Back to the integral. We use Hooke’s law (Eq. 9-16) to substitute �kx for
the component .We also pull k out of the integral since it is constant. Thus,
we get

(9-18)

so the work done on the block by the spring force as the block moves is

(work by a spring force). (9-19)

This work W spring, done by the spring force, can have a positive or negative value,
depending on whether the block is moving toward or away from its zero position. This
is quite similar to the way the gravitational work done on the tomato in the previous
section changes as the tomato rises and falls.

Note that the final position x2 appears in the second term on the right side of
Eq. 9-19. Therefore,

W spring � �1
2 kx2

1 � 1
2 kx2

2

� (�1
2 k)[x2]x1

x2 � �1
2 k(x2

2 � x1
2),

W spring � �x2

x1

 (�kx)dx � �k�x2

x1

x dx

Fx
spring(x)
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x1

Fx
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Fx
spring(x)

Fx
spring(x)

Fx
spring(x) � �kx

F
:

x
spring(x) � �k�x:

F
:

x
spring(x) � �k �x:



236 CHAPTER 9 Kinetic Energy and Work

The work done by the spring force on the block W spring is positive if the block moves closer
to the relaxed position (x � 0). The work done by the spring force on the block is negative
if the block moves farther away from x � 0. It is zero if the block ends up at the same dis-
tance from x � 0.

READI NG EXERC IS E  9-3 : For three situations, the initial and final positions, along
the x axis for the block in Fig. 9-7 are, respectively, (a) �3 cm, 2 cm; (b) 2 cm, 3 cm; and (c)
�2 cm, 2 cm. In each situation, is the work done by the spring force on the block positive, nega-
tive, or zero? ■

A package of spicy Cajun pralines lies on a frictionless floor, at-
tached to the free end of a spring in the arrangement of Fig. 9-7a.
An applied force of magnitude F app � 4.9 N would be needed to
hold the package stationary at x2 � 12 mm (Fig. 9-7b).

(a) How much work does the spring force do on the package if the
package is pulled rightward from x1 � 0 to x3 � 17 mm?

S O L U T I O N ■ A Ke y  I d e a here is that as the package moves
from one position to another, the spring force does work on it as
given by Eq. 9-19. We know that the initial position x1 is 0 and
the final position x3 is 17 mm, but we do not know the spring con-
stant k.

We can probably find k with Eq. 9-16 (Hooke’s law), but we
need a second Ke y  I d e a to use it: if the package were held sta-
tionary at x2 � 12 mm, the spring force would have to balance the
applied force (by Newton’s Second Law). Thus, the x-component of
the spring force Fx

spring would have to be �4.9 N (toward the left in
Fig. 9-7b), so Eq. 9-16 gives us

k � � � Fx
spring

x 2
� � � � �4.9 N

12 � 10�3 m � � �408 N/m.

Now, with the package at x3 � 17 mm, Eq. 9-19 yields

� �0.059 J � �59 mJ. (Answer)

(b) Next, the package is moved leftward from x3 � 17 mm to
x4 � �12 mm. How much work does the spring force do on the
package during this displacement? Explain the sign of this work.

S O L U T I O N ■ The Ke y  I d e a here is the first one we noted in
part (a). Now x3 � �17 mm and x4 � �12 mm where x3 and x4 are
two positions of the spring relative to its equilibrium position. They
do not represent displacements. Eq. 9-19 yields

�

� 0.030 J � 30 mJ.
(Answer)

This work done on the block by the spring force is positive because
the block ends up closer to the spring’s relaxed position.

1
2 (408 N/m)[(17 � 10�3 m)2 � (�12 � 10�3 m)2]

W spring � 1
2 kx 2

3 � 1
2 kx 2

4 � 1
2 k(x 2

3 � x 2
4)

W spring � �1
2 kx2

3 � � 1
2 (408 N/m)(17 � 10�3 m)2

TOUCHSTONE EXAMPLE 9-2: Pralines and a Spring

In Fig. 9-8, a cumin canister of mass m � 0.40 kg slides across a hor-
izontal frictionless counter with velocity . It
then runs into and compresses a spring of spring constant k �
750 N/m. When the canister is momentarily stopped by the spring,
by what amount �x is the spring compressed?

S O L U T I O N ■ There are three Ke y  I d e a s here:

1. The work W spring done on the canister by the spring force is re-
lated to the requested displacement �x � x2 � x1 by Eq. 9-19
( ).

2. Since , the work W spring is also related to the
kinetic energy of the canister by Eq. 9-11 .(W net � K2 � K1)

F
:spring � F

:net

W spring � 1
2 kx2

1 � 1
2 kx2

2

v: � vxî(�0.50 m/s)î

3. The canister’s kinetic energy has an initial value of 
and a value of zero when the canister is momentarily at rest.

K1 � 1
2 mv2

x

TOUCHSTONE EXAMPLE 9-3: Cumin Canister

k
mFrictionless

v

FIGURE 9-8 ■ A canister of mass m moves at velocity toward a
spring with spring constant k.

v:
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Putting the first two of these ideas together, and noting that
x1 � 0 here since the spring is initially uncompressed, we write the
net work-kinetic energy theorem for the canister as

Substituting according to the third idea makes this

Simplifying, solving for x, and substituting known data then give us

0 � 1
2 mv2

x � �1
2 kx2

2.

K2 � K1 � �1
2 kx2

2.
� �1.2 � 10�2 m

� �1.2 cm.

We reject x2 � �1.2 cm as a solution, since clearly the mass moves
to the left as it compresses the spring. So

�x � x2 � x1

� �1.2 cm � 0 cm

� �1.2 cm. (Answer)

x2 � �√ mvx
2

k
� �√ (0.40 kg)(�0.50 m/s)2

750 N/m

9-6 Work for a One-Dimensional Variable 
Force—General Considerations

Calculating Work for Well-Behaved Forces
In the previous section, we were able to find the work done by our spring force using
calculus to perform the integration called for in Eq. 9-8. This is because the spring
force is a “well-behaved,” continuous mathematical function that can be integrated. If
you know the function , you can substitute it into Eq. 9-8, introduce the proper
limits of integration, carry out the integration, and thus find the work. (Appendix E
contains a list of common integrals.) In summary, whenever a one-dimensional vari-
able force is a function that can be integrated using the rules of calculus, the use of
Eq. 9-8 is the preferred way to find the work done by the force on an object that
moves along that same line.

Calculating Work Using Numerical Integration
Suppose that instead of a spring force, our variable force on an object is caused by
someone pushing and pulling erratically on the bead sliding along a wire depicted in
Fig. 9-2. In that case, the force will probably not vary with x the way a familiar mathe-
matical function does, so we cannot use the rules of calculus to perform our integra-
tion. Whenever this is the case, we can use numerical methods to examine the variable
force during small displacements where the force is approximately constant. We can
then calculate the work done during each small displacement, and we can add each
contribution to the work together to determine the total work. In this situation we are
doing a numerical integration.

Let’s start our exploration of numerical integration by considering the x-component
of a one-dimensional force that varies as a particle moves. A general plot of such a one-
dimensional variable force is shown in Fig. 9-9a. One method for finding the work done
on the particle is to divide the distance between the initial location of a particle, x1,
and its final location, xN, into N small steps of width �x. We can choose a large N so that
the values of �x are small enough so the force component along the x axis is rea-
sonably constant over that interval. Let be the component representing the av-
erage value of within the nth interval. As shown in Fig. 9-9b or c, is the
height of the nth strip. The value of x for the nth strip is given by , where
�x � (xN � x0)/N.

xn � (n � 1
2)�x

�Fx n(x)�Fx(x)
�Fx n(x)�

F
:

x(x)

F
:

x(x)



With taken to be constant, the small increment of work �Wn done by the
force in the nth interval is approximately given by Eq. 9-13 as 

. (9-20)

Referring to the most darkly shaded region in Fig. 9-9b or c, we see that �Wn is then
equal to the area of the nth rectangular strip.

To approximate the total work W done by the force as the particle moves from x0

to xN, we add the areas of all the strips between x0 and xN in Fig. 9-9c,

. (9-21)

This is not an exact calculation of the actual work done because the broken “skyline”
formed by the tops of the rectangular strips in Fig. 9-9b (representing the values of 
�Fx n� as constants) only approximates the actual curve of .

If needed in a particular situation we can make the approximation better by reduc-
ing the strip width �x and using more strips, as in Fig. 9-9c. Once the strip width is suffi-
ciently small, Eq. 9-21 can be used to compute the total work done by the variable force.

Defining the Integral
It is interesting to note that in the limit where the strip width approaches zero, the
number of strips then becomes infinitely large and we approach an exact result,

(9-22)

This limit is precisely what we mean by the integral of the function Fx(x) between
the limits x0 and xN. Thus, Eq. 9-22 becomes

(work done by a variable force in one dimension). (Eq. 9-8)

Geometrically, the work is equal to the area between the curve and the x axis,
taken between the limits x0 and xN (shaded in Fig. 9-9d). Remember that whenever Fx

is negative, the area between the graph of Fx and the x axis is also negative.

F
:

x(x)

W � � xN

x0

Fx(x) dx

W � lim
�x : 0

	
N

n�1
�Fn x(x)��x.

F
:

x(x)

W 
 	
N

n�1
�Wn � 	

N

n�1
�Fx n(x)��x

�Wn 
 �Fx n��x

�Fx n�
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FIGURE 9-9 ■ A particle only moves in
one dimension. (a) A one-dimensional
force component is plotted against
the displacement of the particle.
(b) Same as (a) but with the area under
the curve divided into narrow strips. (c)
Same as (b) but with the area divided into
narrower strips. (d) The limiting case. The
work done by the force is given in Eq. 9-8
and is represented by the shaded area
between the curve and the x axis and
between and .xNx 0

xN � x 0

Fx(x)

Fx(x)

x

Fx(x)

x

Fx(x)

x

x0 xN

x0 xN x0 xN

0

0 0
Δ   x

W

(a)

(c) (d)

12

n

N

Fx(x)

xx0 xN

< Fx n>

Δ   x
0

(b)

ΔWn = < Fx n> Δx

1
2

n

N
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A 2.0 kg stone moves along an x axis on a horizontal frictionless
surface, acted on by only a force Fx(x) that varies with the stone’s
position as shown in Fig. 9-10.

(a) How much work is done on the stone by the force as the stone
moves from its initial point at x1 � 0 to x2 � 5 m?

S O L U T I O N ■ A Ke y  I d e a is that the work done by a single
one-dimensional force is given by Eq. 9-8:

.

Here the limits are x1 � 0 m and x2 � 5 m, and Fx(x) is given by 
Fig. 9-10. A second Ke y  I d e a is that we can easily evaluate the
integral graphically from Fig. 9-10. To do so, we find the area be-
tween the plot of Fx(x) and the x axis, between the limits x1 � 0 m
and x2 � 5 m. Note that we can split that area into three parts: a
right triangle at the left (from x � 0 m to x � 2 m), a central rectan-
gle (from x � 2 m to x � 4 m), and a triangle at the right (from
x � 4 m to x � 5 m).

W � �x2

x1

Fx(x) dx

Recall that the area of a triangle is . The work
that was done on the stone from x1 � 0 and x2 � 5 m is then

� 17.5 J. (Answer)

(b) The stone starts from rest at x1 � 0 m.What is its speed at x � 8 m?

S O L U T I O N ■ A Ke y  I d e a here is that the stone’s speed is re-
lated to its kinetic energy, and its kinetic energy is changed because
of the net work done on the stone by the force. Because the stone is
initially at rest, its initial kinetic energy K1 is 0. If we write its final
kinetic energy at x3 � 8 m as , then we can write the
work-kinetic energy theorem of Eq. 9-11 (K3 � K1 � W net) as

(9-23)

where is the work done on the stone from x1 � 0 m to x3 � 8 m.
A second Ke y  I d e a is that, as in part (a), we can find the

work graphically from Fig. 9-10 by finding the area between the
plotted curve and the x axis. However, we must be careful about
signs. We must take an area to be positive when the plotted curve is
above the x axis and negative when it is below the x axis. We al-
ready know that work � 17.5 J, so completing the calculation
of the area gives us

� 9.5 J.

Substituting this and m � 2.0 kg into Eq. 9-23 and solving for v3, we
find

v3 � 3.1 m/s. (Answer)

� 17.5 J � 1
2 (1 m)(4 N) � (1 m)(4 N) � 1

2 (1 m)(4 N) 

W0:8 � W0:5 � W5:8

W0:5

W0:8

1
2 mv2

3 � 0 � W0:8,

K3 � 1
2 mv2

3

W0:5 � 1
2(2 m)(5 N) � (2 m)(5 N) � 1

2(1m)(5 N)

W0:5

1
2 (base)(height)

TOUCHSTONE EXAMPLE 9-4: Work on a Stone

–2

–4

1

3

5

21 3 4 5
876 x (m)

Fx (N)

Fx (x)

FIGURE 9-10 ■ A graph
showing the variation of a
one-dimensional force
component with a stone’s
position.

9-7 Force and Displacement in More 
Than One Dimension

In this section we will explore a quite general situation in which a particle moves in a
curved three-dimensional path while acted upon by a three-dimensional force that
could vary with the position of the particle and might not act in the same direction as
the particle’s displacement. How can we calculate the work done on the particle by
the force in this much more complex situation?

Before undertaking this more general treatment of work, we will actually start our
exploration with a simple example of the work done by a constant two-dimensional
force acting on a sled that is moving in only one dimension. Our simple example will
lead us to conclude that we need to devise a general method for finding work as the
product of two vectors.



Work Done by a Force Applied at an Angle
Imagine that you are pulling a loaded sled with no friction present (Fig. 9-11a). You
hold the rope handle of the sled at some angle 	 relative to the ground. You pull as
hard as you can and the sled starts to move. However, you find that you are getting
tired quickly and still have a significant distance to go. What would you do? Is the sit-
uation hopeless? One thing that you could try is to change the angle at which you pull
on the handle of the sled. Should you make the angle 	 larger or smaller?

As you probably know from your everyday experiences, you must pull more or
less horizontally on a heavy object to pull it along. If you make the angle 	 smaller,
then you will pull the sled more efficiently. As discussed in Chapter 6, this is because
the perpendicular force component can only change the direction of the motion (and
in this situation we assume the sled glides on top of packed snow that prevents it from
moving down). Only the component of a force along the line of motion is effective in
changing an object’s speed. So, by the work-kinetic energy theorem, it must be that
only the component of a force along the line of motion contributes to the work done
by the force. Saying this more formally:

To calculate the work done on an object by a force during a displacement, we use only the
component of force along the line of the object’s displacement. The component of force
perpendicular to the displacement does zero work.

From Fig. 9-11b, we see that we can write the x-component of the force Fx in terms of
the magnitude of the force and the angle 	 between the force and the positive x axis.
That is,

(9-24)

To find the work done, we can use Eq. 9-13 (W � Fx�x) for a constant force to get

(work for displacement parallel to an x axis), (9-25)

where �x is the sled’s displacement. Since the sled is moving to the left in the direc-
tion of the pull, both Fx and �x are positive in our coordinate system and so the work
done by the force is positive.

We can derive a similar but more general expression for the work done by a two-
dimensional force along any line of displacement (that does not necessarily lie
along a chosen axis). To do this we must always take the angle 	 between the force and
the direction of the displacement (rather than the direction of a positive axis). In this
case the expression for the work becomes

(work in terms of angle between and ). (9-26)

As shown in Fig. 9-12, using the angle between the force and displacement and
absolute values for both, the sign of the work comes out correctly.

Why the Sign of the Work Is Correct in Eq. 9-26 As shown in Fig. 9-12, if we set the
angle 	 in (Eq. 9-26) to any value less than 90°, then cos 	 is posi-
tive and so is the work. If 	 is greater than 90° (up to 180°), then cos 	 is negative and
so is the work. Referring to Fig. 9-11, we see that this way of determining the sign of
the work done by an applied force is equivalent to determining the sign based on
whether there is a component of force in the same or opposite direction as the mo-
tion. (Can you see why the work is zero when 	 � 90°?)

W � � F
:

� ��r: � cos 	

F
:

�r:W � � F
:

� � �r: � cos	

�r:

W � Fx �x � (� F
:

� cos	) �x

Fx � � F
:

� cos 	.
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FIGURE 9-11 ■ (a) A sled is pulled by a
rope that makes an angle 	 with the
ground as it moves toward the left. (b) The
components of the pulling force along a
positive x axis and perpendicular to it.

F
:

(a)

(b)

φ

–x

+y

F (Fy) j = ⎟ F⎟ sin    jˆ ˆ

(Fx) i = ⎟ F⎟ cos    iˆ ˆ
φ

φ

φ

180°

90°

270°

0°
Δr axis

Δr axis

FA

FA'

φ'
φ

(a)

180°

90°

270°

0°FB

FB'

φ' φ

(b)

rΔ

rΔ

FIGURE 9-12 ■ (a) If force or has
an angle or with respect
to the displacement vector of an ob-
ject, its component relative to the displace-
ment will be positive. (b) If a force or

has an angle with re-
spect to the displacement of an object,
its components relative to the displace-
ment will be negative.

�r:
90
 � 	 � 270
F

:
�B

F
:

B

�r:
	  270
	 � 90


F
:

�AF
:

A
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You can use similar considerations to determine the sign of work for 180
� 	 � 270

and for 270
 � 	 � 360
. Notice that once again it is the relative directions of the force
and displacement vectors that determine the work done. As we already stated, no matter
which way you choose to have the coordinate system pointing, the work for a particular
process (including its sign) stays the same.Thus, work is indeed a scalar quantity.

Cautions: There are two restrictions to using the equations above to calculate
work done on an object by a force. First, the force must be a constant force; that is, it
must not change in magnitude or direction as the object moves through its displace-
ment . Second, the object must be particle-like. This means that the object must be
rigid and not change shape as its center of mass moves.

Net Work Done by Several Forces Suppose the net force on a rigid object is given by
and we want to calculate the net work done by these

forces. As we discussed earlier, it is simple to prove mathematically that the net work
done on the object is the sum of the work done by the individual forces. We can calcu-
late the net work in two ways: (1) We can use WA � (Eq. 9-26) where
	 is the angle between the direction of and the object’s displacement to find the
work done by each force and then sum those works. Work is a scalar quantity, so sum-
ming the work done by the forces is as simple as adding up positive and negative
numbers. (2) Alternatively, we can first find the net force by finding the vector
sum of the individual forces. Then we can use (Eq. 9-26), substi-
tuting the magnitude of for the magnitude of , and the angle between the di-
rections of the net force and the displacement for 	.

Work Done by a Three-Dimensional Variable Force
In general, even if a force varies with position, a particle can move through an infini-
tesimal displacement while being acted on by a three-dimensional force .
The displacement can be expressed in rectangular coordinates as

(9-27)

If we restrict ourselves to considering forces with rectangular components that de-
pend only on the position component of the particle along a given axis, then

(9-28)

Given the fact that no work is done unless there is a force component along the line
of displacement, we can write the infinitesimal amount of work dW done on the parti-
cle by the force as

(9-29)

The work W done by while the particle moves from an initial position with coor-
dinates (x1, y1, z1) to a final position with coordinates (x2, y2, z2) is then

(9-30)

Note that if has only an x-component, then the y and z terms in the equa-
tion above are zero, so this equation reduces to 

(Eq. 9-8)W � �x2

x1

Fx(x) dx.

F
:

( r:)

W � �r2
:

r1
:

dW � �x2

x1

Fx (x) dx � �y2

y1

Fy (y) dy � �z2

z1

Fz (z) dz.

r:2

r:1F
:

dW � Fx(x) dx � Fy(y) dy � Fz(z) dz.

F
:

( r:)

F
:

( r:) � Fx (x)î � Fy(y)ĵ � Fz(z)k̂.

dr: � dx î � dy ĵ � dzk̂.

F
:

( r:)dr:

F
:

F
: net

W � � F
:

� ��r: � cos 	
F
: net

F
:

A

� F
:

A �� � r: �cos 	

F
: net � F

:

A � F
:

B � F
:

C � � � ,

�r:
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Figure 9-13a shows two industrial spies sliding an initially stationary
225 kg floor safe a displacement of magnitude 8.50 m, along
a straight line toward their truck.The push of Spy 001 is 12.0 N, di-
rected at an angle of 30° downward from the horizontal; the pull 
of Spy 002 is 10.0 N, directed at 40° above the horizontal. The magni-
tudes and directions of these forces do not change as the safe moves,
and the floor and safe make frictionless contact.

(a) What is the work done on the safe by forces and during
the displacement ?

S O L U T I O N ■ We use two Ke y  I d e a s here. First, the work W
done on the safe by the two forces is the sum of the works they do
individually. Second, because we can treat the safe as a particle and
the forces are constant in both magnitude and direction, we can use
Eq. 9-26,

,

to calculate those works. Note: cos(�	) � cos(�	). From this and the
free-body diagram for the safe in Fig. 9-13b, the work done by isF

:

1

(W � � F
:

� � �r: �cos 	)

�r:
F
:

2F
:

1

F
:

2

F
:

1

�r:
� 88.33 J,

and the work done by is

� 65.11 J.

Thus, the work done by both forces is

W � W1 � W2 � 88.33 J � 65.11 J

� 153.4 J � 153 J. (Answer)

During the 8.50 m displacement, therefore, the spies transfer 153 J
of energy to the kinetic energy of the safe.

(b) During the displacement, what is the work W grav done on the
safe by the gravitational force and what is the work W Normal

done on the safe by the normal force from the floor?

S O L U T I O N ■ The Ke y  I d e a is that, because these forces are
constant in both magnitude and direction, we can find the work
they do with Eq. 9-26. Thus, with mg as the magnitude of the gravi-
tational force, we write

(Answer)

and (Answer)

We should have known this result. Because these forces are perpen-
dicular to the displacement of the safe, they do zero work on the
safe and do not transfer any energy to or from it.

W Normal � N ��r: �cos 90
 � N ��r: �(0) � 0.

W grav � mg ��r: �cos 90
 � mg ��r: �(0) � 0,

N
:

F
: grav

W2 � � F2
:

� � �r: �cos 	 2 � (10.0 N)(8.50 m)(cos 40
)

F
:

2

W1 � � F
:

1 � � �r: �cos 	1 � (12.0 N)(8.50 m)(cos 30
)

TOUCHSTONE EXAMPLE 9-5: Sliding a Safe

READI NG EXERC IS E  9-4 : The figure shows four situations in which a force acts on a
box while the box slides rightward a distance across a frictionless floor. The magnitudes
of the forces are identical; their orientations are as shown. Rank the situations according
to the work done on the box by the force during the displacement, from most positive to most
negative.

■

� �x: �

(a) (b) (c) (d)

(a)

Safe

(b)

40°
30°

Spy 001
Spy 002

F grav F1

F2
N

rΔ

FIGURE 9-13 ■ (a) Two spies move a floor safe through displace-
ment (b) A free-body diagram showing the forces on the safe.�r:.
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9-8 Multiplying a Vector by a Vector: The Dot Product

In the previous section, we discussed how to calculate the work done by a force that
acts at some angle to the direction of an object’s motion. We saw that in one dimen-
sion work is defined as the scalar product of two vector components (force and dis-
placement). This may seem strange, but it is because only the component of the force
along a line relative to the direction of displacement contributes to the work done by
the force. This type of relationship between two vector quantities is so common that
mathematicians have defined an operation to represent it. That operation is called the
dot (or scalar) product. Learning about how to represent and calculate this product
will lead us to a more general mathematical definition of work for three-dimensional
situations. Application of the dot product will make the key equations we derived in
the previous section easier to represent.

The Dot Product of Two Vectors
The scalar or dot product of the vectors and in Fig. 9-14a is written as and
defined to be

(definition of scalar product), (9-31)

where is the magnitude of , is the magnitude of , and 	 is the angle between
and (or, more properly, between the directions of and ). There are actu-

ally two such angles, 	 and 360° � 	. Either can be used in � , be-
cause their cosines are the same.

Note that there are only scalars on the right side of � (includ-
ing the value of cos 	). Thus on the left side represents a scalar quantity. Being
scalars, the values of these quantities do not change, no matter how we choose to de-
fine our coordinate system. Because of the dot placed between the two vectors to
denote this product, the name usually used for it is “dot product” and is spoken
as “a dot b.”

As in the case of work, the dot product can be regarded as the product of two
quantities: (1) the magnitude of one of the vectors and (2) the component of the sec-
ond vector along the direction of the first vector. For example, in Fig. 9-14b, has a
component ( cos 	) along the direction of . Note that a perpendicular dropped
from the head of to determines that component. Alternatively, has a compo-
nent along the direction of .

If the angle 	 between two vectors is 0°, the component of one vector along the other is
maximum, and so also is the dot product of the vectors. If the angle 	 between two vectors
is 180
, the component of one vector along the other is a minimum. If, instead, 	 is 90°or
270°, the component of one vector along the other is zero, and so is the dot product.

Equation 9-31 ( � ) is sometimes rewritten as follows to em-
phasize the components:

� (9-32)

Here, ( ) is the component of along , and ( ) is the component of
along . The commutative law applies to a scalar product, so we can write

� b
:

 � a:.a: � b
:

b
:

a:
� a: � cos 	a:b

:
� b

:
� cos 	

� a: � (� b
:

�cos 	) � (� a: �cos 	)� b
:

�.a: � b
:

� a: � � b
:

�cos 	a: � b
:

a:� b
:

� cos 	
b
:

b
:

a:
b
:

� a: �
a:

a: � b
:

a: � b
:

� a: � � b
:

�cos 	a: � b
:

� a: � � b
:

�cos 	a: � b
:

b
:

a:b
:

a:
b
:

� b
:

�a:� a: �

a: � b
:

� � a: � � b
:

� cos 	

a: � b
:

b
:

a:

FIGURE 9-14 ■ (a) Two vectors and 
with an angle 	 between them.
Since each vector has a component along
the direction of the other vector, the same
dot product results from: (b) multiplying
the component of on by or (c)
multiplying the component of on by

.� a: �
a:b

:
� b

:
�b

:
a:

b
:

a:

a

a

b
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When two vectors are in unit-vector notation in one, two, or three dimensions, it can
be shown mathematically that we will get the same result shown in Eq. 9-32 by writing
the dot product as

(9-33)

which we can expand according to the distributive law: Each component of the first
vector is to be “dotted” with each component of the second vector. For example, the
first step is 

Since is perpendicular to both and , there is no component of along the other
two unit vectors, the angle between them is 90o, and so . On the
other hand, is completely along , the angle here is 0o, and so . Therefore,

If we continue along these lines, we find that 

(9-34)

Defining the Work Done as a Dot Product 
If the force is constant over a displacement , we can use the definition of a dot
product above and the relationship cos 	 in Eq. 9-26 to produce an al-
ternative mathematical definition for work,

(definition of work done by a constant force). (9-35)

If the force is variable we can still use the definition of a dot product above along with
the relationship presented in Eq. 9-30, where we integrated over infinitesimal dis-
placements:

to produce a more general alternative mathematical definition for work:

(definition of work done by a variable force). (9-36)

This dot product representation of work has some advantages. For one, the notation
is more compact. It is also especially useful for calculating work when and 
or are given in unit-vector notation because we can exploit the fact that 

� axbx � ayby � azbz (Eq. 9-34).

9-9 Net Work and Translational Kinetic Energy 

Generalizing the Net Work-Kinetic Energy Theorem
We know from Newton’s laws that if you apply a force to an object in the same direc-
tion as the object’s motion, the object’s speed will increase. From our discussion of

a: � b
:
�r:

dr:F
:

W ��r2
:

r1
:

F
:

( r: ) � dr:

W � �r2
:

r1
:

dW � �x2

x1

Fx(x) dx � � y2

y1

Fy(y) dy � � z2

z1

Fz(z) dz,

W � F
:

� �r:

W � � F
:

� � � r: �
� r:

a: � b
:

� ax bx � ay by � az bz.

ax î �  (bx î � by ĵ � bz k̂) � axbx.

î �  î � 1îî
î �  ĵ � î �  k̂ � 0

îk̂ĵî

ax î �  (bx î � by ĵ � bz k̂) � axbx (î �  î) � ax by (î �  ĵ) � ax bz (î �  k̂).

a: � b
:

� (ax î � ay ĵ � az k̂) �  (bx î � by ĵ � bz k̂),
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work, we also know that the force does positive work on the object. If you apply the
force in the direction opposite the direction of the object’s motion, the object’s speed
will decrease, and we know that in that case the force will do negative work on the ob-
ject. This suggests that work done by forces correlates with changes in speed. We used
these considerations to relate work and kinetic energy for the special case of a bead
on a wire that experiences a single force in the direction of the wire. In doing so, we
developed a net work-kinetic energy theorem for one-dimensional forces and mo-
tions given by 

(the 1D net work-kinetic energy theorem), (Eq. 9-11)

where (Eq. 9-7) and (Eq. 9-10)

Can we extend this to our more general three-dimensional situation? Fortunately
we can combine 

(Eq. 9-6)

and our general expression for work in three dimensions (Eq. 9-30) and rearrange
terms to get

(9-37)

Since the speed of a particle moving in three dimensions is given by 
and

this reduces to

(3D net work-kinetic energy theorem for variable force), (9-38)

where represents a more general definition of the kinetic energy of a parti-
cle of mass m with its center of mass moving with speed v. In words, Eq. 9-38 tells
us that

Net work done on the particle � Change in its translational kinetic energy.

This relationship is valid in one, two, or three dimensions.

Experimental Verification of the Net 
Work-Kinetic Energy Theorem
Experimental verification of the one-dimensional net work-kinetic energy theorem is
shown in Figs. 9-15 and 9-16. A low-friction cart with a force sensor attached to it is
pulled along a smooth track from x1 � 0.6 m to x2 � 1.2 m with a variable applied
force. The applied force is measured with a force sensor. The distance along the track
is measured with a motion detector. Both measurements are fed to a computer for

K � 1
2mv2

W net � K2 � K1

W � �r2
:

r1
:

F
:

( r:)�dr: � �x2

x1

Fx (x) dx � �y2

y1

Fy (y) dy � �z2

z1

Fz (z) dz,

v2 � v2
x � v2

y � v2
z

� 1
2m(v2

2 x � v2
2 y � v2

2 z) � 1
2m(v2

1 x � v2
1 y � v2

1 z).

W net � �x2

x1

F net
x (x) dx � �y2

y1

F net
y (y) dy � �z2

z1

F net
z (z) dz

�x2

x1

F net
x (x) dx � 1

2 mv2
2 x � 1

2mv2
1 x,

K � 1
2 mv2

x.W net � �x2

x1

F net
x (x) dx

W net � K2 � K1
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display. If we ignore friction, then W net � W app. The net work is given by the area un-
der the curve obtained when data for the net force vs. distance is graphed. This area
(determined by numerical integration as in Fig. 9-9) gives us 

The distance and time data are used to determine the velocity of the cart at each loca-
tion. The cart mass (m � 1.5 kg) and velocity are then used to determine the transla-
tional kinetic energy of the cart as a function of its location along the track. The
change in kinetic energy between x1 � 0.6 m and x2 � 1.6 m is 

as expected according to the net work-kinetic energy theorem.

Lifting and Lowering—Net Work and Kinetic Energy 
Suppose we lift a particle-like object by applying a vertical force to it as shown in
Fig. 9-17. During the upward displacement, our applied force does positive work W app

on the object while the gravitational force does negative work W grav on it. Our force
adds energy to (or transfers energy to) the object while the gravitational force re-
moves energy from (or transfers energy from) it. By �K � K2 � K1 (Eq. 9-38), the
change �K in the translational kinetic energy of the object due to these two energy
transfers is

(9-39)

This equation also applies if we lower the object. However, then the gravitational
force tends to transfer energy to the object whereas our force tends to transfer energy
from it.

A common situation involves an object that is stationary before and after being
lifted. For example, suppose you lift a book from the floor to a shelf. Then K2 and K1

are both zero, and reduces to

or (if object starts and ends at rest). (9-40)W app � �W grav

W net � W app � W grav � 0 N,

�K � K2 � K1 � W net � W app � W grav

�K � K2 � K1 � W net � W app � W grav.

F
:

y

�K � K2 � K1 � 1.4 J � 0.1 J � 1.3 J,

W net � �x2

x1

Fx
net (x) dx � 1.3 J.
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FIGURE 9-16 ■ Experimental verification of the net work-kinetic energy theorem for a cart
undergoing one-dimensional horizontal motion under the influence of a variable applied force
and a negligible friction force.

FIGURE 9-15 ■ A variable force is applied
to a force sensor attached to a cart on a
horizontal track. The cart’s position and
velocity are recorded using a motion sen-
sor. The friction force is negligible.

FIGURE 9-17 ■ An upward force is ap-
plied to an object in the presence of a
downward gravitational force: (a) As the
object rises, the applied force does positive
work while the gravitational force does
negative work. (b) As the object is lowered
the applied force does negative work on
the object while the gravitational force
does positive work.
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Note that we get the same result if K2 and K1 are not zero but are still equal. This re-
sult means that the work done by the applied force is the negative of the work done
by the gravitational force. That is, the applied force transfers the same amount of en-
ergy to the object as the gravitational force takes away from it (whenever the initial
and final speeds of an object are the same).

Falling on an Incline—The Skier on a Curved Ramp
Finally, we are ready to return to the question of how to find the speed of a skier
(shown in Fig. 9-1) as a function of how far she has descended on a frictionless ramp.
Suppose we would like to know the speed of the skier shown in Fig. 9-1 as she leaves
the end of a long curved ramp in order to predict how far she can jump. Let us revisit
our initial claim that the net work-kinetic energy theorem is much more useful than
Newton’s Second Law for this calculation. The net work-kinetic energy theorem is
only useful in this particular case if we make the simplifying assumptions that: (1) we
can neglect frictional forces; (2) the skier doesn’t push with her poles as she slides
down the ramp; and (3) she holds her body rigid.

Given these assumptions, we can determine the net force on the skier’s center of
mass when she is at an arbitrary location on the ramp (Fig. 9-18a). This net force is the
sum of forces shown in the free-body diagram in Fig. 9-18b. Figure 9-18c shows the
components of the normal force and the gravitational force parallel and perpendicu-
lar to the ramp. Since there is no motion perpendicular to the ramp at a given loca-
tion, the force components perpendicular to the ramp cancel out. So the net force acts
parallel to the ramp. Its component down the ramp is given by where
� is the angle between the horizontal and the ramp.

Our problem now is to take into account the fact that � keeps changing along the
curved ramp. To do this we can divide the ramp into a whole series of tiny ramps hav-
ing sides dx, dy, and a length dr as shown in Fig. 9-19a. A greatly enlarged picture of
one of these infinitesimal ramps is shown in Fig. 9-19b. The infinitesimal work done in
traveling a distance dr down any one of the tiny ramps is given by

(9-41)

but since sin � � dy/dr, we see that dW becomes simply (�mg) dy. This is a very pro-
found result because it tells us that the work done by a rigid object as it falls down a
frictionless ramp does not depend on the angle of the ramp but only on the constant
factor �mg and the vertical distance through which the object’s center of mass falls.
We will return to this idea in Chapter 10.

If we integrate the net force over the collection of tiny ramps we get

(9-42)

where �y (like ) is a negative quantity because y2 � y1.
Now that we have obtained a simple expression for the net work done by the

gravitational force as the skier goes down the ramp, we can use the net work-kinetic
energy theorem (Eq. 9-38) to find the skier’s speed at the bottom of the ramp. If the
skier starts from rest so that her initial speed is v1 � 0 m/s, then

so that (9-43)

Solving for the final speed gives us

(9-44)v2 � √2g�y.

W net � mg�y � 1
2m(v2

2).W net � K2 � K1

F grav
y

� �y2

y1

(�mg) dy � �mg(y2 � y1) � �mg �y � Fy
grav �y,

W net � �r2
:

r1
:

F
:net ( r:) � dr: � �r2

r1

F�� dr

dW � F��dr � (�mg sin � dr),

F��
net � mg sin �

FIGURE 9-18 ■ (a) A curved ramp makes
an angle with respect to the horizontal at
the location of a skier. (b) A free-body dia-
gram showing the forces on the skier. (c) A
diagram showing the resolution of 
into the components parallel and perpen-
dicular to the ramp.
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FIGURE 9-19 ■ (a) The ramp can be di-
vided into many smaller ramps, each possi-
bly having a different �. (b) A ramp of infin-
itesimal length dr with a vertical component
dy and a horizontal component dx.
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TOUCHSTONE EXAMPLE 9-7: Crate on a Ramp

An initially stationary 15.0 kg crate of cheese wheels is pulled, via a
cable, a distance d � 5.70 m up a frictionless ramp to a height h of
2.50 m, where it stops (Fig. 9-20a).

(a) How much work W grav is done on the crate by the gravitational
force during the lift?

S O L U T I O N ■ A Ke y  I d e a is that we can treat the crate as a
particle and thus use Eq. 9-26 to find the
work W grav done by . However, we do not know the angle 	
between the directions of and displacement . From the
crate’s free-body diagram in Fig. 9-20b, we find that 	 is � � 90°,
where � is the (unknown) angle of the ramp. Equation 9-26 then
gives us

(9-45)W grav � mgd cos(� � 90
) � �mgd sin �,

�r:F
: grav

F
: grav

(W � � F
:

� � �r: � cos 	)

F
: grav

where we have used a trigonometric identity to simplify the expres-
sion. The result seems to be useless because � is unknown. But
(continuing with physics courage) we see from Fig. 9-20a that

, where h is a known quantity. With this substitution,
Eq. 9-45 becomes

(9-46)

(Answer)

Note that Eq. 9-46 tells us that the work W grav done by the gravita-
tional force depends on the vertical displacement but (perhaps sur-
prisingly) not on the horizontal displacement. (Again, we return to
this point in Chapter 10.)

� �368 J.

� �(15.0 kg)(9.8 N/kg)(2.50 m)

W grav � �mgh

sin� � h/d

Let us return to the lifting feats of Andrey Chemerkin shown on
the opening page of this chapter.

(a) Chemerkin made his record-breaking lift with rigidly connected
objects (a barbell and disk weights) having a total mass m � 260.0 kg.
He lifted them a distance of 2.0 m. During the lift, how much work
was done on the objects by the gravitational force acting on
them?

S O L U T I O N ■ The Ke y  I d e a here is that we can treat the
rigidly connected objects as a single particle and thus use Eq. 9-14,

to find the work W grav done on them by . The total weight mg
was 2548 N, and . Thus,

� �5100 J.
(Answer)

(b) How much work was done on the objects by Chemerkin’s force
during the lift?

S O L U T I O N ■ We do not have an expression for Chemerkin’s
force on the object, and even if we did, his force was certainly
not constant. Thus, one Ke y  I d e a here is that we cannot just sub-
stitute his force into Eq. 9-12 to find his work. However, we know
that the objects were stationary at the start and end of the lift, so

W grav � �mg�y � �(2548 N)(2.0 m)

�y � �2.0 m
F
: grav

W grav � �mg�y,

F
: grav

TOUCHSTONE EXAMPLE 9-6: Weight Lifting

that K2 � K1 � 0. Therefore, as a second Ke y  I d e a , we know by
the net work-kinetic energy theorem that the work W app done by
Chemerkin’s applied force was the negative of the work W grav done
by the gravitational force . Equation 9-40 expresses this fact
and gives us

(Answer)

(c) While Chemerkin held the objects stationary above his head,
how much work was done on them by his force?

S O L U T I O N ■ The Ke y  I d e a is that when he supported the
objects, they were stationary. Thus, their displacement � 0 and,
by Eq. 9-36, the work done on them was zero (even though sup-
porting them was a very tiring task).

(d) How much work was done by the force Paul Anderson applied
to lift objects with a total weight of 27 900 N a distance of 1.0 cm?

S O L U T I O N ■ Following the argument of parts (a) and (b) but
now with and , we find

� (27 900 N)(0.010 m) � 280 J. (Answer)

Anderson’s lift required a tremendous upward force but only a
small energy transfer of 280 J because of the short displacement in-
volved.

W app � �W grav � �(�mg �y) � �mg �y

�y � 1.0 cmmg � 27 900 N

� r:

W app � �W grav � �5100 J.

F
: grav

Note that using Newton’s Second Law to find this speed would be extremely diffi-
cult because it requires us to keep track of the angle of the ramp at each location. We
will further explore the advantages of the net work-kinetic energy theorem for other
situations in the next chapter.
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(b) How much work W rope is done on the crate by the force from
the cable during the lift?

S O L U T I O N ■ We cannot just substitute the force magnitude 
T for in Eq. 9-26 because we do not know
the value of T. However, a Ke y  I d e a to get us going is that we
can treat the crate as a particle and then apply the work-kinetic en-
ergy theorem to it. Because the crate is stationary be-
fore and after the lift, the change �K in its kinetic energy is zero.
For the net work W net done on the crate, we must sum the works
done by all three forces acting on the crate. From (a), the work

(W net � �K)

(W � � F
:

�� �r: �cos	)� F
:

�

T
:

W grav done by the gravitational force is �368 J. The work
W Normal done by the normal force on the crate from the ramp 
is zero because is perpendicular to the displacement. We want
the work W rope done by . Thus, the work-kinetic energy theorem
gives us

or

and so (Answer)W rope � 368 J.

0 � W rope � 368 J �  0,

�K � W rope � W grav � W Normal,

T
:

N
:

N
:

F
: grav

Crate

d

Cable

(a)

θ

h
Frictionless

T θ

(b)

φ

r

T

N

F grav

Δ

FIGURE 9-20 ■ (a) A crate is pulled up a frictionless ramp by a force parallel to the ramp.
(b) A free-body diagram for the crate, showing all the forces on it. Its displacement is also
shown.

�r:
T
:

9-10 Power

A contractor wishes to lift a load of bricks from the sidewalk to the top of a building
using a winch. We can now calculate how much work the force applied by the winch
must do on the load to make the lift. The contractor, however, is much more inter-
ested in the rate at which that work is done. Will the job take 5 minutes (acceptable)
or a week (unacceptable)?

The rate at which work is done by a force is called the power. If an amount of
work W is done in an amount of time by a force, we define the average power due
to the work done by a force during that time interval as

(definition of average power). (9-47)

We define the instantaneous power P as the instantaneous rate of doing work, so that 

(definition of instantaneous power), (9-48)

where dW is the infinitesimal amount of work done in an infinitesimal time interval
dt. Suppose we know the work W(t) done by a force as a continuous well-behaved

P �
dW
dt

�P� �
W
�t

�t
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function of time. Then to get the instantaneous power P at, say, time during
the work, we would first take the time derivative of W(t), and then evaluate the result
for .

The SI unit of power is the joule per second. This unit is used so often that it has a
special name, the watt (W), after James Watt (who greatly improved the rate at which
steam engines could do work). In the British system, the unit of power is the foot-
pound per second. Often the horsepower is used. Some relations among these units
are

(9-49)

and . (9-50)

Inspection of Eq. 9-47 shows that we can express work as power multiplied by
time, . When we do this, we commonly use the unit of kilowatt-hour. Thus,

(9-51)

Perhaps because the unit of kilowatt-hour appears on our utility bills, it has be-
come identified as an electrical unit. However, the kilowatt-hour can be used
equally well as a unit for other examples of work (or energy). Thus, if you pick up
this book from the floor and put it on a tabletop, you are free to report the work
that you have done as (or alternatively converting to milliwatts to
get as ).

We can also express the rate at which a force does work on a particle (or particle-
like object) in terms of that force and the body’s velocity. For a particle that is moving
along a straight line (say, the x axis) and acted on by a constant force directed at
some angle 	 to that line, (Eq. 9-48) becomes

,

but since we get

(9-52)

Reorganizing the right side of this equation as the dot product we may rewrite
Eq. 9-52 as

(instantaneous power). (9-53)

For example, the truck in Fig. 9-21 exerts a force on the trailing load, which has ve-
locity at some instant. The instantaneous power due to is the rate at which 
does work on the load at that instant and is given by Eq. 9-52 and 
(Eq. 9-53). Saying that this power is “the power of the truck” is often acceptable, but
we should keep in mind what is meant: Power is the rate at which the applied force
does work.

READI NG EXERC IS E  9-5 : A block moves with uniform circular motion because a
cord tied to the block is anchored at the center of a circle. Is the power due to the force on the
block from the cord positive, negative, or zero? ■

P � F
:

� v:
F
:

F
:

v:
F
:

P � F
:

� v:

F
:

� v:

P � � F
:

�� vx �cos 	.

vx � dx/dt,

dx
dt

P �
dW
dt

�
 (� F

:
�cos 	) � dx �

dt
� � F

:
�cos 	

P � dW/dt
F
:

4 mW �  h
4 � 10�6 kW �  h

 � 3.6 � 106 J � 3.6 MJ.

1 kilowatt-hour � 1 kW �  h � (103 W)(3600 s)

W � �P��t

1 horsepower � 1 hp � 550 ft � lb/s � 746 W

1 watt � 1 W � 1 J/s � 0.738 ft � lb/s

t � 3.0 s

t � 3.0 s

FIGURE 9-21 ■ The power due to the
truck’s applied force on the trailing load is
the rate at which that force does work on
the load.



SEC. 9-2 ■ INTRODUCTION TO WORK AND

KINETIC ENERGY

1. Electron in Copper If an electron (mass m � 9.11 � l0�31 kg) in
copper near the lowest possible temperature has a kinetic energy of
6.7 � l0�19 J, what is the speed of the electron?

2. Large Meteorite vs. TNT
On August 10, l972, a large
meteorite skipped across
the atmosphere above west-
ern United States and
Canada, much like a stone
skipped across water. The
accompanying fireball was
so bright that it could be
seen in the daytime sky (see
Fig. 9-22 for a similar
event). The meteorite’s
mass was about 4 � 106 kg;
its speed was about 15 km/s.
Had it entered the atmosphere vertically, it would have hit Earth’s
surface with about the same speed. (a) Calculate the meteorite’s
loss of kinetic energy (in joules) that would have been associated
with the vertical impact. (b) Express the energy as a multiple of the
explosive energy of 1 megaton of TNT, which is 4.2 � 1015 J. (c) The
energy associated with the atomic bomb explosion over Hiroshima
was equivalent to 13 kilotons of TNT. To how many Hiroshima
bombs would the meteorite impact have been equivalent?

Problems 251

3. Calculate Kinetic Energy Calculate the kinetic energies of the
following objects moving at the given speeds: (a) a 110 kg football
linebacker running at 8.1 m/s; (b) a 4.2 g bullet at 950 m/s; (c) the
aircraft carrier Nimitz, 40.2 � 108 kg at 32 knots.

4. Father Racing Son A father racing his son has half the kinetic
energy of the son, who has half the mass of the father. The father
speeds up by 1.0 m/s and then has the same kinetic energy as the
son. What are the original speeds of (a) the father and (b) the son?

5. A Proton is Accelerated A proton (mass m � 1.67 � 10�27 kg) is
being accelerated along a straight line at 3.6 � 1013 m/s2 in a machine.
If the proton has an initial speed of 2.4 � 107 m/s and travels 3.5 cm,
what then is (a) its speed and (b) the increase in its kinetic energy?

6. Vehicle’s Kinetic Energy If a vehicle with a mass of 1200 kg has
a speed of 120 km/h, what is the vehicle’s kinetic energy as deter-
mined by someone at rest alongside the vehicle’s road?

7. Truck Traveling North A 2100 kg truck traveling north at 41 km/h
turns east and accelerates to 51 km/h. (a) What is the change in the
kinetic energy of the truck? What are the (b) magnitude and (c) direc-
tion of the change in the translational momentum of the truck?

8. Two Pieces from One An object, with mass m and speed v rela-
tive to an observer, explodes into two pieces, one three times as mas-
sive as the other; the explosion takes place in deep space. The less
massive piece stops relative to the observer. How much kinetic energy
is added to the system in the explosion, as measured in the observer’s
reference frame? Hint:Translational momentum is conserved.

9. Freight Car A railroad freight car of mass 3.18 � l04 kg collides
with a stationary caboose car. They couple together, and 27.0% of

TOUCHSTONE EXAMPLE 9-8: Average and Instantaneous Power

A horizontal cable accelerates a suspicious package across a fric-
tionless horizontal floor. The amount of work that has been done by
the cable’s force on the package is given by .

(a) What is the average power due to the cable’s force in the
time interval s to ?

S O L U T I O N ■ The Key  Idea here is that the average power 
is the ratio of the amount of work W done in the given time interval
to that time interval (Eq. 9-47). To find the work W, we evaluate the
amount of work that has been done, W(t), at s and . At
those times, the cable has done work W1 and W2, respectively:

and

Therefore, in the 10 s interval, the work done is 
Equation 9-47 then gives us

(Answer)�P� �
W
�t

�
20  J
10 s

� 2.0 W.

W2 � W1 � 20 J.

W2 � (0.20 J/s2)(10  s)2 � 20 J.W1 � (0.20 J/s2)(0  s)2 � 0 J

t � 10 st � 0

�P�

t2 � 10 st1 � 0
�P�

W(t) � (0.20  J/s2)t2

Thus, during the 10 s interval, the cable does work at the average
rate of 2.0 joules per second.

(b) What is the instantaneous power P due to the cable’s force at
, and is P then increasing or decreasing?

S O L U T I O N ■ The Ke y  I d e a here is that the instantaneous
power P at is the time derivative of the work dW/dt evalu-
ated at (Eq. 9-48). Taking the derivative of W(t) gives us

This result tells us that as time t increases, so does P. Evaluating P
for , we find

(Answer)

Thus, at , the cable is doing work at the rate of 1.20 joules
per second, and that rate is increasing.

t � 3.0s

P � (0.40 J/s2)(3.0 s) � 1.20 W.

t � 3.0  s

P �
dW
dt

�
d
dt

 [(0.20 J/s2)t2] � (0.40 J/s2)t.

t � 3.0  s
t � 3.0  s

t � 3.0 s
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FIGURE 9-22 ■ Problem 2. A large
meteorite skips across the atmo-
sphere in the sky above the Ottawa
region.



the initial kinetic energy is transferred to nonconservative forms of
energy (thermal, sound, vibrational, and so on). Find the mass of
the caboose. Hint: Translational momentum is conserved.

10. Two Chunks An 8.0 kg body is traveling at 2.0 m/s with no ex-
ternal force acting on it. At a certain instant an internal explosion
occurs, splitting the body into two chunks of 4.0 kg mass each. The
explosion gives the chunks an additional 16 J of kinetic energy.
Neither chunk leaves the line of original motion. Determine the
speed and direction of motion of each of the chunks after the ex-
plosion. Hint: Translational momentum is conserved.

11. Kinetic Energy and Impulse A ball having a mass of 150 g
strikes a wall with a speed of 5.2 m/s and rebounds straight back
with only 50% of its initial kinetic energy. (a) What is the speed of
the ball immediately after rebounding? (b) What is the magnitude
of the impulse on the wall from the ball? (c) If the ball was in con-
tact with the wall for 7.6 ms, what was the magnitude of the average
force on the ball from the wall during this time interval?

12. Unmanned Space Probe A 2500 kg unmanned space probe is
moving in a straight line at a constant speed of 300 m/s. Control rock-
ets on the space probe execute a burn in which a thrust of 3000 N
acts for 65.0 s. (a) What is the change in the magnitude of the probe’s
translational momentum if the thrust is backward, forward, or di-
rectly sideways? (b) What is the change in kinetic energy under the
same three conditions? Assume that the mass of the ejected burn
products is negligible compared to the mass of the space probe.

SEC. 9-6 ■ WORK FOR A ONE-DIMENSIONAL

VARIABLE FORCE

13. Graph of Acceleration Figure
9-23 gives the acceleration of a 
2.00 kg particle as it moves from
rest along an x axis while an ax

applied force acts on it from
x � 0 m to x � 9 m. How much
work has the force done on the
particle when the particle reaches
(a) x � 4 m, (b) x � 7 m, and 
(c) x � 9 m? What is the particle’s
speed and direction of travel when
it reaches (d) x � 4 m, (e) x � 7 m,
and (f) x � 9 m?

14. Can of Nuts and Bolts A can
of nuts and bolts is pushed 2.00 m
along an x axis by a broom along
the greasy (frictionless) floor of a
car repair shop in a version of shuf-
fleboard. Figure 9-24 gives the
work W done on the can by the
constant horizontal force from the
broom, versus the can’s position x.
(a) What is the magnitude of that
force? (b) If the can had an initial
kinetic energy of 3.00 J, moving in
the positive direction of the x axis,
what is its kinetic energy at the end
of the 2.00 m displacement?

15. Single Force A single force
acts on a body that moves along an

F
: app

x axis. Figure 9-25 shows the velocity component vx versus time t for
the body. For each of the intervals AB, BC, CD, and DE, give the
sign (plus or minus) of the work done by the force on the body or
state that the work is zero.

16. Block Attached to a Spring The block in Fig. 9-7 lies on a hor-
izontal frictionless surface and is attached to the free end of the
spring, with a spring constant of 50 N/m. Initially, the spring is at
its relaxed length and the block is stationary at position x � 0 m.
Then an applied force with a constant magnitude of 3.0 N pulls
the block in the positive direction of the x axis, stretching the
spring until the block stops. When that stopping point is reached,
what are (a) the position of the block, (b) the work that has been
done on the block by the applied force, and (c) the work that has
been done on the block by the spring force? During the block’s
displacement, what are (d) the block’s position when its kinetic
energy is maximum and (e) the value of that maximum kinetic
energy?

17. Luge Rider A luge and rider, with a total mass of 85 kg,
emerge from a downhill track onto a horizontal straight track with
an initial speed of 37 m/s. If they slow at a constant rate of 2.0 m/s2,
(a) what magnitude F is required for the slowing force, (b) what
distance d do they travel while slowing, and (c) what work W is
done on them by the slowing force? What are (d) F, (e) d, and (f) W
if the luge and the rider slow at a rate of 4.0 m/s2?

18. Work from Graph A 5.0
kg block moves in a straight
line on a horizontal frictionless
surface under the influence of a
force that varies with position
as shown in Fig. 9-26. How
much work is done by the force
as the block moves from the
origin to x � 8.0 m?

19. Brick A 10 kg brick moves
along an x axis. Its acceleration
as a function of its position is
shown in Fig. 9-27. What is the
net work done on the brick by
the force causing the accelera-
tion as the brick moves from 
x � 0 m to x � 8.0 m?

20. Velodrome (a) In 1975 the
roof of Montreal’s Velodrome,
with a weight of 360 kN, was
lifted by 10 cm so that it could
be centered. How much work
was done on the roof by the
forces making the lift? (b) In
1960, Mrs. Maxwell Rogers of
Tampa, Florida, reportedly raised one end of a car that had fallen
onto her son when a jack failed. If her panic lift effectively raised
4000 N (about of the car’s weight) by 5.0 cm, how much work did
her force do on the car?

21. Two Pulleys and a Canister In Fig. 9-28, a cord runs around two
massless, frictionless pulleys; a canister with mass m � 20 kg hangs
from one pulley; and you exert a force on the free end of the
cord. (a) What must be the magnitude of if you are to lift the
canister at a constant speed? (b) To lift the canister by 2.0 cm, how
far must you pull the free end of the cord? During that lift, what is
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the work done on the canister by (c)
your force (via the cord) and (d) the
gravitational force on the canister?
(Hint: When a cord loops around a
pulley as shown, it pulls on the pul-
ley with a net force that is twice the
tension in the cord.)

22. Spring at MIT During spring
semester at MIT, residents of the
parallel buildings of the East Cam-
pus dorms battle one another with
large catapults that are made with
surgical hose mounted on a window
frame. A balloon filled with dyed
water is placed in a pouch attached
to the hose, which is then stretched
through the width of the room. Assume that the stretching of the
hose obeys Hooke’s law with a spring constant of 100 N/m. If the
hose is stretched by 5.00 m and then released, how much work does
the force from the hose do on the balloon in the pouch by the time
the hose reaches its relaxed length?

23. Plot F(x) The force on a particle is directed along an x axis and
given by Fx � F0(x/x0 � 1). Find the work done by the force in
moving the particle from x � 0 to x � 2x0 by (a) plotting Fx (x) and
measuring the work from the graph and (b) integrating Fx (x).

24. Block Dropped on a Spring A 250 g
block is dropped onto a relaxed vertical
spring that has a spring constant of k �
2.5 N/cm (Fig. 9-29). The block becomes
attached to the spring and compresses
the spring 12 cm before turning around.
While the spring is being compressed,
what work is done on the block by (a)
the gravitational force on it and (b) the
spring force? (c) What is the speed of
the block just before it hits the spring?
(Assume that friction is negligible.) (d)
If the speed at impact is doubled, what is
the maximum compression of the
spring?

25. Bird Cage A spring with a spring
constant of 15 N/cm has a cage attached
to one end (Fig. 9-30). (a) How much work does the spring force do
on the cage when the spring is stretched from its relaxed length by
7.6 mm? (b) How much additional work is done by the spring force
when the spring is stretched by an additional 7.6 mm?

FIGURE 9-30 ■ Problem 25.

SEC. 9-7 ■ FORCE AND DISPLACEMENT IN MORE THAN

ONE DIMENSION

26. Constant Force A constant force of magnitude 10 N makes an
angle of 150° (measured counterclockwise) with the positive x di-
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rection as it acts on a 2.0 kg object moving in the xy plane. How
much work is done on the object by the force as the object moves
from the origin to the point with position vector (2.0 m) � (4.0 m) ?

27. Force on a Particle A force � (4.0 N) � (c N) acts on a
particle as the particle goes through displacement � (3.0 m) �
(2.0 m) . (Other forces also act on the particle.) What is the value of c
if the work done on the particle by force is (a) zero, (b) 17 J, and
(c) �18 J?

28. Crate on an Incline To push a 25.0 kg crate up a frictionless in-
cline, angled at 25.0° to the horizontal, a worker exerts a force of
magnitude 209 N parallel to the incline. As the crate slides 1.50 m,
how much work is done on the crate by (a) the worker’s applied
force, (b) the gravitational force on the crate, and (c) the normal
force exerted by the incline on the crate? (d) What is the total work
done on the crate?

29. Cargo Canister Figure 9-31
shows an overhead view of three
horizontal forces acting on a cargo
canister that was initially stationary
but that now moves across a friction-
less floor. The force magnitudes are
FA � 3.00 N, FB � 4.00 N, and FC �
10.0 N. What is the net work done on
the canister by the three forces dur-
ing the first 4.00 m of displacement?

30. A Particle Moves A particle moves along a straight path
through displacement � (8 m) � (c m) while force �
(2 N) � (4 N) acts on it. (Other forces also act on the particle.)
What is the value of c if the work done by on the particle is 
(a) zero, (b) positive, and (c) negative?

31. Worker Pulling Crate To pull a 50 kg crate across a horizontal
frictionless floor, a worker applies a force of 210 N, directed 20°
above the horizontal. As the crate moves 3.0 m, what work is done
on the crate by (a) the worker’s force, (b) the gravitational force on
the crate, and (c) the normal force on the crate from the floor? (d)
What is the total work done on the crate?

32. Floating Ice Block A floating ice block is pushed through a dis-
placement � (15 m) � (12 m) along a straight embankment by
rushing water, which exerts a force � (210 N) � (150 N) on the
block. How much work does the force do on the block during the
displacement?

33. Coin on a Frictionless Plane A coin slides over a frictionless
plane and across an xy coordinate system from the origin to a point
with xy coordinates (3.0 m, 4.0 m) while a constant force acts on it.
The force has magnitude 2.0 N and is directed at a counterclockwise
angle of l00° from the positive direction of the x axis. How much
work is done by the force on the coin during the displacement?

34. Work Done by 2-D Force What work is done by a force � 
((2 N/m)x) � (3 N) , with x in meters, that moves a particle from a
position � (2 m) � (3 m) to a position � � (4 m) � (3 m) ?

SEC. 9-9 ■ NET WORK AND TRANSLATIONAL

KINETIC ENERGY

35. Cold Hot Dogs Figure 9-32 shows a cold package of hot dogs
sliding rightward across a frictionless floor through a distance d �
20.0 cm while three forces are applied to it. Two of the forces are
horizontal and have the magnitudes FA � 5.00 N and FB � 1.00 N;
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the third force is angled down by � � �60.0° and has the magni-
tude FC � 4.00 N. (a) For the 20.0 cm displacement, what is the net
work done on the package by the three applied forces, the gravita-
tional force on the package, and the normal force on the package?
(b) If the package has a mass of 2.0 kg and an initial kinetic energy
of 0 J, what is its speed at the end of the displacement?

FIGURE 9-32 ■ Problem 35.

36. Air Track A 1.0 kg standard body is at rest on a frictionless
horizontal air track when a constant horizontal force acting in
the positive direction of an x axis along the track is applied to the
body. A stroboscopic graph of the position of the body as it slides to
the right is shown in Fig. 9-33. The force is applied to the body at
t1 � 0.0 s, and the graph records the position of the body at 0.50 s
intervals. How much work is done on the body by the applied force

between t1 � 0.0 s and t2 � 2.0 s?

FIGURE 9-33 ■ Problem 36.

37. Three Forces Figure 9-34
shows three forces applied to a
trunk that moves leftward by 3.00 m
over a frictionless floor. The force
magnitudes are FA � 5.00 N, FB �
9.00 N, and FC � 3.00 N. During the
displacement, (a) what is the net
work done on the trunk by the
three forces and (b) does the ki-
netic energy of the trunk increase
or decrease?

38. Block of Ice In Fig. 9-35, a
block of ice slides down a friction-
less ramp at angle � � 50°, while an
ice worker pulls up the ramp (via a
rope) with a force of magnitude Fr

� 50 N. As the block slides through
distance d � 0.50 m along the ramp,
its kinetic energy increases by 80 J.
How much greater would its kinetic
energy have been if the rope had
not been attached to the block?

39. Helicopter A helicopter hoists a 72 kg astronaut 15 m verti-
cally from the ocean by means of a cable. The acceleration of the
astronaut is g/10. How much work is done on the astronaut by 
(a) the force from the helicopter and (b) the gravitational force on
her? What are the (c) kinetic energy and (d) speed of the astronaut
just before she reaches the helicopter?

40. Given x(t) A force acts on a 3.0 kg particle-like object in such a
way that the position of the object as a function of time is given by 

F
:

F
:

F
:

x � (3 m/s)t � (4 m/s2)t2 � (1 m/s3)t3 with x in meters and t in seconds.
Find the work done on the object by the force from t1 � 0.0 s to
t2 � 4.0 s. (Hint: What are the speeds at those times?)

41. Lowering a Block A cord is used to vertically lower an initially
stationary block of mass M at a constant downward acceleration of
g/4. When the block has fallen a distance d, find (a) the work done
by the cord’s force on the block, (b) the work done by the gravita-
tional force on the block, (c) the kinetic energy of the block, and
(d) the speed of the block.

42. Force Applied Downward In Fig. 9-36a, a 2.0 N force is applied
to a 4.0 kg block at a downward angle � as the block moves right-
ward through 1.0 m across a frictionless floor. Find an expression for
the speed v2 of the block at the end of that distance if the block’s ini-
tial velocity is (a) 0.0 m/s and (b) 1.0 m/s to the right. (c) The situa-
tion in Fig. 9-36b is similar in that the block is initially moving at 
1.0 m/s to the right, but now the 2.0 N force is directed downward to
the left. Find an expression for the speed v2 of the block at the end
of the 1.0 m distance. (d) Graph all three expressions for v2 versus
downward angle �, for � � 0° to � � �90°. Interpret the graphs.

FIGURE 9-36 ■ Problem 42.

43. Canister and One Force The only force acting on a 2.0 kg can-
ister that is moving in an xy plane has a magnitude of 5.0 N. The
canister initially has a velocity of 4.0 m/s in the positive x direction,
and some time later has a velocity of 6.0 m/s in the positive y direc-
tion. How much work is done on the canister by the 5.0 N force
during this time?

44. Block of Ice Slides A 45 kg block of ice slides down a friction-
less incline 1.5 m long and 0.91 m high. A worker pushes up against
the ice, parallel to the incline, so that the block slides down at con-
stant speed. (a) Find the magnitude of the worker’s force. How
much work is done on the block by (b) the worker’s force, (c) the
gravitational force on the block, (d) the normal force on the block
from the surface of the incline, and (e) the net force on the block?

45. Cave Rescue A cave rescue team lifts an injured spelunker di-
rectly upward and out of a sinkhole by means of a motor-driven ca-
ble. The lift is performed in three stages, each requiring a vertical
distance of 10.0 m: (a) the initially stationary spelunker is acceler-
ated to a speed of 5.00 m/s; (b) he is then lifted at the constant
speed of 5.00 m/s; (c) finally he is slowed to zero speed. How much
work is done on the 80.0 kg rescuee
by the force lifting him during each
stage?

46. Work-Kinetic Energy The only
force acting on a 2.0 kg body as the
body moves along the x axis varies
as shown in Fig. 9-37. The velocity of
the body at x � 0.0 m is 4.0 m/s. (a)
What is the kinetic energy of the
body at x � 3.0 m? (b) At what
value of x will the body have a ki-
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netic energy of 8.0 J? (c) What is the maximum kinetic energy at-
tained by the body between x � 0.0 m and x � 5.0 m?

47. Block at Rest A 1.5 kg block is initially at rest on a horizontal
frictionless surface when a horizontal force in the positive direction
of an x axis is applied to the block. The force is given by (x) �
(2.5 N � x2 N/m2) , where x is in meters and the initial position of
the block is x � 0.0 m. (a) What is the kinetic energy of the block as
it passes through x � 2.0 m? (b) What is the maximum kinetic en-
ergy of the block between x � 0.0 m and x � 2.0 m?

SEC. 9-10 ■ POWER

48. Average Rate of Work The loaded cab of an elevator has a
mass of 3.0 � 103 kg and moves 210 m up the shaft in 23 s at con-
stant speed. At what average rate does the force from the cable do
work on the cab?

49. Block Pulled at Constant Speed A 100 kg block is pulled at a
constant speed of 5.0 m/s across a horizontal floor by an applied
force of 122 N directed 37° above the horizontal. What is the rate at
which the force does work on the block?

50. Resistance to Motion Resistance to the motion of an automo-
bile consists of road friction, which is almost independent of speed,
and air drag, which is proportional to speed-squared. For a certain
car with a weight of 12,000 N, the net resistant force is given by

� [300 N � (1.8 N � s2/m2)vx
2] , where is in newtons and vx is in

meters per second. Calculate the power (in horsepower) required
to accelerate the car at 0.92 m/s2 when the speed is 80 km/h.

51. A Force Acts on a Body A force of 5.0 N acts on a 15 kg body
initially at rest. Compute the work done by the force in (a) the first,
(b) the second, and (c) the third seconds and (d) the instantaneous
power due to the force at the end of the third second.

52. Rope Tow A skier is pulled by a tow rope up a frictionless ski
slope that makes an angle of 12° with the horizontal. The rope
moves parallel to the slope with a constant speed of 1.0 m/s. The
force of the rope does 900 J of work on the skier as the skier
moves a distance of 8.0 m up the incline. (a) If the rope moved
with a constant speed of 2.0 m/s, how much work would the force
of the rope do on the skier as the skier moved a distance of 8.0 m
up the incline? At what rate is the force of the rope doing work on
the skier when the rope moves with a speed of (b) 1.0 m/s and (c)
2.0 m/s?

53. Freight Elevator A fully loaded, slow-moving freight elevator
has a cab with a total mass of 1200 kg, which is required to travel
upward 54 m in 3.0 min, starting and ending at rest. The elevator’s
counterweight has a mass of only 950 kg, so the elevator motor
must help pull the cab upward. What average power is required of
the force the motor exerts on the cab via the cable?

54. Ladle Attached to Spring A 0.30 kg ladle sliding on a horizon-
tal frictionless surface is attached to one end of a horizontal spring
(with k � 500 N/m) whose other end is fixed. The ladle has a kinetic
energy of 10 J as it passes through its equilibrium position (the
point at which the spring force is zero). (a) At what rate is the
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îF
:

F
:

î
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spring doing work on the ladle as the ladle passes through its equi-
librium position? (b) At what rate is the spring doing work on the
ladle when the spring is compressed 0.10 m and the ladle is moving
away from the equilibrium position?

55. Towing a Boat The force (but not the power) required to tow a
boat at constant velocity is proportional to the speed. If a speed of
4.0 km/h requires 7.5 kW, how much power does a speed of 12 km/h
require?

56. Transporting Boxes Boxes are transported from one location
to another in a warehouse by means of a conveyor belt that moves
with a constant speed of 0.50 m/s. At a certain location the con-
veyor belt moves for 2.0 m up an incline that makes an angle of 10°
with the horizontal, then for 2.0 m horizontally, and finally for 2.0 m
down an incline that makes an angle of 10° with the horizontal. As-
sume that a 2.0 kg box rides on the belt without slipping. At what
rate is the force of the conveyor belt doing work on the box (a) as
the box moves up the 10° incline, (b) as the box moves horizontally,
and (c) as the box moves down the 10° incline?

57. Horse Pulls Cart A horse pulls a cart with a force of 40 lb at
an angle of 30° above the horizontal and moves along at a speed of
6.0 mi/h. (a) How much work does the force do in 10 min? (b) What
is the average power (in horsepower) of the force?

58. Object Accelerates Horizontally An initially stationary 2.0 kg
object accelerates horizontally and uniformly to a speed of 10 m/s
in 3.0 s. (a) In that 3.0 s interval, how much work is done on the ob-
ject by the force accelerating it? What is the instantaneous power
due to that force (b) at the end of the interval and (c) at the end of
the first half of the interval?

59. A Sprinter A sprinter who weighs 670 N runs the first 7.0 m of
a race in 1.6 s, starting from rest and accelerating uniformly. What
are the sprinter’s (a) speed and (b) kinetic energy at the end of the
1.6 s? (c) What average power does the sprinter generate during the
1.6 s interval?

60. The Queen Elizabeth 2 The luxury liner Queen Elizabeth 2 has
a diesel-electric powerplant with a maximum power of 92 MW at a
cruising speed of 32.5 knots. What forward force is exerted on the
ship at this speed? (1 knot � 1.852 km/h.)

61. Swimmer A swimmer moves through the water at a constant
speed of 0.22 m/s. The average drag force opposing this motion is
110 N. What average power is required of the swimmer?

62. Auto Starts from Rest A 1500 kg automobile starts from rest
on a horizontal road and gains a speed of 72 km/h in 30 s. (a) What
is the kinetic energy of the auto at the end of the 30 s? (b) What is
the average power required of the car during the 30 s interval? (c)
What is the instantaneous power at the end of the 30 s interval, as-
suming that the acceleration is constant?

63. A Locomotive A locomotive with a power capability of 1.5 MW
can accelerate a train from a speed of 10 m/s to 25 m/s in 6.0 min. (a)
Calculate the mass of the train. Find (b) the speed of the train and (c)
the force accelerating the train as functions of time (in seconds) dur-
ing the 6.0 min interval. (d) Find the distance moved by the train dur-
ing the interval.



64. Estimate, Then Integrate (a) Estimate the work done by the
force represented by the graph of Fig. 9-38 in displacing a particle
from x1 � 1 m to x2 � 3 m. (b) The curve is given by Fx � a/x2, with
a � 9 N� m2. Calculate the work using integration.

FIGURE 9-38 ■ Problem 64.

65. Explosion at Ground Level An explosion at ground level
leaves a crater with a diameter that is proportional to the energy of
the explosion raised to the power; an explosion of 1 megaton of
TNT leaves a crater with a 1 km diameter. Below Lake Huron in
Michigan there appears to be an ancient impact crater with a 50 km
diameter. What was the kinetic energy associated with that impact,
in terms of (a) megatons of TNT (1 megaton yields 4.2 � 1015 J)
and (b) Hiroshima bomb equivalents (13 kilotons of TNT each)?
(Ancient meteorite or comet impacts may have significantly altered
Earth’s climate and contributed to the extinction of the dinosaurs
and other life-forms.)

66. Pushing a Block A hand pushes a 3 kg block along a table
from point A to point C as shown in Fig. 9-39. The table has been
prepared so that the left half of the table (from A to B) is friction-
less. The right half (from B to C) has a nonzero coefficient of fric-
tion equal to �kin. The hand pushes the block from A to C using a
constant force of 5 N. The block starts off at rest at point A and
comes to a stop when it reaches point C. The distance from A to B
is meter and the distance from B to C is also meter.

FIGURE 9-39 ■ Problem 66.

(a) Describe in words the motion of the block as it moves from A
to C.
(b) Draw a free-body diagram for the block when it is at point P.
(c) What is the direction of the acceleration of the block at point
P? If it is 0, state that explicitly. Explain your reasoning.
(d) Does the magnitude of the acceleration increase, decrease, or
remain the same as the block moves from B to C? Explain your
reasoning.
(e) What is the net work done on the object as it moves from A to
B? From B to C?
(f) Calculate the coefficient of friction �kin.

1
2

1
2

1
3

67. Continental Drift According to some recent highly accurate
measurements made from satellites, the continent of North Amer-
ica is drifting at a rate of about 1 cm per year. Assuming a continent
is about 50 km thick, estimate the kinetic energy the continental
United States has as a result of this motion.
68. Fan Carts P&E Two
fan carts labeled A and B
are placed on opposite
sides of a table with their
fans pointed in the same
direction as shown in Fig.
9-40. Cart A is weighted
with iron bars so it is
twice as massive as cart
B. When each fan is
turned on, it provides the
same constant force on the cart independent of its mass. Assume
that friction is small enough to be neglected. The fans are set with a
timer so that after they are switched on, they stay on for a fixed
length of time, �t, and then turn off.
(a) Just after the fans turn off, which of the following statements is
true about the magnitude of the momenta of the two carts?

(i) pA  pB

(ii) pA � pB

(iii) pA � pB

(b) Just after the fans turn off, which of the following statements is
true about the kinetic energies of the two carts?

(i) KA  KB

(ii) KA � KB

(iii) KA � KB

(c) Which of the following statements are true? You may choose as
many as you like, or none. If you choose none, write N.

(i) After the fans are turned on, each cart moves at a constant
velocity, but the two velocities are different from each
other.

(ii) The kinetic energy of each cart is conserved.
(iii) The momentum of each cart is conserved.

69. Sticky Carts Two identical carts labeled A and B are initially
resting on a smooth track. The coordinate system is shown in Fig. 9-
41a. The cart on the right, cart B, is given a push to the left and is
released. The clock is then started. At t1 � 0, cart B moves in the di-
rection shown with a speed v1. The carts hit and stick to each other.
The graphs in Fig. 9-41b describe some of the variables associated
with the motion as a function of time, but without labels on the ver-
tical axis. For the experiment described and for each item in the list
below, identify which graph (or graphs) is a possible display of that
variable as a function of time, assuming a proper scale and units.
“The system” refers to carts A and B together. Friction is so small
that it can be ignored. If none apply, write N.
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Additional Problems
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FIGURE 9-40 ■ Problem 68.

initially at rest

+x v1

Cart A Cart B

FIGURE 9-41a ■ Problem 69.



(a) The x-component of momentum of cart B
(b) The x-component of force on cart A
(c) The x-component of total momentum of the system
(d) The kinetic energy of cart B
(e) The total kinetic energy of the system

70. Graphs and Carts Two identical carts are riding on an air track.
Cart A is given a quick push in the positive x direction toward cart
B. When the carts hit, they stick to each other. The graphs shown in
Fig. 9-42 describe some of the variables associated with the motion
as a function of time beginning just after the push is completed. For
the experiment described and for each item in the list below, iden-
tify which graph (or graphs) is a possible display of that variable as
a function of time.
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(a) The momentum of cart A
(b) The total momentum of the two carts
(c) The kinetic energy of cart A
(d) The force on cart A
(e) The force on cart B

71. Rebound to the Left A 5.0 kg block travels to the right on a
rough, horizontal surface and collides with a spring. The speed of
the block just before the collision is 3.0 m/s. The block continues to
move to the right, compressing the spring to some maximum extent.
The spring then forces the block to begin moving to the left. As the
block rebounds to the left, it leaves the now uncompressed spring
at 2.2 m/s. If the coefficient of kinetic friction between the block
and surface is 0.30, determine (a) the work done by friction while
the block is in contact with the spring and (b) the maximum dis-
tance the spring is compressed.

72. Rescue A helicopter lifts a stretcher with a 74 kg accident vic-
tim in it out of a canyon by applying a vertical force on the stretcher.
The stretcher is attached to a guide rope, which is 50 meters
long and makes an angle of 37° with respect to the horizontal. See
Fig. 9-43. What is the work done by the helicopter on the injured
person and stretcher?

FIGURE 9-43 ■ Problem 72.

73. A Spring Idealized data for a spring’s
displacement � from its equilibrium po-
sition as a function of an external force,

, are shown in Fig. 9-44.

(a) Draw a properly scaled and carefully
labeled graph of vs. � for these
data.
(b) Does this spring obey Hooke’s law?
Why or why not?
(c) What is the value of its spring constant k?
(d) Shade the area on your graph that represents the amount of
work done in stretching the spring from a displacement or exten-
sion of 0 cm to one of 5 cm. Also shade the area on the graph that
represents the amount of work done in stretching the spring from a
displacement or extension of 15 cm to one of 20 cm. Are the shaded
areas approximately the same size? What does the size of the
shaded area indicate about the work done in these two cases?
(e) Explain why the amount of work done in the second case is dif-
ferent from the amount done in the first case, even though the
change in length of the spring is the same in both cases.

74. Variable Force The center of mass of a cart having a mass of
0.62 kg starts with a velocity of �2.5 m/s along an x axis. The cart
starts from a position of 5.0 m and moves without any noticeable
friction acting on it to a position of 0.0 meters. During this motion, a
fan assembly exerts a force on the cart in a positive x direction.
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However, instead of being powered by batteries,
the fan is driven by a voltage source that is pro-
grammed to change with its distance from a mo-
tion detector. This program leads to a variable
force as shown in Fig. 9-45.

(a) What is the work done on the cart by the
fan as the cart moves from 5.0 m to 0.0 m? (b)
What is the change in kinetic energy of the cart
between 5.0 m and 0.0 m? (c) What is the final
velocity of the cart when it is at 0.0 m?

75. Given a Shove An ice skater of mass m is
given a shove on a frozen pond. After the shove
she has a speed of v1 � 2 m/s. Assume that the
only horizontal force that acts on her is a slight frictional force be-
tween the blades of the skates and the ice.

(a) Draw a free-body diagram showing the horizontal force and
the two vertical forces that act on the skater. Identify these forces.
(b) Use the net work-kinetic energy theorem to find the distance
the skater moves before coming to rest. Assume that the coefficient
of kinetic friction between the blades of the skates and the ice is
�kin � 0.12.

76. Karate Board Tester The karate board tester shown in 
Fig. 9-46a is a destructive testing device that allows one to deter-
mine the deformation of the center of a pine karate board as a
function of the forces applied to it.
The displacement component, � , of the center of a pine board from
its equilibrium position increases as a function of the x-component
of an external force, , applied to it as shown in the data table of
Fig. 9-46b.

(a) Draw a properly scaled and carefully labeled graph of F ext vs.
�x for these data.
(b) Does this pine board obey Hooke’s law? Why or why not?
(c) What is the value of the effective spring constant k for the board?

F ext
x

x
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(d) Shade the area on the graph that represents the amount of
work done in stretching the center of the board from a displace-
ment or extension of 0.000 cm to one of 0.156 cm. Also shade the
area on the graph that represents the amount of work done in
stretching the board from a displacement or extension of 0.446 cm
to one of 0.602 cm. Are the shaded areas approximately the same
size? What does the size of the shaded area indicate about the work
done in these two cases?
(e) Explain why the amount of work done in the second case is dif-
ferent from the amount done in the first case, even though the
change in displacement of the board is the same in both cases.

77. Karate Chop Movie In the movie DSON012 (available in
VideoPoint or from your instructor) a physics student breaks a
stack of eight pine boards. The thickness of the stack of boards with
spacers is 0.34 m. In answering the following questions, treat any
work done by gravitational forces on the student’s hand as negligi-
ble.

(a) Use video analysis software to analyze the motion of the stu-
dent’s hand in the vertical or y direction. By using data from frames
3–5, find the velocity of the student’s hand just before he hits the
boards. By using data from frames 7–9, find the velocity of the stu-
dent’s hand just after he breaks all the boards.
(b) Assume that the effective mass of the student’s hand is 1.0 kg.
Use the net work-kinetic energy theorem to find the work done on
the student’s hand by the boards.

0.6

0.3

0.2

0.0 1.0 2.0
x [m]

3.0 4.0 5.0

F x
[N

]

Karate Board
This board will be 
deformed and 
broken by
the weight
placed on the 
mass platform.

Mass Platform
Bricks are placed on this
platform to provide the 
downward force needed to
bend and ultimately break 
the karate board.

The Breaker
This metal bar acts like a knife
and bends the karate board as
more weights are placed on the 
platform. A gauge allows
students to determine the 
amount of board deformation.
The bar will ultimately break the board
as the critical weight limit is exceeded.

FIGURE 9-45 ■ Problem 74.
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10 Potential Energy and
Energy Conservation

The prehistoric people of Easter Island carved hundreds of

giant stone statues in their quarry, then moved them to

sites all over the island. How they managed to move them

by as much as 10 km without the use of sophisticated 

machines has been a hotly debated subject, with many 

fanciful theories about the source of the required energy.

How could this have been
accomplished using only
primitive means?

The answer is in this chapter.



10-1 Introduction

In Chapter 9 we introduced the concepts of work and kinetic energy. We then derived
a net work-kinetic energy theorem to describe what happens to the kinetic energy of
a single rigid object when work is done on it. In this chapter we will consider systems
composed of several objects that interact with one another. We are interested in what
happens when forces from objects outside the system (external forces) change the
arrangement of the interacting parts.

Let’s consider two systems that can be reconfigured by external forces. The first
system consists of an Earth–barbell system that has its arrangement changed when a
weight lifter (outside of the system) pulls the barbell and the Earth apart by pulling
up on the barbell with his arms and pushing down on the Earth with his feet
(Fig. 10-1). The second system consists of two crates and a floor. This system is re-
arranged by a person (again, outside the system) who pushes the crates apart by push-
ing on one crate with her back and the other with her feet (Fig. 10-2). Although the
external forces changing each system’s configuration are exerted by a person pushing
in opposite directions on two objects, there is an obvious difference between these
two situations. Namely, as soon as the weight lifter stops pushing in both directions,
the system’s parts (barbell and Earth) fall back together. When the person stops push-
ing in opposite directions on the crates, the crates do not snap back together.

The internal interaction forces between the parts of these two systems differ. (Re-
call that we can call forces between objects within a system internal forces.) The
lifter’s forces are opposed by gravitational forces, but the crate-separator’s forces are
opposed by sliding friction forces. The lifter has to do a considerable amount of work
to raise the barbell. However, when the barbell is dropped, we know that it picks up
speed and gains kinetic energy as the Earth and the barbell move toward each other.
In what sense can we say that the work the weight lifter did has been stored in the
new configuration of the Earth–barbell system? And why does the work done by the
woman separating the crates seem to be lost rather than stored away?

10-2 Work and Path Dependence

There are many types of internal forces that can do work on a system of interacting
objects. Examples include gravitational forces, sliding friction forces, spring forces, and
air drag forces. How can we tell whether the work done by a certain type of internal
force is “stored” or “used up” when the arrangement of a system changes?

A test has been devised for determining whether the work done by a particular
type of force is “stored” or “used up.” This test involves considering the work done by
an internal interaction force when one part of a system moves. Consider a preliminary
description of this test, which we will refine later:

TEST OF A SYSTEM’S ABILITY TO “STORE” WORK DONE BY INTERNAL FORCES (PRELIMINARY
STATEMENT): If the work done by a force between two objects within a system as some 
object in the system moves does not depend on the path taken, then the work done by this
(internal) force can be stored in the system.

This test doesn’t seem so strange when we apply it to some simple situations we
have already discussed involving gravitational and friction forces.

The Path Independence Test for a Gravitational Force
Consider the skier traveling down a curved frictionless ramp as shown in Fig. 10-3. We
showed in Section 9-9 that the net work done on the skier as she travels down the
ramp is given by 
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FIGURE 10-1 ■ While lifting a massive
barbell, a powerlifter increases the separa-
tion between the barbell and Earth and
rearranges the Earth–barbell system.

FA FB

FIGURE 10-2 ■ A woman exerts equal
and opposite forces on two crates. The
work she does on the crates causes the
crate–floor system to be rearranged.
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FIGURE 10-4 ■ The work done on a crate
by the friction forces acting on it is much
greater when it is pushed from point 1 to 2
along path b than along path a.

(Eq. 9-42)

and so does not depend on the shape of the ramp but only on the vertical component
of the gravitational force and the vertical displacement of her center of mass. This re-
sult derives from that fact that whenever the skier has a component of motion in a
horizontal direction the horizontal displacement is perpendicular to the Earth’s gravi-
tational force. These horizontal “detours” do not contribute to the work done by the
Earth’s gravitational force on the skier’s center of mass.

Thus the work done on a particle by a gravitational force seems to be indepen-
dent of the path taken to get from y1 to y2 as shown for the skier in Fig. 10-3. The grav-
itational force passes the test! If we do work on the system of skier and Earth to raise
the skier to the top of the ramp, she can fall down again gaining kinetic energy, just as
the barbell a weight lifter raises can fall down again. In both cases, we have to over-
come the opposing internal gravitational force. In both cases, our work seems to be
stored within the system.

Path Dependence of Work Done by a Friction Force
Our consideration of the skier indicates that the gravitational force does work that is
path independent. But what about an object such as a crate that is displaced in the
presence of a friction force? Is the work that the opposing friction force does on the
crate path independent?

Consider pushing one of the crates shown in Fig. 10-2 along a level floor. Suppose
the surface of the floor is quite uniform so that when you push with a constant magni-
tude of force, the crate moves at a constant speed. According to Newton’s Second
Law, if the acceleration of the crate is zero the net force on it is zero. So the external
force you apply and the internal friction force must be equal and opposite. In this spe-
cial case the friction force is steady. It always acts in a direction that opposes the dis-
placement. If you push the crate directly from point 1 to point 2, you are taking it
along path a as shown in Fig. 10-4. The work done by friction along that path is always
negative (since the force and displacement are in opposite directions) and is given by 

where d is the distance between points 1 and 2. Suppose instead we push the crate
along path b from points 1 to 4, then points 4 to 3 and then points 3 to 2, where the
distance on each leg of the path is also d. The work done by the friction force is still
negative and is given by

We see that the kinetic friction force does not pass the path independence test!
The negative work done on the crate by the friction force is three times greater for
path b than for path a. In general, if a friction force of constant magnitude is the only
internal force in a system, then the work needed to get from point 1 to point 2 is pro-
portional to the length of the path taken. Thus kinetic friction is a path-dependent
force. This suggests that path dependence is an indicator of whether or not external
work done on a system can be stored. When you do external work on the crate that is
part of a crate–floor system, the system cannot then use the external work you do on
it to rearrange itself after you stop pushing.

Conservative Forces and Path Independence
So far we have seen that the work done on a system that has gravitational forces act-
ing between its parts seems to be path independent and seems to “store external
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FIGURE 10-3 ■ The gravitational work
done on a skier descending on a friction-
less ramp depends only on the gravita-
tional force and her vertical displacement
�y and not on the shape of the ramp.
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1 4
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work.” Alternatively, if friction forces act between system parts, the opposite seems to
hold. The system cannot store external work, and the friction forces do work that is
not path independent. It is customary to define gravitational and other forces that do
path independent work as conservative forces and forces that do not as nonconserva-
tive forces. The term “conservative” implies that something related to work is
“stored” or conserved when the parts of a system are rearranged. In the next few sec-
tions of this chapter we will explore the concept of “conserved” in more detail.

General Statements about Conservative Forces
There is an alternative way to apply the path independence test to the work done by a
force. It has to do with the net work associated with motion along a closed path—that
is, motion in which an object makes a round trip through space, returning to its origi-
nal location. Figure 10-5b shows an arbitrary round trip for a particle that has work
done on it by a single force during its trip. The particle moves from an initial point 1
to point 2 along path a and then back to point 1 along path b. The internal force does
work on the particle as the particle moves along each path. Without worrying about
where positive work is done and where negative work is done, let us just represent the
work between points 1 and 2 as the particle moves along path a as . Then we
can denote the work done between points 1 and 2 if the particle moves along path b
as (Fig 10-5a). If the force is conservative, then the net work done is the same
for either path,

so that .

However, if we move in the opposite direction and go along path b from point 2 to
point 1, then all the increments of displacement change sign, and work done in one di-
rection is the negative of work done in the other direction. This is given by

.

Thus we get the following expression for the work done on a particle as it makes a
round trip along a closed path traveling from point 1 to point 2 along path a and then
back from point 2 to point 1 along path b,

(conservative force only). (10-1)

This equation tells us that the work done by a conservative force along any closed
path is zero.

CONSERVATIVE FORCE TEST: The work done by a conservative force on a particle moving
between two points does not depend on the path taken by the particle. An alternative state-
ment of this test is that the net work done by a conservative force on a particle moving
around any closed path is zero.

The path independence of conservative forces has another useful aspect. If you
need to calculate the work done by a conservative force along a given path between
two points and the calculation is difficult, you can find the work by using another path
between those two points for which the calculation is easier.

The Conservative Force Test for a Spring Force
So far the only systems we have introduced that have conservative internal forces are
those in which the gravitational force acts alone. Let’s consider another system

W path a
1:2 � W path b

2:1 � 0

W path b
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W path a
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FIGURE 10-5 ■ When a particle is acted on
by a conservative force, the work done by
the force is: (a) independent of whether the
particle moves from point 1 to point 2 by
following either path a or path b; or (b)
zero if the particle makes any possible
round trip from 1 back to point 1. One pos-
sible round trip includes moving to point 2
along path a and then back to point 1 along
path b.

Path b

Path b

Path a

Path a
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FIGURE 10-6 ■ A block is attached to a
spring that is anchored to a wall. (a) An
external force is used to push the block so
the position component of the end of the
spring is x1. (b) Then, the block is pulled
out so the position component of the end
of the spring is x2. (c) Two of many possible
paths the spring end can take to get from
x1 to x2.

consisting of a wall, a rigid block, and an ideal table that does not exert friction forces
on the block. We assume that the wall and the block interact because they are con-
nected by an ideal spring (see Fig. 10-6). The end of the spring that is free to move ex-
erts a force on the block in a direction opposite to the displacement from the spring’s
relaxed position. According to Hooke’s law, the component of the spring force on the
block is given by , where x is the displacement from a relaxed state at
x = 0 (Eq. 9-17). We used this force and the definition of work to show that the work
done on the block by the spring force is 

(Eq. 9-19)

whenever the spring is stretched or compressed from position to position , along
one-dimensional paths.

Before discussing the application of the conservative force test, we need to point
out that a single spring exerts a force that is inherently one-dimensional. So thinking
about paths that the block might take under the influence of net external forces does
not make sense unless we restrict ourselves to situations for which the net external
force acts along the line of the spring. For the sake of discussion we choose the line of
the spring to be the x axis.

Let’s apply the test that says that if the spring force is conservative, then the
work done along any one-dimensional path is the same. Figure 10-6 shows a block
that is pushed inward and then pulled outward by an external force. Eq. 9-19 indi-
cates the work done by the spring. The equation describing the spring’s work
depends only on the two locations x1 and x2 and not on how the spring got from one
location to the other. For example, you could start the spring end at location x1 and
push it in further, then pull it out past x2 and finally back to x2. The work will be the
same no matter what one-dimensional path you take—that is, as long as you don’t
impose very large displacements on the spring that cause Hooke’s law to break
down.

Since the work done by ideal spring forces is path independent, we can conclude
that

The ideal spring force is a conservative force, as is the gravitational force.

The alternate test that requires the work done by the spring force to be zero on
a round trip is also true, since for a round trip so .
The fact that the spring force is zero in a round trip makes sense. Suppose the
spring starts out in a compressed position. When you push on a spring and com-
press it further, the spring force opposes its displacement and the work done by the
spring is negative. If you then pull the spring back to its original but still com-
pressed position, the spring force and the displacement are in the same direction
and the work done by the spring is positive. So the negative work done by the
spring while it is being pushed in and the positive work it does while being pulled
out add up to zero.

When a spring attached to a wall is stretched and released it naturally heads to-
ward its equilibrium position. This is not unlike the weight lifter’s mass naturally
falling back toward the Earth. The external work done on the block in opposition to
the spring force seems to be stored in the wall–spring–block system.

The Conservative Force Test for a Car on a Hot Wheels® Track
Let’s see how our two conservative force tests are applied to a fairly complex system
consisting of a low-friction toy car, a Hot Wheels® track, and the Earth. Are the inter-
nal forces the system exerts on the car conservative? 
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FIGURE 10-7 ■ This Hot Wheels® race
track allows toy cars to travel around a
closed path. The point labeled 2 is an over-
pass.

Using the Path Independence Test There are two possible paths that a “low-friction”
toy car could take traveling between points 1 and 2 on the track shown in Fig. 10-7.
The car could travel uphill directly from point 1 to point 2 along path a. Alternatively
it could travel many times further by taking path b. On that path it proceeds downhill,
passes under the top ramp, goes through three loop-the-loops, and traverses the fig-
ure-eight loop on the left before returning to point 2.

We can use the net work-kinetic energy theorem ( ) developed in
Chapter 9 to determine whether or not the internal forces do work on the car along
certain paths. The net work is given by the sum of the works done by the internal
forces that the rest of the system exerts on the car. In equation form this is 

.
The normal forces do not contribute to the work done on the car. This is because

these forces are always perpendicular to the direction of the car’s displacement at any
point along the track. So the internal work is done by only a combination of the gravi-
tational and friction forces so that .

If we start the car along path a at point 1 with a certain amount of kinetic energy,
then we can measure its kinetic energy at point 2 to determine the net internal work
done on it by the rest of the system. We can make the same observation for the car as it
goes from point 1 to point 2 along path b. If the kinetic energy change was the same
along both paths, then the net work done along each path would be the same and we
would conclude that the combination of the gravitational and friction forces is conserv-
ative. However, measurements tell us that a different amount of kinetic energy is lost
along path b than along the more direct path a. We conclude that the combination of
friction and gravitational forces acting on the car is not conservative. Since we believe
that gravitational forces are conservative, we suspect that friction is the problem.

Closed-Path Test It turns out that the closed-path test is a lot easier to apply in this
case. All we have to do is ask the question: Is the net work done on the car in going
around a closed loop (say, from point 1 to point 1) zero? If the answer is yes, then
according to the net work-kinetic energy theorem given by 

, the car would lose no kinetic energy in making a complete loop.
However, for this Hot Wheels® track we observe that the car does slow down, so there
must be a loss in kinetic energy. As expected, therefore, the combination of gravita-
tional and friction forces does not pass this logically equivalent conservative force
test.

What if friction were not present? If we could devise a magic car with no friction
in its wheel bearings, then the only type of force capable of doing work on the car as it
traveled would be the conservative gravitational force on the car due to the Earth. In
this case, the net work done on the car would be zero around a closed loop, and the
car would lose no kinetic energy.

READI NG EXERC IS E  10-1: The figure shows
three paths connecting points 1 and 2. A single force 
does the indicated work on a particle moving along each
path in the indicated direction. On the basis of this infor-
mation, is force conservative?

■

READI NG EXERC IS E  10-2: In applying the path independence test for conservative
forces to the car traveling on the Hot Wheels® track, we made the statement: “Measurements
tell us that a different amount of kinetic energy is lost along path b than along the more direct
path a.” Which path do you think will have the most kinetic energy loss associated with it? Ex-
plain the reasons for your answer. ■

F
:

F
:

Wfric � �K � 0
Wnet � Wgrav �

Wnet � Wgrav � Wfric

Wint � Wnorm � Wgrav � Wfric
Wnet �

Wnet � �K

Path b

Path b

Path b

Path b

Path a

1

2

1

2

–60 J

60 J

60 J



10-3 Potential Energy as “Stored Work”

If external work can be stored when a system of objects is rearranged, we refer to the
system as a “conservative system.” In this section we will define a new quantity called
potential energy as a measure of stored work in a conservative system.

Rearranging a Gravitational System
Consider the external work that weightlifter Sun Ruiping does separating the Earth
and the 118.5 kg barbell shown in Fig 10-9. Ruiping acts as an external agent that does
work on both the Earth and the barbell in opposing the gravitational force as she
pushes up on the barbell with her hands and down on the Earth with her feet. The net
work done on the Earth–barbell system during the time the barbell is raised is the
sum of the external work, , done on the system by our weightlifter and the inter-
nal gravitational work, , that the two objects in the system exert on each
other. This can be summarized by the equation

(net work on a system). (10-2)

Since the velocities of both the barbell and the Earth are zero before and after
the lift, there is no change in the kinetic energy of the Earth –barbell system as a

W net
sys � W ext

sys � W int
sys

W int
sys � W grav

sys

W ext
sys
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TOUCHSTONE EXAMPLE 10-1: Cheese on a Track

Figure 10-8a shows a 2.0 kg block of slippery cheese that slides
along a frictionless track from point 1 to point 2. The cheese travels
through a total distance of 2.0 m along the track, and a net vertical
distance of 0.80 m. How much work is done on the cheese by the
gravitational force during the slide?

S O L U T I O N ■ A Ke y  I d e a here is that we cannot use Eq. 9-26
to calculate the work done by the gravi-

tational force as the cheese moves along the track. The reason
is that the angle � between the directions of and the displace-
ment varies along the track in an unknown way. (Even if we did�r:

F
:grav

F
:grav

(Wgrav � � F
:grav� � �r: �cos �)

know the shape of the track and could calculate � along it, the calcu-
lation could be very difficult.)

A second Ke y  I d e a is that because is a conservative
force, we can find the work by choosing some other path between 1
and 2—one that makes the calculation easy. Let us choose the
dashed path in Fig. 10-8b; it consists of two straight segments. Along
the horizontal segment, the angle � is a constant 90°. Even though
we do not know the displacement along that horizontal segment,
Eq. 9-26 tells us that the work done there is

Along the vertical segment, the magnitude of the displacement 
is 0.80 m and, with and both downward, the angle � is a
constant 0°. Thus, Eq. 9-26 gives us, for the work done along
the vertical part of the dashed path,

The total work done on the cheese by as the cheese moves
from point a to point b along the dashed path is then

(Answer)

This is also the work done as the cheese moves along the track from
1 to 2.

W � W horiz � W vert � 0 � 15.7 J �  16 J.

F
:grav

� (2.0 kg)(9.8 m/s2)(0.80 m)(1) � 15.7 J.

W vert � mg� �r: �cos 0�

Wvert
�r:F

:grav
� � r: �

Whoriz � mg� �r: �cos 90� � 0.

Whoriz

F
:grav

1

(a) (b)

2

1

2

FIGURE 10-8 ■ (a) A block of cheese slides along a frictionless
track from point 1 to point 2. (b) Finding the work done on the
cheese by the gravitational force is easier along the dashed path
than along the actual path taken by the cheese; the result is the
same for both paths.
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result of the lift. So, the net work-kinetic energy theorem developed in Chapter 9
tells us that

(net work on the system). (10-3)

Since the net work on the system is zero,

(10-4)

As shown in Fig 10-10, an analysis of another lift, the work the lifter has to do to sepa-
rate the barbell from the Earth is experimentally confirmed to be equal in magnitude to
the gravitational work done by the Earth on the barbell.

In general, when an object is lifted near the surface of the Earth we often care-
lessly think that the work done on the lifted object is different from the work done on
the system. However, as long as we calculate the work using the change in separation
of the Earth and object, there is no difference.

Defining Potential Energy Change
Alas, our weightlifter’s labor did not lead to a change in kinetic energy! However,
suppose the lifter dropped her barbell. The barbell would gain an amount of kinetic
energy while falling that is just equal to the work the lifter had to do on the system to
raise it. We call this increased potential for kinetic energy gain a potential energy
change, Basically this change in potential energy is “stored work.” The term
“change” is used to allow for the possibility that the system already had some poten-
tial energy stored in it before the external work was done.

However, according to (Eq. 10-2) when the kinetic energy of
the system does not change, the external work is equal to the negative of the internal
work done by interaction forces. This leads us to a general definition of potential energy
change for a conservative system (one with only conservative internal forces) in terms
of the work done by internal forces on parts of the system.

POTENTIAL ENERGY CHANGE FOR A CONSERVATIVE SYSTEM is defined as the negative of the
internal work the system does on itself when it undergoes a reconfiguration.

Even though we used an example of a two-object system to motivate this definition, we
can also apply it to many-body systems. This is discussed in more detail in Chapter 25,
where we deal with the potential energy associated with electrostatic forces. Symboli-
cally, the general definition of potential energy change for a single conservative force is

(definition of potential energy change). (10-5)�U � �Wcons

W net
sys � W ext

sys � W int
sys

�U.

W ext
barbell � �W grav

barbell.

W net
barbell � W ext

barbell � W grav
barbell � �Kbarbell � 0

FIGURE 10-9 ■ (a) China’s Sun Ruiping broke the world record for the snatch lift
in October 2002. In the middle part of her lift the barbell has an upward accelera-
tion. Thus the positive force she exerted on the barbell is greater than the negative
force exerted by the Earth. The lifter does positive external work on the
Earth–barbell system while the system does negative internal work on itself. (b) A
modified free-body diagram of forces on the barbell. The net force of the lifter ex-
ceeds the net gravitational force.
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FIGURE 10-10 ■ Results of video analysis
of the lifting of a 372.5 kg barbell by about
a half-meter. (a) y vs. t of the barbell dur-
ing the lift. This graph was fitted with a
polynomial to allow determination of the
acceleration and hence the variation over
time of net force on the barbell during the
lift. (b) A graph of net force on the barbell
during the lift vs. the y-component of the
height shows that the area under the 
vs y curve that defines the net work on the
system is zero.

F net
y



Here Wcons is the work done by a specific conservative force and �U is the change in
potential energy associated with that force.

Gravitational Potential Energy When we are near the surface of the Earth, we
can use the expression , (Eq. 9-14), to derive an expression for
the change in gravitational potential energy ( ) of an object that is lifted from
one height to another height . represents the internal work done by the
system, and

(gravitational PE change near the Earth’s surface). (10-6)

Only changes in gravitational potential energy (or any other type of potential
energy) are physically meaningful. In an object–Earth system, there is no special sep-
aration between the center of the Earth and an object that obviously has zero poten-
tial energy. However, to simplify a calculation or a discussion, we often choose to set
the gravitational potential energy value Ugrav to zero when the object is at a certain
height. To do so, we rewrite Eq. 10-6 as

(10-7)

Then we take U1 to be the gravitational potential energy (GPE) of the system when it
is in a reference configuration (in which the object is at a reference point y1). Usually
we take the reference point to be so . If we do this, and
replace the specific point y2 with the more general y, Eq. 10-7 becomes

(GPE relative to a chosen origin). (10-8)

This equation tells us that:

Near the Earth’s surface, the gravitational potential energy associated with an object–Earth
system depends only on the vertical position y (or height) of the object relative to the refer-
ence height , not on its horizontal location.

Elastic (or Spring) Potential Energy The same definition of change in potential en-
ergy (in Eq. 10-5) applies equally well to a block–spring–wall system like that shown
in Fig. 10-6. So ; that is,

(Eq. 9-19)

and so

(ideal spring PE change). (10-9)

A spring–block system has a natural zero point for potential energy when the
spring is unstretched. So, to associate an elastic potential energy (EPE) value U spring

with the block at position x2, we choose the reference point to be the block’s location
when the spring is at its relaxed length. If we let at that point, then the elastic
potential energy U spring is 0 there, and Eq. 10-9 becomes

which gives us the general expression

(ideal EPE relative to block location with spring relaxed). (10-10)U spring(x) � 1
2kx2

�U spring � U spring
2 � U spring

1 � 1
2kx2

2 � 0,

x 1 � 0

�U spring � �W spring � 1
2kx 2

2 � 1
2kx 2

1

Wspring � � 1
2 kx2

1 � 1
2 kx2

2,

�Uspring � �Wspring

y1 � 0

Ugrav(y) � mgy

Ugrav
1 � Ugrav(y1) � 0y1 � 0

�Ugrav � U grav
2 � U grav

1 � mg(y2 � y1).

�U

�Ugrav � �Wgrav � �mg(y2 � y1)

Wgravy2y1

�Ugrav
Wgrav � �mg(y2 � y1)
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FIGURE 10-11 ■ Two bodies interact by
means of a conservative force. According
to Newton’s Third Law, they exert “equal
and opposite” forces on each other. In gen-
eral, the magnitude of these forces de-
pends only on their separation, .� r: �

Potential Energy Change for any Conservative Two-Body System
Now that we have considered two systems that can undergo potential energy change,
we are ready to derive a general expression for the PE changes for any conservative
two-body system. Let’s start by defining a y axis that passes through two interacting
bodies, body A and body B, with its origin located at body A as shown in Fig. 10-11. For
this choice of coordinate system, the internal interaction forces all point along the y axis.

Since the change in the system’s potential energy is , the key
to finding the potential energy change is to determine the internal work the particles do
on each other as a result of a change in their separation. For an infinitesimally small
change in separation, dr, the increment of internal work the system bodies do on each
other, dW int, is given by

.

Because we chose our y axis along the displacement direction, we can represent the
forces in terms of their y-components as and . Here we
shorten to and to and recall that these components can be pos-
itive or negative. This allows us to eliminate the dot products to get

Since Newton’s Third Law tells us that we know that the y-components
of these vectors are related by , and we can rewrite dW int as

The interaction forces always point along an axis through the two particles, so that in
vector notation . The changes in the interaction forces due to changes in separa-
tion depend only on y. The expression for dW int can be expressed in terms of only the
force that particle A exerts on particle B and the variable y. This simplifies dW int to

For the most general case in which particle B moves relative to particle A from an ini-
tial location y1 to a final location y2, the internal work is given by the integral of dW int

with respect to y,

. (10-11)

Substituting this into , we find that the change in the system’s potential
energy due to the change in configuration along our chosen y axis is

(10-12)

We can equally well decide to place an y� axis instead of a y axis through the two
points of interest or to develop the equation for in terms of the force of particle B
on particle A. In the absence of choosing a specific coordinate system we can substitute 

(Eq. 9-36)

for W int to get a general expression for the change in a conservative system’s potential
energy in terms of the dot product, where is the radius vector pointing from particle
A to particle B,

(10-13)�U � �W int � �� r2

r1

F
:

B ( r:) 	dr:.

r:

Wint � �r2
:

r1
:

F
:

( r:) 	 dr:

�U

�U � �Wint � �� y2

y1

FB y(y) dy.

�U � �Wint

Wint � � y2

y1

dWint � � y2

y1

FB y(y) dy

dWint � FB y (y) dy.

r: � y ĵ

dWint � FA y(y) dyA � FB y(y) dyB � FB y(y)d(yB � yA).

FA y � �FB y

F
:

A:B � �F
:

B:A

dWint � FA y(y) dyA � FB y(y) dyB.

FB yFA:B yFA yFB:A y

F
:

A:B � FB y ĵF
:

B:A � FA y ĵ

dWint � F
:

B:A( r:) 	 dr:A � F
:

A:B( r:) 	 dr:B

�U � �W cons �W int

y

y

0

FB    A(r )

drA= dyA jr

FA    B(r )

mB

mA

FA    B = –FB    A

ˆ

drB= dyB ĵ



The valuable conclusion we have reached is that

The potential energy change of a two-body system with only conservative internal forces
that depend only on the separation between the particles can be determined by considering
the internal force on only one of the bodies.

Since W int is path independent, we can write as . As we did
earlier, we can choose a reference separation point such that . Then we
can express the potential energy of a particle relative to this reference for any (or
more generally ) as .

READI NG EXERC IS E  10-3: The net work-kinetic energy theorem predicts that the
net work should be zero when the barbell is raised from its low point to its high point. Are the
data in Fig. 10-10b consistent with this prediction? Explain. ■

READI NG EXERC IS E  10-4: A particle is to move along the x axis from to x2

while a conservative internal force from a second particle force, directed along the x axis, acts
on the first particle. The figure shows three situations in which the x-component of that force
varies with x. The force has the same maximum magnitude F1 in all three situations. Rank the
situations according to the change in the associated potential energy during the particle’s mo-
tion, most positive first.

■

x1 � 0

U( r:)r:
r:2

U( r:1) � 0r:1

�U � U( r:2) � U( r:1)�U
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F1 F1

–F1

x1

x1x1

(1) (2) (3)

TOUCHSTONE EXAMPLE 10-2: Sloth’s Energy

A 2.0 kg sloth clings to a limb that is 5.0 m above the ground
(Fig. 10-12).

(a) What is the gravitational potential energy U grav of the
sloth–Earth system if we take the reference point y1 � 0 to be (1)
at the ground, (2) at a balcony floor that is 3.0 m above the ground,
(3) at the limb, and (4) 1.0 m above the limb? Take the gravitational
potential energy to be zero at y1 � 0 and denote y2 as y.

S O L U T I O N ■ The Ke y  I d e a here is that once we have cho-
sen the reference point for y1 � 0, we can calculate the gravita-
tional potential energy U grav of the system relative to that reference
point with Eq. 10-8. For example, for choice (1) the sloth is at 
y � 5.0 m, and

(Answer)

For the other choices, the values of U grav are

(2)

(3)

(4) (Answer)U grav � mgy � mg( � 1.0 m) � �19.6 J � �20 J.

U grav � mgy � mg(0) � 0 J,

U grav � mgy � mg(2.0 m) � 39 J,

� 98 J.

U grav � mgy � (2.0 kg)(9.8 m/s2)(5.0 m)

0 –3 –5 –6

3 0 –2 –3

5 2 0

6 3 1 0

(1) (2) (3) (4)

FIGURE 10-12 ■ Four choices of reference point y1 � 0. Each y
axis is marked in units of meters.
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FIGURE 10-13 ■ A small ice cube oscil-
lates back and forth on a curved friction-
less ramp constantly trading energy be-
tween potential energy and kinetic energy.

10-4 Mechanical Energy Conservation 

Let’s consider a collection of rigid objects or particles in a system that interact only by
means of conservative internal forces. Basically we are assuming that the system is
isolated from its environment, so that no external force is present to do work on the
system.

The system parts can have kinetic energy. For example, when a barbell is dropped
the Earth–barbell system acquires kinetic energy as its gravitational potential energy
decreases. This decrease in potential energy with increase in kinetic energy leads us to
suspect that for isolated conservative systems, the sum of these two energies might
be constant. As we saw in Chapter 7 on momentum, when a quantity is constant over
time, physicists say that quantity is conserved. We will explore this possibility by defin-
ing a new quantity we call mechanical energy, or , that is the sum of the kinetic
energy K and the potential energy U of a system. Symbolically we get

(definition of mechanical energy). (10-14)

In this section, we examine what happens to the mechanical energy of an isolated sys-
tem when all of its internal forces are conservative.

Imagine a small ice cube that is placed on a curved, frictionless ramp bolted to a
table, as in Fig. 10-13. If the ice cube is released from point 1 it will oscillate back and
forth. When first released it falls toward point 2 under the influence of the conserva-
tive gravitational force component parallel to the surface of the ramp. The kinetic en-
ergy of the ice cube will increase and it loses potential energy. The system’s potential
energy will be a minimum at point 2 when its kinetic energy is maximum. As it rises
toward point 3 it loses kinetic energy and it gains potential energy.

In general, when an internal conservative force does work on an object
within the system and no other objects in the system move appreciably, the system
transfers energy between kinetic energy K of the object and potential energy U of the
system. According to the net work-kinetic energy theorem, if the only work done on
an object in a system is the internal work, then the change in kinetic energy is

. (10-15)

The change in the potential energy of the system is 

(10-16)

where W int is the sum of all works done by all the conservative internal forces. Com-
bining these two equations, we find that

(10-17)

This shows that one of these energies increases exactly as much as the other decreases.
We can rewrite as

(10-18)

where the subscripts refer to two different instants and thus to two different arrangements
of the objects in the system. Rearranging yields

(conservation of mechanical energy). (10-19)Emec � K1 � U1 � K2 � U2

K2 � K1 � �(U2 � U1)

K2 � K1 � �(U2 � U1),

�K � ��U

�K � ��U.

�U � �Wint

�U

�K � Wnet � Wint

�K

Wint

Emec � K � U

Emec

1 3

2

(b) The sloth drops to the ground. For each choice of reference
point, what is the change �U grav in the potential energy of the
sloth–Earth system due to the fall?

S O L U T I O N ■ The Ke y  I d e a here is that the change in poten-
tial energy does not depend on the choice of the reference point for

y1 � 0; instead, it depends on the change in height �y. For all four
situations, we have the same �y � �5.0 m. Thus, for (1) to (4),
Eq. 10-6 tells us that

(Answer)� �98 J.

�Ugrav � mg �y � (2.0 kg)(9.8 m/s2)(�5.0 m)
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In words, this equation says that 

In a system where (1) no work is done on it by external forces and (2) only conservative in-
ternal forces act on the system elements, then the internal forces in the system can cause en-
ergy to be transferred between kinetic energy and potential energy, but their sum, the me-
chanical energy E mec of the system, cannot change.

This result is called the conservation of mechanical energy. Beware! Conservation of me-
chanical energy only holds under the special conditions we just outlined. Now you can
see where conservative forces got their name.With the aid of (Eq. 10-17), we
can write this principle in one more form, as

. (10-20)

In cases where it holds, conservation of mechanical energy allows us to solve
problems that would be quite difficult to solve using only Newton’s laws:

When the mechanical energy of a system is conserved, we can relate the sum of kinetic en-
ergy and potential energy at one instant to that at any other instant without considering the
intermediate motion and without finding the work done by the forces involved.

Figure 10-14 shows an example in which the principle of conservation of mechanical
energy can be applied. As a pendulum swings, the energy of the pendulum–Earth sys-
tem is transferred back and forth between kinetic energy K and gravitational poten-
tial energy U, with the sum being constant. If we are given the gravitational
potential energy when the pendulum bob is at its highest point (Fig 10-14, stage 1), we
can find the kinetic energy of the bob at the lowest point (Fig. 10-14, stage 3) using

(Eq. 10-19). The continual exchange back and forth between po-
tential energy and kinetic energy is shown in the graph in Fig. 10-14.
K2 � U2 � K1 � U1

K � U

�E mec � �K � �U � 0

�K � ��U
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FIGURE 10-14 ■ A pendulum with its
mass of 0.10 kg concentrated in a bob at
the lower end. A selection of video frames
that capture its motion shows the potential
and kinetic energy of the bob as it swings
back and forth for one full cycle of motion.
A local fit of data for angular position vs
time and its first derivative was used to cal-
culate gravitational potential energy, U,
and kinetic energy, K, of the bob on a
moment-by-moment basis. During the cy-
cle, the values of the potential and kinetic
energies of the pendulum–Earth system
vary as the bob rises and falls. But, as
shown in the graph, the total mechanical
energy, Emec, of the system remains con-
stant within the limits of experimental un-
certainty. In stages 3 and 7, all the energy is
kinetic. The bob has its greatest speed
while passing rapidly through its lowest
point. In stages 1 and 5, all the energy is
potential energy. In stages 2, 4, 6, and 8, the
energy is split between potential and
kinetic. The forces on the pendulum
appear to be conservative when only one
cycle is observed. However, the friction at
the point of attachment and the presence
of drag forces due to the air will cause the
total mechanical energy of the system to
decrease slowly with time.
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For example, let us choose the lowest point of the pendulum as the reference
point and set the corresponding gravitational potential energy . Note then
that the potential energy at the highest point is approximately given by 
relative to the reference point. Because the bob momentarily has speed at its
highest point, the kinetic energy there is . Substituting these values into

gives us the kinetic energy at the lowest point,

Note that we get this result without considering the motion between the highest and
lowest points (such as in Fig. 10-14, stage 7) and without finding the work done by any
forces involved in the motion.

READI NG EXERC IS E  10-5: The figure shows four situations—one in which an ini-
tially stationary block is dropped and three in which the block is allowed to slide down friction-
less ramps. (a) Rank the situations according to the kinetic energy of the block at point B,
greatest first. (b) Rank them according to the speed of the block at point B, greatest first.

■

K2 � 0.00 J � 0.00 J � 0.20 J or K2 � 0.20 J.

K2K2 � U2 � K1 � U1

K1 � 0.00 J
v � 0
U1 � 0.20 J

U2 � 0.00 J

A

B B B B
(1) (2) (3) (4)

TOUCHSTONE EXAMPLE 10-3: Bungee Jumper

A 61.0 kg bungee-cord jumper
is on a bridge 45.0 m above a
river. The elastic bungee cord
has a relaxed length of L �
25.0 m. Assume that the cord
obeys Hooke’s law, with a
spring constant of 160 N/m. If
the jumper stops before reach-
ing the water, what is
the height h of her feet above
the water at her lowest point?

S O L U T I O N ■ Figure 10-15
shows the jumper at the lowest
point, with her feet at height h
and with the cord stretched by
distance d from its relaxed
length. If we knew d, we could
find h. One Ke y  I d e a is that
perhaps we can solve for d by
applying the principle of con-
servation of mechanical energy,
between her initial point (on
the bridge) and her lowest
point. In that case, a second
Ke y  I d e a is that mechanical

energy is conserved in an isolated system when only conservative
forces cause energy transfers. Let’s check.

Forces: The gravitational force does work on the jumper
throughout her fall. Once the bungee cord becomes taut, the
spring-like force from it does work on her, transferring energy to
elastic potential energy of the cord. The force from the cord also
pulls on the bridge, which is attached to Earth. The gravitational
force and the spring-like force are conservative.

System: The jumper–Earth–cord system includes all these
forces and energy transfers, and we can take it to be isolated (no
work done by external forces). Thus, we can apply the principle of
conservation of mechanical energy to the system. From Eq. 10-20,
we can write the principle as

(10-21)

where �K is the change in the jumper’s kinetic energy, �U elas is the
change in the elastic potential energy of the bungee cord, and
�U grav is the change in gravitational potential energy. All these
changes must be computed between her initial point and her lowest
point. Because she is stationary (at least momentarily) both initially
and at her lowest point, �K � 0. From Fig. 10-15 (with the bridge as
origin and downward the negative y direction), we see that the
change �y in her height is �(L � d), so we have

�Ugrav � mg �y � �mg(L � d),

�K � �Uelas � �Ugrav � 0,

h

d

L

FIGURE 10-15 ■ A bungee-
cord jumper at the lowest point
of the jump.
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where m is her mass. Also from Fig. 10-15, we see that the bungee
cord is stretched by distance d. Thus, we also have

Inserting these expressions and the given data into Eq. 10-21,
we obtain

or

and then

1
2 kd 2 � mgL � mgd � 0,

0 � 1
2 kd 2 � mg(L � d) � 0,

�Uelas � 1
2 kd2.

Solving this quadratic equation yields

The jumper’s feet are then a distance of below
their initial height. Thus,

(Answer)h � 45.0 m � 42.9 m � 2.1 m.

(L � d) � 42.9 m

d � 17.9 m.

� (61.0 kg)(9.8 m/s2)d � 0.

1
2(160 N/m)d 2 � (61.0 kg)(9.8 m/s2)(25.0 m)

10-5 Reading a Potential Energy Curve 

Once again we consider a particle that is part of a system in which a conservative
force acts. This time suppose that the particle is constrained to move along an x axis
while the conservative force does work on it. We can learn a lot about the motion of
the particle from a plot of the system’s potential energy U(x). However, before we
discuss such plots, we need one more relationship.

Finding the Force Analytically for a Two-Body System
According to Eq. 10-12, if we choose a vertical x axis passing from particle A through
particle B (like that shown in Fig. 10-11) with its origin at particle A, then the change
in potential energy of the system can be expressed as

This is the potential energy change that occurs when one of the particles, chosen as B,
moves between x1 and x2 along a (vertical) x axis.

Suppose we have the reverse situation. That is, suppose we happen to know 
and we would like to know the internal force acting on particle B denoted as .
If the force on particle B does not vary rapidly with x, the potential energy change in
the system as particle B moves through a distance is approximately 

If we solve for , pass to the differential limit, and drop the label B (so the
x-component of force denotes the internal force on whichever particle in the system is
displaced relative to the other) we have

(one-dimensional internal force). (10-22)

We can check our result with , which is the elastic potential energy
function for a spring force. Equation 10-22 ( ) then yields, as
expected, , which is Hooke’s law. Similarly, we can substi-
tute , which is the gravitational potential energy function for a particle–
Earth system, with a particle of mass m at height y above Earth’s surface.

then yields , which is the y-compo-
nent of gravitational force on the particle.

F grav
y (y) � �mgF cons

y (y) � F grav
y (y) � �dU(y)/dy

U(y) � mgy
F cons

x (x) � F spring
x (x) � �kx

F cons
x (x) � �dU(x)/dx

U(x) � 1
2kx2

F cons
x (x) � �

dU(x)
dx

FB x(x)

�U(x) � �FB x(x) �x.

�x

FB x(x)
�U

�U � �� x2

x1

FB x(x) dx.



The Potential Energy Curve
Figure 10-16a is a plot of a potential energy function U(x) for a system in which a par-
ticle is in one-dimensional motion while a conservative internal force does
work on it. Since in Eq. 10-22 is the slope of the U(x) vs. x curve, we can eas-
ily find by (graphically) taking the slope of the U(x) curve at various points
and negating it. Figure 10-16b is a plot of found in this way.

Turning Points
As we discussed in Section 10-4, in the absence of a nonconservative force, the me-
chanical energy Emec of the system has a constant value given by

. (10-23)

Here K(x) is the kinetic energy function of the particle (this K(x) gives the kinetic en-
ergy as a function of the particle’s location x). We may rewrite this expression as

. (10-24)

Suppose that Emec (which has a constant value for a conservative isolated system)
happens to be 5.0 J. It would be represented in Fig. 10-16a by a horizontal line that
runs through the value 5.0 J on the energy axis. (It is, in fact, shown there.)

Equation 10-24 ( ) tells us how to determine the kinetic en-
ergy K for any location x of the particle: On the U(x) curve, find U for that location x
and then subtract U from Emec. For example, if the particle is at any point to the right
of x5, then . The value of K is greatest (5.0 J) when the particle is at x2, and
least (0 J) when the particle is at x1.

Since K can never be negative (because v2 is always positive), the particle can
never move to the left of x1, where is negative. Instead, as the particleEmec � U

K � 1.0 J

K(x) � Emec � U(x)

K(x) � Emec � U(x)

U(x) � K(x) � Emec

F int
x (x)

F int
x (x)

dU(x)/dx
F
: int

x (x)
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FIGURE 10-16 ■ (a) A plot of U(x), the potential energy function of a sys-
tem containing a particle confined to move along the x axis. There is no fric-
tion, so mechanical energy is conserved. (b) A plot of the force F(x) acting
on the particle, derived from the potential energy plot by taking its slope at
various points. (c) The U(x) plot of (a) with three different possible values
of shown.E mec

6

5

4

3

2

1

U  (J), E mec  (J)

xx 2x1 x 3 x 4 x 5

+

–

x

(a)

(b)

Turning point E mec = 5.0 J

K = 1.0 J at x > x5

K = 5.0 J at x2

U(x)

6

5

4

3

2

1

x

(c)

x 2x1 x 3 x 4 x 5

x 2x 1 x 3 x 4 x 5

U  (J), Emec  (J)

Fx (N)



moves toward x1 from x2, K decreases (the particle slows) until at x1 (the parti-
cle stops there).

Note that when the particle reaches , the x-component of the internal force on
the particle due to the rest of the system, given by 

,

is positive (because the slope is negative). This means that the particle does not
remain at x1 but instead begins to move to the right, opposite its earlier motion.
Hence x1 is a turning point, a place where (because ) and the particle
changes direction. There is no turning point (where ) on the right side of the
graph. When the particle heads to the right and x > x5, there is no force on it, and it
will continue indefinitely.

Equilibrium Points
Figure 10-16c shows three different values for superimposed on the plot of the
same potential energy function U(x). Let us see how they would change the situation.
If (line running through the value 3.0 J on the energy axis), there are two
turning points: one is between x1 and x2 and the other is between x4 and x5. In addi-
tion, x3 is a point at which . If the particle is located exactly there, the force on it
is also zero (the slope of the curve is zero), and the particle remains stationary. How-
ever, if it is displaced even slightly in either direction, a nonzero force pushes it fur-
ther in the same direction, and the particle continues to move. A particle at such a po-
sition is said to be in unstable equilibrium. (A marble balanced on top of a bowling
ball is an example.)

Next consider the particle’s behavior if (line running through the
value 1.0 J on the energy axis). If we place the particle at x4, it is stuck there. It cannot
move left or right on its own because to do so would require a negative kinetic en-
ergy. If we push it slightly left or right, a restoring force appears that moves it back to
x4. A particle at such a position is said to be in stable equilibrium. (A marble placed at
the bottom of a hemispherical bowl is an example.) If we place the particle in the cup-
like potential well centered at x2, it is between two turning points. It can still move left
and right somewhat, but only partway to x1 or to x3.

If (line running through the value 4.0 J on the energy axis), the turn-
ing point shifts from x1 to a point between x1 and x2. Also, at any point to the right of
x5, the system’s mechanical energy is equal to its potential energy; thus, the particle
has no kinetic energy and (by ) no force acts on it. So it must be
stationary. A particle at such a position is said to be in neutral equilibrium. (A marble
placed on a horizontal tabletop is in that state.)

READI NG EXERC IS E  10-6: The figure gives the potential energy function U(x) for
a system in which a particle is in one-dimensional motion. (a) Rank regions AB, BC, and CD
according to the magnitude of the force on the particle, greatest first. (b) What is the direction
of the force when the particle is in region AB?

■

F int
x (x) � �dU(x)/dx

Emec � 4.0 J

Emec � 1.0 J

K � 0

Emec � 3.0 J

Emec

K � 0
U � EK � 0

dU/dx

F int
x (x) � �

dU(x)
dx

x 1

K � 0
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10-6 Nonconservative Forces and Energy

We have made the claim that mechanical energy is conserved in an isolated system (no net
work is done on the system by external forces) whose internal forces are conservative. Let’s
now consider an isolated system whose elements interact by means of nonconservative ki-
netic friction forces. Our example is an isolated system consisting of a sliding block and a
floor (Fig. 10-17).Assume the block has an initial velocity .What happens to its initial ki-
netic energy as it slides along the floor and comes to rest so ? According to the net
work-kinetic energy theorem, the net work done on the block from the sum of all the
forces acting on it will result in a kinetic energy change of the block given by

Since the net work is calculated from the net force, we need to write down an ex-
pression for the net force on the block. The block has a friction force, a downward
gravitational force, and an upward normal force exerted on it. Since there is no mo-
tion in the vertical direction, we know that the gravitational and normal forces cancel
each other out. The net force on the block is just the horizontal kinetic friction force,
so . Since there are no external forces acting on the system, all the work
done on the system is done by internal forces. So, Wnet � W int. If the block has a dis-
placement as it slides to rest, then

. (10-25)

The product of , which represents the internal work done on the system, is neg-
ative since friction forces always act in a direction opposite to an object’s displace-
ment. Since the friction force is nonconservative (the amount of work it does depends
on the path taken), we cannot associate a potential energy change with it. Instead, as
Eq. 10-25 indicates, the internal work done on the system has caused a loss of kinetic

f kin
x �x

W net � W int � f kin
x �x � �1

2 mv2
1

�x:

F
:net � f

:kin

W net � �K � 1
2 mv2

2 � 1
2 mv2

1.

v:2 � 0
v:1
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TOUCHSTONE EXAMPLE 10-4: Shifting the Zero

Suppose that you shifted the origin of the graph shown in Fig.
10-16a up by 6.0 J so that the potential energy reference point from
which all the values of U(x) were measured was located at x � 0
rather than x � x2.

(a) What effect would this have on the values of U(x)?

S O L U T I O N  ■ While the plot of U(x) would still have the same
shape as in Fig. 10-16a, all of its values would be reduced by 6.0 J
and so would now be negative rather than positive. For example,
now U(0) � 0, U(x1) � �1 J, U(x2) � �6 J, and so on. (Answer) 

(b) What effect would this have on the values of the kinetic
energy?

S O L U T I O N  ■ The particle’s kinetic energy, , depends
only on the particle’s mass and speed. Since neither of these depend
on our choice of reference point from which we measure the parti-
cle’s potential energy, the values of the particle’s kinetic energy at
each location will be the same as before. (Answer)

(c) What effect would this have on the values of Emec?

S O L U T I O N ■ The Ke y  I d e a here is that Emec � U � K.
Since each value of U is reduced by 6.0 J by this shift of reference

K � 1
2mv2

point, and the values of K remain the same, then Emec is also re-
duced by 6.0 J in each case. (Answer)

This change in Emec does not mean that Emec no longer has a
constant value. It’s just that it now has a different constant value
than it had before. For example, in Fig. 10-16a, Emec � �5.0 J every-
where to the right of x � x1 before we shifted the potential energy’s
reference point. After the shift, Emec � �1.0 J, still constant and in-
dependent of location, but now with a different value.

(d) What effect would this have on the values of Fx(x), the force ex-
perienced by the particle, as pictured in Fig. 10-16b?

S O L U T I O N ■ The Ke y  I d e a here is that .
Subtracting a constant from U(x) has no effect on its derivative since

Therefore, Fx(x) will be unchanged. (Answer)

�
dU(x)

dx
� 0 �

dU(x)
dx

.

d(U(x) � constant)
dx

�
dU(x)

dx
�

d(constant)
dx

Fx(x) � �dU/dx

f kin

v1 v2 = 0

x
x1 x2

Δx = (x2 – x1)

FIGURE 10-17 ■ (a) A block slides across
a floor while a kinetic frictional force 
opposes the motion. The block has velocity

at the start of a displacement and a
velocity � 0 at the end of the displace-
ment.

v:2

�x:v:1

f
: kin



energy. This represents a loss of the only form of mechanical energy such a system can
have. We can conclude that

If the internal forces in an isolated system include nonconservative forces, then mechanical
energy is not conserved.

By experimenting, we find that the block and the portion of the floor along which
it slides become warmer as the block slides to a stop. If we associate the temperature
of an object with a new kind of energy, thermal energy E thermal, we may be able to
continue to make use of energy conservation methods. In fact, it turns out that the ki-
netic energy lost in Eq. 10-25 does cause a gain in thermal energy where

(increase in thermal energy due to kinetic friction). (10-26)

As we shall discuss in Chapter 19, the thermal energy of an object is related to tempera-
tures and can be associated with the random motions of atoms and molecules in objects.

We define the total energy of the system to be the sum of its mechanical energy
and other forms of energy including thermal energy, chemical energy, light, sound, and
so on. Doing so, we see that we have a new principle of energy conservation for iso-
lated systems even in the presence of nonconservative forces given by

. (10-27)

Here, �Enoncons � �E thermal � �Eother where �Eother includes light, sound, and so on.

READI NG EXERC IS E  10-7: In three trials, a block starts with the same kinetic en-
ergy and slides across a floor that is not frictionless, as in Fig. 10-17. In all three trials, the block
is allowed to slide through the same distance but has not yet come to rest. Rank the three
trials according to the change in the thermal energy of the block and floor that occurs, greatest
first.

Trial Block’s Displacement �x

a 5.0 N 0.20 m

b 7.0 N 0.30 m

c 8.0 N 0.10 m
■

f kin
x

�x

�E total � �E mec � �E noncons � 0

�E thermal � �f kin
x �x
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TOUCHSTONE EXAMPLE 10-5: Tamale Stops Here

In Fig. 10-18, a 2.0 kg package of tamales slides along a floor with
speed . It then runs into and compresses a spring, until
the package momentarily stops. Its path to the initially relaxed
spring is frictionless, but as it compresses the spring, a kinetic fric-
tional force from the floor, of magnitude 15 N, acts on it. The spring
constant is 10 000 N/m. By what distance d is the spring compressed
when the package stops?

v1 � 4.0 m/s
S O L U T I O N ■ A starting Ke y  I d e a is to examine all the
forces acting on the package, and then to determine whether we
have an isolated system or a system on which an external force is
doing work.

Forces: The normal force on the package from the floor does
no work on the package, because its direction is always perpendicu-
lar to that of the package’s displacement. For the same reason, the
gravitational force on the package does no work. As the spring is
compressed, however, a spring force does work on the package,
transferring energy to elastic potential energy of the spring. The
spring force also pushes against a rigid wall. Because there is fric-
tion between the package and the floor, the sliding of the package
across the floor increases their thermal energies.

System: The package–spring–floor–wall system includes all
these forces and energy transfers in one isolated system. Therefore,
a second Ke y  I d e a is that, because the system is isolated, its total

k
Tamale

Package
v1

FrictionlessFriction

FIGURE 10-18 ■ A package slides across a frictionless floor with
velocity toward a spring of spring constant k. When the package
reaches the spring, a frictional force from the floor acts on it.

v:1



10-7 Conservation of Energy 

We now have discussed several situations in which energy is transferred between ob-
jects within systems. In each situation, we assume that the energy that was involved
could always be accounted for. That is, energy could not appear or disappear. In more
formal language, we assumed that energy obeys a law called the law of conservation
of energy, which is concerned with the total energy Etotal of a system. There are many
complex situations in which it is difficult to account for all the energy. But physicists
have always found that if a change in a system takes place and some energy seems to
be missing, it simply has taken on a new form. This is the case with the thermal energy
we talked about in the previous section. It can be accounted for by developing meth-
ods for keeping track of the kinetic energy stored in the random motions of atoms
and molecules in the sliding block and floor and in the potential energy associated
with the chemical bonds that hold them together.

We define total energy of a system as the sum of the system’s mechanical energy,
thermal energy, and other forms of energy we will not touch on here that are associ-
ated with things like sound and light. The law of conservation of energy states that:

The total energy Etotal of a system can change only by amounts of energy that are trans-
ferred to or from the system.

When is energy transferred to or from a system? This occurs when an external force
does work W ext on the system. The external work W ext done on a system is not merely
a calculation procedure. It is an energy transfer process. Thus, the law of conservation
of energy can be stated in very general terms as

, (10-28)

where is any change in thermal energy or the many other forms of energy
that we have not discussed here. Included in are changes in kinetic energy
and changes in potential energy due to conservative forces such as elastic, gravita-
tional, and electrostatic forces (which we discuss in Chapter 25).

�U
�K�E mec

�E noncons

W ext � �E total � �E mec � �E noncons
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energy cannot change. We can then apply the law of conservation of
energy in the form of Eq. 10-27 to the system:

But ,

so . (10-29)

Let subscript 1 correspond to the initial state of the sliding
package and subscript 2 correspond to the state in which the pack-
age is momentarily stopped and the spring is compressed by dis-
tance d. For both states the mechanical energy of the system is the
sum of the package’s kinetic energy and the spring’s
potential energy . For state 1, (because the spring
is not compressed), and the package’s speed is v1. Thus, we have

E mec
1 � K1 � U1 � 1

2 mv2
1 � 0.

U � 0(U � 1
2 kx2)

(K � 1
2 mv2)

E mec
2 � E mec

1 � �E thermal

�E mec � E mec
2 � E mec

1  and �E noncons � �E thermal

�E mec � �E noncons � 0.

For state 2, (because the package is stopped), and the com-
pression distance is d. Therefore, we have

Finally, by Eq. 10-26, we can substitute for the
change in the thermal energy of the package and the floor.
We can now rewrite Eq. 10-29 as

Rearranging and substituting known data give us

Solving this quadratic equation yields

(Answer)d � 0.055 m � 5.5 cm.

(5000 N/m)d 2 � (15 N)d � (16 J) � 0.

1
2 kd2 � 1

2 mv2
1 � f kin

d d.

�E thermal
(�f kin

x �x) � f kin
x d

E mec
2 � K2 � U2 � 0 � 1

2 kd 2.

K � 0
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As you may have noticed, this law of conservation of energy is not something we
have derived from basic physics principles. It is more speculative. But in the past,
whenever it has appeared to fail, scientists and engineers have been able to identify
new forms of energy that allow us to hold on to the law of conservation of energy.
Furthermore, each time a new form of energy has been identified, we have been able
to understand whole new classes of phenomena, such as how stars shine or how ra-
dioactive atoms decay.

10-8 One-Dimensional Energy and Momentum
Conservation

Recall that in some situations, the conservation of translational momentum allowed
us to figure out what was going to happen, even when we didn’t know what the forces
were. (For example, when two objects collide and stick together.) Now that we have
identified a second conservation law—the conservation of energy—we can figure out
what is going to happen in a larger class of situations.

TOUCHSTONE EXAMPLE 10-6: Easter Island

The giant stone statues of Easter Island were most likely moved by
the prehistoric islanders by cradling each statue in a wooden sled
and then pulling the sled over a “runway” consisting of almost iden-
tical logs acting as rollers. In a modern reenactment of this tech-
nique, 25 men were able to move a 9000 kg Easter Island-type
statue 45 m over level ground in 2 min.

(a) Estimate the work the external force from the men did
during the 45 m displacement of the statue, and determine the sys-
tem on which that force did the work.

S O L U T I O N ■ One Ke y  I d e a is that we can calculate the work
done with Eq. 9-26 . Here is the distance
45 m, is the magnitude of the external force on the statue from
the 25 men, and � � 0�. Let us estimate that each man pulled with a
force magnitude equal to twice his weight, which we take to be the
same value mg for all the men. Thus, the magnitude of the external
force was . Estimating a man’s mass as
80 kg, we can then write Eq. 9-26 as

(Answer)

The Ke y  I d e a in determining the system on which the work is
done is to see which energies change. Because the statue moved,
there was certainly a change �K in its kinetic energy during the mo-
tion. We can easily guess that there must have been considerable ki-
netic friction between the sled, logs, and ground, resulting in a
change �E thermal in their thermal energies. Thus, the system on which
the work was done consisted of the statue, sled, logs, and ground.

� 1.8 
  106 J � 2 MJ.

� (50)(80 kg)(9.8 N/kg)(45 m)cos 0�

Wext � � F
: ext � � �r: �cos � � 50mgd cos �

� F
: ext � � (25)(2)(mg) � 50mg

� F
: ext �

� �r: �(W � � F
:

�� �r: �cos �)

F
: ext

(b) What was the increase �E thermal in the thermal energy of the
system during the 45 m displacement?

S O L U T I O N ■ The Ke y  I d e a here is that we can relate 
�Enoncons � �E thermal to the work W ext done by with the energy
statement of Eq. 10-28,

.

We know the value of W ext from (a). The change �E mec in the
statue’s mechanical energy was zero because the statue was station-
ary at the beginning and end of the move and did not change in ele-
vation. Thus, we find

. (Answer)

(c) Estimate the work that would have been done by the 25 men if
they had moved the statue 10 km across level ground on Easter Is-
land. Also estimate the total change �E thermal that would have oc-
curred in the statue–sled– logs–ground system.

S O L U T I O N ■ The Key  I dea s here are the same as in (a) and
(b). Thus we calculate W ext as in (a), but with now sub-
stituted for . Also, we again equate �E thermal to W ext. We get

. (Answer)

This would have been a significant amount of energy for the men to
have transferred during the movement of a statue. Still, the 25 men
could have moved the statue 10 km, and the required energy does
not suggest some mysterious source.

W ext � �E thermal � 3.9 
  108 J �  400 MJ

� �r: �
1 
  104 m

�E thermal � Wext � 1.8 
  106 J � 2 MJ

Wext � �E mec � �E thermal

F
:ext



Consider a system of two colliding bodies. If there is to be a collision, then at least
one of the bodies must be moving, so the system has a certain kinetic energy and a
certain translational momentum before the collision. During the collision, the kinetic
energy and translational momentum of each body are changed by the impulse from
the other body. We can discuss these changes—and also the changes in the kinetic en-
ergy and translational momentum of the system as a whole—without knowing the
details of the impulses that determine the changes. As was the case in Chapter 7
where we first discussed collisions, the discussion here will be limited to collisions in
systems that are closed (no mass enters or leaves them) and isolated (no net external
forces act on the bodies within the system).

Elastic versus Inelastic Collisions
Collisions that we casually called bouncy and sticky in Chapter 7 can be classified in
terms of whether or not mechanical energy is conserved. Except for a brief period
during a collision, typically no potential energy is stored in a system of objects before
and after the collision. So most of the time the mechanical energy in the system is
equal to the total kinetic energy of the colliding objects.

Elastic Collisions: If the total kinetic energy of the system of two colliding bodies is
unchanged by the collision, the collision is called a completely elastic collision. This
happens if the forces between the objects during the collision are approximately con-
servative and spring-like. Some of the “bouncy” collisions we discussed in Chapter 7
may have been elastic collisions. However, most “bouncy” collisions are in fact not
completely elastic collisions.

Inelastic Collisions: In everyday collisions of common bodies, such as between two
cars or a ball and a bat, some energy is always transferred from kinetic energy to
other forms of energy, such as thermal energy or energy of sound. Thus, the kinetic
energy of the system is not conserved. Such a collision is defined as an inelastic colli-
sion. Figure 10-19 shows a dramatic example of a completely inelastic collision. In
such collisions, the bodies always stick together and lose all their kinetic energy. Most
real collisions are partially elastic and partially inelastic.

Almost Elastic Collisions: In some situations, we can approximate a collision of com-
mon bodies as elastic. Suppose that you drop a Superball onto a hard floor. If the col-
lision between the ball and floor (or Earth) were elastic, the ball would lose no kinetic
energy because of the collision and would rebound to its original height. However, the
actual rebound height is somewhat short of the starting point, showing that at least
some kinetic energy is lost in the collision and thus that the collision is somewhat in-
elastic. Still, we might choose to neglect that small loss of kinetic energy to approxi-
mate the collision as elastic.

Distinguishing Energy and Momentum Conservation
It is easy to confuse momentum conservation with energy conservation. However,
they are not the same. Momentum is a vector quantity defined as the product of mass
and velocity. Energy is a scalar quantity that has no direction associated with it. As
far as we know, momentum is always conserved as a result of interactions between
objects in an isolated system. This is not the case for mechanical energy. Mechanical
energy is only conserved when the internal forces that do work on the system are con-
servative.

Let’s perform three thought experiments that illustrate some of the differences
between the two conservation laws. To do this, imagine three types of collision
processes described in Chapter 7 on collisions and momentum. One is a completely
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FIGURE 10-19 ■ Two cars after an almost
head-on, almost completely inelastic colli-
sion.



inelastic collision in which the colliding objects stick together. Another is a completely
elastic collision in which the objects bounce off one another and the system consisting
of the colliding objects loses no mechanical energy. The third is a superelastic collision,
or explosion, in which some energy is released so the system has more mechanical en-
ergy than it did before.

In all three thought experiments, two identical carts with negligible friction are
moving toward each other at the same speed (Fig. 10-20). Since they are moving on a
horizontal ramp they have no change in gravitational potential energy as they move.
In this special circumstance, the mechanical energy of each of the two-cart systems is
the same as its kinetic energy.

From the information in the figure, it is apparent that the momentum before and af-
ter the collision is the same in all three cases and is zero. However, in the inelastic colli-
sion shown in experiment 1, there is Velcro on the ends of the carts so they come to a
dead halt when they stick together. In Section 7-6, we referred to this type of collision as
“sticky.” Although the temperature of the Velcro rises, there is no kinetic energy left af-
ter the collision and, hence, mechanical energy is not conserved. In experiment 2, the
carts have magnets embedded in the ends that repel, causing the carts to rebound with
the same speed but not the same velocity as before. In this case kinetic energy, and
hence mechanical energy, is conserved. Finally, in experiment 3, wads of gunpowder
glued to the cart ends ignite. Chemical potential energy is released in an explosion that
causes the carts to rebound with a greater kinetic energy than they had before. Once
again mechanical energy is not conserved, but translational momentum still is.

Translational Momentum
Regardless of the details of the impulses in a collision and regardless of what happens
to the total kinetic energy of the system, the total translational momentum of a
closed, isolated system cannot change. The reason is that can be changed only by
external forces (from outside the system), but the forces in the collision are internal
forces (inside the system). Thus, we have this important rule:

In a closed, isolated system in which a collision occurs, the translational momentum of each
colliding body may change but the total translational momentum of the system cannot
change, whether the collision is elastic or inelastic.

This is actually another statement of the law of conservation of translational momen-
tum that we first discussed in Section 7-6. In Section 7-7, we explored translational
momentum conservation for inelastic collisions—that is, “sticky collisions.” In the
next two sections we apply this law to elastic collisions.

p:sys

p:sys

p:sys
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FIGURE 10-20 ■ Three possible outcomes of a head-on collision between two identical carts.
Momentum is conserved in all three cases but not necessarily mechanical energy.

Thought experiment 1:
After inelastic collision

v = 0

Before collision

v v–

Thought experiment 2:
After elastic collision

vv–

Thought experiment 3:
After superelastic collision

vv–2
POW!

2



10-9 One-Dimensional Elastic Collisions

Stationary Target
As we discussed in Section 10-8, everyday collisions are inelastic but we can approxi-
mate some of them as being elastic. That is, we can assume that the total kinetic en-
ergy of the colliding bodies is approximately conserved and is not transferred to other
forms of energy:
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TOUCHSTONE EXAMPLE 10-7: Ballistic Pendulum

The ballistic pendulum was used to measure the speeds of bullets
before electronic timing devices were developed. The version
shown in Fig. 10-21 consists of a large block of wood of mass

, hanging from two long cords. A bullet of mass
is fired into the block, coming quickly to rest. The block +

bullet then swing upward, their centers of mass rising a vertical dis-
tance before the pendulum comes momentarily to rest
at the end of its arc. What is the speed of the bullet just prior to the
collision?

S O L U T I O N ■ We can see that the bullet’s speed v must deter-
mine the rise height h. However, a Ke y  I d e a is that we cannot
use the conservation of mechanical energy to relate these two
quantities because surely energy is transferred from mechanical en-
ergy to other forms as the bullet penetrates the block. Another
Ke y  I d e a helps—we can split this complicated motion into two
steps that we can separately analyze: (1) the bullet–block collision
and (2) the bullet–block rise, during which mechanical energy is
conserved.

Step 1. Because the collision within the bullet–block system is so
brief, we can make two important assumptions: (1) During the colli-
sion, the gravitational force on the block and the force on the block

h � 6.3 cm

m � 9.5 g
M � 5.4 kg

from the cords are still balanced. Thus, during the collision, the net
external force on the bullet–block system is zero. Therefore, the
system is isolated and its total translational momentum is con-
served. (2) The collision is one-dimensional in the sense that the
direction of the bullet and block just after the collision is in the bul-
let’s original direction of motion.

Because the collision is one-dimensional, the block is initially at
rest, and the bullet sticks in the block, we use Eq. 7-21 to express the
conservation of linear momentum. If the speed of the block just af-
ter the collision is V, we have mv � 0 � mV � MV or

(10-30)

Step 2. After the “collision” between the bullet and the block is
over, the bullet and block now swing up together, and the mechani-
cal energy of the bullet–block–Earth system is conserved. (This
mechanical energy is not changed by the force of the cords on the
block, because that force is always directed perpendicular to the
block’s direction of travel.) Let’s take the block’s initial level as our
reference level of zero gravitational potential energy. Then conser-
vation of mechanical energy means that the system’s kinetic energy
at the start of the swing must equal its gravitational potential en-
ergy at the highest point of the swing. Because the speed of the bul-
let and block at the start of the swing is the speed V immediately af-
ter the collision, we may write this conservation as

Substituting this result for V in Eq. 10-30 leads to

(Answer)

The ballistic pendulum is a kind of “transformer,” exchanging the
high speed of a light object (the bullet) for the low—and thus more
easily measurable—speed of a massive object (the block).

� 630 m/s.

� � 0.0095 kg �  5.4 kg
0.0095 kg � √(2)(9.8 m/s2)(0.063 m)

v �
m � M

m
√2gh

1
2 (m � M)V2 � 0 � 0 � (m � M)gh.

V �
m

m � M
v.

m

h

M

v

FIGURE 10-21 ■ A ballistic pendulum, used to measure the speeds
of bullets.



(total kinetic energy before the collision) � (total kinetic energy after the collision).

This does not mean that the kinetic energy of each colliding body cannot change.
Rather, it means this:

In an elastic collision, the kinetic energy of each colliding body may change, but the total ki-
netic energy of the system is the same before the collision as it is after.

For example, consider the collision of a cue ball with an object ball of approximately
the same mass in a game of pool. If the collision is head-on (the cue ball heads di-
rectly toward the object ball), the kinetic energy of the cue ball can be transferred al-
most entirely to the object ball. (Still, the fact that the collision makes a sound means
that at least a little of the kinetic energy is transferred to the energy of the sound.)

Figure 10-22 shows two bodies whose masses are not necessarily different before
and after they have a one-dimensional collision, like a head-on collision between pool
balls. A projectile body of mass mA and initial velocity moves toward a target
body of mass mB that is initially at rest with velocity . Let’s assume that this
two-body system is closed and isolated. Then the net linear momentum of the system
is conserved, and from Eq. 7-18 we can write

(linear momentum conservation), (10-31)

where in general and .
If the collision is also completely elastic, then the total kinetic energy is conserved

and we can write

(kinetic energy conservation). (10-32)

In each of these equations, “1” signifies a time before the collision and “2” signifies a
time after the collision. If we know the masses of the bodies and if we also know ,
the initial velocity of body A, the only unknown quantities are and , the final
velocities of the two bodies. With two equations at our disposal, we should be able to
find these two unknowns.

To do so, we express the velocities in terms of their x-components and rewrite 
Eq. 10-31 as

(10-33)

and Eq. 10-32 as*

. (10-34)

After dividing Eq. 10-34 by Eq. 10-33 and doing some more algebra, we obtain

(10-35)

and (10-36)vB x(t2) �
2mA

mA � mB
vA x(t1).

vA x(t2) �
mA � mB

mA � mB
vA x(t1),

mA[vA x(t1) � vA x(t2)][vA x(t1) � vA x(t2)] � mB[vB x(t2)]2

mA[vA x(t1) � vA x(t2)] � mBvB x(t2),

v:B 2v:A 2

v:A 1

1
2 mAv 2

A 1 � 1
2 mAv 2

A 2 � 1
2 mBv 2

B 2

v:B (t) � vB x (t) îv:A (t) � vA x (t) î

mA v:A 1 � mA v:A 2 � mB v:B 2

v:B 1 � 0
v:A 1
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FIGURE 10-22 ■ Body 1 moves along an 
x axis before having an elastic collision
with body 2, initially at rest. Both bodies
move along that axis after the collision.

* In this step, we use the identity a2 � b2 � (a � b)(a � b). It reduces the amount of algebra needed to
solve the simultaneous equations, Eqs. 10-33 and 10-34.

x

Before

mA
Projectile

mB
Target

x
After

mA mB

vA1

vA2 vB 2

vB1 = 0



We note from Eq. 10-36 that is always positive (the target body with mass
mB always moves forward). From Eq. 10-35 we see that may be of either
sign (the projectile body with mass mA moves forward if mA � mB but rebounds if
mA � mB).

Let us look at a few special situations.

1. Equal masses. If , Eqs. 10-35 and 10-36 reduce to

and ,

which we might call a pool player’s result. It predicts that after a head-on collision
of bodies with equal masses, body A (initially moving) stops dead in its tracks and
body B (initially at rest) takes off with the initial speed of body A. In head-on col-
lisions, bodies of equal mass simply exchange velocities. This is true even if the
target particle (body B) is not initially at rest.

2. A massive target. In terms of Fig. 10-22, a massive target means that mB �� mA.
For example, we might fire a golf ball at a cannonball. Equations 10-35 and 10-36
then reduce to

and (10-37)

This tells us that body A (the golf ball) simply bounces back in the same direction
from which it came, its speed essentially unchanged. Body B (the cannonball)
moves forward at a very low speed, because the quantity in parentheses in 
Eq. 10-37 is much less than unity. All this is what we should expect.

3. A massive projectile. This is the opposite case; that is, mA �� mB. This time, we
fire a cannonball at a golf ball. Equations 10-35 and 10-36 reduce to

and (10-38)

Equation 10-38 tells us that body A (the cannonball) simply keeps on going,
scarcely slowed by the collision. Body B (the golf ball) charges ahead at twice the
speed of the cannonball.

You may wonder: Why twice the speed? As a starting point in thinking about
the matter, recall the collision described by Eq. 10-37, in which the velocity of the
incident light body (the golf ball) changed from to , a velocity
change of magnitude . The same magnitude of change in velocity (from
0 to ) occurs in this example also.

Moving Target
Now that we have examined the elastic collision of a projectile and a stationary tar-
get, let us examine the situation in which both bodies are moving before they undergo
an elastic collision.

For the situation of Fig. 10-23, the conservation of linear momentum is written as

(10-39)

and the conservation of kinetic energy is written as

(10-40)1
2 mAv 2

A 1 � 1
2 mBv 2

B 1 � 1
2 mAv 2

A 2 � 1
2 mBv 2

B 2.

mA v:A 1 � mB v:B 1 � mA v:A 2 � mB v:B 2,

�  2vA x(t1) �
�  2vA x(t1) �

�vA x(t1)vA x(t1)

vB x(t2) � 2vA x(t1).vA x(t2) � vA x(t1)

vB x(t2) � � 2mA

mB
�vA x(t1).vA x(t2) � �vA x(t1)

vB x(t2) � vA x(t1)vA x(t2) � 0

mA � mB

vA x(t2)
vB x(t2)
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x
mA mB

vA1 vB1

FIGURE 10-23 ■ Two bodies headed for a
one-dimensional elastic collision.



If we use similar procedures to those used in deriving Eqs. 10-35 and 10-36, we get

(10-41)

and (10-42)

Note that the assignment of subscripts A and B to the bodies is arbitrary. If we ex-
change those subscripts in Fig. 10-23 and in Eqs. 10-41 and 10-42, we end up with the
same set of equations. Note also that if we set , body B becomes a station-
ary target, and Eqs. 10-41 and 10-42 reduce to Eqs. 10-35 and 10-36, respectively.

READI NG EXERC IS E  10-8: What is the final translational momentum of the target
in Fig. 10-22 if the initial translational momentum of the projectile is 6 kg	 m/s and the final
translational momentum of the projectile is (a) 2 kg	 m/s and (b) �2 kg	 m/s? (c) If the collision
is elastic, what is the final kinetic energy of the target if the initial and final kinetic energies of
the projectile are, respectively, 5 J and 2 J? ■

vB x(t1) � 0

vB x(t2) �
2mA

mA � mB
vA x(t1) �

mB � mA

mA � mB
vB x(t1).

vA x(t2) �
mA � mB

mA � mB
vA x(t1) �

2mB

mA � mB
vB x(t1),
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TOUCHSTONE EXAMPLE 10-8: Colliding Pendula

Two metal spheres, suspended by vertical cords, initially just touch,
as shown in Fig. 10-24. Sphere A, with mass , is pulled to
the left to height and then released from rest. After
swinging down, it undergoes an elastic collision with sphere B,
whose mass . What is the velocity of sphere A just af-
ter the collision?

S O L U T I O N ■ A first Ke y  I d e a is that we can split this com-
plicated motion into two steps that we can separately analyze: (1)
the descent of sphere A and (2) the two-sphere collision.

Step 1. The Ke y  I d e a here is that as sphere A swings down, the
mechanical energy of the sphere–Earth system is conserved. (The
mechanical energy is not changed by the force of the cord on

v:A 2mB � 75 g

h0 � 8.0 cm
mA � 30 g

sphere A because that force is always directed perpendicular to the
sphere’s direction of travel.) Let’s take the lowest level as our refer-
ence level of zero gravitational potential energy. Then the kinetic
energy of sphere A at the lowest level must equal the gravitational
potential energy of the system when sphere A is at the initial
height. Thus,

which we solve for the speed of sphere A just before the
collision:

Step 2. Here we can make two assumptions in addition to the as-
sumption that the collision is elastic. First, we can assume that the
collision is one-dimensional because the motions of the spheres are
approximately horizontal from just before the collision

to just after it . Second, because
the collision is so brief, we can assume that the two-sphere system is
closed and isolated. This gives the Ke y  I d e a that the total trans-
lational momentum of the system is conserved. Thus, we can use
Eq. 10-35 to find the velocity of sphere A just after the collision:

(Answer)

The minus sign tells us that sphere A moves to the left just after the
collision.

� �0.537 m/s � �0.54 m/s.

vA x(t2) �
mA � mB

mA � mB
vA x(t1) �

0.030 � 0.075 kg
0.030 � 0.075 kg

 (1.252 m/s)

( v:A 2 � vA x(t2)î)( v:A 1 � vA x(t1)î)

� v:A 1 � � √2gh0 � √(2)(9.8 m/s2)(0.080 m) � 1.252 m/s.

vA 1

1
2 mAv2

A 1 � mAgh0,

h0

mBmA

A B

FIGURE 10-24 ■ Two metal spheres suspended by cords just touch
when they are at rest. Sphere A, with mass mA, is pulled to the left
to height h0 and then released.



10-10 Two-Dimensional Energy and Momentum
Conservation

When two bodies collide, the impulses of one on the other determine the directions in
which they then travel. In particular, when the collision is not head-on, the bodies do
not end up traveling along their initial axis. For such two-dimensional collisions in a
closed, isolated system, the total translational momentum must still be conserved:

(10-43)

If the collision is also elastic (a special case), then the total kinetic energy is also con-
served

(10-44)

Equation 10-43 is often more useful for analyzing a two-dimensional collision if
we write it in terms of components on an xy-coordinate system. For example, let’s
revisit the momentum conservation analysis we did in Section 7-7 for a glancing two-
dimensional collision. This time we will add the requirement that the collision be elas-
tic so kinetic energy is conserved. Figure 10-25 shows a glancing collision (it is not
head-on) between a projectile body and a target body initially at rest. The impulses
between the bodies have sent the bodies off at angles A and B with respect to the
x axis, along which the projectile traveled initially. In this situation, we would rewrite
the momentum conservation equation initially presented in Section 7-7 (Eqs. 7-24 and
7-25) in terms of components along the x axis as

(10-45)

and along the y axis as

(10-46)

We can also write Eq. 10-44 for this situation as

(kinetic energy target initially at rest). (10-47)

Equations 10-45 to 10-47 contain seven variables: two masses, and ; three veloc-
ity magnitudes, , , and ; and two angles, and . If we know any four of
these quantities, we can solve the three equations for the remaining three quantities.

READI NG EXERC IS E  10-9: In Fig. 10-25, suppose that the projectile has an initial
x-component of momentum of 6 kg	 m/s, a final x-component of momentum of 4 kg	 m/s, and a
final y-component of momentum of �3 kg	 m/s. For the target, what then are (a) the final x-
component of momentum and (b) the final y-component of momentum? ■

BAvB 2vA 2vA 1

mBmA

1
2mAv 2

A 1 � 1
2mAv 2

A 2 � 1
2mBv 2

B 2

0 � �mA� v:A 2 �sin A � mB� v:B 2 �sin B.

mA� v:A 1 �cos 0� � mA� v:A 2 �cos A � mB� v:B 2 �cos B,

KA 1 � KB 1 � KA 2 � KB 2.

p:A 1 � p:B 1 � p:A 2 � p:B 2.
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FIGURE 10-25 ■ An elastic collision be-
tween two bodies in which the collision is
not head-on. The body with mass mB (the
target) is initially at rest.

x

y

θB

θAmA

mB

vA1

vA2

vB2



Problems

SEC. 10-3 ■ POTENTIAL ENERGY AS STORED WORK

1. Spring Constant What is the spring constant of a spring that
stores 25 J of elastic potential energy when compressed by 7.5 cm
from its relaxed length?

2. Dropping a Textbook You drop a 2.00
kg textbook to a friend who stands on the
ground 10.0 m below the textbook with
outstretched hands 1.50 m above the
ground (Fig. 10-26). (a) How much work
W grav is done on the textbook by the grav-
itational force as it drops to your friend’s
hands? (b) What is the change �U in the
gravitational potential energy of the text-
book–Earth system during the drop? If
the gravitational potential energy U of
that system is taken to be zero at ground
level, what is U when the textbook (c) is
released and (d) reaches the hands? Now
take U to be 100 J at ground level and
again find (e) W grav (f) �U, (g) U at the
release point, and (h) U at the hands.

3. Ice Flake In Fig. 10-27, a 2.00 g
ice flake is released from the edge
of a hemispherical bowl whose ra-
dius r is 22.0 cm. The flake–bowl
contact is frictionless. (a) How much
work is done on the flake by the
gravitational force during the flake’s
descent to the bottom of the bowl?
(b) What is the change in the poten-
tial energy of the flake–Earth sys-
tem during that descent? (c) If that
potential energy is taken to be zero
at the bottom of the bowl, what is its
value when the flake is released? (d) If, instead, the potential en-
ergy is taken to be zero at the release point, what is its value when
the flake reaches the bottom of the bowl? (e) If the mass of the
flake were doubled, would the magnitudes of the answers to (a)
through (d) increase, decrease, or remain the same?

4. Roller Coaster In Fig. 10-28, a frictionless roller coaster of mass m
tops the first hill with speed v1. How much work does the gravitational
force do on it from that point to (a) point A, (b) point B, and (c) point
C? If the gravitational potential energy of the coaster–Earth system
is taken to be zero at point C, what is its value when the coaster is at
(d) point B and (e) point A? (f) If mass m were doubled, would the
change in the gravitational potential energy of the system between
points A and B increase, decrease, or remain the same?

5. Ball Attached to a Rod Figure
10-29 shows a ball with mass m at-
tached to the end of a thin rod with
length L and negligible mass. The
other end of the rod is pivoted so
that the ball can move in a vertical
circle. The rod is held in the hori-
zontal position as shown and then
given enough of a downward push
to cause the ball to swing down and
around and just reach the vertically
upward position, with zero speed
there. How much work is done on
the ball by the gravitational force from the initial point to (a) the
lowest point, (b) the highest point, and (c) the point on the right at
which the ball is level with the initial point? If the gravitational po-
tential energy of the ball–Earth system is taken to be zero at the
initial point, what is its value when the ball reaches (d) the lowest
point, (e) the highest point, and (f) the point on the right that is
level with the initial point? (g) Suppose the rod were pushed harder
so that the ball passed through the highest point with a nonzero
speed. Would the change in the gravitational potential energy from
the lowest point to the highest point then be greater, less, or the
same?

6. Loop-the-Loop In Fig. 10-30, a
small block of mass m can slide
along the frictionless loop-the-loop.
The block is released from rest at
point P, at height h � 5R above the
bottom of the loop. How much work
does the gravitational force do on
the block as the block travels from
point P to (a) point Q and (b) the
top of the loop? If the gravitational
potential energy of the block–Earth
system is taken to be zero at the
bottom of the loop, what is that po-
tential energy when the block is (c)
at point P, (d) at point Q, and (e) at the top of the loop? (f) If, in-
stead of being released, the block is given some initial speed down-
ward along the track, do the answers to (a) through (e) increase, de-
crease, or remain the same?

7. Snowball A 1.50 kg snowball is fired from a cliff 12.5 m high
with an initial velocity of 14.0 m/s, directed 41.0� above the horizon-
tal. (a) How much work is done on the snowball by the gravita-
tional force during its flight to the flat ground below the cliff? (b)
What is the change in the gravitational potential energy of the
snowball–Earth system during the flight? (c) If that gravitational
potential energy is taken to be zero at the height of the cliff, what is
its value when the snowball reaches the ground?

8. Thin Rod Figure 10-31 shows a thin rod, of length L and negligi-
ble mass, that can pivot about one end to rotate in a vertical circle.
A heavy ball of mass m is attached to the other end. The rod is
pulled aside through an angle  and released. As the ball descends
to its lowest point, (a) how much work does the gravitational force
do on it and (b) what is the change in the gravitational potential en-
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1.50 m

10.0 m

FIGURE 10-26 ■

Problems 2 and 12.

r

Ice
flake

FIGURE 10-27 ■ Problems
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ergy of the ball–Earth system? (c) If
the gravitational potential energy is
taken to be zero at the lowest point,
what is its value just as the ball is re-
leased? (d) Do the magnitudes of the
answers to (a) through (c) increase,
decrease, or remain the same if angle
 is increased?

9. Ball Thrown from Tower At t1 �
0 a 1.0 kg ball is thrown from the top
of a tall tower with velocity 1 � (18
m/s) � (24 m/s) . What is the change
in the potential energy of the
ball–Earth system between t1 � 0
and t2 � 6.0 s?

SEC. 10-4 ■ MECHANICAL ENERGY CONSERVATION

10. Block Dropped on a Spring A 250 g
block is dropped onto a relaxed vertical
spring that has a spring constant of k �
2.5 N/cm (Fig. 10-32). The block becomes
attached to the spring and compresses
the spring 12 cm before momentarily
stopping. While the spring is being com-
pressed, what work is done on the block
by (a) the gravitational force on it and
(b) the spring force? (c) What is the
speed of the block just before it hits the
spring? (Assume that friction is negligi-
ble.) (d) If the speed at impact is dou-
bled, what is the maximum compression
of the spring?

11. Speed of Flake (a) In Problem 3,
what is the speed of the flake when it
reaches the bottom of the bowl? (b) If we substituted a second
flake with twice the mass, what would its speed be? (c) If, instead,
we gave the flake an initial downward speed along the bowl, would
the answer to (a) increase, decrease, or remain the same?

12. Speed of Textbook (a) In Problem 2, what is the speed of the
textbook when it reaches the hands? (b) If we substituted a second
textbook with twice the mass, what would its speed be? (c) If,
instead, the textbook were thrown down, would the answer to (a)
increase, decrease, or remain the same?

13. Zero Speed at Vertical (a) In Problem 5, what initial speed
must be given the ball so that it reaches the vertically upward posi-
tion with zero speed? What then is its speed at (b) the lowest point
and (c) the point on the right at which the ball is level with the ini-
tial point? (d) If the ball’s mass were doubled, would the answers to
(a) through (c) increase, decrease, or remain the same?

14. Speed of Coaster In Problem 4, what is the speed of the
coaster at (a) point A, (b) point B, and (c) point C? (d) How high
will it go on the last hill, which is too high for it to cross? (e) If we
substitute a second coaster with twice the mass, what then are the
answers to (a) through (d)?

15. Runaway Truck In Fig. 10-33, a runaway truck with failed
brakes is moving downgrade at 130 km/h just before the driver
steers the truck up a frictionless emergency escape ramp with an in-

ĵî
v:

clination of 15�. The truck’s mass is 5000 kg. (a) What minimum
length L must the ramp have if the truck is to stop (momentarily)
along it? (Assume the truck is a particle, and justify that assump-
tion.) Does the minimum length L increase, decrease, or remain the
same if (b) the truck’s mass is decreased and (c) its speed is de-
creased?

FIGURE 10-33 ■ Problem 15.

16. Speed at Lowest Point (a) In Problem 8, what is the speed of
the ball at the lowest point if L � 2.00 m,  � 30.0�, and m � 5.00
kg? (b) Does the speed increase, decrease, or remain the same if the
mass is increased?

17. Snowball Reaches Ground (a) In Problem 7, using energy
techniques rather than the techniques of Chapter 5, find the speed
of the snowball as it reaches the ground below the cliff. What is that
speed (b) if the launch angle is changed to 41.0� below the horizon-
tal and (c) if the mass is changed to 2.50 kg?

18. Stone Rests on Spring Figure 10-34
shows an 8.00 kg stone at rest on a spring.
The spring is compressed 10.0 cm by the
stone. (a) What is the spring constant? (b)
The stone is pushed down an additional 30.0
cm and released. What is the elastic poten-
tial energy of the compressed spring just be-
fore that release? (c) What is the change in
the gravitational potential energy of the
stone–Earth system when the stone moves from the release point
to its maximum height? (d) What is that maximum height, mea-
sured from the release point?

19. Marble Fired Vertically A 5.0 g marble is fired vertically up-
ward using a spring gun. The spring must be compressed 8.0 cm if
the marble is to just reach a target 20 m above the marble’s position
on the compressed spring. (a) What is the change �U grav in the
gravitational potential energy of the marble–Earth system during
the 20 m ascent? (b) What is the change �U elas in the elastic poten-
tial energy of the spring during its launch of the marble? (c) What is
the spring constant of the spring?

20. Pendulum Figure 10-35 shows a pen-
dulum of length L. Its bob (which effec-
tively has all the mass) has speed v1 when
the cord makes an angle 1 with the verti-
cal. (a) Derive an expression for the speed
of the bob when it is in its lowest position.
What is the least value that v1 can have if
the pendulum is to swing down and then
up (b) to a horizontal position, and (c) to a
vertical position with the cord remaining
straight? (d) Do the answers to (b) and (c)
increase, decrease, or remain the same if 1

is increased by a few degrees?

21. Block–Spring–Incline A 2.00 kg block
is placed against a spring on a frictionless
30.0� incline (Fig. 10-36). (The block is not
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attached to the spring.) The spring,
whose spring constant is 19.6
N/cm, is compressed 20.0 cm and
then released. (a) What is the elas-
tic potential energy of the com-
pressed spring? (b) What is the
change in the gravitational poten-
tial energy of the block–Earth sys-
tem as the bock moves from the
release point to its highest point on the incline? (c) How far along
the incline is the highest point from the release point?

22. Horizontal and Vertical Components In Problem 6, what are
(a) the horizontal component and (b) the vertical component of the
net force acting on the block at point Q? (c) At what height h
should the block be released from rest so that it is on the verge of
losing contact with the track at the top of the loop? (On the verge of
losing contact means that the normal force on the block from the
track has just then become zero.) (d) Graph the magnitude of the
normal force on the block at the top of the loop versus initial height
h, for the range h � 0 to h � 6R.

23. Block on Incline Collides with
Spring In Fig. 10-37, a 12 kg block
is released from rest on a 30� fric-
tionless incline. Below the block is
a spring that can be compressed
2.0 cm by a force of 270 N. The
block momentarily stops when it
compresses the spring by 
5.5 cm. (a) How far does the block
move down the incline from its
rest position to this stopping
point? (b) What is the speed of the block just as it touches spring?

24. Ski-Jump Ramp A 60 kg skier starts from rest at a height of 
20 m above the end of a ski-jump ramp as shown in Fig. 10-38. As
the skier leaves the ramp, his velocity makes an angle of 28� with
the horizontal. Neglect the effects of air resistance and assume the
ramp is frictionless. (a) What is the maximum height h of his jump
above the end of the ramp? (b) If he increased his weight by
putting on a backpack, would h then be greater, less, or the same?

FIGURE 10-38 ■ Problem 24.

25. Block Dropped on a Spring Two
A 2.0 kg block is dropped from a
height of 40 cm onto a spring of spring
constant k � 1960 N/m (Fig. 10-39).
Find the maximum distance the spring
is compressed.

26. Tarzan Tarzan, who weighs
688 N, swings from a cliff at the
end of a convenient vine that is
18 m long (Fig. 10-40). From the
top of the cliff to the bottom of
the swing, he descends by 3.2
m. The vine will break if the
force on it exceeds 950 N. (a)
Does the vine break? (b) If no,
what is the greatest force on it
during the swing? If yes, at
what angle with the vertical
does it break?

27. Two Children Play Two
children are playing a game in
which they try to hit a small
box on the floor with a marble
fired from a spring loaded gun
that is mounted on a table. The
target box is 2.20 m horizon-
tally from the edge of the table;
see Fig. 10-41. Bobby com-
presses the spring 1.10 cm, but
the center of the marble falls
27.0 cm short of the center of
the box. How far should Rhoda
compress the spring to score a
direct hit? Assume that neither
the spring nor the ball encounters friction in the gun.

28. Block Sticks to Spring A 700 g block is released from rest at
height h1 above a vertical spring with spring constant k � 400 N/m
and negligible mass. The block sticks to the spring and momentarily
stops after compressing the spring 19.0 cm. How much work is done
(a) by the block on the spring and (b) by the spring on the block?
(c) What is the value of h1? (d) If the block were released from
height 2h1 above the spring, what would be the maximum compres-
sion of the spring?

29. Complete Swing In Fig.
10-42 show that, if the ball is to
swing completely around the
fixed peg, then d � 3L/5.
(Hint: The ball must still be
moving at the top of its swing.
Do you see why?)

30. To Make a Pendulum To
make a pendulum, a 300 g ball
is attached to one end of a
string that has a length of 
1.4 m and negligible mass. (The
other end of the string is
fixed.) The ball is pulled to one side until the string makes an angle
of 30.0� with the vertical; then (with the string taut) the ball is re-
leased from rest. Find (a) the speed of the ball when the string
makes an angle of 20.0� with the vertical and (b) the maximum
speed of the ball. (c) What is the angle between the string and the
vertical when the speed of the ball is one-third its maximum value?

31. Rigid Rod A rigid rod of length L and negligible mass has a
ball with mass m attached to one end and its other end fixed, to
form a pendulum. The pendulum is inverted, with the rod straight
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up, and then released. At the lowest point, what are (a) the ball’s
speed and (b) the tension in the rod? (c) The pendulum is next re-
leased at rest from a horizontal position. At what angle from the
vertical does the tension in the rod equal the weight of the ball?

32. Spring at the Top of an Incline
In Fig. 10-43, a spring with spring
constant k � 170 N/m is at the top
of a 37.0� frictionless incline. The
lower end of the incline is 1.00 m
from the end of the spring, which
is at its relaxed length. A 2.00 kg
canister is pushed against the
spring until the spring is com-
pressed 0.200 m and released from
rest. (a) What is the speed of the
canister at the instant the spring returns to its relaxed length (which
is when the canister loses contact with the spring)? (b) What is the
speed of the canister when it reaches the lower end of the incline?

33. Chain on Table In Fig. 10-44,
a chain is held on a frictionless
table with one-fourth of its length
hanging over the edge. If the chain
has length L and mass m, how
much work is required to pull the
hanging part back onto the table?

34. Vertical Spring A spring with
spring constant k � 400 N/m is
placed in a vertical orientation
with its lower end supported by a
horizontal surface. The upper end is depressed 25.0 cm, and a block
with a weight of 40.0 N is placed (unattached) on the depressed
spring. The system is then released from rest. Assume the gravita-
tional potential energy U grav of the block is zero at the release
point (y1 � 0) and calculate the gravitational potential energy, the
elastic potential energy U elas, and the kinetic energy K of the block
for y2 equal to (a) 0, (b) 5.00 cm, (c) 10.0 cm, (d) 15.0 cm, (e) 20.0
cm, (f) 25.0 cm, and (g) 30.0 cm, Also, (h) how far above its point
of release does the block rise?

35. Ice Mound A boy is seated on
the top of a hemispherical mound
of ice (Fig. 10-45). He is given a
very small push and starts sliding
down the ice. Show that he leaves
the ice at a point whose height is
2R/3 if the ice is frictionless. (Hint:
The normal force vanishes as he
leaves the ice.)

36. Ball on a String The string in Fig. 10-42 is L � 120 cm long, has
a ball attached to one end, and is fixed at its other end. The distance
d to the fixed peg at point P is 75.0 cm. When the initially stationary
ball is released with the string horizontal as shown, it will swing
along the dashed arc. What is its speed when it reaches (a) its lowest
point and (b) its highest point after the string catches on the peg?

SEC. 10-5 ■ READING A POTENTIAL ENERGY CURVE

37. Diatomic Molecule The potential energy of a diatomic mole-
cule (a two-atom system like H2 or O2) is given by 

where r is the separation of the two atoms of the molecule and A
and B are positive constants. This potential energy is associated
with the force that binds the two atoms together. (a) Find the equi-
librium separation—that is, the distance between the atoms at
which the force on each atom is zero. Is the force repulsive (the
atoms are pushed apart) or attractive (they are pulled together) if
their separation is (b) smaller and (c) larger than the equilibrium
separation?

38. Potential Energy Graph A conservative force F(x) acts on a
2.0 kg particle that moves along the x axis. The potential energy
U(x) associated with F(x) is graphed in Fig. 10-46. When the parti-
cle is at x � 2.0 m, its velocity is �1.5 m/s. (a) What are the magni-
tude and direction of F(x) at this position? (b) Between what limits
of x does the particle move? (c) What is its speed at x � 7.0 m?

FIGURE 10-46 ■ Problem 38.

39. Potential Energy Function A single conservative force F(x)
acts on a 1.0 kg particle that moves along an x axis. The potential
energy U(x) associated with F(x) is given by

.

At x � 5.0 m the particle has a kinetic energy of 2.0 J. (a) What 
is the mechanical energy of the system? (b) Make a plot of U(x)
as a function of x for 0 � x � 10 m, and on the same graph 
draw the line that represents the mechanical energy of the system.
Use part (b) to determine (c) the least value of x and (d) the great-
est value of x between which the particle can move. Use part (b) 
to determine (e) the maximum kinetic energy of the particle and 
(f) the value of x at which it occurs. (g) Determine the equation 
for F(x) as a function of x. (h) For what (finite) value of x does
F(x) � 0?

SEC. 10-7 ■ CONSERVATION OF ENERGY

40. Plastic Cube The temperature of a plastic cube is monitored
while the cube is pushed 3.0 m across a floor at constant speed by a
horizontal force of 15 N. The monitoring reveals that the thermal
energy of the cube increases by 20 J. What is the increase in the
thermal energy of the floor along which the cube slides?

41. Block Drawn by Rope A 3.57 kg block is drawn at constant
speed 4.06 m along a horizontal floor by a rope. The force on the
block from the rope has a magnitude of 7.68 N and is directed 15.0�
above the horizontal. What are (a) the work done by the rope’s

U(x) � (�4.00 J/m) e(�x /(4.00 m))
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force, (b) the increase in thermal energy of the block–floor system,
and (c) the coefficient of kinetic friction between the block and
floor?

42. Worker Pushes Block A worker pushed a 27 kg block 9.2 m
along a level floor at constant speed with a force directed 32� below
the horizontal. If the coefficient of kinetic friction between block
and floor was 0.20, what were (a) the work done by the worker’s
force and (b) the increase in thermal energy of the block–floor
system?

43. The Collie A Collie drags its bed box across a floor by apply-
ing a horizontal force of 8.0 N. The kinetic frictional force acting
on the box has magnitude 5.0 N. As the box is dragged through
0.70 m along the way, what are (a) the work done by the collie’s
applied force and (b) the increase in thermal energy of the bed and
floor?

44. Bullet Hits Wall A 30 g bullet, with a horizontal velocity of 
500 m/s, comes to a stop 12 cm within a solid wall. (a) What is the
change in its mechanical energy? (b) What is the magnitude of the
average force from the wall stopping it?

45. Ski Jumper A 60 kg skier leaves the end of a ski-jump ramp
with a velocity of 24 m/s directed 25� above the horizontal. Suppose
that as a result of air drag the skier returns to the ground with a
speed of 22 m/s, landing 14 m vertically below the end of the ramp.
From the launch to the return to the ground, by how much is the
mechanical energy of the skier–Earth system reduced because of
air drag?

46. Frisbee A 75 g Frisbee is thrown from a point 1.1 m above the
ground with a speed of 12 m/s. When it has reached a height of 
2.1 m, its speed is 10.5 m/s. What was the reduction in the mechani-
cal energy of the Frisbee–Earth system because of air drag?

47. Outfielder Throws An outfielder throws a baseball with an ini-
tial speed of 81.8 mi/h. Just before an infielder catches the ball at
the same level, the ball’s speed is 110 ft/s. In foot-pounds, by how
much is the mechanical energy of the ball–Earth system reduced
because of air drag? (The weight of a baseball is 9.0 oz.)

48. Niagara Falls Approximately 5.5 
 106 kg of water fall 50 m
over Niagara Falls each second. (a) What is the decrease in the
gravitational potential energy of the water – Earth system each
second? (b) If all this energy could be converted to electrical
energy (it cannot be), at what rate would electrical energy be
supplied? (The mass of 1 m3 of water is 1000 kg.) (c) If the
electrical energy were sold at 1 cent/kW 	 h. what would be the
yearly cost?

49. Rock Slide During a rockslide, a 520 kg rock slides from rest
down a hillside that is 500 m long and 300 m high. The coefficient of
kinetic friction between the rock and the hill surface is 0.25. (a) If
the gravitational potential energy U of the rock–Earth system is
zero at the bottom of the hill, what is the value of U just before the
slide? (b) How much energy is transferred to thermal energy dur-
ing the slide? (c) What is the kinetic energy of the rock as it reaches
the bottom of the hill? (d) What is its speed then?

50. Block Against Horizontal Spring You push a 2.0 kg block
against a horizontal spring, compressing the spring by 15 cm. Then
you release the block, and the spring sends it sliding across a table-
top. It stops 75 cm from where you released it. The spring constant
is 200 N/m. What is the coefficient of kinetic friction between the
block and the table?

51. Horizontal Spring As Fig.
10-47 shows, a 3.5 kg block is
accelerated by a compressed
spring whose spring constant
is 640 N/m. After leaving the
spring at the spring’s relaxed
length, the block travels over a
horizontal surface, with a coef-
ficient of kinetic friction of 0.25, for a distance of 7.8 m before stop-
ping. (a) What is the increase in the thermal energy of the
block–floor system? (b) What is the maximum kinetic energy of the
block? (c) Through what distance is the spring compressed before
the block begins to move?

52. Block Slides Down an Incline
In Fig. 10-48, a block is moved
down an incline a distance of 5.0 m
from point A to point B by a force

that is parallel to the incline and
has magnitude 2.0 N. The magni-
tude of the frictional force acting
on the block is 10 N. If the kinetic
energy of the block increases by 
35 J between A and B, how much work is done on the block by the
gravitational force as the block moves from A to B?

53. Nonconforming Spring A certain spring is found not to conform
to Hooke’s law. The force (in newtons) it exerts when stretched 
a distance x (in meters) is found to have magnitude

in the direction opposing the stretch.
(a) Compute the work required to stretch the spring from x1 � 0.500
m to x2 � 1.00 m. (b) With one end of the spring fixed, a particle of
mass 2.17 kg is attached to the other end of the spring when it is ex-
tended by an amount x2 � 1.00 m. If the particle is then released from
rest, what is its speed at the instant the spring has returned to the con-
figuration in which the extension is x1 � 0.500 m? (c) Is the force ex-
erted by the spring conservative or nonconservative? Explain.

54. Bundle A 4.0 kg bundle starts up a 30� incline with 128 J of ki-
netic energy. How far will it slide up the incline if the coefficient of
kinetic friction between bundle and incline is 0.30?

55. Two Snowy Peaks Two snowy peaks are 850 m and 750 m
above the valley between them. A ski run extends down from the
top of the higher peak and then back up to the top of the lower
one, with a total length of 3.2 km and an average slope of 30�
(Fig. 10-49). (a) A skier starts from rest at the top of the higher
peak. At what speed will he arrive at the top of the lower peak if he
coasts without using ski poles? Ignore friction. (b) Approximately
what coefficient of kinetic friction between snow and skis would
make him stop just at the top of the lower peak?

FIGURE 10-49 ■ Problem 55.

56. Playground Slide A girl whose weight is 267 N slides down a
6.1 m playground slide that makes an angle of 20� with the horizon-
tal. The coefficient of kinetic friction between slide and child is 0.10.

(52.8 N/m)x � (38.4 N/m2)x2
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(a) How much energy is transferred to thermal energy? (b) If the
girl starts at the top with a speed of 0.457 m/s, what is her speed at
the bottom?

57. Block and Horizontal Spring
In Fig. 10-50, a 2.5 kg block slides
head on into a spring with a spring
constant of 320 N/m. When the
block stops, it has compressed the
spring by 7.5 cm. The coefficient of
kinetic friction between the block
and the horizontal surface is 0.25. While the block is in contact with
the spring and being brought to rest, what are (a) the work done by
the spring force and (b) the increase in thermal energy of the
block–floor system? (c) What is the block’s speed just as the block
reaches the spring?

58. Factory Worker A factory worker accidentally releases a 
180 kg crate that was being held at rest at the top of a 3.7 m-long-
ramp inclined at 39� to the horizontal. The coefficient of kinetic fric-
tion between the crate and the ramp, and between the crate and the
horizontal factory floor, is 0.28. (a) How fast is the crate moving as
it reaches the bottom of the ramp? (b) How far will it subsequently
slide across the factory floor? (Assume that the crate’s kinetic en-
ergy does not change as it moves from the ramp onto the floor.) (c)
Do the answers to (a) and (b) increase, decrease, or remain the
same if we halve the mass of the crate?

59. Block on a Track In Fig. 10-51, a block slides along a track
from one level to a higher level, by moving through an intermediate
valley. The track is frictionless until the block reaches the higher
level. There a frictional force stops the block in a distance d. The
block’s initial speed v1 is 6.0 m/s; the height difference h is 1.1 m;
and the coefficient of kinetic friction �kin is 0.60. Find d.

FIGURE 10-51 ■ Problem 59.

60. Cookie Jar A cookie jar is moving up a 40� incline. At a point
55 cm from the bottom of the incline (measured along the incline),
it has a speed of 1.4 m/s. The coefficient of kinetic friction between
jar and incline is 0.15. (a) How much farther up the incline will the
jar move? (b) How fast will it be going when it has slid back to the
bottom of the incline? (c) Do the answers to (a) and (b) increase,
decrease, or remain the same if we decrease the coefficient of ki-
netic friction (but do not change the given speed or location)?

61. Stone Thrown Vertically A stone with weight w is thrown verti-
cally upward into the air from ground level with initial speed v1. If a
constant force f due to air drag acts on the stone throughout its
flight, (a) show that the maximum height reached by the stone is

(b) Show that the stone’s speed is

h �
v2

1

2g(1 � f/w)
.

just before impact with the ground.

62. Playground Slide Two A playground slide is in the form of an
arc of a circle with a maximum height of 4.0 m, with a radius of 
12 m, and with the ground tangent to the circle (Fig. 10-52). A 25 kg
child starts from rest at the top of the slide and has a speed of 
6.2 m/s at the bottom. (a) What is the length of the slide? (b) What
average frictional force acts on the child over this distance? If, in-
stead of the ground, a vertical line through the top of the slide is
tangent to the circle, what are (c) the length of the slide and (d) the
average frictional force on the child?

FIGURE 10-52 ■ Problem 62.

63. Particle on a Slide A particle
can slide along a track with ele-
vated ends and a flat central part,
as shown in Fig. 10-53. The flat part
has length L. The curved portions
of the track are frictionless, but for
the flat part the coefficient of ki-
netic friction is �kin� 0.20. The
particle is released from rest at point A, which is a height h � L/2
above the flat part of the track. Where does the particle finally
stop?

64. Cable Breaks The cable of the 1800
kg elevator cab in Fig. 10-54 snaps when
the cab is at rest at the first floor, where the
cab bottom is a distance d � 3.7 m above a
cushioning spring whose spring constant is
k � 0.15 MN/m. A safety device clamps the
cab against guide rails so that a constant
frictional force of 4.4 kN opposes the cab’s
motion. (a) Find the speed of the cab just
before it hits the spring. (b) Find the maxi-
mum distance x that the spring is com-
pressed (the frictional force still acts during
this compression). (c) Find the distance
that the cab will bounce back up the shaft.
(d) Using conservation of energy, find the
approximate total distance that the cab will move before coming to
rest. (Assume that the frictional force on the cab is negligible when
the cab is stationary.)

65. At a Factory At a certain factory, 300 kg crates are dropped
vertically from a packing machine onto a conveyor belt moving at
1.20 m/s (Fig 10-55). (A motor maintains the belt’s constant speed.)
The coefficient of kinetic friction between the belt and each crate is
0.400. After a short time, slipping between the belt and the crate
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ceases, and the crate then moves along with the belt. For the period
of time during which the crate is being brought to rest relative to
the belt, calculate, for a coordinate system at rest in the factory, (a)
the kinetic energy supplied to the crate, (b) the magnitude of the
kinetic frictional force acting on the crate, and (c) the energy sup-
plied by the motor. (d) Explain why the answers to (a) and (c) are
different.

FIGURE 10-55 ■ Problem 65.
66. A Bear Slides A 25 kg bear slides, from rest, 12 m down a
lodgepole pine tree, moving with a speed of 5.6 m/s just before hit-
ting the ground. (a) What change occurs in the gravitational poten-
tial energy of the bear–Earth system during the slide? (b) What is
the kinetic energy of the bear just before hitting the ground? (c)
What is the average frictional force that acts on the sliding bear?

67. Daniel Goodwin In 1981, Daniel Goodwin climbed 443 m up
the exterior of the Sears Building in Chicago using suction cups and
metal clips. (a) Approximate his mass and then compute how much
energy he had to transfer from biomechanical (internal) energy to
the gravitational potential energy of the Earth–Goodwin system to
lift his center of mass to that height. (b) How much energy would
he have had to transfer if he had, instead, taken the stairs inside the
building (to the same height)?

68. Mount Everest The summit of Mount Everest is 8850 m above
sea level. (a) How much energy would a 90 kg climber expend
against the gravitational force on him in climbing to the summit
from sea level? (b) How many candy bars, at 1.25 MJ per bar,
would supply an energy equivalent to this? Your answer should
suggest that work done against the gravitational force is a very
small part of the energy expended in climbing a mountain.

69. A Woman Leaps Vertically A 55 kg woman leaps vertically
from a crouching position in which her center of mass is 40 cm
above the ground. As her feet leave the floor, her center of mass is
90 cm above the ground; it rises to 120 cm at the top of her leap. (a)
As she is pressing down on the ground during the leap, what is the
average magnitude of the force on her from the ground? (b) What
maximum speed does she attain?

70. An Automobile with Passengers An automobile with passen-
gers has weight 16,400 N and is moving at 113 km/h when the driver
brakes to a stop. The frictional force on the wheels from the road
has a magnitude of 8230 N. Find the stopping distance.

SECS. 10-8 TO 10-10 ■ CONSERVATION OF ENERGY AND

MOMENTUM

71. Box of Marbles A box is put on a scale that is marked in units
of mass and adjusted to read zero when the box is empty. A stream
of marbles is then poured into the box from a height h above its

bottom at a rate of R (marbles per second). Each marble has
mass m. (a) If the collisions between the marbles and the box are
completely inelastic, find the scale reading at time t after the mar-
bles begin to fill the box. (b) Determine a numerical answer when
R � 100 s�1, h � 7.60 m, m � 4.50 g, and t � 10.0 s.

72. Particle A and Particle B Particle A and particle B are held to-
gether with a compressed spring between them. When they are
released, the spring pushes them apart and they then fly off in op-
posite directions, free of the spring. The mass of A is 2.00 times the
mass of B, and the energy stored in the spring was 60 J. Assume that
the spring has negligible mass and that all its stored energy is trans-
ferred to the particles. Once that transfer is complete, what are the
kinetic energies of (a) particle A and (b) particle B?

73. Ball and Spring Gun In Fig. 10-
56, a ball of mass m is shot with
speed v1 into the barrel of a spring
gun of mass M initially at rest on a
frictionless surface. The ball sticks
in the barrel at the point of maxi-
mum compression of the spring.
Assume that the increase in ther-
mal energy due to friction between the ball and the barrel is negli-
gible. (a) What is the speed of the spring gun after the ball stops in
the barrel? (b) What fraction of the initial kinetic energy of the ball
is stored in the spring?

74. Ballistic Pendulum A bullet of mass 10 g strikes a ballistic pen-
dulum of mass 2.0 kg. The center of mass of the pendulum rises a
vertical distance of 12 cm. Assuming that the bullet remains embed-
ded in the pendulum, calculate the bullet’s initial speed.

75. Two Blocks and a Spring A block of mass m� � 2.0 kg slides
along a frictionless table with a speed of 10 m/s. Directly in front of
it, and moving in the same direction, is a block of mass m� � 5.0 kg
moving at 3.0 m/s. A massless spring with spring constant k � 1120
N/m is attached to the near side of m�, as shown in Fig. 10-57. When
the blocks collide, what is the maximum compression of the spring?
(Hint: At the moment of maximum compression of the spring, the
two blocks move as one. Find the velocity by noting that the colli-
sion is completely inelastic at this point.)

FIGURE 10-57 ■ Problem 75.

76. Physics Book A 4.0 kg physics book and a 6.0 kg calculus
book, connected by a spring, are stationary on a horizontal friction-
less surface. The spring constant is 8000 N/m. The books are pushed
together, compressing the spring, and then they are released from
rest. When the spring has returned to its unstretched length, the
speed of the calculus book is 4.0 m/s. How much energy is stored in
the spring at the instant the books are released?

77. Neutron Scattering Show that if a neutron is scattered through
90� in an elastic collision with an initially stationary deuteron, the
neutron loses of its initial kinetic energy to the deuteron. (In
atomic mass units, the mass of a neutron is 1.0 u and the mass of a
deuteron is 2.0 u.)
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78. Spring Attached to Wall A 1.0 kg block at rest on a horizontal
frictionless surface is connected to an unstretched spring (k �
200 N/m) whose other end is fixed (Fig. 10-58). A 2.0 kg block mov-
ing at 4.0 m/s collides with the 1.0 kg block. If the two blocks stick
together after the one-dimensional collision, what maximum com-
pression of the spring occurs when the blocks momentarily stop?

FIGURE 10-58 ■ Problem 78.

79. Game of Pool In a game of pool, the cue ball strikes another
ball of the same mass and initially at rest. After the collision, the
cue ball moves at 3.50 m/s along a line making an angle of 22.0�
with its original direction of motion, and the second ball has a
speed of 2.00 m/s. Find (a) the angle between the direction of mo-
tion of the second ball and the original direction of motion of the
cue ball and (b) the original speed of the cue ball. (c) Is kinetic
energy (of the centers of mass, don’t consider the rotation)
conserved?

80. Billiard Ball A billiard ball moving at a speed of 2.2 m/s
strikes an identical stationary ball a glancing blow. After the colli-
sion, one ball is found to be moving at a speed of 1.1 m/s in a direc-
tion making a 60� angle with the original line of motion. (a) Find
the velocity of the other ball. (b) Can the collision be inelastic,
given these data?

81. Three Balls In Fig. 10-59,
ball A with an initial speed of
10 m/s collides elastically with
stationary balls B and C,
whose centers are on a line
perpendicular to the initial ve-
locity of ball A and that are
initially in contact with each other. The three balls are identical.
Ball A is aimed directly at the contact point, and all motion is fric-
tionless. After the collision, what are the velocities of (a) ball B, (b)
ball C, and (c) ball A? (Hint: With friction absent, each impulse is
directed along the line connecting the centers of the colliding balls,
normal to the colliding surfaces.)

82. Two Bodies Collide Two 2.0 kg bodies, A and B, collide. The
velocities before the collision are 
and . After the collision,

. (a) What is the final velocity of B? (b)
How much kinetic energy is gained or lost in the collision?

83. Elastic Collision of Cart A cart with mass 340 g moving on a
frictionless linear air track at an initial speed of 1.2 m/s undergoes
an elastic collision with an initially stationary cart of unknown
mass. After the collision, the first cart continues in its original direc-
tion at 0.66 m/s. (a) What is the mass of the second cart? (b) What is
its speed after impact? (c) What is the speed of the two-cart center
of mass?

84. Electron Collision An electron undergoes a one-dimensional
elastic collision with an initially stationary hydrogen atom. What
percentage of the electron’s initial kinetic energy is transferred to

(20 m/s) ĵ(�5.0 m/s) î �
v:A 2 �(�10 m/s) î � (5.0 m/s) ĵv:B 1 �

v:A 1 � (15 m/s) î � (30 m/s) ĵ

kinetic energy of the hydrogen atom? (The mass of the hydrogen
atom is 1840 times the mass of the electron.)

85. Alpha Particle An alpha particle (mass 4 u) experiences an
elastic head-on collision with a gold nucleus (mass 197 u) that is
originally at rest. (The symbol u represents the atomic mass unit.)
What percentage of its original kinetic energy does the alpha parti-
cle lose?

86. Voyager 2 Spacecraft Voyager 2 (of mass m and speed v rela-
tive to the Sun) approaches the planet Jupiter (of mass M and
speed VJ relative to the Sun) as shown in Fig. 10-60. The spacecraft
rounds the planet and departs in the opposite direction. What is its
speed, relative to the Sun, after this slingshot encounter, which can
be analyzed as a collision? Assume v � 12 km/s and VJ � 13 km/s
(the orbital speed of Jupiter). The mass of Jupiter is very much
greater than the mass of the spacecraft (M � m).

FIGURE 10-60 ■ Problem 86.

87. Elastic Collision A body of mass 2.0 kg makes an elastic colli-
sion with another body at rest and continues to move in the original
direction but with one-fourth of its original speed. (a) What is the
mass of the other body? (b) What is the speed of the two-body cen-
ter of mass if the initial speed of the 2.0 kg body was 4.0 m/s?

88. Steel Ball and Block A steel ball
of mass 0.500 kg is fastened to a cord
that is 70.0 cm long and fixed at the
far end. The ball is then released when
the cord is horizontal (Fig. 10-61). At
the bottom of its path, the ball strikes
a 2.50 kg steel block initially at rest on
a frictionless surface. The collision is
elastic. Find (a) the speed of the ball
and (b) the speed of the block, both
just after the collision.

89. Two Titanium Spheres Two titanium spheres approach each
other head-on with the same speed and collide elastically. After the
collision, one of the spheres, whose mass is 300 g, remains at rest.
(a) What is the mass of the other sphere? (b) What is the speed of
the two-sphere center of mass if the initial speed of each sphere is
2.0 m/s?

90. Two-Sphere Arrangement In the two-sphere arrangement of
Touchstone Example 10-8, assume that sphere A has a mass of 50 g
and an initial height of 9.0 cm and that sphere B has a mass of 85 g.
After the collision, what height is reached by (a) sphere A and (b)
sphere B? After the next (elastic) collision, what height is reached by
(c) sphere A and (d) sphere B? (Hint: Do not use rounded-off
values.)

91. Blocks without Friction The blocks in Fig. 10-62 slide without
friction. (a) What is the velocity of the 1.6 kg block after the colli-
sion? (b) Is the collision elastic? (c) Suppose the initial velocity of

v:

4.0 m/s
2.0 kg 1.0 kg

A

B

C

x
vA1
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the 2.4 kg block is the reverse of what is shown. Can the velocity 
of the 1.6 kg block after the collision be in the direction shown?

FIGURE 10-62 ■ Problem 91.

92. Two Blocks on Frictionless Table In Fig. 10-63, block A of mass
mA, is at rest on a long frictionless table that is up against a wall.
Block B of mass mB is placed between block A and the wall and
sent sliding to the left, toward block A, with constant speed vB1. As-
suming that all collisions are elastic, find the value of mB (in terms
of mA) for which both blocks move with the same velocity after

v: block B has collided once with block A and once with the wall. As-
sume the wall to have infinite mass..

FIGURE 10-63 ■ Problem 92.

93. Small Ball Above Larger A small ball of mass m is aligned
above a larger ball of mass M (with a slight separation, and the two
are dropped simultaneously from h. (Assume the radius of each
ball is negligible compared to h.) (a) If the larger ball rebounds
elastically from the floor and then the small ball rebounds elasti-
cally from the larger ball, what ratio m/M results in the larger ball
stopping upon its collision with the small ball? (The answer is ap-
proximately the mass ratio of a baseball to a basketball.) (b) What
height does the small ball then reach?
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94. Frictionless Ramp In Fig. 10-64, block A of mass mA slides
from rest along a frictionless ramp from a height of 2.50 m and then
collides with stationary block B, which has mass mB � 2.00mA. Af-
ter the collision, block B slides into a region where the coefficient
of kinetic friction is 0.500 and comes to a stop in distance d within
that region. What is the value of distance d if the collision is (a)
elastic and (b) completely inelastic?

FIGURE 10-64 ■ Problem 94.

95. Pucks on Table In Fig. 10-65, puck A of mass mA � 0.20 kg is
sent sliding across a frictionless lab bench, to undergo a one-dimen-
sional elastic collision with stationary puck B. Puck B then slides off
the bench and lands a distance d from the base of the bench. Puck
A rebounds from the collision and slides off the opposite edge of
the bench, landing a distance 2d from the base of the bench. What is
the mass of puck B? (Hint: Be careful with signs.)

FIGURE 10-65 ■ Problem 95.

96. Speed Amplifier In Fig. 10-66, block A of mass mA slides along
an x axis on a frictionless floor with a speed of vA1 � 1.00 m/s. Then

it undergoes a one-dimensional
elastic collision with stationary
block B of mass mB � 0.500mA.
Next, block B undergoes a one-
dimensional elastic collision with
stationary block C of mass mC �
0.500mB. (a) What then is the speed
of block C? Are (b) the speed, (c) the kinetic energy, and (d) the
momentum of block C greater than, less than, or the same as the
initial values for block A?

97. Speed Amplifier Graphs For the two-collision sequence of
Problem 96, Figure 10-67a shows the speed VA of block A plot-
ted versus time t. The times for the first collision (t1) and the sec-
ond collision (t2) are indicated. (a) On the same graph, plot the
speeds of blocks B and C. Figure 10-67b shows a plot of the
kinetic energy of block A versus time, where kinetic energy is
given in terms of the initial kinetic energy (b) On
the same graph, plot the kinetic energies of blocks B and C, all
in terms of KA 1. After the second collision, what percentage of
the total kinetic energy do (c) block A, (d) block B, and
(e) block C have?

FIGURE 10-67 ■ Problem 97.
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98. The Janitor Suppose a janitor wants to slide a trash barrel
across the floor to a large trash bin. If the coefficient of kinetic fric-
tion is 0.123, determine the work done by a kinetic friction force on
a 25 kg trash barrel that is pushed horizontally at a constant speed:
(a) around a semicircle of diameter 2.3 m and (b) straight across
the diameter.

99. Loading Dock Loading docks often have spring-loaded
bumpers on them so that big trucks don’t accidentally ruin the
docks when backing up. See Fig. 10-68. Suppose a 6.45 
 103 kg
truck backs into a spring-loaded dock at a speed of 2.51 m/s. If the
truck compresses the dock bumper springs by 0.15 m when it slows
down to zero speed, what is the effective spring constant of the
bumper system? Use the correct number of significant figures.

FIGURE 10-68 ■ Problem 99.

100. Jumping into a Haystack Tom Sawyer wanders out to the
barn one fine summer’s day. He notices that a haystack has recently
been built just outside the barn. The barn has a second-story door
into which the hay will be hauled into the barn by a crane. Tom de-
cides it would be a neat idea to jump out of the second-story door
onto the haystack. However, he knows from sad experience that if
he jumps out of the second-story door onto the ground, that he is
likely to break his leg. Knowing lots of physics, Tom decides to esti-
mate whether the haystack will be able to break his fall.

He estimates the height of the haystack to be 3 meters. He presses
down on top of the stack and discovers that to compress the stack
by 25 cm, he has to exert a force of about 50 N. The barn door is 6
meters above the ground. Solve the problem by breaking it into
pieces as follows:

1. Model the haystack by a spring. What is its spring constant?

2. Is the haystack tall enough to bring his speed to zero? (Estimate
using conservation of energy.)

3. If he does come to a stop before he hits the ground, what will the
average force exerted on him be?

101. Closing the Door A student is in
her dorm room, sitting on her bed do-
ing her physics homework. The door to
her room is open. All of a sudden, she
hears the voice of her ex-boyfriend
talking to the girl in the room next
door. She wants to shut the door
quickly, so she throws a superball
(which she keeps next to her bed for
this purpose) against the door. The ball
follows the path shown in Fig. 10-69. It
hits the door squarely and bounces
straight back.

(a) If the ball has a mass m, hits the
door with a speed v, and bounces back

* From Patrick H. Canan, A Beginner’s Guide to Classical Physics, Corvallis,
OR, School District (1982).
** Adapted from “Energy Concepts Survey” to be published in the Ameri-
can Journal of Physics by Chandralekha Singh.

with a speed equal to v, what is the change in the ball’s momentum?
(b) If the ball was in contact with the door for a time �t, what was
the average force that the door exerted on the ball?
(c) Would she have been better off with a clay ball of the same
mass that stuck to the door? Explain your reasoning.

102. The Astronaut and the Cream Pie* A 77 kg astronaut, freely
floating at 6 m/s, is hit by a large 36 kg lemon cream pie moving
oppositely at 9 m/s. See Fig. 10-70. How much thermal energy is
generated by the collision?

FIGURE 10-70 ■ Problem 102.

103. Various Slopes A
skier wants to try differ-
ent slopes of the same
overall vertical height, h,
to see which one would
give him the most speed
when he reaches the end
of the hill (points 1, 2,
and 3 in Fig. 10-71). His
options are shown in the
figure.

(a) Assuming there is no
friction force between
the skis and the snow,
which hill would leave
him with the most
speed? Which would
leave him with the least
speed? Explain the basis
for your answer.
(b) Assuming there is a
noticeable friction force
between the skis and the
snow, which hill would leave him with the most speed? Which
would leave him with the least speed? Explain the basis for your
answer.

104. Rolling Carts Down Hill** Two carts A and B are identical in
all respects.They roll down a hill and collide as shown in Fig. 10-72.

Figure 10-72a: (Case 1) cart A starts from rest on a hill at a height h
above the ground. It rolls down and collides head-on with cart B,
which is initially at rest on the ground. The two carts stick together.

Figure 10-72b: (Case 2) carts A and B are at rest on opposite hills at
heights h/2 above the ground. They roll down, collide head-on with
each other on the ground, and stick together.

Partial bird's-eye
view of top of the
back half of the
truck's trailer Dock area

Heavy-duty
springs

v1 = 2.51 m/s

Closet

Bed Desk

B
oo

kc
as

e

FIGURE 10-69 ■

Problem 101.

h
Point 1

Hill 1

h
Point 2

Hill 2

h
Point 3

Hill 3

FIGURE 10-71 ■ Problem 103.
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Which of the following statements are
true about the two-cart system just be-
fore the carts collide in the two cases?
Give all the statements that are true. If
none are true, write N.

(a) The kinetic energy of the system is
zero in case 2.
(b) The kinetic energy of the system is
greater in case 1 than in case 2.
(c) The kinetic energy of the system is
the same in both cases.
(d) The total momentum of the system
is greater in case 2 than in case 1.
(e) The total momentum of the system
is the same in both cases.

Which of the following statements are
true about the two-cart system just after
the carts collide in the two cases? Give
all the statements that are true. If none
are true, write N.

(f) The kinetic energy of the system is greater in case 2 than in
case 1.
(g) The kinetic energy of the system is the same in both cases.
(h) The momentum of the system is greater in case 2 than in 
case 1.
(i) The total momentum of the system is nonzero in case 1 whereas
it is zero in case 2.
(j) The total momentum of the system is the same in both cases.

105. Billiards Over the Edge Two
identical billiard balls are labeled
A and B as shown in Fig. 10-73a.
Maryland Fats places ball A at the
very edge of the table and ball B at
the other side. He strikes ball B
with his cue so that it flies across
the table and off the edge. As it
passes A, it just touches ball A
lightly, knocking it off. The balls are
shown just at the instant they have
left the table. Ball B is moving with
a speed vB1, and ball A is essen-
tially at rest.

(a) Which ball do you think will
hit the ground first? Explain your
reasons for thinking so.

Fig. 10-73b shows a number of graphs of a quantity versus time. For
each of the items below, select which graph could be a plot of that
quantity vs. time. If none of the graphs are possible, write N. The
time axes are taken to have t � 0 at the instant both balls leave the
table. Use the x and y axes shown in Fig. 10-73a. For each of the fol-
lowing, which graph could represent:

(b) The x-component of the velocity of ball B?
(c) The y-component of the velocity of ball A?
(d) The y-component of the acceleration of ball A?
(e) The y-component of the force on ball B?
(f) The y-component of the force on ball A?
(g) The x-component of the velocity of ball A?
(h) The y-component of the acceleration of ball B?

106. When Can You Conserve Energy? Mechanical energy conser-
vation is sometimes a useful principle in helping us solve problems
concerning the motion of objects. Suppose a single object is moving
subject to a number of forces. Describe how you would know
whether energy conservation would hold for the given example and
in what kinds of problems you might find it appropriate to use this
principle.

107. Conserving Momentum but Not Energy? Is it possible for a
system of interacting objects to conserve momentum but not me-
chanical energy (kinetic plus potential)? Discuss and defend your
answer, then given an example that illustrates the case you are try-
ing to make.

108. Momentum and Energy? Is it possible for a system of inter-
acting objects to conserve momentum and also mechanical energy
(kinetic plus potential)? Discuss and defend your answer, then give
an example that illustrates the case you are trying to make.

109. Frames of Reference Different observers can choose to use
different coordinate systems. A frictionless roller coaster has been
invented in which a single rider in a little cart can roll from the
highest point to the lowest point, picking up kinetic energy as the
cart goes downhill. The support struts for the roller coaster (shown
as the grid in Fig. 10-74) are 4.00 meters apart, and the cart and
rider have a combined mass of 195 kg. (a) What is the total mechan-
ical energy of the cart-rider–Earth system according to Consuelo
(an observer at the highest point on the track)? (b) What is the to-
tal mechanical energy of the cart-rider–Earth system according to
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Mike (an observer at the ground level)? (c) Do Consuelo and Mike
agree on the value of the total mechanical energy? Why or why
not? (d) Do Consuelo and Mike agree that mechanical energy is
conserved? Explain. (e) Assuming that mechanical energy is con-
served, what is the kinetic energy of the cart and rider when it rolls
over the top of the second smaller hill?

Hint: If you have access to the VideoPoint movie collection you
may want to look at some of the roller coaster movies in the Her-
shey Park collection. For example, HRSY018 and HRSY019 pro-
vide similar scenarios. Although real roller coasters are not friction-
less, using the VideoPoint software to find the location of a car at
the top of a hill from the perspectives of two coordinate systems
might be helpful.

FIGURE 10-74 ■ Problem 109.

110. Largest and Smallest A ball is thrown from ground level with
initial horizontal velocity component vx 1 and the initial vertical
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Consuelo

Mike

velocity component vy 1 and returns to ground level. Neglecting air
resistance and explaining your reasoning in each instance, write
expressions in terms of these two velocities for:

(a) The largest kinetic energy of the ball during its flight
(b) The smallest kinetic energy of the ball during its flight
(c) The maximum potential energy of the ball–earth system 
during the flight.
Hint: If you have access to the VideoPoint movie collection you
may want to view the movies entitled PASCO104 and PASCO106
to remind you of the nature of a ball’s path.

111. Coffee Filter Drop If a flat-bottomed coffee filter is dropped
from rest near the surface of the Earth, it will fall more slowly than
a small dense object of the same mass. You are to investigate
whether or not mechanical energy is conserved during the fall of a
small coffee filter using video analysis software. If you have access
to the VideoPoint movie collection, you can use the movie entitled
PASCO121 for this analysis. Your instructor may provide access to
the movie some other way.

(a) If the coffee filter is dropped from rest, what is its initial veloc-
ity and kinetic energy?
(b) What are the final velocity and kinetic energy of the coffee
filter (at the time of the last frame)? Explain how you arrived at the
final velocity.
(c) What are the initial and final potential energies of the coffee
filter?
(d) Is mechanical energy conserved as the coffee filter falls? Cite
the evidence based on your measurements and calculations.
(e) How much mechanical energy, if any, is lost?
(f) What is the most likely source of a nonconservative force on
the coffee filter? Where would missing mechanical energy probably
go? Use conservation of energy concepts to explain why a paper
coffee filter fall more slowly than a small dense object?
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11 Rotation

These volleyball players leap high to block a spike. The

height of their jumps would be far less if kneecaps were not

a part of the human leg structure.

How do kneecaps help
people jump more
effectively?

The answer is in this chapter.



11-1 Translation and Rotation

The graceful movement of figure skaters can be used to illustrate two kinds of pure
motion. Figure 11-1a shows a skater gliding across the ice in a straight line with con-
stant speed. Her motion is one of pure translation. Figure 11-1b shows her spinning at
a constant rate about a vertical axis in a motion of pure rotation.

Translation is motion along a line, which we have considered in previous chapters.
Rotation is turning motions, like those of wheels, gears, motors, planets, clock hands,
jet engine rotors, and helicopter blades. It is our focus in this chapter. Rotational mo-
tion is everywhere around us, because most everyday objects are extended (rather
than point masses) and can rotate about their centers of mass when moving freely.
The characteristics of rotational motion are quite analogous to those of translational
motion, and so the study of rotations will help you obtain a deeper understanding of
both kinematics and the laws of translational motion. Examples of translational and
rotational motion are shown in Fig. 11-2.

In this chapter we consider simple examples of rotational motion. It is the rota-
tional analogy of motion along a line, so that we will not have to deal with rotational
variables as two- or three-dimensional vectors. For example, we will limit our consid-
erations to motions for which the axis of rotation is fixed, or at least does not acceler-
ate, so we can always pick a frame of reference in which it doesn’t move.

In Chapter 12, we will consider more complex motions involving axes of rotation
that are not fixed, such as yo-yo motion. There we will also learn more about the ad-
vantages of treating rotational variables as vectors, even when the rotations are about
a fixed axis. This will allow us to extend our understanding of the types of forces that
can cause rotational accelerations.

11-2 The Rotational Variables

As is usual in physics, we like to start with a simple case so that we can make sense of
the basic ideas. The big difference between what we’ve done before and what we are
going to do now is that now we are going to consider the rotation of extended objects.
This can get quite complicated if we allow the object to deform or to twist in an arbi-
trary way. Let’s simplify by considering an object that is solid enough that we can
treat it as if it has a fixed shape throughout its motion—that is, it is perfectly rigid.
Many of these objects will have an axis of symmetry, a line about which the object
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FIGURE 11-1 ■ Figure skater Sarah
Hughes in motion of (a) pure translation
in a fixed direction and (b) pure rotation
about a vertical axis.

FIGURE 11-2 ■ These video clips show a small puck colliding with a stationary rod on an air
table. The puck’s motion before and after the collision is purely translational. After the objects
collide, the rod has a combination of rotational motion about its center of mass and transla-
tional motion of its center of mass. In Chapters 11 and 12, you will learn to use the laws of
translational and rotational motion to predict the detailed outcome of collisions like this.

(a)

(b)



may be turned and still look the same, like the line through the center of a cylinder or
a ball. A rigid object and a nonrigid object are shown in Fig. 11-3.

In summary, in this chapter we wish to examine the rotations of rigid bodies
about fixed axes. Figure 11-4 shows a rigid body in rotation about a fixed axis. The
axis is called the axis of rotation or the rotation axis. This is defined as a rigid body
because it can rotate with all its parts locked together, without any change in its
shape. For example, in Fig. 11-1b, if the skater holds her shape while spinning, she is
temporarily acting as a rigid body. But when she is moving her arms and legs rela-
tive to her body to change from one pose to another, she is not rigid. Therefore, we
will not analyze the rotations of dancers and athletes except during those parts of
their motions that are approximately rigid. Similarly, we will not examine the rota-
tional motion of the Sun, because it is a ball of gas whose parts are not locked
together.

A fixed axis means the rotation occurs about an axis that does not move. We also
will not yet examine an object like a bowling ball rolling along a bowling alley, be-
cause the ball rotates about an axis that moves (the ball’s motion is a mixture of rota-
tion and translation).

As we know from our previous study of linear motions, in pure translational mo-
tion, every point on a body moves in a straight line. In other words, every point moves
through the same linear distance during a particular time interval. In pure rotational
motion, every point on the body moves in a circle whose center lies on the body’s axis
of rotation. Since the parts of a rigid body are locked together, every point moves
through the same angle during a particular time interval. Hence, there are similarities
and differences between translational and rotational motions. Comparisons between
rotational and translational motion will appear throughout this chapter.

We deal now—one at a time—with specifying how an object is placed and moves
rotationally. We will point out the rotational (or angular) equivalents of the transla-
tional (or linear) quantities position, displacement, velocity, and acceleration. The first
step in introducing rotational quantities is to specify a coordinate system and refer-
ence line to aid in the description of motion.

Although there are many ways to specify a system for the analysis of rotational
motion, the one shown in Fig. 11-4 is the most conventional. We start by choosing a
rectangular coordinate system that is fixed in space. It is customary to orient the z axis
along the rotation axis. Next we choose a reference line that is perpendicular to the
axis of rotation so it lies in the x-y plane. The reference line is fixed with respect to the
rotating body so that it rotates around the z axis as the body rotates.

Rotational Position
We define the rotational position � of the body as the angle between the reference
line at a given moment and the positive x axis, as shown in Fig. 11-5.

For a rigid object rotating around a fixed axis, each point within the object moves
in a circle around the axis of rotation. Consider a point along the reference line that
is a distance r from the axis. From geometry, we know that the magnitude of � is
given by

(radian measure). (11-1)

Here s is a scalar quantity that represents the length of arc (or the arc distance)
between the x axis (the zero rotational position) and the reference line; r is the radius
of that circle.

For the equation 

�� � �
s
r

�� � �
s
r
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FIGURE 11-3 ■ A coffee cup serves as an
example of a rigid object (upper), whereas
a cloud is an example of a nonrigid object
(lower).

FIGURE 11-4 ■ A rigid body of arbitrary
shape in pure rotation about an axis. It is
customary to choose a coordinate system in
which the z axis is aligned with the axis of
rotation.The position of the reference line
with respect to the rigid body is arbitrary,
but it is perpendicular to the rotation axis. It
is fixed in the body and rotates with the
body. In this case, it must lie in the x-y plane.

z

Circle swept
out by a point

on body

Rotation
axis

x

y

Body

O
A point on
the body

FIGURE 11-5 ■ The rotating rigid body of
Fig. 11-4 in cross section, viewed from
above. The plane of the cross section is
perpendicular to the rotation axis, which
now extends out of the page, toward you.
In this position of the body, the reference
line makes an angle � with the x axis.

Reference
line

x

s

y

z axis
out of page

θ

r

Direction of
rotation
about z axis
(out of page)

Circle
swept out
by point
on body



to be valid, the angle must be measured in radians (rad) rather than in revolutions
(rev) or degrees. An angle of one radian is defined as the angle for which the length of
the arc is equal to the radius of the circle. The radian, being the ratio of two lengths, is
a pure number and thus has no dimensions. Although angles have no dimensions, they
do have units, and it is vital to keep track of them. Because the circumference of a cir-
cle of radius r is 2�r, there are 2� radians in a complete circle. There are three com-
mon units used to measure angles. They are related by the equation

(11-2)

By rearranging terms algebraically, we find that 

1 rad � 57.3° � 0.159 rev. (11-3)

We do not reset � to zero with each complete rotation of the reference line about the
rotation axis. If we did, a smoothly rotating object would be described by a variable
that jumps discontinuously. We have to keep in mind the physical, as well as the
mathematical, meaning of the rotational variable. Although �, � � 2�, � � 4�, and so
on, all represent the same physical position, they represent different total displace-
ments. For example, if the reference line completes two revolutions from the zero
rotational position, it is back at its starting point, but it has traveled through an angle
of � � 4� rad.

For pure translational motion along the x direction, we can know all there is to
know about a moving body if we are given x(t), which is its position as a function of
time. Similarly, for pure rotation, we can know all there is to know about the motion
of a rigid rotating body about a fixed axis of rotation if we are given �(t), the rota-
tional position of the body’s reference line as a function of time.

Rotational Displacement
If the body of Fig. 11-5 rotates about the rotation axis as in Fig. 11-6, changing the ro-
tational position of the reference line from � 1 to � 2, the body undergoes a rotational
(or angular) displacement �� given by

(11-4)

This definition of rotational displacement holds not only for the rigid body as a
whole, but also for every particle within that body, because the particles are all locked
together.

If a body is in translational motion along an x axis, its displacement �x is either
positive or negative, depending on whether the body is moving in the positive or neg-
ative direction (as we have assigned them). Similarly, the rotational displacement ��
of a rotating body can be either positive or negative.

Just as was the case for translational motion, the terms “positive” and “negative”
are only meaningful once we have defined a coordinate system. For any situation that
involves rotation about a fixed axis—for example, the rotation of the record shown in
Fig. 11-7—the rotational displacement � has a direction that is tied to the axis of rota-
tion. Consequently, it makes sense to define a coordinate system that has one of its
axes along the axis of rotation. It is standard practice to align the axis of rotation of a
body along the z axis of the rectangular right-handed coordinate system introduced in
Section 4-5. Thus, by convention, if our right-handed rectangular coordinate system
happens to be drawn so that the positive z axis is out of the page along the axis of
rotation of the body we are describing, then we define upward along the “vertical

�� � �2 � �1.

1 revolution � 360� �
2�r

r
 radians � 2� radians.
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FIGURE 11-6 ■ Bird’s eye view of Fig. 11-
4. The point on the reference line is at ro-
tational position �1 at time t1, and at rota-
tional position �2 at a later time t2. The
quantity Δ�(= �2 � �1) is the rotational
displacement that occurs during the inter-
val Δt (= t2 � t1). The body itself is not
shown.

x

y

Rotation axis (out of page)O
θ1

θ2

Δ  θ
Reference line

at time t2

Reference line
at time t1



axis” as the positive y direction and rightward along the “horizontal axis” as the posi-
tive x direction.

Once we have established a coordinate system to describe a rotational motion, we
can establish whether the rotational quantities of position, velocity, and acceleration
are positive or negative by using a right-hand rule, as shown in Fig. 11-7c. Curl the fin-
gers of your right hand in the direction of the rotation. If your extended thumb then
points in the negative direction along the chosen axis of rotation (as is the case for the
record in Fig. 11-7), we call the rotational displacement negative. If the record were to
rotate in the opposite sense, the right-hand rule would tell you that the rotational
displacement was positive, because your thumb would point in the opposite (positive)
direction along the axis of rotation.

By using the right-hand rule, we can consider a rotational displacement to be a
one-dimensional vector, where �� is its component along the axis of rotation. This
assignment makes sense, since rotational displacements are meaningless unless we
know what axis to relate them to. When the rotational displacement �� is positive,
the object is rotating one way and when it is negative, the object is rotating the oppo-
site way.

For the basic types of motion that we will treat in this book, the axis of rotation
will not change orientation over time. In such cases, rotational displacements are said
to commute. That is, the order in which you make the rotations doesn’t matter. How-
ever, in more complex motions where the orientation of the axis of rotation changes
direction over time, rotational displacements do not commute. In those cases, rota-
tional displacements do not behave as vectors.

The Rotational Velocity Component
Suppose (see Fig. 11-6) that our rotating body is at rotational position �1 at time t1 and
at rotational position �2 at time t2. A body’s average rotational velocity component
along its axis of rotation is defined as

(average rotational velocity component), (11-5)

where �� is the rotational displacement that occurs during the time interval
�t � t2 � t1 and 	 is the lowercase Greek letter omega. Rotational velocity is often
referred to as angular velocity. Note that when z is the axis of rotation .

The component 	z of the (instantaneous) rotational velocity with which we shall
be most concerned, is the limit of the ratio in the equation above as �t approaches
zero. Thus,

(instantaneous rotational velocity component). (11-6)

Once again when z is the rotation axis 	z � 	. If we know �(t) and it is continuous, we
can find the rotational velocity component 	z by differentiation. As is the case for the
rotational displacement, the rotational velocity 	z in this context represents the com-
ponent of a one-dimensional vector along the axis of rotation relative to the coordi-
nate system chosen to describe the motion. As a component, 	z can be positive or
negative and we do not use a vector arrow over it. Whenever the rotational position �
is becoming more positive 	z is positive and, conversely, whenever the rotational posi-
tion � is becoming more negative 	z is negative. Happily we will get the same result
using the right-hand rule to determine whether 	z is positive or negative.

Strictly speaking, we should always define an axis of rotation as z and call 	z the
rotational velocity component. But, for the simple rotations considered in this chap-
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FIGURE 11-7 ■ (a) A record rotating
about a vertical axis that coincides with the
axis of the spindle. (b) We establish that
the rotational displacement component
and the rotational velocity component are
negative because our thumb points down-
ward when using the right-hand rule. (c)
We establish the direction of the rotational
velocity vector as downward by using the
right-hand rule. When the fingers of the
right hand curl around the record and
point the way it is moving, the extended
thumb points in the direction of .	:

z

z z

(a)

(b) (c)

Rotation axis

Axis Axis

Spindle

ωθΔ  or ωθΔ  or 



ter, we often refer to it casually as the rotational velocity 	. Also, because the particles
in a rigid body are all linked to each other, the rotational velocity is the same for
every particle in a rotating rigid body.

Rotational Speed The magnitude (or absolute value) of rotational velocity is called
the rotational speed. Since we have designated 	 (or more correctly 	 z) to be a com-
ponent along the axis of rotation that can be either positive or negative, the rotational
speed must be represented using an absolute value sign. Thus, to avoid confusion we
always denote rotational speed as �	� or .

Units for Rotational Velocity The preferred scientific unit of rotational velocity is the
radian per second (rad/s). In some cases the unit revolution per second (rev/s) is used
instead. Another popular measure of rotational velocity is rpm or revolutions per
minute, used in automobile tachometers that measure the turning rate of engine
crankshafts. The rpm is also used in conjunction with turntables used to play vinyl
phonograph records.

The Rotational Acceleration Component
If the rotational velocity of a rotating body is not constant, then the body has rota-
tional acceleration. Let 	2 and 	1 be its rotational velocity components at times t2 and
t1, respectively. The component of the average rotational acceleration along the axis of
rotation of the body in the interval from t1 to t2 is defined as

(average rotational acceleration component), (11-7)

in which �	 is the component of the change in rotational velocity that occurs during the
time interval �t. The (instantaneous) rotational acceleration component 
, with which
we shall be most concerned, is the limit of this quantity as �t approaches zero.Thus,

(instantaneous rotational acceleration component). (11-8)

Just as was the case for the rotational velocity 	, these expressions for the rota-
tional acceleration hold not only for the rotating rigid body as a whole, but also for
every particle of that body.

Whenever the rotational velocity component 	 is becoming more positive 
 is
positive and, conversely, whenever the rotational velocity component 	 is becoming
more negative 
 is negative. Thus, the relationship between the directions of velocity
and acceleration that we hold to be true for translational motion are analogous to
those that apply to rotational motion.

Note that rotational acceleration, as introduced in this simple context, like rota-
tional displacement and rotational velocity, is a component of a one-dimensional vector
relative to the chosen coordinate axis aligned with the axis of rotation of the body that
is rotating. Rotational acceleration is often referred to as angular acceleration.

Once again we have followed the convention of not designating what axis of rota-
tion the acceleration component refers to. For this reason the rotational acceleration
component is casually called the rotational acceleration. So for its magnitude we al-
ways denote the magnitude of rotation acceleration as or �
�.

Units for Rotational Acceleration The preferred scientific unit of rotational accelera-
tion is commonly the radian per second-squared (rad/s2). Another common unit is the
revolution per second-squared (rev/s2).

� 
: �


 � 
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READI NG EXERC IS E  11-1: The Sign of Rotational Velocity: An off-center egg like
the one shown in Fig. 11-4 is rotating about a z axis. What is the sign of its rotational velocity
component if it is rotating so (a) the angle between its reference line and the x axis is increas-
ing; (b) the angle between its reference line and the x axis is decreasing? ■

READI NG EXERC IS E  11-2: The Sign of Rotational Acceleration—An off-center egg
like the one shown in Fig. 11-4 is rotating about a z axis. What is the sign of its rotational accelera-
tion if it is rotating so (a) the angle between its reference line and the x axis is increasing and so
is its speed; (b) the angle between its reference line and the x axis is increasing and its speed is
decreasing; (c) the angle between its reference line and the x axis is decreasing but its speed is
increasing; and (d) the angle between its reference line and the x axis is decreasing and its speed
is decreasing? ■
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The disk in Fig. 11-8a is rotating about its central axis like a merry-
go-round. The rotational position �(t) of a reference line on the
disk is given by

�(t) � �(1.00 rad) � (0.600 rad/s)t � (0.250 rad/s2)t2, (11-9)

with the zero rotational position as indicated in the figure.

(a) Graph the rotational position of the disk versus time from
t � �3.0 s to t � 6.0 s. Sketch the disk and its rotational position
reference line at t � �2.0 s, 0 s, and 4.0 s, and when the curve
crosses the t axis.

S O L U T I O N ■ The Ke y  I d e a here is that the rotational posi-
tion of the disk is the rotational position �(t) of its reference
line, which is given by Eq. 11-9 as a function of time. So we graph
Eq. 11-9; the result is shown in Fig. 11-8b.

To sketch the disk and its reference line at a particular time, we
need to determine � for that time. To do so, we substitute the time
into Eq. 11-9. For t � �2.0 s, we get

� � �(1.00 rad) � (0.600 rad/ s)(�2.0 s) � (0.250 rad/s2)(�2.0 s)2

This means that at t � �2.0 s the reference line on the disk is rotated
counterclockwise from the zero rotational position by 1.2 rad or 69°
(counterclockwise because � is positive). Sketch A in Fig. 11-8b
shows this rotational position of the reference line. Similarly, for
t � 0, we find � � �1.00 rad � �57°, which means that the reference
line is rotated clockwise from the zero rotational position by 1.0 rad
or 57°, as shown in sketch C. For t � 4.0 s, we find � � 0.60 rad � 34°
(sketch E). Drawing sketches for when the curve crosses the t axis is
easy, because then � � 0 and the reference line is momentarily
aligned with the zero rotational position (sketches B and D).

� 1.2 rad � 1.2 rad 
360�

2� rad
� 69�.

TOUCHSTONE EXAMPLE 11-1: Rotating Disk

(b)
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FIGURE 11-8 ■ (a) A rotating disk. (b) A plot of the disk’s rotational position �(t). Five
sketches indicate the rotational position of the reference line on the disk for five points on the
curve A-E. (c) A plot of the z-component of the disk’s rotational velocity 	 z(t). Positive values
of 	 z correspond to counterclockwise rotation, and negative values to clockwise rotation.



306 CHAPTER 11 Rotation

(b) At what time tmin does �(t) reach the minimum value shown in
Fig. 11-8b? What is that minimum value?

S O L U T I O N ■ The Ke y  I d e a here is that to find the extreme
value (here the minimum) of a function, we take the first derivative
of the function and set the result to zero. The first derivative of
�(t) is

(11-10)

Setting this to zero and solving for t give us the time at which �(t) is
minimum:

t min � 1.20 s. (Answer)

To get the minimum value of �, we next substitute t min into Eq. 11-9,
finding

� min � �1.36 rad � �77.9°. (Answer)

This minimum of �(t) (the bottom of the curve in Fig. 11-8b) corre-
sponds to the extreme clockwise rotation of the disk from the zero
rotational position, somewhat more than is shown in sketch C.

(c) Graph the rotational velocity 	 of the disk versus time from
t � �3.0 s to t � 6.0 s. Sketch the disk and indicate the direction of
turning and the sign of 	 at t � �2.0 s and 4.0 s, and also at t min.

S O L U T I O N ■ The Ke y  I d e a here is that, from Eq. 11-6, the
rotational velocity 	 is equal to d� /dt as given in Eq. 11-10. So, we
have

d�

dt
� �(.600 rad/s) � (0.500 rad/s2)t.

	 � �(.600 rad/s) � (0.500 rad/s2)t. (11-11)

The graph of this function 	(t) is shown in Fig. 11-8c.
To sketch the disk at t � �2.0 s, we substitute that value into

Eq. 11-11, obtaining

	 � �1.6 rad/s (Answer)

The minus sign tells us that at t � �2.0 s, the disk is turning clock-
wise as suggested by the lowest sketch in Fig. 11-8c.

Substituting t � 4.0 s into Eq. 11-11 gives us

	 � 1.4 rad/s. (Answer)

The implied plus sign tells us that at t � 4.0 s, the disk is turning
counterclockwise (the highest sketch in Fig. 11-8c).

For t min, we already know that d� /dt � 0. So, we must also have
	 � 0. That is, the disk is changing its direction of rotation when the
reference line reaches the minimum value of � in Fig. 11-8b as sug-
gested by the center sketch in Fig. 11-8c.

(d) Use the results in parts (a) through (c) to describe the motion
of the disk from t � �3.0 s to t � 6.0 s.

S O L U T I O N ■ When we first observe the disk at t � �3.0 s, it
has a positive rotational position and is turning clockwise but slow-
ing. It reverses its direction of rotation at rotational position
� � �1.36 rad and then begins to turn counterclockwise, with its ro-
tational position eventually becoming positive again.

11-3 Rotation with Constant Rotational Acceleration

In pure translation, motion with a constant translational acceleration (for example,
that of a falling body) is an important special case. In Table 2-1, we displayed a series
of equations that hold for such motion.

Recall that in Chapter 2 we derived two primary equations v2 x � v1 x � ax(t2 � t1)
(Eq. 2-13) and x2 � x1 � v1 x(t2 � t1) � ax(t2 � t1)2 (Eq. 2-17) that describe velocity
and position changes of an object that undergoes a constant translational accelera-
tion. In pure rotation, the case of constant rotational acceleration is also important,
and a parallel set of equations holds for this case also. Since the logic used to derive
the analogous rotational equations is identical, we shall not derive them here. We
can simply write them from the corresponding translational equations, substituting
equivalent rotational quantities for the translational ones. This is done in Table 11-1.
Figure 11-9 shows a situation that you can analyze using these equations. The equa-
tions for constant rotational acceleration are

	2 � 	1 � 
(t2 � t1), (11-12) 

and (11-13) 

Note that it is possible to derive other useful secondary equations from these two pri-
mary equations.

�2 � �1 � 	1(t2 � t1) � 1
2
(t2 � t1)2.

1
2

FIGURE 11-9 ■ A falling mass is attached
to the axle of a rotating disk. The mass falls
with a constant translational acceleration.
Video analysis shows that as the mass falls,
the disk rotates from position 1 to position
6 with a constant rotational acceleration.
By defining a coordinate system, both the
translational and rotational accelerations
can be determined using the equations in
Table 11-1.

1

Rotating Disk

� x axis

Falling Mass

2
3
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READI NG EXERC IS E  11-3: In four situations, a rotating body has rotational position
�(t) of:

(a) (c) 

(b) (d) 

To which situations do the rotational equations of Table 11-1 apply? ■

�(t) � 5� rad
s2 �t2 � 3[rad].�(t) � �5� rad

s3 �t3 � 4� rad
s2 �t2 � 6[rad],

�(t) �
2[rad �  s2]

t2 �
4[rad �  s]

t
, and �(t) � 3� rad

s � t � 4[rad], 
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TA B L E 11 - 1
Equations of Motion with Constant Translational Acceleration and 
with Constant Rotational Acceleration

Equation Translational Rotational Equation
Number Equation Equation Number

Primary Vector Component Equations:* Primary Rotational Vector Component 
Equations

(2-13) v2 x � v1 x � ax(t2 � t1) 	2 � 	1 � 
(t2 � t1) (11-12)

(2-17) x2 � x1 � v1 x(t2 � t1) � ax(t2 � t1)2 �2 � �1 � 	1 (t2 � t1) � 
(t2 � t1)2 (11-13)

*A reminder: In cases where the initial time t1 is chosen to be zero and t2 is denoted as t, it is important to
remember that whenever the term (t2 � t1) is replaced by just t, then t actually represents a time period of
�t � t2 � t1 � t � 0 over which the motion of interest takes place.

1
2

1
2

A grindstone (Fig. 11-10) rotates at constant rotational acceleration

 � 0.35 rad/s2. At time t1 � 0 s, it has a rotational velocity of
	1 � �4.6 rad/s and a reference line on it is horizontal, at the rota-
tional position �1 � 0.0 rad.

(a) At what time after t � 0.0 s is the reference line at the rota-
tional position � � 5.0 rev?

S O L U T I O N ■ The Ke y  I d e a here is that the rotational acceler-
ation is constant, so we can use the rotation equations of Table 11-1.
We choose Eq. 11-13,

,

because the only unknown variable it contains is the desired time
(t2 � t1). Substituting known values and setting �1 � 0.0 rad and
�2 � 5.0 rev � 10� rad give us

�2 � �1 � 	1(t2 � t1) � 1
2 
(t2 � t1)2

(We converted 5.0 rev to 10� rad to keep the units consistent.)
Solving this quadratic equation for t2 � t1, we find

t2 � t1 � 32 s. (Answer)
(b) Describe the grindstone’s rotation between t1 � 0 and t2 � 32 s.

S O L U T I O N ■ The wheel is initially rotating in the negative di-
rection with rotational velocity 	1 � �4.6 rad/s, but its rotational
acceleration 
 is positive. This initial opposition of the signs of rota-
tional velocity and rotational acceleration means that the wheel
slows in its rotation in the negative direction and then reverses to
rotate in the positive direction. After the reference line comes back
through its initial orientation of �1 � 0.0 rad, the wheel turns an
additional 5.0 rev by time t2 � 32 s. (Answer)

(c) At what time t3 does the grindstone change its direction of
rotation?

S O L U T I O N ■ We again go to the table of equations for constant
rotational acceleration, and again we need an equation that con-
tains only the desired unknown variable (t3 � t1). However, now we
use another Ke y  I d e a . The equation must also contain the vari-
able 	, so that we can set it to 0 and then solve for the correspond-
ing time t3. We choose Eq. 11-12, which yields

(Answer)t3 � t1 �
	3 � 	1



�

0.0 rad/s � (�4.6 rad/s)
0.35 rad/s2 � 13 s.

10� rad � (�4.6 rad/s)(t2 � t1) � 1
2(0.35 rad/s2)(t2 � t1)2.

TOUCHSTONE EXAMPLE 11-2: Grindstone

Axis

Reference
line

Zero angular
position

FIGURE 11-10 ■ A grindstone. At t1 � 0 the reference line (which
we imagine to be marked on the stone) is horizontal.
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11-4 Relating Translational and Rotational
Variables

In Section 5-7, we discussed uniform circular motion, in which a particle travels at con-
stant translational speed v along a circle and around an axis of rotation. When a rigid
body, such as a merry-go-round, rotates around an axis, each particle in the body moves
in its own circle around that axis. Since the body is rigid, all the particles make one revo-
lution in the same amount of time; that is, they all have the same rotational speed �	 �.

However, try the following experiment. Pretend that you are a dancer or a skater.
Although people are not rigid objects, they often configure their bodies into poses
that are temporarily rigid. Hold out your arms like a dancer or skater and spin around
in place (Fig. 11-11). What point on your body is moving fastest? Your shoulder, el-
bow, or fingertip?

As you may have gathered from the observation described above, a particle far
from the axis of rotation moves at a greater translational speed v than a particle close to
the axis of rotation.This is because the farther the object is from the axis, the greater the
circumference of the circular path the object takes in rotating about the axis. Since all
the points on the object complete a revolution in the same time interval (they all have
the same rotational speed �	 �), those points that must travel a larger circumference
must move at a higher translational speed. Hence, all points on a rotating object have
the same rotational speed �	 �, but not the same translational speed .You can also no-
tice this on a merry-go-round. You turn with the same rotational speed �	 � regardless of
your distance from the center, but your translational speed increases noticeably as
you move from the center to the outside edge of the merry-go-round. This is the reason
we describe rotation using rotational, rather than translational, variables.

Calvin and Hobbes © 1990 Bill Watterson. (Reprinted with permission of UNIVERSAL PRESS SYNDICATE. All rights
reserved.)

We often need to relate the translational variables s, , and for a particular
point in a rotating body to the rotational variables �� �, �	 �, and �
 � for that body. For
example, we may know the rotational velocity and need to know the associated trans-
lational velocity. The two sets of variables (translational and rotational) are related by
r, the perpendicular distance of the point from the rotation axis. This perpendicular
distance is the distance between the point and the rotation axis, measured along a per-
pendicular to the axis. It is also the radius r of the circle traveled by the point around
the axis of rotation.

Rotational Position and Distance Moved
If a reference line on a rigid body rotates through an angle � , a point within the body
at a distance r from the rotation axis moves a distance s along a circular arc, where s is
given by

(for radian measure only). (11-14)s � �� � r

� a: �� v: �

� v: �

� v: �

Reference
axis

θ

FIGURE 11-11 ■ If you rotate your body
about a fixed vertical axis with your arms
extended, what moves fastest: your shoul-
der, your elbow, or your fingers?



This is the first of our translational-rotational relations. Caution: The angle � here
must be measured in radians because is derived from the definition of the 
radian.

Relating Rotational and Translational Speed
How can we compare the translational speed v of a rotating particle to its rotational
speed ? Any small element of a rotating object that is rigid stays a fixed distance, r,
from the axis of rotation throughout its rotation around the axis. In Section 5-7, we
showed that if a rotating particle moves from one point on a circle to another, then
the magnitude of its translational displacement, , between those points and the
distance it moves along the arc of the circle, �s, are essentially the same when the 
displacement is infinitesimally small. For this reason, we can find the magnitude of 
the instantaneous translational velocity by taking the time derivative of 
(Eq. 11-14). In other words,

� 

However, is the rotational speed of the rotating body, so the translational
speed is given by

� (for radian measure only). (11-15)

Caution: Rotational speed must be expressed in radian measure and be denoted
with an absolute value sign since 	 represents a vector component.

Equation 11-15 (v � r) tells us that all points within the rigid body have the
same rotational speed, , while points with greater radius r, have greater transla-
tional speed . This equation verifies the conclusion we already reached. Namely,
that when all points on an object complete a revolution in the same time interval they
all have the same rotational speed . But those points that are a larger distance from
the axis of rotation must travel a larger circumference and must move at a higher
translational velocity. Figure 11-12a reminds us that the translational velocity is al-
ways tangent to the circular path of the point in question.

If the rotational speed of the rigid body is constant, then v � r (Eq. 11-15)
tells us that the translational speed v of any point within it is also constant. Thus, each
point within the body undergoes uniform circular motion. We can find the period of
revolution T by recalling that this is the time for one revolution (which is a linear dis-
tance 2�r). The rate at which that distance is traveled is equal to the circumference
divided by the time needed to make one revolution. Hence,

and the period of revolution T, for the motion of each point and for the rigid body
itself is given by

(11-16)

Substituting for v from v � r (Eq. 11-15) and canceling r, we find also that

(radian measure). (11-17)T �
2�

�	 �

�	�

T �
2�r

v
.

v �
2�r
T

,

�	��	�

�	�

� v: �
�	�

�	�

�	�

v � �	 � r� v: �

�	�d�� ��dt

v �
�dr: �

dt
�

ds
dt

�
d�� �
dt

r.� v: �

s � �� � r

�� r: �

�	�

s � �� � r
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FIGURE 11-12 ■ The rotating rigid body
of Fig. 11-4, shown in cross section viewed
from above. Every point of the body (such
as P) moves in a circle around the rotation
axis. (a) The translational velocity v of
every point is tangent to the circle in which
the point moves. (b) The translational ac-
celeration of the point has (in general)
two components, a tangential component
at and a radial component ar.

a:

x

y

r

Rotation
axis

P

Circle
traveled by P

(a)

x

y

ar

P

(b)

at

Rotation
axis

v



The Acceleration
Differentiating Eq. 11-15 with respect to time—again, with r held constant—leads to

(11-18)

Here we run up against a complication. In this equation, dv/dt represents only the
part of the magnitude of translational acceleration that is responsible for changes in
the magnitude of the translational velocity . Like , that part of the transla-
tional acceleration is tangent to the path of the point in question. We call it the tan-
gential component at of the translational acceleration of the point, and we express its
magnitude

(radian measure), (11-19)

where the component of rotational acceleration is given by 
 � d	 /dt. Caution: Once
again the rotational acceleration 
 in the expression (Eq. 11-19) must be
expressed in radian measure.

In addition, we know from our previous work that a particle (or point) moving in
a circular path (even at constant velocity) has a radial component vector of transla-
tional acceleration, which we called the centripetal acceleration, (directed
radially inward), that is responsible for changes in the direction of the translational
velocity . By substituting for v from v � �	�r (Eq. 11-15), we can write this compo-
nent as

(radian measure). (11-20)

Thus, as Fig. 11-12b shows, the translational acceleration of a point on a rotating rigid
body has, in general, two components. The radially inward component 

is present whenever the rotational velocity of the body is not zero. That is, this compo-
nent is nonzero whenever an object undergoes rotational motion. In addition, there is
a tangential component (Eq. 11-19) which is present whenever the rota-
tional acceleration is nonzero. That is, this component is nonzero only if the object’s
rotation rate is increasing or decreasing. The total translational acceleration of a rotat-
ing rigid object is found using .

READI NG EXERC IS E  11-4: In Eq. 11-20 we did not bother to represent the squares
of the magnitude of the translational and rotational speeds as and . Rather, we just use
v2 and 	2. Why is this legitimate? ■

READI NG EXERC IS E  11-5: A beetle rides the rim of a rotating merry-go-round. If
the rotational speed of this system (merry-go-round � beetle) is constant, does the beetle have
(a) radial acceleration and (b) tangential acceleration? If the rotational speed is decreasing,
does the beetle have (c) radial acceleration and (d) tangential acceleration? ■

�	 �2� v: �2

� a:tot�2 � � a: r �2 � � a: t �2

� a:t � � �
 � r

� a:r � �
v2

r
� 	2r,

� a:r � �
v2

r
� 	2r

v:

� a:r � � v2/r

� a:t � � �
 � r

� a:t � � �
 �r

v:v:� v: �

dv
dt

�
d� 	 �

dt
r.
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11-5 Kinetic Energy of Rotation

The rapidly rotating blade of a table saw certainly has kinetic energy (KE) due to that
rotation. How can we express the energy? We need to treat the table saw (and any
other rotating rigid body) as a collection of particles with different speeds. We can
then add up the kinetic energies of all the particles A, B, C . . . to find the kinetic en-
ergy of the body as a whole. In this way we obtain, for the kinetic energy of a rigid ro-
tating body,

(11-21)

The sum is taken over all the particles in the body. The problem with this sum is that
the values of translational velocity are not the same for all particles. We can solve this
problem by substituting for v using Eq. 11-15 (v � 	r) so that we have

�
(11-22)

since 	 is the same for all particles.
The quantity in brackets on the right side of this equation, {

tells us how the mass of the rotating body is distributed aboutmBr 2
B � mCr 2

C � � � �},
mAr 2

A �

1
2 	2{mAr 2

A � mBr 2
B � mCr 2

C � � � �},

K � 1
2 mAr 2

A	 2
A � 1

2 mBr 2
B	 2

B � 1
2 mCr 2

C	 2
C � � � �

K � 1
2mAv 2

A � 1
2mBv 2

B � 1
2mCv 2

C � � � � .
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Figure 11-13 shows a centrifuge used to accustom astronaut
trainees to high accelerations. The radius r of the circle traveled by
an astronaut is 15 m.

(a) At what constant rotational speed must the centrifuge rotate if
the astronaut is to have a translational acceleration of magnitude
11g?

S O L U T I O N ■ The Ke y  I d e a is this: Because the rotational
speed is constant, the rotational acceleration 
(� d	/dt) is zero and
so is the tangential component vector of the translational accelera-
tion . This leaves only the radial component vector.
From Eq. 11-20 with , we have

� 2.68 rad/s 	 26 rev/min. (Answer)

(b) What is the tangential acceleration of the astronaut if the cen-
trifuge accelerates at a constant rate from rest to the rotational
speed found in part (a) in 120 s?

S O L U T I O N ■ The Ke y  I d e a here is that the magnitude of the
tangential acceleration is related to the rotational acceleration

 by Eq. 11-19 . Also, because the rotational accelera-
tion is constant, we can use Eq. 11-12 (	2 � 	1 � 
(t2 � t1)) from
Table 11-1 to find 
 from the given rotational speeds. Putting these
two equations together, we find

( � a:t � � � 
 �r)
� a:t �

	 � √ � a:r �
r

� √ (11) (9.8 m/s2)
15 m

� a
:

r � � 11g(� a:r � � 	2 r),
(� a:t � � � 
 �r)

� r

� (15 m) � 0.34 m/s2

� 0.034 g. (Answer)

Although the magnitude of the final radial acceleration 
is large (and alarming), the astronaut’s tangential acceleration at

during the speed-up is not.

� a:r � � 11g

2.68 rad/s � 0
120 s

	2 � 	1

t2 � t1
� a:t � � � 
 �r

TOUCHSTONE EXAMPLE 11-3: Human Centrifuge

FIGURE 11-13 ■ A centrifuge in Cologne, Germany, is used to accus-
tom astronauts to the large acceleration experienced during a liftoff.
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its axis of rotation. We call that quantity the rotational inertia (or moment of inertia) I
of the body with respect to the axis of the rotation. It is a constant for a particular
rigid body and a particular rotation axis. (That axis must always be specified if the
value of I is to be meaningful.)

We may write an expression defining the rotational inertia for a collection of par-
ticles as

(rotational inertia), (11-23)

where ∑ is a summation sign signifying that we sum over all the particles in the rigid rotat-
ing system. We can substitute into Eq. 11-22 (
obtaining

(rotational KE, radian measure), (11-24)

as the expression we seek for the rotational kinetic energy. Because we have used the
relation v � 	r in deriving , 	 must be expressed in radian measure. The SI
unit for I is the kilogram-meter-squared (kg · m2).

Equation 11-24 ( ), which gives the kinetic energy of a rigid body in pure
rotation, is the rotational equivalent of the formula , which gives the ki-
netic energy of a rigid body in pure translation. In both formulas, there is a factor of .
Where mass M appears in one equation, I (which involves both mass and distribution)
appears in the other. Finally, each equation contains a factor of the square of a
speed—translational or rotational as appropriate. The kinetic energies of translation
and rotation are not different kinds of energy. They are both kinetic energy, expressed
in ways that are appropriate to the motion at hand.

We noted previously that the rotational inertia of a rotating body involves not
only its mass but also how that mass is distributed. Here is an example that you can
literally feel. Rotate a long rod (a pole, a length of lumber, a twirling baton, or some-
thing similar), first around its central (longitudinal) axis (Fig. 11-14a) and then around
an axis perpendicular to the rod and through the center (Fig. 11-14b). Both rotations
involve the very same mass, but the mass of the object in the first rotation is much
closer to the rotation axis. As a result, the rotational inertia of the rod is much smaller
in Fig. 11-14a than in Fig. 11-14b. In general, smaller rotational inertia means easier
rotation.

READI NG EXERC IS E  11-6: The figure shows
three small spheres that rotate about a vertical axis. The
perpendicular distance between the axis and the center of
each sphere is given. Rank the three spheres according to
their rotational inertia about the axis, greatest first.

■

11-6 Calculating Rotational Inertia

If a rigid body consists of a few particles, we can calculate its rotational inertia about a
given rotational axis with Eq. 11-23 . For example, consider the rotational
inertia of a lump of clay (considered to be a point mass) with mass M at a distance
r from the axis of rotation. The rotational inertia of such an object is simply Mr 2.
Consider the rotational inertia of the object if the clay is now split into two pieces of
equal mass, or eight pieces of equal mass, or even a very large number of point
masses. As shown in Fig. 11-15, these pieces can be made to fashion a hoop of mass m
and radius r.

(I � � mir 2
i )

1
2

K � 1
2Mv 2

com

K � 1
2 I	2

K � 1
2 I	2

K � 1
2 I	2

K � 1
2	2{mAr 2

A � mBr 2
B � mCr 2

C � � � �}),

I � 
 mir 2
i

Rotation
axis

(a)

(b)

FIGURE 11-14 ■ A long rod is much easier
to rotate about (a) its central (longitudi-
nal) axis through its center and perpendic-
ular to its length because the mass is dis-
tributed closer to the rotation axis in (a)
than in (b).

Rotation
axis

4 kg
3 m

2 m

1 m

9 kg

36 kg



Since the total mass M is divided into n equal masses, we can write the rotational
inertia of this hoop as the sum of the rotational inertias of each of its elements:

.

Further, since all the point masses that make up the hoop are located the same dis-
tance r away from the axis of rotation,

(11-25)

If a rigid body consists of a great many adjacent particles (it is continuous, like a
Frisbee), using would require a tedious computer calculation. Instead, for
a body that has a simple geometric form, we can replace the sum with an inte-
gral, and define the rotational inertia of the body as

(rotational inertia, continuous body). (11-26)

Table 11-2 gives the results of such integration for nine common body shapes and the
indicated axes of rotation.

Studying the equations in Table 11-2 is helpful. For example, for objects all having
the same radius and mass, an object with its mass distributed very close to the axis of
rotation has a smaller rotational inertia than an object with mass distributed farther out.
A case in point is the rotation of a cylinder (or equivalently a disk) about a central di-
ameter. Table 11-2 shows that

(11-27)Idisk � I cylinder � �r2 dm � 1
2 MR2.

I � �r 2 dm

�mir 2
i

I � �mir 2
i
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�
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n

�
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FIGURE 11-15 ■ Imagine a thin wire that
provides a “massless” circular frame for
clay blobs. As a clay blob of mass m is di-
vided into more and more parts of equal
mass, the distance of each smaller blob
from the center of the circle is still the
same. How does I compare for each of the
objects, (a), (b), (c), and (d)?

(a)

m = M

m

(b)

m = M/2

m

TA B L E 11 - 2
Some Rotational Inertias
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m
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Thus, the rotational inertia of the hoop is twice that of a disk with the same mass and
radius. This is because a hoop of the same radius as the disk has all its mass distrib-
uted as far away from the axis of rotation as possible.

Note that an object can have more than one axis of rotation. For example, you can
roll a cylinder (or disk) along a table so its axis of rotation is perpendicular to the flat
face of the cylinder (as in Table 11-2(c)).Alternatively Table 11-2(d) shows a different ro-
tational inertia equation for an axis parallel to its face. In the next subsection we present
a parallel-axis theorem that will allow us to determine the rotational inertia about any
rotational axis once we know its rotational inertia about another axis parallel to it.

Parallel-Axis Theorem
Suppose we want to find the rotational inertia I of a body of mass M about a given
axis. In principle, we can always find I using integration of 

.

However, it is easier mathematically to find the rotational inertia of an object about
an axis of symmetry that passes through the object’s center of mass. Fortunately, in
certain circumstances, there is a shortcut. If we know the rotational inertia of a sym-
metric object rotating about an axis passing through its center of mass (for example,
from Table 11-2), then the rotational inertia I about another parallel axis is

(parallel-axis theorem). (11-28)

Here h is the perpendicular distance between the given axis and the axis through the
center of mass (remember that these two axes must be parallel). The proof of this equa-
tion, known as the parallel-axis theorem, is fairly straightforward, because it takes ad-
vantage of the fact that the object is symmetric about its center-of-mass axis of rotation.

READI NG EXERC IS E  11-7: The figure shows a
book-like object (one side is longer than the other) and
four choices of rotation axes, all perpendicular to the face
of the object. Rank the choices according to the rotational
inertia of the object about the axis, greatest first.

■

READI NG EXERC IS E  11-8:
Four objects having the same “radius”
and mass are shown in the figure that
follows. Rank the objects according to
the rotational inertia about the axis
shown, greatest first.

■

I � Icom � Mh2

I � �r 2 dm
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m/4 m/4
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m/4



11-7 Torque

Now that we have defined the variables needed to describe the rotation of an object,
we need to determine how forces can affect rotational motion. Because we are talking
about more complex objects than point particles, we need to consider not only the
forces that act on a rotating body but also the locations of those forces.

For instance, a doorknob is located as far as possible from the door’s hinge line
for a good reason. If you want to open a heavy door, you must certainly apply a force;
that alone, however, is not enough. Where you apply that force and in what direction
you push are also important. If you apply your force nearer to the hinge line than to
the knob, or at any angle other than 90° to the plane of the door, you must use a
greater force to move the door than if you apply the force at the knob and perpendic-
ular to the door’s plane. If you have never noticed this phenomenon, compare the
force you need to open a heavy door near the hinge to that at the handle.

Figure 11-17a shows a cross section of a body that is free to rotate about an axis
passing through O and perpendicular to the cross section. A force is applied at
point P, whose position relative to O is defined by a position vector . The directionsr:

F
:
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Large machine components that undergo prolonged, high-speed ro-
tation are first examined for the possibility of failure in a spin test
system. In this system, a component is spun up (brought up to high
speed) while inside a cylindrical arrangement of lead bricks and
containment liner, all within a steel shell that is closed by a lid
clamped into place. If the rotation causes the component to shatter,
the soft lead bricks are supposed to catch the pieces so that the fail-
ure can then be analyzed.

In early 1985, Test Devices Inc. (www.testdevices.com) was spin-
testing a sample of a solid steel rotor (a disk) of mass M � 272 kg
and radius R � 38.0 cm. When the sample reached a rotational
speed 	 of 14 000 rev/min, the test engineers heard a dull thump
from the test system, which was located one floor down and one
room over from them. Investigating, they found that lead bricks had
been thrown out in the hallway leading to the test room, a door to
the room had been hurled into the adjacent parking lot, one lead
brick had shot from the test site through the wall of a neighbor’s
kitchen, the structural beams of the test building had been damaged,
the concrete floor beneath the spin chamber had been shoved down-
ward by about 0.5 cm, and the 900 kg lid had been blown upward
through the ceiling and had then crashed back onto the test equip-
ment (Fig. 11-16). The exploding pieces had not penetrated the room
of the test engineers only by luck.

How much energy was released in the explosion of the rotor?

S O L U T I O N ■ The Ke y  I d e a here is that this released energy
was equal to the rotational kinetic energy K of the rotor just as it
reached the rotational speed of 14 000 rev/min. We can find K with
Eq. 11-24 , but first we need an expression for the rota-
tional inertia I. Because the rotor was a disk that rotated like a
merry-go-round, I is given by the expression in Table 11-2(c)

. Thus we have

I � 1
2 MR2 � 1

2(272 kg)(0.38 m)2 � 19.64 kg �  m2.

(I � 1
2 MR2)

(K � 1
2 I	2)

The rotational speed of the rotor was

� 1.466  103 rad/s.

Now we can use Eq. 11-24 to write

� 2.1  107 J. (Answer)

Being near this explosion was like being near an exploding bomb.

K � 1
2 I	2 � 1

2(19.64 kg �  m2)(1.466  103 rad/s)2

	 � (14 000 rev/min)(2� rad/rev)� 1 min
60 s 

TOUCHSTONE EXAMPLE 11-4: Rotor Failure

FIGURE 11-16 ■ Some of the destruction caused by the explosion
of a rapidly rotating steel disk.

www.testdevices.com


of vectors and make an angle � (0 � � � 180�) with each other. For simplicity, we
consider only forces that have no component parallel to the rotation axis; in other
words, is in the plane of the page.

To determine how results in a rotation of the body around the rotation axis, we
resolve into two components (Fig. 11-17b). One component, called the radial com-
ponent vector , points along . This component does not cause rotation, because it
acts along a line that extends through O. (If you pull on a door parallel to the plane of
the door, you are stretching and compressing the door, but you do not cause the door
to rotate.) The other vector component of , called the tangential component vector

, is perpendicular to and has magnitude . This component does
cause rotation. (If you pull on a door perpendicular to its plane, you can rotate the
door.)

The ability of to rotate the body depends not only on the magnitude of its tan-
gential component , but also on just how far from O the force is applied. To in-
clude both these factors, we define a new quantity called torque. In general, torque is
a three-dimensional vector whose direction depends on the location and direction of
a net force that acts on a rigid object that can rotate. Since we are only considering
fixed rotation axes in this chapter, we can represent torque here as a one-dimensional
vector (as we have with the other rotational variables). For now, we will describe
torque in terms of its component �z along a z axis of rotation of the body experiencing
a net force.

The torque component �z, often denoted as simply �, has either a positive or nega-
tive value, depending on the direction of rotation it would give a body initially at rest.
If a body rotates so the thumb of the right hand points along the positive direction as-
signed to the axis of rotation, the torque component is positive. If the object rotates in
the opposite way, the torque component is negative.

The magnitude of the torque can be written as the product of the magnitude of a
moment arm and the magnitude of the tangential component of the force .
As you can see in Fig. 11-17b,

(11-29)

Two equivalent ways of computing the magnitude of torque are

(11-30)

and (11-31)

where r� is the perpendicular distance between the rotation axis at O and an ex-
tended line running through the vector (Fig. 11-17c). This extended line is called the
line of action of , and r� is called the moment arm of . Figure 11-17c shows that 
we can describe r, the magnitude of , as being the moment arm of the force compo-
nent Ft.

Torque, which comes from the Latin word meaning “to twist,” may be loosely
identified as the turning or twisting action of the force . When you apply a force 
to an object—such as a screwdriver or torque wrench—with the purpose of turning
that object, you are applying a torque. The SI unit of torque is the newton-meter
(N · m). Caution: The newton-meter is also the unit of work. Torque and work, how-
ever, are quite different quantities and must not be confused. Work is often expressed
in joules (1 J � 1 N · m), but torque never is.

In the next chapter, we shall discuss cases in which torque must be represented by
a vector that changes direction over time.

Torques obey the superposition principle that we discussed in Chapter 3 for
forces: When several torques act on a body, the net torque (or resultant torque) com-
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FIGURE 11-17 ■ (a) A force acts at
point P on a rigid body that is free to ro-
tate about an axis through O. The axis is
perpendicular to the plane of the cross sec-
tion shown here. (b) The torque due to this
force is . We can also write it as

, where is the tangential compo-
nent vector of . (c) The torque magni-
tude can also be written as , where r�

is the moment arm of .F
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ponent is the vector sum of the individual torques. The symbol for net torque compo-
nent along the axis of rotation is � net

z .

Using Torque to Jump
So how do kneecaps allow us to jump higher? When we jump, we create a large
torque in the knee joint in order to straighten the leg. If the force exerted by the
strong thigh muscle (the quadriceps) is exerted along a line that is close to the pivot in
the knee joint (represented by the dashed arrow in Fig. 11-18), the torque is not very
great. A kneecap allows that force to be exerted farther from the pivot (represented
by the solid arrow in Fig. 11-18). Recall that it is more effective to open a door by
pushing far from the hinge. Similarly, the leg with a kneecap achieves more leg-
straightening torque, thereby allowing for a higher jump!

READI NG EXERC IS E  11-9: The figure shows an
overhead view of a meter stick that can pivot about the dot
at the position marked 20 (for 20 cm). All five forces on the
stick have the same magnitude. Rank those forces accord-
ing to the magnitude of the torque that they produce, great-
est first.

■

11-8 Newton’s Second Law for Rotation

A torque can cause rotation of a rigid body, such as when you open a door about its
hinge. Here we want to consider a special case in which a rigid body is symmetric
about its axis of rotation. For this case we can relate the net torque component � net

that acts on the body to the rotational acceleration component 
 the torque causes
about a rotation axis. A good guess is to do so by analogy to the one-dimensional form
of Newton’s Second Law. If a one-dimensional net force is acting along the 
x axis, then , where ax is the acceleration component of a body of mass m,
due to the net force acting along the x axis. For a rotation about a z axis we replace

with , m with I, and ax with 
z, writing

(Newton’s Second Law for rotation). (11-32)

Remember in this context that and 
z are vector components, that we have cho-
sen to represent as � net and 
 respectively. We can then rewrite Eq. 11-32 as

(Newton’s Second Law for symmetric rotations), (11-33)

where 
 must be in radian measure. This rotational analog to one-dimensional transla-
tional motion only holds when the axis of rotation does not change direction and
when the body is symmetric about its axis of rotation.

Proof of Equation 11-33
To see that Eq. 11-33 is, in fact, valid, let us see whether we can prove mathematically
that by first considering the simple situation shown in Fig. 11-19. The rigid
body there consists of a particle of mass m on one end of a massless rod of length r.
The rod can move only by rotating about its other end, around a rotation axis (an
axle) that is perpendicular to the plane of the page. Thus, the particle can move only in
a circular path that has the rotation axis at its center.

� net � I


� net � I


� net
z

�z
net � I
z

� net
zF net

x

Fx
net � max

F net
x

FIGURE 11-18 ■ The structure of the hu-
man knee. Note the force exerted by the
quadriceps muscle, shown as , acting on
the kneecap at a distance, r, from the pivot
axis. If the kneecap were not there, the
force, shown as , would be acting along
the dashed line a smaller distance r from
the pivot axis, which is located approxi-
mately at the small circle.
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FIGURE 11-19 ■ A simple rigid body, free
to rotate about an axis through O, consists
of a particle of mass m fastened to the end
of a rod of length r and negligible mass.An
applied force net causes the body to rotate.F
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A force acts on the particle. However, because the particle can move only
along the circular path, only the tangential component of the force (the compo-
nent that is tangent to the circular path) can accelerate the particle along the path. We
can relate to the particle’s tangential acceleration component at along the path
with Newton’s Second Law, writing

So now, the magnitude of the torque acting on the particle is given by Eq. 11-30 as

Note that we define a net tangential force component as positive if it causes ro-
tational and tangential accelerations that have positive components according to the
right-hand rule. Conversely, is negative if it leads to negative acceleration com-
ponents along the axis of rotation. Since the distance is the magnitude of a
vector perpendicular to the rotation axis that points to the rotating particle, it is al-
ways positive. So the torque component can be expressed in terms of the net tangen-
tial force and acceleration components associated with a rotating body of mass m as

From Eq. 11-19 (at � 
r), we can write this as

(11-34)

Since the quantity in parentheses on the right side of this equation is the rota-
tional inertia, mr 2, of the particle about the rotation axis, Eq. 11-34 reduces to

(radian measure), (Eq. 11-33)

which is the expression we set out to prove. We can extend this equation to any rigid
body rotating about an axis of symmetry, because any such body can always be analyzed
as an assembly of single particles. Both 
 and � net are vector components along the rota-
tion axis. Since I is inherently positive, 
 and � net must always have the same sign.

READI NG EXERC IS E  11-10:  The figure shows
an overhead view of a meter stick that can pivot about a
vertical axis at the point indicated, which is to the left of
the stick’s midpoint. Two horizontal forces, and , are
applied to the stick. Only is shown. Force is perpen-
dicular to the stick and is applied at the right end. If the stick does not turn, (a) Is in the
same or opposite direction as and (b) should the magnitude of be greater than, less than,
or equal to ? ■F
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FA

Pivot point

Figure 11-20a shows a uniform disk, with mass M � 2.5 kg and ra-
dius R � 20 cm, mounted on a fixed horizontal axle. A block with
mass m � 1.2 kg hangs from a massless cord that is wrapped
around the rim of the disk. Find the acceleration of the falling
block, the rotational acceleration of the disk, and the tension in the
cord. The cord does not slip, and there is no friction at the axle.

S O L U T I O N ■ One Ke y  I d e a here is that, taking the block as
a system, we can relate its acceleration a to the forces acting on it
with Newton’s Second Law ( ). Those forces are shown in
the block’s free-body diagram in Fig. 11-20b: The force from the

F
: net � ma:

cord is and the gravitational force is , of magnitude mg.
We can now write Newton’s Second Law for components along a
vertical y axis as

(11-35)

However, we cannot solve this equation for ay because it also con-
tains the unknown .

Previously, when we got stuck on the y axis, we would switch to
the x axis. Here, we switch to the rotation of the disk and use this
Ke y  I d e a : Taking the disk as a system, we can relate its rotational

� F
: cord �

� F
: cord � � mg � may.

F net
y � may

F
: gravF

: cord

TOUCHSTONE EXAMPLE 11-5: Accelerating a Wheel



Newton’s Second Law for Rotation   319

m

M

M R
O

(b)(a)

(c)

m

F grav

F cord

F cord–

acceleration 
 to the torque acting on it with Newton’s Second Law
for rotation . To calculate the torques and the rotational
inertia I, we take the rotation axis to be perpendicular to the disk
and through its center, at point O in Fig. 11-20c.

The torques are then given by Eq. 11-29 ). The
gravitational force on the disk and the force on the disk from
the axle both act at the center of the disk and thus at distance r � 0,
so their torques are zero. The force on the disk due to the
cord acts at distance r � R and is tangent to the rim of the disk.
Therefore, the magnitude of its torque is . From
Table 11-2(c), the rotational inertia I of the disk is . Thus we
can write as

(11-36)

This equation seems equally useless because it has two un-
knowns, 
 and , neither of which is the desired acceleration a.
However, mustering physics courage, we can make it useful with a
third Ke y I d e a : Because the cord does not slip, the magnitudes
of the translational acceleration of the block and of the (tan-
gential) translational acceleration of the rim of the disk are� a:t �

� ay �

� F
: cord �

� �: � � R� F
: cord � � 1

2 MR2� 
 �.

(�z
net � I
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1
2MR2

� �: � � R� F
: cord �

F
: cord

(� �: � � � r: � � F
:

t �

(� net � I
)

equal. Then, by Eq. 11-19 we see that here
. Substituting this in Eq. 11-36 yields

(11-37)

From Fig. 11-20a it’s apparent that ay is negative, which along with
Eq. 11-37 tells us that

(11-38)

Now combining Eqs. 11-35 and 11-38 leads to

� �4.8 m/s2. (Answer)

We then use Eq. 11-37 to find :

(Answer)

As we should expect, the magnitude of the acceleration of the
falling block is less than g, and the tension in the cord (� 6.0 N)
is less than the gravitational force on the hanging block
(� mg � 11.8 N). We see also that the acceleration of the block and
the tension depend on the mass of the disk but not on its radius. As
a check, we note that the formulas derived above predict ay � �g
and T � 0 for the case of a massless disk (M � 0). This is what we
would expect; the block simply falls as a free body, trailing the
string behind it.

From Eq. 11-19, the magnitude of the rotational acceleration of
the disk is

(Answer)�
 � �
� ay �
R

�
4.8 m/s2

0.20 m
� 24 rad/s2.

� F
: cord � � 1

2 M�ay � � 1
2(2.5 kg)(4.8 m/s2) � 6.0 N.

� F
:cord �

ay � �g
2m

M � 2m
� �(9.8 m/s2)

(2)(1.2 kg)
2.5 kg � (2)(1.2 kg)

ay � �
2� F

: cord �
M

.

R� F
: cord � �

1
2 MR2� ay �

R
  or  � F

: cord � � 1
2 M� ay �.

� 
 � � � ay ��R
(� a:t � � �
 �r)

FIGURE 11-20 ■ (a)
The falling block causes
the disk to rotate. (b) A
free-body diagram for
the block. (c) An in-
complete free-body dia-
gram for the disk.

To throw an 80 kg opponent with a basic judo hip throw, you intend
to pull his uniform with a force and a moment arm d1 � 0.30 m
from a pivot point (rotation axis) on your right hip (Fig. 11-21). You
wish to rotate him about the pivot point with an rotational acceler-
ation 
 of �6.0 rad/s2 —that is, with an rotational acceleration that
is clockwise in the figure. Assume that his rotational inertia I rela-
tive to the pivot point is 15 kg · m2.

(a) What must the magnitude of be if, before you throw him, you
bend your opponent forward to bring his center of mass to your hip
(Fig. 11-21a)?

S O L U T I O N ■ One Ke y  I d e a here is that we can relate your
pull on him to the given rotational acceleration 
 via Newton’s
Second Law for rotation (� net � I
). As his feet leave the floor, we

F
:

F
:

F
:

TOUCHSTONE EXAMPLE 11-6: Judo

can assume that only three forces act on him: your pull , a force 
on him from you at the pivot point (this force is not indicated in
Fig. 11-21), and the gravitational force . To use � net � I
, we
need the corresponding three torques, each about the pivot point.

From Eq. 11-31 the torque due to your pull is
equal to �d1F, where d1 is the moment arm r� and the sign indi-
cates the clockwise rotation this torque tends to cause. The torque
due to is zero, because acts at the pivot point and thus has mo-
ment arm r� � 0.0 m.

To evaluate the torque due to , we need a Ke y  I d e a
from Chapter 8: We can assume that acts at your opponent’s
center of mass. With the center of mass at the pivot point, has
moment arm r� � 0.0 m and thus the torque due to is zero.
Thus, the only torque on your opponent is due to your pull , and
we can write � net � I
 as
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Net Work-Kinetic Energy Theorem for Translational Motion 
in One Dimension
As we discussed in Chapter 9, when a net force causes the center of mass of a rigid
body of mass m to accelerate along a coordinate axis, it does net work, W net, on the
body. Thus, the body’s translational kinetic energy ( ) can change. We can use
the net work-kinetic energy theorem to relate these two quantities:

(work-kinetic energy theorem), (Eq. 9-11)

where K1 is the kinetic energy of the object when it is located at an initial position and
K2 is its kinetic energy when it is displaced to a new position.

For translational motion confined to a single axis we choose to be the x axis, we
can calculate the net work using the expression 

(work, one-dimensional motion). (11-39)

This reduces to W net � when the net force is constant and the body’s displace-
ment is �x � x2 � x1. The rate at which the work is done is the power, which we can
find with

F net
x �x

W net � � x2

x1

F net
x (x)dx

W net � K2 � K1 � �K

K � 1
2 mv2
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Opponent's
 center of 

mass

Moment arm d 1
of your pull

Pivot
on hip

Moment arm d 2
of gravitational

force on
opponent

Moment
arm d 1

of your pull

(a) (b)

F
F

F grav F grav

FIGURE 11-21 ■ A judo hip throw (a) correctly executed and (b)
incorrectly executed.

We then find

� 300 N. (Answer)

� F
:

� �
�I


d1
�

�(15 kg �  m2)(�6.0 rad/s2)
0.30 m

�d1� F
:

� � I
.

(b) What must the magnitude of be if your opponent remains up-
right before you throw him, so that has a moment arm
d2 � 0.12 m from the pivot point (Fig. 11-21b)?

S O L U T I O N ■ The Ke y  I d e a s we need here are similar to
those in (a) with one exception: Because the moment arm for 
is no longer zero, the torque due to is now equal to d2mg, and
is positive because the torque attempts counterclockwise rotation.
Now we write � net � I
 as

which gives

From (a), we know that the first term on the right is equal to 300 N.
Substituting this and the given data, we have

� 613.6 N 	 610 N. (Answer)

The results indicate that you will have to pull much harder if you do
not initially bend your opponent to bring his center of mass to your
hip. A good judo fighter knows this lesson from physics. (An analysis
of the physics of judo and aikido is given in “The Amateur Scientist”
by J. Walker, Scientific American, July 1980, Vol. 243, pp. 150–161.)
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(power, one-dimensional motion). (11-40)

Net Work-Kinetic Energy Theorem for 
Rotational Motion—Fixed Axis
A similar situation exists for rotational motion. When a net torque accelerates a rigid
body in rotation about a fixed axis, it also does work on the body—rotational work.
Therefore, the body’s rotational kinetic energy as derived in Section 11-5 as

(Eq. 11-24) can change. We can show that it is also possible to relate the
change in rotational kinetic energy to the net rotational work using the work-kinetic
energy theorem where we use rotational quantities to determine the net work and ki-
netic energy.

(rotational net work-kinetic energy theorem).

(11-41)

Here I is the rotational inertia of the body about the fixed axis and 	1 and 	2 are the
rotational speeds of the body before and after the rotational work is done, respectively.

Derivation of Rotational Work-Energy Theorem
We have already derived an expression for rotational kinetic energy as shown in
Eq. 11-24. In order to derive Eq. 11-41, we need to use the definition of work to find
an expression for the net rotational work W net-rot. Then we can relate the work W
done on the body in Fig. 11-19 to the net torque � net (which is due to a net force 
that produces it). To do this we use the relationships between rotational and transla-
tional variables. We start by considering how the net force affects a single particle
located at a distance r from the axis of rotation.

When a single particle moves a distance ds along its circular path, only the tan-
gential component of the force accelerates the particle along the path. Therefore
only Ft does work on the particle. We write that infinitesimal increment of work dW as
Ft ds. However, we can replace ds with r d�, where d� is the angle through which the
particle moves with respect to the x axis. Thus we have

(11-42)

However, the product is equal to the net torque � net, so we can rewrite Eq. 11-
42 as

. (11-43)

The work done on a single rotating particle during a finite rotational displacement
from �1 to �2 is then

(rotational work, fixed axis). (11-44)

If all the particles in a body rotate together, this equation for rotational work also
applies to the extended body that is rigid. So we now have expressions for determin-
ing both the net rotational work and the change in rotational kinetic energy in terms
of rotational variables and the same basic definitions of work and kinetic energy.
This verifies that we can use the work-kinetic energy theorem to relate net work and
kinetic energy change when a rigid body rotates about a fixed axis.

W net-rot � ��2

�1

� net d�

dW net-rot � � net d�

F
: net

t r

dW net-rot � F net
t rd�.

F
:

t

F
:net

W net-rot � �K � K2 � K1 � 1
2I	2

2 � 1
2I	2

1

K rot � 1
2I	2

P �
dW
dt

� Fv
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As is the case for work done by translational forces, rotational work is a scalar
quantity that can be either positive or negative, depending on whether work is done
on the rotating body or by it. The work is calculated using the product of the signed
quantities torque and rotational displacement.

Power for a Rotating Body
In addition, we can find the power P associated with the rotational motion of a rigid
object about a fixed axis using the equation dW � � d� (Eq. 11-43):

(11-45)

The signs of both torque and rotational velocity depend on the sign of the rotation as
determined by the right-hand rule.

Table 11-3 summarizes the equations that apply to the rotation of a rigid body
about a fixed axis and the corresponding equations for translational motion.

P �
dW
dt

� �
d�

dt
� �	.
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TA B L E 11 - 3
Corresponding Relations for Translational and Rotational Motion

Pure Translation Pure Rotation 
(x axis) (Symmetry about a Fixed Rotation Axis)

Position component x Rotational position component �

Velocity component vx � dx/dt Rotational velocity component 	 � d�/dt

Acceleration ax � dvx/dt Rotational acceleration component 
 � d	/dt

Mass m Rotational inertia I

Newton’s Second Law F x
net � max Newton’s Second Law � net � I


Work Work

Kinetic energy Kinetic energy

Power P � Fxvx Power P � �	

Work-kinetic energy theorem W � �K Work-kinetic energy theorem W rot � �K rot

K � 1
2 I	2K � 1

2mvx
2

W � �� d�W � �Fx dx

A rigid sculpture consists of a thin hoop (of mass m and radius
R � 0.15 m) and a thin radial rod (of mass m and length L � 2.0 R),
arranged as shown in Fig. 11-22. The sculpture can pivot around a
horizontal axis in the plane of the hoop, passing through its center.

(a) In terms of m and R, what is the sculpture’s rotational inertia I
about the rotation axis?

S O L U T I O N ■ A Ke y  I d e a here is that we can separately
find the rotational inertias of the hoop and the rod and then
add the results to get the sculpture’s total rotational inertia I.
From Table 11-2(h), the hoop has rotational inertia 
about its diameter. From Table 11-2(e), the rod has rotational
inertia I com � mL2/12 about an axis through its center of mass
and parallel to the sculpture’s rotation axis. To find its rotational

I hoop � 1
2 mR2

TOUCHSTONE EXAMPLE 11-7: Rotating Sculpture

Rotation axis

Hoop

Rod

R

L/2

L/2

R

h

x

y

FIGURE 11-22 ■ A rigid sculpture consisting of a hoop and two
rods can rotate around a horizontal axis.
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inertia Irod about that rotation axis, we use Eq. 11-28, the parallel-
axis theorem:

� 4.33mR2,

where we have used the fact that L � 2.0R and where the perpen-
dicular distance between the rod’s center of mass and the rotation
axis h � R � L/2. Thus, the rotational inertia I of the sculpture
about the rotation axis is

� 4.83mR2 	 4.8mR2. (Answer)

(b) Starting from rest, the sculpture rotates around the rotation axis
from the initial upright orientation of Fig. 11-22. What is its rota-
tional speed 	 about the axis when it is inverted?

S O L U T I O N ■ Three Ke y  I d e a s are required here:

1. We can relate the sculpture’s speed 	 to its rotational kinetic
energy K with Eq. 11-24 .

2. We can relate K to the gravitational potential energy U grav of
the sculpture via the conservation of the sculpture’s mechani-
cal energy E mec during the rotation. Thus, during the rotation,
E mec does not change (�E mec � 0) as energy is transferred
from U grav to K.

3. For the gravitational potential energy we can treat the rigid
sculpture as a particle located at the center of mass, with the
total mass 2m concentrated there.

We can write the conservation of mechanical energy (�E mec � 0) as

�K � �U grav � 0. (11-46)

(K � 1
2I	2)

I � I hoop � I rod � 1
2 mR2 � 4.33mR2

I rod � I com � mhcom
2 �

mL2

12
� m�R �

L
2 

2

As the sculpture rotates from its initial position at rest to its in-
verted position, when the rotational speed is 	, the change ΔK in its
kinetic energy is

(11-47)

From Eq. 10-6 (�U grav � mg�y), the corresponding change
ΔU grav in the gravitational potential energy is

(11-48)

where 2m is the sculpture’s total mass, and �ycom is the vertical dis-
placement of its center of mass during the rotation.

To find Δycom, we first find the initial location ycom of the center
of mass in Fig. 11-22. The hoop (with mass m) is centered at y � 0.
The rod (with mass m) is centered at y � R � L/2. Thus, from
Eq. 8-11, the sculpture’s center of mass is at

When the sculpture is inverted, the center of mass is this same dis-
tance R from the rotation axis but below it. Therefore, the vertical
displacement of the center of mass from the initial position to the
inverted position is �ycom � �2R.

Now let’s pull these results together. Substituting Eqs. 11-47
and 11-48 into 11-46 gives us

Substituting I � 4.83mR2 from (a) and �ycom � �2R from above
and solving for 	, we find

� 10 rad/s. (Answer)

	 � √ 8g
4.83 R

� √ (8)(9.8 m/s2)
(4.83)(0.15 m)

1
2 I	2 � (2m)g �ycom � 0.

ycom �
m(0) � m(R � L/2)

2m
�

0 � m(R � 2R/2)
2m

� R.

�U grav � (2m)g �ycom,

�K � K2 � K1 � 1
2I	2 � 0 � 1

2I	2.

Problems

SEC. 11-2 ■ THE ROTATIONAL VARIABLES

1. Flywheel The rotational position of a flywheel on a generator is
given by � � (a rad/s)t � (b rad/s3)t 3 � (c rad/s4)t 4, where a, b, and
c are constants. Write expressions for the wheel’s (a) rotational ve-
locity and (b) rotational acceleration.

2. Hands of a Clock What is the rotational speed of (a) the second
hand, (b) the minute hand, and (c) the hour hand of a smoothly
running analog watch? Answer in radians per second.

3. Milky Way Our Sun is 2.3  104 ly (light-years) from the center of
our Milky Way galaxy and is moving in a circle around the center at a
speed of 250 km/s. (a) How long does it take the Sun to make one rev-
olution about the galactic center? (b) How many revolutions has the
Sun completed since it was formed about 4.5  109 years ago?

4. Rotating Wheel The rotational position of a point on the rim of
a rotating wheel is given by � � (4.0 rad/s)t � (3.0 rad/s2)t 2 �
(1 rad/s3)t 3, where � is in radians and t is in seconds. What are the
rotational velocities at (a) t1 � 2.0 s and (b) t2 � 4.0 s? (c) What is
the average rotational acceleration for the time interval that begins
at t1 � 2.0 s and ends at t2 � 4.0 s? What are the instantaneous rota-
tional accelerations at (d) the beginning and (e) the end of this time
interval?

5. Rotational Position The rotational position of a point on a ro-
tating wheel is given by � � 2.0 rad � (4.0 rad/s2)t2 � (2.0 rad/s3)t 3,
where � is in radians and t is in seconds. At t1 � 0, what are (a) the
point’s rotational position and (b) its rotational velocity? (c) What
is its rotational velocity at t3 � 4.0 s? (d) Calculate its rotational ac-
celeration at t2 � 2.0 s. (e) Is its rotational acceleration constant?



6. The Wheel The wheel in Fig.11-23
has eight equally spaced spokes and a
radius of 30 cm. It is mounted on a
fixed axle and is spinning at 2.5
rev/s. You want to shoot a 20-cm-
long arrow parallel to this axle and
through the wheel without hitting
any of the spokes. Assume that the
arrow and the spokes are very thin.
(a) What minimum speed must the arrow have? (b) Does it matter
where between the axle and rim of the wheel you aim? If so, what is
the best location?

7. A Diver A diver makes 2.5 revolutions on the way from a 10-m-
high platform to the water. Assuming zero initial vertical velocity,
find the diver’s average rotational velocity during a dive.

SEC. 11-3 ■ ROTATION WITH CONSTANT

ROTATIONAL ACCELERATION

8. Automobile Engine The rotational speed of an automobile
engine is increased at a constant rate from 1200 rev/min to 3000
rev/min in 12 s. (a) What is its rotational acceleration in revolutions
per minute-squared? (b) How many revolutions does the engine
make during this 12 s interval?

9. Turntable A record turntable rotating at rev/min slows
down and stops in 30 s after the motor is turned off. (a) Find its
(constant) rotational acceleration in revolutions per minute-
squared. (b) How many revolutions does it make in this time?

10. A Disk A disk, initially rotating at 120 rad/s, is slowed down
with a constant rotational acceleration of magnitude 4.0 rad/s2. (a)
How much time does the disk take to stop? (b) Through what angle
does the disk rotate during that time?

11. Heavy Flywheel A heavy flywheel rotating on its central axis is
slowing down because of friction in its bearings. At the end of the
first minute of slowing, its rotational speed is 0.90 of its initial rota-
tional speed of 250 rev/min. Assuming a constant rotational acceler-
ation, find its rotational speed at the end of the second minute.

12. A Disk Rotates Starting from rest, a disk rotates about its cen-
tral axis with constant rotational acceleration. In 5.0 s, it rotates
25 rad. During that time, what are the magnitudes of (a) the rota-
tional acceleration and (b) the average rotational velocity? (c) What
is the instantaneous rotational velocity of the disk at the end of the
5.0 s? (d) With the rotational acceleration unchanged, through what
additional angle will the disk turn during the next 5.0 s?

13. Constant Rotational Acceleration A wheel has a constant rota-
tional acceleration of 3.0 rad/s2. During a certain 4.0 s interval, it
turns through an angle of 120 rad. Assuming that the wheel starts
from rest, how long is it in motion at the start of this 4.0 s interval?

14. Starting from Rest A wheel, starting from rest, rotates with a
constant rotational acceleration of 2.00 rad/s2. During a certain 3.00 s
interval, it turns through 90.0 rad. (a) How long is the wheel turning
before the start of the 3.00 s interval? (b) What is the rotational ve-
locity of the wheel at the start of the 3.00 s interval?

15. A Flywheel Has a Rotational Velocity At t1 � 0, a flywheel has
a rotational velocity of 4.7 rad/s, a rotational acceleration of �0.25
rad/s2, and a reference line at �1 � 0. (a) Through what maximum
angle � max will the reference line turn in the positive direction? For
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what length of time will the reference line turn in the positive direc-
tion? At what times will the reference line be at (b) � � � max and
(c) � � �10.5 rad (consider both positive and negative values of t)?
(d) Graph � versus t, and indicate the answers to (a), (b), and (c) on
the graph.

16. A Disk Rotates A disk rotates about its central axis starting
from rest and accelerates with constant rotational acceleration. At
one time it is rotating at 10 rev/s; 60 revolutions later, its rotational
speed is 15 rev/s. Calculate (a) the rotational acceleration, (b) the
time required to complete the 60 revolutions, (c) the time required
to reach the 10 rev/s rotational speed, and (d) the number of
revolutions from rest until the time the disk reaches the 10 rev/s
rotational speed.

17. A Flywheel Turns A flywheel turns through 40 rev as it slows
from an rotational speed of 1.5 rad/s to a stop. (a) Assuming a con-
stant rotational acceleration, find the time for it to come to rest. (b)
What is its rotational acceleration? (c) How much time is required
for it to complete the first 20 of the 40 revolutions?

18. A Wheel Rotating A wheel rotating about a fixed axis through
its center has a constant rotational acceleration of 4.0 rad/s2. In a
certain 4.0 s interval the wheel turns through an angle of 80 rad. (a)
What is the rotational velocity of the wheel at the start of the 4.0 s
interval? (b) Assuming that the wheel starts from rest, how long is
it in motion at the start of the 4.0 s interval?

SEC. 11-4 ■ RELATING THE TRANSLATIONAL

AND ROTATIONAL VARIABLES

19. Record What is the translational acceleration of a point on the
rim of a 30-cm-diameter record rotating at a constant rotational
speed of rev/min?

20. Vinyl Record A vinyl record on a turntable rotates at 
rev/min. (a) What is its rotational speed in radians per second? What
is the translational speed of a point on the record at the needle
when the needle is (b) 15 cm and (c) 7.4 cm from the turntable axis?

21. Rotational Speed of Car What is the rotational speed of car
traveling at 50 km/h and rounding a circular turn of radius 110 m?

22. Flywheel Rotating A flywheel with a diameter of 1.20 m has a
rotational speed of 200 rev/min. (a) What is the rotational speed of
the flywheel in radians per second? (b) What is the translational
speed of a point on the rim of the flywheel? (c) What constant rota-
tional acceleration (in revolutions per minute-squared) will in-
crease the wheel’s rotational speed to 1000 rev/min in 60 s? (d)
How many revolutions does the wheel make during that 60 s?

23. Astronaut in Centrifuge An astronaut is being tested in a cen-
trifuge. The centrifuge has a radius of 10 m and, in starting, rotates
according to , where t is in seconds and � is in
radians. When t � 5.0 s, what are the magnitudes of the astronaut’s
(a) rotational velocity, (b) translational velocity, (c) tangential ac-
celeration, and (d) radial acceleration?

24. Spaceship What are the magnitudes of (a) the rotational veloc-
ity, (b) the radial acceleration, and (c) the tangential acceleration of
a spaceship taking a circular turn of radius 3220 km at a speed of
29 000 km/h?

25. Speed of Light An early method of measuring the speed of
light makes use of a rotating slotted wheel. A beam of light passes

� � (0.30 rad/s2)t2
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FIGURE 11-23 ■ Problem 6.



through a slot at the outside edge of the wheel, as in Fig. 11-24, trav-
els to a distant mirror, and returns to the wheel just in time to pass
through the next slot in the wheel. One such slotted wheel has a ra-
dius of 5.0 cm and 500 slots at its edge. Measurements taken when
the mirror is L � 500 m from the wheel indicate a speed of light of
3.0  105 km/s. (a) What is the (constant) rotational speed of the
wheel? (b) What is the translational speed of a point on the edge of
the wheel?

FIGURE 11-24 ■ Problem 25.

26. Steam Engine The flywheel of a steam engine runs with a
constant rotational velocity of 150 rev/min. When steam is shut
off, the friction of the bearings and of the air stops the wheel in
2.2 h. (a) What is the constant rotational acceleration, in revolu-
tions per minute-squared, of the wheel during the slowdown? (b)
How many rotations does the wheel make during the slowdown?
(c) At the instant the flywheel is turning at 75 rev/min, what is the
tangential component of the translational acceleration of a fly-
wheel particle that is 50 cm from the axis of rotation? (d) What is
the magnitude of the net translational acceleration of the particle
in (c)?

27. Polar Axis of Earth (a) What is the rotational speed 	 about
the polar axis of a point on Earth’s surface at a latitude of 40� N?
(Earth rotates about that axis.) (b) What is the translational speed v
of the point? What are (c) 	 and (d) v for a point at the equator?

28. Gyroscope A gyroscope flywheel of radius 2.83 cm is acceler-
ated from rest at 14.2 rad/s2 until its rotational speed is 
2760 rev/min. (a) What is the tangential acceleration of a point on
the rim of the flywheel during this spin-up process? (b) What is the
radial acceleration of this point when the flywheel is spinning at full
speed? (c) Through what distance does a point on the rim move
during the spin-up?

29. Coupled Wheels In Fig. 11-25,
wheel A of radius rA � 10 cm is
coupled by belt B to wheel C of ra-
dius rC � 25 cm. The rotational
speed of wheel A is increased from
rest at a constant rate of 1.6 rad/s2.
Find the time for wheel C to reach
a rotational speed of 100 rev/min,
assuming the belt does not slip. (Hint: If the belt does not slip, the
translational speeds at the rims of the two wheels must be equal.)
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30. Fixed Axis An object rotates about a fixed axis, and the rota-
tional position of a reference line on the object is given by � �
(0.40 rad) . Consider a point on the object that is 4.0 cm from
the axis of rotation. At t � 0, what are the magnitudes of the point’s
(a) tangential component of acceleration and (b) radial component
of acceleration?

31. Pulsar A pulsar is a
rapidly rotating neutron star
that emits a radio beam like a
lighthouse emits a light beam.
We receive a radio pulse for
each rotation of the star. The
period T of rotation is found
by measuring the time be-
tween pulses. The pulsar in
the Crab nebula (Fig. 11-26)
has a period of rotation of
T � 0.033 s that is increasing
at the rate of 1.26  10�5 s/y.
(a) What is the pulsar’s rota-
tional acceleration? (b) If its
rotational acceleration is con-
stant, how many years from
now will the pulsar stop
rotating? (c) The pulsar origi-
nated in a supernova explo-
sion seen in the year 1054.
What was the intial T of the
pulsar? (Assume constant ro-
tational acceleration since the
pulsar originated.)

32. Turntable Two A record turntable is rotating at rev/min. A
watermelon seed is on the turntable 6.0 cm from the axis of rota-
tion. (a) Calculate the translational acceleration of the seed, assum-
ing that it does not slip. (b) What is the minimum value of the coef-
ficient of static friction, �stat, between the seed and the turntable if
the seed is not to slip? (c) Suppose that the turntable achieves its
rotational speed by starting from rest and undergoing a constant
rotational acceleration for 0.25 s. Calculate the minimum �stat re-
quired for the seed not to slip during the acceleration period.

SEC. 11-5 ■ KINETIC ENERGY OF ROTATION

33. Rotational Inertia of Wheel Calculate the rotational inertia of
a wheel that has a kinetic energy of 24 400 J when rotating at 
602 rev/min.

34. Oxygen Molecule The oxygen molecule O2 has a mass of 5.30 
10�26 kg and a rotational inertia of 1.94  10�46 kg � m2 about an axis
through the center of the line joining the atoms and perpendicular to
that line. Suppose the center of mass of an O2 molecule in a gas has a
translational speed of 500 m/s and the molecule has a rotational 
kinetic energy that is of the translational kinetic energy of its center
of mass. What then is the molecule’s rotational speed about the cen-
ter of mass?

SEC. 11-6 ■ CALCULATING ROTATIONAL INERTIA

35. Two Solid Cylinders Two uniform solid cylinders, each rotating
about its central (longitudinal) axis, have the same mass of 1.25 kg
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FIGURE 11-26 ■ Problem
31. The Crab nebula resulted from
a star whose explosion was seen in
1054. In addition to the gaseous
debris seen here, the explosion left
a spinning neutron star at its center.
The star has a diameter of only 
30 km.



and rotate with the same rotational speed of 235 rad/s, but they
differ in radius. What is the rotational kinetic energy of (a) the
smaller cylinder, of radius 0.25 m, and (b) the larger cylinder, of ra-
dius 0.75 m?

36. Communications Satellite A
communications satellite is a solid
cylinder with mass 1210 kg, diameter
1.21 m, and length 1.75 m. Prior to
launching from the shuttle cargo
bay, it is set spinning at 1.52 rev/s
about the cylinder axis (Fig. 11-27).
Calculate the satellite’s (a) rota-
tional inertia about the rotation axis
and (b) rotational kinetic energy.

37. Two Particles In Fig. 11-28, two
particles, each with mass m, are fas-
tened to each other, and to a rota-
tion axis at O, by two thin rods, each
with length d and mass M. The com-
bination rotates around the rotation
axis with rotational velocity 	. In
terms of these symbols, and mea-
sured about O, what are the combi-
nation’s (a) rotational inertia and
(b) kinetic energy?

38. Helicopter Blades Each of the
three helicopter rotor blades shown
in Fig. 11-29 is 5.20 m long and has a
mass of 240 kg. The rotor is rotating
at 350 rev/min. (a) What is the rota-
tional inertia of the rotor assembly
about the axis of rotation? (Each
blade can be considered to be a thin
rod rotated about one end.) (b)
What is the total kinetic energy of
rotation?

39. Meter Stick Calculate the rotational inertia of a meter stick,
with mass 0.56 kg, about an axis perpendicular to the stick and lo-
cated at the 20 cm mark. (Treat the stick as a thin rod.)

40. Four Identical Particles Four identical particles of mass 0.50 kg
each are placed at the vertices of a 2.0 m  2.0 m square and held
there by four massless rods, which form the sides of the square.
What is the rotational inertia of this rigid body about an axis that
(a) passes through the midpoints of opposite sides and lies in the
plane of the square, (b) passes through the midpoint of one of the
sides and is perpendicular to the plane of the square, and (c) lies in
the plane of the square and passes through two diagonally opposite
particles?

41. Uniform Solid Block The uni-
form solid block in Fig. 11-30 has
mass M and edge lengths a, b, and c.
Calculate its rotational inertia about
an axis through one corner and per-
pendicular to the large faces.

42. Masses and Coordinates The
masses and coordinates of four par-
ticles are as follows: 50 g, x � 2.0 cm,
y � 2.0 cm; 25 g, x � 0, y � 4.0 cm;

25 g, x � �3.0 cm, y � �3.0 cm; 30 g, x � �2.0 cm, y � 4.0 cm.
What are the rotational inertias of this collection about the (a) x,
(b) y, and (c) z axes? (d) Suppose the answers to (a) and (b) are A
and B, respectively. Then what is the answer to (c) in terms of A
and B?

43. Solid Cylinder—Thin Hoop (a) Show that the rotational iner-
tia of a solid cylinder of mass M and radius R about its central axis
is equal to the rotational inertia of a thin hoop of mass M and ra-
dius about its central axis. (b) Show that the rotational inertia
I of any given body of mass M about any given axis is equal to the
rotational inertia of an equivalent hoop about that axis, if the hoop
has the same mass M and a radius k given by

The radius k of the equivalent hoop is called the radius of gyration
of the given body.

44. Delivery Trucks Delivery trucks that operate by making use of
energy stored in a rotating flywheel have been used in Europe. The
trucks are charged by using an electric motor to get the flywheel up
to its top speed of 200� rad/s. One such flywheel is a solid, uniform
cylinder with a mass of 500 kg and a radius of 1.0 m. (a) What is the
kinetic energy of the flywheel after charging? (b) If the truck oper-
ates with an average power requirement of 8.0 kW, for how many
minutes can it operate between chargings?

SEC. 11-7 ■ TORQUE

45. Small Ball A small ball of mass 0.75 kg is attached to one end
of a 1.25-m-long massless rod, and the other end of the rod is hung
from a pivot. When the resulting pendulum is 30� from the vertical,
what is the magnitude of the torque about the pivot?

46. Bicycle Pedal Arm The length of a bicycle pedal arm is 
0.152 m, and a downward force of 111 N is applied to the pedal by
the rider’s foot. What is the magnitude of the torque about the
pedal arm’s pivot point when the arm makes an angle of (a) 30°,
(b) 90°, and (c) 180� with the vertical?

47. Pivoted at O The body in Fig.
11-31 is pivoted at O, and two
forces act on it as shown. (a) Find
an expression for the net torque on
the body about the pivot. (b) If rA

� 1.30 m, rB � 2.15 m, FA � 4.20
N, FB � 4.90 N, �A � 75.0°, and �B

� 60.0°, what is the net torque
about the pivot?

48. Three Force The body
in Fig. 11-32 is pivoted at O.
Three forces act on it in the
directions shown: FA � 10
N at point A, 8.0 m from O;
FB � 16 N at point B, 4.0 m
from O; and FC � 19 N at
point C, 3.0 m from O.
What is the net torque
about O?

k � √ I
M

.

R/√2
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SEC. 11-8 ■ NEWTON’S SECOND LAW FOR ROTATION

49. Diver’s Launch During the launch from a board, a diver’s rota-
tional speed about her center of mass changes from zero to 
6.20 rad/s in 220 ms. Her rotational inertia about her center of mass
is 12.0 kg � m2. During the launch, what are the magnitudes of 
(a) her average rotational acceleration and (b) the average external
torque on her from the board?

50. Torque on a Certain Wheel A torque of 32.0 N � m on a cer-
tain wheel causes a rotational acceleration of 25.0 rad/s2. What is
the wheel’s rotational inertia?

51. Thin Spherical Shell A thin spherical shell has a radius of 
1.90 m. An applied torque of 960 N � m gives the shell a rotational
acceleration of 6.20 rad/s2 about an axis through the center of the
shell. What are (a) the rotational inertia of the shell about that axis
and (b) the mass of the shell?

52. Cylinder Having Mass In Fig. 11-33, a cylinder having a mass of
2.0 kg can rotate about its central axis through point O. Forces are ap-
plied as shown: FA � 6.0 N, FB � 4.0 N, FC � 2.0 N, and FD � 5.0 N.
Also, R1 � 5.0 cm and R2 � 12 cm. Find the magnitude and direction
of the rotational acceleration of the cylinder. (During the rotation, the
forces maintain their same angles relative to the cylinder.)

FIGURE 11-33 ■ Problem 52.

53. Lawrence Livermore
Door Figure 11-34 shows
the massive shield door at
a neutron test facility at
Lawrence Livermore Lab-
oratory; this is the world’s
heaviest hinged door. The
door has a mass of 44,000
kg, a rotational inertia
about a vertical axis
through its huge hinges of
8.7  104 kg � m2, and a
(front) face width of 2.4 m.
Neglecting friction, what
steady force, applied at its outer edge and perpendicular to the plane
of the door can move it from rest through an angle of 90� in 30 s?

54. Wheel on a Frictionless Axis A wheel of radius 0.20 m is
mounted on a frictionless horizontal axis. The rotational inertia of
the wheel about the axis is 0.050 kg � m2. A massless cord wrapped
around the wheel is attached to a 2.0 kg block that slides on a hori-
zontal frictionless surface. If a horizontal force of magnitude P �
3.0 N is applied to the block as shown in Fig. 11-35, what is the mag-

Problems 327

nitude of the rotational acceleration
of the wheel? Assume that the string
does not slip on the wheel.

55. Two Blocks on a Pulley In Fig.
11-36, one block has mass M � 500
g, the other has mass m � 460 g, and
the pulley, which is mounted in hori-
zontal frictionless bearings, has a ra-
dius of 5.00 cm. When released from
rest, the heavier block falls 75.0 cm
in 5.00 s (without the cord slipping
on the pulley). (a) What is the mag-
nitude of the blocks’ acceleration?
What is the tension in the part of
the cord that supports (b) the heav-
ier block and (c) the lighter block?
(d) What is the magnitude of the
pulley’s rotational acceleration? (e)
What is its rotational inertia?

56. A Pulley A pulley, with a rota-
tional inertia of 1.0  10�3 kg � m2

about its axle and a radius of 10 cm, is acted on by a force applied
tangentially at its rim. The force magnitude varies in time as F �
(0.50 N/s)t � (0.30 N/s2)t2, with F in newtons and t in seconds. The
pulley is initially at rest. At t � 3.0 s what are (a) its rotational accel-
eration and (b) its rotational speed?

57. Two Blocks on a Rod Figure
11-37 shows two blocks, each of
mass m, suspended from the ends of
a rigid massless rod of length L1 �
L2, with L1 � 20 cm and L2 � 80
cm. The rod is held horizontally on
the fulcrum and then released. What
are the magnitudes of the initial ac-
celerations of (a) the block closer to
the fulcrum and (b) the other block?

SEC. 11-9 ■ WORK AND ROTATIONAL KINETIC ENERGY

58. Speed of the Block (a) If R � 12 cm, M � 400 g, and m � 50 g
in Fig. 11-20, find the speed of the block after it has descended
50 cm starting from rest. Solve the problem using energy conserva-
tion principles. (b) Repeat (a) with R � 5.0 cm.

59. Crankshaft An automobile crankshaft transfers energy from
the engine to the axle at the rate of 100 hp (�74.6 kW) when
rotating at a speed of 1800 rev/min. What torque (in newton-
meters) does the crankshaft deliver?

60. Thin Hoop A 32.0 kg wheel, essentially a thin hoop with radius
1.20 m, is rotating at 280 rev/min. It must be brought to a stop in
15.0 s. (a) How much work must be done to stop it? (b) What is the
required average power?

61. Thin Rod of Length L A thin rod of length L and mass m is
suspended freely from one end. It is pulled to one side and then al-
lowed to swing like a pendulum, passing through its lowest position
with rotational speed 	. In terms of these symbols and g, and ne-
glecting friction and air resistance, find (a) the rod’s kinetic energy
at its lowest position and (b) how far above that position the center
of mass rises.
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62. Accelerating the Earth Calculate (a) the torque, (b) the en-
ergy, and (c) the average power required to accelerate Earth in 1
day from rest to its present rotational speed about its axis.

63. Meter Stick Held Vertically A meter stick is held vertically
with one end on the floor and is then allowed to fall. Find the speed
of the other end when it hits the floor, assuming that the end on the
floor does not slip. (Hint: Consider the stick to be a thin rod and use
the conservation of energy principle.)

64. Cylinder Rotates about Horizontal A uniform cylinder of ra-
dius 10 cm and mass 20 kg is mounted so as to rotate freely about a
horizontal axis that is parallel to and 5.0 cm from the central longi-
tudinal axis of the cylinder. (a) What is the rotational inertia of the
cylinder about the axis of rotation? (b) If the cylinder is released
from rest with its central longitudinal axis at the same height as the
axis about which the cylinder rotates, what is the rotational speed of
the cylinder as it passes through its lowest position?

65. The Letter H A rigid body is
made of three identical thin rods,
each with length L, fastened to-
gether in the form of a letter H
(Fig. 11-38). The body is free to ro-
tate about a horizontal axis that
runs along the length of one of the
legs of the H. The body is allowed
to fall from rest from a position in which the plane of the H is hori-
zontal. What is the rotational speed of the body when the plane of
the H is vertical?

66. Uniform Spherical Shell A uniform spherical shell of mass M
and radius R rotates about a vertical axis on frictionless bearings
(Fig. 11-39). A massless cord passes around the equator of the shell,
over a pulley of rotational inertia I and radius r, and is attached to a
small object of mass m. There is no friction on the pulley’s axle; the
cord does not slip on the pulley. What is the speed of the object af-
ter it falls a distance h from rest? Use energy considerations.

FIGURE 11-39 ■ Problem 66.

67. Tall Cylinder-Shaped Chimney A tall, cylinder-shaped chimney
falls over when its base is ruptured. Treat the chimney as a thin rod
of length H, and let � be the angle the chimney makes with the ver-
tical. In terms of these symbols and g, express the following: (a) the
rotational speed of the chimney, (b) the radial acceleration of the
chimney’s top, and (c) the tangential acceleration of the top. (Hint:
Use energy considerations, not a torque. In part (c) recall that 

 � d	/dt.) (d) At what angle � does the tangential acceleration
equal g?
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FIGURE 11-38 ■ Problem 65.

68. Judo In a judo foot-sweep move,
you sweep your opponent’s left foot
out from under him while pulling on
his gi (uniform) toward that side. As
a result, your opponent rotates
around his right foot and onto the
mat. Figure 11-40 shows a simplified
diagram of your opponent as you
face him, with his left foot swept out.
The rotational axis is through point
O. The gravitational force on
him effectively acts at his center of
mass, which is a horizontal distance
of d � 28 cm from point O. His mass
is 70 kg, and his rotational inertia
about point O is 65 kg � m2. What is
the magnitude of his initial rotational
acceleration about point O if your pull on his gi is (a) negligi-
ble and (b) horizontal with a magnitude of 300 N and applied at
height h � 1.4 m?

69. Disk Rod Figure 11-41 shows an arrangement of 15 identical
disks that have been glued together in a rod-like shape of length L
and (total) mass M. The arrangement can rotate about a perpendic-
ular axis through its central disk at point O. (a) What is the rota-
tional inertia of the arrangement about that axis? (b) If we approxi-
mated the arrangement as being a uniform rod of mass M and

F
: app

F
: grav

length L, what percentage error would we make in using the for-
mula in Table 11-2e to calculate the rotational inertia?

FIGURE 11-41 ■ Problem 69.

70. Summing Up to
Estimate Rotational
Inertia. By perform-
ing an integration it
can be shown that the
general equation for
the rotational inertia
of a thin rod of length
L and mass M about
an axis through one
end of the rod that is
perpendicular to its
length is given by 

.

Consider a rod of length L � 0.50 m that has a mass of M � 1.2 kg
rotating as shown in Fig. 11-42.

(a) Calculate the theoretical value of the rotational inertia.
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3 ML2
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com

F grav

F app

h

FIGURE 11-40 ■

Problem 68.

L

O

Rod of mass
M

z (axis of rotation)

y  axis

x  axis

L

FIGURE 11-42 ■ Problem 70.



(b) Estimate the rotational inertia of the rod by breaking it into
50 small point masses each having a mass of M/50, with the first
point mass being 0.01 m from the axis of rotation, the second mass
being 0.02 m from the axis of rotation, and so on. Use a spreadsheet
to do your estimated calculations of the rotational inertia of the rod.
(c) Compare the theoretically calculated value with the estimated
value. Are they similar?

71. Calculation of Torque (Angle Method) Before the finger holes
are drilled, a uniform bowling ball of radius 0.120 m has a net gravi-
tational force of 65 N exerted on it by the Earth. Assume that
this force acts through the center of mass of the bowling ball. De-
termine the magnitude and direction of this net force and the
resulting torques on the bowling ball about four axes that are
perpendicular to the plane of the paper passing through points A,
B, C, and D as shown in Fig. 11-43. Hint: You can use the 

form of the torque equation.

FIGURE 11-43 ■ Problem 71.

72. Simple Yo-Yo Consider a “yo-yo” consisting of a disk fixed to
an axle that has two strings wrapped around it. As the axle rolls off
the strings, the disk and the axle fall as shown in Fig. 11-44.

(a) If the disk has fallen through a vertical distance of d � 30 cm
and the radius of the string and axle is given by r � 50 mm, how
many revolutions has the disk gone through?
(b) If the disk is rotating faster and faster with a constant rota-
tional acceleration and takes 25 s to fall through the distance d
from rest, what is the magnitude of its rotational acceleration 
?
(c) What is the magnitude of its rotational velocity 	 after the
25 seconds have elapsed? Hint: Use the rotational kinematic
equations.

� �: � � � r:�� F
:

� sin�
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73. Buying Wire Wire is often
delivered wrapped on a large
cylindrical spool. Suppose such a
spool is supported by resting on
a horizontal metal rod pushed
through a hole that runs through
the center of the spool. A worker
is pulling some wire off the spool
by exerting a force on it as shown in Fig. 11-45. (If you have ever
bought wire in a hardware store, this is the way they usually store
and dispense it.)

Suppose the spool rotates on the rod essentially without fric-
tion. The spool is approximately a uniform cylinder with a mass of
50 kg and a radius of 30 cm. The worker pulls on the wire for 2 s
with a force of 30 N. At the end of the 2 s he immediately clamps on
a brake that very quickly stops the spool’s rotation. Just before he
puts the brake on, how fast is the spool rotating? How much wire
does he pull off the spool?

74. Fly on an LP An old-fashioned record player spins a disk at
approximately a constant angular velocity, 	. A fly of mass m is sit-
ting on the disk as it turns, at a point a distance R from the center.

(a) What force keeps the fly from sliding off the rotating disk?
What direction does the force point? How big is it? For the last
question, express your answer in terms of the symbols given in the
description above.

(b) If the fly has a mass of 0.5 grams, is sitting 10 cm from the cen-
ter of the disk, and the disk is turning at a rate of 33 rev/min, what
is the coefficient of friction?

75. Rotational Inertia and Rotational Acceleration A small spool
of radius rs and a large Lucite disk of radius rd are connected by an
axle that is free to rotate in an almost frictionless manner inside of a
bearing as shown in Fig. 11-46. A string is wrapped around the spool
and a mass, m, which is attached to the string, is allowed to fall.

FIGURE 11-46 ■ Problem 75.

(a) Draw a free-body diagram showing the forces on the falling
mass, m, in terms of m, g, and .
(b) If the magnitude of the translational acceleration of the mass is
measured to be a, what is the equation that should be used to calcu-
late, in the string? In other words what equation relates m,
g, and a? Note: In a system where  � mg � ma, if
a�� g then � mg.
(c) What is the magnitude of torque, �, on the spool–axle–disk sys-
tem as a result of the tension in the string, , acting on the
spool?
(d) What is the magnitude of the rotational acceleration, 
, of the
rotating system as a function of the translational acceleration, a, of
the falling mass, and the radius, rs, of the spool?
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FIGURE 11-44 ■ Problem 72.
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(e) The rotational inertias of the axle and the spool are so small
compared to the rotational inertia of the disk the they can be ne-
glected. If only the rotational inertia, Id, of the large disk of radius
rd is considered, what is the equation that can be used to predict the
value of Id as a function of the torque on the system, �, and the mag-
nitude of the rotational acceleration, 
, of the disk?
(f) What is the theoretical value of the rotational inertia, Id, of a
disk of mass M and radius rd in terms of Md and rd?

76. Round and Round Little Jay is
enjoying his first ride on a merry-go-
round. (He is riding a stationary
horse rather than one that goes up
and down.) A schematic view of the
merry-go-round as seen from above
is shown in Fig. 11-47a with a conve-
nient coordinate system. A bit after
the merry-go-round has started and
is going around uniformly, we start
our clock. Little Jay’s position and
velocity at time t1 � 0 are shown as a
dot and arrow. At t1 � 0 is the net force acting on Jay equal to zero?
If it is, write “Yes” and give a reason why you think so. If it isn’t,
write “No” and specify the type of force and the object responsible
for exerting it.

For the next six parts, specify which of the graphs shown in 
Fig. 11-47b could represent the indicated variable for Jay’s motion.
If none of the graphs work, write “N.”

FIGURE 11-47b ■ Problem 76.

(a) The x-component of Jay’s velocity
(b) The angle Jay’s position vector makes with the x axis
(c) The y-component of the force keeping Jay moving in a circle
(d) Jay’s rotational velocity
(e) Jay’s translational speed
(f) The x-component of Jay’s position

77. Comparing Rotational Inertias If all three of the objects shown
in Fig. 11-48 have the same radius and mass, which one has the most
rotational inertia about its indicated axis of rotation? Which one
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has the least rotational inertia? Explain the reasons for your an-
swer. Hint: Consider which one has its mass distributed farthest
from the axis of rotation.

FIGURE 11-48 ■ Problem 77.

78. Rotational Vs. Translational Energy of Motion

(a) Describe how a solid ball can move so that

i. Its total kinetic energy is just the energy of motion of its
center of mass

ii. Its total kinetic energy is the energy of its motion relative to
its center of mass 

(b) Two bowling balls are moving down a bowling alley so that
their centers of mass have the same velocity, but one just slides
down the alley, while the other rolls down the alley. Which ball has
more energy? Explain your reasoning.

79. Closing the Door A student is in
her dorm room, sitting on her bed do-
ing her physics homework. The door to
her room is open. Suddenly she hears
the voice of her ex-boyfriend down the
hall, talking to the girl in the room next
door. She wants to shut the door
quickly, so she throws a superball
(which she keeps next to her bed for
this purpose) against the door. The ball
follows the path shown in Fig. 11-49. It
hits the door squarely and bounces
straight back. Does the ball’s effective-
ness in closing the door depend on
where on the door the ball hits? If it does, where should it hit to be
most effective? Explain your reasoning.

80. Cleaning Up with Flywheels One proposal for reducing air
pollution is the flywheel-driven automobile. Instead of an engine,
the car contains a large steel disk, or flywheel, which is mounted to
rotate about a vertical axis. It is set spinning at a high rotational ve-
locity in the early morning using electric power (from plugging it
into the wall). If the car is to be about the same size as a typical car
today, estimate the amount of energy that could be stored in a ro-
tating steel flywheel that fits under the car’s hood. You may find
some of the following numbers useful:

• density of steel � 6 g/cm3

• mass of a typical car � 1000 kg
• maximum speed of flywheel � 1000 revolutions/minute
• fraction of carbon monoxide pollution produced by vehicles � 60%

81. Spinning with the Earth Because the earth is spinning about its
axis once a day, you are also spinning about the earth’s axis once a
day. Estimate the rotational kinetic energy you have as a result of
this motion.
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FIGURE 11-47a ■
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82. Keep the Dust Off Your Hard Drive! A current-generation
hard drive in a computer spins at a rate of 7000 rpm. The disk in the
drive is about the same size as a floppy disk. Estimate the coeffi-
cient of friction that would permit the frictional force to keep a
speck of dust sitting on the disk from sliding off. Assume that the
speck has a mass of 50 mg. Discuss the implications of your result.

83. Kinetic Energy of a Bicycle Wheel Estimate the rotational ki-
netic energy of a bicycle wheel as the bicycle it is a part of is being
ridden down the street.

84. Ferris Wheel Use a video analysis software program to analyze
the motion of a Ferris wheel. If you have access to the VideoPoint
movie collection, use the movie with filename HRSY001. This is a
movie of the Cyclops Ferris wheel at Hershey Park. A sample
frame is shown in Fig. 11-50.
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(a) What is the nature of the rotational speed of a Ferris wheel as a
function of time? Is it increasing, decreasing, or remaining con-
stant? Cite the evidence for your answer.
(b) At t � 0.1000 s, what is the translational speed of a point on the
inner circle?
(c) At t � 0.1000 s, what is the translational speed of a point on the
outer circle?

85. Falling Mass Turns Disk Use a video analysis software pro-
gram to analyze the motion of a disk that is attached to a spool. A
falling mass attached by a string to the spool causes the spool and
disk to undergo a rotational acceleration. If you have access to the
VideoPoint movie collection, use the movie with filename
DSON014 and analyze the first 12 frames.

(a) Is the acceleration of the disk constant? Explain what you did
and cite the evidence for your conclusions.
(b) Describe the nature of the rotational acceleration. Does it in-
crease, decrease, or stay the same? If you concluded that the rota-
tional acceleration is constant, then determine what its value is in
rad/s2. Explain how you arrived at your conclusions. Show relevant
data and graphs.
(c) What is the equation that describes the angle through which the
disk has moved as a function of time? Explain how you determined
this equation.
(d) What is the equation that describes the rotational velocity
of the disk as a function of time? Explain how you derived this
equation.

inner
circle

outer
circle

FIGURE 11-50 ■ Problem 84.
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In 1897, a European “aerialist”

made the first triple somersault

during the flight from a

swinging trapeze to the hands

of a partner. For the next

85 years aerialists attempted to

complete a quadruple

somersault, but not until

1982 was it done before an

audience. Miguel Vazquez of

the Ringling Bros. and Barnum

& Bailey Circus rotated his

body in four complete circles

in midair before his brother

Juan caught him. Both were

stunned by their success.

Why was the feat so
difficult, and what
feature of physics
made it (finally)
possible?

The answer is in this
chapter.

Image courtesy Ringling Brothers and Barnum & Bailey® THE GREATEST SHOW ON EARTH
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12-1 About Complex Rotations

This chapter presents an extension of the concepts in rotational motion that we began
discussing in the last chapter. In Chapter 11, we studied the relationships between
translational and rotational quantities like position and angle, translational velocity
and rotational velocity, translational acceleration and rotational acceleration, and force
and torque. We limited our discussion to the rotation of rigid bodies with a constant ro-
tational inertia I (constant mass distribution) about a fixed axis. Furthermore, because
the rotation took place about a fixed axis, we were able to treat rotational quantities as
one-dimensional components along the axis of rotation. In this chapter, we extend our
study to more complex motion in which either the axis of rotation does not stay fixed
in space, or the rotational inertia of the rotating body changes over time.

There are several distinct types of complex motion of interest to scientists and en-
gineers that we will consider:

1. Rotations about an axis of rotation that moves but does not change direction.
This type of motion is a combination of rotational motion and translational mo-
tion. Examples include the motion of yo-yos, wheels, and bowling balls (Fig. 12-1).

2. Rotations about an axis of rotation which changes direction. The axes of rotation
for Frisbees and boomerangs change direction as a result of interactions both
with air molecules and the Earth’s gravity. The axis of a spinning top changes di-
rection as it loses energy. A simple example of this type of motion is someone flip-
ping the axis of a spinning wheel (Fig. 12-2).

3. Rotating objects that have fixed axes of rotation but undergo changes in rota-
tional inertia while spinning. For example, skaters who pull in their arms are re-
ducing their rotational inertia (Fig. 12-3). Stellar matter does the same thing when
collapsing into a neutron star.

We start our study of complex rotations by considering the kinetic energy associ-
ated with combined translational and rotational motions. We will then apply Newton’s
Second Law in both a translational form and a rotational form to the motion of a yo-
yo traveling up and down a string. This will provide us with a model of how one might
find an expression for the translational acceleration in a complex motion. Before
moving on to the task of analyzing motions involving changes in axis direction and ro-
tational inertia, we will develop the mathematical tools we will require in order to
treat torque and other rotational quantities as three-dimensional vectors.

FIGURE 12-1 ■ A time exposure photo-
graph of a rolling disk. Small lights have
been attached to the disk, one at its center
and one at its edge. The latter traces out a
curve called a cycloid.

FIGURE 12-2 ■ A student applies a torque
to the axis of a rotating bicycle wheel in or-
der to change the direction of the wheel’s
axis of rotation. (Photo courtesy of
PASCO scientific.)

FIGURE 12-3 ■ A student reduces his rotational inertia while rotating by pulling in his arms.
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Finally, because the law of conservation of translational momentum in cases of
zero net force is such a powerful analysis tool, we will explore the concept of rota-
tional momentum as a rotational corollary of translational momentum. We can then
recast Newton’s Second Law of rotation so it relates changes in rotational momen-
tum to the net applied torque, showing that rotational momentum is conserved when
the net torque acting on the system is zero. In the last sections of the chapter, we
bring all of this together, using Newton’s laws in their rotational form, the new con-
cept of conservation of rotational momentum, and the vector mathematics we devel-
oped to explain the complex motions of aerialists, divers, spacecraft navigation, and
neutron star rotation.

12-2 Combining Translations with Simple Rotations

We begin our discussion of complex rotations by considering motions that are combi-
nations of translation and rotation. For example, when a bicycle moves along a
straight track, the center of each wheel moves forward with a translational speed .
At any given instant if the wheel is rolling without slipping, the top point on the wheel
is moving forward at twice relative to the track, and the bottom point on the
wheel is not moving. However, every point on the wheel also rotates about the center
with rotational speed �. Hence, the rolling motion of a wheel is a combination of
purely translational and purely rotational motions.

A yo-yo is another example of this type of motion. As a yo-yo rolls down a string,
it undergoes rotational motion. However, it also undergoes translational motion as it
falls. One way to view such motion is as rotation about an axis that is moving (trans-
lating) downward. We will more carefully consider this type of motion by analyzing
the forces and torques at work in the case of the falling yo-yo. But first, let’s consider
energy issues involved in motions that combine rotation with translation.

Energy Considerations
If a yo-yo rolls down its string for a distance h, the yo-yo-Earth system loses potential
energy in the amount of mgh but gains kinetic energy in both translational 
and rotational forms. As the yo-yo climbs back up, the system loses kinetic
energy and regains potential energy.

An object that undergoes combined rotational and translation motion has two types of ki-
netic energy: a rotational kinetic energy due to its rotation about its center of mass
and a translational kinetic energy due to translation of its center of mass. The total
kinetic energy of the object is the sum of these two.

In a modern yo-yo, the string is not tied to the axle but is looped around it. When
the yo-yo “hits” the bottom of its string, an upward force on the axle from the string
stops the descent. The yo-yo then spins about its axle inside the loop and has only ro-
tational kinetic energy. The yo-yo keeps spinning (“sleeping”) until you “wake it” by
jerking on the string, causing the string to catch on the axle and the yo-yo to climb
back up. The rotational kinetic energy of the yo-yo at the bottom of its string (and
thus the sleeping time) can be considerably increased by throwing the yo-yo down-
ward so it starts down the string with initial speeds and � instead of rolling down
from rest.

The Forces of Rolling
The simultaneous application of Newton’s Second Law in both its translational and
rotational forms allows us to calculate the acceleration of an object in situations
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FIGURE 12-4 ■ (a) A yo-yo, shown in
cross section. The string, of negligible
thickness, is wound around an axle of ra-
dius R0. (b) A free-body diagram for the
falling yo-yo. Only the axle is shown.

where the motion combines rotation and translation. As an example of this technique,
let’s attempt to find an expression for the translational acceleration of a yo-yo
rolling down a string. We will use Newton’s Second Law, noting the following points:

1. The yo-yo rolls down a string that makes angle � � 90� with the horizontal.

2. The yo-yo rolls on an axle of radius R0 (Fig. 12-4a).

3. The yo-yo is slowed by the tension force, , exerted on it by the string (Fig. 12-4b).

The net force acting on the yo-yo is the vector sum of the gravitational force of
the Earth on the yo-yo and the tension in the string. This net force causes the yo-yo
to speed up or slow down. That is, the net force causes a translational acceleration

of the center of mass along the direction of travel. The net force also causes the
yo-yo to rotate faster or slower, which means it causes a rotational acceleration �
about the center of mass. From Chapter 11, we know that we can relate the magni-
tudes of the translational acceleration and the rotational acceleration � by

acom � �R0 (smooth rolling motion). (12-1)

If we want to find an expression for the yo-yo’s acceleration acom y down the string, we
can do this by using Newton’s Second Law in the component form of both its transla-
tional version ( = May) and its rotational version .

We start by drawing the forces on the body as shown in Fig. 12-4:

1. The gravitational force on the body is directed downward. It acts at the cen-
ter of mass of the yo-yo.

2. The tension in the string is directed upward. It acts at the point of contact outside
of the yo-yo’s central axis.

We can write Newton’s Second Law for components along the axis in Fig. 12-4
( = may) as

. (12-2)

Here M is the mass of the yo-yo. This equation contains two unknowns: the positive
tension force component and the component describing the vertical ac-
celeration of the center of mass ( ).

Now we can use Newton’s Second Law in rotational form to analyze the yo-yo’s
rotation about its center of mass (which coincides with its central axis). First, we shall
use (Eq. 11-31) to determine the magnitude of torque on the yo-yo about
that point. The perpendicular distance from the rotation axis to the tension force (or
moment arm) is R0. So, the magnitude of torque that causes the yo-yo to rotate is
given by . By the right-hand rule that we learned in Chapter 11, the
resulting rotational acceleration would be positive (out of the page). Since the rota-
tional acceleration is positive, we know the torque that produced the rotational accel-
eration is also positive.

The other force acting on the yo-yo, the gravitational force , acts at the cen-
ter of mass of the yo-yo. That is the center of the object itself, and so the gravitational
force has a zero moment arm (r� � 0) about the center of mass. Thus, the gravita-
tional force produces zero torque. So we can write the rotational version of Newton’s
Second Law in component form about an axis through the body’s center
of mass as 

. (12-3)

As was the case for the equation resulting from the application of Newton’s Second
Law in its translational form, this equation contains two unknowns, Ty and z.�
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However, there is a relationship between acom y and �. We can use that relation-
ship to tie together the rotational and translational expressions of
Newton’s Second Law. Thus, we substitute for z in the expression above
(Eq. 12-3) and solve for the magnitude of the tension force, , to obtain

. (12-4)

Substituting the right side of the equation above for Ty in the relationship we derived
based on the translational motion of the yo-yo,

, (12-5)

we then find

(12-6)

where Icom is the yo-yo’s rotational inertia about its center, R0 is its axle radius, and M
is its mass. A yo-yo has the same downward acceleration when it is climbing back up
the string, because the forces on it are still those shown in Fig. 12-4b.
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TOUCHSTONE EXAMPLE 12-1: Hoop, Disk, Sphere

Consider a hoop, a disk, and a sphere, each of mass M and radius R,
that roll smoothly along a horizontal table. For each, what fraction
of its kinetic energy is associated with the translation of its center of
mass?

S O L U T I O N ■ The Ke y  I d e a is that the kinetic energy of a
smoothly rolling body is the sum of its translational kinetic energy

and its rotational kinetic energy Therefore, the
fraction of the kinetic energy associated with translation is

(12-7)

We can greatly simplify the right side of Eq. 12-7 by substituting
for (Eq. 11-15) and realizing that the expressions for rota-

tional inertia in Table 11-2 are all of the form , where is a
numerical coefficient (the “front number”). Here is 1 for a hoop,
for a disk, and for a sphere. Thus, we can substitute for Icom

in Eq. 12-7.
After these substitutions and some cancellations, Eq. 12-7

becomes

. (12-8)

Now, substituting the values for the hoop, disk, and sphere, we
can generate Table 12-1 to show the fractional splits of translational
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and rotational kinetic energy. For example, 0.67 of the kinetic en-
ergy of the disk is associated with the translation.

The relative split between translational and rotational energy
depends on the relative size of the rotational inertia of the rolling
object. As Table 12-1 shows, the rolling object (the hoop) that has
its mass farthest from the central axis of rotation (and so has the
largest rotational inertia) has the largest share of its kinetic energy
in rotational motion. The object (the sphere) that has its mass clos-
est to the central axis of rotation (and so has the smallest rotational
inertia) has the smallest share in rotational motion.
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TA B L E 12 - 1
The Relative Splits between Rotational and Translational
Energy for Rolling Objects

Rotational Fraction of Energy in
Inertia

Object Icom Translation Rotation

Hoop 0.50 0.50

Disk 0.67 0.33

Sphere 0.71 0.29

Generala

a may be computed for any rolling object as .Icom�MR2





1 � 


1
1 � 



MR2

2
5 MR2

1
2 MR2

1MR2
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TOUCHSTONE EXAMPLE 12-2: Racing Down a Ramp

A uniform hoop, disk, and sphere, with the same mass M and same
radius R, are released simultaneously from rest at the top of a ramp
of length L � 2.5 m and angle � � 12� with the horizontal. The ob-
jects roll without slipping down the ramp. No appreciable energy is
lost to friction.

(a) Which object wins the race down to the bottom of the ramp?

S O L U T I O N ■ Two Ke y  I d e a s are these: First, the objects
begin with the same mechanical energy E mec, because they start
from rest and the same height. Second, E mec is conserved during
the race to the bottom, because the only force doing work on the
object-ramp-Earth system is the gravitational force. (The normal
force on them from the ramp and the frictional force at their
point of contact with the ramp do not cause energy transfers).
Further, at any given point along the ramp, the objects must have
the same kinetic energy K because the same amount of energy
has been transferred from gravitational potential energy to ki-
netic energy.

If the objects were sliding down the ramp, this means they would
have the same speed. However, another Ke y  I d e a is that they do
not have the same speed vcom because each object shares its kinetic
energy between its translational motion down the ramp and its rota-
tional motion around its center of mass. As we saw in Touchstone Ex-
ample 12-1 and Table 12-1, the sphere has the greatest fraction (0.71)
as translational energy, so it has the greatest vcom and wins the race.
Figure 12-5 shows the order of the objects during the race.

(b) What is vcom for each object at the bottom of the ramp?

S O L U T I O N ■ Again, the Ke y  I d e a here is that mechanical
energy is conserved. Let us choose the bottom of the ramp as our
reference height for zero gravitational potential energy, so at the
finish each object -ramp-Earth system has . The initial kinetic
energy for all three objects is . The initial potential energy is

). Now we can write the conservation of
mechanical energy as

or .

Substituting and solving for vcom give us

, (Answer) (12-9)

which is the symbolic answer to the question.
Note that the speed depends not on the mass or the radius of

the rolling object but only on the distribution of its mass about its
central axis, which enters through the term A marble and
a bowling ball will have the same speed at the bottom of the ramp
and will thus roll down the ramp in the same time. A bowling ball
will beat a disk of any mass or radius, and almost anything that rolls
will beat a hoop.

For the rolling hoop (see the hoop listing in Table 12-1) we
have so Eq. 12-9 yields

(Answer)

From a similar calculation, we obtain for the disk
and 2.7 m/s for the sphere (Icom�MR2 � 2

5).(Icom�MR2 � 1
2)

vcom � 2.6 m/s

� 2.3 m/s.

� √ (2)(9.8 m/s2)(2.5 m)(sin12�)
1 � 1

vcom � √ 2gL sin �

1 � Icom�MR2

Icom�MR2 � 1,

Icom�MR2.

vcom � √ 2gL sin �

1 � Icom�MR2

� � vcom�R

(1
2 Icom�2 � 1

2 Mv 2
com) � 0 � 0 � Mg(L sin�)

K2 � U2 � K1 � U1

E mec
2 � E mec

1

U1 � Mgh � Mg(L sin�
K1 � 0

U2 � 0

h

Hoop

Sphere
Disk

θ

L

FIGURE 12-5 ■ A hoop, a disk, and a sphere roll smoothly from
rest down the last segment of a very long ramp of angle �.

12-3 Rotational Variables as Vectors

In the previous chapter, we considered only rotations that are about a fixed axis. We
used the right-hand rule to determine whether the alignments for rotational displace-
ment and velocity, representing the direction of rotation, are positive or negative. By
assigning a standard coordinate system with the z axis along the axis of rotation, we
treated the variables and as components along the z axis. Since rotational accel-
eration is defined in terms of changes of rotational velocity over time, the variable 
could also be treated as a component along the axis of rotation. Thus, we developed a
useful foundation for treating rotational quantities as vectors.

How can we work with rotational variables mathematically in cases where the
axis of rotation is changing direction? For example, as a spinning top loses energy, its

�
���



axis of rotation begins turning (in technical terms, “precessing”) around a vertical axis
as shown in Fig. 12-6. In this example, and many others like it, it seems logical to ex-
plore the feasibility of expressing rotational variables as three-dimensional vectors. In
Fig. 12-6, we can then choose to define a right-hand coordinate system with the z axis
vertical. At any particular moment, the rotational displacement or velocity can be
thought of as a vector pointing along the axis of rotation of the top.

In such a system, the rotational displacement must be described as a three-
dimensional vector. Although we have not worked with three-dimensional vectors
very much, we did introduce the decomposition of vectors into rectangular compo-
nents in Section 4-4. In order to decompose a vector into components, we use unit
vectors , , and (discussed in Section 4-5) that point, respectively, in the positive
directions of the x, y, and z axes shown in Fig. 12-6.

This method of using unit vectors enables us to decompose a rotational variable
in terms of vector components in the familiar way. Using the rotational velocity vector
as an example, we get

. (12-10)

Do Rotational Displacements and Velocities 
Behave Like Vectors?
It is not easy to get used to the way in which rotational quantities are represented as
vectors. We instinctively expect that something should be moving along the direction of
a vector. That is not the case when we attempt to use vectors to describe rotations. In
the world of pure rotation, a vector defines an axis of rotation, not a direction in which
something moves. Instead, a single particle or the many particles that make up a rigid
body rotate around the direction of the vector. Nonetheless, a vector can be used to de-
scribe a rotational motion if it obeys the rules for vector manipulation discussed in
Chapters 2 and 4. In particular, we stated in Chapter 2 that a vector is a mathematical
entity that has both magnitude and direction, and that can be added, subtracted, multi-
plied, and transformed according to well-accepted mathematical rules. We have estab-
lished that rotational variables seem to have both magnitude and direction. But we
were vague about what the “well-accepted mathematical rules” for vector operations
really are. One of these rules, used when vector addition was defined in Chapter 4, re-
quires that the order of vector addition not matter, so that, for instance,

.

Now for a caution: It turns out that large rotational displacements cannot be treated as
vectors. Why not? We can certainly give them both magnitude and direction, as we did
for the rotational velocity vector in Fig. 12-6. However, to be represented as a vector,
a quantity must also obey the rules of vector addition. Rotational displacements fail
this test.

Figure 12-7 shows an example of how large rotational displacements can fail the
test. A book that is horizontal is given two 90° rotational displacements, first in the or-
der shown in Fig. 12-7a and then in the order shown in Fig. 12-7b. Although each of
the two rotational displacements are identical, the order in which they are applied is
not. The book ends up with different orientations. Thus, the addition of the two large
rotational displacements depends on their order and they cannot be vectors.

Fortunately, it can be shown mathematically that for small displacements, the order
of the rotations does not matter. Since instantaneous rotational velocity is defined as

(Eq. 11-6)�: � lim
�t : 0

��
:

�t
�

d�
:

dt
,

a: � b
:

� b
:

� a:

�: � �:x � �:y � �:z � �x î � �y ĵ � �z k̂

k̂ĵî
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FIGURE 12-6 ■ The rotational velocity of
a top rotating about an axis of symmetry
always points along its axis of rotation. In
the case where the rotational velocity
changes direction, it must be described as a
three-dimensional vector. Its components
at one moment in time are shown relative
to a right-handed coordinate system in
which the z axis points up in the vertical
direction.
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FIGURE 12-7 ■ (a) From its initial posi-
tion, at the top in the figure, the book is
given two successive 90° rotations, first
about the (horizontal) x axis and then
about the (vertical) y axis. (b) The book is
given the same rotations, but in the reverse
order.
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it is made up of infinitesimally small displacements. Thus, it appears that any series of
small rotational displacements, as well as instantaneous rotational velocities, behave
like vectors. Since rotational acceleration is constructed as a vector difference be-
tween rotational velocity vectors, it should behave like a vector also. Thus, we con-
clude that the basic rotational velocity and acceleration variables behave like vectors
so long as they are determined by using small rotational displacements .

Can Torque Be Described as a Vector?
Recall that torque is a kind of “turning force” that can cause rotational accelerations
about an axis. It was constructed mathematically for a very simple situation by com-
bining the force acting on a single particle and the distance between that force and
the particle’s rotational axis. To see whether it is feasible to define torque as a three-
dimensional vector, let’s revisit the simple situation presented in Chapter 11.

In Section 11-8, we considered a single force acting on a particle that is attached to
a “massless” rigid rod, which is, in turn, connected to a point (we’ll call that point the
origin of a coordinate system). We find that this force can cause the particle to rotate in
a circle, but only when the force has a component that is tangent to the circle. As shown
in Fig. 11-19, this circle lies in the same plane as the force. This means that the direction
of the particle’s rotational velocity and acceleration will be along its axis of rotation.

In Sections 11-7 and 11-8 we explored the relationship between torque (�) and ro-
tational acceleration (�) for special cases where the axis of rotation of a symmetric
body is aligned with an axis of symmetry. We used the definition of rotational inertia
(I) and Newton’s Second Law for translational motion to show that for a single force
acting on a particle,

, (Eq. 11-33) 

provided that we define the magnitude of torque (�) in this situation to be given by 

, (Eq. 11-29)

where is the smaller of the two angles between the vectors and .
In fact, by regarding the rotational inertia I as a scalar, and and as components

of a vector along the axis of rotation of the particle, we presented as the one-
dimensional rotational analog to the expression that describes motion along
a straight line. We assume that for both expressions the acceleration that results from
the application of a torque (or force) is in the same direction as the force (or torque).
If we generalize this analogy between the translational and rotational laws of motion
to three dimensions, then we expect that if , then

, (12-11)

where and are three-dimensional vectors that point in the same direction. If this
is the case, then is a vector that must be perpendicular to both the applied force 
and the position vector that extends from the axis of rotation to the particle experi-
encing the force. The torque vector must also have a magnitude given by

(Eq. 11-29).
In Section 9-8, we discussed the fact that there are two different methods defined

by mathematicians for multiplying vectors. One, known as the scalar (or dot) product,
is used to define the amount of work, W, done on an object that undergoes a transla-
tional displacement under the influence of a constant force . Work is a scalar
quantity that is invariant to coordinate rotations and is given by 

.W � F
:

� d
:

� � F
:

�� d
:

�cos�

F
:

d
:

� � � � � r: �� F
:

� sin

r:
F
:

�:
�:net�:

�:net � I�:

F
:net � ma:

Fx � max

�z � I�z

��
F
:

r:

� � � � � r: �� F
:

� sin

� � ��

��
:



The other type of vector multiplication is known as the vector (or cross) product. The
vector product of two vectors and is given by

.

As its name suggests, the vector product of two vectors is itself a vector. It is not
hard to convince yourself that any two vectors determine a plane. We define the vec-
tor that results when a vector product is calculated to be perpendicular to the plane de-
termined by the vectors being multiplied.

Recall that the plane a particle rotates in is perpendicular to the axis of rotation
along which we expect the torque vector to point. This suggests that we may be able
to express torque as a vector product. It also turns out that the magnitude of a vector
product is equal to the product of the magnitudes of the two vectors being multiplied
times the sine of the angle between them. This is also how the magnitude of a torque
about a fixed axis is determined.

It appears it may be valid to define torque as the vector product of the position
vector and the force vector so that

(tentative definition of torque).

In the next section, we discuss the mathematical properties of the vector product.

12-4 The Vector or Cross Product

Is there a natural way to associate a vector with the product of a pair of vectors? If we
think about a pair of vectors in three-dimensional space, we see that they have two di-
rections (unless they point in the same direction). There are only three mutually per-
pendicular directions, so we could choose the direction not used—the one perpendic-
ular to the plane determined by the two vectors we are trying to multiply—as the
direction of the vector product. Here’s one way to think about it. Consider two vec-
tors of lengths and pointing in different directions with being the smaller
angle between them. The two vectors can be considered to be two sides of a parallelo-
gram of area .

This area has a direction, though we don’t often think of area that way. The same
area can be turned and oriented in different ways in space. We can choose to describe
its orientation by an arrow perpendicular to the area. This suggests that we create a
vector product that has the magnitude equal to the size of the
area, , and a direction perpendicular to the two vectors and 
(Fig. 12-8).

We should point out, though, that the area could actually have two different di-
rections associated with it, with one direction pointing perpendicular to one side of
the area and one direction pointing perpendicular to the other side of the area. These
two vectors point in opposite directions, so they are just the negative of each other.
Since the choice between these two directions is arbitrary, we will use the right-hand
rule to choose which direction to associate with the product. Applying the right-hand
rule to this vector product means if we point our straightened fingers on our right
hand in the direction of the first vector so we can curl them to the direction of the sec-
ond vector, then the direction of our extended thumb will be the direction associated
with the vector product as shown in Fig. 12-9.

This discussion also implies that the vector (or cross) product of two vectors that
point in the same direction must be zero. We know this because the area created by
two such vectors is zero. Furthermore, we can’t know in what direction a zero area
would point! 

b
:

a:A � � a: �� b
:

� sin
a: � b

:
� c:

A � � a: �� b
:

� sin

� b
:

�� a:�

�: � r: � F
:

F
:
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:

b
:
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FIGURE 12-8 ■ A parallelogram of area
with being perpendic-

ular to and . and lie in the same
plane.
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FIGURE 12-9 ■ Illustration of the right-
hand rule for vector products. (a) Sweep
vector into vector with the fingers of
your right hand. Your outstretched thumb
shows the direction of vector .
(b) Showing that is the reverse of
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If the vectors and are not actually length vectors (but have some other unit),
we can just generalize the discussion above as if we were working with an area. So, in
general, the vector product of any two vectors and , written , produces a
third vector whose magnitude is

, (12-12)

where (phi) is the smaller of the two angles between and . (You must use the
smaller of the two angles between the vectors because sin and sin(360° 	 ) differ
in algebraic sign.) Because of the notation , the vector product is known as the
cross product of and or, more simply, “a cross b.”

If and are parallel or antiparallel, . The magnitude of , which can be
written as , is maximum when and are perpendicular to each other.

Remember that the order of the vector multiplication is important. In Fig. 12-9b, we are
determining the direction of , so the fingers are placed to sweep into 
through the smaller angle. The thumb ends up in the opposite direction from before,
and so it must be that or .

In unit-vector notation, we can write

, (12-13)

which can be expanded according to the distributive law. That is, each component of
the first vector is to be crossed with each component of the second vector. The cross
products of unit vectors are given in Appendix E (see Products of Vectors). For exam-
ple, in the expansion of the equation above, we have 

, (12-14)

because the two unit vectors and are parallel and thus have a zero cross product.
Similarly, we have

. (12-15)

In the last step, we used Eq. 12-12 to evaluate the magnitude of as unity (one).
(The vectors and each have a dimensionless magnitude of unity, and the angle be-
tween them is 90�.) Also, we used the right-hand rule to get the direction of as be-
ing in the positive direction of the z axis (thus in the direction of ).

Continuing to expand Eq. 12-13, we can show that

. (12-16)

We can also evaluate a cross product by setting up and evaluating a determinant
(as shown in Appendix E) or by using a vector-capable calculator.

To check whether any xyz coordinate system is a right-handed coordinate system,
use the right-hand rule shown in Fig. 12-9 for the cross product with that
system. If your fingers sweep (positive direction of x) into (positive direction of y)
with the outstretched thumb pointing in the positive direction of z, then the system is
right-handed.

READI NG EXERC IS E  12-1: Vectors and have magnitudes of 3 units and 4
units, respectively. What is the angle between the directions of and if the magnitude of the
vector product is (a) zero, (b) 12 units, (c) 6 units? ■c: � d

:
d
:

c:
d
:
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ĵî
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12-5 Torque as a Vector Product

In Chapter 11, we defined the torque component, z, for a rigid body that can rotate
around a fixed axis. In that case, each particle in the body was forced to move in a
path that is a circle about that axis. We now use the vector product to expand the defi-
nition of torque to apply it to an individual particle that moves along any path relative
to a fixed point (rather than a fixed axis). The path need no longer be a circle, and we
must write the torque as a vector that may have any direction.

Figure 12-11a shows a particle at point A in the plane. A single force in that
plane acts on the particle. The particle’s position relative to the origin O is given by
position vector . The torque acting on the particle relative to the fixed point O is a
vector quantity defined as the vector product of and so that

(torque defined). (12-17)�: � r: � F
:

F
:

r:
�:r:

F
:

xy
�:

�
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TOUCHSTONE EXAMPLE 12-3: Vector Product

In Fig. 12-10, vector lies in the xy plane, has a magnitude of 18
units, and points in a direction from the positive direction of x.
Also, vector has a magnitude of 12 units and points along the
positive direction of z. What is the vector product ?c: � a: � b

:
b
:

250�
a: S O L U T I O N ■ One Ke y  I d e a is that when we have two vec-

tors in magnitude-angle notation, we find the magnitude of their
cross product (that is, the vector that results from taking their cross
product) with Eq. 12-12. Here that means the magnitude of is

. (Answer)

A second Ke y  I d e a is that with two vectors in magnitude-
angle notation, we find the direction of their cross product with the
right-hand rule of Fig. 12-9. In Fig. 12-10, imagine placing the fingers
of your right hand around a line perpendicular to the plane of 
and (the line on which is shown) such that your fingers sweep

into . Your outstretched thumb then gives the direction of .
Thus, as shown in Fig. 12-10, lies in the xy plane. Because its di-
rection is perpendicular to the direction of , it is at an angle of 

(Answer)

from the positive direction of x.

250� 	 90� � 160�
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c:b
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� sin � (18)(12)(sin90�) � 216
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FIGURE 12-10 ■ Vector (in plane) is the vector (or cross)
product of vectors and .b

:
a:

xyc:

A

φ

φ

z

x

y

F

(= r × F)
F (redrawn, with

tail at origin)

A

z

x

y

r

Line of action of F

φ

(b) (c)

O Oφ

A φ

z

x

y

(a)

O

τ τ

FFF

r r r

FIGURE 12-11 ■ Defining torque. (a) A force lying in the xy plane, acts on a particle at
point A. (b) This force produces a torque on the particle with respect to the ori-
gin O. By the right-hand rule for vector (cross) products, the torque vector points in the posi-
tive direction of z. Its magnitude is equivalently given by in (b) and by in (c).r�FrF�
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We can evaluate the vector (or cross) product in this definition of by using the
rules for such products given above. To find the direction of , we slide the vector 
(without changing its direction) until its tail is at the origin O, so that the two vectors
in the vector product are tail to tail as in Fig. 12-11b. We then use the right-hand rule
for vector products in Fig. 12-9, sweeping the fingers of the right hand from (the
first vector in the product) into (the second vector). The outstretched right thumb
then gives the direction of . In Fig. 12-11c, the direction of is again shown to be in
the positive direction of the z axis.

When drawing diagrams of three-dimensional vectors, we often need a way to
show that a vector points into or out of the plane of the page.

The symbol ⊗ is used to denote a vector that points into the plane of the page. The symbol
� denotes a vector pointing out of the page.

�:�:
F
:

r:

F
:

�:
�:

TOUCHSTONE EXAMPLE 12-4: Three Torques

In Fig. 12-12a, three forces, each of magnitude 2.0 N, act on a parti-
cle. The particle is in the xz plane at point a given by position vector

, where and . Force is antiparallel to the x
axis, force is antiparallel to the z axis, and force is antiparal-
lel to the y axis. What is the torque, with respect to the origin O, due
to each force?

S O L U T I O N ■ The Ke y  I d e a here is that, because the three
force vectors do not lie in a plane, we cannot evaluate their torques
as in Chapter 11. Instead, we must use vector (or cross) products,
given by Eq. 12-17 with their directions given by the
right-hand rule for vector products.

Because we want the torques with respect to the origin O, the
vector required for each cross product is the given position vec-
tor. To determine the angle between the direction of and the di-
rection of each force, we shift the force vectors of Fig. 12-12a, each
in turn, so that their tails are at the origin. Figures 12-12b, c, and d,
which are direct views of the xz plane, show the shifted force vec-
tors , , and , respectively. (Note how much easier the angles
are to see.) In Fig. 12-12d, the angle between the directions of and

is 90° and the symbol ⊗ means is directed into the page.
Now, applying Eq. 12-17 for each force, we find the magnitudes

of the torques to be

and

(Answer)

To find the directions of these torques, we use the right-hand
rule, placing the fingers of the right hand so as to rotate into 
through the smaller of the two angles between their directions. The
thumb points in the direction of the torque. Thus is directed into
the page in Fig. 12-12b, is directed out of the page in Fig. 12-12c,
and is directed as shown in Fig. 12-12d. All three torque vectors
are shown in Fig. 12-12e
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FIGURE 12-12 ■ (a) A particle at point a is acted on by three
forces, each antiparallel to a coordinate axis. The angle  (used in
finding torque) is shown (b) for and (c) for . (d) Torque 
is perpendicular to both and (force is directed into
the plane of the figure). (e) The torques (relative to the origin O)
acting on the particle.
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12-6 Rotational Form of Newton’s Second Law 

Recall that the concept of translational momentum and the principle of conserva-
tion of momentum are extremely powerful tools. They allow us to predict the out-
come of, say, a collision between two cars without knowing the details of what goes on
during the collision. Here we begin a discussion of the rotational counterpart of . In
Chapter 7, we found that we could write Newton’s Second Law in the form

(single particle). (12-18)

This relationship expresses the close relation between force and translational momen-
tum for a single particle. It can be generalized to extended bodies. It also leads di-
rectly to the powerful idea that translational momentum is conserved in the absence
of a net external force.

We have seen enough of the parallelism between translational and rotational
quantities to be hopeful that there is a rotational corollary to . In search
of the equivalent expression, we start with

, (12-19)

and replace the force vector with . This gives us

. (12-20)

For a constant mass, the expression above can be replaced with
.

The equality of these two expressions is more clearly seen in reverse. Namely,

(for constant mass).

Then applying the product rule of derivatives

. (12-21)

However, is the object’s velocity , and . Thus, we can rewrite the
equation above as

,

or . (12-22)

So, from Eq. 12-20 above,

,

or . (12-23)

Comparing this expression to , we see that if we choose to define the
rotational momentum, , as the rotational corollary of translational momentum, then�
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. We now have an equivalent expression for rotations as we do for transla-
tions. Namely,

(single particle). (12-24)

In words,

The (vector) sum of all the torques acting on a particle is equal to the time rate of change of
the rotational momentum of that particle.

Be careful, though: has no meaning unless the net torque , and the
rotational momentum , are defined with respect to the same origin. Many texts refer
to rotational momentum as angular momentum.

READI NG EXERC IS E  12-2: The figure shows
the position vector of a particle at a certain instant, and
four choices for the direction of a force that is to accelerate
the particle. All four choices lie in the xy plane. Rank the
choices according to the magnitude of the time rate of
change they produce in the rotational momentum
of the particle about point O, greatest first. ■

12-7 Rotational Momentum

Figure 12-13 shows a particle of mass m with translational momentum as it
passes through point A in the xy plane. The rotational momentum of this particle
with respect to the origin O is a vector quantity defined as

(rotational momentum defined), (12-25)

where is the position vector of the particle with respect to O. Note carefully that to
have rotational momentum about O, the particle does not have to rotate around O.
Comparison of (Eq. 12-17) and (Eq. 12-25) shows that rota-
tional momentum bears the same relation to translational momentum as torque does
to force. The SI unit of rotational momentum is the kilogram-meter-squared per sec-
ond , equivalent to the joule-second (J � s).

To find the direction of the rotational momentum vector in Fig. 12-13, we slide
the vector until its tail is at the origin O. Then we use the right-hand rule for vector
products, sweeping our right-hand fingers from into . The outstretched thumb
then shows that the direction of is in the positive (upward) direction of the z axis in
Fig. 12-13. To find the magnitude of , we use the general definition of a cross product
to write

or , (12-26)

where is the smaller angle between and . From Fig. 12-13a, we see that
can be rewritten as

(12-27)

where is the component of perpendicular to , is the component of per-
pendicular to and r is the magnitude of . From Fig. 12-13b, we see that

. So, (Eq. 12-25) can also be rewritten as�
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FIGURE 12-13 ■ Defining rotational mo-
mentum. A particle passing through point
A has translational momentum ,
with the vector lying in the xy plane. The
particle has rotational momentum

with respect to the origin O.
By the right-hand rule, the rotational mo-
mentum vector points in the positive direc-
tion of z. (a) The magnitude of is given
by . (b) The magnitude of
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(12-28)

where is the perpendicular distance between O and the extension of .
Just as is true for torque, rotational momentum has meaning only with respect to

a specified origin. Moreover, if the particle in Fig. 12-13 did not lie in the xy plane, or
if the translational momentum of the particle did not also lie in that plane, the rota-
tional momentum would not be parallel to the z axis. The direction of the rotational
momentum vector is always perpendicular to the plane formed by the position and
translational momentum vectors and .

READI NG EXERC IS E  12-3: In the diagrams below there is an axis of rotation per-
pendicular to the page that intersects the page at point O. Figure (a) shows particles 1 and 2
moving around point O in opposite rotational directions, in circles with radii 2 m and 4 m.
Figure (b) shows particles 3 and 4 traveling in the same direction, along straight lines at
perpendicular distances of 2 m and 4 m from point O. Particle 5 moves directly away from O.
All five particles have the same mass and the same constant speed. (a) Rank the particles ac-
cording to the magnitudes of their rotational momentum about point O, greatest first. (b)
Which particles have rotational momentum about point O that is directed into the page?

■

12-8 The Rotational Momentum of a System of Particles

Having a rotational equivalent of translational momentum is interesting, but what we
would really like to do with such a quantity is to use it to understand the rotational
motion of complex objects in dynamic situations. This is what made translational mo-
mentum so useful. For example, why is it that a skater spins faster when she pulls in
her arms? How do we steer spaceships? Why do neutron stars spin so much faster
than other stars? To understand these and other real-world situations, we must de-
velop an expression for the rotational momentum of a system of particles.

Just as we did for translational momentum, we can use a principle of superposition
for rotational momentum. We define the total rotational momentum of a system of
particles to be the vector sum of the rotational momenta of the individual particles

(12-29)

in which , . . .) labels the particles. With time, the rotational momenta of indi-
vidual particles may change, either because of interactions within the system (be-
tween the individual particles) or because of influences that may act on the system
from the outside.

We can find the change in as these changes take place by taking the time deriv-
ative of 
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Thus, . (12-30)

From (Eq. 12-24), we see that 

. (12-31)

In the equation above, the right side is the sum of the torques acting on the particles
that make up the system. This sum includes torques that result from all the forces act-
ing on the system, whether they originate from within the system (internal forces) or
outside of it (external forces). However, the internal torques sum to zero, as did the
internal forces in the analogous expression .

In general,

(system of particles), (12-32)

where is the net torque acting on the system. In practice, this is just the vector
sum of all external torques on all particles in the system, since the internal torques
sum to zero.

This equation is Newton’s Second Law in rotational form, for a system of parti-
cles. It says:

The net (external) torque acting on a system of particles is equal to the time rate of
change of the system’s total rotational momentum .

(Eq. 12-32) is analogous to . However, it requires extra
caution: Torques and the system’s rotational momentum must be measured relative to
the same origin.

12-9 The Rotational Momentum of a Rigid Body 
Rotating About a Fixed Axis

We next evaluate the rotational momentum of an extended system of particles that
form a rigid body that rotates about a fixed axis. Figure 12-14 shows such a body. In
Chapter 8, when we discussed the translational motion of extended systems, we de-
rived an expression for the translational momentum of the object in terms of the ve-
locity of its center of mass,

(translational momentum, system of particles). (12-33)

We can develop an analogous expression for rotational motion. Let’s start our devel-
opment with a single mass element that rotates with a rotational velocity whose
component along the axis of rotation is . In Fig. 12-14 we see that the mass element
has a translational momentum and a position vector relative to the axis of rota-
tion. These vectors change constantly as the mass element rotates in a circle about its
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FIGURE 12-14 ■ A rigid body rotates
about the z axis with rotational speed �. A
mass element of mass within the body
moves about the z axis in a circle with ra-
dius r. The translational momentum and
the position vector of the mass element
relative to the axis of rotation change con-
stantly as the mass element rotates.
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axis of rotation. However, the translational momentum and position vectors are al-
ways perpendicular to each other and lie in the x-y plane. This means that the rota-
tional momentum vector only has a component in the z direction. Since rotational
momentum is defined as (Eq. 12-25) we see that for our sim-
ple situation

.

If we replace the translational speed with , where the rotational velocity compo-
nent does not depend on which mass element we are considering (that is, the
entire object moves as one), this equation reduces to

.

Aha! The term is just the rotational inertia, , of the ith mass element. So we
can sum over all the mass elements to get a total rotational momentum of the rotating
body given by

Recalling that the rotational analogy of mass is rotational inertia I, and that all points
in a rigid rotating body move with the same rotational velocity , we write the
analogous expression for the rotational momentum of an extended object for an arbi-
trary choice of coordinate axes as

(rigid symmetric body, fixed axis through com). (12-34)

As you will see in the next section, this expression is very useful in situations where
rotational momentum is conserved. It allows us to explain why rotating objects that
change from one shape to another (such as a spinning ice skater) can speed up or
slow down the rate of turn. However, you must remember that the rotational momen-
tum , can only be expressed as when the rotational momentum and the rotational
inertia, I, are taken about the same axis.

If an extended body is not symmetric with respect to its axis of rotation and its ro-
tation axis does not pass through its center of mass, calculation of rotational inertia
and momentum can become quite complex. For example, you can get different values
of I when the object rotates about different axes. (Compare, for example, a long rod
rotating about its central axis and about one end.) Furthermore, in some cases, the ro-
tational momentum is not aligned along the axis of rotation. These more complicated
cases require the mathematics of “tensors” to handle them correctly; which is beyond
the scope of this book.

READI NG EXERC IS E  12-4: In the figure, a disk, a hoop, and a solid sphere are
made to spin about fixed central axes (like a top) by means of strings wrapped around them,
with the strings producing the same constant tangential force on all three objects. The three
objects have the same mass and radius, and they are initially stationary. Rank the objects ac-
cording to (a) their rotational momentum about their central axes and (b) their rotational
speed, greatest first, when the strings have been pulled for a certain time t.

■
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TOUCHSTONE EXAMPLE 12-5: First Ferris Wheel

George Washington Gale Ferris, Jr., a civil engineering graduate
from Rensselaer Polytechnic Institute, built the original Ferris
wheel (Fig. 12-15) for the 1893 World’s Columbian Exposition in
Chicago. The wheel, an astounding engineering construction at the
time, carried 36 wooden cars, each holding as many as 60 passen-
gers, around a circle of radius . The mass of each car was
about 1.1 � 104 kg. The mass of the wheel’s structure was about 6 �
105 kg, which was mostly in the circular grid at the rim of the wheel
from which the cars were suspended. The cars were loaded 6 at a
time, and once all 36 cars were full, the wheel made a complete ro-
tation at a constant rotational speed in about 2 min.

(a) Estimate the magnitude L of the rotational momentum of the
wheel and its passengers while the wheel rotated at .

S O L U T I O N ■ The Ke y  I d e a here is that we can treat the
wheel, cars, and passengers as a rigid object rotating about a fixed
axis, at the wheel’s axle. Then Eq. 12-34 gives the magni-
tude of the rotational momentum of that object. We need to find
the rotational inertia I of this object and the rotational speed .

To find I, let us start with the loaded cars. Because we can treat
them as particles, at distance R from the axis of rotation, we know
from Eq. 11-23 that their rotational inertia is , where
Mpc is their total mass. Let us assume that the 36 cars are each filled
with 60 passengers, each of mass 70 kg. Then their total mass is

Mpc � 36[1.1 � 104 kg � 60(70 kg)] � 5.47 � 105 kg

Ipc � MpcR2

�F

(L
:

� I�:)

� F

�F

R � 38 m

and their rotational inertia is

Next we consider the structure of the wheel. Let us assume that
the rotational inertia of the structure is due mainly to the circular
grid suspending the cars. Further, let us assume that the grid forms
a hoop of radius R, with a mass Mhoop of 3 � 105 kg (half the
wheel’s mass). From Table 11-2(a), the rotational inertia of the
hoop is

The combined rotational inertia I of the cars, passengers, and hoop
is then

To find the rotational speed , we use Eq. 11-5 .
Here the wheel goes through a rotational displacement of 
2� rad in a time period . Thus, we have

since at constant rotational speed . Now we can find the
magnitude L of the rotational momentum with Eq. 12-34:

(Answer)

(b) Assume that the fully loaded wheel is rotated from rest to in
a time period Δt = 5.0 s.What is the magnitude of the average net
external torque acting on it during Δt?

S O L U T I O N ■ The Ke y  I d e a here is that the average net ex-
ternal torque is related to the rate of change in the rotational mo-
mentum of the loaded wheel by Eq. 12-32 ( ). The
wheel rotates about a fixed axis to reach rotational speed in
time period �t and the change �L is from zero to the answer for
part (a). Thus, we have

� �

(Answer)� 1.3 � 107 N � m.

6.39 � 107 kg � m2/s 	 0
5.0 s

�L
:

�t1
� 	 �: net
 �

� F

�: net � dL
:

/dt

� 	�
 �
� F

� 6.39 � 107 kg � m2/s � 6.4 � 107 kg � m2/s.

� L
:

� � I � �: F � � (1.22 � 109 kg � m2)(0.0524 rad /s)

	�F
 � �F

� 	�F
 � � � � F � �
2� rad

(2 min)(60 s/min)
� 0.0524 rad /s,

�t � 2 min
�� �

(	�z
 � ��/�t)� F

� 1.22 � 109 kg � m2.

I � Ipc � Ihoop � 7.90 � 108 kg � m2 � 4.33 � 108 kg � m2

� 4.33 � 108 kg � m2.

Ihoop � MhoopR2 � (3.0 � 105 kg)(38 m)2

� 7.90 � 108 kg � m2.

Ipc � MpcR2 � (5.47 � 105 kg)(38 m)2

FIGURE 12-15 ■ The original Ferris wheel, built in 1893 near the
University of Chicago, towered over the surrounding buildings.



12-10 Conservation of Rotational Momentum

So far we have discussed two powerful conservation laws, the conservation of energy
and the conservation of translational momentum. Now we meet a third law of this
type, involving the conservation of rotational momentum. We start from Eq. 12-32

, which is Newton’s Second Law in rotational form. If no net external
torque acts on the system, this equation becomes , or

( ). (12-35)

This result, called the law of conservation of rotational momentum, can also be writ-
ten as

or ( ). (12-36)

Equation 12-35 ( ) and Eq. 12-36 ( ) tell us:

If the net (external) torque acting on a system is zero, the rotational momentum of the
system remains constant, no matter what changes take place within the system.

Equations 12-32 and 12-36 are vector equations. As
such, they are equivalent to three component equations corresponding to the conser-
vation of rotational momentum in three mutually perpendicular directions. Depend-
ing on the torques acting on a system, the rotational momentum of the system might
be conserved in only one or two directions but not in all three:

If the component of the net external torque on a system along a certain axis is zero, then the
component of the rotational momentum of the system along that axis cannot change, no
matter what changes take place within the system.

We can apply this law to the isolated body in Fig. 12-14, which rotates around the
z axis. Suppose that the initially rigid body somehow redistributes its mass relative to
that rotation axis, changing its rotational inertia about that axis. Equation 12-35
( ) and Eq. 12-36 state that the rotational momentum of the
body cannot change in the absence of a net external torque. Substituting 
(Eq. 12-34) for the rotational momentum along the rotational axis into Eq. 12-36, we
write this conservation law as

( ). (12-37)

Here the subscripts refer to the values of the rotational inertia I and rotational speed
before and after the redistribution of mass.

Like the other two conservation laws that we have discussed,
and hold beyond the limitations of Newtonian mechanics. They hold for par-
ticles whose speeds approach that of light (where the theory of special relativity
reigns), and they remain true in the world of subatomic particles (where quantum
physics reigns). No exceptions to the law of conservation of rotational momentum
have ever been found.

We now discuss four examples involving this law.
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1. The spinning volunteer. Figure 12-16 shows a student seated on a stool that can
rotate freely about a vertical axis. The student, who has been set into rotation at a
modest initial rotational speed , holds two dumbbells in his outstretched hands.
His rotational momentum vector lies along the vertical rotation axis, pointing
upward.

The instructor now asks the student to pull in his arms. This action reduces his
rotational inertia from its initial value I1 to a smaller value I2 because he moves
mass closer to the rotation axis. His rate of rotation increases markedly, from 
to . The student can then slow down by extending his arms once more.

No net external torque acts along the vertical axis of the system consisting of
the student, stool, and dumbbells. Thus, the rotational momentum of that system
about the rotation axis must remain constant. In Fig. 12-16a, the student’s rota-
tional speed is relatively low and his rotational inertia I1 is relatively high.
According to Eq. 12-37, his rotational speed in Fig. 12-16b must be
greater to compensate for the decreased rotational inertia.

2. The springboard diver. Figure 12-17 shows a diver doing a forward one-and-a-
half-somersault dive. As you should expect from our discussion in Chapter 8, her
center of mass follows a parabolic path. She leaves the springboard with a definite
rotational momentum about an axis through her center of mass, represented by
a vector pointing into the plane of Fig. 12-17, perpendicular to the page. When she
is in the air, no net external torque acts on her about her center of mass (assum-
ing air drag is negligible). So, her rotational momentum about her center of mass
cannot change. By pulling her arms and legs into the closed pike position (in the
fourth image), she reduces her rotational inertia about the same axis and thus, ac-
cording to (Eq. 12-37), increases her rotational speed. Pulling out of
the closed pike position (and back into the open layout position) at the end of the
dive increases her rotational inertia. This slows her rotation rate so she can enter
the water with little splash. Even in a more complicated dive involving both twist-
ing and somersaulting, the rotational momentum of the diver must be conserved,
in both magnitude and direction, throughout the dive.

3. Spacecraft orientation. Figure 12-18, which represents a spacecraft with a rigidly
mounted flywheel, suggests a scheme (albeit crude) for orientation control. The
spacecraft + flywheel form a system on which no net torque acts. Therefore, if the
system’s total rotational momentum is zero because neither spacecraft nor fly-
wheel is turning, it must remain zero (as long as the system remains isolated).

To change the orientation of the spacecraft, the flywheel is made to rotate
(Fig. 12-18a). The spacecraft will start to rotate in the opposite direction to maintain
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FIGURE 12-16 ■ (a) The student has a rel-
atively large rotational inertia and a rela-
tively small rotational speed. (b) By de-
creasing his rotational inertia, the student
automatically increases his rotational
speed. The rotational momentum of the
rotating system remains unchanged.

L
:

I1

Rotation axis
(a)

1ω

L L

I2

(b)

2ω

L

L

FIGURE 12-17 ■ A diver rotates about her
center of mass as she falls. Since she has no
net torque relative to her center of mass,
her rotational momentum is constant
throughout the dive. Note also that her
center of mass (see the dots) follows a par-
abolic path as she falls.



the system’s rotational momentum at zero. When the flywheel is then brought to
rest, the spacecraft will also stop rotating but will have changed its orientation
(Fig. 12-18b). Throughout, the rotational momentum of the system spacecraft +
flywheel never differs from zero.

Interestingly, the spacecraft Voyager 2, on its 1986 flyby of the planet Uranus,
was set into unwanted rotation by this flywheel effect every time its tape recorder
was turned on at high speed. The ground staff at the Jet Propulsion Laboratory
had to program the on-board computer to turn on counteracting thruster jets
every time the tape recorder was turned on.

4. The incredible shrinking star. When the nuclear fire in the core of a star burns
low, the star may eventually begin to collapse, building up pressure in its interior.
The collapse may go so far as to reduce the radius of the star from something like
that of the Sun to the incredibly small value of a few kilometers. The star then be-
comes a neutron star—its material has been compressed to an extremely dense
gas of neutrons.

During this shrinking process, the star is an isolated system and its rotational
momentum cannot change. Because its rotational inertia is greatly reduced, its
rotational speed is correspondingly greatly increased, to as much as 600 to 800
revolutions per second. For comparison, the Sun, a typical star, rotates at about
one revolution per month.

Summary of Rotational vs. Translational Equations
Table 12-2 supplements Table 11-3 with some of the new equations developed in
this chapter. It extends our list of corresponding translational and rotational rela-
tions.

L
:
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x

Flywheel

(a)

FIGURE 12-18 ■ (a) An idealized space-
craft containing a flywheel. If the flywheel
is made to rotate clockwise as shown, the
spacecraft itself will rotate counterclock-
wise because the total rotational momen-
tum must remain zero. (b) When the fly-
wheel is braked to a stop, the spacecraft
will also stop rotating but will have reori-
ented its axis by the angle .��sc

TA B L E 12 - 2
More Corresponding Relations for Translational and Rotational Motiona

Translational Rotational

Force Torque

Translational momentum Rotational momentum

Translational momentumb Rotational momentumb

Translational momentumb Rotational momentumc

Newton’s Second Lawb Newton’s Second Lawb

Conservation lawd Conservation lawd

a See also Table 11-3.
b For systems of particles, including rigid bodies.
c For a rigid body about a fixed axis, with being the component along that axis.
d For a closed, isolated system .(F
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TOUCHSTONE EXAMPLE 12-6: Student with a Wheel

Figure 12-19a shows a student sitting on a stool that can rotate
freely about a vertical axis. The student, initially at rest, is holding a
bicycle wheel whose rim is loaded with lead and whose rotational
inertia Iwh about its central axis is 1.2 kg � m2. The wheel is rotating
at a rotational speed �wh of 3.9 rev/s; as seen from overhead, the ro-
tation is counterclockwise. The axis of the wheel is vertical, and the
rotational momentum of the wheel points vertically upward.
The student now inverts the wheel (Fig. 12-19b) so that, as seen
from overhead, it is rotating clockwise. Its rotational momentum is
then . The inversion results in the student, the stool, and the
wheel’s center rotating together as a composite rigid body about
the stool’s rotation axis, with rotational inertia .
(The fact that the wheel is also rotating about its center does not af-
fect the mass distribution of this composite body; thus, Ib has the
same value whether or not the wheel rotates.) With what rotational
speed �b and in what direction does the composite body rotate af-
ter the inversion of the wheel?

Ib � 6.8 kg � m2

	L
:

wh

L
:

wh

S O L U T I O N ■ The Ke y  I d e a s here are these:

1. The rotational speed �b we seek is related to the final rota-
tional momentum of the composite body about the stool’s
rotation axis by Eq. 12-34 .

2. The initial rotational speed �wh of the wheel is related to the
rotational momentum of the wheel’s rotation about its
center by the same equation.

3. The vector addition of and gives the total rotational
momentum of the system of student, stool, and wheel.

4. As the wheel is inverted, no net external torque acts on that
system to change about any vertical axis. (Torques due to
forces between the student and the wheel as the student in-
verts the wheel are internal to the system.) So, the system’s to-
tal rotational momentum is conserved about any vertical axis.

The conservation of is represented with vectors in Fig. 12-19c.
We can also write it in terms of components along a vertical axis as

(12-38)

where t1 and t2 refer to the initial state (before inversion of the
wheel) and the final state (after inversion). Because inversion of the
wheel inverted the wheel’s rotational momentum vector, we substi-
tute 	Lwh y(t1) for Lwh y(t2). Then, if we set Lb y(t1) = 0 (because the
student, the stool, and the wheel’s center were initially at rest), Eq.
12-38 yields

We next substitute Ib�b y for Lb y and Iwh�wh y for Lwh y and solve for
�b, finding

(Answer)

The fact that this final rotational velocity points upward tells us that
the student rotates counterclockwise about the stool axis as seen
from overhead. If the student wishes to stop rotating, he has only to
invert the wheel once more.

�
(2)(1.2 kg�m2)(3.9 rev/s)

6.8 kg�m2 ĵ � (1.4 rev/s) ĵ.

� b y ĵ �
2Iwh

Ib
�wh y ĵ

Lb y(t2) � 2Lwh y(t1).

Lb y(t2) � Lwh y(t2) � Lb y(t1) � Lwh y(t1),

L
:tot

L
:tot

L
:tot

L
:

whL
:

b

L
:

wh

(L
:

� I�:)
L
:

b

Lb

Lb

wh

(a) (b)

Lwh
–Lwh

Lwh –Lwh

= +

(c)

ω
whω

ω

Initial Final

b

FIGURE 12-19 ■ (a) A student holds a bicycle wheel rotating
around the vertical. (b) The student inverts the wheel, setting him-
self into rotation. (c) The net angular momentum of the system
must remain the same in spite of the inversion.

READI NG EXERC IS E  12-5: A rhinoceros beetle rides the rim of a small disk that
rotates like a merry-go-round. If the beetle crawls toward the center of the disk, do the follow-
ing (each relative to the central axis) increase, decrease, or remain the same: (a) the rotational
inertia of the beetle–disk system, (b) the rotational momentum of the system, and (c) the rota-
tional speed of the beetle and disk? ■
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TOUCHSTONE EXAMPLE 12-7: Quadruple Somersault

During a jump to his partner, an aerialist is to make a quadruple
somersault lasting a time . For the first and last quarter-
revolution, he is in the extended orientation shown in Fig. 12-20,
with rotational inertia around his center of mass
(the dot). During the rest of the flight he is in a tight tuck, with rota-
tional inertia . What must be his rotational speed
�2 around his center of mass during the tuck?

S O L U T I O N ■ Obviously he must turn fast enough to complete
the 4.0 rev required for a quadruple somersault in the given 1.87 s.
To do so, he increases his rotational speed to �2 by tucking. We can
relate �2 to his initial rotational speed �1 with this Ke y  I d e a : His
rotational momentum about his center of mass is conserved
throughout the free flight because there is no net external torque
about his center of mass to change it. From Eq. 12-37, we can write
the conservation of rotational momentum as

or (12-39)

A second Ke y  I d e a is that these rotational speeds are re-
lated to the angles through which he must rotate and the time avail-
able to do so. At the start and at the end, he must rotate in the ex-
tended orientation for a total angle of (two
quarter-turns) in a time we shall call �t1. In the tuck, he must rotate
through an angle of in a time �t2. From Eq. 11-5

, we can write

and .

Thus, his total flight time is

�t � �t1 � �t2 �
��1

�1
�

��2

�2
,

�t2 �
��2

�2
�t1 �

��1

�1

(	�
 � �� /�t)
��2 � 3.50 rev

��1 � 0.500 rev

�:1 �
I2

I1
�:2.

I1�
:

1 � I2�
:

2,

(L
:

1 � L
:

2)

I2 � 3.93 kg � m2

I1 � 19.9 kg � m2

t � 1.87 s

which we know to be 1.87 s. Now substituting from Eq. 12-39 yields
for �1

Inserting the known data, we obtain

which gives us

(Answer)

This rotational speed is so fast that the aerialist cannot clearly see
his surroundings or fine-tune his rotation by adjusting his tuck. The
possibility of an aerialist making a four-and-a-half-somersault flight,
which would require a greater value of �2 and thus a smaller I2 via a
tighter tuck, seems very small.

�2 � 3.23 rev/s.

1.87 s �
1
�2

�(0.500 rev)
19.9 kg �m2

3.93 kg �m2 � 3.50 rev�,

�t �
(��1)I1

�2I2
�

��2

�2
�

1
�2

���1
I1

I2
� ��2�.

TOUCHSTONE EXAMPLE 12-8: Turnstile Takes a Hit

(This touchstone example is long and challenging, but it is helpful
because it pulls together many ideas of Chapters 11 and 12.) In the
overhead view of Fig. 12-21, four thin, uniform rods, each of mass M
and length , are rigidly connected to a vertical axle to
form a turnstile. The turnstile rotates clockwise about the axle,
which is attached to a floor, with initial rotational velocity

. A mud ball of mass and initial speed
is thrown along the path shown and sticks to the end of

one rod. What is the final rotational velocity of the ball– turnstile
system?

S O L U T I O N ■ A Ke y  I d e a here can be stated in a question-
and-answer format. The question is this: Does the system have a

�:2

v1 � 12 m�s
m � 1

3 M�:1 � (	2.0 rad /s)ĵ

d � 0.50 m

quantity that is conserved during the collision and that involves ro-
tational velocity, so that we can solve for ? To answer, let us
check the conservation possibilities:

�:2

Rope

Release
Catch

Parabolic
path of
aerialist

Tuck

I1
I1

ω1

I2

ω2

ω1

FIGURE 12-20 ■ An aerialist performing a multiple somersault.

1ω

Rotation
axle 60°

d
Ball

FIGURE 12-21 ■ An over-
head view of four rigidly con-
nected rods rotating freely
around a central axle, and the
path a mud ball takes to stick
onto one of the rods.
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1. The total kinetic energy K is not conserved, because the colli-
sion between ball and rod is completely inelastic (the ball
sticks). So, some energy must be transferred from kinetic en-
ergy to other types of energy (such as thermal energy). For the
same reason, total mechanical energy is not conserved.

2. The total translational momentum is also not conserved, be-
cause during the collision an external force acts on the turnstile
at the attachment of the axle to the floor. (This is the force that
keeps the turnstile from moving across the floor when it is hit
by the mud ball.)

3. The total rotational momentum of the system about
the axle is conserved because there is no net external torque to
change . (The forces in the collision produce only internal
torques; the external force on the turnstile acts at the axle, has
zero moment arm, and thus does not produce an external
torque.)

We can write the conservation of the system’s total rotational mo-
mentum about the axle as

(12-40)

where ts stands for turnstile. The final rotational velocity is con-
tained in the terms Lts y(t2) and Lball y(t2) because those final rota-
tional momenta depend on how fast the turnstile and ball are rotat-
ing. To find , we consider first the turnstile and then the ball, and
then we return to Eq. 12-40.

Turnstile: The Ke y  I d e a here is that, because the turnstile is
a rotating rigid object, Eq. 12-34 gives its rotational mo-
mentum. Thus we can write its final and initial rotational momenta
about the axle as

and (12-41)

Because the turnstile consists of four rods, each rotating around an
end, the rotational inertia Its of the turnstile is four times the rota-
tional inertia Irod of each rod about its end. From Table 11-2(e), we
know that the rotational inertia Icom of a rod about its center is

Md 2, where M is its mass and d is its length. To get Irod, we use the
parallel-axis theorem of Eq. 11-28 . Here perpen-
dicular distance h is d/2. Thus, we find

Irod � 1
12Md 2 � M� d

2 �
2

� 1
3Md 2.

(I � Icom � Mh2)

1
12

Lts y(t1) � Its�1y.Lts y(t2) � Its�2 y

(L
:

� I�:)

�:2

�:2

Lts y(t2) � Lball y(t2) � Lts y(t1) � Lball y(t1),

(L
:

2 � L
:

1)

L
:

L
:

� Ly ĵ

P
:

With four rods in the turnstile, we then have

(12-42)

Ball: Before the collision, the ball is like a particle moving
along a straight line, as in Fig. 12-13. So, to find the ball’s initial
rotational momentum Lball y(t1) about the axle, we can use any of
Eqs. 12-25 through 12-28, but Eq. 12-27 is easiest. Here

is Lball y(t1). Just before the ball hits, its radial distance r from the
axle is d, and the component v� of the ball’s velocity perpendicular
to r is v1 cos 60�.

To give a sign to this rotational momentum, we mentally draw
a position vector from the turnstile’s axle to the ball. As the ball ap-
proaches the turnstile, this position vector rotates counterclockwise
about the axle, so the ball’s rotational momentum is a positive
quantity. We can now rewrite as

(12-43)

After the collision, the ball is like a particle rotating in a circle
of radius d. So, from Eq. 11-23 , we have 
about the axle. Then from Eq. 12-34 , we can write the fi-
nal rotational momentum of the ball about the axle as

(12-44)

Return to Eq. 12-40: Substituting from Eqs. 12-41 through 12-44
into Eq. 12-40, we have

Substituting M = 3m and solving for �2 y, we find

(Answer)

Thus, the turnstile is now turning counterclockwise.

� 0.80 rad�s.

�
1

5(0.50 m)
[4(0.50 m)(	2.0 rad�s) �  (12 m�s)(cos60�)]

�2 y �
1

5d
(4d�1 y � v1 cos60�)

4
3Md 2�2 y � md 2�2 y � 4

3Md 2�1 y � mdv1 cos60�.

Lbally(t2) � Iball�2y � md 2�2y.

(L
:

� I�:)
Iball � md 2(I � �mir 2

i )

Lball y(t1) � mdv1 cos 60�.

� � rmv�

�
(� � rmv�)

Its � 4
3 Md 2.

Problems
SEC. 12-2 ■ COMBINING TRANSLATIONS

WITH SIMPLE ROTATIONS

Unless otherwise noted, rolling occurs without slipping.

1. An Automobile Traveling An automobile traveling 80.0 km/h
has tires of 75.0 cm diameter. (a) What is the rotational speed 
of the tires about their axles? (b) If the car is brought to a 
stop uniformly in 30.0 complete turns of the tires (without 
skidding), what is the magnitude of the rotational acceleration 

of the wheels? (c) How far does the car move during the 
braking?

2. Car’s Tire Consider a 66-cm-diameter tire on a car traveling at 80
km/h on a level road in the positive direction of an x axis. Relative to
a woman in the car, what are (a) the translational velocity center and
(b) the magnitude acenter of the translational acceleration of the cen-
ter of the wheel? What are (c) top and (d) atop for a point at the top
of the tire? What are (e) bot and (f) abot for a point at the bottom of
the tire?

v:
v:

v:
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Now repeat the questions relative to a hitchhiker sitting near
the road: What are (g) at the wheel’s center, (h) a at the wheel’s
center, (i) at the tire top, ( j) a at the tire top, (k) at the tire bot-
tom, and (l) a at the tire bottom?

3. A Hoop Rolls A 140 kg hoop rolls along a horizontal floor so
that its center of mass has a speed of 0.150 m/s. How much work
must be done on the hoop to stop it?

4. Thin-Walled Pipe A thin-walled pipe rolls along the floor. What is
the ratio of its translational kinetic energy to its rotational kinetic en-
ergy about an axis parallel to its length and through its center of mass?

5. Car Has Four Wheels A 1000 kg car has four 10 kg wheels.
When the car is moving, what fraction of the total kinetic energy of
the car is due to rotation of the wheels about their axles? Assume
that the wheels have the same rotational inertia as uniform disks of
the same mass and size. Why do you not need the radius of the
wheels?

6. A Body of Radius R A body of radius R and mass m is rolling
smoothly with speed v on a horizontal surface. It then rolls up a hill
to a maximum height h. (a) If , what is the body’s rota-
tional inertia about the rotational axis through its center of mass?
(b) What might the body be?

7. A Uniform Solid Sphere A uniform solid sphere rolls down an
incline. (a) What must be the incline angle if the translational accel-
eration of the center of the sphere is to have a magnitude of 0.10g?
(b) If a frictionless block were to slide down the incline at that an-
gle, would its acceleration magnitude be more than, less than, or
equal to 0.10g? Why?

8. A Hollow Sphere A hollow sphere of radius 0.15 m, with rota-
tional inertia I � 0.040 kg � m2 about a line through its center of
mass, rolls without slipping up a surface inclined at 30° to the hori-
zontal. At a certain initial position, the sphere’s total kinetic energy
is 20 J. (a) How much of this initial kinetic energy is rotational? (b)
What is the speed of the center of mass of the sphere at the initial
position? What are (c) the total kinetic energy of the sphere and (d)
the speed of its center of mass after it has moved 1.0 m up along the
incline from its initial position?

9. Yo-Yo’s Inertia A yo-yo has a rotational inertia of 950 g � cm2

and a mass of 120 g. Its axle radius is 3.2 mm, and its string is 120 cm
long.The yo-yo rolls from rest down to the end of the string. (a) What
is the magnitude of its translational acceleration? (b) How long does
it take to reach the end of the string? As it reaches the end of the
string, what are its (c) translational speed, (d) translational kinetic
energy, (e) rotational kinetic energy, and (f) rotational speed?

10. Instead of Rolling Suppose that the yo-yo in Problem 9, in-
stead of rolling from rest, is thrown so that its initial speed down
the string is 1.3 m/s. (a) How long does the yo-yo take to reach the
end of the string? As it reaches the end of the string, what are its
(b) total kinetic energy, (c) translational speed, (d) translational ki-
netic energy, (e) rotational speed, and (f) rotational kinetic energy?

SEC. 12-4 ■ THE VECTOR OR CROSS PRODUCT

11. Area of Triangle Show that the area
of the triangle contained between and

and the solid line connecting their tips
in Fig. 12-22 is | � |.b

:
a:1

2

b
:

a:

h � 3v2�4g

v:v:
v:

12. The Product In the product � q � , take q � 2,

and

.

What then is in unit-vector notation if Bx � By?

13. Show That (a) Show that � ( � ) is zero for all vectors 
and . (b) What is the magnitude of � ( � ) if there is an
angle  between the directions of and ?

14. For the Following For the following three vectors, what is 3 �
(2 � )?

SEC. 12-5 ■ TORQUE AS A VECTOR PRODUCT

15. In a Given Plane Show that, if and lie in a given plane, the
torque has no component in that plane.

16. A Plum What are the magnitude and direction of the torque
about the origin on a plum located at coordinates (	2.0, 0.0, 4.0) m
due to force whose only component is (a) Fx � 6.0 N, (b) Fx �
	6.0 N, (c) Fz � 6.0 N, and (d) Fz � 	6.0 N?

17. Particle Located at What are the magnitude and direction of
the torque about the origin on a particle located at coordinates
(0.0, 	4.0, 3.0) m due to (a) force with components FA x � 2.0 N
and FA y � FA z � 0, and (b) force with components FB x � 0,
FB y � 2.0 N, and FB z � 4.0 N?

18. Pebble Force � (2.0 N) 	 (3.0 N) acts on a pebble with
position vector � (0.50 m) 	 (2.0 m) , relative to the origin.
What is the resulting torque acting on the pebble about (a) the ori-
gin and (b) a point with coordinates (2.0, 0.0, 	3.0) m?
19. Particle at Origin Force � (	8.0 N) � (6.0 N) acts on a
particle with position vector � (3.0 m) � (4.0 m) . What are (a)
the torque on the particle about the origin and (b) the angle be-
tween the directions of and ?

20. Jar of Jalapeños What is the torque about the origin on a jar of
jalapeño peppers located at coordinates (3.0 m, 	2.0 m, 4.0 m) due
to (a) force � (3.0 N) 	 (4.0 N) � (5.0 N) , (b) force �
(	3.0 N) 	 (4.0 N) 	 (5.0 N) , and (c) the vector sum of and

? (d) Repeat part (c) about a point with coordinates (3.0 m,
2.0 m, 4.0 m) instead of about the origin.

SEC. 12-6 ■ ROTATIONAL FORM OF NEWTON’S
SECOND LAW

21. A Particle with Velocity A 3.0 kg particle with velocity �
(5.0 m/s) 	 (6.0 m/s) is at x � 3.0 m, y � 8.0 m. It is pulled by a
7.0 N force in the negative x direction. (a) What is the rotational
momentum of the particle about the origin? (b) What torque about
the origin acts on the particle? (c) At what rate is the rotational
momentum of the particle changing with time?

22. Acted on by Two Torques A particle is acted on by two torques
about the origin: has a magnitude of 2.0 N � m and is directed in
the positive direction of the x axis, and has a magnitude of�:2

�:1

ĵî
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F
:

B

F
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:

Bk̂ĵîF
:

A

F
:

r:

ĵîr:
ĵîF
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F
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F
:

A

F
:
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:

F
:
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C
:

� 7.00 î 	 8.00 ĵ

B
:

� 	3.00 î � 4.00 ĵ � 2.00 k̂

A
:

� 2.00 î � 3.00 ĵ 	 4.00 k̂

B
:

A
:

C
:

b
:
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a:b

:
a:b

:
a:a:b

:
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B
:

F
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� 4.0 î 	 20 ĵ � 12 k̂

v: � 2.0 î � 4.0 ĵ � 6.0 k̂

B
:

v:F
:

a

b

φ

FIGURE 12-22 ■ Problem 11.



4.0 N � m and is directed in the negative direction of the y axis.
What are the magnitude and direction of where is the ro-
tational momentum of the particle about the origin?

23. Torque About the Origin What torque about the origin acts on
a particle moving in the xy plane, clockwise about the origin, if the
particle has the following magnitudes of rotational momentum
about the origin:

(a) 4.0 kg � m2/s,
(b) (4.0 )t2 kg � m2/s,
(c) kg � m2/s,
(d) kg � m2/s?

24. At Time t At time t � 0, a 2.0 kg particle has position vector 
� (4.0 m) 	 (2.0 m) relative to the origin. Its velocity just then 

is given by � (	6.0 m/s3)t2 . About the origin and for t � 0,
what are (a) the particle’s rotational momentum and (b) the torque
acting on the particle? (c) Repeat (a) and (b) about a point with co-
ordinates (	2.0, 	3.0, 0.0) m instead of about the origin.

SEC. 12-7 ■ ROTATIONAL MOMENTUM

25. Two Objects Two objects are
moving as shown in Fig. 12-23.
What is their total rotational mo-
mentum about point O?

26. A Particle P In Fig. 12-24, a
particle P with mass 2.0 kg has
position vector of magnitude
3.0 m and velocity of magnitude
4.0 m/s. A force of magnitude
2.0 N acts on the particle. All three
vectors lie in the xy plane oriented
as shown. About the origin, what
are (a) the rotational momentum
of the particle and (b) the torque
acting on the particle?

27. At a Certain Time At a cer-
tain time, a 0.25 kg object has a
position vector � (2.0 m) �
(	2.0 m) in meters.At that instant,
its velocity in meters per second 
is �
and the force in newtons acting on
it is � (4.0 N) . (a) What is the rotational momentum of the ob-
ject about the origin? (b) What torque acts on it?

28. Particle-Like Object A 2.0 kg particle-like object moves in a
plane with velocity components vx � 30 m/s and vy � 60 m/s as it
passes through the point with (x, y) coordinates of (3.0, 	4.0) m.
Just then, what is its rotational momentum relative to (a) the origin
and (b) the point (	2.0, 	2.0) m?

29. Two Particles of Mass m Two particles, each of mass m and
speed v, travel in opposite directions along parallel lines separated
by a distance d. (a) In terms of m, v, and d, find an expression for
the magnitude L of the rotational momentum of the two-particle
system around a point midway between the two lines. (b) Does the
expression change if the point about which L is calculated is not
midway between the lines? (c) Now reverse the direction of travel
for one of the particles and repeat (a) and (b).

ĵF
:

(	5.0 m/s)î � (5.0 m/s)ĵv:

ŷ
îr:

F
:
v:

r:

îv:
ĵîr:

(4.0 s2)/t 2

(4.0 1
s1/2)√t

1
s2

�
:

d�
:

/dt,
30. At the Instant A 4.0 kg particle moves in an xy plane. At the
instant when the particle’s position and velocity are �
(2.0 m) and , the force on the particle is

� (	3.0 N) . At this instant, determine (a) the particle’s rota-
tional momentum about the origin, (b) the particle’s rotational mo-
mentum about the point x � 0, y � 4.0 m, (c) the torque acting on
the particle about the origin, and (d) the torque acting on the parti-
cle about the point x � 0.0 m, y � 4.0 m.

SEC. 12-9 ■ THE ROTATIONAL MOMENTUM OF A RIGID

BODY ROTATING ABOUT A FIXED AXIS

31. Flywheel The rotational momentum of a flywheel having a ro-
tational inertia of 0.140 kg � m2 about its central axis decreases
from 3.00 to 0.800 kg � m2/s in 1.50 s. (a) What is the magnitude of
the average torque acting on the flywheel about its central axis dur-
ing this period? (b) Assuming a constant rotational acceleration,
through what angle does the flywheel turn? (c) How much work is
done on the wheel? (d) What is the average power of the flywheel?

32. Sanding Disk A sanding disk with rotational inertia 1.2 �
10	3 kg � m2 is attached to an electric drill whose motor delivers a
torque of 16 N � m. Find (a) the rotational momentum of the disk
about its central axis and (b) the rotational speed of the disk 33 ms
after the motor is turned on.

33. d Apart Three particles, each
of mass m, are fastened to each
other and to a rotation axis at O by
three massless strings, each with
length d as shown in Fig. 12-25. The
combination rotates around the
rotational axis with rotational ve-
locity � in such a way that the
particles remain in a straight line.
In terms of m, d, and �, and relative to point O, what are (a) the rota-
tional inertia of the combination, (b) the rotational momentum of
the middle particle, and (c) the total rotational momentum of the
three particles?

34. Impulsive Force An impulsive force acts for a
short time �t on a rotating rigid body constrained to rotate about
the z axis with rotational inertia I. Show that

� � I(�2 z 	 �1 z) ,

where �z is the torque due to the force, R is the moment arm of
the force, is the average value of the force during the time it
acts on the body, and �1 z and �2 z are the rotational velocities
of the body just before and just after the force acts. (The quantity

� is called the rotational impulse, in analogy
with �t, the translational im-
pulse.)
35. Two Cylinders Two cylinders
having radii RA and RB and rota-
tional inertias IA and IB about
their central axes are supported
by axles perpendicular to the
plane of Fig. 12-26. The large
cylinder is initially rotating clock-
wise with rotational velocity .�:
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The small cylinder is moved to the right until it touches the large
cylinder and is caused to rotate by the frictional force between the
two. Eventually, slipping ceases, and the two cylinders rotate at
constant rates in opposite directions. Find the final rotational
velocity of the small cylinder in terms of IA, IB, RA, RB, and .
(Hint: Neither rotational momentum nor kinetic energy is con-
served. Apply the rotational impulse equation of Problem 34.)

36. Rigid Structure Figure 12-27
shows a rigid structure consisting
of a circular hoop of radius R and
mass m, and a square made of four
thin bars, each of length R and
mass m. The rigid structure rotates
at a constant speed about a vertical
axis, with a period of rotation of
2.5 s. Assuming R � 0.50 m and m
� 2.0 kg, calculate (a) the struc-
ture’s rotational inertia about the
axis of rotation and (b) its rota-
tional momentum about that axis.

SEC. 12-10 ■ CONSERVATION OF ROTATIONAL MOMENTUM

37. A Man Stands on a Platform A man stands on a platform that
is rotating (without friction) with a rotational speed of 1.2 rev/s; his
arms are outstretched and he holds a brick in each hand. The rota-
tional inertia of the system consisting of the man, bricks, and plat-
form about the central axis is 6.0 kg � m2. If by moving the bricks
the man decreases the rotational inertia of the system to
2.0 kg � m2, (a) what is the resulting rotational speed of the plat-
form and (b) what is the ratio of the new kinetic energy of the sys-
tem to the original kinetic energy? (c) What provided the added ki-
netic energy?

38. Rotor The rotor of an electric motor has rotational inertia
Im � 2.0 � 10	3 kg � m2 about its central axis. The motor is used to
change the orientation of the space probe in which it is mounted.
The motor axis is mounted parallel to the axis of the probe, which
has rotational inertia Ip � 12 kg � m2 about its axis. Calculate the
number of revolutions of the rotor required to turn the probe
through 30° about its axis.

39. Wheel is Rotating A wheel is rotating freely at rotational speed
800 rev/min on a shaft whose rotational inertia is negligible. A second
wheel, initially at rest and with twice the rotational inertia of the first,
is suddenly coupled to the same shaft. (a) What is the rotational
speed of the resultant combination of the shaft and two wheels? (b)
What fraction of the original rotational kinetic energy is lost?

40. Two Disks Two disks are mounted on low-friction bearings on
the same axle and can be brought together so that they couple and
rotate as one unit. (a) The first disk, with rotational inertia
3.3 kg � m2 about its central axis, is set spinning at 450 rev/min. The
second disk, with rotational inertia 6.6 kg � m2 about its central axis,
is set spinning at 900 rev/min in the same direction as the first. They
then couple together. What is their rotational speed after coupling?
(b) If instead the second disk is set spinning at 900 rev/min in the
direction opposite the first disk’s rotation, what is their rotational
speed and direction of rotation after coupling?

41. Playground In a playground, there is a small merry-go-round
of radius 1.20 m and mass 180 kg. Its radius of gyration (see

�:
1

�:2

Problem 43 of Chapter 11) is 91.0 cm. A child of mass 44.0 kg runs
at a speed of 3.00 m/s along a path that is tangent to the rim of the
initially stationary merry-go-round and then jumps on. Neglect fric-
tion between the bearings and the shaft of the merry-go-round. Cal-
culate (a) the rotational inertia of the merry-go-round about its axis
of rotation, (b) the magnitude of the rotational momentum of the
running child about the axis of rotation of the merry-go-round, and
(c) the rotational speed of the merry-go-round and child after the
child has jumped on.

42. Collapsing Spinning Star The rotational inertia of a collapsing
spinning star changes to its initial value. What is the ratio of the
new rotational kinetic energy to the initial rotational kinetic energy?

43. Track on a Wheel A track is
mounted on a large wheel that is
free to turn with negligible friction
about a vertical axis (Fig. 12-28). A
toy train of mass m is placed on
the track and, with the system ini-
tially at rest, the electrical power is
turned on. The train reaches a steady speed v with respect to the
track. What is the rotational speed of the wheel if its mass is M and
its radius is R? (Treat the wheel as a hoop, and neglect the mass of
the spokes and hub.)

44. Two Skaters In Fig. 12-29, two
skaters, each of mass 50 kg, ap-
proach each other along parallel
paths separated by 3.0 m. They
have opposite velocities of 1.4 m/s
each. One skater carries one end of
a long pole with negligible mass,
and the other skater grabs the
other end of it as she passes. As-
sume frictionless ice. (a) Describe
quantitatively the motion of the
skaters after they have become
connected by the pole. (b) What is
the kinetic energy of the two-skater
system?

Next, the skaters each pull along the pole so as to reduce their
separation to 1.0 m. What then are (c) their rotational speed and
(d) the kinetic energy of the system? (e) Explain the source of the
increased kinetic energy.

45. A Cockroach A cockroach of mass m runs counterclockwise
around the rim of a lazy Susan (a circular dish mounted on a verti-
cal axle) of radius R and rotational inertia I and having frictionless
bearings. The cockroach’s speed (relative to the ground) is v,
whereas the lazy Susan turns clockwise with rotational speed �1.
The cockroach finds a bread crumb on the rim and, of course, stops.
(a) What is the rotational speed of the lazy Susan after the cock-
roach stops? (b) Is mechanical energy conserved?

46. Girl on a Merry-go-Round A girl of mass M stands on the rim
of a frictionless merry-go-round of radius R and rotational inertia I
that is not moving. She throws a rock of mass m horizontally in a di-
rection that is tangent to the outer edge of the merry-go-round. The
speed of the rock, relative to the ground, is v. Afterward, what are
(a) the rotational speed of the merry-go-round and (b) the transla-
tional speed of the girl?

47. Vinyl Record A horizontal vinyl record of mass 0.10 kg and ra-
dius 0.10 m rotates freely about a vertical axis through its center

1
3

Rotation axis

R 2R

FIGURE 12-27 ■ Problem 36.

FIGURE 12-29 ■ Problem 44.

FIGURE 12-28 ■ Problem 43.



with a rotational speed of 4.7 rad/s. The rotational inertia of the
record about its axis of rotation is 5.0 � 10	4 kg � m2. A wad of wet
putty of mass 0.020 kg drops vertically onto the record from above
and sticks to the edge of the record. What is the rotational speed of
the record immediately after the putty sticks to it?

48. Uniform Thin Rod A uniform
thin rod of length 0.50 m and mass
4.0 kg can rotate in a horizontal
plane about a vertical axis through
its center. The rod is at rest when a
3.0 g bullet traveling in the hori-
zontal plane of the rod is fired into
one end of the rod. As viewed
from above, the direction of the
bullet’s velocity makes an angle of 60° with the rod (Fig. 12-30). If
the bullet lodges in the rod and the rotational velocity of the rod is
10 rad/s immediately after the collision, what is the bullet’s speed
just before impact?

49. Putty Wad Two 2.00 kg balls
are attached to the ends of a thin
rod of negligible mass, 50.0 cm
long. The rod is free to rotate in a
vertical plane without friction
about a horizontal axis through
its center. With the rod initially
horizontal (Fig. 12-31), a 50.0 g
wad of wet putty drops onto one of the balls, hitting it with a speed
of 3.00 m/s and then sticking to it. (a) What is the rotational speed
of the system just after the putty wad hits? (b) What is the ratio of
the kinetic energy of the entire system after the collision to that of
the putty wad just before? (c) Through what angle will the system
rotate until it momentarily stops?

50. Cockroach on a Disk A cockroach of mass m lies on the rim of
a uniform disk of mass 10.0m that can rotate freely about its center
like a merry-go-round. Initially the cockroach and disk rotate to-
gether with a rotational velocity of � 1. Then the cockroach walks
halfway to the center of the disk. (a) What is the change �� in the
rotational velocity of the cockroach–disk system? (b) What is the
ratio K2 /K1 of the new kinetic energy of the system to its initial 
kinetic energy? (c) What accounts for the change in the kinetic 
energy?

51. Earth’s Polar Ice Caps If Earth’s polar ice caps fully melted
and the water returned to the oceans, the oceans would be deeper
by about 30 m. What effect would this have on Earth’s rotation?
Make an estimate of the resulting change in the length of the day.
(Concern has been expressed that warming of the atmosphere re-
sulting from industrial pollution could cause the ice caps to melt.)

52. Horizontal Platform A horizontal platform in the shape of a
circular disk rotates on a frictionless bearing about a vertical axle
through the center of the disk. The platform has a mass of 150 kg,
a radius of 2.0 m, and a rotational inertia of 300 kg � m2 about the
axis of rotation. A 60 kg student walks slowly from the rim of the
platform toward the center. If the rotational speed of the system is
1.5 rad/s when the student starts at the rim, what is the rotational
speed when she is 0.50 m from the center?

53. Uniform Disk A uniform disk of mass 10m and radius 3.0r can
rotate freely about its fixed center like a merry-go-round. A smaller
uniform disk of mass m and radius r lies on top of the larger disk,
concentric with it. Initially the two disks rotate together with a rota-

tional velocity of 20 rad/s. Then a slight disturbance causes the
smaller disk to slide outward across the larger disk, until the outer
edge of the smaller disk catches on the outer edge of the larger disk.
Afterward, the two disks again rotate together (without further slid-
ing). (a) What then is their rotational velocity about the center of
the larger disk? (b) What is the ratio K2 /K1 of the new kinetic en-
ergy of the two-disk system to the system’s initial kinetic energy?

54. A Child Stands A 30 kg child
stands on the edge of a stationary
merry-go-round of mass 100 kg
and radius 2.0 m. The rotational in-
ertia of the merry-go-round about
its axis of rotation is 150 kg � m2.
The child catches a ball of mass 1.0
kg thrown by a friend. Just before
the ball is caught, it has a horizon-
tal velocity of 12 m/s that makes an
angle of 37° with a line tangent to
the outer edge of the merry-go-
round, as shown in the overhead
view of Fig. 12-32. What is the rota-
tional speed of the merry-go-round
just after the ball is caught?

55. Bullet Hits Block In Fig. 12-33,
a 1.0 g bullet is fired into a 0.50 kg
block that is mounted on the end of
a 0.60 m nonuniform rod of mass
0.50 kg. The block–rod–bullet sys-
tem then rotates about a fixed axis
at point A. The rotational inertia of
the rod alone about A is 0.060
kg � m2. Assume the block is small
enough to treat as a particle on the
end of the rod. (a) What is the rota-
tional inertia of the block–rod–bul-
let system about point A? (b) If the
rotational speed of the system about
A just after the bullet’s impact is 4.5
rad/s, what is the speed of the bullet
just before the impact?

56. Uniform Rod In Fig. 12-34, a
uniform rod (length � 0.60 m, mass
1.0 kg) rotates about an axis through
one end, with a rotational inertia of
0.12 kg � m2. As the rod swings
through its lowest position, the end of the rod collides with a small 0.20
kg putty wad that sticks to the end of the rod. If the rotational speed
of the rod just before the collision is 2.4 rad/s, what is the rotational
speed of the rod–putty system immediately after the collision?

57. Particle on a Slide The particle
of mass m in Fig. 12-35 slides down
the frictionless surface through
height h and collides with the uni-
form vertical rod (of mass M and
length d), sticking to it. The rod
pivots about point O through the
angle � before momentarily stop-
ping. Find �.
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58. Finding a Mistake Using Dimensional Analysis As part of an
examination a few years ago, a student went through the algebraic
manipulations on an exam shown in Fig. 12-36. At this point you
don’t know what the symbols mean, but given the information
about the dimensions associated with each symbol, decide the
following:

(a) Is it possible that the final equation in Fig. 12-36 is correct? Jus-
tify your answer.
(b) If the final equation is not correct, does that mean that the
starting equation is necessarily wrong? Explain.
(c) If the final equation is not correct and the starting equation is
not wrong, can you find the error using dimensional analysis? If so,
do so. If not, explain why.

[M] � M

[g] � L/T2

[h] � L

[�] � 1/T

[v] � L/T

[R] � L

[I] � ML2

Note: M stands for a mass unit, L is for length unit, and T is for a
time unit.

59. Comparing Conserved Quantities The four objects in
Fig. 12-37 are moving as indicated by the arrows. A curved arrow
indicates rolling without slipping in the direction. For object (a), use
the coordinates shown. For the others, take the origin at the center
of the circle. Use the directions associated with the coordinate axes
shown for object (a). Construct a table with the values of the mag-
nitudes total translational momentum, total rotational momentum,
and total energy of motion at the instant shown for each case. Ex-
press your answers in terms of m, v, and R. (Include an indicator of
the direction where appropriate.) Which system has the largest and
smallest of each of the quantities? Explain your reasoning.

60. Designing a Yo-Yo In testing a design
for a yo-yo, an engineer begins by construct-
ing a simple prototype—a string wound
about the rim of a wooden disk. She puts an
axle riding on nearly frictionless ball bearings
through the axis of the wooden disk and fixes
the ends of the axle. See Fig. 12-38. In order
to measure the moment of inertia of the disk,
she attaches a weight of mass m to the string
and measures how long it takes to fall a given
distance. (a) Assuming the rotational inertia
of the disk is given by I, and the radius of the
disk is R, find the time for the mass to fall a
distance h starting from rest. (b) The engi-
neer doesn’t have a very accurate stopwatch
but wants to get a measurement good to a few percent. She decides
that a fall time of 2 seconds would work. How big a mass should she
use? Imagine you were setting up this experiment, and make rea-
sonable estimates of the parameters you need.

61. Approximating Atwood Figure 12-39
shows an Atwood’s machine with two unequal
masses attached by a massless string. The pul-
ley has a mass of 20 g and a radius of 2 cm. (a)
State three approximations that you can make
to simplify your calculation of the motion of
the blocks. (“Making an approximation” is the
process of ignoring a physical effect because
you expect it to be small and have little effect
on your result if you only care about a few sig-
nificant figures. If you want more significant
figures, you may have to include those effects.)
(b) Using your approximations, find the accel-
eration of block A. (c) What happens to your result if the two masses
are equal? Is the result what you expect? Explain. (d) If you have ig-
nored the rotational inertia of the pulley in your calculation in part
(a) of this problem, set up the equations that would allow you to
solve for the acceleration when it is included (but don’t solve them).

62. The Refrigerator Door A refrigerator has separate shelves on
the door for storing bottles. Thin plastic straps keep the bottles
from falling off the door. Someone in the house slams the door with
a bit too much vigor and a heavy bottle breaks the strap. Do you
think the bottle would be more likely to break the plastic strap if it
is close to the hinge? Close to the handle? Or doesn’t it matter?
Explain your answer in terms of the physics we have learned.
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13 Equilibrium and
Elasticity

Rock climbing may be the ulti-

mate physics exam. Failure can

mean death, and even “partial

credit” can mean severe injury.

For example, in a long chim-

ney climb, in which your torso

is pressed against one wall of a

wide vertical fissure and your

feet are pressed against the

opposite wall, you need to rest

occasionally or you will fall due

to exhaustion. Here the exam

consists of a single question:

What can you do to relax your

push on the walls in order to

rest? If you relax without con-

sidering the physics, the walls

will not hold you up.

What is the answer to
this life-and-death,
one-question exam?

The answer is in this
chapter.
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13-1 Introduction

In this chapter we consider objects that remain motionless in the presence of external
forces and torques. In particular we address the questions: (1) Under what conditions
can objects that experience external forces and torques remain motionless (a state we
will come to call static equilibrium)? (2) Under what conditions can objects that expe-
rience external forces and torques deform in order to remain in static equilibrium?
The answers to these questions are of vital importance to engineers in the design of
structures such as buildings, dams, roads, and bridges. The design engineer must iden-
tify all the external forces and torques that may act on a structure and, by good design
and wise choice of materials, ensure that the structure will remain stable under these
loads.

We begin this chapter by defining static equilibrium. We then use Newton’s laws
to summarize the conditions needed to keep structures in static equilibrium. For sim-
plicity, the conditions for static equilibrium are developed assuming that objects do
not change shape in the presence of external forces.

In Section 6-4 we discussed how the contact forces that an object can exert, such
as normal and tension forces, result from the deformation of tiny spring-like bonds
that separate atoms. For this reason no material is perfectly rigid. “Perfect rigidity’’ is
an idealization, just like the assumptions that air resistance is negligible or that a sur-
face is frictionless. Even a table sags under the load of a sheet of paper. Often, the
change in shape is so small that we cannot observe it directly. However, sometimes
the change in shape is easily noticeable. Engineers need to predict how an object of a
given composition, shape, and size will deform as a function of the external forces on
it for two reasons. First, its change of shape may, in turn, change the nature of the ex-
ternal forces it experiences and thereby force it out of static equilibrium. Second, the
object could be deformed to the breaking point. For these reasons, the remainder of
the chapter deals with an introduction to how structures deform in the presence of ex-
ternal forces.

13-2 Equilibrium

Consider these objects: (1) a book resting on a table, (2) a hockey puck sliding across
a frictionless surface with constant velocity, (3) the rotating blades of a ceiling fan, and
(4) the wheel of a bicycle that is traveling along a straight path at constant speed. For
each of these four objects:

1. The translational momentum of its center of mass is constant.

2. The rotational momentum about its center of mass, or about any other point,
is also constant.

Even though all four of these objects are moving, we say that they are in equilib-
rium because in each case both the translational momentum and rotational momentum
of the object’s center of mass are constant. Thus, the two requirements for equilibrium
are

(13-1)

Static Equilibrium and Stability
Our primary concern in this chapter is with objects that are not moving in any way—
either in translation or in rotation—in the reference frame from which we observe
them. Such objects are defined as being in static equilibrium whenever both the trans-

p:com �  a constant and L
:

com �  a constant.

L
:

com

p:com



Equilibrium 363

lational momentum and rotational momentum of the center of mass of the system is
zero. In other words, if an object is in static equilibrium the constants in Eq. 13-1 must
be zero. Of the four objects mentioned at the beginning of this section, only one—the
book resting on the table—is in static equilibrium.

The balancing rock of Fig. 13-1 is another example of an object that, for the pre-
sent at least, is in static equilibrium. It shares this property with countless other struc-
tures, such as cathedrals, houses, filing cabinets, and taco stands, that remain stationary
over time.

As we discussed in Chapter 10, if a body returns to a state of static equilibrium
after having been displaced from it by a force, the body is said to be in stable static
equilibrium. A marble placed at the bottom of a hemispherical bowl is an example.
However, if a small force can displace the body and end the equilibrium, the body is
in unstable static equilibrium.

As an example of unstable static equilibrium, suppose we balance a domino with
the domino’s center of mass vertically above the supporting edge as in Fig. 13-2a. The
torque about the supporting edge due to the gravitational force on the domino
is zero, because the line of action of is through that edge. Thus, the domino is in
equilibrium. Of course, even a slight force on it due to some chance disturbance ends
the equilibrium. As the line of action of moves to one side of the supporting
edge (as in Fig. 13-2b), the torque due to will cause the domino’s rotation. Thus,
the domino in Fig. 13-2a is in unstable static equilibrium.

The domino in Fig. 13-2c is slightly more stable. To topple this domino, a force
would have to rotate it through and then beyond the balance position of Fig. 13-2a, in
which the center of mass is above a supporting edge. A slight force will not topple this
domino, but a vigorous flick of the finger against the domino certainly will. (If we
arrange a chain of such upright dominos, a finger flick against the first can cause the
whole chain to fall.)

The child’s cubical block in Fig. 13-2d is even more stable because its center of
mass would have to be moved even farther to get it to pass above a supporting
edge. A flick of the finger may not topple the block. (This is why you never see a
chain of toppling blocks.) The worker in Fig. 13-3 is like both the domino and the
square block. Parallel to the beam, his stance is wide and he is stable. Perpendicular
to the beam, his stance is narrow and he is unstable (and at the mercy of a chance
gust of wind).

F
: grav
F
: grav

F
: grav

F
: grav

FIGURE 13-1 ■ A balanced rock in the
Arches National Park, Utah. Although its
perch seems precarious, the rock is in static
equilibrium.

FIGURE 13-2 ■ (a) A domino balanced on one edge, with its center of mass vertically above
that edge. The gravitational force on the domino is directed through the supporting edge.
(b) If the domino is rotated even slightly clockwise from the balanced orientation, then 
causes a torque that increases the rotation. (c) A domino upright on a narrow side is somewhat
more stable than the domino in (a). (d) A cubical block is even more stable.
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FIGURE 13-3 ■ A construction worker bal-
anced above New York City is in static
equilibrium but is more stable parallel to
the beam than perpendicular to it.
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The Conditions for Static Equilibrium
The translational motion of a body is governed by Newton’s Second Law. In its trans-
lational momentum form, this relation is given as

(13-2)

If the body is in translational equilibrium—that is, if is a constant—then = 0
and we must have

(balance of forces). (13-3)

The rotational motion of a body is governed by Newton’s Second Law in its rotational
momentum form, given by Eq. 12-32 as

(13-4)

If the body is in rotational equilibrium—that is, if is a constant—then � 0
and we must have

(balance of torques). (13-5)

Thus, two requirements for a body to be in equilibrium are as follows:

If a body is in equilibrium: (1) The vector sum of all the external forces that act on it must
be zero; and (2) the vector sum of all the external torques that act on it, measured about
any possible point, must also be zero.

Although these requirements obviously hold for static equilibrium, they also hold for
the more general equilibrium in which and are constant but not zero.

We can express the vector form of equilibrium represented by Eqs. 13-3 and 13-5
in terms of three independent component equations, one for each axis in the chosen
coordinate system:

Balance of Balance of
Force Components Torque Components

(13-6)

We shall simplify matters by considering only situations in which the forces that act
on the body lie in the x-y plane. This means that the only torques that can act on the
body must tend to cause rotation around an axis parallel to the z axis. With this as-
sumption, we eliminate one force equation and two torque equations leaving

(balance of forces), (13-7)

(balance of forces), (13-8)

(balance of torques). (13-9) � net
z � 0
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Here, is the net torque that the external forces produce either about the z axis or
about any axis parallel to the z axis.

The conditions for static equilibrium are more stringent than those for general
equilibrium. For example, a hockey puck that is sliding at constant velocity over ice
while spinning about its center of mass with a constant rotational velocity satisfies the
conditions for general equilibrium. But the puck is not in static equilibrium. The re-
quirements for static equilibrium are that:

In static equilibrium all parts of a body must be at rest in an inertial (nonaccelerating)
frame of reference with no net force and no net torque acting on it.

R EADI NG EXERC IS E  13-1: The figure gives six overhead views of a uniform rod on
which two or more forces act perpendicular to the rod. If the magnitudes of the forces are ad-
justed properly (but kept nonzero), in which situations can the rod be in static equilibrium?

■

13-3 The Center of Gravity

Consider an extended body that is close to the surface of the Earth. The gravitational
force on this body is the vector sum of the gravitational forces acting on the individual
elements (the atoms) of the body. Instead of considering all those individual elements,
we can say:

The gravitational force on a body effectively acts at a single point, called the center of
gravity (cog) of the body.

Here the word “effectively” means that if the gravitational forces on the individual
elements were somehow turned off and force at the center of gravity were
turned on, the net force and the net torque (about any point) acting on the body
would not change.

Until now, we have assumed that the gravitational force acts at the center of
mass (com) of the body. This is equivalent to assuming that the center of gravity is at
the center of mass. Considering Fig. 13-4, it can be shown mathematically that

If the local gravitational strength, g, is the same for all elements of a body, then the body’s
center of gravity (cog) is coincident with the body’s center of mass (com).

This constancy is a very good approximation for everyday objects because, as we ex-
plained in Section 3-9, g varies only slightly along Earth’s surface and with altitude.
Thus, for objects like a mouse or a skyscraper, we can assume that the gravitational
force acts at the center of mass.
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FIGURE 13-4 ■ (a) An element of mass 
in an extended body. The y-component of
the gravitational force on it has
moment arm xA about the origin O of the
coordinate system. (b) The gravitational
force on a body is said to act at the
center of gravity (cog) of the body. Here it
has moment arm about origin O.xcog
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READI NG EXERC IS E  13-2: Suppose that you skewer an apple with a thin rod, miss-
ing the apple’s center of gravity. When you hold the rod horizontally and allow the apple to ro-
tate freely, where does the center of gravity end up and why? ■

READI NG EXERC IS E  13-3: A ladder is leaning against a wall as
shown in the figure. If you were going to climb the ladder, are you better off if
there is no friction between the ladder and the wall or no friction between the
ladder and the floor? Explain your answer in terms of the physics you have
learned. Hint: It will be helpful to draw an extended free-body diagram like that
shown in Touchstone Example 13-2 and then consider the conditions that must be
met to keep the ladder from moving.

■

TOUCHSTONE EXAMPLE 13-1: Cat on a Plank

Two workmen are carrying a 6.0-m-long plank as shown in Fig. 13-
5. The plank has a mass of 15 kg. A cat, with a mass of 5.0 kg, jumps
on the plank and hangs on, 1.0 m from the end of the plank. Assum-
ing that the workers are walking at a constant velocity, how much
force does each workman have to exert to hold the plank up?

S O L U T I O N ■ The first Ke y  I d e a here is that for an extended
object such as the plank and cat to move at a constant velocity
without rotating, it must be in equilibrium. Two conditions must
be satisfied for equilibrium: (1) The net force on the plank must be
zero to ensure that its center of mass is not accelerating; and (2)
the net torque on it must be zero to ensure that it is not rotating.
The second Ke y  I d e a here is that we can treat the downward
gravitational forces on each of the mass elements that make up the
plank as a single force acting at the plank’s center of gravity.

The first step of our solution is to identify and locate the forces
acting on the plank and display them as an extended free-body dia-
gram as shown in Fig. 13-6. There are two downward forces on the
plank: the gravitational force assumed to be acting as its center of
gravity and the force exerted by the cat due to its weight. These
must be counterbalanced by the upward forces exerted by worker
A on the left and worker B on the right.

Next we can set up equations to balance the force and torque
components shown in Eq. 13-6. Let us choose a conventional rec-
tangular coordinate system with the origin at the center of gravity
of the plank. The y axis is up, the x axis is in the plane of the page,
and the z axis points out of the page. In this case we find that all the
forces are parallel to the y axis, so there is only one force compo-
nent balance equation,

(force component balance).

(13-10)

In this case, the equation for balancing torque components must be
taken about the z axis (or any axis parallel to it). Let’s stick with
the z axis since it rather conveniently passes through the center of
gravity of the plank. The torque balance equation that follows has a
positive (counterclockwise) z-component of torque due to worker
B’s force and two negative (clockwise) z-components of torque due
to worker A’s force and the force exerted by the cat. We can ex-
press this as

� net
z � �L

2 � FB y ��L
2 � FA y ��L

3 � FC y � � 0.

F net
y � FA y � F grav

y � FB y � FC y � 0

FIGURE 13-5 ■ Workmen holding up a cat and a plank.

FIGURE 13-6 ■ An extended free-body diagram.
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Since we know that the y-components of the workers’ forces are
both positive and the cat’s force component is negative, we can
rewrite the torque balance equation as

(torque component balance).

If we then eliminate the length of the plank by dividing each term
by L/2, we get

(13-11)

Recall that we are trying to use our balance equations to determine
and . We have been given the information

needed to find the gravitational force of the center of gravity of the
plank and the force the cat exerts on the plank. In particular,

(13-12)

and (13-13)FC y � �m cat g � �(5.0 kg)(9.8 N/kg) � �49.0 N.

F grav
y � �Mg � �(15 kg)(9.8 N/kg) � �147 N,

F
:

B � FB y ĵF
:

A � FA y ĵ

FB y � FA y � 2
3FC y � 0.

� net
z � �L

2 FB y �L
2FA y �L

3 FC y � 0

Thus we have two equations (Eqs. 13-10 and 13-11) with two un-
knowns, so we should be able to find our unknowns and . If
we add Eq. 13-10 to Eq. 13-11 and solve for , we get

(Answer)

Finally, we can solve Eq. 13-11 for to get

(Answer)

As you might have predicted, worker B, who is closer to the cat,
has to exert a larger force than worker A does. However, note that
we were able to factor the length L out of the torque balance equa-
tion, so the forces exerted by the workers do not depend on the
length of the plank but only on the fraction of the distance that the
cat is from the ends of the plank.

FA y � FB y � 2
3FC y � 114 N � 2

3(�49 N) � 81.666 N � 82 N.

FA y

� 114.333 N � 114 N.

FB y � 1
2(�F grav

y � 5
3FC y) � 1

2(147 N � (5
3)49 N)

FB y

FB yFA y

TOUCHSTONE EXAMPLE 13-2: Fireman on a Ladder

In Fig. 13-7a, a ladder of length L � 12 m and mass m � 45 kg leans
against a slick (frictionless) wall. Its upper end is at height h � 9.3 m
above the pavement on which the lower end rests (the pavement is
not frictionless). The ladder’s center of mass is L/3 from the lower
end. A firefighter of mass M � 72 kg climbs the ladder until her cen-
ter of mass is L/2 from the lower end. What then are the magnitudes
of the forces on the ladder from the wall and the pavement?

S O L U T I O N ■ First, we choose our system as being the fire-
fighter and ladder together, and then we draw the free-body dia-
gram shown in Fig. 13-7b. The firefighter is represented with a dot
within the boundary of the ladder. The gravitational force on her,

, has been shifted along its line of action, so that its tail is on
the dot. (The shift does not alter a torque due to about any
axis perpendicular to the figure.)

The only force on the ladder from the wall is the horizontal
force (there cannot be frictional force along a frictionless
wall). The force on the ladder from the pavement has a hori-
zontal component that is a static frictional force and a vertical
component that is a normal force.

A Ke y  I d e a here is that the system is in static equilibrium,
so the balancing equations (Eqs. 13-7 through 13-9) apply to it. Let
us start with Eq. 13-9 ( ). To choose an axis about which to
calculate the torques, note that we have unknown forces ( and

) at the two ends of the ladder. To eliminate, say, from the
calculation, we place the axis at point O, perpendicular to the fig-
ure. We also place the origin of an xy coordinate system at O. We
can find torques about O with any of Eqs. 11-29 through 11-31, but
Eq. 11-31 is easiest to use here.

To find the moment arm r� of , we draw a line of action
through that vector (Fig. 13-7b). Then r� is the perpendicular dis-
tance between O and the line of action. In Fig. 13-7b, it extends
along the y axis and is equal to the height h. Similarly, we draw lines
of action for and and see that their moment arms
extend along the x axis. For the distance a shown in Fig. 13-7a, the
moment arms are a/2 (the firefighter is halfway up the ladder) and
a/3 (the ladder’s center of mass is one-third of the way up the lad-
der), respectively. The moment arms for and are zero.

Now, the torques can be written in the form r�F. The balancing
equation becomes � net

z � 0
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FIGURE 13-7 ■ (a) A firefighter climbs halfway up a ladder that is
leaning against a frictionless wall. The pavement beneath the ladder
is not frictionless. (b) A free-body diagram, showing the forces that
act on the firefighter– ladder system. The origin O of a coordinate
system is placed at the point of application of the unknown force
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(13-14)

(Recall our rule: A positive torque corresponds to counterclockwise
rotation and a negative torque corresponds to clockwise rotation.)

Using the Pythagorean theorem, we find that 

Then Eq. 13-14 gives us

(Answer)

But since points to the right, its component is also 
�410 N.

Fx
wallF

: wall

� 4.1 � 102 N.

�
(9.8 m/s2)(7.58 m)(72/2 kg � 45/3 kg)

9.3 m

� F
:wall � �

ga(M/2 � m/3)
h

a � √L2 � h2 � 7.58 m.

� (0)(� F pave
y �) � 0.

�(h)(� F
: wall �) � (a/2)(Mg) � (a/3)(mg) � (0)(� F pave

x �) Now we need to use the force-balancing equations. The equa-
tion gives us

so (Answer)

where the minus sign tells us points to the left.
Since gravitational forces are negative whereas the local gravi-

tational strength g and the force component are positive, the
equation gives us

(force component balance),

so

(Answer)� 1146.6 N � 1.15 � 103 N.

F pave
y � (M � m)g � (72 kg � 45 kg)(9.8 m/s2)

F pave
y �Mg � mg � 0.0 N

F net
y � 0

F pave
y

F pave
x

F pave
x � �F wall

x � �4.1 � 102 N,

F wall
x � F pave

x � 0,

F net
x � 0

TOUCHSTONE EXAMPLE 13-3: Safe on a Boom

Figure 13-8a shows a safe, of mass M � 430 kg, hanging by a rope
from a boom with dimensions a � 1.9 m and b � 2.5 m. The boom
consists of a hinged beam and a horizontal cable that connects the
beam to a wall. The uniform beam has a mass m of 85 kg; the mass
of the cable and rope are negligible.

(a) What is the tension T cable in the cable? In other words, what is
the magnitude of the force on the beam from the cable?

S O L U T I O N ■ The system here is the beam alone, and the forces
on it are shown in the free-body diagram of Fig. 13-8b. The force
from the cable is . The gravitational force on the beam acts at
the beam’s center of mass (at the beam’s center) and is represented
by its equivalent . The vertical component of the force on the
beam from the hinge is and the horizontal component of the
force from the hinge is . The force from the rope supporting
the safe is . Because beam, rope, and safe are stationary, the

magnitude of is equal to the weight of the safe: .
We place the origin O of an xy coordinate system at the hinge.

One Ke y  I d e a here is that our system is in static equilib-
rium, so the balancing equations apply to it. Let us start with
Eq. 13-9 . Note that we are asked for the magnitude of
force and not of force components and acting at
the hinge, at point O. Thus, a second Ke y  I d e a is that, to elimi-
nate and from the torque calculation, we should calcu-
late torques about an axis that is perpendicular to the figure at
point O. Then and will have moment arms of zero.
The lines of action for , , and are dashed in 
Fig. 13-8b. The corresponding moment arms are a, b, and b/2.

Writing torques in the form of and using our rule
about signs for torques, the balancing equation becomes

(a)(� T
: cable �) � (b)(� T

: rope �) � (1
2 b)(mg) � 0.

� net
z � 0

r� �F
:hinge �

F
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yF hinge
x

F hinge
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FIGURE 13-8 ■ (a) A heavy safe is hung
from a boom consisting of a horizontal
steel cable and a uniform beam. (b) A
free-body diagram for the beam.
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Substituting for and solving for , we find that

(Answer)

Since points along the negative x axis, its component is
negative, so 

(b) Find the magnitude of the net force on the beam from
the hinge.

S O L U T I O N ■ Now we want to know the values of the force
components and so we can combine them to get

. Because we know Tx
cable, our Ke y  I d e a here is to apply

the force-balancing equations to the beam. For the horizontal bal-
ance, we write as

and so F hinge
x � �T cable

x � �6093 N.

F hinge
x � T cable

x � 0,

F net
x � 0

� F
: hinge �

F hinge
yF hinge

x

� F
: hinge �

T cable
x � �� T

: cable� � �6.1 � 103 N.

T cable
xT

:cable

� 6093 N � 6100 N.

�
(9.8 m/s2)(2.5 m)(430 kg �  85/2 kg)

1.9 m

� T
: cable� �

gb(M � 1
2 m)

a

� T
:cable��T

:rope �� F
:grav

M � For the vertical balance, we write as

Substituting –Mg for and solving for , we find that

The net force vector is then

From the Pythagorean theorem, we now have

(Answer)

Note that is substantially greater than either the combined
weights of the safe and the beam, which is , or the ten-
sion in the horizontal cable, which is 6.1 � 103 N.

5.0 � 103 N
� F

: hinge �

� √(6093 N)2 � (5047 N)2 � 7.9 � 103 N.

� F
: hinge � � √(F hinge

x )2 � (F hinge
y )2

� (6093 N) î � (5047 N) ĵ.

F
: hinge � F hinge

x  î � F hinge
y  ĵ

� �5047 N � 5.0 � 103 N.

F hinge
y � (m � M)g � (85 kg �  430 kg)(9.8 m/s2)

F hinge
yT rope

y

F hinge
y � mg � T rope

y � 0.

F net
y � 0

TOUCHSTONE EXAMPLE 13-4: Chimney Climbing

In Fig. 13-9, a rock climber with mass m � 55 kg rests during a
“chimney climb,” pressing only with her shoulders and feet against
the walls of a fissure of width w � 1.0 m. Her center of mass is a
horizontal distance d � 0.20 m from the wall against which her
shoulders are pressed. The coefficient of static friction between her
shoes and the wall is , and between her shoulders and
the wall it is . To rest, the climber wants to minimize
her horizontal push on the walls. The minimum occurs when her
feet and her shoulders are both on the verge of sliding.
(a) What is that minimum horizontal push on the walls?

S O L U T I O N ■ Our system is the climber, and Fig. 13-9 shows the
forces that act on her. The only horizontal forces are the normal
forces and on her from the walls, at her feet and
shoulders. The static frictional forces on her are and ,
directed upward. The gravitational force acts downward at her
center of gravity.

A Ke y  I d e a is that, because the system is in static equilib-
rium, we can apply the force-balancing equations (Eqs. 13-7 and 13-
8) to it. The equation tells us that the two normal forces on
her must be equal in magnitude and opposite in direction. We seek
the magnitude of these two forces, which is also the magnitude
of her push against either wall.

The balancing equation gives us

where
(13-15)

We want the climber to be on the verge of sliding at both her feet
and her shoulders. That means we want the static frictional forces
there to be at their maximum values. Those maximum magnitudes
are, from Eq. 6-11, ,

and

(13-16)

where Substituting these expressions
into Eq. 13-15 and solving for the magnitude of gives us� N
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Thus, her minimum horizontal push must be about 300 N.
(b) For that push, what must be the vertical distance h between her
feet and her shoulder if she is to be stable?

S O L U T I O N ■ A Ke y  I d e a here is that the climber will be sta-
ble if the torque-balancing equation giving the z-component of
torque applies to her. This means that the forces on her
must not produce a net torque about any rotation axis. Another
Ke y  I d e a is that we are free to choose a rotation axis that helps
simplify the calculation. We shall write the torques in the form

, where is the moment arm of force . In Fig. 13-9, we
choose a rotation axis at her shoulders, perpendicular to the figure’s
plane. Then the moment arms of the forces acting there (
and ) are zero. Frictional force , the normal force

at her feet, and the gravitational force have the
corresponding moment arms w, h, and d.

Recalling our rule about the signs of torques and the corre-
sponding directions, we can now write the torque component

as� net
z � 0

F
:grav � �mg ĵN

:

shoes

f
:stat

shoesf
:stat

shoulders

N
:

shoulders

F
:

r�r�� F
:

�

(� net
z � 0)

� 299 N � 3.0 � 102 N.

� N
:

� �
mg

�stat
shoes � �stat

shoulders
�

(55 kg)(9.8 m/s2)
1.1 � 0.70

(13-17)

(Note how the choice of rotation axis neatly eliminates 
from the calculation.) Next, solving Eq. 13-17 for h, setting

, and substituting 
and other known values, we find that

(Answer)

We would find the same required value of h if we wrote the torques
about any other rotation axis perpendicular to the page, such as one
at her feet.

If h is more than or less than 0.74 m, she must exert a force
greater than 299 N on the walls to be stable. Here, then, is the ad-
vantage of knowing the physics before you climb a chimney. When
you need to rest, you will avoid the (dire) error of novice climbers
who place their feet too high or too low. Instead, you will know that
there is a “best” distance between shoulders and feet, requiring the
least push, and giving you a good chance to rest.

� 0.739 m �  0.74 m.

� (1.1)(1.0 m) �
(55 kg)(9.8 m/s2)(0.20 m)

299 N

h �
� f

:stat
shoes �w � mgd

� N
:

�
�

� stat
shoes� N

:
�w � mgd

� N
:

�
� �stat

shoesw �
mgd

� N
:

�

299 N� N
:

shoulders � �
� N

:

shoes � �� N
:

� �� f
:stat
shoes � � �stat

shoes� N
:

shoes �

� f
:stat
shoulders �

� (0)(� f
: stat

shoulders �) � (0)(� N
:

shoulders �) � 0.

�(w)(� f
: stat

shoes �) � (h)(N
:

shoes) � (d)(mg)

13-4 Indeterminate Equilibrium Problems

We decided earlier in the chapter to reduce the complication of equilibrium calcula-
tions by only working with situations in which forces that act on a body all lie in the x-
y plane. In these cases we have only three independent equations at our disposal.
These are the two balance of force components equations (typically for the x and y
axis force components) and the one balance of torque components equation about a
rotation axis (typically the z axis). If a problem has more than three unknowns, we
cannot solve it.

It is easy to find such problems. For example, the seesaw shown in Fig. 13-10 with
its board weighing 100 N will remain in static equilibrium if the magnitudes of the
three forces , , and are 150 N, 100 N, and 50 N, respectively. But it will also re-
main in equilibrium for a force combination of 160 N, 80 N, 60 N, and so on. A variant
on Touchstone Example 13-2 provides another example. We could have assumed that
there is friction between the wall and the top of the ladder. Then there would have
been a vertical frictional force acting where the ladder touches the wall, making a to-
tal of four unknown forces. With only three equations, we could not have solved this
problem. Problems like these, in which there are more unknowns than equations, are
called indeterminate.

Yet solutions to indeterminate problems exist in the real world even in cases
where the forces on an object do not necessarily lie in one plane. If you rest the tires
of the car on four platform scales, each scale will register a definite reading, the sum
of the readings being the weight of the car. What is eluding us in our efforts to find the
individual forces by solving equations?

The problem is that we have assumed—without making a great point of it—that
the bodies to which we apply the equations of static equilibrium are perfectly rigid.
By this we mean that they do not deform when forces are applied to them. Strictly,

F
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B

FIGURE 13-10 ■ The seesaw with three
small boxes of unknown weight placed on
its rough board is in static equilibrium. The
board weighing 100 N is pivoted at its
center of mass. However the system forms
an indeterminate structure even when the
total downward force on the seesaw pivot
is known to be . This is because
the weights of the three boxes cannot be
found from the conditions for static
equilibrium alone.
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there are no such bodies. The tires of the car, for example, deform easily under this
load until the car settles into a position of static equilibrium.

We have all had experience with a wobbly restaurant table, which we usually level
by putting folded paper under one of the legs. If a big enough elephant sat on such a
table, however, you may be sure that if the table did not collapse, it would deform just
like the tires of a car. Its legs would all touch the floor, the forces acting upward on
the table legs would all assume definite (and different) values, and the table would no
longer wobble. How do we find the values of those forces acting on the legs?

To solve such indeterminate equilibrium problems, we must supplement equilib-
rium equations with some knowledge of deformation or elasticity, the branch of
physics and engineering that describes how real bodies deform when forces are ap-
plied to them. The next section provides an introduction to this subject.

R EADI NG EXERC IS E  13-4: A horizontal uniform bar of weight 10 N is to hang
from a ceiling by three wires that exert upward forces , , and on the bar. The figure
shows three arrangements for the wires. Which arrangements, if any, are indeterminate (so that
we cannot solve for numerical values of , , and )? 

■

13-5 Elasticity

In Section 6-4 we introduced an idealized model based on atomic physics to help us
explain the behavior of contact forces. This model can also be used to help us under-
stand the elastic properties of solids. When a large number of atoms come together to
form a metallic solid, such as an iron nail, they settle into equilibrium positions in a
three-dimensional lattice, a repetitive arrangement in which each atom has a well-
defined equilibrium distance from its nearest neighbors. The atoms are held together
by interatomic forces that act like tiny springs. A two-dimensional drawing of this
model is shown in Fig. 6-7 and a three-dimensional picture of this model is shown in
Figs. 6-5 and Fig. 13-11. As shown in Fig. 6-19c, when an object that is in equilibrium is
stretched or compressed by forces acting at opposite ends, each atom or molecule
within the material feels oppositely directed forces on it that balance.

The lattice of a metallic solid is remarkably rigid. This is another way of saying
that the “interatomic springs” are extremely stiff. It is for this reason that we perceive
many ordinary objects such as metal ladders, tables, and spoons as perfectly rigid. Of
course, some ordinary objects, such as garden hoses or rubber gloves, do not strike us
as rigid at all. The atoms that make up these objects do not form a rigid lattice like
that of Fig. 13-11 but are aligned in long, flexible molecular chains, each chain being
only loosely bound to its neighbors.

Given the atomic-molecular picture presented above, we can visualize all objects
as being made up of discrete particles. Can we feel or observe the spring-like interac-
tions between particles that make up an object? Consider what happens when we pull
on an object. For example, suppose that you pull on your finger. Your finger does not
immediately come apart, but you feel stretching forces along the entire length of your
finger. These forces along the finger feel greater as you increase the magnitude of
your pull. What you are feeling is an opposing, balancing force that arises within your
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FIGURE 13-11 ■ The atoms of a metallic
solid are distributed on a repetitive three-
dimensional lattice. The interatomic forces
behave like tiny springs.
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finger to oppose your pull. This opposing force works to keep the particles that make
up your finger from moving away from one another (which ultimately would result in
your finger coming apart). This experience can be generalized by saying that the parti-
cles that make up your finger (or other object) are held together by forces that are at-
tractive forces when a stretching force is applied. This attractive force increases as
stretching occurs and the particles that make up the object move apart. Stretching
forces like your pull are called tensile forces.

If instead, you push on your finger (in trying to shorten it), you will again sense
balancing, opposing forces along the length of your finger. Push harder on your finger.
The feeling will change and likely convince you that these opposing forces also in-
crease with increasing applied force. From this experience, we gather that the particles
that make up our finger (or other objects) will encounter repulsive forces if we try to
push them closer together. Furthermore, the repulsive forces increase with decreasing
separation. Squeezing forces like the one you applied to your finger (in an attempt to
shorten it) are called compressive forces. As it turns out, the attractive and repulsive
forces between the particles that make up an object are associated with the electrical
nature of the particles that comprise atoms as well as their interactions on a micro-
scopic scale. However, the nature of the forces between the particles that make up an
object is very much like the nature of a spring force. Hence, we can model these
forces quite well as spring forces. This is why Fig. 13-11 shows the particles connected
with springs.

As you surely have experienced, neither tensile nor compressive forces can be in-
creased indefinitely. Eventually the object simply breaks. In general, solid materials
tend to be strongest under compression forces and weakest under stretching (tensile)
forces. There is another way to break a long thin object—by bending it. If you have
ever tried to break a dry stick, you probably observed that it breaks more easily when
it is bent than when it is stretched or compressed. This makes sense when you visual-
ize what is happening to the atoms or molecules that makeup an object. When
bending occurs, these tiny particles are compressed on one side while they are simul-
taneously stretched on the opposite side. Figure 13-12 shows combinations of forces
that can lead to compression, stretching, and bending.

Tensile and Compressive Forces 
Let’s consider what can happen when we pull on each end of a long, thin, apparently
rigid object with forces of greater and greater magnitude. If you fix one end of a steel
rod that is 1 m long and 1 cm in diameter and hang a subcompact car from the end,
the rod will stretch. However, it stretches only about 0.5 mm, or 0.05% as shown in
Fig. 13-13. In this case the rod acts like an elastic spring that obeys Hooke’s law,

(Eq. 9-16), so that the magnitude of the applied force on it is pro-
portional to the displacement of the spring.

If the deformation of an object is proportional to the magnitude of the applied forces on its
ends and if the object returns to its original length when the forces are removed, then the
deformation is elastic.

If you hang two cars from the rod, the rod will be permanently stretched and will
not recover its original length when you remove the load. The stretching is now in-
elastic. If you hang three cars from the rod, the rod will break or rupture. Just before
breaking, the elongation of the rod will be less than 0.2%. Although deformations of
this size seem small, they are important in engineering practice. (Whether a wing un-
der load will stay on an airplane is obviously important.) 

We want to quantify the relationship between applied tensile or compressive
forces and deformations. Let’s think about elastic deformations (those that are pro-

F
:

x
spring (x) � �k	x:

FIGURE 13-12 ■ Forces leading to (a)
compression, (b) stretching, and (c) bend-
ing.
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(a) Compressive (push) forces

(b) Stretching (pull) forces

(c) Bending forces
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FIGURE 13-13 ■ A subcompact car is
hanging from a 1-m-long steel rod that is 1
cm in diameter. Even though the thin rod
supports the entire weight of the car, the
rod will only stretch about 0.5 mm.
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ΔL = –0.5 mm
(exaggerated)
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L = 1 m

F–

F4



Elasticity 373

portional to the applied forces that cause them). How do these deformations depend
on the particular geometry of the object and nature of the material being placed un-
der tension or compression forces? Let’s see.

If we pull on the ends of a rod of length L parallel to it and with equal but oppo-
site forces of magnitude F, we can measure the change in the rod’s length, . In
practice we can do this by pulling on one end while the other end is attached to an im-
movable object. What happens if we now apply the same force to the end of a rod of
the same material and diameter that is twice as long? By how much will it stretch? We
can figure this out by imagining that the double-length rod is just two rods connected
in the middle as shown in Figure 13-14.

Let’s assume that the magnitude of pulling force on the ends of  our double-length
rod is much greater than the rod’s weight. In static equilibrium, the support point at
the other end of the rod exerts a force of the same magnitude in the opposite direc-
tion. What happens to a small cross section of the rod at its midpoint? As we saw in our
discussion of tension in Chapter 6, every cross-sectional element along the rod will ex-
perience the same pair of opposite pull forces. So the pull force from the lower half of
the rod must be equal in magnitude and opposite in direction to the pull force from the
upper half of the rod. Therefore, each half of the rod will stretch by an amount as
shown in Fig. 13-14. As a result, the total stretch for the double length rod will be 2 .
We can easily generalize this argument to show that for a rod of arbitrary length L, the
amount of stretch produced by a given force will be proportional to the length of
the rod—assuming that we keep everything else about the rod and situation the same.

Similarly, we can consider a rod of the same length as our original rod but with dou-
ble the cross-sectional area. We can picture this as two rods with our original diameter
placed right next to each other but not touching as shown in Fig. 13-15. Now we see that
our two rods would have to share the force between them. This means that each ef-
fectively feels only half of the total force. As a result, the double diameter rods will only
stretch half the amount of the single rod. This implies that the change in length should
be inversely proportional to the cross-sectional area of the rod. That is, the deformation

is proportional to 1/A where A is the cross-sectional area of the rod.
Recapping what we discussed in the paragraphs above: The deformation of the

rod is proportional to the magnitude of the applied force , proportional to the
length of the rod L, and inversely proportional to the cross-sectional area of the rod
A. If we combine these results, we get

or

where c is a constant of proportionality that may well be present. It is customary to
express this proportionality so that we can relate the force magnitude to the length
change for a given rod. Thus, we can write

(13-18)

Let’s examine the factors in parentheses in the equation shown above. First, the (1/c)
factor is a constant, which turns out to depend on the material an object is made of
but not on its shape. This factor is a kind of stiffness constant that characterizes the
tensile and compressive strength of a material. This factor (1/c) is represented in engi-
neering practice by the symbol and is called the Young’s modulus. So, we can write

(13-19)

The second factor given by (A/L) depends only on the geometry of the rod.

F � E� A
L �	L.

E

F � � 1
c ��

A
L �	L.
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FIGURE 13-14 ■ If the forces applied to
the ends of a double-length rod are the
same as those applied to a single-length
rod the double-length rod will experience
twice the deformation. The extent of the
deformation is exaggerated.
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FIGURE 13-15 ■ A rod that has twice the
cross-sectional area but has the same
forces applied to its ends will experience
half the deformation. The deformation is
exaggerated.
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As we mentioned in the beginning of this section, whenever the magnitude of the
force applied to an object is proportional to its deformation in the direction of the
force, the object is behaving like a Hooke’s law spring. Note that if we represent
E(A/L) for a given rod by k, then we can write Eq. 13-19 in the form . In this
form, Eq. 13-19 and Eq. 9-16 describing Hooke’s law for a spring in one dimension are
essentially the same. However, a length of rod or wire in general is much stiffer (that
is, more resistant to deformation) than the same rod or wire would be if it were coiled
into a spring.

It is customary to write Eq. 13-19 in a form known as the stress–strain equation:

(stress–strain equation). (13-20)
F
A

� E� 	L
L �

F � k	L

FIGURE 13-16 ■ When solid matter is in static equilibrium, it can experience oppositely di-
rected tensile, compressive, or shearing forces that deform it. These deformation forces are ex-
perienced by every tiny element that the matter is composed of, such as the cross-sectional
disks of infinitesimal thickness dl depicted here. (a) A cylinder subject to tensile stress stretches
by an amount 	L. (b) A cylinder subject to shearing stress deforms by an amount 	x, somewhat
like a pack of playing cards would. (c) A solid sphere that is immersed in a fluid is subject to
compressive, uniform hydraulic stress. It shrinks in volume by an amount 	V. All the deforma-
tions shown are greatly exaggerated.
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Figure 13-16 shows three ways in which a solid might change its dimensions when
forces act on it. In Fig. 13-16a, a cylinder is stretched. In Fig. 13-16b, a cylinder is de-
formed by a force perpendicular to its axis, much as we might deform a pack of cards
or a book. In Fig. 13-16c, a solid object, placed in a fluid under high pressure, is com-
pressed uniformly on all sides. What the three deformation types have in common is
that a deforming force per unit area produces a unit deformation The de-
forming force per unit area is called a stress and the unit deformation is
called a strain. So, the stresses and strains take different forms in the three situations
of Fig. 13-16. When engineers design structures, they usually work with strains that are
small enough that the materials are elastic (so that stress and strain are proportional
to each other). That is,

(13-21)

As we already mentioned, the modulus is a stiffness factor. Obviously Eq. 13-21 tells
us that when the modulus is very large, it takes a lot of force per unit of cross-
sectional area (stress) to produce a small deformation (strain). In Fig. 13-16, tensile
stress (associated with stretching) is illustrated in (a), shearing stress in (b), and hy-
draulic stress in (c).

stress � modulus �  strain.

	L/LF/A
	L/L.F/A
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To get a better feel for the relationship between the applied force and the force
per unit area (or stress), consider the normal force exerted by the table on a chunk of
clay. Suppose that the clay starts as a tall cylinder. It is then squashed down into a flat
pancake of clay, without any change in mass. Comparing these two geometries for the
clay, we note that the total normal force does not change (the weight has not
changed). However, the area of the clay does change. Therefore, the force per unit
area or stress must also change. As Eq. 13-21 shows, thinking about deformations is
more direct when we consider stress rather than force.

In a typical test of tensile (stretching) properties, the stress on a test specimen
(like that in Figs. 13-17b and 13-18) is slowly increased until the cylinder fractures, and
the stress vs. strain are carefully measured and plotted. For metals, the result is a
graph like those shown in Fig. 13-17 or Fig. 13-19. For a substantial range of applied
stresses, the stress–strain relation is linear, and the specimen recovers its original
dimensions when the stress is removed. Here (Eq. 13-21)
applies. If the stress is increased beyond the yield strength of the specimen, the
specimen becomes permanently deformed. If the stress continues to increase, the
specimen eventually ruptures, at a stress called the ultimate strength .Sultimate

S yield
stress � modulus �  strain

FIGURE 13-19 ■ A stress–strain curve for a soft steel
test specimen such as that of Fig. 13-18. Young’s mod-
ulus is the slope of the first linear portion of the
graph. The specimen deforms permanently when the
stress is equal to the yield strength of the material. It
ruptures when the stress is equal to the ultimate
strength of the material.
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FIGURE 13-17 ■ (a) A graph showing the
deformation of a hard steel bar as a func-
tion of the magnitude of the forces applied
to its ends. The applied forces are in-
creased until the bar ruptures. (b) The
measurements are made using an elec-
tronic force sensor and a rotary motion
sensor to gauge the deformation of the
bar. (Courtesy of PASCO scientific.)

L

FIGURE 13-18 ■ A test specimen, used to
determine a stress–strain curve such as
that of Fig. 13-19. The change 	L that oc-
curs in a certain length L is measured in a
tensile stress–strain test.
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For simple tension or compression, the stress on an object is defined as ,
where F represents the magnitude of the force applied perpendicular to the cross-
sectional area A of the object. The strain, or unit deformation, is then the dimension-
less quantity . This is the fractional (or sometimes percentage) change in
the length of the specimen. Because the strain is dimensionless, and

(Eq. 13-21), the modulus has the same dimensions as the
stress—namely, force per unit area.

The strain in a specimen can often be measured conveniently with a strain
gage (Fig. 13-20). This simple and useful device, which can be attached directly to op-
erating machinery with an adhesive, is based on the principle that its electrical proper-
ties are dependent on the strain it undergoes.

	L/L

stress � modulus �  strain

	L/L

F/A

FIGURE 13-20 ■ A strain gage of overall dimensions 9.8
mm by 4.6 mm. The gage is fastened with adhesive to the
object whose strain is to be measured; it experiences the
same strain as the object. The electrical resistance of the
gage varies with the strain, permitting deformations up
to about 3 mm to be measured.

Although the Young’s modulus for an object is typically almost the same for ten-
sion and compression, the object’s ultimate strength or yield strength may well be dif-
ferent for the two types of stress. Concrete, for example, is very strong in compression
but is so weak in tension that it is almost never used in that manner. In fact, steel bars
are often embedded in concrete to enhance the tensile strength of a concrete struc-
ture. Table 13-1 shows the Young’s modulus and other elastic properties for some ma-
terials of engineering interest.

(b)
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T A B L E 13 - 1
Some Elastic Properties of Selected Materials of Engineering Interest

Young’s Ultimate Yield Strength 
Density � Modulus E Strength Sultimate Syield

Material (kg/m3) (109 N/m2) (106 N/m2) (106 N/m2)

Steela 7860 200 400 250

Aluminum 2710 70 110 95

Glass 2190 65 50b —

Concretec 2320 30 40b —

Woodd 525 13 50b —

Bone 1900 9b 170b —

Polystyrene 1050 3 48 —

aStructural steel (ASTM-A36). bIn compression. cHigh strength. dDouglas fir.

Shearing
Consider Fig. 13-16b. Here the force is applied parallel to the cross-sectional area. We
call this force orientation shearing stress. In the case of shearing, the stress is still a
force per unit area, but the force vector lies in the plane of the area rather than
perpendicular to it. The strain is effectively the angle of the shear in radians as shown
in Fig. 13-16b. It is given by the dimensionless ratio , with the quantities defined
as shown in Fig. 13-16b. The corresponding modulus, which is given the symbol 
in engineering practice, is called the shear modulus. For shearing, the

equation (Eq. 13-21) is written as

(13-22)

where is the magnitude of the component of an applied force that is applied per-
pendicular to the length of the rod. Shearing stresses play a critical role in the buck-
ling of shafts that rotate under load and in bone fractures caused by bending.

Hydraulic Stress
In Fig. 13-16c, the stress is the fluid pressure P on the object. We will discuss fluid
pressure in more detail in Chapter 15. For example, as you will see in Eq. 15-1, if the
forces that act on an area A are uniform, then pressure is the ratio of the force com-
ponent perpendicular to the area and to the area itself. The strain is then ,
where V is the original volume of the specimen and is the absolute value of the
change in volume. The corresponding modulus, with symbol , is called the bulk mod-
ulus of the material. The object is said to be under hydraulic compression, and the
pressure can be called the hydraulic stress. For this situation, we write

(Eq. 13-21) as

(13-23)

The bulk modulus is for water and for steel. The pres-
sure at the bottom of the Pacific Ocean, at its average depth of about , is

. The fractional compression of a volume of water due to this
pressure is 1.8%; that for a steel object is only about 0.025%. In general, solids—with
their rigid atomic lattices—are less compressible than liquids, in which the atoms or
molecules are less tightly coupled to their neighbors.

	V/V4.0 � 107 N/m2
4000 m

16 � 1010 N/m22.2 � 109 N/m2
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SEC. 13-3 ■ THE CENTER OF GRAVITY

1. Brady Bunch A physics Brady Bunch, whose weights in newtons
are indicated in Fig. 13-21, is balanced on a seesaw. What is the num-
ber of the person who causes the largest torque, about the rotation
axis at fulcrum f, directed (a) out of the page and (b) into the page?

READI NG EXERC IS E  13-5: Four cylindrical rods are stretched as in Fig. 13-16a. The
force magnitudes, the cross-sectional areas, the initial lengths, and the changes in length are
shown in the table below. Rank the rods from largest to smallest Young’s modulus.

Force Length Initial 
Rod Magnitude Area Change Length

1 F A L

2 2F 2A 2 L

3 F 2A 2 2L

4 2F A 2L

■

READI NG EXERC IS E  13-6: Visualizing the microscopic particles that make up
objects as shown in Fig. 13-11, discuss the difference between the bending shown in Fig. 13-12c
and the shearing shown in Fig. 13-16b. ■

	L

	L

	L

	L

TOUCHSTONE EXAMPLE 13-5: Stretching a Rod

A structural steel rod has a radius R of 9.5 mm and a length L of 81
cm. A force of magnitude F stretches it along its length.
What are the stress on the rod and the elongation and strain of the
rod?

S O L U T I O N ■ The first Ke y  I d e a here has to do with what is
meant by the second sentence in the problem statement. We as-
sume the rod is held stationary by, say, a clamp or vise at one end.
Then force is applied at the other end, parallel to the length of
the rod and thus perpendicular to the end face there. Therefore, the
situation is like that in Fig. 13-16a.

The next Ke y  I d e a is that we assume the force is applied
uniformly across the end face and thus over an area . Then
the stress on the rod is given by the left side of Eq. 13-20,

(Answer)

The yield strength for structural steel is 2.5 � 108 N/m2, so this rod
is dangerously close to its yield strength.

Another Ke y  I d e a is that the elongation of the rod depends
on the stress, the original length L, and the type of material in the
rod. The last determines which value we use for Young’s modulus E
(from Table 13-1). Using the value for steel, Eq. 13-20 gives us

(Answer)

The last Ke y  I d e a we need here is that strain, which is the di-
mensionless ratio of the change in length to the original length, is

%.

(Answer)

� 1.1 � 10�3 � 0.11

	L
L

�
8.9 � 10�4 m

0.81 m

� 8.9 � 10�4 m � 0.89 mm.

	L �
(F/A)L

E
�

(2.2 � 108 N/m2)(0.81 m)
2.0 � 1011 N/m2

� 2.2 � 108 N/m2.

stress �
F
A

�
F

�R2 �
6.2 � 104 N

(�)(9.5 � 10�3 m)2

A � �R2

F
:

6.2 � 104 N

Problems

4 3 2 1 0 1 2 3 4 meters

220 330 440 560 560 440 330 220 newtons

1 2 3 4 5 6 7 8

f

FIGURE 13-21 ■ Problem 1.



2. Tower of Pisa The leaning Tower of
Pisa (Fig. 13-22) is 55 m high and 7.0 m in
diameter. The top of the tower is dis-
placed 4.5 m from the vertical. Treat the
tower as a uniform, circular cylinder. (a)
What additional displacement, measured
at the top, would bring the tower to the
verge of toppling? (b) What angle would
the tower then make with the vertical?

3. Particle Acted on A particle is acted
on by forces given by � (10 N) �
(�4 N) and � (17 N) � (2 N) . (a)
What force balances these forces? (b)
What direction does have relative 
to the x axis?

4. A Bow is Drawn A bow is drawn at its midpoint until the ten-
sion in the string is equal to the force exerted by the archer. What is
the angle between the two halves of the string?

5. Rope of Negligible Mass A rope of negligible mass is stretched
horizontally between two supports that are 3.44 m apart. When an
object of weight 3160 N is hung at the center of the rope, the rope is
observed to sag by 35.0 cm. What is the tension in the rope?

6. Scaffold A scaffold of mass 60 kg and length 5.0 m is supported
in a horizontal position by a vertical cable at each end. A window
washer of mass 80 kg stands at a point 1.5 m from one end. What is
the tension in (a) the nearer cable and (b) the farther cable?

7. Uniform Sphere In Fig. 13-23 a uni-
form sphere of mass m and radius r is held
in place by a massless rope attached to a
frictionless wall a distance L above the
center of the sphere. Find (a) the tension
in the rope and (b) the force on the sphere
from the wall.

8. Automobile An automobile with a
mass of 1360 kg has 3.05 m between the
front and rear axles. Its center of gravity is
located 1.78 m behind the front axle. With
the automobile on level ground, determine
the magnitude of the force from the
ground on (a) each front wheel (assuming
equal forces on the front wheels) and (b)
each rear wheel (assuming equal forces on
the rear wheels).

9. Diver A diver of weight 580 N
stands at the end of a 4.5 m diving
board  of negligible mass (Fig. 13-
24). The board is attached to two
pedestals 1.5 m apart. What are the
magnitude and direction of the
force on the board from (a) the left
pedestal and (b) the right pedestal?
(c) Which pedestal is being
stretched, and (d) which compressed?

10. Car in the Mud In Fig. 13-25, a man is trying to get his car out
of mud on the shoulder of a road. He ties one end of a rope tightly
around the front bumper and the other end tightly around a utility
pole 18 m away. He then pushes sideways on the rope at its mid-
point with a force of 550 N, displacing the center of the rope 0.30 m

F
:

C

F
:

C

ĵîF
:

Bĵ
îF

:

A

from its previous position, and the car barely moves. What is the
magnitude of the force on the car from the rope? (The rope
stretches somewhat.)

FIGURE 13-25 ■ Problem 10.

11. Meter Stick A meter stick balances horizontally on a knife-
edge at the 50.0 cm mark. With two 5.0 g coins stacked over the
12.0 cm mark, the stick is found to balance at the 45.5 cm mark.
What is the mass of the meter stick?

12. Uniform Cubical A uniform cubical crate is 0.750 m on each
side and weighs 500 N. It rests on a floor with one edge against a
very small, fixed obstruction. At what least height above the floor
must a horizontal force of magnitude 350 N be applied to the crate
to tip it?

13. Window Cleaner A 75 kg window cleaner uses a 10 kg ladder
that is 5.0 m long. He places one end on the ground 2.5 m from a
wall, rests the upper end against a cracked window, and climbs the
ladder. He is 3.0 m up along the ladder when the window breaks.
Neglecting friction between the ladder and window and assuming
that the base of the ladder does not slip, find (a) the magnitude of
the force on the window from the ladder just before the window
breaks and (b) the magnitude and direction of the force on the lad-
der from the ground just before the window breaks.

14. Lower Leg Figure 13-26
shows the anatomical structures
in the lower leg and foot that are
involved in standing tiptoe with
the heel raised off the floor so
the foot effectively contacts the
floor at only one point, shown as
P in the figure. Calculate, in
terms of a person’s weight W,
the forces on the foot from (a)
the calf muscle (at A) and (b)
the lower-leg bones (at B) when
the person stands tiptoe on one
foot. Assume that a � 5.0 cm
and b � 15 cm.

15. Construction In Fig. 13-27,
an 817 kg construction bucket is
suspended by a cable A that is
attached at O to two other ca-
bles B and C, making angles of
51.0° and 66.0° with the horizon-
tal. Find the tensions in (a) cable
A, (b) cable B, and (c) cable C.
(Hint: To avoid solving two
equations in two unknowns, po-
sition the axes as shown in the
figure.)
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FIGURE 13-22 ■

Problem 2.
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r

FIGURE 13-23 ■

Problem 7.
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FIGURE 13-24 ■ Problem 9.
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FIGURE 13-26 ■ Problem 14.

FIGURE 13-27 ■ Problem 15.
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16. System in Equilibrium The sys-
tem in Fig. 13-28 is in equilibrium,
with the string in the center exactly
horizontal. Find (a) tension TA, (b)
tension TB, (c) tension TC, and (d)
angle �.

17. Three Pulleys The force in
Fig. 13-29 keeps the 6.40 kg block
and the pulleys in equilibrium. The
pulleys have negligible mass and
friction. Calculate the tension T in
the upper cable. (Hint: When a cable wraps
halfway around a pulley as here, the magni-
tude of its net force on the pulley is twice the
tension in the cable.)

18. Triceps A 15 kg block is being lifted by
the pulley system shown in Fig. 13-30. The up-
per arm is vertical, whereas the forearm
makes an angle of 30° with the horizontal.
What are the forces on the forearm from (a)
the triceps muscle and (b) the upper-arm
bone (the humerus)? The forearm and hand
together have a mass of 2.0 kg with a center
of mass 15 cm (measured along the arm) from
the point where the forearm and upper-arm
bones are in contact. The triceps muscle pulls
vertically upward at a point 2.5 cm behind
that contact point.

FIGURE 13-30 ■ Problem 18.

19. Forces on Struc-
ture Forces ,
and act on the
structure of Fig. 13-
31 shown in an over-
head view. We wish
to put the structure
in equilibrium by
applying a fourth
force, at a point such
as P. The fourth
force has vector

F
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C

F
:

A, F
:

B

F
:

components and . We are given
that a � 2.0 m, b � 3.0 m, c � 1.0 m,

� 20 N, � 10 N, and 
� 5.0 N. Find (a) , (b) ,

and (c) d.

20. Square Sign In Fig. 13-32, a 50.0
kg uniform square sign, 2.00 m on a
side, is hung from a 3.00 m horizon-
tal rod of negligible mass. A cable is
attached to the end of the rod and
to a point on the wall 4.00 m above
the point where the rod is hinged to
the wall. (a) What is the tension in
the cable? What are the magnitudes
and directions of the (b) horizontal
and (c) vertical components of the
force on the rod from the wall?

21. Wheel and Obstacle In Fig.
13-33, what magnitude of force 
applied horizontally at the axle of
the wheel is necessary to raise the
wheel over an obstacle of height h?
The wheel’s radius is r and its mass
is m.

22. Rock Climber In Fig. 13-34, a 55
kg rock climber is in a lie-back climb
along a fissure, with hands pulling on
one side of the fissure and feet
pressed against the opposite side.
The fissure has width w � 0.20 m,
and the center of mass of the
climber is a horizontal distance d �
0.40 m from the fissure. The coeffi-
cient of static friction between hands
and rock is � 0.40, and be-
tween boots and rock it is �
1.2. (a) What is the least horizontal
pull by the hands and push by the
feet that will keep the climber sta-
ble? (b) For the horizontal pull of
(a), what must be the vertical dis-
tance h between hands and feet? (c) If the climber encounters wet
rock, so that and are reduced, what happens to the an-
swers to (a) and (b), respectively?

23. Beam and Hinge In Fig. 13-35,
one end of a uniform beam that
weighs 222 N is attached to a wall
with a hinge. The other end is sup-
ported by a wire. (a) Find the ten-
sion in the wire. What are the (b)
horizontal and (c) vertical compo-
nents of the force of the hinge on
the beam?

24. Four Bricks Four bricks of
length L, identical and uniform, are
stacked on top of one another (Fig.
13-36) in such a way that part of each
extends beyond the one beneath.
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Find, in terms of L, the maximum values of (a) aA, (b) aB, (c) aC, (d)
aD, and (e) h, such that the stack is in equilibrium.

FIGURE 13-36 ■ Problem 24.

25. Concrete Block The system in
Fig. 13-37 is in equilibrium. A con-
crete block of mass 225 kg hangs
from the end of the uniform strut
whose mass is 45.0 kg. Find (a) the
tension T in the cable and the (b)
horizontal and (c) vertical force
components on the strut from the
hinge.

26. A Door A door 2.1 m high and 0.91 m wide has a mass of
27 kg. A hinge 0.30 m from the top and another 0.30 m from the
bottom each support half the door’s mass. Assume that the center
of gravity is at the geometrical center of the door, and determine
the (a) vertical and (b) horizontal components of the force from
each hinge on the door.

27. Nonuniform Bar A nonuniform
bar is suspended at rest in a horizon-
tal position by two massless cords as
shown in Fig. 13-38. One cord makes
the angle � � 36.9° with the vertical;
the other makes the angle  � 53.1°
with the vertical. If the length L of
the bar is 6.10 m, compute the dis-
tance x from the left-hand end of
the bar to its center of mass.

28. Thin Horizontal Bar In Fig. 13-
39 a thin horizontal bar AB of negli-
gible weight and length L is hinged
to a vertical wall at A and supported
at B by a thin wire BC that makes
an angle � with the horizontal. A
load of weight W can be moved any-
where along the bar; its position is
defined by the distance x from the
wall to its center of mass. As a func-
tion of x, find (a) the tension in the
wire, and the (b) horizontal and (c)
vertical components of the force on
the bar from the hinge at A.

29. Uniform Plank In Fig. 13-40, a uniform plank, with a length L
of 6.10 m and a weight of 445 N, rests on the ground and against a
frictionless roller at the top of a wall of height h � 3.05 m. The
plank remains in equilibrium for any value of � � 70° but slips if

� � 70°. Find the coefficient of sta-
tic friction between the plank and
the ground.

30. Max Tension In. Fig. 13-39,
suppose the length L of the uni-
form bar is 3.0 m and its weight is
200 N. Also, let the load’s weight W
� 300 N and the angle � � 30°.
The wire can withstand a maxi-
mum tension of 500 N. (a) What is
the maximum possible distance x
before the wire breaks? With the
load placed at this maximum x,
what are the (b) horizontal and (c)
vertical components of the force
on the bar from the hinge at A?

31. Stepladder For the stepladder
shown in Fig. 13-41 sides AC
and CE are each 2.44 m long and
hinged at C. Bar BD is a tie-rod
0.762 m long, halfway up. A man
weighting 854 N climbs 1.80 m
along the ladder. Assuming that
the floor is frictionless and ne-
glecting the mass of the ladder,
find (a) the tension in the tie-rod
and the magnitudes of the forces
on the ladder from the floor at
(b) A and (c) E. (Hint: It will help
to isolate parts of the ladder in ap-
plying the equilibrium conditions.)

32. Two Beams Two uniform beams,
A and B, are attached to a wall
with hinges and then loosely
bolted together as in Fig. 13-42.
Find the x- and y-components of
the force on (a) beam A due to its
hinge, (b) beam A due to the bolt,
(c) beam B due to its hinge, and
(d) beam B due to the bolt.

33. Box of Sand A cubical box is
filled with sand and weighs 890 N.
We wish to tip the box by pushing
horizontally on one of the upper
edges. (a) What minimum force is
required? (b) What minimum coef-
ficient of static friction between
box and floor is required? (c) Is
there a more efficient way to tip
the box? If so, find the smallest
possible force that would have to
be applied directly to the box to tip
it. (Hint: At the onset of tipping,
where is the normal force located?)

34. Two Arrangements Four bricks
of length L, identical and uniform,
are stacked on a table in two ways,
as shown in Fig. 13-43 (compare
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Problems 381

with Problem 24). We seek to maximize the overhang distance h in
both arrangements. Find the optimum distances aA, aB, bA, bB, and cal-
culate for the two arrangements. [See “The Amateur Scientist,” Scien-
tific American, June 1985, pp. 133–134, for a discussion and an even
better version of arrangement (b).]

35. Cubical Crate A crate, in the form of a cube with edge lengths
of 1.2 m, contains a piece of machinery; the center of mass of the
crate and its contents is located 0.30 m above the crate’s geometri-
cal center. The crate rests on a ramp that makes an angle � with the
horizontal. As � is increased from zero, an angle will be reached at
which the crate will either start to slide down the ramp or tip over.
Which event will occur (a) when the coefficient of static friction be-
tween ramp and crate is 0.60 and (b) when it is 0.70? In each case,
give the angle at which the event occurs. (Hint: At the onset of tip-
ping, where is the normal force located?)

SEC. 13-5 ■ ELASTICITY

36. Young’s Modulus Figure 13-44 shows the stress–strain curve
for quartzite. What are (a) the Young’s modulus and (b) the ap-
proximate yield strength for this material?

FIGURE 13-44 ■ Problem 36.

37. Aluminum Rod A horizontal aluminum rod 4.8 cm in diameter
projects 5.3 cm from a wall. A 1200 kg object is suspended from the
end of the rod. The shear modulus of aluminum is 3.0 � 1010 N/m2.
Neglecting the rod’s mass, find (a) the shear stress on the rod and
(b) the vertical deflection of the end of the rod.

38. Lead Brick In Fig. 13-45, a
lead brick rests horizontally on
cylinders A and B. The areas of
the top faces of the cylinders are
related by AA � 2AB; the Young’s
moduli of the cylinders are related
by EA � 2EB. The cylinders had
identical lengths before the brick
was placed on them. What fraction
of the brick’s mass is supported (a)
by cylinder A and (b) by cylinder B? The horizontal distances be-
tween the center of mass of the brick and the centerlines of the
cylinders are dA for cylinder A and dB for cylinder B. (c) What is the
ratio dA/dB?

39. Uniform Log In Fig. 13-46,
103 kg uniform log hangs by two
steel wires, A and B, both of radius
1.20 mm. Initially, wire A was 2.50
m long and 2.00 mm shorter than
wire B. The log is now horizontal.
What are the magnitudes of the
forces on it from (a) wire A and
(b) wire B? (c) What is the ratio
dA/dB?

40. Tunnel A tunnel 150 m long, 7.2 m high, and 5.8 m wide (with a
flat roof) is to be constructed 60 m beneath the ground. (See
Fig. 13-47.) The tunnel roof is to be supported entirely by square
steel columns, each with a cross-sectional area of 960 cm2. The
density of the ground material is 2.8 g/cm3. (a) What is the total
mass of the material that the columns must support? (b) How many
columns are needed to keep the compressive stress on each column
at one-half its ultimate strength?

FIGURE 13-47 ■ Problem 40.

41. Cylindrical Aluminum Rod A cylindrical aluminum rod, with
an initial length of 0.8000 m and radius 1000.0 �m, is clamped in
place at one end and then stretched by a machine pulling parallel to
its length at its other end. Assuming that the rod’s density (mass per
unit volume) does not change, find the force magnitude that is re-
quired of the machine to decrease the radius to 999.9 �m. (The
yield strength is not exceeded.)

42. Stress Versus Strain
Figure 13-48 shows the
stress versus strain plot for
an aluminum wire that is
stretched by a machine
pulling in opposite direc-
tions at the two ends of the
wire. The wire has an ini-
tial length of 0.800 m and
an initial cross-sectional
area of 2.00 � 10�6 m2.
How much work does the
force from the machine do
on the wire to produce a
strain of 1.00 � l0�3?
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43. Preventing Velociraptors In the movie Jurassic Park, there is a
scene in which some members of the visiting group are trapped in
the kitchen with dinosaurs outside the door. The paleontologist is
pressing his shoulder near the center of the door, trying to keep out
the dinosaurs who are on the other side. The botanist throws herself
against the door at the edge right next to the hinge. A pivotal point
in the film is that she cannot reach a gun on the floor because she is
trying to help hold the door closed. Would they improve or worsen
their situation if the paleontologist moved to the outer edge of the
door and the botanist went for the gun? Estimate the change in the
torque they are exerting on the door due to the change in their
positions.

44. Rollerboards In the past few years, luggage carts that are
rolling suitcases with handles, called “rollerboards,” have become
commonplace in airports around the country. Often, you will see
people with a briefcase or additional small bag hung on the cart in
one of the two ways shown, either hanging over the front of the cart
(Fig. 13-49a) or resting on the handle (Fig. 13-49b). In this problem,
we will figure out which way is easier for the traveler.

FIGURE 13-49 ■ Problem 44.

In Fig. 13-49c we have sketched a simplified idealization of the
cart as a thin rod with forces acting on it. Three of the forces are
shown, the gravitational attraction of the earth on the cart ( ),
the force of the briefcase on the cart ( ), and the force of the trav-
eler’s hand holding the cart up ( ). Take the angle the cart
makes with the ground to be �, the mass of the cart to be M, and the
mass of the briefcase to be m. Assume that the total length of the
cart, handle and all, is L, the center of gravity of the cart is a dis-
tance Lcog from the wheel, and the center of gravity of the briefcase
is a distance Lbc from the wheel.

(a) Find an expression for the force the hand has to exert in order
to hold up the luggage cart. Express your answer in terms of the
symbols given above.
(b) Does the force the cart exerts on the floor depend on the posi-
tioning of the briefcase? Explain.
(c) Estimate how different the force the hand has to exert would
be in the two cases shown in Figs. 13-49a and 13-49b.

45. TV on a Handtruck You are working as a staff person on the
Internet chat program “Ask Dr. Science.” The following e-mail mes-
sage comes in and needs a quick answer.

My wife just called me at the office and asked the following question.
We had a large computer monitor delivered to her home office this
morning. The delivery person was kind enough to put the box on our

F
:

hand:cart

F
:

bc

F
:grav

cart
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hand truck (see attached picture) but he put it on while the truck was
lying flat. My wife has some back problems and doesn’t want to have
to exert more than 50 pounds of force. The monitor in its box weighs
about 85 pounds. She’s having a business meeting at the house later
and would like to get the box out of the front room. What I want to
know is, can she stand the truck upright safely without hurting her
back?

A schematic diagram of the hand truck with the box on it is shown
in Fig. 13-50. Is it safe for the man’s wife to pull the hand truck up-
right so she can roll the box into the back room? Be sure to explain
why you think so.

FIGURE 13-50 ■ Problem 45.

46. Refrigerator Shelf The shelves in your refrigerator are metal
lattices that are held up by being slipped into two small (about 1
inch long) hollow boxes or “pockets” attached to the interior back
wall of the refrigerator. See Fig. 13-51. If you put a full gallon of
milk on the shelf, is it more likely to break the pocket if you place it
near the back of the refrigerator or near the front? Explain your
answer in terms of the physics you have learned. If the milk is the
only thing on the shelf, estimate the downward force that the shelf
exerts on the front of the pocket when the milk is placed at the
front of the shelf.

FIGURE 13-51 ■ Problem 46.

47. Weighing a Big Suitcase When preparing to travel to Australia
last summer, a friend was concerned that her suitcase was too
heavy. (There is a 20 kg limit on suitcases for international travel).
Unfortunately, she only had a small bathroom scale. When she
placed the suitcase directly on the scale, it covered the dial. She
tried standing on the scale, measuring her weight, and then standing
on the scale holding the suitcase. Unfortunately, when she was hold-
ing the suitcase, she couldn’t see the markings on the scale, and it
was too heavy to hold behind her. Design a way for her to measure
the weight of the suitcase.
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48. Indoor Playground You have
been hired to build a large sand
mound in an indoor playground
and must be careful about the
stress that the sand will put on the
floor. Consulting research litera-
ture, you are surprised to find that
the greatest stress occurs, not di-
rectly beneath the apex (top) of the
mound, but at points that are a dis-
tance rmax from that central point
(Fig. 13-52a). This outward dis-
placement of the maximum stress
is presumably due to the sand
grains forming arches within the
mound. For a mound of height 
H � 3.00 m and angle � � 33°, and
with sand of density � �
1800 kg/m3, Fig. 13-52b gives the
stress � as a function of radius r from the central point of the
mound’s base. In that figure, � center � 40 000 N/m2, �max � 40 024
N/m2, and rmax � 1.82 m.

(a) What is the volume of sand contained in the mound for r �
rmax/2? (Hint: The volume is that of a vertical cylinder plus a cone on
top of the cylinder. The volume of the cone is �R2h/3, where R is the
cone’s radius and h is the cone’s height.) (b) What is the weight W of
that volume of sand? (c) Use Fig. 13-52b to write an expression for
the stress � on the floor as a function of radius r, for r � rmax. (d) On
the floor, what is the area dA of a thin ring of radius r centered on
the mound’s central axis and with radial width dr? (e) What then is
the magnitude dF of the downward force on the ring due to the
sand? (f) What is the magnitude F of the net downward force on the
floor due to all the sand contained in the mound for r � rmax/2?
[Hint: Integrate the expression of (e) from r � 0 to r � rmax/2.] Now
note the surprise: This force magnitude F on the floor is less than the
weight W of the sand above the floor, as found in (b). (g) By what
fraction is F reduced from W; that is, what is (F � W)/W?

49. Moving a Heavy Log Here is a
way to move a heavy log through a
tropical forest. Find a young tree in
the general direction of travel; find
a vine that hangs from the top of
the tree down to ground level; pull
the vine over to the log; wrap the
vine around a limb on the log: pull
hard enough on the vine to bend the tree over; and then tie off the
vine on the limb. Repeat this procedure with several trees; eventu-
ally the net force of the vines on the log moves the log forward. Al-
though tedious, this technique allowed workers to move heavy logs
long before modern machinery was available. Figure 13-53 shows
the essentials of the technique. There, a single vine is shown at-
tached to a branch at one end of a uniform log of mass M. The coef-
ficient of static friction between the log and the ground is 0.80. If
the log is on the verge of sliding, with the left end raised slightly by
the vine, what are (a) the angle � and (b) the magnitude T of the
force on the log from the vine?

50. Uniform Ramp Figure 13-54a shows a uniform ramp between
two buildings that allows for motion between the buildings due to

strong winds. At its left end, it is hinged to the building wall; at its
right end, it has a roller that can roll along the building wall. There
is no vertical force on the roller from the building, only a horizontal
force with magnitude F horiz. The horizontal distance between the
buildings is D � 4.00 m. The rise of the ramp is h � 0.490 m. A man
walks across the ramp from the left. Figure 13-54b gives F horiz as a
function of the horizontal distance x of the man from the building
at the left. What are the masses of (a) the ramp and (b) the man?

FIGURE 13-54 ■ Problem 50.

51. Diving Board In Fig. 13-55, a
uniform diving board (mass �
40 kg) is 3.5 m long and is attached
to two supports. When a diver
stands on the end of the board, the
support on the other end exerts a
downward force of 1200 N on the
board. Where on the board should
the diver stand in order to reduce
that force to zero?

52. Rollers In Fig. 13-56a, a uni-
form 40 kg beam is centered over
two rollers. Vertical lines across
the beam mark off equal lengths.
Two of the lines are centered over
the rollers; a 10 kg package of
tamale is centered over roller B.
What are the magnitudes of the
forces on the beam from (a) roller
A and (b) roller B? The beam is
then rolled to the left until the
right-hand end is centered over
roller B (Fig. 13-56b). What now
are the magnitudes of the forces on the beam from (c) roller A and
(d) roller B? Next, the beam is rolled to the right. Assume that it
has a length of 0.800 m. (e) What horizontal distance between the
package and roller B puts the beam on the verge of losing contact
with roller A?

53. Horizontal Uniform Beam Figure 13-57a shows a horizontal
uniform beam of mass mbeam and length L that is supported on the
left by a hinge with a wall and on the right by a cable at angle �
with the horizontal. A package of mass mpack is positioned on the
beam at a distance x from the left end. The total mass is mbeam �
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mpack � 61.22 kg. Figure 13-
57b gives the tension T in the
cable as a function of the
package’s position given as a
fraction x/L of the beam
length. Evaluate (a) angle �,
(b) mass mbeam, and (c) mass
in mpack.

54. Vertical Uniform Beam
Figure 13-58a shows a verti-
cal uniform beam of length L
that is hinged at its lower
end. A horizontal force 
is applied to the beam at a
distance y from the lower
end. The beam remains verti-
cal because of a cable at-
tached at the upper end, at
angle � with the horizontal.
Figure 13-58b gives the tension T in the cable as a function of the
position of the applied force given as a fraction y/L of the beam
length. Figure 13-58c gives the magnitude F hinge of the horizontal
force on the beam from the hinge, also as a function of y/L. Evalu-
ate (a) angle � and (b) the magnitude of .
55. Makeshift Swing A makeshift swing is constructed by making a
loop in one end of a rope and tying the other end to a tree limb. A
child is sitting in the loop with the rope hanging vertically when an
adult pulls on the child with a horizontal force and displaces the
child to one side. Just before the child is released from rest, the rope

F
:app

F
:app

makes an angle of 15° with the vertical and the tension in the rope
is 280 N. (a) How much does the child weigh? (b) What is the mag-
nitude of the (horizontal) force of the adult on the child just before
the child is released? (c) If the maximum horizontal force that the
adult can exert on the child is 93 N, what is the maximum angle
with the vertical that the rope can make while the adult is pulling
horizontally?

56. Emergency Stop A car on a horizontal road makes an emer-
gency stop by applying the brakes so that all four wheels lock and
skid along the road. The coefficient of kinetic friction between tires
and road is 0.40. The separation between the front and rear axles is
4.2 m, and the center of mass of the car is located 1.8 m behind the
front axle and 0.75 m above the road; see Fig. 13-59. The car weighs
11 kN. Calculate (a) the braking acceleration of the car, (b) the nor-
mal force on each wheel, and (c) the braking force on each wheel.
(Hint: Although the car is not in translational equilibrium, it is in
rotational equilibrium.)

FIGURE 13-59 ■ Problem 56.

384 CHAPTER 13 Equilibrium and Elasticity

Cable

θ

L

x

(a)

(b)

700

600

500
0 0.2 0.4

x/L
0.6 0.8 1

T
 (

N
)

FIGURE 13-57 ■ Problem 53.

(a)

F app

θ

Cable
y

L

0.75 m

1.8 m

4.2 m

T
 (

N
)

600

500

400

300

200

100

0 0.2 0.4
y/L

0.6 0.8 1

(b)

F
h

in
ge

 (
N

)

300

240

180

120

60

0 0.2 0.4
y/L

0.6 0.8 1

(c)

FIGURE 13-58 ■ Problem 54.



14

Quasars (or quasi-stellar objects) are highly luminous compact

objects that are larger than stars and smaller than whole

galaxies. Although some quasars emit energy at a trillion

times the rate of our Sun and are bigger than our entire solar

system, they cannot be detected with the naked eye. This is

because quasars are the most distant objects yet detected in

our universe. In 1979, astronomers using a powerful telescope

were astonished to discover two similar-looking quasars that

have the same spectrum of light coming from them. These

are shown in the upper left and lower right corners of the

photograph. Is this a rare coincidence or is there another

explanation for the similarity of the two images?

How can Einstein’s theory of
gravitation be used to
explain this coincidence?

The answer is in this chapter.

Gravitation

385



386 CHAPTER 14 Gravitation

14-1 Our Galaxy and the Gravitational Force

Our Milky Way galaxy is a disk-shaped collection of gas, dust, and billions of stars, in-
cluding our Sun and solar system. Figure 14-1 shows how our galaxy would look if we
could view it from outside. Earth is near the edge of the disk of the galaxy, about
26 000 light-years (2.5 � 1020 m)  from its central bulge. Our galaxy is a member of
the Local Group of galaxies, which includes the Andromeda galaxy at a distance of
2.5 � 106 light-years, and several closer dwarf galaxies, such as the Large Magellanic
Cloud.

FIGURE 14-1 ■ A scientifically con-
structed image of our Milky Way galaxy
from the perspective of an observer out-
side the galaxy. Painting by Jon Lomberg,
taken from a mural in the Where Next,
Columbus? exhibit at the National Air and
Space Museum.

The Local Group is part of the Local Supercluster of galaxies. Measurements
taken during and since the 1980s suggest that the Local Supercluster and the super-
cluster consisting of the clusters Hydra and Centaurus are all moving toward an ex-
ceptionally massive region called the Great Attractor. This region appears to be about
300 million light-years away, on the opposite side of the Milky Way from us, past the
clusters Hydra and Centaurus.

The force that binds together these progressively larger structures, from star to
galaxy to supercluster, and may be drawing them all toward the Great Attractor, is
known as the gravitational force. This force not only holds you on Earth but also
reaches out across intergalactic space and acts between galaxies. It is our focus in this
chapter.

14-2 Newton’s Law of Gravitation

One of the strengths of physics as a scientific discipline is that physicists can often find
connections between seemingly unrelated phenomena. The physicist’s search for uni-
fication has been going on for centuries, and we continue the tradition in this chapter.
We will search for connections between what we have already learned about gravita-
tion close to the Earth’s surface and a more general theory of gravitation.

In order to get started on this, we now turn our attention to the universe beyond
Earth and see what Newton’s laws reveal about the motion of a heavenly body 
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like the Moon. Based on careful astronomical observation, we know the Moon orbits
the Earth in an approximately circular path. Newton’s laws of motion say that since
the Moon is not going in a straight line there must be a force acting on it. This is be-
cause the direction of the speed (and so the velocity) is changing.

What force keeps the Moon in its circular orbit? Well, we know everything is
pulled to Earth by a gravitational force, so this is a logical place to start. Suppose we
assume that the magnitude of the force exerted on the moon by the Earth is given by
the mass of the Moon, m, times the local gravitational strength at the Earth’s surface
given by g � 9.8 N/kg. If we also assume that this magnitude of the gravitational force
on the Moon results in a centripetal acceleration, then the following equation should
hold:

(proposed relationship),

where v is the Moon’s orbital speed, and r is its distance from the Earth. However,
when we calculate the Moon’s speed based on its orbit around the Earth, we discover
that the actual magnitude of the Moon’s centripetal acceleration, v 2/r, is thousands of
times smaller than this equation would suggest. The gravitational force that we know
and love (after all, it keeps our feet on the ground and our air from leaking away) is
much too big to keep the Moon in its orbit. In fact, the gravitational force is about
3600 times too big. Such a gravitational force would cause the Moon to spiral in to-
ward the Earth very rapidly.

Rather than abandon the idea that the gravitational force holds objects (including
the Moon) near the Earth’s surface, Newton suggested that perhaps gravity got
weaker as you got farther from the center of the Earth. Since the Moon is about 60
Earth radii away, a gravitational force that decreased as the inverse square of the dis-
tance r between the Earth and the Moon would be just strong enough to be the cen-
tripetal force holding the Moon in its orbit. Furthermore, in our everyday life we only
observe objects falling extremely short distances compared with the radius of the
Earth. For this reason, a gravitational force that decreases as 1/r 2 would appear con-
stant to us. So, such a form for the gravitational force would be consistent with both
astronomical observations and those made of objects close to the Earth’s surface.

Suppose we pull together what we can observe and infer in an effort to construct
a general statement regarding the gravitational force. We know from � mg that
the gravitational force from the Earth on a mass m is proportional to the mass. There-
fore we expect for two interacting masses mA and mB that the gravitational force 
on mA is proportional to mA and the force on mB is proportional to mB. However,
Newton’s Third Law tells us that these two forces must have equal magnitudes. So,
the force magnitudes must be proportional to both masses. If the masses are separated 
by a distance r, our discussion of a 1/r 2 dependence above implies that the force 
magnitudes should be given by

. (14-1)

In 1665, the 23-year-old Isaac Newton figured this out and made a historic contri-
bution to physics. He showed that the force that holds the Moon in its orbit is the
same force that makes an apple fall. We take this so much for granted now that it is
not easy for us to comprehend the ancient belief that the motions of Earth-bound and
heavenly bodies were governed by different laws. Furthermore, Newton determined
that not only does Earth attract an apple and the Moon, but every body in the uni-
verse attracts every other body; this generalized tendency of bodies to move toward
each other is called gravitation.

Newton’s conclusion takes a little getting used to, because the familiar attraction
of Earth for Earth-bound bodies is so great that it overwhelms the attraction that

F grav
B:A � F grav

A:B �
mAmB

r2

� F
:grav �

mg �
mv2

r



Earth-bound bodies have for each other. For example, Earth attracts an apple with a
force magnitude of about 0.8 N. You also attract a nearby apple (and it attracts you),
but this force of attraction has less magnitude than the weight of a speck of dust, so
we don’t notice it.

However, if you consider the expression above (Eq. 14-1), you may notice that
the units don’t match. We have a unit of Newtons on the left, but not on the right.
Newton suggested using a constant of proportionality, G, in the expression to create
the equation describing the magnitude of the gravitational force between two
particles:

(Newton’s law of gravitation for particles). (14-2)

This equation is the symbolic form of Newton’s law of gravitation, which is expressed
in words as follows:

Newton’s law of gravitation: Every particle attracts any other particle with a gravitational
force. This force has (1) a magnitude that is directly proportional to the product of the
masses of the two particles and inversely proportional to the square of the distance between
them; and (2) a direction that points along a line connecting the centers of the interacting
particles.

The constant of proportionality G is known as the gravitational constant. Careful
measurements show that in SI units G has a value of

G � 6.67 � 10�11 N � m2/kg2

� 6.67 � 10�11 m3/kg � s2.
(14-3)

As Fig. 14-2 shows, a particle mB attracts a particle mA with a gravitational force
that is directed toward particle mB. Particle mA attracts particle mB with a grav-

itational force that is directed toward mA. The forces and form a
third-law force pair. So, we know that they must be opposite in direction but equal in
magnitude. Thus,

These interaction forces depend on the separation of the two particles, but not on
their location: the particles could be in a deep cave or in deep space. Also forces

and are not altered by the presence of other bodies, even if those bodies
lie between the two particles we are considering. We know this because we observe
that interposing an object (like a table) between the Earth and a book does not affect
the gravitational force that the Earth exerts on the book.

Applying the Law of Gravitation to Spherical Objects
Although Newton’s law of gravitation applies strictly to particles, we can also apply it
to real objects as long as the sizes of the objects are small compared to the distance
between them. The Moon and Earth are far enough apart so that, to a good approxi-
mation, we can treat them both as particles. But, what about an apple and Earth?
From the point of view of the apple, the broad and level Earth, stretching out to the
horizon beneath the apple, certainly does not look like a particle.

Newton solved the apple–Earth problem by proving an important theorem called
the shell theorem:
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FIGURE 14-2 ■ Two particles, of masses
mA and mB and with separation r, attract
each other according to Newton’s law of
gravitation described in Eq. 14-2. The mu-
tual forces of attraction are equal in mag-
nitude and opposite in direction so that
F
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A uniform spherical shell of matter attracts a particle that is outside the shell as if all the
shell’s mass were concentrated at its center.* 

Earth can be thought of as a nest of such shells, one within another, with the outer
shells having less density. The shell theorem tells us that each shell will attract a parti-
cle outside Earth’s surface as if the mass of that shell were at the center of the shell. If
we also invoke the principle of superposition, then from the apple’s point of view, the
Earth does behave like a particle, one that is located at the center of Earth and has a
total mass equal to that of Earth. So for spherical objects that don’t overlap each other,

The value of r in the expression GmAmB/r2 is always the center-to-center separation of two
objects provided they do not overlap.

Suppose, as shown in Fig. 14-3, the Earth pulls down on an apple with a force of
magnitude 0.80 N. The apple must then pull up on Earth with a force of magnitude
0.80 N, which we take to act at the center of Earth. Although the forces are matched
in magnitude, they produce different accelerations due to the difference in the masses
of the two objects. For the apple, the magnitude of the acceleration is about 9.8 m/s2,
the familiar acceleration of a falling body near Earth’s surface. For Earth, the acceler-
ation magnitude measured in a reference frame attached to the center of mass of the
apple–Earth system is only about 1 � 10�25 m/s2.

It is important to remember that Newton’s theory of gravitation is an “action-at-
a-distance” theory. That is, two objects exert gravitational forces on one another even
if they do not touch one another. Newton’s Third Law holds, so the forces between
the two interacting bodies are equal and opposite instant by instant. This is interesting
in that changes in the forces occur instantaneously at two different locations. So, vari-
ations cannot be propagated through intervening space at finite velocity or there
would be an elapsed time interval. Massive objects do manage to interact instanta-
neously over huge intervening spaces. In the “General Scholium” section at the end of
Book III of his Principia, Newton acknowledged this difficulty:

“But hitherto I have not been able to discover the cause of those properties of
gravity from phenomena, and I frame no hypotheses . . . . to us it is enough that
gravity does really exist, and acts according to the laws which we have ex-
plained, and abundantly serves to account for all the motions of the celestial
bodies and of our sea.”†

Newton was clearly pleased that his theory could unify known astronomical observa-
tions. Ultimately, it was Einstein who successfully undertook a deeper inquiry into the
very troubling and fundamental problem of how action-at-a-distance forces “travel”
across space instantaneously. The answer he found lies in the fact that forces are not
instantaneously transmitted. Rather, they are just transmitted very fast—at the speed
of light. Although we introduce Einstein’s theory of gravitation in Section 14-7, his ex-
planation of action-at-a-distance phenomena is beyond the scope of this text.

READI NG EXERC IS E  14-1: In order to calculate the relative amount of force the
Earth exerts on the Moon as compared to a mass close to the Earth’s surface having the same
mass as the Moon, you do not need to know the mass of the Moon. Why? ■

FIGURE 14-3 ■ The apple pulls up on
Earth just as hard as Earth pulls down on
the apple.

F grav

F grav

Center of
Earth

apple     Earth = –F grav
Earth     apple

Earth     apple

F grav
apple     Earth

* This is an example of Gauss’ law applied to gravitational forces. We introduce Gauss’ law in more detail in
Chapter 24.

† Isaac Newton. Principia, Vol 2: The System of the World. Translated by Andrew Motte and revised by
Florian Cajori. (University of California Press Berkeley: 1962), p. 547.



READI NG EXERC IS E  14-2: In 1666, the following facts stood by themselves without
additional ramifications or supporting evidence: (1) The centripetal acceleration of the Moon is
3600 times smaller than the gravitational acceleration near the Earth’s surface and (2) the
square of the ratio of the Earth’s radius to the mean radius of the Moon’s orbit is 1/3600. How
would you interpret the meaning of these facts? Do they “prove’’ that the Moon is held in its
orbit by gravity? ■

14-3 Gravitation and Superposition

Suppose that we are given a group of particles and we want to find the net (or resul-
tant) gravitational force on any one of them due to the others. How would we go
about doing this? Previously, we found by observation that we could get the net force
on an object by finding the vector sum of all of the forces acting on the object. This
straightforward vector addition procedure is called “superposition.” However, we
should keep in mind that there are instances in which a simple linear superposition
does not work. For example, superposition doesn’t work on the atomic level. If we
bring a neutron and proton together to form a heavy hydrogen nucleus, the mass of
our nucleus is less than the sum of the neutron and proton masses.

When we test this idea of using the principle of superposition for gravitational
forces, we find that it does work. Thus, we can compute the gravitational force that
acts on our selected particle due to each of the other particles, in turn, by adding these
forces vectorially. For n interacting particles, the force on the first particle is given by
the vector addition

(14-4)

Here is the net gravitational force on particle A, is the gravitational force
on particle A from particle B, and so on. We can express this equation more com-
pactly as a vector sum:

(14-5)

What about the gravitational force on a particle from a real extended object? The
force can be found by dividing the object into small particle-like parts, and then calcu-
lating the vector sum of the forces on the particle from all the parts. In the limiting
case, we can divide the extended object into differential parts of mass dm, each of
which produces a differential gravitational force on particle A. In this limit, the
net gravitational force on the particle is given by an integral 

(14-6)

taken over the entire extended object. If the extended object has spherical symmetry
and if particle A lies outside of the sphere, we can avoid the integration by assuming
that the extended object’s mass is concentrated at its center. In this case we can use
Newton’s law of gravitation for particles described in Eq. 14-2,
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READI NG EXERC IS E  14-3: A particle is to be placed, in turn, at the same distance,
r, from the center of the four objects, shown in the figure, each of mass m: (1) a small uniform
solid sphere, (2) a small uniform spherical shell (3) a large uniform spherical shell and (4) a
large uniform solid sphere. In each situation, the distance between the particle and the center of
the object is r. Rank the objects according to the magnitude of the gravitational force they ex-
ert on the particle, greatest first.

■

Figure 14-4 shows an arrangement of three particles, particle A hav-
ing mass mA � 6.0 kg and particles B and C having mass mB � mC

� 4.0 kg, and with distance a � 2.0 cm. What is the net gravitational
force that acts on particle A due to the other particles?

S O L U T I O N ■ One Ke y  I d e a here is that, because we have
particles, the magnitude of the gravitational force on particle A due
to particle B is given by Eq. 14-2 ( � GmAmB/r2). Thus,
the magnitude of the force on particle A from particle B is

Similarly, the magnitude of force on particle A from particle
C is

� 1.00 � 10�6 N.

�
(6.67 � 10�11 m3/kg �s2)(6.0 kg)(4.0 kg)

(0.040 m)2

FC:A �
GmAmC

(2a)2

F
:

C:A

� 4.00 � 10�6 N.

�
(6.67 � 10�11 m3/kg �s2)(6.0 kg)(4.0 kg)

(0.020 m)2

FB:A �
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To determine the directions of and we use this
Ke y  I d e a : Each force on particle A is directed toward the parti-
cle responsible for that force. Thus, is directed in the positive
direction of y (Fig. 14-4b) and has only the y-component

. Similarly, is directed in the negative direction of
x and has only the x-component .

To find the net force on particle A, we first use this very
important Ke y  I d e a : Because the forces are not directed along
the same line, we cannot simply add or subtract their magnitudes or
their components to get their net force. Instead, we must add them
as vectors.

We can do so on a vector-capable calculator. However, here we
note that and are actually the x- and y-components of

. Therefore, we shall follow the guide of Eq. 4-6 to find first the
magnitude and then the direction of . The magnitude is

(Answer)

Relative to the positive direction of the x axis, Eq. 4-6 gives the di-
rection of as

Is this a reasonable direction? No, the direction of must be
between the directions of and . A calculator displays
only one of the two possible answers to a tan�1 function. We find
the other answer by adding 180°. That gives us

(Answer)

which is a reasonable direction for .F
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FIGURE 14-4 ■ (a) An arrangement of three particles. (b) The
forces acting on the particle of mass mA due to the other particles.
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14-4 Gravitation in the Earth’s Vicinity

The Earth has a mean radius of just over 6000 km. In this section we will consider the
gravitational acceleration constants of objects located at various altitudes between 
0 km (at the Earth’s surface) and about 36 000 km (at the greatest altitude communi-
cations satellites achieve). We will also consider how the Earth’s rotation and nonuni-
formity can cause relatively small changes in the measured weight for objects at the
Earth’s surface.

Gravitational Forces in the Vicinity of a Spherical Earth
Let’s assume that Earth is spherically symmetric and has a total mass M and radius R.
The magnitude of the gravitational force from the Earth on a particle of mass m,
located outside Earth a distance r 
 R from Earth’s center can be expressed by modi-
fying Eq. 14-2 as

(14-7)

Let’s focus on the particle of mass m. In Chapter 3 we introduced the local gravita-
tional strength, g, as the ratio of the particle’s gravitational force magnitude and its
mass. In symbols this ratio is expressed as g � F grav/m (Eq. 3-7). If we combine Eq. 3-7
with Eq. 14-7 we see that the local gravitational strength can be expressed as

(14-8)

where the units for g are N/kg.
If our mass m experiences no other forces when it is released, it will fall toward

the center of Earth under the influence of the only gravitational force As we
saw in Chapter 3, according to Newton’s Second Law the particle’s gravitational 
acceleration constant, , is given by

By combining F grav � G Mm/r2 (Eq. 14-7) and the equation immediately above, the
magnitude of the gravitational acceleration constant can be expressed in terms of the
gravitational constant, G, the mass of the Earth, M, and the distance of the particle
from the Earth’s center, r, as

(gravitational acceleration constant), (14-9)

where the units for a are m/s2. The similarity of Eqs. 14-8 and 14-9 remind us that the
gravitational acceleration constant and the Earth’s local gravitational strength have the
same value. However, as we observed in Section 3-9, we use different but dimension-
ally equivalent units to describe these two quantities.

Table 14-1 shows the calculated values of the magnitude of the gravitational
acceleration constant of an object as a function of altitude. The calculations are made
using a � G (M/r 2) (Eq. 14-9) along with the known value for the mass of the Earth
of M � 5.98 � 1024 kg. We note from the calculations in the table that anywhere on
the Earth’s land surface, from the bottom of the Dead Sea to the top of Mt. Everest,
the gravitational acceleration constant calculated from the expression GM/r 2 is the
same to two significant figures. In other words, the principles developed in this chapter

a � G
M
r2

F
: grav

m
� a:.

a:

F
: grav.

g � G
M
r2 ,

F grav � G
Mm
r 2 .

392 CHAPTER 14 Gravitation



Gravitation in the Earth’s Vicinity   393

TA B L E 14 - 1
Calculated Values of Gravitational Acceleration Constant
with Altitude

Altitude* (km) a (m/s2) Altitude Example

0.0 9.8 Mean Earth radius

8.8 9.8 Mt. Everest

36.6 9.7 Highest manned balloon

400 8.7 Space shuttle orbit

35 700 0.2 Communications satellite

*Altitude � r � R, where the radius of the Earth R � 6370 km.

reduce to the same familiar gravitational acceleration constant 9.8 m/s2 that has been
measured countless times in physics laboratories throughout the world.

The reduction of our “new” theory of gravitation discussed above to what we
already had found to be true for the specific case of gravitation close to the surface of
the Earth is an example of a general requirement for any “new” scientific model.
When a model is developed to explain new, more general or more complicated phe-
nomena, the “new” model must provide correct predictive information for the set of
phenomena it describes and it must also be consistent with any simpler, more specific,
or previously investigated phenomena. For example, in future chapters we will see
that relativistic physics (for very high velocities) reduces to the nonrelativistic physics
we have been studying so far when velocities are much less than the speed of light.
Quantum physics reduces to classical physics for large, low-energy objects.

It is interesting to note that we can use our measurement of the gravitational
acceleration constant at the Earth’s surface (Eq. 14-9) along with our knowledge of G
and r to calculate the mass of Earth!

Variations of Gravitational Forces over the Earth’s Surface
In Section 6-3 we made two assumptions. First, we ignored the variations of the gravi-
tational force and gravitational acceleration constant for an object at different loca-
tions on the Earth’s surface. Second, we assumed that weight of an object as measured
on a scale and the gravitational force on it, given by Eq. 14-7, are the same. Although
these two assumptions are approximately true, geophysicists have measured slight
variations or anomalies in the Earth’s local gravitational field strength at different lo-
cations. There are many reasons for these anomalies. Some of the most significant are:

1. The Earth has an uneven surface. The Earth is covered with hills and mountains
that rise above sea level and some valleys that are below sea level. The gravita-
tional acceleration constant depends on altitude. When an object is closer to the
dense core at a low altitude, it experiences a greater gravitational acceleration
than it would at a high altitude. The distance between an object on dry land at the
Earth’s surface and the Earth’s mean sea level varies from �0.414 km at the
Dead Sea to �8.85 km at the summit of Mt. Everest. There is a difference of 
0.03 m/s2 in gravitational acceleration constant between sea level and the top 
of Everest.

2. The Earth bulges at its equator. Even if we were to “sand down” the bumps that
represent hills and mountains rising above sea level and fill in the valleys below
sea level, the Earth has the shape of an oblate spheroid. In other words, its shape
is that of a sphere flattened at the poles and bulging at the equator. The equator-
ial radius is greater than its polar radius by 21 km. Thus, an object at the poles is



closer to the dense core of Earth than an object at the equator is. This is one of
the reasons why the gravitational acceleration constant increases when we move
it from the equator (where the latitude is 0°) toward either pole (where the lati-
tude is 90°). This difference is about one-half of one percent or about 0.05 m/s2.

3. The Earth is rotating. The rotation axis runs through the north and south poles
of Earth. An object located on Earth’s surface anywhere except at those poles
must rotate in a circle about the rotation axis and thus must have a centripetal
acceleration directed toward the center of the circle. This centripetal acceleration
is caused by a centripetal force that is zero at the poles and most pronounced at
the equator. This centripetal acceleration causes the apparent weight and
measured gravitational acceleration of an object at the equator to be about 0.35%
smaller than it would be at a pole. This latitude-dependent reduction in gravita-
tional acceleration constant is about 0.03 m/s2. (See below for more details.)

4. The Earth has a crust of uneven thickness and density. Even after geophysicists
make corrections for the effects of altitude and latitude, measurements show that
the gravitational force the Earth exerts on an object varies from location to loca-
tion for other reasons. This is attributed to variations in: (1) the thickness of the
Earth’s crust (or outer section) and (2) the density of the rocks at the surface.
Measurements in gravitational variations are useful in locating oil and mineral
deposits. An example of regional variations is shown in Fig. 14-5.

Calculating the Effects of the Earth’s Rotation
Recall from Chapter 6 that the weight we perceive for a mass, the object’s apparent
weight, is associated with the normal force on the object and can vary from the value
mg if other forces act on the object. To see how Earth’s rotation causes the apparent
weight of an object at the Earth’s surface to differ from the magnitude of the gravita-
tional force on it, let us analyze a simple situation in which a crate of mass m is on a
scale at the equator. Figure 14-6a shows this situation as viewed from a point in space
above the north pole.

FIGURE 14-5 ■ Colored free-air gravity
anomaly map of the Earth, centered on the
Atlantic Ocean. These anomalies are the
differences between the theoretical value
for the gravity at the surface and the mea-
sured value. The colors range from purple
(low gravity), through blue, green (nor-
mal), yellow, red, to white (high). The
anomalies are only a tiny fraction of the
gravitational field strength, but they can
provide information on the Earth’s inter-
nal structure. The gravity low in Hudson
Bay, Canada (upper left), occurs partly be-
cause the area’s rocks are recovering from
being compressed during the ice age.
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Figure 14-6b, a free-body diagram for the crate, shows the two forces on the crate,
both acting along a radial axis r that extends from Earth’s center. The normal force 
on the crate exerted on it by the scale is directed outward, in the positive direction of
axis r. The gravitational force, , acts inward on the object of mass m. Because the
crate travels in a circle about the center of Earth as the Earth turns, the crate also ex-
periences a centripetal acceleration directed inward with its radial component given
by ar. From Eq. 11-20, we know the magnitude of this acceleration is equal to � 2R,

F
: grav

N
:

FIGURE 14-6 ■ (a) A crate lies on a scale at Earth’s equator, as seen along
Earth’s rotation axis from above the north pole. (b) A free-body diagram for
the crate, with a radially outward r axis. The gravitational force on the crate is
represented by . The normal force (or apparent weight) on the crate as
read on a scale is represented by . Because of Earth’s rotation, the crate also
has a centripetal acceleration and hence a net centripetal force directed to-
ward Earth’s center.
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where � is Earth’s angular speed and R is the circle’s radius (approximately Earth’s
radius). Thus, we can write Newton’s Second Law in component form along the r axis

as

(14-10)

As we determined in Chapter 6, the magnitude N of the normal force is equal to the
weight read on the scale. Solving Eq. 14-10 for the apparent (or measured) weight as
the magnitude of the normal force gives us

(apparent weight at the equator). (14-11)

We see that the measured weight of the crate is actually slightly less than the magni-
tude of the gravitational force on the crate, because of Earth’s rotation,

(the measured weight) � � .

To find the difference at the equator, we can use Eq. 11-5 (��� � �	/�t) and
Earth’s radius R � 6.37 � 106 m. For one Earth rotation (	 � 2 rad) the period is �t
� 24 h. Using these values (and converting hours to seconds), we find that differs
from by less than four-tenths of a percent (0.35%). Therefore, neglecting the
difference between the apparent or measured weight and gravitational force magni-
tude is usually justified.

As we already mentioned, the difference between measured weight and the gravi-
tational force magnitude is greatest on the equator (for one reason, the radius of the
circle traveled by the crate is greatest there). At latitudes other than 0° it can be
shown that Eq. 14-11 can be modified, to a very good approximation, to take the more
general form,

(apparent weight at any latitude), (14-12)

where r is the perpendicular distance from a location on the Earth’s surface to the
axis of rotation and varies from R at the equator to zero at the poles.

READI NG EXERC IS E  14-4: In the discussion above, we talked about the impact of
the Earth’s rotation on an object’s measured weight as compared to the magnitude of the gravi-
tational force on it. Do the factors that we discussed affect the direction of due to the
Earth? Is directed toward the center of the Earth at all points on Earth? To answer this
question, consider the arguments made above in regard to the effect of the Earth’s rotation on
the object’s apparent weight. Then, without full algebraic analysis, do some visualization based
on a relevant force diagram. ■
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How much less will a mass of 1.000 kg weigh at a ceiling of height 
h � 3.00 m compared to its weight on the floor? Assume that the
local gravitational strength at floor level has the internationally
adopted standard value of 9.80665 N/kg.

S O L U T I O N ■ The Ke y  I d e a here is that the mass is slightly
further from the center of the Earth on the ceiling than on the floor
so its local gravitational strength is slightly smaller.

The first step in our solution is to find the ratio of the local
gravitational strength on the ceiling to that on the floor. We can
start by using the equation g � GM/R2 (Eq. 14-8) where R is the
distance from the center of the Earth to the location of an object
near its surface. If we represent the distance from the Earth’s center
to the ceiling as Rceiling then we can represent the distance to the
floor as 

Rfloor � Rceiling � h.

TOUCHSTONE EXAMPLE 14-2: Floor to Ceiling



14-5 Gravitation Inside Earth

The shell theorem, discussed in Section 14-2, states that “a uniform spherical shell of
matter attracts a particle that is outside the shell as if all the shell’s mass were concen-
trated at its center.” However, we are still left with the question of what the force is
on a particle that is inside the spherical shell of mass. In order to answer this question,
let us refer to Fig. 14-7 and develop a geometric argument to show that a spherical
shell with uniformly distributed mass exerts no net gravitational force on a particle
inside itself.

Consider a mass m placed at a point P somewhere in the interior of this shell.
Let’s construct two cones that come together at P and have equal vertex angles. The
cones will intercept patches of mass with areas AA and AB on opposite sides of the
shell. The area of patch AA and hence its mass mA will be proportional to , so that

where C is a constant. Similarly the area of patch AB and its mass mB will
be proportional to and . Let’s consider the magnitude of the gravitational
force on an object of mass m at point P due to a patch having an area AA and a mass
mA. This force magnitude is given by 

We end up with a force that is independent of both the distance to the point (r) and
the area of the patch (A). The same can obviously be said for the force on m from the
mass mB in the patch of area AB. So, the forces exerted at P by patches AA and AB will
be equal in magnitude. As we can see from Fig. 14-7, these forces are also opposite in
direction. So, the forces from the two patches sum to zero and cancel out. We can
cover the entire shell with such opposing patches, so overall the net force at P must be
zero. Using this geometric argument, we can state a shell theorem as follows:

A uniform shell of matter exerts no net gravitational force on a particle located anywhere
inside it.

Be careful though: This statement does not mean that the gravitational forces on the
particle from the various elements of the shell magically disappear. Rather, it means

F grav
mA:m � G

mmA

r2
A

� G
mCrA
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A

� GmC.
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Next we substitute the symbols representing distances to the floor
and to ceiling from the center of the Earth into Eq. 14-8 and take a
ratio. This gives

We can then note in Appendix B that the mean radius of the Earth,
which we can take as the Earth center to floor distance, is millions
of meters. More precisely, it is 6.4 � 106 m. The ceiling height is so
much less than Rceiling that we can ignore h2. So we can express the
ratio to very good approximation as 

gceiling

gfloor
�

R2
ceiling � 2hRceiling � h2

R2
ceiling

	 1 �
2h

Rceiling
.

�
(Rceiling � h)2

R2
ceiling

�
R2

ceiling � 2hRceiling � h2

R2
ceiling

.

gceiling

gfloor
�

GM/R2
ceiling

GM/(Rceiling � h)2

Since the weight of our mass m is just � mg in either location,
the ratio of its weight at the ceiling to its weight at the floor is just

.

So the difference in the weight of the mass between the ceiling and
the floor is

Hanging out on the ceiling is certainly not a viable way to lose a
measurable amount of weight!

� �9.24 � 10�6 N.

�
�(2)(3.00 m)(1.000 kg)(9.80665 m/s2)

6.37 � 106 m
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floor � �
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	 1 �
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FIGURE 14-7 ■ The gravitational force at
a point P due to an element of mass of
area A is directly proportional to the area
and inversely proportional to the square of
the distance between the area and point P.
The area of intersection increases with the
square of the distance from it to point P.
The gravitational forces of areas AA and
AB on either side of any cone pair cancel
each other out. This proves that there is no
gravitational force acting anywhere inside
a sphere of uniform mass.

AB
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that the sum of the force vectors on the particle from all the elements is zero. In addi-
tion, if the gravitational force did not obey the inverse square law, the areas would not
be canceled patch by patch by the radial distances, and the net force at P would not
be zero. Therefore, this theorem is valid only for a force that obeys an inverse square
law.

If we think of Earth as a series of concentric shells of uniform density, this shell
theorem implies that the gravitational force acting on a particle would be a maximum
at Earth’s surface. If the particle were to move inward, perhaps down a deep mine
shaft, the gravitational force would change for two reasons. (1) It would tend to in-
crease because the particle would be moving closer to the center of Earth. (2) It
would tend to decrease because the thickening shell of material lying outside the par-
ticle’s radial position would not exert any net force on the particle. For a uniform
Earth, the second influence would prevail and the force on the particle would steadily
decrease to zero as the particle approached the center of Earth. However, for the real
(nonuniform) Earth, the force on the particle actually increases as the particle begins
to descend. The force reaches a maximum at a certain depth: Only then does it begin
to decrease as the particle descends farther. This is because the Earth’s crust is low
density as compared to the average density of the Earth.

READI NG EXERC IS E  14-5: How would the force of gravity from the Earth on a
particle change in the following three cases? Case A: The particle starts at the surface of the
Earth and moves outward from its center. Case B: The particle starts at the surface of the Earth
and moves in toward the center of the Earth (assumed to have a uniform density). Case C: The
particle starts at the surface of the Earth and moves in toward the center of the Earth (with the
Earth’s real density distribution). ■

In Pole to Pole, an early science fiction story by George Griffith,
three explorers attempt to travel by capsule through a naturally
formed tunnel between the south pole and the north pole (Fig. 14-8).
According to the story, as the capsule approaches Earth’s center,
the gravitational force on the explorers becomes alarmingly large
and then, exactly at the center, it suddenly but only momentarily
disappears. Then the capsule travels through the second half of the
tunnel, to the north pole.

Check Griffith’s description by finding the gravitational force
on the capsule of mass m when it reaches a distance r from Earth’s
center. Assume that Earth is a sphere of uniform density � (mass
per unit volume).

S O L U T I O N ■ Newton’s shell theorem gives us three Ke y
I d e a s here:

1. When the capsule is at a radius r from Earth’s center, the
portion of Earth that lies outside a sphere of radius r does not
produce a net gravitational force on the capsule.

2. The portion that lies inside that sphere does produce a net
gravitational force on the capsule.

3. At a given location inside the Earth, we can treat the mass Mins

of the inside portion of Earth at that location as being the mass
of a particle located at Earth’s center.

All three ideas tell us that we can write Eq. 14-2, for the magnitude
of the gravitational force on the capsule, as

(14-13)

To write the mass Mins in terms of the radius r, we note that the vol-
ume Vins containing this mass is r 3. Also, its density is Earth’s
density �. Thus, we have

(14-14)Mins � �Vins � �
4r3

3
.

4
3

F grav �
GmMins

r2 .

TOUCHSTONE EXAMPLE 14-3: Pole to Pole

m

r

Mins

FIGURE 14-8 ■ A capsule of
mass m falls from rest through a
tunnel that connects Earth’s
south and north poles. When the
capsule is at distance r from
Earth’s center, the portion of
Earth’s mass that is contained in
a sphere of that radius is Mins.



14-6 Gravitational Potential Energy

In Chapter 10, we defined potential energy and derived an expression for the change
in potential energy, �U, associated with any conservative force when a system of two
objects is reconfigured as shown in Fig. 10-11. We did this by finding the internal work
done when one of the objects exerts a force on the other during the reconfiguration.
Our expression for the gravitational force was

(Eq. 10-13)

where r1 is the original separation between objects in the system and r2 is the separa-
tion of the objects in the system at some later time. We then used this equation to find
changes in gravitational potential energy (GPE) for an Earth–object system. Because
we did not yet have a general expression for the gravitational forces between two ob-
jects, we only considered the special case in which the object is close to the Earth’s
surface and found �U � mg�y (Eq. 10-6). However, we cannot use this expression to
determine how much energy it would take to launch a rocket that escapes the gravita-
tional pull of the Earth.

Gravitational Potential Energy Changes for Any 
Two-Particle System
A key objective of this section is to find an equation for the gravitational potential en-
ergy for a two-particle system and use it to describe an Earth–object system for ob-
jects at any distance from the Earth’s surface. In Section 10-3 we determined the po-
tential energy change for a two-particle system that interacts by means of a
conservative force. This is where we will start (with Eq. 10-13) and use the gravita-
tional force as our conservative force. So,

for a general equation of the magnitude of the gravitational force between any two
particles of masses mA and mB (represented in both Fig. 14-2 and Eq. 14-2). This equa-
tion, which is simply Newton’s law of gravitation, is given by

(Eq. 14-2)F grav
B:A � F grav

A:B � G
mAmB

r2 .

�U � ��r2
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F
: grav

A:B(r)�dr:,

�U � �W int � ��r2

r1

F
: grav

A:B(r)�dr:,

398 CHAPTER 14 Gravitation

Then, after substituting this expression into Eq. 14-13 and cancel-
ing, we have

(Answer) (14-15)

This equation tells us that the gravitational force magnitude 
depends linearly on the capsule’s distance r from Earth’s center.
Thus, as r decreases, also decreases (the opposite of Griffith’s
description), until it is zero at Earth’s center. At least Griffith got
zero-at-the-center correct. However, forces near the Earth’s center
are not large, but “alarmingly” small instead.

Equation 14-15 can also be written in terms of the force vector
and the capsule’s position vector along a radial axis extend-r:F

: grav

F grav

F grav

F grav �
4Gm�

3
r.

ing from Earth’s center. Let K represent the collection of constants
4Gm�/3. Then Eq. 14-15 becomes

, (14-16)

in which we have inserted a minus sign to indicate that and
have opposite directions, since represents the displacement of an
object from the Earth’s center. Equation 14-15 has the form of
Hooke’s law (Eq. 9-16). Thus, under the idealized conditions of the
story, the capsule would oscillate like a block on a spring, with the
center of the oscillation at Earth’s center. After the capsule had
fallen from the south pole to Earth’s center, it would travel from
the center to the north pole (as Griffith said) and then back again.

r:
r:F

: grav

F
: grav � �Kr:
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If we increase the separation of the two masses from an initial separation r1 to a final
separation r2, the direction of is opposite to the direction of dr. If we take the
direction of dr to be positive, then the r-component of the gravitational force exerted
on particle B by particle A, , must be negative. Thus,

.

We can substitute this expression for the gravitational force component along r into
the integral and evaluate as we separate the particles from r1 to r2. This gives

.

We now substitute the value of this integral into Eq. 10-13 to find the gravitational
potential energy change,

(14-17)

Defining an Absolute Gravitational Potential Energy for a 
Two-Particle System
In Chapter 10, we discussed the gravitational potential energy of a particle–Earth
system where the particle is close to the Earth’s surface. For that special case we
found it useful to choose a “zero potential energy” configuration in which the particle
was located at the surface of the Earth (or some other convenient height near the
Earth’s surface). In this more general situation in which the particles can be very far
apart, we find it more useful to define a different reference configuration for which
the potential energy is equal to zero. Since gravitational forces decrease rapidly to
zero with separation, (in fact as 1/r2), it is very convenient to define our potential en-
ergy to be zero when separation distance r between particles is infinite. We can then
define the gravitational potential energy as minus the internal work done on particle
B by particle A as the separation of the two particle changes from an initial separa-
tion of infinity (denoted by ) to a final separation of r.

For this situation, Eq. 14-17 tell us

Since we have defined our reference potential to be zero at infinity so , the
equation above reduces further to

(gravitational PE relative to infinite separation). (14-18)

Here G � 6.67 � 10�11 N � m2/kg2 is the gravitational constant, mA is the mass of one
object, mB is the mass of the other object, and r is the center-to-center separation of
the two particle-like masses. Note that U(r) approaches zero as r approaches infinity
and that for any finite value of r, the value of U(r) is negative (Fig. 14-9).
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FIGURE 14-9 ■ The gravitational potential
energy of a two-mass system. Note that the
PE is negative everywhere. It has a very
large magnitude as the distance r between
the masses approaches 0, but it approaches
0 as r approaches infinity.
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Gravitational Potential Energy for a Many-Particle System
The potential energy given by this expression is a property of the system of two parti-
cles rather than of either particle alone. If our system contains more than two particles,
we consider each pair of particles separately.We calculate the gravitational potential en-
ergy of that pair with this equation as if the other particles were not there. We then alge-
braically sum the results (energy is a scalar). Applying Eq. 14-18 to each of the three
pairs of charges in Fig. 14-10, for example, gives the potential energy of this system as

(3-particle system). (14-19)

Gravitational Potential Energy for an Earth–Object System
Suppose we bring a baseball of mass m from infinity along the y axis to a point P, a
distance r from the center of the Earth, which has mass M as shown in Fig. 14-11.
If , where RE is the Earth’s radius, what is the general expression for the
gravitational potential energy of the Earth–baseball system? We simply substitute
our new symbols into Eq. 14-18 shown above. This gives us

(Earth–object system gravitational PE relative to r � � ). (14-20)

However, this general expression must be consistent with what we derived in 
Chapter 10 for the special case of an object close to the Earth’s surface. When we chose
to define y � 0 at some convenient height near the Earth’s surface, we found that

(near Earth gravitational PE relative to y = 0). (Eq. 10-8)

Although the two expressions look quite different at first glance, we see that in both
cases the potential energy decreases (becomes progressively more negative) as the
Earth and the baseball move closer together. Our two expressions for gravitational
potential energy are consistent in this regard.

However, if our general expression for gravitational potential energy in Eq. 14-20
is valid for all separations, it must be consistent with the more specific expression U(y)
� mgy. To see that this is the case, suppose the object starts at the surface of the
Earth. Its potential energy at this location is 

.

The object then moves upward to a height �y above the Earth’s surface. The potential
energy of the object at this location is 

.

So, the change in potential energy between these two configurations is 
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FIGURE 14-10 ■ Three particles form a
system. (The separation for each pair of
particles is labeled with a double subscript
to indicate the particles.) The gravitational
potential energy of the system is the sum of
the gravitational potential energies of all
three pairs of particles.
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FIGURE 14-11 ■ A baseball is moved
along a y axis to a point P which is a
distance r 
 RE from the center of the
Earth. Since the gravitational force is
attractive, the Earth–baseball system
loses gravitational PE as the particles get
closer together.
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Simplifying this expression by finding a common denominator and factoring gives us

.

However, the radius of the Earth, RE, is orders of magnitude (much, much) larger than
the additional height �y for situations in which the object is close to the surface of the
Earth. So,

,

and .

Equation 14-9 tells us that the magnitude of the gravitational acceleration constant at
the surface of the Earth (with radius RE and mass M) is 

(gravitational acceleration constant).

If we ignore small variations in the gravitational acceleration constant due to the
Earth’s rotation and its small deviations from a spherical shape, then the gravitational
acceleration constant and the local gravitational strength have the same magnitude so
that a � g.

Substituting these last two equations into the equation for the change in the grav-
itational potential energy expression gives

.

In other words, if the height �y above the surface of the Earth is small compared
to the radius of the Earth, the gravitational acceleration constant and the local
gravitational strength g are essentially constant, and our general expression for
gravitational potential energy allows us to predict the same changes in gravita-
tional potential energy as the more specific one we used in Chapter 10. This is true
even though we have chosen very different zero points for our general and near-
Earth potential energies. The two expressions are consistent because they allow us
to calculate the same changes in gravitational potential energy as long as we are
near the Earth’s surface.

Path Independence
In the equations derived in this section, we have made the simplifying assumption
that our particles move apart or come together along a line connecting their centers.
But, because the gravitational force is conservative, potential energy changes of the
system are path independent as discussed in Section 10-2. Thus, our equations hold
even when we allow the interacting particles to separate along any crazy path.

An example of this path independence is shown in Fig. 14-12. We imagine moving
a baseball from point A to point G along a path consisting of three radial lengths and
three circular arcs (centered on Earth). We are interested in the total work W done by
Earth’s gravitational force on the ball as it moves from A to G. The work done along
each circular arc is zero, because the direction of the force is perpendicular to the arc
at every point. Thus, the only work done by the force is along the three radial lengths,
and the total work W is the sum of the work done along the radial lengths.
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FIGURE 14-12 ■ Near Earth, a baseball is
moved from point A to point G along a
path consisting of radial lengths and circu-
lar arcs.
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Now suppose we mentally shrink the arcs to zero. We would then be moving the
ball directly from A to G along a single radial length. Does that change the total work
done? No. Because no work was done along the arcs, eliminating them does not
change the work. The path taken from A to G now is clearly different, but the work
done by the force on the baseball is the same. This example reminds us that the inter-
nal work done by a system can be independent of the actual path taken. In that case,
the change �U in the system’s gravitational potential energy is path independent as
well. This example of path independence for the gravitational force is consistent with
what we have shown in Section 10-2.

Escape Speed
When launching a rocket, how fast does it need to be moving to escape the gravita-
tional pull of the Earth? If you throw an object upward, it will usually slow, turn
around, and then speed up as it travels back toward the Earth. There is, however, a
minimum initial speed that will allow an object to move upward forever. In this case,
the rocket or any other object launched upward slows and approaches zero speed as
the object gets farther and farther away from the Earth, but never reverses direction
and returns. This special initial speed is called the (Earth) escape speed.

In order to calculate the escape speed from Earth (or some other spherical astro-
nomical body), consider a projectile of mass m, leaving the surface of a planet of ra-
dius R with escape speed v. Assume the rocket has an initial kinetic energy K given by
mv2 and a potential energy U given by Eq. 14-20,

,

where M is the mass of the planet, and R is its radius.
As the rocket gets far away, its speed approaches zero and the kinetic energy of

the Earth–rocket system approaches zero. In addition, the system potential energy
approaches zero because the planet–rocket separation is very large. So, total energy
of the system at an “infinite” separation is zero. If we ignore the relatively small
amount of energy lost to air drag, then mechanical energy is approximately con-
served. In this case the rocket’s total energy at the planet’s surface must also have
been zero, so we can use Eq. 10-19 to get

This yields

(14-21)

The escape speed v does not depend on the direction in which a projectile is fired
from a planet. However, attaining that speed is easier if the projectile is fired in the di-
rection the launch site is moving as the planet rotates about its axis. For example,
rockets are launched eastward at Cape Canaveral to take advantage of the Cape’s
eastward speed of 0.5 km/s due to Earth’s rotation.

Equation 14-21 can be applied to find the escape speed of a projectile from any
astronomical body, provided we substitute the mass of the body for M and the radius
of the body for R. Table 14-2 shows escape speeds from some astronomical bodies. It
is interesting to note that objects of any size can escape from an astronomical body.
For example, gas molecules in planetary atmospheres sometimes reach escape speeds.

v � √ 2GM
R

.

E mec � K � U � 1
2 mv2 � ��

GMm
R � � 0.
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READI NG EXERC IS E  14-6: You move a ball of mass m away from a sphere of mass
M. (a) Does the gravitational potential energy of the ball-sphere system increase or decrease?
(b) Is positive or negative work done by the gravitational force between the ball and the
sphere? ■

TA B L E 14 - 2
Some Escape Speeds

Escape
Mass Radius Speed

Body (kg) (m) (km/s)

Ceresa 1. 17 � 1021 3.8 � 105 0.64

Earth’s Moon 7.36 � 1022 1.74 � 106 2.38

Earth 5.98 � 1024 6.37 � 106 11.2

Jupiter 1.90 � 1027 7.15 � 107 59.5

Sun 1.99 � 1030 6.96 � 108 618

Sirius Bb 2 � 1030 1 � 107 5200

Neutron starc 6 � 1030 1 � 104 3.4 � 105

aThe most massive of the asteroids.
bA white dwarf (a very compact old star that has burned its nuclear fuel) that is
in orbit around the bright star Sirius. Sirius B has roughly the mass of our Sun
and a radius close to that of the Earth.
cThe collapsed core of a massive star that remains after that star has exploded
in a supernova event and is more compact than a white dwarf (with 3 times the
mass of our Sun and a diameter of only a few kilometers).

An asteroid, headed directly toward Earth, has a speed of 12 km/s
relative to the planet when it is at a distance of 10 Earth radii from
Earth’s center. Neglecting the effects of Earth’s atmosphere on the
asteroid, find the asteroid’s speed v2 when it reaches Earth’s sur-
face.

S O L U T I O N ■ One Ke y  I d e a is that, because we are to ne-
glect the effects of the atmosphere on the asteroid, the mechanical
energy of the asteroid-Earth system is conserved during the fall.
Thus, the final mechanical energy (when the asteroid reaches
Earth’s surface) is equal to the initial mechanical energy. We can
write this as

(Eq. 10-19)

where K is kinetic energy and U is gravitational potential energy.
A second Ke y  I d e a is that, if we assume the system is iso-

lated, the system’s linear momentum must be conserved during the
fall. Therefore, the momentum change of the asteroid and that of
Earth must be equal in magnitude and opposite in sign. However,
because Earth’s mass is so great relative to the asteroid’s mass, the
change in Earth’s speed is negligible relative to the change in the
asteroid’s speed. So, the change in Earth’s kinetic energy is also

Emec � K1 � U1 � K2 � U2,

negligible. Thus, we can assume that the kinetic energies in Eq. 10-
19 are those of the asteroid alone.

Let m represent the asteroid’s mass and M represent Earth’s
mass (5.98 � 1024 kg).The asteroid is initially at the distance 10RE and
finally at the distance RE, where RE is Earth’s radius (6.37 � 106 m).
Substituting Eq. 14-20 for U and mv2 for K, we rewrite Eq. 10-19 as

Rearranging and substituting known values, we find

and thus the magnitude of the impact velocity is

(Answer)v2 � 1.60 � 104 m/s � 16 km/s.

� 2.567 � 108 m2/s2,

�
2(6.67 � 10�11 m3/kg �s2)(5.98 � 1024 kg)

6.37 � 106 m
 0.9

� (12 � 103 m/s)2

v2
2 � v2

1 �
2GM

RE
�1�

1
10 �

1
2 mv 2

2 �
GMm

RE
� 1

2 mv 2
1 �

GMm
10RE

.

1
2

TOUCHSTONE EXAMPLE 14-4: Asteroid



14-7 Einstein and Gravitation

Principle of Equivalence
When we casually discuss gravitational forces, we often say things like “we can feel
the pull of gravity” or “we can feel the pull of the Earth.” However, careful observa-
tion will convince you that what we actually “feel’’ is the upward push of the floor or a
chair. If we hang from a rope, we feel the upward pull of the rope. We do not feel any
push or pull if the floor, chair, or rope is taken away.

In contrast, if we jump off a ladder or cliff, we are in free fall, and we feel no
forces at all even though we are subject to the uncomfortable sensation that is (unfor-
tunately) called “weightlessness.’’ This is what Albert Einstein was referring to when
he said: “I was . . . in the patent office at Bern when all of a sudden a thought occurred
to me: ‘If a person falls freely, he will not feel his own weight.’ I was startled. This sim-
ple thought made a deep impression on me. It impelled me toward a theory of gravi-
tation.”

Thus Einstein tells us how he began to form his general theory of relativity. The
fundamental postulate of this theory about gravitation (the gravitating of objects to-
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At this speed, the asteroid would not have to be particularly
large to do considerable damage at impact. As an example, if it
were only 5 m across, the impact could release about as much en-
ergy as the nuclear explosion at Hiroshima. Alarmingly, about 500
million asteroids of this size are near Earth’s orbit, and in 1994 one
of them apparently penetrated Earth’s atmosphere and exploded at

an altitude of 20 km near a remote South Pacific island (setting off
nuclear-explosion warnings on six military satellites). The impact of
an asteroid 500 m across (there may be a million of them near
Earth’s orbit) could end modern civilization and almost eliminate
humans worldwide.

(a) Suppose a particle in space is the same distance from the Sun as
the Earth is. At this distance, what is the particle’s escape speed
from the Sun?

S O L U T I O N ■ We can use Eq. 14-21 to find the escape speed rel-
ative to the Sun. The Ke y  I d e a here is that the particle is not on
the surface of the Sun but at a distance equivalent to the mean dis-
tance between the Earth and the Sun given by R � 1.5 � 1011 m.
Since the mass of the Sun is M � 1.99 � 1030 kg, we get

(Answer)

(b) How does the escape speed you just calculated compare to the
particle’s escape speed from the surface of the Earth?

S O L U T I O N ■ We can look up the escape speed from the Earth’s
surface in Table 14-2. The value is given by

v � 11.2 km/s � 1.12 � 104 m/s.

� v � 4.2 � 104 m/s.

v � √ 2GM
R

� √ 2(6.67 � 10�11 N�m2/kg2)(1.99 � 1030 kg)
1.5 � 1011m

The escape speed from the Earth’s surface is about one-fourth
(=1.12/4.2) of that needed to escape the Sun at an “Earth orbit dis-
tance” from it. The Ke y  I d e a here is that though the particle at
the surface of the Earth is much closer to the center of the Earth
than it is to the center of the Sun in situation a, the Sun is much
more massive than the Earth is. (Answer) 

(c) How does the escape speed calculated in part (a) compare to
the particle’s escape speed from the surface of the Sun?

S O L U T I O N ■ Once again we can look up the escape speed in
Table 14-2. This time we need to list the speed needed to escape
from the surface of the Sun,

The escape speed from the Sun’s surface is about 15 times larger 
(� 61.8/4.2) that needed to escape the Sun at an “Earth orbit dis-
tance” from it. The Ke y  I d e a here is that the particle in this case
is much closer to the Sun. (Answer)

v � 618 km/s � 61.8 � 104 km/s.

TOUCHSTONE EXAMPLE 14-5: Escape Speeds
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ward each other) is called the principle of equivalence, which says that gravitation
and acceleration are equivalent. If a physicist were locked up in a small box as in 
Fig. 14-13, he would not be able to tell whether the box was at rest on Earth (and sub-
ject only to Earth’s gravitational force), as in Fig. 14-13a, or accelerating through in-
terstellar space at 9.8 m/s2 (and subject only to the force producing that acceleration),
as in Fig. 14-13b. In both situations he would feel the same and would read the same
value for his weight on a scale. Moreover, if he watched an object fall past him, the
object would have the same acceleration relative to him in both situations.

Curvature of Space
We have introduced the concept of gravitation to explain the interaction forces be-
tween masses. Einstein introduced an alternative explanation of gravitation as a cur-
vature (or shape) of space that is caused by masses. (As we will discuss in Chapter 38,
space and time are entangled so the curvature of which Einstein spoke is really a cur-
vature of spacetime, the combined four dimensions of our universe.)

Picturing how space (such as vacuum) can have curvature is difficult, but an anal-
ogy might help. Suppose that from orbit we watch a race in which two boats begin on
the equator with a separation of 20 km and head due south (Fig. 14-14a). To the
sailors, the boats travel along flat, parallel paths. However, with time the boats 
draw together until, nearer the south pole, they touch. The sailors in the boats can in-
terpret this drawing together in terms of a force acting on the boats. However, we can
see that the boats draw together simply because of the curvature of Earth’s surface.
We can see this because we are viewing the race from “outside” that surface.

Figure 14-14b shows a similar race: Two horizontally separated apples are
dropped from the same height above Earth. Although the apples may appear to travel
along parallel paths, they actually move toward each other because they both fall to-
ward Earth’s center. We can interpret the motion of the apples in terms of the gravita-
tional force on the apples from Earth. We can also interpret the motion in terms of a
curvature of the space near Earth, due to the presence of Earth’s mass. This time we
cannot see the curvature because we cannot get “outside” the curved space, as we got
“outside” the curved Earth in the boat example. However, we can depict the curva-
ture with a drawing like Fig. 14-14c. There the apples would move along a surface that
curves toward Earth because of Earth’s mass.

When light passes near Earth, its path bends slightly because of the curvature of
space there, an effect called gravitational lensing. When it passes a more massive

FIGURE 14-13 ■ (a) A physicist in a box
resting on Earth sees a cantaloupe falling
with acceleration a � 9.8 m/ s2. (b) If he
and the box accelerate in deep space at 9.8
m/s2, the cantaloupe has the same accelera-
tion relative to him. It is not possible, by
doing experiments within the box, for the
physicist to tell which situation he is in. For
example, the platform scale on which he
stands reads the same weight in both situa-
tions.

(b)

(a)

a

a

Earth

Converging
paths near
Earth

Flat space
far from
Earth

Parallel paths
far from Earth

Curved space
near Earth

S

N

Equator

(a) (b) (c)

S

C

FIGURE 14-14 ■ (a) Two objects moving along lines of longitude toward the south pole con-
verge because of the curvature of Earth’s surface. (b) Two objects falling freely near Earth
move along lines that converge toward the center of Earth because of the curvature of space
near Earth. (c) Far from Earth (and other masses), space is flat and parallel paths remain paral-
lel. Close to Earth, the parallel paths begin to converge because space is curved by Earth’s
mass.



structure like a galaxy, its path can be bent more. If such a massive structure is be-
tween us and a quasar (an extremely bright, distant source of light), the light from the
quasar can bend around the massive structure and toward us (Fig. 14-15a). Then, be-
cause the light seems to be coming to us from a number of slightly different directions
in the sky, we see the same quasar appearing to be located in two different directions
(Fig. 14-15b). In situations where the light from a distant quasar lies precisely behind
the center of the lensing galaxy, the images of a single quasar can blend together to
form a full ring of light known as an Einstein ring (Fig. 14-16).

Should we attribute gravitation to the curvature of spacetime due to the presence
of masses or to a force between masses? Or should we attribute it to the actions of a
type of fundamental particle called a graviton, as conjectured in some modern physics
theories? We do not know.

FIGURE 14-15 ■ (a) Light from a distant
quasar named AC 114 follows curved
paths around a galaxy because the mass of
the galaxy has curved the adjacent space. If
the light is detected, it appears to have
originated along the backward extensions
of the final paths (dashed lines).
(b) An image showing identical quasars.
The source of the light is far behind a
large, unseen “lensing” galaxy that has just
the right shape and orientation to produce
two images of the quasar. The two objects
near the center of the image are believed
to be unrelated galaxies in front of the
lensing galaxy.
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Paths of light
from quasar

Apparent
quasar directions

Galaxy or
large black hole

Final paths

Earth detector

FIGURE 14-16 ■ The Einstein ring known
as MG1131�0456 as it appeared on the
computer screen of a radio telescope.

Problems

SEC. 14-2 ■ NEWTON’S LAW OF GRAVITATION

1. What Separation? What must the separation be between a 5.2 kg
particle and a 2.4 kg particle for their gravitational attraction to have
a magnitude of 2.3 � 10�12 N?

2. Horoscopes Some believe that the positions of the planets at
the time of birth influence the newborn. Others deride this belief
and claim that the gravitational force exerted on a baby by the
obstetrician is greater than that exerted by the planets. To check
this claim, calculate and compare the magnitude of the gravitational
force exerted on a 3 kg baby (a) by a 70 kg obstetrician who is 1 m
away and roughly approximated as a point mass, (b) by the massive
planet Jupiter (m � 2 � 1027 kg) at its closest approach to Earth 
(� 6 � 1011 m), and (c) by Jupiter at its greatest distance from
Earth (� 9 � 1011 m). (d) Is the claim correct?

3. Echo Satellites One of the Echo satellites consisted of an in-
flated spherical aluminum balloon 30 m in diameter and of mass 
20 kg. Suppose a meteor having a mass of 7.0 kg passes within 3.0 m
of the surface of the satellite. What is the magnitude of the gravita-

tional force on the meteor from the satellite at the closest ap-
proach?

4. Sun and Earth The Sun and Earth each exert a gravitational
force on the Moon. What is the ratio of the
magnitudes of these two forces? (The average Sun–Moon distance
is equal to the Sun–Earth distance.)

5. Split into Two A mass M is split into two parts, m and M � m,
which are then separated by a certain distance.What ratio m/M maxi-
mizes the magnitude of the gravitational force between the parts?

SEC 14-3 ■ GRAVITATION AND SUPERPOSITION

6. Zero Net Force A spaceship is on a straight-line path between
Earth and its moon. At what distance from Earth is the net gravita-
tional force (due to the Earth and the Moon only) on the spaceship
zero?

7. Space Probe How far from Earth must a space probe be along a
line toward the Sun so that the Sun’s gravitational pull on the probe
balances Earth’s pull?

FSun:Moon/FEarth:Moon

(b)(a)
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8. Three Spheres Three 5.0 kg
spheres are located in the xy plane
as shown in Fig. 14-17. What is the
magnitude of the net gravitational
force on the sphere at the origin
due to the other two spheres?

9. Four Spheres In Fig. 14-18a,
four spheres form the corners of a
square whose side is 2.0 cm long.
What are the magnitude and direc-
tion of the net gravitational force
from them on a central sphere with
mass mA � 250 kg?

FIGURE 14-18 ■ Problems 9 and 10.

10. Two Spheres In Fig. l4-18b, two spheres of mass m and a third
sphere of mass M form an equilateral triangle, and a fourth sphere
of mass mB is at the center of the triangle. The net gravitational force
on that central sphere from the three other spheres is zero. (a) What
is M in terms of m? (b) If we double the value of mB, what then is
the magnitude of the net gravitational force on the central sphere?

11. Masses and Coordinates Given The masses and coordinates of
three spheres are as follows: 20 kg, x � 0.50 m, y � 1.0 m; 40 kg,
x � �1.0 m, y � �1.0 m; 60 kg, x � 0 m, y � �0.50 m. What is the
magnitude of the gravitational force on a 20 kg sphere located at
the origin due to the other spheres?

12. Four Uniform Spheres Four uniform spheres, with masses 
mA � 400 kg, mB � 350 kg, mC � 2000 kg, and mD � 500 kg, have 
(x, y) coordinates of (0, 50) cm, (0, 0) cm, (�80, 0) cm, and (40, 0) cm,
respectively. What is the net gravitational force on sphere B due to
the other spheres?

13. Spherical Hollow Figure l4-19
shows a spherical hollow inside a
lead sphere of radius R; the surface
of the hollow passes through the
center of the sphere and “touches”
the right side of the sphere.The mass
of the sphere before hollowing was
M. With what gravitational force
does the hollowed-out lead sphere attract a small sphere of mass m
that lies at a distance d from the center of the lead sphere, on the
straight line connecting the centers of the spheres and of the hollow?

SEC. 14-4 ■ GRAVITATION IN THE EARTH’S VICINITY.

14. Empire State Building You weigh 530 N at sidewalk level out-
side the Empire State Building in New York City. Suppose that you
ride from this level to the 102nd floor tower, a height of 373 m. Ig-

noring Earth’s rotation, how much less would you weigh there (be-
cause you are slightly farther from the center of Earth)?

15. g � 4.9 m/s2 At which altitude above Earth’s surface would the
gravitational acceleration be 4.9 m/s2?

16. Moon’s Surface (a) What will an object weigh on the Moon’s
surface if it weighs 100 N on Earth’s surface? (b) How many Earth
radii must this same object be from the center of Earth if it is to
weigh the same as it does on the Moon?

17. Rate of Rotation The fastest possible rate of rotation of a planet
is that for which the gravitational force on material at the equator just
barely provides the centripetal force needed for the rotation. (Why?)
(a) Show that the corresponding shortest period of rotation is

where � is the uniform density of the spherical planet. (b) Calculate
the rotation period assuming a density of 3.0 g/cm3, typical of many
planets, satellites, and asteroids. No astronomical object has ever
been found to be spinning with a period shorter than that deter-
mined by this analysis.

18. Model of a Planet One model for a certain planet has a core
of radius R and mass M surrounded by an outer shell of inner
radius R, outer radius 2R, and mass 4M. If M � 4.1 � 1024 kg and 
R � 6.0 � 106 m, what is the gravitational acceleration of a particle
at points (a) R and (b)3R from the center of the planet?

19. Spring Scale A body is suspended from a spring scale in a ship
sailing along the equator with speed . (a) Show that the scale read-
ing will be very close to W0 (1 � 2 /g), where is the rotational
speed of Earth and W0 is the scale reading when the ship is at rest.
(b) Explain the � sign.

20. Neutron Stars Certain neutron stars (extremely dense stars)
are believed to be rotating at about 1 rev/s. If such a star has a ra-
dius of 20 km, what must be its minimum mass so that material on
its surface remains in place during the rapid rotation?

SEC. 14-5 ■ GRAVITATION INSIDE EARTH

21. Apple and Tunnel Assume that a planet is a sphere of radius R
with a uniform density and (somehow) has a narrow radial tunnel
through its center. Also assume that we can position an apple any-
where along the tunnel or outside the sphere. Let FR be the magni-
tude of the gravitational force on the apple when it is located at the
planet’s surface. How far from the surface is a point where the mag-
nitude of the gravitational force on the apple is FR if we move the
apple (a) away from the planet and (b) into the tunnel?

22. Two Concentric Shells Two
concentric shells of uniform den-
sity having masses M1 and M2 are
situated as shown in Fig. 14-20.
Find the magnitude of the net
gravitational force on a particle of
mass m, due to the shells, when the
particle is located at (a) point A, at
distance r � a from the center, (b)
point B at r � b, and (c) point C at
r � c. The distance r is measured
from the center of the shells.

1
2

�v�
v

T � √ 3

G�
,

y

x
0.40 m

0.30 m

FIGURE 14-17 ■ Problem 8.
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FIGURE 14-19 ■ Problem 13.
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FIGURE 14-20 ■

Problem 22.



23. Solid Sphere A solid sphere of uniform density has a mass of
1.0 � l04 kg and a radius of 1.0 m. What is the magnitude of the
gravitational force due to the sphere on a particle of mass m lo-
cated at a distance of (a) 1.5 m and (b) 0.50 m from the center of
the sphere? (c) Write a general expression for the magnitude of the
gravitational force on the particle at a distance r � 1.0 m from the
center of the sphere.

24. Uniform Solid Sphere A uniform solid sphere of radius R has a
gravitational strength glocal at its surface. At what two distances
from the center of the sphere is the gravitational strength glocal /3?
(Hint: Consider distances both inside and outside the sphere.)

25. Crust, Mantle, Core Figure 14-21 shows, not to scale, a cross
section through the interior of Earth. Rather than being uniform
throughout, Earth is divided into three zones: an outer crust, a man-
tle, and an inner core. The dimensions of these zones and the masses
contained within them are shown on the figure. Earth has a total
mass of 5.98 � 1024 kg and a radius of 6370 km. Ignore rotation and
assume that Earth is spherical. (a) Calculate the local gravitational
strength g at the surface. (b) Suppose that a bore hole (the Mohole)
is driven to the crust–mantle interface at a depth of 25 km. What
would be the value of g at the bottom of the hole? (c) Suppose 
that Earth were a uniform sphere with the same total mass and 
size. What would be the value of g at a depth of 25 km? 
(Precise measurements of g are sensitive probes of the interior
structure of Earth, although results can be clouded by local den-
sity variations.)

FIGURE 14-21 ■ Problem 25.

SEC. 14-6 ■ GRAVITATIONAL POTENTIAL ENERGY
26. Potential Energy (a) What is the gravitational potential energy
of the two-particle system in Problem 1? If you triple the separa-
tion between the particles, how much work is done (b) by the gravi-
tational force between the particles and (c) by you?

27. Remove Sphere A (a) In Problem 12, remove sphere A and
calculate the gravitational potential energy of the remaining three-
particle system. (b) If A is then put back in place, is the potential
energy of the four-particle system more or less than that of the sys-
tem in (a)? (c) In (a), is the work done by you to remove A positive
or negative? (d) In (b), is the work done by you to replace A posi-
tive or negative?

28. Ratio m/M In Problem 5, what ratio m/M gives the least gravi-
tational potential energy for the system?

29. Mars and Earth The mean diameters of Mars and Earth are 
6.9 � 103 km and 1.3 � l04 km, respectively. The mass of Mars is

0.11 times Earth’s mass. (a) What is the ratio of the mean density of
Mars to that of Earth? (b) What is the value of the gravitational ac-
celeration on Mars? (c) What is the escape speed on Mars?

30. Escape Calculate the amount of energy required to escape
from (a) Earth’s moon and (b) Jupiter relative to that required to
escape from Earth.

31. Three Other Spheres The three spheres in Fig. 14-22, with
masses mA � 800 g, mB � 100 g, and mC � 200 g, have their centers
on a common line, with L � 12 cm and d � 4.0 cm. You move
sphere B along the line until its center-to-center separation from C
is d � 4.0 cm. How much work is done on sphere B (a) by you and
(b) by the net gravitational force on B due to spheres A and C?

FIGURE 14-22 ■ Problem 31.

32. Zero Zero, a hypothetical planet, has a mass of 5.0 � 1023 kg, a
radius of 3.0 � 106 m, and no atmosphere. A 10 kg space probe is to
be launched vertically from its surface. (a) If the probe is launched
with an initial energy of 5.0 � l07 J, what will be its kinetic energy
when it is 4.0 � 106 m from the center of Zero? (b) If the probe is
to achieve a maximum distance of 8.0 � 106 m from the center of
Zero, with what initial kinetic energy must it be launched from the
surface of Zero?

33. Rocket Accelerated A rocket is accelerated to speed 
near Earth’s surface (where Earth’s radius is RE), and it then

coasts upward. (a) Show that it will escape from Earth. (b) Show
that very far from Earth its speed will be .

34. Roton Planet Roton, with a mass of 7.0 � 1024 kg and a radius
of 1600 km, gravitationally attracts a meteorite that is initially at rest
relative to the planet, at a great enough distance to take as infinite.
The meteorite falls toward the planet. Assuming the planet is airless,
find the speed of the meteorite when it reaches the planet’s surface.

35. Escape Speed (a) What is the escape speed on a spherical as-
teroid whose radius is 500 km and whose gravitational acceleration
at the surface is 3.0 m/s2? (b) How far from the surface will a 
particle go if it leaves the asteroid’s surface with a radial speed of
1000 m/s? (c) With what speed will an object hit the asteroid if 
it is dropped from l000 km above the surface?

36. Rocket Moving Radially A 150.0 kg rocket moving radially
outward from Earth has a speed of 3.70 km/s when its engine shuts
off 200 km above Earth’s surface. (a) Assuming negligible air drag,
find the rocket’s kinetic energy when the rocket is 1000 km above
Earth’s surface. (b) What maximum height above the surface is
reached by the rocket?

37. Two Neutron Stars Two neutron stars are separated by a dis-
tance of 1010 m. They each have a mass of 1030 kg and a radius of 
105 m. They are initially at rest with respect to each other. As mea-
sured from that rest frame, how fast are they moving when (a) their
separation has decreased to one-half its initial value and (b) they
are about to collide?

38. Deep Space In deep space, sphere A of mass 20 kg is located at
the origin of an x axis and sphere B of mass 10 kg is located on the

√2gREv �

2√gRE

v �

408 CHAPTER 14 Gravitation

6345 km25 km
(exaggerated)

3490 km

Core, 1.93    1024 kg

Mantle, 4.01    1024 kg

Crust, 3.94    1022 kg

L

d d

A
B C



Additional Problems 409

axis at x � 0.80 m. Sphere B is released from rest while sphere A is
held at the origin. (a) What is the gravitational potential energy of
the two-sphere system as B is released? (b) What is the kinetic en-
ergy of B when it has moved 0.20 m toward A?

39. Projectile A projectile is fired vertically from Earth’s surface
with an initial speed of 10 km/s. Neglecting air drag, how far above
the surface of Earth will it go?

SEC. 14-7 ■ EINSTEIN AND GRAVITATION

40. Cantaloupe In Fig. 14-13b, the scale on which the 60 kg physi-
cist stands reads 220 N. How long will the cantaloupe take to reach
the floor if the physicist drops it from rest (relative to himself),
2.1 m from the floor?

Additional Problems

41. Frames of Reference Figure 14-
23 shows two identical spheres, each
with mass 2.00 kg and radius R �
0.0200 m, that initially touch, some-
where in deep space. Suppose the
spheres are blown apart such that
they initially separate at the relative speed 1.05 � 10�4 m/s. They
then slow due to the gravitational force between them.

Center-of-mass frame: Assume that we are in an inertial refer-
ence frame that is stationary with respect to the center of mass of
the two-sphere system. Use the principle of conservation of me-
chanical energy (K2 � U2 � K1 � U1) to find the following when
the center-to-center separation is 10R: (a) the kinetic energy of
each sphere and (b) the speed of sphere B relative to sphere A.

Sphere frame: Next assume that we are in a reference frame
attached to sphere A (we ride on the body). Now we see sphere 
B move away from us. From this reference frame, again use K2 �
U2 � K1 � U1 to find the following when the center-to-center sepa-
ration is 10R: (c) the kinetic energy of sphere B and (d) the speed
of sphere B relative to sphere A. (e) Why are the answers to (b)
and (d) different? Which answer is correct?
42. Black Hole The radius Rh of a black hole is the radius of a
mathematical sphere, called the event horizon, that is centered on
the black hole. Information from events inside the event horizon
cannot reach the outside world. According to Einstein’s general
theory of relativity, Rh � 2GM/c2, where M is the mass of the black
hole and c is the speed of light.

Suppose that you wish to study black holes near them, at a ra-
dial distance of 50Rh. However, you do not want the difference in
gravitational acceleration between your feet and your head to ex-
ceed 10 m/s2 when you are feet down (or head down) toward the
black hole. (a) As a multiple of our sun’s mass, what is the limit to
the mass of the black hole you can tolerate at the given radial dis-
tance? (You need to estimate your height.) (b) Is the limit an upper
limit (you can tolerate smaller masses) or a lower limit (you can tol-
erate larger masses)?

43. Romeo and Juliet Two schoolmates, Romeo and Juliet, catch
each other’s eye across a crowded dance floor at a school dance. Es-
timate the gravitational attraction they exert on each other.

44. The Alignment of the Planets Some authors seeking public at-
tention have suggested that when many planets are “aligned” (i.e.,
are close together in the sky) their gravitational pull on the Earth
all acting together might produce earthquakes and other disasters.
To get an idea of whether this is plausible, set up the following cal-
culation: (a) Draw a sketch of the solar system and arrange the
planets so that Mars, Jupiter, and Saturn are on the same side of the
Sun as the Earth. Look up (there is a table in the back of Under-
standing Physics) the radii of the planetary orbits and their masses.
(b) Infer the distances these planets would be from Earth in this
arrangement. (c) Without doing all the calculations, decide which of
the three planets would exert the strongest gravitational force on
the Earth. (Hint: Use the dependence of Newton’s universal gravi-
tation law on mass and distance.) (d) Calculate the gravitational
force of the most important planet on the Earth. (e) Calculate how
this compares to the gravitational force the Moon exerts on the
Earth.
Note: In fact, it is not the gravitational force itself that produces the
possibly dangerous effects, but the tidal forces—the derivative of
the gravitational force. This reduces the effect by another factor of
the distance. That is, the tidal force goes like 1/r3 instead of like 1/r2.
This weakens the planet’s gravitational effect compared to the
Moon’s by an additional factor of rEarth–moon/rEarth–planet, a number
much less than 1.

45. Is Newton’s Law of Gravity Wrong? A professional scientist
(not a physicist) stops you in the hall and says: “I can prove New-
ton’s theory of gravity is wrong. The Sun is 320,000 times as massive
as the Earth, but only 400 times as far from the Moon as is the
Earth. Therefore, the force of the Sun’s gravity on the Moon should
be twice as big as the Earth’s and the Moon should go around the
Sun instead of around the Earth. Since it doesn’t, Newton’s theory
of gravity must be wrong!” What’s the matter with this reasoning?

46. In the Shuttle When we see the astronauts in orbit in the space
shuttle on TV, they seem to float. If they let go of something, it just
stays where they put it. It doesn’t fall. What happens to gravity for
objects in orbit? Does gravity stop at the Earth’s atmosphere? Ex-
plain what’s happening in terms of the physics you have learned.

A B

FIGURE 14-23 ■

Problem 41.
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The force exerted by water on

the body of a descending diver

increases noticeably, even for a

relatively shallow descent to

the bottom of a swimming

pool. However, in 1975, using

scuba gear with a special gas

mixture for breathing, William

Rhodes emerged from a

chamber that had been

lowered 300 m into the Gulf of

Mexico, and he then swam to

a record depth of 350 m.

Strangely, a novice scuba diver

practicing in a swimming pool

might be in more danger from

the force exerted by the water

than was Rhodes. Occasionally,

novice scuba divers die

because they have neglected

that danger.

Fluids

What is this
potentially lethal risk?

The answer is in this
chapter.
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15-1 Fluids and the World Around Us

Fluids—which include both liquids and gases—play a central role in our daily lives.
We breathe and drink them, and a rather vital fluid circulates in the human cardiovas-
cular system. The Earth’s oceans and atmosphere consist of fluids.

Cars and jet planes need many different fluids to operate, including fluids in their
tires, fuel tanks, and engine combustion chambers. They also need fluids for their air
conditioning, lubrication, and hydraulic systems. Windmills transform the kinetic
energy in air to electrical energy, and hydroelectric plants convert the gravitational
potential energy in water to electrical energy. Over long time periods, air and water
carve out and reshape the Earth’s landscape.

In our study of fluids, we will start by examining simple physical situations that
we encounter every day. First, we will study the forces acting on fluids that are in
static equilibrium and consider the forces on objects in fluids. Then we will examine
how a hydraulic system can be used as a lever. Later in the chapter, we will study
the motions of fluids as they flow through pipes and around objects.

15-2 What Is a Fluid?

To understand what we mean by the term “fluid,” let us compare solids, liquids, and
gases. A solid vertical column that rests on a table can retain its shape without exter-
nal support. Since a gravitational force is acting on each of the columns shown in Fig.
15-1, each exerts a downward normal force on the table that is equal in magnitude to
its weight. What happens if we try to make a column out of a liquid? Without external
support, the gravitational forces on the liquid will cause it to collapse and flow into a
puddle. (In the more formal terms introduced in Section 13-5, liquids cannot with-
stand shear stresses.) 

However, we can maintain a vertical column of liquid if we provide it with solid
walls. In this case, the liquid presses sideways against the walls and the walls press
back against the liquid. Thus, the vertical columns of the liquid and solid differ in that
the column of liquid needs external forces acting on it to maintain its shape whereas
the solid does not. However, both a solid column and a container full of liquid will ex-
ert normal forces on a table.

When external forces are present, a fluid, unlike a solid, can flow until it conforms
to the boundaries of its container. Obviously gases, such as the air that surrounds us,
are also fluids, because they can conform to the shape of a container quite rapidly.
Some gooey materials, such as heavy syrup and silly putty, take a longer time to con-
form to the boundaries of a container. But since they can do so eventually, we also
classify them as fluids.

15-3 Pressure and Density

Defining Pressure for Uniform Forces
Let us consider the properties of the two solid columns shown in Fig. 15-1. Since they
both have the same weight, they exert the same downward forces on the table. How-
ever, if you placed your hand under each of the columns, you would feel a difference.
Why? Because the forces are spread out over different areas. It is this difference in
pressure you feel when placing each column on your hand. If a force is evenly distrib-
uted over every point of an area (as is the case for the normal forces exerted by the

FIGURE 15-1 ■ Two columns resting on a
table have the same mass, so they each ex-
ert the same downward normal force on
the table.
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FIGURE 15-2 ■ Suppose a hole is drilled
at some random place on a bottle and
plugged with a cork. If an airtight plunger
is thrust down the bottle’s neck, the in-
creased pressure in the bottle can cause
the cork to pop out no matter what direc-
tion it faces. This can happen whenever the
bottle contains either a gas (such as air) or
a liquid (such as water).
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(a)

(b)

3 sensors in
the same vicinity

Vacuum

Pressure Sensor

A

F

FIGURE 15-3 ■ (a) A tiny pressure sensor
that uses spring compression to measure
the net force normal to the area, , of a
piston. (b) When an array of pressure sen-
sors pointing in different directions are
placed in the vicinity of a single point in a
fluid, their pressure measurements are
identical.

A

cylinders), we say that it is uniform over the area. For a force that is both uniformly
distributed over an area and perpendicular or normal to it, the pressure P on a sur-
face is defined as the magnitude of the net force acting on the surface divided by its
area. Thus, it can be expressed by the equation

(uniform forces normal to area A), (15-1)

where, as usual, the symbol � is used to signify that the equation holds “by defini-
tion.” The column on the left in Fig. 15-1 has one-fourth the area that the right-hand
column does. Even though the left and right columns exert the same net force on the
table, the left column exerts four times more pressure on the table. Later on in this
section we will refine our discussion of pressure to handle situations in which the nor-
mal forces acting on a surface are not uniform.

Is Pressure a Vector or Scalar?
In order to think about the idea of pressure exerted by a fluid, consider a bottle full of
a fluid that has a piston on top. Although there is a hole in the bottle, it is plugged
with a cork as shown in Fig. 15-2. If we press on the piston, the cork will pop out. This
indicates that the fluid exerts a perpendicular force on the face of the cork that is
sticking into the bottle. What’s remarkable is that no matter where the hole and cork
are located on the bottle, the cork would still pop out! Somehow, the downward force
we apply with the piston to one part of the fluid is translated into “internal forces”
that act in all directions. Thus, the fluid pressure acting at the surface of a container ap-
pears to have no preferred direction.

Let us consider a fluid that is not moving so that we can define it as being in a
state of static equilibrium. What is the pressure like inside the fluid? We can consider
this question both experimentally and theoretically.

Experimental Results: If we want to measure the pressure exerted by a fluid at a
point inside a container of fluid, we can design a small pressure sensor like that
shown in Fig. 15-3a. The sensor consists of a piston with a small cross-sectional area
A. The piston fits snugly in an evacuated cylinder, so the cylinder contains no
matter other than a coiled spring that is lodged behind the piston. By measuring
the spring compression we can determine the normal force the fluid exerts on the
piston.

Suppose we place an array of three tiny pistons at the point of interest inside the
container as shown in Fig. 15-3. We find that the magnitude of force on each of the
pistons is the same independent of the directions the pistons are facing. Thus, we only
need to place a single pressure sensor at a point of interest and measure the force on
its piston to calculate the pressure using Eq. 15-1.

Experiments reveal that at a given point in a fluid that is in static equilibrium, the pressure
P has the same value in all directions. In other words, pressure is a scalar, having no direc-
tional properties.

Agreement between Experiment and Theory: We can use the fact that we have chosen
to examine a fluid that is in static equilibrium to see why we should indeed expect the
pressure near a point in the fluid to be nondirectional. Let us simplify the situation by
assuming that a container of fluid is located where there are no gravitational forces on
it. In Section 15-4, we will revisit this idea for the more common case of nonzero grav-
itational forces. Next we can draw an imaginary cubical boundary around a tiny parcel

P �
� F

:

� �
A
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of fluid (Fig. 15-4) centered on some point in the container. Since the parcel of fluid is
in equilibrium it cannot be accelerating, and we must conclude that the net force on
its boundaries is zero as shown in Fig. 15-4. Since the force vectors on opposite faces
of the cubical parcel must be equal in magnitude and opposite in direction, the pres-
sure on opposite faces must be the same. Furthermore, there are no gravitational
forces acting in our special case and thus there is no preferred direction. These facts
allow us to conclude that if no part of the fluid is accelerating, the pressure must be the
same in all directions throughout the entire container. So far we have considered a
very special shape for our parcel in the absence of gravitational forces. In Section 15-4
we consider what happens to the pressure in fluids in static equilibrium close to the
Earth’s surface or at other locations where gravitational forces must be taken into
account.

Defining Pressure for Nonuniform Forces and Surfaces
If the forces on an area are not uniform or if the area is curved, we can still use our
basic definition of pressure by breaking area A into segments. The area segments must
be small enough so that the normal forces acting on each segment are uniform and
each area segment is essentially flat (Fig. 15-5). If we do this, the pressure at the loca-
tion of the ith segment of the area can be defined as

(pressure at a point, nonuniform forces), (15-2)

where is the magnitude of the net force normal to the ith area. That is, the pres-
sure at any point is the limit of this ratio as the area Ai centered on that point is made
smaller and smaller. Obviously, the net force acting on smaller areas will be smaller so
the ratio is still physically meaningful.

The SI unit of pressure is the newton per square meter, which is given a special
name, the pascal (Pa). In countries using the metric system, tire pressure gauges are
calibrated in kilopascals (kPa). The pascal is related to some other common (non-SI)
pressure units as follows:

The atmosphere (atm) is, as the name suggests, the approximate average pressure of
the atmosphere at sea level. The torr (named for Evangelista Torricelli, who invented
the mercury barometer in 1674) was formerly called the millimeter of mercury
(mm Hg). The pound per square inch is often abbreviated psi. Table 15-1 shows some
pressures.

Density
Let us return one more time to the column of solid we discussed above. Clearly, the
weight of a column of a given size and height depends on what the column is made of.
If a certain column was constructed of a material like Styrofoam® it would be much
lighter than if it was made of lead. Hence, it would be convenient to have a way to
predict the weight of an object that has a certain size and shape.

For this purpose, we invent a new quantity that is a measure of the mass of one
cubic meter of a material. To determine this value for a given substance, we measure
the total mass M in a measured volume V of the material and calculate M/V. This
quantity is called density. In general, density is a measure of mass per unit of volume.
The standard symbol for density is �.

1.00 atm � 101 325 Pa � 760 Torr � 14.7 lb/in2.

� F
:

i� �

� F
:

i �
Ai

Pi � lim
Ai : 0

FIGURE 15-4 ■ (a) A tiny parcel of fluid
with no gravitational forces acting on it in
static equilibrium. (b) Since the parcel
does not accelerate, the net force on it due
to the surrounding fluid must be zero, so
the pressure on the parcel is the same in all
directions. For clarity, force vectors on the
front and back parcel faces are not shown.

Parcel
of fluid

(a)

F up

F down

F left

F right

FIGURE 15-5 ■ To calculate the pressure
exerted by fluids on curved surfaces or sur-
faces that have nonuniform forces acting
on them, a surface area must be divided
into a large number of small area ele-
ments, A1, A2, and so on. The ith area is
shown in the diagram.

Ai



Table 15-2 shows the densities of several substances and
the average densities of some objects. Notice that the den-
sity of a gas (see Air in the table) varies considerably with
pressure, but the density of a liquid (see Water) does not.
That is, gases are readily compressible but liquids are not.

The density of a fluid is not always uniform. For exam-
ple, the density of the gas molecules and other particles that
make up the Earth’s atmosphere is much greater close to
the surface of the Earth than in the stratosphere. As is the
case for pressure, we can find the density � of any fluid at
point i if we isolate a small volume element Vi around that
point and measure the mass mi of the fluid contained within
that element. The density is then

(density in the vicinity of a point i). (15-3)

In theory, the density at any point in a fluid is the limit of
this ratio as the volume element V at that point is made
smaller and smaller. In practice, many fluid samples are
large compared to atomic dimensions and are thus
“smooth” rather than “lumpy” with atoms. If it is reasonable
to assume further that the sample has a uniform density, we
can simplify Eq. 15-3 to

(uniform density), (15-4)

where m and V are the total mass and volume of the sample.
Density is a scalar property; its SI unit is the kilogram per
cubic meter.

Density and pressure are fundamental concepts in regard to fluids. When we dis-
cuss solids, we are concerned with particular lumps of matter, such as wooden blocks,
baseballs, or metal rods. Physical quantities that we find useful, and in whose terms we
express Newton’s laws, are mass and force. We might speak, for example, of a 3.6 kg
block acted on by a 25 N force. With fluids, we are more interested in the extended
substance, and in properties that can vary from point to point in that substance. In
these cases, it is more useful to speak of density and pressure than of mass and force.

� �
m
V

�i �
mi

Vi
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TA B L E 15 - 1
Some Pressures

Pressures (Pa)

Center of the Sun 2 � 1016

Center of Earth 4 � 1011

Highest sustained laboratory pressure 1.5 � 1010

Deepest ocean trench (bottom) 1.1 � 108

Spike heels on a dance floor 1 � 106

Automobile tirea 2 � 105

Atmosphere at sea level 1.0 � 105

Normal blood pressurea,b 1.6 � 104

Best laboratory vacuum 10�12

a Pressure in excess of atmospheric.
b The systolic pressure (120 torr on a physician’s pressure gauge).

TA B L E 15 - 2
Some Densities

Material or Object Density (kg/m3)

Stray atoms in interstellar space 10�20

Air remaining in the best laboratory vacuum 10�17

Air: 20°C and 1 atm pressure 1.21
20°C and 50 atm pressure 60.5

Styrofoam 1 � 102

Ice 0.917 � 103

Water: 20°C and 1 atm 0.998 � 103

20°C and 50 atm 1.000 � 103

Seawater: 20°C and 1 atm 1.024 � 103

Whole blood 1.060 � 103

Iron 7.9 � 103

Mercury (the metal) 13.6 � 103

Earth: average 5.5 � 103

core 9.5 � 103

crust 2.8 � 103

Sun: average 1.4 � 103

core 1.6 � 105

White dwarf star (core) 1010

Uranium nucleus 3 � 1017

Neutron star (core) 1018

Black hole (1 solar mass) 1019
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READI NG EXERC IS E  15-1: Estimate the pressure in pascals exerted on a dance
floor by just the spike heels worn by a 125 lb woman who is standing on both feet. Assume that
half of her weight is on the spike heels and half is on the front soles of her shoes. How does
your estimate compare with the number given in Table 15-1? Discuss why it is possible for the
spike heels to exert more pressure on the floor than the pressure exerted on the road by a sin-
gle tire holding up its share of a 2500 lb automobile. ■

READI NG EXERC IS E  15-2: Examine the densities listed in Table 15-2. Use the fact
that air and water have significantly different densities to develop a plausible explanation for
the fact that air is a much more compressible fluid than is water. ■

READI NG EXERC IS E  15-3: Consider a book of dimensions 8 in. by 10 in. Show that
the downward force on the book by the atmosphere is about 1200 lb. The downward force on a
smooth thick rubber mat of the same dimensions is also 1200 lb. You find that you cannot lift
the rubber mat when it is placed on a smooth Formica table so no air can get under it. How-
ever, you can easily lift the book. Can you explain this phenomenon? ■

TOUCHSTONE EXAMPLE 15-1: Force Due to Air Pressure

A living room has floor dimensions of 3.5 m and 4.2 m and a height
of 2.4 m.

(a) What does the air in the room weigh when the air pressure is 1.0
atm?

S O L U T I O N ■ The Ke y  I d e a s here are these: (1) The air’s
weight is equal to mg, where m is its mass. (2) Mass m is related to
the air density � and the air’s volume V by Eq. 15-4 (� � m/V).
Putting these two ideas together and taking the density of air at 1.0
atm from Table 15-1, we find

This is the weight of about 126 cans of soda.

� 418 N � 420 N.

� (1.21 kg/m3)(3.5 m � 4.2 m � 2.4 m)(9.8 m/s2)

mg � (�V)g

(b) What is the magnitude of the atmosphere’s force on the ceiling
of the room?

S O L U T I O N ■ The Key  I dea here is that the atmosphere
pushes up on the ceiling with a force of magnitude that
is uniform over the ceiling. Thus, it produces a pressure that is re-
lated to F and the flat area A of the ceiling by Eq. 15-1 ,
which gives us

(Answer)

This enormous force is equal to the weight of the column of air that
has as its base the horizontal area of the room and extends all the
way to the top of the atmosphere.

� 1.5 � 106 N.

F� � PA � (1.0 atm)� 1.01 � 105 N/m2

1.0 atm �(3.5 m)(4.2 m)

(P � F�/A)

F� � � F
:

� �

15-4 Gravitational Forces and Fluids at Rest

In the last section we considered the forces on a parcel of fluid that was “at rest” and
does not experience gravitational forces. We found that the pressure in any fluid in a
container was the same in every direction at every location in the container. This is
not so in fluids that experience gravitational forces. In this section we will consider
how the presence of gravitational forces leads to pressure differences at different lev-
els in a container of fluid. As every diver knows, the pressure increases with depth be-
low the air–water interface. The diver’s depth gauge, in fact, is a pressure sensor much
like that of Fig. 15-3a. As every mountaineer knows, the pressure decreases with alti-
tude as one ascends into the atmosphere. The pressures encountered by the diver and
the mountaineer are usually called hydrostatic pressures because they are pressures
due to fluids that are static (at rest). Here we want to find an expression for hydrosta-
tic pressure as a function of depth or altitude.



FIGURE 15-6 ■ (a) A parcel of fluid such
as air or water is contained in an imaginary
cylinder of cross-sectional area A. Forces

and act, respectively, on the bottom
and top of the cylinder. The gravitational
force of the parcel of fluid is 
. (b) A free-body diagram of the forces
that act on the parcel of fluid in the cylin-
der.

F
:grav � �mg ĵ

F
:

2F
:

1

416 CHAPTER 15 Fluids

Let us consider a fluid such as air or water near the surface of the Earth. What
happens to its pressure when one changes from an initial level y1 to a final level y2?
Since a fluid is made up of lots of molecules, we can pick any subset of them as our
“object” and apply Newton’s laws to that parcel of fluid. So let us imagine a parcel of
the fluid consisting of all the molecules contained in a cylindrical column of cross-
sectional area A that extends between the two levels y1 and y2, as shown in Fig. 15-6a.
The total mass of the molecules in the cylinder is m.

If the parcel of fluid is at rest, in static equilibrium, the horizontal forces on it from
the sides must add up to zero. Similarly, static equilibrium requires that the vector
sum of the vertical forces on the parcel of fluid must be zero too. There are three ver-
tical forces that act on the parcel of fluid in the cylinder. Figure 15-6b shows a free-
body diagram of these forces. Force acts at the bottom surface of the cylinder and
is due to the water below the cylinder. Similarly, force acts at the top surface of the
cylinder and is due to the fluid above the cylinder. The gravitational force on the
water in the cylinder can be represented by . The net force comprised of
these forces must be zero, so that

Since we know that all the forces act in the vertical direction, we can rewrite this
equation in terms of the y-components of the vectors as

(15-5)

We know that force acts in an upward direction and is inherently positive while
force acts in a downward direction and is inherently negative. So we can replace
the force components, with the corresponding pressures and areas, with

and (15-6)

We use the explicit minus sign in front of the inherently positive P2A term to signify
the fact that the force component F2 y must be negative. The mass m of the fluid in the
cylinder is m � �V, where � represents the density of the fluid and where V represents
the volume of the cylinder. Since the volume is the product of its face area A and its
height �y � y2 � y1, the mass m is equal to �A(y2 � y1). Using these facts and substi-
tuting Eq. 15-6 into Eq. 15-5, we get

(only if � is uniform), (15-7)

or since the pressure difference �P � P2 � P1, we can also write

(15-8)

If SI units are used for �, g, and �y in calculations, then the pressure will be in pascals.
Equation 15-7 is a general expression that can be used to find pressure changes in

either a liquid (as a function of depth) or in the atmosphere (as a function of altitude
or height) (Fig. 15-7). However, it is only valid when the density of the fluid and the
local gravitational strength factors are essentially constant between the levels under
consideration.

Special Case 1: Pressure in the Earth’s Atmosphere
Equation 15-7 can be used to determine the pressure of the atmosphere at a given dis-
tance above a reference point in terms of the atmospheric pressure P1 at that level. If

�P � ��g �y.

P2 � P1 � �g(y2 � y1) � P1 � �g �y

F2 y � �P2 A.F1 y � �P1 A

F
:

2

F
:

1

F net
y � F1 y � F2 y � F grav

y � F1 y � F2 y � (�mg) � 0.

F
: net � F

:

1 � F
:

2 � F
: grav � 0.

F
: grav � �mg ĵ

F
:

2

F
:

1

0

y1

y2

y axis

F1

F grav

F1

F2
A is
cross-sectional
area

m is the
mass of
molecules
in the cylinder

Level 2, P2

Level 1, P1

(a)

(b)

F2

Parcel of
fluid

P2 = P

Level 1

Level 2, y2

Air
Liquid

y1

y axis

P1 = P atm

Δy (negative)

(a)

(b)

Level 2

Level 1

y axis

y2

y1

Δy (positive)

FIGURE 15-7 ■ Equation 15-7 can be used
to determine (a) either the pressure under-
water or (b) the atmospheric pressure
above the surface of the Earth.
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we denote the density as � � �air, we can write Eq. 15-7 as

(only if �air and g � const). (15-9)

Since we are above the reference level, we know that y2 � y1 so that �y is positive.
Thus, we obtain an expression for pressure that predicts that pressure decreases in a
linear manner with altitude.

Observations like those shown in Fig. 15-8 verifies that pressure does indeed de-
crease with altitude. Data in Table 14-1 indicate that the local gravitational strength is
essentially constant at any altitude found on Earth, including Mt. Everest at 8.8 km.
However, the density of air decreases with altitude. Fortunately the density of air �air

is reasonably constant up to about 5000 ft (or 1500 m). This means that Eq. 15-9 can
be used to calculate pressures for the range of altitudes encountered in the trip across
the cascades described in Fig. 15-8. However, Eq. 15-9 would not be accurate when
considering higher elevations.

Special Case 2: Underwater Pressure
Equation 15-7 can also be used to determine the pressure underwater at a given dis-
tance below a reference point in terms of the pressure P1 at the reference level. If we
denote the density as � � �water, we can write Eq. 15-7 as

(only if �water and g � const). (15-10)

Since we are below the reference level, we know that y2 	 y1 so that �y is
negative. Thus, we obtain an expression for pressure that predicts that pressure in-
creases in a linear manner with depth.

As you can see in Fig. 15-9, our theory, which predicts a linear increase in pressure
as a function of depth (with a slope given by the factor �water g), compares nicely with
experiment. Although we observe that the pressure in a liquid increases with depth, it
does not depend on the horizontal location of the parcel of liquid. If we have a liquid
other than water, obviously we need to use the density of that liquid in place of the
density of water.

When gravitational forces are present, the pressure at a point in a fluid in static equilibrium
depends on the depth of that point but not on any horizontal dimension of the fluid or the
shape of its container.

READI NG EXERC IS E  15-4: Scuba divers know that if they descend to a depth of 
10 m the pressure they experience doubles. However, alpine mountain climbers must ascend to
about 5.5 km to cut the atmospheric pressure in half. What factor in Eq. 15-7 accounts for the
fact that the pressure change with distance is so much smaller in air than in water? ■

P2 � P1 � �water g �y

P2 � P1 � �air g �y

FIGURE 15-8 ■ Here is a graph of pressure data collected while driving a car from
Portland, Oregon (altitude of about 3 m above sea level) over the Cascade Moun-
tain Range to Madras, Oregon. The first pressure minimum came at about 4200 s
when going over the pass near Government Camp. The second minimum came at
about 4700 s while going over Blue Box pass, which is almost as high. Both passes
are just over 1200 m above sea level. (Data courtesy of David Vernier.)
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FIGURE 15-9 ■ Pressure as a function of
depth for distances between 0 cm and 30
cm below the surface of a container of wa-
ter. Measurements were made using a
computer data acquisition system outfitted
with a gas pressure sensor like that shown
in the next section. The slope of the graph
when expressed in SI units should be equal
to the factor �water g shown in Eq. 15-10.
Within the limits of experimental uncer-
tainty, the data shown are compatible with
theory.



READI NG EXERC IS E  15-5: The figure shows four containers of olive oil. Rank them
according to the pressure at y2, greatest first.

■
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Δy

y1

y2

(a) (b) (c) (d)

TOUCHSTONE EXAMPLE 15-2: Exhale!

A novice scuba diver practicing in a swimming pool takes enough
air from his tank to fully expand his lungs before abandoning the
tank at depth L and swimming to the surface. He ignores instruc-
tions and fails to exhale during his ascent. When he reaches the sur-
face, the difference between the external pressure on him and the
air pressure in his lungs is 9.3 kPa. From what depth does he start?
What potentially lethal danger does he face?

S O L U T I O N ■ The Ke y  I d e a here is that when he fills his
lungs at depth �y, the external pressure on him (and thus the air
pressure within his lungs) is greater than normal.

Assuming that P1 equals the atmospheric pressure at the wa-
ter’s surface, we can rewrite Eq. 15-10 as

�water is the water’s density (998 kg/m3), given in Table 15-2. As the
diver ascends, the external pressure on him decreases, until it is at-
mospheric pressure Patm at the surface. His blood pressure also de-
creases, until it is normal. However, because he does not exhale, the

P2 � P1 � �water g �y � P atm � �water g �y,

air pressure in his lungs remains at the value it had at depth �y. At
the surface, the pressure difference between the higher pressure in
his lungs and the lower pressure on his chest is

from which we find

(Answer)

This is not deep! Yet, the pressure difference of 9.3 kPa (about 9%
of atmospheric pressure) is sufficient to rupture the diver’s lungs
and force air from them into the depressurized blood, which then
carries the air to the heart, killing the diver. If the diver follows in-
structions and gradually exhales as he ascends, he allows the pres-
sure in his lungs to equalize with the external pressure, and then
there is no danger.

� �0.95 m.

�y �
�P
��g

� �
9300 Pa

(998 kg/m3)(9.8 m/s2)

�P � P2 � P atm � ��water g �y,

TOUCHSTONE EXAMPLE 15-3: U-Tube

The U-tube in Fig. 15-10 contains two liquids in static equilibrium:
Water of density �water ( � 998 kg/m3) is in the right arm, and oil of
unknown density �x is in the left. Measurement gives l � 135 mm
and d � 12.3 mm. What is the density of the oil?

S O L U T I O N ■ One Ke y  I d e a here is that the pressure P int at
the oil–water interface in the left arm depends on the density �x

and height of the oil above the interface. A second Ke y  I d e a is

Interface

Water

Oil

l

d
yL1

y2

yR1

y2

(a) (b)

FL2

FL1

FL
grav

FR2

FR1

FR
grav

FIGURE 15-10 ■ (a) The oil in the left arm stands higher than the water in the right
arm because the oil is less dense than the water. Both fluid columns produce the
same pressure Pint at the level of the interface. (b) Free-body diagrams showing the
forces on the parcel of oil on the left and the forces on the parcel of water above the
interface on the right.
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15-5 Measuring Pressure

Electronic Pressure Sensors
One of the most popular methods for measuring absolute pressure in a gas is to use
an electronic sensor. Many electronic sensors work in much the same way as the test
sensor shown in Fig. 15-3. A common electronic pressure sensor has a flexible mem-
brane with a vacuum chamber on one side of it, examples of which are shown in
Fig. 15-11. The flexing of the membrane under pressure is sensed electronically. These
devices are used in recording barometers found in weather stations and in physics labo-
ratories.

Typically an electronic gas sensor will be damaged when immersed in a liquid.
However, when air-filled tubing connected to a gas sensor is immersed in a liquid, the
pressure at various depths in the liquid can also be measured.

The Mercury Barometer
For historical and practical reasons, the mercury barometer and the open tube
manometer are still popular methods for measuring atmospheric pressure and pres-
sures near atmospheric pressure.

Figure 15-12a shows a very basic mercury barometer, a device used to measure the
pressure of the atmosphere. The long glass tube is filled with mercury and inverted
with its open end in a dish of mercury, as the figure shows. The space above the mer-
cury column contains only mercury vapor, whose pressure is so small at ordinary tem-
peratures that it can be neglected.

We can use Eq. 15-10 to find the local atmospheric pressure P atm in terms of the
height �y � y2 � y1 of the mercury column. Since the chemical symbol for mercury is

that the water in the right arm at the same level must be at the same
pressure P int. The reason is that, because the water is in static equi-
librium, pressures at points in the water at the same level must be
the same even if the points are separated horizontally.

In the right arm, the interface is a distance l below the free sur-
face of the water and we have, from Eq. 15-10, P2 � P1 � �water g �y
where P2 � P int and �y � y2 � y1 ��l, so

(right arm).

In the left arm, the interface is a distance l � d below the free sur-
face of the oil and we have, again from Eq. 15-10,

P int � P atm � �water g(�l)

(left arm).

Equating these two expressions and solving for the unknown den-
sity yield

� 915 kg/m3 (Answer)

Note that the answer does not depend on the atmospheric pressure
P atm or the local gravitational strength g.

�x � �water� l
l � d � � (998 kg/m3)

135 mm
135 mm � 12.3 mm

P int � P atm � �xg[�(l � d)]

FIGURE 15-11 ■ Two popular gas pressure
sensors used in contemporary physics lab-
oratories can record between 0 atm and
about 7 atm of pressure. (a) Vernier
pressure sensor. (b) PASCO pressure
sensor. (Photos used with permission of
Vernier Software and Technology and
PASCO scientific.)



Hg, we denote the density of the mercury by �Hg. If we choose level 1 of Fig. 15-12a to
be that of the air–mercury interface and level 2 to be that of the top of the mercury
column, as labeled in Fig. 15-12a, we can substitute

P1 � P atm, P2 � 0, and � � �Hg,

into Eq. 15-10 to get

(15-11)

where �y � y2 � y1 is positive.
For a given pressure, the height �y of the mercury column does not depend on

the cross-sectional area of the vertical tube. The fanciful mercury barometer of 
Fig. 15-12b gives the same reading as that of Fig. 15-12a; all that counts is the vertical
distance �y between the mercury levels.

Equation 15-11 shows that, for a given pressure, the height of the column of mer-
cury depends on the value of the local gravitational constant g at the location of the
barometer and on the density of mercury, which varies only slightly with temperature.
The column height (in millimeters) is numerically equal to the pressure (in torr) only
if the barometer is at a place where g has its accepted average value of �9.80665 N/kg
and the temperature of the mercury is 0
C. If these conditions do not prevail (and
they rarely do), small corrections must be made before the height of the mercury col-
umn can be transformed into a pressure.

The Open-Tube Manometer
An open-tube manometer (Fig. 15-13) measures the pressure Pgas of a gas. It consists of
a U-tube containing a liquid, with one end of the tube connected to the vessel whose
pressure we wish to measure and the other end open to the atmosphere. Looking at
the figure, we see that the “U” of fluid below the line marked “Level 2” is being
pushed on the left by the force from the pressure of the gas in the tank and is being
pushed on the right by the force arising from the pressure built up by everything
above it, including the weight of the column between levels 1 and 2 and the pressure
of the atmosphere. When the column is in equilibrium (no rising or falling), these
forces must balance. Keeping this in mind, we can use Eq. 15-10 to find the pressure in
terms of the distance from level 1 to level 2, �y, shown in Fig. 15-13. Let us choose lev-
els 1 and 2 as shown in Fig. 15-13. We then substitute

and P2 � PgasP1 � P atm

P atm � �Hgg �y

FIGURE 15-12 ■ (a) A mer-
cury barometer. (b) Another
mercury barometer. The dif-
ference �y between liquid
levels is the same in both
cases.
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Level 1y1 y1

y2

P atm

y

Level 2

Δy

P2 ≈ 0

Δy

P atm

P2 ≈ 0

(a) (b)

Tank

Manometer

Level 2

Level 1
P1 = P atm

Δy (negative)

Pgas

FIGURE 15-13 ■ An open-tube manome-
ter, connected to measure the pressure of
the gas in the tank on the left. The right
arm of the U-tube is open to the atmos-
phere.
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into Eq. 15-9, finding that

(15-12)

where � is the density of the liquid in the tube.
In Fig. 15-13, the �y factor is negative since level 2 is lower than level 1. So this

figure depicts a gas pressure that is greater than the atmospheric pressure. Inflated
tires and the human circulatory network are examples of systems with pressures that
are greater than atmospheric. As you can see from Fig. 15-13 if level 2 were above
level 1, �y would be positive. In this case the gas pressure calculated using Eq. 15-12
would be less than the atmospheric pressure. For example, when you suck on a straw
to pull fluid up the straw, the (absolute) pressure in your lungs is actually less than at-
mospheric pressure.

Gauge Pressure
Often when measuring pressure we are interested in knowing the difference between
the pressure at some point such as level 2 in Fig. 15-13, which we call the absolute
pressure, and a reference pressure P1, which is taken to be the atmospheric pressure.
In general, the difference between an absolute pressure and an atmospheric pressure
is called the gauge pressure. (The name comes from the use of a gauge to measure
this difference in pressures.) For example, most tire pressure devices measure gauge
pressure.

The gauge pressure for water or another liquid used in a barometer or open-tube
manometer is given by Eq. 15-8, which is �P � P2 � P1 ���g �y. Since the gauge
pressure is simply �P in the case where P1 � P atm, we can write

. (15-13)P gauge � P2 � P1 � P2 � P atm � �� g �y

Pgas � P atm��g �y,

FIGURE 15-14 ■ The atmosphere and con-
tainer with lead shot (small balls of lead)
combine to create a pressure P ext at the
top of the enclosed (incompressible) liq-
uid. If P ext is increased, by adding more
lead shot, the pressure increases by the
same amount at all points within the 
liquid.

15-6 Pascal’s Principle

When you push down the plunger in the bottle shown in Fig. 15-2 and the cork pops
out, you are watching Pascal’s principle in action. This principle is also the reason why
toothpaste comes out of the open end of a tube when you squeeze on the other end,
and it is the basis of the Heimlich maneuver. In that maneuver a sharp pressure in-
crease properly applied to the abdomen is transmitted to the throat, forcefully eject-
ing food lodged there. Pascal’s principle was first stated clearly in 1652 by Blaise Pas-
cal (for whom the unit of pressure is named):

A change in the pressure applied to an enclosed fluid is transmitted undiminished to every
portion of the fluid and to the walls of its container.

This is just what we explained at the start of our discussion of pressure when we ap-
plied a force to the piston in Fig. 15-2. A cork inserted in the side of a bottle pops out
no matter where it is located.

A Mathematical “Proof” of Pascal’s Principle
Consider the case in which the incompressible fluid is a liquid contained in a tall cylinder,
as in Fig. 15-14.The cylinder is fitted with a piston on which a container of lead shot rests.
The atmosphere, container, and shot put pressure Pext on the piston and thus on the liq-
uid.The pressure P at any point in the liquid a distance �y below the piston is then

, (15-14)P2 � P1 � �g �y � P ext � �g �y

Lead shot

Piston

Point of interest P2

Δy (negative)

P1 = P ext

Liquid



where, as usual, when level 2 is below level 1, �y is negative. Let us add a little more
lead shot to the container to increase P ext by an amount �P ext. Since the fluid is as-
sumed to be incompressible, the quantities �, g, and �y in Eq. 15-14 are unchanged.
Thus the pressure change at any point is

(15-15)

This pressure change is independent of �y, so it must hold for all points within the
liquid, as Pascal’s principle states.

Pascal’s Principle and the Hydraulic Lift
Figure 15-15 shows how Pascal’s principle can be made the basis of a hydraulic lift. In
operation, let an external force of magnitude F in be directed downward on the left-
hand (or input) piston, whose area is Ain. An incompressible liquid in the device then
produces an upward force of magnitude F out on the right-hand (or output) piston,
whose area is Aout. There will also be a downward force on the output piston with a
magnitude equal to the weight of the external load (not shown). To keep the system in
equilibrium, the weight of the external load must have the same magnitude as the up-
ward output force so that F grav

L-load � F out.
The magnitude of the input force applied on the left and the magnitude of 

the downward force from the load on the right, F grav
R-load, both serve to produce a change

�P in the pressure of the liquid. Since F grav
R-load � Fout, this pressure change is given by

,

so (15-16)

Equation 15-16 shows that the magnitude of the output force on the load must be
greater than the magnitude of the input force if Aout � Ain, as is the case in 
Fig. 15-15.

If we move the input piston downward a distance equal to the magnitude of �y in,
the output piston moves upward a distance equal to the magnitude of �y out, such that
the same volume V of the incompressible liquid is displaced at both pistons. Then

,

which we can write as

(15-17)

This shows that, if Aout � Ain (as in Fig. 15-15), the output piston moves a smaller dis-
tance than the input piston moves.

By combining Eqs. 15-16 and 15-17 and noting that the displacements on both the
input and output sides of the lift are in the same direction as the forces that cause
them, we get the following expression relating work out to work in,

(15-18)

This equation shows that in a hydraulic lift, the work W in done on the input piston by
the applied force should be equal to the work W out done on the load by the output
piston in lifting it.

W out � F out� �yout � � �F out Aout

Ain ��� �y in �
Ain

Aout � � F in� �y in � � W in.

Aout � Aout � �y in �
� �yout �

.

V � Ain� �y in � � Aout� �yout �

F in
F out

F out � F in Aout

Ain .

�P �
F in

Ain �
F out

Aout

F in

�P � �P ext.

FIGURE 15-15 ■ A hydraulic arrangement
that can be used to magnify a force .
The work done is, however, not magnified
and is the same for both the input and out-
put forces.

F
: in
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Δy in
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Ain

Aout

Oil
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F in

F out
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TOUCHSTONE EXAMPLE 15-4: Car Lift

You are a new employee at an auto repair shop. The exhaust system
on a car you are repairing is leaking. Since you don’t want to crawl
under the car to work on the problem, you tell your boss that you’ll
use Pascal’s principle to design a hydraulic lift that anyone can use
to lift cars by hand that weigh up to 2000 kg using a lifting post with
a 50 cm diameter. Describe your design.

S O L U T I O N ■ The Ke y  I d e a s here are these: (1) From Pas-
cal’s principle you know that the pressure is constant at the same
level everywhere in a container of fluid, and (2) since F � PA if two
ends of a container have different cross-sectional areas, then the
force exerted at the end with the small area can be much less than
the force exerted at the end with the much larger area. Basically a
hydraulic lift like that shown in Fig. 15-16 is a device that enables
you to exert a small force over a large distance on one side of a
container of fluid and to transmit a large force acting over a small
distance on the other side.

Assume the lift is in equilibrium and the level of the liquid on
the input and output of the hydraulic lift shown in Fig. 15-16 is the
same. Then P in � P out where P in � F in/Ain and P out � F out /Aout, so

(15-19)F out � F in Aout

Ain ,

where F in and F out are the magnitudes of the forces pressing down
on the pistons at the two ends of the hydraulic lift. You know that
the magnitude of the force F out needed to hold a car up is given by

Most people can manage to lift a 20 kg mass without too much diffi-
culty, so you assume that the input force you exert is given by

F in � 20 kg � 9.8 m/s � 2.0 � 102 N,

F out � F grav
car � mg � 2000 kg � 9.8 m/s � 2.0 � 104 N.

Ain Aout

FIGURE 15-16 ■

A hydraulic car lift.

The advantage of a hydraulic lever is this:

With a hydraulic lift, a given force applied over a given distance can be transformed to a
greater force applied over a smaller distance.

The product of force and distance remains unchanged so that the same work is done.
A small version of the hydraulic lift we have described is the jack used to change au-
tomobile tires. Most of us, for example, cannot lift an automobile directly but can with
a hydraulic jack, even though we have to pump the handle farther than the automo-
bile rises. In this device, the displacement is accomplished not in a single stroke but
over a series of small strokes.

READI NG EXERC IS E  15-6: Consider the cylinder of a real hydraulic jack filled with
oil. The oil is slightly compressible. Discuss how the relations presented in this section are af-
fected by the compressibility of the oil. For example, is the work put in still equal to the work
out? If not, which is larger? What (if any) are the energy transformations that take place? ■

READI NG EXERC IS E  15-7: The pressure on the
bottom of a container with sloping walls is determined by the
height �y of the central column. Relate this observation to the
concepts addressed in this section.

■

Central
column

Δy
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which is 100 times less than the force you need to exert on a car to
hold it up. So we can rewrite Eq. 15-19 to get

Using the fact that A � �r2 and that Aout � �r2
out � �(50 cm/2)2, we

can rearrange Eq. 15-19 to calculate the size of the plunger you can
use in the input side to exert the force needed to hold the 
car up,

Aout

Ain �
�r2

out

�r2
in

� 100

Aout

Ain �
F out

F in �
2.0 � 104 N
2.0 � 102 N

� 100.

so that

Thus, in your design, you construct a column of diameter 2 �
2.5 cm � 5.0 cm at the input end and push a piston into it with a
force of just over 

. (Answer)F in � 2.0 � 102 N

r in � √ r2
out

100
�

rout

10
�

50 cm/2
10

� 2.5 cm.

15-7 Archimedes’ Principle

Let us think about what happens when we immerse an object in a fluid. Your first
guess might be that the weight of the water above the object would push it to the bot-
tom. But think about what happens when we try to push a beach ball down under the
surface in a swimming pool. It will be hard to push it down. If we do get it under the
surface and release it, it will go shooting up into the air. What’s going on here? It
turns out that the critical issue is that pressure is a scalar. You can get forces in all di-
rections—up as well as down. Let us see how this works.

Figure 15-17 shows a student in a swimming pool, manipulating a very thin plastic
sack (of negligible mass) that is filled with water. She finds that the sack and its con-
tained water are in static equilibrium, tending neither to rise nor to sink. The down-
ward gravitational force on the contained water must be balanced by a net up-
ward force from the water surrounding the sack.

This net upward force on an object in a fluid is called a buoyant force . It ex-
ists because the pressure in the surrounding water increases with depth below the sur-
face. Thus, the pressure near the bottom of the sack is greater than the pressure near
the top. Then the forces on the sack due to this pressure are greater in magnitude near
the bottom of the sack than near the top. Some of the forces are represented in 
Fig. 15-18a, where the space occupied by the sack has been left empty. As you can see,
the force vectors drawn near the bottom of that space (with upward components)
have longer lengths than those drawn near the top of the sack (with downward com-
ponents). If we vectorially add all the forces on the sack from the water, the horizon-
tal components cancel and the vertical components add to yield the upward buoyant
force on the sack. (Force is shown to the right of the pool in Fig. 15-18a.)F

: buoyF
: buoy

F
: buoy

F
: grav

FIGURE 15-17 ■ A thin-walled plastic
sack of water is in static equilibrium in the
pool. Its weight must be balanced by a net
upward force on the water in the sack from
the surrounding water.

FIGURE 15-18 ■ (a) The water surrounding the hole in the water produces a net upward buoy-
ant force on whatever fills the hole. (b) For a stone of the same volume as the hole, the gravita-
tional force exceeds the buoyant force in magnitude. (c) For a lump of wood of the same vol-
ume, the gravitational force is less than the buoyant force in magnitude.

(a)

F buoy

Stone

(b)

F buoy

F grav

(c )

Wood
F buoy

F grav
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In the late evening of August 21, 1986,
something (possibly a volcanic tremor) dis-
turbed Cameroon’s Lake Nyos, which has
a high concentration of dissolved carbon
dioxide. The disturbance caused that gas to
form bubbles. Being less dense than the
surrounding fluid (the water), those bub-
bles were buoyed to the surface, where
they released the carbon dioxide. The gas,
being more dense than the surrounding
fluid (now the air), rushed down the moun-
tainside like a river, asphyxiating 1700 per-
sons and the scores of animals seen here.

Let’s denote the mass of the fluid in the sack of water as mf. In static equilibrium,
the buoyant force magnitude F buoy is equal to the gravitational force magnitude 
F grav � mf g experienced by the sack of water so that

. (15-20)

In short, the magnitude of the buoyant force is equal to the weight of the water in the
sack.

In Fig. 15-18b, we have replaced the sack of water with a stone that exactly fills
the hole in Fig. 15-18a. The stone is said to displace the water, meaning that it occupies
space that would otherwise be occupied by water. The object pushes the water out of
the way. We have changed nothing about the shape of the hole, so the forces at the
hole’s surface must be the same as when the water-filled sack was in place. Thus, the
same upward buoyant force that acted on the water-filled sack now acts on the stone.
That is, the magnitude F buoy of the buoyant force is still equal to mf g, the weight of
the water displaced by the stone.

Unlike the water-filled sack, the stone is not in static equilibrium. Because the
stone has a higher density than water, the magnitude of the downward gravitational
force F grav on the stone is greater in magnitude than that of the upward buoyant
force. This is shown in the free-body diagram to the right of the pool in Fig. 15-18b.
The stone thus accelerates downward, sinking to the bottom of the pool. Once on
the bottom, the normal force from the floor balances and the stone stops
moving.

Let us next exactly fill the hole in Fig. 15-18a with a block of low-density wood, as in
Fig. 15-18c.Again, nothing has changed about the forces at the hole’s surface, so the mag-
nitude F buoy of the buoyant force is still equal to mf g, the weight of the displaced water.
Like the stone, the block is not in static equilibrium. However, this time the magnitude of
the gravitational force F grav is less than the buoyant force (as shown to the right of the
pool), and so the block accelerates upward, rising to the top surface of the water.

Our results with the sack, stone, and block apply to all fluids and are summarized
in Archimedes’ principle:

When a body is fully or partially submerged in a fluid, a buoyant force from the sur-
rounding fluid acts on the body. The buoyant force is directed upward and has a magnitude
equal to the weight mf g of the fluid that has been displaced by the body.

The buoyant force on a body in a fluid has the magnitude

(buoyant force magnitude), (15-21)

where mf is the mass of the fluid that is displaced by the body.

Floating
When we release a block of lightweight wood just above the water in a pool, it moves
into the water because the gravitational force on it pulls it downward. As the block
displaces more and more water, the magnitude of the upward buoyant force act-
ing on it increases. Eventually, is large enough to equal the magnitude of
the downward gravitational force on the block, and the block comes to rest. The block
is then in static equilibrium and is said to be floating in the water. In general,

When a body floats in a fluid, the magnitude F buoy of the buoyant force on the body is equal
to the magnitude F grav of the gravitational force on the body.

F gravF buoy
F buoy

F buoy � mf g

F
: buoy

F
:grav

F buoy � mf g
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We can write this statement in terms of the magnitude of the forces as

(15-22)

From Eq. 15-21, we know that F buoy � mf g. Thus,

When a body floats in a fluid, the magnitude F grav of the gravitational force on the body is
equal to the weight mf g of the fluid that has been displaced by the body.

We can write this statement 

(floating condition). (15-23)

In thinking about whether an object will sink or float, density is the key consider-
ation, not the total mass of the object. If the density is less than that of water, the ob-
ject can displace a mass of water equal to its own weight by being only partially sub-
merged. If the density is greater than that of water, even completely immersing the
object produces a buoyant force that is less than the object’s weight. In that case, part
of the object’s weight will be unbalanced; there will be a net downward force and the
object will sink to the bottom.

Apparent Weight in a Fluid
If we place a stone on a scale that is calibrated to measure weight, then the reading
on the scale is the stone’s weight. However, if we do this underwater, the upward
buoyant force on the stone from the water decreases the reading. That reading is
then an apparent weight. In general, an apparent weight or net downward force
on the body is related to the actual weight of a body and the buoyant force on the
body by

which we can write as

(apparent weight). (15-24)

If, in some strange test of strength, you had to lift a heavy stone, you could do it
more easily with the stone underwater. Then your applied force would need to exceed
only the stone’s apparent weight, not its larger actual weight, because the upward
buoyant force would help you lift the stone.

The magnitude of the buoyant force on a floating body is equal to the body’s
weight. Equation 15-24 thus tells us that a floating body has an apparent weight of
zero—the body would produce a reading of zero on a scale. (When astronauts pre-
pare to perform a complex task in space, they practice the task floating underwater,
where their apparent weight is zero as it is in space.)

READI NG EXERC IS E  15-8: A penguin floats first in fluid A of density �A, then in
fluid B of density �B � 0.95�A, and then in fluid C of density �C � 1.10�A. (a) Rank the fluids ac-
cording to the magnitude of the buoyant force on the penguin, greatest first. (b) Rank the fluids
according to the amount of fluid displaced by the penguin, greatest first. ■

F app � F grav � F buoy

(apparent weight) � (actual weight) � (magnitude of buoyant force),

F grav � mf g

F buoy � F grav.
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READI NG EXERC IS E  15-9: Each year student teams and colleges and universi-
ties design, build, and race full-size canoes made entirely of reinforced concrete. In the fig-
ure, a group of University of Maryland boat designers show off their award-winning
concrete canoe. How can you get a concrete canoe to float?

TOUCHSTONE EXAMPLE 15-5: Iceberg

What fraction of the volume of an iceberg floating in seawater is
visible?

S O L U T I O N ■ Let Viceberg be the total volume of the iceberg. The
nonvisible portion is below water and thus is equal to the volume
Vfluid of the fluid (the seawater) displaced by the iceberg. We seek
the fraction (call it frac)

(15-25)

but we know neither volume. A Ke y  I d e a here is that, because
the iceberg is floating, Eq. 15-23 applies. We can
write that equation as

from which we see that miceberg � mfluid. Thus, the mass of the ice-
berg is equal to the mass of the displaced fluid (seawater).

miceberg g � mfluid g,

(F grav � m fluid g)

frac �
Viceberg � Vfluid

Viceberg
� 1�

Vfluid

Viceberg
,

Although we know neither mass, we can relate them to the densi-
ties of ice and seawater given in Table 15-2 by using Eq. 15-1 (� �
m/V). Because miceberg � mfluid, we can write

or

Substituting this into Eq. 15-25 and then using the known densities,
we find

� 0.10 or 10%. (Answer)

The fact that only 10% of an iceberg can be seen above water is the
source of a common expression: “That’s only the tip of the iceberg.”

frac �  1 �
�iceberg

�fluid
� 1 �

917 kg/m3

1024 kg/m3

Vfluid

Viceberg
�

�iceberg

�fluid
.

� icebergViceberg � �fluidVfluid,

TOUCHSTONE EXAMPLE 15-6: Water-Filled Sack

Consider the thin-walled sack full of water suspended in a swim-
ming pool shown in Fig. 15-17. The atmospheric pressure at the sur-
face of the pool is the mean sea level pressure. Assume that the bot-
tom of the sack is 60 cm below the top of the sack.

(a) If the top of the sack is 40 cm below the surface of the pool,
what is the pressure at the center of the sack?

S O L U T I O N ■ To determine the pressure at the center of the
sack we need to find how far it is below the water surface. The mid-
dle of a sack with a top to bottom distance of 60 cm is 60 cm/2 �
30 cm below the top of the sack. If the top of the sack is 40 cm
below the surface, then the middle of the sack is at a depth given by
�y � �40 cm � 30 cm � �70 cm. Assuming that the water is in-

compressible, we can use Eq. 15-10 to find the pressure, P2, at the
center of the sack,

(Answer)

(b) If the water inside the sack has a mass of 100 kg, what is the
buoyant force on the sack?

S O L U T I O N ■ The Ke y  I d e a here is that according to Archi-
medes’ principle, the buoyant force has the same magnitude as the

� 108.2 Pa.

� 101 325 Pa � (998 kg/m3)(9.8 N/kg)(�0.70m)

P2 � P1 � �water g �y � P atm � �water g �y

■
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weight of the pool water displaced by the sack of water. Since the
plastic sack is thin with essentially no mass, the weight of the sack
with the water in it is the same as the weight of the water the sack
displaced. We can use Eq. 6-5 to find the weight of the displaced
water,

Since the buoyant force acts upward, using Archimedes’ principle
(Eq. 15-21),

(Answer)

(c) If the swimmer gently pulls the sack down deeper into the pool,
what happens to the pressure at the center of the sack?

S O L U T I O N ■ The Ke y  I d e a here is that according to 
Eq. 15-10, the pressure at the center of the sack (and in fact at all
locations in the sack) increases as the depth of the sack increases.

(d) What happens to the buoyant force on the sack as it is pulled
down further?

F
: buoy � �� F

:grav � ĵ � (980N)ĵ.

Weight � � F
: grav � � mg � (100 kg)(9.80m/s2) � 980 N.

S O L U T I O N ■ The Ke y  I d e a here is that according to Archi-
medes’ principle, the buoyant force must remain the same as the
weight of the water displaced. But the displaced weight doesn’t
change with depth (to the extent that the local gravitational field
strength g does not change with depth).

(e) If the buoyant force is caused by the pressure of water on the
sack and the pressure increases with depth, why doesn’t the buoy-
ant force on the water in the sack increase?

S O L U T I O N ■ The Ke y  I d e a here is that the buoyant force
on the water in the sack is a net force that depends on the vector
sum of the upward forces on the bottom surface elements of the
sack due to the pool’s water pressure, and the downward forces on
the top surface elements of the sack also due to the pool’s water
pressure. Ultimately the net force is related to pressure differences
between the bottom and top sack elements. Since pressure in-
creases linearly with depth, the pressure differences do not depend
on depth.

15-8 Ideal Fluids in Motion

The motion of real fluids is very complicated and not yet fully understood. Instead, we
shall discuss the motion of an ideal fluid, which is simpler to handle mathematically
and yet provides useful results. Here are four assumptions that we make about our
ideal fluid, all concerned with flow:

1. Steady flow In steady (or laminar) flow, the velocity of the moving fluid at any
fixed point does not change with time, either in magnitude or in direction. The
gentle flow of water near the center of a quiet stream is steady; that in a chain of
rapids is not. Figure 15-19 shows a transition from steady flow to nonsteady (or
turbulent) flow for a rising stream of smoke. The speed of the smoke particles in-
creases as they rise and, at a certain critical speed, the flow changes from steady
to nonsteady (that is, from laminar to nonlaminar flow).

2. Incompressible flow We assume, as we have already done for fluids at rest, that
our ideal fluid is incompressible; that is, its density has a constant, uniform value.

3. Nonviscous flow Roughly speaking, the viscosity of a fluid is a measure of how re-
sistive the fluid is to flow. For example, thick honey is more resistive to flow than
water, and so honey is said to be more viscous than water. Viscosity is the fluid
analog of friction between solids; both are mechanisms by which the kinetic en-
ergy of moving objects can be transferred to thermal energy. In the absence of
friction, a block could glide at constant speed along a horizontal surface. In the
same way, an object moving through a nonviscous fluid would experience no vis-
cous drag force—that is, no resistive force due to viscosity; it could move at con-
stant speed through the fluid. The British scientist Lord Rayleigh noted that in an
ideal fluid a ship’s propeller would not work but, on the other hand, a ship (once
set into motion) would not need a propeller!

We can make the flow of a fluid visible by adding a tracer. This might be a dye in-
jected into many points across a liquid stream (Fig. 15-20) or smoke particles added to

FIGURE 15-19 ■ At a certain point, the
rising flow of smoke and heated gas
changes from steady to turbulent.
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a gas flow (Figs. 15-19 and 15-21). Each bit of a tracer follows a streamline, which is
the path that a tiny element of the fluid would take as the fluid flows. Recall from
Chapter 2 that the velocity of a particle is always tangent to the path taken by the par-
ticle. Here the particle is the fluid element, and its velocity is always tangent to a
streamline (Fig. 15-22). For this reason, two streamlines cannot intersect with a finite
fluid velocity, since a fluid element cannot flow in two directions simultaneously. How-
ever, at a point of zero velocity, a stagnation point, there is no direction defined and
two or more streamlines may intersect at a stagnation point.

15-9 The Equation of Continuity

You may have noticed that you can increase the speed of the water emerging from a
garden hose by partially closing the hose opening with your thumb. Apparently the
speed (often denoted simply as v) of the water depends on the cross-sectional
area A through which the water flows. This makes sense when we realize that the
faucet is putting water out at a certain rate. If that much water has to get through a
smaller hole, it has to go faster.

Here we wish to derive an expression that relates the speed of a fluid v to the
cross-sectional area A of the pipe through which it flows. Let’s consider the steady
flow of an ideal fluid through a pipe with varying cross section, like that in Fig. 15-23.
The flow is toward the right, and the pipe segment shown (part of a longer pipe) has
length L. The fluid has speeds v1 at the left end of the segment and v2 at the right end.
The pipe has cross-sectional areas A1 at the left end and A2 at the right end. Suppose
that in a time interval �t a volume �V of fluid enters the pipe segment at its left end
(that volume is colored purple in Fig. 15-23a). Then, because the fluid is incompress-
ible, an identical volume �V must emerge from the right end of the segment (it is col-
ored green in Fig. 15-23b).

We can use this common volume �V to relate the speeds and areas. To do so, we
first consider Fig. 15-24, which shows a side view of a pipe of uniform cross-sectional
area A. In Fig. 15-24a, a fluid element e is about to pass through the dashed line drawn
across the pipe width. The element’s speed is v, so during a time interval �t, the ele-
ment moves along the pipe a distance �x � v �t. The volume �V of fluid that has
passed through the dashed line in that time interval �t is

(15-26)

Applying these ideas to both the left and right ends of the pipe segment in 
Fig. 15-23, we have

�V � A1v1 �t � A2v2 �t

�V � A �x � Av �t.

� v: �

v:

FIGURE 15-20 ■ Streamlined flow around an
airfoil.

FIGURE 15-21 ■ Smoke reveals streamlines
in airflow past a car in a wind-tunnel test.

Streamline

Fluid
element

v

FIGURE 15-22 ■ A fluid element traces
out a streamline as it moves. The velocity
vector of the element is tangent to the
streamline at every point.

L

L

A1

A2

(a) Time t

(b) Time t + Δt

v1

v2

FIGURE 15-23 ■ Fluid flows from left to
right at a steady rate through a tube seg-
ment of length L. The fluid’s velocity is 
at the left side and at the right side. The
tube’s cross-sectional area is A1 at the left
side and A2 at the right side. From time t in
(a) to time in (b), the amount of
fluid in purple enters at the left side and
the equal amount of fluid shown in green
emerges at the right side.

t � �t

v:
2

v:1



or (equation of continuity). (15-27)

This relation between speed and cross-sectional area is called the equation of continu-
ity for the flow of an ideal fluid. It tells us that the flow speed increases when we
decrease the cross-sectional area through which the fluid flows (as when we partially
close off a garden hose with a thumb).

The equation of continuity (Eq. 15-27) applies not only to an actual pipe but also
to any so-called tube of flow, or imaginary tube whose boundary consists of stream-
lines. Such a tube acts like a real pipe because no fluid element can cross a streamline.
Thus, all the fluid within a tube of flow must remain within its boundary. Figure 15-25
shows a tube of flow in which the cross-sectional area increases from area A1 to area
A2 along the flow direction. From Eq. 15-27 we know that, with the increase in area,
the speed must decrease, as is indicated by the greater spacing between streamlines at
the right in Fig. 15-25. Similarly, you can see that in Fig. 15-20 the speed of the flow is
greatest just above and just below the cylinder.

We can rewrite the equation of continuity (Eq. 15-27) as

RV � Av � a constant (volume flow rate, equation of continuity), (15-28)

in which RV is the volume flow rate of the fluid (volume per unit time). Its SI unit is
the cubic meter per second (m3/s). If the density � of the fluid is uniform, we can mul-
tiply this expression (Eq. 15-28) by that density to get the mass flow rate Rm (mass per
unit time):

(mass flow rate, the equation of continuity). (15-29)

The SI unit of mass flow rate is the kilogram per second (kg/s). Equation 15-29 says
that the mass that flows into the pipe segment of Fig. 15-23 each second must be equal
to the mass that flows out of that segment each second.

Engineers can use velocity measurements and the equation of continuity as a tool
for determining volume flow rates of incompressible fluids such as oil flowing in a
pipe of variable cross section or water flowing in a stream of variable cross section.
But the equation of continuity (Eqs. 15-27 to 15-29) can only be used under certain
conditions. In deriving it we assumed that fluid isn’t being added to or subtracted
from the system. For example, we assume that our oil pipe doesn’t leak or that new
water is not being added to a stream by a tributary as it flows along. In cases where
fluid is added or subtracted from a tube of flow, we would find that .

Even when the continuity condition holds, whenever we use the equation of con-
tinuity we assume that we have a uniform flow of fluid over a cross-sectional area. In
other words, we assume that the velocity of each of the elements of the fluid is moving
at the same speed in a direction that is perpendicular to a cross-sectional area. In real
pipes, fluid flows more slowly near the surface of the pipe than in the middle and it is
not obvious how to calculate the product vA at a given location along our pipe.

In the next section we will introduce the mathematical concept of flux to help us
deal with more realistic situations in which the simplified application of the equation
of continuity cannot be used either because we do not have true continuity or because
we do not have a nice uniform flow of fluid over a cross-sectional area.

v1A1 � v2A2

Rm � �RV � �v �  a constant

A1v1 � A2v2

FIGURE 15-24 ■ Fluid flows at a constant
velocity through a tube. (a) At time t,
fluid element e is about to pass the dashed
line. (b) At time t � �t, element e is a dis-
tance � x � vx �t from the dashed line
where vx is the x-component of .v:

v:
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e

e

(a) Time t

(b) Time t + Δt

Δx

v

v

FIGURE 15-25 ■ A tube of flow is defined
by the streamlines that form the boundary.
The volume flow rate must be the same for
all cross sections of the tube of flow.

A1

A2

READI NG EXERC IS E  15-10: The figure shows a pipe and
gives the volume flow rate (in cm3/s) and the direction of flow for all
but one section. What are the volume flow rate and the direction of
flow for that section?

■
4.0 cm/s 8.0 cm/s

2.0 cm/s 5.0 cm/s
6.0 cm/s

4.0 cm/s
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15-10 Volume Flux

The term volume flux is a synonym for volume flow rate, RV. In this section we con-
sider a more careful mathematical definition of volume flux that will allow us to apply
the equation of continuity to more realistic situations. The word “flux” comes from the
Latin word meaning “to flow.” Often the word “flux” is used in science and engineer-
ing to describe the rate of flow or penetration of matter or energy through a surface.
However, later in this text we will introduce definitions of electric and magnetic flux.
Even though the mathematical definitions of electric and magnetic flux are analogous
to that of volume flow rate, it is surprising to find that nothing at all is flowing.

TOUCHSTONE EXAMPLE 15-7: Blood Flow

The cross-sectional area A1 of the aorta (the major blood vessel
emerging from the heart) of a normal resting person is 3 cm2, and
the average speed v1 of the blood is 30 cm/s. A typical capillary (di-
ameter � 6 �m) has a cross-sectional area A2 of 3 � 10�7 cm2 and
an average flow speed v2 of 0.05 cm/s. How many capillaries does
such a person have?

S O L U T I O N ■ The Ke y  I d e a here is that all the blood that
passes through the capillaries must have passed through the aorta.
Therefore, the volume flow rate through the aorta must equal the
total volume flow rate through the capillaries. Let us assume that
the capillaries are identical, with the given cross-sectional area A2

and average flow speed v2. Then, from Eq. 15-27 we have

A1v1 = nA2v2,

where n is the number of capillaries. Solving for n yields

(Answer)

You can easily show that the combined cross-sectional area of the
capillaries is about 600 times the cross-sectional area of the aorta.

� 6 � 109 or 6 billion.

n �
A1v1

A2v2
�

(3 cm2)(30 cm/s)
(3 � 10�7 cm2)(0.05 cm/s)

TOUCHSTONE EXAMPLE 15-8: Necking Down

Figure 15-26 shows how the stream of water emerging from a faucet
“necks down” as it falls. The indicated cross-sectional areas are A1 �
1.2 cm2 and A2 � 0.35 cm2. The two levels are separated by a vertical
distance h � 45 mm. What is the volume flow rate from the tap?

S O L U T I O N ■ The Ke y  I d e a here is simply that the volume
flow rate through the higher cross section must be the same as that
through the lower cross section. Thus, from Eq. 15-27, we have

(15-30)A1v1 � A2v2,

where v1 and v2 are the water speeds at the levels corresponding to
A1 and A2. Adapting the last equation on page 43 to this situation
we get

(15-31)

where h � y1 � y2. Eliminating v2 between Eqs. 15-30 and 15-31 and
solving for v1, we obtain

From Eq. 15-28, the volume flow rate RV is then

(Answer)� 34 cm3/s.

RV � A1v1 � (1.2 cm2)(28.6 cm/s)

� 0.286 m/s �  28.6 cm/s.

� √ (2)(9.8 m/s2)(0.045 m)(0.35 cm2)2

(1.2 cm2)2 � (0.35 cm2)2

v1 � √ 2ghA2
2

A2
1 � A2

2

v2
2y � v2

1y � 2(�g)(y2 � y1),

h

A1

A2

y1

y2

FIGURE 15-26 ■ As water falls
from a tap, its speed increases.
Because the flow rate must be
the same at all cross-sections,
the stream must “neck down.”
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Volume Flux in a Stream
In this section we develop the concept of flux to calculate the rate at which water
flows though a cross-sectional area of a stream. Suppose we have a stream of water
undergoing steady laminar flow (as described in Sections 15-8 and 15-9). Assume all
the water is traveling in the same direction through a wide shallow channel as shown
in Fig. 15-27 but that the elements of water closer to the stream bottom and sides are
moving more slowly than the water in the top central part of the stream. We cannot
simply find a single velocity, , at all points along our cross-sectional area.v:

Let us consider stream water passing through many small elements. We can de-
note the ith area element as �Ai, where we use the delta notation (�) to signify that
the area is part of a larger area, as shown in Fig. 15-28. In fact, we typically choose the
area elements �Ai to be small enough that the velocity of the part of the stream flow-
ing through it is essentially constant. Suppose that the volume flux, �i, represents the
rate at which water flows through the ith element of area.

VOLUME FLUX is defined as the rate at which something passes through an area.

Obviously if the water velocity is parallel to the plane of the area element �Ai,
water passes by the area without going through it. In that case the flux element, �i, is
zero (Fig. 15-29a). On the other hand, if is perpendicular to the plane of the area,
the flux element, �i, is a maximum (Fig. 15-29b). If the area is oriented so it is be-
tween perpendicular and parallel the volume flux is in between zero and its maximum
value (Fig. 15-29c). Thus, the volume flux depends on the angle between the velocity
vector representing the flow of water and the orientation of the areas shown in
Fig. 15-29.

v:

v:

v:

FIGURE 15-27 ■ Water moving in laminar flow through a wide shallow channel.
The darker regions in the diagram with longer velocity vectors indicate areas
farther from the sides and bottom of the stream where the water encounters less
drag and hence flows faster. The flow can be described by a vector field consist-
ing of the velocity vectors at each location in the stream.

Ai

FIGURE 15-28 ■ The ith of many, many
small area elements that make up the
cross-sectional area of a stream channel.
The size of the elements is chosen to be so
small that the stream velocity vector is
constant over an element of area.

(a) (b) (c)

As shown in Eq. 15-26, the volume of water, �Vi , that passes in a time �t through a
small area element, Ai, perpendicular to the stream’s direction of flow is given by �Vi �
�x Ai � (vi x �t) Ai (Fig. 15-29). Thus, when an area is perpendicular to the 
x-component of the stream velocity vx, the flux element, ��, is given by the volume rate
of flow through the area 

(15-32)�i� �
�Vi

�t
�

�x Ai

�t
� vi xAi.

FIGURE 15-29 ■ The velocity vector field of a stream is represented here as imagi-
nary streamlines. The amount of water that passes through a small imaginary area de-
pends on the area’s orientation. Three orientations are shown for the same area ele-
ment Ai. (a) No water passes through the area when it is parallel to the velocity
vector. (b) The largest volume of water passes through an area that is perpendicular
to the velocity vector. (c) Less water passes through when the orientation of the plane
of the area is between perpendicular and parallel.
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Defining the Normal Vector for an Area
In order to find the flux at intermediate angles, it will be convenient to represent the
orientation of our small area mathematically. An area uses two of the three dimen-
sions of space, but a direction perpendicular to the plane of the area lies along a single
line. Thus it is easier to define the orientation of the ith area element mathematically
by a vector having a magnitude of Ai that points in a direction perpendicular to the
plane of the area. Since the term normal is a synonym for perpendicular, a vector used
to describe the direction and magnitude of an area is known as a normal vector and
can be denoted as . But in what direction should our normal vector point? If the el-
ement of area is part of an imaginary closed container, it is conventional to choose
our normal vector for a flat surface pointing out of a surface rather than into a sur-
face. The box in Fig. 15-30 has an inside and outside even if it has no front or back.
Thus, the normal vectors representing each element of area point outward. If we put a
front and back on the box, we would define it as a closed surface because if it were a
real box, we could trap or enclose something inside of it.

How does the angle between the normal to an area and a stream velocity vector
affect the flux? Suppose water in a straight stream channel is moving from left to right
as it flows through a small imaginary box shown in Fig. 15-31. What will the flux be
through each face of the box as a function of the angle � between the normal vector
of a box face and the stream velocity vector ? Since the flux is a measure of the vol-
ume of water that flows through a surface per unit time, it will depend on the compo-
nent of normal to the plane of the area element and the magnitude of the area

(Fig. 15-30). But as seen in Fig. 15-31, the component of along the direction of
the normal vector is cos�i, and so the flux element �i is given by

where represents the ith area element.
To make our definition of flux more generally useful, we will develop an equation

for flux in terms of the velocity and area vectors and . We define the flux of water
through the ith element of area mathematically using the scalar product (introduced
in Section 9-4) as

(volume flux definition for a small area element). (15-33)

Let us consider how to calculate the net flow of water through an imaginary surface
placed in a stream such as the box shown in Fig. 15-31. We can assign a velocity vector to
each point in the stream of water. If our area elements are small enough, the velocity
vector is the same everywhere on the surface of a given area element. Thus, if we know
the area and orientation of each face and the magnitude and direction of the stream
velocity vectors, we can use Eq. 15-33 to calculate the net flux through the cross-sectional
area of the stream by adding up the products of the normal velocity vector components
and the area elements through which water flows. Mathematically this is given by

(15-34)

where and so on represent the velocity vectors at the location of each of the
N area elements.

Net Fluid Volume Flux through a Closed Container
Let us consider how fluid flows into face 3 and out of faces 1 and 2 of a small imagi-
nary box we have placed in our stream (Fig. 15-31). If our fluid, in this case water, is

v:1, v:2, v:N,

�net � �1 � �2 � � � � � �N � v:1 � A
:

1 � v:2 � A
:

2 � � � � � v:N� A
:

N � �
N

n�1
v:n � A

:

n

�i � v:i � A
:

i

A
:

v:

Ai

�i � (� v:i �cos�i)� A
:

i � � v:i� A
:

i

� v:i �
v:

i
� �A

:

i �
v:

i

v:
i

A
:

i

FIGURE 15-30 ■ The directions of the
normal vectors are shown for four of the
six faces that make up a container. Each
normal vector points out of the container.
Since area elements 3 and 4 have twice the
area as 1 and 2, their normal vectors have
twice the length.

4

21

3

A1

A4

A2

A3

v3

v1

v2

2

3
1 A1

A2

A3

θ

θ

FIGURE 15-31 ■ A small imaginary box
with six faces (or surfaces) is placed in an
area of the stream where the velocity of
the water is uniform over all the faces of
the box. The angle between the velocity
vector and the normal vectors for three of
the six faces of the box are shown.



incompressible and is not created or destroyed inside our imaginary closed surface,
we expect that the rate at which it flows into the box should be the same as the rate at
which it flows out of the box. The total flux through all the faces of a closed container
is known as the net flux. Thus, we expect the net flux of an incompressible fluid
through the box to be zero. Does the mathematics of our method for finding net flux
tell us this?

We have chosen our area elements to be small enough that the flow velocity vec-
tor at the location of any particular area element is uniform. However, that doesn’t
mean that magnitudes of the velocity vectors and relative angle between the velocity
vectors and the normal vectors are necessarily the same at the location of each flat
surface area. Thus, in general the net flux through a surface is the sum of the flux
through each surface area and is still given by the application of Eq. 15-34 to our new
situation. Our definition of net flux allows us to deal with a general case for which we
have different velocity vectors and normal vector orientations at each face. This might
be the case if the stream is very turbulent.

When the velocity and area vectors point in the same general direction as they do
in faces 1 and 2, the scalar product of i and is positive. This tells us that water
flowing out of a surface is defined as a positive flux. But the flux at face 3 is different.
The velocity and area vectors are in opposite directions and their scalar product is
negative. Thus, when water flows into a surface the flux is negative. Another feature of
our box is that the areas associated with the bottom face and the front and back faces
all have normal vectors that are perpendicular to the stream velocity vectors. The
scalar product rules give us no flux or volume flow through these additional faces. It
can be shown that the sum of the negative flux of water into face 3, the positive flux of
water out of face 1, and the positive flux out of face 2 add up to zero.

If we refine the equation of continuity to take the direction of flow of fluid into a
closed surface as negative volume flux and the flow out of a closed surface as positive
volume flux, we indeed expect the net flux through our imaginary box to be zero. This
makes sense physically as long as water is incompressible and as long as we can’t
spontaneously create new water inside the box or remove water from the box. Later
when we define electric and magnetic flux, we will see that it may be possible to have
a net flux at the boundaries of a closed surface.

READI NG EXERC IS E  15-11: Consider the imaginary box in Fig. 15-31 and assume
that it has a width of 4.0 cm, a depth of 1.0 cm, a height on the left side of 8.0 cm, and a height
on the right side of 4.0 cm. (a) Find the magnitude of the area of faces 1, 2, and 3, respectively.
Report your answer in square meters. (b) What is the total surface area of the box? [Be sure to
include the areas of all six area elements (faces) in your calculation.] ■

READI NG EXERC IS E  15-12: Consider the imaginary box in Fig. 15-31 and assume
that it is placed in a stream that moves from left to right through the box with a uniform veloc-
ity. In other words, we make the simplifying assumption that the velocity vector is the same at
every point and on the surface of the small box. Suppose the box has a width of 4.0 cm, a depth
of 1.0 cm, a height on the left side of 8.0 cm, and a height on the right side of 4.0 cm. If the mag-
nitude of the stream velocity at the location of the box is 0.50 m/s, (a) find the flux through
faces 1, 2, and 3 respectively in m3/s; (b) explain why only faces 1, 2, and 3 have nonzero flux,
and (c) show that the net flux through the closed surface defined by the box is zero. ■

15-11 Bernoulli’s Equation

As we discussed in Section 15-8, ideal fluids are incompressible and flow in a stream-
lined fashion without experiencing friction forces. Water that flows in slow-moving
rivers or large pipes acts like an ideal fluid. In this section we present a very useful equa-
tion that relates the pressure, velocity, and vertical location of an ideal fluid as it flows.

A
:

iv:
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Consider an ideal fluid flowing through a pipe like that shown in Fig. 15-32. In a
time interval �t, a parcel of fluid of volume �V (colored purple in Fig. 15-32a) enters
the pipe at the left input end and an identical volume (colored green in Fig. 15-32b)
emerges at the right output end. Since we are assuming that the fluid is incompress-
ible, the emerging volume must be the same as the entering volume. In addition we
assume that the fluid has a constant density �.

Let y1, v1, and P1 be the elevation, speed, and pressure of the fluid entering at the
left, and y2, v2, and P2 be the corresponding quantities for the fluid emerging at the
right. By applying the principle of conservation of energy to the fluid, we can show
that these quantities are related by

(15-35)

We can also write this equation as

(ideal fluid-flow equation). (15-36)

Equations 15-35 and 15-36 are equivalent forms of Bernoulli’s equation, named
after Daniel Bernoulli, who studied fluid flow in the 1700s.* Like the equation of con-
tinuity (Eq. 15-28), Bernoulli’s equation is not a new principle but simply the refor-
mulation of a familiar principle in a form more suitable to fluid mechanics. As a check
let us consider Bernoulli’s equation for two special cases.

Case 1, No flow: Here we set the speeds at the two ends of the pipe equal to zero in
Eq. 15-35 so that v1 � v2. This gives us

(elevation change but no flow).

In this case, Bernoulli’s equation simply reduces to Eq. 15-7.

Case 2, No Elevation Change: A major prediction of Bernoulli’s equation emerges
if we assume the fluid does not change elevation as it flows so that y1 � y2. Equa-
tion 15-35 then becomes

(15-37)

which tells us that:

If the speed of a fluid element increases as it travels along a horizontal streamline, the pres-
sure of the fluid must decrease.

Put another way, where the speed of the fluid is relatively high, its pressure is rela-
tively low. Conversely, where the speed of the fluid is relatively low, its pressure is rel-
atively high.

The link between a change in pressure and a change in speed makes sense if you
consider what happens to the parcel of fluid as it crosses a boundary between high
and low pressure. As the parcel of fluid that is moving from left to right nears a 
narrow region, the higher pressure behind it exerts a force on it toward the right of

P1 � 1
2 �v2

1 � P2 � 1
2 �v2

2,

P2 � P1��g(y2 � y1)

P � 1
2 �v2 � �gy � a constant

P1 � 1
2 �v2

1 � �gy1 � P2 � 1
2 �v2

2 � �gy2.

*For irrotational flow (which we assume), the constant in Eq. 15-36 has the same value for all points within
the tube of flow; the points do not have to lie along the same streamline. Similarly, the points 1 and 2 in 
Eq. 15-35 can lie anywhere within the tube of flow.

FIGURE 15-32 ■ Fluid flows at a steady
rate through a length L of a tube from the
input end at the left to the output end at
the right. From time t in (a) to time 
in (b), the parcel of fluid of mass m shown
in purple enters the input end and the
equal amount shown in green emerges
from the output end.
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magnitude where �A is the cross-sectional area of the parcel. Likewise
the lower pressure in front of it exerts a force on it toward the left of magnitude

. But since , then and the parcel experiences a net force to
the right. It then accelerates over a short distance and speeds up. In passing from a re-
gion of lower pressure to one of higher pressure , so the parcel slows down.

Bernoulli’s equation is strictly valid only to the extent that the fluid is ideal. If vis-
cous forces are present, thermal energy will be involved. We take no account of this in
the derivation that follows.

Proof of Bernoulli’s Equation
Since our ideal fluid system experiences no friction, we can assume that mechanical
energy is conserved by any parcel of fluid lying between the two vertical planes sepa-
rated by a distance L in Fig. 15-32 as it moves from its initial state (Fig. 15-32a) to its
final state (Fig. 15-32b). We also assume that the fluid does not change its properties
during this process and that the flow is steady. Thus, we need be concerned only with
changes that take place at the input and output ends of the pipe.

The work-kinetic energy theorem tells us that if energy is conserved,

(15-38)

In other words, the change in the kinetic energy of our parcel must equal the net work
done on it. But the change in kinetic energy results from the change in speed of the
parcel of fluid at the ends of the pipe. Thus, if a parcel of fluid flows into end 1 and out
end 2 of the pipe, then

(15-39)

where m � �V is the mass of the parcel of fluid of volume V.
The work done on the parcel arises from two sources. One is the negative gravita-

tional work done on the parcel of fluid during the vertical lift of the mass from the
input to the output level. A second source of work done on the parcel of fluid results
from the forces exerted on it by the fluid behind it and the fluid in front of it as it
flows due to pressure differences at various locations in the pipe.

Gravitational Work: The work W grav done by the gravitational force on the
parcel of fluid of mass m during the vertical lift of the mass from the input to the out-
put level is given by Eq. 9-14

(15-40)

This work is negative because the upward displacement and the downward gravita-
tional force have opposite directions. (Note that in this context the notation W grav has
nothing to do with the weight of the parcel.) 

Pressure Difference Work: Work is done on the parcel of moving fluid as a result of
the pressure difference between its input and output ends. We start by finding the
equation for the work needed to move a parcel of fluid through a distance �x in a
pipe of cross section A. If the parcel of fluid is under pressure P, it is given by 

where V � A�x is the volume of the parcel.

W � Fx�x � (PA)�x � P(A�x) � PV,

� ��gV(y2 � y1).

W grav � �mg(y2 � y1)

(mg ĵ)

� 1
2 �V(v2

2 � v2
1),

�K � 1
2 mv2

2 � 1
2 mv2

1

W net � �K.

F2 � F1

F1 � F2P1 � P2F2 � P2�A

F1 � P1�A
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We now consider the parcel of fluid shown at the input end in Fig. 15-32. It is at pres-
sure P1 and has a volume V. Since the displacement and the force due to the pressure
at the input end are in the same direction, the work done on it by the fluid behind it is
positive and given by W1 � �P1V. Now consider the work done on the parcel of fluid
shown at the output end in Fig. 15-32. It is at pressure P2 but also has a volume V.
Since the displacement and the force exerted due to the pressure at the output end
are in opposite directions, the work done on it by the fluid behind it is negative and
given by W2 � �P2V. Thus, the total work W pd done on the incoming and emerging
parcels due to pressure difference is given by

(15-41)

The work-kinetic energy theorem of Eq. 15-38 now becomes

Substituting from Eqs. 15-39, 15-40, and 15-41 yields

This, after a slight rearrangement, matches Eq. 15-35, which we set out to prove.

READI NG EXERC IS E  15-13: Water
flows smoothly through the pipe shown in the
figure, descending in the process. Rank the four
numbered sections of pipe according to (a) the
volume flow rate RV through them, (b) the flow
speed v through them, and (c) the water pres-
sure P within them, greatest first.

■

��gV(y2 � y1) � V(P2 � P1) � 1
2 �V(v2

2 � v2
1).

Wnet � W grav � Wpd � �K.

� � (P2 � P1)V.

Wpd � W1 � W2 � P1V � P2V

1

Flow

2

3
4

TOUCHSTONE EXAMPLE 15-9: Ethanol Flow

Ethanol of density � � 791 kg/m3 flows smoothly through a hori-
zontal pipe that tapers in cross-sectional area from A1 � 1.20 �
10�3 m2 to A2 � A1/2. The pressure difference between the wide
and narrow sections of pipe is 4120 Pa. What is the volume flow rate
RV of the ethanol?

S O L U T I O N ■ One Ke y  I d e a here is that, because the fluid
flowing through the wide section of pipe must entirely pass through
the narrow section, the volume flow rate RV must be the same in
the two sections. Thus, from Eq. 15-28,

RV � v1A1 � v2A2. (15-42)

However, with two unknown speeds, we cannot evaluate this equa-
tion for RV.

A second Ke y  I d e a is that, because the flow is smooth, we
can apply Bernoulli’s equation. From Eq. 15-35, we can write

P1 � � �gy � P2 � � �gy, (15-43)1
2 �v2

2
1
2 �v2

1

where subscripts 1 and 2 refer to the wide and narrow sections of
pipe, respectively, and y is their common elevation. This equation
hardly seems to help because it does not contain the desired vol-
ume flow RV and it contains the unknown speeds v1 and v2.

However, there is a neat way to make it work for us: First, we
can use Eq. 15-42 and the fact that A2 = A1/2 to write

and (15-44)

Then we can substitute these expressions into Eq. 15-43 to elimi-
nate the unknown speeds and introduce the desired volume flow
rate. Doing this and solving for RV yield

(15-45)

We still have a decision to make: We know that the pressure
difference between the two sections is 4120 Pa, but does that mean

RV � A1√ 2(P1 � P2)
3�

.

v2 �
RV

A2
�

2RV

A1
.v1 �

RV

A1
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that P1 � P2 is 4120 Pa or �4120 Pa? We could guess the former is
true, or otherwise the square root in Eq. 15-45 would give us an
imaginary number. Instead of guessing, however, let’s try some rea-
soning. From Eq. 15-42 we see that speed v2 in the narrow section
(small A2) must be greater than speed v1 in the wider section
(larger A1). Recall that if the speed of a fluid increases as it travels
along a horizontal path (as here), the pressure of the fluid must de-

crease. Thus, P1 is greater than P2, and . Insert-
ing this and known data into Eq. 15-45 gives

(Answer)� 2.24 � 10�3 m3/s.

RV � 1.20 � 10�3 m2 √ (2)(4120 Pa)
(3)(791 kg/m3)

P1 � P2 � �4120 Pa

Problems

SEC. 15-3 ■ PRESSURE AND DENSITY

1. Syringe Find the pressure increase in the fluid in a syringe when
a nurse applies a force of 42 N to the syringe’s circular piston, which
has a radius of 1.1 cm.

2. Three Liquids Three liquids that will not mix are poured into a
cylindrical container. The volumes and densities of the liquids are
0.50 L, 2.6 g/cm3; 0.25 L, 1.0 g/cm3; and 0.40 L, 0.80 g/cm3. What is
the force on the bottom of the container due to these liquids? One
liter � 1 L � 1000 cm3. (Ignore the contribution due to the atmo-
sphere.)

3. Office Window An office window has dimensions 3.4 m by 2.1 m.
As a result of the passage of a storm, the outside air pressure drops
to 0.96 atm, but inside the pressure is held at 1.0 atm. What net
force pushes out on the window?

4. Front Tires You inflate the front tires on your car to 28 psi.
Later, you measure your blood pressure, obtaining a reading of
120/80, the readings being in mm Hg. In countries using the metric
system (which is to say, most of the world), these pressures are cus-
tomarily reported in kilopascals (kPa). In kilopascals, what are (a)
your tire pressure and (b) your blood pressure?

5. Fish A fish maintains its depth in fresh water by adjusting the
air content of porous bone or air sacs to make its average density
the same as that of the water. Suppose that with its air sacs col-
lapsed, a fish has a density of 1.08 g/cm3. To what fraction of its ex-
panded body volume must the fish inflate the air sacs to reduce its
density to that of water?

6. Airtight Container An airtight container having a lid with negli-
gible mass and an area of 77 cm2 is partially evacuated. If a 480 N
force is required to pull the lid off the container and the atmo-
spheric pressure is 1.0 � 105 Pa, what is the air pressure in the con-
tainer before it is opened?

7. Otto Von Guericke In 1654 Otto
von Guericke, inventor of the air
pump, gave a demonstration before
the noblemen of the Holy Roman
Empire in which two teams of eight
horses could not pull apart two
evacuated brass hemispheres. (a)
Assuming that the hemispheres
have thin walls, so that R in Fig. 15-33 may be considered both the
inside and outside radius, show that the force required to pull
apart the hemispheres has magnitude � �R2 �P, where �P is
the difference between the pressures outside and 
inside the sphere. (b) Taking R as 30 cm, the inside pressure as 
0.10 atm, and the outside pressure as 1.00 atm, find the force mag-

� F
:

�
F
:

nitude the teams of horses would have had to exert to pull apart the
hemispheres. (c) Explain why one team of horses could have
proved the point just as well if the hemispheres were attached to a
sturdy wall.

SEC. 15-4 ■ GRAVITATIONAL FORCES AND FLUIDS AT REST

8. Hydrostatic Difference Calculate the hydrostatic difference in
blood pressure between the brain and the foot in a person of height
1.83 m. The density of blood is 1.06 � 103 kg/m3.

9. Sewage Outlet The sewage outlet of a house constructed on a
slope is 8.2 m below street level. If the sewer is 2.1 m below street
level, find the minimum pressure difference that must be created by
the sewage pump to transfer waste of average density 900 kg/m3

from outlet to sewer.

10. Phase Diagram Figure 15-34
displays the phase diagram of car-
bon, showing the ranges of tempera-
ture and pressure in which carbon
will crystallize either as diamond or
graphite. What is the minimum
depth at which diamonds can form if
the temperature at that depth is
1000°C and the rocks there have
density 3.1 g/cm3? Assume that, as in
a fluid, the pressure at any level is
due to the gravitational force on the
material lying above that level, and
neglect variation of g with depth.

11. Swimming Pool A swimming
pool has the dimensions 24 m � 9.0
m � 2.5 m. When it is filled with wa-
ter, what is the force (resulting from the water alone) on (a) the
bottom, (b) each short side, and (c) each long side? (d) If you are
concerned with the possibility that the concrete walls and floor will
collapse, is it appropriate to take the atmospheric pressure into ac-
count? Why?

12. Seawater (a) Assuming the density of seawater is 1.03 g/cm3,
find the total weight of water on top of a nuclear submarine at 
a depth of 200 m if its (horizontal cross-sectional) hull area is 
3000 m2. (b) In atmospheres, what water pressure would a diver ex-
perience at this depth? Do you think that occupants of a damaged
submarine at this depth could escape without special equipment?

13. Crew Members Crew members attempt to escape from a dam-
aged submarine 100 m below the surface. What force must be 
applied to a pop-out hatch, which is 1.2 m by 0.60 m, to push it 
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out at that depth? Assume that the density of the ocean water is
1025 kg/m3.

14. Barrel A cylindrical barrel has a
narrow tube fixed to the top, as shown
(with dimensions) in Fig. 15-35. The ves-
sel is filled with water to the top of the
tube. Calculate the ratio of the hydro-
static force on the bottom of the barrel
to the gravitational force on the water
contained inside the barrel. Why is that
ratio not equal to one? (You need not
consider the atmospheric pressure.)

15. Cylindrical Vessels Two identical
cylindrical vessels with their bases at
the same level each contain a liquid of
density �. The area of each base is A,
but in one vessel the liquid height is
hA, and in the other it is hB. Find the
work done by the gravitational force
in equalizing the levels when the two
vessels are connected.

16. Geological Features in ana-
lyzing certain geological fea-
tures, it is often appropriate to
assume that the pressure at
some horizontal level of com-
pensation, deep inside Earth, is
the same over a large region and
is equal to the pressure due to
the gravitational force on the
overlying material. Thus, the
pressure on the level of com-
pensation is given by the fluid
pressure formula. This model re-
quires, for one thing, that moun-
tains have roots of continental
rock extending into the denser
mantle (Fig. 15-36). Consider a
mountain 6.0 km high. The con-
tinental rocks have a density of
2.9 g/cm3, and beneath the conti-
nent the mantle has a density of
3.3 g/cm3. Calculate the depth D
of the root. (Hint: Set the pres-
sure at points a and b equal; the
depth y of the level of compen-
sation will cancel out.)

17. Ocean Figure 15-37 shows
the juncture of ocean and con-
tinent. Find the depth h of the ocean us-
ing the level-of-compensation technique
presented in Problem 16.

18. L-shaped Tank The L-shaped tank
shown in Fig. 15-38 is filled with water
and is open at the top. If d � 5.0 m, what
are (a) the force on face A and (b) the
force on face B due to the water?

19. Water Stands Water stands at a
depth D behind the vertical up-
stream face of a dam, as shown in
Fig. I5-39. Let W be the width of the
dam. Find (a) the net horizontal
force on the dam from the gauge
pressure of the water and (b) the
net torque due to that force (and
thus gauge pressure) about a line
through O parallel to the width of
the dam. (c) Find the moment arm
of the net horizontal force about the
line through O.

SEC. 15-5 ■ MEASURING PRESSURE

20. Lemonade To suck lemonade of density 1000 kg/m3 up a straw
to a maximum height of 4.0 cm, what minimum gauge pressure (in
atmospheres) must you produce in your mouth?

21. Atmosphere What would be the height of the atmosphere if the
air density (a) were uniform and (b) decreased linearly to zero with
height? Assume that at sea level the air pressure is 1.0 atm and the
air density is 1.3 kg/m3.

SEC. 15-6 ■ PASCAL’S PRINCIPLE

22. Piston A piston of small cross-
sectional area a is used in a hy-
draulic press to exert a small force

on the enclosed liquid. A connect-
ing pipe leads to a larger piston of
cross-sectional area A (Fig. 15-40).
(a) What force magnitude will
the larger piston sustain without
moving? (b) If the small piston has
a diameter of 3.80 cm and the large
piston one of 53.0 cm, what force magnitude on the small piston will
balance a 20.0 kN force on the large piston?

23. Hydraulic Press In the hydraulic press of Problem 22, through
what distance must the large piston be moved to raise the small pis-
ton a distance of 0.85 m?

SEC. 15-7 ■ ARCHIMEDES’ PRINCIPLE

24. A Boat Floats A boat floating in fresh water displaces water
weighing 35.6 kN. (a) What is the weight of the water that this boat
would displace if it were floating in salt water with a density of 
1.10 � 103 kg/m3? (b) Would the volume of the displaced water
change? If so, by how much?

25. Iron Anchor An iron anchor of
density 7870 kg/m3 appears 200 N
lighter in water than in air. (a) What
is the volume of the anchor? (b)
How much does it weigh in air?

26. Cubical Object In Fig. 15-41 a
cubical object of dimensions 
L � 0.600 m on a side and with a
mass of 450 kg is suspended by a
rope in an open tank of liquid of
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density 1030 kg/m3. (a) Find the magnitude of the total downward
force on the top of the object from the liquid and the atmosphere,
assuming that atmospheric pressure is 1.00 atm. (b) Find the magni-
tude of the total upward force on the bottom of the object. (c) Find
the tension in the rope. (d) Calculate the magnitude of the buoyant
force on the object using Archimedes’ principle. What relation ex-
ists among all these quantities?

27. Block of Wood A block of wood floats in fresh water with two-
thirds of its volume submerged. In oil the block floats with 0.90 of
its volume submerged. Find the density of (a) the wood and (b) the
oil.

28. Blimp A blimp is cruising slowly at low altitude, filled as usual
with helium gas. Its maximum useful payload, including crew and
cargo, is 1280 kg. The volume of the helium-filled interior space is
5000 m3. The density of helium gas is 0.16 kg/m3, and the density of
hydrogen is 0.081 kg/m3. How much more payload could the blimp
carry if you replaced the helium with hydrogen? (Why not do it?)

29. Hollow Sphere A hollow sphere of inner radius 8.0 cm and
outer radius 9.0 cm floats half-submerged in a liquid of density 
800 kg/m3. (a) What is the mass of the sphere? (b) Calculate the
density of the material of which the sphere is made.

30. Dead Sea About one-third of the body of a person floating in
the Dead Sea will be above the water line. Assuming that the hu-
man body density is 0.98 g/cm3, find the density of the water in the
Dead Sea. (Why is it so much greater than 1.0 g/cm3?)

31. Iron Shell A hollow spherical iron shell floats almost com-
pletely submerged in water. The outer diameter is 60.0 cm, and the
density of iron is 7.87 g/cm3. Find the inner diameter.

32. Wood with Lead A block of wood has a mass of 3.67 kg and a
density of 600 kg/m3. It is to be loaded with lead so that it will float
in water with 0.90 of its volume submerged. What mass of lead is
needed (a) if the lead is attached to the top of the wood and (b) if
the lead is attached to the bottom of the wood? The density of lead
is 1.13 � l04 kg/m3.

33. Iron Casting An iron casting containing a number of cavities
weighs 6000 N in air and 4000 N in water. What is the total volume
of all the cavities in the casting? The density of iron (that is, a sam-
ple with no cavities) is 7.87 g/cm3.

34. Density of Brass Assume the density of brass weights to be 
8.0 g/cm3 and that of air to be 0.0012 g/cm3. What percent error
arises from neglecting the buoyancy of air in weighing an object of
mass m and density � on a beam balance?

35. Slab of Ice (a) What is the minimum area of the top surface of
a slab of ice 0.30 m thick floating on fresh water that will hold up an
automobile of mass 1100 kg? (b) Does it matter where the car is
placed on the block of ice?

36. Three Children Three children, each of weight 356 N, make 
a log raft by lashing together logs of diameter 0.30 m and length
1.80 m. How many logs will be
needed to keep them afloat in fresh
water? Take the density of the logs
to be 800 kg/m3.

37. Metal Rod A metal rod of
length 80 cm and mass 1.6 kg has a
uniform cross-sectional area of 6.0
cm2. Due to a nonuniform density,
the center of mass of the rod is 20

cm from one end of the rod. The rod is suspended in a horizontal
position in water by ropes attached to both ends (Fig. 15-42). (a)
What is the tension in the rope closer to the center of mass? (b)
What is the tension in the rope farther from the center of mass?
(Hint: The buoyancy force on the rod effectively acts at the rod’s
geometric center.)

38. Floating Car A car has a total mass of 1800 kg. The volume of
air space in the passenger compartment is 5.00 m3. The volume of
the motor and front wheels is 0.750 m3, and the volume of the rear
wheels, gas tank, and trunk is 0.800 m3; water cannot enter these
areas. The car is parked on a hill; the handbrake cable snaps and the
car rolls down the hill into a lake (Fig. 15-43). (a) At first, no water
enters the passenger compartment. How much of the car, in cubic
meters, is below the water surface with the car floating as shown?
(b) As water slowly enters, the car sinks. How many cubic meters of
water are in the car as it disappears below the water surface? (The
car, with a heavy load in the trunk, remains horizontal.)

FIGURE 15-43 ■ Problem 38.

SEC. 15-9 ■ THE EQUATION OF CONTINUITY

39. Garden Hose A garden hose with an internal diameter of 
1.9 cm is connected to a (stationary) lawn sprinkler that consists
merely of an enclosure with 24 holes, each 0.13 cm in diameter. If
the water in the hose has a speed of 0.91 m/s, at what speed does it
leave the sprinkler holes?

40. Two Streams Two streams merge to form a river. One stream
has a width of 8.2 m, depth of 3.4 m, and current speed of 2.3 m/s.
The other stream is 6.8 m wide and 3.2 m deep, and flows at 2.6 m/s.
The width of the river is 10.5 m, and the current speed is 2.9 m/s.
What is its depth?

41. Flooded Basement Water is pumped steadily out of a flooded
basement at a speed of 5.0 m/s through a uniform hose of radius 1.0
cm. The hose passes out through a window 3.0 m above the water-
line. What is the power of the pump?

42. Water Pipe The water flowing through a 1.9 cm (inside diame-
ter) pipe flows out through three 1.3 cm pipes. (a) If the flow rates
in the three smaller pipes are 26, 19, and 11 L/min, what is the flow
rate in the 1.9 cm pipe? (b) What is the ratio of the speed of water
in the 1.9 cm pipe to that in the pipe carrying 26 L/min?

SEC. 15-11 ■ BERNOULLI’S EQUATION

43. Pipe Increases in Area Water is moving with a speed of 5.0 m/s
through a pipe with a cross-sectional area of 4.0 cm2. The water
gradually descends 10 m as the pipe increases in area to 8.0 cm2.
(a) What is the speed at the lower level? (b) If the pressure at the
upper level is 1.5 � l05 Pa, what is the pressure at the lower level?

44. Torpedoes Models of torpedoes are sometimes tested in a hor-
izontal pipe of flowing water, much as a wind tunnel is used to test
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model airplanes. Consider a circular pipe of internal diameter 
25.0 cm and a torpedo model, aligned along the axis of the pipe,
with a diameter of 5.00 cm. The model is to be tested with water
flowing past it at 2.50 m/s. (a) With what speed must the water flow
in the part of the pipe that is unconstricted by the model? (b) What
will the pressure difference be between the constricted and uncon-
stricted parts of the pipe?

45. Basement Pipe A water pipe having a 2.5 cm inside diameter
carries water into the basement of a house at a speed of 0.90 m/s
and a pressure of 170 kPa. If the pipe tapers to 1.2 cm and rises to
the second floor 7.6 m above the input point, what are (a) the speed
and (b) the water pressure at the second floor?

46. Water Intake A water in-
take at a pump storage reser-
voir (Fig. 15-44) has a cross-sec-
tional area of 0.74 m2. The
water flows in at a speed of 0.40
m/s. At the generator building
180 m below the intake point,
the cross-sectional area is
smaller than at the intake and
the water flows out at 9.5 m/s. What is the difference in pressure, in
megapascals, between inlet and outlet?

47. Large Area A tank of large area is filled with water to a depth
D � 0.30 m. A hole of cross-sectional area A � 6.5 cm2 in the bot-
tom of the tank allows water to drain out. (a) What is the rate at
which water flows out, in cubic meters per second? (b) At what dis-
tance below the bottom of the tank is the cross-sectional area of the
stream equal to one-half the area of the hole?

48. Air Flows Air flows over the top of an airplane wing of area A
with speed and past the underside of the wing (also of area A)
with speed . Show that in this simplified situation Bernoulli’s
equation predicts that the magnitude of the upward lift force on
the wing will be

,

where � is the density of the air.

49. Airplane Wing If the speed of flow past the lower surface of an
airplane wing is 110 m/s, what speed of flow over the upper surface
will give a pressure difference of 900 Pa between upper and lower
surfaces? Take the density of air to be 1.30 � 10�3 g/cm3, and see
Problem 48.

50. Two Tanks Suppose that two tanks, A and B, each with a large
opening at the top, contain different liquids. A small hole is made in
the side of each tank at the same depth d below the liquid surface,
but the hole in tank A has half the cross-sectional area of the hole
in tank B. (a) What is the ratio �A/�B of the densities of the liquids
if the mass flow rate is the same for the two holes? (b) What is the
ratio of the volume flow rates from the two tanks? (c) To what
height above the hole in tank B should liquid be added or drained
to equalize the volume flow rates?

51. Water in the Horizontal Pipe In Fig, 15-45, water flows through
a horizontal pipe, and then out into the atmosphere at a speed of 
15 m/s. The diameters of the left and right sections of the pipe are

� L
:

� � 1
2�A(v2

top � v2
under)

� L
:

�
� v:under�
� v:top�

5.0 cm and 3.0 cm, respectively. (a) What volume of water flows
into the atmosphere during a 10 min period? In the left section of
the pipe, what are (b) the speed , and (c) the gauge pressure? 

52. Beverage Keg An opening of area 0.25 cm2 in an otherwise
closed beverage keg is 50 cm below the level of the liquid (of den-
sity 1.0 g/cm3) in the keg. What is the speed of the liquid flowing
through the opening if the gauge pressure in the air space above
the liquid is (a) zero and (b) 0.40 atm?

53. Dam The fresh water behind a
reservoir dam is 15 m deep. A hori-
zontal pipe 4.0 cm in diameter
passes through the dam 6.0 m 
below the water surface, as shown in
Fig. 15-46. A plug secures the pipe
opening. (a) Find the magnitude of
the frictional force between plug
and pipe wall. (b) The plug is re-
moved. What volume of water flows
out of the pipe in 3.0 h?

54. Filled Tank A tank is filled with
water to a height H. A hole is
punched in one of the walls at a
depth h below the water surface
(Fig. 15-47). (a) Show that the dis-
tance x from the base of the tank to
the point at which the resulting
stream strikes the floor is given by 
x � 2 (b) Could a hole
be punched at another depth to pro-
duce a second stream that would
have the same range? If so, at what
depth? (c) At what depth should the hole be placed to make the
emerging stream strike the ground at the maximum distance from
the base of the tank?

55. Venturi Meter A venturi meter is used to measure the flow
speed of a fluid in a pipe. The meter is connected between two sec-
tions of the pipe (Fig. 15-48); the cross-sectional area A of the en-
trance and exit of the meter matches the pipe’s cross-sectional area.
At the entrance and exit, the fluid flows through the pipe with speed

But it flows through a narrow “throat” of cross-sectional
area B with speed A manometer connects the wider por-
tion of the meter to the narrower portion. The change in the fluid’s
speed is accompanied by a change �P in the fluid’s pressure, which

vB � � v:B �.
vA � � v:A �.

√h(H � h).
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causes a height difference h of the liquid in the two arms of the
manometer. (Here �P means pressure in the throat minus pressure
in the pipe.) (a) By applying Bernoulli’s equation and the equation
of continuity to points 1 and 2 in Fig. 15-48, show that

where � is the density of the fluid. (b) Suppose that the fluid is fresh
water, that the cross-sectional areas are 64 cm2 in the pipe and 
32 cm2 in the throat, and that the pressure is 55 kPa in the pipe and
41 kPa in the throat. What is the rate of water flow in cubic meters
per second?

56. Venturi Tube Consider the venturi tube of Problem 55 and Fig.
15-48 without the manometer. Let A equal 5a. Suppose that the
pressure P1 at A is 2.0 atm. Compute the values of (a) at A and
(b) at a that would make the pressure P2 at a equal to zero.
(c) Compute the corresponding volume flow rate if the diameter at
A is 5.0 cm. The phenomenon that occurs at a when P2 falls to
nearly zero is known as cavitation. The water vaporizes into small
bubbles.

57. Pitot Tube A pitot tube (Fig. 15-49) is used to determine the
airspeed of an airplane. It consists of an outer tube with a number
of small holes B (four are shown) that allow air into the tube; that
tube is connected to one arm of a U-tube. The other arm of the U-
tube is connected to hole A at the front end of the device, which
points in the direction the plane is headed. At A the air becomes
stagnant so that � 0. At B, however, the speed of the air presum-vA

� v:a �
� V

:

A�

v:A � √ 2B2 �P
�(B2 � A2)

,

ably equals the airspeed v of the aircraft. (a) Use Bernoulii’s equa-
tion to show that

,

where � is the density of the liquid in the U-tube and h is the differ-
ence in the fluid levels in that tube. (b) Suppose that the tube con-
tains alcohol and indicates a level difference h of 26.0 cm. What 
is the plane’s speed relative to the air? The density of the air is 
1.03 kg/m3 and that of alcohol is 810 kg/m3.

58. High-Altitude Aircraft A pitot tube (see Problem 57) on a
high-altitude aircraft measures a differential pressure of 180 Pa.
What is the airspeed if the density of the air is 0.031 kg/m3?

v � √ 2�gh
�air
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Additional Problems

59. Pool Filling You have been asked to review plans for a swim-
ming pool in a new hotel. The water is to be supplied to the hotel by
a horizontal main pipe of radius R1 � 6.00 cm, with water under
pressure of 2.00 atm. A vertical pipe of radius R2 � 1.00 cm is to
carry the water to a height of 9.40 m, where the water is to pour out
freely into a square pool of width 10.0 m and (proposed) water
depth of 2.00 m. (a) How much time will be required to fill the
pool? (b) If more than a few days is considered unacceptable and
less than a few hours is considered dangerous, is the filling time ac-
ceptable and safe?

60. Hydraulic Engineers
Figure 15-50 shows two sec-
tions of an old pipe system
that runs through a hill. On
each side of the hill, the pipe
radius is 2.00 cm. However,
the radius of the pipe inside
the hill is no longer known. To determine it, hydraulic engineers
first establish that water flows through the left-hand and right-hand
sections at 2.50 m/s. Then they release a dye in the water at point A
and find that it takes 88.8 s to reach point B. What is the radius (or
average radius) of the pipe within the hill?

61. Floating and Sinking Suppose you have the following collec-
tion of objects: a pencil, a coin, an empty plastic box for CDs with
its edges taped shut, the same box opened up, a needle, an un-

opened can of soda pop, and an empty can of soda pop. Which of
these objects do you expect will float on water and which will sink?
Will it make a difference if you carefully place the object with its
largest surface on the surface of the water? In which cases? Discuss
the criteria you come up with, explaining carefully why you decided
on each one and why it plays a role. After you have written your an-
swer, perform the experiments and compare your results with your
predictions.

62. Balloon in a Car Explain why a helium balloon in a closed au-
tomobile moves to the front of the car when the car accelerates,
whereas the passengers feel pushed backwards. Discuss this in
terms of the physics you have learned.

63. At the Pool If an inflated beach ball is placed beneath the sur-
face of a pool and released, it shoots upward, out of the water. Ex-
plain why.

64. The Meteor and the Dolphin The curator of a science museum
is transporting a chunk of meteor iron (i.e., a piece of iron that fell
from the sky—see Fig. 15-51a) from one part of the museum to an-
other. Since the chunk of iron weighs 250 lb and is too big for her to
lift by herself, she is using a handtruck (see Fig. 15-51b). While pass-
ing through the marine mammals section of the museum, she acci-
dentally hits a bump and the meteorite tips off the handtruck and
falls into the dolphin pool. Fortunately, the iron doesn’t hit a dol-
phin, but it quickly sinks to the bottom. “Rats!” she cries. Unfortu-
nately, the meteorite has many sharp edges and she is worried that

30 m 30 m
110 m

A B
?

FIGURE 15-50 ■ Problem 60.
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the dolphins, curious creatures
that they are, will come to in-
spect it and be cut when they
rub against it. She wants to get it
up out of the pool as quickly as
possible. Fortunately, the mete-
orite has lots of holes in it and
there are ropes with hooks on
one end lying around. If she
could get a hook into one of the
holes, she might be able to pull
it up to the top, tie the rope
around a post, and lever it out
with the handtruck. Unfortu-
nately, she remembers that the meteorite is
too heavy for her to lift. (a) Will the fact
that the meteorite is in the pool under wa-
ter make it harder or easier for her to lift
with the rope? Explain. (b) The meteorite
is sitting on the concrete bottom of the
pool. Is the force the meteorite exerts on
the bottom bigger or smaller than the
force it would exert if the pool had no wa-
ter in it? Explain. (c) Can she lift the mete-
orite? Calculate how much force she
would have to exert on a rope hooked to
the meteorite to pull it up from the bottom
of the pool. She can lift about 100 pounds,
the pool is 12 feet deep, and the density of iron is about 8000 kg/m3.

65. Pushing Iron For each of the following partial sentences, indi-
cate whether they are correctly completed by the symbol corre-
sponding to the phrase greater than ( � ), less than ( 	 ), or the
same as ( � ). (a) A chunk of iron is sitting on a table. It is then
moved from the table into a bucket of water sitting on the table.
The iron now rests on the bottom of the bucket. The force the
bucket exerts on the block when the block is sitting on the bottom
of the bucket is the force that the table exerted on the block
when the block was sitting on the table. (b) A chunk of iron is sit-
ting on a table. It is then moved from the table into a bucket of wa-
ter sitting on the table. The iron now rests on the bottom of the
bucket. The total force on the block when it is sitting on the bottom
of the bucket is it was on the table. (c) A chunk of iron is sit-
ting on a table. It is then covered by a bell jar, which has a nozzle
connected to a vacuum pump. The air is extracted from the bell jar.
The force the table exerts on the block when the block is sitting in a
vacuum is the force that the table exerted on the block when
the block was sitting in the air. (d) A chunk of iron is sitting on a
scale. The iron and the scale are then both immersed in a large vat
of water. After being immersed in the water, the scale reading will
be the scale reading when they were simply sitting in the air.
(Assume the scale would read zero if nothing were sitting on it,
even when it is underwater.)

66. The Three-Vase Puzzle* Water is poured to the same level in
each of the three vessels shown in Fig. 15-52. Each vessel has the
same base area. Since the water is to the same depth in each vessel,
each will have the same pressure at the bottom. Since the area and
pressure are the same, each liquid should exert the same force on
the base of the vessel. Yet, if the vessels are weighed, three different

FIGURE 15-51(a) ■ Problem 64..

FIGURE 15-51(b) ■

Problem 64.

*From A. Arons, A Guide to Introductory Physics Teaching (New York: John
Wiley, 1990).

†From M. E. Loverude, “Investigation of Student Understanding of Hydro-
statics and Thermal Physics and the Underlying Concepts from Mechanics,”
Ph.D. thesis, University of Washington, 1999.

‡From M. E. Loverude, “Investigation of Student Understanding of Hydro-
statics and Thermal Physics and the Underlying Concepts from Mechanics,”
Ph.D. thesis, University of Washington, 1999.
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values are obtained. (The one in the center clearly holds less liquid
than the one at the left, so it must weigh less.) How can you justify
this apparent contradiction?

FIGURE 15-52 ■ Problem 66.

67. Hanging Blocks† Three cubical
blocks of equal volume are suspended
from strings. Blocks A and B have the
same mass and block C has less mass.
Each block is lowered into a fish tank and
they hang at rest as shown in Fig. 15-53.
(a) Is the force exerted by the water on
the top surface of block A greater than,
less than, or equal to the force exerted by
the water on the top surface of block B?
Explain. (b) Is the force exerted by the
water on the top surface of block A
greater than, less than, or equal to the force exerted by the water on
the top surface of block C? Explain. (c) Is the force exerted on the
water by block C greater than, less than or equal to the force ex-
erted on the water by block A? Explain. (d) Rank the buoyant
forces acting on the three blocks from largest to smallest. If any
buoyant forces are equal, indicate that explicitly. Explain.

68. Floating Blocks‡ Figure 15-54 shows five blocks increasing in
mass from block A to block E as indicated. The blocks have equal
volumes but different masses. The blocks are placed in an aquarium
tank filled with water and blocks B and E come to rest as shown in
Fig. 15-54. Sketch on the figure where you would expect blocks A,
C, and D to come to rest. (The differences in mass between succes-
sive blocks is significant—not just a tiny amount.)

FIGURE 15-54 ■ Problem 68.
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16

On September 19, 1985, seismic waves from an earthquake

that originated along the west coast of Mexico caused terrible

and widespread damage in Mexico City, about 400 km from

the origin.

Oscillations

Why did the seismic waves
cause such extensive damage
in Mexico City but almost
none on the way there?

The answer is in this chapter.
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16-1 Periodic Motion: An Overview

Any measurable quantity that repeats itself at regular time intervals is defined as 
undergoing periodic behavior. We are surrounded by systems with quantities that vary
periodically. The systems with periodic behavior that are most familiar involve obvi-
ous mechanical oscillations or motions. There are swinging chandeliers, boats bobbing
at anchor, and the surging pistons in the engines of cars.

The motions associated with some periodic behavior are not obvious. For example,
we cannot see the oscillations of the air molecules that transmit the sensation of
sound, the oscillations of the atoms in a solid that convey the sensation of tempera-
ture, and the oscillations of the electrons in the antennas of radio and TV transmitters
that convey information. Some examples of periodic changes are shown in Figs. 16-1
and 16-2. They include electrical signals associated with human heart beats and the air
pressure changes that occur when musical instruments are played.

It is obvious from looking at Figs. 16-1 and 16-2 that the variations of electrical
signals from the heart and the sound pressure from the trumpet are both periodic but
quite complex. On the other hand, the oscillation of air pressure caused by the flute is
much simpler. In fact the flute pattern looks like the graph of a sine or cosine func-
tion. If the periodic variation of a physical quantity over time has the shape of a sine
(or cosine) function, we call it a sinusoidal oscillation.

Sinusoidal oscillations are surprisingly common and learning about them helps us
understand more complex oscillations. For this reason we begin this chapter by explor-
ing the mathematics of sinusoidal oscillations and how oscillations can be related to
the uniform circular motion we studied in Chapters 5, 11, and 12. Mastering the math-
ematical description of sinusoidal motion is critical to acquiring a full understanding
of periodic physical systems. It is also vital to obtaining a full appreciation of the
transmission of both mechanical and sound waves treated in Chapters 17 and 18.

As you will see, physicists and engineers refer to the sinusoidal motions of parti-
cles in mechanical systems as simple harmonic motion (or SHM). In fact, most of the
chapter is devoted to understanding how certain forces found in our everyday surround-
ings cause the sinusoidal oscillations that we call SHM.

Although your study of simple harmonic motion will enhance your understanding
of mechanical systems, it is also vital to understanding the topics in waves, electricity,
magnetism, and light encountered in Chapters 30–37. Finally, a knowledge of SHM
provides a basis for understanding modern physics, including the wave nature of the
light and how atoms and nuclei absorb and emit energy.
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FIGURE 16-2 ■ The disturbance of air molecules causes variations in air pressure near musi-
cal instruments. The pattern of these pressure variations repeats itself at regular time inter-
vals so that the sound is periodic. The pressure variations that are proportional to the voltage
output of a small microphone can be recorded with a computer data acquisition system. (a) A
sustained note from a flute and (b) from a trumpet. (Data courtesy of Vernier Software and
Technology.)

FIGURE 16-1 ■ An electrocardiogram
showing the periodic pattern of electri-
cal signals that drive human heart beats.
Data recorded with a computer data ac-
quisiton EKG sensor. (Courtesy of
Vernier Software and Technology.)



16-2 The Mathematics of Sinusoidal Oscillations

Sinusoidal Oscillations and Uniform Circular Motion
In 1610, Galileo used his newly constructed telescope to discover the

four principal moons of Jupiter. Over weeks of observation, each moon
seemed to him to be moving back and forth relative to the planet in what
today we would call sinusoidal motion; the disk of the planet was the mid-
point of the motion. The record of Galileo’s observations, written in his
own hand, is still available. A. P. French of MIT used Galileo’s data to
work out the position of the moon Callisto relative to Jupiter. In the re-
sults shown in Fig. 16-3, the circles are Galileo’s data which looks sinu-
soidal. The curve shows the best fit of a sinusoidal function to the data. A
full oscillation takes about 16.8 days, as can be seen on the plot.

Actually, Callisto moves with essentially constant speed in an essen-
tially circular orbit around Jupiter. The moon’s true motion—far from be-
ing sinusoidal—is uniform circular motion. What Galileo saw—and what
you can see with a good pair of binoculars and a little patience—is the
projection of this uniform circular motion on a line in the plane of the mo-
tion. We are led by Galileo’s remarkable observations to the conclusion
that the sinusoidal motion he observed is actually uniform circular motion
viewed edge-on. In more formal language:

The projection of uniform circular motion on a diameter of the circle in which
this motion occurs is sinusoidal.

We can explore the relationship between the sinusoidal oscillations and
uniform circular motion that we studied in Chapter 5 more carefully using an
everyday object instead of a moon that orbits around a distant planet. Consider
a spot on a disk that is rotating about an axis at a constant rotational velocity
shown in Fig. 16-4.A graph of the spot’s vertical displacement x versus time is
shown in Fig. 16-5. For this case we have chosen to point the x axis up and the
y axis to the right. If we take a series of side views of the disk (so you only see
one of the dimensions it is moving in), the projection of the spot on the x axis
as a function of time gives us a sinusoidal graph as shown in Fig. 16-4.
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FIGURE 16-3 ■ The angle between Jupiter and its moon
Callisto as seen from Earth.The circles are based on
Galileo’s 1610 measurements.The curve is a best fit,
strongly suggesting sinusoidal motion.At Jupiter’s mean
distance, 10 minutes of arc corresponds to about

. (Adapted from A. P. French, Newtonian
Mechanics, W.W. Norton, New York, 1971, p. 288.)
2 �  106 km

FIGURE 16-4 ■ This
selection of frames
shows the positions of a
spot on a rotating disk
every 1/10th of a second.
They represent every
6th frame of a video
sequence recorded at
60 frames/second. The
angle the spot makes
with respect to the
chosen x axis starts 
out negative and then
increases at a constant
rate. Note: In order to
tie in with Fig. 16-4 we
have chosen to orient
the x axis vertically.

FIGURE 16-5 ■ The motion of a disk with a constant rotational velocity was
recorded at 60 frames a second.A plot of the x-component of a spot on the disk has a
sinusoidal shape. Thus it oscillates with SHM. The location of the spot on our side-
ways depictions of the disk is shown below the graph for every 6th frame. Note: In
order to use conventional polar coordinates to relate the spot on the disk with the 
x-component of its position, we have chosen the x axis to be vertical.
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Period and Frequency
As part of our study of uniform circular motion in Section 5-7 we introduced the idea
of a period as the time it takes an object rotating about an axis at a regular rate to
complete a single revolution. For example, the video frames of a rotating disk in
Fig. 16-5 show that it has a period of 0.40 s. In Fig.16-4, we see that the projection of
the spot on our chosen x axis appears to oscillate up and down with a period of T �
0.40 s. Thus, the time for one oscillation of the spot’s x-component is the same as the
period of the rotation of the disk.

Whereas the period tells us the time for one rotation or oscillation, frequency is a
related quantity that tells us how many oscillations or cycles there are in a given time.
For example, we can see from the Fig. 16-4 graph that the spot has a frequency of 
2.5 oscillations each second because that’s the number of complete oscillations that
would occur if we had taken data for 1 s rather than for only 0.85 s. The symbol for
frequency is f, and its SI unit is the hertz (abbreviated Hz). Alternative names and
symbols for the hertz include

(16-1)

Clearly, when the period of oscillation is very short there are many more oscilla-
tions in a second so the frequency goes up. The converse is true also; when the period
is long, the frequency goes down. In fact, we see that the period and frequency of the
oscillations shown in Fig. 16-4 are inversely related to each other. This inverse rela-
tionship holds in general, so that

. (16-2)

The Equation Describing Sinusoidal Motion
We have rather glibly described the graphs shown in Figs. 16-2a and 16-4 as represent-
ing sinusoidal functions. We do this because the graphs look like that of a sine or co-
sine as a function of angle. Recall that the cosine of an angle, �, is defined as the ratio
of the distance of a point of interest from the y axis, denoted as x, and the magnitude
of the distance of the point from the origin denoted as r as shown in Fig. 16-6. The sine
function is similarly defined in terms of a ratio involving the distance from the x axis:

cos � � (16-3)

and

sin � � . (16-4)

In considering rotational positions, we continue the convention of describing an-
gles in radians (or rads) used in Chapters 11 and 12. Although it would be possible to
use degrees, radian measure is required if we want to take derivatives of mathemati-
cal functions that involve angles. Recall that in Eq. 11-1 the magnitude of the radian is
defined as the magnitude of the ratio of the arc length s of a rotating object and the
perpendicular distance from its axis of rotation (|� | � s/r) to the object (or spot). As
the spot moves through a complete cycle, it sweeps out an arc length of s � 2 �r and
thus an angle of (2�r)/r � 2� radians. Since 2� radians = 360�, we can convert from
radians to degrees by multiplying by the factor

(conversion from radians to degrees).

Obviously we divide by the factor to convert to radians from degrees.

� (deg) � � 180o

� rad � � (rad)

y
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1 hertz �  1 Hz � 1 cycle/second � 1 oscillation/second.
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FIGURE 16-6 ■ The location of any spot on
a disk can be described in either (a) Carte-
sian or (b) polar coordinates. Rotational
position is denoted as �. A counterclock-
wise arc from the axis is defined as a posi-
tive �. Note: In order to coordinate with
Fig. 16-4, we have also chosen the x axis to
be vertical here.



How do our definitions of the sine and cosine functions in Eq. 16-3 and Eq. 16-4
lead to the graph shapes shown in Figs. 16-2a and 16-4? Let’s use the cosine function as
an example. In Fig. 16-5, a spot on a disk is turning with a constant rotational velocity
�. If we denote the initial angular position of the disk spot when t � 0 s as �0, then the
angular position increases at a constant rate according to the equation �(t) � �t � �0.
This is shown is Fig. 16-5, in which the initial angular position �0 is taken to be negative
since it is marked as being in a clockwise direction relative to the x axis. As time goes
on the angular position �(t) increases, passes through zero, and becomes positive.

Let us think about what happens in Cartesian coordinates. How does the x-
component of the vector, , shown in Fig 16-6 vary over time for a counterclockwise
rotation? In the time period where �(t) is near zero the value of the x-component, de-
noted as x, does not change very rapidly but after a quarter-turn near �(t) � �/2 the
value of x is changing very rapidly. The rate of change of x slows down again near 
�(t) � �. Between � and 2�, x is negative but its rate of change speeds up and slows
down again. This clearly leads to a sinusoidal graph shape that goes on and on as the
disk spot turns round and round.

In general for a sinusoidal motion, the value of the x-component of the spot as a
function of time can be described by either a sine or cosine function, depending on
which axis the angle is measured from. The values of x taken relative to the origin are
typically called the displacement. Using the cosine function we find that the sinusoidal
variation over time of the displacement, x, can be represented by the equation

(sinusoidal displacement), (16-5)

where X, � , and �0 are constants.
When a sine function is shifted left by 90° or + rad it looks exactly like a cosine

function. So an alternate, equally viable equation for displacement x(t) would be 
x(t) � X sin (�t � �	0), where �	0 � (�0 � ).

For convenience the quantities that determine the shape of the graph of Eq.
16-5 are named and displayed in Fig. 16-7. X is defined as the amplitude of the x-com-
ponent motion. It is a positive constant whose value represents the magnitude of the
maximum displacement of the particle in either direction from its so-called equilib-
rium value. The cosine function in Eq. 16-5 varies between the limits 
1, so the dis-
placement x(t) varies between the limits . For example, in Fig. 16-4 the amplitude
of the cosine curve is obviously 9 cm. This is also the maximum distance from the axis
of rotation of the disk to the spot.

The constant �0 is called the initial phase. It is also sometimes called the phase
constant or phase angle. The value of the initial phase �0 allows us to calculate the
magnitude of the displacement of the x-component, denoted as x(0), at the starting
time t � 0 s. Since the expression �t � 0 rad when t � 0 s, we get x(0) � X cos(�0) or
�0 � 
 cos–1 (x(0)/X). Knowing the initial phase and displacement allows us to deter-
mine the initial angular velocity. The initial phase plays the same role as the x1 or y1

terms in the kinematic equations because it determines the initial value of the func-
tion x(t).

�(t) � �t � �0 is defined as the time-dependent phase of x(t). Some time-depen-
dent phases for the rotating disk are shown in Fig. 16-4. Each “frame” shown consists
of every 6th frame of a more complete set of video images. The phases in the selection
of frames shown in the figure are denoted as �0, �t7 � �0, �t13 � �0, and so on, where
the corresponding times are t1 � 0.00 s, t6 � 0.10 s, t12 � 0.30 s.

We find that if X is a maximum when t � 0 s the initial phase is either �0 � 0 rad,

2� rad, 
4� rad, . . . , and so on. This is because in this case x(0) � X cos(0) � X. In
other words, whenever the initial phase is a multiple of 2� radians, the displacement is
a maximum at t � 0 s. For simplicity, in the x(t) plots in Fig. 16-8a the initial phase (or
phase constant) �0 has been set to zero radians.


 X

�
2

�
2

x(t) � X cos (�t � �0)

r:
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Displacement Initial phase
at time t Angular (or phase

frequency constant)

x(t) � X cos(�t � �0)14243

Amplitude Time-dependent
(maximum phase
displacement)

FIGURE 16-7 ■ A handy reference to the
quantities in Eq. 16-5 for simple harmonic
motion.

}

}
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In describing sinusoidal motion, the constant � is known as the angular frequency
of the motion. When the sinusoidal equation represents the projection of a spot on a
steadily rotating object along an axis, the rotational velocity of the object and the angular
frequency of the projection are identical in value.This is certainly the case in Fig. 16-4.

The SI unit of angular frequency is the radian per second. Figure 16-8 compares
x(t) for two sinusoidal motions that differ either in amplitude, in period (and thus in
frequency and angular frequency), or in initial phase.

We can use the fact that the rotational velocity of a spinning object and the angu-
lar frequency of a corresponding oscillation are identical to derive an important rela-
tionship. In particular, we can relate the angular frequency, �, of an oscillating object
to its oscillation frequency f. The derivation goes as follows: A rotating object under-
going uniform circular motion sweeps through an angle of 2� radians in a single pe-
riod T so that its rotational velocity is given by � � 2� /T. But since the frequency is
inversely proportional to the period (that is, since f � 1/T), it is obvious that 

(16-6)

R EADI NG EXERC IS E  16-1: Although it is not conventional to do so, the equation
x(t) � X	 sin[�	 t � �	0] can also be used to describe sinusoidal motion. Suppose the same mo-
tion has been described by both the cosine function in Eq. 16-5 and by the sine function shown
here. Consider the amplitude, angular frequency, and initial phase associated with the motion.
Which factors stay the same? Which will change? Explain. Hint: You may want to think about
the spot on a disk as it undergoes uniform circular motion. ■

R EADI NG EXERC IS E  16-2: A particle undergoes sinusoidal oscillations of period T
(such as the curve with a value of �X at t � 0 s in Fig. 16-8a). Assume the particle is at �X at
time t � 0. (a) When t � 2.00T, where is the particle? At �X? �X? Zero? Between �X and
0 m? Or between 0 m and �X? Answer the same questions for the following times: (b) t �
3.50T, and (c) t � 5.25T. ■

� �
2�

T
� 2�f.

x

X'
X

0

D
is

pl
ac

em
en

t

t

x

X

0 t

D
is

pl
ac

em
en

t T

T' T'

(a) (b)
x

X

0 t

D
is

pl
ac

em
en

t

(c)

φ0 = 0

φ0 = – _
4
π

–X
–X'

FIGURE 16-8 ■ Graphs of two sinusoidal motions. In each case, the blue curve is obtained from
Eq. 16-5 with �0 � 0 rad. (a) The red curve differs from the blue curve only in that its amplitude
X	 is greater (the red curve extremes of displacement are higher and lower). (b) The red curve
differs from the blue curve only in that its period is T	 � T/2 (the red curve is compressed hori-
zontally). (c) The red curve differs from the blue curve only in that �0 � ��/4 rad rather than
zero (the negative value of �0 shifts the red curve to the right).



16-3 Simple Harmonic Motion: The Mass–Spring System

So far we have described sinusoidal motion mathematically as in Eq. 16-5. We con-
sidered a particle on a rotating disk undergoing uniform circular motion, as shown
in Fig. 16-9(c), and we observed something special about the component along an
axis in the plane of motion passing through the center of rotation: It varies sinu-
soidally. In this section we explore the behavior of particles that move back and
forth sinusoidally along a straight line. We will use a mass – spring system as a
model, as shown in the middle of Fig. 16-9. In particular, we are interested in: (1) de-
termining the behavior of a particular spring force experimentally and showing that
it causes sinusoidal motion of a mass attached to that spring; (2) using Newton’s
Second Law to predict theoretically that a spring should cause a mass to oscillate
with one-dimensional sinusoidal motion; and (3) discussing how our theory predicts
some surprising characteristics of that motion that leads us to define it as simple
harmonic motion.

In Section 9-5 we explored Hooke’s law for an ideal spring. We imagined a hori-
zontally oriented spring attached to a wall at one end and to a mass at the other end
(like that shown in Fig. 16-10). We noted that in its relaxed state, the spring exerts no
forces. However, if the spring is displaced from its relaxed state so it is stretched or
compressed, it exerts a force on anything attached to its ends. The direction of the
spring force always acts in a direction opposite to its displacement. The force tries to
bring the spring to its relaxed state. For this reason, we describe a spring force as a
restoring force. If we are careful to put the origin of our chosen x axis at the relaxed
position, then Hooke’s law can be expressed using Eq. 9-17,

where F spring
x is the x-component of the spring force, x is the displacement from its

equilibrium position, and k is the spring constant (or stiffness factor).

Experimental Findings: Forces, Displacement, and Time
In physics we usually analyze a simplified model system before considering more
complex “real-world” systems. Unfortunately, in picking a model mass–spring system
we are presented with a dilemma. The simplest system to model mathematically is a
horizontal oscillator with a partially extended spring attached to a block that slides on
a perfectly frictionless surface as shown in Fig. 16-10. However, it is not easy without
special equipment (such as an air track) to set up a friction-free experiment using
such a system. The simplest system to set up experimentally is a vertical oscillator in
which a mass descends as it stretches until there is no net force on the mass. This verti-
cal location of a mass hanging on a spring is called its equilibrium position. However,
both theory and experiments show that the corresponding components of net forces
caused by displacements from equilibrium on masses hanging vertically and horizon-
tal masses are the same.* Thus, for simplicity, we will consider our model system to be
a mass hanging down vertically from a spring.

We start by presenting the results of measurements made on our vertical
mass – spring system. Next we show how our experimental knowledge of forces on
the system can be used in conjunction with Newton’s Second Law to derive its po-
sition vs. time equation theoretically. At the same time we can determine theoreti-
cally how factors such as mass, spring stiffness, and amplitude influence the period
of oscillation. In a later section we will show how the forces experienced by a pen-
dulum bob have the same mathematical characteristics as those that drive a mass
on a spring.

F spring
x � �kx,
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(c)(b)(a)

k

x

–X x = 0 +X

m

FIGURE 16-10 ■ We can imagine a
horizontal oscillator that consists of a
mass–spring system. In theory, the
mass can oscillate back and forth on a
frictionless surface when it is displaced
from equilibrium. In practice, this
system is very difficult to set up.

FIGURE 16-9 ■ We know that the (a) pen-
dulum oscillating at small angles, the (b)
mass on the spring, and the (c) Cartesian
components of a spot on a disk undergo si-
nusoidal motion.These can be made to
move with the same period and phase.The
spring and the spot on the rotating disk can
also have the same amplitude. What are the
mathematical characteristics of forces
needed to induce sinusoidal motion in a
mass–spring system? In a pendulum? Are
they the same? 

*The theoretical equivalency of the horizontal and vertical mass-spring system is developed in Touchstone
Example 16-3.
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A 100 g mass is attached to a light 10.1 g spring and suspended from an electronic
force sensor, shown in Fig. 16-11. An ultrasonic motion detector is placed underneath
it to record its displacement from equilibrium. The mass is pulled down to a maximum
displacement of about 4.0 cm and released. About a half second later, a computer
data acquisition system begins to measure the forces exerted by the spring on the
mass as a function of the displacement of the mass (Fig. 16-12). At the same time, the
displacement of the mass is tracked with the motion detector. The experimental re-
sults for the net force on the mass as a function of time are shown in Fig. 16-13a. Simi-
larly, the experimental results for the displacement from equilibrium as a function of
time are shown in Fig. 16-13b.
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FIGURE 16-11 ■ A common way to mea-
sure forces and displacements for a vertical
mass–spring oscillator is to hang a light
spring with an attached mass from an elec-
tronic force sensor. An ultrasonic motion
detector can be placed underneath the
mass to measure displacements. If we dis-
place the mass vertically from its equilib-
rium point, it will oscillate between a maxi-
mum value of displacement from
equilibrium +Y and a minimum value �Y.

FIGURE 16-12 ■ A graph of the data
showing net force on the mass as a func-
tion of its displacement from equilibrium.
It is obvious that Hooke’s law holds with

. A fit to the data shows that
the magnitude of the slope of the graph
(which is the value of k) is given by

.k � 3.23 N/m

F net
y � �ky

FIGURE 16-13 ■ These graphs of experimental data show that the net force exerted on a 100 g
mass by a spring causes it to oscillate with what appears to be sinusoidal motion. Examination
of the two graphs shows that on a moment-by-moment basis the net force is proportional to the
displacement but oppositely directed.

Careful examination of the graph in Fig. 16-13 gives a period of oscillation for our
100 g mass that is T exp � 1.1 s. A model of the plotted data shows that the equation
that describes the displacement versus time has exactly the same form as Eq. 16-5.
In particular,

x(t) � X cos[�t � �0] � (0.040 m) cos[(5.5 rad/s) t � 0.0 rad]. (16-7)

The value of the maximum displacement or amplitude X is 0.040 m, or only 4.0 cm.
The angular frequency, �, is 5.5 rad/s, and the initial phase (or phase constant), �0, is
0.0 rad. Equation 16-7 provides experimental verification that our vertical
spring–mass system oscillates sinusoidally.

We see from Fig. 16-13a that the restoring force component in the y direction is
proportional to the displacement component but opposite in sign—the familiar
Hooke’s law as described earlier in Eq. 9-17 (with y playing the role of x). We can use
the experimental fact that the spring force causes our mass to oscillate sinusoidally to
develop a definition of simple harmonic motion:



Simple harmonic motion (or SHM) is the sinusoidal motion executed by a particle of
mass m subject to a one-dimensional net force that is proportional to the displacement of
the particle from equilibrium but opposite in sign.

As we show later in this section, the displacement can be either linear or rotational.

Theoretical Prediction: Spring Forces Cause SHM
We can combine Newton’s Second Law with our experimental verification of Eq. 9-17
for a spring–mass system that undergoes SHM to get

(16-8)

where , ax, and x are the respective x-components of force, acceleration, and dis-
placement. This equation can be used to explain why Eq. 16-5 does indeed describe
the motion of our mass–spring system. To do this, we need to express the acceleration
of the mass as the second derivative of the displacement. By doing this we can rewrite
Eq. 16-8 as

, so that (16-9)

What happens when we actually take the first and then the second derivative of Eq.
16-5? Do we get a minus sign and a positive constant that can be associated with the
ratio k/m? The first derivative is

and the second derivative is

(16-10)

We do indeed get a negative sign times a positive constant in front of the x term, but
for the theoretical equation derived from Newton’s Second Law to match our experi-
mentally determined equation for displacement versus time, we must have the angu-
lar frequency be equal to 

(angular frequency). (16-11)

By combining Eqs. 16-6 and 16-11, we can write, for the period of the linear oscil-
lator shown in Fig. 16-11,

(period). (16-12)

Equations 16-11 and 16-12 tell us that a large angular frequency (and thus a small pe-
riod) goes with a stiff spring (large k) and a low-mass object (small m). This seems
like a very reasonable pair of relationships. Let us verify whether our data for the
mass–spring system satisfies Eq. 16-12. In order to simplify our theoretical model we

T � 2�√ m
k

� � √ k
m

d2x
dt2 �

d[��X sin(�t � �0)]
dt

� ��2X cos(�t � �0) � ��2x.

dx
dt

�
d[X cos(�t � �0)]

dt
� ��X sin(�t � �0),

d 2x
dt 2 � �

k
m

x.F net � max � m
d 2x
dt 2 � �kx

F net

F net � �max � �kx,
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have chosen to ignore the relatively small 10.1 g mass of the spring and assume that the
mass of the system can be adequately represented by only the hanging mass. Using
this assumption our theoretical model tells us that a spring with k of 3.23 N/m and
hanging mass, m, of 0.10 kg will have a period of

This predicted period is the same as our experimental value of T exp � 1.1 s to 2
significant figures.

Describing How Spring Forces Cause Oscillations
One quite surprising result of our theoretical predictions is that Eq. 16-12 tells us that
the period of the oscillations do not depend on amplitude. You might guess that if you
stretch or compress the spring more, the distance the mass travels in an oscillation will
be greater. But additional experiments show that period does not depend on ampli-
tude as long as we don’t distort the spring so that Hooke’s law fails. This is because if
we start with a larger initial displacement (amplitude) the forces and accelerations are
greater and our mass moves faster.

We can now see why an object that experiences a spring force oscillates. If we
hold the object out at some displacement and release it, the net force acts opposite to
the displacement so the object will start to accelerate toward its equilibrium position.
It moves faster and faster toward the equilibrium position but as it gets there, the
force is becoming smaller, so when it gets to its equilibrium position it is moving with
some velocity. By Newton’s First Law the object keeps going and overshoots. The
force now acts in the opposite direction to slow it down, but by the time the force has
brought the object to its turn-around point the object has another displacement, this
time on the other side. The process repeats, and if there is no friction or damping, the
oscillations will go on forever.

Not All Sinusoidal Motions Are SHM
Every oscillating system such as a diving board or a violin string has an element of
“springiness” and an element of “inertia” or mass, and thus behaves like the linear os-
cillator of Fig. 16-11. As long as the forces that act on objects in an oscillating system
are linear restoring forces, we will get simple harmonic motion that is sinusoidal. Al-
most all sinusoidal motions qualify as simple harmonic motion. One notable excep-
tion is the sinusoidal motion of the moon Callisto about Jupiter that Galileo observed
(Fig. 16-3). The motion Galileo observed is the projection of a nearly circular orbit
seen edge-on. The gravitational force law that keeps the moon in orbit is not propor-
tional to its displacement from the center of the orbit. Therefore, Callisto is not un-
dergoing simple harmonic motion. One consequence of this is that the period of the
moon’s motion is not amplitude-independent—it depends of the orbital radius. Al-
though the motion Galileo observed is sinusoidal, it does not qualify as SHM.

A Rotational Simple Harmonic Oscillator
Figure 16-14 shows a rotational version of a simple harmonic oscillator; the element
of springiness or elasticity is associated with the restoring torque the suspension wire
can exert when it’s twisted. This is rather like the forces a spring can exert when it is
stretched or compressed. A device that can exert a restoring torque on an object is
called a torsion oscillator (or torsion pendulum), with torsion referring to the twisting.

T theory � 2�√ m
k

� 2�√ 0.10 kg
3.23 N/m

� 1.1 s.

FIGURE 16-14 ■ An angular simple har-
monic oscillator, or torsion oscillator, is an
angular version of the linear simple har-
monic oscillator of Fig. 16-10. The disk os-
cillates in a horizontal plane; the reference
line oscillates with angular amplitude �.
The twist in the suspension wire stores po-
tential energy as a spring does and pro-
vides the restoring torque.
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Suspension wire

Fixed end
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 = 0 radθ



If we rotate the disk in Fig. 16-14 by some rotational displacement of magnitude
� from its equilibrium position (where the reference line is at  � 0) and release it, it

will oscillate with a rotational amplitude of � about that position in rotational simple
harmonic motion. Displacing the disk through any angle  in either direction from its
equilibrium orientation results in the suspension wire of a restoring torque given by

(16-13)

Here � (Greek kappa) is a constant, called the torsion constant, that depends on
the length, diameter, and the suspension wire’s shear modulus (as defined in
Section 13-5).

Comparison of Eq. 16-13 with Eq. 16-8 leads us to suspect that Eq. 16-13 is the
rotational form of Hooke’s law, and that we can transform Eq. 16-12, which gives the
period of linear SHM, into an equation for the period of rotational SHM; we replace
the spring constant k in Eq. 16-12 with its equivalent, the constant � of Eq. 16-13, and
we replace the mass m in Eq. 16-12 with its equivalent, the rotational inertia I of the
oscillating disk. These replacements lead to

(torsion oscillator), (16-14)

which is the correct equation for the period of a rotational simple harmonic oscillator,
or torsion pendulum.

READI NG EXERC IS E  16-3: The experimental period of the 100 g vertical mass oscil-
lating on the spring shown in Fig. 16-11 is about 3% larger than the period calculated using a sim-
plified theoretical model in which the spring is assumed to be massless, but we know the spring
actually has a mass of 10.1 g. Consider the nature of Eq. 16-12 and explain why the measured pe-
riod should be a bit longer than the theoretical value we reported. No calculation is needed. ■

READI NG EXERC IS E  16-4: Which of the following relationships between the x-
component force on a particle and the particle’s position x implies simple harmonic oscilla-
tion: (a) , (b) , (c) , (d) ?

■

16-4 Velocity and Acceleration for SHM

The Velocity for Simple Harmonic Motion
Let us imagine how the velocity of the mass on the spring in Fig. 16-11 changes as it
moves through a complete oscillation cycle. Is the magnitude of the velocity a maxi-
mum, a minimum or zero when the magnitude of its displacement is the greatest? Ob-
viously the mass has a velocity of zero when it is turning around. But the mass turns
around when the magnitude of the displacement is a maximum. This means that the
velocity of the mass is out of phase with its displacement in the same way that the co-
sine and sine functions are out of phase with each other. By differentiating Eq. 16-5,
we find that the expression for the velocity of a particle moving with simple harmonic
motion is indeed a sine function whenever the displacement is a cosine function;
that is,

v(t) �
dx(t)

dt
�

d
dt

[X cos(�t � �0)],

Fx � (3 N/m2)x2Fx � (�10 N/m)xFx � (�400 N/m2)x2Fx � (�5 N/m)x
Fx

T � 2�√ �

�

� net � I� � ��.

��
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or (velocity). (16-15)

Figure 16-15a is a plot of the x-component of displacement given by Eq. 16-5
with �0 � 0 rad. Figure 16-15b shows Eq. 16-15, also with �0 � 0 rad. Analogous to
the amplitude X in Eq. 16-5, the positive quantity �X in Eq. 16-15 is the maximum
velocity V and is called the velocity amplitude. As you can see in Fig. 16-15b, the
velocity of the oscillating particle varies between the limits 
�X. Note also in that
figure that the curve of v(t) is shifted (to the left) from the curve of x(t) by one-quarter
period; when the magnitude of the displacement is greatest (that is, x(t) � X), then
the magnitude of the velocity is least [that is, v(t) � 0 m/s]. When the magnitude of
the displacement is least (that is, zero), the magnitude of the velocity is greatest (that
is, V � �X).

The Acceleration of SHM
Knowing the velocity v(t) for simple harmonic motion, we can find an expression for
the acceleration of the oscillating particle by differentiating once more. Thus, we have,
from Eq. 16-15,

,

or (acceleration). (16-16)

Figure 16-15c is a plot of Eq. 16-16 for the case where the initial phase is zero (or
�0 � 0 rad). The positive quantity �2X in Eq. 16-16 is equal to the maximum accel-
eration called the acceleration amplitude A; that is, the acceleration of the particle
varies between the limits 
A � 
�2X, as Fig. 16-15c shows. Note also that the
curve of a(t) is shifted (to the left) by one-quarter period relative to the curve 
of v(t).

We can combine Eqs. 16-5 and 16-16 to yield

(16-17)

which is the hallmark of simple harmonic motion:

In SHM, the acceleration is proportional to the displacement but opposite in sign, and the
two quantities are related by the square of the angular frequency.

Thus, as Fig. 16-15 shows, when the displacement has its greatest positive value, the ac-
celeration has its greatest negative value, and conversely, when the displacement is
zero, the acceleration is also zero.

READI NG EXERC IS E  16-5: Consider Fig. 16-15b, which shows the velocities of a
mass on spring as a function of time. Identify at what time or times (t1, t2, t3, and t4) the vertical
component of velocity of the mass has a maximum value, a minimum value, and is zero. ■

READI NG EXERC IS E  16-6: Consider Fig. 16-15c, which shows the acceleration of a
mass on spring as a function of time. In which region or regions (1, 2, 3, or 4) is the vertical com-
ponent of acceleration of the mass increasing? Decreasing? ■

a(t) � ��2 x(t),

a(t) � ��2X cos(�t � �0)

a(t) �
dx(t)

dt
�

d
dt

 [��X sin(�t � �0)]

v(t) � ��X sin[�t � �0]

FIGURE 16-15 ■ Assume (a) The
displacement x(t) of a particle undergoing
SHM with an initial phase of .
The period T marks one complete oscilla-
tion. (b) The velocity vx(t) of the particle.
(c) The acceleration ax(t) of the particle.
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t1 � 0 s.
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TOUCHSTONE EXAMPLE 16-1: Spider Oscillations

Orb web spiders are commonly
found outdoors near buildings.
An orb web spider with a mass of
about 2 g drops off a tree branch
onto the center of her horizontal
web (Fig. 16-16). As a result, the
web undergoes a vertical displace-
ment from its original location to
the equilibrium point of the spider-
web system (as determined by the
vertical location of the spider
when the oscillations damp out).

(a) If this vertical displacement of
the web and spider from equilib-
rium is about 0.5 cm and if the
vertical restoring force the web exerts on the spider is proportional
to her displacement, estimate the frequency and period of the verti-
cal oscillation of the spider-web system.

S O L U T I O N ■ The Ke y  I d e a here is that as the spider steps
on her web the degree of sag caused by the force of her weight en-
ables us to find the web’s spring constant k. Once we know the
spring constant we can use that along with her estimated mass to
determine the frequency and period of the spider’s oscillation.

We choose a y axis that points vertically upward and use Eq. 9-16
[ ]. By noting that the vertical component of
the web’s net upward restoring force is +mg and that , we get

The angular frequency is then given by Eq. 16-11 as

� � √ k
m

� √ 3.9 N/m
2 � 10�3 kg

� 44  rad/s.

k �
F spring

y

�(y2 � y1)
�

�(2 � 10�3 kg)(9.8  N/kg)
0.5 � 10�2 m

� 3.9N/m.

y2 � y1

F y
spring � �k(y2 � y1)

But we know that � � 2�f, so

and

(Answer)

(b) If we start tracking the spider’s oscillation when she is at her
lowest vertical position relative to the spider-web system equilib-
rium point, what is her initial phase?

S O L U T I O N ■ The Key  Idea here is that we must take the
equilibrium point to be at y � 0 m and that y(0) � �Y when t � 0 s.
Using Eq. 16-5 with y instead of x denoting displacement, we get

�Y � Y cos(�t � �0)

so that 
cos(�0) � �1,

which gives �0 � 
� rad. (Answer)

(c) If the maximum displacement of the spider from the equilib-
rium point of the spider-web system is given by Y � 1.0 cm, what is
the maximum acceleration of the spider as she oscillates?

S O L U T I O N ■ The Ke y  I d e a here is that the magnitude A of
the maximum acceleration is the acceleration amplitude as
shown in Eq. 16-16. Thus,

(Answer)

The maximum magnitude of acceleration occurs when the spider is
turning around at the ends of her path. This is when the force on
her is a maximum. The graphs in Fig. 16-15 also show the magnitude
of displacement and acceleration to be maximum at the same time.

A � �2Y � (44 rad/s)2(10 � 10�3 m) � 20 m/s2.

�2Y

T �
1
f

�
1

7Hz
� 0.14 s.f �

�

2�
�

44 rad/s
2�

� 7 .0 Hz

16-5 Gravitational Pendula

We turn now to a class of simple harmonic oscillators in which the restor-
ing force is associated with the gravitational force rather than with the
elastic properties of a twisted wire or a spring. Oscillators that depend on
gravitational restoring forces or torques hang, and so they are considered
to be types of pendulums.

The Simple Pendulum Oscillating at a Small Angle
Consider a small particle of mass m (called a bob) that hangs from the
end of a wire or string. Assume that the wire has a small mass compared
to the mass of the particle and that it can’t stretch noticeably. If you fix
the wire at its upper end, you have constructed a simple pendulum. An
example of a simple pendulum is shown in Fig. 16-17. The bob is in its
equilibrium position when it hangs vertically. But suppose you pull the

FIGURE 16-16 ■ Top view
of a spider dropping onto
her web.

FIGURE 16-17 ■ A pen-
dulum bob swings back
and forth at a small angle.
Its angular displacement 
from its vertical equilib-
rium is measured using a
rotary motion sensor at-
tached to a computer data
acquisition system. The
length L of this pendulum
measured from the pivot
to the center of the bob is
32 cm.

Pivot

Equilibrium
position

L
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bob up so the initial angular displacement  between the wire and the vertical is
small. What happens to the angle  between the vertical and the wire as the pendu-
lum bob swings back and forth? You easily see that the bob’s motion is periodic. Is it,
in fact, simple harmonic motion? If so, what factors does the period T depend on?

We can verify that the simple pendulum shown in Fig. 16-17 undergoes SHM by
examining the graphs of the data shown in Fig. 16-18.

Careful examination of the  vs. t graph in Fig. 16-18 gives a period of oscillation
for our pendulum bob of � 1.1 s. A model of the plotted data shows that the
equation that describes the angular displacement versus time has exactly the same
form as Eq. 16-7. In particular,

(t) � � (16-18)

The value of the maximum angular displacement or amplitude is � � 0.24 rad, the
angular frequency, �, is 7.0 rad/s, and the initial phase (or phase constant), �0, is �0.90 rad.
The maximum angular displacement of 0.24 rad can be expressed in degrees as 

� � 0.24 rad � 

If we repeat the experiment for smaller amplitudes, we find that the angular frequency
� stays the same to two significant figures. This fact when combined with the sinusoidal
oscillation shown in Eq. 16-18 strongly suggests that the pendulum is undergoing sim-
ple harmonic motion. If this is the case then the net horizontal force on the pendulum
bob is proportional to its horizontal displacement—at least when angles are small.

Let us see if our experimental results could have been predicted theoretically.

Theoretical Derivation of Simple Pendulum Forces
To find the net horizontal forces on the pendulum, we can set up a free-body diagram using
methods introduced in Chapter 6. The forces acting on the bob are the tension force

that the wire exerts on the bob and the gravitational force , as shown in Fig.
16-19b where the string makes an angle  with the vertical. We resolve into a radial
component and a component that is tangent to the path taken by
the bob.This tangential component produces a restoring torque about the pendulum’s pivot
point, because it always acts opposite the displacement of the bob so as to bring the bob
back toward its central location. That location is called the equilibrium position ( � 0),
because if the pendulum were not swinging it would be at rest at that position.

� F grav �sin � F grav �cos 
F
: grav

F
: gravF

:

wire:bob

� 180�

� rad � 0.24 rad � 15�.

cos(�t � �0) � (0.24 rad) cos([7.0 rad/s]t � 0.90 rad).

T exp

FIGURE 16-19 ■ (a) A simple pendulum
displaced from its equilibrium position by
an angle . (b) The forces acting on the
bob are the gravitational force and
the tension force from the wire.
The tangential component of
the gravitational force is a restoring force
that tends to bring the pendulum back to
its central position.

� F grav �sin 
F
:

wire:bob

F
:grav

FIGURE 16-18 ■ Measurements for the angular displace-
ment () of the simple pendulum shown in Fig. 16-17 were
obtained using a computer data acquisition system outfitted
with a rotary motion sensor. A graph of the angular velocity
(d�dt) was also constructed using an algorithm to find a
smoothed first derivative of the angular data. This process is
repeated using the velocity data to find how the angular ac-
celeration (�) varies with time.
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From Eq. 11-30 , we can write the magnitude of the restoring torque
as the product of the magnitude of a moment arm about the pivot arm and
the tangential component of the gravitational force . The tension force in
the wire does not contribute to the restoring torque because it always acts par-
allel to the moment arm.Thus the z-component of the torque can be expressed as

. (16-19)

The minus sign indicates that the torque acts to reduce . Substituting Eq. 16-19 into
Eq. 11-32 and then substituting mg for the magnitude of , we obtain

, (16-20)

where I is the pendulum’s rotational inertia about the pivot point and is the z-
component of its angular acceleration about that point.

We want to focus on the nature of the motion when the maximum (and mini-
mum) angle of displacement is small. Note that whenever an angle  is small, then the
arc length s that the pendulum bob sweeps through (with respect to its equilibrium)
and the value of x have essentially the same magnitude as shown in Fig. 16-20, so that

(approximation for small ). (16-21) 

Thus when the angle  is small, we can replace sin with  (expressed in radian
measure). (As an example, if  � 15.0� � 0.262 rad, then sin � 0.265, a difference of
only about 1%.) Using this approximation and rearranging terms, we can then express
the z-component of angular acceleration as

(16-22)

Note that the z axis passes through pivot point and is perpendicular to the plane of
oscillation. This equation is the angular equivalent of Eq. 16-5, the hallmark of SHM.
It tells us that the angular acceleration of the pendulum is proportional to
the angular displacement but opposite in sign.

Thus, as the pendulum bob moves to, say, the right as in Fig. 16-19a, its acceleration
to the left increases until the bob turns around and begins moving to the left.Then, when
it is on the left, its acceleration to the right tends to return it to the right, and so on, as it
swings back and forth in SHM. More precisely, we have verified both experimentally
and theoretically that the motion of a simple pendulum swinging through small angles is
approximately SHM. We can state this restriction to small angles another way: to be
correct on predicting the period of a motion to within about 1%, the angular amplitude
� of the motion (the maximum angle of swing) must be about 15° or less.

Comparing Eq. 16-22 and Eq. 16-17, we see that the angular frequency of the pen-
dulum is . Next, if we substitute this expression for � into Eq. 16-6 
(� � 2�/T), we see that the period of the pendulum may be written as

(16-23)

All the mass of a simple pendulum is concentrated in the mass m of the particle-like
bob, which is at radius L from the pivot point. Thus, we can use Eq. 11-23 (I � mr2) to
write (I � mL2) for the rotational inertia of the pendulum. Substituting this into 
Eq. 16-23 and simplifying yields

(simple pendulum, small amplitude), (16-24)T � 2�√ L
g

T � 2�√ I
mgL

.

� � √mgL/I

 k̂
�: � �z k̂

�z � �
mgL

I
.

sin �
x
L

�
s
L

� 

�z

�L(mg sin ) � I�z

F
:grav(� net

z � I�z)

�z � �L(� F grav �sin )

F
:

wire:bob

(� F grav �sin )
(� r: � � L)

(� �: � � � r: �� F
:

t �)

FIGURE 16-20 ■ This diagram illustrates
that the arc length s and the value of y are
approximately the same when the angle 
is small.

θ

L

x
s

(x, y)

y
x
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as a simpler expression for the period of a simple pendulum swinging through only
small angles. (We also assume small-angle swinging in the problems of this chapter.)
Of course we can use Eq. 16-24 to predict the period of the pendulum of length L �
32 cm described in Figs. 16-17 and 16-18. We get 

This result matches our experimental result to at least two significant figures. This pe-
riod is also identical to that of our spring-mass system described by Eq. 16-7. This is
because just for fun we chose the pendulum length L so that we would get the same
period for the two systems!

A very surprising outcome of this theoretical derivation is that, for small displace-
ment angles, the period of the simple pendulum does not depend on its bob mass. If you
reflect on this, you should be able to see that the motion of the simple pendulum bob
is mass-independent for the same reason that the motion of a falling object does not
depend on its mass.

Measuring g with a Simple Pendulum
Geologists often use a pendulum to determine the local gravitational strength, g, at a
particular location on Earth’s surface. If a simple pendulum oscillating at small angles
is used, we can solve Eq. 16-24 for g to get

(16-25)

Thus, by measuring L and the period T, we can find the value of g. In order to make more
precise measurements, a number of refinements are needed. Geophysicists often use a
physical pendulum consisting of a solid rod in conjunction with a more sophisticated
equation than Eq. 16-25.They can also place the pendulum in an evacuated chamber.

The Physical Pendulum
A “real” pendulum that isn’t just a point mass suspended from a massless string is
usually called a physical pendulum, and it can have a complicated distribution of
mass, much different from that of a simple pendulum. Does a physical pendulum also
undergo SHM? If so, what is its period?

Figure 16-21 shows an arbitrary physical pendulum displaced to one side by angle
. The gravitational force acts at its center of mass C, at a distance h from the
pivot point O. In spite of their shapes, comparison of Figs. 16-21 and 16-19b reveals
only one important difference between an arbitrary physical pendulum and a simple
pendulum. For a physical pendulum, the restoring component of the gravi-
tational force has a moment arm of distance h about the pivot point rather than of
wire length L. In all other respects, an analysis of the physical pendulum would dupli-
cate our analysis of the simple pendulum up through Eq. 16-23. Again, for a small an-
gular amplitude �, we would find that the motion is approximately SHM.

If we replace L with h in Eq. 16-23, we can write the period of a physical pendulum as

(physical pendulum, small amplitude). (16-26)

As with the simple pendulum, I is the rotational inertia of the pendulum about O. How-
ever, now I is not simply . It depends both on the shape of the physical pendulummL2

T � 2�√ I
mgh

� F
:grav �sin

F
:grav

g �
4� 2L

T 2 .

T theory � 2�√ L
g

� 2�√ 0.32 m
9.80 N/kg

� 1.1 s.

FIGURE 16-21 ■ A physical pendulum.
The magnitude of the restoring torque is

. When , the center of
mass C hangs directly below pivot point O.

 � 0h� F grav �sin 

θ h

θ

θ θsin
cos

O

C

F grav
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TOUCHSTONE EXAMPLE 16-2: T-Shaped Pendulum

A physics student has devised a physical
pendulum from two meter sticks of negligi-
ble width that are joined together as shown
in Fig. 16-22. Assuming the oscillations
about the designated pivot occur at small
angles, what is the frequency of oscillation?

S O L U T I O N ■ We need to use Eq. 16-
26, which relates the period of a physical
pendulum to its rotational inertia (I),
mass (m), and moment arm distance (h),

The Ke y  I d e a here is to figure out what the rotational inertia of
this oddly shaped pendulum is about the chosen pivot and to find
the moment arm distance.

The moment arm h is the distance from the pivot to the center
of mass of the pendulum. To find the com of the T-pendulum we
need to clarify our notation. If the total mass of the meter stick sys-
tem is denoted as m, then the top stick has a mass of 
and the bottom stick also has a mass of . If we set

at the pivot point, then the center of mass of the bottom
stick is given by . We can now use Eq. 8-11 to find
the center of mass of the pendulum (and hence h),

Ycom �
1

Msys
(m topytop � mbottomybottom)

ybottom � �L/2
y � 0m

mbottom � m/2
mtop � m/2

T � 2�√ I
mgh

.

Thus (16-27)

The rotational inertia of the T-shaped system is the sum of the rota-
tional inertias of the top and bottom sticks about the pivot point.
The top rod is rotating about its center of mass. The rotational iner-
tia of a stick or rod rotating about its center of mass is shown in
Table 11-2 as so the rotational inertia of the top rod is
given by . The bottom rod is rotating about its end,
and we must use the parallel axis theorem (Eq. 11-28) to find its ro-
tational inertia. Since the distance between the axis of rotation of
the bottom rod and the pivot point is L/2, the rotational inertia of
the bottom rod turns out to be .
Thus, the pendulum’s total rotational inertia I is given by

(16-28)

Finally we can substitute Eqs. 16-27 and 16-28 into Eq. 16-26 to get

Since L � 1.00 m,

(Answer)T � 2�√ 20L
24g

� 2�√ 20(1.00 m)
24(9.8 m/s2)

� 1.83 s.

T � 2�√ I
mgh

� 2�√
5

24mL2

mg(L/4)
� 2�√ 20L

24g
.

I � Itop � Ibottom � 1
12(m/2)L2 � 1

3(m/2)L2 � 5
24(mL2).

Iend � 1
12  ML2 � M(L/2)2 � 1

3 ML2

Itop � 1
12(m/2)L2

Icom � 1
12 ML2

h � � Ycom � �
L
4

.

�
1
m �� m

2 �(0) � � m
2 ���

L
2 �� � �

L
4

.
h Pivot

& top com

com
of

system

Bottom
com

and on the axis about which it rotates. Table 11-2 shows the rotational inertia equations
for common shapes, but these equations describe the rotational inertia about the center
of mass (Icom). In essentially all physical pendula, the axis of rotation is parallel to an axis
through the center of mass but offset by a distance h. In these cases, the parallel axis the-
orem (Eq. 11-28) can be used to find the required equation for I.

A physical pendulum will not swing if it pivots at its center of mass. Formally, this
corresponds to putting in Eq. 16-26. That equation then predicts , which
implies that such a pendulum will never complete one swing.

Corresponding to any physical pendulum that oscillates about a given pivot point O
with period T is a simple pendulum of length with the same period T. We can find
with Eq. 16-24. The point along the physical pendulum at distance from point O is de-
fined as the center of oscillation of the physical pendulum for the given suspension point.

READI NG EXERC IS E  16-7: The vertical acceleration of a falling object is independent
of its mass. Likewise the period of a simple pendulum oscillating at small angles is independent of
bob mass. Can you explain why in each case? What is similar about the two situations? ■

READI NG EXERC IS E  16-8: Three physical pendula, of masses m, 2m, and 3m, have
the same shape and size and are suspended at the same point. Rank the masses according to
the periods of the pendulum, greatest period first. ■

L0

L0L0

T : �h � 0

I � Icom � mh2

FIGURE 16-22 ■

A T-shaped physical
pendulum pivoted at
the top of the “T.”
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16-6 Energy in Simple Harmonic Motion

In Chapter 10 we saw that a simple pendulum swinging at a small angle transfers en-
ergy back and forth between kinetic energy and potential energy, while the sum of
the two—the mechanical energy E of the oscillating Earth–pendulumsystem—re-
mains constant. What about the linear oscillator made up of the mass–spring system
that was considered in Section 16-3? Does it trade energy back and forth as it oscil-
lates? Let us try to answer this question for the linear oscillator using theoretical
considerations.

The potential energy of a horizontal linear oscillator like that of Fig. 16-10 is as-
sociated entirely with the mass – spring system. Its value depends on how much the
spring is stretched or compressed — that is, on . We can use Eqs. 10-14 and 16-5
to find

(16-29)

Note carefully that for any angle �, a function written in the form cos2 � (as here)
means (cos�)2. This is not the same as a function written as cos �2, which means 
cos (�2).

The kinetic energy of the system of Fig. 16-11 is associated entirely with the hang-
ing mass. Its value depends on how fast the mass is moving—that is, on . We can
use Eq. 16-15 to find

(16-30)

If we use Eq. 16-11 to substitute for , we can write Eq. 16-30 as

(16-31)

The mechanical energy follows from Eqs. 16-29 and 16-31 and is

For any angle �,

Thus, the quantity in the square brackets above is unity and we have

(16-32)

The mechanical energy of a horizontal mass–spring system oscillator is indeed con-
stant and independent of time. The potential energy and kinetic energy of this oscilla-
tor are shown as functions of time t in Fig. 16-23a, and as functions of displacement x
in Fig. 16-23b.

Since a linear oscillation trades energy back and forth in a symmetric fashion, it
turns out that the average kinetic energy is the same as the average potential energy.
Each average energy is 1/2 of the total. In equation form this can be expressed as

(16-33)	K
 � 	U
 �
E tot

2
.

E � U � K � 1
2 kX 2.

cos2� � sin2� � 1.

� 1
2 kX 2[cos2(�t � �0) � sin2(�t � �0)].

� 1
2 kX 2 cos2(�t � �0) � 1

2 kX 2 sin2(�t � �0)

E � U � K

K(t) � 1
2 mv2 � 1

2 kX 2 sin2(�t � �0).

�2k/m

K(t) � 1
2 mv2 � 1

2 m�2 X 2 sin2(�t � �0).

v(t)

U(t) � 1
2 kx2 � 1

2 kX 2 cos2(�t � �).

x(t)

FIGURE 16-23 ■ (a) Potential energy
, kinetic energy , and mechanical

energy E as functions of time t for a linear
harmonic oscillator. Note that all energies
are positive and that the potential energy
and the kinetic energy peak twice during
every period. (b) Potential energy ,
kinetic energy , and mechanical energy
E as functions of position x for a linear
harmonic oscillator with amplitude Y.
For the energy is all kinetic, and for

it is all potential.x � 
Y
x � 0
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We also examined the behavior of a vertical mass–spring–Earth system (Fig.
16.11). To consider the mechanical energy exchange between potential and kinetic
energies in that system, we need to take gravitational energy into account. This com-
plication is treated in Touchstone Example 16-3.

We presented actual data in Fig. 10-14 showing very similar trading of kinetic and
gravitational potential energy for a simple pendulum.

READI NG EXERC IS E  16-9: Assume that the spring–block system shown in Fig.
16-10 has a kinetic energy of 3 J and an elastic potential energy of 2 J when the block is at

. (a) What is the kinetic energy when the block is at cm? What is the elastic
potential energy when the block is at (b) ? ■x � �X

x � 0x � �20 cm

462 CHAPTER 16 Oscillations

Consider the 100 g mass hanging vertically from the spring as
shown in Fig. 16-11. It oscillates with a period of T � 1.1 s trading
between kinetic and potential energy. Its displacement from equi-
librium as a function of time is given by Eq. 16-7 and the motion of
the mass is shown graphically in Fig. 16-13. Since the 100 g mass is
much greater than the mass of the spring, we will ignore the mass of
the spring as we analyze the energy transformations during a single
oscillation.

(a) What is the total energy of the oscillating system?

S O L U T I O N ■ Equation 16-32 can be used to express total en-
ergy of a SHM oscillator in terms of the spring constant k and the
amplitude of the displacement Y. Since the angular frequency is re-
lated to k and the oscillating mass m by Eq. 16-11 ( ), we
can write Eq. 16-32 as

(Eq. 16-32)

We know that . By examining Eq. 16-7 we see that 
Y � 0.040 m and . This gives us a total system energy of

(Answer)

(b) At what time or times during the first oscillation is the total
mechanical energy of the mass–spring system equal to its potential
energy?

S O L U T I O N ■ When the system’s total and potential energy are
the same, its kinetic energy must be zero. That occurs whenever the
magnitude of velocity of the mass is zero, which happens when the
magnitude of the displacement is a maximum and the mass is turning
around. Since the period T � 1.1 s, an examination of Fig. 16-13
shows this occurring at t � 0 s and 1.1 s. It is also turning around
halfway between these times, so 

at 0.0 s, 0.55 s, and 1.1 s. (Answer)

An alternate way to arrive at the same answer is to examine Fig. 16-23
and note that the potential energy peaks at 0, T/2, and T.

E � U

� 2.4 � 10�3 J.

E � 1
2 m�2Y 2 � 1

2(0.10 kg)(5.5 rad/s)2(0.040 m)2

� � 5.5 rad/s
m � 0.10 kg

E � U � K � 1
2 kY 2 � 1

2 m�2Y 2.

� � √k/m

(c) At what time or times during the first oscillation is the total 
mechanical energy of the mass–spring system equal to its kinetic
energy?

S O L U T I O N ■ When the system’s total and kinetic energy are
the same, the speed of the mass is a maximum. That occurs when-
ever the mass passes through its equilibrium point. According to
Eq. 16-7, if we set t1 � 0 then this happens when

which occurs when 

at about 0.28 s and 0.83 s. (Answer)

An alternate way to arrive at the same answer is to examine
Fig. 16-23 and note that the kinetic energy peaks at T/4 and at 3T/4.

(d) At what time or times are the potential and kinetic energy the
same so K � U � E?

S O L U T I O N ■ An examination of Fig. 16-23 shows that the sys-
tem’s potential and kinetic energy are the same at 

or 0.138 s, 0.413 s, 0.688 s, and 0.963 s.
(Answer)

(e) What types of potential energy is stored in the system as it os-
cillates? Is it really legitimate to use Eqs. 16-29 and 16-32, which
measure spring potential energy, when both gravitational and
spring potential energy are present?

S O L U T I O N ■ If our mass–spring system were oscillating hori-
zontally the potential energy would consist entirely of the elastic
energy stored in the spring. The situation for the hanging mass is
not so simple since we have both spring energy and gravitational
potential energy involved. In this case . Actu-
ally the energy relationships presented in Section 16-6 are still
valid.

To explain why the energy equations in Section 16-6 are valid,
let us choose our origin so that y � 0 m at the hanging equilibrium
point of the system shown in Fig. 16-24. At any point during an

U � U grav � U spring

1
8 T, 3

8 T, 5
8 T, and 7

8 T,

1
2

�t � (5.5 rad)t � �/2 or 3�/2

cos(�t) � cos([5.5 rad]t) � 0,

TOUCHSTONE EXAMPLE 16-3: Oscillation Energy
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oscillation, the net force on the
hanging mass is the sum of an
upward (positive) spring force
and a downward (negative grav-
itational force). This can be ex-
pressed in terms of the vertical
components as

When the mass is placed on the
spring, the weight of the mass
causes the spring to descend
from its natural equilibrium
point at y1 to its hanging equilib-
rium point at y2. But we chose y2

� 0 m. At this hanging equilibrium point, the net force on the mass
is zero, so that

A Ke y  I d e a here is that at the hanging equilibrium location
.

Since we are free to set an arbitrary reference level for gravita-
ky1 � mg

� �k(0 � y1) � mg � 0 N.

F net
y � F spring

y � F grav
y � �k(y2 � y1) � mg

F net
y � F spring

y � F grav
y .

tional potential, let’s set the gravitational potential energy at y � 0 m
to where y1 is the location of the center of the
mass when the spring is unstretched (as shown in Fig. 16-24). Next
let’s calculate the total potential energy of the spring–mass system
when the mass has a displacement of y from its hanging equilibrium
position,

but , so that 

This is a very important result because it tells us that with regard to
energy considerations, the potential energy of a hanging mass when
oscillating about its equilibrium position can be treated as if the
spring were unstretched at the hanging equilibrium. This depends
on choosing our gravitational potential energy reference point
carefully (which we are free to do). This result provides theoretical
verification for the claim made in Section 16-3, that a mass oscillat-
ing from a hanging spring and one oscillating horizontally have the
same type of mathematical behavior.

� 1
2ky2.

� (ky1y � 1
2ky2

1) � (1
2ky2 � ky1y � 1

2ky2
1)

U � (ky1y�1
2ky2

1) � 1
2k(y � y1)2

ky1 � mg

U � U grav � U spring � (mgy � 1
2 mgy1) � 1

2 k(y � y1)2,

Ugrav(0) � �1
2 mgy1

Unstretched
spring

Hanging
equilibrium

y1

y2 = 0 m

y2 – y1

FIGURE 16-24 ■ A hanging
mass-spring system.

FIGURE 16-25 ■ An idealized damped
simple harmonic oscillator. A vane im-
mersed in a liquid exerts a damping force
on the block as the block oscillates parallel
to the x axis.

Spring constant, k

Rigid support

Mass m

Damping, b

Vane

y

16-7 Damped Simple Harmonic Motion

The equations we have developed to describe harmonic motion predict that it goes
on forever with the same amplitude. Whatever starting value of t you put into Eq.
16-5, it will oscillate from then on with the same amplitude it started with. Oscilla-
tions in the real world usually die out gradually, transferring mechanical energy to
thermal energy by the action of frictional forces. A pendulum will swing only
briefly under water, because the water exerts a drag force on the pendulum that
quickly eliminates the motion. A pendulum swinging in air does better, but still the
motion dies out eventually, because the air exerts a drag force on the pendulum
and friction acts at its support. These forces reduce the mechanical energy of the
pendulum’s motion.

When the motion of an oscillator is reduced by external friction or drag forces,
the oscillator and its motion are said to be damped. An idealized example of a
damped oscillator is shown in Fig. 16-25, where a block with mass m oscillates verti-
cally on a spring with spring constant k. From the block, a rod extends to a vane (both
assumed to have negligible mass) that is submerged in a liquid. As the vane moves up
and down, the liquid exerts an inhibiting drag force on it and thus on the entire oscil-
lating system. With time, the mechanical energy of the block–spring system decreases,
as energy is transferred to thermal energy of the liquid and vane. If the liquid is alcohol
that is not very viscous, the drag forces will be small. But a liquid like honey or molasses
could exert much larger drag forces.

Theoretical Analysis
Let us assume the liquid in the system shown in Fig. 16-25 exerts a damping force

that is proportional in magnitude to the velocity of the vane and block (anv:F
: drag



assumption that is accurate if the vane moves slowly). Then, for forces along the y axis
in Fig. 16-25, we have

, (16-34)

where b is a damping constant that depends on the characteristics of both the vane
and the liquid and has the SI unit of kilogram per second. The minus sign indicates
that opposes the motion.

The y-component of the force on the block from the spring is . Let
us assume that the gravitational force on the block is negligible compared to and

. Then we can write Newton’s Second Law for components along the y axis
as

(16-35)

Substituting for and for and rearranging give us the differential
equation

(16-36)

The solution of this equation is

(16-37)

where Y is the initial amplitude, is the initial phase, and is the angular frequency
of the damped oscillator. This angular frequency is given by

(16-38)

If (there is no damping), then Eq. 16-38 reduces to Eq. 16-11 for
the angular frequency of an undamped oscillator, and Eq. 16-37 reduces to Eq. 16-5
for the displacement of an undamped oscillator. If the damping constant is small but
not zero (so that ), then . We define the pendulum as underdamped
whenever so that .

We can regard Eq. 16-37 as a cosine function whose amplitude, which is
, gradually decreases with time, as Fig. 16-26 suggests. For an undamped os-

cillator, the mechanical energy is constant and is given by Eq. 16-32 . If
the oscillator is damped, the mechanical energy is not constant but decreases with
time. If the damping is small, we can find E(t) by replacing the amplitude, Y, in
Eq. 16-32 with , the amplitude of the damped oscillations. By doing so, we
find that

(16-39)

which tells us that, like the amplitude, the mechanical energy decreases exponentially
with time.

Experimental Results
Here we present actual data for another damped oscillator that has identical mathe-
matical behavior to that of the block oscillating in a viscous liquid. It consists of an

E(t) � 1
2kY 2 e �bt/m,

Ye�bt/2m

(E � 1
2kY 2)

Ye�bt/2m

�	 � �k/m � b2/4m2
�	 � �b �� √km

(� � √k/m)b � 0

�	 � √ k
m

�
b2

4m2 .

�	�0

y(t) � Ye�bt/2m cos(�	t � �0),

m
d2y
dt2 � b

dy
dt

� ky � 0.

ayd2x/dt2vydy/dt

�bvy � ky � may.

(F net
y � may)

F
:spring

F
:drag

F spring
y � �ky

F
:drag

F
: drag � �bv:
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FIGURE 16-26 ■ The displacement func-
tion y(t) for the damped oscillator of Fig.
16-25, with  and

The amplitude, which is
, decreases exponentially, though

this exponential decrease does not show
up well since the damping coefficient b is
not large. The exponential drop-off is
more pronounced in Fig. 16-28.

Ye�bt/2m
b � 70 g/s.

k � 85 N/m,m � 250 g,

t (s)0 1 2 3 4 5 6

+Y

–Y –Ye–b t/2m

Ye–b t/2m
y(t )

y Envelope
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edge mass attached to an aluminum disk to create the physical pendulum shown in
Fig. 16-27. A strong magnet placed in the vicinity of the disk exerts a drag force on the
disk that is proportional to the angular velocity of the disk . (This kind of damp-
ing is a result of eddy currents induced in the disk. You can refer to Section 31-5 for
more details.)

Both the pendulum and the mass–spring systems have linear restoring forces and
velocity-dependent drag forces. Thus, we can modify Eqs. 16-37, 16-38, and 16-39 to
describe the pendulum motion. We need to replace the linear displacement y with an
angular displacement , the spring mass m with I (where I is the total rotational iner-
tia of the disk and its edge mass), and the spring constant k with a torque strength
mgL (where in our case L is the radius of the disk and m is the edge mass). This gives
us a new motion equation for small angles of pendulum oscillation

(t) � � (16-40)

where the angular amplitude (or “envelope” function) � varies in time.
The feature of the data that we are most interested in here is the way the angular

amplitude of the pendulum decreases with time when the pendulum is underdamped.
This is shown in Fig. 16-28. The exponential behavior is obvious for these data.

Critical Damping and Overdamping
In Figs. 16-27 and 16-28 we have shown underdamped motions for two different but math-
ematically similar systems. When the damping coefficient in our systems are so large that

(physical pendulum)

or (mass–spring),

the system undergoes critical damping. Under this circumstance, a system that is dis-
placed will settle back exponentially to its equilibrium point in the minimum possible
time without oscillating. We have not presented the equations that describe what hap-
pens when the damping coefficient b in Eq. 16-38 gets so large that the square root
becomes negative, a condition known as overdamping. An overdamped system also
settles back to its equilibrium exponentially, but it takes more time (Fig. 16-29).

�	 � √ k
m

�
b2

4m2 � 0

�	 � √ mgL
I

�
b2

4I 2 � 0

e �bt/2I

e�bt/2I cos(�	t � �0),



d�dt

FIGURE 16-29 ■ The theoretically calcu-
lated angular displacement vs. time values
for the damped pendulum shown in Fig.
16-27. The bottom exponential curve
shows what happens when the pendulum
edge mass is critically damped and settles
back to equilibrium without oscillating in a
minimum time of about 1 s. The top expo-
nential curve shows an overdamped condi-
tion when the edge mass takes about 6 s to
reach equilibrium.
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FIGURE 16-27 ■ A physical pendulum consisting of an aluminum
disk with an edge mass attached to it. Magnetic damping is used to
provide a drag torque that reduces the amplitude of the pendulum
over time.

FIGURE 16-28 ■ Actual data for the angular displacement from
the vertical equilibrium of the damped physical pendulum
(shown in Fig. 16-27). Of most interest here is that the magnetic
damping force causes the amplitude of oscillation to decrease
exponentially in time.This is shown by the shape of the “enve-
lope function” that best conforms to the displacement maxima
or minima, found to be �e �(b/2I)t � (2 rad)e�(0.27s�1)t.



Engineers make use of their understanding of critical damping and overdamping
in the design of automobile shock absorbers. A shock absorber is designed so that
when a car hits a typical bump, the springs that connect the chassis to the wheels return
to equilibrium slowly without oscillating too much. Too little damping causes the pas-
sengers to bounce up and down, and too much damping gives a rough ride because the
car cannot respond quickly to a bump. Note what happens when you push the front of
a car down suddenly and let go. If it returns to equilibrium without oscillating, the car
is either critically damped or overdamped. If is oscillates a bit, it is underdamped.

READI NG EXERC IS E  16-10: Here are three sets of values for the damping constant
and mass for the damped oscillator of Fig. 16-25. Using Eq. 16-39, rank the sets according to the
time required for the mechanical energy to decrease to one-fourth of its initial value, greatest
first. No calculations are needed.

Set 1:

Set 2:

Set 3: ■m03b0

4m06b0

m0b0
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For the damped oscillator of Fig. 16-25, m � 250 g, k � 85 N/m, and
b � 70 g/s.

(a) What is the period of the motion?

S O L U T I O N ■ The Ke y  I d e a here is that because
the period is approximately that of the un-

damped oscillator. From Eq. 16-12, we then have

(Answer)

(b) How long does it take for the amplitude of the damped oscilla-
tions to drop to half its initial value?

S O L U T I O N ■ Now the Ke y  I d e a is that the amplitude at
time t is displayed in Eq. 16-37 as . It has the value Y at t �
0. Thus, we must find the value of t for which

Canceling Y and taking the natural logarithm of the equation that
remains, we have ln on the right side and 

on the left side. Thus,

(Answer)

Because T � 0.34 s, this is about 15 periods of oscillation.

� 5.0 s.

t �
�2m ln 1

2

b
�

�(2)(0.25 kg)(ln 1
2)

0.070 kg/s

ln(e�bt/2m) � �bt/2m

1
2

Ye�bt/2m � 1
2 Y.

Ye�bt/2m

T � 2�√ m
k

� 2�√ 0.25 kg
85 N/m

� 0.34 s.

b �� √km � 4.6 kg/s,

(c) How long does it take for the mechanical energy to drop to
one-half its initial value?

S O L U T I O N ■ Here the Ke y  I d e a is that, from Eq. 16-39, the
mechanical energy at time t is . It has the value at 
t � 0. Thus, we must find the value of t for which

� .

If we divide both sides of this equation by and solve for t as
we did above, we find

(Answer)

This is exactly half the time we calculated in (b), or about 7.5 peri-
ods of oscillation. Figure 16-30 was drawn to illustrate this touch-
stone example. Since the system’s mechanical energy depends on
the square of the amplitude, it decreases more rapidly than the
amplitude does.

t �
�m ln 1

2

b
�

�(0.25 kg)(ln 1
2)

0.070 kg/s
� 2.5 s.

1
2 kY 2

1
2 (1

2 kY 2)1
2 kY 2e�bt/m

1
2kY 21

2kY 2e�bt/m

TOUCHSTONE EXAMPLE 16-4: Damped Mass–Spring

t (s)0 1 2 3 4 5 6

+Y

–Y
–Ye–b t/2m

Ye–b t/2m

y(t )

y

FIGURE 16-30 ■ (a) This diagram shows a period of about 0.34 s.
(b) Since amplitude has dropped to about 0.7Y after 2.5 s, the diagram
shows a system mechanical energy of (0.7Y)2 � 0.5Y2 at that time.
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16-8 Forced Oscillations and Resonance

Sometimes we would like to maintain oscillations longer than they would naturally
continue because of the damping forces. For example, if you were on a swing that was
given only one big push, you would go up and back a few times before the mechanical
energy was completely lost and you came to a stop. Although we cannot totally elimi-
nate such loss of mechanical energy, we can replenish the energy from some source.
As an example, you know that by swinging your legs or torso you can “pump” a swing
to maintain or enhance the oscillations. In doing this, you transfer biochemical energy
to mechanical energy of the oscillating system.

A person swinging without pumping their legs or without anyone pushing under-
goes free oscillation. However, if someone pushes the swing periodically, the swing has
forced, or driven, oscillations. Two angular frequencies are associated with a system
undergoing driven oscillations: (1) the natural angular frequency of the system
while oscillating freely with the inevitable damping forces present, and (2) the angular
frequency of the external driving force.

We can use Fig. 16-25 to represent an idealized forced simple harmonic oscillator if
we cause the structure marked “rigid support” to move up and down at an angular fre-
quency that we can adjust. This forced oscillator will settle down to oscillate at our
chosen angular frequency of the driving force, and its displacement is given by

, (16-41)

where Y is the amplitude of the oscillations.
How large the displacement amplitude Y is depends on a complicated function of

and . The maximum velocity of the oscillations is easier to describe: it is
greatest when

(resonance), (16-42)

which is a condition called resonance. Equation 16-42 is also approxi-
mately the condition at which the displacement amplitude Y of the os-
cillations is greatest. Thus, if you push a swing at its natural angular fre-
quency, the displacement and maximum velocities will increase to large
values, a fact that children learn quickly by trial and error. If you push
at other angular frequencies, either higher or lower, the displacement
and maximum velocities will be smaller.

Figure 16-31 shows how the displacement amplitude of a damped, dri-
ven oscillator depends on the angular frequency of the driving force,
for three values of the damping coefficient b. Note that for all three the
amplitude is approximately greatest when —that is, when the
resonance condition of Eq. 16-42 is satisfied. The curves of Fig. 16-31 show
that less damping gives a taller and narrower resonance peak. A system
with a tall, narrow resonance curve is referred to as having a “high-Q.”

Resonance and Earthquake Damage
All mechanical structures have one or more natural angular frequencies, and if a struc-
ture is subjected to a strong external driving force that matches one of these angular
frequencies, the resulting oscillations of the structure may rupture it. Thus, for example,
aircraft designers must make sure that none of the natural angular frequencies at
which a wing can oscillate matches the angular frequency of the engines in flight. A
wing that flaps violently at certain engine speeds would obviously be dangerous.

Mexico’s earthquake in September 1985 was a major earthquake (8.1 on the
Richter scale), but the seismic waves from it should have been too weak to cause

�d /�	 � 1

�d

�d � �	

V � �	Y��d

y(t) � Ycos(�dt � �1)

y(t)�d

�d

�d

�

FIGURE 16-31 ■ The displacement ampli-
tude of a forced oscillator varies as the an-
gular frequency of the driving force is
varied. The amplitude is greatest approxi-
mately at , the resonance condi-
tion. The curves here correspond to three
values of the damping constant b.
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extensive damage when they reached Mexico City about 400 km away. However,
Mexico City is largely built on an ancient lake bed, where the soil is still soft with water.
Although the amplitude of the seismic waves was weak in the firmer ground en route to
Mexico City, their amplitude substantially increased in the loose soil of the city. Maxi-
mum accelerations of the waves were as much as , and the angular frequency was
(surprisingly) concentrated around . Not only did the ground begin oscillating
with large amplitudes, but also many of the buildings with intermediate height had reso-
nant angular frequencies of about . Most of those buildings collapsed during the
violent shaking, while shorter buildings (higher resonant angular frequencies) and taller
buildings (with lower resonant angular frequencies) remained standing.

3 rad/s

3 rad/s
0.20g
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Problems

SEC. 16-4 ■ VELOCITY AND ACCELERATION FOR SHM

1. Object Undergoing SHM An object undergoing simple har-
monic motion takes 0.25 s to travel from one point of zero velocity
to the next such point. The distance between those points is 36 cm.
Calculate the object’s (a) period, (b) frequency, and (c) amplitude.

2. Oscillating Block An oscillating block–spring system takes
0.75 s to begin repeating its motion. Find its (a) period, (b) fre-
quency in hertz, and (c) angular frequency in radians per second.

3. Oscillator An oscillator consists of a block of mass 0.500 kg con-
nected to a spring. When set into oscillation with amplitude 
35.0 cm, the oscillator repeats its motion every 0.500 s. Find (a) the
period, (b) the frequency, (c) the angular frequency, (d) the spring
constant, (e) the maximum speed, and (f) the magnitude of the
maximum force on the block from the spring.

4. Maximum Acceleration What is the maximum acceleration of a
platform that oscillates with an amplitude of 2.20 cm at a frequency
of 6.60 Hz?

5. Loudspeaker A loudspeaker produces a musical sound by
means of the oscillation of a diaphragm. If the amplitude of oscilla-
tion is limited to 1.0 � 10�3 mm, what frequencies will result in the
magnitude of the diaphragm’s acceleration exceeding g?

6. Spring Balance The scale of a spring balance that reads from 0
to 15.0 kg is 12.0 cm long. A package suspended from the balance is
found to oscillate vertically with a frequency of 2.00 Hz. (a) What is
the spring constant? (b) How much does the package weigh?

7. A Particle of Mass A particle with a mass of 1.00 � 10�20 kg is
oscillating with simple harmonic motion with a period of 
1.00 � 10�5 s and a maximum speed of 1.00 � 103 m/s. Calculate 
(a) the angular frequency and (b) the maximum displacement of
the particle.

8. A Small Body A small body of mass 0.12 kg is undergoing simple
harmonic motion of amplitude 8.5 cm and period 0.20 s.
(a) What is the magnitude of the maximum force acting on it? (b) If
the oscillations are produced by a spring, what is the spring constant?

9. Electric Shaver In an electric shaver, the blade moves back and
forth over a distance of 2.0 mm in simple harmonic motion, with
frequency 120 Hz. Find (a) the amplitude, (b) the maximum blade
speed, and (c) the magnitude of the maximum blade acceleration.

10. Speaker Diaphragm A loudspeaker diaphragm is oscillating
in simple harmonic motion with a frequency of 440 Hz and a

maximum displacement of 0.75 mm. What are (a) the angular
frequency, (b) the maximum speed and (c) the magnitude of the
maximum acceleration?

11. Automobile Spring An automobile can be considered to be
mounted on four identical springs as far as vertical oscillations are
concerned. The springs of a certain car are adjusted so that the
oscillations have a frequency of 3.00 Hz. (a) What is the spring con-
stant of each spring if the mass of the car is 1450 kg and the mass is
evenly distributed over the springs? (b) What will be the oscillation
frequency if five passengers, averaging 73.0 kg each, ride in the car?
(Again, consider an even distribution of mass.)

12. A Body Oscillates A body oscillates with simple harmonic mo-
tion according to the equation

x � (6.0 m) cos[(3� rad/s)t � �/3 rad].

At t � 2.0 s, what are (a) the displacement, (b) the velocity, (c) the
acceleration, and (d) the phase of the motion? Also, what are (e)
the frequency and (f) the period of the motion?

13. Piston in Cylinder The piston in the cylinder head of a locomo-
tive has a stroke (twice the amplitude) of 0.76 m. If the piston
moves with simple harmonic motion with a frequency of 180
rev/min, what is its maximum speed?

14. BMMD Astronauts sometimes use a device called a body-mass
measuring device (BMMD). Designed for use on orbiting space ve-
hicles, its purpose is to allow astronauts to measure their mass in
the “weightless” conditions in Earth orbit. The BMMD is a spring-
mounted chair; an astronaut measures his or her period of oscilla-
tion in the chair; the mass follows from the formula for the period
of an oscillating block–spring system. (a) If M is the mass of the as-
tronaut and m the effective mass of that part of the BMMD that
also oscillates, show that

M � (k/4� 2)T 2 � m,

where T is the period of oscillation and k is the spring constant. (b)
The spring constant was k � 605.6 N/m for the BMMD on Skylab
Mission Two; the period of oscillation of the empty chair was
0.90149 s. Calculate the effective mass of the chair. (c) With an as-
tronaut in the chair, the period of oscillation became 2.08832 s.
Calculate the mass of the astronaut.

15. Harbor At a certain harbor, the tides cause the ocean surface
to rise and fall a distance d (from highest level to lowest level) in
simple harmonic motion, with a period of 12.5 h. How long does it
take for the water to fall a distance d/4 from its highest level?



that the block’s frequency of oscillation on the frictionless surface is

25. Block and Two Springs Suppose that the two springs in Fig. 16-33
have different spring constants k1 and k2. Show that the frequency f of
oscillation of the block is then given by

f � ,

where f1 and f2 are the frequencies at which the block would oscil-
late if connected only to spring 1 or only to spring 2.

26. Tuning Fork The end of one of the prongs of a tuning fork that
executes simple harmonic motion of frequency 1000 Hz has an ampli-
tude of 0.40 mm. Find (a) the magnitude of the maximum acceleration
and (b) the maximum speed of the end of the prong. Find (c) the
magnitude of the acceleration and (d) the speed of the end of the
prong when the end has a displacement of 0.20 mm.

27. Two Springs Are Joined In Fig. 16-34, two springs are joined
and connected to a block of mass m. The surface is frictionless. If the
springs both have spring constant k, show that

f �

gives the block’s frequency of oscil-
lation.

28. Block on Incline In Fig. 16-35, a
block weighing 14.0 N, which slides
without friction on a 40.0° incline, is
connected to the top of the incline by
a massless spring of unstretched
length 0.450 m and spring constant
120 N/m. (a) How far from the top of
the incline does the block stop? (b)
If the block is pulled slightly down
the incline and released, what is the
period of the resulting oscillations?

29. Unstretched Length A uniform
spring with unstretched length L
and spring constant k is cut into two
pieces of unstretched lengths L1 and
L2, with L1 � nL2. What are the cor-
responding spring constants (a) k1

and (b) k2 in terms of n and k? If a
block is attached to the original
spring, as in Fig. 16-10, it oscillates
with frequency f. If the spring is re-
placed with the piece L1 or L2, the
corresponding frequency is f1 or f2.
Find (c) f1 and (d) f2 in terms of f.

30. Ore Cars In Fig. 16-36, three 10
000 kg ore cars are held at rest on a
30° incline on a mine railway using a
cable that is parallel to the incline.
The cable stretches 15 cm just before
the coupling between the two lower
cars breaks, detaching the lowest car.
Assuming that the cable obeys
Hooke’s law, find (a) the frequency and (b) the amplitude of the re-
sulting oscillations of the remaining two cars.

√ k
2m

1
2�

√f 2
1 � f 2

2

f �
1

2� √ 2k
m

.
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16. Two Blocks In Fig. 16-32 two blocks (m � 1.0 kg and M �
10 kg) and a spring (k � 200 N/m) are arranged on a horizontal,
frictionless surface. The coefficient of static friction between the
two blocks is 0.40. What amplitude of simple harmonic motion of
the spring–blocks system puts the smaller block on the verge of
slipping over the larger block?

17. Shake Table A block is on a horizontal surface (a shake table)
that is moving back and forth horizontally with simple harmonic
motion of frequency 2.0 Hz. The coefficient of static friction be-
tween block and surface is 0.50. How great can the amplitude of the
SHM be if the block is not to slip along the surface?

18. Block and Piston A block rides on a piston that is moving verti-
cally with simple harmonic motion. (a) If the SHM has period 
1.0 s, at what amplitude of motion will the block and piston separate?
(b) If the piston has an amplitude of 5.0 cm, what is the maximum fre-
quency for which the block and piston will be in contact continuously?

19. Oscillator An oscillator consists of a block attached to a spring
(k � 400 N/m). At some time t, the position (measured from the
system’s equilibrium location), velocity, and acceleration of the
block are x � 0.100 m, v � �13.6 m/s, and a � �123 m/s2. Calcu-
late (a) the frequency of oscillation, (b) the mass of the block, and
(c) the amplitude of the motion.

20. Simple Harmonic Oscillator A simple harmonic oscillator consists
of a block of mass 2.00 kg attached to a spring of spring constant
100 N/m. When t � 1.00 s, the position and velocity of the block are
x � 0.129 m and v � 3.415 m/s. (a) What is the amplitude of the os-
cillations? What were the (b) position and (c) velocity of the block
at t � 0 s?

21. Massless Spring A massless spring hangs from the ceiling with a
small object attached to its lower end.The object is initially held at rest
in a position y1 such that the spring is at its rest length. The object is
then released from y1 and oscillates up and down, with its lowest posi-
tion being 10 cm below y1. (a) What is the frequency of the oscillation?
(b) What is the speed of the object when it is 8.0 cm below the initial
position? (c) An object of mass 300 g is attached to the first object, af-
ter which the system oscillates with half the original frequency. What is
the mass of the first object? (d) Relative to y1 where is the new equilib-
rium (rest) position with both objects attached to the spring?

22. Two Particles Two particles execute simple harmonic motion of
the same amplitude and frequency along close parallel lines. They
pass each other moving in opposite directions each time their dis-
placement is half their amplitude. What is their phase difference?

23. Two Particles Oscillate Two particles oscillate in simple har-
monic motion along a common straight-line segment of length A.
Each particle has a period of 1.5 s, but they differ in phase by �/6
rad. (a) How far apart are they (in terms of A) 0.50 s after the lag-
ging particle leaves one end of the path? (b) Are they then moving
in the same direction, toward each
other, or away from each other?

24. Two Identical Springs In Fig.
16-33, two identical springs of spring
constant k are attached to a block of
mass m and to fixed supports. Show
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31. Balance Wheel The balance wheel of a watch oscillates with a
rotational amplitude of � rad and a period of 0.500 s. Find (a) the max-
imum rotational speed of the wheel, (b) the rotational speed of the
wheel when its displacement is �/2 rad, and (c) the magnitude of the
rotational acceleration of the wheel when its displacement is �/4 rad.

32. Flat Disk A flat uniform circular disk has a mass of 3.00 kg and
a radius of 70.0 cm. It is suspended in a horizontal plane by a verti-
cal wire attached to its center. If the disk is rotated 2.50 rad about
the wire, a torque of 0.0600 N � m is required to maintain that ori-
entation. Calculate (a) the rotational inertia of the disk about the
wire, (b) the torsion constant, and (c) the angular frequency of this
torsion pendulum when it is set oscillating.

SEC. 16-5 ■ GRAVITATIONAL PENDULA

33. Simple Pendulum What is the length of a simple pendulum
that marks seconds by completing a full swing from left to right and
then back again every 2.0 s?

34. Demolition Ball In Fig. 16-37, a 2500 kg demolition ball swings
from the end of a crane. The length of the swinging segment of
cable is 17 m. (a) Find the period of the swinging, assuming that the
system can be treated as a simple pendulum. (b) Does the period
depend on the ball’s mass?

35. Physical Pendulum A physical pendulum consists of a meter stick
that is pivoted at a small hole drilled through the stick a distance d
from the 50 cm mark.The period of oscillation is 2.5 s. Find d.

36. Trapeze A performer seated on a trapeze is swinging back and
forth with a period of 8.85 s. If she stands up, thus raising the center
of mass of the trapeze � performer system by 35.0 cm, what will be
the new period of the system? Treat trapeze � performer as a simple
pendulum.

37. Pivoting Long Rod A pendulum is
formed by pivoting a long thin rod of
length L and mass m about a point on the
rod that is a distance d above the center of
the rod. (a) Find the period of this pendu-
lum in terms of d, L, m, and g, assuming
small-amplitude swinging. What happens
to the period if (b) d is decreased, (c) L is
increased, or (d) m is increased?

38. Solid Disk In Fig. 16-38, a physical pendulum consists of a uni-
form solid disk (of mass M and radius R) supported in a vertical
plane by a pivot located a distance d from the center of the disk.
The disk is displaced by a small angle and released. Find an expres-
sion for the period of the resulting simple harmonic motion.

39. Oscillating Physical Pendu-
lum The pendulum in Fig. 16-39,
consists of a uniform disk with ra-
dius 10.0 cm and mass 500 g at-
tached to a uniform rod with
length 500 mm and mass 270 g. (a)
Calculate the rotational inertia of
the pendulum about the pivot
point. (b) What is the distance be-
tween the pivot point and the cen-
ter of mass of the pendulum? (c)
Calculate the period of oscillation.

40. Pendulum with Disk A uniform circular disk whose radius R is
12.5 cm is suspended as a physical pendulum from a point on its rim.
(a) What is its period? (b) At what radial distance r � R is there a
pivot point that gives the same period?

41. Long Uniform Rod In
the overhead view of Fig. 16-
40, a long uniform rod of
length L and mass m is free to
rotate in a horizontal plane
about a vertical axis through
its center. A spring with force
constant k is connected hori-
zontally between one end of the rod and a fixed wall. When the rod is
in equilibrium, it is parallel to the wall. What is the period of the small
oscillations that result when the rod is rotated slightly and released?

42. A Stick A stick with length L
oscillates as a physical pendulum,
pivoted about point O in Fig. 16-
41. (a) Derive an expression for
the period of the pendulum in
terms of L and x, the distance
from the pivot point to the center
of mass of the pendulum. (b) For
what value of x/L is the period a
minimum? (c) Show that if L �
1.00 m and g � 9.80 m/s2, this
minimum period is 1.53 s.

43. Frequency What is the frequency of a simple pendulum 2.0 m
long (a) in a room, (b) in an elevator accelerating upward at a rate
of 2.0 m/s2, and (c) in free fall?

44. In a Car A simple pendulum of length L and mass m is suspended
in a car that is traveling with constant speed around a circle of
radius R. If the pendulum undergoes small oscillations in a radial
direction about its equilibrium position, what will be its frequency
of oscillation?

45. The Bob The bob on a simple pendulum of length R moves
in an arc of a circle. (a) By considering that the radial accelera-
tion of the bob as it moves through its equilibrium position is
that for uniform circular motion (v2/R), show that the tension in
the string at that position is mg (1 � �2) if the angular amplitude
� is small. (See “Trigonometric Expansions” in Appendix E.) 

� v: �
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(b) Is the tension at other positions of the bob greater, smaller, or
the same?

46. Angular Amplitude For a simple pendulum, find the angular
amplitude � at which the restoring torque required for simple har-
monic motion deviates from the actual restoring torque by 1.0%.
(See “Trigonometric Expansions” in Appendix E.)

47. Wheel Rotates A wheel is free to
rotate about its fixed axle. A spring is
attached to one of its spokes a distance
r from the axle, as shown in Fig. 16-42.
(a) Assuming that the wheel is a hoop
of mass m and radius R, obtain the an-
gular frequency of small oscillations of
this system in terms of m, R, r, and the
spring constant k. How does the result
change if (b) r � R and (c) r � 0?

SEC. 16-6 ■ ENERGY IN SIMPLE HARMONIC MOTION

48. Large Slingshot A (hypothetical) large slingshot is stretched
1.50 m to launch a 130 g projectile with speed sufficient to escape
from Earth (11.2 km/s). Assume the elastic bands of the slingshot
obey Hooke’s law. (a) What is the spring constant of the device, if
all the elastic potential energy is converted to kinetic energy? (b)
Assume that an average person can exert a force of 220 N. How
many people are required to stretch the elastic bands?

49. Mechanical Energy Find the mechanical energy of a block–
spring system having a spring constant of 1.3 N/cm and an oscilla-
tion amplitude of 2.4 cm.

50. Block–Spring An oscillating block–spring system has a me-
chanical energy of 1.00 J, an amplitude of 10.0 cm, and a maximum
speed of 1.20 m/s. Find (a) the spring constant, (b) the mass of the
block, and (c) the frequency of oscillation.

51. Horizontal Frictionless A 5.00 kg object on a horizontal fric-
tionless surface is attached to a spring with spring constant 1000
N/m. The object is displaced from equilibrium 50.0 cm horizontally
and given an initial velocity of 10.0 m/s back toward the equilib-
rium position. (a) What is the frequency of the motion? What are
(b) the initial potential energy of the block–spring system, (c) the
initial kinetic energy, and (d) the
amplitude of the oscillation?

52. Block of Mass M A block of
mass M, at rest on a horizontal
frictionless table, is attached to a
rigid support by a spring of con-
stant k. A bullet of mass m and ve-
locity strikes the block as shown in Fig. 16-43. The bullet is em-
bedded in the block. Determine (a) the speed of the block
immediately after the collision and (b) the amplitude of the result-
ing simple harmonic motion.

53. Displacement in SHM When the displacement in SHM is one-
half the amplitude X, what fraction of the total energy is (a) kinetic
energy and (b) potential energy? (c) At what displacement, in
terms of the amplitude, is the energy of the system half kinetic en-
ergy and half potential energy?

54. Particle Undergoing SHM A 10 g particle is undergoing simple
harmonic motion with an amplitude of 2.0 � 10�3 m and a maximum

v:

acceleration of magnitude 8.0 � 10�3 m/s2. The phase constant is
��/3 rad. (a) Write an equation for the force on the particle as a
function of time. (b) What is the period of the motion? (c) What is
the maximum speed of the particle? (d) What is the total mechanical
energy of this simple harmonic oscillator?

55. Block Suspended from Spring A 4.0 kg block is suspended
from a spring with a spring constant of 500 N/m. A 50 g bullet is
fired into the block from directly below with a speed of 150 m/s and
becomes embedded in the block. (a) Find the amplitude of the re-
sulting simple harmonic motion. (b) What fraction of the original
kinetic energy of the bullet is transferred to mechanical energy of
the harmonic oscillator?

56. Vertical Spring A vertical spring stretches 9.6 cm when a 1.3 kg
block is hung from its end. (a) Calculate the spring constant. This
block is then displaced an additional 5.0 cm downward and released
from rest. Find (b) the period, (c) the frequency, (d) the amplitude,
and (e) the maximum speed of the resulting SHM.

SEC. 16-7 ■ DAMPED SIMPLE HARMONIC MOTION

57. Amplitude Ratio In Touchstone Example 16-4, what is the ra-
tio of the amplitude of the damped oscillations to the initial ampli-
tude when 20 full oscillations have elapsed?

58. Lightly Damped The amplitude of a lightly damped oscillator
decreases by 3.0% during each cycle. What fraction of the mechani-
cal energy of the oscillator is lost in each full oscillation?

59. System Shown For the system shown in Fig. 16-25, the block
has a mass of 1.50 kg and the spring constant is 8.00 N/m. The
damping force is given by �b(dy/dt), where b � 230 g/s. Suppose
that the block is initially pulled down a distance 12.0 cm and re-
leased. (a) Calculate the time required for the amplitude of the re-
sulting oscillations to fall to one-third of its initial value. (b) How
many oscillations are made by the block in this time?

60. Suspension System Assume that you are examining the oscilla-
tion characteristics of the suspension system of a 2000 kg automo-
bile. The suspension “sags” 10 cm when the entire automobile is
placed on it. Also, the amplitude of oscillation decreases by 50%
during one complete oscillation. Estimate the values of (a) the
spring constant k and (b) the damping constant b for the spring and
shock absorber system of one wheel, assuming each wheel supports
500 kg.

SEC. 16-8 ■ FORCED OSCILLATIONS AND RESONANCE

61. Rigid Support For Eq. 16-41, suppose the amplitude Y is given by

Y �

where F max is the (constant) amplitude of the external oscillating
force exerted on the spring by the rigid support in Fig. 16-25. At res-
onance, what are (a) the amplitude and (b) the velocity amplitude
of the oscillating object?

62. Washboard Road A 1000 kg car carrying four 82 kg people
travels over a rough “washboard” dirt road with corrugations 4.0 m
apart, which cause the car to bounce on its spring suspension. The
car bounces with maximum amplitude when its speed is 16 km/h.
The car now stops, and the four people get out. By how much does
the car body rise on its suspension due to this decrease in mass?

F max

[m2(�d
2 � �2)2 � b2�2
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k
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Additional Problems

63. Where’s the Force? A 50 gram mass is
hanging from a spring whose unstretched
length is 10 cm and whose spring constant is 
2.5 N/m, as shown in Fig. 16-44. In the list be-
low are described five situations. In some of the
situations, the mass is at rest and remains at
rest. In other situations, at the instant de-
scribed, the mass is in the middle of an oscilla-
tion initiated by a person pulling the mass
downward 5 cm from its equilibrium position
and releasing it. Ignore both air resistance and
internal damping in the spring. At the time the
situation occurs, indicate whether the force vec-
tor requested points up (U), down (D), or has a
magnitude of zero newtons (0). (a) The force
on the mass exerted by the spring when the mass is at its equilib-
rium position and is at rest. (b) The force on the mass exerted by
the spring when the mass is at its equilibrium position and is mov-
ing downward. (c) The net force on the mass when the mass is at its
equilibrium position and is moving upward. (d) The force on the
mass exerted by the spring when it is at the top of its oscillation. (e)
The net force on the mass when it is at the top of its oscillation.

64. Swinging Ball A
pendulum consisting of
a massive ball on a light
but nearly rigid rod is
shown at two successive
times in Fig. 16-45. The
maximum angle of dis-
placement of the pen-
dulum from its equilib-
rium point is 25°. (a) If
the length of the rod is
R and the mass of the ball is m, find an expression for the speed of
the ball at the point shown in Fig. 16-45b. (b) If the ball in Fig 16-
45b is moving to the left at the instant of the snapshot, in what di-
rection does its acceleration point at this instant in time? (c) In
what direction does the acceleration of the ball in Fig. 16-45a point?

65. Oscillating Energies The graphs in Fig. 16-46 represent a com-
puter simulation of a mass on a spring. The kinetic and potential en-
ergies are plotted in the bottom graph, in addition to the position
and velocity of the oscillator (upper two graphs). The potential and
kinetic energy curves oscillate, but not about zero. They also seem
to oscillate twice as fast as the position and velocity curves. Is this
correct? Explain.

66. Oscillating Graphs A mass is hanging from a spring off the
edge of a table. The position of the mass is measured by a sonic
ranger sitting on the floor 25 cm below the mass’s equilibrium posi-
tion. At some time, the mass is started oscillating. At a later time,
the sonic ranger begins to take data.

Figure 16-47 shows a series of graphs associated with the mo-
tion of the mass and a series of physical quantities. The graph la-
beled (A) is a graph of the mass’s position as measured by the
ranger. For each physical quantity, identify which graph could
represent that quantity for this situation. If none are possible,
answer N.

(a) Velocity of the mass
(b) Net force on the mass
(c) Force exerted by the spring on the mass
(d) Kinetic energy of the spring–mass system
(e) Potential energy of the spring–mass–Earth system
(f) Gravitational potential energy of the spring–mass–Earth system

67. Pendulum Graphs Some of the graphs shown in Fig. 16-48 rep-
resent the motion of a pendulum—a massive ball attached to a
rigid, nearly massless rod, which in turn is attached to a rigid, nearly
frictionless pivot. Four graphs of the pendulum’s angle as a function
of time are shown. Below are a set of four initial conditions and a
denial. Match each graph with its most likely initial conditions (or
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with the denial). Note that the scales on the y axes are not necessar-
ily the same. (There is not necessarily a one-to-one match.)

(1) 0 � 120°, (d/dt)0 � 0°/s
(2) 0 � 173°, (d/dt)0 � 30°/s
(3) 0 � 6°, (d/dt)0 � 0°/s
(4) 0 � 173°, (d/dt)0 � 0°/s
(5) Not a possible pendulum graph.

68. Swingin’ in the Rain There is a forest in Italy that has many wa-
terfalls. At one of the waterfalls, a long rope hangs down from the
top of the cliff near the waterfall and has a seat on the bottom.
Adventurous visitors could hop onto the seat and swing down into
the waterfall. Their starting angle seems to be about 20°. It takes
one of these adventurous people 8 seconds to swing out and back.
Estimate the length of the rope and the speed with which they pass
through the waterfall.

69. To What Angle? A small metal ball of mass m hangs from a
pivot by a rigid, light metal rod of length R. The ball is swinging
back and forth with an amplitude that remains small throughout its
motion, max � 5°. Ignore all damping. (a) The equation of motion
of this ideal pendulum can be derived in a variety of ways and is

� � sin .

For small angles, show how this can be replaced by an approxi-
mate equation of motion that can be solved more easily than the

g
R

d 2

dt 2

one given. (b) Write a general solution for the approximate equa-
tion of motion you obtained in (a) that works for any starting an-
gle and angular velocity (as long as the angles stay in the range
where the approximation is OK). Demonstrate that what you
have written is a solution and show that at a time t � 0 your solu-
tion can have any given starting position and velocity. (c) If the
length of the rod is 0.3 m, the mass of the ball is 0.2 kg, and the
clock is started at a time when the ball is passing through the cen-
ter ( � 0) and is moving with an angular speed of 0.1 rad/s, find
the maximum angle your solution says the ball will reach. Can you
use the approximate equation of motion for this motion? If the
starting angle is not small, you cannot easily solve the equation of
motion without a computer. But there are still things you can do.
(d) Derive the energy conservation equation for the motion of the
pendulum. (Do not use the small-amplitude approximation.) (e) If
the pendulum is released from a starting angle of 1, what will be
the maximum speed it travels at any point on its swing?
70. What’s Wrong with cos? Observation of the oscillation of a
mass on the end of a spring reveals that the detailed structure of
the position as a function of time is fit very well by a function of the
form

x(t) � X cos(�t � �0).

Yet subsequent observations give convincing evidence that this can-
not be a good representation of the motion for long time periods.
Explain what observation leads to this conclusion and resolve the
apparent contradiction.

71. Where Is the Energy? A block of
mass m is attached to a spring of spring
constant k that is attached to a wall as
shown in Fig. 16-49. (a) If the block
starts at time t � 0 with the spring being
at its rest length but the block having a
velocity v1, find a solution for the mass’s
position at all subsequent times. Make any assumptions you like in
order to have a plausible but solvable model, but state your as-
sumptions explicitly. (b) Are the energies at the times

kinetic, potential, or a mixture of the two? (This is not a short-
answer question. Show how you know.)

72. Damped Oscillator A class looked at the oscillation of a mass
on a spring. They observed for 10 seconds and found its oscillation
was well fit by assuming that the mass’s motion was governed by
Newton’s Second Law with the spring force F x

spring � �k�x, where
�x represents the stretch or squeeze of the spring and k is the
spring constant. However, it was also clear that this was not an ade-
quate representation for times on the order of 10 minutes, since by
that time the mass had stopped oscillating. (a) Suppose the mass
was started at an initial position x1 with a velocity 0. Write down the
solution, x(t) and vx(t), for the equations of motion of the mass us-
ing only the spring force. What is the total energy of the oscillating
mass? (b) Assume that there is also a velocity-dependent force (the
damping force) that the spring exerts on an object when it is mov-
ing. Let’s make the simplest assumption that the dynamic-spring
force is linear in the velocity, F x

spring-dyn � ��vx. Assume further that
over one period of oscillation the velocity-dependent piece is small.
Therefore, take x(t) and vx(t) to be given by the oscillation without
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damping. Calculate the work done by the damping force over one
period in terms of the parameters k, m, and � and the fraction of
the energy lost in one period. (c) The mass used was 1 kg. From the
description of the experiment, estimate the spring constant and the
number of periods it took to lose half the energy. Use this and your
result from (a) to estimate the approximate size of the damping
constant �.

73. Catching a Pellet and Oscillating
The following problem is a standard
problem found in this text (and in
many others). A block of mass M is at
rest on a horizontal frictionless table.
It is attached to a rigid support by a
spring of constant k. A clay pellet hav-
ing mass m and velocity v strikes the
block as shown in the figure and sticks to it. See Fig. 16-50. (a) De-
termine the velocity of the block immediately after the collision.
(b) Determine the amplitude of the resulting simple harmonic
motion. In order to solve this problem you must make a number of
simplifying assumption; some are stated in the problem and some
are not. First, solve the problem as stated. (c) Discuss the approxi-
mations you had to make in order to solve the problem. (There are
at least five.)

74. Bungee Jump As part of an open house, a physics department
sets up a bungee jump from the top of a crane. See Fig. 16-51. As-
sume that one end of an elastic band will be firmly attached to the
top of the crane and the other to the waist of a courageous partici-
pant. The participant will step off the edge of the crane house to be
slowed and brought back up by the elastic band before hitting the

ground. Assume the elastic band behaves like a Hooke’s law spring.
Estimate the length and spring constant of the elastic you would
recommend be used.

474 CHAPTER 16 Oscillations
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17
When a beetle moves along

the sand within a few tens of

centimeters of this sand scor-

pion, the scorpion immediately

turns toward the beetle and

dashes to it (for lunch). The

scorpion can do this without

seeing (it is nocturnal) or hear-

ing the beetle.

Transverse 
Mechanical Waves

How can the scorpion
so precisely locate its
prey?

The answer is in this
chapter.



17-1 Waves and Particles

Two ways to get in touch with a friend in a distant city are to write a letter and to use
the telephone.

The first choice (the letter) involves the concept of “particles”: A material object
moves from one point to another, carrying information with it. Most of the preceding
chapters deal with particles or with systems of particles.

The second choice (the telephone) involves the concept of “waves,” the subject of
this chapter and the next. In your telephone call, a sound wave carries your message
from your vocal cords to the telephone. There, an electromagnetic wave takes over,
passing along a copper wire or an optical fiber or through the atmosphere, possibly by
way of a communications satellite. At the receiving end there is another sound wave,
from a telephone to your friend’s ear. Although the message is passed, nothing that
you have touched reaches your friend. For example, if you have the flu, she can’t catch
it by talking to you on the phone since no matter (and therefore no virus) is passed
between the two of you. In a wave, momentum and energy move from one point to
another but no material object makes that journey.

Leonardo da Vinci understood waves when he wrote of water waves: “It often
happens that the wave flees the place of its creation, while the water does not; like the
waves made in a field of grain by the wind, where we see the waves running across the
field while the grain remains in place.”

Particles and waves are the two important entities described in classical physics.
Both entities have positions and velocities associated with them. But there are ways in
which these two entities are very different. The word particle suggests a tiny concen-
tration of matter capable of transmitting energy and momentum through its move-
ment from one place to another. For example, a baseball is a particle that can transmit
the energy and momentum imparted to it by a pitcher to the catcher by moving from
one to the other. Alternatively the energy and momentum associated with a wave is
spread out in space and is transmitted without any matter moving from one place to
another. For example, when the pitcher shouts at a catcher, she can disturb the air
particles in her vicinity, but the sound wave that transmits her voice depends on a
chain of temporary disturbances of the air and not on molecules moving from the
pitcher to the catcher.

In this chapter and the next we will put particles aside for a while and learn
about mechanical waves and how they travel. Then in Chapters 34, 36, and 37, we
will explore the behavior of electromagnetic waves including radio and light
waves.

17-2 Types of Waves

Waves are of three main types:

1. Mechanical waves. These waves are most familiar because we encounter them al-
most constantly; common examples include water waves, sound waves, and seis-
mic waves. All these waves have certain central features: They are governed by
Newton’s laws, and they can only move through a material medium, such as wa-
ter, air, and rock.

2. Electromagnetic waves. These waves are less familiar, but you use them con-
stantly; common examples include visible and ultraviolet light, radio and televi-
sion waves, microwaves, x-rays, and radar waves. These waves can transmit energy
and momentum without a material medium. Light waves from stars, for example,
travel through the vacuum of space to reach us. Electromagnetic waves are
treated in Chapters 32, 34, 36 and 37.

476 CHAPTER 17 Transverse Mechanical Waves



Types of Waves   477

3. Matter waves. Although these waves are commonly used in modern technology,
they are probably very unfamiliar to you. These waves are associated with elec-
trons, protons, and other fundamental particles, and even atoms and molecules. Be-
cause we commonly think of these things as constituting matter, such waves are
called matter waves. Their behavior is described by the laws of quantum mechanics.

Much of what we discuss in this chapter applies to waves of all kinds. However,
for specific examples we shall refer to mechanical waves because they are the simplest
and most familiar. In this chapter we consider how to best describe ideal mechanical
waves mathematically. An ideal mechanical wave does not lose mechanical energy or
change its shape as it travels through a medium.

17-3 Pulses and Waves

Consider Figure 17-1, which shows a “Slinky wave demonstrator” consisting of a very
long Slinky that hangs from long, evenly spaced strings. If we give a quick pull out-
ward (to the left) on the left end of the Slinky and then give it a quick push back in-
ward (to the right), a compression-expansion disturbance like that shown in Fig. 17-1
will propagate along the length of the Slinky. (You need to look carefully at Fig. 17-1,
rather than Fig. 17-2, to see the effect). Since the back-and-forth oscillations of the
Slinky coils are parallel to the direction in which the disturbance travels, the motion is
said to be longitudinal.

On the other hand, if we give the end of the Slinky a quick jerk back and forth
(into and out of the page) at right angles to the line of the Slinky, a disturbance like
that shown in Fig. 17-2 results and moves down the length of the Slinky. In this case,
the displacement of the coils in the Slinky is perpendicular to the direction in which
the disturbance travels (i.e., along the length of the Slinky). Such a disturbance is
called transverse.

In both cases discussed above, the singular disturbance is referred to as a wave
pulse or short wave. If we repeat the motion that causes the disturbance (either the
back-forth jerk or the push-pull motion) at regular time intervals, the result is a trav-
eling and repeating disturbance that is referred to as a continuous wave. Just as with
single pulses, waves can be longitudinal or transverse.

For example, if you give one end of a stretched string a single up-and-down
jerk, a single pulse travels along the string as in Fig. 17-3a. This pulse and its mo-
tion can occur because the string is under tension. During the upward part of the
jerk, when you pull your end of the string upward, it begins to pull upward on the

Expansion Compression Side view

FIGURE 17-1 ■ A large Slinky demonstrator hanging
from long, evenly spaced strings. Note the compression
disturbance moving from left to right near the second
and third strings with an expansion just behind it.

Bottom view
y (x, t1)

y

x

t = t1

FIGURE 17-2 ■ A transverse or sideways disturbance
or pulse moving from left to right along a Slinky wave
demonstrator. In this case the viewer is lying on the
floor underneath the Slinky looking up at time t = t1.



adjacent section of the string via tension between the two sections. As the adja-
cent section moves upward, it begins to pull the next section upward, and so on.
Meanwhile, suppose that you have now pulled down on your end of the string,
completing the up-down stroke. As each section is moving upward in turn, it be-
gins to be pulled back downward by neighboring sections that are already on the
way down. The net result is that a distortion in the string’s shape (the pulse)
moves along the string at some velocity . Note that although the disturbance
moves down the string to the right, the parts of the string itself just move up and
down. This is an extremely important, but subtle, point regarding pulses and
waves. The wave or pulse travels, but the particles that make up the medium
(string or otherwise) do not.

Sinusoidal Transverse Waves
If, instead of a single up-down stroke, you move your hand up and down repeatedly
with simple harmonic motion as in Fig. 17-3b, a continuous wave travels along the
string with a wave velocity denoted by . The vertical displacement of
the string is perpendicular to the direction that the wave propagates (along the
string), and so this wave is called a transverse wave. The larger the vertical dis-
placement of your hand during the up-down stroke, the higher the peak and the
lower the valley of the wave will be. This characteristic, measured as the magnitude
of the maximum displacement of a small bit of string from its equilibrium position
as the wave passes through it, is called the amplitude Y of the wave. This definition
of amplitude is very similar to the one developed in the last chapter in regard to
oscillations.

If we take a photograph of a transverse wave (perhaps the wave in the string of
Fig. 17-3b) at some time , we can see the wave shape and try to find a mathemat-
ical function that describes that shape or wave form. For example, if the motion of
your hand is a sinusoidal function of time, the wave has a sinusoidal shape at any
given instant, as in Fig. 17-3b. That is, the wave has the shape of a continuously repeat-
ing sine curve or cosine curve. (We consider here only an “undamped” string, in which
no friction-like forces within the string cause the wave to die out as it travels along. In
addition, we assume that the string is so long that we need not consider a wave re-
bounding from the far end and that the wave amplitude is small.) 

The wave in Fig. 17-3b travels along a single line, so we call it a one-dimensional
wave. For example, sound waves traveling in a pipe can only move in one dimension
(but they can travel in two or three dimensions in other circumstances). For the wave
in Fig. 17-3b, or any other one-dimensional wave or pulse, the convention is to define
the line of travel as the x axis. As we can see from Fig. 17-3b, the vertical displacement
of a bit of string at a given time depends on how far down along the string we make
the measurement. Hence, we say that the vertical displacement of the string is a func-
tion of the horizontal position, x. The distance (in this example the horizontal dis-
tance) the wave travels in one cycle (for example, the peak-to-peak or valley-to-valley
distance) is defined as the wavelength .�

t � t1

v: wave � vwave
x î

v: wave
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(a) (b)

Sinusoidal
wave Maximum

displacement

Zero
displacement

Pulse
v wave v wave

FIGURE 17-3 ■ (a) A single pulse travels
along a stretched string. A typical string
piece (marked with a dot) moves up and
back only once as the pulse passes. Since
the string piece’s displacement is perpen-
dicular to the wave direction, the pulse is
called a transverse wave. (b) A continuous
sinusoidal displacement at the left end also
causes the piece of string to move up and
down in a transverse direction except now
the wave is continuous.
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How a Sand Scorpion Catches Its Prey
The sand scorpion shown in the photograph opening this chapter uses waves of both
transverse and longitudinal motion to locate its prey. When a beetle even slightly dis-
turbs the sand, it sends pulses along the sand’s surface (Fig. 17-4). One set of pulses is
longitudinal, traveling with speed . A second set is trans-
verse, traveling with speed .� v: T-wave � � v T-wave � 50 m/s

� v: L-wave � � v L-wave � 150 m/s

d

Longitudinal
pulses

Transverse
pulses Beetle

v T-wave

v L-wave

v L-wave

v T-wave

FIGURE 17-4 ■ A beetle’s motion sends fast longitudinal
pulses and slower transverse pulses along the sand’s sur-
face. The sand scorpion first intercepts the longitudinal
pulses; here, it is the rear-most right leg that senses the
pulses earliest.

The scorpion, with its eight legs spread roughly in a circle about 5 cm in diameter,
intercepts the faster longitudinal pulses first and learns the direction of the beetle; it is
in the direction of whichever leg is disturbed earliest by the pulses. The scorpion then
senses the time interval between that first interception and the interception of the
slower transverse waves and uses it to determine the distance to the beetle. The time
interval is given by 

.

Solving for the distance gives us

For example, if , then , which gives the scorpion a perfect fix on
the beetle.

Of course, the scorpion no more does these calculations in its head as it hunts a
beetle than you do a conscious recalculation of the location of your center of mass
as you decide in what way to throw out your arms when you slip. Instead, instinct
and habits based on successful personal experiences rule the scorpion (and you) in
such situations. But there is physics behind such “instincts” — they are not arbitrar-
ily successful.

Waves and Oscillations
As we discussed above, if we take a picture of a wave, we can freeze the wave in time
and investigate the spatial characteristics of the wave, like the wave’s amplitude and
its length. Alternatively, we could pick a special place, xP, along the wave and peek at
it through a slit, as in Fig. 17-5. As we peek though the slit, we would see the bits of
string or Slinky rise and fall as the wave travels through space. If we made measure-
ments while peeking, we could plot the displacement as a function of time for this lo-
cation . Doing so allows us to focus in on the characteristics of the wave that
are associated with the passage of time. When we do this, we see several aspects of a
wave that remind us of the oscillations we learned about in the last chapter.

x � xP

d � 30 cm�t � 4.0 ms

d � (75 m/s) �t.

�t �
d

vT-wave �
d

vL-wave

d
�t



For example, let us examine the small piece of string boxed in Fig. 17-6. This fig-
ure shows five “snapshots” of a sinusoidal wave traveling in the positive direction of
an x axis. The time between snapshots is constant. The movement of the wave is in-
dicated by the rightward progress of the short arrow pointing to a high point of the
wave. From snapshot to snapshot, the short arrow moves to the right with the wave
shape, but the pieces of the string move only parallel to the y axis. Let us follow the
motion of the boxed string segment at . In the first snapshot (Fig. 17-6a), it is
at displacement In the next snapshot, it is at its extreme downward displace-
ment because a valley (or extreme low point) of the wave is passing through it. It
then moves back up through In the fourth snapshot, it is at its extreme up-
ward displacement because a peak (or extreme high point) of the wave is passing
through it. In the fifth snapshot, it is again at having completed one full oscil-
lation. Notice that the wave in Fig. 17-6 moves to the right by from one snapshot
to the next. Thus, by the fifth snapshot, it has moved to the right by . The time re-
quired for the cycle of rising and falling to repeat is called the period T of the wave.

READI NG EXERC IS E  17-1: The figure just below shows an asymmetric pulse trav-
eling from left to right along a stretched string. If this snapshot was taken at time t � 0 s: (a)
which figure represents the graph of the displacement y versus position x at t � 0 s? (b) Which
figure represents the graph of the displacement y versus time t at x � x1 (as marked with a dot
on the snapshot)? 

■

1�

1
4 �

y � 0,

y � 0.

y � 0.
x � 0
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y (x, t)

y

x

t = t1

x = xp

FIGURE 17-5 ■ A transverse wave traveling along a hanging Slinky
as seen from the perspective of someone looking up through a slit
while lying on the floor. The x axis is horizontal and chosen to be
along the axis of the Slinky. The y axis is also in the horizontal
plane but it lies along the direction of transverse displacement of
Slinky coils. The viewer watches displacement y from the Slinky’s
equilibrium point as a function of time at a fixed position xP.
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x = 0
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FIGURE 17-6 ■ Five “snapshots” of a trav-
eling string wave taken at times

where T is the period
of oscillation of a fixed piece of string. A
particular bit of string (the piece around

) has been boxed so you can see how
it moves back and forth as the continuous
wave disturbance travels horizontally to
the right along the string. The amplitude Y
is indicated. A wavelength � is also indi-
cated. The circle in each snapshot shows
the location of the wave crest as it moves
from left to right.

x � 0

0, 1
4T, 1

2T, 3
4T, and T,
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17-4 The Mathematical Expression for a 
Sinusoidal Wave

We found that the disturbance (whether pulse or wave, transverse or longitudinal) de-
pends on both position x and time t. If we call the displacement y, we can write

or to represent this functional dependence on time and position. In
the example of the transverse pulse traveling along a Slinky as pictured in Fig. 17-2,

y(x,t)y � f (x,t)

Consider a pulse propagating along a long stretched string in the x
direction as shown in Fig. 17-7. Note that the scale in the y direction
has been exaggerated for visibility.

(a) Sketch the shape of the string after the wave pulse has traveled
a distance of 10 m to the right. Explain why you sketched the shape
you did.

S O L U T I O N ■ The Ke y  I d e a here is that the crest of the
wave, which was at x � 0 m, has moved so that it is now at x � 10 m,
but the wave shape does not change. This is like the continuous sinu-
soidal wave shown in Fig. 17-6 that is depicted as moving without
shape change. Figure 17-8 shows the sketch.

(b) If the wave takes 2.0 s to move the 10 m to the right, what are
its velocity and wave speed?

S O L U T I O N ■ The Ke y  I d e a  is that we assume that the wave
shape does not change and that it moves at a constant rate deter-
mined by the motion of its crest. If the wave moves to the right 10 m
in 2 s, then

(wave velocity L R movement),

and

(wave speed—or velocity magnitude).

(c) Imagine that a small piece of essentially massless tape is placed
on the string at x = 0 m when t � 0 s. Describe the motion of the
tape for the next 2 s.

S O L U T I O N ■ The Ke y  I d e a  here is that as the wave pulse
moves along the piece of string with the tape on it, the piece of tape
does not move in the horizontal direction. Only its displacement in
the y direction changes. At first the tape is at the location of the
wave crest and so is at its maximum value of y. It then moves down
toward a zero value of y, slowly at first and then more rapidly. In a
little more than a second, the tape comes to rest at y = 0. The wave
pulse has passed and so the tape remains there.

(d) Suppose the pulse shown in Fig. 17-7 is moving to the left in-
stead. Sketch the shape of the string after the wave pulse has trav-
eled a distance of 5 m to the left. Explain why you sketched the
shape you did.

S O L U T I O N ■ The Ke y  I d e a here is that the crest of the wave
which was at x = 0 m, has moved without changing shape so that it
is now at x = �5 m. Figure 17-9 shows the sketch.

(e) If the wave takes 1 s to move the 5 m to the left, what are its 
velocity and wave speed?

S O L U T I O N ■ Once again we assume that the wave shape does
not change and that it moves at a constant rate determined by the
motion of its crest. If the wave moves 5 m to the left in 1 s, then

(wave velocity R L movement),

and

(wave speed—or velocity magnitude).

v wave � � v: wave � � 5 m/s

:

v: wave � v wave
x î � � �5 m

1 s � î � (�5m/s) î

vwave � � v: wave � � 5 m/s

:

v: wave � v wave
x î � � 10 m

2 s � î � (5 m/s) î

TOUCHSTONE EXAMPLE 17-1: Propagating Pulse

–15 –10 –5 0 5 10 15 20 x (m)

y

FIGURE 17-7 ■ A pulse propagates along a string in the x direction.

–15 –10 –5 0 5 10 15 20 x (m)

y

FIGURE 17-8 ■ The pulse after it has moved a distance of 10 m to
the right. The original position of the pulse is the dashed line.

–15 –10 –5 0 5 10 15 20 x (m)

y

FIGURE 17-9 ■ The pulse after it has moved a distance of 5 m to
the left. The original position of the pulse is the dashed line.



represents the transverse (vertical) displacement of the Slinky rings from their
equilibrium position at given position x and time t. (Alternatively, in the longitudinal
wave on the Slinky shown in Fig. 17-1, could represent the number of Slinky
coils per centimeter at a given x and t.)

We can completely describe any wave or pulse that does not change shape over
time and travels at a constant velocity using the relation , in which y is the
displacement as a function f of the time t and the position x. In general, a wave can
have any shape so long as it is not too sharp. The trick then is to find the correct ex-
pression for the function,

Fortunately, it turns out that any shape pulse or wave can be constructed by adding
up different sinusoidal oscillations. This makes the description of sinusoidal waves espe-
cially useful. So, for the rest of this section we’ll discuss the properties and descriptions
of continuous waves produced by displacing a stretched string using a sinusoidal motion
like that shown in Fig. 17-3b. We will start by using the equation we developed in Chap-
ter 16 to describe for sinusoidal motion at the location of a single piece of string. As we
did in looking through the slit in Fig. 17-5, we will only let time vary. Next we can con-
sider how to describe a snapshot that records the displacement of many pieces of the
string at a single time. Finally, we can combine our snapshot with the results of peeking
through a slit to get a single equation that ought to describe the propagation of a single
sinusoidal wave. Basically we are trying to describe the displacement y of every piece of
the string from its equilibrium point at every time.We are looking for .

Looking Through a Slit: Sinusoidal Wave Displacement at x � 0
If we choose a coordinate system so that x = 0 m at the left end of the string in Fig.
17-3b, then the motion at the left end of the string can be described using Eq. 16-5
with the string displacement from equilibrium represented by rather
than by simply y(t). To simplify our consideration we assume that the initial phase of
the string oscillation at x = 0 m and t = 0 s is zero. This gives us

(Eq. 16-5)

where the angular frequency can be related to the period of oscillation by . Al-
though we use the cosine function in Chapter 16 to describe simple harmonic motion, it
is customary to use the sine function to describe wave motion. As we mentioned in Chap-
ter 16, when a sine function is shifted to the left by it looks like a cosine function. So
we can also describe the same string displacement as a function of time at x = 0 m as

. (17-1)

Note that using the sine function requires a different, nonzero initial phase angle
given by . If we locate our slit at another nonzero value of x as shown in Fig. 17-5,
then the initial phase (at t � 0 s) will often turn out to be different from . In 
fact this initial phase is a function of the location x of the piece of string we are con-
sidering.

A Snapshot: Sinusoidal Wave Displacement at t � 0
Imagine that the man has been moving the end of the string up and down as shown in
Fig. 17-3b for a long time using a sinusoidal motion. Instead of looking through a slit
as time varies, we take a snapshot of the string at a time similar to that shown
in Fig. 17-3b. Then we expect our snapshot to be described by the equation

(17-2)y(x,0) � Y sin(kx � �/2)

t � 0s

�/2
�/2

y(0,t) � Ycos(�t) � Y sin(�t � �/2)

�/2

� � 2�/T

y(0,t) � Ycos(�t),

y(x,t) � y(0,t)

y(x,t)

f (x,t).

y � f (x,t)

y(x,t)

y(x,t)

482 CHAPTER 17 Transverse Mechanical Waves



The Mathematical Expression for a Sinusoidal Wave   483

where k is a constant and the “initial” phase when x is zero must also be . Note
that if the snapshot of the string were taken at another time, the initial phase would
probably be different.

Combining Expressions for x and t
Equation 17-1 describes the displacement at all times for just the piece of string lo-
cated at Equation 17-2 describes the displacement of all the pieces of string
at . We can make an intelligent guess that the equation describing is some
combination of these two expressions given by

, (17-3)

where represents the initial phase when x = 0 m and t = 0 s for the special case we
considered. In general we can describe the motion of our sinusoidal wave with an ar-
bitrary initial phase by modifying Eq. 17-3 to get

(sinusoidal wave motion, arbitrary initial phase), (17-4)

where is the initial phase (or phase constant) when both and .
The 	 sign refers to the direction of motion of the wave as we shall see in Section 17-5.
In cases where the initial phase is not important, we can simplify Eq. 17-3 by choosing
an initial time and origin of the x axis that lies along the line of motion of the wave so
that .

Amplitude and Phase 
The argument of the sine function is called the time- and
space-dependent phase of the wave where k and � are constants that we can deter-
mine for a particular wave. Although the phase is a function of both time and
position, it is neither a time nor a position. Rather, the phase must be an angle
because we can only take the sine of angles.

As the wave sweeps through a string segment at a particular position x, the phase
changes linearly with time t. This means that the sine also changes, oscillating between
�1 and �1. Its extreme positive value (�1) corresponds to a peak of the wave mov-
ing through the segment; then, the value of y at position x is Y. Its extreme negative
value (�1) corresponds to a valley of the wave moving through the segment; then, the
value of y at position x is �Y. Thus, the sine function and the time-dependent phase of
a wave correspond to the oscillation of a string segment, and the amplitude of the
wave determines the extremes of the segment’s displacement.

Wavelength and Wave Number
In order to come up with a more useful mathematical expression for the wave, we
must more carefully investigate the nature of the phase of the wave. We know that the
sine function repeats itself every 2� radians. We also know that the wavelength of a
wave is the distance (parallel to the direction of the wave’s travel) between repeti-
tions of the shape of the wave (or wave form). A typical wavelength is marked in Fig.
17-6a, which is a snapshot of the wave at time If we take the simple case for
which the initial phase is zero, at that time Eq. 17-4,
becomes

(17-5)y(x,0) � Y sin(kx).

y(x,t) � Y sin[(kx 	 �t) � 
0)]
t � 0 s.

�


(x,t)

(x,t)


(x,t) � (kx 	 �t) � 
0


0 � 0 rad

t � 0sx � 0m
0

y(x, t) � Ysin[(kx 	 �t) � 
0)]

�/2

y(x, t) � Y sin[(kx 	 �t) � �/2)]

y(x,t)t � 0s
x � 0 m.

�/2
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By definition, the displacement y is the same at both ends of one wavelength—that
is, y is the same at and at . (Again, x does not represent a displace-
ment here but just the horizontal position of a string element. By the equation above,

(17-6)

A sine function begins to repeat itself when its angle (or argument) is increased by
, so in the equation above, we must have , or 

(wave number). (17-7)

We call the wave number. The wave number is inversely proportional to the wave-
length. Its SI unit is the radian per meter, or the inverse meter. (Note that the symbol

here does not represent a spring constant as previously.)

Period, Angular Frequency, and Frequency
In contrast to the graphs in Fig. 17-6, which represent pictures of the string at a par-
ticular instant, we will now focus on a particular bit of string and consider how it
moves as a function of time. As we noted earlier, if you were to peek at the string
through a slit, you would see that the single segment of the string at that position
moves up and down in simple harmonic motion. Figure 17-10 shows a graph of the
displacement y of a bit of string versus time t at a certain position along the string,
taken to be . This motion is described by Setting

and arbitrarily choosing a zero phase constant and a negative time-dependent
term, we get

. (17-8)

Here we have made use of the fact that . Figure 17-10 is a graph of
this equation. Be careful though: This figure does not show the shape of the wave. It
shows a graph of the time-dependent variation in the displacement of a small bit of
the string.

Since we have defined the period of oscillation T of a wave to be the time any
string segment takes to move through one full oscillation, we can apply this equation
to both ends of this time interval. Equating the results yields

(17-9)

which can be true only if . In other words,

(angular frequency). (17-10)

We call � the angular frequency of the wave; its SI unit is the radian per second.
Recall from Chapter 16 that the frequency f of an oscillation is defined as 1�T.

Hence, its relationship to angular frequency is

(frequency). (17-11)f �
1
T

�
�

2�

� �
2�

T

�T � 2�

Y sin �t1 � Y sin(�t1 � �T)

Y sin �t1 � Y sin �(t1 � T)

sin(��) � �sin�

y(0,t) � Y sin(��t) � �Y sin(�t)

x � 0
y(x,t) � Y sin(kx 	 �t � 
0).x � 0

k

k

k �
2�

�

k� � 2�2� rad

� Y sin(kx1 � k�).

Ysin kx1 � Y sin k(x1 � �)

x � x 1 � �x � x 1

t

y

t1 t2Y

T

0
0

FIGURE 17-10 ■ A graph with unspecified
units of the displacement of the string seg-
ment at as a function of time, as the
sinusoidal wave of Fig. 17-6 passes through
it. The amplitude Y is indicated. A typical
period T, measured from an arbitrary time

, is also indicated.t1

x � 0
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Like the frequency of simple harmonic mo-
tion in Chapter 16, this frequency f is a num-
ber of oscillations per unit time—here, the
number made by a string segment as the wave
moves through it. As in Chapter 16, f is usually
measured in hertz or its multiples, such as
kilohertz.

To summarize our discussion of Eq. 17-4
given by the
names of the quantities are displayed in Fig.
17-11 for your reference.

READI NG EXERC IS E  17-2: The figure is a com-
posite of three snapshots, each of a wave traveling along a
particular string. The time-dependent phases for the waves
are given by (a) , (b)

, and (c) .
Which phase corresponds to each snapshot?

■

(8 rad/m)x � (16 rad/s)t(4 rad/m)x � (8 rad/s)t
(2 rad/m)x � (4 rad/s)t

y(x,t) � Y sin[(kx 	 �t) � 
0],

TOUCHSTONE EXAMPLE 17-2: Traveling Wave Equations

A traveling sinusoidal wave train can be described in terms of a
wave number k and an angular frequency � using Eq. 17-4. If the
wave train is moving to the right and has an initial phase of

then we can write our wave equation as

Use the definition of various terms along with Eqs. 17-7, 17-10, and
17-11 to:

(a) Explain what T and � mean physically.

S O L U T I O N ■ The symbols � and T stand for the wavelength
and the period of the wave, respectively.

The wavelength, �, is the distance one has to move along the string
at a fixed instant in time (for instance, when looking at a snapshot
of the wave) in order to pass by a full oscillation of the wave.

The period, T, is the time one has to wait at a particular point in
space (along an axis that is lined up with the undisturbed string) for
a small piece of the string to go through one complete oscillation.

(b) Show that displacement of the string from its undisturbed con-
dition given by can also be described by the equation

S O L U T I O N ■ Th e  Ke y  I d e a here is that the most impor-
tant symbols in the sinusoidal wave equation are x and t. They

represent the variables. All the other symbols represent con-
stants that describe a particular wave. As a result, every sinu-
soidal wave with a zero initial phase will look like sin[(mess)x 	
(another mess)t]. By identifying how the “mess” in each situa-
tion is related to the constants in another situation, the transfor-
mation of Eq. 17-4 into different forms is straightforward. Also
we only need to show that the argument given by terms inside
the square brackets are the same as the argument [kx � �t]. For
the situation at hand we can use the relationships in Eqs. 17-7,
17-10, and 17-11 ( , , and ) to
verify that

(Answer)

(c) Show that displacement of the string from its undisturbed condi-
tion given by can also be described by the equation

S O L U T I O N ■ Using the same approach as we used in part (b),
we see that

but we showed in part (a) that

(Answer)2�� x
�

� f t� � kx � �t.

2� � x
�

�
t
T � � 2�� x

�
� f t�,

y(x,t) � Y sin�2�� x
�

�
t
T ��.

y(x, t)

2�� x
�

� f t� �
2�

�
x � 2�f t � kx �

2�

T
t � kx � �t.

f � 1/T � �/2�� � 2�/Tk � 2�/�

y(x,t) � Y sin�2�� x
�

� f t��.

y(x,t)

y(x,t) � Y sin(kx � �t).


0 � 0 rad

x

y
1 2 3

Displacement

Wave number
Position

Initial phase—the
phase constant used
to determine
displacement at
t � 0 and x � 0

Time
Angular

frequency

Amplitude Oscillating
term

y(x,t ) � Y sin[ (kx	vt)� 
(0,0) ]

Time and space-dependent phase

FIGURE 17-11 ■ The names of
the quantities in Eq. 17-4, for a
transverse sinusoidal wave.



17-5 Wave Velocity

Figure 17-12 shows two snapshots of a sinusoidal wave taken a small time interval 
apart. The wave is traveling in the positive x direction (to the right in Fig. 17-12b), and
the entire wave pattern is moving a distance in that direction during the interval

The ratio (or, in the differential limit, ) is the wave velocity component
along the x axis, which we denote as . How can we find the wave velocity?

As the wave in Fig. 17-12 moves, each point of the moving wave form, such as
point A marked on a peak, retains its displacement y. (Points on the string do not re-
tain their displacement, but points on the wave form do.) That is, time passes and the
location of point A changes (so x and t are both changing), but the value of y(x,t) as-
sociated with point A does not change; it remains the maximum value. If point A re-
tains its displacement as it moves, the phase in must remain a
constant. So,

(17-12)

Note that although this argument is constant, in this case, both x and t are increasing.
[The time t always increases and x increases because the wave is moving in the (right-
ward) positive direction]. In order for the phase to remain constant with both
t and x increasing, the negative sign must be chosen. In other words,

The equation for a sinusoidal wave traveling right is and the equa-
tion for a sinusoidal wave moving left is .

By assuming that the wave moves at a constant velocity , we can express its
velocity in terms of how far an imaginary point on the wave form has moved in a short
time interval. Since the wave form only moves parallel to the x axis, we can write 

(definition of wave velocity),

or in component form .

If we take the time interval under consideration to be the period of the wave T,
then we know that the wave travels one wavelength . So the magnitude of the wave
velocity, or wave speed, is 

(speed related to wave length and period). (17-13)

Are all traveling waves sinusoidal? Not necessarily. Consider a wave of arbitrary
shape, given by 

(17-14)

where h represents any function, the sine or cosine function being one possibility.
Since the variables x and t enter in the combination , it is possible for waves to
have other shapes associated with them. For example, a wave pulse traveling from left
to right could be represented by

(a possible traveling wave pulse).y(x,t) �
Y

(kx � �t)2 � 1

kx 	 �t

y(x,t) � h(kx 	 �t),

� vwave
x � � vwave �

�

T
� �f �

�

k

�

vwave
x �

�x
�t

v: wave �
�x:

�t

v:wave

y(x,t) � Y sin(kx � �t)
y(x,t) � Y sin(kx � �t)

kx 	 �t

kx 	 �t �  a constant.

y(x,t) � Y sin(kx 	 �t)

vwave
x

dx/dt�x/�t�t.
�x

�t
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y Δx

A

Wave at t = 0
Wave at t = Δt

v wave

x1x2

t = t1

t = t2

FIGURE 17-12 ■ One end of a string that
is under tension is moved up and down
continuously in a sinusoidal fashion as
shown in Fig. 17-3b. Two snapshots of the
sinusoidal wave that results are shown, at
time and then at time t2. As the wave
moves to the right with an x-component of
velocity , the entire sine curve shifts
by during . The string segment at x1

moves down during , while the
piece of string at x2 moves up as the local
wave crest moves from left to right.

�t � t2 � t1

�t�x
vwave

x

t � t1
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Particle Velocity and Acceleration in Mechanical Waves
In discussing the velocity of a wave as we did above, it is important to remember
that the magnitude of this velocity is the speed at which the wave disturbance
moves, not the speed of the bits or pieces of string through which the wave travels.
To repeat the quote of Leonardo da Vinci, consider “ . . . waves made in a field of
grain by the wind, where we see the waves running across the field while the grain
remains in place.”

We have already begun to develop an understanding of the velocity of the wave
itself. We now consider the velocity of the particles that are displaced as a transverse
wave moves through. A piece of string can only move in the y direction as a distur-
bance passes by. Thus, at a given time t we can denote the velocity of the piece of
string that is located at x in terms of its y-component . Since only the
string pieces can move in the y direction, we often shorten this y-component notation
to simplify To find the velocity component as a sinusoidal disturbance
passes through, we simply need to differentiate the expression for the displacement of
the string segment, with respect to time while holding
x constant. This is similar to what we did to find the velocity of a mass oscillating at
the end of a spring in Section 16-4,

(17-15)

where the use of the symbol signifies that we are taking a partial derivative in
which the location along the string, x, is considered to be a constant. If we find a sec-
ond partial derivative using Eq. 17-15, we have the following expression for the accel-
eration of the piece of string at location x at a time t,

(17-16)ay �
�vy

�t
�

�2y(x,t)
�t2 �  �2Y sin[(kx 	 �t) � 
0].

�/�t

vy �
�y(x,t)

�t
� 	�Ycos[(kx 	 �t) � 
0],

y(x,t) � Y sin[(kx 	 �t) � 
0)]

vy(x,t)vy(x,t).

v string
y � vy(x,t)

TOUCHSTONE EXAMPLE 17-3: Wave on a String

A wave traveling along a string is described by

(17-17)

where y(x,t) represents the transverse displacement from equilib-
rium of a small piece of string with a horizontal location of x at
time t.

(a) What is the amplitude of this wave?

S O L U T I O N ■ The Ke y  I d e a is that Eq. 17-17 is of the same
form as Eq. 17-4, with 
0 � 0 rad,

(17-18)

so we have a sinusoidal wave. By comparing the two equations, we
see that the amplitude is

(Answer)

(b) What are the wavelength, period, and frequency of this wave?

S O L U T I O N ■ By comparing Eqs. 17-17 and 17-18, we see that
the wave number and angular frequency are

and

We then relate wavelength � to k via Eq. 17-7:

(Answer)

Next, we relate T to using Eq. 17-10:

(Answer)

and from Eq. 17-11 we have

(Answer)f �
1
T

�
1

2.31 s
� 0.433 Hz.

T �
2�

�
�

2� rad
2.72 rad/s

� 2.31 s,

�

� 0.0871 m � 8.71 cm.

� �
2�

k
�

2� rad
72.1 rad/m

� � 2.72 rad/s.k � 72.1 rad/m

Y � 0.00327 m � 3.27 mm.

y � Ysin(kx � �t � 
0),

y(x,t) � (0.00327 m) sin[(72.1 rad/m)x � (2.72 rad/s)t],
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(c) What is the velocity with which the wave moves along the string?

S O L U T I O N ■ The speed of the wave is given by Eq. 17-13:

(Answer)

Because the phase in Eq. 17-17 contains the variable x, the wave is
moving along the x axis. According to Eq. 17-4, the minus sign in
front of the term indicates that the wave is moving in the positive
x direction. (Note that the (b) and (c) answers are independent of
the wave amplitude.)

(d) What is the displacement y of the small piece of string located
at x � 22.5 cm when t � 18.9 s?

S O L U T I O N ■ The Ke y  I d e a here is that Eq. 17-17 gives the
displacement as a function of position x and time t. Substituting the
given values into the equation yields

(Answer)

Thus, the transverse displacement from the string’s equilibrium
position is positive.

� 0.00192 m � 1.92 mm.

� (0.00327 m) sin[�35.1855 rad] � (0.00327 m)(0.588)

� (18.9 s)]

y � (0.00327 m) sin[(72.1 rad/m) � (0.225 m) � (2.72 rad/s)

�t

� 3.77 cm/s.

vwave �
�

k
�

2.72 rad/s
72.1 rad/m

� 0.0377 m/s

TOUCHSTONE EXAMPLE 17-4: Transverse String Motion

In Touchstone Example 17-3d, we showed that at t � 18.9 s the
transverse displacement component y of the piece of string at x �
0.255 m due to the wave of Eq. 17-17 is 1.92 mm.

(a) What is vy, the transverse velocity component of the same ele-
ment of the string, at that time? (This speed, which is associated
with the transverse oscillation of an element of the string, is in the y
direction. Do not confuse it with , the constant velocity at
which the wave form travels along the x axis.)

S O L U T I O N ■ Th e  Ke y  I d e a here is that as the wave trav-
els, the displacement of each piece of string is transverse, where
x represents the horizontal position of a piece of string. Another
Ke y  I d e a is that the horizontal position, x, of a piece of string
never changes. In general, the displacement of a piece of string is
given by

(17-19)

For a piece of string at a certain location (x, y) we find the rate of
change of y by taking the partial derivative of Eq. 17-19 with re-
spect to t while treating x as a constant. Here we have 
0 � 0 rad, so
according to Eq. 17-15,

(17-20)

where the amplitude Y is always taken as positive. Next, substitut-
ing numerical values from Touchstone Example 17-3 we obtain

(Answer)

Thus, at t = 18.9 s, the piece of string at the horizontal location x =
22.5 cm is moving in the y direction, with a velocity of 7.20 mm/s.

(b) What is the transverse acceleration component ay of the same
element at that time?

S O L U T I O N ■ The Ke y  I d e a here is that the transverse accel-
eration component ay is the rate at which the transverse velocity of
a given piece of string is changing. From Eq. 17-20, again treating x
as constant but allowing t to vary, we find

Comparison with Eq. 17-19 shows that we can write this as

We see that the transverse acceleration component of a piece of
string that is oscillating is proportional to its transverse component
of displacement but opposite in sign. This is completely consistent
with the action of the string piece—namely, that it is moving trans-
versely in simple harmonic motion. Substituting numerical values
yields

(Answer)

Thus, at t � 18.9 s, the piece of string at x � 22.5 cm is displaced
from its equilibrium position by 1.92 mm in the positive direction
and has an acceleration of magnitude 14.2 mm/s2 in the negative y
direction.

 � �14.2 mm/s2.

ay � �(2.72 rad/s)2(1.92 mm) 

ay � ��2y.

ay �
�vy

�t
� ��2Y sin(kx � �t).

� 7.20 mm/s.

vy � (�2.72 rad/s)(3.27 mm) cos(�35.1855 rad)

vy �
�y
�t

� ��Y cos(kx � �t),

y(x,t) � Y sin(kx � �t � 
0).

v: wave
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17-6 Wave Speed on a Stretched String

If we distort a string that is under tension, we observe that this distortion (or wave)
will travel rapidly along the string (Fig. 17-1). This is true whether the distortion is a
single pulse (Figs. 17-2 or 17-3a) or continuous sinusoidal pattern (Fig. 17-3b). In Sec-
tion 17-3 we asserted that a net force on a piece of string could result from forces ex-
erted on its ends by the pieces of string just adjacent to it. If these end forces act in
different directions on a string segment, the string piece can move in a vertical direc-
tion. As it moves vertically, it can exert a force on adjacent string pieces. This could
cause a set of disturbances to propagate along the string as a wave.

In general, the speed of a wave is determined by the properties of the medium
through which it travels. For instance, how do the properties of the stretched string af-
fect the speed of a traveling wave? Intuitively we expect that the wave will travel
faster when the string is stretched to a higher tension and that the wave will travel
more slowly on a thicker string where each segment of string has a greater mass. In
this section we use the impulse-momentum theorem—a form of Newton’s Second
Law—to derive an equation that relates the speed of the traveling wave to the ten-
sion of the string and its massiveness. In our derivation we imagine that the string
consists of many tiny segments or pieces that are connected together.

Consider a horizontal stretched string as shown in Fig. 17-13. Suppose the string is
under tension—a nonvector quantity we denote as *. What happens if the tiny
segment at one end of the string is jerked abruptly upward and then returned to its equi-
librium position? The pulse that results propagates along the pieces of string as a wave
like the one shown in Fig. 17-13. Although the amplitude in Fig. 17-13 is exaggerated for
clarity, we assume the wave amplitude is small enough that: (1) the tension in the string
does not change significantly except at the boundary between a displaced and undis-
placed segment of string (as shown in Fig. 17-13a) and (2) the angle � between the hori-
zontal and any segment (or small piece) of string that is displaced is so small that

. We also assume that the pulse propagates along the string at a con-
stant wave velocity . As is often the case in physics, we can test the validity
of our assumptions by seeing whether the expression we derive for the wave speed is
consistent with observation.

Let us consider how a segment of string moves as a wave pulse travels by it in a
short time interval. If we define the mass per unit length of the string as its linear mass
density, �, then the mass of the segment of string that the wave pulse affects in a time
interval is given by

(17-21)

where is the speed of propagation of the wave pulse. We start by examining the
tension forces that act at each end of our small string segment. For example, in Fig. 17-
13a the segment at the crest of the wave experiences a net downward force, but the
segment at the leading edge of the wave pulse experiences a net upward force. Thus a
short time later, the front segment has moved up while the segment at the crest has
moved down. If we take all the string segments into account, we see that the entire
pulse shape “moves” to the right even though each of the string segments has only
moved vertically—either up or down. This is shown in Fig. 17-13b.

What happens when the leading edge of the pulse encounters a segment of
the string? A vertical net force due to the unbalanced tension forces atF

: net � F net
y  ĵ

�t

v wave

m � �v wave�t,

�t

v:wave � vwave
x î

sin � 	 tan � 	 �

F tension

*To avoid confusing wave period, denoted as T, with tension, we use the notation F tension for tension here
and in the next chapter.

String
segment
at leading edge

String segment
at crest

(a)

t1

FL
string

FL
string FR

string

F net

F net

FR
string

θ

FIGURE 17-13 ■ Depictions of a traveling
wave pulse.The amplitude is exaggerated
for clarity. (a) A single pulse travels to the
right along a string under constant tension.
The piece of string at the wave crest experi-
ences a net force downward while the string
segment at the leading edge experiences a
net upward force. (b) Two snapshots of the
wave at times and show the wave form
traveling with velocity , so it shifts
right a distance during a time interval

.As a result of the net forces on
the piece of strings, the string segment at the
wave crest moves down during while the
piece of string at the leading edge moves up.

�t

�t � t2 � t1

�x
v: wave

t2t1

Segment
formerly
at leading
edge

Segment
formerly
at crest

(b)

t1 t2 θ
x

y

Δx

Δy

v wave = vx
wave î

v string = vy
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the string segment’s ends shown in Fig. 17-13a causes the segment to accelerate up-
ward. In fact, the piece of string just to the left of the leading edge is stretched so its
tension is greater than in the undisturbed string piece just to the right. As a result, the
string piece at the leading edge undergoes a change in vertical position of and a
momentum change, during the time . We can use the impulse-momentum theo-
rem to describe the motion of the piece of string in terms of the vertical components
of net force and momentum as

(17-22)

The segment of string has a mass m, and we assume the segment has no vertical
velocity at time . If we denote the vertical velocity change imparted to the segment
of string in the short time interval as , then

.

But we can see from Fig. 17-13a that the magnitude of the net force on the string
segment is approximately , where F tension is a scalar quantity denoting
the tension in the string. The impulse delivered to the string segment by the travel-
ing wave can be related to the newly acquired vertical velocity of the string seg-
ment by

From Fig. 17-13b we also see that the ratio of the magnitude of the vertical velocity of
the leading edge mass segment and the magnitude of the horizontal wave velocity of
the temporary disturbance is given by

(17-23)

Combining the last two expressions we derived gives us

or (17-24)

At this point we need to express the mass of the segment in terms of the length of the
string segment and the linear density of the string. Thus the mass of the segment in
the string can be determined as the density multiplied by the length of the segment so
that . However, during the time interval the waveform has moved a dis-
tance . We can now rewrite Eq. 17-24 as

but for small-amplitude waves the angle of string displacement relative to the hori-
zontal, is approximately 1, so

.

Therefore, (speed). (17-25)vwave � √ F tension

�

(vwave)2 �
F tension

�

cos �

F tension � �(v wave)2 1
cos �

,

�x � � v: wave ��t
�tm � ��x

F tension �
m
�t �

v wave

cos � �.(F tension sin �)�t � mvwavetan �

tan � �
�y
�x

�
� v: string �
� v: wave �

�
v string

v wave .

(F tension sin �)�t 	 m� v string
y � � m� v: string �.

F tension sin �

F net
y �t � m�v string

y � m(v string
y � 0) � mv string

y

�v: string
y�t

t1

F net
y �t � �py.

�t�p:y

�y
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Equation 17-25 gives the speed of the pulse in Fig. 17-13 and the speed of any other
wave pulse or continuous wave on the same string under the same tension. If we take
the square root of the ratio of F tension (dimension ) and (dimension )
we get a dimension of velocity. Thus Eq. 17-25 is dimensionally correct.

Equation 17-25 tells us that 

The speed of a small-amplitude pulse traveling along a stretched string depends only on
the tension and linear density of the string and not on the amplitude or frequency of the
disturbance.

The amplitude independence is much like that for systems oscillating with simple har-
monic motion. It indicates a proportionality between the net forces exerted on a piece
of string and its displacement from equilibrium.

If the simplifying assumptions we used in the derivation of Eq. 17-25 are reason-
able, then we expect that measurements of wave speed, tension, and linear mass den-
sity can be used to verify Eq. 17-25. Indeed, this theoretical prediction has been exper-
imentally confirmed many times. In fact, it turns out that Eq. 17-25 is just as valid for
continuous waves as it is for a single wave pulse, and so the speed of a continuous
wave is not a function of frequency. The frequency of the wave is fixed entirely by
whatever generates the wave (for example, the person jerking the string up and down
in Fig. 17-3b). However, once the frequency of a continuous wave is set, the wave
speed determines the relationship between frequency and wavelength since

(Eq. 17-13).

READI NG EXERC IS E  17-3: In the derivation of the wave speed in a string shown
above, there are references to two different velocities; one is referred to as and one is re-
ferred to as . As completely as possible, describe the differences between these two veloci-
ties. Explain which velocity is used in deriving the expression for the mass, m, of a string piece
being displaced and why. Explain which velocity is used to find the y-component of momentum
change, , of a piece of string and why. ■

READI NG EXERC IS E  17-4: You send a continuous traveling wave along a string by
moving one end up and down sinusoidally. If you increase the frequency of the oscillations, do
(a) the speed of the wave and (b) the wavelength of the wave increase, decrease, or remain the
same? If, instead, you increase the tension in the string, do (c) the speed of the wave and (d) the
wavelength of the wave increase, decrease, or remain the same? ■

17-7 Energy and Power Transported by a 
Traveling Wave in a String

When we start up a wave or pulse in a stretched string, we provide the energy for the
motion of the string. We impart a momentum to a segment of the string. As the wave
or pulse moves away, the momentum is transferred from one segment of the string to
the next. In addition, the wave transports energy as both kinetic energy and elastic
potential energy. Let us consider each of these forms of energy in turn.

Kinetic Energy
A segment of the string of mass dm, oscillating transversely in simple harmonic mo-
tion as the wave passes through it, has kinetic energy associated with its transverse ve-
locity vy. When the segment is rushing through its position (segment b in
Fig. 17-14), its transverse velocity—and thus its kinetic energy—is a maximum. When

y � 0

�py

v: wave
x

v: string
y

� � v wave/f

ML�1�MLT�2

y

Y

0

dx

b

dx

a
λ

x

v

FIGURE 17-14 ■ A snapshot of a traveling
wave on a string at time . String seg-
ment a is at displacement , and
string segment b is at displacement .
The kinetic energy of the string segment at
each position depends on the transverse
velocity of the segment. The potential en-
ergy depends on the amount by which the
string is displaced from equilibrium as the
wave passes through it.

y � 0
y � Y

t � 0
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the segment is at its extreme position (as is segment a), its transverse veloc-
ity—and thus its kinetic energy—is zero.

Elastic Potential Energy
To send a sinusoidal wave along a previously straight string, the wave must necessarily
stretch the string. As a string segment of length dx oscillates transversely, its length
must increase and decrease in a periodic way if the string segment is to fit the sinu-
soidal wave form. Elastic potential energy is associated with these length changes, just
as for a spring.

When the string segment is at its position (segment a in Fig. 17-14), its
length has its normal undisturbed value dx, so its elastic potential energy is zero.
However, when the segment is rushing through its position, it is stretched to its
maximum extent, and its elastic potential energy then is a maximum.

Energy Transport
The oscillating string segment thus has both its maximum kinetic energy and its maxi-
mum elastic potential energy at . In the snapshot of Fig. 17-14, the regions of the
string at maximum displacement have no energy, and the regions at zero displacement
have maximum energy. As the wave travels along the string, forces due to the tension
in the string continuously do work to transfer energy from regions with energy to re-
gions with no energy.

Suppose we set up a wave on a string stretched along a horizontal x axis so that
Eq. 17-4 describes the string’s displacement. We might send a wave along the string by
oscillating one end of the string, as in Fig. 17-3b. In doing so, we provide energy for
the motion and stretching of the string—as the string sections oscillate perpendicu-
larly to the x axis, they have kinetic energy and elastic potential energy. As the wave
moves into sections that were previously at rest, energy is transferred into those new
sections. Thus, we say that the wave transports the energy along the string.

The Rate of Energy Transmission
The kinetic energy dK associated with a string segment of mass dm is given by 

(17-26)

where is the transverse component of velocity of the oscillating string segment.
If we assume the initial phase is zero, then the y-component of the string element
velocity is given by Eq. 17-15 as

Using this relation and putting , we rewrite Eq. 17-26 as

(17-27)

Dividing both sides of Eq. 17-27 by dt, we get the rate at which the kinetic energy
of a string segment changes and thus the rate at which kinetic energy is carried along
by the wave. The result is given by 

(17-28)
dK
dt

� 1
2 �

dx
dt

�2Y 2cos2(kx � �t) � 1
2�vwave�2Y 2cos2(kx � �t),

dK � 1
2(� dx)[(��Y )cos2(kx � �t)]2.

dm � � dx

v string
y � ��Ycos(kx � �t).


0

v string
y

dK � 1
2 dm (v string

y )2,

y � 0

y � 0

y � Y

y � Y
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where the ratio , which is positive for a wave moving from left to right, has been
replaced by the wave speed . The average rate at which kinetic energy is trans-
ported is 

(17-29)

Here we have taken the average over an integer number of wavelengths and have
used the fact that the average value of the square of a cosine function over an integer
number of periods is .

Elastic potential energy is also carried along with the wave, and at the same aver-
age rate given by Eq. 17-29. Although we shall not examine the proof, you should re-
call that, in an oscillating system such as a pendulum or a spring–block system, the
average kinetic energy and the average potential energy are indeed equal.

The average power, which is the average rate at which energy of both kinds is
transmitted by the wave, is then 

(17-30)

or, from Eq. 17-29,

(average power). (17-31)

The factors and in this equation depend on the material and tension of the
string. The factors and depend on the process that generates the wave.

The dependence of the average power of a wave on the square of its amplitude and also on
the square of its angular frequency is a general result, true for sinusoidal waves of all types.

17-8 The Principle of Superposition for Waves

It often happens that two or more waves pass simultaneously through the same re-
gion. When we listen to a concert, for example, sound waves from many instruments
fall simultaneously on our eardrums. The electrons in the antennas of our radio and
television receivers are set in motion by the net effect of many electromagnetic waves
from many different broadcasting centers. The water of a lake or harbor may be
churned up by waves in the wakes of many boats.

In many real-world cases, we find the interaction between two overlapping waves
to be quite complex. However, we also observe that when wave disturbances move
along the same straight line and their amplitudes are small, like those shown in Fig.
17-15, their interaction is well behaved. We observe that when well behaved waves in-
teract, they produce a resultant wave with an amplitude equal to the sum of the am-
plitudes of the two original waves. This effect is seen in Fig. 17-15, where a sequence
of snapshots of two pulses traveling in opposite directions on the same stretched
string is shown.

When two well behaved linear waves overlap, the displacement of each point on the string
is the sum of the two displacements it would have had from each wave independently.

Y�
vwave�


P� � 1
2�vwave�2Y 2


P� � 2

dK
dt

�,

1
2

� 1
4�vwave�2Y 2.

dK
dt

� 
12�vwave�2Y 2[cos2(kx � �t)]�

vwave
dx/dt

FIGURE 17-15 ■ An experimental demon-
stration of wave pulse superposition. In
this sequence of movie frames two pulses
are set in motion in opposite directions
along a taut spring. The pulses have almost
the same shape except that the one start-
ing on the right has positive displacements
while the other starting on the left has neg-
ative displacements. In the fourth frame
the two pulses almost cancel each other.



Moreover, we observe that each pulse moves through the other, as if the other were
not present:

When well behaved linear waves overlap, one wave does not in any way alter the travel of
the other.

This superposition is one of the many ways that waves and particles differ. When par-
ticles overlap by colliding they alter each other’s motions.

In order to make these two important observations quantitative, let and
be the displacements associated with two waves traveling simultaneously along

the same stretched string. Since the result of the overlapping waves is a resultant wave
that is the sum of the two, the displacement of the string when the waves overlap is
given by the algebraic sum 

(17-32)

This is an example of the principle of superposition, which says that when several effects
occur simultaneously, their net effect is the sum of the individual effects.

We can look in more detail at how the sum of two waves passing through each
other can look rather odd while the waves overlap, but after they pass each other they
look more normal again. This situation is shown in the visualization of the superposi-
tion of two waves having different amplitudes in Figs. 17-16 and 17-17.

y�(x,t) � y1(x,t) � y2(x,t).

y2(x,t)
y1(x,t)
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t1

t2

t3

t4

t5

FIGURE 17-16 ■ A visualization of two pulses on a taut string passing through
each other.A short broad pulse moves from left to right while a sharp tall pulse
moves from right to left.When they overlap at times t2, t3, and t4, the wave form is
the sum or superposition of the displacement of each pulse at each location along
the string.A close-up of this type of superposition is shown in Fig. 17-17.

t1 t2

t3 t4

FIGURE 17-17 ■ Closeup view of a short, broad pulse and a tall sharp
pulse passing through each other. The vertical scale relative to the
horizontal scale has been enlarged to show more details. Note that the
resultant wave is the sum of the displacements contributed by each of
the two pulses at each location along the string.
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17-9 Interference of Waves

Suppose we send two sinusoidal waves of the same wavelength and amplitude in the
same direction along a stretched string. The superposition principle applies. What re-
sultant wave does it predict for the string?

The resultant wave depends on the extent to which the waves are in phase (in
step) with respect to each other—that is, how much one wave form is shifted from the
other wave form. If the waves are exactly in phase (so that the peaks and valleys of one
are exactly aligned with those of the other), they combine to double the displacement

TOUCHSTONE EXAMPLE 17-5: Overlapping Pulses

At the time t � 0 s, the string has the shape shown in Fig. 17-18. The
pulse on the left is moving toward the right and the pulse on the
right is moving toward the left. Assume that each box in Fig. 17-18
is 1 cm square.

(a) The leading edges of the pulses will just touch in a time of 0.05 s.
What is the speed with which each pulse is traveling? 

S O L U T I O N ■ The Ke y  I d e a s  here are that (1) since these
waves travel on the same string they must have the same speed so
their leading edges will meet in the middle, and (2) if the wave pulses
don’t change shape, the motion of any location on the wave shape
tells us about the velocity and speed of the wave as a whole. At first
the leading edges of the waves are 4.0 cm apart, so each wave has
time to travel 2.0 cm in the 0.05 s.This gives us a wave speed of

(speed of each wave).
(Answer)

(b) Two points on the string are marked with red dots and with the
letters A and B. At the instant shown, what are the velocities of the
dots? Give magnitude and direction (up, down, left, right, or some
combination of them).

S O L U T I O N ■ There are three Ke y  I d e a s here. (1) The piece
of string located at a given point can only move up or down but
NOT along the string. (2) If the displacement of the string is less
just behind a point on a wave (relative to its direction of motion),

then the velocity of the piece of string is downward in the negative
y direction. The opposite is true if the displacement behind the
string is greater, then the velocity is upward. (3) The change of a
point on a string as a wave disturbance passes depends on both the
wave velocity component and the current slope of
the wave shape at the point of interest along the string.

At point A: Wave slope is so that . But the x-
component of the wave speed is given by , so

(downward motion). (Answer)

At point B: Wave slope is so that .
Therefore,

(upward motion). (Answer)

(c) In Fig. 17-19 are dashed lines indicating where the pulses would
be at a time t � 0.075 s. Draw a heavy line to show what the shape
of the string would look like at this instant. Explain why you think
it would look like your sketch.

S O L U T I O N ■ The Ke y  I d e a here is that we can use the prin-
ciple of superposition to sum the contribution of each wave. Right
in the middle where the waves overlap, they add up to a constant
because the two overlapping slopes are equal in magnitude and op-
posite in sign (Fig. 17-20).

vB y �
�y
�t

�
�( 2

3 )�x
�t

� 27 cm

�y � � ( 2
3 )�x�y/�x � �2

3

vA y �
�y
�t

� �
2�x
�t

� �80 cm/s

vwave
x � �x/�t � 40 cm/s

�y � �2�x�y/�x � �2

�y/�x
v wave

x � �x/�t

�y

vwave � � v:wave � � � 2.0 cm
0.05 s � � 40 cm/s

A Bx

y

FIGURE 17-18 ■ Two pulses move toward each
other on a string.

x

y

FIGURE 17-19 ■ Overlapping pulses at time
t � 0.075 s.

x

y

FIGURE 17-20 ■ Answer to the question posed in
part (c).
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of either wave acting alone. If they are exactly out of phase (the peaks of one are ex-
actly aligned with the valleys of the other), they combine to cancel everywhere, and the
string remains straight. We call this phenomenon of combining waves interference, and
the waves are said to interfere. (These terms refer only to the displacements of the
waves; the travel of the waves is unaffected.)

Let one wave traveling along a stretched string be given by 

(17-33)

and another, shifted from the first, by an initial phase of so that 

(17-34)

The waves in question have the same angular frequency (that is, the same frequency
f ), the same wave number k (that is, the same wavelength �), and the same amplitude
Y. They both travel in the positive direction of the x axis, with the same speed, given
by (Eq. 17-25). They differ only by the nonzero initial phase of
wave 2, which we call the phase difference. These waves are said to be out of phase by

or to have a phase difference of , or one wave is said to be
phase-shifted from the other by .

From the principle of superposition, the resultant wave is the algebraic sum of the
two interfering waves and has displacement 

(17-35)

In Appendix E we see that we can write the sum of the sines of two angles and � as

(17-36)

Applying this relation to Eq. 17-35 leads to 

(17-37)

where 
0 represents the phase difference �
 between the two waves. As Fig. 17-21
shows, the resultant wave is also a sinusoidal wave traveling in the direction of in-
creasing x. It is the only wave you would actually see on the string (you would not see
the two interfering waves of Eqs. 17-33 and 17-34).

If two sinusoidal waves of the same amplitude and wavelength travel in the same direction
along a stretched string, they interfere to produce a resultant sinusoidal wave traveling in
that direction.

The resultant wave differs from the interfering waves in two respects: (1) its initial
phase is , and (2) its amplitude is the quantity in the brackets in Eq. 17-37:

(amplitude). (17-38)

The resultant wave of Eq. 17-37, due to the interference of two sinusoidal transverse
waves, is also a sinusoidal transverse wave, with an amplitude and an oscillating term.

Let’s consider a couple of special and very important cases. If (or 0°), the
two interfering waves are exactly in phase, as in Fig. 17-22a.Then Eq. 17-37 reduces to 

(17-39)y�(x,t) � 2Y sin(kx � �t)       (
0 � 0 rad).


0 � 0 rad

Y� � 2Ycos1
2
0

Y�1
2
0

y�(x,t) � [2Ycos 1
2
0]sin(kx � �t � 1

2
0),

sin� � sin� � 2sin 1
2(� � �) cos 1

2(� � �).

�

 � Y sin(kx � �t) � Y sin(kx � �t � 
0).

y�(x,t) � y1(x,t) � y2(x,t)


0

�
 � (
0 )2 � (
0 )1 � 
0
0


0� vwave � � √F tension/�

�

y2(x,t) � Y sin(kx � �t � 
0).


0

y1(x,t) � Y sin(kx � �t),

y�(x,t) �

Time and
space-dependent

phase

Amplitude Oscillating
term

[2Y cos f0] sin (kx�vt�  f0)
1
2–

1
2–

FIGURE 17-21 ■ The resultant wave of Eq.
17-37, due to the interference of two sinu-
soidal transverse waves, is also a sinusoidal
wave, with an amplitude and an oscillating
term.
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This resultant wave is plotted in Fig. 17-
22d. Note from both that figure and

that the ampli-
tude of the resultant wave is twice the
amplitude of either interfering wave. That
is the greatest amplitude the resultant
wave can have, because the cosine term in

has its greatest value (unity) when .
Interference that produces the greatest
possible amplitude is called fully construc-
tive interference.

If (or 180°), the in-
terfering waves are exactly out of phase
as in Fig. 17-22b. Then cos becomes

, and the amplitude of the
resultant wave as given by Eq. 17-38 is
zero. We then have, for all values of x
and t,

(17-40)

The resultant wave is plotted in Fig. 17-22e. Although we sent two waves along the
string, we see no motion of the string. This type of interference is called fully destruc-
tive interference.

Because a sinusoidal wave repeats its shape every 2� rad, a phase difference
(or 360°) corresponds to a shift of one wave relative to the other

wave by a distance equivalent to one wavelength. Thus, phase differences can be
described in terms of wavelengths as well as angles. For example, in Fig. 17-22b
the waves may be said to be 0.50 wavelength out of phase. Table 17-1 shows
some other examples of phase differences and the interference they produce.
Note that when interference is neither fully constructive nor fully destructive, it
is called intermediate interference. The amplitude of the resultant wave is then
intermediate between 0 and 2Y. For example, from Table 17-1, if the interfering
waves have a phase difference of 120° , then the
resultant wave has an amplitude of Y, the same as the interfering waves (see
Figs. 17-22c and f ).

(�
 � 2
3� rad � 0.33 wavelength)

�
0 � 2� rad

y�(x,t) � 0  (
 � � rad).

cos �/2 � 0

1
2
0

�
 � 
0 � rad


0 � 0
y�(x,t) � [2Ycos 1

2
0]sin(kx � �t � 1
2
0)

y�(x,t) � 2Ysin(kx � �t)

x

y

 = 0 radΔ Δ Δ

y1(x, t)
and

y2(x, t)

φ

(a)

x

y

 =    rad

y1(x, t) y2(x, t)

φ π

(b)

x

y

 =       rad

y1(x, t) y2(x, t)

φ π

(c)

2__
3

x

y

y'(x, t)

(d)

x

y

y'(x, t)

(e)

x

y

y'(x, t)

( f )

TA B L E 17 - 1  
Phase Differences and Resulting Interference Typesa

Phase Difference, (��), in
Amplitude

of Resultant Type of
Degrees Radians Wavelengths Wave Interference

0 0 0 2Y Fully constructive

120 0.33 Y Intermediate

180 0.50 0 Fully destructive

240 0.67 Y Intermediate

360 1.00 2Y Fully constructive

865 15.1 2.40 0.60Y Intermediate

a The phase difference is between two otherwise identical waves, with amplitude Y, moving in the same 
direction.

2�

4
3�

�

2
3�

FIGURE 17-22 ■ Two sinusoidal waves
with the same k, �, and y, and

, travel along a string in the positive
x direction. Here the units for and t are
unspecified. They interfere to give a resul-
tant wave . The resultant wave is
what is actually seen on the string. The
phase difference �
 between the two in-
terfering waves is (a) 0 rad or 0°, (b)
or 180°, and (c) or 120°. The corre-
sponding resultant waves are shown in (d),
(e), and (f ).

2
3� rad

�  rad

y�(x,t)


0

y2(x,t)
y1(x,t)



17-10 Reflections at a Boundary and Standing Waves

In the preceding two sections, we discussed two sinusoidal waves of the same wave-
length and amplitude traveling in the same direction along a stretched string. What if
they travel in opposite directions? We can again find the resultant wave by applying
the superposition principle. Figure 17-23 suggests the situation graphically. It shows
the two combining waves, one traveling to the left in Fig. 17-23a, the other to the right
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TOUCHSTONE EXAMPLE 17-6: Two Sine Waves

Two identical sinusoidal waves, moving in the same direction along
a stretched string, interfere with each other. The amplitude Y of
each wave is 9.8 mm, and the phase difference between
them is 100°.

(a) What is the amplitude Y of the resultant wave due to the inter-
ference of these two waves, and what type of interference occurs?

S O LUT I O N ■ The Ke y  I d e a  here is that these are identical
sinusoidal waves traveling in the same direction along a string, so
they interfere to produce a sinusoidal traveling wave. Because they
are identical except for their initial phase, they have the same am-
plitude. Thus, the amplitude Y� of the resultant wave is given by 
Eq. 17-38:

(Answer)

Here we have assumed that wave 2 has an initial phase of 100° rela-
tive to wave 1. We can tell that the interference is intermediate in
two ways. The phase difference is between 0 and 180° and, corre-
spondingly, amplitude is between 0 and 2Y (= 19.6 mm).

(b) What phase difference, in radians and wavelengths, will give the
resultant wave an amplitude of 4.9 mm?

S O LUT I O N ■ The same Ke y  I d e a  applies here as in part (a),
but now we are given and seek . From Eq. 17-38,

We now have

which gives us (with a calculator in the radian mode)

(Answer)

There are two solutions because we can obtain the same resultant
wave by letting the first wave lead (travel ahead of) or lag (travel
behind) the second wave by 2.6 rad. In wavelengths, the phase dif-
ference is

(Answer)� 	0.42 wavelength.


0

2� rad/wavelength
�

	2.636 rad
2� rad/wavelength

� 	2.636 rad 	 	2.6 rad.


0 � 2  cos�1 4.9 mm
(2)(9.8 mm)

4.9 mm � (2)(9.8 mm)cos 1
2
0,

Y� � 2Y cos 1
2
0.


0Y�

Y�

� 12.6 mm.

Y� � 2Y� cos 1
2
0 � (2)(9.8 mm) cos(100�/2)

�
 � 
0

(a)

(b)

(c )

t = 0 t = T t  = T1
2 t = T3

4t = T1
4

x x x x x

FIGURE 17-23 ■ (a) Five snapshots of a wave traveling to the left, at the times t indicated be-
low part (c) (T is the period of oscillation). (b) Five snapshots of a wave identical to that in (a)
but traveling to the right, at the same times t. (c) Corresponding snapshots for the superposition
of the two waves on the same string. At , fully constructive interference occurs
because of the alignment of peaks with peaks and valleys with valleys. At and , fully
destructive interference occurs because of the alignment of peaks with valleys. Some points
(the nodes, marked with dots) never oscillate; some points (the antinodes) oscillate the most.

3
4Tt � 1

4T
t � 0, 1

2T, and T
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in Fig. 17-23b. Figure 17-23c shows their sum, obtained by applying the superposition
principle graphically.

The outstanding feature of the resultant wave is that there are places along the
string, called nodes, where the string never moves. Four such nodes are marked by
dots in Fig. 17-23c. Halfway between adjacent nodes are antinodes, where the ampli-
tude of the resultant wave is a maximum. Wave patterns such as that of Fig. 17-23c are
called standing waves because the wave patterns do not move left or right; the loca-
tions of the maxima and minima do not change.

If two sinusoidal waves of the same amplitude and wavelength travel in opposite directions
along a stretched string, their interference with each other produces a standing wave.

To analyze a standing wave, we represent the two combining waves with the
equations

(17-41)

and (17-42)

The principle of superposition gives, for the combined wave,

Applying the trigonometric relation of leads to 

(17-43)

which is displayed in Fig. 17-24. This equation does not describe a traveling wave be-
cause it is not of the form of Instead, it describes a standing wave.

The quantity in the brackets of can be viewed
as the amplitude of oscillation of the string segment that is located at position x. How-
ever, since an amplitude is always positive and can be negative, we take the ab-
solute value of the quantity to be the amplitude at x.

In a traveling sinusoidal wave, the amplitude of the wave is the same for all string
segments. That is not true for a standing wave, in which the amplitude varies with posi-
tion. In the standing wave of for example, the amplitude is
zero for values of kx that give . Those values are 

. (17-44)

Substituting in this equation and rearranging, we get 

(nodes), (17-45)

as the positions of zero amplitude—the nodes—for the standing wave of Eq. 17-43.
Note that adjacent nodes are separated by , half a wavelength.

The amplitude of the standing wave of has a maximum
value of 2Y, which occurs for values of kx that give . Those values are 

(17-46)
� (n � 1

2)�,     for n � 0, 1, 2, . . . .

kx � 1
2�, 3

2�, 5
2�, . . . 

� sin kx � � 1
y�(x,t) � [2Y sinkx]cos�t

�/2

x � n
�

2
,  for n � 0, 1, 2, . . .

k � 2�/�

kx � n�,  for n � 0, 1, 2, . . .

sin kx � 0
y�(x,t) � [2Y sinkx]cos�t,

2Y sinkx
sinkx

y�(x,t) � [2Y sin kx] cos �t2Y sinkx
y(x,t) � h(kx 	 �t).

y�(x,t) � [2Y sinkx] cos�t,

sin� � sin� � 2sin 1
2(� � �)cos 1

2(� � �)

y�(x, t) � y1(x, t) � y2(x, t) � Y sin(kx � �t) � Y sin(kx � �t).

y2(x,t) � Y sin(kx � �t).

y1(x,t) � Y sin(kx � �t)

y�(x,t) � [2Y sin kx] cos v t

Displacement

Amplitude
at position x

Oscillating
term

FIGURE 17-24 ■ The resultant wave of
Eq. 17-43 is a standing wave and is due to
the interference of two sinusoidal waves of
the same amplitude and wavelength that
travel in opposite directions with the same
initial phase.



Substituting in Eq. 17-43 and rearranging, we get 

for (antinodes), (17-47)

as the positions of maximum amplitude—the antinodes—of the standing wave of
Eq. 17-43. The antinodes are separated by and are located halfway between pairs
of nodes.

Reflections at a Boundary
We can set up a standing wave in a stretched string by allowing a traveling wave to be
reflected from the far end of the string so that it travels back through itself. The inci-
dent (original) wave and the reflected wave can then be described by Eqs. 17-41 and
17-42, respectively, and they can combine to form a pattern of standing waves.

In Fig. 17-25, we use a single pulse to show how such reflections take place. In Fig.
17-25a, the string is fixed at its left end. When the pulse arrives at that end, it exerts an
upward force on the support (the wall). By Newton’s Third Law, the support exerts an
opposite force of equal magnitude on the string. This force generates a pulse at the
support. This pulse travels back along the string in the direction opposite that of the
incident pulse causing transverse string displacements that are inverted. In a “hard”
reflection of this kind, there must be a node at the support because the string is fixed
there. The reflected and incident pulses must have opposite signs, so as to cancel each
other at that point.

In Fig. 17-25b, the left end of the string is fastened to a light ring that is free to
slide without friction along a rod. When the incident pulse arrives, the ring moves up
the rod. As the ring moves, it pulls on the string, stretching the string and producing a
reflected pulse with the same sign and amplitude as the incident pulse. This reflected
pulse is not inverted. Thus, in such a “soft” reflection, the incident and reflected pulses
reinforce each other, creating an antinode at the end of the string; the maximum dis-
placement of the ring is twice the amplitude of either of these pulses. The same types
of reflections occur for continuous sinusoidal waves.

READI NG EXERC IS E  17-5: Two waves with the same amplitude and wavelength in-
terfere in three different situations to produce resultant waves with the following equations:
(1)
(2)
(3)
In which situation are the two combining waves traveling (a) toward positive x, (b) toward neg-
ative x, and (c) in opposite directions? ■

17-11 Standing Waves and Resonance

Consider a string, such as a guitar string, that is stretched between two clamps. Suppose
we send a sinusoidal wave of a certain frequency along the string, say, toward the right.
When the wave reaches the right end, it reflects and begins to travel back to the left.
That left-going wave then overlaps the wave that is still traveling to the right. When the
left-going wave reaches the left end, it reflects again and the newly reflected wave be-
gins to travel to the right, overlapping the left-going and right-going waves. In short, we
very soon have many overlapping traveling waves, which interfere with one another.

For certain frequencies, the interference produces a standing wave pattern (or
normal oscillation mode) with nodes and large antinodes like those in Fig. 17-26. Such
a standing wave is said to be produced at resonance, and the string is said to resonate

y�(x,t) � (0.004 m)sin((5 rad/m)x � (4 � 103 rad/s)t).
y�(x,t) � [(0.004 m)sin((5 rad/m)x)] cos((4 � 103 rad/s)t), and
y�(x,t) � (0.004 m)sin((5 rad/m)x � (4 � 103 rad/s)t),

�/2

n � 0, 1, 2, . . .x � (n � 1
2)

�

2

k � 2�/�
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(a) (b)

FIGURE 17-25 ■ (a) A pulse incident from
the right is reflected at the left end of the
string, which is tied to a wall. Note that the
reflected pulse is inverted from the incident
pulse. (b) Here the left end of the string is
tied to a ring that can slide without friction
up and down the rod. Now the pulse is not
inverted by the reflection.

FIGURE 17-26 ■ Stroboscopic pho-
tographs reveal (imperfect) standing wave
patterns on a string being made to oscillate
by a vibrator at the left end. The patterns
occur at certain frequencies of oscillation.
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at these certain frequencies, called resonant frequencies. This standing wave reso-
nance is not unlike the harmonic oscillator resonance discussed in Section 16-8. If the
string is oscillated at some frequency other than a resonant frequency, a standing
wave is not set up. Then the interference of the right-going and left-going traveling
waves results in only small (perhaps imperceptible) oscillations of the string.

Let a string be stretched between two clamps separated by a fixed distance L. To
find expressions for the resonant frequencies of the string, we note that a node must
exist at each of its ends, because each end is fixed and cannot oscillate. The simplest
pattern that meets this key requirement is that in Fig. 17-27a, which shows the string
at both its extreme displacements (one solid and one dashed, together forming a sin-
gle “loop”). There is only one antinode, which is at the center of the string. Note that
half a wavelength spans the length L, which we take to be the string’s length. Thus, for
this pattern, . This condition tells us that if the left-going and right-going trav-
eling waves are to set up this pattern by their interference, they must have the wave-
length .

A second simple pattern meeting the requirement of nodes at the fixed ends is
shown in Fig. 17-27b. This pattern has three nodes and two antinodes and is said to be
a two-loop pattern. For the left-going and right-going waves to set it up, they must
have a wavelength . A third pattern is shown in Fig. 17-27c. It has four nodes,
three antinodes, and three loops, and the wavelength is . We could continue
this progression by drawing increasingly more complicated patterns. In each step of
the progression, the pattern would have one more node and one more antinode than
the preceding step, and an additional would be fitted into the distance L.

Thus, a standing wave can be set up on a string of length L by a wave with a
wavelength equal to one of the values

for (17-48)

The resonant frequencies that correspond to these wavelengths follow from Eq. 17-16:

(string fixed at both ends), (17-49)

where is the speed of traveling waves on the string.
Equation 17-49 tells us that the resonant frequencies are integer multiples of the

lowest resonant frequency, , which corresponds to . The oscillation
mode with that lowest frequency is called the fundamental mode or the first harmonic.
The second harmonic is the oscillation mode with , the third harmonic is that
with , and so on. The frequencies associated with these modes are often labeled

and so on. The collection of all possible oscillation modes is called the har-
monic series, and n is called the harmonic number of the nth harmonic.

The phenomenon of resonance is common to all oscillating systems and can occur
in two and three dimensions. For example, Fig. 17-28 shows a two-dimensional stand-
ing wave pattern on the oscillating head of a kettledrum.

READI NG EXERC IS E  17-6: In the following series of resonant frequencies, one fre-
quency (lower than 400 Hz) is missing: 150, 225, 300, 375 Hz. (a) What is the missing frequency?
(b) What is the frequency of the seventh harmonic? ■

f1, f2, f3

n � 3
n � 2

n � 1f � v wave/2L

v wave

for n � 1, 2, 3, . . .f �
v wave

�
� n

v wave

2L
,

n � 1, 2, 3. . . .� �
2L
n

,

�/2

� � 2
3L

� � L

� � 2L

�/2 � L

L

L = λ
2

(a)

L = λ
2

(b)
2λ =

L = λ
2

(c)
3

FIGURE 17-27 ■ A string, stretched be-
tween two clamps, is made to oscillate in
standing-wave patterns. (a) The simplest
possible pattern consists of one loop,
which refers to the composite shape
formed by the string in its extreme dis-
placements (the solid and dashed lines).
(b) The next simplest pattern has two
loops. (c) The next has three loops.

FIGURE 17-28 ■ One of many possible
standing wave patterns for a kettledrum
head, made visible by dark powder sprin-
kled on the drumhead. As the head is set
into oscillation at a single frequency by a
mechanical vibrator at the upper left of
the photograph, the powder collects at the
nodes, which are circles and straight lines
(rather than points) in this two-dimen-
sional example.
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17-12 Phasors

We can represent a wave on a string (or any other type of wave) with a phasor. In
essence, a phasor is an arrow that has a magnitude equal to the amplitude of the wave
and that rotates around an origin; the angular speed of the phasor is equal to the an-
gular frequency of the wave. For example, the wave 

(17-53)

which has an initial phase of (
0)1 � 0 rad. It is represented at a time t � 0 s, and loca-
tion x along a string by the phasor shown in Fig. 17-30a. The magnitude of the phasor
is the amplitude of the wave. As the phasor rotates around the origin at angular
speed , its projection on the vertical axis varies sinusoidally, from a maximum of

through zero to a minimum of and then back to . This variation corresponds
to the sinusoidal variation in the displacement of any chosen point x along the
string as the wave passes through it.

When two waves travel along the same string in the same direction, we can repre-
sent them and their resultant wave in a phasor diagram. The phasors in Fig. 17-30b
represent the wave of Eq. 17-53 and a second wave given by 

(17-54)

and has an initial phase of (
0)2 . So, this second wave is phase-shifted from the
first wave with a phase difference of . Because
0 � 0 � 
0�
 � (
0)2 � (
0)1 �

y2(x,t) � Y2sin(kx � �t � 
0),

y1(x,t)
Y1�Y1Y1

y1�
Y1

y1(x,t) � Y1sin(kx � �t),

�

In Fig. 17-29, a string, tied to a sinusoidal vibrator at P and running
over a fixed pulley at Q, is stretched by a block of mass m. The sep-
aration L between P and Q is 1.2 m, the linear density of the string
is 1.6 g/m, and the frequency f of the vibrator is fixed at 120 Hz. The
amplitude of the motion at P is small enough for that point to be
considered a node. A node also exists at Q.

(a) What mass m allows the vibrator to set up the fourth harmonic
on the string?

S O L U T I O N ■ One Ke y  I d e a  here is that the string will res-
onate at only certain frequencies, determined by the wave speed

on the string and the length L of the string. From Eq. 17-49,
these resonant frequencies are

, for n = 1, 2, 3, . . . . (17-50)f � n
v wave

2L

� v: wave �

TOUCHSTONE EXAMPLE 17-7: String Harmonics

To set up the fourth harmonic (for which n = 4), we need to adjust
the right side of this equation, with n = 4, so that the left side equals
the frequency of the vibrator (120 Hz).

We cannot adjust L in Eq. 17-50; it is set. However, a second
Ke y  I d e a is that we can adjust because it depends on how
much mass m we hang on the string. According to Eq. 17-25, wave
speed Here the tension F tension in the string is
equal to the magnitude of the weight mg of the block. Thus,

(17-51)

Substituting from Eq. 17-51 into Eq. 17-50, setting n = 4 for the
fourth harmonic, and solving for m give us

(Answer)   (17-52)

(b) What standing wave mode is set up if m � 1.00 kg?

S O L U T I O N ■ If we insert this value of m into Eq. 17-52 and
solve for n, we find that n � 3.7. A Ke y  I d e a  here is that n must
be an integer, so n � 3.7 is impossible. Thus, with m � 1.00 kg, the
vibrator cannot set up a standing wave on the string, and any oscil-
lation of the string will be small, perhaps even imperceptible.

� 0.846 kg 	 0.85 kg.

m �
4L2f 2�

n2g
�

(4)(1.2 m)2(120 Hz)2(0.0016 kg/m)
(4)2(9.8 m/s2)

vwave

vwave � √ F tension

�
� √ mg

�
.

vwave � √F tension/�.

vwave

P
Q

m

Vibrator
Pulley

L

FIGURE 17-29 ■ A string under tension connected to a vibrator.
For a fixed vibrator frequency, standing wave patterns will occur for
certain values of the string tension.
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Two sinusoidal waves yl(x, t) and y2(x, t) have the same wave-
length and travel together in the same direction along a string.
Their amplitudes are Yl � 4.0 mm and Y2 � 3.0 mm, and their
initial phases are 0 and �/3 rad, respectively. What are the ampli-
tude Y� and initial phase of the resultant wave (in the form of
Eq. 17-55)?

S O L U T I O N ■ One Ke y  I d e a  here is that the two waves have
a number of properties in common: they travel along the same
string and so have the same speed , angular wave number

and the same angular frequency 
A second Ke y  I d e a  is that the waves can be represented by

phasors rotating at the same angular speed about an origin. Be-
cause the initial phase for wave 2 is greater than that for wave 1 by

�/3, phasor 2 must lag phasor 1 by �/3 rad in their clockwise rota-
tion, as shown in Fig. 17-31. The resultant wave due to the interfer-
ence of waves 1 and 2 can then be represented by a phasor that is a
vector– like sum of phasors 1 and 2.

To simplify the phasor summation, we drew phasors 1 and 2 in
Fig. 17-31a at the instant when phasor 1 lies along the horizontal
axis and the lagging phasor 2 at positive angle �/3 rad. In Fig. 17-
31b we shifted phasor 2 so its tail is at the head of phasor 1. Then
we draw the phasor Y� of the resultant wave from the tail of phasor
1 to the head of phasor 2. The initial phase of the combined is
the angle phasor 2 makes with respect to phasor 1.

Though phasors are not really vectors, they can be added us-
ing vector addition rules. To find values for Y� and we can
sum phasors 1 and 2 directly on a vector-capable calculator, by


�0


�0

�

�( � kvwave).k( � 2�/�),
vwave


�0

TOUCHSTONE EXAMPLE 17-8: Combining Two Waves

the phasors rotate at the same angular speed , the angle between the two pha-
sors is always . If is a positive quantity, then the phasor for wave 2 lags
the phasor for wave 1 as they rotate, as drawn in Fig. 17-30b. If is a negative
quantity, then the phasor for wave 2 leads the phasor for wave 1.

Since waves and have the same wave number k and angular frequency , we
know from Eq. 17-37 that if the two waves have the same amplitude (Y � Y1� Y2)
then their resultant is of the form 

(17-55)

where is the amplitude of the resultant wave and is its
phase. We used Eq. 17-37 to determine the equations for and by superimposing
the two combining waves.

Finding the superimposed wave is much easier using a phasor diagram. This is be-
cause even though phasors are not really vectors that have defined vector dot and cross
products, they add like vectors. So even if the amplitudes Y1 and Y2 and frequencies �1

and �2 of two waves are not the same, we can use a vector-like phasor sum to find an
equation for the resultant wave at any instant during their rotation. For example, we
simply use the rules of vector addition to sum of the two phasors at any instant during
their rotation. Fig. 17-30c shows how phasor can be shifted to the head of phasor .
The magnitude of the phasor sum equals the amplitude in Eq. 17-55. The angle be-
tween the phasor sum and the phasor for equals the initial phase of the combined
wave given in Eq. 17-55 as .

Although we have shown how phasors can be combined for a situation for which
the amplitudes and frequencies are the same, it is important to note that:

We can use phasors to combine waves even if their amplitudes and frequencies are different.


0� � 1
2
0

y1

Y�
Y1Y2


�0Y�

�0 � 1

2
0Y� � 2Ycos(1
2
0)

y�(x,t) � Y�sin(kx � �t � 
�0),

�y2y1

�

�
�
 � 
0

�

FIGURE 17-30 ■ (a) A phasor of magni-
tude rotating about an origin at angular
speed represents a sinusoidal wave with
an initial phase of zero. The phasor’s
projection on the vertical axis repre-
sents the displacement at a point X at a
time t through which the wave passes.
(b) A second phasor, also of angular speed

but of magnitude and rotating at a
constant angle from the first phasor,
represents a second wave, with an initial
phase of . (c) The resultant wave of the
two waves is represented by the vector-like
phasor sum of the two phasors. The 
projection on the vertical axis repre-
sents the displacement of the some point 
x and time t as that resultant wave passes
through it.
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adding a vector of magnitude 4.0 mm and angle 0 rad to a vector
of magnitude 3.0 mm and angle �/3 rad, or we can add the pha-
sors using vector components. For the horizontal components we
have

For the vertical components we have

Thus, the resultant wave has an amplitude of

(Answer)

and an initial resultant wave phase of

(Answer)

From Fig. 17-31b, the initial phase for wave 2, given by , is a
positive angle relative to the initial phase of wave 1. Thus, the resul-
tant wave lags wave 1 by an initial phase of From
Eq. 17-55, we can write the resultant wave as

(Answer)y�(x,t) � (6.1 mm) sin(kx � �t � 0.44 rad).


�0 � 0.44 rad.


0


�0 � tan�1 2.60 mm
5.50 mm

� 0.44 rad.

� 6.1 mm

Y� � √(5.50 mm)2 � (2.60 mm)2

� 0 � (3.0 mm) sin�/3 � 2.60 mm.

Y�v � Y1sin0 � Y2sin�/3

� 4.0 mm � (3.0 mm) cos �/3 � 5.50 mm.

Yh� � Y1 cos 0 � Y2 cos�/3

π/3

Y2 Y2

Y1 Y1

π/3

Y'
y'

(a) (b)

0'φ

FIGURE 17-31 ■ (a) Two phasors of magnitudes Y1 and Y2 with
phase difference �/3. (b) Phasor addition at any instant during their
rotation gives the magnitude Y� of the phasor for the resultant
wave.

Problems

SEC. 17-5 ■ WAVE VELOCITY

1. Angular Frequency A wave has an angular frequency of 110
rad/s and a wavelength of 1.80 m. Calculate (a) the angular wave
number and (b) the speed of the wave.

2. Electromagnetic Waves The speed of electromagnetic waves
(which include visible light, radio, and x-rays) in vacuum is 3.0 �
108 m/s. (a) Wavelengths of visible light waves range from about 
400 nm in the violet to about 700 nm in the red. What is the range
of frequencies of these waves? (b) The range of frequencies for
shortwave radio (for example, FM radio and VHF television) is 1.5
to 300 MHz. What is the corresponding wavelength range?
(c) X-ray wavelengths range from about 5.0 nm to about 1.0 �
10�2 nm. What is the frequency range for x-rays?

3. Sinusoidal Wave A sinusoidal wave travels along a string. The
time for a particular point to move from maximum displacement to
zero is 0.170 s. What are the (a) period and (b) frequency? (c) The
wave length is 1.40 m; what is the wave speed?

4. Write the Equation Write the equation for a sinusoidal wave
traveling in the negative direction along an x axis and having an am-
plitude of 0.010 m, a frequency of 550 Hz, and a speed of 330 m/s.

5. Show That Show that 

y(x,t) � Y sin k(x � vt), y(x,t) � Y sin 2� ,

y(x,t) � Y sin � , y(x,t) � Y sin 2�

are all equivalent to y(x,t) � Y sin (kx � �t).

� x
�

�
t
T �� x

v
� t�

� x
�

� ft�

6. Equation of a Transverse The equation of a transverse wave travel-
ing along a very long string is 

where x and y are expressed in centimeters and t
is in seconds. Determine (a) the amplitude, (b) the wavelength, (c) the
frequency, (d) the speed, (e) the direction of propagation of the wave,
and (f) the maximum transverse speed of a particle in the string. (g)
What is the transverse displacement at x � 3.5 cm when t � 0.26 s?

7. Write an Equation (a) Write an equation describing a sinusoidal
transverse wave traveling on a cord in the � x direction with a
wavelength of 10 cm, a frequency of 400 Hz, and an amplitude of
2.0 cm. (b) What is the maximum speed of a point on the cord? 
(c) What is the speed of the wave?

8. Transverse Sinusoidal A trans-
verse sinusoidal wave of wave-
length 20 cm is moving along a
string in the positive x direction.
The transverse displacement of the
string particle at x � 0 cm as a
function of time is shown in Fig. 17-
32. (a) Make a rough sketch of one
wavelength of the wave (the por-
tion between x � 0 cm and x � 20 cm) at time t � 0 s. (b) What is
the speed of the wave? (c) Write the equation for the wave with all
the constants evaluated. (d) What is the transverse velocity of the
particle at x � 0 m at t � 5.0 s?

9. Sinusoidal Wave Two A sinusoidal wave of frequency 500 Hz
has a speed of 350 m/s. (a) How far apart are two points that differ
in phase by �/3 rad? (b) What is the phase difference between two
displacements at a certain point at times 1.00 ms apart?

x � (4.0 � rad/s)t}
y(x,t) � (6.0 cm) sin {(0.020 � rad/cm)

y (cm)

4.0

–4.0

t (s)
10

FIGURE 17-32 ■ Problem 8.
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SEC. 17-6 ■ WAVE SPEED ON A STRETCHED STRING

10. Violin Strings The heaviest and lightest strings on a certain violin
have linear densities of 3.0 and 0.29 g/m. (a) What is the ratio of the
diameter of the heaviest string to that of the lightest string, assuming
that the strings are of the same material? (b) What is the ratio of
speeds if the strings have the same tension?

11. What Is the Speed What is the speed of a transverse wave in a
rope of length 2.00 m and mass 60.0 g under a tension of 500 N?

12. Wire Clamped The tension in a wire clamped at both ends is
doubled without appreciably changing the wire’s length between
the clamps. What is the ratio of the new to the old wave speed for
transverse waves traveling along this wire?

13. Linear Density The linear density of a string is 1.6 � 10�4 kg/m.
A transverse wave on the string is described by the equation

y(x, t) � (0.021 m) sin[(2.0 rad/m)x � (30 rad/s)t].

What is (a) the wave speed and (b) the tension in the string?

14. The Equation of The equation of a transverse wave on a string is

y(x, t) � (2.0 mm) sin[(20 rad/m)x � (600 rad/s)t].

The tension in the string is 15 N. (a) What is the wave speed? 
(b) Find the linear density of the string in grams per meter.

15. Stretched String A stretched string has a mass per unit length
of 5.0 g/cm and a tension of 10 N. A sinusoidal wave on this string
has an amplitude of 0.12 mm and a frequency of 100 Hz and is trav-
eling in the negative direction of x. Write an equation for this wave.

16. The Fastest Wave What is the fastest transverse wave that can
be sent along a steel wire? For safety reasons, the maximum tensile
stress to which steel wires should be subjected is 7.0 � 108 N/m2.
The density of steel is 7800 kg/m3. Show that your answer does not
depend on the diameter of the wire.

17. Single Particle A sinusoidal transverse wave of amplitude Y
and wavelength � travels on a stretched cord. (a) Find the ratio of
the maximum particle speed (the speed with which a single particle
in the cord moves transverse to the wave) to the wave speed. (b) If
a wave having a certain wavelength and amplitude is sent along a
cord, would this speed ratio depend on the material of which the
cord is made such as wire or nylon?

18. Displacement of Particles A sinusoidal wave is traveling on a
string with speed 40 cm/s. The displacement of the particles of the
string at x � 10 cm is found to vary with time according to
the equation y(x,t) � (5.0 cm) sin [1.0 rad/cm � (4.0 rad/s)t]. The
linear density of the string is 4.0 g/cm. What are the (a) frequency
and (b) wavelength of the wave? (c) Write the general equation
giving the transverse dis-
placement of the particles of
the string as a function of
position and time. (d) Calcu-
late the tension in the string.

19. As a Function of Position
A sinusoidal transverse wave
is traveling along a string in
the negative direction of an
x axis. Figure 17-33 shows a
plot of the displacement as

a function of position at time 
t � 0 s; the y intercept is 4.0 cm.
The string tension is 3.6 N,
and its linear density is 25 g/m.
Find the (a) amplitude,
(b) wavelength, (c) wave speed,
and (d) period of the wave. (e)
Find the maximum transverse
speed of a particle in the string.
(f) Write an equation describing
the traveling wave.

20. Three Pulleys, One Mass
In Fig. 17-34a string 1 has a lin-
ear density of 3.00 g/m, and
string 2 has a linear density of
5.00 g/m. They are under ten-
sion owing to the hanging block
of mass M � 500 g. Calculate
the wave speed on (a) string 1
and (b) string 2. (Hint: When a
string loops halfway around a
pulley, it pulls on the pulley
with a net force that is twice the
tension in the string.) Next the
block is divided into two blocks
(with M1 � M2 � M) and the apparatus is rearranged as shown
in Fig. 17-34b. Find (c) M1 and (d) M2 such that the wave speeds
in the two strings are equal.

21. Two Pulses Two A wire 10.0 m long and having a mass of 100 g
is stretched under a tension of 250 N. If two pulses, separated in
time by 30.0 ms, are generated, one at each end of the wire, where
will the pulses first meet?

22. Baseball Rubber Band The type of rubber band used inside
some baseballs and golf balls obeys Hooke’s law over a wide range
of elongation of the band. A segment of this material has an un-
stretched length � and a mass m. When a force is applied, the
band stretches an additional length ��. (a) What is the speed (in
terms of m, ��, and the spring constant k) of transverse waves on
this stretched rubber band? (b) Using your answer to (a), show
that the time required for a transverse pulse to travel the length of
the rubber band is proportional to if �� � � and is constant
if �� � �.

23. Uniform Rope A uniform rope of mass m and length L
hangs from a ceiling. (a) Show that the speed of a transverse
wave on the rope is a function of y, the distance from the lower
end, and is given by � . (b) Show that the time a trans-
verse wave takes to travel the length of the rope is given by 
t � 2 .

SEC. 17-7 ■ ENERGY AND POWER TRANSPORTED BY A

TRAVELING WAVE IN A STRING

24. Average Power A string along which waves can travel is 2.70 m
long and has a mass of 260 g. The tension in the string is 36.0 N.
What must be the frequency of traveling waves of amplitude 7.70
mm for the average power to be 85.0 W?
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FIGURE 17-33 ■ Problem 19.
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FIGURE 17-34 ■

Problem 20.
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SEC. 17-9 ■ INTERFERENCE OF WAVES

25. Two Identical Traveling Waves Two identical traveling waves,
moving in the same direction, are out of phase by �/2 rad. What is
the amplitude of the resultant wave in terms of the common ampli-
tude Y of the two combining waves?

26. What Phase Difference What phase difference between two
otherwise identical traveling waves, moving in the same direction
along a stretched string, will result in the combined wave having an
amplitude 1.50 times that of the common amplitude of the two
combining waves? Express your answer in (a) degrees, (b) radians,
and (c) wavelengths.

27. Identical Except for Phase Two sinusoidal waves, identical
except for phase, travel in the same direction along a string and
interfere to produce a resultant wave given by y�(x,t) � (3.0 mm)
sin [(20 rad/m)x � (4.0 rad/s)t � 0.820 rad], with x in meters and t
in seconds. What are (a) the wavelength � of the two waves, (b) the
phase difference between them, and (c) their amplitude Y?

SEC. 17-11 ■ STANDING WAVES AND RESONANCE

28. A String Under Tension A string under tension F tension oscil-
lates in the third harmonic at frequency f3, and the waves on the
string have wavelength �3. If the tension is increased to �f � 4�i and
the string is again made to oscillate in the third harmonic, what
then are (a) the frequency of oscillation in terms of f3 and (b) the
wavelength of the waves in terms of �3?

29. Nylon Guitar String A nylon
guitar string has a linear density of
7.2 g/m and is under a tension of
150 N. The fixed supports are
90 cm apart. The string is oscillat-
ing in the standing wave pattern
shown in Fig. 17-35. Calculate the
(a) speed, (b) wavelength, and (c) frequency of the traveling waves
whose superposition gives this standing wave.

30. Two Sinusoidal Waves Two sinusoidal waves with identical
wavelengths and amplitudes travel in opposite directions along a
string with a speed of 10 cm/s. If the time interval between instants
when the string is flat is 0.50 s, what is the wavelength of the
waves?

31. String Fixed at Both Ends A string fixed at both ends is 8.40 m
long and has a mass of 0.120 kg. It is subjected to a tension of
96.0 N and set oscillating. (a) What is the speed of the waves on the
string? (b) What is the longest possible wavelength for standing
wave? (c) Give the frequency of that wave.

32. Between Fixed Supports A 125 cm length of string has a mass
of 2.00 g. It is stretched with a tension of 7.00 N between fixed sup-
ports. (a) What is the wave speed for this string? (b) What is the
lowest resonant frequency of this string?

33. Three Lowest Frequencies What are the three lowest frequen-
cies for standing waves on a wire 10.0 m long having a mass of 
100 g, which is stretched under a tension of 250 N?

34. String A, String B String A is stretched between two clamps
separated by distance L. String B, with the same linear density and
under the same tension as string A, is stretched between two clamps
separated by distance 4L. Consider the first eight harmonics of
string B. Which, if any, has a resonant frequency that matches a
resonant frequency of string A?

35. Resonant Frequencies A string that is stretched between fixed
supports separated by 75.0 cm has resonant frequencies of 420 and
315 Hz, with no intermediate resonant frequencies. What are (a) the
lowest resonant frequency and (b) the wave speed?

36. Two Pulses In Fig. 17-36, two
pulses travel along a string in op-
posite directions. The wave speed
vwave is 2.0 m/s and the pulses are
6.0 cm apart at t � 0. (a) Sketch
the wave patterns when t is equal
to 5.0, 10, 15, 20, and 25 ms. (b) In
what form (or type) is the energy
of the pulses at t � 15 ms?

37. A String Oscillates A string oscillates according to the equation

What are the (a) amplitude and (b) speed of the two waves (identi-
cal except for direction of travel) whose superposition gives this
oscillation? (c) What is the distance between nodes? (d) What is
the speed of a particle of the string at the position x � 1.5 cm
when t � s?

38. Standing Wave A standing wave results from the sum of two
transverse waves traveling in opposite directions given by

y1 � (0.05 m ) cos ((� rad/m)x � (4� rad/s)t)

and
y2 � (0.05 m) cos ((� rad/m)x � (4� rad/s)t).

(a) What is the smallest positive value of x that corresponds to a
node? (b) At what times during the interval 0 � t � 0.50 s will the
particle at x � 0.00 m have zero velocity?

39. Three-Loop Standing Wave A string 3.0 m long is oscillating as
a three-loop standing wave with an amplitude of 1.0 cm. The wave
speed is 100 m/s. (a) What is the frequency? (b) Write equations for
two waves that, when combined, will result in this standing wave.

40. In an Experiment In an experiment on standing waves, a string
90 cm long is attached to the prong of an electrically driven tuning
fork that oscillates perpendicular to the length of the string at a fre-
quency of 60 Hz. The mass of the string is 0.044 kg. What tension
must the string be under (weights are attached to the other end) if
it is to oscillate in four loops?

41. Tuning Fork Oscillation of a 600 Hz tuning fork sets up stand-
ing waves in a string clamped at both ends. The wave speed for the
string is 400 m/s. The standing wave has four loops and an ampli-
tude of 2.0 mm. (a) What is the length of the string? (b) Write an
equation for the displacement of the string as a function of position
and time.

42. Second Harmonic A rope, under a tension of 200 N and fixed
at both ends, oscillates in a second-harmonic standing wave pattern.
The displacement of the rope is given by

where x � 0.00 m at one end of the rope, x is in meters, and t is in
seconds. What are (a) the length of the rope, (b) the speed of the
waves on the rope, and (c) the mass of the rope? (d) If the rope os-
cillates in a third-harmonic standing wave pattern, what will be the
period of oscillation?

y(x,t) � (0.10 m)(sin �� �

2
 rad/m�x� sin ((12� rad/s)t),

9
8

y�(x,t) � (0.50 cm) sin �� �

3
 rad/cm�x� cos[(40� rad/s)t].

90.0 cm

FIGURE 17-35 ■ Problem 29.
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v

FIGURE 17-36 ■ Problem 36.
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Additional Problems

43. A Generator A generator at one end of a very long string cre-
ates a wave given by

and one at the other end creates the wave

Calculate the (a) frequency, (b) wavelength, and (c) speed of each
wave. At what x values are the (d) nodes and (e) antinodes?

44. Standing Wave Pattern A standing wave pattern on a string is
described by

y(x,t) � (0.040 m) sin((5� rad/m)x) cos ((40� rad/s)t).

(a) Determine the location of all nodes for 0 � x � 0.40 m.
(b) What is the period of the oscillatory motion of any (nonnode)
point on the string? What are (c) the speed and (d) the amplitude
of the two traveling waves that interfere to produce this wave? 
(e) At what times for 0.000 s � t � 0.050 s will all the points on the 
string have zero transverse velocity?

45. Maximum Kinetic Energy Show that the maximum kinetic en-
ergy in each loop of a standing wave produced by two traveling
waves of identical amplitudes is .

46. Antinode For a certain trans-
verse standing wave on a long
string, an antinode is at x � 0.00 m
and a node is at x � 0.10 m. The
displacement y(t) of the string
particle at x � 0.00 m is shown in
Fig. 17-37. When t � 0.50 s, what
are the displacements of the string
particles at (a) x � 0.20 m and (b)
x � 0.30 m? At x � 0.20 m, what
are the transverse velocities of the
string particles at (c) t � 0.50 s and (d) t � 1.0 s? (e) Sketch the
standing wave at t � 0.50 s for the range x � 0.00 m to x � 0.40 m.

2� 2�Y2 f vwave

y(x,t) � (6.0 cm) cos 
�

2
 [(2.0 rad/m)x � (8.0 rad/s)t].

y(x,t) � (6.0 cm) cos 
�

2
 [(2.0 rad/m)x � (8.0 rad/s)t],

47. Aluminum Wire In
Fig. 17-38, an aluminum
wire, of length L1 � 60.0
cm, cross-sectional area
1.00 � 10�2 cm2, and den-
sity 2.60 g/cm3, is joined
to a steel wire, of density
7.80 g/cm3 and the same
cross-sectional area. The
compound wire, loaded
with a block of mass m � 10.0 kg, is arranged so that the distance L2

from the joint to the supporting pulley is 86.6 cm. Transverse waves
are set up in the wire by using an external source of variable fre-
quency; a node is located at the pulley. (a) Find the lowest frequency
of excitation for which standing waves are observed such that the
joint in the wire is one of the nodes. (b) How many nodes are ob-
served at this frequency?

SEC. 17-12 ■ PHASORS

48. Of the Same Period Two sinusoidal waves of the same period,
with amplitudes of 5.0 and 7.0 mm, travel in the same direction
along a stretched string; they produce a resultant wave with an am-
plitude of 9.0 mm. The initial phase of the 5.0 mm wave is 0.0 rad.
What is the initial phase of the 7.0 mm wave?

49. Amplitude of the Resultant Determine the amplitude of the
resultant wave when two sinusoidal string waves having the same
frequency and traveling in the same direction on the same string
are combined, if their amplitudes are 3.0 cm and 4.0 cm and they
have initial phases of 0.0 and �/2 rad, respectively.

50. Three Sinusoidal Waves Three sinusoidal waves of the same
frequency travel along a string in the positive direction of an x
axis. Their amplitudes are y1, y1/2, and y1/3, and their initial
phases are 0, �/2, and � rad, respectively. What are (a) the ampli-
tude and (b) the phase constant of the resultant wave? (c) Plot
the wave form of the resultant wave at t � 0.00 s, and discuss its
behavior as t increases.

0.5 1.0 1.5 2.0

0.04

–0.04

0

y 
(m

)

t (s)

FIGURE 17-37 ■ Problem 46.

m

L 1 L 2

Aluminum Steel

FIGURE 17-38 ■ Problem 47.
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C D

E F

FIGURE 17-39 ■ Problem 51.

51. Graphing a Pulse on a String Consider the motion of a pulse on
a long taut string. We will choose our coordinate system so that when
the string is at rest, the string lies along the x axis of the coordinate
system. We will take the positive direction of the x axis to be to the
right on this page and the positive direction of the y axis to be up.
Ignore gravity. A pulse is started on the string moving to 
the right. At a time t1 � 0 s a photograph of the string would look
like Fig. 17-39A. A point on the string to the right of the pulse is
marked by a spot of red paint.

For each of the items that follow, identify which figure (B-F)
would look most like the graph of the indicated quantity. (Take the
positive axis as up.) If none of the figures look like you expect the
graph to look, write N. Assume that the axes would be labeled with
correct units.

(a) The graph of the y displacement of the spot of red paint as a
function of time.
(b) The graph of the x velocity of the spot of red paint as a func-
tion of time.

(c) The graph of the y velocity of the spot of red paint as a function
of time.
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(d) The graph of the y-component of the
force on the piece of string marked by the
red spot as a function of time.

52. Motion in a Standing Wave A string is
connected at one end to a vibrating reed and
on the other to a weight pulling the string
tight over a pulley. At the time t � 0.00 s a
photograph of the string looks like Fig. 17-
40a. The displacement of the wave is then ob-
served to grow, reaching a maximum of 3 cm

at t � 0.02 s. The displacement of the wave  then
decreases with time and at time t � 0.06 s ap-
pears flat, as shown in Fig. 17-40b.

Each box in the grid has a side of 1 cm.
(a) Two points on the string are marked with
heavy black dots and with the letters A and B. At
t � 0.00 s, in what direction is each of them moving
and which one (if any) is moving faster? (b) At t �
0.06 s, mark the position of the two points on the
string in the figure (b). In what direction is each of

them moving and which one (if any) is moving faster? (c) What is the
period of the oscillation? (d) Explain what could be changed to make
the velocity of point A zero throughout the oscillation. Give two differ-
ent ways to do this, and explain why such a change would work.

53. Displacement and Velocity Patterns in Waves Each graph
shown in Fig. 17-41 may represent either a picture of the shape of a
wave on a string at a particular instant in time, t1, or the transverse
(up and down) velocity of the mass points of that string at that
time. Depending on which it is, the wave on the string may be:

(a) A right-moving traveling wave, (b) A left-moving traveling
wave, (c) A part of a standing wave with a displacement that in-
creases in time and is shown at time t1, (d) A part of a standing
wave with a displacement that decreases in time and is shown at
time t1. For each of the following cases, decide what the wave is do-
ing and choose one of the four letters (a)–(d).

i. Graph A is a graph of the string’s shape and graph B is a graph
of the string’s velocity.
ii. Graph A is a graph of both the string’s shape and the string’s

velocity.
iii. Graph B is a graph of the string’s shape and graph A is a graph of
the string’s velocity.

54. Interpreting an Oscillatory Equation
Consider the equation

y(x,t) � Y cos(at) sin(bx)

Let x represent some position and t represent
time. (a) Describe a physical situation repre-
sented by this equation. As part of your de-
scription include a sketch and a written de-
scription. Indicate what y and x correspond
to in the situation you describe. (b) How, if at
all, would the physical situation you de-
scribed in part (a) be different if a were twice
as large? Explain how you determined your
answer. (c) How, if at all, would the physical
situation you described in part (a) be differ-
ent if b were twice as large? Explain how you
determined your answer.

55. Waves and Velocities The four graphs
labeled (A)–(D) in Fig. 17-42a show snapshots of waves on a long, taut
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string. The dashed line shows a picture of a part of the string at the
time t � 0 s.The solid line is a picture at a time a little bit later. Each of
these pictures looks the same at t � 0 s, but the results differ because
the parts of the string have different velocities at t � 0 in each case.

For each of the four cases, select one of the six patterns shown
in Fig. 17-42b as the correct velocity pattern for the motion of adja-
cent string elements to lead to the solid line in Fig. 17-42a, showing
the displacement y. (Note the arrows indicate mainly direction.
Their lengths are scaled somewhat in proportion to their magni-
tude, but not strictly so.)

56. Making a Pulse Move A transverse wave pulse is traveling in
the �x direction along a long stretched string. The origin is taken at
a point on the string that is far from the ends. The speed of the
wave is v (a positive number). At time t � 0 s, the displacement of
the string is described by the function

(a) Construct a graph that portrays the actual shape of the string at
t � 0 s for the case A � �/2. (b) Sketch a graph of the wave form at
the following times: 1. , 2. , 3. .

57. Comparing Waves Figure
17-43 shows a snapshot of a
piece of a wave at a time t �
0 s. Make four sketches of
this picture and use a dotted
line to sketch what each
pulse would look like at a
slightly later time (a time
that is small compared to the
time it would take the pulse
to move a distance equal to
its own width but large enough to see a change in the shape of the
string) for the following four cases:

A. The pulse is a traveling wave moving to the right.
B. The pulse is a traveling wave moving to the left.
C. The pulse is a standing wave with a displacement that increases
in time.
D. The pulse is a standing wave with a displacement that decreases
in time.

On each picture, draw arrows to show the velocity of the marked
points at time t � 0 s.

58. Combining Pulses Figure 17-44 shows graphs that could represent
properties of pulses on a stretched string. For the situation and the
properties (a)–(e), select which graph provides the best representation
of the given property. If none of the graphs are correct, write “none.”

Two pulses are started on a stretched string. At time t � t1, an
upward pulse is started on the right that moves to the left. At the
same instant, a downward pulse is started on the left that moves to
the right. At t1 their peaks are separated by a distance 2s. The dis-
tance between the pulses is much larger than their individual
widths. The pulses move on the string with a speed v1. The scales in

t � �3�/2vt � 2�/vt � ��v

y � f(x,0) �   A�1 � �
x
�

��  � x � � �

0   � x � � �

the graphs are arbitrary and not necessarily the same. (a) Which
graph best represents the appearance of the string at time t1?
(b) Which graph best represents the appearance of the string at a
time t1 � s/v1? (c) Which graph best represents the appearance of
the string at a time t1 � 2s/v1? (d) Which graph best represents the
velocity of the string at a time t1 � s/v1? (e) Which graph best rep-
resents the appearance of the string at a time t1 � s/v1 � � where �
is small compared to s/v1?

59. Moving a Nonsymmetric Triangular Pulse A long taut spring is
started at a time t � 0 with a pulse moving in the �x direction in
the shape given by the function f(x) with 

(The units of x and f are in centimeters.) (a) Draw a labeled graph
showing the shape of the string at t � 0. (b) If the mass density of
the string is 50 g/m and it is under a tension of 5 N, draw a labeled
graph that shows the shape and position of the string at a time t �
0.001 s. (c) Write the solution of the wave equation that explicitly
gives the displacement of any piece of the string at any time.
(d) What is the speed of a piece of string that is moving up after the
pulse has reached it but before it has risen to its maximum displace-
ment? What is its speed while it is returning to its original position
after the pulse’s peak has passed it?

60. Which Wave Is Which? Figure 17-45a shows a picture of a
string at a time t1. The pieces of the string are each moving with
velocities that are indicated by arrows in the picture. (The vertical
displacements are small and don’t show up in the picture.) Figure
17-45b shows five graphs that could give the shape of the string at
the instant for which the velocities are displayed above. (Note: The
vertical scale magnifies the displacement by a factor of 100.)

On your paper, place the letters A–E. Next to these letters, in-
dicate for the graphs labeled by those letters, whether the string is

moving as a: (L) left-traveling wave, (R) right-
traveling wave, (S�) standing wave with a dis-
placement that increases in time, (S�) standing
wave with a displacement that decreases in
time, or (N) none of the above.

f(x) � 
1
4x � 1   �4 � x � 0
�x � 1  0 � x � 1
0     otherwise

FIGURE 17-43 ■ Problem 57.
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61. Spring vs. String In this course, we analyzed the motion of a
mass on a spring and the oscillations of a taut string. Discuss these
two systems, explaining similarities and differences, and give an
equation of motion for each.

62. Parsing a Pulse
An instructor is
demonstrating the
motion of waves
on a long, taut
spring. He is hold-
ing the spring at
one end and will move it so the spring will move back and forth on
the floor. The spring is rigidly connected to a metal rod at its other
end. The spring is under a tension T and it has a mass density �. The
instructor starts a pulse moving toward the right as shown in Fig. 17-
46. The pulse is triangular and is not symmetric. The figure is shown
at a time t1. (a) Calculate the time � it will take the peak of the pulse
to reach the wall (to travel a distance s). (b) What will the spring
look like at the time t1 � �? Draw a carefully constructed and la-
beled diagram to show what it looks like and how you got your re-
sult. (c) What will the spring look like a bit later—say, at a time 
t1 � 2�? What is responsible for this result? (d) The width of the pulse
is 0.5 m. If the tension in the spring is 5 N and it has a mass density of
0.1 kg/m, how much time did the professor take to generate the pulse?

63. Modified Harmonics A taut string is tied down at both ends.
Assume that the fundamental mode of oscillation of the string has a
period T0. For each of the changes described below give the factor
by which the period changes. For example, if the change described
resulted in a period twice as long, you would put the number “2.” Do
not accumulate changes. That is, before each change, assume you are
back at the original starting situation. (a) The string is replaced by
one of twice the mass but of the same length. (b) The wave length of
the starting shape is divided by three. (c) The amplitude of the oscil-
lation is doubled. (d) The tension of the string is halved.

64. Spring vs. String:
Gra phs Cons ider
two physical systems:
System A is a mass
hanging from a light
spring fixed at one
end to a ringstand on
a table above the
floor. System B is a
long spring of uni-
form density held un-
der tension and able
to move transversely
in a horizontal plane.

F i g u r e 1 7 - 4 7
shows three graphs
labeled #1, #2, and
#3, with unmarked
axes. They could rep-
resent many quanti-
ties in the physical
systems A and B. For
the five physical
quantities below, in-
dicate which of the

graphs could be obtained for the system indicated. If more than one
graph applies, give all the possible choices. If none applies, write N.

(a) The height of the mass hanging from the spring (system A)
above the ground as a function of time for some time interval after
the mass has been set into oscillation
(b) The transverse displacement from equilibrium of some portion
of the long spring (system B) as a function of position at a particu-
lar instant of time while it is carrying a harmonic wave
(c) The velocity of the mass hanging from the spring (system A) as
a function of time given that its displacement from equilibrium as a
function of time is given by graph #1
(d) The transverse velocity of a small piece of the long spring (sys-
tem B) as a function of time as a single pulse moves down the
spring
(e) The velocity of a small piece of the long spring (system B) as a
function of time given that its displacement from equilibrium as a
function of time is given by graph #2

65. Explaining the Wave Equation The wave equation

is often used to describe the transverse displacement of waves on a
stretched spring. Explain the meaning of each of the elements of
this equation with reference to the physical spring and discuss un-
der what circumstances you expect it to be a good description.

66. Propagating a
Gaussian Pulse Fig-
ure 17-48 shows the
shape of a pulse on
a stretched spring at
the time t � 0 s. The
dispacement of the
spring from its equi-
librium position at
that time is given by

The pulse is moving in the positive x direction with a velocity v1.
(a) Sketch a graph showing the shape of the spring at a later time,
t � t2. Specify the height and position of the peak in terms of the
symbols given. (b) Write an equation for the displacement of any
portion of the spring at any time y(x,t). (c) Sketch a graph of the ve-
locity of the piece of the spring at the position x � 2b as a function
of time.

67. Varying a Pulse* A long, taut string is attached to a distant
wall as shown in Fig. 17-49. A demonstrator moves her hand and
creates a very small amplitude pulse that reaches the wall in a time
t1. A small red dot is painted on the string halfway between the
demonstrator’s hand and the wall. For each situation below, state
which of the actions 1–10 listed (taken by itself) will produce the
desired result. For each question, more than one answer may be cor-
rect. If so, give them all.

F(x) � Ae�(x/b)2

�2y
�x2 �

1
v2

1

�2y
�t2

s

FIGURE 17-46 ■ Problem 62.
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3

FIGURE 17-47 ■ Problem 64.

FIGURE 17-48 ■ Problem 66.

FIGURE 17-49 ■ Problem 67.

*From the Wave Test by M. Wittmann.
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Tell how, if at all, the demonstrator can repeat the original ex-
periment to produce: (a) A pulse that takes a longer time to reach
the wall (b) A pulse that is wider than the original pulse (c) A pulse
that makes the red dot travel a further distance than in the original
experiment

1. Move her hand more quickly (but still only up and down once
and still by the same amount)
2. Move her hand more slowly (but still only up and down once

and still by the same amount)
3. Move her hand a larger distance but up and down in the same

amount of time
4. Move her hand a smaller distance but up and down in the same

amount of time
5. Use a heavier string of the same length under the same tension
6. Use a lighter string of the same length under the same tension
7. Use a string of the same density, but decrease the tension
8. Use a string of the same density, but increase the tension
9. Put more force into the wave

10. Put less force into the wave

68. Reflecting on a Textbook Error Figure 17-50 is taken from the
first edition of a popular standard textbook. Column (a) shows a
pulse approaching and reflecting from a fixed end. Column (b) a
pulse approaching and reflecting from a free end (ring sliding on a
frictionless rod). At least six (6!) of the figures are incorrect. State
which and explain why. (Hint: The second edition of the book fixed
most of the problems by making the pulses symmetric.)

69. Graphing Another Pulse on a String Figure 17-51a shows a
photograph of a pulse on a taut string moving to the right. The red
dot the right of the figure is a small bead of negligble mass attached
to the string.

For each of the following quantities, select the letter of the
graph in Fig. 17-51b that could provide a correct graph of the quan-
tity (if the vertical axis were assigned the proper units) and write it
on your answer sheet. If none of the graphs could work, write N.

(a) The vertical (up-down) displacement of the bead

(b) The vertical velocity of the bead

(c) The horizontal (left-right) displacement of the bead

(d) The horizontal velocity of the bead

(a) (b)

FIGURE 17-50 ■ Problem 68.
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FIGURE 17-51(a) ■ Problem 69.

FIGURE 17-51(b) ■ Problem 69.
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18
This horseshoe bat not only

can locate a moth flying in

total darkness, but can also

determine the moth’s relative

speed, to home in on the

insect.

Sound Waves

How does the bat’s
detection system
work, and how can
a moth “jam” the
system or otherwise
reduce its effective-
ness?

The answer is in this
chapter.
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18-1 Sound Waves

What Is a Sound Wave?
As we saw in Chapter 17, there are two types of mechanical waves that require a
material medium to exist: transverse waves that involve displacements of a medium
perpendicular to the direction in which the wave travels, and longitudinal waves that
have displacements of a medium parallel to the direction of wave travel. Examples
of longitudinal waves include the expansion/compression waves in the Slinky de-
scribed in the last chapter (Fig. 17-1) and the waves in an air-filled pipe shown in
Fig. 18-1.

When we hear sounds, we are detecting longitudinal waves passing through air
that have frequencies within the range of human hearing. A sound wave can be
defined more broadly as a longitudinal wave of any frequency passing through a
medium. The medium can be a solid, liquid, or gas. For example, geological prospecting
teams use sound waves to probe the Earth’s crust for oil. Ships carry sound-emitting
gear (sonar) to detect underwater obstacles. Medical personnel use high-frequency
sound waves (ultrasound) to create computer-processed images of soft tissues (as
shown in Fig. 18-2). Physics students use ultrasound pulses to track the motion of ob-
jects in the laboratory.

In this chapter we focus on the characteristics of audible sound waves that travel
through air. We start by considering some differences in how waves propagate in one-,
two-, and three-dimensional spaces.

Wave Dimensions
Unlike the wave pulses that travel in a straight line along a string, a sound wave from
a small “point-like” source is usually not constrained to travel in only one direction.
The same is true for the electromagnetic waves that we will study in Chapters 34–38.
In order to understand how sound waves and electromagnetic waves travel in more
than one dimension, we need to consider how the dimensionality of the space through
which a wave propagates affects it.

In the previous chapter we observed that the crest of a wave passing along a
one-dimensional string moves along a line. If we constrain a sound wave to travel in

vwave Air

Exapansion
(or rarefaction)

Compression

FIGURE 18-1 ■ A sound wave is set up in an
air-filled pipe by moving a piston back and
forth. Because the oscillations of a segment
of the air (represented by the black dot) are
parallel to the direction in which the wave
travels, the wave is a longitudinal wave.

FIGURE 18-2 ■ An image of a fetus flexing
an arm. This image is made with ultrasound
waves that have a frequency of 4 MHz—
two hundred times higher than the threshold
of human hearing.

FIGURE 18-3 ■ Water on the
surface of a tank of water is dis-
turbed as a steel ball of diame-
ter 0.79 cm falls into the water.
The wave crest propagates out-
ward from the source of the
disturbance in a widening cir-
cle. The wave crest moves at a
constant speed of approxi-
mately 30 cm/s.



a long tube, its compression wave crests would lie in planes perpendicular to the axis
of the tube as shown in Fig. 18-1. Such a one-dimensional wave is known as a plane
wave. For example, the relatively narrow beam of sound waves that are emitted from
an ultrasonic motion detector described in Section 1-8 behave like one-dimensional
plane waves.

On the other hand, if you put a small sound source between two large sheets of
plywood, the sound wave crests will propagate outward in expanding circles. Al-
though we cannot see sound waves as they propagate in two dimensions, we have all
seen two-dimensional surface waves on water. For example, when a pebble is
dropped onto the surface of a pond, a wave crest propagates out from the pebble in
an expanding circle as shown in Fig. 18-3. This two-dimensional wave is known as a
circular wave.

If you snap your fingers or ring a tiny sleigh bell, a compression wave is created.
At distances that are large relative to the size of the source, compression wave crests
travel out in three dimensions as expanding spheres (Fig. 18-4). A three-dimensional
wave is defined as a spherical wave, provided there is no preferred direction for the
propagation of the wave energy.

It is important to understand that the dimensionality of a sound source (such as
a one-dimensional wave in a guitar string) and the dimensionality of a sound wave
produced by the source are not necessarily the same. Sound waves often travel
through a medium with uniform density such as air or water. In this case, we can as-
sociate the dimensionality of a wave with the curvature of its wave crest as it spreads,
rather than with the dimensionality of the source. In general, we can define the di-
mensionality of a wave in terms of any point on a propagating waveform. This is be-
cause for a wave of a given dimension, the shape of the wave crests (maxima) and
wave troughs (minima) and points of no deflection (nodes) are the same. For exam-
ple, in a two-dimensional wave the crests, troughs, and points of zero deflection are
all circular or at least circular arcs.

It is useful for us to define a wavefront as the collection of all adjacent points on
an expanding wave that have the same phase. For example, a wavefront can be the
collection of all adjacent crest points. Or it can be taken to be a collection of all adja-
cent nodes, or all adjacent troughs. Rays are defined as lines directed perpendicular
to the wavefronts that indicate the direction of travel of the wavefronts. The short
double arrows superimposed on the rays of Fig. 18-4 indicate that the longitudinal
oscillations of the air, which transmits the wave, are parallel to the rays.

A one-dimensional or plane wave is defined as any wave that has a wavefront
that lies in a plane. The wavefront of a two-dimensional or circular wave lies along an
expanding circle. The wavefront of a three-dimensional or spherical wave lies along
an expanding sphere. These definitions are often still useful in situations where we do
not have ideal point sources. For instance, a flat speaker mounted in the door of a car
only emits waves in a “forward” direction. In this case we would have half-spherical
three-dimensional wavefronts.

As the wavefronts move outward and their radii become larger, their curvatures
decrease. Far from the source, these spheres associated with a three-dimensional
wave are so large that we lose track of their curved nature all together. For exam-
ple, when you listen to a singer in a concert hall, your ear is so far away from her
that you cannot detect any curvature in the wavefronts she sends out. In such cases
we can treat the local portion of a wavefront as if it lies in a plane. Thus, there are
times in our study of sound when we will treat sound waves as if they are one-
dimensional plane waves. Similarly, in Chapter 36 when we study how light waves
interfere when passing through slits and traveling parallel to a two-dimensional
surface, we can treat light waves as if they were two-dimensional rather than three-
dimensional.

At this point let us return to our primary task in this chapter, which is to learn
more about the nature of sound waves.
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Wavefront
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FIGURE 18-4 ■ (a) A small sleigh bell that
is rung at a steady rate. (b) If the distances
from the bell to its listeners are large com-
pared to the size of the bell, then the bell
acts as a three-dimensional point source of
sound. Each compression wave crest
moves out in an expanding sphere. The
two-dimensional cross-section of each of
four wave crest spheres is shown. The short
double arrows signify that the air particles
oscillate parallel to the direction of motion
of the wave crests. The lines drawn perpen-
dicular to the wave crests are rays.
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18-2 The Speed of Sound

The ability to calculate the speed of a sound wave as a function of the properties of
the medium through which it travels is of great practical importance. For example,
we can use our knowledge of the speed of sound in air to estimate how far away a
lightning bolt is. Since sound travels approximately 0.2 mi/s in air, it will take about
5 s to travel one mile. Thus a 5 s interval between a lightning flash and a thunder-
clap tells us that the electrical storm is about a mile away. The ultrasonic motion de-
tectors used in many physics laboratories bounce sound pulses off objects in their
surroundings. The time of travel of the sound pulses emitted and then reflected
from the motion detector is used to measure the distance between it and the reflect-
ing object.

What properties of a medium does the speed of sound depend on? Let’s draw an
analogy between the speed of sound and the speed of a wave traveling along a string
(Section 17-6). We found that the wave speed increases with the tension, T, in the
string. However, the tension determines the magnitude of the restoring force that
brings a displaced section of string back toward its equilibrium position. We also
found, as expected, that the wave speed decreases with the mass of each disturbed
length of the string. This makes sense since the linear mass density of the string, �, is
an inertial property that determines how rapidly, or slowly, the string can respond to
the restoring forces acting on it. Thus, we can generalize (Eq. 17-25), which we derived
for the wave speed along a stretched string, to

(Eq. 17-25)

If the medium is a fluid (such as air or water) and the wave is longitudinal, we can
guess that the inertial property, corresponding to the linear density of the string �, is
the volume density � of the fluid. What shall we define as its restoring property? 

As a sound wave passes through a fluid, elements of mass in the fluid undergo
compressions and expansions due to pressure differences within the fluid. When a
mass element in the fluid is compressed it has a higher pressure and pushes on adja-
cent fluid. This new mass element of fluid becomes compressed into a smaller volume.
Then it pushes in turn on another mass element, and so on. This is how the compres-
sion wave travels through a fluid.

As shown in Fig. 18-5, the restoring property of the fluid is determined by the ex-
tent to which an element of mass changes volume when it experiences a difference in
pressure (force per unit area). As a compression wave travels, the density of each
mass element increases temporarily. When a fluid mass element becomes more dense
its pressure rises, causing a difference in pressure between it and the mass element
down the line. Just as the factor k tells us how stiff a spring is, we would like to define
a factor B that tells us how “stiff” a three-dimensional medium is. The ratio of the
pressure difference to the relative volume change is a property of the fluid we will call
the bulk modulus, and define as

(definition of bulk modulus), (18-1)

where �V/V is the fractional change in volume produced by a change in pressure �P.
[As explained in Section 15-3, the SI unit for pressure is the newton per square meter,
which is given a special name, the pascal (Pa).] The minus sign signifies that a rise in
pressure on a medium causes its volume to decrease.

For the pressure changes associated with small amplitude sound waves, the bulk
modulus in a given material is approximately constant and is a restoring factor just as

B � �
�P

�V/V

vwave � � v:wave � � √ F tension

�
� √ restoring property

inertial property
.

P P, V

(a)

P

P

(b)

F'
P

P', V'

P

(c)

F''
P

P'', V''

ΔV = V – V'

ΔV = V – V''

FIGURE 18-5 ■ (a) An undisturbed tube
of fluid at pressure P. (b) A compression
wave passing through a fluid with a small
bulk modulus causes a mass element to be
compressed to a smaller volume, V�. (c) The
same type of compression wave with a larger
bulk modulus. It causes a mass element to
undergo a greater volume reduction.
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tension is in a string or k is in a spring. So we can substitute B for F tension and � for �
in Eq. 17-25 (vwave � ) to get

(speed of sound in a fluid). (18-2)

Notice that as is the case for waves on a string, we expect the wave velocity to be in-
dependent of frequency and amplitude.

It can be easily shown that the dimensions of are those of a velocity. It is
possible to derive Eq. 18-2 mathematically using methods similar to those used in Sec-
tion 17-6 to find the expression for the wave speed along a stretched string. Once
again experimental results confirm the validity of Eq. 18-2.

Table 18-1 lists the speed of sound in various media.

Note that the density of water is almost 1000 times greater than the density of air.
If this were the only relevant factor, we would expect from Eq. 18-2 that the speed of
sound in water would be considerably less than the speed of sound in air. However,
Table 18-1 shows us that the reverse is true. We conclude (again from Eq. 18-2) that
the bulk modulus of water must be more than 1000 times greater than that of air. This
is indeed the case. Water is less compressible than air, which (see Eq. 18-1) is another
way of saying that its bulk modulus is much greater.

√B/�

vwave � � v:wave � � √ B
�

√F tension/�

TA B L E 18 - 1
The Speed of Sounda

Medium Speed (m/s) Density (kg/m3) Bulk Modulus (N/m2)

Gases

Air (0°C) 331

Air (20°C) 343 1.21 1.4 � 105

Helium 965

Hydrogen 1284

Liquids

Water (0°C) 1402

Water (20°C) 1482 990 2.2 � 109

Seawaterb 1522

Solids

Aluminum 6420

Steel 5941 7850 1.6 � 1011

Granite 6000

aAt 0°C and 1 atm pressure, except where noted.
bAt 20°C and 3.5% salinity.
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s)FIGURE 18-6 ■ Measurement of the

speed of sound. The sound pressure 
variations from a finger snap travel down
a 2.4 m tube and back. A microphone
sensor connected to a computer data 
acquisition system is used to measure the
time between the initial sound pulses and
the reflected pulses.
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A graph that shows the outcome of a simple measurement of the speed of sound
in air is shown in Fig. 18-6. Analysis of the data shows a speed, which is temperature-
dependent, of about 345 m/s.

More About Traveling Sound Waves in Air
If the hanging Slinky discussed in Chapter 17 is pushed back and forth at one end
with a continuous sinusoidal motion, we can set up a series of compressions and 
rarefactions like those shown in Fig. 18-7a. We can do the same thing when pushing a
piston back and forth in a column of air as shown in Fig. 18-1. Figure 18-7b displays
such a wave traveling rightward through a long air-filled tube. The piston’s rightward
motion compresses the air next to it; the piston’s leftward motion allows the element
of air to move back to the left and the pressure to decrease. As each element of air
pushes on the next element in turn, the right-left motion of the air and the change in
its pressure is passed to the next bit of air along the tube.

The alternating compressions and rarefactions (reductions in pressure) propagate
as a sound wave. As a reminder of what we learned in Chapter 17, note that it is the
oscillations of pressure that propagate, not the air molecules. However, the air mole-
cules (or molecules of another fluid) are disturbed and oscillate back and forth about
their initial positions.

As the wave moves, the air pressure changes at any position x in Fig. 18-7b in a 
sinusoidal fashion, like the displacement of a string element in a transverse wave,
however the pressure variations are not transverse, they are longitudinal. To describe
this pressure change from the local atmospheric pressure as a function of position
and time for purely sinusoidal oscillations, consider Fig. 18-8. We can model our
equation on Eq. 17-4, which describes the propagation of a sinusoidal transverse
wave along a string. However, instead of the vertical displacement of a bit of string,
we are interested in how pressure varies from an equilibrium value. Modifying Eq.
17-4 gives us

(18-3)

where �P max is called the pressure amplitude, which is the maximum change from local
atmospheric pressure due to the wave. It turns out that for typical sound waves that

�P(x, t) � �Pmax sin[(kx 	 
t) � �0],

x
v wave

Expansion

Compression λ

(a)

(b)

FIGURE 18-7 ■ (a) A continuous longitudinal wave trav-
eling along a hanging Slinky. (b) A sound wave, traveling
through a long air-filled tube with speed , consists of
a moving, periodic pattern of expansions and compres-
sions of the air. The wave is shown at an arbitrary instant.
As the wave passes, a fluid element of thickness �x (not
shown) oscillates left and right in simple harmonic mo-
tion about its equilibrium position.

v: wave

FIGURE 18-8 ■ A computer data acquisi-
tion system is used to measure air pressure
variations from equilibrium using a small
microphone. The sampling rate was 25 000
data points/second. This pressure variation
was caused by a speaker cone that oscil-
lated sinusoidally.
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we hear, �Pmax is extremely small compared to the equilibrium pressure P atm present
when no wave is present.

The wave number k, angular frequency 
, frequency f, wavelength , wave speed
vwave, period T, and time- and space-dependent phase �(x, t) for a longitudinal sound
wave are defined and interrelated exactly as for a transverse wave. However, note that
the wavelength  is now the distance (again along the direction of travel) in which the
pattern of compression and expansion due to the wave begins to repeat itself (see Fig.
18-7b). Also note that Eq. 17-13 still holds so that the wave speed is given by vwave �
f � 
/k.

A negative value of �P in Fig. 18-8 and Eq. 18-3 corresponds to an expansion of a
packet of air, and a positive value corresponds to a compression.

READI NG EXERC IS E  18-1: Verify that Eq. 18-2 is dimensionally correct. In other
words, show that the term has the dimensions of velocity in SI units. ■

READI NG EXERC IS E  18-2: Examine Fig. 18-6. The maximum of the finger snap
pulse set is at 0.0002 s and the maximum of the reflected pulse is at 0.0133 s. Use these times to
calculate the measured value of the wave speed for the set of sound pulses as they travel back
and forth through the air inside the 2.26-m-long tube. Is your calculated speed approximately
the same as the speed of sound of air at room temperature as reported in Table 18-1?
Note: The air temperature in the room was not recorded. ■

√B/�

TOUCHSTONE EXAMPLE 18-1: Sound Arrival Delay

One clue used by your brain to determine the direction of a source
of sound is the time delay �t between the arrival of the sound at the
ear closer to the source and the arrival at the farther ear. Assume
that the source is distant so that a wavefront from it is approxi-
mately planar when it reaches you, and let D represent the separa-
tion between your ears.
(a) Find an expression that gives �t in terms of D and the angle �
between the direction of the source and the forward direction.

S O L U T I O N ■ The situation is shown (from an overhead view)
in Fig. l8-9, where wavefronts approach you from a source that is lo-
cated in front of you and to your right. The Ke y  I d e a here is that
the time delay �t is due to the distance d that each wavefront must
travel to reach your left ear (L) after it reaches your right ear (R).
From Fig. 18-9, we find

(Answer) (18-4)

where vair is the speed of the sound wave in air. Based on a lifetime
of experience, your brain correlates each detected value of �t (from
zero to the maximum value) with a value of � (from zero to 90°) for

�t �
d

vair �
D sin�

vair ,

the direction of the sound source.

(b) Suppose that you are submerged in water at 20°C when a wave-
front arrives from directly to your right (� � 90°). Based on the
time-delay clue, at what angle � from the forward direction does the
source seem to be?

S O L U T I O N ■ The Ke y  I d e a here is that the speed is now the
speed of the sound wave in water, vwater, so in Eq. 18-4 we substitute
vwater for v air and 90° for �, finding that

(18-5)

Since vwater is about four times vair, delay �tw is about one-fourth the
maximum time delay in air. Based on experience, your brain will
process the water time delay as if it occurred in air. Thus, the sound
source appears to be at an angle � smaller than 90°. To find that ap-
parent angle we substitute the time delay D/vwater from Eq. 18-5 for
�t in Eq. 18-4, obtaining

(18-6)

Then, to solve for � we substitute vair � 343 m/s and vwater �
1482 m/s (from Table 18-1) into Eq. 18-5, finding

and thus � � 13°. (Answer)

sin� �
vair

vwater �
343 m/s

1482 m/s
� 0.231,

D
vwater �

D sin�

vair .

�tw �
D sin�

vwater �
D

vwater ,

D RL

θ
θ

d

Wavefronts

FIGURE 18-9 ■ A wavefront trav-
els a distance d(� D sin �) farther
to reach the left ear (L) than to
reach the right ear (R).
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18-3 Interference

Like transverse waves, sound waves undergo interference when two waves pass
through the same point at the same time. Let us consider, in particular, the interfer-
ence between two sound waves with the same frequency, wavelength, amplitude, and
phase. The only difference between these waves is that they are traveling in slightly
different directions. Figure 18-10 shows how we can set up such a situation: Two point
sources S1 and S2 emit sound waves that are in phase. Thus, the sources themselves are
said to be in phase; that is, as the waves emerge from the sources, their displacements
are always identical. We are interested in the waves that then travel through point P
in Fig. 18-10. We assume that the distance to P is much greater than the distance be-
tween the sources so that the waves are traveling in almost the same direction at P.

If the waves (which both start out at the same point in their pressure oscillation, i.e.,
in phase) traveled along paths with identical lengths to reach point P, they would still be
in phase there. In this case, the displacements of the two waves would add. As with
transverse waves, this means that they would undergo fully constructive interference
there. However, in Fig. 18-10, path L2 traveled by the wave from S2 is longer than path
L1 traveled by the wave from S1. The difference in path lengths means that the waves
may not be in phase at point P and so might be at different points in their oscillations.

We can use the definition of phase (from Section 17-4) to determine the phase
difference. We specified that the waves had the same phase at locations S1 and S2. So
we can set (�0)1 � (�0)2. Thus, the phase difference when the two waves arrive at
point P at a common time t is given by 

.
(18-7)

Indeed the magnitude of the phase difference �� at P depends on the path length dif-
ference of the two waves. Since the wave number , we can
rewrite �� � k�L as

(path length–phase difference relation). (18-8)

Fully constructive interference occurs when the phase difference, ��, is zero, 2�, or any in-
teger multiple of 2�.

We can write this condition as 

(fully constructive interference), (18-9)

or from Eq. 18-8, this also occurs when the ratio �L/ is

(fully constructive interference), (18-10)

where m is zero or any positive integer.
For example, if the magnitude of the path length difference in

Fig. 18-10 is equal to 2, then �L/ � 2 and the waves undergo fully constructive in-
terference at point P. The interference is fully constructive because the wave from S2

is phase-shifted relative to the wave from S1 by 2, putting the two waves exactly in
phase at P.

Fully destructive interference occurs when the magnitude of the phase difference between
the two waves �� is an odd multiple of �.

�L � � L2 � L1 �

�L


� m

� �� � � m(2�),  for m � 0, 1, 2, . . .

� �� � �
�L


2�

k � 2�/�L � � L2 � L1 �

�� � �2(x, t) � �1(x, t) � [kL2 � 
t � (�0)2] � [kL1 � 
t � (�0)1] � k(L2 � L1)

S1

L1

L 2

S2

P

FIGURE 18-10 ■ Two point sources S1 and
S2 emit spherical sound waves in phase. The
rays indicate that the waves pass through a
common point P. (Recall that rays are lines
that run perpendicular to the wavefront
and indicate direction of travel.)



We can write this as 

(fully destructive interference), (18-11)

where once again m is zero or any positive integer. From � (�L/)2� (Eq. 18-8),
this we see occurs when the ratio �L/ is

(fully destructive interference). (18-12)

For example, if the path length difference in Fig. 18-10 is equal to 2.5,
then �L/ � 2.5 and the waves undergo fully destructive interference at point P. The in-
terference is fully destructive because the wave from S2 is phase-shifted relative to the
wave from S1 by 2.5 wavelengths, which puts the two waves exactly out of phase at P.

Of course, two waves could produce intermediate interference as, say, when 
�L/ � 1.2. This would be closer to fully constructive interference (�L/ � 1.0) than
to fully destructive interference (�L/ � 1.5).

If the initial phase of one of the interfering waves is different than that of the
other, we would have to derive a different set of conditions for constructive and de-
structive interference.

�L � � L2 � L1 �

�L


�
2m � 1

2
� m � 1

2

� �� �

� �� � � (2m � 1)�
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TOUCHSTONE EXAMPLE 18-2: Constructive Interference

In Fig. 18-11a, two point sources S1 and S2, which are in phase and
separated by distance D � 1.5, emit identical sound waves of
wavelength .

(a) What is the path length difference of the waves from S1 and S2

at point P1, which lies on the perpendicular bisector of distance D,
at a distance greater than D from the sources? What type of inter-
ference occurs at P1?

S O L U T I O N ■ The Ke y  I d e a here is that, because the waves
travel identical distances to reach P1, their path length difference is

�L � 0.0. (Answer)

From Eq. 18-10, this means that the waves undergo fully construc-
tive interference at P1.

(b) What are the path length difference and type of interference at
point P2 in Fig. 18-11a?

S O L U T I O N ■ Now the Ke y  I d e a is that the wave from S1

travels the extra distance D ( � 1.5) to reach P2. Thus, the path
length difference is

(Answer)

From Eq. 18-12, this means that the waves are exactly out of phase
at P2 and undergo fully destructive interference there.

(c) Figure 18-11b shows a circle with a radius much greater than D,
centered on the midpoint between sources S1 and S2. What is the
number of points N around this circle at which the interference is
fully constructive?

S O L U T I O N ■ Imagine that, starting at point a, we move clock-
wise along the circle to point d. One Ke y  I d e a here is that as we
move to point d, the path length difference �L increases and so the
type of interference changes. From (a), we know that the path
length difference is �L � 0.0 at point a. From (b), we know that
�L � 1.5 at point d. Thus, there must be one point along the circle
between a and d at which �L � , as indicated in Fig. 18-11b. From
Eq. 18-10, fully constructive interference occurs at that point. Also,
there can be no other point along the way from point a to point d at
which fully constructive interference occurs, because there is no
other integer than 1 between 0.0 and 1.5.

Another Ke y  I d e a here is to use symmetry to locate the
other points of fully constructive interference along the rest of the
circle. Symmetry about line cd gives us point b, at which �L � 0.
Also, there are three more points at which �L � . In all we have
constructive interference at 

N � 6 points. (Answer)

�L � 1.5.D/2

D/2

S1
L1

L2
S2

P1

P2

(a)

0 b a 0

1.5λ

1.5λ

1.0λ

λλ

1.0λ

1.0λ

1.0λ

S2

S1

d

c

(b)

FIGURE 18-11 ■ (a) Two point sources S1 and S2, separated by dis-
tance D, emit spherical sound waves in phase. The waves travel
equal distances to reach point P1. Point P2 is on the line extending
through S1 and S2. (b) The path length difference (in terms of wave-
length) between the wave from S1 and S2, at eight points on a large
circle around the sources.
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18-4 Intensity and Sound Level

In Section 17-7 we derived the fact that the average power in a one-dimensional con-
tinuous sinusoidal wave that propagates along a string depends on the squares of both
the frequency and amplitude as shown in Eq. 17-31 ( � �v wave
2Y 2).* Let’s
compare Eq. 17-31 to the equation for the power transmission of a sinusoidal one-
dimensional sound wave. Suppose our sound is produced by an oscillating piston in an
air-filled pipe of cross-sectional area A shown in Fig. 18-1. The relationship for the av-
erage power transmission of the sound waves is given by

� (�A)vwave
2S2, (18-13)

where S represents a maximum displacement. In this case S denotes the maximum
longitudinal displacement about an equilibrium point that particles in the medium
carrying the sound undergo. This power relationship can be derived by calculating the
average kinetic and potential energy of a given volume of air that undergoes simple
harmonic motion. But without using a formal derivation we can see that Eq. 17-31
and Eq. 18-13 are essentially the same. Both S and Y are displacements and the term
�A is equal to the linear density � of the air in the tube.

In previous sections we have been using maximum pressure difference, �Pmax,
rather than maximum particle displacement, S, as an indicator of how strong a sinu-
soidal sound disturbance is. It can be shown that these two measures of wave strength
are related, by the expression

�Pmax � � wave�
S.

If you have ever tried to sleep while someone played loud music nearby, you are well
aware that there is more to sound than frequency, wavelength, and speed. Humans also
detect how loud a sound is. Although the human ear does detect pressure amplitudes, it
turns out that we are more sensitive to the energy fluctuations in a propagating wave
than we are to the pressure alone. Hence, we will define a new energy related quantity
associated with waves.The intensity I of a sound wave at a surface is the average rate per
unit area, A, at which energy is transferred by the wave through or onto the surface. This
is what we commonly refer to as loudness. By definition, the intensity of a wave is

(18-14)

where “Power” is the time rate of energy transfer (the power) of the sound wave, and
A is the area of the surface intercepting the sound.

We can use Eq. 18-13 to show the relationship between the energy-related quan-
tity intensity and the maximum particle displacement associated with a sound wave,

(18-15)

The equation �P max � � wave�
S shown above can be used to express the intensity as
a function of pressure change, so that

The intensity of a continuous sinusoidal wave is proportional to both the square of its dis-
placement amplitude and the square of maximum pressure change in the medium caused by
the sound waves.

I � 1
2 �vwave
2S 2.

I �
�Power�

A
,

1
2�Power�

1
2�Power�

*In order to avoid confusion between power, usually denoted as P, and pressure, also denoted as P, we
choose to spell out the word Power in this section.

Sound can cause the wall of a drinking
glass to oscillate. If the sound produces a
standing wave of oscillations and if the in-
tensity of the sound is large enough, the
glass will shatter.
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S

r

FIGURE 18-12 ■ A point source S emits
sound waves uniformly in all directions.
The waves pass through an imaginary
sphere of radius r that is centered on S.

Variation of Intensity with Distance
How intensity varies with distance from a real sound source is often complex. Some
real sources (like loudspeakers) may transmit sound only in particular directions, and
objects in the surroundings usually produce echoes (reflected sound waves) that over-
lap the direct sound waves. In some situations, however, we can ignore echoes and as-
sume that the sound source is a point source that emits the sound isotropically—that
is, with equal intensity in all directions. The wavefronts spreading from such an
isotropic point source S at a particular instant are shown in Fig. 18-12.

Let us assume that the mechanical energy of the sound waves is conserved as they
spread from this source. Let us also center an imaginary sphere of radius r on the
source, as shown in Fig. 18-12. All the energy emitted by the source must pass through
the surface of the sphere. Thus, the time rate at which energy is transferred through the
surface by the sound waves must equal the time rate at which energy is emitted by the
source (that is, the power, Powers, of the source). From the fact that intensity is equal to
the ratio of power to area (Eq. 18-14), the intensity I at the sphere must then be 

(18-16)

where 4�r2 is the area of the sphere. Equation 18-16 tells us that the intensity of sound
from an isotropic point source decreases with the square of the distance r from the source.

The Decibel Scale
The displacement amplitude at the human ear ranges from about 10�5 m for the loud-
est tolerable sound to about 10�11 m for the faintest detectable sound, a ratio of 106.
From our discussions above, we know that the intensity of a sound varies as the
square of its amplitudes, so the ratio of intensities at these two limits of the human au-
ditory system is 1012. Humans can hear over an enormous range of intensities.

We deal with such an enormous range of values by using base 10 logarithms.
Consider the relation 

y � log x,

in which x and y are variables. It is a property of this equation that if we multiply x by
10, then y increases by 1. To see this, we write 

y� � log(10x) � log 10 � log x � 1 � y.

Similarly, if we multiply x by 1012, y increases by only 12. An important characteristic
of human hearing is that we have logarithmic ears. Within the normal range of hear-
ing when the measured sound intensity increases by a factor of 10, the sound only
seems twice as loud to us.

Thus, instead of speaking of the intensity I of a sound wave, it is much more con-
venient to speak of its sound level �, defined as 

. (18-17)

Here dB is the abbreviation for decibel, the unit of sound level, a name that was cho-
sen to recognize the work of Alexander Graham Bell. I0 in Eq. 18-17 is a standard
reference intensity (� 10�12 W/m2), chosen because it is near the lower limit of
the human range of hearing at a frequency of 1 kHz. For I � I0, Eq. 18-17 gives
� � 10 log 1 � 0, so our standard reference level, which we can barely hear, corre-

� � (10 dB)log
I
I0

I �
Powers

4�r 2 ,
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TOUCHSTONE EXAMPLE 18-3: Spark Sound

An electric spark jumps along a straight line of length L = 10 m,
emitting a pulse of sound that travels radially outward from the
spark. (The spark is said to be a line source of sound.) The power of
the emission is Powers � 1.6 � 104 W.

(a) What is the intensity I of the sound when it reaches a distance 
r � 6 m from the spark?

S O L U T I O N ■ Let us center an imaginary cylinder of radius 
r � 6 m and length L � 10 m (open at both ends) on the spark,
as shown in Fig. 18-13. One K e y  I d e a here is that the intensity
I at the cylindrical surface is the ratio �Power��A of the average
rate per unit area at which sound energy passes through a sur-
face of area A on the cylinder. Another K e y  I d e a is to assume
that the principle of conservation of energy applies to the sound
energy. This means that the Power or rate at which energy is
transferred through the cylinder must equal the rate at which en-
ergy is emitted by the source. Putting these ideas together and
noting that the area of a length L of the cylindrical surface is A �
2�rL, and neglecting the relatively small amount of sound energy

that flows out through the ends of the cylinder, we have, from
Eq. 18-14,

(18-18)

This tells us that the intensity of the sound from a line source de-
creases with distance r (rather than with the square of distance r as
for the point source described in Eq. 18-16). Substituting the given
data, we find

(Answer)

(b) At what average �Powerd� is sound energy intercepted by an
acoustic detector of area Ad � 2.0 cm2? Assume that the detector
is aimed at the spark and located a distance r � 6 m from the spark.

S O L U T I O N ■ Applying the first Ke y  I d e a of part (a), we
know that the intensity of sound at the detector is the ratio of the
energy transfer rate �Powerd� there to the detector’s area Ad:

(18-19)

We can imagine that the detector lies on the cylindrical surface 
of (a). Then the sound intensity at the detector is the intensity 
I ( � 42.4 W/m2) at the cylindrical surface. Solving Eq. 18-19 for
�Powerd� gives us

(Answer)�Powerd� � (42.4 W/m2)(2.0 � 10�4m2) � 8.5 mW.

I �
�Powerd�

Ad
.

I �
1.6 � 104 W

2�(6 m)(10 m)
� 42.4 W/m2 	 42 W/m2.

I �
�Power�

A
�

�Powers�
2�rL

.

sponds to zero decibels. Then � increases by 10 dB every time the sound intensity in-
creases by an order of magnitude (a factor of 10). But as we mentioned, a 10 dB in-
crease seems to be twice the loudness. And the sound of a typical conversation,
which has a � of 60 dB, corresponds to an intensity that is 106 times our normal hear-
ing threshold! Table 18-2 lists the sound levels for a variety of environments.

The decibel scale is one of many logarithmic scales used by scientists. Others in-
clude the pH scale, star magnitudes, and the Richter scale used to determine the
severity of earthquakes.

R EADI NG EXERC IS E  18-3: The figure indicates the near edge of three small
patches 1, 2, and 3 that lie on the surfaces of two imaginary spheres; the spheres are centered on
an isotropic point source S of sound. The rates at which energy is transmitted through the three
patches by the sound waves are equal. Rank the patches according to (a) the intensity of the
sound on them and (b) their area, greatest first. ■

TA B L E 18 - 2
Some Sound Levels (dB)

Hearing threshold 0 Rock concert 110

Rustle of leaves 10 Pain threshold 120

Conversation 60 Jet engine 130

rL

Spark FIGURE 18-13 ■ A spark along a
straight line of length L emits
sound waves radially outward. The
waves pass through an imaginary
cylinder of radius r and length L
that is centered on the spark.

S
3

1

2
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TOUCHSTONE EXAMPLE 18-4: Concert Sounds

In 1976, the Who set a record for the loudest concert—the sound
level 46 m in front of the speaker systems was �2 � 120 dB. What is
the ratio of the intensity I2 of the band at that spot to the intensity
I1 of a jackhammer operating at sound level �1 � 92 dB?

S O L U T I O N ■ The Ke y  I d e a here is that for both the Who
and the jackhammer, the sound level � is related to the intensity by
the definition of sound level in Eq. 18-17. For the Who, we have

and for the jackhammer, we have

The difference in the sound levels is

(18-20)

Using the identity

we can rewrite Eq. 18-20 as

(18-21)

Rearranging and substituting the known sound levels now yield

log
I2

I1
�

�2 � �1

10 dB
�

120 dB � 92 dB
10 dB

� 2.8.

�2 � �1 � (10 dB) log
I2

I1
.

log
a
b

� log
c
d

� log
ad
bc

,

�2 � �1 � (10 dB)
log
I2

I0
� log

I1

I0
�.

�1 � (10 dB) log
I1

I0
.

�2 � (10 dB) log 
I2

I0
,

Taking the antilog of the far left and far right sides of this equation
(the antilog key on your calculator is probably marked as l0x), we find

(Answer)

Thus, the Who was very loud.
Temporary exposure to sound intensities as great as those of a

jackhammer and the 1976 Who concert results in a temporary re-
duction of hearing. Repeated or prolonged exposure can result in
permanent reduction of hearing (Fig. 18-14). Loss of hearing is a
clear risk for any one continually listening to, say, heavy metal at
high volume, especially on headphones.

I2

I1
� log�1 2.8 � 630.

FIGURE 18-14 ■ Pete
Townshend of the Who,
playing in front of a
speaker system. He suf-
fered a permanent re-
duction in his hearing
ability due to his expo-
sure to high-intensity
sound, not so much dur-
ing on-stage perfor-
mances as from wearing
headphones in record-
ing studios and at home.

18-5 Sources of Musical Sound

Musical sounds can be set up by oscillating strings (guitar, piano, violin), membranes (ket-
tledrum, snare drum), air columns (flute, oboe, pipe organ, and the fujara of Fig. 18-15),
wooden blocks or steel bars (marimba, xylophone), and many other oscillating bodies.
Most instruments involve more than a single oscillating part. In the violin, for example,
both the strings and the body of the instrument participate in producing the music.

Standing Waves and Musical Instruments
Recall from Chapter 17 that standing waves can be set up on a stretched string that is
fixed at both ends. They arise because waves traveling along the string are reflected
back onto the string at each end. If the wavelength of the waves is suitably matched to
the length of the string, the superposition of waves traveling in opposite directions pro-
duces a standing wave pattern (or oscillation mode). The wavelength required of the
waves for such a match is one that corresponds to a resonant frequency of the string.
The advantage of setting up standing waves is that the string then oscillates with a
large, sustained amplitude, pushing back and forth against the surrounding air and thus
generating a noticeable sound wave with the same frequency as the oscillations of the
string. This production of sound is of obvious importance to, say, a guitarist.

FIGURE 18-15 ■ The air column within a
fujara oscillates when that traditional Slo-
vakian instrument is played.
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We can set up standing waves of sound in an air-filled pipe in a similar way. As
sound waves travel through the air in the pipe, they are reflected at each end and
travel back through the pipe. (The reflection occurs even if an end is open, but the re-
flection is not as complete as when the end is closed.) If the wavelength of the sound
waves is suitably matched to the length of the pipe, the superposition of waves travel-
ing in opposite directions through the pipe sets up a standing wave pattern. The wave-
length required of the sound waves for such a match is one that corresponds to a reso-
nant frequency of the pipe. The advantage of such a standing wave is that the air in
the pipe oscillates with a large, sustained amplitude, emitting at any open end a sound
wave that has the same frequency as the oscillations in the pipe. This emission of
sound is of obvious importance to, say, an organist.

Many other aspects of standing sound wave patterns are similar to those of string
waves: The closed end of a pipe is like the fixed end of a string in that there must be a
displacement node (zero displacement in a string, zero motion of molecules in a fluid
like air) located there. A zero particle velocity immediately against the closed end of
the pipe leads to a large change in pressure (a pressure antinode). The open end of a
pipe is like the end of a string attached to a freely moving ring, as in Fig. 17-19b, in that
there must be a displacement antinode (maximum displacement in a string, maximum
motion of molecules in a fluid like air) located there. This too makes sense, as the mol-
ecules of air (or other fluid) are completely unconstrained once they leave the end of
the pipe. The large particle velocities here lead to very small changes in pressure (a
pressure antinode). To be perfectly precise, the antinode for the open end of a pipe is
located slightly beyond the end. We will ignore this difference in our discussions.

So, the simplest standing wave pattern that can be set up in a pipe with two open
ends is one with a particle displacement antinode (maximum particle velocities and zero
change in pressure) at both ends and no other antinodes between them. Under these
conditions, the only way that there can be a standing wave pattern at all is for there to
be a displacement node (zero particle velocity and maximum change in pressure) in the
middle of the pipe. This is shown in Fig. 18-16a. An alternate representation of the
standing wave pattern as a graph of maximum molecular displacement at each position
along the length of the page is shown in Fig. 18-16b.

Harmonics
The standing wave pattern of Fig. 18-16a is called the fundamental mode or first har-
monic. For it to be set up, the sound waves in a pipe of length L must have a wavelength
given by L � /2, so that  � 2L. Several more standing sound wave patterns for a pipe
with two open ends are shown in Fig. 18-17a with graphs of air molecule displacements
from equilibrium shown next to the pipes. The second harmonic requires sound waves
of wavelength  � L, the third harmonic requires wavelength  � 2L/3, and so on.

More generally, the resonant frequencies for a pipe of length L with two open
ends correspond to the wavelengths 

(pipe, two open ends). (18-22)

Here n is a positive integer (1, 2, 3, . . . etc.) called the harmonic number. The reso-
nant frequencies for a pipe with two open ends are then given by 

(pipe, two open ends), (18-23)

where vair is the speed of the sound wave in air.
Figure 18-17b shows (using pressure variation graphs) some of the standing sound

wave patterns that can be set up in a pipe with only one open end. As required, across

f �
vair


� n
 vair

2L �

 �
2L
n

(b)

λ = 2L

L

A N A
(a)

FIGURE 18-16 ■ (a) The simplest standing
wave pattern of air molecule displacements
from equilibrium for (longitudinal) sound
waves in a pipe with both ends open. It
shows an antinode (A) across each end and
a node (N) across the middle of the pipe.
(The longitudinal displacements repre-
sented by the double arrows are greatly
exaggerated.) (b) A graph of maximum
molecular displacements versus position.

L

n = 2

n = 3

n = 4

λ = 2L/2 = L

λ = 2L/3

λ = 2L/4 = L/2

(a)

(b)

λ = 4L

λ = 4L/3

λ = 4L/5

λ = 4L/7

n = 1

n = 3

n = 5

n = 7

FIGURE 18-17 ■ Standing wave patterns
are shown as graphs of the extremes of
maximum and minimum air molecule dis-
placements versus location along the pipe.
(a) With both ends of the pipe open, any
harmonic can be set up in the pipe. (b)
With only one end open, only odd harmon-
ics can be set up.



the open end there is a displacement antinode (maximum particle velocities and zero
pressure change) and across the closed end there is a displacement node (zero parti-
cle velocities and maximum pressure change). The simplest pattern requires sound
waves having a wavelength given by L � /4, so that  � 4L. The next simplest pat-
tern requires a wavelength given by L � 3/4, so that  � 4L/3, and so on.

More generally, the resonant frequencies for a pipe of length L with only one
open end correspond to the wavelengths

for n � 0, 1, 2, . . . , (18-24)

where n still represents a positive integer with 2n � 1 giving us odd positive integers.
The resonant frequencies are then given by

n (pipe, one open end). (18-25)

Note again that only odd harmonics can exist in a pipe with one open end. For exam-
ple, the second harmonic, with 2n � 1 � 2, cannot be set up in such a pipe. Note also
that for such a pipe the numeric adjective (e.g., first, second, third, . . .) before the
word harmonic in a phrase such as “the third harmonic” always refers to the harmonic
number n and not to the nth possible harmonic.

The length of a musical instrument is related to the range of frequencies over
which the instrument is designed to function, and smaller length implies higher fre-
quencies. Figure 18-18, for example, shows the saxophone and violin families, with
their frequency ranges suggested by the piano keyboard. Note that, for every instru-
ment, there is overlap with its higher- and lower-frequency neighbors.

What Makes Instruments Distinctive?
In any oscillating system that gives rise to a musical sound, whether it is a violin string or
the air in an organ pipe, the fundamental and one or more of the higher harmonics are
usually generated simultaneously. Thus, you hear them together—that is, superimposed
into a combined wave. When different instruments are playing the same note, they pro-
duce the same fundamental frequency but different intensities for the higher harmonics.
For example, the fourth harmonic of middle C might be relatively loud on one instrument

f �
vair


� (2n � 1)

vair



 �
4L

2n � 1
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Bass saxophone

Soprano
saxophone

Violin

Baritone saxophone
Tenor saxophone

Alto saxophone

Bass Cello
Viola

FIGURE 18-18 ■ The saxophone and violin
families, showing the relations between 
instrument length and frequency range.
The frequency range of each instrument
is indicated by a horizontal bar along a
frequency scale suggested by the piano
keyboard at the bottom; the frequency
increases toward the right.
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FIGURE 18-19 ■ The wave forms produced
by a violin, a hammer dulcimer struck with
a felt and a wood hammer, and a guitar.The
fundamental frequency is listed for each
wave.These graphs of the relative sound
pressure variation versus time are produced
using a computer data acquisition system
with a microphone sensor attached.
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and relatively quiet or even missing on another. Thus, different instruments sound differ-
ent to you even when they are playing the same note. That would be the case for the
combined waves shown for the violin, hammer dulcimer and guitar in Fig. 18-19 even if
these three instruments were playing the same note (which they are not).

In Fig. 18-19 we can also see that the pressure variation versus time for the hammer
dulcimer hit with a wood hammer has more high frequency harmonics than the corre-
sponding graph for the dulcimer hit with a felt hammer. But, in both cases the dulcimer
has the same fundamental frequency of 391 Hz. There is a mathematical technique know
as Fourier analysis that can be used to determine the amplitudes of each of the harmonic
frequencies that combines to make a full sound. A fast Fourier transform (FFT) of the
two hammer dulcimer sounds is shown in Fig. 18-20. As you can see, the relative ampli-
tudes for harmonic frequencies between 1500 Hz and 2500 Hz are much higher when the
dulcimer is hit with a wood hammer than when it is hit with a felt hammer.

READI NG EXERC IS E  18-4: Pipe A, with length L, and pipe B, with length 2L, both
have two open ends. Which harmonic of pipe B has the same frequency as the fundamental of
pipe A? ■

18-6 Beats

If you listen separately to two sounds whose frequencies are, say, 50 and 52 Hz, most
of us cannot tell which one has the higher frequency. However, if the sounds reach our
ears simultaneously, what we hear is a sound whose frequency turns out to be 51 Hz,
the average of the two combining frequencies. We also hear a striking variation in the

TOUCHSTONE EXAMPLE 18-5: Sound in a Tube

Weak background noises from a room set up the fundamental standing
wave in a cardboard tube of length L � 67.0 cm with two open ends.
Assume that the speed of sound in the air within the tube is 343 m/s.

(a) What frequency do you hear from the tube?

S O L U T I O N ■ The Ke y  I d e a here is that, with both pipe ends
open, we have a symmetric situation in which the standing wave has
a displacement antinode at each end of the tube. The standing wave
displacement variation pattern is that of Fig. 18-16b. The frequency
is given by Eq. 18-23 with n � 1 for the fundamental mode:

(Answer)

If the background noises set up any higher harmonics, such as the
second harmonic, you must also hear frequencies that are integer
multiples of 256 Hz.

f �
nvair

2L
�

(1)(343 m/s)
(2)(0.670 m)

� 256 Hz.

(b) If you jam your ear against one end of the tube, what funda-
mental frequency do you hear from the tube?

S O L U T I O N ■ The Ke y  I d e a now is that, with your ear ef-
fectively closing one end of the tube we have an asymmetric
situation — a displacement antinode still exists at the open end
but a displacement node is now at the other (closed) end. The
standing wave pattern is the top one in Fig. 18-17b. The fre-
quency is given by Eq. 18-25 with n � 1 for the fundamental
mode:

(Answer)

If the background noises set up any higher harmonics, they will be
odd multiples of 128 Hz. That means that the frequency of 256 Hz
(which is an even multiple) cannot now occur.

f �
nvair

4L
�

(1)(343 m/s)
4(0.670 m)

� 128 Hz.
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FIGURE 18-20 ■ A fast Fourier transform
showing the amplitudes of the harmonics
for a hammered dulcimer when it is (a)
struck with a felt hammer and (b) struck
with a wood hammer. The wood hammer
stimulates more very high harmonics.



intensity of this sound—it increases and decreases in slow, wavering beats that repeat
at a frequency of 2 Hz, the difference between the two combining frequencies. Figure
18-21 shows this beat phenomenon (for sounds of frequencies of 8 Hz and 10 Hz).

Let the time-dependent variations of pressure due to two sound waves at a partic-
ular location be 

(18-26)

where 
1 � 
2. We have assumed, for simplicity, that the waves have the same ampli-
tude and initial phase. According to the superposition principle, the resultant pressure
variation is 

Using the trigonometric identity (see Appendix E) 

allows us to write the resultant pressure variation as 

(18-27)

If we write

(18-28)

we can then write Eq. 18-27 as 

(18-29)

We now assume that the angular frequencies 
1 and 
2 of the combining waves
are almost equal, which means that 
��
� in Eq. 18-28. We can then regard Eq.
18-29 as a cosine function whose angular frequency is 
 and whose amplitude
(which is not constant but varies with angular frequency 
�) is the quantity in the
square brackets.

�P(t) � [2�Pmax cos
�t]cos
t.


� � 1
2 (
1 � 
2) and 
 � 1

2 (
1 � 
2)

�P � 2�P maxcos 1
2 (
1 � 
2)t cos 1

2(
1 � 
2)t.

cos� � cos� � 2cos 1
2 (� � �)cos 1

2 (� � �)

�P � �P1 � �P2 � �P max(cos
1t � cos
 2t).

�P1 � �P maxcos
1t     and �P2 � �P max cos
 2t,
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(a)

(b)

(c)

Portion of wave
shown in (b).

ΔP

ΔP

t

t
FIGURE 18-21 ■ (a) The pressure variations �P of
two sound waves as they would be detected 
separately are plotted as a function of time. The
frequencies of the waves are nearly equal. (b) If the
two waves are detected simultaneously the 
resultant pressure variation is the superposition of
the two waves. Notice how the waves cancel each
other at the center of the plot and reinforce each
other at the two ends of the plot. (c) When plotted
over a longer time period the two waves shown in
(a) and (b) show a beat pattern of 2 Hz if the 
frequencies of the original waves are 10 and 12 Hz.
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A maximum amplitude will occur whenever cos
�t in Eq. 18-29 has the value �1
or �1, which happens twice in each repetition of the cosine function. Because 
cos
�t has angular frequency 
�, the angular frequency 
beat at which beats occur is

beat � 2
�. Then, with the aid of Eq. 18-28, we can write 

Because 
 � 2� f, we can recast this as 

(beat frequency). (18-30)

Musicians use the beat phenomenon in tuning their instruments. If an instrument is
sounded against a standard frequency (for example, the lead oboe’s reference A) and
tuned until the beat disappears, then the instrument is in tune with that standard. In
musical Vienna, concert A (440 Hz) is available as a telephone service for the benefit
of the city’s many professional and amateur musicians.

Types of Superposition
So far the three simple cases we have discussed involving the superposition of sound
waves are:

1. Standing waves created by the interference of two identical waves moving the op-
posite directions with the same speed

2. Wave interference caused by waves that have the same frequency, wavelength, and
amplitude that are moving in almost the same direction and overlap at some
point

3. Beats created by two waves with the same amplitude moving in the same direc-
tion with slightly different frequencies

There are many other more complex types of interference of interest to scientists and
engineers. The mathematical techniques used to analyze these situations are similar to
those we introduced in this section.

18-7 The Doppler Effect

An ambulance is parked by the side of the highway, sounding its 1000 Hz siren. If
you are also parked by the highway, you will hear that same frequency. However, if
there is relative motion between you and the ambulance, either toward or away
from each other, you will hear a different frequency. For example, if you are driving
toward the ambulance at 120 km/h (about 75 mi/h), you will hear a higher
frequency (1096 Hz, an increase of 96 Hz). If you are driving away from the ambu-
lance at that same speed, you will hear a lower frequency (904 Hz, a decrease of
96 Hz).

These motion-related frequency changes are examples of the Doppler effect. The
effect was proposed (although not fully worked out) in 1842 by Austrian physicist
Johann Christian Doppler. It was tested experimentally in 1845 by Buys Ballot in
Holland, “using a locomotive drawing an open car with several trumpeters.”

The Doppler effect holds not only for sound waves but also for electromagnetic
waves, including microwaves, radio waves, and visible light. Here, we shall consider
only sound waves for the special case where no wind is present. This means that we
shall measure the speeds of a source S of sound waves and a detector D of those
waves relative to a body of air that is not moving. We shall assume that S and D move

fbeat � f1 � f2


beat � 2
� � (2)(1
2 )(
1 � 
2) � 
1 � 
2.



either directly toward or directly away from each other, at speeds less than the speed
of sound.

If either the detector or the source is moving, or both are moving, the emitted fre-
quency f and the detected frequency f� are related by 

(1D Doppler effect for sound in still air), (18-31)

where vair is the speed of sound through the air, vD is the detector’s speed relative to
the air, and vS is the source’s speed relative to the air. The choice of plus or minus
signs is set by this rule:

When a sound source and a detector are moving toward each other, the sign on the
sound’s speed and the detector’s speed must give upward shifts in frequency. When a
sound source and a detector are moving away from each other, the signs on the speeds
must give downward shifts in frequency.

In short, toward means shift up, and away means shift down.
Here are some examples of the rule. If the detector moves toward the source, use

the plus sign in the numerator of Eq. 18-31 to get a shift up in the frequency. If it moves
away, use the minus sign in the numerator to get a shift down. If it is stationary, substi-
tute 0 for vD. If the source moves toward the detector, use the minus sign in the denomi-
nator of Eq. 18-31 to get a shift up in the frequency. If it moves away, use the plus sign in
the denominator to get a shift down. If the source is stationary, substitute 0 for vS.

Next, we derive equations for the Doppler effect for two specific situations and
then derive Eq. 18-31 for the general situation.

1. When the detector moves relative to the air and the source is stationary relative
to the air, the motion changes the frequency at which the detector intercepts
wavefronts and thus the detected frequency of the sound wave.

2. When the source moves relative to the air and the detector is stationary relative
to the air, the motion changes the wavelength of the sound wave and thus the de-
tected frequency (recall that frequency is related to wavelength).

Detector Moving; Source Stationary
In Fig. 18-22, a detector D (represented by an ear) is moving at speed vD toward a sta-
tionary source S that emits spherical wavefronts, of wavelength  and frequency f,
moving at the speed vair of sound in air. A cross section of the wavefronts are drawn
one wavelength apart. The frequency detected by detector D is the rate at which D in-
tercepts wavefronts (or individual wavelengths). If D were stationary, that rate would
be f, but since D is moving into the wavefronts, the rate of interception is greater, and
thus the detected frequency f� is greater than f.

Let us for the moment consider the situation in which D is stationary (Fig. 18-23).
In time t, the wavefronts move to the right a distance vairt. The number of wavelengths
in that distance vairt is the number of wavelengths intercepted by D in time t, and that
number is vairt/. The rate at which D intercepts wavelengths, which is the frequency f
detected by D, is 

(18-32)

In this situation, with D stationary, there is no Doppler effect—the frequency detected
by D is the frequency emitted by S.

f �
vairt/

t
�

vair


.

f� � f
vair 	 vD

vair 	 vS
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λ vS = 0
S

x
Dλ

vD

vairvair

FIGURE 18-22 ■ A stationary source of
sound S emits spherical wavefronts, shown
one wavelength apart, that expand out-
ward at speed vair. A sound detector D,
represented by an ear, moves with velocity

toward the source. The detector senses
a higher frequency because of its motion.
v:D

vair

vair

D

vairt

(a)

(b)

λ

FIGURE 18-23 ■ Wavefronts of Fig. 18-22,
assumed planar, (a) reach and (b) pass a
stationary detector D; they move a dis-
tance v airt to the right in time t.



The Doppler Effect   531

Now let us again consider the situation in which D moves opposite the wave-
fronts (Fig. 18-24). In time t, the wavefronts move to the right a distance vairt as previ-
ously, but now D moves to the left a distance vDt. Thus, in this time t, the distance
moved by the wavefronts relative to D is vairt � vDt. The number of wavelengths in
this relative distance vairt � vDt is the number of wavelengths intercepted by D in time
t, and is (vairt � vDt)/. The rate at which D intercepts wavelengths in this situation is
the frequency f�, given by 

(18-33)

From Eq. 18-32, we have  � vair/f. Then Eq. 18-33 becomes 

(18-34)

Note that in Eq. 18-34 f� must be greater than f unless the detector is stationary so
that vD � 0.

Similarly, we can find the frequency detected by D if D moves away from the
source. In this situation, the wavefronts move a distance relative to D in
time t, and f� is given by 

(18-35)

In Eq. 18-35, f� must be less than f unless vD � 0.
We can summarize Eqs. 18-34 and 18-35 with 

(detector moving; source stationary). (18-36)

Source Moving; Detector Stationary
Let detector D be stationary with respect to the body of air, and let source S move to-
ward D at speed (Fig. 18-25). The motion of S changes the wavelength of the
sound waves it emits, and thus the frequency detected by D.

To see this change, let T(� 1/f ) be the time between the emission of any pair of
successive wavefronts W1 and W2. During T, wavefront W1 moves a distance vairT and
the source moves a distance vST. At the end of T, wavefront W2 is emitted. In the di-
rection in which S moves, the distance between W1 and W2, which is the wavelength �
of the waves moving in that direction, is vairT � vST. If D detects those waves, it de-
tects frequency f� given by 

(18-37)

Note that f� must be greater than f unless � 0.
In the direction opposite that taken by S, the wavelength of the waves is 

vairT � vST. If D detects those waves, it detects frequency f�, given by

(18-38)

Now f� must be less than f unless vS � 0.
We can summarize Eqs. 18-37 and 18-38 with 

(source moving; detector stationary). (18-39)f� � f
vair

vair 	 vS

f � � f
vair

vair � vS
.

�
� v:S �

� f
vair

vair � vS
.

f � �
vair

�
�

vair

vairT � vST
�

vair

vair/f � vS/f

� v:s �

f� � f
 vair 	 vD

vair �

f� � f
 vair � vD

vair �.

vairt � v:Dt

f� �
vair � vD

vair/f
� f
 vair � vD

vair �.

f� �
(vairt � vDt)/

t
�

vair � vD


.

vair

vair
vairt

(a)

(b)

λ

D

vDt

vD

vD

FIGURE 18-24 ■ Wavefronts (a) reach
and (b) pass detector D, which moves op-
posite the wavefronts. In time t, the wave-
fronts move a distance v airt to the right and
D moves a distance vDt to the left.

W1

x
λ  'SS7S1

vS
W7

W2

vD = 0

D

FIGURE 18-25 ■ A detector D is station-
ary, and a source S is moving toward it at
speed vS. Wavefront W1 was emitted when
the source was at S1, wavefront W7 when
the source was at S7. At the moment de-
picted, the source is at S. The detector per-
ceives a higher frequency because the
moving source, chasing its own wavefronts,
emits a reduced wavelength � in the direc-
tion of its motion.



General Doppler Effect Equation for Sound
For the one-dimensional case, we can now derive the general Doppler effect equation
by replacing f in Eq. 18-39 (the frequency of the source) with f� of Eq. 18-36 (the fre-
quency associated with motion of the detector). The result is Eq. 18-31 for the general
Doppler effect.

That general equation holds not only when both detector and source are moving
but also in the two specific situations we just discussed. For the situation in which the
detector is moving and the source is stationary, substitution of vS � 0 into Eq. 18-31
gives us Eq. 18-36, which we previously found. For the situation in which the source is
moving and the detector is stationary, substitution of vD � 0 into Eq. 18-30 gives us
Eq. 18-39, which we previously found. Thus, Eq. 18-31 is the equation to remember.

Similar Doppler frequency shifts occur with electromagnetic waves treated in
Chapters 34 and 38, but the equations are slightly different (see Section 38-14).

The Doppler Effect in More Than One Dimension
We can even use Eqs. 18-36 and 18-39 if the source and/or the detector are moving
relative to each other at constant velocities that don’t lie along the same line. Simply
draw a line from one object to the other at a particular time when the sound of inter-
est is being emitted and call it the x axis. Start by finding the x-components of the ve-
locities. You can then use the speeds along the x axis in Eq. 18-36 or Eq. 18-37 to de-
termine the frequency shifts. For example, the Doppler shift for light waves is used by
astronomers to help them determine how fast a distant object is moving relative to
Earth. However, they can only use Doppler shift measurements to find the object’s
velocity component along a line between Earth and the object.

Bat Navigation and Feeding
An example of the use of the three-dimensional Doppler effect in nature is provided
by bats. Bats navigate and search out prey by emitting and then detecting reflections
of ultrasonic waves. These are sound waves with frequencies greater than can be
heard by a human.* For example, a horseshoe bat emits ultrasonic waves at 83 kHz,
well above the 20 kHz limit of human hearing.

After the sound is emitted through the bat’s nostrils, it might reflect (echo) from a
moth, and then return to the bat’s ears. The motions of the bat and the moth relative
to the air cause the frequency heard by the bat to differ by a few kilohertz from the
frequency it emitted. The bat automatically translates this difference into a relative
speed between itself and the moth, so it can zero in on the moth.

Some moths evade capture by flying away from the direction in which they hear
ultrasonic waves. That choice of flight path reduces the frequency difference between
what the bat emits and what it hears, and then the bat may not notice the echo. Some
moths avoid capture by clicking to produce their own ultrasonic waves, thus “jam-
ming” the detection system and confusing the bat. (Surprisingly, moths and bats do all
this without first studying physics.)

READING EXERCISE 18-5: The figure indicates the directions of motion of a sound
source and a detector for six situations in stationary air. In general, v0 � vS. For each situation,
is the detected frequency greater than or less than the emitted frequency, or can’t we tell with-
out more information about the actual speeds?

Source Detector Source Detector

(a) 9: • 0 speed (d) ;9 ;9

(b) ;9 • 0 speed (e) 9: ;9

(c) 9: 9: (f) ;9 9: ■
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*Ultrasonic motion detectors use the same technique for locating objects.
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18-8 Supersonic Speeds; Shock Waves

If a source is moving toward a stationary detector at a speed equal to the speed of
sound in a medium—that is, if vS � vair or vS � vwater and so on—Eqs. 18-31 and 18-39
predict that the detected frequency f� will be infinitely great. This means that the

TOUCHSTONE EXAMPLE 18-6: Rocket Sounds

A rocket moves at a speed of 242 m/s directly toward a stationary
pole (through stationary air) while emitting sound waves at fre-
quency f � 1250 Hz.

(a) What frequency f� is measured by a detector that is attached to
the pole?

S O L U T I O N ■ We can find f � with Eq. 18-31 for the general
Doppler effect. The Ke y  I d e a here is that, because the sound
source (the rocket) moves through the air toward the stationary de-
tector on the pole, we need to choose the sign on vS that gives a shift
up in the frequency of the sound. Thus, in Eq. 18-31 we use the mi-
nus sign in the denominator. We then substitute 0 for the detector
speed vD, 242 m/s for the source speed vS, 343 m/s for the speed of
sound vair (from Table 18-1), and 1250 Hz for the emitted frequency
f. We find

,

(Answer)

which, indeed, is a greater frequency than the emitted frequency.

(b) Some of the sound reaching the pole reflects back to the rocket
as an echo. What frequency f � does a detector on the rocket detect
for the echo?

� 4245 Hz 	 4250 Hz,

f � � f
vair 	 vD

vair 	 vS
� (1250 Hz) 

343 m/s 	 0
343 m/s � 242m/s

S O L U T I O N ■ Two Ke y  I d e a s here are the following:

1. The pole is now the source of sound (because it is the source of
the echo), and the rocket’s detector is now the detector (because
it detects the echo).

2. The frequency of the sound emitted by the source (the pole) is equal
to f�, the frequency of the sound the pole intercepts and reflects.

We can rewrite Eq. 18-31 in terms of the source frequency f� and
the detected frequency f � as

(18-40)

A third Key Idea here is that, because the detector (on the
rocket) moves through the air toward the stationary source, we need to
use the sign on vD that gives a shift up in the frequency of the sound.
Thus, we use the plus sign in the numerator of Eq. 18-40. Also, we sub-
stitute vD � 242 m/s, vS � 0, vair � 343 m/s, and f� � 4245 Hz. We find

(Answer)

which, indeed, is greater than the frequency of the sound reflected
by the pole.

� 7240 Hz,

f � � (4245 Hz)
343 m/s � 242 m/s

343 m/s 	 0

f � � f�
vair 	 vD

vair 	 vS
.

Surface of
Mach cone

W6

W1

x x
vS

(a) (b)

S
S

S6S1

θ vS

vSt

vwavet

FIGURE 18-26 ■ Cross-sectional drawings of: (a) A source of sound S moves at speed vS equal to
the speed of sound and thus as fast as the wavefronts it generates. (b) A source S moves at speed vS

faster than the speed of sound and thus faster than the wavefronts.When the source was at position
S1 it generated wavefront W1, and at position S6 it generated W6.All the spherical wavefronts expand
at the speed of sound vwave and bunch along the surface of a cone called the Mach cone, forming a
shock wave.The surface of the cone has half-angle � and is tangent to all the wavefronts.



source is moving so fast that it keeps pace with its own spherical wavefronts, as Fig. 18-
26a suggests. What happens when the speed of the source exceeds the speed of sound?

For such supersonic speeds, Eqs. 18-31 and 18-39 no longer apply. Figure 18-26b
depicts the spherical wavefronts that originated at various positions of the source. The
radius of any wavefront in this figure is vwavet, where vwave is the speed of sound in the
medium (for example, vair or vwater) and t is the time that has elapsed since the source
emitted that wavefront. Note that all the wavefronts bunch along a V-shaped enve-
lope in the two-dimensional drawing of Fig. 18-26b. The wavefronts actually extend in
three dimensions, and the bunching forms a cone called the Mach cone. A shock wave
is said to exist along the surface of this cone, because the bunching of wavefronts
causes an abrupt rise and fall of air pressure as the surface passes by any point. An
observer hears the wavefront bunching as a sharp loud sound known as a sonic boom.
From Fig. 18-26b, we see that the half-angle � of the cone, called the Mach cone angle,
is given by 

(Mach cone angle). (18-41)

The ratio vS /vwave is called the Mach number. When you hear that a particular
plane has flown at Mach 2.3, it means that its speed was 2.3 times the speed of sound
in the air through which the plane was flying. There is a common misconception that a
sonic boom is a single burst of sound that is generated at the moment a plane breaks
the sound barrier. However, the shock wave is generated continuously as long as the
speed of the plane is greater than the speed of sound. When a shock wavefront gener-
ated by a supersonic aircraft (Fig. 18-27) passes by an observer she hears the sonic
boom.

Part of the sound that is heard when a rifle is fired is the sonic boom produced by
the bullet. A sonic boom can also be heard from a long bullwhip when it is snapped
quickly: Near the end of the whip’s motion, its tip is moving faster than sound and
produces a small sonic boom—the crack of the whip.

sin� �
vwavet

vSt
�

vwave

vS
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FIGURE 18-27 ■ A cloud formation is pro-
duced off the wings of this Navy jet. One
plausible explanation is that the cloud forms
because of the sudden decrease in air pres-
sure that results as a supersonic shock wave
propagates.This causes water vapor in the
air to condense.

Problems

Where needed in the problems, use

speed of sound in air � 343 m/s and

density of air � 1.21 kg/m3

unless otherwise specified.

SEC. 18-2 ■ THE SPEED OF SOUND

1. Devise a Rule Devise a rule for finding your distance in kilome-
ters from a lightning flash by counting the seconds from the time
you see the flash until you hear the thunder. Assume that the sound
travels to you along a straight line.

2. Outdoor Concert You are at a large outdoor concert, seated 300 m
from the speaker system. The concert is also being broadcast live
via satellite (at the speed of light, 3.0 � l08 m/s). Consider a listener
5000 km away who receives the broadcast. Who hears the music
first, you or the listener and by what time difference?

3. Two Spectators Two spectators at a soccer game in Montjuic Sta-
dium see, and a moment later hear, the ball being kicked on the play-
ing field. The time delay for one spectator is 0.23 s and for the other
0.12 s. Sight lines from the two spectators to the player kicking the ball

meet at an angle of 90°. (a) How far is each spectator from the player?
(b) How far are the spectators from each other?

4. Column of Soldiers A column of soldiers, marching at 120 paces
per minute, keep in step with the beat of a drummer at the head of the
column. It is observed that the soldiers in the rear end of the column
are striding forward with the left foot when the drummer is advancing
with the right.What is the approximate length of the column?

5. Earthquakes Earthquakes generate sound waves inside Earth.
Unlike a gas, Earth can experience both transverse (S) and longitu-
dinal (P) sound waves. Typically, the speed of S waves is about 
4.5 km/s, and that of P waves 8.0 km/s. A seismograph records P and
S waves from an earthquake. The first P waves arrive 3.0 min before
the first S waves (Fig. 18-28). Assuming the waves travel in a
straight line, how far away does the earthquake occur?

6. Speed of Sound The speed of sound in a certain metal is vmetal.
One end of a long pipe of that metal of length L is struck a hard
blow. A listener at the other end hears two sounds, one from the
wave that travels along the pipe and the other from the wave that
travels through the air. (a) If vair is the speed of sound in air, what
time interval �t elapses between the arrivals of the two sounds? 
(b) Suppose that �t � 1.00 s and the metal is steel. Find the length L.
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FIGURE 18-28 ■

Problem 5.

7. Stone Is Dropped A stone is dropped into a well. The sound of
the splash is heard 3.00 s later. What is the depth of the well?

8. Audible Frequency The audible frequency range for normal
hearing is from about 20 Hz to 20 kHz. What are the wavelengths of
sound waves at these frequencies?

9. Diagnostic Ultrasound Diagnostic ultrasound of frequency 
4.50 MHz is used to examine tumors in soft tissue. (a) What is
the wavelength in air of such a sound wave? (b) If the speed of
sound in tissue is 1500 m/s, what is the wavelength of this wave
in tissue?

10. Pressure in Traveling Wave The pressure in a traveling sound
wave is given by the equation

�P(x, t) � (1.50 Pa) sin� [(0.900 rad/m)x � (315 rad/s)t].

Find the (a) pressure amplitude, (b) frequency, (c) wavelength, and
(d) speed of the wave.

SEC. 18-3 ■ INTERFERENCE

11. Two Loudspeakers In Fig. 18-29,
two loudspeakers, separated by a
distance of 2.00 m, are in phase. As-
sume the amplitudes of the sound
from the speakers are approxi-
mately the same at the position of
a listener, who is 3.75 m directly in
front of one of the speakers. (a)
For what frequencies in the audi-
ble range (20 Hz to 20 kHz) does the listener hear a minimum sig-
nal? (b) For what frequencies is the signal a maximum?

12. Two Point Sources Two point sources of sound waves of identi-
cal wavelength  and amplitude are separated by distance D �
2.0. The sources are in phase. (a) How many points of maximum
signal (that is, maximum constructive interference) lie along a large
circle around the sources? (b) How many points of minimum signal
(destructive interference) lie around the circle?

13. Loudspeakers on Outdoor Stage Two loudspeakers are located
3.55 m apart on an outdoor stage. A listener is 18.3 m from one and
19.5 m from the other. During the sound check, a signal generator
drives the two speakers in phase with the same amplitude and fre-
quency. The transmitted frequency is swept through the audible
range (20 Hz to 20 kHz). (a) What are the three lowest frequencies
at which the listener will hear a minimum signal because of destruc-

tive interference? (b) What are the three lowest frequencies at
which the listener will hear a maximum signal?

14. Two Sound Waves Two sound waves, from two different sources
with the same frequency, 540 Hz, travel in the same direction at 
330 m/s. The sources are in phase. What is the phase difference of
the waves at a point that is 4.40 m from one source and 4.00 m from
the other?

15. Half-Circle In Fig. 18-30, sound
with a 40.0 cm wavelength travels
rightward from a source and
through a tube that consists of a
straight portion and a half-circle.
Part of the sound wave travels through the half-circle and then re-
joins the rest of the wave, which goes directly through the straight
portion. This rejoining results in interference. What is the smallest
radius r that results in an intensity minimum at the detector?

SEC. 18-4 ■ INTENSITY AND SOUND LEVEL

16. Point Source A 1.0 W point source emits sound waves isotropi-
cally. Assuming that the energy of the waves is conserved, find the
intensity (a) 10 m from the source and (b) 2.5 m from the source.

17. A Source Emits A source emits sound waves isotropically. The
intensity of the waves 2.50 m from the source is 1.91 � l0�4 W/m2.
Assuming that the energy of the waves is conserved, find the power
of the source.

18. Differ in Level Two sounds differ in sound level by 1.00 dB.
What is the ratio of the greater intensity to the smaller intensity?

19. Increased in Level A certain sound source is increased in sound
level by 30 dB. By what multiple is (a) its intensity increased and
(b) its pressure amplitude increased?

20. The Source of a Sound The source of a sound wave has a power
of 1.00 �W. If it is a point source, (a) what is the intensity 3.00 m
away and (b) what is the sound level in decibels at that distance?

21. One in Air, One in Water (a) If two sound waves, one in air and
one in (fresh) water, are equal in intensity, what is the ratio of the
pressure amplitude of the wave in water to that of the wave in air?
Assume the water and the air are at 20°C. (See Table 15-2.) (b) If
the pressure amplitudes are equal instead, what is the ratio of the
intensities of the waves?

22. Noisy Freight Train Assume that a noisy freight train on a
straight track emits a cylindrical, expanding sound wave, and that
the air absorbs no energy. How does the amplitude �Pmax of the
wave depend on the perpendicular distance r from the source?

23. Ratios Find the ratios (greater to smaller) of (a) the intensities,
and (b) the pressure amplitudes for two sounds whose sound levels
differ by 37 dB.

24. Point Source Two A point source emits 30.0 W of sound
isotropically. A small microphone
intercepts the sound in an area of
0.750 cm2, 200 m from the source.
Calculate (a) the sound intensity
there and (b) the power inter-
cepted by the microphone.

25. Acoustic Interferometer Figure
18-31 shows an air-filled, acoustic in-
terferometer, used to demonstrate

Speakers

Listener

2.00 m

3.75 m

FIGURE 18-29 ■ Problem 11

Source Detector

r

FIGURE 18-30 ■ Problem 15.

S

A B

D

FIGURE 18-31 ■ Problem 25.



the interference of sound waves. Sound source S is an oscillating di-
aphragm; D is a sound detector, such as the ear or a microphone.
Path SBD can be varied in length, but path SAD is fixed. At D,
the sound wave coming along path SBD interferes with that com-
ing along path SAD. In one demonstration, the sound intensity at
D has a minimum value of 100 units at one position of the mov-
able arm and continuously climbs to a maximum value of 900
units when that arm is shifted by 1.65 cm. Find (a) the frequency
of the sound emitted by the source and (b) the ratio of the ampli-
tude at D of the SAD wave to that of the SBD wave. (c) How can
it happen that these waves have different amplitudes, considering
that they originate at the same source?

SEC. 18-5 ■ SOURCES OF MUSICAL SOUND

26. A Violin String A violin string 15.0 cm long and fixed at both
ends oscillates in its n � 1 mode. The speed of waves on the
string is 250 m/s, and the speed of sound in air is 348 m/s. What
are (a) the frequency and (b) the wavelength of the emitted
sound wave?

27. Organ Pipe Organ pipe A, with both ends open, had a funda-
mental frequency of 300 Hz. The third harmonic of organ pipe B,
with one end open, has the same frequency as the second harmonic
of pipe A. How long are (a) pipe A and (b) pipe B?

28. Glass Tube The water level in a vertical glass tube 1.00 m long
can be adjusted to any position in the tube. A tuning fork vibrating
at 686 Hz is held just over the open top end of the tube, to set up a
standing wave of sound in the air-filled top portion of the tube.
(That air-filled top portion acts as a tube with one end closed and
the other end open.) At what positions of the water level is there
resonance?

29. Speed of Waves (a) Find the speed of waves on a violin string of
mass 800 mg and length 22.0 cm if the fundamental frequency is 
920 Hz. (b) What is the tension in the string? For the fundamental,
what is the wavelength of (c) the waves on the string and (d) the
sound waves emitted by the string?

30. Violin String A certain violin string is 30 cm long between its
fixed ends and has a mass of 2.0 g. The “open” string (no applied
finger) sounds an A note (440 Hz). (a) To play a C note (523
Hz), how far down the string must one place a finger? (b) What
is the ratio of the wavelength of the string waves required for an
A note to that required for a C note? (c) What is the ratio of the
wavelength of the sound wave for an A note to that for a C
note?

31. Small Loudspeaker ln Fig. 18-32, S is a
small loudspeaker driven by an audio oscilla-
tor and amplifier, adjustable in frequency
from 1000 to 2000 Hz only. Tube D is a piece
of cylindrical sheet-metal pipe 45.7 cm long
and open at both ends. (a) If the speed of
sound in air is 344 m/s at the existing tempera-
ture, at what frequencies will resonance occur
in the pipe when the frequency emitted by the
speaker is varied from 1000 Hz to 2000 Hz?
(b) Sketch the standing wave (using the style
of Fig. 18-16b) for each resonant frequency.

32. Cello String A string on a cello has length L, for which the fun-
damental frequency is f. (a) By what length l must the string be

shortened by fingering to change the fundamental frequency to rf?
(b) What is l if L � 0.80 m and r � 1.2? (c) For r � 1.2, what is the
ratio of the wavelength of the new sound wave emitted by the
string to that of the wave emitted before fingering?

33. Well A well with vertical sides and water at the bottom res-
onates at 7.00 Hz and at no lower frequency. (The air-filled por-
tion of the well acts as a tube with one closed end and one open
end.) The air in the well has a density of 1.10 kg/m3 and a bulk
modulus of 1.33 � 105 Pa. How far down in the well is the water
surface?

34. A Tube A tube 1.20 m long is closed at one end. A stretched
wire is placed near the open end. The wire is 0.330 m long and has a
mass of 9.60 g. It is fixed at both ends and oscillates in its funda-
mental mode. By resonance, it sets the air column in the tube into
oscillation at that column’s fundamental frequency. Find (a) that
frequency and (b) the tension in the wire.

35. Pulsating Variable Star The period of a pulsating variable star
may be estimated by considering the star to be executing radial lon-
gitudinal pulsations in the fundamental standing wave mode. That
is, the star’s radius varies periodically with time, with a displace-
ment antinode at the star’s surface. (a) Would you expect the center
of the star to be a displacement node or antinode? (b) By analogy
with a pipe with one open end, show that the period of pulsation T
is given by

T � ,

where R is the equilibrium radius of the star and is the average
sound speed in the material of the star. (c) Typical white dwarf stars
are composed of material with a bulk modulus of 1.33 � 1022 Pa
and a density of 1010 kg/m3. They have radii equal to 9.0 � 10�3

solar radius. What is the approximate pulsation period of a white
dwarf?

36. Pipes A and B Pipe A, which is 1.2 m long and open at both
ends, oscillates at its third lowest harmonic frequency. It is filled
with air for which the speed of sound is 343 m/s. Pipe B, which is
closed at one end, oscillates at its second lowest harmonic
frequency. These frequencies of pipes A and B happen to match.
(a) If an x axis extends along the interior of pipe A, with x � 0 at
one end, where along the axis are the displacement nodes? (b)
How long is pipe B? (c) What is the lowest harmonic frequency
of pipe A?

37. Violin String and Loudspeaker A violin string 30.0 cm long with
linear density 0.650 g/m is placed near a loudspeaker that is fed by
an audio oscillator of variable frequency. It is found that the string
is set into oscillation only at the frequencies 880 and 1320 Hz as the
frequency of the oscillator is varied over the range 500–1500 Hz.
What is the tension in the string?

SEC. 18-6 ■ BEATS

38. Too Tightly Stretched The A string of a violin is a little too
tightly stretched. Four beats per second are heard when the string
is sounded together with a tuning fork that is oscillating accu-
rately at concert A (440 Hz). What is the period of the violin
string oscillation?

39. Unknown Tuning Fork A tuning fork of unknown frequency
makes three beats per second with a standard fork of frequency 

�v�

4R
�v�
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384 Hz. The beat frequency decreases when a small piece of wax is
put on a prong of the first fork. What is the freauency of this fork?

40. Five Tuning Forks You have five tuning forks that oscillate at
close but different frequencies. What are the (a) maximum and 
(b) minimum number of different beat frequencies you can pro-
duce by sounding the forks two at a time depending on how the
frequencies differ?

41. Two Piano Wires Two identical piano wires have a fundamental
frequency of 600 Hz when kept under the same tension. What frac-
tional increase in the tension of one wire will lead to the occurrence
of 6 beats/s when both wires oscillate simultaneously?

SEC. 18-7 ■ THE DOPPLER EFFECT

42. Trooper B Trooper B is chasing speeder A along a straight
stretch of road. Both are moving at a speed of 160 km/h. Trooper B,
failing to catch up, sounds his siren again. Take the speed of sound
in air to be 343 m/s and the frequency of the source to be 500 Hz.
What is the Doppler shift in the frequency heard by speeder A?

43. Turbine Whine The 16 000 Hz whine of the turbines in the jet
engines of an aircraft moving with speed 200 m/s is heard at what
frequency by the pilot of a second craft trying to overtake the first
at a speed of 250 m/s?

44. Ambulance Siren An ambulance with  a siren emitting a whine
at 1600 Hz overtakes and passes a cyclist pedaling a bike at 2.44 m/s.
After being passed, the cyclist hears a frequency of 1590 Hz. How
fast is the ambulance moving?

45. A Whistle A whistle of frequency 540 Hz moves in a circle of
radius 60.0 cm at a rotational speed of 15.0 rad/s. What are (a) the
lowest and (b) the highest frequencies heard by a listener a long
distance away, at rest with respect to the center of the circle?

46. Motion Detector A stationary motion detector sends sound
waves of frequency 0.150 MHz toward a truck approaching at a
speed of 45.0 m/s. What is the frequency of the waves reflected back
to the detector?

47. French Submarine A French submarine and a U.S. submarine
move toward each other during maneuvers in motionless water in
the North Atlantic (Fig. 18-33). The French sub moves at 50.0 km/h,
and the U.S. sub at 70.0 km/h. The French sub sends out a sonar sig-
nal (sound wave in water) at 1000 Hz. Sonar waves travel at 
5470 km/h. (a) What is the signal’s frequency as detected by the U.S.
sub? (b) What frequency is detected by the French sub in the signal
reflected back to it by the U.S. sub?

48. Sound Source A sound source A and a reflecting surface B
move directly toward each other. Relative to the air, the speed of
source A is 29.9 m/s, the speed of surface B is 65.8 m/s, and the speed
of sound is 329 m/s. The source emits waves at frequency 1200 Hz as
measured in the source frame. In the reflector frame, what are
(a) the frequency and (b) the wavelength of the arriving sound
waves? In the source frame, what are (c) the frequency and (d) the
wavelength of the sound waves reflected back to the source?

49. Burglar Alarm An acoustic burglar alarm consists of a source
emitting waves of frequency 28.0 kHz. What is the beat frequency
between the source waves and the waves reflected from an intruder
walking at an average speed of 0.950 m/s directly away from the
alarm?

50. A Bat A bat is flitting about in a cave, navigating via ultrasonic
bleeps. Assume that the sound emission frequency of the bat is 
39 000 Hz. During one fast swoop directly toward a flat wall sur-
face, the bat is moving at 0.025 times the speed of sound in air.
What frequency does the bat hear reflected off the wall?

51. Girl in Window A girl is sitting near the open window of a train
that is moving at a velocity of 10.00 m/s to the east. The girl’s uncle
stands near the tracks and watches the train move away. The loco-
motive whistle emits sound at frequency 500.0 Hz. The air is still.
(a) What frequency does the uncle hear? (b) What frequency does
the girl hear? A wind begins to blow from the east at 10.00 m/s.
(c) What frequency does the uncle now hear? (d) What frequency
does the girl now hear?

52. Civil Defense Official A 2000 Hz siren and a civil defense offi-
cial are both at rest with respect to the ground. What frequency
does the official hear if the wind is blowing at 12 m/s (a) from
source to official and (b) from official to source?

53. Two Trains Two trains are traveling toward each other at 30.5
m/s relative to the ground. One train is blowing a whistle at 500 Hz.
(a) What frequency is heard on the other train in still air? (b) What
frequency is heard on the other train if the wind is blowing at 30.5
m/s toward the whistle and away from the listener? (c) What fre-
quency is heard if the wind direction is reversed?

SEC. 18-8 ■ SUPERSONIC SPEEDS; SHOCK WAVES

54. Bullet Fired A bullet is fired with a speed of 685 m/s. Find the
half angle made by the shock cone with the line of motion of the
bullet.

55. Jet Plane A jet plane passes over you at a height of 5000 m and
a speed of Mach 1.5. (a) Find the Mach cone half angle. (b) How
long after the jet passes directly overhead does the shock wave
reach you? Use 331 m/s for the speed of sound.

56. Plane Flies A plane flies at 1.25 times the speed of sound. Its
sonic boom reaches a man on the ground 1.00 min after the plane
passes directly overhead. What is the altitude of the plane? Assume
the speed of sound to be 330 m/s.

French U.S.

50.0 km/h 70.0 km/h

FIGURE 18-33 ■ Problem 47.
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Additional Problems

57. Building a Pipe Organ You decide to build a pipe organ in your
dormitory room using PVC pipe. Estimate whether you could build
an organ that would cover the entire range of human hearing with-
out bending any pipes.

58. Arranging the Pa-
tio Speakers You
have set up two
stereo speakers on
your back patio rail-
ing as shown in the
top view diagram in
Fig. 18-34. You are
worried that at cer-
tain positions you will
lose frequencies as a
result of interference.
The coordinate grid
on the edge of the
picture has its large
tick marks separated by 1 meter. For ease of calculation, make the
following assumptions:

• Assume that the relevant objects lie on integer or half-integer
grid points of the coordinate system.

• Take the speed of sound to be 343 m/s.

• Ignore the reflection of sound from the house, trees, and so on.

• The speakers are in phase.

(a) What will happen if you are sitting in the middle of the bench?
(b) If you are sitting in the lawn chair on the left, what will be the
lowest frequency you will lose to destructive interference? 
(c) Can you restore the frequency lost in part (a) by switching the leads
to one of the speakers, thereby reversing the phase of that source? 
(d) With the leads reversed, what will happen to the sound for a
person sitting at the center of the bench?

59. Truthful Salesman? A salesperson claimed that a stereo system
had a maximum audio power of 120 W. Testing the system with sev-
eral speakers set up so as to simulate a point source, the consumer
noted that she could get as close as 1.2 m with the volume full on
before the sound hurt her ears. Was the salesperson truthful?
Explain your answer with a calculation.

60. Experimenter An experimenter wishes to measure the speed of
sound in an aluminum rod 10 cm long by measuring the time it
takes for a sound pulse to travel the length of the rod. If results
good to four significant figures are desired, how precisely must the
length of the rod be known and how closely must the experimenter
be able to resolve time intervals?

Chairs

Speakers

Bench

FIGURE 18-34 ■ Problem 58.
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The giant hornet Vespa mandarinia japonica preys on

Japanese bees. However, if one of the hornets attempts to

invade a bee hive, several hundred of the bees quickly

form a compact ball around the hornet to stop it. After

about 20 minutes the hornet is dead, although the bees do

not sting, bite, crush, or suffocate it.

Why, then, does the hornet
die?

The answer is in this chapter.

19 The First Law of
Thermodynamics

© Masato Ono, Tamagawa University.



19-1 Thermodynamics

In the next three chapters we focus on a new subject—thermodynamics. The develop-
ment of thermodynamic principles is one of humankind’s most profound intellectual
achievements. Why? The steam engine that powered the industrial revolution
operates according to thermodynamic principles, as do many modern power plants.
Thermodynamics has enriched our fundamental understanding of phenomena rang-
ing from the metabolism of a lizard to the evolution of the universe.

Recall from Chapter 10 that the total mechanical energy of a system is the sum of
the macroscopic kinetic and potential energies associated with the motion and config-
uration of the objects within the system. By macroscopic we mean that the particles in
a system were large enough so that we could observe how fast they were moving (as-
sociated with kinetic energy) and also see their configuration (associated with poten-
tial energy). We found that when conservative forces act on the particles in an isolated
system, the system’s mechanical energy is conserved even if its potential energy is
converted to kinetic energy or vice versa. Also recall that we can add mechanical en-
ergy to a system by doing work on it.

Furthermore, in Chapter 10 we observed that when a block slides along a surface
and comes to a stop due to a nonconservative friction force, the temperatures of the
block and surface rise. A decrease in the total mechanical energy of the block-surface
system was accompanied by an increase in the temperature of the parts of the system.
In response to this observation, we defined a new kind of energy, thermal energy,
Ethermal, associated with the temperature of an object. Then, the overall system energy
would still be conserved.

Our study of thermodynamics begins with learning how to quantify the hidden
internal energy stored in ordinary matter on a microscopic (and hence invisible) scale.
It also involves an examination of the role that temperature plays in determining
whether a system’s internal energy will increase or decrease when it comes into con-
tact with another system. But, when hot steam is injected into a cylinder with a piston
on top of it, the piston can be raised. So we believe that under other circumstances the
internal energy in a system can be transformed back into mechanical energy.

In this chapter we consider temperature and various ways it can be measured. We
then quantify the invisible transfer of thermal energy between objects of different
temperatures. We also introduce the first law of thermodynamics, a statement of en-
ergy conservation, which relates internal energy change to both the thermal energy
transferred to or from a system and the mechanical work done on or by it.

In Chapter 20 we introduce kinetic theory as an idealized model of how micro-
scopic scale kinetic and potential energies associated with the motions and configura-
tions of atoms and molecules can be added together to explain internal energy. The 19th
century development of kinetic theory to explain internal energy is similar in character
and importance to Einstein’s 20th century discovery that matter also contains hidden
energy by virtue of its mass. We then begin a study of heat engines by considering how
the internal energy in hot expanding gases can be transformed into mechanical work.

In Chapter 21 we explain the principles that govern the operation of heat engines.
We than introduce the concept of entropy that helps us understand why no one has
ever invented a heat engine that can transform internal energy into mechanical work
with anything close to 100% efficiency.

19-2 Thermometers and Temperature Scales

Temperature and its measurement are central to understanding the behavior of
macroscopic systems that are heated and cooled. Although we have a natural ability
to sense hot and cold, we can only use our sense of touch to tell whether an object is
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hot or cold over a relatively narrow range of temperatures. But, we will now need to
quantify our intuitive sense of hotness. Recall that any characteristic of a material or
object that is measurable can be referred to as a quantity or measurable property. In
other words, a measurable property is one that can be quantified through physical
comparison with a reference (Sections 1-1 and 1-2). Careful observation of our every-
day world tells us that some objects such as a balloon full of air or a metal rod have
characteristics that change as the object gets hotter or colder. For example, put a bal-
loon full of air into the freezer and you can observe for yourself that it gets smaller. A
metal rod may grow a little longer when heated. Volume, length, electrical resistance,
and pressure are examples of measurable properties of a material object that can
change with temperature. We can use any one of the properties of materials that
change as an object gets hotter or colder to design crude (or not so crude) devices
that quantify the hotness of an object. Such a device is called a thermometer.

Designing an accurate thermometer is not a trivial task. Nevertheless, thermome-
ters are common devices and so many of us have a basic, “common sense” under-
standing of what a thermometer is and how to use one. We begin our study of thermo-
dynamics with temperature. We will also reconsider this topic later in the chapter
when we will refine and expand our understanding of the concept of temperature and
its measurement.

Most, but not all, substances expand when heated. You can loosen a tight metal
lid on a jar by holding it under a stream of hot water. Both the metal of the lid and the
glass of the jar expand as the hot water transfers some of its hidden (or internal) ther-
mal energy to both the jar and lid. This happens because with the added energy, the
atoms in the lid can move a bit farther from each other than usual, pulling against the
spring-like interatomic forces that hold every solid together. (See Chapter 6 if you
need to remind yourself of our spring-atom model for solids.) However, the metal lid
expands more than the glass, and so the lid is loosened. The familiar sealed liquid-in-
glass thermometer (Fig. 19-1a) works in a similar way. The mercury or colored alcohol
contained in the hollow glass bulb and tube expands more than the glass that
surrounds it.

We call the transfer of energy from a “hotter” system to a “colder” system by
invisible atomic and molecular collisions and chemical reactions thermal energy
transfer. It is important to note that thermal energy transfers often involve no
exchange of matter. For example, in the situation described above, no water pene-
trates the jar or its lid. How is this possible? Imagine a high kinetic energy cue ball
colliding with a ball at rest in the middle of a billiard table. The cue ball loses all its
energy and the other ball gains the amount that was lost — a massless transfer! So
we can imagine that if the molecules in the hot water are vibrating more vigorously
than the glass molecules in the jar, energy is transferred from the water molecules
to the jar molecules.

Suppose you dip an unmarked liquid thermometer filled with red colored alcohol
into a cup of cold water. Since the water feels cold to the touch you can make a
scratch in the tube where the liquid stands and define that height as a cold tempera-
ture. Then you can transfer your unmarked thermometer to a cup of water that feels
hot to the touch. You make another scratch where the liquid now stands and define
that height as a hot temperature. What if you dip the thermometer into a cup of water
that feels neither hot nor cold to your touch and the height of the alcohol is halfway
between? Is it reasonable to assume that the new temperature is halfway between the
two original temperatures? The assumption that this is true has guided the develop-
ment of the historical Fahrenheit and Celsius temperature scales, and it is not too far
from the truth. Thus, it is useful to start our study of thermodynamics with a very
crude definition of temperature change as a quantity that is proportional to changes of
the height of the liquid inside a thermometer. In order to quantify temperature, we
need to assign numbers to various heights of the liquid in our glass tube. That is, we
must set up a temperature scale.

FIGURE 19-1 ■ Two types of thermometers
based on changes in measurable properties
of materials with hotness. (a) A liquid ther-
mometer in which the liquid in a tube ex-
pands more than the glass that contains it
when placed in hotter surroundings. (b) and
(c) Electronic thermometers in which the
electrical resistance of a sensing element
embedded at the end of a thin rod changes
when placed in hotter surroundings.

(a)

(b)

(c)



542 CHAPTER 19 The First Law of Thermodynamics

Water boils 100 212

Water freezes 0 32

°C °F

FIGURE 19-2 ■ The Celsius and Fahren-
heit temperature scales compared for the
freezing and boiling points of water at
standard atmospheric pressure at sea level.
Each tic mark represents 5�.

The Fahrenheit and Celsius scales are the two temperature scales in common use
today. You are probably familiar with the Fahrenheit scale from U.S. weather forecasts
and you may have worked with the Celsius scale in other science courses. Each scale
is set up using a reproducible low temperature “fixed point” and another at a higher
temperature. A temperature is assigned to each of the two fixed points on the ther-
mometer column. Then the distance between the two fixed points is divided into
equally spaced degrees.

The Fahrenheit Scale
The scale set up by Gabriel Fahrenheit in 1714 starts with a zero point (0�F) defined
to be the lowest temperature attainable by a mixture of ice and salt. His upper fixed
point was set at human body temperature and defined as 96�F. So Fahrenheit put 96
divisions along the glass tube between his two fixed points. The Fahrenheit scale has
proven to be quite awkward. For example, the freezing point of water at sea level
turns out to be about 32�F and the boiling point of water at sea level turns out to be
about 212�F as shown in Fig. 19-2.

The Celsius Scale
In 1742 a Swedish investigator named Celsius devised a more sensible scale that he
called the centigrade scale. Celsius defined the freezing point of water at sea level
as 0�C and the boiling point as 100�C. The modern Celsius scale was developed
based on a degree that is almost the same “size” as the centigrade scale. However,
it has been adjusted so one of its fixed points is the triple point of water. The triple
point of water is the temperature and pressure at which solid ice, liquid water, and
water vapor coexist. The triple point temperature has been defined as 0.01�C. So,
a modern Celsius thermometer and the historical centigrade thermometer will
give essentially the same reading. We discuss the triple point in more detail later
in this chapter. Another refinement has been to define a standard value for the
atmospheric pressure at sea level to help make the boiling point temperature
more stable.

The Kelvin Scale
A 19th-century British physicist, Lord Kelvin, discovered that there is a natural
limit to how cold any object can get. Kelvin defined an important temperature scale
used in thermodynamics that is based on this natural zero point for temperature.
We discuss the Kelvin scale used by scientists and engineers in more detail in
Section 19-9.

Temperature Conversions
The Fahrenheit scale employs a smaller degree than the Celsius scale and a different
zero of temperature. You can easily verify both these differences by examining an or-
dinary room thermometer on which both scales are marked as shown in Fig. 19-2. The
equation for converting between these two scales can be derived quite easily by
remembering a few corresponding fixed-point temperatures for each scale (see
Table 19-1 or Fig. 19-2). The equation is 

(19-1)

where TF is Fahrenheit temperature and TC is Celsius temperature.

TF � 9
5TC � 32�,
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In general, people use the letters C and F to distinguish measurements and de-
grees on the two scales. Thus,

(19-2)

means that 0� on the Celsius scale measures the same temperature as 32� on the
Fahrenheit scale. We might also say 

which means that a temperature difference of 5 Celsius degrees (note the degree sym-
bol appears after C) is equivalent to a temperature difference of 9 Fahrenheit degrees.

Problems with the Initial Definition of Temperature
There are several problems with basing our definition of temperature on the height of
liquid in a scaled liquid thermometer: (1) the historically chosen fixed points are not
highly reproducible since we will find that freezing and boiling points depend on pres-
sure, (2) the height range over which liquids can vary in a glass tube is quite limited
(liquids freeze when very cold or vaporize when very hot), (3) the assumption that liq-
uids expand in proportion to temperature may not always be accurate and, the glass
bulb thermometer must be small enough compared to the system that it doesn’t affect
it. We will return to our discussion of how to define temperature and design a better
thermometer in Section 19-9. Meanwhile, we use our initial definition of temperature
as the height of a liquid in a hollow glass thermometer as the starting point for our
study of thermal interactions.

READI NG EXERC IS E  19-1: List several additional measurable properties of an ob-
ject. List several properties of an object that you believe are not measurable. ■

19-3 Thermal Interactions

Now that we have a means to measure temperature we can explore what happens to
temperatures when two systems come into contact with each other. Consider the fol-
lowing two observations:

1. When a metal bucket of hot water is placed in a room, the reading of a ther-
mometer placed in the water always decreases until, eventually, it matches the
reading of a (assumed identical) thermometer in the room.

�T � 5 C� � 9 F�

0�C �  32�F

TA B L E 19 - 1
Some Corresponding Temperatures

Temperature °C °F

Boiling point of watera 100 212

Normal body temperature 37.0 98.6

Accepted comfort level 20 68

Freezing point of watera 0 32

Zero of Fahrenheit scale ��18 0

Scales coincide �40 �40

aStrictly, the boiling point of water on the Celsius scale is
99.975°C, and the freezing point is 0.00°C. Thus there is
slightly less than 100°C between those two points.



2. When a bucket of cold water is placed in a room, the reading of a thermometer in
the bucket always increases until, eventually, it matches the reading of a ther-
mometer in the room.

Our common sense tells us these observations indicate that there has been an interac-
tion between the bucket of water and its surroundings. These interactions are examples
of thermal interactions. We will call the bucket of water our system. We first introduced
the term “system” in Chapter 8 in regard to the concept of conservation of momentum.
Just as we did there, we will define a system to be the object or objects that are the pri-
mary focus of our interest. That, of course, means that we can make choices about what
objects we include in our system. Just as in our study of conservation of energy and
momentum, we will often be considering the interaction between two or more systems
that can exchange energy with each other without exchanging matter. At other times
we will consider the interaction between a single system and its surroundings.

The environment is defined as a system’s surroundings or everything outside of it.
Many thermal interactions of interest are interactions between a system (for example,
the bucket of water) and its environment (for example, the air in the room). For prac-
tical purposes, the environment can often be taken as a system’s immediate surround-
ings (without extending our consideration to the entire universe). All we must do is to
be sure that the surroundings are much bigger than the system. For example, the envi-
ronment for a bucket of water could be the room full of air that surrounds it, rather
than the entire planet.

Let’s now consider two additional observations for objects that are insulated from
the surrounding environment:

3. When two similar objects at different temperatures are brought into contact with
one another, the thermometer reading for the hotter object decreases and the
thermometer reading of the colder object increases until the two readings are the
same. (See Figs. 19-3 and 19-4).

4. When two similar objects at the same temperature are brought together, no
changes in the thermometer readings occur.

All four of the observations discussed above include examples of a condition we
will call thermal equilibrium. If two objects (for example, our system and the sur-
rounding environment) produce the same thermometer readings (assuming identi-
cal thermometers) then the two objects are said to be in thermal equilibrium. That
is, two objects are in thermal equilibrium if they have the same temperature. Ob-
serving the tendency of systems in contact to reach thermal equilibrium suggests
that the hotter system is transferring thermal energy to the colder one until they
both become warm.

The concept of thermal equilibrium is important in understanding temperature
measurements. For example, as you likely know from common experience, it takes
some time for a thermometer reading to stabilize. If you place a glass bulb thermome-
ter under your tongue, it does not immediately measure your correct body tempera-
ture. This is (at least in part) because it takes some time for a thermometer to reach
thermal equilibrium with another object like your body. When a thermometer comes
to thermal equilibrium with an object that is not heating up or cooling down, the
thermometer reading will reach a constant value. Only then do we have an accurate
measurement of the object’s temperature.

Thermal equilibrium is important in the measurement of temperature in another
way. Consider three objects: object A, object B and object T. (Object T may be a ther-
mometer, but it doesn’t need to be.) Object A and object B are placed in separate,
well-insulated environments as shown in Fig. 19-5. We measure the temperatures of
the three objects, two at a time. Suppose we find that object A and object T are in
thermal equilibrium. We then compare the temperatures of object B and object T and
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FIGURE 19-3 ■ Two vessels of water that
have different temperatures at first are
placed in thermal contact. They are sur-
rounded by an insulating Styrofoam cup
with a lid so that they don’t interact signifi-
cantly with their surroundings (room air).
What happens to their temperatures?
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FIGURE 19-4 ■ A system consisting of m1 =
200 g of cool water at about 5�C in a thin
plastic cup is brought into thermal contact
with another system consisting of m2 = 200
g of warm water in a larger insulated con-
tainer at about 45�C.A computer-based
data acquisition system is used to monitor
their temperatures. Even though no matter
is exchanged between the systems (as
shown in Fig. 19-3), the temperature of the
cool water rises while that of the warm wa-
ter falls until they reach thermal equilib-
rium at about 25�C, 400 seconds later.
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find that they are in thermal equilibrium with each other as well (at the same ther-
mometer reading as object A). Are object A and object B then necessarily in thermal
equilibrium too? Experimentation provides the answer, which is referred to as the 
zeroth law of thermodynamics:

If bodies A and B are each in thermal equilibrium with a third body T, then they are in
thermal equilibrium with each other.

If we choose object T to be a thermometer, we see that we use the zeroth law
constantly in science laboratories. It is the basis of our acceptance of the use of ther-
mometers to compare temperatures. For example, if we want to know whether the liq-
uids in two different students’ beakers are at the same temperature, we can measure
the two temperatures separately with a single thermometer and compare them. Often
when measuring temperature, the thermometer starts at room temperature and its
temperature must rise or fall when it is placed in contact with body A or body B.
Again, we must be careful not to have the thermometer system be so large that either
body loses or gains enough thermal energy to change its temperature noticeably.

19-4 Heating, Cooling, and Temperature

Is just measuring the initial and final temperature of an object that is changing tem-
perature a good way to learn about how objects heat or cool? In order to answer this
question, let us consider several examples of how water cools:

1. A small cup of very hot water is put in a room that is being maintained at a com-
fortable air temperature of 20�C. The water will cool down until it reaches ther-
mal equilibrium with the surrounding air.

2. We place a large bucket of hot water in the same room, it will also cool down, but
it will take longer than the cup of water does to cool.

3. We first place a small cup of hot water in a sealed thermos bottle and then place
the bottle in the room, the water will still reach thermal equilibrium with the
room but it will take much longer to cool down to room temperature than it did
before.

4. We put a cup containing water at 30�C in a very cold freezer. We find the water
freezes and becomes ice. During the freezing process we keep the water-ice mix-
ture well-stirred and measure its temperature as a function of time. As shown in
Fig. 19-6, once the mixture of ice and water are cooled to 0�C, the mixture under-
goes no change in temperature until all the ice is frozen.

The examples above are evidence that our ability to analyze thermal interactions
is significantly limited if we rely solely on initial and final temperature measurements.
Hence, we are motivated to invent a new, broader concept that we can use in dis-
cussing thermal interactions—even in cases where temperature changes are not the
significant feature. The name of the process we will introduce is “heating,” which we
can use to describe the interaction between a hotter body and colder body, even if no
temperature change occurs. For example, if you surround ice water with air or water
which has a higher temperature, the ice will melt. Or, heating cold water takes longer
if it is insulated from its environment than if it is not. Observations such as those
above form the basis of our understanding of the process called heating.

In order to gain some additional insight into the process of heating, consider two
more observations.

(a)
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FIGURE 19-5 ■ (a) Body T (perhaps a
thermometer) and body A are in thermal
equilibrium. (Body S is a thermally insulat-
ing screen.) (b) Body T and body B are
also in thermal equilibrium (c) If (a) and
(b) are true, the zeroth law of thermody-
namics states that body A and body B are
also in thermal equilibrium.
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FIGURE 19-6 ■ A temperature vs. time
graph recorded by a data acquisition sys-
tem shows what happens to a cup of water
after it is placed in a cold freezer. When
the water temperature decreases to 0�C ice
begins to form. While ice is forming the
temperature does not change. Once all the
water is changed to ice the temperature
starts decreasing again.
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FIGURE 19-7 ■ If the temperature of a sys-
tem exceeds that of its environment as in
(a), an amount of thermal energy Q is trans-
ferred by the system to the environment un-
til thermal equilibrium as shown in part (b)
is established. (c) If the temperature of the
system is below that of the environment,
thermal energy is absorbed by the system
until thermal equilibrium is established.

FIGURE 19-8 ■ In the United States we
have not adopted the international system
of units when referring to food energy, so
the food calorie (denoted Cal rather than
cal) is used in diet books and in all govern-
ment-regulated food labels is actually a
kilocalorie. Most other countries use joules
(the accepted SI unit for energy) on food
labels. The can in the photo above was pur-
chased in Australia.

1. A container of water is placed on a burner to raise its temperature. It takes fuel
(an energy source) for this process to occur.

2. If we start with two containers of water, one large and one small, at the same tem-
perature and place them over identical burners, it takes a longer time (and so
more fuel) to elevate the temperature of the larger amount of water to the same
final value as the smaller.

Both of these observations are direct indications that there is energy involved in heat-
ing, just as we assumed in Chapter 10 when discussing energy conservation. Further-
more, the idea that the heating process is a transfer of energy from a hotter object to a
colder object is consistent with all the other observations we have discussed in this
chapter. Hence, we are led then to this important statement:

Heating is the transfer of energy from a system with a higher temperature to one with lower
temperature that is in contact with it that occurs simply because a temperature difference
exists between the systems.

The net amount of transferred thermal energy as the result of microscopic energy
exchanges between systems (or parts of a system) is denoted by the letter Q. The ther-
mal energy transferred between systems is often called “heat.” Because the term heat is
sometimes used casually to mean the total thermal energy in a system, people often
confuse heat with internal energy when describing thermal interactions. For this reason
we try to avoid passive terms like heat or stored heat when describing thermal interac-
tions. Since the phrase “heating a system” suggests an active process we will use terms
like “heating,” “cooling,” or “thermal energy transfer” to refer to the additional energy
that is added to (or subtracted from) a system through microscopic energy exchanges.

The amount of transferred thermal energy Q is taken to be positive when it is transferred to
a system (then we say that thermal energy is absorbed). The transferred thermal energy Q is
negative when it is transferred from the system (we then say that thermal energy is released
or lost by the system).

This transfer of energy is shown in Fig. 19-7. In the situation of Fig. 19-7a, in which the
temperature of the system TS is greater than the temperature of the environment TE

( ), energy is transferred from the system to the environment, so Q is negative. In
Fig. 19-7b, in which , no thermal energy transfer takes place, Q is zero, and energy
is neither released nor absorbed. In Fig. 19-7c, in which , the transfer is to the sys-
tem from the environment, so Q is positive.

It took scientists a while to realize that “heating” was associated with the transfer
of energy from one system to another. Hence, thermal energy ended up with its own
unit. Since heating was initially considered strictly in terms of temperature change, the
calorie (cal) was defined as the amount of energy that would raise the temperature of
1 g of water from 14.5�C to 15.5�C. In the British system, the corresponding unit of
thermal energy was the British thermal unit (Btu), defined as the amount of energy
that would raise the temperature of 1 lb of water from 63�F to 64�F.

In 1948, the scientific community decided that since heating (like work) is an energy
transfer process, the SI unit for thermal energy transferred (or “heat added”) should be
the one we use for all other energy—namely, the joule. Joules are used instead of calories
in most countries, as seen on the can of soda from Australia in Fig. 19-8.The calorie is now
defined to be 4.1860 J (exactly), with no reference to the heating of water. (The “calorie”
used in nutrition, sometimes called the Calorie with a capital C or Cal for short, is really a
kilocalorie or 1000 calories.) The relations among the various thermal energy units are 

(19-3)1 cal �  3.969 �  10�3 Btu �  4.1860 J � 0.001 Cal (or food calorie).

TS � TE

TS � TE

TS 	 TE
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Mechanisms for Transfer of Thermal Energy
We have discussed heating, which is the transfer of energy between a system and its
environment that takes place simply because a temperature difference exists between
them, but we have not yet described how that transfer takes place. We will briefly de-
scribe the three heating mechanisms here and return to discuss them more fully at the
end of this chapter.

If you leave the end of a metal poker in a fire for enough time, its handle will get
hot. There are large vibrations of the atoms and electrons of the metal at the fire end
of the poker because of the high temperature of their environment. These increased
vibrational amplitudes, and thus the associated energy, are passed along the poker,
from atom to atom, during collisions between adjacent atoms. In this way, a region of
increasing temperature extends itself along the poker to the handle. It is important to
note though that there has been no flow of matter—only energy that is transmitted
along the poker. This type of heating process is called (thermal) conduction.

Conduction is, by definition, a transfer mechanism that requires direct contact
between two objects at different temperatures. Consider our poker to be a series of
systems that can have different temperatures. If there is not direct contact between
the colder object and hotter object (one atom and the next in our poker example),
there cannot be a transfer of thermal energy by conduction. As we mentioned above,
conduction does not involve any mass transfer. However, in some real situations it is
sometimes impossible to avoid the transfer of material from one object to the other
during heating. In such cases, the process is no longer one of “pure” conduction.

When you open a low and a high window in a heated house, you can feel cold out-
side air rushing into the room through the low window and warm room air rushing
outside through the high window. This is because the cold air is more dense than the
warm air so it displaces the warm air at the bottom of the room. The warm air rises as
a result of buoyant forces and flows out the top window. The room gets colder be-
cause of the exchange of cold and warm air. In this situation, thermal energy is being
transported by the flow of matter (air currents in this case). The transfer by the ex-
change of hotter and cooler fluids is known as convection.

Examples of heating by convection are everywhere. This is how air circulation
helps spread the warmth through a room when a radiator or heater gets hot. It is why
all the water in a tea kettle gets hot (as opposed to only the water in contact with the
hot kettle surface) when the kettle is placed on a hot stove. Convection is part of
many other natural processes. Atmospheric convection plays a fundamental role in
determining global climate patterns and daily weather variations. Glider pilots and
birds alike seek rising thermals (convection currents of warm air) that keep them
aloft. Huge energy transfers take place within the oceans by the same process. Finally,
energy is transported to the surface of the sun from the nuclear furnace at its core by
enormous cells of convection, in which hot gas rises to the surface along the cell core
and cooler gas around the core descends below the surface. In all examples of heating
by convection, gravitational forces play a vital role. Without gravitational forces, hot-
ter materials would not rise above cooler materials. Hence, there is no heating by con-
vection on a space station.

When you sit in the sun you can feel your skin getting warmer. If you put a shield
between you and the sun, the sensation of warmth immediately disappears. How is
this energy transfer taking place? We know that the light from the sun has to pass
through over a hundred million kilometers of almost empty space. So, this thermal en-
ergy transfer can’t be attributed to either convection or conduction. Solar energy
transfer is attributed to a third transfer process—the absorption of electromagnetic
radiation. Although visible light is one kind of electromagnetic radiation, the sun and
a hot fire that can also warm you emit both visible light and invisible infrared radia-
tion that has a longer characteristic wavelength than light. (See Chapter 34 for more
details on electromagnetic waves.) No medium is required for energy transfer via



electromagnetic radiation. Thermal energy transferred by infrared electromagnetic
waves is often called thermal radiation or radiant energy.

READI NG EXERC IS E  19-2: Explain the function of insulation in homes. ■

19-5 Thermal Energy Transfer to Solids and Liquids

If we start with two containers of water, one large and one small, at the same temper-
ature and place them to heat over identical burners, it takes a longer time (and so
more fuel and thus more thermal energy) to elevate the temperature of the larger
amount of water to the same final value as the smaller. It takes almost twice as much
energy to heat a cup of water as it does to heat a cup of motor oil to the same tem-
perature. This is shown in Fig. 19-9a and b. A common electric immersion heater is
placed in a container of motor oil and plugged in. It puts out a bit less than 200 W of
power at a constant rate. Since energy is power � time the total amount of thermal
energy transferred to the oil is directly proportional to the time the heater has been
on. The graph in Fig. 19-9b shows that after 70 seconds, the change in water tempera-
ture, Tf � Ti, is about 15�C while the oil temperature has risen about 30�C. We can
say the “water holds its heat” twice as well as motor oil. It would be more correct to
say that water absorbs the thermal energy transferred to it without showing as much
temperature change.

If we look at heating and cooling curves for a large number of different objects
and different substances (see Fig. 19-9b for an example), we find that the relationship
between thermal energy transfer and temperature is linear (as long as the material
doesn’t melt, freeze, or vaporize). However, the scaling factor (proportionality con-
stant) changes from material to material. The heat capacity C of an object is the name
that we give to the proportionality constant between the thermal energy transferred
Q and the resulting temperature change of the object; that is,

(19-4)

in which Ti and Tf are the initial and final temperatures of the object. Heat capacity C
has the unit of energy per degree Celsius. The heat capacity C of, say, a marble slab
used in a bun warmer might be 179 cal/C�.

The word “capacity” in this context is really misleading in that it suggests analogy with
the capacity of a bucket to hold water. Since heat is not a substance, that analogy is mislead-
ing, and you should not think of the object as “containing” thermal energy or being limited
in its ability to absorb thermal energy. Thermal energy transfer can proceed without limit
as long as the necessary temperature difference between the object and its surroundings is
maintained.The object may, of course, melt or vaporize during the process.

Specific Heat
Two objects made of the same material—say, marble—will have heat capacities pro-
portional to their masses. It is therefore convenient to define a “heat capacity per unit
mass” or specific heat c that refers not to an object but to a unit mass of the material
of which the object is made. Equation 19-4 then becomes 

(19-5)

where C � mc.

Q � cm �T � cm(Tf � Ti),

Q � C �T � C(Tf � Ti),

�T

548 CHAPTER 19 The First Law of Thermodynamics

70

60

50

40

30
0 20 40 705030

t (s)

(b)

(a)

T
 (

°C
)

10 60

Motor oil

Water

FIGURE 19-9 ■ (a) A computer-based data
collection system with a digital tempera-
ture sensor can be used to monitor the
temperature rise in a liquid while thermal
energy is transferred to it at a constant rate
by an immersion heater. The liquid in this
photo is motor oil. (b) If thermal energy 
is transferred to two different liquids that
have the same mass, the temperature does
not usually rise at the same rate. So we 
define a different specific heat for each 
liquid. For example, a small immersion
heater shown in Fig. 19-9a “heats up” 175 g
of motor oil faster than 175 g of water.
Data were taken once each second for 
70 seconds with a computer-based data 
collection system.
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Through experiment we would find that although the heat capacity of a particular
marble slab might be 179 cal/C�, the specific heat of the marble (in that slab or in any
other marble object) is 0.21 cal/g 
 C�.

From the way the calorie and the British thermal unit were initially defined, mea-
surements show that the specific heat of water is 

(19-6)

Table 19-2 shows the specific heats of some substances at room temperature. Note
that the value for water is relatively high. The specific heat of any substance actually
depends somewhat on temperature, but the values in Table 19-2 apply reasonably well
in a range of temperatures near room temperature.

Molar Specific Heat
In many instances the most convenient unit for specifying the amount of a substance
is the mole (mol), where 

of any substance. Thus 1 mol of aluminum means 6.02 � 1023 atoms (the atom being
the elementary unit), and 1 mol of aluminum oxide means 6.02 � 1023 molecules of the
oxide (because the molecule is the basic unit of a compound).

When quantities are expressed in moles, specific heats must also involve moles (rather
than a mass unit); they are then called molar specific heats. Table 19-2 shows the values for
some elemental solids (each consisting of a single element) at room temperature.

Specific Heats at Constant Pressure and Constant Volume 
In determining and then using the specific heat of any substance, we need to know the
conditions under which thermal energy is transferred. For solids and liquids, we usually
assume that the sample is under constant pressure (usually atmospheric) during the

1 mol �  6.02 �  1023 basic units

c � 1 cal/g 
C� � 1 Btu/lb 
  F� � 4190 J/kg 
  C�.

TA B L E 19 - 2
Specific Heats of Some Substances at Room Temperature and 
Constant Pressure

Specific Heat Molar Specific Heat

Substance

Elemental Solids
Lead 0.0305 128 26.5
Tungsten 0.0321 134 24.8
Silver 0.0564 236 25.5
Copper 0.0923 386 24.5
Aluminum 0.215 900 24.4

Other Solids
Brass 0.092 380
Granite 0.19 790
Glass 0.20 840
Ice (�10°C) 0.530 2220

Liquids
Mercury 0.033 140
Ethyl alcohol 0.58 2430
Seawater 0.93 3900
Water 1.00 4190

J
mol
C�

J
kg 
C�

cal
g 
C�



transfer. It is also conceivable that the sample is held at constant volume while the ther-
mal energy is absorbed. This means that thermal expansion of the sample is prevented
by applying external pressure. For solids and liquids, this is very hard to arrange experi-
mentally but the effect can be calculated, and it turns out that the specific heats under
constant pressure and constant volume for any solid or liquid differ usually by no more
than a few percent. Gases, as you will see, have quite different values for their specific
heats under constant-pressure conditions and under constant-volume conditions.

Heats of Transformation
Recall our example above of the ice (solid water). “Solid” is a description of the water
that we will call its phase. There are, in general, three phases of matter: solid, liquid,
and vapor. As a solid, the molecules of a sample are locked into a fairly rigid structure
by their mutual attraction. As a liquid, the molecules have more energy and move
about more. They may form brief clusters, but the sample does not have a rigid struc-
ture and can flow or settle into a container. As a gas or vapor, the molecules have
even more energy, are free of one another, and can fill up the full volume of a con-
tainer. To fully describe a material for thermodynamic purposes we must specify not
only the phase (solid, liquid, or vapor) but also the temperature, pressure, and volume.
The phase of a material along with the temperature, pressure, and volume of the ma-
terial specify the state of the material.

As we all know, we find that ice melts when exposed to a warm room and be-
comes liquid water. The melting is called a change of phase. When thermal energy is
absorbed or lost by a solid, liquid, or vapor, the temperature of the sample does not
necessarily change. Instead, the sample may change from one phase to another.
Through experiments we have found that while a material is undergoing a change in
phase additional transfers of thermal energy do not change the temperature of the
material. We saw one example of this in Fig. 19-6.

To melt a solid means to change it from the solid phase to the liquid phase. The
process requires energy because the molecules of the solid must be freed from their
rigid structure. Melting an ice cube to form liquid water is a common example. To
freeze a liquid to form a solid is the reverse of melting and requires that energy be re-
moved from the liquid, so that the molecules can settle into a rigid structure. To va-
porize a liquid means to change it from the liquid phase to the vapor or gas phase.
This process, like melting, requires energy because the molecules must be freed from
their clusters. Boiling liquid water transforms it to water vapor (or steam—a gas of
individual water molecules) is a common example. Condensing a gas to form a liquid
is the reverse of vaporizing; it requires that energy be removed from the gas, so that
the molecules can cluster instead of flying away from one another.

The amount of energy per unit mass that must be transferred as thermal energy
when a sample completely undergoes a phase change is called the heat of transforma-
tion L. Thus, when a sample of mass m completely undergoes a phase change, the to-
tal energy transferred is 

(19-7)

When the phase change is from liquid to gas (then the sample must absorb thermal
energy) or from gas to liquid (then the sample must release thermal energy), the ther-
mal energy required for this transformation is called the heat of vaporization LV.* For
water at its normal boiling or condensation temperature,

(water : steam). (19-8)LV � 539 cal/g � 40.7 kJ/mol � 2256 kJ/kg

Q � Lm.
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*Chemists often denote entropy as �H and call it enthalpy of vaporization.
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When the phase change is from solid to liquid (then the sample must absorb thermal
energy) or from liquid to solid (then the sample must release thermal energy), the
heat of transformation is called the heat of fusion LF. For water at its normal freezing
or melting temperature,

(ice : water). (19-9)

Table 19-3 shows the heat of transformation for some substances.

Heating and Internal Energy
Consider melting a 0°C block of ice so that it melts and then becomes hot water. This
system undergoes both a phase change and a temperature increase. What happens to
the system’s hidden internal energy that we mentioned in the introduction? Heating
via thermal energy transfer increases its internal energy in two ways:

1. We change the system’s microscopic configuration by allowing its atoms and mol-
ecules to move further away from each other (without a temperature change).

2. We increase its microscopic kinetic energy (or thermal energy) by increasing the mo-
tions of its atoms and molecules (which can be measured as a rise in temperature).

READI NG EXERC IS E  19-3: If an amount of thermal energy Q is transferred to ob-
ject A, it will cause each gram of A to rise in temperature by 3 C�. If the same amount of energy
is transferred to object B, then the temperature of each gram of B will rise by 4 C�. If object A
and B have the same mass, which one has the greater specific heat? ■

READI NG EXERC IS E  19-4: Notice in Table 19-3 that water has a very large heat of
vaporization. What is the significance of this to a firefighter who finds that the water sprayed on
a very hot fire is converted to steam? Suppose that 1 g of steam comes in contact with 1 g of a
firefighter’s flesh and condenses. Assuming that flesh has the same heat capacity as water, what
would be the temperature rise in 1 g of the firefighter’s flesh? ■

LF � 79.5 cal/g � 6.01 kJ/mol � 333 kJ/kg

TOUCHSTONE EXAMPLE 19-1: Melting Ice

(a) How much thermal energy must be absorbed by ice of mass 
m � 720 g at �10�C to take it to a liquid state at 15�C?

S O L U T I O N ■ The first Ke y  I d e a is that the heating process is
accomplished in three steps.

Step 1. The Ke y  I d e a here is that the ice cannot melt at a tem-
perature below the freezing point—so initially, any thermal energy
transferred to the ice can only increase the temperature of the ice.
The energy Q1 needed to increase that temperature from the initial
value Ti � �10�C to a final value Tf � 0�C (so that the ice can then

TA B L E 19 - 3
Some Heats of Transformation

Melting Boiling

Heat of 
Melting Point Fusion LF Boiling Point Heat of Vaporization LV

Substance (°C) (kJ/kg) (°C) (kJ/kg)

Hydrogen �259.2 58.0 �252.9 455

Oxygen �218.4 13.9 �183.0 213

Mercury �39.2 11.4 356.9 296

Water �0.1 333 99.9 2256

Lead 327.9 23.2 1743.9 858

Silver 961.9 105 2049.9 2336

Copper 1082.9 207 2594.9 4730
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melt) is given by Eq. 19-5 . Using the specific heat of
ice cice in Table 19-2 gives us 

Step 2. The next Ke y  I d e a is that the temperature cannot in-
crease from 0�C until all the ice melts—so any energy transferred to
the ice due to heating now can only change ice to liquid water. The
thermal energy Q2 needed to melt all the ice is given by Eq. 19-7 
(Q � Lm). Here L is the heat of fusion LF, with the value given in
Eq. 19-9 and Table 19-3. We find

Step 3. Now we have liquid water at 0�C. The next Ke y  I d e a is
that the energy transferred to the liquid water during heating now
can only increase the temperature of the liquid water. The Q3

needed to increase the temperature of the water from the initial
value Ti � 0�C to the final value Tf � 15�C is given by Eq. 19-5
(with the specific heat of liquid water cliq):

The total required thermal energy transfer Qtot is the sum of the
amounts required in the three steps:

� 45 252 J � 45.25 kJ.

� (4190 J/kg
 �C)(0.720 kg)(15�C � 0�C)

Q3 � cliqm(Tf � Ti)

Q2 � LFm � (333 kJ/kg)(0.720 kg) � 239.8 kJ.

� 15 984 J � 15.98 kJ.

� (2220  J/kg 
 �C)(0.720 kg)[0�C�(�10�C)]

Q1 � cicem(Tf � Ti)

(Q � cm �T)

(Answer)

Note that the energy transfer required to melt the ice is much
greater than the energy transfer required to raise the temperature
of either the ice or the liquid water.

(b) If we supply the ice with a total energy of only 210 kJ (as
heat), what then are the final state and temperature of the wa-
ter?

S O L U T I O N ■ From step 1, we know that 15.98 kJ is needed to
raise the temperature of the ice to the melting point. The remaining
energy required Q rem is then 210 kJ � 15.98 kJ, or about 194 kJ.
From step 2, we can see that this amount of energy is insufficient to
melt all the ice. Then this Ke y  I d e a becomes important: Because
the melting of the ice is incomplete, we must end up with a mixture
of ice and liquid; the temperature of the mixture must be the freez-
ing point, 0°C.

We can find the mass m of ice that is melted by the available
energy Qrem by using Eq. 19-7 with LF:

Thus, the mass of the ice that remains is 720 g � 580 g, or 140 g, and
we have 

580 g water and 140 g ice at 0�C. (Answer)

m �
Qrem

LF
�

194 kJ
333 kJ/kg

� 0.583 kg � 580 g.

� 300 kJ.

� 15.98 kJ � 239.8 kJ � 45.25 kJ

Q tot � Q1 � Q2 � Q3

TOUCHSTONE EXAMPLE 19-2: Copper Slug

A copper slug whose mass mc is 75 g is heated in a laboratory oven
to a temperature T of 312�C. The slug is then dropped into a glass
beaker containing a mass mw � 220 g of water. The heat capacity Cb

of the beaker is 45 cal/K. The initial temperature Ti of the water
and the beaker is 12�C. Assuming that the slug, beaker, and water
are an isolated system and the water does not vaporize, find the fi-
nal temperature Tf of the system at thermal equilibrium.

S O LUT I O N ■ One Key  I dea here is that, with the system iso-
lated, only transfers of thermal energy can occur. There are three
such transfers, all as thermal energy. The slug loses energy, the water
gains energy, and the beaker gains energy. Another Key Idea is that,
because these transfers do not involve a phase change, the energy
transfers can only change the temperatures. To relate the transfers to
the temperature changes, we can use Eqs. 19-4 and 19-5 to write 

for the water: (19-10)

for the beaker: (19-11)

for the copper: (19-12)Qc � cc mc(Tf � T ).

Qb � Cb(Tf � Ti);

Qw � cw mw(Tf � Ti);

A third Ke y  I d e a is that, with the system thermally isolated,
the total energy of the system cannot change. This means that the
sum of these three thermal energy transfers is zero:

(19-13)

Substituting Eqs. 19-10 through 19-12 into Eq. 19-13 yields 

(19-14)

Temperatures are contained in Eq. 19-14 only as differences. Thus,
because the differences on the Celsius and Kelvin scales are identi-
cal, we can use either of those scales in this equation. Solving it for
Tf, we obtain 

Using Celsius temperatures and taking values for cc and cw from
Table 19-2, we find the numerator to be 

Tf �
ccmcT � CbTi � cw mwTi

cw mw � Cb � ccmc
.

cwmw(Tf � Ti) � Cb(Tf � Ti) � ccmc(Tf � T) � 0.

Qw � Qb � Qc � 0.
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FIGURE 19-10 ■ Cross section of a system
that confines a gas to a cylinder with a mov-
able piston. (Its insulating lid is not shown.)
Thermal energy Q can be transferred to or
from the gas by regulating the temperature
T of the adjustable thermal reservoir.Work
W is done on the gas when the piston rises
or falls.

and the denominator to be 

� 271.9 cal/�C.

(1.00 cal/g 
�C)(220 g) � 45 cal/�C � (0.0923 cal/g
�C)(75 g)

� (1.00 cal/g 
�C)(220 g)(12�C) � 5339.8 cal,

(0.0923 cal/g 
�C)(75 g)(312�C) � (45 cal/�C)(12�C) We then have 

From the given data you can show that 

Apart from rounding errors, the algebraic sum of these three thermal
energy transfers is indeed zero, as Eq. 19-13 requires.

Qw � 1670 cal, Qb � 342 cal, Qc � �2020 cal.

Tf �
5339.8 cal

271.9 cal/�C
� 19.6�C � 20�C.

19-6 Thermal Energy and Work

Here we look in some detail at how internal energy can be transferred into or out of
both as thermal energy and as macroscopic physical work (involving the displacement
of the system in the presence of net forces). Let us take as our system a gas confined
to a cylinder with a movable piston, as in Fig. 19-10. This is the kind of device that is
used to drive a steam engine, the engine of an automobile, and many other tools—all
of which convert thermal energy into work.

In our piston–cylinder system, the upward force on the piston due to the pressure
of the confined gas is equal to the weight of lead shot loaded onto the top of the pis-
ton. The walls of the cylinder are made of insulating material that does not allow any
transfer of thermal energy. The bottom of the cylinder, however, rests on a reservoir
of thermal energy—a thermal reservoir (perhaps a hot plate) whose temperature T
can be held constant.

The system (the gas) starts from an initial state i, described by a pressure Pi, a volume
Vi, and a temperature Ti. You want to change the system to a final state f, described by a
pressure Pf, a volume Vf, and a temperature Tf. The procedure by which you change the
system from its initial state to its final state is called a thermodynamic process. During
such a process, an amount of energy Q may be transferred into or out of the system from
the thermal reservoir. Also, work can be done by the system to raise the loaded piston
(positive work) or lower it (negative work). We assume that all such changes occur slowly,
so that all parts of the system are always in (approximate) thermal equilibrium.

Suppose that you remove a few of the lead shot from the piston of Fig. 19-10, al-
lowing the gas to push the piston and remaining shot upward through a differential
displacement with an upward force . Since the displacement is tiny, we can as-
sume that is constant during the displacement. Then has a magnitude that is
equal to PA, where P is the pressure of the gas and A is the face area of the piston.
The differential work dW done by the gas during the displacement is 

(19-15)

in which dV is the differential change in the volume of the gas due to the movement
of the piston. When you have removed enough shot to allow the gas to change its vol-
ume from Vi to Vf, the total work done by the gas is 

(19-16)

During the change in volume, the pressure and temperature of the gas may also change.
To evaluate the integral in this expression directly, we need to know how pressure varies
with volume for the actual process by which the system changes from state i to state f.

W � �dW � �Vf

Vi

PdV.

� PdV,

dW � F
:


ds: � (PA)(� ds: �) � P(A� ds: �)

F
:

F
:

F
:

ds:
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FIGURE 19-11 ■ (a) The shaded area rep-
resents the work W done by a system as it
goes from an initial state i to a final state f.
Work W is positive because the system’s
volume increases. (b) W is still positive, but
now greater. (c) W is still positive, but now
smaller. (d) W can be even smaller (path
icdf) or larger (path ighf). (e) Here the
system goes from state i to state f, as the
gas is compressed to less volume by an ex-
ternal force. The work W done by the sys-
tem is now negative. (f) The net work Wnet

done by the system during a complete cy-
cle is represented by the shaded area.

There are actually many ways to take the gas from state i to state f. One way is
shown in Fig. 19-11a, which is a plot of the pressure of the gas versus its volume and is
called a P-V diagram. In Fig. 19-11a, the curve indicates that the pressure decreases as
the volume increases. The integral in Eq. 19-16 (and thus the work W done by the gas)
is represented by the shaded area under the curve between points i and f. Regardless
of exactly what we do to take the gas along the curve, that work by the gas or system is
positive, due to the fact that the gas increases its volume by forcing the piston upward.

Another way to get from state i to state f is shown in Fig. 19-11b: the change takes
place in two steps—the first from state i to state a and the second from state a to state f.

Step ia of this process is carried out at constant pressure, which means that you
leave undisturbed the lead shot that ride on top of the piston in Fig. 19-10. You cause
the volume to increase (from Vi to Vf) by slowly turning up the temperature control
knob, raising the temperature of the gas to some higher value Ta. (Increasing the tem-
perature increases the force from the gas on the piston, moving it upward.) During this
step, positive work is done by the expanding gas (to lift the loaded piston) and thermal
energy is absorbed by the system from the thermal reservoir (in response to the arbi-
trarily small temperature differences that you create as you turn up the temperature).
The thermal energy transferred (Q) is positive because it is added to the system.

Step af of the process of Fig. 19-11b is carried out at constant volume, so you must
wedge the piston, preventing it from moving. Then as you use a control knob to de-
crease the reservoir temperature, you find that the pressure drops from Pa to its final
value Pf. During this step, thermal energy is lost by the system to the thermal reservoir.

For the overall process iaf, the work W, which is positive and is carried out only
during step ia, is represented by the shaded area under the curve. Energy is transferred
as thermal energy during both steps ia and af, with a net thermal energy transfer Q.

Figure 19-11c shows a process in which the previous two steps are carried out in
reverse order. The work W in this case is smaller than for Fig. 19-11b, as is the net
thermal energy absorbed. Figure 19-11d suggests that you can make the work done by
the gas as small as you want (by following a path like icdf) or as large as you want (by
following a path like ighf).

To sum up: A system can be taken from a given initial state to a given final state
by an infinite number of processes. Thermal energy transfers may or may not be
involved, and in general, the work W and the thermal energy transfer Q will have dif-
ferent values for different processes. We say that thermal energy and work are path-
dependent quantities.

Figure 19-11e shows an example in which negative work is done by a system as
some external force compresses the system, reducing its volume. The absolute value
of the work done is still equal to the area beneath the P-V curve, but because the gas
is compressed, the work done by the gas is negative.

Figure 19-11f shows a thermodynamic cycle in which the system is taken from
some initial state i to some other state f and then back to i. The net work done by the
system during the cycle is the sum of the positive work done during the expansion and
the negative work done during the compression as shown by the shaded area inside
the path. In Fig. 19-11f, the net work is positive because the area under the expansion
curve (i to f) is greater than the area under the compression curve ( f to i).

READI NG EXERC IS E  19-5: The P-V diagram
here shows six curved paths (connected by vertical paths)
that can be followed by a gas. Which two of them should be
part of a closed cycle if the net work done by the gas is to be
at its maximum positive value?
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*Recall that a system’s state is specified by its pressure, volume, temperature, and phase.

†Here dQ and dW, unlike dE int, are not true differentials; that is, there are no such functions as Q(P, V) and
W(P, V) that depend only on the system state. Both dQ and dW are inexact differentials and often repre-
sented by the symbols and . Here we can treat them simply as infinitesimally small energy transfers.d Wd Q

19-7 The First Law of Thermodynamics

You have just seen that when a system changes from a given initial state to a given fi-
nal state, both the work W done by the system and the thermal energy transferred to
the system Q depend on the nature of the process.* Experimentally, however, we find
a surprising thing. The quantity Q � W is the same for all processes. It depends only on
the initial and final states and does not depend at all on how the system gets from one
to the other. All other combinations of Q and W, including Q alone, W alone, Q � W,
and Q � 2W, are path dependent; only the quantity Q � W is not.

So, we come to believe that the quantity Q � W must represent a change in some
intrinsic property of the system. Since we know that both heating and work are en-
ergy transfer processes, we assume that the quantity Q � W results in a change in en-
ergy. But a change in the energy of what? As we pointed out in the introduction to
this chapter, matter has hidden within it energy associated with the motions and con-
figurations of the microscopic atoms and molecules of which it is composed. We call
this energy associated with the microscopic kinetic and potential energies of the sys-
tem the internal energy E int. So, we can then write 

(first law for W � work by system) (19-17)

where Q represents the thermal or heat energy transferred to the system and W repre-
sents  the work done on the surroundings by the system. This expression represents a
very important relationship and is called the first law of thermodynamics. If the ther-
modynamic system undergoes only a differential change, we can write the first law as†

(first law). (19-18)

The internal energy E int of a system increases if thermal energy Q is transferred to the sys-
tem and decreases if thermal energy (Q � 0) is transferred from the system.

The internal energy E int of a system decreases if it does an amount of work W 	 0 on its
surroundings and increases when it has an amount of work W � 0 done on it by the sur-
roundings. (Work done on a system is negative. Work done by a system is positive.)

The first law of thermodynamics should remind you of issues we first raised in
Chapter 10. However, in Chapter 10, we discussed energy conservation as it applies to
isolated systems—that is, to systems in which no energy enters or leaves the system.
The first law of thermodynamics is an extension of that principle to systems that are
not isolated. In such cases, energy may be transferred into or out of the system as
some combination of macroscopic physical work W done by a system and transfer of
the microscopic thermal energy Q into a system. In our statement of the first law of
thermodynamics above, we assume that there are no changes in the macroscopic ki-
netic energy or the potential energy of the system as a whole; that is,

Before this chapter, the term work and the symbol W always meant the work
done on a system. However, starting with Eq. 19-15 above and continuing through the
next two chapters about thermodynamics, we focus on the work done by a system,
such as the gas in Fig. 19-10. This confusing reversal of focus is left over from the 19th

�K � �U � 0.

dEint � dQ � dW

�Eint � E int
f � E int

i � Q � W



century when scientists and engineers were most interested in how much physical
work could be done by an engine on its surroundings.

The work done on a system is always the negative of the work done by the system, so
if we rewrite in terms of the work Won done on the sys-
tem, we have . This tells us the following: the internal energy of a sys-
tem tends to increase if thermal energy is absorbed by the system or if positive work is
done on the system. Conversely, the internal energy tends to decrease if thermal energy is
lost by the system or if negative work is done on the system. This can be a bit confusing,
so it is a good idea to spend a little time now to make sure that this distinction is clear.

READI NG EXERC IS E  19-6: The figure here shows
four paths on a P-V diagram along which a gas can be taken
from state i to state f. Rank the paths according to (a) the
change , (b) the work W done by the gas, and (c) the mag-
nitude of the thermal energy Q transferred to the gas, greatest
first.

■

19-8 Some Special Cases of the First Law of
Thermodynamics

Here we look at four different thermodynamic processes, in each of which a certain re-
striction is imposed on the system.We then see what consequences follow when we apply
the first law of thermodynamics to the process. The results are summarized in Table 19-4.

1. Adiabatic processes. An adiabatic process is one in which no transfer of thermal
energy occurs between the system and its environment. Adiabatic processes can
occur if a system that is so well insulated that no thermal energy transfers can oc-
cur. A process can also be made adiabatic by having it occur so quickly that there
is no time for the energy transfer. In either case, putting Q � 0 in the first law
( ) yields

(adiabatic process). (19-19)

This tells us that if the work done by the system on its surroundings is positive,
the internal energy of the system decreases by an amount equal to the work it
did. Conversely, if work is done on the system (that is, if W is negative), the inter-
nal energy of the system increases by that amount.

�Eint � �W

�Eint � E int
f � E int

i � Q � W

�E int

�Eint � Q � Won
�Eint � E int

f � Eint
i � Q � W
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TA B L E 19 - 4
The First Laws of Thermodynamics: Four Special Cases

The First Law: �Eint � Q � W (Eq. 19-17)a

Process Restriction Consequence

Adiabatic Q � 0 �E int ��W

Constant volume W � 0 �E int � Q

Closed cycle �E int � 0 Q � W

Free expansion Q � W � 0 �E int � 0

aQ 	 0 represents thermal or heat energy added to the system; W 	 0 rep-
resents work done by system.
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Lead shot

W

Insulation

FIGURE 19-12 ■ An adiabatic expansion
can be carried out by removing lead shot
from the top of the piston. Adding lead
shot reverses the process at any stage. (The
insulating lid is not shown.)

Figure 19-12 shows an idealized adiabatic process. Thermal energy cannot be
transferred to or from a system because it is insulated from its surroundings. Thus,
the only way energy can be transferred between the system and its environment
is if work is either done by the system or on the system. If we remove shot from
the piston and allow the gas to expand, work is done by the system (the gas) and
thus is positive. Thus the internal energy of the gas must decrease. If, instead, we
add shot and compress the gas, the work done by the system is negative and the
internal energy of the gas increases.

2. Constant-volume processes. If the volume of a system (such as a gas in a con-
tainer) is held constant, that system can do no work. Putting W � 0 in the first law
(�E int � ) yields 

(constant-volume process). (19-20)

Thus, all the thermal energy transferred to a system (so that is positive), con-
tributes to an increase in the system’s internal energy. Conversely, if thermal en-
ergy is transferred from the system to its surroundings so that is negative, the
internal energy of the system must decrease.

3. Cyclical processes. There are processes in which, after certain interchanges of
thermal energy and work, the system is restored to its initial state. Engines un-
dergo this type of process. Since the system is restored to its initial state, no intrin-
sic property of the system—including its internal energy—can possibly change.
Putting in the first law ( ) yields 

(cyclical process). (19-21)

Thus, the net work done by the system on its surroundings during the process
must exactly equal the net amount of thermal energy transferred to the system.
So the store of internal energy hidden in the system remains unchanged. Cyclical
processes form a closed loop on a P-V plot, as shown in Fig. 19-11f.

4. Free expansions. These are adiabatic processes (that is, ones in which no transfer
of thermal energy occurs between the system and its environment) and no work
is done on or by the system. Thus, and the first law requires that 

(free expansion). (19-22)

Figure 19-13 shows how such an expansion can be carried out. A gas, which is in
thermal equilibrium within itself, is initially confined by a closed stopcock to one
half of an insulated double chamber; the other half is evacuated. The stopcock is
opened, and the gas expands freely to fill both halves of the chamber. No thermal
energy is transferred to or from the gas because of the insulation. No work is
done by the gas because it rushes into a vacuum; the motion of the gas atoms or
molecules is not opposed by any pressure.

A free expansion differs from all other processes we have considered be-
cause it cannot be done slowly and in a controlled way. As a result, at any given
instant during the sudden expansion, the gas is not in thermal equilibrium and its

�Eint � 0

Q � W � 0

Q(in) � W(by)

�Eint � E int
f � E int

i � Q � W�E int � 0

�Q

Q

�Eint � Q

�E int
f � E int

i � Q � W

Vacuum

Insulation

Stopcock

FIGURE 19-13 ■ The initial stage of a free-expansion
process. After the stopcock is opened, the gas fills both
chambers and eventually reaches an equilibrium state.



19-9 More on Temperature Measurement

In Section 1-4 we discussed the fact that there are only seven fundamental quantities in
physics that serve as base units for the entire international system (or SI) of units.Temper-
ature in kelvins is one of them. How is the kelvin unit defined? Why has a gas thermome-
ter operating under constant volume become the standard thermometer? What are its
fixed points? Why is it superior to the liquid thermometers we discussed in Section 19-2?

As we discussed in Section 19-2, there are several difficulties with defining tem-
perature in terms of the height of a liquid column in a liquid thermometer. First, the
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TOUCHSTONE EXAMPLE 19-3: Boiling Water

Let 1.00 kg of liquid water at 100�C be converted to steam at 100�C
by boiling at standard atmospheric pressure (which is 1.00 atm or
1.01 � 105 Pa) in the arrangement of Fig. 19-14. The volume of that
water changes from an initial value of 1.00 � 10�3 m3 as a liquid to
1.671 m3 as steam.

(a) How much work is done by the system during this process?

S O L U T I O N ■ The Ke y  I d e a here is that the system must do
positive work because the volume increases. In the general case we
would calculate the work W done by integrating the pressure with re-
spect to the volume (Eq. 19-16). However, here the pressure is constant
at 1.01 � 105 Pa, so we can take P outside the integral.We then have

(Answer)

� 1.69 � 105 J � 169 kJ.

� (1.01 � 105 Pa)(1.671 m3 � 1.00 � 10�3 m3)

W � �Vf

Vi

PdV � P�Vf

Vi

dV � P(Vf � Vi)

(b) How much thermal energy is transferred as heat during the
process?

S O L U T I O N ■ The K e y  I d e a here is that the thermal en-
ergy causes only a phase change and not a change in tempera-
ture, so it is given fully by Eq. 19-7 (Q = Lm). Because the
change is from a liquid to a gaseous phase, L is the heat of va-
porization LV, with the value given in Eq. 19-8 and Table 19-3.
We find 

(Answer)

(c) What is the change in the system’s internal energy during the
process?

S O L U T I O N ■ The Ke y  I d e a here is that the change in the
system’s internal energy is related to the thermal energy trans-
ferred into the system and the work done on the surroundings
which transfers out of the system) by the first law of thermodynam-
ics (Eq. 19-17). Thus, we can write 

(Answer)

This quantity is positive, indicating that the internal energy of the
system has increased during the boiling process. This energy goes
into separating the H2O molecules, which strongly attract each
other in the liquid state. We see that, when water is boiled, about
7.5% (� 169 kJ/2260 kJ) of the thermal energy added goes into the
work of pushing back the atmosphere. The rest of the thermal
energy added goes into the system’s internal energy.

� 2090 kJ � 2.09 MJ.

�E int � Q � W � 2256 kJ � 169 kJ

� 2256 kJ � 2260 kJ.

Q � LV m � (2256 kJ/kg)(1.00 kg)

Lead shot

W

Insulation

Thermal reservoir
T

Control knob

Q

Liquid water

Steam

FIGURE 19-14 ■ Water
boiling at constant pressure.
Thermal energy is trans-
ferred from the thermal
reservoir until the liquid
water has changed com-
pletely into steam. Work is
done by the expanding gas
as it lifts the loaded piston.
The insulating lid is not
shown.

pressure is not the same everywhere. Therefore, although we can plot the initial
and final states on a P-V diagram, we cannot plot the expansion itself.

READI NG EXERC IS E  19-7: For one complete cycle as
shown in the P-V diagram here, (a) is the internal energy change

of the gas positive, negative, or zero? and (b) what about the
net thermal energy, Q, transferred to the gas?

■

�E int

p

V
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historical fixed points (such as freezing and boiling points at sea level, body temper-
ature, and lowest ice/salt mixture temperature) are not reproducible to a high accu-
racy. Second, liquid thermometers are only usable in a narrow range of tempera-
tures between the freezing and boiling points of the liquid. Third, no two liquids
expand and contract in exactly the same way as their temperatures change.

These difficulties prompted a search for highly reproducible fixed points and a way to
measure temperature that is independent of the behavior of any one particular substance.
Gases are more promising substances for temperature measurements, since they are al-
ready “boiling” and have no upper limit except at the melting point of their container.Also,
gases do not tend to liquefy until they reach very low temperatures. For example, air lique-
fies at about �200�C. Generally a gas volume (at constant pressure) or a gas pressure (at
constant volume) can be measured between two fixed points.The scales can be determined
in the same way as they are for liquids. The various gas scales have been found to agree
among themselves better than liquid scales do. Other thermometers are based on changes
of the electrical properties or materials or changes in the light given off by glowing sub-
stances and so on. Although we have dozens of thermometric scales based on the behav-
iors of various substances, none of them can be proven exactly true. Here we present some
methods for identifying better fixed points and designing more accurate thermometers.

Defining Standard Fixed Points
Using a low-density gas instead of liquid to measure low temperatures gives very inter-
esting results. As we suggested in Section 19-2, when thermal energy is extracted from
a gas held at constant pressure, its temperature and volume drop. A simple apparatus
showing these results for a limited range of temperatures is shown in Fig. 19-15.*

If you plot data for the volume of any low-density gas as a function of temperature, the
graph is linear. By extrapolating the graph to zero volume, you can predict that the volume
will go to zero at a temperature of approximately �273�C. In reality any gas will liquefy be-
fore its temperature gets that low. An alternative approach is to hold the volume of a gas
constant and observe that its pressure will also approach zero at a temperature of about
�273�C.A simple apparatus for doing this experiment is shown in Fig. 19-16.

Water
container
(coffee mug)

Air chamber
(flask) Thermometer

Plunger (or piston)

Syringe

Flexible
Tygon
tubing

FIGURE 19-15 ■ Diagram of apparatus that can be used to measure
volume changes as a function of the temperature of air or some other
gas trapped at constant pressure. The pressure is a combination of at-
mospheric pressure plus the pressure exerted by the weight of the
plunger of cross-sectional area A, so that .P � P atm � mg/A

FIGURE 19-16 ■ Diagram of apparatus that uses a computer data acqui-
sition system to measure pressure changes as a function of the tempera-
ture of air or some other gas trapped at constant volume.

Electronic
temperature
sensor

Computer
interfaceTo computer

Electronic
pressure
sensor

*The temperature sensor should be placed inside the flask in Fig. 19-15.



Actually the extrapolation to zero pressure gives a slightly different result depend-
ing on how much gas is placed in the flask that holds it to a constant volume. However,
as we place smaller and smaller masses of gas in the flask and retake the data we find
that the temperature at zero pressure converges to a lower limit of �273.16�C. Student
data for this experiment using different apparatus are shown in Fig. 19-17.
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Gas
thermometer
bulb

Vapor

Water

FIGURE 19-17 ■ Data from a student experiment
measuring the pressure of a fixed volume of gas at
various temperatures. The experimental data are rep-
resented by the points in the graphs and the lines are
fits to these data. The three data sets are for three dif-
ferent masses of gas (air) in a container. Regardless of
the amount of gas, the pressure is a linear function of
temperature that extrapolates to zero at approxi-
mately �280�C. (More precise measurements show
that the zero point does depend slightly on the
amount of gas, but has a well-defined limit of
�273.16�C as the density of the gas goes to zero.)
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FIGURE 19-18 ■ A triple-point cell, in which solid ice, liq-
uid water, and water vapor coexist in thermal equilibrium.
By international agreement, the temperature of this mix-
ture has been defined to be 273.16 K. The bulb of a con-
stant-volume gas thermometer is shown inserted into the
well of the cell.

Since vanishingly small samples of all gases appear to approach the same mini-
mum temperature regardless of their chemical composition, this temperature seems to
be a fundamental property of nature. We call this minimum temperature absolute
zero. We define absolute zero as the temperature of a body when it has the minimum
possible internal energy. Because of the universality of this minimum temperature of
�273.16�C it has become our standard low temperature fixed point.

But what should we use if we want a second standard fixed point? We could, for exam-
ple, select the freezing point or the boiling point of water. However, water’s change of
phase, for example from liquid to vapor (boiling), depends not just on temperature, but also
on pressure.This introduces some technical difficulties and reduces our confidence in using
boiling or freezing as fixed, reproducible thermal phenomena. As we suggested in Section
19-2 a state known as the triple point of water is a good candidate for a fixed point.

We have found through extensive experimentation that three phases—liquid water,
solid ice, and water vapor (gaseous water)—can coexist, in thermal equilibrium, at one
and only one set of values of pressure and temperature. Thus, this temperature is called
the triple point of water. Since both the temperature and pressure are well defined at this
point, the triple point of water is often used as a standard high temperature fixed point
in designing a thermometer.

Figure 19-18 shows a triple-point cell, in which the triple point of water can be set
up in a laboratory. For reasons that we will explain when introducing the thermody-
namic temperature scale, the triple point of water has been assigned a value of 0.01�C.
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FIGURE 19-19 ■ Some temperatures on the ther-
modynamic scale. Temperature corresponds
to and cannot be plotted on this thermody-
namic scale.
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Universe just after
beginning

Highest laboratory
temperature
Center of the Sun

Surface of the Sun

Tungsten melts
Water freezes

Universe today
Boiling helium-3

Record low temperature

FIGURE 19-20 ■ A comparison of the thermody-
namic, Celsius, and Fahrenheit temperature scales.

Triple
point of

water

Absolute
zero

273.16 K 0.01°C 32.02°F

0 K –273.15°C –459.67°F

The Thermodynamic Temperature Scale
The accepted SI unit of temperature is the kelvin. The kelvin is named after Lord Kelvin
who first proposed that there is a natural limit to how cold any object can get. If we as-
sume that temperature is an indicator of the amount of internal energy in a system, then
the natural limit occurs when E int � 0. Kelvin proposed that when E int � 0 then T � 0.
This zero is known as absolute zero. It is defined by using absolute zero and the triple
point of water as its two fixed points. In order to tie in with the popular Celsius scale, the
thermodynamic scale was set to have the same “size” degree as the Celsius scale. This
yields a rather odd definition. Basically the minimum possible temperature is defined as
zero kelvin or 0 K, and the triple point of water is defined as exactly �273.16 K.

Since the triple point of water is 0.01�C, the conversion between a Celsius scale
temperature and the thermodynamic scale temperature is very simple since one
merely needs to add 273.15 to the Celsius temperature, TC, to get the thermodynamic
temperature T. In other words,

(19-23)

Figure 19-19 shows a wide range of temperatures in kelvin, either measured or
conjectured. When expressing temperatures on the Fahrenheit or Celsius scales,
we commonly say degrees Fahrenheit (�F) or degrees Celsius (�C), but thermody-
namic temperatures are simply called “kelvin” (abbreviated K). Thus, we do not
say “degrees kelvin” or write �K. Figure 19-20 compares the thermodynamic,
Celsius, and Fahrenheit scales.

T � TC � 273.15.



When the universe began, some 10 to 20 billion years ago, its temperature was
about 1039 K. As the universe expanded it cooled, and it has now reached an aver-
age temperature of about 3 K. We on Earth are a little warmer than that because we
happen to live near a star. Without our sun, we too would be at 3 K (and we could
not exist).

The Constant-Volume Gas Thermometer
Now that we have better fixed points we can use them as part of a standard ther-
mometer that uses gas rather than a liquid as its medium. The standard thermometer,
against which all other thermometers are calibrated, is based on the effect of tem-
perature changes on the pressure of a gas occupying a fixed volume. Figure 19-21
shows such a constant-volume gas thermometer; it consists of a gas-filled bulb
connected by a tube to a mercury manometer. By raising and lowering reservoir
R, the mercury level on the left can always be brought to the zero of the scale to
keep the gas volume constant (variations in the gas volume can affect tempera-
ture measurements).

The temperature of any body in thermal contact with the bulb (like the liquid in
Fig. 19-21) is then defined to be 

(19-24)T � CP,
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*For pressure units, we shall use units introduced in Section 15-3. The SI unit for pressure is the newton
per square meter, which is called the pascal (Pa). The pascal is related to other common pressure
units by

1.00 atm � 1.01 � 105 Pa � 760 torr � 14.7 lb/in.2

0

h

R

T

Scale
Gas-filled
bulb

FIGURE 19-21 ■ A constant-volume gas thermometer, the gas-
filled bulb on the left is immersed in a liquid whose tempera-
ture T is being measured.The mercury-filled bulb on the right is
raised or lowered as P changes to keep the left-hand column of
mercury at the zero point on the scale so the gas volume stays
constant.

in which P is the pressure within the gas and C is a constant. From Eq. 15-10, the pres-
sure P is

, (19-25)

in which P atm is the atmospheric pressure, is the density of the mercury in the
open-tube manometer (like that described in Section 15-5), and h is the measured dif-
ference between the mercury levels in the two arms of the tube.*

If we next put the bulb in a triple-point cell (Fig. 19-18), the temperature being
measured is 

(19-26)T3 � CP3

�Hg

P � P atm � � Hggh
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Brass

Steel

T = T0

T  > T0

(a)

(b)

FIGURE 19-22 ■ (a) A bimetal strip, con-
sisting of a strip of brass and a strip of steel
welded together, at temperature T0. (b) The
strip bends as shown at temperatures above
this reference temperature. Below the refer-
ence temperature the strip bends the other
way. Many thermostats operate on this prin-
ciple, making and breaking an electrical
contact as the temperature rises and falls.

FIGURE 19-23 ■ Railroad tracks in Asbury
Park, New Jersey, distorted because of ther-
mal expansion on a very hot July day.

in which P3 is the gas pressure now. Eliminating C between Eqs. 19-24 and 19-26 gives
us the temperature as 

(provisional). (19-27)

We still have a problem with this thermometer. If we use it to measure a given
temperature, we find that different gases in the bulb give slightly different results.
However, as we use smaller and smaller masses of gas to fill the bulb, the readings
converge nicely to a single temperature, no matter what gas we use.

Thus the recipe for measuring a temperature with a gas thermometer is 

(19-28)

The recipe instructs us to measure an unknown temperature T as follows: Fill the
thermometer bulb with an arbitrary amount of any gas (for example, nitrogen) and
measure P3 (using a triple-point cell) and P, the gas pressure at the temperature
being measured. (Keep the gas volume the same.) Calculate the ratio P/P3. Then
repeat both measurements with a smaller amount of gas in the bulb, and again cal-
culate this ratio. Continue this way, using smaller and smaller amounts of gas, until
you can extrapolate to the ratio P/P3 that you would find if there were approxi-
mately no gas in the bulb. Calculate the temperature T by substituting that extrap-
olated ratio into Eq. 19-28. (The temperature is called the ideal gas temperature.)

19-10 Thermal Expansion 

We already know that most materials expand when heated and contract when
cooled. Indeed, we used this principle in our first definition of temperature. The de-
sign of thermometers and thermostats is often based on the differences in expansion
between the components of a bimetal strip (Fig. 19-22). In aircraft manufacture, rivets
and other fasteners are often cooled in dry ice before insertion and then allowed to
expand to a tight fit. However, such thermal expansion is not always desirable, as Fig.
19-23 suggests. To prevent buckling, expansion slots must be placed in bridges to ac-
commodate roadway expansion on hot days. Dental materials used for fillings must
be matched in their thermal expansion properties to those of tooth enamel (other-
wise consuming hot coffee or cold ice cream would be quite painful). Regardless of
whether we might wish to exploit or avoid thermal expansion, this property has
many important implications and we need to consider how it works in detail.

Linear Expansion
If the temperature of a metal rod of length L is raised by a small amount , its
length is found to increase by an amount �L according to 

(19-29)

in which  is a constant called the coefficient of linear expansion. For small changes in
temperature, the fractional length change (�L/L) is proportional to the change in

�L
L

�  �T,

�T

T � (273.16 K)� lim
gas : 0

P
P3

�.

T � T3� P
P3

� � (273.16 K)� P
P3

�
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temperature. The coefficient  should be thought of as the ratio of how much the
length changes per unit length given a certain change in temperature. It has the unit
“per degree” or “per kelvin” and depends on the material. Although  varies some-
what with temperature, for most practical purposes it can be taken as constant for a
particular material. Table 19-5 shows some coefficients of linear expansion. Note that
the unit C� there could be replaced with the unit K.

The thermal expansion of a solid is like a (three-dimensional) photographic
enlargement. Figure 19-24b shows the (exaggerated) expansion of a steel ruler after
its temperature is increased from that of Fig. 19-24a. Equation 19-29 applies to every
linear dimension of the ruler, including its edge, thickness, diagonals, and the diame-
ters of the circle etched on it and the circular hole cut in it. If the disk cut from that
hole originally fits snugly in the hole, it will continue to fit snugly if it undergoes the
same temperature increase as the ruler.

1 2 3 4 5 6 7

1 2 3 4 5 6 7

Circular
hole

Circle
(a)

(b)

FIGURE 19-24 ■ The same steel ruler at
two different temperatures.When the
ruler expands, the scale, the numbers, the
thickness, and the diameters of the circle
and circular hole are all increased by the
same factor. (The expansion has been ex-
aggerated for clarity.)

TA B L E 19 - 5
Some Coefficients of Linear Expansiona

Substance � (10�6/C°) Substance � (10�6/C°)

Ice (at 0°C) 51 Steel 11

Lead 29 Glass (ordinary) 9

Aluminum 23 Glass (Pyrex) 3.2

Brass 19 Diamond 1.2

Copper 17 Invarb 0.7

Concrete 12 Fused quartz 0.5

aRoom temperature values except for the listing for ice.
bThis alloy was designed to have a low coefficient of expansion. The word is a
shortened form of “invariable.”

Volume Expansion
If all dimensions of a solid expand with temperature, the volume of that solid must
also expand. For liquids, volume expansion is the only meaningful expansion parameter.
If the temperature of a solid or liquid whose volume is V is increased by a small
amount , the increase in volume is found to be �V, where

(19-30)

and � is the coefficient of volume expansion of the solid or liquid.

�V
V

� � �T

�T



The coefficients of volume expansion � and linear expansion  for a solid are
related. To see how, consider a rectangular solid of height h, width w, and length l.
The volume of the rectangular solid is hwl. If the solid is heated, each dimension ex-
pands linearly so that the height becomes h � �h, the width becomes w � �w, and
the length becomes l � �l. Hence, the new volume is (h � �h)(w � �w)(l � �l). If
we multiply this out, ignoring all terms with two or more deltas (�) because those
terms will be very small, we get hwl � hw �l � h �wl � �h wl. Since each dimen-
sion expands linearly, this means that our new volume is equal to hwl � hwl(3
�T). Hence,

(19-31)

The most common liquid, water, does not behave like other liquids. Above about
4�C, water expands as the temperature rises, as we would expect. Between 0 and
about 4�C, however, water contracts with increasing temperature. Thus, at about 4�C,
the density of water passes through a maximum. At all other temperatures, the density
of water is less than this maximum value.

This behavior of water is the reason why lakes freeze from the top down rather
than from the bottom up. As water on the surface is cooled from, say, 10�C toward the
freezing point, it becomes denser (“heavier”) than lower water and sinks to the bot-
tom. Below 4�C, however, further cooling makes the water then on the surface less
dense (“lighter”) than the lower water, so it stays on the surface until it freezes. Thus
the surface freezes while the lower water is still liquid. If lakes froze from the bottom
up, the ice so formed would tend not to melt completely during the summer, because
it would be insulated by the water above. After a few years, many bodies of open wa-
ter in the temperate zones of Earth would be frozen solid all year round—and
aquatic life as we know it could not exist.

READI NG EXERC IS E  19-8: The figure below shows four rectangular metal plates,
with sides of L, 2L, or 3L. They are all made of the same material, and their temperature is 
to be increased by the same amount. Rank the plates according to the expected increase in 
(a) their vertical heights and (b) their areas, greatest first.

■

READI NG EXERC IS E  19-9: Suppose that one of the plates shown above has a
round hole cut out of its center. The temperature is increased. Does the hole in the center get
larger, smaller, or remain unchanged in size? Explain your reasoning. ■

R EAD I N G EX E R C I S E  19-10 : Consider a cylindrical metal rod that stands on its
base in a vertical orientation. The temperature increases uniformly. What happens to the
pressure at the base of the rod? Does it increase, decrease, or remain unchanged? Explain
your reasoning. ■

� � 3.
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19-11 More on Thermal Energy Transfer Mechanisms 

In Section 19-4, during our initial discussion of the transfer of thermal energy between
a system and its environment, we qualitatively discussed the three transfer mechanisms
(conduction, convection, and radiation). In order to enhance our understanding of
transfer mechanisms, we expand upon our discussion of conduction and radiation here.

Conduction
We all have a natural ability to sense hot and cold. But unfortunately, our “tempera-
ture sense” is in fact not always reliable. On a cold winter day, for example, why
does an iron railing seem much colder to the touch than a wooden fence post when
both are at the same temperature? Why are frying pans made out of metal while pot
holders are made out of cloth and other fibers? The answer is that some materials
are much more effective than others at transferring thermal energy via conduction.

Consider a slab of face area A and thickness L, whose faces are maintained at tem-
peratures TH and TC by a hot reservoir and a cold reservoir, as in Fig. 19-25. Let Q be
the energy that is transferred as thermal energy through the slab, from its hot face to its
cold face, in a time interval �t. Experiment shows that the thermal energy conduction
rate P cond (the power or thermal energy transferred per unit time—not a pressure) is 

(19-32)

in which k, called the thermal conductivity, is a constant that depends on the material
of which the slab is made. That is, the thermal conductivity k is a property of the mater-
ial. A material that readily transfers energy by conduction is a good thermal conductor
and has a high value of k. Table 19-6 gives the thermal conductivities of some common
metals, gases, and building materials.

Thermal Resistance to Conduction (R-Value)
If you are interested in insulating your house or in keeping cola cans cold on a picnic,
you are more concerned with poor conductors of thermal energy than with good ones.
For this reason, the concept of thermal resistance R has been introduced into engi-
neering practice. The R-value of a slab of thickness L is defined as 

(19-33)R �
L
k

.

P cond �
Q
�t

� kA
TH � TC

L
,

TOUCHSTONE EXAMPLE 19-4: Hot Day in Vegas

On a hot day in Las Vegas, an oil trucker loaded 37 000 L of diesel
fuel. He encountered cold weather on the way to Payson, Utah, where
the temperature was 23.0 K lower than in Las Vegas, and where he de-
livered his entire load. How many liters did he deliver? The coefficient
of volume expansion for diesel fuel is 9.50 � 10�4/�C, and the coeffi-
cient of linear expansion for his steel truck tank is 11 � 10�6/�C.

S O L U T I O N ■ The Ke y  I d e a here is that the volume of the
diesel fuel depends directly on the temperature. Thus, because the
temperature decreased, the volume of the fuel did also. From Eq.
19-25, the volume change is 

Thus, the amount delivered was 

(Answer)

Note that the thermal expansion of the steel tank has nothing to do
with the problem. Question: Who paid for the “missing” diesel fuel?

� 36 192 L.

Vdel � V � �V � 37 000 L � 808 L

� (37 000 L)(9.50 � 10�4/�C)(�23.0 �C) � �808 L.

�V � V� �T

k

Hot reservoir
at TH

Cold reservoir
at TC

L

TCTH >

Q

FIGURE 19-25 ■ Thermal conduction.Ther-
mal energy Q is transferred from a reservoir
at temperature TH to a cooler reservoir at
temperature TC through a conducting slab
of thickness L and thermal conductivity k.



The lower the thermal conductivity of the material of which a slab is made, the higher
is the R-value of the slab, so something that has a high R-value is a poor thermal con-
ductor and thus a good thermal insulator.

Note that R is a property attributed to a slab of a specified thickness, not to a
material. That is, R is not a property of a material alone. The commonly used unit for
R (which, in the United States at least, is almost never stated) is the square foot-
fahrenheit degree-hour per British thermal unit (ft2 
 F� 
 h/Btu).

Conduction Through a Composite Slab
Figure 19-26 shows a composite slab, consisting of two materials having different
thicknesses L1 and L2 and different thermal conductivities k1 and k2. The tempera-
tures of the outer surfaces of the slab are TH and TC. Each face of the slab has area A.
Let us derive an expression for the conduction rate through the slab under the as-
sumption that the transfer is a steady-state process; that is, the temperatures every-
where in the slab and the rate of energy transfer do not change with time.
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Cold reservoir
at TC

Hot reservoir
at TH

k1

L1

Q

TX

k2

L 2

FIGURE 19-26 ■ Thermal energy Q is transferred 
from a hot reservoir to a cold reservoir at a steady rate
through a composite slab made up of two different ma-
terials with different thicknesses and different thermal
conductivities. The steady-state temperature at the in-
terface of the two materials is denoted TX.

TA B L E 19 - 6
Some Thermal Conductivitiesa

Substance k(W/m � K)

Metals

Stainless steel 14

Lead 35

Aluminum 235

Copper 401

Silver 428

Gases

Air (dry) 0.026

Helium 0.15

Hydrogen 0.18

Building Materials

Polyurethane foam 0.024

Rock wool 0.043

Fiberglass 0.048

White pine 0.11

Window glass 1.0

aConductivities change somewhat with tempera-
ture. The given values are at room temperature.

In the steady state, the conduction rates through the two materials must be equal.
This is the same as saying that the energy transferred through one material in a cer-
tain time must be equal to that transferred through the other material in the same
time. If this were not true, temperatures in the slab would be changing and we would
not have a steady-state situation. Letting TX be the temperature of the interface be-
tween the two materials, we can now use Eq. 19-33 to express the rate of thermal en-
ergy transfer as

(19-34)

Solving for TX yields, after a little algebra,

(19-35)

Substituting this expression for TX into either equality of Eq. 19-34 yields 

(19-36)

We can extend Eq. 19-36 to apply to any number n of materials making up a slab:

(19-37)

The summation sign in the denominator tells us to add the values of L/k for all the
materials.

Pcond �
A(TH � TC)

�
n

i�1
(Li/ki)

.

Pcond �
A(TH � TC)

L1/k1 � L2/k2
.

TX �
k1L2TC � k2L1TH

k1L2 � k2L1
.

Pcond �
k2A(TH � TX)

L2
�

k1A(TX � TC)
L1

.
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FIGURE 19-27 ■ Thermogram of a house
showing the distribution of heat over its
surface. The color coding ranges from
white to yellow for the warmest areas
(greatest heat loss from windows, etc)
through red to purple and green for the
coolest areas (greatest insulation). This
thermogram shows that the roof and win-
dows (yellow) are poorly insulated, while
the walls (red, purple, and green) are los-
ing the least heat. Thermograms are often
used to check houses for heat loss, so that
they can be made more energy efficient
through improved insulation.

The rate Pabs at which an object absorbs energy via thermal radiation from its en-
vironment, which we take to be at uniform temperature Tenv (in kelvins), is 

(19-39)

The emissivity � in Eq. 19-39 is the same as that in Eq. 19-38. An idealized blackbody
radiator, with � � 1, will absorb all the radiated energy it intercepts (rather than send-
ing a portion back away from itself through reflection or scattering).

Because an object will radiate energy to the environment while it absorbs energy from
the environment, the object’s net rate Pnet of energy exchange due to thermal radiation is 

(19-40)

Pnet is positive if net energy is being absorbed via radiation, and negative if it is being
lost via radiation.

READI NG EXERC IS E  19-11: The figure shows the face and interface temperatures
of a composite slab consisting of four materials, of identical thicknesses, through which the ther-
mal energy transfer is steady. Rank the materials according to their thermal conductivities,
greatest first.

■

Pnet � Pabs � Prad � ��A(T 4
env � T 4).

Pabs � ��AT 4
env.

Radiation
The rate P rad at which an object emits energy via electromagnetic radiation depends on
the object’s surface area A and the temperature T of that area in kelvins and is given by 

(19-38)

Here � � 5.6703 � 10�8 W/m2 
 K4 is called the Stefan-Boltzmann constant after Josef
Stefan (who discovered Eq. 19-33 experimentally in 1879) and Ludwig Boltzmann
(who derived it theoretically soon after). The symbol � represents the emissivity of the
object’s surface, which has a value between 0 and 1, depending on the composition of
the surface. A surface with the maximum emissivity of 1.0 is said to be a blackbody ra-
diator, but such a surface is an ideal limit and does not occur in nature. Note again
that the temperature in Eq. 19-38 must be in kelvins so that a temperature of absolute
zero corresponds to no radiation. Note also that every object whose temperature is
above 0 K—including you—emits thermal radiation. (See Fig. 19-27.)

Prad � ��AT 4.

25°C 15°C 10°C –5.0°C –10°C

a b c d
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TOUCHSTONE EXAMPLE 19-6: Japanese Bees

When hundreds of Japanese bees form a compact ball around a giant
hornet that attempts to invade their hive, they can quickly raise their
body temperature from the normal 35�C to 47�C or 48�C. That higher
temperature is lethal to the hornet but not to the bees (Fig. 19-29).
Assume the following: 500 bees form a ball of radius R � 2.0 cm for a
time �t � 20 min, the primary loss of energy by the ball is by thermal
radiation, the ball’s surface has emissivity � � 0.80, and the ball has a
uniform temperature. On average, how much additional energy must
each bee produce during the 20 min to maintain 47°C?

S O L U T I O N ■ The Ke y  I d e a here is that, because the surface
temperature of the bee ball increases after the ball forms, the rate
at which energy is radiated by the ball also increases. Thus, the bees
lose an additional amount of energy to thermal radiation. We can
relate the surface temperature to the rate of radiation (energy per
unit time) with Eq. 19-38 (P rad � ��AT 4), in which A is the ball’s
surface area and T is the ball’s surface temperature in kelvins. This
rate is an energy per unit time; that is,

P rad �
�E
�t

.

Thus, the amount of energy �E radiated in time t is .
At the normal temperature T1 � 35�C, the radiation rate is 

and the amount of energy radiated in time �t is �E1 � P rad
1 �t. At

the increased temperature T2 � 47�C, the (greater) radiation rate is 
P rad

2 and the (greater) amount of energy radiated in time �t is
. Thus, in maintaining the ball at T2 for time �t, the

bees must (together) provide an additional amount of energy of 
E � �E2 � �E1.

We can now write 

(19-41)

The temperatures here must be in kelvins; thus, we write them as 

T2 � 47�C � 273�C � 320 K 

and T1 � 35�C � 273�C � 308 K.

The surface area A of the ball is 

and the time is 20 min = 1200 s. Substituting these and other
known values into Eq. 19-41, we find

Thus, with 500 bees in the ball, each bee must produce an additional
energy of 

(Answer)
E

500
�

406.8 J
500

� 0.81 J.

 � (1200 s)[(320 K)4 � (308 K)4] � 406.8 J.

E � (5.6703 � 10�8 W/m2 
 K4)(0.80)(5.027 � 10�3 m2)

�t

A � 4�R2 � (4�)(0.020 m)2 � 5.027 � 10�3 m2,

� (��AT 4
2 )�t � (�� AT 4

1 )�t � ��A�t(T 4
2 � T 4

1 ).

E � �E2 � �E1 � P rad
2 �t � P rad

1 �t

�E2 � Prad
2 �t

P rad
1

�E � Prad�t

FIGURE 19-29 ■

The bees were 
unharmed by their
increased body
temperature, which
the hornet could
not withstand.

TOUCHSTONE EXAMPLE 19-5: Thermal Conduction

Figure 19-28 shows the cross section of a wall made of white pine of
thickness La and brick of thickness Ld ( � 2.0La), sandwiching two
layers of unknown material with identical thicknesses and thermal
conductivities. The thermal conductivity of the pine is ka and that of
the brick is kd (� 5.0ka). The face area A of the wall is unknown.
Thermal conduction through the wall has reached the steady state;
the only known interface temperatures are T1 � 25�C, T2 � 20�C,
and T5 � �10�C. What is interface temperature T4?

S O L U T I O N ■ One Ke y  I d e a here is that temperature T4

helps determine the rate at which energy is conducted
through the brick, as given by Eq. 19-32. However, we lack enough
data to solve Eq. 19-32 for T4. A second Ke y  I d e a is that because
the conduction is steady, the conduction rate Pd

cond through the
brick must equal the conduction rate through the pine. From
Eq. 19-32 and Fig. 19-28, we can write 

and

Setting = and solving for T4 yield

Letting Ld = 2.0La and kd = 5.0ka, and inserting the known tempera-
tures, we find

(Answer)� �8.0�C.

T4 �
ka(2.0La)
(5.0ka)La

(25�C � 20�C) � (�10�C)

T4 �
kaLd

kdLa
(T1 � T2) � T5.

P cond
dP cond

a

P cond
d � kdA

T4 � T5

Ld
.P cond

a � kaA
T1 � T2

La

P cond
a

P cond
d

Indoors Outdoors

(a) (b) (d )(c )

La Lb Lc Ld

ka kb kc kd

T1 T2 T3 T4 T5

FIGURE 19-28 ■ A
wall of four layers
through which
there is steady-
state heat transfer.
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SEC. 19-2 ■ THERMOMETERS AND TEMPERATURE SCALES

1. Fahrenheit and Celsius At what temperature is the Fahrenheit
scale reading equal to (a) twice that of the Celsius and (b) half that
of the Celsius?

2. Oymyakon (a) In 1964, the temperature in the Siberian vil-
lage of Oymyakon reached �71�C. What temperature is this on
the Fahrenheit scale? (b) The highest officially recorded tem-
perature in the continental United States was 134�F in Death
Valley, California. What is this temperature on the Celsius
scale?

SEC. 19-4 ■ HEATING, COOLING, AND TEMPERATURE

3. Hot and Cold It is an everyday observation that hot and cold ob-
jects cool down or warm up to the temperature of their surroundings.
If the temperature difference �T between an object and its sur-
roundings (�T � Tobj � Tsur) is not too great, the rate of cooling or
warming of the object is proportional, approximately, to this tem-
perature difference; that is,

� �A(�T),

where A is a constant. (The minus sign appears because �T de-
creases with time if �T is positive and increases if �T is negative.)
This is known as Newton’s law of cooling. (a) On what factors does
A depend? What are its dimensions? (b) If at some instant t1 � 0
the temperature difference is �T1, show that it is 

at a later time t2.

4. House Heater The heater of a house breaks down one day when
the outside temperature is 7.0�C. As a result, the inside temperature
drops from 22�C to 18�C in 1.0 h.The owner fixes the heater and adds
insulation to the house. Now she finds that, on a similar day, the
house takes twice as long to drop from 22�C to 18�C when the heater
is not operating. What is the ratio of the new value of constant A in
Newton’s law of cooling (see Problem 3) to the previous value?

SEC. 19-5 ■ THERMAL ENERGY TRANSFER TO SOLIDS AND

LIQUIDS

5. A Certain Substance A certain substance has a mass per mole
of 50 g/mol. When 314 J of thermal energy is transferred to a 30.0 g
sample, the sample’s temperature rises from 25.0�C to 45.0�C. What
are (a) the specific heat and (b) the molar specific heat of this sub-
stance? (c) How many moles are present?

6. Diet Doctor A certain diet doctor encourages people to diet by
drinking ice water. His theory is that the body must burn off
enough fat to raise the temperature of the water from 0.00�C to the
body temperature of 37.0�C. How many liters of ice water would
have to be consumed to burn off 454 g (about 1 lb) of fat, assuming
that this much fat burning requires 3500 Cal be transferred to the
ice water? Why is it not advisable to follow this diet? (One liter �
103 cm3. The density of water is 1.00 g/cm3.)

�T � �T1e �At2

d (�T)
dt

7. Minimum Energy Calculate the minimum amount of energy, in
joules required to completely melt 130 g of silver initially at 15.0�C.

8. How Much Unfrozen How much water remains unfrozen after
50.2 kJ of thermal energy is transferred from 260 g of liquid water
initially at its freezing point?

9. Energetic Athlete An energetic athlete can use up all the en-
ergy from a diet of 4000 food calories/day where a food calorie �
1000 cal. If he were to use up this energy at a steady rate, how
would his rate of energy use compare with the power of a 100 W
bulb? (The power of 100 W is the rate at which the bulb converts
electrical energy to thermal energy and the energy of visible light.)

10. Four Lightbulbs A room is lighted by four 100 W incandescent
lightbulbs. (The power of 100 W is the rate at which a bulb converts
electrical energy to thermal energy and the energy of visible light.)
Assuming that 90% of the energy is converted to thermal energy,
how much thermal energy is transferred to the room in 1.00 h?

11. Drilling a Hole A power of 0.400 hp is required for 2.00 min to
drill a hole in a 1.60 lb copper block. (a) If the full power is the rate
at which thermal energy is generated, how much is generated in
Btu? (b) What is the rise in temperature of the copper if the copper
absorbs 75.0% of this energy? (Use the energy conversion 1 ft
 lb �
1.285 � 10�3 Btu.)

12. How Much Butter How many grams of butter, which has a us-
able energy content of 6.0 Cal/g (� 6000 cal/g), would be equiva-
lent to the change in gravitational potential energy of a 73.0 kg man
who ascends from sea level to the top of Mt. Everest, at elevation
8.84 km? Assume that the average value of g is 9.80 m/s2.

13. Immersion Heater A small electric immersion heater is used to
heat 100 g of water for a cup of instant coffee. The heater is labeled
“200 watts,” so it converts electrical energy to thermal energy that is
transferred to the water at this rate. Calculate the time required to
bring the water from 23�C to 100�C ignoring any thermal energy
that transfers out of the cup.

14. Tub of Water One way to keep the contents of a garage from
becoming too cold on a night when a severe subfreezing tempera-
ture is forecast is to put a tub of water in the garage. If the mass of
the water is 125 kg and its initial temperature is 20�C, (a) how much
thermal energy must the water transfer to its surroundings in order
to freeze completely and (b) what is the lowest possible tempera-
ture of the water and its surroundings until that happens?

15. A Chef A chef, on finding his stove out of order, decides to boil
the water for his wife’s coffee by shaking it in a thermos flask. Sup-
pose that he uses tap water at 15�C and that the water falls 30 cm
each shake, the chef making 30 shakes each minute. Neglecting any
transfer of thermal energy out of the flask, how long must he shake
the flask for the water to reach 100�C?

16. Copper Bowl A 150 g copper bowl contains 220 g of water,
both at 20.0�C. A very hot 300 g copper cylinder is dropped into the
water, causing the water to boil, with 5.00 g being converted to
steam. The final temperature of the system is 100�C. Neglect energy
transfers with the environment. (a) How much energy (in calories)
is transferred to the water? (b) How much to the bowl? (d) What is
the original temperature of the cylinder?

Problems



17. Ethyl Alcohol Ethyl alcohol has a boiling point of 78�C, a freez-
ing point of �114�C, a heat of vaporization of 879 kJ/kg, a heat of fu-
sion of 109 kJ/kg, and a specific heat of 2.43 kJ/kg 
 C�. How much
thermal energy must be transferred out of 0.510 kg of ethyl alcohol
that is initially a gas at 78�C so that it becomes a solid at �114�C?

18. Metric–Nonmetric Nonmetric version: How long does a 
2.0 � 105 Btu/h water heater take to raise the temperature of 40 gal
of water from 70�F to 100�F? Metric version: How long does a 
59 kW water heater take to raise the temperature of 150 L of water
from 21�C to 38�C?

19. Buick A 1500 kg Buick moving at 90 km/h brakes to a stop, at
a uniform rate and without skidding, over a distance of 80 m. At
what average rate is mechanical energy transformed into thermal
energy in the brake system?

20. Solar Water Heater In a solar water heater, radiant energy
from the Sun is transferred to water that circulates through tubes in
a rooftop collector. The solar radiation enters the collector through
a transparent cover and warms the water in the tubes; this water is
pumped into a holding tank. Assume that the efficiency of the over-
all system is 20% (that is, 80% of the incident solar energy is lost
from the system). What collector area is necessary to raise the tem-
perature of 200 L of water in the tank from 20�C to 40�C in 1.0 h
when the intensity of incident sunlight is 700 W/m2?

21. Steam What mass of steam at 100�C must be mixed with 150 g
of ice at its melting point, in a thermally insulated container, to pro-
duce liquid water at 50�C?

22. Iced Tea A person makes a quantity of iced tea by mixing 500
g of hot tea (essentially water) with an equal mass of ice at its melt-
ing point. If the initial hot tea is at a temperature of (a) 90�C and 
(b) 70�C, what are the temperature and mass of the remaining ice
when the tea and ice reach a common temperature? Neglect energy
transfers with the environment.

23. Ice Cubes (a) Two 50 g ice cubes are dropped into 200 g of wa-
ter in a thermally insulated container. If the water is initially at 25�C,
and the ice comes directly from a freezer at �15�C, what is the final
temperature of the drink when the drink reaches thermal equilib-
rium? (b) What is the final temperature if only one ice cube is used?

24. Thermos of Coffee An insulated Thermos contains 130 cm3 of
hot coffee, at a temperature of 80.0�C. You put in a 12.0 g ice cube at
its melting point to cool the coffee. By how many degrees has your
coffee cooled once the ice has melted? Treat the coffee as though it
were pure water and neglect energy transfers with the environment.

SEC. 19-8 ■ SOME SPECIAL CASES OF THE FIRST LAW OF

THERMODYNAMICS

25. Gas Expands A sample of gas
expands from 1.0 m3 to 4.0 m3

while its pressure decreases from
40 Pa to 10 Pa. How much work is
done by the gas if its pressure
changes with volume via each of
the three paths shown in the P-V
diagram in Fig. 19-30?

26. Work Done Consider that 200
J of work is done on a system and
70.0 cal of thermal energy is trans-
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ferred out of the system. In the sense of the first law of thermody-
namics, what are the values (including algebraic signs) of (a) W, (b)
Q, and (c) �Eint?

27. Closed Chamber Gas within a closed chamber undergoes the
cycle shown in the P-V diagram of Fig. 19-31. Calculate the net
thermal energy added to the system during one complete cycle.

FIGURE 19-31 ■ Problem 27.

28. Thermodynamic A thermodynamic system is taken from an
initial state A to another state B and back again to A, via state C, as
shown by path ABCA in the P-V diagram of Fig. 19-31a. (a) Com-
plete the table in Fig. 19-32b by filling in either � or � for the sign
of each thermodynamic quantity associated with each step of the
cycle. (b) Calculate the numerical value of the work done by the
system for the complete cycle ABCA.

FIGURE 19-32 ■ Problem 28.

29. From i to f When a system is taken from state i to state f along
path iaf in Fig. 19-33. Q � 50 cal and W � 20 cal. Along path ibf,
Q � 36 cal. (a) What is W along path ibf ? (b) If W � �13 cal for
the return path fi, what is Q for this path? (c) Take E int

i � 10 cal.
What is E int

f ? (d) If E int
b � 22 cal, what are the values of Q for path

ib and path bf ?

FIGURE 19-33 ■ Problem 29.

30. Gas Within Gas within a chamber passes through the cycle
shown in Fig. 19-34. Determine the thermal energy transferred by
the system during process CA if the thermal energy added QAB,

Pr
es

su
re

 (
Pa

)

40

30

20

10

1.0 2.0 3.0 4.0

C B

A

Volume (m3)

0

FIGURE 19-30 ■ Problem 25.

Pr
es

su
re

 (
N

/m
2 ) 40

30

20

10

1.0 2.0 3.0 4.0

C B

Volume (m3)

0

A

Pr
es

su
re

 (
Pa

)

40

30

20

10

1.0 2.0 3.0 4.0

C

BA

Volume (m3)
0

(a)

a

i

f

b

Pr
es

su
re

Volume
0

BA

CB

AC

Q W ΔE int

+

+

(b)



572 CHAPTER 19 The First Law of Thermodynamics

during process AB is 20.0 J, no thermal energy is transferred during
process BC, and the net work done during the cycle is 15.0 J.

FIGURE 19-34 ■ Problem 30.

SEC. 19-9 ■ MORE ON TEMPERATURE MEASUREMENT

31. Gas Thermometer A particular gas thermometer is constructed
of two gas-containing bulbs, each of which is put into a water bath, as
shown in Fig. 19-35. The pressure difference between the two bulbs is
measured by a mercury manometer as shown. Appropriate reservoirs,
not shown in the diagram, maintain constant gas volume in the two
bulbs. There is no difference in pressure when both baths are at the
triple point of water. The pressure difference is 120 torr when one
bath is at the triple point and the other is at the boiling point of water.
It is 90.0 torr when one bath is at the triple point and the other is at an
unknown temperature to be measured. What is the unknown temper-
ature?

FIGURE 19-35 ■ Problem 31.

32. A Gas at Boiling Suppose the temperature of a gas at the boil-
ing point of water is 373.15 K. What then is the limiting value of the
ratio of the pressure of the gas at that boiling point to its pressure
at the triple point of water? (Assume the volume of the gas is the
same at both temperatures.)

33. Pairs of Scales At what temperature do the following pairs of
scales read the same, if ever: (a) Fahrenheit and Celsius (verify the
listing in Table 19-1), (b) Fahrenheit and Kelvin, and (c) Celsius
and Kelvin?

SEC. 19-10 ■ THERMAL EXPANSION

34. Aluminum Flagpole An aluminum flagpole is 33 m high. By how
much does its length increase as the temperature increases by 15 C�?

35. Pyrex Glass The Pyrex glass mirror in the telescope at the Mt.
Palomar Observatory has a diameter of 200 in. The temperature
ranges from �10�C to 50�C on Mt. Palomar. In micrometers, what is
the maximum change in the diameter of the mirror, assuming that
the glass can freely expand and contract?

36. Aluminum Alloy An aluminum-alloy rod has a length of
10.000 cm at 20.000�C and a length of 10.015 cm at the boiling point

of water. (a) What is the length of the rod at the freezing point of wa-
ter? (b) What is the temperature if the length of the rod is 10.009 cm?

37. Circular Hole A circular hole in an aluminum plate is 2.725 cm
in diameter at 0.000�C. What is its diameter when the temperature
of the plate is raised to 100.0�C?

38. Lead Ball What is the volume of a lead ball at 30�C if the ball’s
volume at 60�C is 50 cm3?

39. Change in Volume Find the change in volume of an aluminum
sphere with an initial radius of 10 cm when the sphere is heated
from 0.0�C to 100�C.

40. Area Rectangular The area A of a rectangular plate is ab. Its
coefficient of linear expansion is . After a temperature rise �T, side
a is longer by �a and side b is longer by �b (Fig. 19-36). Show that if
the small quantity (�a �b)/ab is neglected, then �A � 2A �T.

FIGURE 19-36 ■ Problem 40.

41. Aluminum Cup An aluminum cup of 100 cm3 capacity is com-
pletely filled with glycerin at 22�C. How much glycerin, if any, will
spill out of the cup if the temperature of both the cup and glycerin
is increased to 28�C? (The coefficient of volume expansion of glyc-
erin is 5.1 � 10�4/C�.)

42. Rod At 20�C, a rod is exactly 20.05 cm long on a steel ruler. Both
the rod and the ruler are placed in an oven at 270�C, where the rod
now measures 20.11 cm on the same ruler. What is the coefficient of
thermal expansion for the material of which the rod is made?

43. Steel Rod A steel rod is 3.000 cm in diameter at 25�C. A brass
ring has an interior diameter of 2.992 cm at 25�C. At what common
temperature will the ring just slide onto the rod?

44. Metal Cylinder When the temperature of a metal cylinder is
raised from 0.0�C to 100�C, its length increases by 0.23%. (a)
Find the percent change in density. (b) What is the metal? Use
Table 19-5.

45. Barometer Show that when the temperature of a liquid in a
barometer changes by �T and the pressure is constant, the liquid’s
height h changes by �h � �h �T, where � is the coefficient of vol-
ume expansion. Neglect the expansion of the glass tube.

46. Copper Coin When the temperature of a copper coin is raised
by 100 C�, its diameter increases by 0.18%. To two significant fig-
ures, give the percent increase in (a) the area of a face, (b) the
thickness, (c) the volume, and (d) the mass of the coin. (e) Calculate
the coefficient of linear expansion of the coin.

47. Pendulum Clock A pendulum clock with a pendulum made of
brass is designed to keep accurate time at 20�C. If the clock oper-
ates at 0.0�C, what is the magnitude of its error, in seconds per hour,
and does the clock run fast or slow?

48. Radioactive Source In a certain experiment, a small radioac-
tive source must move at selected, extremely slow speeds. This
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motion is accomplished by fastening the source to one end of an
aluminum rod and heating the central section of the rod in a con-
trolled way. If the effective heated section of the rod in Fig. 19-37 is
2.00 cm, at what constant rate must the temperature of the rod be
changed if the source is to move at a constant speed of 100 nm/s?

FIGURE 19-37 ■ Problem 48.

49. Temperature Rise As a result of a temperature rise of 32�C, a
bar with a crack at its center buckles upward (Fig. 19-38). If the
fixed distance L0 is 3.77 m and the coefficient of linear expansion of
the bar is 25 � 10�6/C�, find the rise x of the center.

FIGURE 19-38 ■ Problem 49.

50. Copper Ring A 20.0 g copper ring has a diameter of 2.54000 cm
at its temperature of 0.000�C. An aluminum sphere has a diameter
of 2.54508 cm at its temperature of 100.0�C. The sphere is placed on
top of the ring (Fig. 19-39), and the two are allowed to come to
thermal equilibrium, with no thermal energy transferred to the sur-
roundings. The sphere just passes through the ring at the equilib-
rium temperature. What is the mass of the sphere?

FIGURE 19-39 ■ Problem 50.

SEC. 19-11 ■ MORE ON THERMAL ENERGY TRANSFER

MECHANISMS

51. Single-Family Dwelling The ceiling of a single-family dwelling
in a cold climate should have an R-value of 30. To give such insula-
tion, how thick would a layer of (a) polyurethane foam and 
(b) silver have to be? 

52. North America The average rate at which energy is conducted
outward through the ground surface in North America is 54.0
mW/m2, and the average thermal conductivity of the near-surface
rocks is 2.50 W/m 
K. Assuming a surface temperature of 10.0�C, find
the temperature at a depth of 35.0 km (near the base of the crust). Ig-
nore the thermal energy transferred from the radioactive elements.

53. Slab Consider the slab shown in Fig. 19-25. Suppose that L �
25.0 cm, A � 90.0 cm2, and the material is copper. If TH � 125�C,
TC � 10.0�C, and a steady state is reached, find the conduction rate
through the slab.

54. Body Heat (a) Calculate the rate at which body heat is con-
ducted through the clothing of a skier in a steady-state process,
given the following data: the body surface area is 1.8 m2 and the
clothing is 1.0 cm thick; the skin surface temperature is 33�C and
the outer surface of the clothing is at 1.0�C; the thermal conductiv-
ity of the clothing is 0.040 W/m 
 K. (b) How would the answer to
(a) change if, after a fall, the skier’s clothes became soaked with wa-
ter of thermal conductivity 0.60 W/m 
 K?

55. Copper Rod A cylindrical copper rod of length 1.2 m and
cross-sectional area 4.8 cm2 is insulated to prevent thermal energy
from being transferred through its surface. The ends are maintained
at a temperature difference of 100�C by having one end in a wa-
ter– ice mixture and the other in boiling water and steam. (a) Find
the rate at which thermal energy is conducted along the rod. (b)
Find the rate at which ice melts at the cold end.

56. Without a Spacesuit If you were to walk briefly in space with-
out a spacesuit while far from the Sun (as an astronaut does in the
movie 2001), you would feel the cold of space—while you radiated
thermal energy, you would absorb almost none from your environ-
ment. (a) At what rate would you lose thermal energy? (b) How
much thermal energy would you lose in 30 s? Assume that your emis-
sivity is 0.90, and estimate other data needed in the calculations.

57. Rectangular Rods Two identical rectangular rods of metal are
welded end to end as shown in Fig. 19-40a, and 10 J of thermal en-
ergy is conducted (in a steady-state process) through the rods in 2.0
min. How long would it take for 10 J to be conducted through the
rods if they were welded together as shown in Fig. 19-40b?

FIGURE 19-40 ■ Problem 57.

58. Four Squares Four square pieces of insulation of two different
materials, all with the same thickness and area A, are available to
cover an opening of area 2A. This can be done in either of the two
ways shown in Fig. 19-41. Which arrangement, (a) or (b), gives the
lower thermal energy flow if k2 � k1?

FIGURE 19-41 ■ Problem 58.

59. Glass Window (a) What is the rate of thermal energy transfer
in watts per square meter through a glass window 3.0 mm thick if
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the outside temperature is �20�F and the inside temperature is
� 72�F? (b) A storm window having the same thickness of glass is
installed parallel to the first window, with an air gap of 7.5 cm be-
tween the two windows. What now
is the rate of energy loss if conduc-
tion is the only important energy-
transfer mechanism?

60. A Sphere A sphere of radius
0.500 m, temperature 27.0�C, and
emissivity 0.850 is located in an en-
vironment of temperature 77.0�C.
At what rate does the sphere (a)
emit and (b) absorb thermal radia-
tion? (c) What is the sphere’s net
rate of energy exchange?

61. Tank of Water A tank of water
has been outdoors in cold weather,
and a slab of ice 5.0 cm thick has
formed on its surface (Fig. 19-42).
The air above the ice is at �10�C.

Calculate the rate of formation of ice (in centimeters per hour) on
the ice slab. Take the thermal conductivity and density of ice to be
0.0040 cal/s 
 cm 
 C� and 0.92 g/cm3. Assume that energy is not
transferred through the walls or bottom of the tank.

62. A Wall Figure 19-43 shows (in cross section) a wall that con-
sists of four layers. The thermal conductivities are k1 � 0.060
W/m 
 K, k3 � 0.040 W/m 
 K, and k4 � 0.12 W/m 
 K (k2 is not
known). The layer thicknesses are L1 � 1.5 cm, L3 � 2.8 cm, and L4

� 3.5 cm (L2 is not known). Energy transfer through the wall is
steady. What is the temperature of the interface indicated?

574 CHAPTER 19 The First Law of Thermodynamics

30°C –10°C
25°C

T = ?

L1 L2 L3 L4

k1 k2 k3 k4

FIGURE 19-43 ■ Problem 62.FIGURE 19-42 ■ Problem 61.
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Additional Problems

63. 300 F Club You can join the semi-secret “300 F” club at the
Amundsen–Scott South Pole Station only when the outside tem-
perature is below �70�C. On such a day, you first bask in a hot
sauna and then run outside wearing only your shoes. (This is, of
course, extremely dangerous, but the rite is effectively a protest
against the constant danger of the winter cold at the south pole.)

Assume that when you step out of the sauna, your skin temper-
ature is 102�F and the walls, ceiling, and floor of the sauna room
have a temperature of 30�C. Estimate your surface area, and take
your skin emissivity to be 0.80. (a) What is the approximate net rate
Pnet at which you lose energy via thermal radiation transfer to
the room? Next, assume that when you are outside half your sur-
face area transfers thermal radiation to the sky at a temperature of
�25�C and the other half transfers thermal radiation to the snow
and ground at a temperature of �80�C. What is the approximate
net rate at which you lose energy via thermal radiation exchanges
with (b) the sky and (c) the snow and ground?

64. Shallow Pond Ice has formed on a shallow pond and a steady
state has been reached, with the air above the ice at �5.0�C and the
bottom of the pond at 4.0�C. If the total depth of ice � water is
1.4 m, how thick is the ice? (Assume that the thermal conductivities
of ice and water are 0.40 and 0.12 cal/m 
 C� 
 s, respectively.)

65. Emperor Penguins Emperor penguins, those large penguins
that resemble stuffy English butlers, breed and hatch their young
even during severe Antarctic winters. Once an egg is laid, the father
balances the egg on his feet to prevent the egg from freezing. He
must do this for the full incubation period of 105 to 115 days, during
which he cannot eat because his food is in the water. He can survive
this long without food only if he can reduce his loss of internal food
energy significantly. If he is alone, he loses that energy too quickly
to stay warm, and eventually abandons the egg in order to eat. To

protect themselves and each other from the cold so as to reduce the
loss of internal energy, penguin fathers huddle closely together, in
groups of perhaps several thousand. In addition to providing other
benefits, the huddling reduces the rate at which the penguins ther-
mally radiate energy to their surroundings.

Assume that a penguin father is a circular cylinder with top sur-
face area a, height h, surface temperature T, and emissivity �. (a)
Find an expression for the rate Pi at which an individual father
would radiate energy to the environment from his top surface and
his side surface were he alone with his egg.

If N identical fathers were well apart from one another, the to-
tal rate of energy loss via radiation would be NPi. Suppose, instead,
that they huddle closely to form a huddled cylinder with top surface
area Na and height h. (b) Find an expression for the rate Ph at
which energy is radiated by the top surface and the side surface of
the huddled cylinder.

(c) Assuming a � 0.34 m2 and h � 1.1 m and using the expres-
sions you obtained for Pi and Ph, graph the ratio Ph/NPi versus Nh.
Of course, the penguins know nothing about algebra or graphing,
but their instinctive huddling reduces this ratio so that more of
their eggs survive to the hatching stage. From the graphs (as you
will see, you probably need more than one version), approximate
how many penguins must huddle so that Ph/NPi is reduced to (d)
0.5, (e) 0.4, (f) 0.3, (g) 0.2, and (h) 0.15. (i) For the assumed data,
what is the lower limiting value for Ph/NPi?

66. The Penny and the Jelly Donut You see a penny lying on the
ground. A penny won’t buy much these days, so you think: “If I bend
down to pick it up I will do work. To do that work I will have to burn
some energy. It probably costs me more to buy the fuel (food) to
provide that energy than I would gain by picking up the penny. It’s
not cost effective.” You pass it by. Is the argument correct? Estimate



the energy cost for picking up a penny. You may find the follow-
ing information useful: A jelly donut contains about 250 Calories 
(1 Calorie � 1 Kcal).

67. Considering Changes For each of the situations described be-
low, the object considered is undergoing some changes. Among
the possible changes you should consider are: (Q) The object is
absorbing or giving off thermal energy. (T) The object’s tempera-
ture is changing. (E int) The object’s internal energy is changing.
(W) The object is doing mechanical work or having work done on
it. For each of the situations described below, identify which of the
four changes are taking place and write as many of the letters Q,
T, E int, W, (or none) as are appropriate. (a) A cylinder with a pis-
ton on top contains a compressed gas and is sitting on a thermal
reservoir (a large iron block). After everything has come to ther-
mal equilibrium, the piston is moved upward somewhat (very
slowly). The object to be considered is the gas in the cylinder. (b)
Consider the same cylinder as in part (a), but it is wrapped in
styrofoam, a very good thermal insulator, instead of sitting on a
thermal reservoir. The piston is pressed downward (again, very
slowly), compressing the gas. The object to be considered is the
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gas in the cylinder. (c) An ice cube that is sitting in the open air
and is melting.
68. KE and Temperature Converting kinetic energy into thermal
energy produces small rises in temperature. This was in part re-
sponsible for the difficulty in discovering the law of conservation
of energy. It also implies that hot objects contain a lot of energy.
(This latter comment is largely responsible for the industrial revo-
lution in the 19th century.) To get some feel for these numbers, as-
sume all mechanical energy is converted to thermal energy and
carry out three estimates:
(a) A steel ball is dropped from a height of 3 m onto a concrete
floor. It bounces a large number of times but eventually comes to
rest. Estimate the ball’s rise in temperature.
(b) Suppose the steel ball you used in part (a) is at room tempera-
ture. If you converted all its thermal energy to translational ki-
netic energy, how fast would it be moving? (Give your answer in
units of miles per hour. Also, ignore the fact that you would have
to create momentum.)
(c) Suppose a nickel – iron meteor falls to Earth from deep space.
Estimate how much its temperature would rise on impact.
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20
When a container of cold

champagne, soda pop, or any

other carbonated drink is

opened, a slight fog forms

around the opening and some

of the liquid sprays outward.

(In the photograph, the fog is

the white cloud that surrounds

the stopper, and the spray has

formed streaks within the

cloud.)

What causes the fog?

The answer is in this
chapter.

The Kinetic Theory 
of Gases
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20-1 Molecules and Thermal Gas Behavior

In our studies of mechanics and thermodynamics we have found a number of strange
and interesting results. In mechanics, we saw that moving objects tend to run down
and come to a stop. We attributed this to the inevitable presence of friction and drag
forces. Without these nonconservative forces mechanical energy would be conserved
and perpetual motion would be possible. In thermodynamics, we discovered that ordi-
nary objects, by virtue of their temperature, contain huge quantities of internal
energy. This is where the “lost” energy resulting from friction forces is hidden. In this
chapter, we will learn about some ways that matter can store internal energy. What
you are about to learn may be counterintuitive. Instead of finding that the “natural
state” of a system is to lose energy, you will find considerable evidence that the
“natural state” of a system is quite the opposite. It is one in which its fundamental
parts (atoms and molecules) are traveling every which way—in a state of perpetual
motion.

Classical thermodynamics—the subject of the previous chapter—has nothing to
say about atoms or molecules. Its laws are concerned only with such macroscopic vari-
ables as pressure, volume, and temperature. In this chapter we begin an exploration of
the atomic and molecular basis of thermodynamics. As is usual in the development of
new theories in physics, we start with a simple model. The fact that gases are fluid and
compressible is evidence that their molecules are quite small relative to the average
spacing between them. If so, we expect that gas molecules are relatively free and inde-
pendent of one another. For this reason, we believe that the thermal behavior of gases
will be easier to understand than that of liquids and solids. Thus, we begin an explo-
ration of the atomic and molecular basis of thermodynamics by developing the kinetic
theory of gases—a simplified model of gas behavior based on the laws of classical
mechanics.

We start with a discussion of how the ideal gas law characterizes the macroscopic
behavior of simple gases. This macroscopic law relates the amount of gas and its pres-
sure, temperature, and volume to each other. Next we consider how kinetic theory,
which provides us with a molecular (or microscopic) model of gas behavior, can be
used to explain observed macroscopic relationships between gas pressure, volume,
and temperature. We then move on to using kinetic theory as an underlying model of
the characteristics of an ideal gas. The basic ideas of kinetic theory are that: (1) an
ideal gas at a given temperature consists of a collection of tiny particles (atoms or
molecules) that are in perpetual motion—colliding with each other and the walls of
their container; and (2) the hidden internal energy of an ideal gas is directly propor-
tional to the kinetic energy of its particles.

20-2 The Macroscopic Behavior of Gases

Any gas can be described by its macroscopic variables volume V, pressure P, and
temperature T. Simple experiments were performed on low density gases in the 17th
and 18th centuries to relate these variables. Robert Boyle (b. 1627) determined that
at a constant temperature the product of pressure and volume remains constant.
(See Fig. 20-1.)

FIGURE 20-1 ■ A contemporary setup for determining the relationship
between gas pressure and volume using an inexpensive medical syringe
and an electronic pressure sensor attached to a computer data acquisi-
tion system. The volume is changed when the plunger is pushed or
pulled. When temperature is held constant, P and V turn out to be in-
versely proportional to each other so that PV is constant.

To computer
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French scientists Jacques Charles (b. 1746) and Joseph Gay-Lussac (b. 1778)
found that as the Kelvin temperature of a fixed volume of gas is raised its pressure in-
creases proportionally. (See Fig. 19-16.) Similarly, Charles, who was a hot-air balloon-
ist, discovered that for a constant pressure (such as atmospheric pressure) the volume
of a gas is proportional to its temperature. (See Fig. 19-15.) By combining the results
of all three of these experiments we must conclude that there is a proportionality be-
tween PV and T:

The Molecular Form of the Ideal Gas Law
If we can find a constant of proportionality between PV and T for a relatively low
density gas, then we will have formulated a gas law. An examination of the student-
generated P vs. T data shown in Fig. 19-17 indicates that the constant of proportional-
ity between the product PV and the variable T (determined by the slopes) of the
graphs decreases as the mass of gas confined to the same volume decreases. Similar
experiments have shown that the slope of a P vs. T graph will change if the same vol-
ume and mass of a different kind of gas is used. This suggests that the constant of pro-
portionality we are looking for must be a function of both the mass and type of gas. It
was puzzling to early investigators that the slopes of their P vs. T and V vs. T graphs
were not just proportional to the mass of the different gases used in the experiments.

The key to finding a constant of proportionality that embodies both gas type and
mass was a hypothesis developed in the early 19th century by the Italian scientist
Amadeo Avogadro (1776–1856). In 1811, Avogadro proposed that equal volumes of
any kind of gas at the same pressure would have the same number of molecules and
occupy the same volume. Eventually it was discovered that the constant of propor-
tionality needed for the fledgling gas law was one that is directly proportional to the
number of molecules of a gas rather than its mass, so that

(molecular ideal gas law), (20-1)

where N is the number of molecules of confined gas and kB is a proportionality con-
stant needed to shift from kelvins to joules, the SI units for the product PV. The ex-
perimentally determined value of kB is known historically as the Boltzmann constant.
Its measured value is

(Boltzmann constant). (20-2)

It turns out that common gases such as O2, N2, and Ar behave like ideal gases at rela-
tively low pressure (� 10 atm) when their temperatures are well above their boiling
points. For example, air near room temperature and 1 atm of pressure behaves like an
ideal gas.

Avogadro’s Number and the Mole
The problem with the molecular form of the ideal gas law we just presented is that it
is hard to count molecules. It is much easier to measure the mass of a sample of gas or
its volume at a standard pressure. In this subsection we will define two new quanti-
ties—mole and molar mass. Although these quantities are related to the number of
molecules in a gas, they can be measured macroscopically, so it is useful to reformu-
late the ideal gas law in terms of moles.

Let’s start our reformulation of the ideal gas law with definitions of mole and mo-
lar mass. In Section 1-7, we presented the SI definition of the atomic mass unit in

kB � 1.38 �  10�23 J/K

PV � NkBT

PV � T.
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terms of the mass of a carbon-12 atom. In particular, carbon-12 is assigned an atomic
mass of exactly 12 u. Here the atomic mass unit u represents grams per mole (g/mol).
In a related fashion, the SI definition of the mole (or mol for short) relates the num-
ber of particles in a substance to its macroscopic mass.

A mole is defined as the amount of any substance that contains the same number of atoms
or molecules as there are in exactly 12 g of carbon-12.

The results of many different types of experiments, including x-ray diffraction
studies in crystals, have revealed that there are a very large number of atoms in 12 g
of carbon-12. The number of atoms is known as Avogadro’s number and is denoted 
as NA.

(Avogadro’s number). (20-3)

Here the symbol mol�1 represents the inverse mole or “per mole.” Usually we round
off the value to three significant figures so that .

The number of moles n contained in a sample of any substance is equal to the ra-
tio of the number of atoms or molecules N in the sample to the number of atoms or
molecules NA in 1 mole of the same substance:

(20-4)

(Caution: The three symbols in this equation can easily be confused with one another,
so you should sort them with their meanings now, before you end in “N-confusion.”)

We can easily calculate the mass of one mole of atoms or molecules in any sam-
ple, defined as the molar mass (denoted as M), by looking in a table of atomic or mol-
ecular masses.

Note that if we refer to Appendix F to find the molar mass, M, in grams of a sam-
ple of matter, we can determine the number of moles in the sample by determining its
mass Msam and using the equation

. (20-5)

For atoms, the molar mass is just the atomic mass so that molar mass also has the unit
g/mol, which is often denoted as u.

It is puzzling to note that the atomic mass of carbon that is listed in Appendix F is
given as 12.01115 u rather than 12.00000 u. This is because a natural sample of carbon
does not consist of only carbon-12. Instead it contains a relatively small percentage of
carbon-13, which has an extra neutron in its nucleus. Nevertheless, by definition, a
mole of pure carbon-12 and a mole of a naturally occurring mixture of carbon-12 and
carbon-13 both contain Avogadro’s number of atoms.

The Molar Form of the Ideal Gas Law
We can rewrite the molecular ideal gas law expressed in Eq. 20-1 in an alternative
form by using Eq. 20-4, so that 

.

Since both Avogadro’s number and the Boltzmann constant are constants, we can re-
place their product with a new constant R, which is called the universal gas constant
because it has the same value for all ideal gases—namely,

PV � NkBT � nNAkBT

n �
Msam

M

n �
N

NA
.

NA � 6.02 � 1023 mol�1

NA � 6.022137 �  1023 mol�1



(20-6)

This allows us to write 

. (20-7)

Substituting this into Eq. 20-1 gives a second expression for the ideal gas law:

(molar ideal gas law), (20-8)

in which P is the absolute (not gauge) pressure, V is the volume, n is the number of
moles of gas present, and T is the temperature in Kelvin. Provided the gas density is
low, the ideal gas law as represented in either Eq. 20-1 or Eq. 20-8 holds for any single
gas or for any mixture of different gases. (For a mixture, n is the total number of
moles in the mixture.)

Note the difference between the two expressions for the ideal gas law — Eq. 20-
8 involves the number of moles n and Eq. 20-1 involves the number of atoms N.
That is, the Boltzmann constant kB tells us about individual atomic particles,
whereas the gas constant R tells us about moles of particles. Recall that moles are
defined via macroscopic measurements that are easily done in the lab — such as 1
mol of carbon has a mass of 12 g. As a result, R is easily measured in the lab. On the
other hand, since kB is about individual atoms, to get to it from a lab measurement
we have to count the number of molecules in a mole. This is a decidedly nontrivial
task.

You may well ask, “What is an ideal gas and what is so ‘ideal’ about it?” The an-
swer lies in the simplicity of the law (Eqs. 20-1 and 20-8) that describes the macro-
scopic properties of a gas. Using this law—as you will see—we can deduce many
properties of the ideal gas in a simple way. There is no such thing in nature as a truly
ideal gas. But all gases approach the ideal state at low enough densities—that is, un-
der conditions in which their molecules are far enough apart that they do not interact
with one another as much as they do with the walls of their containers. Thus, the two
equivalent ideal gas equations allow us to gain useful insights into the behavior of
most real gases at low densities.

PV � nRT

nR � NkB

R � NAkB � 6.02 � 1023 mol�1(1.38 � 10�23 J/K) � 8.31 J/mol �  K.
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TOUCHSTONE EXAMPLE 20-1: Final Pressure

A cylinder contains 12 L of oxygen at 20°C and 15 atm. The tempera-
ture is raised to 35°C, and the volume is reduced to 8.5 L. What is the
final pressure of the gas in atmospheres? Assume that the gas is ideal.

S O L U T I O N ■ The Ke y  I d e a here is that, because the gas is
ideal, its pressure, volume, temperature, and number of moles are
related by the ideal gas law, both in the initial state i and in the final
state f (after the changes). Thus, from Eq. 20-8 we can write PiVi =
nRTi and PfVf = nRTf. Dividing the second equation by the first
equation and solving for Pf yields

(20-9)

Note here that if we converted the given initial and final volumes
from liters to SI units of cubic meters, the multiplying conversion

Pf �
PiTfVi

TiVf
.

factors would cancel out of Eq. 20-9. The same would be true for
conversion factors that convert the pressures from atmospheres to
the more accepted SI unit of pascals. However, to convert the given
temperatures to kelvins requires the addition of an amount that
would not cancel and thus must be included. Hence, we must write

Ti = (273 + 20) K = 293 K 

and Tf = (273 + 35) K = 308 K.

Inserting the given data into Eq. 20-9 then yields 

(Answer)Pf �
(15 atm)(308 K)(12 L)

(293 K)(8.5 L)
� 22 atm.
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20-3 Work Done by Ideal Gases

Heat engines are devices that can absorb thermal energy and do useful work on their
surroundings. As you will see in the next chapter, air, which is typically used as a working
medium in heat engines, behaves like an ideal gas in some circumstances. For this reason
engineers are interested in knowing how to calculate the work done by ideal gases.
Before we turn our attention to how the action of molecules that make up an ideal gas
can be used to explain the ideal gas law, we first consider how to calculate the work done
by ideal gases under various conditions. We restrict ourselves to expansions that occur
slowly enough that the gas is very close to thermal equilibrium throughout its volume.

Work Done by an Ideal Gas at Constant Temperature
Suppose we put an ideal gas in a piston–cylinder arrangement like those in Chapter
19. Suppose also that we allow the gas to expand from an initial volume Vi to a final
volume Vf while we keep the temperature T of the gas constant. Such a process, at
constant temperature, is called an isothermal expansion (and the reverse is called an
isothermal compression).

On a P-V diagram, an isotherm is a curve that connects points that have the same
temperature. Thus, it is a graph of pressure versus volume for a gas whose tempera-
ture T is held constant. For n moles of an ideal gas, it is a graph of the equation  

(20-10)

Figure 20-2 shows three isotherms, each corresponding to a different (constant) value
of T. (Note that the values of T for the isotherms increase upward to the right.)
Superimposed on the middle isotherm is the path followed by a gas during an isother-
mal expansion from state i to state f at a constant temperature of 310 K.

To find the work done by an ideal gas during an isothermal expansion, we start
with Eq. 19-16,

(20-11)

This is a general expression for the work done during any change in volume of any
gas. For an ideal gas, we can use Eq. 20-8 to substitute for P, obtaining 

(20-12)

Because we are considering an isothermal expansion, T is constant and we can move
it in front of the integral sign to write 

(20-13)

By evaluating the expression in brackets at the limits and then using the relationship
ln a � ln b � ln (a/b), we find that 

(ideal gas, isothermal process). (20-14)

Recall that the symbol ln specifies a natural logarithm, which has base e.

W � nRT ln
Vf

Vi
� NkB ln 

Vf

Vi

W � nRT �Vf

Vi

dV
V

� nRT [ln V]
Vf

Vi
.

W � �Vf

Vi

nRT
V

dV.

W � �Vf

Vi

P dV.

P � nRT
1
V

�  (a constant) 
1
V

.

P

V

T = 300 K

T = 310 K

T = 320 K
f

i

FIGURE 20-2 ■ Three isotherms on a P-V
diagram. The path shown along the middle
isotherm represents an isothermal expan-
sion of a gas from an initial state i to a final
state f. The path from f to i along the
isotherm would represent the reverse
process, an isothermal compression.



As we often do in science and engineering we have derived a mathematical rela-
tionship. Before using this relationship it’s a good idea to check our equation to see
whether it makes sense. Unless a gas is undergoing a free expansion into a vacuum,
we know that an expanding gas does work on its surroundings. If the gas contracts we
expect that the surroundings have done work on the gas instead. Is this what Eq. 20-
14 tells us? For an expansion, Vf is greater than Vi, so the ratio Vf /Vi in Eq. 20-14 is
greater than unity. The natural logarithm of a quantity greater than unity is positive,
and so the work W done by an ideal gas during an isothermal expansion is positive, as
we expect. For a compression, Vf is less than Vi, so the ratio of volumes in Eq. 20-14 is
less than unity. The natural logarithm in that equation—hence the work W—is nega-
tive, again as we expect.

Work Done at Constant Volume and at Constant Pressure
Equation 20-14 does not give the work W done by an ideal gas during every thermo-
dynamic process. Instead, it gives the work only for a process in which the tempera-
ture is held constant. If the temperature varies, then the symbol T in Eq. 20-12 cannot
be moved in front of the integral symbol as in Eq. 20-13, and thus we do not end up
with Eq. 20-14.

However, we can go back to Eq. 20-11 to find the work W done by an ideal gas
(or any other gas) during two more processes — a constant-volume process and a
constant-pressure process. If the volume of the gas is constant, then Eq. 20-11
yields

(constant-volume process). (20-15)

If, instead, the volume changes while the pressure P of the gas is held constant, then
Eq. 20-11 becomes 

(constant-pressure process). (20-16)

READI NG EXERC IS E  20-1: An ideal gas has an initial pressure of 3 pressure units
and an initial volume of 4 volume units. The table gives the final pressure and volume of the
gas (in those same units) in five processes. Which processes start and end on the same
isotherm?

a b c d e

P 12 6 5 4 1

V 1 2 7 3 12 ■

W � P(Vf � Vi) � P�V

W � 0
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TOUCHSTONE EXAMPLE 20-2: Work Done by Expansion

One mole of oxygen (assume it to be an ideal gas) expands at a
constant temperature T of 310 K from an initial volume Vi of 12 L
to a final volume Vf of 19 L. How much work is done by the gas
during the expansion?

S O L U T I O N ■ The Ke y  I d e a is this: Generally we find the
work by integrating the gas pressure with respect to the gas volume,
using Eq. 20-11. However, because the gas here is ideal and the ex-
pansion is isothermal, that integration leads to Eq. 20-14. Therefore,
we can write 

(Answer)� 1180 J.

� (1 mol)(8.31 J/mol�K)(310 K) ln� 19 L
12 L �

W � nRT ln
Vf

Vi
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The expansion is graphed in the P-V diagram of Fig. 20-3. The work
done by the gas during the expansion is represented by the area be-
neath the curve between i and f.

You can show that if the expansion is now reversed, with the
gas undergoing an isothermal compression from 19 L to 12 L, the
work done by the gas will be �1180 J. Thus, an external force would
have to do 1180 J of work on the gas to compress it.

FIGURE 20-3 ■ The
shaded area repre-
sents the work done
by 1 mol of oxygen in
expanding from Vi to
Vf at a constant tem-
perature T of 310 K.

20-4 Pressure, Temperature, and Molecular 
Kinetic Energy

In terms of our everyday experiences, molecules and atoms are invisible. Only in the past
40 years or so have scientists been able to “see” molecules using electron microscopes and
field ion microscopes. But long before atoms and molecules could be “seen,” 19th-century
scientists such as James Clerk Maxwell and Ludwig Boltzmann in Europe and Josiah
Willard Gibbs in the United States constructed models that made the description and pre-
diction of the macroscopic (visible to the naked eye) behavior of thermodynamic systems
possible. Their models were based on the yet unseen microscopic atoms and molecules.

Is it possible to describe the behavior of an ideal gas that obeys the first law of
thermodynamics microscopically as a collection of moving molecules? To answer this
question, let’s observe the pressure exerted by a hypothetical molecule undergoing
perfectly elastic collisions with the walls of a cubical box. By using the laws of me-
chanics we can derive a mathematical expression for the pressure exerted by just one
of the molecules as a function of the volume of the box. Next we can extend our
“ideal gas” so it is a low-density collection of molecules all having the same mass. By
low density we mean that the volume occupied by the molecules is negligible com-
pared to the volume of their container. This means that the molecules are far enough
apart on the average that attractive interactions between molecules are also negligi-
ble. For this reason an ideal gas has internal energy related to its configuration. If we
then define temperature as being related to the average kinetic energy of the mole-
cules in an ideal gas, we can show that kinetic theory is a powerful construct for ex-
plaining both the ideal gas law and the first law of thermodynamics.

We start developing our idealized kinetic theory model by considering N mole-
cules of an ideal gas that are confined in a cubical box of volume V, as in Fig. 20-4. The
walls of the box are held at temperature T. How is the pressure P exerted by the gas
on the walls related to the speeds of the molecules? Remember from our discussions
of fluids in Chapter 15 that pressure is a scalar defined as the ratio of the magnitude
of force (exerted normal to a surface) and the area of the surface. In the example at
hand, a gas confined to a box, the pressure results from the motion of molecules in all
directions resulting in elastic collisions between gas molecules and the walls of the
box. We ignore (for the time being) collisions of the molecules with one another and
consider only elastic collisions with the walls.

Figure 20-4 shows a typical gas molecule, of mass m and velocity , which is about
to collide with the shaded wall. Because we assume that any collision of a molecule

v:

FIGURE 20-4 ■ We assume a cubical box
of edge L contains N ideal gas molecules
(not shown) that move around perpetually
without losing energy. One of the mole-
cules of mass m and velocity is shown
heading for a collision with the shaded
wall of area L2. The normal to the shaded
wall points in the positive x direction.

v:

y

z

x

L
L

L
m

Normal to
shaded wallv



with a wall is elastic, when this molecule collides with the shaded wall, the only com-
ponent of its velocity that is changed by the collision is its x-component. That x-com-
ponent has the same magnitude after collision but its sign is reversed. This means that
the only change in the particle’s momentum is along the x axis, so

But the law of conservation of momentum tells us that the momentum change
that the wall experiences after a molecule collides with it is +2m . Remem-

ber that in this book denote momentum vectors or vector compo-
nents and capital P represents pressure. Be careful not to confuse them.

The molecule of Fig. 20-4 will hit the shaded wall repeatedly. The time between
collisions is the time the molecule takes to travel to the opposite wall and back again
(a distance of 2L) at speed . Thus, is equal to . (Note that this result
holds even if the molecule bounces off any of the other walls along the way, because
those walls are parallel to x and so cannot change .) Therefore, the average rate at
which momentum is delivered to the shaded wall by this single molecule is

From Newton’s Second Law ( ), the rate at which momentum is deliv-
ered to the wall is the force acting on that wall. To find the total force, we must add up
the contributions of all of the N molecules that strike the wall during a short time in-
terval . We will allow for the possibility that all the molecules have different veloci-
ties. Then we can divide the magnitude of the total force acting normal to the shaded
wall by the area of the wall (L2) to determine the pressure P on that wall. Thus,

(20-17)

Since by definition we can replace the sum of
squares of the velocities in the second parentheses of Eq. 20-17 by N , where is
the average value of the square of the x-components of all the speeds. Equation 20-17
for the pressure on the container wall then reduces to

(20-18)

since the volume V of the cubical box is just L3.
It is reasonable to assume that molecules are moving at random in three dimen-

sions rather than just in the x direction that we considered initially, so that
and

or

Thus, we can rewrite the expression above as 

(20-19)P �
Nm�v2�

3V
.

�v2
x� � �v2�/3.

�v2� � �v2
x 	 v2

y 	 v2
z� � �v2

x� 	 �v2
y� 	 �v2

z� � 3�v2
x�,

�v2
x� � �v2

y� � �v2
z�

P �
Nm
L3 �v2

x� �
Nm
V

�v2
x�,

�v2
x��v2

x�
�v2

x� � (v2
x 1 	 v2

x 2 	 � � � 	 v2
x N)/N

� � m
L3 �(v2

x 1 	 v2
x 2 	 � � � 	 v2

x N).

P �
� Fx �
L2 �

mv2
x 1/L 	 mv2

x 2/L 	 � � � 	 mv2
x N/L

L2

� Fx �

�t

F
:

� dp:/dt

(�px)wall

�t
�

	2m� vx �
2L/� vx �

�
mv2

x

L
.

� vx �

2L/� vx ��t� vx �

�t

p:, px, py, and pz

� vx �(�px)wall

(�px)molecule � pf x � pi x � (�m� vx �) � (	m� vx �) � �2m� vx �.
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The square root of �v2	 is a kind of average speed, called the root-mean-square speed
of the molecules and symbolized by . Its name describes it rather well: You square
each speed, you find the mean (that is, the average) of all these squared speeds, and
then you take the square root of that mean. With , we can then write 
Eq. 20-19 as 

(20-20)

Equation 20-20 is very much in the spirit of kinetic theory. It tells us how the pressure of
the gas (a purely macroscopic quantity) depends on the speed of the molecules (a purely
microscopic quantity).We can turn Eq. 20-20 around and use it to calculate v rms as

.

Combining this with the molecular form of the ideal gas law in Eq. 20-1 
gives us

(ideal gas), (20-21)

where m is the mass of a single molecule in kilograms.
Table 20-1 shows some rms speeds calculated from Eq. 20-21. The speeds are sur-

prisingly high. For hydrogen molecules at room temperature (300 K), the rms speed is
1920 m/s or 4300 mi/h—faster than a speeding bullet! Remember too that the rms
speed is only a kind of average speed; some molecules move much faster than this,
and some much slower.

vrms � √ 3kBT
m

(PV � NkBT)

vrms � √ 3PV
Nm

P �
Nm(vrms)2

3V
.

√�v2� � vrms

vrms

TA B L E 2 0 - 1
Some Molecular Speeds at Room Temperature (T � 300 K)a

Molar Mass M � mNA

Gas (10�3 kg/mol) vrms (m/s)

Hydrogen (H2) 2.02 1920

Helium (He) 4.0 1370

Water vapor (H2O) 18.0 645

Nitrogen (N2) 28.0 517

Oxygen (O2) 32.0 483

Carbon dioxide (CO2) 44.0 412

Sulfur dioxide (SO2) 64.1 342

aFor convenience, we often set room temperature at 300 K even though (at 27°C
or 81°F) that represents a fairly warm room.

The speed of sound in a gas is closely related to the rms speed of the molecules of
that gas. In a sound wave, the disturbance is passed on from molecule to molecule by
means of collisions. The wave cannot move any faster than the “average” speed of the
molecules. In fact, the speed of sound must be somewhat less than this “average” mo-
lecular speed because not all molecules are moving in exactly the same direction as
the wave. As examples, at room temperature, the rms speeds of hydrogen and nitro-
gen molecules are 1920 m/s and 517 m/s, respectively. The speeds of sound in these
two gases at this temperature are 1350 m/s and 350 m/s, respectively.



Translational Kinetic Energy
Let’s again consider a single molecule of an ideal gas as it moves around in the box of
Fig. 20-4, but we now assume that its speed changes when it collides with other mole-
cules. Its translational kinetic energy at any instant is mv2. Its average translational
kinetic energy over the time that we watch it is 

(20-22)

in which we make the assumption that the average speed of the molecule during our
observation is the same as the average speed of all the molecules at any given instant.
(Provided the total energy of the gas is not changing and we observe our molecule for
long enough, this assumption is appropriate.) Substituting for v rms from Eq. 20-21
leads to 

so that (one ideal gas molecule). (20-23)

This equation tells us something unexpected:

At a given temperature T, all ideal gas molecules—no matter what their mass—have the
same average translational kinetic energy—namely, . When we measure the temper-
ature of a gas, we are also measuring the average translational kinetic energy of its
molecules.

READI NG EXERC IS E  20-2: What happens to the average translational kinetic en-
ergy of each molecule in a gas when its temperature in kelvin: (a) doubles and (b) is reduced to
zero? ■

READI NG EXERC IS E  20-3: A gas mixture consists of molecules of types 1, 2, and 3,
with molecular masses m1 
 m2 
 m3. Rank the three types according to (a) average kinetic en-
ergy and (b) rms speed, greatest first. ■

20-5 Mean Free Path

In considering the motion of molecules, a question often arises: If molecules move so
fast (hundreds of meters per second), why does it take as long as a minute or so be-
fore you can smell perfume when someone opens a bottle across a room (only a few
meters away)? To answer this question, we continue to examine the motion of mole-
cules in an ideal gas. Figure 20-5 shows the path of a typical molecule as it moves
through the gas, changing both speed and direction abruptly as it collides elastically
with other molecules. Between collisions, our typical molecule moves in a straight line
at constant speed. Although the figure shows all the other molecules as stationary,
they too are moving similarly.

One useful parameter to describe this random motion is the mean free path � of
the molecules. As its name implies, � is the average distance traversed by a molecule
between collisions. We expect � to vary inversely with N/V, the number of molecules
per unit volume (or “number density” of molecules). The larger N/V is, the more colli-
sions there should be and the smaller the mean free path. We also expect � to vary in-
versely with the size of the molecules, say, with their diameter d. (If the molecules
were points, as we have assumed them to be, they would never collide and the mean

( 3
2 )kBT

�K� � 3
2kBT

�K� � ( 1
2m)

3kBT
m

�K� � 1
2 �mv2� � 1

2m�v2� � 1
2m(vrms)2,

1
2
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FIGURE 20-5 ■ A molecule traveling
through a gas, colliding with other gas mol-
ecules in its path. Although the other mol-
ecules are shown as stationary, we believe
they are also moving in a similar fashion.
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FIGURE 20-6 ■ (a) A collision occurs
when the centers of two molecules come
within a distance d of each other, d being
the molecular diameter. (b) An equivalent
but more convenient representation is to
think of the moving molecule of interest as
having a radius d and all other molecules
as being points. The condition for a colli-
sion is unchanged.

free path would be infinite.) Thus, the larger the molecules are, the smaller the mean
free path. We can even predict that � should vary (inversely) as the square of the mol-
ecular diameter because the cross section of a molecule—not its diameter—deter-
mines its effective target area.

The expression for the mean free path does, in fact, turn out to be 

(ideal gas mean free path). (20-24)

To justify Eq. 20-24, we focus attention on a single molecule and assume—as
Fig. 20-5 suggests—that our molecule is traveling with a constant speed v and that all
the other molecules are at rest. Later, we shall relax this assumption.

We assume further that the molecules are spheres of diameter d. A collision will
then take place if the centers of the molecules come within a distance d of each other,
as in Fig. 20-6a. Another, more helpful way to look at the situation is to consider our
single molecule to have a radius of d and all the other molecules to be points, as in
Fig. 20-6b. This does not change our criterion for a collision.

As our single molecule zigzags through the gas, it sweeps out a short cylinder of
cross-sectional area �d 2 between successive collisions. If we watch this molecule for a
time interval , it moves a distance v�t, where v is its assumed speed. Thus, if we align
all the short cylinders swept out in �t, we form a composite cylinder (Fig. 20-7) of
length v�t and volume (�d2)(v�t). The number of collisions that occur in time �t is
then equal to the number of (point) molecules that lie within this cylinder.

Since N/V is the number of molecules per unit volume, the number of molecules
in the cylinder is N/V times the volume of the cylinder, or (N/V)(�d 2v�t). This is also
the number of collisions in time �t. The mean free path is the length of the path (and
of the cylinder) divided by this number:

(20-25)

This equation is only approximate because it is based on the assumption that all the
molecules except one are at rest. In fact, all the molecules are moving; when this is
taken properly into account, Eq. 20-24 results. Note that it differs from the (approxi-
mate) Eq. 20-25 only by a factor of .

We can even get a glimpse of what is “approximate” about Eq. 20-25. The v in the
numerator and that in the denominator are—strictly—not the same. The v in the nu-
merator is , the mean speed of the molecule relative to the container. The v in the de-
nominator is , the mean speed of our single molecule relative to the other mole-
cules, which are moving. It is this latter average speed that determines the number of
collisions. A detailed calculation, taking into account the actual speed distribution of
the molecules, gives and thus the factor .

The mean free path of air molecules at sea level is about 0.1 m. At an altitude of
100 km, the density of air has dropped to such an extent that the mean free path rises
to about 16 cm. At 300 km, the mean free path is about 20 km. A problem faced by
those who would study the physics and chemistry of the upper atmosphere in the lab-
oratory is the unavailability of containers large enough to hold gas samples that simu-
late upper atmospheric conditions. Yet studies of the concentrations of freon, carbon
dioxide, and ozone in the upper atmosphere are of vital public concern.

Recall the question that began this section: If molecules move so fast, why does it
take as long as a minute or so before you can smell perfume when someone opens a
bottle across a room? We now know part of the answer. In still air, each perfume mol-
ecule moves away from the bottle only very slowly because its repeated collisions
with other molecules prevent it from moving directly across the room to you.
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FIGURE 20-7 ■ In time the moving
molecule effectively sweeps out a cylinder
of length v �t and radius d.
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20-6 The Distribution of Molecular Speeds

The root-mean-square speed v rms gives us a general idea of molecular speeds in a gas
at a given temperature. We often want to know more. For example, what fraction of
the molecules have speeds greater than the rms value? Greater than twice the rms
value? To answer such questions, we need to know how the possible values of speed
are distributed among the molecules. Figure 20-8a shows this distribution for oxygen
molecules at room temperature (T � 300 K); Fig. 20-8b compares it with the distribu-
tion at .T � 80 K
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TOUCHSTONE EXAMPLE 20-3: Mean Free Path

(a) What is the mean free path � for oxygen molecules at tempera-
ture T � 300 K and pressure P � 1.00 atm? Assume that the mo-
lecular diameter is d � 290 pm and the gas is ideal.

S O L U T I O N ■ The Ke y  I d e a here is that each oxygen mole-
cule moves among other moving oxygen molecules in a zigzag path
due to the resulting collisions. Thus, we use Eq. 20-24 for the mean
free path, for which we need the number of molecules per unit vol-
ume, N/V. Because we assume the gas is ideal, we can use the ideal
gas law of Eq. 20-1 (PV � NkBT) to write N/V � P/kBT. Substitut-
ing this into Eq. 20-24, we find

� 1.1 � 10�7 m.

(Answer)

This is about 380 molecular diameters.

(b) Assume the average speed of the oxygen molecules is �
450 m/s. What is the average time interval �t between successive

�v�

�
(1.38 � 10�23 J/K)(300 K)

√2�(2.9 � 10�10 m)2 (1.01 � 105 Pa)

� �
1

√2�d2 N/V
�

kBT
√2�d 2 P

collisions for any given molecule? At what rate does the molecule
collide; that is, what is the frequency f of its collisions?

S O L U T I O N ■ To find the time interval �t between collisions, we
use this Ke y  I d e a : Between collisions, the molecule travels, on
average, the mean free path � at average speed . Thus, the aver-
age time between collisions is 

(Answer)

This tells us that, on average, any given oxygen molecule has less
than a nanosecond between collisions.

To find the frequency f of the collisions, we use this Ke y
I d e a : The average rate or frequency at which the collisions occur
is the inverse of the average time between collisions. Thus,

(Answer)

This tells us that, on average, any given oxygen molecule makes
about 4 billion collisions per second.

f �
1

2.44 � 10�10 s
� 4.1 � 109 s�1.

��t�

� 2.44 � 10�10 s 
 0.24 ns.

��t� �
(distance)

(average speed)
�

�

�v�
�

1.1 � 10�7 m
450 m/s

�v�

FIGURE 20-8 ■ (a) The Maxwell speed
distribution for oxygen molecules at T �
300 K. The three characteristic speeds are
marked. (b) The curves for 300 K and 80
K. Note that the molecules move more
slowly at the lower temperature. Because
these are probability distributions, the area
under each curve has a numerical value of
unity.
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In 1852, Scottish physicist James Clerk Maxwell first solved the problem of find-
ing the speed distribution of gas molecules. His result, known as Maxwell’s speed
distribution law, is
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(20-26)

Here v is the molecular speed, T is the gas temperature, m is the mass of a single
gas molecule, and kB is Boltzmann’s constant. It is this equation that is plotted in 
Fig. 20-8a, b. The quantity f (v) in Eq. 20-26 and Fig. 20-8 is a probability distribution
function: For any speed v, the product f(v)dv (a dimensionless quantity) is the frac-
tion of molecules whose speeds lie in the interval of width dv centered on speed v.

As Fig. 20-8a shows, this fraction is equal to the area of a strip with height f(v)
and width dv. The total area under the distribution curve corresponds to the fraction
of the molecules whose speeds lie between zero and infinity. All molecules fall into
this category, so the value of this total area is unity; that is,

(20-27)

The fraction of molecules with speeds in an interval of, say, v1 to v2 is then 

(20-28)

Average, RMS, and Most Probable Speeds
In principle, we can find the average speed of the molecules in a gas with the fol-
lowing procedure: We weight each value of v in the distribution; that is, we multiply it
by the fraction f(v)dv of molecules with speeds in a differential interval dv centered
on v. Then we add up all these values of vf(v)dv. The result is . In practice, we do
all this by evaluating 

(20-29)

Substituting for f(v) from Eq. 20-26 and using definite integral 20 from the list of inte-
grals in Appendix E, we find

(average speed). (20-30)

Similarly, we can find the average of the square of the speeds with 

(20-31)

Substituting for f (v) from Eq. 20-27 and using generic integral 16 from the list of inte-
grals in Appendix E, we find

. (20-32)

The square root of �v2	 is the root-mean-square speed vrms. Thus,

(rms speed), (20-33)

which agrees with Eq. 20-21.

vrms � √ 3kBT
m

�v2� �
3kBT

m

�v2� � ��

0
v2 f (v) dv.

�v2�

�v� � √ 8kBT
�m

�v� � ��

0
v f (v) dv.

�v:�

�v�

fraction � �v2

v1

f (v) dv.

��

0
f (v) dv � 1.

f (v) � 4�� m
2�kBT �

3/2

v2e�mv2/2kBT.



The most probable speed vprob is the speed at which f(v) is maximum (see 
Fig. 20-8a). To calculate vprob, we set df/dv � 0 (the slope of the curve in Fig. 20-8a is
zero at the maximum of the curve) and then solve for v. Doing so, we find

(most probable speed). (20-34)

What is the relationship between the most probable speed, the average speed, and the
rms speed of a molecule? The relationship is fixed.

The most probable speed vprob is always less than the average speed which in turn is less
than the rms speed More specifically, vprob � 0.82 vrms and � 0.92 vrms.

This is consistent with the idea that a molecule is more likely to have speed vprob than
any other speed, but some molecules will have speeds that are many times vprob. These
molecules lie in the high-speed tail of a distribution curve like that in Fig. 20-8a. We
should be thankful for these few, higher speed molecules because they make possible
both rain and sunshine (without which we could not exist). We next see why.

Rain: The speed distribution of water molecules in, say, a pond at summertime tem-
peratures can be represented by a curve similar to that of Fig. 20-8a. Most of the mol-
ecules do not have nearly enough kinetic energy to escape from the water through its
surface. However, small numbers of very fast molecules with speeds far out in the tail
of the curve can do so. It is these water molecules that evaporate, making clouds and
rain a possibility.

As the fast water molecules leave the surface, carrying energy with them, the tem-
perature of the remaining water is maintained by thermal energy transfer from the
surroundings. Other fast molecules—produced in particularly favorable collisions—
quickly take the place of those that have left, and the speed distribution is main-
tained.

Sunshine: Let the distribution curve of Fig. 20-8a now refer to protons in the core of
the Sun. The Sun’s energy is supplied by a nuclear fusion process that starts with the
merging of two protons. However, protons repel each other because of their electrical
charges, and protons of average speed do not have enough kinetic energy to over-
come the repulsion and get close enough to merge. Very fast protons with speeds in
the tail of the distribution curve can do so, however, and thus the Sun can shine.

20-7 The Molar Specific Heats of an Ideal Gas

Up to now, we have taken the specific heat of a substance as a quantity to be mea-
sured. But now, with the kinetic theory of gases, we know something about the struc-
ture of matter and where its energy is stored. With this additional information, we can
actually calculate and make predictions about what we expect the specific heats of dif-
ferent kinds of gases to be. If we compare our predictions based on kinetic theory to
experimental measurements, we get some good agreement and also some surprises.
The surprises are among the first hints that the laws of matter at the atomic level are
not just Newton’s laws scaled down. In other words, we begin to notice that atoms
aren’t just little billiard balls but something different from any macroscopic object
with which we have experience.

To explore this idea, we derive here (from molecular considerations) an expres-
sion for the internal energy Eint of an ideal gas. In other words, we find an expression

�v�vrms.
�v�

vprob � √ 2kBT
m
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FIGURE 20-9 ■ (a) The temperature of an
ideal gas is raised from T to in a
constant-volume process. Thermal energy
is added, but no work is done. (b) The
process on a P-V diagram. (The system’s
insulated lid is not shown.)

T 	 �T

for the energy associated with the random motions of the atoms or molecules in the
gas. We shall then use that expression to derive the molar specific heats of an ideal
gas.

Internal Energy E int

Let us first assume that our ideal gas is a monatomic gas (which has individual atoms
rather than molecules), such as helium, neon, or argon. Let us also assume that the in-
ternal energy Eint of our ideal gas is simply the sum of the translational kinetic ener-
gies of its atoms.

The average translational kinetic energy of a single atom depends only on the gas
temperature and is given by Eq. 20-23 as . A sample of n moles of such a
gas contains nNA atoms. The internal energy Eint of the sample is then 

(20-35)

Using Eq. 20-6 , we can rewrite this as 

(monatomic ideal gas). (20-36)

Thus,

The internal energy Eint of an ideal gas is a function of the gas temperature only; it does not
depend on any other variable.

With Eq. 20-36 in hand, we are now able to derive an expression for the molar
specific heat of an ideal gas. Actually, we shall derive two expressions. One is for the
case in which the volume of the gas remains constant as thermal energy is transferred
to or from it. The other is for the case in which the pressure of the gas remains con-
stant as thermal energy is transferred to or from it. The symbols for these two molar
specific heats are CV and CP, respectively. (By convention, the capital letter C is used
in both cases, even though CV and CP represent types of specific heat and not heat ca-
pacities.)

Molar Specific Heat at Constant Volume
Figure 20-9a shows n moles of an ideal gas at pressure P and temperature T, confined
to a cylinder of fixed volume V. This initial state i of the gas is marked on the 
P-V diagram of Fig. 20-9b. Suppose that you add a small amount of thermal energy Q
to the gas by slowly turning up the temperature of the thermal reservoir. The gas tem-
perature rises a small amount to , and its pressure rises to , bringing
the gas to final state f.

In such experiments, we would find that the thermal energy transferred Q is re-
lated to the temperature change by 

(constant volume), (20-37)

where CV is a constant called the molar specific at constant volume. Substituting this
expression for Q into the first law of thermodynamics as given by Eq. 19-17 (�Eint �
Q � W) yields

(20-38)�Eint � nCV �T � W.

Q � nCV �T

�T

P 	 �PT 	 �T

E int � 3
2NkBT � 3

2nRT

(kB � R/NA)

Eint � (nNA)�K� � (nNA)( 3
2kBT).

�K� � 3
2kBT

TQ

Pin

(a)

(b)

Pr
es

su
re

Volume

V

i
P

fP +    PΔ

T +    TΔ
T

Pin

Thermal reservoir



With the volume held constant, the gas cannot expand and thus cannot do any work.
Therefore, , and Eq. 20-38 gives us 

(20-39)

From Eq. 20-36 we know that , so the change in internal energy must be 

ΔEint = nR ΔT. (20-40)

Substituting this result into Eq. 20-39 yields 

(monatomic gas). (20-41)

As Table 20-2 shows, this prediction that based on ideal gas kinetic theory
agrees very well with experiment for the real monatomic gases (the case that we have
assumed). The experimental values of CV for diatomic gases and polyatomic gases
(which have molecules with more than two atoms) are greater than the predicted
value of R. Reasons for this will be discussed in Section 20-8.3

2

CV � 3
2R

CV � 3
2R � 12.5 J/mol �  K

3
2

Eint � 3
2nRT

CV �
�Eint

n �T
.

W � 0
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TA B L E 2 0 - 2
Molar Specific Heats

Molecule Example CV (J/mol � K)

Ideal R � 12.5

Monatomic Real He 12.5

(1 atom) Real Ar 12.6

Ideal R � 20.8*

Diatomic Real N2 20.7

(2 atoms) Real O2 20.8

Ideal 3R � 24.9*

Polyatomic Real NH4 29.0

(
 2 atoms) Real CO2 29.7

*The presentation of the R and 3R will be explained in the next
section.

5
2

5
2

3
2

We can now generalize Eq. 20-36 for the internal energy of any ideal gas by sub-
stituting CV for R; we get 

(any ideal gas). (20-42)

This equation applies not only to an ideal monatomic gas but also to diatomic and
polyatomic ideal gases, provided the experimentally determined value of CV is used.
Just as with Eq. 20-37, we see that the internal energy of a gas depends on the temper-
ature of the gas but not on its pressure or density.

When an ideal gas that is confined to a container undergoes a temperature
change , then from either Eq. 20-39 or Eq. 20-42 we can write the resulting change
in its internal energy as 

(any ideal gas, any process). (20-43)�Eint � nCV �T

�T

Eint � nCVT

3
2
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FIGURE 20-10 ■ Three paths representing
three different processes that take an ideal
gas from an initial state i at temperature T
to some final state f at temperature

. The change in the internal
energy of the gas is the same for these
three processes and for any others that re-
sult in the same change of temperature.

�E intT 	 �T

This equation tells us:

A change in the internal energy Eint of a confined ideal gas depends on the change in the
gas temperature only; it does not depend on what type of process produces the change in
the temperature.

As examples, consider the three paths between the two isotherms in the P-V dia-
gram of Fig. 20-10. Path 1 represents a constant-volume process. Path 2 represents a
constant-pressure process (that we are about to examine). Path 3 represents a process
in which no thermal energy is exchanged with the system’s environment (we discuss
this in Section 20-11). Although the values of Q and work W associated with these
three paths differ, as do Pf and Vf, the values of ΔEint associated with the three paths
are identical and are all given by Eq. 20-43, because they all involve the same temper-
ature change ΔT. Therefore, no matter what path is actually taken between T and

, we can always use path 1 and Eq. 20-43 to compute ΔEint easily.

Molar Specific Heat at Constant Pressure
We now assume that the temperature of the ideal gas is increased by the same small
amount ΔT as previously, but that the necessary thermal energy (Q) is added with the
gas under constant pressure. An experiment for doing this is shown in Fig. 20-11a; the
P-V diagram for the process is plotted in Fig. 20-11b. From such experiments we find
that the transferred thermal energy Q is related to the temperature change ΔT by

(constant pressure), (20-44)

where CP is a constant called the molar specific heat at constant pressure. This CP is
greater than the molar specific heat at constant volume CV, because energy must now
be supplied not only to raise the temperature of the gas but also for the gas to do
work—that is, to lift the weighted piston of Fig. 20-11a.

Q � nCP �T

T 	 �T
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FIGURE 20-11 ■ (a) The temperature of an ideal gas is raised from T
to in a constant-pressure process. Thermal energy is added and
work is done in lifting the loaded piston. (b) The process on a P-V dia-
gram. The work is given by the shaded area.P�V
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To relate molar specific heats CP and CV, we start with the first law of thermodynam-
ics (Eq. 19-17):

(20-45)

We next replace each term in Eq. 20-45. For , we substitute from Eq. 20-43. For Q,
we substitute from Eq. 20-44. To replace W, we first note that since the pressure remains

�Eint

�Eint � Q � W.



constant, Eq. 20-16 tells us that . Then we note that, using the ideal gas
equation , we can write 

(20-46)

Making these substitutions in Eq. 20-45, we find

and then dividing through by n ΔT,

so (any ideal gas). (20-47)

This relationship between CP and CV predicted by kinetic theory agrees well with ex-
periment, not only for monatomic gases but for gases in general, as long as their den-
sity is low enough so that we may treat them as ideal. As we discuss in Section 19-5,
there is very little difference between CP and CV for liquids and solids because of
their relative incompressibility.

READI NG EXERC IS E  20-4: The figure here shows five paths traversed by a gas on a
P-V diagram. Rank the paths according to the change in internal energy of the gas, greatest
first.

■

CP � CV 	 R

CV � CP � R,

nCV �T � nCP �T � nR�T

W � P �V � nR �T.

(PV � nRT)
W � P�V
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TOUCHSTONE EXAMPLE 20-4: Helium Bubble

A bubble of 5.00 mol of helium is submerged at a certain depth in
liquid water when the water (and thus the helium) undergoes a
temperature increase �T of 20.0 C° at constant pressure. As a re-
sult, the bubble expands. The helium is monatomic and ideal.

(a) How much thermal energy is added to the helium during the in-
crease and expansion?

S O L U T I O N ■ One Ke y  I d e a here is that the thermal energy
transferred Q is related to the temperature change ΔT by the molar

specific heat of the gas. Because the pressure P is held constant dur-
ing the addition of energy, we use the molar specific heat at con-
stant pressure CP and Eq. 20-44,

Q � nCP ΔT, (20-48)

to find Q. To evaluate CP we go to Eq. 20-47, which tells us that
for any ideal gas, CP � CV 	 R. Then from Eq. 20-41, we know
that for any monatomic gas (like helium), CV � R. Thus, Eq. 20-
48 gives us 

3
2

p

V

T1

T2

T3
4

3

2

1

5
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(Answer)

(b) What is the change �E int in the internal energy of the helium
during the temperature increase?

S O L U T I O N ■ Because the bubble expands, this is not a
constant-volume process. However, the helium is nonetheless con-
fined (to the bubble). Thus, a Ke y  I d e a here is that the change
�Eint is the same as would occur in a constant-volume process with
the same temperature change �T. We can easily find the constant-
volume change �E int with Eq. 20-43:

(Answer)

(c) How much work W is done by the helium as it expands against
the pressure of the surrounding water during the temperature in-
crease?

S O L U T I O N ■ One Ke y  I d e a here is that the work done by
any gas expanding against the pressure from its environment is

� 1246.5 J 
 1250 J.

� (5.00 mol)(1.5)(8.31J/mol�K)(20.0 C�)

�E int � nCV �T � n( 3
2R) �T

� 2077.5 J 
 2080 J.

� (5.00 mol)(2.5)(8.31 J/mol �K)(20.0 C�)

Q � n(CV 	 R) �T � n( 3
2R 	 R) �T � n( 5

2R) �T given by Eq. 20-11, which tells us to integrate P dV. When the pres-
sure is constant (as here), we can simplify that to W � P �V. When
the gas is ideal (as here), we can use the ideal gas law (Eq. 20-8) to
write P �V � nR �T. We end up with 

(Answer)

Because we happen to know Q and �Eint, we can work this
problem another way. The Ke y  I d e a now is that we can account
for the energy changes of the gas with the first law of thermody-
namics, writing 

(Answer)

Note that during the temperature increase, only a portion (1250 J)
of the thermal energy (2080 J) that is transferred to the helium goes
to increasing the internal energy of the helium and thus the temper-
ature of the helium. The rest (831 J) is transferred out of the helium
as work that the helium does during the expansion. If the water
were frozen, it would not allow that expansion. Then the same tem-
perature increase of 20.0 C° would require only 1250 J of energy,
because no work would be done by the helium.

� 831 J.

W � Q � �E int � 2077.5 J � 1246.5 J

� 831 J.

� (5.00 mol)(8.31 J/mol �K)(20.0 C�)

W � nR �T

FIGURE 20-12 ■ Models of molecules as used in kinetic theory:
(a) helium, a typical monatomic molecule; (b) oxygen, a typical
diatomic molecule; and (c) methane, a typical polyatomic mole-
cule. The spheres represent atoms, and the lines between them
represent bonds. Two rotation axes are shown for the oxygen
molecule.

20-8 Degrees of Freedom and Molar Specific Heats

As Table 20-2 shows, the prediction that agrees with experiment for
monatomic gases. But it fails for diatomic and polyatomic gases. Let us try to explain
the discrepancy by considering the possibility that molecules with more than one
atom can store internal energy in forms other than translational kinetic energy.

Figure 20-12 shows common models of helium (a monatomic molecule, containing
a single atom), oxygen (a diatomic molecule, containing two atoms), and methane (a
polyatomic molecule). From such models, we would assume that all three types of
molecules can have translational motions (say, moving left–right and up–down) and
rotational motions (spinning about an axis like a top). However, due to their highly
symmetric nature, rotational motions in a monatomic molecule need special consider-
ation. We will return to this point shortly. In addition, we would assume that the di-
atomic and polyatomic molecules can have oscillatory motions, with the atoms oscil-
lating slightly toward and away from one another, as if attached to opposite ends of a
spring.

CV � 3
2R

He

(a) He

H

H
H

H

C

(c ) CH4

O
O

(b) O2



To keep account of the various ways in which energy can be stored in a gas, James
Clerk Maxwell introduced the theorem of the equipartition of energy:

Every kind of molecule has a certain number f of degrees of freedom, which are indepen-
dent ways in which the molecule can store energy. Each such degree of freedom has associ-
ated with it—on average—an energy of per molecule (or per mole).

Let us apply the theorem to the translational and rotational motions of the mole-
cules in Fig. 20-12. (We discuss oscillatory motion in the next section.) For the transla-
tional motion, superimpose an xyz coordinate system on any gas. The molecules will,
in general, have velocity components along all three axes. Thus, gas molecules of all
types have three degrees of translational freedom (three ways to move in translation)
and, on average, an associated energy of per molecule.

For the rotational motion, imagine the origin of our xyz coordinate system at the
center of each molecule in Fig. 20-12. In a gas, each molecule should be able to rotate
with an angular velocity component along each of the three axes, so each gas should
have three degrees of rotational freedom and, on average, an additional energy of

per molecule. However, experiment shows this is true only for the polyatomic
molecules.

A possible solution to this dilemma is that rotations about an axis of symmetry
don’t count as a degree of freedom. For example, as seen in Fig. 20-12, a single-atom
molecule is symmetric about all three (mutually perpendicular) axes through the
molecule. Hence, according to our proposed solution, these rotations are not addi-
tional degrees of freedom. A diatomic molecule is symmetric about only one axis
(the axis through the center of both atoms). Accordingly, a diatomic molecule
would have two rather than three degrees of freedom associated with rotation of
the molecule.

It appears that modifying our theory in this manner brings us more in alignment
with the experimental results. However, one should ask what reasoning (other than
experimental evidence) supports this modification of the theory. One thing is clear. If
a molecule were rotating about an axis of symmetry, it would be impossible to tell.
Unlike a baseball (which has stitches or other marks) molecules have no characteris-
tics that allow us to sense the rotation. Although classical physics gives us no real
foundation for ignoring the motion simply because it is indistinguishable from no mo-
tion at all, this is what quantum theory would suggest.

So, according to our new model, a monatomic molecule has zero degrees of free-
dom associated with rotation because any rotation would be about an axis of symme-
try. A diatomic molecule has two degrees of freedom associated with rotations about
the two axes perpendicular to the line connecting the atoms (the axes are shown in
Fig. 20-12b) but no degree of freedom for rotation about that line itself. Therefore, a
diatomic molecule can have a rotational energy of only per molecule. A
polyatomic molecule has a full three degrees of freedom associated with rotational
motion.

To extend our analysis of molar specific heats (CP and CV, in Section 20-7) to
ideal diatomic and polyatomic gases, it is necessary to retrace the derivations of that
analysis in detail. First, we replace Eq. 20-36 with E int � (f/2)nRT,
where f is the number of degrees of freedom listed in Table 20-3. Doing so leads to the
prediction

(20-49)

which agrees—as it must—with Eq. 20-41 for monatomic gases . As Table 20-3
shows, this prediction also agrees with experiment for diatomic gases , but it is
too low for polyatomic gases. Note: The symbol f used here to denote degrees of

(f � 5)
(f � 3)

CV � � f
2 �R � 4.16 f  J/mol �K,

(Eint � 3
2nRT)

2( 1
2kBT)

3( 1
2kBT)

3( 1
2kBT)

1
2RT1

2kBT
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20-9 A Hint of Quantum Theory

We can improve the agreement of kinetic theory with experiment by including the os-
cillations of the atoms in a gas of diatomic or polyatomic molecules. For example, the
two atoms in the O2 molecule of Fig. 20-12b can oscillate toward and away from each
other, with the interconnecting bond acting like a spring. However, experiment shows
that such oscillations occur only at relatively high temperatures of the gas—the mo-
tion is “turned on” only when the gas molecules have relatively large energies. Rota-
tional motion is also subject to such “turning on,” but at a lower temperature.

Figure 20-13 is of help in seeing this turning on of rotational motion and oscilla-
tory motion. The ratio CV/R for diatomic hydrogen gas (H2) is plotted there against
temperature, with the temperature scale logarithmic to cover several orders of magni-
tude. Below about 80 K, we find that . This result implies that only the
three translational degrees of freedom of hydrogen are involved in the specific heat.

CV/R � 1.5
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TOUCHSTONE EXAMPLE 20-5: Internal Energy Change

A cabin of volume V is filled with air (which we consider to be an
ideal diatomic gas) at an initial low temperature T1. After you light
a wood stove, the air temperature increases to T2. What is the re-
sulting change �E int in the internal energy of the air in the cabin?

S O L U T I O N ■ As the air temperature increases, the air pressure
P cannot change but must always be equal to the air pressure out-
side the room. The reason is that, because the room is not airtight,
the air is not confined. As the temperature increases, air molecules
leave through various openings and thus the number of moles n of
air in the room decreases. Thus, one Ke y  I d e a here is that we
cannot use Eq. 20-43 (ΔE int � nCV �T) to find �E int, because it re-
quires constant n.

A second Key  Idea is that we can relate the internal energy
E int at any instant to n and the temperature T with Eq. 20-42 
(E int � nCVT). From that equation we can then write 

�E int � �(nCVT) � CV �(nT).

Next, using Eq. 20-8 (PV � nRT), we can replace nT with
PV/R, obtaining 

(20-50)

Now, because P, V, and R are all constants, Eq. 20-50 yields

�E int � 0, (Answer)

even though the temperature changes.
Why does the cabin feel more comfortable at the higher tem-

perature? There are at least two factors involved: (1) You exchange
electromagnetic radiation (thermal radiation) with surfaces inside
the room, and (2) you exchange energy with air molecules that col-
lide with you. When the room temperature is increased, (1) the
amount of thermal radiation emitted by the surfaces and absorbed
by you is increased, and (2) the amount of energy you gain through
the collisions of air molecules with you is increased.

�E int � CV�� PV
R �.

TA B L E 2 0 - 3
Degrees of Freedom for Various Molecules

Predicted Molar 
Degrees of Freedom Specific Heats

Molecule Example Translational Rotational Total ( f ) CV (Eq. 20-47) CP � CV � R

Monatomic He 3 0 3

Diatomic O2 3 2 5

Polyatomic CH4 3 3 6 3R 4R

7
2R

5
2R

5
2R

3
2R

freedom should not be confused with used to describe the velocity distribution
function for molecules.

f(v)



As the temperature increases, the value of CV/R gradually increases to 2.5, imply-
ing that two additional degrees of freedom have become involved. Quantum theory
shows that these two degrees of freedom are associated with the rotational motion of
the hydrogen molecules and that this motion requires a certain minimum amount of
energy. At very low temperatures (below 80 K), the molecules do not have enough en-
ergy to rotate. As the temperature increases from 80 K, first a few molecules and then
more and more obtain enough energy to rotate, and CV/R increases, until all of them
are rotating and CV/R � 2.5.

Similarly, quantum theory shows that oscillatory motion of the molecules requires
a certain (higher) minimum amount of energy. This minimum amount is not met until
the molecules reach a temperature of about 1000 K, as shown in Fig. 20-13. As the
temperature increases beyond 1000 K, the number of molecules with enough energy
to oscillate increases, and CV/R increases, until all of them are oscillating and CV/R �
3.5. (In Fig. 20-13, the plotted curve stops at 3200 K because at that temperature, the
atoms of a hydrogen molecule oscillate so much that they overwhelm their bond, and
the molecule then dissociates into two separate atoms.)

The observed fact that rotational degrees of freedom are not excited until suffi-
ciently high temperatures are reached implies that rotational kinetic energy is not a
continuous function of angular velocity. Instead, a discrete, quantized energy level
must be attained before rotation is excited. This discreteness of energy levels is a
hallmark of quantum mechanical behavior. It is interesting to note that some of the
issues discussed in this chapter are the first examples (with many more to come) that
macroscopic properties of matter, which are easily measured in the laboratory, de-
pend critically on (and provide strong evidence for) the quantum theory we will de-
velop later.

The compatibility between microscopic theory and macroscopic observations when
coupled with quantum theory and other phenomena in physics and chemistry provided
additional support for the theory that matter is composed of atoms and molecules.

20-10 The Adiabatic Expansion of an Ideal Gas

We saw in Section 18-2 that sound waves are propagated through air and other gases
as a series of compressions and expansions; these variations in the transmission
medium take place so rapidly that there is no time for thermal energy to be trans-
ferred from one part of the medium to another. As we saw in Section 19-8, a process
for which Q � 0 is an adiabatic process. We can ensure that Q � 0 either by carrying
out the process very quickly (as in sound waves) or by doing it (at any rate) in a well-
insulated container. Let us see what the kinetic theory has to say about adiabatic
processes.
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FIGURE 20-13 ■ A plot of CV/R versus temperature for (diatomic) hydrogen
gas. Because rotational and oscillatory motions begin at certain energies, only
translation is possible at very low temperatures. As the temperature increases,
rotational motion can begin. At still higher temperatures, oscillatory motion
can begin.



Figure 20-14a shows our usual insulated cylinder. Its insulating lid is not shown. It
now contains an ideal gas and rests on an insulating stand. By removing mass from the
piston, we can allow the gas to expand adiabatically (in a slow process rather than a
free expansion). As the volume increases, both the pressure and the temperature drop.
We shall prove next that the relation between the pressure and the volume during such
an adiabatic process is 

(ideal gas adiabatic process), (20-51)

in which , the ratio of the molar specific heats for the gas. On a P-V dia-
gram such as that in Fig. 20-14b, the process occurs along a line (called an adiabat)
that has the equation . Since the gas goes from an initial state i to
a final state f, we can rewrite Eq. 20-51 as 

(ideal gas adiabatic process). (20-52)

We can also write an equation for an adiabatic process in terms of T and V. To do
so, we use the ideal gas equation to eliminate P from Eq. 20-51, finding

Because n and R are constants, we can rewrite this in the alternative form 

(ideal gas adiabatic process). (20-53)

in which the constant is different from that in Eq. 20-51. When the gas goes from an
initial state i to a final state f, we can rewrite Eq. 20-53 as 

(adiabatic process). (20-54)

We can now answer the question that opens this chapter. At the top of an un-
opened carbonated drink, there is a gas of carbon dioxide and water vapor. Because
the pressure of the gas is greater than atmospheric pressure, the gas expands out into
the atmosphere when the container is opened. Thus, the gas increases its volume, but
that means it must do work to push against the atmosphere. Because the expansion is

TiV��1
i � �fV

��1
f

TV��1 �  a constant

� nRT
V � V� �  a constant.

(PV � nRT)

PiVi
� � PfV

�
f

P � (a constant)/V�

� � CP/CV

PV� �  a constant
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FIGURE 20-14 ■ (a) The volume of
an ideal gas is increased by remov-
ing weight from the piston. The
process is adiabatic ( ). (b) The
process proceeds from i to f along
an adiabat on a P-V diagram.
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so rapid, it is adiabatic and the only source of energy for the work is the internal en-
ergy of the gas. Because the internal energy decreases, the temperature of the gas
must also decrease, which can cause the water vapor in the gas to condense into tiny
drops, forming the fog. (Note that Eq. 20-54 also tells us that the temperature must
decrease during an adiabatic expansion: Since Vf is greater than Vi, then Tf must be
less than Ti.)

Proof of Eq. 20-51
Suppose that you remove some shot from the piston of Fig. 20-14a, allowing the ideal
gas to push the piston and the remaining shot upward and thus to increase the volume
by a differential amount dV. Since the volume change is tiny, we may assume that the
pressure P of the gas on the piston is constant during the change. This assumption al-
lows us to say that the work dW done by the gas during the volume increase is equal
to P dV. From Eq. 19-18, the first law of thermodynamics can then be written as 

(20-55)

Since the gas is thermally insulated (and thus the expansion is adiabatic), we substi-
tute 0 for Q. Then we use Eq. 20-43 to substitute nCV dT for dE int. With these substitu-
tions, and after some rearranging, we have 

(20-56)

Now using the ideal gas law and derivative rule 3 in Appendix E we
have

(20-57)

Replacing R with its equal, , in Eq. 20-57 yields 

(20-58)

Equating Eqs. 20-56 and 20-58 and rearranging them give 

Replacing the ratio of the molar specific heats with � and integrating (see integral 5 in
Appendix E) yield 

Rewriting the left side as ln PV� and then taking the antilog of both sides, we find

(20-59)

which is what we set out to prove.

Free Expansions
Recall from Section 19-8 that a free expansion of a gas is an adiabatic process that in-
volves no work done on or by the gas, and no change in the internal energy of the gas.

PV� �  a constant,

ln P 	 � ln V � a constant.

dP
P

	 � CP

CV
� dV

V
� 0.

n dT �
P dV 	 V dP

CP � CV
.

CP � CV

PdV 	 V dP � nR dT.

(PV � nRT)

n dT � �� P
CV

� dV.

dEint � Q � P dV.
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Problems 601

TOUCHSTONE EXAMPLE 20-6: Final Temperature

In Touchstone Example 20-2, 1 mol of oxygen (assumed to be an
ideal gas) expands isothermally (at 310 K) from an initial volume of
12 L to a final volume of 19 L.

(a) What would be the final temperature if the gas had expanded
adiabatically to this same final volume? Oxygen (O2) is diatomic
and here has rotation but not oscillation.

S O L U T I O N ■ The Ke y  I d e a s here are as follows:

1. When a gas expands against the pressure of its environment, it
must do work.

2. When the process is adiabatic (no thermal energy is transferred
as heat), then the energy required for the work can come only
from the internal energy of the gas.

3. Because the internal energy decreases, the temperature T must
also decrease.

We can relate the initial and final temperatures and volumes with
Eq. 20-54:

(20-62)

Because the molecules are diatomic and have rotation but not oscil-
lation, we can take the molar specific heats from Table 20-3. Thus,

TiV
��1
i � �fV

��1
f .

Solving Eq. 20-62 for Tf and inserting known data then yield 

(Answer)

(b) What would be the final temperature and pressure if, instead,
the gas had expanded freely to the new volume, from an initial
pressure of 2.0 Pa?

S O L U T I O N ■ Here the Ke y  I d e a is that the temperature
does not change in a free expansion:

Tf � Ti � 310 K. (Answer)

We find the new pressure using Eq. 20-61, which gives us 

(Answer)Pf � Pi
Vi

Vf
� (2.0 Pa) 

12 L
19 L

� 1.3 Pa.

� (310 K)( 12
19 )0.40 � 258 K.

Tf �
TiV

��1
i

V ��1
f

�
(310 K)(12 L)1.40�1

(19 L)1.40�1

� �
CP

CV
�

7
2R
5
2R

� 1.40.

SEC. 20-2 ■ THE MACROSCOPIC BEHAVIOR OF GASES

1. Arsenic Find the mass in kilograms of 7.50 � 1024 atoms of ar-
senic, which has a molar mass of 74.9 g/mol.

2. Gold Gold has a molar mass of 197 g/mol. (a) How many moles
of gold are in a 2.50 g sample of pure gold? (b) How many atoms
are in the sample?

Problems

A free expansion is thus quite different from the type of adiabatic process described
by Eqs. 20-51 through 20-59, in which work is done and the internal energy changes.
Those equations then do not apply to a free expansion, even though such an expan-
sion is adiabatic.

Also recall that in a free expansion, a gas is in equilibrium only at its initial and fi-
nal points; thus, we can plot only those points, but not the expansion itself, on a P-V
diagram. In addition, because , the temperature of the final state must be
that of the initial state. Thus, the initial and final points on a P-V diagram must be on
the same isotherm, and instead of Eq. 20-54 we have 

(free expansion). (20-60)

If we next assume that the gas is ideal (so that ), because there is no
change in temperature, there can be no change in the product PV. Thus, instead of Eq.
20-51 a free expansion involves the relation 

(free expansion). (20-61)PiVi � PfVf

PV � nRT

Ti � Tf

�Eint � 0



3. Water If the water molecules in 1.00 g of water were distributed
uniformly over the surface of Earth, how many such molecules
would there be on 1.00 cm2 of the surface?

4. It Is Written A distinguished scientist has written: “There are
enough molecules in the ink that makes one letter of this sen-
tence to provide not only one for every inhabitant of Earth, but
one for every creature if each star of our galaxy had a planet as
populous as Earth.” Check this statement. Assume the ink sample
(molar mass � 18 g/mol) to have a mass of 1 g, the population
of Earth to be 5 � 109, and the number of stars in our galaxy to
be 1011.

5. Compute Compute (a) the number of moles and (b) the num-
ber of molecules in 1.00 cm3 of an ideal gas at a pressure of 100 Pa
and a temperature of 220 K.

6. Best Vacuum The best laboratory vacuum has a pressure of
about 1.00 � 10�18 atm, or 1.01 � 10�13 Pa. How many gas mole-
cules are there per cubic centimeter in such a vacuum at 293 K?

7. Oxygen Gas Oxygen gas having a volume of 1000 cm3 at 40.0°C
and 1.01 � 105 Pa expands until its volume is 1500 cm3 and its pres-
sure is 1.06 � 105 Pa. Find (a) the number of moles of oxygen pre-
sent and (b) the final temperature of the sample.

8. Tire An automobile tire has a volume of 1.64 � 10�2 m3 and
contains air at a gauge pressure (pressure above atmospheric pres-
sure) of 165 kPa when the temperature is 0.00°C. What is the gauge
pressure of the air in the tires when its temperature rises to 27.0°C
and its volume increases to 1.67 � 10�2 m3? Assume atmospheric
pressure is 1.00 � 105 Pa.

9. A Quantity of Ideal Gas A quantity of ideal gas at 10.0°C and
100 kPa occupies a volume of 2.50 m3. (a) How many moles of the
gas are present? (b) If the pressure is now raised to 300 kPa and the
temperature is raised to 30.0°C, how much volume does the gas oc-
cupy? Assume no leaks.

SEC. 20-3 ■ WORK DONE BY IDEAL GASES

10. Work Done by External Agent Calculate the work done by an
external agent during an isothermal compression of 1.00 mol of
oxygen from a volume of 22.4 L at 0°C and 1.00 atm pressure to
16.8 L.

11. P, V, T Pressure P, volume V, and temperature T for a certain
non-ideal material are related by

where A and B are constants. Find an expression for the work done
by the material if the temperature changes from T1 to T2 while the
pressure remains constant.

12. A Container Encloses A container encloses two ideal gases.
Two moles of the first gas are present, with molar mass M1. The
second gas has molar mass M2 � 3M1, and 0.5 mol of this gas is
present. What fraction of the total pressure on the container wall is
attributable to the second gas? (The kinetic theory explanation of
pressure leads to the experimentally discovered law of partial pres-
sures for a mixture of gases that do not react chemically: The total
pressure exerted by the mixture is equal to the sum of the pressures

P �
AT � BT 2

V
,

that the several gases would exert separately if each were to occupy
the vessel alone.)

13. Air Initially Occupies Air that initially occupies 0.14 m3 at a
gauge pressure of 103.0 kPa is expanded isothermally to a pressure
of 101.3 kPa and then cooled at constant pressure until it reaches its
initial volume. Compute the work done by the air. (Gauge pressure
is the difference between the actual pressure and atmospheric
pressure.)

14. A Sample A sample of an ideal gas is taken through the cyclic
process abca shown in Fig. 20-15; at point a, T � 200 K. (a) How
many moles of gas are in the sam-
ple? What are (b) the temperature
of the gas at point b, (c) the temper-
ature of the gas at point c, and (d)
the net thermal energy transferred
to the gas during the cycle?

15. Air Bubble An air bubble of 20
cm3 volume is at the bottom of a
lake 40 m deep where the tempera-
ture is 4.0°C. The bubble rises to the
surface, which is at a temperature of
20°C. Take the temperature of the
bubble’s air to be the same as that
of the surrounding water. Just as the
bubble reaches the surface, what is
its volume?

16. Pipe of Length L A pipe of
length L � 25.0 m that is open at
one end contains air at atmospheric
pressure. It is thrust vertically into a
freshwater lake until the water rises
halfway up in the pipe, as shown in
Fig. 20-16. What is the depth h of the
lower end of the pipe? Assume that
the temperature is the same every-
where and does not change.

17. Container A Container A in
Fig. 20-17 holds an ideal gas at a
pressure of 5.0 � 105 Pa and a tem-
perature of 300 K. It is connected by
a thin tube (and a closed valve) to
container B, with four times the volume of A. Container B holds the
same ideal gas at a pressure of 1.0 � 105 Pa and a temperature of
400 K. The valve is opened to allow the pressures to equalize, but
the temperature of each container is kept constant at its initial
value. What then is the pressure in the two containers?

FIGURE 20-17 ■ Problem 17.
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Problems 603

SEC. 20-4 ■ PRESSURE, TEMPERATURE, AND MOLECULAR

KINETIC ENERGY

18. Helium Atoms Calculate the rms speed of helium atoms at
1000 K. See Appendix F for the molar mass of helium atoms.

19. Lowest Possible The lowest possible temperature in outer
space is 2.7 K. What is the root-mean-square speed of hydrogen
molecules at this temperature? (The molar mass of hydrogen mole-
cules (H2) is given in Table 20-1)

20. Speed of Argon Find the rms speed of argon atoms at 313 K.
See Appendix F for the molar mass of argon atoms.

21. Sun’s Atmosphere The temperature and pressure in the Sun’s
atmosphere are 2.00 � 106 K and 0.0300 Pa. Calculate the rms
speed of free electrons (mass � 9.11 � 10�31 kg) there, assuming
they are an ideal gas.

22. Nitrogen Molecule (a) Compute the root-mean-square speed of
a nitrogen molecule at 20.0°C. The molar mass of nitrogen mole-
cules (N2) is given in Table 20-1. At what temperatures will the root-
mean-square speed be (b) half that value and (c) twice that value?

23. Hydrogen Molecules A beam of hydrogen molecules (H2) is
directed toward a wall, at an angle of 55° with the normal to the
wall. Each molecule in the beam has a speed of 1.0 km/s and a mass
of 3.3 � 10�24 g. The beam strikes the wall over an area of 2.0 cm2,
at the rate of 1023 molecules per second. What is the beam’s pres-
sure on the wall?

24. Density of Gas At 273 K and 1.00 � 10�2 atm, the density of a
gas is 1.24 � 10�5 g/cm3. (a) Find vrms for the gas molecules. (b) Find
the molar mass of the gas and identify the gas. (Hint: The gas is
listed in Table 20-1.)

25. Translational Kinetic Energy What is the average translational
kinetic energy of nitrogen molecules at 1600 K?

26. Average Value Determine the average value of the transla-
tional kinetic energy of the molecules of an ideal gas at (a) 0.00°C
and (b) 100°C. What is the translational kinetic energy per mole of
an ideal gas at (c) 0.00°C and (d) 100°C?

27. Evaporating Water Water standing in the open at 32.0°C evap-
orates because of the escape of some of the surface molecules. The
heat of vaporization (539 cal/g) is approximately equal to �n, where
� is the average energy of the escaping molecules and n is the num-
ber of molecules per gram. (a) Find �. (b) What is the ratio of � to
the average kinetic energy of H2O molecules, assuming the latter is
related to temperature in the same way as it is for gases?

28. Alternative Form Show that the ideal gas equation, Eq. 20-8,
can be written in the alternative form P � �RT/M, where � is the
mass density of the gas and M is the molar mass.

29. Avogadro’s Law Avogadro’s law states that under the same
conditions of temperature and pressure, equal volumes of gas con-
tain equal numbers of molecules. Is this law equivalent to the ideal
gas law? Explain.

SEC. 20-5 ■ MEAN FREE PATH

30. Nitrogen Molecules The mean free path of nitrogen molecules
at 0.0°C and 1.0 atm is 0.80 � 10�5 cm. At this temperature and
pressure there are 2.7 � 1019 molecules/cm3. What is the molecular
diameter?

31. Earth’s Surface At 2500 km above Earth’s surface, the number
density of the atmosphere is about 1 molecule/cm3. (a) What mean
free path is predicted by Eq. 20-24 and (b) what is its significance un-
der these conditions? Assume a molecular diameter of 2.0 � 10�8 cm.

32. What Frequency At what frequency would the wavelength of
sound in air be equal to the mean free path of oxygen molecules at
1.0 atm pressure and 0.00°C? Take the diameter of an oxygen mole-
cule to be 3.0 � 10�8 cm.

33. Mean Free Path of Jelly Beans Assuming that jelly beans in a
bag could behave like ideal gas particles, what is the mean free path
for 15 spherical jelly beans in a bag that is vigorously shaken? The
volume of the bag is 1.0 L, and the diameter of a jelly bean is 1.0
cm. (Consider bean-bean collisions, not bean-bag collisions.)

34. Mean Free Path for Argon At 20°C and 750 torr pressure, the
mean free paths for argon gas (Ar) and nitrogen gas (N2) are 
�Ar � 9.9 � 10�6 cm and � 27.5 � 10�6 cm. (a) Find the ratio of
the effective diameter of argon to that of nitrogen. What is the
mean free path of argon at (b) 20°C and 150 torr, and (c) �40°C
and 750 torr?

35. Particle Accelerator In a certain particle accelerator, protons
travel around a circular path of diameter 23.0 m in an evacuated
chamber, whose residual gas is at 295 K and 1.00 � 10�6 torr pres-
sure. (a) Calculate the number of gas molecules per cubic centime-
ter at this pressure. (b) What is the mean free path of the gas mole-
cules if the molecular diameter is 2.00 � 10�8 cm?

SEC. 20-6 ■ THE DISTRIBUTION OF MOLECULAR SPEEDS

36. Twenty-Two Particles Twenty-two particles have speeds as fol-
lows (Ni represents the number of particles that have speed vi):

Ni 2 4 6 8 2

vi (cm/s) 1.0 2.0 3.0 4.0 5.0

(a) Compute their average speed �v	. (b) Compute their root-mean-
square speed vrms. (c) Of the five speeds shown, which is the most
probable speed ?

37. Ten Molecules The speeds of 10 molecules are 2.0, 3.0, 4.0 . . . ,
11 km/s. (a) What is their average speed? (b) What is their root-
mean-square speed?

38. Ten Particles (a) Ten particles are moving with the following
speeds: four at 200 m/s, two at 500 m/s, and four at 600 m/s. Calcu-
late their average and root-mean-square speeds. Is vrms 
 �v	? (b)
Make up your own speed distribution for the 10 particles and show
that vrms � �v	 for your distribution. (c) Under what condition (if
any) does vrms � � 	?

39. Compute Temperature (a) Compute the temperatures at which
the rms speed for (a) molecular hydrogen and (b) molecular oxy-
gen is equal to the speed of escape from Earth. (c) Do the same for
the speed of escape from the Moon, assuming the local gravita-
tional constant on its surface to be 0.16g. (d) The temperature high
in Earth’s upper atmosphere (in the thermosphere) is about 
1000 K. Would you expect to find much hydrogen there? Much oxy-
gen? Explain.

40. Most Probable Speed It is found that the most probable speed
of molecules in a gas when it has (uniform) temperature T2 is the

v

vprob

�N2



same as the rms speed of the molecules in this gas when it has (uni-
form) temperature T1. Calculate T2/T1.

41. Hydrogen Molecule A molecule of hydrogen (diameter 1.0 �
10�8 cm), traveling with the rms speed, escapes from a furnace (T �
4000 K) into a chamber containing atoms of cold argon (diameter
3.0 � 10�8 cm) at a number density of 4.0 � 1019 atoms/cm3. (a)
What is the speed of the hydrogen molecule? (b) If the H2 molecule
collides with an argon atom, what is the closest their centers can be,
considering each as spherical? (c) What is the initial number of col-
lisions per second experienced by the hydrogen molecule? (Hint:
Assume that the cold argon atoms are stationary. Then the mean
free path of the hydrogen molecule is given by Eq. 20-25, and not
Eq. 20-24.)

42. Two Containers—Same Temperature Two containers are at
the same temperature. The first contains gas with pressure P1, mole-
cular mass m1, and root-mean-square speed vrms

1 . The second con-
tains gas with pressure 2P1, molecular mass m2, and average speed
�v2� � 2vrms

1 . Find the mass ratio m1/m2.

43. Hypothetical Speeds Figure 20-18
shows a hypothetical speed distribu-
tion for a sample of N gas particles
(note that f(v) � 0 for 
v 
 2v0). (a) Express a in terms of N
and v0. (b) How many of the parti-
cles have speeds between 1.5v0 and
2.0v0? (c) Express the average speed
of the particles in terms of v0. (d)
Find vrms.

SEC. 20-7 ■ THE MOLAR SPECIFIC HEATS OF

AN IDEAL GAS

44. Internal Energy What is the internal energy of 1.0 mol of an
ideal monatomic gas at 273 K?

45. Isothermal Expansion One mole of an ideal gas undergoes an
isothermal expansion. Find the thermal energy Q added to the gas
in terms of the initial and final volumes and the temperature. (Hint:
Use the first law of thermodynamics.)

46. Added as Heat When 20.9 J of thermal energy was added to
a particular ideal gas, the volume of the gas changed from 50.0
cm3 to 100 cm3 while the pressure remained constant at 1.00 atm.
(a) By how much did the internal energy of the gas change? If
the quantity of gas present is 2.00 � 10�3 mol, find the molar spe-
cific heat of the gas at (b) constant pressure and (c) constant vol-
ume.

47. Three Nonreacting Gases A container holds a mixture of three
nonreacting gases: n1 moles of the first gas with molar specific heat
at constant volume C1, and so on. Find the molar specific heat at
constant volume of the mixture, in terms of the molar specific heats
and quantities of the separate gases.

48. Ideal Diatomic Gas One mole of an ideal diatomic gas goes
from a to c along the diagonal path in Fig. 20-19. During the transi-
tion, (a) what is the change in internal energy of the gas, and (b)
how much thermal energy is added to the gas? (c) How much ther-
mal energy is required if the gas goes from a to c along the indirect
path abc?

FIGURE 20-19 ■ Problem 48.

49. Gas Molecule The mass of a gas molecule can be computed from
its specific heat at constant volume CV. Take CV � 0.075 cal/g � C°
for argon and calculate (a) the mass of an argon atom and (b) the
molar mass of argon.

SEC. 20-8 ■ DEGREES OF FREEDOM AND

MOLAR SPECIFIC HEATS

50. Heating a Diatomic Gas We give 70 J of thermal energy to a
diatomic gas, which then expands at constant pressure. The gas mol-
ecules rotate but do not oscillate. By how much does the internal
energy of the gas increase?

51. One Mole of Oxygen One mole of oxygen (O2) is heated at
constant pressure starting at 0°C. How much energy Q must be
added to the gas to double its volume? (The molecules rotate but
do not oscillate.)

52. Oxygen Heating Suppose 12.0 g of oxygen (O2) is heated at
constant atmospheric pressure from 25.0°C to 125°C. (a) How
many moles of oxygen are present? (See Table 20-1 for the molar
mass.) (b) How much thermal energy is transferred to the oxygen?
(The molecules rotate but do not oscillate.) (c) What fraction of the
thermal energy absorbed by the oxygen is used to raise the internal
energy of the oxygen?

53. Molecular Rotation Suppose 4.00 mol of an ideal diatomic gas,
with molecular rotation but not oscillation, experienced a tempera-
ture increase of 60.0 K under constant-pressure conditions. (a) How
much thermal energy was transferred to the gas? (b) How much did
the internal energy of the gas increase? (c) How much work was
done by the gas? (d) How much did the translational kinetic energy
of the gas increase?

SEC. 20-10 ■ THE ADIABATIC EXPANSION OF

AN IDEAL GAS

54. Liter of Gas (a) One liter of a gas with � � 1.3 is at 273 K and 1.0
atm pressure. It is suddenly compressed adiabatically to half its origi-
nal volume. Find its final pressure and temperature. (b) The gas is now
cooled back to 273 K at constant pressure.What is its final volume?

55. A Certain Gas A certain gas occupies a volume of 4.3 L at a
pressure of 1.2 atm and a temperature of 310 K. It is compressed
adiabatically to a volume of 0.76 L. Determine (a) the final pressure
and (b) the final temperature, assuming the gas to be an ideal gas
for which � � 1.4.

56. Adiabatic Process We know that for an adiabatic process 
PV� � a constant. Evaluate the constant for an adiabatic process
involving exactly 2.0 mol of an ideal gas passing through the state
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having exactly P � 1.0 atm and T � 300 K. Assume a diatomic gas
whose molecules have rotation but not oscillation.

57. Let n Moles Let n moles of an ideal gas expand adiabatically
from an initial temperature T1 to a final temperature T2. Prove that the
work done by the gas is nCV(T1 � T2), where CV is the molar specific
heat at constant volume. (Hint: Use the first law of thermodynamics.)

58. Bulk Modulus For adiabatic processes in an ideal gas, show
that (a) the bulk modulus is given by

B � �V � �P,

and therefore (b) the speed of sound in the gas is

vwave � � .

See Eqs. 18-1 and 18-2. Here M is the molar mass and the total mass
of the gas is m � nM.

59. Molar Specific Heats Air at 0.000°C and 1.00 atm pressure has
a density of 1.29 � 10�3 g/cm3, and the speed of sound in air is
331 m/s at that temperature. Use those data to compute the ratio �
of the molar specific heats of air. (Hint: See Problem 58.)

√ �RT
M√ �P

�

dP
dV

60. Free Expansion (a) An ideal gas initially at pressure P0 un-
dergoes a free expansion until its volume is 3.00 times its initial
volume. What then is its pressure? (b) The gas is next slowly and
adiabatically compressed back to its original volume. The pres-
sure after compression is (3.00)1/3 P0. Is the gas monatomic, di-
atomic, or polyatomic? (c) How does the average kinetic energy
per molecule in this final state compare with that in the initial
state?

61. The Cycle One mole of an
ideal monatomic gas traverses the
cycle of Fig. 20-20. Process 1 : 2
occurs at constant volume, process
2 : 3 is adiabatic, and process 3 :
1 occurs at constant pressure. (a)
Compute the thermal energy Q ab-
sorbed by the gas, the change in its
internal energy �Eint, and the work
done by the gas W, for each of the
three processes and for the cycle as
a whole. (b) The initial pressure at
point 1 is 1.00 atm. Find the pressure and the volume at points 2 and
3. Use 1.00 atm � 1.013 � 105 Pa and R � 8.314 J/mol � K.

Volume (m3)

Pr
es

su
re

 (
at

m
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T2 = 600 K
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3
T1 = 300 K T3 = 455 K
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FIGURE 20-20 ■ Problem 61.

Additional Problems

62. Extensive vs. Intensive An intensive variable is one that can be
defined locally within a system. Its magnitude does not depend on
whether we select the whole system or a part of the system. An ex-
tensive variable is one that is defined for the system as a whole; its
magnitude does depend on how much of the system we choose to
select. Which of the following variables are intensive and which are
extensive? Explain your reasoning in each case.
(a) density, (b) pressure, (c) volume, (d) temperature, (e) mass,
(f) internal energy, (g) number of moles, and (h) molecular weight.

63. Changes in Gas Molecules An ideal gas is contained in an air-
tight box. Complete each of the following five statements below to
show the quantitative change that will occur. For example, if you
want to say that the volume, initially equal to V, quadruples, com-
plete the statement with “4V”.

(a) If the absolute temperature of the gas is halved, the average
speed of a gas molecule, �v�, becomes_____.

(b) If the average speed of a gas molecule doubles, the pressure, P,
on a the wall of the box becomes_____.

(c) If the absolute temperature of the gas is halved, the pressure, P,
on a wall of the box becomes________.

(d) If the absolute temperature of the gas is increased by 25%, the
total internal energy of the gas, E int, becomes_____.

(e) If the number of gas molecules inside the box is doubled, but
the temperature is kept the same, the pressure, P, on a wall of the
box becomes______.

64. Scales in a Gas The actual diameter of an atom is about 1
angstrom (10�10 m). In order to develop some intuition for the mol-
ecular scale of a gas, assume that you are considering a liter of air

(mostly N2 and O2) at room temperature and a pressure of 105 Pa.
(a) Calculate the number of molecules in the sample of gas. (b) Es-
timate the average spacing between the molecules. (c) Estimate the
average speed of a molecule using the Maxwell-Boltzmann distrib-
ution. (d) Suppose that the gas were rescaled upward so that each
atom was the size of a tennis ball (but we don’t change the time
scale). What would be the average spacing between molecules and
the average speed of the molecules in miles/hour?
65. Is the M-B Distribution Wrong? A good student makes the fol-
lowing observation. “If I try to accelerate a small sphere through air,
it will be resisted by air drag. If I drop an object, it will eventually
reach a terminal velocity where the air is resisting as much as gravity
is trying to accelerate (Eq. 6-25). The smaller the ball, the slower is
the terminal velocity. But you tell me the Maxwell distribution says
that the molecules of air move very rapidly. I estimate that this is
much faster than the molecule’s terminal velocity, so it can’t move
that fast. The Maxwell distribution must be wrong.” (a) The Newton
drag law for a sphere moving through air is calculated by a molecu-
lar model to be D � ��R2v2, where D is the magnitude of the drag
force, R is the radius of the sphere, � is the density of the air, and v is
the velocity of the object through the air. Calculate the terminal ve-
locity for a sphere the size and mass of an air molecule falling
through a fluid the density of air (� � 1 kg/m3). (b) From your esti-
mate in part (a), is this speed greater or less than the average speed
the molecule should have given the M-B distribution? What is
wrong with the student’s argument?

66. Avogadro’s Hypothesis Why does Avogadro’s hypothesis (that
a given volume of gas at a given temperature and pressure has the
same number of molecules no matter what kind of gas it is) not
hold for liquids and solids?



67. Boiling Molecules When a molecule of a liquid approaches the
surface, it experiences a force barrier that tries to keep it in the liq-
uid. Thus it has to do work to escape and loses some of its kinetic
energy when it leaves.

(a) Assume that a water molecule can evaporate from the liquid if
it hits the surface from the inside with a kinetic energy greater than
the thermal energy corresponding to the temperature of boiling wa-

ter, 100�C. Use this to estimate the numerical value of the work W
required to remove a water molecule from the liquid.

(b) Even though the average speed of a molecule in water below
the boiling point corresponds to a kinetic energy less than W, some
molecules leave anyway and the water evaporates. Explain why this
happens.
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21 Entropy and the
Second Law of
Thermodynamics

An anonymous graffito on a wall of the Pecan Street Cafe

in Austin, Texas, reads: “Time is God’s way of keeping

things from happening all at once.” Time also has direction—

some things happen in a certain sequence and could never

happen on their own in a reverse sequence. As an example,

an accidentally dropped egg splatters in a cup. The reverse

process, a splattered egg re-forming into a whole egg and

jumping up to an outstretched hand, will never happen on

its own—but why not? Why can’t that process be reversed,

like a videotape run backward?

What in the world gives
direction to time?

The answer is in this chapter.



21-1 Some One-Way Processes 

Suppose you come indoors on a very cold day and wrap your cold hands around a
warm mug of cocoa. Then your hands get warmer and the mug gets cooler. However,
it never happens the other way around. That is, your cold hands never get still colder
while the warm mug gets still warmer.

If we assume that the rate of thermal energy transfer from the warm mug and
your hands to the room is slow, the system consisting of your hands and the mug is
approximately a closed system, one that is more or less isolated from (does not inter-
act with) its environment. Here are some other one-way processes that we observe to
occur in closed systems: (1) A crate sliding over a horizontal surface eventually
stops—but you never see an initially stationary crate on a horizontal surface start to
move all by itself. (2) If you drop a glob of putty, it falls to the floor—but an initially
motionless glob of putty on the floor never leaps spontaneously into the air. (3) If you
puncture a helium-filled balloon in a closed room, the helium gas spreads throughout
the room—but the individual helium atoms will never migrate back out of the room
and refill the balloon. We call such one-way processes irreversible, meaning that they
cannot be reversed by means of only small changes in their environment.

Many chemical transformations are also irreversible. For example, when methane
gas is burned, each methane molecule mixes with an oxygen molecule. Water vapor
and carbon dioxide are given off as shown in the following chemical equation:

CH4 � O2 9: CO2 � H2O.

This combustion process is irreversible. We don’t find water and carbon dioxide spon-
taneously reacting to produce methane and oxygen gas.

The one-way character of such thermodynamic processes is so pervasive that we
take it for granted. If these processes were to occur spontaneously (on their own) in the
“wrong” direction, we would be astonished beyond belief. Yet none of these “wrong-
way” events would violate the law of conservation of energy. In the “cold hands-warm
mug” example, energy would be conserved even for a “wrong-way” thermal energy
transfer between hands and mug. Conservation of energy would be obeyed even if a
stationary crate or a stationary glob of putty suddenly were to transfer internal energy
to macroscopic kinetic energy and begin to move. Energy would still be conserved if the
helium atoms released from a balloon were, on their own, to clump together again.

Changes in energy within a closed system do not determine the direction of irre-
versible processes. So, we conclude that the direction must be set by another property
that we have not yet considered. We shall discuss this new property quite a bit in this
chapter. It is called the entropy S of the system. Knowing the change in entropy of
a system turns out to be a useful quantity in analyzing thermodynamic processes. It is
defined in the next section, but here we can state the central property of entropy
change (often called the entropy postulate):

If an irreversible process occurs in a closed system, the entropy S of the system always in-
creases; it never decreases.

Entropy, unlike energy, does not obey a conservation law. The energy of a closed
system is conserved. It always remains constant. For irreversible processes, the entropy
of a closed system always increases. Because of this property, the change in entropy is
sometimes called “the arrow of time.” For example, we associate the irreversible break-
ing of the egg in our opening photograph with the forward direction of time and also
with an increase in entropy. The backward direction of time (a videotape run backward)
would correspond to the broken egg re-forming into a whole egg and rising into the air.
This backward process would result in an entropy decrease and so it never happens.

�S
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There are two equivalent ways to define the change in entropy of a system.The first is
macroscopic. It is in terms of the system’s temperature and any thermal energy transfers
between the system and its surroundings. The second is macroscopic or statistical. It is de-
fined by counting the ways in which the atoms or molecules that make up the system can
be arranged.We use the first approach in the next section, and the second in Section 21-7.

READI NG EXERC IS E  21-1: Consider the irreversible process of dropping a glob of
putty on the floor. Describe what energy transformations are taking place that allow us to be-
lieve that energy is conserved. ■

READI NG EXERC IS E  21-2: List additional everyday phenomena that illustrate irre-
versibility without violating energy conservation. ■

21-2 Change in Entropy

In this section, we will try to develop a definition for change in entropy by looking
again at the macroscopic process that we described in Sections 19-8 and 20-10—
namely, the free expansion of an ideal gas. Figure 21-1a shows the gas in its initial
equilibrium state i, confined by a closed stopcock to the left half of a thermally insu-
lated container. If we open the stopcock, the gas rushes to fill the entire container,
eventually reaching the final equilibrium state f shown in Fig. 21-1b. Unless the num-
ber of gas molecules is small (which is very hard to accomplish), this is an irreversible
process. Again, what we mean by irreversible is that it is extremely improbable that all
the gas particles would return, by themselves, to the left half of the container.

The P-V plot of the process in Fig. 21-2 shows the pressure and volume of the gas
in its initial state i and final state f. As we discuss in Section 19-1, the pressure and vol-
ume of the gas depend only on the state that the gas is in, and not on the process by
which it arrived in that state. Therefore, pressure and volume are examples of state
properties. State properties are properties that depend only on the state of the gas and
not on how it reached that state. Other state properties are temperature and internal
energy. We now assume that the gas has still another state property—its entropy. Fur-
thermore, we define the change in entropy of a system during a process that
takes the system from an initial state i to a final state f as

(change in entropy defined). (21-1)

Here Q is the thermal energy transferred to or from the system during a heating or
cooling process, and T is the temperature of the system in kelvin. Thus, an entropy
change depends not only on the thermal energy transferred Q, but also on the tem-
perature at which the transfer takes place. Because T is always positive, the sign of 
is the same as that of Q (positive if thermal energy is transferred to the system and
negative if thermal energy is transferred from the system). We see from this relation
(Eq. 21-1) that the SI unit for entropy and entropy change is the joule per kelvin.

There is a problem, however, in applying Eq. 21-1 to the free expansion of Fig. 21-1.
As the gas rushes to fill the entire container, the pressure, temperature, and volume of
the gas fluctuate unpredictably. In other words, they do not have a sequence of well-
defined equilibrium values during the intermediate stages of the change from initial
equilibrium state i to final equilibrium state f. Thus, we cannot trace a pressure–
volume path for the free expansion on the P-V plot of Fig. 21-2. More importantly,
that means that we cannot find a relation between thermal energy transfer Q and
temperature T that allows us to integrate as Eq. 21-1 requires.

�S

�S � Sf � Si � �f

i

dQ
T

Sf � Si

FIGURE 21-1 ■ The free expansion of an
ideal gas consisting of a large number of
molecules. (a) The gas is confined to the
left half of an insulated container by a
closed stopcock. (b) When the stopcock is
opened, the gas rushes to fill the entire
container. This process is irreversible; that
is, it is never observed to occur in reverse,
with the gas spontaneously collecting itself
in the left half of the container.
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FIGURE 21-2 ■ A P-V diagram showing
the initial state i and the final state f of the
free expansion of Fig. 21-1. The intermedi-
ate states of the gas cannot be shown be-
cause they are not equilibrium states.
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FIGURE 21-3 ■ The isothermal expansion
of an ideal gas, done in a reversible way.
The gas has the same initial state i and
same final state f as in the irreversible
process of Figs. 21-1 and 21-2.
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However, if our assumption is correct and entropy is truly a state property, the
difference in entropy between states i and f must depend only on those states and not
at all on the way the system went from one state to the other. That means that we can
replace the irreversible free expansion of Fig. 21-1 with a reversible process that con-
nects states i and f. With a reversible process we can trace a pressure–volume path on
a P-V plot, and we can find a relation between thermal energy transfer Q and temper-
ature T that allows us to use Eq. 21-1 to obtain the entropy change.

We saw in Section 20-10 that the temperature of an ideal gas does not change
during a free expansion. So, . Thus, points i and f in Fig. 21-2 must be on
the same isotherm. A convenient replacement process is then a reversible isothermal
expansion from state i to state f, which actually proceeds along that isotherm. Further-
more, because T is constant throughout a reversible isothermal expansion, the inte-
gral of Eq. 21-1 is greatly simplified.

Figure 21-3 shows how to produce such a reversible isothermal expansion. We
confine the gas to an insulated cylinder that rests on a thermal reservoir maintained at
the temperature T. We begin by placing just enough lead shot on the movable piston
so that the pressure and volume of the gas are those of the initial state i of Fig. 21-1a.
We then remove shot slowly (piece by piece) until the pressure and volume of the gas
are those of the final state f of Fig. 21-1b. The temperature of the gas does not change
because the gas remains in thermal contact with the reservoir throughout the process.

The reversible isothermal expansion of Fig. 21-3 is physically quite different from
the irreversible free expansion of Fig. 21-1. However, both processes have the same ini-
tial state and the same final state. Thus, if entropy is a state property, these two processes
must result in the same change in entropy.

Because we removed the lead shot slowly, the intermediate states of the gas are
equilibrium states, so we can plot them on a P-V diagram (Fig. 21-4). To apply Eq. 21-
1 to the isothermal expansion, we take the constant temperature T outside the inte-
gral, obtaining 

Because , where Q is the thermal energy transferred during the process, we
have

(change in entropy, isothermal process). (21-2)

To keep the temperature T of the gas constant during the isothermal expansion of
Fig. 21-3, the thermal energy transferred from the reservoir to the gas must have been
Q. Thus, Q is positive and the entropy of the gas increases during the isothermal
process and during the free expansion of Fig. 21-1.

To summarize:

Assuming entropy is a state property, we can find the entropy change for an irreversible
process occurring in a closed system by replacing that process with any reversible process
that connects the same initial and final states. We can then calculate the entropy change for
this reversible process with Eq. 21-1. The change in entropy for an irreversible process con-
necting the same two states would be the same.

We can even use this approach if the temperature of the system is not quite constant.
That is, if the temperature change of a system is small relative to the temperature
(in kelvin) before and after the process, the entropy change can be approximated as 

(21-3)

where is the average kelvin temperature of the system during the process.�T �

�S � Sf � Si �
Q
�T �

�T
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FIGURE 21-4 ■ A P-V diagram for the re-
versible isothermal expansion of Fig. 21-3.
The intermediate states, which are now
equilibrium states, are shown.
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Entropy as a State Property
In the previous section, we assumed that entropy, like pressure, internal energy, and
temperature, is a property of the state of a system and is independent of how that
state is reached. The fact that entropy is indeed a state property (or state function as
state properties are sometimes called) can really only be deduced by careful experi-
ment. However, we will prove entropy is a state property for the special and impor-
tant case of an ideal gas undergoing a reversible process. This proof will serve two
purposes. First, it will verify (for at least this one case) that entropy is a state property
(or state function) as we assumed in the section above. Second, it will allow us to de-
velop an expression for the entropy change in an ideal gas as it goes from some initial
state i to some final state f via a reversible process.

To make the process reversible, we must make changes slowly in a series of small
steps, with the ideal gas in an equilibrium state at the end of each step. For each small
step, the thermal energy transfer to or from the gas is dQ, the work done by or on the
gas is dW, and the change in internal energy is dEint. These are related by the first law
of thermodynamics in differential form (Eq. 19-18):

Because the steps are reversible, with the gas in equilibrium states, we can replace dW
with P dV (Eq. 19-15). Since we are dealing with an ideal gas, we can also replace dEint

with nCV dT (Eq. 20-43). Solving for the thermal energy transferred to or from the
system in a single small step of the process dQ then leads to 

We replace the pressure P in this equation with (using the ideal gas law). Then
we divide each term in the resulting equation by the temperature T, obtaining 

Now let us integrate each term of this equation between an arbitrary initial state i and
an arbitrary final state f to get 

The quantity on the left is the entropy change as we defined it in Eq. 21-1.
Substituting this and integrating the quantities on the right yields an expression for the
entropy change in an ideal gas undergoing a reversible process:

(21-4)

Note that we did not have to specify a particular reversible process when we inte-
grated. Therefore, the integration must hold for all reversible processes that take the
gas from state i to state f. Thus, we see that the change in entropy between the ini-
tial and final states of an ideal gas does depend only on properties of the initial state
(Vi and Ti) and properties of the final states (Vf and Tf); does not depend on how
the gas changes between the two equilibrium states. Therefore, in at least this one
case, we know that entropy must be a state property. In the work that follows in this
chapter, we will accept without further proof that entropy is in fact a state property
for any system undergoing any process.

�S
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READI NG EXERC IS E  21-3: Thermal energy is transferred to water on a stove. Rank
the entropy changes of the water as its temperature rises (a) from 20°C to 30°C, (b) from 30°C
to 35°C, and (c) from 80°C to 85°C, greatest first. ■

TOUCHSTONE EXAMPLE 21-1: Nitrogen

One mole of nitrogen gas is confined to the left side of the con-
tainer of Fig. 21-1a. You open the stopcock and the volume of the
gas doubles. What is the entropy change of the gas for this irre-
versible process? Treat the gas as ideal.

SOLUTION ■ We need two Ke y  I d e a s here. One is that we can
determine the entropy change for the irreversible process by calcu-
lating it for a reversible process that provides the same change in
volume. The other is that the temperature of the gas does not
change in the free expansion. Thus, the reversible process should be
an isothermal expansion—namely, the one of Figs. 21-3 and 21-4.

Since the internal energy of an ideal gas depends only on tem-
perature, �E int � 0 here and so Q � W from the first law. Combin-
ing this result with Eq. 20-14 gives

in which n is the number of moles of gas present. From Eq. 21-2 the
entropy change for this isothermal reversible process is 

Q � W � nRT ln� Vf

Vi
�,

Substituting n = 1.00 mol and Vf /Vi = 2, we find

(Answer)

Thus, the entropy change for the free expansion (and for all other
processes that connect the initial and final states shown in Fig. 21-2) is

�Sirrev � �Srev � �5.76 J/K.

�S is positive, so the entropy increases, in accordance with the en-
tropy postulate of Section 21-1.

� �5.76 J/K.

�Srev � nR ln 
Vf

Vi
� (1.00 mol)(8.31 J/mol �K)(ln 2)

�Srev �
Q
T

�
nRT ln(Vf /Vi)

T
� nR ln

Vf

Vi
.

TOUCHSTONE EXAMPLE 21-2: Copper Blocks

Figure 21-5a shows two identical copper blocks of mass m � 1.5 kg:
block L at temperature TiL � 60�C and block R at temperature 
TiR � 20�C. The blocks are in a thermally insulated box and are
separated by an insulating shutter. When we lift the shutter, the
blocks eventually come to the equilibrium temperature Tf � 40�C
(Fig. 21-5b). What is the net entropy change of the two-block sys-
tem during this irreversible process? The specific heat of copper is
386 J/kg� K.

SOLUTION ■ The Ke y  I d e a here is that to calculate the en-
tropy change, we must find a reversible process that takes the sys-
tem from the initial state of Fig. 21-5a to the final state of Fig. 21-5b.
We can calculate the net entropy change �Srev of the reversible
process using Eq. 21-1, and then the entropy change for the irre-
versible process is equal to �Srev. For such a reversible process we
need a thermal reservoir whose temperature can be changed slowly
(say, by turning a knob). We then take the blocks through the fol-
lowing two steps, illustrated in Fig. 21-6.

Warm Cool
TiL TiR

L R Irreversible
process

Insulation

(a) (b)

Tf Tf

L R

Movable
shutter

FIGURE 21-5 ■ (a) In the initial state, two copper blocks L and R, identical ex-
cept for their temperatures, are in an insulating box and are separated by an in-
sulating shutter. (b) When the shutter is removed, the blocks exchange thermal
energy and come to a final state, both with the same temperature Tf. The process
is irreversible.
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Step 1. With the reservoir’s temperature set at 60�C, put block L
on the reservoir. (Since block and reservoir are at the same temper-
ature, they are already in thermal equilibrium.) Then slowly lower
the temperature of the reservoir and the block to 40�C. As the
block’s temperature changes by each increment dT during this
process, thermal energy dQ is transferred from the block to the
reservoir. Using Eq. 19-5, we can write this transferred energy as
dQ � mc dT, where c is the specific heat of copper. According to
Eq. 21-1, the entropy change �SL of block L during the full temper-
ature change from initial temperature TiL (� 60�C � 333 K) to final
temperature Tf (� 40�C � 313 K) is 

Inserting the given data yields

� �35.86 J/K.

�SL � (1.5 kg)(386 J/[kg �K])ln
313 K
333 K

� mc ln
Tf

TiL
.

�SL � �f

i

dQ
T

� �Tf

TiL

mc dT
T

� mc�Tf

TiL

dT
T

Step 2: With the reservoir’s temperature now set at 20�C, put
block R on the reservoir. Then slowly raise the temperature of the
reservoir and the block to 40�C. With the same reasoning used to
find �SL, you can show that the entropy change �SR of block R dur-
ing this process is 

The net entropy change �S rev of the two-block system under-
going this two-step reversible process is then 

Thus, the net entropy change �S irrev for the two-block system un-
dergoing the actual irreversible process is �S irrev � �S rev � 2.4 J/K.
This result is positive, in accordance with the entropy postulate of
Section 21-1.

� �35.85 J/K � 38.23 J/K � 2.4 J/K.

�S rev � �SL � �SR

� �38.23 J/K.

�SR � (1.5 kg)(386 J/[kg �K]) ln
313 K
293 K

Q

Reservoir

L

Insulation

Q

R

(a) Step 1 (b) Step 2

FIGURE 21-6 ■ The blocks of Fig. 21-5 can proceed from their initial state to their final state in a re-
versible way if we use a reservoir with a controllable temperature (a) to transfer thermal energy re-
versibly from block L and (b) to transfer thermal energy reversibly to block R.

21-3 The Second Law of Thermodynamics

Here is a puzzle. We saw in Touchstone Example 21-1 that if we cause the reversible,
isothermal process of Fig. 21-3 to proceed from (a) to (b) in that figure, the change in
entropy of the gas—which we take as our system—is positive. However, because the
process is reversible, we can just as easily make it proceed from (b) to (a), simply by
slowly adding lead shot to the piston of Fig. 21-3b until the original volume of the gas
is restored. In this reverse isothermal process, the gas must keep its temperature from
increasing and so must transfer thermal energy to its surroundings to make up for the
work done via the lead shot. Since this thermal energy transfer is from our system
(the gas), Q is negative. So, from (Eq. 21-2) we find that must
be negative and hence the entropy of the gas must decrease.

Doesn’t this decrease in the entropy of the gas violate the entropy postulate of
Section 21-1, which states that entropy always increases? No, because that postulate
holds only for irreversible processes occurring in closed systems. The procedure sug-
gested here does not meet these requirements. The process is not irreversible and (be-
cause there is a heat transfer from the gas to the reservoir) the system—which is the
gas alone—is not closed.

�S�S � Sf � Si � Q/T



However, if we include the reservoir, along with the gas, as part of the system,
then we do have a closed system. Let’s check the change in entropy of the enlarged
system gas � reservoir for the process that takes it from (b) to (a) in Fig. 21-3. During
this reversible process, thermal energy is transferred from the gas to the reservoir—
that is, from one part of the enlarged system to another. Let represent the amount
of energy transferred. With (Eq. 21-2), we can then calculate sep-
arately the entropy changes for the gas (which loses of thermal energy) and the
reservoir (which gains in thermal energy). We get 

and

The entropy change of the closed system is the sum of these two quantities, which
(since the process is isothermal) is zero.

With this result, we can modify the entropy postulate of Section 21-1 to include
both reversible and irreversible processes:

If a process occurs in a closed system, the entropy of the system increases for irreversible
processes and remains constant for reversible processes. It never decreases.

Although entropy may decrease in part of a closed system, there will always be an
equal or larger entropy increase in another part of the system, so that the entropy
of the system as a whole never decreases. This fact is one form of the second law of
thermodynamics and can be written as 

(second law of thermodynamics), (21-5)

where the greater-than sign applies to irreversible processes, and the equals sign to re-
versible processes. But remember, this relation applies only to closed systems.

In the real world almost all processes are irreversible to some extent because of
friction, turbulence, and other factors. So, the entropy of real closed systems undergo-
ing real processes always increases. Processes in which the system’s entropy remains
constant are idealizations.

21-4 Entropy in the Real World: Engines

Engines, which are fundamentally thermodynamic devices, are everywhere around us
and are a big part of what makes modern life possible. However, not all engines are
the same. For example, the engine in your car is different from the engine in a typical
power plant. Nevertheless, these engines are similar in that they function through the
use of a working substance that can expand and contract as it exchanges energy with
its surroundings. In a power plant, the working substance is often water, in both its va-
por and liquid forms. In an automobile engine the working substance is a gasoline-air
mixture. If an engine is to do work on a sustained basis, the working substance must
operate in a cycle. That is, the working substance must pass through a repeating series
of thermodynamic processes, called strokes, returning again and again to each state in
its cycle. The fundamental difference between the engine in your car and that in a
power plant is that these two engines use different working substances and different
types of thermodynamic cycles. That is, the working substances in these two engines
undergo different thermodynamic processes.

�S � 0

�Sres � �
	 Q 	
T

.

�Sgas � �
	 Q 	
T

	 Q 	
	 Q 	

�S � Sf � Si � Q/T
	 Q 	
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Most engines that we meet in everyday life are some version of what we will call a
heat engine. Heat engines are devices that take the thermal energy transfers (or heat
transfers) Q that result from temperature differences and convert them to useful
work W. Internal combustion engines (like in your car) are complicated heat engines
that convert chemical energy (from gasoline or diesel fuel) and thermal energy to
work. We will not discuss internal combustion engines here. Instead, we will focus on a
simpler class of engines in which the working substance simply cycles between two
constant temperatures (isotherms) and the engine converts a portion of the resulting
thermal energy transfers directly to mechanical work.

The Carnot Engine
We have seen that we can learn much about real gases by analyzing an ideal gas,
which obeys the simple law . This is a useful plan because, although an
ideal gas does not exist, any real gas approaches ideal behavior as closely as you wish
if its density is low enough. In much the same spirit we choose to study real engines
by analyzing the behavior of an ideal engine.

In an ideal engine, all processes are reversible and no wasteful energy transfers occur due to
friction, turbulence, or other processes.

We shall focus here on a particular ideal engine called an ideal Carnot engine
named after the French scientist and engineer N. L. Sadi Carnot (pronounced “car-
no”), who first proposed the engine’s concept in 1824. A Carnot engine is an example
of a heat engine. It operates between two constant temperatures and uses the result-
ing thermal energy transfers directly to do useful work. The ideal Carnot engine is es-
pecially important because it turns out to be the best engine of this type.

Figure 21-7 shows the operation of a Carnot engine schematically. During each
cycle of the engine, energy is transferred to the working substance from a ther-
mal reservoir at constant temperature TH and energy is transferred from the
working substance to a second thermal reservoir at a constant and lower temperature
TL. The Carnot engine converts the difference between the amount of energy trans-
ferred into the system and the amount of energy transferred out of the system

into useful work.
The cycle followed by the working substance in a Carnot engine is called a

Carnot cycle. Figure 21-8a shows a P-V plot of the Carnot cycle. As indicated by
the arrows, the cycle is traversed in the clockwise direction. Imagine the working
substance to be a gas, confined to an insulating cylinder with a weighted, movable
piston. Figure 21-8b shows how the Carnot cycle might be accomplished. The cylin-
der may be placed at will on either of the two thermal reservoirs, or on an insulat-
ing slab. If we place the cylinder in contact with the high-temperature reservoir at
temperature TH, represents the thermal energy transfer to the working sub-
stance from this reservoir as the gas undergoes an isothermal expansion from vol-
ume Va to volume Vb. Similarly, when the working substance is in contact with the
low-temperature reservoir at temperature TL, the gaseous substance undergoes an
isothermal compression from volume Vc to volume Vd. At the same time energy

is transferred from the working substance to this reservoir. Note that in our
engine thermal energy transfers to or from the working substance can take place
only during the isothermal processes ab and cd of Fig. 21-8b. Thermal energy trans-
fers do not occur in processes bc and da in that figure, which connect the two
isotherms at temperatures TH and TL. Therefore, those two processes must be (re-
versible) adiabatic processes. To ensure this, during processes bc and da, the cylin-
der is placed on an insulating slab as the volume of the working substance is
changed.

	 QL 	

	 QH 	

	 QL 	
	 QH 	

	 QL 	
	 QH 	

PV � nRT

FIGURE 21-7 ■ The elements of a Carnot
engine. The two black arrowheads on the
central loop suggest the working substance
operating in a cycle, as if on a P-V plot.
Thermal energy is transferred from
the high-temperature reservoir at tempera-
ture TH to the working substance. Thermal
energy is transferred from the work-
ing substance to the low-temperature
reservoir at temperature TL. Work W is
done by the engine (actually by the
working substance) on something in the
environment.

	 QL 	

	 QH 	

TH

TL

Q H

Q L

W



Work Done: During the consecutive processes ab and bc of Fig. 21-8, the working
substance is expanding and thus doing positive work as it raises the weighted piston.
This work is represented in Fig. 21-8a by the area under curve abc. During the consec-
utive processes cd and da, the working substance is being compressed, which means
that it is doing negative work on its environment (the environment is doing positive
work on it). This work is represented by the area under curve cda. The net work per
cycle, which is represented by W in Figs. 21-7 and 21-8a, is the difference between
these two areas. It is a positive quantity equal to the area enclosed by cycle abcda in Fig.
21-8a. This work W is performed on some outside object. The engine might, for exam-
ple, be used to lift a weight.

To calculate the net work done by a Carnot engine during a cycle, let us apply the
first law of thermodynamics , to the working substance of a Carnot
engine. That substance must return again and again to any arbitrarily selected state in
that cycle. Thus, if X represents any state property of the working substance, such as
pressure, temperature, volume, internal energy, or entropy, we must have for
every cycle. It follows that for a complete cycle of the working substance. Re-
call that Q in Eq. 19-18 is the net thermal energy transfer per cycle and W is the net
work. We can then write the first law of thermodynamics for the
Carnot cycle as 

(21-6)W � 	 QH 	 � 	 QL 	.

(�E int � Q � W)

�Eint � 0
�X � 0

(�Eint � Q � W)
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FIGURE 21-8 ■ (a) A pressure–volume plot of the cycle followed by the working substance of
the Carnot engine in Fig. 21-7. The cycle consists of two isothermal processes (ab and cd) and
two adiabatic processes (bc and da). The shaded area enclosed by the cycle is equal to the work
W per cycle done by the Carnot engine. (b) An example of how this set of cycles could be ac-
complished. The upward motions of a piston during processes ab and bc are accomplished by
slowly removing weight from the piston. The downward motions of the piston during processes
cd and da are accomplished by slowing adding weight to the piston.
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Entropy Changes: Equation 21-1 tells us that any thermal energy
transfer between a system and its surroundings must involve a change in entropy. To il-
lustrate the entropy changes for a Carnot engine, we can plot the Carnot cycle on a
temperature–entropy (T-S) diagram as in Fig. 21-9. The lettered points a, b, c, and d in
Fig. 21-9 correspond to the lettered points in the P-V diagram in Fig. 21-8. The two
horizontal lines in Fig. 21-9 correspond to the two isothermal processes of the Carnot
cycle (because the temperature is constant). Process ab is the isothermal expansion
stroke of the cycle. As the high temperature reservoir transfers thermal energy 
reversibly to the working substance at temperature TH, its entropy increases. Simi-
larly, during the isothermal compression cd, the working substance transfers thermal
energy reversibly to the low temperature reservoir at temperature TL. In this
process the entropy of the working substance decreases.

The two vertical lines in Fig. 21-9 correspond to the two adiabatic processes of the
Carnot cycle. Because no thermal energy transfers occur during the adiabatic
processes, the entropy of the working substance does not change during either of
these processes. So, in a Carnot engine, there are two (and only two) reversible ther-
mal energy transfers, and thus two changes in entropy—one at temperature TH and
one at TL. The net entropy change per cycle is then 

(21-7)

Here is positive because energy is transferred to the working substance
from the surroundings (an increase in entropy) and is negative because energy

is transferred from the working substance to the surroundings (a decrease in en-
tropy). Because entropy is a state property, we must have for a complete cy-
cle. Putting in above (Eq. 21-7) requires that 

(21-8)

Note that, because , we must have . That is, more energy is trans-
ferred from the high-temperature reservoir to the engine than the engine transfers to
the low-temperature reservoir.

We shall now use our findings on the work done (Eq. 21-6) and entropy change
(Eq. 21-8) in an ideal Carnot cycle to derive an expression for the efficiency of an
ideal Carnot engine.

Efficiency of an Ideal Carnot Engine
The purpose of any heat engine is to transform as much of the thermal energy, QH,
transferred to the engine’s working medium into useful mechanical work as possible.
We measure its success in doing so by its thermal efficiency 	, defined as the work the
engine does per cycle (“energy we get”) divided by the thermal energy transferred to
it per cycle (“energy we pay for”):

(efficiency, any engine). (21-9)

For a Carnot engine we can substitute from Eq. 21-6 to write 

(21-10)	C �
	 QH 	 � 	 QL 	

	 QH 	
� 1 �

	 QL 	
	 QH 	

.

W � 	 QH 	 � 	 QL 	

	 �
energy we get

energy we pay for
�

	 W 	
	 QH 	

	 QH 	 
 	 QL 	TH 
 TL

	 QH 	
TH

�
	 QL 	
TL

.

�S � 0
�S � 0

	 QL 	
�SL

	 QH 	�SH

�S � �SH � �SL �
	 QH 	
TH

�
	 QL 	
TL

.

	 QL 	

	 QH 	

(�S � �dQ/T)

FIGURE 21-9 ■ The Carnot cycle of Fig.
21-8 plotted on a temperature–entropy di-
agram. During processes ab and cd the
temperature remains constant. During
processes bc and da the entropy remains
constant.
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Using (Eq. 21-8) we can write this as 

(efficiency, ideal Carnot engine), (21-11)

where the temperatures TL and TH are in kelvin. Because , the Carnot engine
necessarily has a thermal efficiency less than unity—that is, less than 100%. This is in-
dicated in Fig. 21-7, which shows that only part of the energy transferred to the engine
from the high-temperature reservoir causes the engine’s working substance to expand
and do physical work on the surroundings. The rest of the energy absorbed by the en-
gine provides for the heat transfer to the low-temperature reservoir. We will show in
Section 21-6 that no real engine can have a thermal efficiency greater than that calcu-
lated for the ideal Carnot engine (Eq. 21-11).

Other Types of Cycles and Real Engines
Efficiency is typically our main concern when designing an engine. For an engine that
operates on an ideal Carnot cycle, the efficiency is 

.

But remember, an ideal Carnot cycle means that the cycle is composed of the following
four processes: a perfectly isothermal (constant temperature) expansion of the work-
ing substance, a perfectly adiabatic (zero thermal energy transfer) expansion of the
working substance, a perfectly isothermal compression of the working substance, and a
perfectly adiabatic compression of the working substance. Perfectly isothermal means
the temperature of the working substance cannot change at all during these strokes.
Perfectly adiabatic means that there can be no thermal energy transfer at all. These
tasks are not easy to accomplish. If you do accomplish them, then you have an ideal
Carnot cycle and the efficiency of the engine is given by the equation above. Most en-
gines built on the Carnot cycle have efficiencies that are measurably lower than this.

It is important to note that even an ideal Carnot engine cannot have an efficiency
of one. That is, it does not do a perfect job of converting thermal energy transferred to
it into work. Inspection of the Carnot efficiency expression (Eq. 21-
11) shows that we can achieve 100% engine efficiency (that is, ) only if K
or . These requirements are impossible to meet. So, decades of practical engi-
neering experience have led to the following alternative version of the second law of
thermodynamics:

It is impossible to design an engine that converts thermal energy transferred to it from a
thermal reservoir to useful work with 100% efficiency.

As we mentioned earlier, Carnot engines are not the only type of heat engine in
which the working substance cycles between two constant temperatures and converts
some of the associated heat transferred to the engine’s working medium to useful work.
For example, Fig. 21-10 shows the operating cycle of an ideal Stirling engine. Compari-
son with the Carnot cycle of Fig. 21-8 shows that each cycle includes isothermal energy
transfers at temperatures TH and TL. However, the two isotherms of the Stirling engine
cycle of Fig. 21-10 are connected, not by adiabatic processes (no thermal energy trans-
fer) as for the Carnot engine, but by constant-volume processes. To reversibly increase
the temperature of a gas at constant volume from TL to TH (as in process da of
Fig. 21-10) requires a thermal energy transfer to the working substance from a thermal
reservoir whose temperature can be varied smoothly between those limits.

TH : �
TL � 0	 � 1

	C � 1 � TL/TH

	C � 1 �
TL

TH

TL � TH

	C � 1 �
TL

TH

	 QH 	/TH � 	 QL 	/TL

FIGURE 21-10 ■ A P-V plot for the work-
ing substance of an ideal Stirling engine,
assumed for convenience to be an ideal
gas. Processes ab and cd are isothermal
while bc and da are constant volume.
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Note that reversible thermal energy transfers (and corresponding entropy
changes) occur in all four of the processes that form the cycle of a Stirling engine, not
just two processes as in a Carnot engine. Thus, the derivation that led to the efficiency
expression for the Carnot engine (Eq. 21-11) does not apply to an ideal Stirling en-
gine. More important, the efficiency of an ideal Stirling engine, or any other heat en-
gine based on operation between two isotherms, is lower than that of a Carnot engine
operating between the same two temperatures. This makes the ideal Carnot engine an
ideal version of the ideal type of this class of engine! Of course, common Stirling
engines have even lower efficiencies than the ideal Stirling engine discussed here.

Many engines important in our lives operate based on cycles between two
isotherms and convert thermal energy transfers to work. For example, consider the
nuclear power plant shown in Fig. 21-11. It, like most power plants, is an engine when
taken in its entirety. A reactor core (or perhaps a coal-powered furnace) provides the
high-temperature reservoir. Thermal energy transfer to the working substance (usu-
ally water) is converted to work done on a turbine (which often results in electricity
production). The remaining energy is transferred to a low-temperature reservoir,
which is usually a nearby river, or the atmosphere (if cooling towers are used). If the
power plant shown in Fig. 21-11 operated as an ideal Carnot engine, its efficiency
would be about 40%. Its actual efficiency is about 30%.

How does the efficiency of the internal combustion engine compare to that of the
ideal Carnot engine? Well, this is a bit like comparing apples and oranges since the in-
ternal combustion engine does not operate between two isotherms like the Carnot,
Stirling, or power plant engines do. However, we can estimate that if your car could
be powered by a Carnot engine, it would have an efficiency of about 55% according
to (Eq. 21-11). Its actual efficiency (with an internal combustion en-
gine) is probably about 25%.

READI NG EXERC IS E  21-4: Three Carnot engines operate between reservoir tem-
peratures of (a) 400 and 500 K, (b) 600 and 800 K, and (c) 400 and 600 K. Rank the engines ac-
cording to their thermal efficiencies, greatest first. ■

	C � 1 � TL/TH

	 QL 	
FIGURE 21-11 ■ The North Anna nuclear
power plant near Charlottesville, Virginia,
which generates electrical energy at the
rate of 900 MW. At the same time, by de-
sign, it discards energy into the nearby
river at the rate of 2100 MW. This plant—
and all others like it—throws away more
energy than it delivers in useful form. It is
a real counterpart to the ideal engine of
Fig. 21-7.

TOUCHSTONE EXAMPLE 21-3: Carnot Engine

Imagine an ideal Carnot engine that operates between the temper-
atures TH � 850 K and TL � 300 K. The engine performs 1200 J of
work each cycle, the duration of each cycle being 0.25 s.

(a) What is the efficiency of this engine?

S O L U T I O N ■ The Ke y  I d e a here is that the efficiency 	 of an
ideal Carnot engine depends only on the ratio TL/TH of the temper-
atures (in kelvins) of the thermal reservoirs to which it is con-
nected. Thus, from Eq. 21-11, we have 

(Answer)

(b) What is the average power of this engine?

S O L U T I O N ■ Here the Ke y  I d e a is that the average power P
of an engine is the ratio of the work W it does per cycle to the time
�t that each cycle takes. For this Carnot engine, we find

	 � 1 �
TL

TH
� 1 �

300 K
850 K

� 0.647 � 65%

(Answer)

(c) How much thermal energy QH is extracted from the high-
temperature reservoir every cycle?

S O L U T I O N ■ Now the Ke y  I d e a is that, for any engine in-
cluding a Carnot engine, the efficiency 	 is the ratio of the work W
that is done per cycle to the thermal energy QH that is extracted
from the high-temperature reservoir per cycle. This relation, 	 �
	W	/	QH	 (Eq. 21-9), gives us 

(Answer)

(d) How much thermal energy QL is delivered to the low-tempera-
ture reservoir every cycle?

QH �
W
	

�
1200 J
0.647

� 1855 J.

P �
W
�t

�
1200 J
0.25 s

� 4800 W � 4.8 kW.



620 CHAPTER 21 Entropy and the Second Law of Thermodynamics

TOUCHSTONE EXAMPLE 21-4: Better Than the Ideal?

An inventor claims to have constructed a heat engine that has an
efficiency of 75% when operated between the boiling and freezing
points of water. Is this possible?

S O L U T I O N ■ The Ke y  I d e a here is that the efficiency of a
real engine (with its irreversible processes and wasteful energy
transfers) must be less than the efficiency of an ideal Carnot engine
operating between the same two temperatures. From Eq. 21-11, we
find that the efficiency of an ideal Carnot engine operating between

the boiling and freezing points of water is 

(Answer)

Thus, the claimed efficiency of 75% for a real heat engine operating
between the given temperatures is impossible.

� 0.268 � 27%

	 � 1 �
TL

TH
� 1 �

(0 � 273) K
(100 � 273) K

S O L U T I O N ■ The Ke y  I d e a here is that for a Carnot engine,
the work W done per cycle is equal to the difference in energy
transfers (See Eq. 21-6.) Thus, we have 

� W � 1855 J � 1200 J � 655 J. (Answer)

(e) What entropy change is associated with the energy transfer to
the working substance from the high-temperature reservoir? From
the working substance to the low-temperature reservoir?

S O L U T I O N ■ The Ke y  I d e a here is that the entropy change
�S during a transfer of thermal energy Q at constant temperature T
is given by Eq. 21-2 (�S � Q/T). Thus, for the transfer of energy QH

from the high-temperature reservoir at TH, we have 

	 QL 	 � 	 QH 	

	 QH 	 � 	 QL 	.
For the transfer of energy QL to the low-temperature reservoir at
TL, we have 

Note that the algebraic signs of the two thermal energy transfers
are different. Note also that, as Eq. 21-8 requires, the net entropy
change of the working substance for one cycle (which is the alge-
braic sum of the two quantities calculated above) is zero.

�SL �
QL

TL
�

�655 J
300 K

� �2.18 J/K.

�SH �
QH

TH
�

1855 J
850 K

� �2.18 J/K.

21-5 Entropy in the Real World: Refrigerators

A heat engine operated in a reverse cycle would require an input of work and transfer
thermal energy from a low-temperature reservoir to a high-temperature reservoir as
it continuously repeats a set series of thermodynamic processes. We call such a device
a refrigerator. In a household refrigerator, for example, an electrical compressor does
work in order to transfer thermal energy from the food storage compartment (a low-
temperature reservoir) to the room (a high-temperature reservoir). Air conditioners
and heat pumps are also refrigerators. The differences are only in the nature of the
high- and low-temperature reservoirs. For an air conditioner, the low-temperature
reservoir is the room that is to be cooled, and the high-temperature reservoir is the
(presumably warmer) outdoors. A heat pump is an air conditioner that can also be
operated in such a way as to transfer thermal energy to the air in a room from the
(presumably cooler) outdoors.

Let us now consider an ideal refrigerator:

In an ideal refrigerator, all processes are reversible and no wasteful energy transfers occur
between the refrigerator and its surroundings due to friction, turbulence, or other processes.

Figure 21-12 shows the basic elements of an ideal refrigerator that operates based on
a Carnot cycle. That is, it is the Carnot engine of Fig. 21-8 operating in reverse. All the
energy transfers, either thermal energy or work, are reversed from those of a Carnot
engine. Thus, we call such an ideal refrigerator an ideal Carnot refrigerator.

FIGURE 21-12 ■ The elements of a refrig-
erator. The two black arrowheads on the
central loop suggest the working substance
operating in a cycle, as if on a P-V plot.
Thermal energy QL is transferred to the
working substance from the low-tempera-
ture reservoir. Thermal energy QH is trans-
ferred to the high-temperature reservoir
from the working substance. Work W is
done on the refrigerator (on the working
substance) by something in the
environment.

TH

TL

Q H

Q L
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The designer of a refrigerator would like to do amount of work W (that we pay for)
and cause as large a thermal energy transfer as possible from the low-temperature
reservoir (for example, the storage space in a kitchen refrigerator or the room to be
cooled by the air conditioner).A measure of the efficiency of a refrigerator, then, is 

(coefficient of performance, any refrigerator), (21-12)

where K is called the coefficient of performance. For a Carnot refrigerator, the first
law of thermodynamics gives , where is the amount of the
thermal energy transfer to the high-temperature reservoir. The coefficient of perfor-
mance for our ideal Carnot refrigerator then becomes 

(21-13)

Because an ideal Carnot refrigerator is an ideal Carnot engine operating in reverse,
we can again use (Eq. 21-8) and rewrite this expression as 

(coefficient of performance, Carnot refrigerator). (21-14)

For typical room air conditioners, . For household refrigerators, .
Unfortunately, but logically, the efficiency (and so the value of K) of a given refrigera-
tor is higher the closer the temperatures of the two reservoirs are to each other. For
example, a given Carnot air conditioner is more efficient on a warm day than when it
is very hot outside.

It would be nice to own a refrigerator that did not require an input of work—that
is, one that would run without being plugged in. Figure 21-13 represents an
“inventor’s dream,” of a perfect refrigerator that transfers thermal energy Q from a
cold reservoir to a warm reservoir without the need for work. Because the unit re-
turns to the same state at the end of each cycle, and entropy is a state property, we
know that the change in entropy of the working substance for this imagined refrigera-
tor would be zero for a complete cycle. The entropies of the two reservoirs, however,
would change. The entropy change for the low temperature reservoir would be

and that for the high temperature reservoir would be Thus, the
net entropy change for the entire system is 

Because , the right side of this equation would be negative and thus the net
change in entropy per cycle for the closed system refrigerator � reservoirs would also
be negative. Because such a decrease in entropy violates the second law of thermody-
namics (Eq. 21-5), it must be that a perfect refrigerator cannot exist. That is, if
you want your refrigerator to operate, you must plug it in! 

This result leads us to another (equivalent) formulation of the second law of ther-
modynamics:

It is impossible to design a refrigerator that can cause a thermal energy transfer from a
reservoir at a lower temperature to one at a higher temperature without the input of work
(that is, with 100% efficiency).

In short, there are no perfect refrigerators.
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FIGURE 21-13 ■ The elements of a perfect
(but impossible) refrigerator—that is, one
that transfers energy from a low-tempera-
ture reservoir to a high-temperature reser-
voir without any input of work.
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READI NG EXERC IS E  21-5: You wish to increase the coefficient of performance of
an ideal Carnot refrigerator. You can do so by (a) running the cold chamber at a slightly higher
temperature, (b) running the cold chamber at a slightly lower temperature, (c) moving the unit
to a slightly warmer room, or (d) moving it to a slightly cooler room. Assume that the proposed
changes in the magnitude of either TL of TH are the same in all four cases. List the changes ac-
cording to the resulting coefficients of performance, greatest first. ■

21-6 Efficiency Limits of Real Engines

As we have just seen, a “perfect” Carnot refrigerator would violate the second law of
thermodynamics which states that entropy must always either remain constant or in-
crease. Therefore, we accept that a search for a 100% efficient Carnot refrigerator is
futile. They do not exist. But what about Carnot engines? Can we have a “perfect”
(that is, 100% efficient) engine? 

Fundamentally, the inefficiency in an ideal Carnot engine is associated with the
thermal energy transfer at the low temperature reservoir interface. Naive inventors
continually try to improve Carnot engine efficiency by reducing the waste energy

transferred to the low-temperature reservoir and, hence, “thrown away” during
each cycle. The inventor’s dream is to produce the perfect engine, diagrammed in Fig.
21-14, in which is reduced to zero and is converted completely into work.
For example, if we could do it, a perfect engine on an ocean liner could use thermal
energy transferred to it from seawater to drive the propellers, with no fuel cost. An
automobile, fitted with such a perfect engine, could use energy transferred from the
surrounding air to turn its wheels, again with no fuel cost.

Alas, what seems too good to be true usually is. A perfect engine cannot exist. We
already noted in Section 21-4 that since the efficiency of an ideal Carnot engine is
given by (Eq. 21-11), even an ideal Carnot engine cannot have 100%
efficiency. This is clear since we cannot have K or . So, if a real engine
is to have 100% efficiency, it will have to have a higher efficiency than our ideal
Carnot engine. Let’s see if that is possible.

Let us assume for a moment that an inventor, working in her garage, has constructed
an engine X, which she claims has an efficiency that is greater than , where is the
efficiency of an ideal Carnot engine operating between two temperatures.Then,

(a claim). (21-15)

Let us connect the inventor’s engine X to a Carnot refrigerator, as in Fig. 21-15a. We
adjust the strokes of the refrigerator so that the work it requires per cycle is just equal
to that provided by the engine X. Thus, no (external) work is needed for the operation

	X 
 	C

	C	C	X

TH : �TL � 0
	C � 1 � TL/TH

	 QH 		 QL 	

	 QL 	

FIGURE 21-14 ■ The elements of a perfect
(and impossible) engine—that is, one that
converts thermal energy transfer QH from
a high-temperature reservoir directly to
work W with 100% efficiency.
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FIGURE 21-15 ■ (a) Engine X
drives a Carnot refrigerator. (b)
If, as claimed, engine X is more
efficient than a Carnot engine,
then the combination shown in
(a) is equivalent to the perfect
refrigerator shown here. This vi-
olates the second law of ther-
modynamics, so we conclude
that engine X cannot be more
efficient than a Carnot engine.
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of the combination engine � refrigerator of Fig. 21-15a, which we take as our system.
Since the efficiency of an engine is 
(Eq. 21-9), and , we must have 

where is the heat transfer at the high-temperature reservoir in engine X. The right
side of the inequality is the efficiency of the Carnot refrigerator shown in Fig. 21-15a
when it operates (in reverse) as an engine. Since is the same in both cases, this in-
equality requires that 

(21-16)

Because the work done by engine X is equal to the work done on the Carnot refriger-
ator, which is (from Eq. 21-6) , we have 

We can rearrange terms and write this as 

(21-17)

Here is the thermal energy transfer at the low-temperature reservoir in engine
X. Because we found that (Eq. 21-16), the quantity Q must be positive.
What does Q represent? Careful evaluation of this expression (Eq. 21-17) tells us that
Q is the net thermal energy transfer at the high-temperature reservoir as a result of
our combined engine plus refrigerator. That is, the net effect of engine X and the
Carnot refrigerator, working in combination, is to transfer thermal energy Q from a
low-temperature reservoir to a high-temperature reservoir. Notably, this is done with
no work input to the combined engine–refrigerator system. Thus, the combination
acts like the perfect refrigerator of Fig. 21-13, whose existence is a violation of the sec-
ond law of thermodynamics.

Thus, we conclude that engine X cannot be more efficient than the ideal Carnot
engine. In general, no real engine can have an efficiency greater than that of a Carnot
engine when both engines work between the same two temperatures. At most, it can
have an efficiency equal to that of an ideal Carnot engine. In that case, engine X is an
ideal Carnot engine. Since ideal Carnot engines cannot be 100% efficient, this means
that “perfect” (100% efficient) engines are physically impossible.

21-7 A Statistical View of Entropy

In Chapter 20 we saw that the macroscopic properties of gases can be explained in
terms of their microscopic, or molecular, behavior. For one example, recall that we
were able to account for the pressure exerted by a gas on the walls of its container in
terms of the momentum transferred to those walls by rebounding gas molecules. Such
explanations are part of a study called statistical mechanics.

Here we shall focus our attention on a single problem, involving the distribution
of gas molecules between the two halves of an insulated box. This problem is reason-
ably simple to analyze, and it allows us to use statistical mechanics to calculate the en-
tropy change for the free expansion of an ideal gas. You will see in Touchstone Exam-
ple 21-6 that statistical mechanics leads to the same entropy change we obtain in
Example 21-2 using thermodynamics.

Figure 21-16 shows a box that contains six identical (and thus indistinguishable)
molecules of a gas. At any instant, a given molecule will be in either the left or the
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FIGURE 21-16 ■ An insulated box con-
tains six gas molecules. Each molecule has
the same probability of being in the left
half of the box as in the right half. The
arrangement in (a) corresponds to configu-
ration III in Table 21-1, and that in (b) cor-
responds to configuration IV.

(a) Insulation
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right half of the box; because the two halves have equal volumes, the molecule has the
same likelihood, or probability, of being in either half.

Table 21-1 shows four of the seven possible configurations of the six molecules,
each configuration labeled with Roman numerals. For example, in configuration I, all
six molecules are in the left half of the box , and none are in the right half

. The three configurations not shown are V with a (2, 4) split, VI with a (1, 5)
split, and VII with a (0, 6) split. In configuration II, five molecules are in one half of
the box, leaving one molecule in the other half. We see that, in general, a given config-
uration can be achieved in a number of different ways. We call these different
arrangements of the molecules microstates. Let us see how to calculate the number of
microstates that correspond to a given configuration.

(n2 � 0)
(n1 � 6)
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TA B L E 21 - 1
Six Molecules in a Box

Calculation Entropy 
Configurationa Multiplicity W of W 10�23 J/K

Label n1 n2 (number of microstates) (Eq. 21-18) (Eq. 21-19)

I 6 0 1 0

II 5 1 6 2.47

III 4 2 15 3.74

IV 3 3 20 4.13

Total number of microstates = 64 

aThe configurations not listed are n1 � 0, n2 � 6; n1 � 1, n2 � 5; and n1 � 2, n2 � 4. These have the same
multiplicities as I, II and III respectively.

6!/(3!3!) � 20

6!/(4!2!) � 15

6!/(5! 1!) � 6

6!/(6!0!) � 1

Suppose we have N molecules, distributed with n1 molecules in one half of the
box and n2 in the other half. (Thus .) Let us imagine that we distribute
the molecules “by hand,” one at a time. If , we can select the first molecule in six
independent ways; that is, we can pick any one of the six molecules. We can pick the
second molecule in five ways, by picking any one of the remaining five molecules, and
so on. The total number of ways in which we can select all six molecules is the product
of these independent ways, or . In mathematical short-
hand we write this product as , where 6! is pronounced “six factorial.” Your
hand-held calculator can probably calculate factorials. For later use you will need to
know that . (Check this on your calculator.)

However, because the molecules are indistinguishable, these 720 arrangements
are not all different. In the case that and (which is configuration III in
Table 21-1), for example, the order in which you put four molecules in one half of the
box does not matter, because after you have put all four in, there is no way that you
can tell the order in which you did so. The number of ways in which you can order the
four molecules is 4! or 24. Similarly, the number of ways in which you can order two
molecules for the other half of the box is simply 2! or 2. To get the number of differ-
ent arrangements that lead to the 4, 2 split of configuration III, we must divide 720 by
24 and also by 2. We call the resulting quantity, which is the number of microstates
that correspond to a given configuration, the multiplicity W of that configuration.
Thus, for configuration III,

Thus, Table 21-1 tells us there are 15 independent microstates that correspond to con-
figuration III. Note that, as the table also tells us, the total number of microstates for
six molecules distributed over four configurations is 42.

WIII �
6!

4! 2!
�

720
24 � 2

� 15.

n2 � 2n1 � 4

0! � 1

6! � 720
6 � 5 � 4 � 3 � 2 � 1 � 720

N � 6
n1 � n2 � N
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Extrapolating from six molecules to the general case of N molecules, we have

(multiplicity of configuration). (21-18)

You should verify that Eq. 21-18 gives the multiplicities for all the configurations
listed in Table 21-1.

The basic assumption of statistical mechanics is:

All microstates are equally probable.

In other words, if we were to take a great many snapshots of the six molecules as they
jostle around in the box of Fig. 21-16 and then count the number of times each mi-
crostate occurred, we would find that all 42 microstates will occur equally often. In
other words, the system will spend, on average, the same amount of time in each of
the 42 microstates listed in Table 21-1.

Because the microstates are equally probable, but different configurations have
different numbers of microstates, the configurations are not equally probable. In 
Table 21-1 configuration IV, with 20 microstates, is the most probable configuration,
with a probability of . This means that the system is in configuration IV
31.3% of the time. Configurations I and VII, in which all the molecules are in one half
of the box, are the least probable, each with a probability of or 1.6%. It
is not surprising that the most probable configuration is the one in which the mole-
cules are evenly divided between the two halves of the box, because that is what we
expect at thermal equilibrium. However, it is surprising that there is any probability,
however small, of finding all six molecules clustered in half of the box, with the other
half empty. In Touchstone Example 21-5 we show that this state can occur because six
molecules is an extremely small number.

For large values of N there are extremely large numbers of microstates, but nearly
all the microstates belong to the configuration in which the molecules are divided
equally between the two halves of the box, as Fig. 21-17 indicates. Even though the
measured temperature and pressure of the gas remain constant, the gas is churning
away endlessly as its molecules “visit” all probable microstates with equal probability.
However, because so few microstates lie outside the very narrow central configura-
tion peak of Fig. 21-17, we might as well assume that the gas molecules are always di-
vided equally between the two halves of the box. As we shall see, this is the configura-
tion with the greatest entropy.

1/64 � 0.016

20/64 � 0.313

W �
N!

n1! n2!

FIGURE 21-17 ■ For a large number of molecules in a box, a plot of the number of microstates
that require various percentages of the molecules to be in the left half of the box. Nearly all the
microstates correspond to an approximately equal sharing of the molecules between the two
halves of the box; those microstates form the central configuration peak on the plot. For

molecules, the central configuration peak is much too narrow to be drawn on this plot.N � 1022
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Probability and Entropy
In 1877, Austrian physicist Ludwig Boltzmann (the Boltzmann of Boltzmann’s con-
stant kB) derived a relationship between the entropy S of a configuration of a gas and
the multiplicity W of that configuration. That relationship is 

(Boltzmann’s entropy equation). (21-19)

This famous formula is engraved on Boltzmann’s tombstone.
It is natural that S and W should be related by a logarithmic function. The total

entropy of two systems is the sum of their separate entropies. The probability of
occurrence of two independent systems is the product of their separate probabilities.
Because , the logarithm seems the logical way to connect these
quantities.

Table 21-1 displays the entropies of the configurations of the six-molecule system
of Fig. 21-16, computed using Eq. 21-19. Configuration IV, which has the greatest mul-
tiplicity, also has the greatest entropy.

When you use Eq. 21-18 to calculate W, your calculator may signal “OVERFLOW”
if you try to find the factorial of a number greater than a few hundred. Fortunately,
there is a very good approximation, known as Stirling’s approximation, not for N! but
for ln N!, which as it happens is exactly what is needed in Eq. 21-19. Stirling’s approxi-
mation is 

(Stirling’s approximation). (21-20)

The Stirling of this approximation is not the Stirling of the Stirling engine.

READI NG EXERC IS E  21-6: A box contains one mole of a gas. Consider two configu-
rations: (a) each half of the box contains one-half of the molecules, and (b) each third of the
box contains one-third of the molecules. Which configuration has more microstates? ■

ln N! � N(ln N) � N

ln ab � ln a � ln b

S � kB  lnW
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TOUCHSTONE EXAMPLE 21-5: Indistinguishable

Suppose that there are 100 indistinguishable molecules in the box
of Fig. 21-16. How many microstates are associated with the config-
uration n1 � 50 and n2 � 50? How many are associated with the
configuration n1 � 100 and n2 � 0? Interpret the results in terms
of the relative probabilities of the two configurations.

S O L U T I O N ■ The Ke y  I d e a here is that the multiplicity W of
a configuration of indistinguishable molecules in a closed box is the
number of independent microstates with that configuration, as
given by Eq. 21-18. For the (n1, n2) configuration (50, 50), that equa-
tion yields 

(Answer)

� 1.01 � 1029.

�
9.33 � 10157

(3.04 � 1064)(3.04 � 1064)

W �
N!

n1!n2!
�

100!
50!50!

Similarly, for the configuration of (100, 0), we have 

(Answer)

Thus, a 50-50 distribution is more likely than a 100-0 distribu-
tion by the enormous factor of about 1 � 1029. If you could count,
at one per nanosecond, the number of microstates that correspond
to the 50-50 distribution, it would take you about 3 � 1012 years,
which is about 750 times longer than the age of the universe. Even
100 molecules is still a very small number. Imagine what these cal-
culated probabilities would be like for a mole of molecules—say,
about N � 1024. You need never worry about suddenly finding all
the air molecules clustering in one corner of your room!

W �
N!

n1!n2!
�

100!
100!0!

�
1
0!

�
1
1

� 1



Problems 627

TOUCHSTONE EXAMPLE 21-6: Entropy Increase

In Touchstone Example 21-1 we showed that when n moles of an
ideal gas doubles its volume in a free expansion, the entropy in-
crease from the initial state i to the final state f is Sf � Si � nR ln 2.
Derive this result with statistical mechanics.

S O L U T I O N ■ One Ke y  I d e a here is that we can relate the
entropy S of any given configuration of the molecules in the gas to
the multiplicity W of microstates for that configuration, using 
Eq. 21-19 (S � kB ln W). We are interested in two configurations:
the final configuration f (with the molecules occupying the full vol-
ume of their container in Fig. 21-1b) and the initial configuration i
(with the molecules occupying the left half of the container).

A second Ke y  I d e a is that, because the molecules are in a
closed container, we can calculate the multiplicity W of their mi-
crostates with Eq. 21-18. Here we have N molecules in the n moles
of the gas. Initially, with the molecules all in the left half of the con-
tainer, their (n1, n2) configuration is (N, 0). Then, Eq. 21-18 gives
their multiplicity as 

Finally, with the molecules spread through the full volume,
their (n1, n2) configuration is (N/2, N/2). Then, Eq. 21-18 gives their
multiplicity as 

From Eq. 21-19, the initial and final entropies are 

Si � k ln Wi � k ln 1 � 0

Wf �
N!

(N/2)!(N/2)!
.

Wi �
N!

N!0!
� 1.

and (21-21)

In writing Eq. 21-21, we have used the relation 

Now, applying Eq. 21-20 to evaluate Eq. 21-21, we find that 

(21-22)

From Eq. 20-7 we can substitute nR for NkB, where R is the univer-
sal gas constant. Equation 21-22 then becomes 

The change in entropy from the initial state to the final is thus 

(Answer)

which is what we set out to show. In Touchstone Example 21-1 we
calculated this entropy increase for a free expansion with thermody-
namics by finding an equivalent reversible process and calculating
the entropy change for that process in terms of temperature and
heat transfer. Here we have calculated the same increase with statis-
tical mechanics using the fact that the system consists of molecules.

� nR ln 2,

Sf � Si � nR ln 2 � 0

Sf � nR ln 2.

� kB[N( ln N) � N( ln N � ln 2)] � NkB ln 2.

� kB[N( ln N) � N � N ln (N/2) � N]

� kB[N( ln N) � N] � 2kB[(N/2) ln (N/2) � (N/2)]

Sf � kB ln (N!) � 2kB ln [(N/2)!]

ln
a
b2 � ln a � 2  ln b.

Sf � kB  ln Wf � k ln(N!)�2kB  ln[(N/2)!].

SEC. 21-2 ■ CHANGE IN ENTROPY

1. Expands Reversibly A 2.50 mol sample of an ideal gas expands
reversibly and isothermally at 360 K until its volume is doubled.
What is the increase in entropy of the gas?

2. Reversible Isothermal How much thermal energy must be
transferred for a reversible isothermal expansion of an ideal gas at
132 °C if the entropy of the gas increases by 46.0 J/K?

3. Four Moles Four moles of an ideal gas undergo a reversible
isothermal expansion from volume V1 to volume V2 � 2V1 at tem-
perature T � 400 K. Find (a) the work done by the gas and (b) the
entropy change of the gas. (c) If the expansion is reversible and adi-
abatic instead of isothermal, what is the entropy change of the gas?

4. Reversible Isothermal Expansion An ideal gas undergoes a re-
versible isothermal expansion at 77.0°C, increasing its volume from
1.30 L to 3.40 L. The entropy change of the gas is 22.0 J/K. How
many moles of gas are present?

5. Energy Absorbed Find (a) the thermal energy transfer and 
(b) the change in entropy of a 2.00 kg block of copper whose tem-
perature is increased reversibly from 25°C to 100°C. The specific
heat of copper is 386 J/kg � K.

6. Initial Temperature An ideal
monatomic gas at initial temper-
ature T0 (in kelvins) expands
from initial volume V0 to volume
2V0 by each of the five processes
indicated in the T-V diagram of 
Fig. 21-18. In which process is the
expansion (a) isothermal, (b)
isobaric (constant pressure), and
(c) adiabatic? Explain your an-
swers. (d) In which processes
does the entropy of the gas de-
crease?
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FIGURE 21-18 ■ Problem 6.
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7. Entropy Change (a) What is the entropy change of a 12.0 g ice
cube that melts completely in a bucket of water whose temperature
is just above the freezing point of water? (b) What is the entropy
change of a 5.00 g spoonful of water that evaporates completely on
a hot plate whose temperature is slightly above the boiling point of
water?

8. Ideal Gas Undergoes A 2.0 mol
sample of an ideal monatomic gas
undergoes the reversible process
shown in Fig. 21-19. (a) How much
thermal energy is transferred to the
gas? (b) What is the change in the
internal energy of the gas? (c) How
much work is done by the gas?

9. Aluminum and Water In an ex-
periment, 200 g of aluminum (with
a specific heat of 900 J/kg � K) at
100°C is mixed with 50.0 g of water at 20.0°C, with the mixture ther-
mally isolated. (a) What is the equilibrium temperature? What are
the entropy changes of (b) the aluminum, (c) the water and (d) the
aluminum–water system?

10. Irreversible Process In the irreversible process of Fig. 21-5, let
the initial temperatures of identical blocks L and R be 305.5 K and
294.5 K, respectively. Let 215 J be the thermal energy transfer be-
tween the blocks required to reach equilibrium. Then for the re-
versible processes of Fig. 21-6, what are the entropy changes of (a)
block L, (b) its reservoir, (c) block R, (d) its reservoir, (e) the two-
block system, and (f) the system of the two blocks and the two
reservoirs?

11. Reversible Apparatus Use the reversible apparatus of Fig. 21-6
to show that, if the process of Fig. 21-5 happened in reverse, the
entropy of the system would decrease, a violation of the second law
of thermodynamics.

12. Rotating Not Oscillating An
ideal diatomic gas, whose molecules
are rotating but not oscillating, is
taken through the cycle in Fig. 21-20.
Determine for all three processes, in
terms of P1, V1, T1, and R: (a) P2, P3,
and T3 and (b) W, Q, �Eint, and �S
per mole?

13. Copper in Box A 50.0 g block
of copper whose temperature is 400
K is placed in an insulating box with
a 100 g block of lead whose temper-
ature is 200 K. (a) What is the equi-
librium temperature of the two-
block system? (b) What is the change in the internal energy of the
two-block system between the initial state and the equilibrium
state? (c) What is the change in the entropy of the two-block sys-
tem? (See Table 19-2.)

14. Initial to Final One mole of a monatomic ideal gas is taken
from an initial pressure P and volume V to a final pressure 2P and
volume 2V by two different processes: (I) It expands isothermally
until its volume is doubled, and then its pressure is increased at
constant volume to the final pressure. (II) It is compressed isother-
mally until its pressure is doubled, and then its volume is increased
at constant pressure to the final volume. (a) Show the path of each

process on a P-V diagram. For each process calculate, in terms of P
and V, (b) the thermal energy absorbed by the gas in each part of
the process, (c) the work done by the gas in each part of the
process, (d) the change in internal energy of the gas, �E int, and 
(e) the change in entropy of the gas, �S.

15. Ice Cube in a Lake A 10 g ice cube at �10°C is placed in a lake
whose temperature is 15°C. Calculate the change in entropy of the
cube– lake system as the ice cube comes to thermal equilibrium
with the lake. The specific heat of ice is 2220 J/kg � K. (Hint: Will the
ice cube affect the temperature of the lake?)

16. Ice Cube in Thermos An 8.0 g ice cube at �10°C is put into a
Thermos flask containing 100 cm3 of water at 20°C. By how much
has the entropy of the cube–water system changed when a final
equilibrium state is reached? The specific heat of ice is 2220 J/kg� K.

17. Water and Ice A mixture of 1773 g of water and 227 g of ice is
in an initial equilibrium state at 0.00°C. The mixture is then, in a re-
versible process, brought to a second equilibrium state where the
water– ice ratio, by mass, is 1:1 at 0.00°C. (a) Calculate the entropy
change of the system during this process. (The heat of fusion for wa-
ter is 333 kJ/kg.) (b) The system is then returned to the initial equi-
librium state in an irreversible process (say, by using a Bunsen
burner). Calculate the entropy change of the system during this
process. (c) Are your answers consistent with the second law of
thermodynamics?

18. Cylinder of Gas A cylinder
contains n moles of a monatomic
ideal gas. If the gas undergoes a re-
versible isothermal expansion from
initial volume Vi to final volume Vf

along path I in Fig. 21-21, its change
in entropy is �S � nR ln(Vf /Vi).
(See Touchstone Example 21-1)
Now consider path II in Fig. 21-21,
which takes the gas from the same
initial state i to state x by a re-
versible adiabatic expansion, and
then from that state x to the same final state f by a reversible constant
volume process. (a) Describe how you would carry out the two re-
versible processes for path II. (b) Show that the temperature of the
gas in state x is

Tx � Ti(Vi /Vf)2/3.

(c) What are the thermal energy transferred along path I (QI) and
the thermal energy transferred along path II (QII)? Are they equal?
(d) What is the entropy change �S for path II? Is the entropy
change for path I equal to it? (e) Evaluate Tx, QI, QII, and �S for
n � 1, Ti � 500 K, and Vf /Vi � 2.

19. Through the Cycle One mole
of an ideal monatomic gas is taken
through the cycle in Fig. 21-22. (a)
How much work is done by the gas
in going from state a to state c
along path abc? What are the
changes in internal energy and en-
tropy in going (b) from b to c and
(c) through one complete cycle?
Express all answers in terms of the
pressure P0, volume V0, and tem-
perature T0 of state a.
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FIGURE 21-21 ■ Problem 18.
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20. Initial Pressure and Temperature One mole of an ideal
monatomic gas, at an initial pressure of 5.00 kPa and initial temper-
ature of 600 K, expands from initial volume Vi � 1.00 m3 to final
volume Vf � 2.00 m3. During the expansion, the pressure P and vol-
ume V of the gas are related by P � (5.00 kPa) exp[(Vi � V)/a],
where a � 1.00 m3. What are (a) the final pressure and (b) the final
temperature of the gas? (c) How much work is done by the gas dur-
ing the expansion? (d) What is the change in entropy of the gas
during the expansion? (Hint : Use two simple reversible processes
to find the entropy change.)

SEC. 21-4 ■ ENTROPY IN THE REAL WORLD: ENGINES

Consider all Carnot engines discussed in these problems to be ideal.

21. Work and Efficiency in a Cycle A Carnot engine absorbs 52 kJ
of thermal energy and exhausts 36 kJ as thermal energy in each cy-
cle. Calculate (a) the engine’s efficiency and (b) the work done per
cycle in kilojoules.

22. Low-Temp Reservoir A Carnot engine whose low-temperature
reservoir is at 17�C has an efficiency of 40%. By how much should
the temperature of the high-temperature reservoir be increased to
increase the efficiency to 50%?

23. Operates Between A Carnot engine operates between 235�C
and 115�C, absorbing 6.30 � 104 J per cycle at the higher tempera-
ture. (a) What is the efficiency of the engine? (b) How much work
per cycle is this engine capable of performing?

24. Reactor In a hypothetical nuclear fusion reactor, the fuel is
deuterium gas at temperature of about 7 � 108 K. If this gas could
be used to operate a Carnot engine with TL � 100�C, what would
be the engine’s efficiency?

25. Carnot Engine A Carnot engine has an efficiency of 22.0%. It
operates between constant-temperature reservoirs differing in
temperature by 75.0�C. What are the temperatures of the two reser-
voirs?

26. Engine Has Power A Carnot engine has a power of 500 W. It op-
erates between constant-temperature reservoirs at 100�C and 60.0�C.
What are (a) the rate of thermal energy input and (b) the rate of
exhaust heat output, in kilojoules per second?

27. Process bc One mole of a monatomic ideal gas is taken
through the reversible cycle shown in Fig. 21-23. Process bc is an
adiabatic expansion, with Pb � 10.0 atm and Vb � 1.00 � 10�3 m3.
Find (a) the thermal energy transferred to the gas, (b) the thermal
energy transferred from the gas, (c) the net work done by the gas,
and (d) the efficiency of the cycle.

FIGURE 21-23 ■ Problem 27.

28. Enclosed Area Show that the area enclosed by the Carnot cy-
cle on the temperature–entropy plot of Fig. 21-9 represents the net
thermal energy transfer per cycle to the working substance.

29. Assume P � 2P0 One mole of an ideal monatomic gas is taken
through the cycle shown in Fig. 21-24. Assume that P � 2P0, V �
2V0, P0 � 1.01 � 105 Pa, and V0 � 0.0225 m3. Calculate (a) the
work done during the cycle, (b) the thermal energy added during
stroke abc, and (c) the efficiency of the cycle. (d) What is the effi-
ciency of a Carnot engine operating between the highest and lowest
temperatures that occur in the cycle? How does this compare to the
efficiency calculated in (c)?

FIGURE 21-24 ■ Problem 29.

30. First Stage In the first stage of a two-stage Carnot engine, ther-
mal energy Q1 is absorbed at temperature T1, work W1 is done, and
thermal energy Q2 is expelled at a lower temperature T2. The sec-
ond stage absorbs that energy Q2, does work W2, and expels energy
Q3 at a still lower temperature T3. Prove that the efficiency of the
two-stage engine is (T1 � T3)/T1.

31. Deep Shaft Suppose that a deep shaft were drilled in Earth’s
crust near one of the poles, where the surface temperature is 
�40�C, to a depth where the temperature is 800�C. (a) What is the
theoretical limit to the efficiency of an engine operating between
these temperatures? (b) If all the thermal energy released as heat
into the low-temperature reservoir were used to melt ice that was
initially at �40�C, at what rate could liquid water at 0�C be pro-
duced by a 100 MW power plant (treat it as an engine)? The spe-
cific heat of ice is 2220 J/kg � K; water’s heat of fusion is 333 kJ/kg.
(Note that the engine can operate only between 0�C and 800�C in
this case. Energy exhausted at �40�C cannot be used to raise the
temperature of anything above �40�C)

32. Working Substance One mole of an ideal gas is used as the
working substance of an engine that operates on the cycle shown in
Fig. 21-25. BC and DA are reversible adiabatic processes. (a) Is the
gas monatomic, diatomic, or polyatomic? (b) What is the efficiency
of the engine?
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33. Gasoline Engine The operation of a gasoline internal combus-
tion engine is represented by the cycle in Fig. 21-26. Assume the
gasoline–air intake mixture is an ideal gas and use a compression
ratio of 4:1 (V4 � 4V1). Assume that P2 � 3P1. (a) Determine the
pressure and temperature at each of the vertex points of the P-V
diagram in terms of P1, T1, and the ratio � of the molar specific
heats of the gas. (b) What is the efficiency of the cycle?

FIGURE 21-26 ■ Problem 33.

SEC. 21-5 ■ ENTROPY IN THE REAL WORLD:
REFRIGERATORS

34. Carnot Refrigerator A Carnot refrigerator does 200 J of work
to remove 600 J of thermal energy from its cold compartment. (a)
What is the refrigerator’s coefficient of performance? (b) How
much thermal energy per cycle is exhausted to the kitchen?

35. Carnot Air Conditioner A Carnot air conditioner takes energy
from the thermal energy of a room at 70�F and transfers it to the
outdoors, which is at 96�F. For each joule of electric energy required
to operate the air conditioner, how many joules are removed from
the room?

36. Heat Pump Transfers The electric motor of a heat pump trans-
fers thermal energy from the outdoors, which is at �5.0�C, to a
room, which is at 17�C. If the heat pump were a Carnot heat pump
(a Carnot engine working in reverse), how many joules would be
transferred to the thermal energy of the room for each joule of
electric energy consumed?

37. Heat Pump to Heat Building A heat pump is used to heat a
building. The outside temperature is �5.0�C, and the temperature in-
side the building is to be maintained at 22�C. The pump’s coefficient
of performance is 3.8, and the heat pump delivers 7.54 MJ of thermal
energy to the building each hour. If the heat pump is a Carnot engine
working in reverse, at what rate must work be done to run the heat
pump?

38. How Much Work How much work must be done by a Carnot
refrigerator to transfer 1.0 J of thermal energy (a) from a reservoir
at 7.0�C to one at 27�C, (b) from a reservoir at �73�C to one at 
27�C, (c) from a reservoir at �173�C to one at 27�C, and (d) from a
reservoir at �223�C to one at 27�C?

39. Air Conditioner An air conditioner operating between 93�F
and 70�F is rated at 4000 Btu/h cooling capacity. Its coefficient of
performance is 27% of that of a Carnot refrigerator operating be-
tween the same two temperatures. What horsepower is required of
the air conditioner motor?
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40. Motor in Refrigerator The motor in a refrigerator has a power
of 200 W. If the freezing compartment is at 270 K and the outside
air is at 300 K, and assuming the efficiency of a Carnot refrigerator,
what is the maximum amount of thermal energy that can be
extracted from the freezing compartment in 10.0 min?

41. Engine Driving Refrigerator A Carnot engine works between
temperatures T1 and T2. It drives a Carnot refrigerator that works
between temperatures T3 and T4 (Fig. 21-27). Find the ratio 	Q3 	/	Q1	
in terms of T1, T2, T3, and T4.

FIGURE 21-27 ■ Problem 41.

SEC. 21-7 ■ A STATISTICAL VIEW OF ENTROPY

42. Construct a Table Construct a table like Table 21-1 for eight
molecules.

43. Show for N Molecules Show that for N molecules in a box, the
number of possible microstates is 2N when microstates are defined
by whether a given molecule is in the left half of the box or the
right half. Check this for the situation of Table 21-1.

44. A Box of N Gas Molecules A box contains N gas molecules,
equally divided between its two halves. For N � 50: (a) What is the
multiplicity of this central configuration? (b) What is the total num-
ber of microstates for the system? (Hint: See Problem 43.) (c) What
percentage of the time does the system spend in its central configu-
ration? (d) Repeat (a) through (c) for N � 100. (e) Repeat 
(a) through (c) for N � 200. (f) As N increases, you will find that
the system spends less time (not more) in its central configuration.
Explain why this is so.

45. Three Equal Parts A box contains N gas molecules. Consider
the box to be divided into three equal parts. (a) By extension of 
Eq. 21-18, write an equation for the multiplicity of any given config-
uration. (b) Consider two configurations: configuration A with
equal numbers of molecules in all three thirds of the box, and con-
figuration B with equal numbers of molecules in both halves of the
box. What is the ratio WA/WB of the multiplicity of configuration
A to that of configuration B? (c) Evaluate WA/WB for N � 100.
(Because 100 is not evenly divisible by 3, put 34 molecules into one
of the three box parts and 33 in each of the other parts for configu-
ration A.)

46. Four Particles in a Box Four particles are in the insulated box
of Fig. 21-16. What are (a) the least multiplicity, (b) the greatest
multiplicity, (c) the least entropy, and (d) the greatest entropy of
the four-particle system?
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Additional Problems

47. Velocity Spread A sample of nitrogen gas (N2) undergoes a
temperature increase at constant volume. As a result, the distribu-
tion of molecular speeds increases. That is, the probability distribu-
tion function f(v) for the nitrogen molecules spreads to higher val-
ues of speed, as suggested in Fig. 20-8b. One way to report the
spread in f(v) is to measure the difference �v between the most
probable speed vprob and the rms speed vrms. When f(v) spreads to
higher speeds, �v increases. (a) Write an equation relating the
change �S in the entropy of the nitrogen gas to the initial differ-
ence �vi and the final difference �vf. Assume that the gas is an ideal
diatomic gas with rotation but not oscillation of its molecules. Let
the number of moles be 1.5 mol, the initial temperature be 250 K,
and the final temperature be 500 K. What are (b) the initial differ-
ence �vi, (c) the final difference �vf, and (d) the entropy change �S
for the gas?

48. Carnot Graph A Carnot engine is set up to produce a certain
work W per cycle. In each cycle, thermal energy QH is transferred to
the working substance of the engine from the higher-temperature
thermal reservoir, which is at an adjustable temperature TH. The
lower-temperature thermal reservoir is maintained at temperature
TL � 250 K. Figure 21-28 gives QH for a range of TH, if TH is set at
550 K, what is QH?

FIGURE 21-28 ■ Problem 48.

49. Gas Sample A gas sample undergoes a reversible isothermal
expansion. Figure 21-29 gives the change �S in entropy of the gas
versus the final volume Vf of the gas. How many moles are in the
gas?

FIGURE 21-29 ■ Problem 49.

50. �S Graph A 364 g block is put in contact with a thermal reser-
voir. The block is initially at a lower temperature than the reservoir.
Assume that the consequent heating of the block by the reservoir is
reversible. Figure 21-30 gives the change in entropy of the block �S

until thermal equilbrium is reached. What is the specific heat of the
block?

FIGURE 21-30 ■ Problem 50.

51. C/T Graph An object of (constant) heat capacity C is heated
from an initial temperature Ti to a final temperature Tf by a constant-
temperature reservoir at Tf. (a) Represent the process on a graph of
C/T versus T, and show graphically that the total change in entropy
�S of the object–reservoir system is positive. (b) Explain how the
use of reservoirs at intermediate temperatures would allow the
process to be carried out in a way that makes �S as small as desired.

52. Friction A moving block is slowed to a stop by friction. Both
the block and the surface along which it slides are in an insulated
enclosure. (a) Devise a reversible process to change the system
from its initial state (block moving) to its final state (block station-
ary; temperature of the block and surface slightly increased). Show
that this reversible process results in an entropy increase for the
closed block–surface system. For the process, you can use an ideal
engine and a constant-temperature reservoir. (b) Show, using the
same process, but in reverse, that if the temperature of the system
were to decrease spontaneously and the block were to start moving
again, the entropy of the system would decrease (a violation of the
second law of thermodynamics).

53. T-S Diagram A diatomic gas
of 2 mol is taken reversibly
around the cycle shown in the T-S
diagram of Fig. 21-31. The mole-
cules rotate but do not oscillate.
What are the thermal energy
transfers Q for (a) the path from
point 1 to point 2, (b) the path
from point 2 to point 3, and (c) the
full cycle? (d) What is the work W
for the isothermal process? The
volume V1 at point 1 is 0.200 m3.
What are the volumes at (e) point
2 and (f) point 3?

What are the changes �E int in internal energy for (g) the path
from point 1 to point 2, (h) the path from point 2 to point 3, and (i)
the full cycle? (Hint: Part (h) can be done with one or two lines of
calculation using Section 20-8 or with a page of calculation using
Section 20-11.) ( j) What is the work W for the adiabatic process?

54. Inventor’s Engine An inventor has built an engine (engine X)
and claims that its efficiency 	X is greater than the efficiency 	 of an
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ideal engine operating between the same two temperatures. Sup-
pose that you couple engine X to an ideal refrigerator (Fig. 21-32a)
and adjust the cycle of engine X so that the work per cycle that it
provides equals the work per cycle required by the ideal refrigera-
tor. Treat this combination as a single unit and show that if the in-
ventor’s claim were true (if 	X 
 	), the combined unit would act as
a perfect refrigerator (Fig. 21-32b), transferring thermal energy
from the low temperature reservoir to the high-temperature reser-
voir without the need of work.

FIGURE 21-32 ■ Problem 54.

55. Ideal Diatomic Gas An ideal diatomic gas with 3.4 mol is taken
through a cycle of three processes:

1. its temperature is increased from 200 K to 500 K at constant
volume;

2. it is then isothermally expanded to its original pressure;

3. it is then contracted at constant pressure back to its original
volume.

Throughout the cycle, the molecules rotate but do not oscillate.
What is the efficiency of the cycle?
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Nothing happens if you place a plastic comb near tiny

scraps of paper, but immediately after you comb your hair

or stroke the comb with fur, it will attract the paper scraps.

In fact, the attractive force exerted on the paper by the

small comb is so strong that it overcomes the opposing

gravitational pull of the entire Earth. This phenomenon,

commonly called “static cling,” occurs between many

different objects and is especially easy to observe during

cold dry weather.

What causes these pieces of
paper to stick to the comb
and to one another?

The answer is in this chapter.

22 Electric Charge



22-1 The Importance of Electricity

If you walk across a carpet when it’s cold and dry outside, you can produce a spark by
bringing your finger close to a metal doorknob. Television advertisements alert us to
the problem of “static cling” in clothing. On a grander scale, lightning is familiar to
everyone. These phenomena represent a tiny glimpse into the vast number of electric
interactions that occur every day.

The phenomenon of electricity plays a major role in modern life. Less than two
hundred years ago, fire was almost the only source of heat, the only source of light
when the sun or moon was not up, and the only way to cook food. Without electric
water pumps, most people did not even have indoor plumbing. It’s hard to imagine
life without electric lights (not even flashlights), stoves, refrigerators, air conditioners,
computers, telephones, radios, televisions, CD players, and a host of other electrical
devices. We make extensive use of electricity, but what is it? In this chapter we con-
sider this very important question.

So far in our study of the physical world we have learned how the forces acting on
objects affect motion. We have also learned about the gravitational force, an action-
at-a-distance force, that objects can exert on each other without touching. In this
chapter, we will investigate another action-at-a-distance force—the electrostatic
interaction force. Studying the electrostatic force will provide a foundation for our
understanding of the phenomenon of electricity.

We begin our study by looking at the nature of electrical interaction forces be-
tween some everyday objects. We then develop the concepts of charging and electric
charge as tools for explaining our observations of electrostatic forces on a macro-
scopic level. However, to obtain a more coherent understanding of electrostatic phe-
nomena, we must turn to the findings of atomic theory.

An understanding of electrostatic interactions will give you insight into the fun-
damental relationship between electricity and magnetism. In Chapter 30, which is
about magnetic fields due to currents, you will discover that although magnetic forces
are generated by the interaction between moving charges, they have distinctly differ-
ent properties than do electrostatic forces. Later, in Chapter 32, you will see how elec-
tricity and magnetism are fundamentally related to each other.

READI NG EXERC IS E  22-1: List all the electrical devices that you use in a typical
week. ■

22-2 The Discovery of Electric Interactions 

Amber, which is resin that oozed from trees long ago and hardened, has been admired
both for its beauty and its ability to preserve early life forms mired in it (Fig. 22-1).
Amber has electrical properties of interest to scientists as well. The early Greeks knew
that if one rubbed a yellow-brown piece of amber with fur, it would attract bits of
straw. The strength of the attraction decreased as the distance between the amber and
the straw was increased. The strength of the attraction was also known to fade over
time, especially in damp weather.

By the 1600s, this strange force due to amber that was sometimes present and
sometimes not, prompted more careful studies. It was subsequently discovered that
other materials such as glass can also attract small bits of matter after being rubbed
with silk. As was the case for amber, this attractive force diminished with time,
especially on humid days, and was not present if the glass had not been rubbed.
Additionally, the strength of the attraction decreased as the distance between the
glass and small bits of matter increased, just as was the case with the force associated
with rubbed amber.
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FIGURE 22-1 ■ Fossilized resin, known as
amber, is popular both for its beauty and
for its ability to preserve ancient vegeta-
tion and insects, like the bees, wasps, ants,
flies and mosquitos seen here. Amber also
has electrical properties.



This interaction phenomenon, created by rubbing certain materials with cloth,
was named electrification. The term is derived from the Greek word for amber, which
is electron. Any object (not just glass or amber) is defined as becoming electrified if:

1. There is an interaction force between this object and another that is present after
the objects have been in very close contact, usually through rubbing;

2. The magnitude of this interaction force diminishes with time and is affected by
humid weather; and 

3. The magnitude of the force decreases with increasing distance between the
objects.

Although the similarities between electrified glass and electrified amber were in-
teresting, it was not until 1733 that a French scientist, Charles DuFay, published arti-
cles presenting evidence that:

Two amber rods stroked with fur always repel one another.

Two glass rods stroked with silk always repel one another.

A stroked amber rod attracts a stroked glass rod (Fig. 22-2).
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FIGURE 22-2 ■ (a) Two amber rods
electrified in the same way repel each
other. (b) Two glass rods electrified in the
same way also repel each other. (c) An
electrified glass rod and an electrified
amber rod attract each other.

(a)

(b)

FIGURE 22-3 ■ (a) Two Styrofoam cups
electrified in the same way repel each
other. (b) The two sandwich bags used to
electrify the cups also repel each other.

Provided the weather is not too humid, you may be able to repeat DuFay’s ob-
servations yourself by replacing the amber and glass rods (which are difficult to find
outside of a physics laboratory) with Styrofoam cups and plastic sandwich bags as
shown in Fig. 22-3. Place your hand inside a plastic bag and use a rubbing motion to
assure that the entire surface of the Styrofoam cup comes in contact with the entire
surface of the plastic bag. Then rub another Styrofoam cup with a second sandwich
bag in the same manner. If you put one of the cups on its side on a smooth, level,
nonmetallic surface and bring the other cup near it, the first cup should roll away as
shown in Fig. 22-3a. Note that after the two cups have been electrified in a like man-
ner they repel one another just like DuFay’s rods. Now hold the two plastic bags to-
gether at the top end. Both plastic bags have also been electrified in a like manner
and they repel one another as well as shown in Fig. 22-3b. However, an electrified
sandwich bag and an electrified Styrofoam cup will be attracted to each other just as
electrified amber attracts electrified glass. Think about these observations carefully
and you must conclude that there are two classes of materials that behave differently
when electrified.

Not all types of materials can be electrified. Nevertheless, additional observations
with electrified materials lead to the following general statements:

OBSERVATION 1. Two identical objects electrified by the same process always repel one
another.

OBSERVATION 2. Two different electrified objects will always interact, but they may either
repel or attract one another.

OBSERVATION 3. Any two objects that have not been electrified will neither repel nor attract
one another. (They interact only by means of an imperceptibly small gravitational force.) 
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Suppose you have electrified two Styrofoam cups so they repel each other. What
happens when you give one of the cups extra stroking? The magnitude of the interac-
tion forces between the cups increases. This means that if we think of the first cup
(that did not receive extra stroking) as a “standard object,” we can determine the
degree of electrification of any other object by measuring the magnitude of the elec-
tric force exerted on it by the standard object.

One logical way of interpreting our observations regarding electrification is to
assume that a substance is added or removed from an object during the stroking
process. Extensive experiments done at the end of the 18th century by Benjamin
Franklin and others indicate that this is correct. They also found that there are actu-
ally two types of the substance involved. Today we call these substances electrical
charge and say that there are two types of (electrical) charge. When an object contains
more of one type of charge than the other, the object is electrified or electrically
charged. Furthermore, any process of electrification (not just rubbing) is called charg-
ing. Thus, in the example above, the cup that was stroked for the longer time gained
the greater quantity of excess charge. (Quantity of charge is often called amount of
charge). An object with a greater amount or quantity of charge is observed to experi-
ence more force in the presence of a standard electrified object than one with a
smaller amount of excess charge.

READI NG EXERC IS E  22-2: The creation of electrified objects can also be done
with strips of ScotchTM Magic Tape using a peeling action rather than stroking. In order to
charge the tape, cut 2 strips about 10 cm long. (a) If you were to stick the tapes side by side on
a table and peel them both off, what do you predict would happen if you then brought the
tapes close together? Explain the reasoning for your prediction. (b) Perform the experiment
and describe what happens. Is this consistent with your prediction? If not, explain what you
think is going on. ■

22-3 The Concept of Charge

Various observations, including our observations using Styrofoam cups and plastic
bags, indicate that interaction forces between charged objects can be explained in
terms of two (and only two) different kinds of charged matter. The type associated
with glass rubbed with silk is one and the type associated with amber rubbed with
fur is the other. We cannot prove directly that there are no other types of charge.
However, the fact that no one has found a charged object that attracts both
charged glass and charged amber leads us to believe that there is no third type of
charge.

Today, the terms we associate with these two types of charged matter are positive
and negative. Benjamin Franklin is responsible for assigning these names. He intro-
duced the following definitions:

OBSERVATION 1. An object that is repelled by a glass rod stroked with silk is positively
charged.

OBSERVATION 2. An object that is repelled by amber (or plastic) stroked with fur is nega-
tively charged.

OBSERVATION 3. Any two nonmagnetic objects that do not interact with each other except
by gravitational forces are electrically neutral.

The names given to the two varieties of charge are arbitrary. Benjamin Franklin
could just as easily have used other words, such as light and dark, to distinguish be-



tween the two types of charges. However, we observe that equal amounts of the
positive and negative charges combine to produce nonelectrified (i.e., electrically
neutral) matter. That is, the two types of charge combine algebraically — like posi-
tive and negative numbers. So, positive and negative are convenient and appropri-
ate names.

Applying this new terminology to our previous observations leads us to say that
if two objects are each repelled by a piece of glass that has been rubbed with silk,
then both objects must be positively charged. Furthermore, we hypothesize that
these objects repel because they contain the same kind of charge or like charges. On
the other hand, if we find that two objects made of different materials attract after
being stroked, we hypothesize that one object has a positive charge while the other
has a negative charge. We conclude that objects with unlike or opposite charges
attract.

READI NG EXERC IS E  22-3: Suppose you stroked a smooth wooden rod with a linen
cloth and announced that you had created a new type of charge you decided to call woodolin
charge. (a) If a skeptic asked you to prove that woodolin was really a new type of charge, how
would you do it? Specifically what would have to happen if you were to bring two wooden rods
together that had both been rubbed with linen? If you were to bring a charged wooden rod
near a charged glass rod? Near a charged amber (or plastic) rod? (b) Why do you think most
observers agree that there are only two types of known charge? ■

22-4 Using Atomic Theory to Explain Charging 

How can we account for the fact that when certain objects are rubbed together they
acquire opposite types of charge? One way to make sense of this observed fact is to
use a contemporary understanding of the atomic structure of matter. The atomic
model that we discuss here has been developed over the past century. We will use it as
an explanatory tool without presenting evidence for it.

The Atomic Model
According to modern atomic structure theory, atoms consist of positively charged
protons, negatively charged electrons, and electrically neutral neutrons. Electrons and
protons have the same amount (although with opposite sign) of charge. We often rep-
resent this amount of charge, called the elementary charge, with an e (Table 22-1).
Hence an electron has a charge of �1e and a proton has a charge of �1e.

Protons and neutrons are packed tightly together in a central nucleus. They are
much more massive than electrons, which lie outside the nucleus as depicted in
Fig. 22-4. Most of the atoms that are contained in matter have equal numbers of elec-
trons and protons, so whenever a charged object is at some distance away from the
atom, the atom appears to be electrically neutral.

According to contemporary atomic theory, electric charge is an intrinsic charac-
teristic of electrons and protons. You often encounter casual phrases—such as “the
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FIGURE 22-4 ■ The structure of the atoms representing the three light-
est chemical elements, H, He, and Li.The number of protons that define
the element along with the typical number of neutrons in each element’s
nucleus are shown.The darker circles represent protons, the lighter
circles neutrons, and the white circles electrons.The diagram is simpli-
fied, as physicists do not actually believe that electrons orbit nuclei in
nice neat circles and that the nuclei are much smaller relative to the size
of their atoms.
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TA B L E 22-1
Charges of the Three Fundamental 
Atomic Particles

Particle Symbol Charge

Electron e or e� �e

Proton p �e

Neutron n 0

Note: The symbols for electron and for electronic
charge are the same. This can be confusing.
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FIGURE 22-5 ■ The upper diagram
shows a neutral lithium atom with its full
complement of electrons. The bottom
atom has lost an outer electron and is now
an ion with a net charge of +1e because it
has three protons and only two electrons.

charge on a sphere,” “the amount of charge transferred,” and “the charge carried by
the electron.” Such phrases can be misleading because they suggest that charge is a
substance. You should, however, keep in mind that experiments show electrons and
protons are the basic substances. Charge and mass are simply two of their fundamen-
tal properties.

The mass of an electron is about 2000 times smaller than that of a neutron or
proton. Electrons are attracted to the nucleus because electrons and the protons
within the nucleus have opposite charges. However, the electrons that are farthest
away from the nucleus are only weakly attracted to the protons within the nucleus
and so they don’t always remain associated with individual atoms. In many types of
materials the electrons are free to wander within the material if they experience
forces. If the atom loses an electron it is no longer neutral, but has a net positive
charge because there are now more protons than electrons, as seen in Fig. 22-5.
Charged atoms are called ions. We call mobile electrons conduction electrons. If an
electric or other force is applied to the atom, only the conduction electrons, with
their negative charges, move appreciably. The much more massive positive ions stay
fixed in place.

Charge Is Quantized
In Benjamin Franklin’s day, electric charge was thought to be a continuous fluid that
could “contain” any arbitrary amount of charge. Today we know that fluids, such as air
and water, are not continuous but are made up of atoms and molecules. Matter is dis-
crete. In 1909 an American physicist, Robert Millikan, used opposing electric and
gravitational forces to balance drops of oil between two electrified metal plates. His
famous oil drop experiment and others that followed showed that the “electrical
fluid” is not continuous either but is made up of multiples of the elementary charge.

Any positive or negative charge q that has ever been detected as a free particle
can be written as

(22-1)

in which e, the elementary charge, has the value

(22-2)

The SI unit of charge is the coulomb (C), named for Charles Augustin Coulomb, who
studied electric forces in the late 1700s. When a physical quantity such as charge can
have only discrete values rather than any arbitrary value, we say that the quantity is
quantized. It is possible, for example, to find a free particle that has no charge at all or
a charge of +10e or �6e, but not a free particle with a charge of, say, 3.57e. Modern
studies of the structure of neutrons and protons have produced strong evidence that
neutrons and protons are made up of tightly bound particles with charges +2/3e and
�1/3e that we call quarks, but quarks do not seem to be able to exist as free particles.
Hence, extensive experimentation confirms that:

Charge is quantized. In free particles charge has never been measured to have an amount
other than an integer multiple of 1.60 � 10�19 C.

As we noted in the introduction, if you drag your feet as you walk across a carpet,
you can produce a spark caused by moving electric charge by bringing your finger close
to a metal doorknob. This is a demonstration of a small sample of the vast amount of
electric charge that is stored in electrically neutral objects. However, that charge is usu-
ally hidden because the object contains equal amounts of positive and negative charge.
This was hinted at above when we stated that electrically neutral atoms contain equal

e � 1.60 �  10�19  C.

q � ne, n � �1, � 2, �3, . . . ,
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numbers of protons and electrons. With such an equality—or balance—of the amounts
charge there is no net charge. If the two types of charge are not in balance, we say an ob-
ject is charged to indicate that it has a charge imbalance, or nonzero net charge.

Macroscopic objects that are electrically neutral are not devoid of charge. Instead, they con-
tain equal numbers of positive protons and negative electrons. This results in a cancellation
of their electrical effects.

Charging Is Transferring Electrons
Glass and silk or Styrofoam and plastic become oppositely charged when they are
brought into contact and we can use our modern understanding of the atom to explain
why. Suppose we observe that Styrofoam becomes positively charged and plastic be-
comes negatively charged. It is logical to assume that outer electrons associated with
atoms in the Styrofoam are attracted to the atoms in the plastic and move over to the
plastic. The Styrofoam is now missing electrons so there is a net positive charge on the
Styrofoam. The plastic now has excess electrons and has a net negative charge.

In general, experiment shows that an object becomes charged when a very tiny
fraction of the mobile electrons with their negative charge are transferred from one
object to another. This is why we must rub, stroke, or otherwise make significant con-
tact between two objects for the objects to become charged. Thus, when a Styrofoam
cup is stroked with a plastic bag, a very tiny fraction of the electrons near the surface
of the Styrofoam cup are transferred to the plastic bag.

Why doesn’t the plastic bag get heavier when electrons are transferred to it?
Using modern atomic theory, we understand that even if we transfer a lot of electrons
to the plastic bag (a typical number might be between 109 and 1012) the increase in
mass would be less than 10�10 kg—not measurable. In ordinary matter, positive
charge is much less mobile than negative charge. For this reason, an object becomes
positively charged through the removal of negatively charged electrons rather than
through the addition of positively charged protons.

Charge Is Conserved
Careful measurements reveal that whenever there is excess charge on one of the ob-
jects after contact, there are excess charges on the other object too. These charges are
equal in amount but opposite in sign. This demonstrates that when electrons are
transferred from one object to another, no electrons are destroyed or created in the
process. The amount of charge contained in the two objects is constant or conserved.

This hypothesis of conservation of charge was first proposed by Benjamin
Franklin based on his experiments. It is observed to hold both for large-scale charged
bodies and for atoms, nuclei, and elementary particles. No exceptions have ever been
found. So, we add electric charge to our list of quantities—including energy, linear
momentum, and angular momentum—that are conserved quantities. In summary, ex-
tensive experimentation confirms:

The total amount of electric charge in the universe is conserved. Although particles that
carry charge can be transferred from one object to another, the charge associated with par-
ticles cannot be created or destroyed.

Force and Quantity of Charge
Because charge is conserved, we can transfer charge from one object to another with-
out changing the total amount of charge in the system. This allows us to perform



experiments that indicate how the interaction force between charged objects depends
on the amount of charge on each object. These experiments lead to surprisingly sim-
ple results when the charged objects are symmetric, made of metal, and are particle-
like (so that their dimensions are small compared to the distances between their cen-
ters). For example, consider the experiment shown in Fig. 22-6. Two identical
uncharged metal spheres are both electrified with a charged plastic rod. We then
touch the two spheres together. Since the spheres are identical and the excess elec-
trons repel each other, we expect electrons to travel between the spheres until both
spheres have the same number of excess electrons. Next we measure the force exerted
by one sphere on the other and record it (Fig. 22-6a).
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FIGURE 22-6 ■ Depiction of an idealized ex-
periment to measure the forces between small
metal spheres that hold different fractions of
charge. Note: In order to make force
measurements for particle-like objects, the
distance between the centers of the two balls of
identical shape must be more than twice the
diameter of a ball.

Then we leave sphere A alone and move sphere B a long distance from sphere A
to place it in contact with a third sphere C that is uncharged. The excess electrons on
sphere B will now be shared equally between spheres B and C so the number of ex-
cess electrons on sphere B will now be half of what it was before. If we return B to its
original location and measure the magnitude of the force between
spheres A and B, we find that it is one-half of the force magnitude we first measured
(Fig. 22-6b). If we repeat this process so we reduce the amount of charge on sphere B
to one-fourth of what it was originally, then the magnitude of the interaction force be-
tween the spheres is also reduced to one-fourth of what it was originally (Fig. 22-6c).
In a similar experiment we can reduce the charge on both spheres A and B to half
their original values and then the force measures one-fourth the original force be-
tween them (Fig. 22-6d). These observations, which are summarized in Table 22-2, in-
dicate that the magnitude of the interaction force is proportional to the product of the
amounts of charge on the two spheres. This relationship is given by

(22-3)

where the absolute value signs denote charge amounts independent of sign.

The amount of the charge on a particle-like object can be quantified through measurement
of the magnitude of the interaction force between it and a standard charged object that is
also particle-like.

The Electroscope
The fact that like charges repel has been used in the development of the electroscope,
a sensitive charge-measuring device, as seen in Fig. 22-7. A net charge can be trans-
ferred to an electroscope by stroking the metal ball with a charged rod. If the rod is
negatively charged, some of its excess electrons will be transferred to the ball and
then they will spread throughout the metal rod and the foil attached to the ball. If a
flexible metal leaf is attached to the central conducting bar, the flexible conductor will
be repelled from the central charges and rise. As more electrons are transferred to the
electroscope, the metal leaf will rise higher. Alternatively if the rod is positively
charged it will attract electrons from the electroscope, leaving a net positive charge on
it. Once again the foil will rise.

Felec � � qA � � qB �,

Felec � � F
:

elec �TA B L E 22-2

qA qB qA � qB Felec(arbitrary units)

q q q2 1 F

q F

q F

F1�4q2�4q�2q�2
1�4q2�4q�4

1�2q2�2q�2

Housing

Metal bar

Metal ball Charged
rubber rod

Insulator

Thin metal
foil

–––––––
–

––
–

–
–
––

–
–

–
–
–

FIGURE 22-7 ■ The electroscope can be
used to measure charge. The rise of a metal
foil is caused by the repulsion due to an
excess of like charged particles distributed
on the parts of a metal conducting system.
The foil rises in proportion to the net
charge contained on the conductor.
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FIGURE 22-8 ■ A tiny neutral metal rod is
suspended on a nonconducting thread. The
part of the neutral rod that is closest to a
charged object will be attracted by either:
(a) a negatively charged object (such as
amber) or (b) a positively charged object
(such as glass). The extent of the charge
separation in the metal rod is exaggerated.

READI NG EXERC IS E  22-4: Assuming that solid objects are made up of atoms
rather than being continuous, can you think of a plausible way to explain why it is so difficult to
pull solids apart or push them together? ■

READI NG EXERC IS E  22-5: Consider the measurements depicted in Fig. 22-6. Sup-
pose you have measured the repulsion force between two identical metal-coated spheres that
each have a total negative charge q due to excess electrons. Next, you would like to measure
the force on the metal-coated spheres that each have one-fourth of the excess electrons they
originally had. Describe how you could use similar uncharged spheres to reduce the excess
electrons on each of the original spheres to q/4. ■

22-5 Induction

Let’s consider some additional observations involving electrical interactions. Typically,
bits of straw or paper that have not been rubbed do not attract or repel one another.
They are electrically neutral. Thus, it is surprising to find that a plastic comb made
negatively charged by rubbing (like the comb shown in the photograph at the begin-
ning of this chapter) can attract bits of electrically neutral paper. It is equally surpris-
ing to find that a positively charged glass rod will attract bits of paper.

INDUCTION is the process that causes the attraction we observe between a charged object
and an uncharged one.

How can we explain induction? We turn to atomic theory for an explanation. The
idea that electrically neutral materials are not devoid of charge, but rather are com-
posed of atoms that have the same number of positive protons and negative elec-
trons, is the first step in developing a viable explanation for induction. The second
important idea, mentioned in the last section, is that electrons are more mobile than
protons.

Let’s begin by considering how induction occurs when a charged object is placed
near an uncharged metal object. Then in the next section, we will consider induction in
a class of nonmetals known as insulators.

Induction in Metals
What happens when we dangle a very small metal rod from a string near a charged ob-
ject as shown in Fig. 22-8? According to our atomic model, mobile negative electrons in
the metal rod are repelled from the negatively charged object. When the mobile elec-
trons in the neutral metal object are repelled they move away and unpaired protons
are left behind. The unlike charges at the surfaces of the two objects will now attract as
shown in Fig. 22-8a. An attraction between a neutral object and a positively charged
object occurs as shown in Fig. 22-8b. The process of separation of positive protons and
negative electrons in the neutral objects is known as polarization.



READI NG EXERC IS E  22-6: (a) If we state that two bits of paper are electrically
neutral, what observation can you make to verify this is the case? Explain. (b) Can induction be
used to determine whether the charged object is positive or negative? Why or why not? ■

READI NG EXERC IS E  22-7: (a) In the figure that follows, objects made of different
materials are arranged in six pairs. A is plastic stroked with fur, B is glass stroked with silk, and
C is an electrically neutral metal object. State whether the interaction between each pair will be
attractive, repulsive, or nonexistent. Explain your reasoning.
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(b) According to the sign convention Benjamin Franklin decided to adopt, which of the three
objects carry an excess positive charge? An excess negative charge? No excess charge?
Explain.

(c) Suppose you were told that A, B, and C are made of new materials but you were not told
what those materials are. Would it be possible to determine whether they are negatively
charged, positively charged, or electrically neutral by observing how the pairs shown in the dia-
gram above interact? Why or why not? ■

22-6 Conductors and Insulators

Whenever a charged object is near an electrically neutral object, induction and polar-
ization occur. However, the attractive forces are stronger for neutral metal objects
than for nonmetal objects. Why? Let’s summarize the outcomes of some important
observations you can make yourself using metal rods, Styrofoam cups, and plastic
bags.

OBSERVATION 1. (a) The electrification created on nonmetal objects, like plastic, does not
spread out. Instead charge seems to remain in regions where the object is rubbed, and (b)
touching charged nonmetal objects removes the electrification only at locations where an
object is touched.

OBSERVATION 2. (a) Metal objects can be charged when mounted on nonmetal objects
such as glass or plastic but they cannot be charged while being held in someone’s hand, and
(b) metal objects that are touched anywhere by a person will immediately lose all of their
charge.

Even though paper is a nonmetal, the ideas of induction and polarization can be
used to explain how the charged comb pictured in the puzzler at the beginning of the
chapter can be used to pick up a string of paper bits. We assume the first piece of pa-
per is attracted to the charged comb by induction and becomes polarized in the
process. Then the excess negative charge at the bottom end of the first paper bit at-
tracts the second paper bit by induction. Since the second paper bit is now polarized,
the process continues. (Although experiments show that magnetic forces behave dif-
ferently than do electrostatic forces, this process of electric polarization looks like a
similar process in which a magnet can induce magnetic polarization in a steel paper
clip, which then attracts and polarizes a second clip, and so on.)
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FIGURE 22-9 ■ According to atomic
theory: (a) polarization induced in an
insulator involves very very tiny
atomic-scale charge separations as shown
in exaggerated form for a Styrofoam ball,
whereas (b) polarization in a conductor can
involve a much larger scale migration of
electrons as shown in a metal-coated ball.



Atomic Theory and the Behavior of Conductors and Insulators
Once again we can turn to atomic theory to develop a plausible explanation for these
new observations. In materials such as metals, tap water, water droplets in air, and the
human body, experiments indicate that some of the negative electrons move easily.
We call such materials conductors. We observe that charge can flow onto or off con-
ductors quite quickly. In other materials, such as glass, chemically pure water, and
plastic, the electrons can reposition themselves within an atom but cannot migrate be-
tween atoms. We call these materials nonconductors or insulators. Electrons do not
travel from atom to atom very easily in insulators. An exception is that some of the
electrons at the surface of an insulator can have a greater affinity for another type of
surface. For example, electrons can travel from the surface of a glass rod to the sur-
face of a piece of silk cloth brought into contact with it, leaving the glass rod posi-
tively charged.

One implication of this difference in the mobility of charge in insulators and con-
ductors is that the polarization process discussed in Section 22-5 is not as strong in in-
sulators. Neutral conductors and neutral insulators both undergo charge separation
(become polarized) when they are brought close to a charged object—but, the elec-
trons in insulators are tightly bound to atoms, and the charge separation (polariza-
tion) is only a small fraction of an atomic radius. In contrast, some of the electrons in
conductors can move through the material fairly freely and become separated from
the atoms to which they were originally associated. This difference is shown in the
comparison of the two images in Fig. 22-9. This atomic model provides a plausible ex-
planation for the observed fact that induction is much stronger between a charged ob-
ject and a conductor than between the same charged object and an insulator.

The difference in mobility of charge carriers in conductors and insulators explains
why you cannot charge a metal rod by rubbing if you are holding it. Both you and the
rod are conductors. Although the rubbing will cause a charge imbalance on the rod,
the excess charge will immediately move from the rod through you to the floor (which
is connected to Earth’s surface), and the rod will quickly be neutralized. Setting up a
pathway for electrons between an object and Earth’s surface is called grounding the
object, and always results in electrically neutralizing the object. If instead of holding
the metal rod in your hand, you hold it by an insulating handle, you eliminate the con-
ducting path to Earth, and rubbing can then charge the rod, as long as you do not
touch it directly with your hand.

These ideas give us a very functional way to determine whether a material is a
conductor or an insulator. If you have two interacting charged objects and you touch
one of them, do the objects stop interacting? If so, charge must have been transferred
to or from the object. Hence, it must be a conductor. If the transfer of charge does not
occur, the object must be an insulator.

Charging by Induction
The rubbing methods we use to charge insulators such as glass, rubber, and amber do
not work well with conductors. Fortunately, you can take advantage of the polarization
model (which was used to explain induction) and a process known as charging by in-
duction to accomplish this. In the example of charging by induction, an electrically
neutral metal plate is brought near a negatively charged insulator shown in Fig. 22-10b.
The charges in the metal plate are polarized by induction. Since the top of the metal
plate now has an excess of electrons, touching it will cause these electrons to flow onto
your body. If you now stop touching the rod, the return pathway for electrons is re-
moved. So the metal plate is no longer electrically neutral. If you now move the metal
plate away from the charged insulator, the polarization effect disappears and the metal
plate remains positively charged due to a deficiency of electrons. Of course, it is also
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FIGURE 22-10 ■ An electrophorus is an
apparatus that can be used to charge a
conductor by induction. It consists of an
insulated plate such as a slab of Styrofoam
and a conducting plate such as an alu-
minum pie plate. (a) The insulating slab is
charged negatively after being stroked
with fur. (b) When a conducting plate is
brought near the charged insulator the
conductor is polarized so that its free elec-
trons move away from the insulator. (c)
When the top of the conductor is touched
these free electrons move to the hand. (d)
This leaves a net positive charge on the
conductor.
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FIGURE 22-11 ■ This is not a parlor stunt
but a serious experiment carried out in
1774 to prove that the human body is a
conductor of electricity. The etching shows
a person suspended by nonconducting
ropes while being charged by a charged
rod (which probably touched flesh instead
of the trousers). When the person brought
his face, left hand, or the conducting ball
and rod in his right hand near bits of paper
on the plates, charge was induced on the
paper, which flew through the intermediate
air to him.

possible to develop a similar procedure that will leave an excess of electrons on the
metal plate. (Figure 22-11 shows another experiment set up for inducing charge.)

READI NG EXERC IS E  22-8: (a) Make the observation described in Reading Exer-
cise 22-2. Is ScotchTM Magic Tape best described as an insulator or a conductor? Explain your
reasoning. (b) Is a balloon an insulator or a conductor? Explain your reasoning. ■

READI NG EXERC IS E  22-9: (a) Can you charge an insulator by induction? Explain
your reasoning. (b) Describe the steps you would take to give an object excess negative charge
using the process of charging by induction utilizing the electrophorus apparatus shown in 
Fig. 22-10. ■

22-7 Coulomb’s Law

So far all our explanations of electrical phenomena have been qualitative. Can a
mathematical law be formulated to quantitatively describe the interaction forces
between electric charges?

The observations we depicted in Fig. 22-6 led us to the conclusion that the inter-
action forces are proportional to the product of the charges on the objects. So the
magnitude of the force on either particle is given by . But, what observa-
tions have been made that would lead to a mathematical relationship that also de-
scribes how interaction forces are related to the distance between charged particle-
like objects? 

Benjamin Franklin observed that a small cork hanging from a silk thread is at-
tracted by induction to the outside of a charged metal can. However, if the cork is
dangled inside the can, there are no apparent forces on it. Recall that in Chapter 14
on gravitation we presented a shell theorem Newton derived from the assumption
that gravitational forces fall off as the inverse square of the distance between masses.
Newton’s shell theorem implies that a shell of mass exerts no net gravitational force
on a point mass contained within it. Joseph Priestly reasoned that since an analogous
shell theorem seems to hold for electric interactions, then the inverse square law
ought to hold for electric forces too.

In 1785, Priestley’s hypothesis regarding the dependence of electric forces on the
inverse square of distance was verified by the experiments of Charles Augustin
Coulomb using a sensitive torsion balance to measure the forces between charged
spheres.

Coulomb assumed the forces between charged spheres would be the same as if the
charge of each object was concentrated at its center. He also found that the forces be-
tween the objects lie along a line between their centers. Coulomb used a method like
the one we described in Section 22-4 to reduce the charges on the metal spheres in his
torsion apparatus by known fractions. Thus, he was able to verify that the interaction
forces were proportional to the product of the charges on the interacting objects.

As a result of his careful experiments, Coulomb found that the magnitude of the
electric (or Coulomb) force, F elec, between two stationary particle-like charged ob-
jects is

(Coulomb’s law), (22-4)

where k is a positive constant of proportionality, r is the distance between the centers
of the two objects, qA is the charge on one of the objects, and qB is the charge on the
other object.

F elec � k
� qA �� qB �

r 2

F � � qAqB �



Using modern tools available in many introductory physics laboratories, we can
verify the inverse square (1/r 2) relationship in Coulomb’s law. The experiment is pic-
tured in Fig. 22-12. Two Ping-Pong balls that are covered with conducting paint are
stroked with a fur-charged rubber rod so they are negatively charged. One of the balls
is hung as a pendulum from a long, nonconducting string. The other ball, which serves
as a prod, is attached to a nonconducting rod.

As the prod is moved very slowly toward the hanging ball, the hanging ball is re-
pelled and rises. The hanging ball is displaced further and further from its equilibrium
as the prod is brought closer to it. This demonstrates qualitatively that the force ex-
erted by the prod on the hanging ball is greater when the distance, r, between the cen-
ters of the two charged balls is smaller. It also indicates that the electrostatic force
acts along the line connecting the two charges. We know this because the hanging ball
is not pushed off to the side.

Video technology allows us to take this experiment a step further. The motion of
the prod inching forward can be captured with a video camera and digitized. Then
computer software can be used to perform a frame-by-frame analysis of the angular
displacement of the hanging ball and of the distance between the balls. Figure 22-13 is
an example of this digital analysis. When the ball is stationary, the net force consists of
the vector sum of the gravitational force acting vertically downward, the tension force
exerted by the string, and the electric force acting in the horizontal direction. Thus, the
magnitude of the electric force on the ball can be calculated from the mass of the ball
and its angle of rise, �, with respect to the vertical.
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FIGURE 22-12 ■ A charged metal-coated
Ping-Pong ball is repelled from a charged
prod. At equilibrium, the vector sum of the
gravitational force, the tension in the
string, and the Coulomb force on the hang-
ing ball is zero.

FIGURE 22-13 ■ Three of twenty-five digitized video frames depicting the forces between two
charged balls. The string holding up the hanging ball is too thin to see and its point of
attachment is well above the top of the video frames.

A plot of the data is shown in Fig. 22-14. If we try to fit the data, we find that the
force between electrical charges falls off with distance as 1/r 2 just as the gravitational
force does. This verifies Coulomb’s result summarized in Eq. 22-4.
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FIGURE 22-14 ■ A graph of the magnitude of the Coulomb
force vs. the distance between two charged Ping-Pong balls each
having a mass of 2.40 g. The green line represents an excellent
inverse square fit to the red data points. The fit is given by F elec �
(7.9 � 10�4 N 	 m2)/r2. Using a Coulomb constant of 8.99 � 
109 N 	 m2/C2 (as shown in Eqs. 22-6 and 22-7), it can be shown
that each ball carries about 1 � 10�8 coulombs of excess charge.
VideoPoint® software was used to obtain the data from video
frames (Dson015.mov).



We use the absolute value signs on the force and charges in Eq. 22-4 to remind
ourselves that the sign of the force (a vector) indicates the direction of the force and
not simply whether we are multiplying like or unlike charges. Hence, we should calcu-
late the magnitude of the force between two charged objects using the amounts of the
charges. We determine the direction of the force using the attraction and repulsion
rules we discussed earlier, remembering that the force always acts along the line
connecting the two charges. If the particles repel each other, the force on each particle
is directed away from the other particle (as in Figs. 22-15a and b). If the particles
attract each other, the force on each particle is directed toward the other particle (as
in Fig. 22-15c).

As an example of the need for absolute values in the equation

,

consider the two unlike charges in Fig. 22-15c. Inspection of the expression for force
above indicates that each particle exerts a force of the same magnitude on the other
particle,

(22-5)

But, electrostatic interactions satisfy Newton’s Third Law. The force on the positive
charge (in Fig. 22-15c) due to the negative charge points to the right. The force on
the negative charge due to the positive charge points to the left. If we use explicit
positive and negative signs on the charges and don’t make use of absolute values, the
product qAqB (or qBqA) is always negative and so the force would be negative, re-
gardless of whether we are calculating the force on the positive charge or the force
on the negative charge. This cannot be correct, since these two forces point in oppo-
site directions and the sign denotes direction. The force cannot be negative for both
charges. In this and every other situation, we avoid this pitfall if we use the absolute
values of the charges in our calculations and then determine the sign associated with
the force by thinking about our coordinate system and the issues of attraction and
repulsion.

Curiously, the form of Eq. 22-4 is the same as Newton’s law of gravitation pre-
sented in Chapter 14 that relates the gravitational force between two particles with
masses mA and mB to the distance, r, between their centers,

, (Eq. 14-1)

in which G is the gravitational constant.
Coulomb’s law has survived every experimental test; no exceptions to it have ever

been found. It holds even within the atom, correctly describing the force between the
positively charged nucleus and each of the negatively charged electrons. This is true
even though classical Newtonian mechanics fails in that realm and is replaced there
by quantum physics. This simple law also correctly accounts for the forces that bind
atoms together to form molecules and for the forces that bind atoms and molecules
together to form solids and liquids.

The Coulomb constant k is often replaced by a factor where 
0 � 4�k. As
you will see later this more complicated expression for the electrostatic constant sim-
plifies many related equations that we have not yet introduced. Substituting the

term for k gives an alternate form of Coulomb’s law as

(Coulomb’s law), (22-6)
� qA �� qB �

r 2F elec
A:B �

1
4�
0

1/4�
0

1/4�
0

F grav
A:B � G

mAmB

r2

FA:B � FB:A.

F elec
A:B � k

� qA �� qB �
r 2

646 CHAPTER 22 Electric Charge

FIGURE 22-15 ■ Two charged particles,
separated by distance r, repel each other if
their charges are (a) both positive or
(b) both negative. (c) They attract each
other if their charges are of opposite signs.
In each of the three situations, the force
acting on one particle is equal in
magnitude to the force acting on the other
particle but has the opposite direction.

+ +
F F

qA qB
–

r

(a) Repulsion

+ –
FF

qA qB
–

(c) Attraction

– –
F F

qA qB
–

(b) Repulsion



where k has the value

(Coulomb constant). (22-7)

The quantity 
0, known as the electric constant (sometimes called the permittivity con-
stant or simply epsilon sub zero), often appears separately in equations and is given by


0 � 8.85 � 10�12 C2/N 	 m2 (electric constant). (22-8)

READI NG EXERC IS E  22-10:  Use the information provided at the end of Section
22-4 and in Fig. 22-6 to explain why the following statements cannot be true: (a) The force be-
tween two charged particle-like objects is independent of the charge on the objects. (b) The
magnitude of the force between two charged particle-like objects is proportional to .
(c) The force between two charged objects is proportional to ■

22-8 Solving Problems Using Coulomb’s Law 

Coulomb’s law can be used to find the forces on particle-like objects having excess
charge on them. When solving quantitative (numerical) problems using Coulomb’s
law, there are several issues to keep in mind. For example, we must be sure to express
the charges in coulombs and the distance between the charges in meters. These are
the SI units for distance and charge and are required if we are to use the standard
value for the Coulomb constant shown in Eq. 22-7. As we discussed in Section 22-7,
we must calculate the magnitude of the force using the (positive) absolute value of
the charges. We should then make a sketch of the situation, showing the direction of
the force and adopting a coordinate system. If the force acts in the negative direction,
then we associate a negative sign with the magnitude of the force.

What happens if there are more than two charges interacting as shown in
Fig. 22-16?

� qA � � � qB �.
1/� qA � � qB �

k �
1

4�
0
� 8.99 � 109 N	m2/C2
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(a)

+ – + x
FB   A FC   A

qA qC qB

(b)

+ + xFB   A

FC   A

qA

y – qC

qBθ

FIGURE 22-16 ■ (a) A set of particle-like objects with excess charge on
them that lie along a line. The force vectors depict the forces of charges B
and C on charge A. (b) A similar diagram showing the force vectors on
charge A when the other charges do not lie along the same line.

Superposition of Forces
As is the case with all other forces (including the gravitational force), the electrostatic
force obeys the principle of superposition. For example, if we have 4 charged particles,
they interact independently in pairs, and the force on any one of the charges, let us say
particle A, is given by the vector sum

(22-9)

in which, for example, is the force acting on particle A due to the presence of
particle D.

Often, as is the case for the charges in Fig. 22-16b, the various forces acting on a
particle do not all act along the same line. We know how to combine forces such as
these, but let’s review the process. First we must calculate the magnitudes of the

F
:

D:A

F
: net

A � F
:

B:A � F
:

C:A � F
:

D:A,



individual forces (in this case, using Coulomb’s law), adopt a coordinate system, and
determine the directions of the forces. We then calculate the orthogonal (perpendicu-
lar) components of each force and determine the direction of these components. For
example, this might mean determining the x- and y-components of each of the forces
as well as determining whether those components are in the positive or negative di-
rection. We then add or subtract all of the components of forces that act along the
same line. We add or subtract depending on whether the components are in the same
or opposite directions. This gives us the components of the net (resultant) force. We
then use trigonometry to get the magnitude and direction of the resultant force. These
steps are presented in brief below.

Steps to Solving Quantitative Problems Using Coulomb’s Law
Although the steps that follow are illustrated using the configuration of charges in
Fig. 22-17a, they should work for any combination of charged particles.

1. Sketch the array of charged objects and draw arrows to represent the
anticipated directions of forces on the charged object of interest due to the sur-
rounding charges. An example is shown in Fig. 22-17b where qA is the charge of
interest.

2. Use Coulomb’s law to calculate the magnitudes of the individual forces on the
charged particle of interest.

3. Determine the directions of the forces and create a free-body diagram like that
shown in Fig. 22-17b.

4. Choose a coordinate system and sketch it on your diagram as shown in Fig. 22-17c.

5. Calculate the orthogonal (perpendicular) vector components of each force along
the coordinate directions using the expressions , (or
equivalent expressions) where F is the magnitude of the force on particle A.

6. Determine the sign of these components based on their directions.

7. Combine all the force components that act along the same line.

8. Combine the resultant components to get the magnitude of the resultant force
using the expression 

(22-10)

9. Determine the angle at which the force acts (relative to the positive x axis) using

(22-11)

or alternatively express the force in vector notation as 

READI NG EXERC IS E  22-11: The figure shows two protons (symbol p) and one
electron (symbol e) on an axis. What are the directions of (a) the electrostatic force on the
central proton due to the electron, (b) the electrostatic force on the central proton due to the
other proton, and (c) the net electrostatic force on the central proton? Are there any points
along the line connecting the three charges where the central proton can be moved so that the
net force on it is zero? Explain your reasoning and how your answers relate to superposition
for forces.

■

F
: net � F net

x î � F net
y ĵ.

tan � �
F net

y

F net
x

,

[F net]2 � [F net
x ]2 � [F net

y ]2.

Fx � F cos� and Fy � F sin�
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FIGURE 22-17 ■ Diagrams used to
illustrate steps in problem solving using
Coulomb’s law.
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TOUCHSTONE EXAMPLE 22-1: Force on a Charge

(a) Figure 22-18a shows two positively charged particles fixed in
place on an x axis. The charges are and

, and the particle separation is .
What are the magnitude and direction of the electrostatic force

on particle A from particle B?F
:

B:A

R � 0.0200 mqB � 3.20 �  10�19 C
qA � 1.60 �  10�19 C

To find the magnitude of , we can rewrite Eq. 22-4 as

We can also write in unit-vector notation:

A second Key  Idea here is that the net force on particle
A is the vector sum of and ; that is, from Eq. 22-9, we can
write the net force on particle A in unit-vector notation as

(Answer)

Thus, has the following magnitude and direction (relative to
the positive direction of the x axis):

9.00 � 10�25 N and 0°. (Answer)

(c) Figure 22-18e is identical to Fig. 22-18a except that particle D
is now positioned as shown. Particle D has charge qD � �3.20 �
10�19 C, is at a distance R from particle A, and lies on a line that
makes an angle with the x axis. What is the net electrostatic
force on particle A due to particles B and D?

S O L U T I O N ■ The Ke y  I d e a here is that the net force is
the vector sum of and a new force acting on particle A
due to particle D. Because particles A and D have charges of oppo-
site sign, particle A is attracted to particle D. Thus, force onF

:

D:A

F
:

D:AF
:

B:A

F
: net

A

F
: net

A

� � 60�

3
4

F
: net

A

� (9.00 � 10�25 N)î.

� �(1.15 � 10�24 N)î � (2.05 � 10�24 N)î

F
: net

A � F
:

B:A � F
:

C:A

F
: net

A

F
:

C:AF
:

B:A

F
: net

A

F
:

C:A � �(2.05 � 10�24 N)î.

F
:

C:A

� 2.05 � 10�24 N.

� (8.99 � 109 N	m2/C2) �
(1.60 � 10�19 C)(3.20 � 10�19 C)

(3
4)(0.0200 m)2

FC:A � k
� qA �� qC �

( 3
4R)2

F
:

C:A

R
x

qBqA

x

y

qBqA

qD

(a)
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4 R

x
qBqCqA
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(b)

(e)
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FC    A

FIGURE 22-18 ■ (a) Two charged particles of charges qA and qB

are fixed in place on an x axis, with separation R. (b) The free-body
diagram for particle A, showing the electrostatic force on it from
particle B. (c) Particle C is now fixed in place on the x axis between
particles A and B. (d) The free-body diagram for particle A due
to particles B and C. (e) Particle D is fixed in place on a line at angle
� to the x axis with just particles A and B present. (f ) The new 
free-body diagram for particle A due to particles B and D.

S O L U T I O N ■ The Ke y  I d e a here is that, because both parti-
cles are positively charged, particle A is repelled by particle B, with
a force magnitude given by Eq. 22-4. Thus, the direction of force

on particle A is away from particle B, in the negative direc-
tion of the x axis, as indicated in the free-body diagram of Fig. 22-
18b. Using Eq. 22-4 with separation R substituted for r, we can
write the magnitude of this force as

Thus, force has the following magnitude and direction (rela-
tive to the positive direction of the x axis):

1.15 � 10�24 N and 180°. (Answer)

We can also write in unit-vector notation as

(Answer)

(b) Figure 22-18c is identical to Fig. 22-18a except that particle C
now lies on the x axis between particles A and B. Particle C has
charge and is at a distance R from particle
A. What is the net electrostatic force on particle A due to par-
ticles B and C?

S O L U T I O N ■ One Ke y  I d e a here is that the presence of par-
ticle C does not alter the electrostatic force on particle A from par-
ticle B. Thus, force still acts on particle A. Similarly, the force

that acts on particle A due to particle C is not affected by the
presence of particle B. Because particles A and C have charge of
opposite sign, particle A is attracted to particle C. Thus, force 
is directed toward particle C, as indicated in the free-body diagram
of Fig. 22-18d.

F
:

C:A

F
:

C:A

F
:

B:A

F
: net

A

3
4qC � �3.20 �  10�19 C

F
:

B:A � �(1.15 �  10�24 N)î.

F
:

B:A

F
:

B:A

� 1.15 � 10�24 N.

� (8.99 � 109 N	m2/C2) �
(1.60 � 10�19 C)(3.20 � 10�19 C)

(0.0200 m)2

FB:A � k
� qA � � qB �

R2

FB:A

F
:

B:A
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particle A is directed toward particle D, at angle , as indi-
cated in the free-body diagram of Fig. 22-18f.

To find the magnitude of , we can rewrite Eq. 22-4 as

Then from Eq. 22-9, we can write the net force on particle A as

To evaluate the right side of this equation, we need another Ke y
I d e a : Because the forces and are not directed along
the same axis, we cannot sum simply by combining their magni-
tudes. Instead, we must add them as vectors, using one of the fol-
lowing methods.

Method 1. Summing directly on a vector-capable calculator. For
, we enter the magnitude 1.15 � 10�24 and the angle 180°. For
, we enter the magnitude 2.05 � 10�24 and the angle 60°. Then

we add the vectors.

Method 2. Summing in unit-vector notation. First we rewrite
as

Substituting 2.05 � 10�24 N for and 60° for �, this becomes

F
:

D:A � (1.025 � 10�24 N)î � (1.775 � 10�24 N)ĵ.

FD:A

F
:

D:A � (FD:Acos�)î � (FD:Asin�)ĵ.

F
:

D:A

F
:

D:A

F
:

B:A

F
:

D:AF
:

B:A

F
: net

A � F
:

B:A � F
:

D:A.

F
:net

A

� 2.05 � 10�24 N.

� (8.99 � 109 N 	m2/C2) �
(1.60 � 10�19 C)(3.2 � 10�19 C)

(3
4)

2(0.0200 m)2

� F
:

D:A � � k
� qA � � qD �

(3
4R)2

F
:

D:A

� � 60� Then we sum:

(Answer)

Method 3. Summing components axis by axis. The sum of the x-
components gives us

The sum of the y-components gives us

The net force has the magnitude

To find the direction of , we take

However, this is an unreasonable result because must have a
direction between the directions of and . To correct �,
we add 180°, obtaining

(Answer)�86.0� � 180� � 94.0�.

F
:

D:AF
:

B:A

F
: net

A

� � tan�1 F net
Ay

F net
Ax

� �86.0�.

F
: net

A

F net
A � √(F net

Ax )2 � (F net
Ay )2 � 1.78 � 10�24 N.

F
: net

A

� 1.78 �  10�24 N.

� (2.05 �  10�24 N)(sin 60�)

F net
Ay � FB:Ay � FD:Ay � 0 � FD:A sin 60�

� �1.25 �  10�25 N.

� �1.15 �  10�24 N �  (2.05 �  10�24 N)(cos 60�)

F
: net

Ax � FB:Ax � FD:Ax � FB:A � FD:Acos 60�

� (�1.25 � 10�25 N)î � (1.78 � 10�24 N)ĵ.

� �(1.15 � 10�24 N)î � (1.025 � 10�24 N)î � (1.775 � 10�24)ĵ

F
: net

A � F
:

B:A � F
:
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FIGURE 22-19 ■ (a) Two particles of charges qA and qB are fixed in
place on an x axis, with separation L. (b)–(d) Three possible loca-
tions P, S, and R for a proton. At each location, represents the
force on the proton from particle A and represents the force
on the proton from particle B.

F
:

B:p

F
:

A:p

TOUCHSTONE EXAMPLE 22-2: Equilibrium Point

Figure 22-19a shows two particles fixed in place: a particle of
charge at the origin and a particle of charge 
at . At what point (other than infinitely far away) can a pro-
ton of charge qp be placed so that it is in equilibrium (meaning
that the net force on it is zero)? Is that equilibrium stable or un-
stable?

x � L
qB � �2qqA � � 8q
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22-9 Comparing Electrical and Gravitational Forces

Consider two point-like objects, A and B, separated by a distance r. What are the
magnitudes of the electrical and gravitational forces between them?

(Coulomb’s Law), (Eq. 22-4)

has the same form as that of Newton’s equation for the gravitational force between
two particles with masses mA and mB that are separated by a distance r :

(Newton’s Law of gravitation). (14-2)

Both of these equations have the distance between the two interacting objects squared
and in the denominator of the fraction. That is, they are both “inverse square laws.”
Both also involve a property of the interacting particles—the mass in one case and the
charge in the other. Both the gravitational force and the electrostatic force are conser-
vative forces—the work done by these forces around a closed path is zero. Both forces
act along the line connecting the two objects—such forces are called “central” forces.

However, as similar as these forces are, they are not the same force. They are not
even different aspects of one force. How do we know this? Electrostatic forces are in-
trinsically much stronger than gravitational forces. For example, the gravitational at-
traction between a plastic comb and a small piece of paper is not large enough to
overcome the opposing gravitational attraction of Earth on the paper. However, if

F grav
A:B � G

mAmB

r 2

F elec
A:B � k

� qA �� qB �
r 2

S O L U T I O N ■ The Ke y  I d e a here is that, if is the 
force on the proton due to charge qA and is the force on the
proton due to charge qB, then the point we seek is where

. This condition requires that

(22-12)

This tells us that at the point we seek, the forces acting on the pro-
ton due to the other two particles must be of equal magnitudes,

(22-13)

and that the forces must have opposite directions.
A proton has a positive charge. Thus, the proton and the parti-

cle of charge qA are of the same sign, and force on the proton
must point away from qA. Also, the proton and the particle of
charge qB are of opposite signs, so force on the proton must
point toward qB. “Away from qA” and “toward qB” can be in oppo-
site directions only if the proton is located on the x axis.

If the proton is on the x axis at any point between qA and qB,
such as P in Fig. 22-19b, then and are in the same direc-
tion and not in opposite directions as required. If the proton is at
any point on the x axis to the left of qA, such as point S in Fig. 22-9c,
then and are in opposite directions. However, Eq. 22-4
tells us that and cannot have equal magnitudes there:

must be greater than because is produced by
a closer charge (with lesser r) of greater magnitude (8q versus 2q).

Finally, if the proton is at any point on the x axis to the right of
qB, such as point R in Fig. 22-19d, then and are again in
opposite directions. However, because now the charge of greater

F
:

B:pF
:

A:p

� F
:

A:p �� F
:

B:p �,� F
:

A:p �
F
:

B:pF
:

A:p

F
:

B:pF
:

A:p

F
:

B:pF
:

A:p

F
:

B:p

F
:

A:p

� F
:

A:p � � � F
:

B:p �,

F
:

A:p � � F
:

B:p.

F
:

A:p � F
:

B:p � 0

F
:

B:p

F
:

A:p amount (qA) is farther away from the proton than the charge of
lesser amount, there is a point at which is equal to .
Let x be the coordinate of this point, and let qp be the charge of the
proton. Then with the aid of Eq. 22-4, we can rewrite Eq. 22-13 as

(22-14)

(Note that only the charge amounts appear in Eq. 22-14.) Rear-
ranging Eq. 22-14 gives us

After taking the square roots of both sides, we have

which gives us
(Answer)

The equilibrium at is unstable; that is, if the proton is
displaced leftward from point R, then and both
increase but increases more (because qB is closer than
qA), and a net force will drive the proton farther leftward. If the
proton is displaced rightward, both and decrease
but decreases more, and a net force will then drive the
proton farther rightward. In a stable equilibrium, each time
the proton was displaced slightly, it would return to the equilib-
rium position.
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� F
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x � 2L
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x � L
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� x � L
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k
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you rub the comb with fur, the resulting electrostatic force is large enough to over-
come the gravitational attraction of Earth. Furthermore, the electrostatic force differs
from the gravitational forces because the gravitational force is always attractive but
the electrostatic force may be either attractive or repulsive, depending on the signs of
the two charges. This difference arises because although there is only one kind of
mass, there are two kinds of charge. That is why absolute value signs are needed in

but not in .

Before concluding our discussion of the electrostatic or Coulomb force, let’s com-
pare it to another somewhat similar force—the force associated with magnets.

In addition to amber, the early Greeks knew of another special material that had
the ability to attract other objects. They recorded the observation that some naturally
occurring “lodestones,” known today as the mineral magnetite, would attract iron.
Lodestones were the first known magnets. Could the phenomena of amber (electric-
ity) and lodestones (magnetism) be related? 

Observation of the interactions between two magnets and two electrified objects
shows that the phenomena of electricity and magnetism are not the same. Two magnets
will either attract or repel one another, depending on their orientation. Two pieces of
rubbed amber (or glass) always repel one another, regardless of their orientation.

Hence, the study of electricity and magnetism developed separately for cen-
turies—until 1820, in fact, when Hans Christian Oersted found a connection between
them: an electric current in a wire can deflect a magnetic compass needle. The new sci-
ence of electromagnetism (the combination of electrical and magnetic phenomena)
was developed further by Michael Faraday, a truly gifted experimenter with a talent
for physical intuition and visualization. In fact, Faraday’s laboratory notebooks do not
contain a single equation. In the mid-19th century, James Clerk Maxwell put Faraday’s
ideas into mathematical form, introduced many new ideas of his own, and put electro-
magnetism on a sound theoretical basis.

Table 32-1 shows the basic laws of electromagnetism, now called Maxwell’s equa-
tions. We plan to work our way through them in the chapters between here and there,
but you might want to glance at them now, to see where we are heading.

F grav
A:B � G

mAmB

r2

F elec
A:B � k

� qA �� qB �
r 2

TOUCHSTONE EXAMPLE 22-3: Nuclear Repulsion

The nucleus in an iron atom has a radius of about 
and contains 26 protons.

(a) What is the magnitude of the repulsive electrostatic force be-
tween two of the protons that are separated by ?

S O L U T I O N ■ The Ke y  I d e a here is that the protons can be
treated as charged particles, so the magnitude of the electrostatic
force on one from the other is given by Coulomb’s law. Table 22-1
tells us that their charge is �e. Thus, Eq. 22-4 gives us

(Answer)� 14 N.

�
(8.99 � 109 N 	m2/C2)(1.60 � 10�19 C)2

(4.0 � 10�15 m)2

F elec �
ke2

r 2

4.0 �  10�15 m

4.0 �  10�15 m This is a small force to be acting on a macroscopic object like a can-
taloupe but an enormous force to be acting on a proton. Such
forces should blow apart the nucleus of any element but hydrogen
(which has only one proton in its nucleus). However, they don’t, not
even in nuclei with a great many protons. Therefore, there must be
some enormous attractive force to counter this enormous repulsive
electrostatic force.

(b) What is the magnitude of the gravitational force between those
same two protons?

S O L U T I O N ■ The Ke y  I d e a here is like that in part (a): Be-
cause the protons are particles, the magnitude of the gravitational
force on one from the other is given by Newton’s equation for the
gravitational force (Eq. 14-2). With repre-mp( � 1.67 �  10�27 kg)
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22-10 Many Everyday Forces Are Electrostatic

In Chapter 6 we presented an idealized model of a solid as an array of atoms held
together by forces that act like tiny springs that resist both stretching and compres-
sion forces. We then used this spring model to help explain the nature of most of the
everyday forces encountered in the study of motion including normal forces, friction
forces, and tension forces. We made the claim that all of these forces are basically
electrical.

Let’s look once again at our spring model of solids in light of our new under-
standing of the nature of the electrostatic forces between protons and electrons in
atoms. Since protons and electrons have opposite charges they attract each other. This
is what holds individual atoms together and causes a tension force to arise in a string
as it resists stretching. Under compression, the outer electrons in the atoms of one
object repel the outer electrons in the other object. This is the origin of the normal
force. Although we imagine this repulsion starting at the surface, it is happening in
other layers of atoms as well. As the electrons from one layer of atoms are being
moved closer to those in the next layer, the repulsion forces increase sharply as the
electrons are forced closer together.

Thus, we think of a solid as having a delicately balanced equilibrium in which the
electron glue holds the atoms together at just the right spacing. Although more de-
tailed analysis of these phenomena requires quantum mechanics, all of the everyday
forces we encounter appear to be either gravitational, electrical, or magnetic. We ex-
plore the relationship between electrostatic and magnetic interactions further in
Chapter 32.

Problems

SEC. 22-4 ■ USING ATOMIC THEORY TO EXPLAIN

CHARGING

1. A Large Charge What is the total charge in coulombs of 75.0 kg
of electrons?

2. How Many? How many megacoulombs of positive (or negative)
charge are in 1.00 mol of neutral molecular-hydrogen gas (H2)?

3. How Many Electrons How many electrons would have to be
removed from a coin to leave it with a charge of �1.0 � 10�7 C?

4. Glass of Water Calculate the number of coulombs of positive
charge in 250 cm3 of (neutral) water (about a glassful).

5. Cosmic Ray Protons Earth’s atmosphere is constantly bom-
barded by cosmic ray protons that originate somewhere in space.
If the protons all passed through the atmosphere, each square me-
ter of Earth’s surface would intercept protons at the average rate
of 1500 protons per second. What would be the corresponding
rate of charge flow intercepted by the total surface area of the
planet?

senting the mass of a proton, Eq. 14-2 gives us

(Answer)

This result tells us that the (attractive) gravitational force is far
too weak to counter the repulsive electrostatic forces between pro-
tons in a nucleus. Instead, the protons are bound together by an

� 1.2 �  10�35 N.

�
(6.67 �  10�11N	m2/kg2)(1.67 �  10�27 kg)

(4.0 �  10�15 m)2

F � G
m 2

p

r 2

enormous force aptly called the strong nuclear force—a force that
acts between protons (and neutrons) when they are close together,
as in a nucleus.

Although the gravitational force is many times weaker than
the electrostatic force, it is more important in large-scale situations
because it is always attractive. This means that it can collect many
small bodies into huge bodies with huge masses, such as planets and
stars, that then exert large gravitational forces. The electrostatic
force, on the other hand, is repulsive for charges of the same sign,
so it is unable to collect either positive charge or negative charge
into large concentrations that would then exert large electrostatic
forces.



6. Fibrillation A charge flow of 0.300 C/s through your chest can
send your heart into fibrillation, disrupting the flow of blood (and
thus oxygen) to your brain. If that current persists for 2.00 min, how
many conduction electrons pass through your chest?

7. Beta Decay In beta decay a massive fundamental particle
changes to another massive particle, and either an electron of
charge �e or a positron of charge �e (positive particle with the
same amount of charge and mass as an electron) is emitted. (a) If a
proton undergoes beta decay to become a neutron, which particle is
emitted? (b) If a neutron undergoes beta decay to become a pro-
ton, which particle is emitted?

8. Identify X Identify X in the following nuclear reactions (in the
first, n represents a neutron): (a) 1H � 9Be : X � n; (b) 12C �
1H : X; (c) 15N � 1H : 4He � X. Appendix F will help.

SEC. 22-8 ■ SOLVING PROBLEMS USING

COULOMB’S LAW

9. What Distance At what distance between point charge qA �
26.0 C and point charge qB � � 47.0 C will the electrostatic
force between them have a magnitude of 5.70 N?

10. Force on Each A point charge of �3.00 � 10�6 C is 12.0 cm
from a second point charge of �1.50 � 10�6 C. Calculate the magni-
tude of the force on each charge.

11. Two Equally Charged Two equally charged particles, held 
3.2 � 10�3 m apart, are released from rest. The initial acceleration
of the first particle is observed to be 7.0 m/s2 and that of the second
to be 9.0 m/s2. If the mass of the first particle is 6.3 � 10�7 kg, what
are (a) the mass of the second particle and (b) the amount of
charge on each particle?

12. Isolated Conducting Spheres Identical isolated conducting
spheres A and B have the same excess charges and are separated
by a distance that is large compared with their diameters
(Fig. 22-20a). The electrostatic force acting on sphere B due to
sphere A is . Suppose now that a third identical sphere C, hav-
ing an insulating handle and initially neutral, is touched first to
sphere A (Fig. 22-20b), then to sphere B (Fig. 22-20c), and finally
removed (Fig. 22-20d). In terms of the force magnitude , what
is the magnitude of the electrostatic force that now acts on
sphere B?

F
:

�A:B

FA:B

F
:

A:B

13. The Square In Fig. 22-21, what are
the (a) horizontal and (b) vertical com-
ponents of the net electrostatic force on
the charged particle in the lower left cor-
ner of the square if q � 1.0 � 10�7 C
and a � 5.0 cm?

14. Where Along the Line Point
charges qA and qB lie on the x axis at
points x � �d and x � �d, respectively.
(a) How must qA and qB be related for
the net electrostatic force on point
charge �Q, placed at x � � d/2, to be
zero? (b) Repeat (a) but with point
charge �Q now placed at x � �3d/2.

15. Two Identical Spheres Two identical conducting spheres, fixed
in place, attract each other with an electrostatic force of 0.108 N
when separated by 50.0 cm, center to center. The spheres are then
connected by a thin conducting wire. When the wire is removed, the
spheres repel each other with an electrostatic force of 0.0360 N.
What were the initial charges on the spheres?

16. Three Charges In Fig. 22-22,
three charged particles lie on a
straight line and are separated
by distances d. Charges qA and
qB are held fixed. Charge qC is
free to move but happens to be in equilibrium (no net electrosta-
tic force acts on it). Find qA in terms of qB.

17. Two Free Particles Two free particles (that is, free to move)
with charges �q and �4q are a distance L apart. A third charge is
placed so that the entire system is in equilibrium. (a) Find the loca-
tion, amount and sign of the third charge. (b) Show that the equilib-
rium is unstable.

18. Two Fixed Particles Two fixed particles, of charges qA � �1.0 C
and qB � �3.0 C, are 10 cm apart. How far from each should a
third charge be located so that no net electrostatic force acts on it?

19. A Certain Charge Q A certain charge Q is divided into two
parts q and Q � q, which are then separated by a certain distance.
What must q be in terms of Q to maximize the electrostatic repul-
sion between the two charges?

20. Charges and Coordinates The charges and coordinates of two
charged particles held fixed in the xy plane are qA � �3.0 C, xA �
3.5 cm, yA � 0.50 cm, and qB � �4.0 C, xB � �2.0 cm, yB �
1.5 cm. (a) Find the magnitude and direction of the electrostatic
force on qB. (b) Where could you locate a third charge qC �
�4.0 C such that the net electrostatic force on qB is zero?

21. Identical Ions The magnitude of the electrostatic force be-
tween two identical ions that are separated by a distance of 5.0 �
10�10 m is 3.7 � 10�9 N. (a) What is the charge of each ion? (b)
How many electrons are “missing” from each ion (thus giving the
ion its charge imbalance)?

22. Salt Crystal What is the magnitude of the electrostatic force
between a singly charged sodium ion (Na�, of charge �e) and an
adjacent singly charged chlorine ion (Cl�, of charge �e) in a salt
crystal if their separation is 2.82 � 10�10 m?

23. Cesium Chloride In the basic CsCl (cesium chloride) crystal struc-
ture, Cs� ions form the corners of a cube and a Cl� ion is at the cube’s
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center (Fig. 22-23). The
edge length of the cube
is 0.40 nm. The Cs� ions
are each deficient by
one electron (and thus
each has a charge of
�e), and the Cl� ion has
one excess electron (and
thus has a charge of
�e). (a) What is the
magnitude of the net
electrostatic force exerted on the Cl� ion by the eight Cs� ions at the
corners of the cube? (b) If one of the Cs� ions is missing, the crystal is
said to have a defect; what is the magnitude of the net electrostatic
force exerted on the Cl� ion by the seven remaining Cs� ions?

24. Water Drops Two tiny, spherical water drops, with identical
charges of �1.00 � 10�16 C, have a center-to-center separation of
1.00 cm. (a) What is the magnitude of the electrostatic force acting
between them? (b) How many excess electrons are on each drop,
giving it its charge imbalance?

25. Beads Figure 22-24 shows four
tiny charged beads that can be slid or
fixed in place on wires that stretch
along x and y axes. A central bead at
the crossing point of the wires (the
origin) has a charge of �e. The other
beads each have a charge of �e. Ini-
tially beads A, B, and C are at dis-
tance d � 10.0 cm from the central
bead, and bead D is at a distance of
d/2. (a) How far from the central
bead must you position bead A so that the direction of the net elec-
trostatic force on the central bead rotates counterclockwise by
30°? (b) With bead A still in its new position, where must you slide
bead C so that the direction of rotates back by 30°?

26. Two Copper Coins We know that the negative charge on the
electron and the positive charge on the proton are equal in amount.
Suppose, however, that these amounts differ from each other by
0.00010%. With what force would two copper coins, placed 1.0 m
apart, repel each other? Assume that each coin contains 3 � 1022

copper atoms. (Hint: A neutral copper atom contains 29 protons
and 29 electrons.) What do you conclude?

27. Particles A and B Figure 22-25a shows charged particles A and
B that are fixed in place on an x axis. Particle A has an amount of
charge of �qA� � 8.00e. Particle C, with a charge of qC � �8.00e, is

F
: net

F
: net
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initially on the x axis near particle B. Then particle C is gradually
moved in the positive direction of the x axis. As a result, the magni-
tude of the net electrostatic force on particle B due to particles
A and C changes. Figure 22-25b gives the x-component of that net
force as a function of the position x of particle C. The plot has an
asymptote of � 1.5 � 10�25 N as x : �. As a multiple of e,
what is the charge qB of particle B?

28. Above the Floor In Fig. 22-26,
a particle of charge �4e is above a
floor by distance d1 � 2.0 mm and
a particle of charge �6e is on the
floor at horizontal distance d2 �
6.0 mm from the first particle.
What is the x-component of the
electrostatic force on the second
particle due to the first particle?

29. Fixed on the x Axis In Fig. 22-27a, particle A (with charge
qA) and particle B (with charge qB) are fixed in place on an x
axis, 8.00 cm apart. Particle C with a charge qC � �5e is to be
placed on the line between particles A and B, so that they pro-
duce a net electrostatic force on it. Figure 22-27b gives the x-
component of that force versus the coordinate x at which particle
C is placed. What are (a) the sign of charge qA and (b) the ratio
qB/qA?

F
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30. Four Charged Particles Figure
22-28 shows four charged particles
that are fixed along an axis, sepa-
rated by distance d � 2.00 cm. The
charges are indicated. Find the
magnitude and direction of the net
electrostatic force on (a) the particle with charge � 2e and (b) the
particle with charge �e, due to the other particles.

31. Split in Two A charge of 6.0 C is to be split into two parts that
are then separated by 3.0 mm. What is the maximum possible mag-
nitude of the electrostatic force between those two parts?

32. Two on the Axis Figure 22-29
shows two particles, each of charge
�2e, that are fixed on a y axis, each
at a distance d � 17 cm from the x
axis. A third particle, of charge
�4e, is moved slowly along the x
axis, from x � 0 to x � �5.0 m. At
what values of x will the magni-
tude of the electrostatic force on
the third particle from the other
two particles be (a) minimum and (b) maximum? What are (c) the
minimum magnitude and (d) the maximum magnitude?

+2e –e
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FIGURE 22-28 ■
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33. How Far In Fig. 22-30, how
far from the charged particle on
the right and in what direction is
there a point where a third
charged particle will be in bal-
ance?

34. Three Positive Charges In Fig
22-31a, three positively charged
particles are fixed on an x axis.
Particles B and C are so close to
each other that they can be
considered to be at the same dis-
tance from particle A. The net
force on particle A due to parti-
cles B and C is 2.014 � 10�23 N in the negative direction of the x
axis. In Fig. 22-31b, particle B has been moved to the opposite side
of A but is still at the same distance from it. The net force on A is
now 2.877 � 10�24 N in the negative direction of the x axis. What is
the ratio of the charge of particle C to that of particle B?

35. Fixed at the Origin A particle of charge Q is fixed at the origin
of an xy coordinate system. At t � 0 a particle (m � 0.800 g, q �
4.00 C) is located on the x axis at x � 20.0 cm, moving with a
speed of 50.0 m/s in the positive y direction. For what value of Q
will the moving particle execute circular motion? (Assume that the
gravitational force on the particle may be neglected.)

36. Seven Charges Figure 22-32
shows an arrangement of seven
positively  charged particles that
are separated from the central
particle by distances of either 
d ( � 1.0 cm) or 2d, as drawn. The
charges are indicated. What are
the magnitude and direction of
the net electrostatic force on the
central particle due to the other
six particles?

37. What is q In Fig. 22-33, what is q in
terms of Q if the net electrostatic force
on the charged particle at the upper left
corner of the square array is to be zero?

38. Charges Figure 22-34a shows an
arrangement of three charged particles
separated by distance d. Particles A and
C are fixed on the x axis, but particle B
can be moved along a circle centered on particle A. During the

movement, a radial line between A and B makes an angle �
relative to the positive direction of the x axis (Fig. 22-34b). The
curves in Fig. 22-34c give, for two situations, the magnitude F net of
the net electrostatic force on particle A due to the other particles.
That net force magnitude is given as a function of angle � and as a
multiple of a basic force magnitude F. For example on curve 1, at
� � 180°, we see that F net � 2F. (a) For the situation correspond-
ing to curve 1, what is the ratio of the charge of particle C to that
of particle B (including sign)? (b) For the situation corresponding
to curve 2, what is that ratio?

39. Two Electrons – Two Ions
Figure 22-35 shows two electrons
(charge �e) on an x axis and
two negative ions of identical
charges �q and at identical an-
gles �. The central electron is free
to move; the other particles are
fixed in place at horizontal dis-
tances R and are intended to
hold the free electron in place.
(a) Plot the required amount of q versus angle � if this is to hap-
pen. (b) From the plot, determine which values of � will be
needed for physically possible values of q � 5e.

40. Diamond Figure 22-36 shows
an arrangement of four charged
particles, with angle � � 30° and
distance d � 2.00 cm. The two
negatively charged particles on
the y axis are electrons that are
fixed in place. The particle at the
right has a charge qB � �5e. (a)
Find distance D such that the net
force on qA, the particle at the
left, due to the three other particles, is zero. (b) If the two electrons
were moved closer to the x axis, would the required value of D be
greater than, less than, or the same as in part (a)?

41. Each Positive Two particles, each of positive charge q, are fixed
in place on an x axis, one at x � 0 and the other at x � �d. A parti-
cle of positive charge Q is to be placed along that axis at locations
given by x � �d. (a) Write expressions, in terms of �, that give the
net electrostatic force acting on the third particle when it is in
the three regions x � 0, 0 � x � d, and d � x. The expressions
should give a positive result when acts in the positive direc-
tion of the x axis and a negative result when acts in the nega-
tive direction. (b) Graph the magnitude of versus � for the
range �2 � � � 3.

42. Particles A and B In Fig. 22-37,
particles A and B are fixed in place on
an x axis, at a separation of L � 8.00
cm. Their charges are qA � �e and
qB � �27e. Particle C with charge qC

� �4e is to be placed on the line be-
tween particles A and B, so that they
produce a net electrostatic force 
on it. (a) At what coordinate should particle C be placed to mini-
mize the magnitude of that force? (b) What is that minimum
magnitude?
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SEC. 22-9 ■ COMPARING ELECTRICAL AND GRAVITATIONAL

FORCES

43. Earth and Moon (a) What equal positive charges would have to
be placed on Earth and on the Moon to neutralize their gravitational
attraction? Do you need to know the lunar distance to solve this
problem? Why or why not? (b) How many kilograms of hydrogen
would be needed to provide the positive charge calculated in (a)?

44. A Particle with Charge Q A particle with charge Q is fixed at
each of two opposite corners of a square, and a particle with charge q
is placed at each of the other two corners. (a) If the net electrostatic
force on each particle with charge Q is zero, what is Q in terms of q?
(b) Is there any value of q that makes the net electrostatic force on
each of the four particles zero? Explain.

45. Hang from Thread In Fig. 22-38,
two tiny conducting balls of identical
mass m and identical charge q hang
from nonconducting threads of length
L. Assume that � is so small that tan �
can be replaced by its approximate
equal, sin �. (a) Show that, for equilib-
rium,

x � ,

where x is the separation between the
balls. (b) If L � 120 cm, m � 10 g, and
x � 5.0 cm, what is q?

� 2kq2L
mg �

1/3
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46. What Happens? Explain what happens to the balls of Problem
45b if one of them is discharged (loses its charge q to, say, the
ground), and find the new equilibrium separation x, using the given
values of L and m and the computed value of q.

47. Pivot Figure 22-39 shows a long, nonconducting, massless
rod of length L, pivoted at its center and balanced with a block of
weight W at a distance x from the left end. At the left and right
ends of the rod are attached small conducting spheres with posi-
tive charges q and 2q, respectively. At distance h directly beneath
each of these spheres is a fixed sphere with positive charge Q. (a)
Find the distance x when the rod is horizontal and balanced. (b)
What value should h have so that the rod exerts no vertical force
on the bearing when the rod is horizontal and balanced?
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48. An Electron in a Vacuum An electron is in a vacuum near the
surface of Earth. Where should a second electron be placed so that
the electrostatic force it exerts on the first electron balances the
gravitational force on the first electron due to Earth?

Additional Problems

49. Opposites Attract It is said that unlike charges attract. You can
observe that after the sticky side of a piece of scotch tape is pulled
quickly off the smooth side of another piece of tape the tapes at-
tract each other. Perhaps each tape has a like charge and the rule
has been stated backwards. Why do you believe the charges on the
two tapes are different? Note: It is not acceptable to answer “be-
cause unlike charges attract and I observed the attraction.”

50. Hanging Ball of Foil (a) Explain how a metal conductor such as
a hanging ball of aluminum foil can be attracted to a charged insu-
lator even though the ball of foil has no net charge so that it is electri-
cally neutral. (b) Can two metal balls with no net charge attract
each other? Explain. (c) Can the process of induction cause a neu-
tral conductor to be repelled from a charged insulator? Explain.

51. Four Balls Consider four lightweight metal-coated balls sus-
pended on nonconducting threads
as shown in Fig. 22-40. Suppose
ball A is stroked with a plastic rod
that has been rubbed with fur.
When you observe interactions
between pairs of balls one at a
time you find that:

1. B, C, and D are each at-
tracted to A.

2. B and C seem to have no effect on each other.

3. B and C are both attracted to D.

Use the concept of electric induction to figure out what type of net
charge is on each of the balls: Negative charge? Positive charge? No
charge at all? Explain your reasoning. [Based on question 5.9,
Arons, Homework and Test Questions for Introductory Physics
Teaching (Wiley, New York, 1994).]

52. Plastic Rubbed with Fur Suppose you rub a plastic rod with fur
that gives it a negative charge. You then bring it close to an un-
charged metal coated Styrofoam ball that is suspended from a
string. (a) When the rod gets close to the ball, the ball starts moving
toward it. Use the concept of induction to explain what happens to
the atomic electrons and protons in the ball. Include a sketch of the
ball and the rod that shows the excess negative charges on the rod.
Also show how the charges are distributed on the ball just before it
touches the rod. (b) After the ball touches the rod, it moves away
from the rod quickly. Explain why.

53. Small Charged Sphere A small, charged sphere of mass 5.0 g is
released 32 cm away from a fixed point charge of �5.0 � 10�9 C.
Immediately after release, the sphere is observed to accelerate to-
ward the charge at 2.5 m/s2. What is the charge on the sphere? Hint:
The force of gravity can be ignored in your calculation.

A B C D

FIGURE 22-40 ■ Problem 51.



54. Lightning Bolt In a lightning bolt electrons travel from a thun-
dercloud to the ground. If there are 1.0 � 1020 electrons in a light-
ning bolt, how many coulombs of charge are dumped onto the
ground?

55. Estimating Charge Two hard rubber
spheres of mass �10 g are rubbed vigor-
ously with fur on a dry day. They are then
suspended from a rod with two insulating
strings. They are observed to hang at equi-
librium as shown in Fig. 22-41, which is
drawn approximately to scale. Estimate the
amount of charge that is found on each
sphere.

56. Various Arrangements Various arrange-
ments of two fixed charges are shown in Fig. 22-42 along with a point
labeled P. The amount of each charge is the same but the charges are
positive or negative as indicated. All the distances between charges
and between point P and the charge nearest to it are the same. Rank

these arrangements in order of the strength of the force (that is, its
magnitude) on a tiny positive test charge located at point P in each
case. Go from greatest to least and indicate when force magnitudes
are the same using an equal to sign. For example, if the force magni-
tudes at (d) and (c) were the same as each other and were the great-
est and (b) was less than (d) and (c) with (a) being the least, your an-
swer would be (d) � (b) � (c) � (a). Include a diagram and sketch
the individual force vectors in each case. [Based on Ranking Task 128
O’Kuma, et. al., Ranking Task Exercises in Physics (Prentice Hall,
Upper Saddle River NJ, 2000).]
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3 cm

FIGURE 22-41 ■

Problem 55.
P

(a) (b) (c) (d)

P P

P

FIGURE 22-42 ■ Problem 56.
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Coal-burning power plants account for 56% of the 

electricity generated in the United States. But coal is dirty,

and smokestack emissions containing sulfur dioxide, 

nitrogen oxides, and fine particles are a health hazard. A

demonstration model of a new Advanced Hybrid Particulate

Collector (AHPC) was recently installed at South Dakota’s

Big Stone plant. This new collector virtually eliminates 

particulate emissions. Although there are filters in the 

collector, 90% of the smoke particles are removed using 

another method.

What technology is used to
remove most of the 
pollutants in the AHPC?

The answer is in this chapter.
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10 km

10 km

12,800 km

12,800 km

(a)

(b)

FIGURE 23-1 ■ (a) Force field maps for
gravitational forces near the Earth are rel-
atively simple: This map shows the uniform
nature of the gravitational force on a “test
mass” placed at different locations within a
vertical and horizontal distance of 10 km.
Mt. Everest is in the background. The tails
of the force vectors have been placed at
various possible test mass locations.
(b) When distances become much larger
than 10 km, the map is not quite so simple.
The direction “downward” changes at dif-
ferent points. Also, the gravitational force
on a test mass can decrease significantly at
altitudes comparable to the Earth’s radius.

23-1 Implications of Strong Electric Forces

In Section 3-9 we discuss the experimental fact that the gravitational force the Earth
exerts on a mass has essentially the same magnitude and acts in a downward direction
for all locations near the surface of the Earth as shown in Fig. 23-1a. By comparison
the gravitational force exerted on the mass by other objects is negligible. In contrast,
we learned in Section 22-2 that the electric forces between small objects are so strong
that even Styrofoam cups rubbed with plastic can exert observable forces on each
other. Also, it is not easy to calculate the net electric force exerted on a charged object
by a complex array of charges in its vicinity. We would have to use the techniques in-
troduced in Section 22-8 that combine Coulomb’s law and the principle of superposi-
tion to obtain a vector sum of forces. To make matters worse, as our charged object
(which we’ll call a test charge) is moved, we often find the electric forces on it vary in
direction and magnitude from point to point. The same can be said for the variation of
gravitational forces on a space vehicle when large distances are involved as shown in
Fig. 23-1b.

How can we describe the effect of the Earth’s gravity or the electric force when a
small test object is placed at various locations? What is the net effect of a collection of
charges on a small test charge located in their vicinity? Answers lie in the concept of a
force field.

We begin this chapter by creating a map of the force on a point-like test mass (due
to gravitational interactions) or test charge (due to electrostatic interactions) at vari-
ous locations in space. These maps introduce the concept of a force field. We then re-
fine the field concept to define electric fields and gravitational fields, which are proper-
ties of a local space. Knowledge of a gravitational or electric field is useful because it
allows us to determine the net force on a small object regardless of its mass or charge.

23-2 Introduction to the Concept of a Field

The temperature at every point in a room can be measured. If the room contains both
a good heater and a window open to cold winter air, the temperature at each point in
the room might be different. We call the resulting distribution of temperatures around
the room a temperature field. In much the same way, you can imagine a pressure field
in the atmosphere. Temperature and pressure are scalar quantities because they have
no direction associated with them, so both temperature fields and pressure fields are
scalar fields. In general,

A field is defined as a representation of any physically measurable quantity that can vary in
space.

Vector Fields
We can also have fields associated with vector quantities like force. In contrast to
scalar fields like temperature, forces have direction, so it’s not good enough to attach
just a number to each point in space—the quantity must be identified with a vector.
For example, let’s ask, “What force would an object feel if it were placed at various lo-
cations in space?” and then represent the result pictorially. Consider the simple exam-
ple of the gravitational force shown in Fig. 23-1b. We can calculate (or measure) the
gravitational force exerted by the Earth on another object of known mass at several
locations. The magnitude of each force vector is directly proportional to both the mass
of the Earth and the mass of the object of interest. That is, the gravitational force of
the Earth on different objects is different. Objects are pulled more strongly when they
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FIGURE 23-2 ■ Vectors representing the
direction and relative magnitude of the
force that would be exerted by a fixed pos-
itive source charge shown on a second pos-
itive test charge if the second charge was
placed at the various locations of the vec-
tor tails. The magnitude of the force is
given by the length of the vector.

+ q

Earth

Fobject   Earth

FEarth   object

FIGURE 23-3 ■ An Earth–object system
in which the interaction forces between a
much less massive object and the Earth
have, as always, the same magnitude. As
the object falls, the movement of the Earth
is negligible, so the gravitational force field
surrounding the Earth does not change.

have more mass. A similar representation of the electrostatic forces on a test charge at
various locations due to a source charge is shown in Fig. 23-2.

Note that there are two separate aspects to creating a map of the fields we discuss
above. The first aspect involves the sources of the quantity being measured. For example,
the heater and window can be thought of as stimulating thermal energy transfer that can
affect the temperature at different locations in the room. In the gravitational case, the
Earth and other large astronomical bodies are the sources of gravitational forces. The
second aspect involved in creating a field map is a single measurement device that can be
moved to different locations. In the case of the pressure field, it is a pressure gauge. In the
case of gravitational force, our measurement tool is the motion of the test mass being
acted on.Without some kind of sensing tool, we could not “know” the force fields.

In mapping force fields, the fixed objects are called source objects because they
are the objects that exert forces on another object of interest. We use this other object
that the forces are exerted on as our measurement tool. We refer to this other object
as the test object.

Test Objects Should Not Be Large Enough to Move Source Objects
Since all forces occur in pairs, a test object exerts forces on the source objects, trying
to change their locations, and hence to change the nature of the field. This issue makes
the determination of the field values very complex unless the amount of a source ob-
ject is much greater than the amount of a test object or the source object is somehow
fixed in space. The fact that the field concept is only useful in cases where the test ob-
ject does not move the source objects is an example of a universal issue involved in
making measurements. Namely, the measurement device or tool should not change
the value of the quantity being measured. For example, one should not use a large
bathtub thermometer to measure the temperature of water in a tiny cup. The presence
of the thermometer itself would affect the temperature of the water. Here are several
examples of circumstances in which a field can be mapped:

1. In the Earth’s gravitational interactions, the location of a much smaller test mass
has a negligible effect on the Earth’s location and hence on its force field (Fig. 23-3).

2. A conducting sphere with billions of excess electrons that can act as source
charges that can exert a net force on a test charge consisting of a single proton.
Each excess electron stays put because the net force from all the other charges in
its vicinity is much stronger than that from the single proton (unless the proton
gets very close to a particular electron).

3. A few electrons on the surface of an insulator such as a piece of Styrofoam can
act as source charges that exert a net force on a single electron. The source
charges are trapped on the insulator and do not reconfigure themselves.

The field concept is useful when the test object is too small to change the location of the
source objects or if the source objects are fixed.

Mapping a Vector Field
How can we map the force field for a test object at various locations in space? The pro-
cedure that follows can be used to create a field map for any kind of force. The force
on the test object could be the result of its interaction with a single source object or a
collection of source objects at several locations. The procedure is as follows:

1. Choose a grid or array of points in the vicinity of the sources. The grid should be
fine enough to give you a good idea of how the force field looks. However, if the
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grid is too fine the procedure will be tedious and the arrows will clutter up the
page.

2. Determine the magnitude and direction of the force on the test object at each
point on the grid. (Note that we place our test object at one location at a time. If
we put down lots of test objects at the same time, they would exert forces on each
other and the source object and mess things up.) We must ensure that our test ob-
ject is not so large that it disturbs the locations of the source objects. We might
determine the force at the various points in space experimentally by making
direct measurements. Alternatively, if we know the field sources, we can use theo-
retical relationships such as the law of gravitation or Coulomb’s law to make the-
oretical calculations of the forces on our test object at the different grid locations.

3. Place an arrow representing the force vector at each of the grid locations. Each
arrow should point in the direction of the force with a length that is proportional
to the force magnitude at that location. It is conventional to locate the tail of the
arrow (rather than its tip) at the point for which we have calculated (or mea-
sured) the force on the test charge.

Note: We are free to choose a convenient length for the first arrow we draw on
our map. Once the length of the first arrow is chosen, a second arrow can be
drawn at another point in space. However, the ratio of the lengths of the two ar-
rows must be the same as the ratio of the magnitudes of the two forces. For exam-
ple, according to Coulomb’s law, if the distance between our test charge and the
center of the source charge is doubled, the new force on it has only one-fourth the
magnitude. This is shown in Fig. 23-4, where the arrows at twice the distance have
one-fourth the length.

This type of vector field plot is valuable when used to map forces because it imme-
diately tells us important information about characteristics of the forces. For example,
Figs. 23-1b and 23-4 allow us to infer that the gravitational force exerted by the Earth
is everywhere attractive and the electrostatic (or Coulomb) force exerted by one posi-
tively charged object on another is everywhere repulsive. These two figures also show
us that both of these forces act along the line connecting the centers of the two ob-
jects (they are “central forces”). They immediately remind us that these forces are
large close to the source (long arrows) and small farther away (short arrows).

READI NG EXERC IS E  23-1: In Fig. 23-4, suppose we chose an arrow that had a
length of 36 mm to represent the electrostatic force at a distance of 2 cm from the source
charge. What would the length of the arrows representing the magnitude of the force on the
same test charge be if it was (a) 4 cm away from the center of the source charge? (b) 6 cm away
from the center of the source charge? ■

READI NG EXERC IS E  23-2: In measuring a field that has different values at each
point in space, the “test” or measurement device must be small relative to the region of space
over which the measurements are to be made. Why? ■

23-3 Gravitational and Electric Fields

Although the lengths of the arrows shown in Figs. 23-1 and 23-4 represent the magni-
tudes of the gravitational and electrostatic forces experienced by a test object at vari-
ous locations, we note that the force magnitudes (and hence lengths of the arrows) are
different for different test objects.

For example, Figure 23-4 shows the force field of a test object with twice as much
charge as the one depicted in Fig. 23-2. Note that every arrow shown in the figure

+ q

FIGURE 23-4 ■ Here the positive test
charge is twice what it was in Fig. 23-2.
Coulomb’s law tells us that if the test
charge is doubled, the electrostatic force it
experiences at each location will be
doubled.
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doubles in length. That is, each arrow is scaled by the same factor based on how much
larger or smaller the test object’s charge is. The force vectors scale as they do because
for a given source charge, the electrostatic force is directly proportional to the amount
of the test charge. The same is true for the gravitational force due to a given source
mass. These changes in the force fields with test object strength are difficult, because
we need an infinite number of field plots to represent all different test objects.

Actually, we have already dealt with the problem of test masses for gravitational
forces. Recall from Section 14-2 that the magnitude of the gravitational force exerted
by a spherical source mass ms such as the Earth on a test mass mt (perhaps a ball) is
given by

(23-1)

where G is the gravitational constant and r is the distance between the objects. To fa-
cilitate calculation of the force exerted on various objects by the same source object
(typically the Earth) we took advantage of this proportionality to define the local
gravitational strength gs as a scalar given by

(spherical source). (23-2)

Using the field concept that we have now developed, we can call the vector the
local gravitational field vector. Combining Eqs. 23-1 and 23-2, we see that the gravita-
tional force exerted by a source mass ms on a test mass mt can be determined using
the simple expression

(23-3)

In other words, the gravitational force on an object at a certain point in space is the
product of its mass and the gravitational field vector at that point. The gravitational
field vector is especially convenient because it is solely a property of space. It is com-
pletely determined by locations and the masses of the source objects. It is in-
dependent of the mass of the test object we might choose to investigate in any given
instance.

Similarly, we can take advantage of the direct proportionality involved in electro-
static forces. That is, there is a similar proportionality between the amount of a test
charge and the forces exerted on it by a source or a set of sources. Our approach is to
define a new field, the electric field, which allows us to focus on the influence of the
source of the force. To do this, we define the electric field vector due to one or more
source charges as 

(definition of electric field), (23-4)

where represents the net electrostatic force a test charge qt experiences from a
set of source charges.

The force in Eq. 23-4 is the vector sum of the electrostatic forces on the test
charge qt from all the source charges. Since the force from each source charge is pro-
portional to qt, dividing the force by qt cancels it out in each term, leaving the electric
field vector s independent of qt. Thus, the electric field vector shares the conve-
nient characteristics of the gravitational field vector. It is solely a property of space
and source and is independent of the test charge one might choose to probe it. The
electric field depends only on the source charges, not on the test charge.
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According to this definition, the electric field is the ratio of the electrostatic force
on a test charge to the amount of that test charge. In other words, in SI units the electric
field is the force per unit of test charge. This gives an SI unit for electric field as newtons
per coulomb (N/C). In comparison, recall that the gravitational field was a measure of
force per unit of mass and the SI unit for the gravitational field g was the N/kg.

The number given for the electric field can also be thought of as the force exerted
on a 1 C test charge. To give you some idea of how much force is exerted on a one
coulomb charge in various circumstances, Table 23-1 shows the electric fields that oc-
cur in a few physical situations. Remember, though, that one coulomb is a very large
amount of charge and not an appropriate test charge. For example, an object with
10 000 more protons than electrons would have only a charge on the order of 10�15 C.

Although we use a test charge to determine the electric field associated with a
charged object, remember that the electric field’s existence is independent of the test
charge just as the temperature in a room’s existence is independent of whether or not
there is a thermometer present to detect it. The test charge is simply the measurement
device. The field at point P in Fig. 23-5 exists both before and after the test charge
shown in the figure is put there. (We must always assume the test charge does not
alter the electric field we are defining.)

The remainder of this chapter is primarily devoted to exploring how to use
Coulomb’s law and the principle of superposition to find the electric fields associated
with a single point charge and with relatively simple arrangements of charged objects.
We will also explore the concept of electric field lines as an alternative to electric field
vectors to represent electric fields visually.

TA B L E 2 3 - 1
Some Electric Field Magnitudes

Field Location or Situation Value (N/C)

At the surface of a uranium nucleus �3 � 1021

Within a hydrogen atom, at a radius of �5 � 1011

5.29 � 10�11 m

Nerve cell membrane �1 � 107

Electric breakdown in air (sparking) �3 � 106

Near the charged drum of a photocopier �1 � 105

Near a charged plastic comb �1 � 103

In the lower atmosphere �1 � 102

Inside the copper wire of household circuits �1 � 10�2

–
–

–
––

––
–

Positive
test charge

+
F

P

FIGURE 23-5 ■ The electric field associ-
ated with a negatively charged source ob-
ject points inward at all locations outside
of the source. Since a legitimate test charge
does not noticeably influence the electric
field created by the source charges, we
think of the electric field as existing
whether or not a small test charge is pre-
sent to experience a force.

Consider a set of hidden source charges that cannot move. Suppose
you are trying to explore the nature of electrical forces in the vicin-
ity of the source charges using a positive test charge given by

. You discover that at a point A shown in Fig. 23-6, the
test charge experiences a force given by and at
point B it experiences a force given by .

(a) What will the forces at points A and B be on a different point
charge given by ? Or on another given by

? Note: nC stands for nanocoulomb, which is 10�9 C.

S O L U T I O N ■ The Ke y  I d e a here is that you can use the in-
formation about the electrostatic forces experienced by the test

q2 � �25 nC
q1 � �15 nC

F
: elec

s: t B � �(4.2 N)ĵ
F
: elec

s: t A � �(2.8 N)î
qt � 14 nC

TOUCHSTONE EXAMPLE 23-1: Predicting Forces on Charges

x

y

A

B

Fs   tA
elec

elecFs   tB

FIGURE 23-6 ■ Two
points A and B are in
the vicinity of a set of
hidden fixed charges.
A test charge experi-
ences different elec-
trostatic forces at
each location.



23-4 The Electric Field Due to a Point Charge 

The simplest of all possible charge distributions is a charge that can be approximated
by a point with zero size. Protons, electrons, nuclei, and ions can all be considered to
be point charges. Understanding the interactions of these objects is vital to our under-
standing of the physical world. In fact, even large charged objects can be viewed as
point charges when considered from afar.

In this section, we determine the magnitude of the electric field due to a point-
like charge qs. We do this with the understanding that if we know the mathematical
expression for the electric field of the charge, we know the mathematical expression
for the force exerted per unit charge on any other charge that we might bring into the
region surrounding it.

Here we discuss how to calculate the theoretical value of the electric field created
by a positive charge qs. We can also use another positive charge qt to probe the region
around qs, testing the magnitude and direction of the force exerted on qt by qs. The
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charge to map the electric field in the region of our source charges.
Once that is done you can then use your knowledge of the electric
field to determine the forces on other charges (as long as the source
charges are fixed or are large relative to any additional charges you
are bringing into their vicinity). Using the definition of electric field
given by Eq. 23-4, we see that the electric field at points A and B are

.

(23-5)

Now that we know the values of the electric field at points A and B
we can find the forces on other charges by rearranging Eq. 23-5 to
solve for electrostatic force and using the values of the new charges
q1 and q2 in our calculations.

For q1:

(Answer)

For q2:

(Answer)

(b) Explain how the direction and magnitude of the forces on small
charges in an electric field are related to the direction and magni-
tude of the electric field vector at point A and at point B. Hint:
Sketching the force vectors will help you visualize the situation.

S O L U T I O N ■ The Ke y  I d e a here is that charge is a scalar so
when you multiply it by the electric field vector to determine a
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E
:

A �
F
: elec

s: t

qt
�

�(2.8 N)î
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force, the force vector must either be in exactly the same direction
as the electric field vector (for a positive charge) or opposite to it
(negative charge). For example, the equations just above show that
the force on q1, which is negative, is in the opposite direction from
the electric field at both points A and B. On the other hand, the
equations just above show that the force on q2, which is positive, is
in the same direction as the electric field at points A and B. This is
illustrated in Fig. 23-7.

x

y

FB

FA

EB

EA

B

A

(a) q1 = –15 nC

x

y

FA

EB

EA

B

A

(b) q2 = +25 nC

FB

FIGURE 23-7 ■

A diagram 
showing the force
vectors on two
charges at points
A and B due to an
electric field acting
on them. (a)

and
(b) q2 � �25 nC.
q1 � �15 nC
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force vector and electric field vector for two positive point-like charges separated by a
distance r are shown in Fig. 23-8. We develop a mathematical expression for the elec-
tric field associated with a positive charge below. As we do so, we consider how the
situation would be different for negative charges.

We know that qt experiences a repulsive force caused by qs because they are like
charges. The magnitude of the force on our test charge qt can be found
using Coulomb’s law:

(23-6)

The absolute value signs on qs and qt serve as a reminder that the magnitude of the
force is independent of the type (sign) of charge we have chosen to use in this devel-
opment. Using our concept of the electric field vector from Section 23-3 above, we can
express the magnitude of the force on the test charge qt due to the electric field cre-
ated by the source charge qs as

(23-7)

where Es is the magnitude of the electric field due to the source charge.
By combining Eq. 23-6 with Eq. 23-7, we can express the magnitude of the electric

field at a distance r from a point charge of magnitude qs as

(magnitude of the electric field due to a point charge). (23-8)

In agreement with our definition of the electric field as the force per unit charge, this
expression is independent of the amount (and sign) of the test charge qt we use as the
probe. This expression is valid everywhere around the point charge qs.

The magnitude of the electric field due to a positive or negative point charge is
given by the expression above. However, the electric field is a vector. Hence, we must
still determine the direction of the electric field associated with our positive point
charge qs. Recall the definition of electric field magnitude in Eq. 23-4,

(23-9)

For a positive test charge qt, this means that the direction of the field vector is the
same as the electrostatic force vector . This force points radially away from qs

as shown in Fig. 23-8. Since the direction of the field is the same as the direction of
the force for the positive charge qt, we know the electric field created by the posi-
tive point charge qs must also point radially away from the charge qs as shown in
Fig. 23-8.

Would the direction of the field change if the charge qs producing the field was
negative rather than positive? The answer is yes. Consider a positive test charge qt.
The vector relationship between force and field (Eq. 23-4) tells us that since qt is posi-
tive, the direction (sign) of the field is still the same as the direction of the force on qt.
However, now qs is negative and qt is positive. These unlike charges will attract one
another. Hence, as shown in Fig. 23-9, the direction of the force on qt due to qs points
radially toward qs. Since the directions of the force and the field are the same, so does
the electric field. According to the force-field relationship, if we used a negative test
charge, the electric field would not change but the force on a negative test charge
would act in the opposite direction.
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FIGURE 23-8 ■ When a source charge and
a point-like test charge are both positive,
the force between them is repulsive and
both the vector representing the force on
the test charge qt and the electric field
vector at its location point radially 
outward in the same direction. Since the
units of and are different, the relative
lengths of the vectors are arbitrary.
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FIGURE 23-9 ■ When the charge on a
source charge is negative while a point-like
test charge is positive, the forces between
them are attractive and both the vector
representing the force on the test charge
and the electric field vector at its location
point radially inward in the same direction.
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FORCE AND ELECTRIC FIELD DIRECTIONS: The direction of the force on a positive test
charge is always the same as the electric field at the location of the positive test charge. So,
at any point in space, the direction of the electric field produced by a positive point charge
is radially away from the charge. The direction of the electric field produced by a negative
point charge is radially toward the charge. “Radially” means along the line connecting the
charge and the point of evaluation.

The Electric Field Vector Representation
The electric field vector representation is extremely useful when we want to deter-
mine the force on a charge placed at a given location (Fig. 23-10). We merely have to
multiply the electric field vector at the location by the value of the charge. This
method of using the electric field to find force on a charge is valid for any charge, q, that
is not large enough to disturb the electric field, regardless of the source of the field.

READI NG EXERC IS E  23-3: Rewrite the discussion of how we determine the direc-
tion of the field using a negative test charge rather than a positive test charge. Does it make any
difference which type of charge we decide to use in determining the direction of the field? ■

23-5 The Electric Field Due to Multiple Charges

In the real world, problems are seldom as simple as one charged object exerting a force
on another. It is more common for several charges to be present and the force exerted
on the test charge to be the net result of the forces due to each of the source charges.
As we mention in Section 22-8, experiments involving both gravitational and electrical
forces have confirmed that the net force exerted on a test object by a collection of
source objects is the vector sum of the forces exerted by each individual source object.

If we place a positive test charge qt near n point charges qA, qB, . . . , qn, as shown
for only three charges in Fig. 23-11, the forces exerted by the individual charges super-
impose so that the net force from the n point charges acting on the test charge is

(23-10)

For each of the terms in the expression above, we can replace the individual forces
with the equivalent expressions based on the definition of the electric field. For
example,

F
: net

t � F
:

A: t � F
:

B: t � � � � � F
:

n: t.

F
: net

t
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F F
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F

F F

F F

F FF

F
FF

F

FF

FF

F F

F
F

(a) Force field vectors
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EE
E

E E

E E

E EE

E
EE

E

EE

EE

E E

E
E

(b) Electric field vectors

FB   t

FC   t

FA   t

F net

F net = FA   t + FB   t  + FC   t

Test
charge(+)

+2q –3q

+1q

A
B

C

FIGURE 23-10 ■ There are two methods
commonly used to depict the pattern of
forces a test charge might experience at
different locations in space. For the special
case of forces associated with a single neg-
ative source charge: (a) shows a vector
force field on a positive test charge, and (b)
shows a vector electric field. The vector
electric field is solely a property of space,
independent of the test charge used to
generate (a).

FIGURE 23-11 ■ Three point charges 
exert forces on a small positive test charge
at a point in space. These force vectors 
superimpose to yield a net force.



(23-11)

where is the electric field associated with charge qA. If we make such replacements
for each force term in the expression above we have:

(23-12)

Here is the resultant electric field associated with the entire group of charges. If
we divide both sides of the expression

(23-13)

by qt, the result is an expression for the net electric field associated with a group of
charges. Namely,

(23-14)

This expression shows us that the principle of superposition applies to electric fields
as well as to electrostatic forces. When doing calculations, however, it is important to
remember that we are adding vectors here. Hence, the addition is more complex than
simply adding numbers together.

If the array of point charges is symmetric, sometimes the addition of vectors at
certain points in the vicinity of the charges is simplified. In Figs. 23-12 and 23-13 we
show examples of symmetric situations for which the net electric field only has one
component everywhere on a line bisecting the line that connects the two charges.

READI NG EXERC IS E  23-4: The figure here shows a proton p and an electron e on
an x axis. Draw vectors indicating the direction of the electric field due to the electron and de-
scribe the direction in words at (a) point S and (b) point R. Draw vectors indicating the direc-
tion of the electric field due to both charges and describe the direction in words at (c) point R
and (d) point S.
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FIGURE 23-12 ■ When charges are arranged symmetri-
cally it is often the case that electric field components
cancel each other. In this case the x-components cancel
everywhere along a line bisecting the line connecting the
charge centers.

FIGURE 23-13 ■ A symmetrical arrange-
ment for which y-components of the elec-
tric field cancel everywhere along a line,
bisecting the line connecting the charge
centers.
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Figure 23-14 shows three particles with charges qA � �2Q, qB �
�2Q, and qC � �4Q, each a distance d from the origin. We assume
Q is positive. What net electric field is produced at the origin?E

: net

S O L U T I O N ■ We need to find the electric field vectors , ,
and that act at the origin. The Ke y  I d e a is that we can pick a
more convenient coordinate system to describe these electric field
vectors. An x�–y� coordinate system that is rotated by 30° in a
clockwise direction has qA and qB lying along its x� axis, as shown in
Fig. 23-15a.

Another Ke y  I d e a is that charges qA, qB, and qC produce electric
field vectors , , and , respectively, at the origin, and the net
electric field is the vector sum . To find this
sum, we first must find the magnitudes and orientations of the three
field vectors. To find the magnitude of , which is due to qA, we
use Eq. 23-8, substituting d for r and 2Q for and obtaining

Similarly, we find the magnitudes of the fields and to be

and

We next must find the orientations of the three electric field
vectors at the origin. Because qA is a positive charge, the field

EC � k
4Q
d 2 .EB � k

2Q
d2

E
:

CE
:

B

EA � k
2Q
d 2 .

� q �
E
:

A

E
: net � E

:

A � E
:

B � E
:

C

E
:

CE
:

BE
:

A

E
:

C

E
:

BE
:

A

vector it produces points directly away from it, and because qB and
qC are both negative, the field vectors they produce point directly
toward each of them. Thus, the three electric fields produced at the
origin by the three charged particles are oriented as in Fig. 23-15b.
(Caution: Note that we have placed the tails of the vectors at the
point where the fields are to be evaluated; doing so decreases the
chance of misinterpretation.)

We can now add the fields vectorially as outlined for forces in
Touchstone Example 22-1c. However, here we can use symmetry to
simplify the procedure. From Fig. 23-15b, we see that and 
have the same direction. Hence, their vector sum points along the
positive axis and has the magnitude

or

where î� and ĵ� are unit vectors in the x�–y� coordinate system.
This sum happens to equal the magnitude of .

We must now combine two vectors, and the vector sum
, that have the same magnitude. We do this by resolving

into its and components.

Then we find and components.

Using vector notation we get

(Answer)

The magnitude of is given by

� k
6.93Q
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TOUCHSTONE EXAMPLE 23-2: Three Charges
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FIGURE 23-14 ■

Three particles with
charges qA, qB, and
qC are at the same
distance d from the
origin.

FIGURE 23-15 ■ (a) The same three charges in the new x� � y�
coordinate system. (b) The electric field vectors , , and at
the origin due to the three particles. (c) The electric field vector 
and the vector sum at the origin.E
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23-6 The Electric Field Due to an Electric Dipole

Figure 23-16a shows two charged particles of amount but of opposite sign, sepa-
rated by a distance d. We call this configuration an electric dipole. Separation of
positive and negative charge in an electrically neutral object occurs quite naturally.
For example, recall the discussion of polarization in Chapter 22. As a result, true
electric dipoles and approximations of electric dipoles are reasonably common.
Hence, we take some time to develop an expression for the electric field due to a
dipole. We start with the idea of superposition of electric fields that we discuss in
Section 23-5.

Let us find the electric field due to the dipole of Fig. 23-16a at a point P, a dis-
tance z from the midpoint of the dipole and on the axis through the particles, which is
called the dipole axis. From symmetry, the electric field at point P—and also the
fields and due to the separate charges that make up the dipole—must lie
along the dipole axis, which we have taken to be a z axis. Applying the superposition
principle for electric fields, we find that the magnitude of the electric field
at P is

(23-15)

where k is the Coulomb constant. Using algebra, we can rewrite this equation as 

(23-16)

We are usually interested in the electrical effect of a dipole only at distances that
are large compared with the dimensions of the dipole—that is, at distances such that

. At such large distances, we have in the expression above. We can
then expand the two quantities in the brackets in that equation by the binomial theo-
rem (Appendix E), obtaining for those quantities 

Thus, (23-17)

The unwritten terms in these two expansions involve raised to progressively
higher powers. Since , the contributions of those terms are progressively less,
and to approximate the electric field magnitude, , at large distances, we can neglect
them. Then, in our approximation, we can rewrite this expression as 

(for d/z 		 1). (23-18)

The product , which involves the two intrinsic properties of charge q and
separation d of the dipole, is the magnitude of a vector quantity known as the
electric dipole moment of the dipole. (The unit of is the coulomb-meter andp:p:
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E �
k� q �

z2

2d
z

� 2k
� q �d

z3

E
d/z		1

d/z

E �
k� q �

z2 ��1 �
d
z

� � � �� � �1 �
d
z

� � � ��	.

��1 �
2d

2z(1!)
� � � �� � �1 �

2d
2z(1!)

� � � ��	.

d/z		1z

d

E �
k� q �

z2 ��1 �
d
2z �

�2

� �1 �
d
2z �

�2

	.

�
k� q �

(z � 1
2d)2 �

k� q �
(z � 1

2d)2 ,

� k
� q �
r 2

(�)
� k

� q �
r 2

(�)

E � � E
:

(�) � � � E
:

(�) �

E � � E
:

�

E
:

(�)E
:

(�)

E
:

� q �

670 CHAPTER 23 Electric Fields

FIGURE 23-16 ■ (a) An electric dipole.
The electric field vectors and at
point P on the dipole axis result from the
dipole’s two charges. P is at distances r(�)

and r(�) from the individual charges that
make up the dipole. (b) By definition, the
dipole moment is a vector that points
from the negative to the positive charge of
the dipole.
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should not be confused with either momentum or pressure.) Thus, we can rewrite
Eq. 23-18 as 

(electric field magnitude for a dipole along axis with ). (23-19)

The direction of is taken to be from the negative to the positive end of the dipole,
as indicated in Fig. 23-16b. We can use to specify the orientation of a dipole.

The expression for the electric field due to a dipole shows that if we measure the
electric field of a dipole only at distant points, we can never find both and d sepa-
rately, only their product. The field at distant points would be unchanged if, for exam-
ple, were doubled and d simultaneously halved. Thus, the dipole moment is a basic
property of a dipole.

Although Eq. 23-19 holds only for distant points along the dipole axis, it turns out
that for a dipole varies as for all distant points, regardless of whether they lie
on the dipole axis. Here r is the distance between the point in question and the dipole
center.

Inspection of the electric field vectors in Fig. 23-16 shows that the direction of 
for distant points on the dipole axis is always the direction of the dipole moment vec-
tor . This is true whether point P in Fig. 23-16a is on the upper or the lower part of
the dipole axis.

Inspection of Eq. 23-19 shows that if you double the distance of a point from a di-
pole, the electric field at the point drops by a factor of 8. If you double the distance
from a single point charge, however (see Eq. 23-8), the electric field drops only by a
factor of 4. Thus the electric field of a dipole decreases more rapidly with distance
than does the electric field of a single charge. The physical reason for this rapid de-
crease in electric field for a dipole is that from distant points a dipole looks like two
equal but opposite charges that almost—but not quite—coincide. Thus, their electric
fields at distant points almost—but not quite—cancel each other.

23-7 The Electric Field Due to a Ring of Charge

So far we have considered the electric field produced by one or, at most, a few point
charges. We now consider charge distributions consisting of a great many closely
spaced point charges (perhaps billions) spread along a line, a curve, over a surface, or
within a volume. Such distributions can be treated as if they were continuous rather
than discrete. Since these distributions can include an enormous number of point
charges, we find the electric fields that they produce using integral calculus rather
than by considering the point charges one by one. In this section we discuss the elec-
tric field caused by a ring of charge. In the next chapter, we shall find the field inside a
uniformly charged sphere.

When we deal with continuous charge distributions, it is most convenient to ex-
press the charge on an object as a charge density rather than as a total charge. For a
line of charge, for example, we would report the linear charge density (or charge per
unit length) , whose SI unit is the coulomb per meter. If we have a total amount of
charge q distributed uniformly along a line or curve then the linear charge density is
defined as

where L is the total length of the path taken by the line or curve. For example, the
curve subscribed by the uniformly charged circular ring of radius R shown in Fig. 23-17
has a total length of .L � 2�R

��q/L

�

p:

E
:

1/r3E
:

� q �

� q �

p:
p:

d/z		1E � 2k
� p: �
z3



Table 23-2 summarizes information about the types of charge densities we use in
this text.

We may imagine the ring in Fig. 23-17 to be made of plastic or some other insula-
tor, so the charges can be regarded as fixed in place. What is the electric field at
point P, a distance z from the plane of the ring along its central axis?

To answer this question, we cannot just use the expression for the electric field set
up by a point charge, because the ring is obviously not a point charge. However, we
can mentally divide the ring into differential elements of charge. If these charge ele-
ments are small they act like point charges, and then we can use Eq. 23-8 to find the
electric field magnitude contributed by a single element. This gives us

where the value of the coulomb constant k is given in Eq. 22-7. Next, we can add the
electric fields set up at location P due to all the differential elements. The vector sum
of all those fields gives us the net electric field set up at P by the entire ring.

Let be the (arc) length of any differential element of the ring. Since is the
charge per unit length, the amount of charge in the element is given by

(23-20)� dq � � � � �ds.

�ds

Eq � k
� q �
r2 ,

E
:
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FIGURE 23-17 ■ (a) A ring of uniform
positive charge. A differential element of
charge occupies a length (greatly exag-
gerated for clarity). This element sets 
up an electric field at point P. The mag-
nitude of the component of along the
central axis of the ring is .
(b) Each ring element has an opposite
element . As a result of this symmetry
the on-axis components (along z) add
while those perpendicular to the axis 
cancel (in the x-y plane).
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TA B L E 2 3 - 2
Some Measures of Charge Density

Name Symbol Definition* SI Unit

Charge q q C

Linear charge density � q/L C/m

Surface charge density � q/A C/m2

Volume charge density � q/V C/m3

*These definitions assume a uniform charge density. Otherwise the charge densities de-
pend on location so that .�(x) � dq/dx, �(x, y) � dq/dA(x, y), �(x, y, z) � dq/dV(x, y, z)
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This differential charge sets up a differential electric field at point P, which is a
distance r from the element. Treating the element as a point charge and using the
equation above for dq, we can express the magnitude of as 

(23-21)

From Fig. 23-17a, we see we can use the Pythagorean theorem to rewrite the equation
above as 

(23-22)

Figure 23-17a also shows us that the vector is at an angle to the central axis
(which we have taken to be a z axis) and has components perpendicular to and paral-
lel to that axis.

Every element of charge in the ring sets up a differential field at P, with magni-
tude given by the expression above. All the vectors have identical components par-
allel to the central axis. All these vectors also have components perpendicular to
the central axis. However, these perpendicular components are identical in magnitude
but point in different directions. In fact, for any perpendicular component that points
in a given direction, there is another one that points in the opposite direction as shown
in Fig. 23-17b. The sum of this pair of components, like the sum of all other pairs of op-
positely-directed components, is zero. Thus, the perpendicular components cancel and
we need not consider them further. This leaves only the parallel components. They all
have the same direction, so the net electric field at P is just their algebraic sum.

The parallel component of shown in Fig. 23-17a has magnitude .
The figure also shows us that 

(23-23)

Then combining our expressions for and cos  gives us the magnitude of the paral-
lel component of ,

(23-24)

To add the parallel components, , produced by all the elements, we inte-
grate this expression around the circumference of the ring, from to .
Since the only quantity that varies during the integration is s, the other quantities can
be moved outside the integral sign. The integration then gives us an electric field mag-
nitude of

(23-25)

Since � is the charge per unit length of the ring, the term is q, the total charge
on the ring. We can then rewrite this expression as 

(electric field magnitude of a charged ring). (23-26)E �
k� qz �
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If the charge on the ring is negative, rather than positive as we have assumed, the
magnitude of the field at P is still given by this expression. However, the electric field
vector then points toward the ring instead of away from it.

Let us evaluate this equation for the electric field for a point on the central axis so
far away that . For such a point, the expression z2 � R2 can be approximated as
z2, and Eq. 23-26 becomes 

(on central axis for z 

 R at large distance). (23-27)

This is a reasonable result, because from a large distance, the ring simply “looks” like
a point charge. So, if we replace z with r then Eq. 23-27 becomes the expression for
the electric field due to a point charge.

Let us next check Eq. 23-26 for a point at the center of the ring—that is, for .
At that point, this expression tells us that . This is a reasonable result, because if
we were to place a test charge at the center of the ring, there would be no net electro-
static force acting on it. The force due to any element of the ring would be canceled
by the force due to the element on the opposite side of the ring. If the force at the
center of the ring is zero, the electric field there also has to be zero.

E
:

� 0
z � 0

E �
k� q �

z2

z

R
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Figure 23-18a shows a plastic rod having a uniformly distributed
charge �Q. We assume Q is positive, so �Q is negative. The rod has
been bent in a 120° circular arc of radius r. We place coordinate
axes such that the axis of symmetry of the rod lies along the x axis
and the origin is at the center of curvature P of the rod. In terms of
Q and r, what is the electric field due to the rod at point P?

S O L U T I O N ■ The Ke y  I d e a here is that, because the rod has
a continuous charge distribution, we must find an expression for the
electric fields due to differential elements of the rod and then sum
those fields via integration. Consider a differential element having
arc length ds and located at an angle above the x axis (Fig. 23-
18b). If we let represent the linear charge density of the rod, our
element ds has a differential charge of magnitude

(23-28)

Our element produces a differential electric field at point P,
which is a distance r from the element. Treating the element as a
point charge, we can rewrite Eq. 23-21 to express the magnitude of

as

(23-29)

The direction of is toward ds, because charge dq is negative.dE
:

� dE
:

� � k
� dq �
r 2 � k

� � �ds
r 2 .

dE
:

dE
:

dq � �ds.

�


E
:

Our element has a symmetrically located (mirror image)
element in the bottom half of the rod. The electric field set
up at P by also has the magnitude given by Eq. 23-29, but the
field vector points toward as shown in Fig. 23-18b. If we resolve
the electric field vectors due to ds and into x- and y-components
as shown in Fig. 23-18b, we see that their y-components cancel

ds�
ds�

ds�
dE

:
�ds�

TOUCHSTONE EXAMPLE 23-3: Charged Arc
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FIGURE 23-18 ■ (a) A plastic rod of charge �Q in a circular section of radius r
and central angle 120°; point P is the center of curvature of the rod. (b) A dif-
ferential element in the top half of the rod, at an angle to the x axis and of arc
length ds, sets up a differential electric field at P. An element , symmetric
to ds about the x axis, sets up a field at P with the same magnitude. (c) Arc
length ds makes an angle about point P.d
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(because they have equal magnitudes and are in opposite direc-
tions). We also see that their x-components have equal magnitudes
and are in the same direction.

Thus, to find the electric field set up by the rod, we need sum (via
integration) only the x-components of the differential electric fields
set up by all the differential elements of the rod. From Fig. 23-18b
and Eq. 23-29, we can write the component dEx set up by ds as

(23-30)

Equation 23-30 has two variables, and s. Before we can integrate
it, we must eliminate one variable. We do so by replacing ds, using
the relation

in which is the angle at P that includes arc length ds (Fig.
23-18c). Note: We choose to replace ds here rather than d because
we know the angle into which the arc is bent. With this replace-
ment, we can integrate Eq. 23-30 over the angle made by the rod at
P, from to . That will give us E, the magnitude of
the electric field at P due to the rod:
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� dEx � � � dE
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� cos � k
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r 2  cos ds.

(23-31)

(If we had reversed the limits on the integration, we would have gotten
the same result but with a minus sign. Since the integration gives only
the magnitude of , we would then have discarded the minus sign.)

To evaluate the amount of charge per unit length, �� �, we note
that the rod has an angle of 120° and so is one-third of a full circle.
Its arc length is then , and its linear charge density must be

Substituting this into Eq. 23-31 and simplifying give us an electric
field magnitude of

(Answer)

The direction of is toward the rod, along the axis of symmetry of
the charge distribution. We can write in unit-vector notation as
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23-8 Motion of Point Charges in an Electric Field

So far we have concentrated on finding electric field values by doing theoretical calcu-
lations. However, the electric field concept is especially valuable when we have little
or no knowledge about source charges. In such a case, we can use measured values of
the forces on our test charge to create an experimentally determined map of the field.
In either case, once the electric field is known, we can determine forces on any point-
like object with a known quantity of excess charge at any location in the field
(provided that our test charge doesn’t disturb the source charges). Assuming we know
the mass of our charge, knowing the force means we can calculate the magnitude and
direction of the particle’s acceleration. Knowing the acceleration allows us to accu-
rately predict its subsequent motion.

In the preceding sections we worked at the first of two tasks: given a charge distri-
bution, find the electric field it produces in the surrounding space. Here we begin the
second task: to determine what happens to a charged particle when it is in an electric
field. When a charged particle is placed in an electric field, an electrostatic force acts
on the particle. This force, a vector quantity, is given by 

(23-32)

in which qt is the charge of the test particle (including its sign) and is the electric
field that source charges have produced at the location of the particle. (The field is not

E
:

s

F
: elec

t � qt E
:

s



676 CHAPTER 23 Electric Fields

the field set up by the test particle itself. A charged particle is not affected by its own
electric field.) Equation 23-32 tells us:

The electrostatic force acting on a charged test particle located in an external electric
field has the direction of if the charge qt of the test particle is positive and is opposite
the direction of if qt is negative.

Knowing the force on the particle allows us to directly calculate the acceleration,
but determining the exact motion of the object is more complicated. The electric field
determines the force that a charged particle feels. That, in turn, determines its acceler-
ation, not its velocity. So at first a charged particle starting from rest follows the direc-
tion of the field. This is because without an initial velocity, the direction of the force
and acceleration are in the direction of the velocity. However, if the field changes di-
rection, the path of the particle quickly deviates from the direction of the field. If the
charged particle is given an initial velocity that is not aligned with the field, it may
never follow the direction of the field. A good analogy to this situation is the path of a
projectile in Earth’s gravitational field. The gravitational field is uniformly directed
downward. Yet this is the direction of the force (and acceleration), not necessarily the
direction of the velocity at any given moment. The path of a launched projectile may
never follow the direction of the gravitational field.

Electrostatic Precipitation
A few years ago, an Advanced Hybrid Particulate Collector (AHPC) was added to
the Big Stone coal-fired power plant shown in the chapter’s opening photograph. This
hybrid collector eliminates essentially all the particulates in the smoke by combining
the best features of filtration systems with a new type of electrostatic precipitation
system. When the smoke from the coal boiler enters the device, more than 90% of the
tiny smoke particles become electrically charged and then are attracted to one of the
collection plates. The other 10% of particles flow through holes in the collection
plates and are trapped by tubular filter bags that are especially efficient at removing
extremely small particles (Fig. 23-19a).

The use of strong electric fields is a key factor in the effectiveness of electrostatic
precipitation. Discharge electrodes (Fig. 23-19b) consisting of metal wires are nega-
tively charged. The electric fields surrounding the electrodes are so intense that elec-
trons are discharged. When the electrons fly away from the electrodes and encounter
smoke particles, negative ions are formed. These ions are repelled from the elec-
trodes, attracted to neutral metal collector plates (Fig. 23-19c), and captured. In short,
these electrons and ions act like point charges in the presence of the electrodes’ elec-
tric field.

The configuration of components in an AHPC system is shown in Fig. 23-20. A
collector plate with holes in it is installed between wire discharge electrodes and fil-
ters to protect the filters. On the other side of the electrodes, another collector plate is
installed to yield an arrangement in which each row of filters has collector plates on
both sides of it. With this arrangement, the collector plates with holes function both as
the primary collection surface and as a protective shield for the filters.

READI NG EXERC IS E  23-5: (a) In the figure, what is
the direction of the electrostatic force on the electron due to the
uniform electric field shown? (b) In which direction does the elec-
tron accelerate if it is moving parallel to the y axis before it en-
counters the electric field? What path does it follow? (c) If, instead,
the electron is initially moving rightward, does its speed increase,
decrease, or remain constant? What path will it follow in this case? ■
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FIGURE 23-19 ■ An end-on side view of
AHPC components. (a) Tubular filter.
(b) Discharge electrode. (c) Collector plate
with holes.

FIGURE 23-20 ■ Simplified AHPC top
view showing arrangement of components
with collector plates surrounding the
filters. y
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23-9 A Dipole in an Electric Field

Many electrical effects in matter can be understood by considering matter to be made up
of many little electric dipoles. When an electric field is applied to that matter, the dipoles
change their orientation in a consistent way. Although each dipole is small, since they all
do the same thing, they can produce a substantial electrical effect. In this section, we con-
sider the torque that can be exerted on a dipole that is placed in a uniform electric field.

We have defined the electric dipole moment of an electric dipole to be a vector
pointing from the negative to the positive end of the dipole. It turns out that behavior
of a dipole in a uniform external electric field can be described completely in terms
of the two vectors and , with no need of any details about the dipole’s structure.

A molecule of water (H2O), as shown in Fig. 23-22, is an electric dipole. There the
black dots represent the oxygen nucleus (having eight protons) and the two hydrogen
nuclei (having one proton each). The colored enclosed areas represent the region in
which electrons can be located around the nuclei.

In a water molecule, the two hydrogen atoms and the oxygen atom do not lie on a
straight line but form an angle of about 105°. As a result, the molecule has a definite
“oxygen side” and “hydrogen side.” Moreover, the 10 electrons of the molecule tend
to remain closer to the oxygen nucleus than to the hydrogen nuclei. This makes the
oxygen side of the molecule slightly more negative than the hydrogen side and creates
an electric dipole moment that points along the symmetry axis of the molecule as
shown. If the water molecule is placed in an external electric field, it behaves like the
idealized electric dipole shown in Fig. 23-16.

To examine this behavior, we now consider what happens to an idealized electric
dipole placed in a uniform external electric field . This is shown in Fig. 23-23a.E
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Figure 23-21 shows the deflecting plates of an ink-jet printer, with
superimposed coordinate axes. An ink drop with a mass m of

and an amount of negative charge 
enters the region between the plates, initially moving

along the x axis with speed vx � 18 m/s. The length L of the plates is
1.6 cm. The plates are charged and thus produce an electric field at
all points between them. Assume that field is downward directed,
uniform, and has a magnitude of . What is the vertical
deflection of the drop at the right edge of the plates? (The gravita-
tional force on the drop is small relative to the electrostatic force
acting on the drop and can be neglected.)

1.4 � 106 N/C
E
:

1.5 � 10�13 C
� Q � �1.3 � 10�10 kg

TOUCHSTONE EXAMPLE 23-4: Deflecting an Ink Drop

y

x
x = L

m,Q

0
E

+

–

+

–

+

–

+

–

+

–

+

–

+

–

+

–

+

–

FIGURE 23-21 ■ An ink
drop of mass m and an amount
of charge is deflected in
the electric field of an ink-jet
printer.

� Q �

at constant speed vx, it accelerates upward with some constant ac-
celeration of magnitude ay where ay is positive. Applying Newton’s
Second Law (F net

y � may) for components along the y axis, we find
that the y-component of the acceleration is directly proportional to
the y-component of the electrostatic force so that

(23-33)

Let �t represent the time required for the drop to pass through the
region between the plates. In Chapter 4, we found that during the
time the vertical and horizontal displacements of the drop are

and (23-34)

respectively. Eliminating between these two equations and sub-
stituting Eq. 23-33 for ay, we find

(Answer)� 0.64 mm.

� 6.4 � 10�4 m

�
(1.5 � 10�13 C)(1.4 � 106 N/C)(1.6 � 10�2 m)2

(2)(1.3 � 10�10 kg)(18 m/s)2

�y �
� Q �EL2

2mv2
x

�t

�x � L � vx�t,�y � 1
2ay�t2

�t

ay �
F elec

y

m
� �

� Q �E
m

.

S O L U T I O N ■ The drop is negatively charged and the electric
field is directed downward. The Ke y  I d e a here is that, from Eq.
23-4, a constant electrostatic force of magnitude acts upward
on the charged drop. Thus, as the drop travels parallel to the x axis

� Q �E

105°

Hydrogen Hydrogen

Oxygen

Positive side

Negative side

p

FIGURE 23-22 ■ This H2O molecule has
3 nuclei (shown as dots). The electrons 
orbiting the nuclei spend more time near
the oxygen nucleus, so the molecule 
behaves like a dipole. Its moment points
from the (negative) oxygen side to the
(positive) hydrogen side.
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FIGURE 23-23 ■ (a) An electric dipole in
a uniform electric field . Two equal but
opposite charges are separated by a dis-
tance d. The line between them represents
their rigid connection. (b) Field causes a
torque on the dipole. The direction of 
is into the plane of the page, as repre-
sented by the symbol ⊗.
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Assume that the dipole is a rigid structure that consists of two charges of opposite
sign, each having an amount , separated by a distance d. Assume that the dipole
moment makes an angle with field . Recall from our discussion in Section 23-6
above that the electric field far from the dipole depends only on (the product of
charge q and separation d). The detailed structure of the water molecule is not impor-
tant as long as the interaction between it and the electric field isn’t strong enough to
change the shape of either the molecule or the electric field.

Electrostatic forces act on the charged ends of the dipole. Because the electric
field is uniform, those forces act in opposite directions (as shown in Fig. 23-23) and
with the same magnitude . Thus, because the field is uniform, the net
force on the dipole from the field is zero and the center of mass of the dipole does not
move. However, the forces on the charged ends do produce a net torque on the
dipole about its center of mass. Since the charges on a dipole do not necessarily have
the same mass, we assume the center of mass lies on the line connecting the charged
ends, at some distance x from one end and thus a distance from the other end.
From Eq. 11-29 , we can express the net torque magnitude

as

(23-35)

We can also write the magnitude of the torque in terms of the magnitudes of the
electric field and the dipole moment . To do so, we
substitute for the magnitude of the electrostatic force, , and for the di-
pole spacing, d, to find an expression for the magnitude of the torque. This magnitude
is given by

(23-36)

We know the direction of the vector is given by the right-hand rule. So, we see the
result for both the magnitude and direction can be written in terms of the cross prod-
uct as 

(torque on a dipole). (23-37)

Vectors and are shown in Fig. 23-23b. The torque acting on a dipole tends to ro-
tate (hence the dipole) into the direction of , thereby reducing . In Fig. 23-23,
such rotation is clockwise. As we discuss in Chapter 11, we can represent a torque
component that gives rise to such a rotation as

(23-38)

where is a unit vector pointing along the z axis (not the Coulomb constant).

READI NG EXERC IS E  23-6: The figure shows
four orientations of an electric dipole in an external electric
field. Rank the orientations according to the magnitude of
the torque on the dipole.

■

23-10 Electric Field Lines

So far in this chapter we have represented electric fields using vector arrows and cre-
ating force vector field plots. There is another common method for creating a visual
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FIGURE 23-24 ■ There are two methods
commonly used to depict an electric field.
This figure shows a vector electric field
map (or plot). See Fig. 23-25 for a compari-
son method.

FIGURE 23-25 ■ The second common
representation of an electric field is the
field line representation shown here. See
Fig. 23-24 for a comparison method.

FIGURE 23-26 ■ Electric field lines for a
�2q and +4q charge configuration.

representation of information about electric fields in a region of space. It involves
drawing electric field lines.

In the electric field line representation, we use continuous lines to convey informa-
tion about the direction of the field at different points. Since the magnitude and direc-
tion of the electric field usually changes smoothly, this turns out to be rather convenient.
Michael Faraday, who introduced the idea of electric fields in the 19th century, thought
of the space around a charged body as filled with lines of force. Although we attach no
reality to these lines, they provide a nice way to visualize patterns of changing force. The
field line representation is used in Chapter 24 where we introduce Gauss’ law. The field
line representation is also used in Chapters 29–33 to describe magnetic fields.

Field lines are a good way to visualize the directions of a vector field in a region of
space. To draw an electric field line, we start at any point and look at the direction of
the field at that point. We then draw a short line in that direction. We determine the
field direction at the new location and draw another short line in that direction. We
continue this process until we reach a charge or get to infinity. Compare Figs. 23-24 and
23-25 for an example. Note that field lines shown in Fig. 23-25 and Fig. 23-26 differ
from the short straight field vectors shown in Fig. 23-24 because they always start or
end on the source charge(s). The direction of a straight field line or the direction of the
tangent to a curved field line gives the direction of the electric field vector at that
point. Because the field lines point in the direction of the field, field lines must origi-
nate on positive charges and terminate on negative charges.

It is important to note we could draw field lines through every point in space.
However, this would not be very helpful since our paper would be totally filled with
field lines and we couldn’t distinguish one from another. Instead, we choose to draw a
few field lines, with the number of lines leaving each positive charge (or ending on
each negative charge) being proportional to the amount of each charge. If we choose
to have 16 lines originating on a charge, then we should have 8 lines ending on
a charge. This scaling of the number of field lines with amount of the charge
turns out to be quite convenient since then the field lines are forced to be closely
packed together where the field is strong and far apart where it is weak. We can see
this in Figs. 23-25 and 23-26. In other words, the average density of field lines (the
number of lines crossing through a small area perpendicular to their direction) is pro-
portional to the strength of the field. We then have the following rules:

At any point along an electric field line, the direction of the corresponding electric field vec-
tor is always tangent to the line at that point. Electric field lines extend away from positive
charge (where they originate) and toward negative charge (where they terminate). The den-
sity of field lines is proportional to the strength of the field.

Electric Field Near a Nonconducting Sheet
Figure 23-27a shows part of an infinitely large, nonconducting sheet (or plane) with a
uniform distribution of positive charge on its right side. The electric field lines shown
in Fig. 23-27b are uniformly spaced and always perpendicular to the sheet. Why? If
the sheet can be treated as if it is infinitely large, then it looks the same in any direc-
tion. The pulls or pushes sideways from any bit of the sheet to one side of the test
charge are cancelled by those from a symmetric bit of the sheet on the opposite side
of the charge. As a result, the electric force vector at that point must point directly to-
ward the sheet (if the sheet is negative) or directly away from the sheet (if the sheet is
positive).

Since the field lines are perpendicular to the sheet and have to start and end on
charges, they don’t diverge or get closer as you move farther from the sheet. This sug-
gests the surprising result that the field should not get weaker or stronger as you get

�2�C
�4�C

E
:
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–2



farther from the sheet. This is even more strongly suggested by a dimensional analysis
argument. An E-field has dimensions that look like those of . For an infinite sheet
we can’t talk about the total charge (it’s infinite) but only the charge density sigma,
denoted as . Sigma already has units of so it is not possible to put in an extra
distance. Doing the integral (which can be generalized from our integral for the ring)
is messy but confirms this result. Because the charge is uniformly distributed along
the sheet and all the field vectors have the same magnitude, the sheet creates a uni-
form electric field.

Of course, no real nonconducting sheet (such as a flat expanse of plastic) is
infinitely large, but if we consider a region near the middle of a real sheet and not
near its edges, the field lines through that region are arranged as in Figs. 23-27a and b.

Field Lines for Two Positive Charges
Figure 23-28 shows the field lines for two equal positive charges. Although we do
not often use field lines quantitatively, they are very useful to visualize what is going
on. It takes practice to learn to draw electric field lines even for a simple array of
point sources. The steps include: (1) creating an electric field map, (2) deciding how
detailed the field line representation should be and assigning a certain number of
lines per unit charge, (3) placing the assigned number of lines at each point source.
The lines should be equally spaced at the source with initial directions that depend
on the sign of the source charge. The lines pass radially out from each positive
source (and should be marked with an outward arrow). Or the lines pass radially
into each negative source (and should be marked with an inward arrow as shown in
Figs. 23-25 and 23-26). (4) Each line through the vector field map should be drawn
so it is always tangent to the electric field vectors. (5) If the net charge in the region
on the map is zero, each line begins on a positive charge and ends on a negative
charge. If the net charge is negative, some of the lines come from infinity (off the
field line diagram). If the net charge is positive, some of the lines veer off to infinity
as shown in Fig. 23-26.

READI NG EXERC IS E  23-7: Explain why the definition that says electric field lines
point in the direction of the electric field means electric field lines must originate on positive
charges and terminate on negative charges. ■

READI NG EXERC IS E  23-8: Examine Fig. 23-12 showing that the net electric field
along a line that bisects the two charges is always perpendicular to the line connecting the
charges. How does the construction of this diagram help explain the fact that the net electric
field due to a uniformly charged sheet (shown in Fig. 23-27) is always perpendicular to the sheet
of charge? ■
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FIGURE 23-28 ■ Field lines for two equal
positive point charges. The charges repel
each other. (The lines terminate on distant
negative charges.) To “see” the actual
three-dimensional pattern of field lines,
mentally rotate the pattern shown here
about an axis passing through both charges
in the plane of the page. The three-
dimensional pattern and the electric field it
represents are said to have rotational 
symmetry about that axis. The electric field
vector at one point is shown; note that it is
tangent to the field line through that point.

E

(a) (b)

+
+
+
+
+
+
+
+
+

+
+

+

+
+

+
+

+
+

+

+

+
+

+
+

+

FIGURE 23-27 ■ Depictions of the electric field lines due to a very large,
nonconducting sheet with uniformly distributed positive charge on one side.
The vector fields shown in both figures are uniform and perpendicular to the
charged sheet. (a) The electric field vector is shown at the location of a
test charge, and (b) a side view of a showing electric field lines pointing away
from the positive charges in the space near the sheet.
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Problems 681

In the following problems, all electric fields referenced are those
produced by the source charge(s). That is, .

SEC. 23-4 ■ THE ELECTRIC FIELD DUE TO A

POINT CHARGE

1. Point Charge What is the amount of charge on a small particle
whose electric field 50 cm away has the amount of 2.0 N/C?

2. What Amount? What is the amount of a point charge that would
create an electric field of 1.00 N/C at points 1.00 m away?

3. Plutonium-239 A plutonium-239 nucleus of radius 6.64 femp-
tometers has an atomic number Z � 94. Assuming that the posi-
tive charge is distributed uniformly within the nucleus, what are the
magnitude and direction of the electric field at the surface of the
nucleus? Assume the influence of the positive charge at the nuclear
surface is the same as that of a point charge.

SEC. 23-5 ■ THE ELECTRIC FIELD DUE TO

MULTIPLE CHARGES

4. Two Particles Two particles with equal charge amounts 2.0 �
10�7 C but opposite signs are held 15 cm apart. What are the magni-
tude and direction of at the point midway between the charges?

5. Two Point Charges Two point charges qA � 2.1 � 10�8 C and
qB � �4.0qA are fixed in place 50 cm apart. Find the point along
the straight line passing through the
two charges at which the electric field
is zero.

6. Two Fixed Charges In Fig 23-29,
two fixed point charges qA � � 1.0 �
10�6 C and qB � � 3.0 � 10�6 C are
separated by a distance d � 10 cm. Plot
their net electric field (x) as a func-
tion of x for both positive and negative
values of x, taking to be positive
when points to the right and neg-
ative when points to the left.

7. Four Charges In Fig. 23-30,
what is the magnitude of the elec-
tric field at point P due to the four
point charges shown? The distance
d is between charge centers.

8. Separation of d In Fig. 23-29,
two fixed point charges qA � �5q
and qB � � 2q are separated by
distance d. Locate the point (or points) at
which the net electric field due to the two
charges is zero.

9. Square What are the magnitude and
direction of the electric field at the center
of the square of Fig. 23-31 if q � 1.0 �
10�8 C and the distance between charge
centers a � 5.0 cm?
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10. Three Charges Calculate the direc-
tion and magnitude of the electric field
at point P in Fig. 23-32, due to the three
point charges. The distance between
charge centers is a.

11. Equilateral Triangle Two particles,
each with an amount of �q � equal to
charge of 12 nC, are placed at two of the
vertices of an equilateral triangle. The
length of each side of the triangle is 2.0 m.
What is the magnitude of the electric field
at the third vertex of the triangle if (a) both of the charges are positive
and (b) one of the charges is positive and the other is negative?

12. Plastic Ring Figure 23-33 shows
a plastic ring of radius R � 50.0 cm.
Two small charged beads are on the
ring: Bead 1 of charge �2.00 �C is
fixed in place at the left side; bead 2
of charge �6.00 �C can be moved
along the ring. The two beads pro-
duce a net electric field of magnitude
E at the center of the ring. At what
angle  should bead 2 be positioned
such that E � 2.00 � 105 N/C?

13. Three Particles Two Three particles, each with positive charge
q, form an equilateral triangle, with each side of length d. What is
the magnitude of the electric field produced by the particles at the
midpoint of any side?

14. Separation L Figure 23-34a shows two charged particles fixed in
place on an x axis with separation L. The ratio qA/qB of their charge
amounts is 4.00. Figure 23-34b shows the x-component Ex

net of their
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FIGURE 23-29 ■

Problems 6 and 8.

FIGURE 23-30 ■ Problem 7.
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FIGURE 23-34 ■ Problem 14.

net electric field along the x axis
just to the right of particle B. (a)
At what value of x 
 0 is Ex

net

maximum? (b) If particle B has
charge �qB � �3e, what is the
value of that maximum?

15. Two Charges Two Figure 23-
35 shows two charged particles on
an x axis: �q � �3.20 � 10�19 C
at x � �3.00 m and q � 3.20 �

x

y

P

–q q

FIGURE 23-35 ■ Problem 15.



10�19 C at x � �3.00 m. What are
the magnitude and direction of
the net electric field they produce
at point P at y � 4.00 m?

16. Eight Charges In Fig. 23-36,
eight charged particles form a
square array; charge q � e and
distance d � 2.0 cm. What are
the magnitude and direction of
the net electric field at the
center?

SEC. 23-6 ■ THE ELECTRIC FIELD DUE TO

AN ELECTRIC DIPOLE

17. Calculate the Moment Calculate the electric dipole moment of
an electron and a proton 4.30 nm apart.

18. Field at P In Fig. 23-16, let both charges be positive. Assuming
z � d, show that the magnitude of the vector at point P in that
figure is then given by

19. Electric Quadrupole Figure
23-37 shows an electric quadru-
pole. It consists of two dipoles
with dipole moments that are
equal in magnitude but opposite
in direction. Show that the magni-
tude of the vector on the axis of
the quadrupole for a point P a
distance z from its center (assume
z � d) is given by

in which Q( � 2qd 2) is known as the quadrupole moment of the
charge distribution.

20. Electric Dipole Find the magnitude and direction of the elec-
tric field at point P due to the electric dipole in Fig 23-38. The dis-
tance between charge center is d and P is located at a distance 
r � d along the perpendicular bisector of the line joining the
charges. Express your answer in terms of the magnitude and direc-
tion of the electric dipole moment .p:
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SEC. 23-7 ■ THE ELECTRIC FIELD DUE TO A RING

OF CHARGE

21. Electron Constrained An electron is constrained to the central
axis of the ring of charge of radius R discussed in Section 23-7.
Show that the electrostatic force on the electron can cause it to os-
cillate through the center of the ring with an angular frequency

where q is the ring’s charge and m is the electron’s mass.

22. Two Rings Figure 23-39
shows two parallel nonconducting
rings arranged with their central
axes along a common line. Ring A
has uniform charge qA and radius
R; ring B has uniform charge qB

and the same radius R. The rings
are separated by a distance 3R.
The net electric field at point P
on the common line, at distance R
from ring A, is zero. What is the ratio qA/qB?

23. Thin Glass Rod A thin glass rod is bent into a semicircle of ra-
dius r. A charge �q is uniformly distributed along the upper half,
and a charge �q is uniformly
distributed along the lower
half, as shown in Fig. 23-40a.
Find the magnitude and direc-
tion of the electric field at
P, the center of the semicircle.

24. Two Curved Plastic Rods
In Fig. 23-40b, two curved
plastic rods, one of charge �q
and the other of charge �q,
form a circle of radius R in an
xy plane. The x axis passes
through their connecting points, and the charge is distributed uni-
formaly on both rods. What are the magnitude and direction of the
electric field produced at P, the center of the circle?

25. Nonconducting Rod In Fig. 23-41, a nonconducting rod of
length L has charge �q uniformly distributed along its length. (a)
What is the linear charge density of the rod? (b) What is the electric

E
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E
:
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field at point P, a distance a from the end of the rod? (c) If P were
very far from the rod compared to L, the rod would look like a
point charge. Show that your answer to (b) reduces to the electric
field of a point charge for a �L.

26. What Distance? At what distance along the central axis of a
ring of radius R and uniform charge is the magnitude of the electric
field due to the ring’s charge maximum?



27. Semi-Infinite Rod In Fig.
23-42, a “semi-infinite” noncon-
ducting rod (that is, infinite in one
direction only) has uniform linear
charge density �. Show that the
electric field at point P makes an
angle of 45° with the rod and that
this result is independent of the
distance R. (Hint: Separately find
the parallel and perpendicular (to the rod) components of the
electric field at P, and then compare those components.)

28. Length L Rod A thin non-
conducting rod of finite length L
has a charge q spread uniformly
along it. Show that 

gives the magnitude of the
electric field at point P on the
perpendicular bisector of the rod (Fig. 23-43).

29. Density, Density, Density. (a) A charge of �300e is uniformly
distributed along a circular arc of radius 4.00 cm, which subtends an
angle of 40°. What is the linear charge density along the arc? (b) A
charge of �300e is uniformly distributed over one face of a circular
disk of radius 2.00 cm. What is the surface charge density over that
face? (c) A charge of �300e is uniformly distributed over the
surface of a sphere of radius 2.00 cm. What is the surface charge
density over that surface? (d) A charge of �300e is uniformly
spread through the volume of a sphere of radius 2.00 cm. What is
the volume charge density in that sphere?

30. Nonconducting Rod Two A thin
nonconducting rod with a uniform dis-
tribution of positive charge Q is bent
into a circle of radius R (Fig. 23-44).
The central axis through the ring is a
z axis, with the origin at the center of
the ring. What is the magnitude of the
electric field due to the rod at (a) z � 0
and (b) z � � �? (c) In terms of R, at
what values of z is that magnitude max-
imum? (d) If radius R � 2.00 cm and
charge Q � 4.00 �C, what is the maximum magnitude?

31. Circular Rod A circular rod has
a radius of curvature R and a uni-
formly distributed charge Q and it
subtends an angle  (in radians).
What is the magnitude of the electric
field it produces at the center of cur-
vature?

32. Two Concentric Rings Figure
23-45 shows two concentric rings, of
radii R and R� � 3.00R, that lie on
the same plane. Point P lies on the
central z axis, at distance D � 2.00R
from the center of the rings. The
smaller ring has uniformly distrib-

� E
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� E
:

� �
� q �

2��0y
1

(L2 � 4y2)1/2

Problems 683

uted charge �Q. What must be the uniformly
distributed charge on the larger ring if the net
electric field at point P due to the two rings is
to be zero?

33. Charge �Q In Fig. 23-46a, a particle of
charge �Q produces an electric field with a
magnitude Epart at point P, at distance R from
it. In Fig. 23-46b, that same amount of charge
is spread uniformly along a circular arc that
has radius R and subtends an angle . The
charge on the arc produces an electric field
with a magnitude Earc at its center of curva-
ture P. For what value of  does Earc � 0.500
Epart? (Hint: You can use a graphical solution.)

34. Half Circle Figure 23-47a shows a non-
conducting rod with a uniformly distributed
charge �Q. The rod forms a half circle with radius R and
produces an electric field of magnitude Earc at its center of curva-
ture P. If the arc is collapsed to a point at distance R from P
(Fig. 23-47b), by what factor is the magnitude of the electric field
at P multiplied?
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SEC. 23-8 ■ MOTION OF POINT CHARGES

IN AN ELECTRIC FIELD

35. Electron Released from Rest An electron is released from rest
in a uniform electric field of magnitude 2.00 � 104 N/C. Calculate
the acceleration of the electron. (Ignore gravitation).

36. Accelerated Electron An electron is accelerated eastward at
1.80 � 109 m/s2 by an electric field. Determine the magnitude and
direction of the electric field.

37. Force Due to Dipole Calculate the magnitude of the force, due to
an electric dipole of dipole moment 3.6 � 10�29 C � m, on an electron
25 nm from the center of the dipole, along the dipole axis. Assume
that this distance is large relative to the dipole’s charge separation.

38. Alpha Particle An alpha particle (the nucleus of a helium
atom) has a mass of 6.64 � 10�27 kg and a charge of �2e. What are
the magnitude and direction of the electric field that will balance
the gravitational force on it?

39. Charged Cloud A charged cloud system produces an electric
field in the air near Earth’s surface. A particle of charge �2.0 �
10�9 C is acted on by a downward electrostatic force of 3.0 �
10�6 N when placed in this field. (a) What is the magnitude of the
electric field? (b) What are the magnitude and direction of the elec-
trostatic force exerted on a proton placed in this field? (c) What is
the gravitational force on the proton? (d) What is the ratio of the



magnitude of the electrostatic force to the magnitude of the gravi-
tational force in this case?

40. Humid Air Humid air breaks down (its molecules become ion-
ized) in an electric field of 3.0 � 106 N/C. In that field, what is the
magnitude of the electrostatic force on (a) an electron and (b) an
ion with a single electron missing?

41. High-Speed Protons Beams of high-speed protons can be pro-
duced in “guns” using electric fields to accelerate the protons. (a)
What acceleration would a proton experience if the gun’s electric
field were 2.00 � 104 N/C? (b) What speed would the proton attain
if the field accelerated the proton through a distance of 1.00 cm?

42. Floating a Sulfur Sphere An electric field E with an average
magnitude of about 150 N/C points downward in the atmosphere
near Earth’s surface. We wish to “float” a sulfur sphere weighing 
4.4 N in this field by charging the sphere. (a) What charge (both
sign and magnitude) must be used? (b) Why is the experiment im-
practical?

43. Two Oppositely Charged Plates A uniform electric field exists
in a region between two oppositely charged plates. An electron is
released from rest at the surface of the negatively charged plate
and strikes the surface of the opposite plate, 2.0 cm away, in a time
1.5 � 10�8 s. (a) What is the speed of the electron as it strikes the
second plate? (b) What is the magnitude of the electric field ?

44. Field Retards Motion An electron with a speed of 5.00 �
108 cm/s enters an electric field of magnitude 1.00 � 103 N/C, travel-
ing along the field lines in the direction that retards its motion.
(a) How far will the electron travel in the field before stopping mo-
mentarily and (b) how much time will have elapsed? (c) If the re-
gion with the electric field is only 8.00 mm long (too short for the
electron to stop within it), what fraction of the electron’s initial
kinetic energy will be lost in that region?

45. Two Copper Plates Two large
parallel copper plates are 5.0 cm
apart and have a uniform electric
field between them as depicted in
Fig. 23-48. An electron is released
from the negative plate at the
same time that a proton is re-
leased from the positive plate.
Neglect the force of the particles
on each other and find their dis-
tance from the positive plate when they pass each other. (Does it
surprise you that you need not know the electric field to solve this
problem?)

46. Velocity Components At some instant the velocity components
of an electron moving between two charged parallel plates are vx �
1.5 � 105 m/s and vy � 3.0 � 103 m/s. Suppose that the electric field
between the plates is given by � (120 N/C)ĵ. (a) What is the ac-
celeration of the electron? (b) What will be the velocity of the elec-
tron after its x coordinate has changed by 2.0 cm?

47. Uniform Upward Field In
Fig. 23-49, a uniform, upward-
directed electric field of magni-
tude 2.00 � 103 N/C has been set
up between two horizontal plates
by charging the lower plate posi-
tively and the upper plate nega-
tively. The plates have length 

E
:

E
:

E
:

L � 10.0 cm and separation d � 2.00 cm. An electron is then shot
between the plates from the left edge of the lower plate. The initial
velocity of the electron makes an angle  � 45.0° with the lower
plate and has a magnitude of 6.00 � 106 m/s. (a) Will the electron
strike one of the plates? (b) If so, which plate and how far horizon-
tally from the left edge will the electron strike?

48. Charge in an E Field A 10.0 g block with a charge of �8.00 �
10�5 C is placed in electric field � (3.00 � 103 N/C)î �
600 N/C)ĵ. (a) What are the magnitude and direction of the force
on the block? (b) If the block is released from rest at the origin at
t � 0.00 s, what will be its coordinates at t � 3.00 s?

49. Entering a Field An electron enters a region of uniform elec-
tric field with an initial velocity of 40 km/s in the same direction as
the electric field, which has magnitude E � 50 N/C. (a) What is the
speed of the electron 1.5 ns after entering this region? (b) How far
does the electron travel during the 1.5 ns interval?

50. An Electron Is Shot In Fig.
23-50, an electron is shot at an ini-
tial speed of v1 � 2.00 � 106 m/s,
at angle 1 � 40° from an x axis. It
moves in a region with uniform
electric field � (5.00 N/C)ĵ. A
screen for detecting electrons is
positioned parallel to the y axis, at
distance x � 3.00 m. In unit-vector notation, what is the velocity of
the electron when it hits the screen?

51. TV Tube Figure 23-
51 shows the deflection-
plate system of a conven-
tional TV tube. The
length of the plates is 3.0
cm and the electric field
between the two plates is
106 N/C (vertically up). If
the electron enters the
plates with a horizontal velocity of 3.9 � 107 m/s, what is the vertical
deflection �y at the end of the plates?

SEC. 23-9 ■ A DIPOLE IN AN ELECTRIC FIELD

52. Dipole in a Field An electric dipole, consisting of charges of mag-
nitude 1.50 nC separated by 6.20 �m, is in an electric field of strength
1100 N/C. (a) What is the magnitude of the electric dipole moment?
(b) What is the difference between the potential energies correspond-
ing to dipole orientations parallel to and antiparallel to the field?

53. Torque on a Dipole An electric dipole consists of charges �2e
and �2e separated by 0.78 nm. It is in an electric field of strength
3.4 � 106 N/C. Calculate the magnitude of the torque on the dipole
when the dipole moment is (a) parallel to, (b) perpendicular to, and
(c) antiparallel to the electric field.

54. Work Required Find the work required to turn an electric di-
pole end for end in a uniform electric field , in terms of the mag-
nitude of the dipole moment, the magnitude of the field,
and the initial angle 1 between and .

55. Frequency of Oscillation Find the frequency of oscillation of
an electric dipole, of dipole moment and rotational inertia I, for
small amplitudes of oscillation about its equilibrium position in a
uniform electric field of magnitude .� E
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56. A Certain Dipole A certain electric
dipole is placed in a uniform electric
field of magnitude 40 N/C. Figure 23-
52 gives the magnitude � of the torque
on the dipole versus the angle  between

and the dipole moment . What is the
magnitude of ?
57. How Much Energy How much en-
ergy is needed to flip an electric dipole from being lined up with a
uniform external electric field to being lined up opposite the field?
The dipole consists of an electron and a proton at a separation of
2.00 nm, and it is in a uniform field of magnitude 3.00 � 106 N/C.
58. See Graph A certain electric
dipole is placed in a uniform elec-
tric field of magnitude 20 N/C.
Figure 23-53 gives the potential
energy U of the dipole versus the
angle  between and the dipole
moment . What is the magni-
tude of ?

SEC. 23-10 ■ ELECTRIC FIELD LINES

59. Twice the Separation In Fig.
23-54, the electric field lines on
the left have twice the separation
of those on the right. (a) If the
magnitude of the field at A is 40
N/C, what force acts on a proton
at A? (b) What is the magnitude of the field at B?
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60. Sketch Sketch qualitatively the electric field lines both between
and outside two concentric conducting spherical shells when a uni-
form positive charge qA is on the inner shell and a uniform negative
charge �qB is on the outer. Consider the cases qA 
 qB, qA � qB

and qA 	 qB.

61. Thin Circular Disk Sketch qualitatively the electric field lines
for a thin, circular, uniformly charged disk of radius R. (Hint: Con-
sider as limiting cases points very close to the disk, where the elec-
tric field is directed perpendicular to the surface, and points very far
from it, where the electric field is like that of a point charge.)

62. Particles and Lines In Fig. 23-55, particles with charges �1.0q
and �2.0q are fixed a distance d apart. Find the magnitude and di-
rection of the net electric field at points (a) A, (b) B, and (c) C.
(d) Sketch the electric field lines.

63. Three Point Charges Two In Fig. 23-
56, three point charges are arranged in an
equilateral triangle. (a) Sketch the field lines
due to �Q and �Q, and from them deter-
mine the direction of the force that acts on
�q because of the presence of the other two
charges. (b) What is
the magnitude of
that net electric force
on �q?

Additional Problems

64. Two Electric Charges—Electric Force Figure 23-57 shows
seven arrangements of two electric charges. In each figure, a point
labeled P is also identified. All of the charges are the same size,
20 nC, but they can be either positive or negative. The charges and
point P all lie on a straight line. The distances between adjacent
items, either between two charges or between a charge and point P,
are all 5 cm. There are no other charges in this region. For this
problem, we will place a �5 nC charge at point P.
Rank these arrangements from greatest to least on the basis of the
magnitude of the electric force on the �5 nC charge when it is placed
at point P. [Based on Ranking Task 126, O’Kuma, et. al., Ranking
Task Exercises (Prentice Hall, Upper Saddle River, NJ, 2000).]

65. Fixed and Suspended Charges—Angle
Figure 23-58 shows mA, a stationary sphere
with charge qA. The charge mB is suspended
from the ceiling by a nonconducting string
and has charge qB. The masses mA and mB

are conducting spheres of the same size. The
charges qA and qB have the same sign. From
the combinations below, rank the angle the
string will form with the
vertical from highest to
lowest value. If any of the
angles are the same, state
that. Explain your reasoning.

(a) mA � m; qA � q (d) mA � 2m; qA � q
mB � m; qB � q mB � 2m; qB � q

(b) mA � 2m; qA � q (e) mA � m; qA � 2q
mB � 2m; qB � 2q mB � 2m; qB � 2q

(c) mA � m; qA � 2q (f) mA � m; qA � q
mB � m; qB � 2q mB � m; qB � 2q

[Based on Ranking Task 138, O’Kuma, et. al., Ranking Task Exercises
(Prentice Hall, Upper Saddle River, NJ, 2000).]

66. Electric Force on Same Charge Figure 23-59 shows a large region
of space that has a uniform electric field in the x direction. At the
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point (0, 0) m, the electric field is (30 N/C)î. Rank the magnitude of
the electric force from greatest to least on a 5 C charge when it is
placed at each of the following points: A, (0 m, 0 m); B, (0 m, 3 m); C,
(�3 m, 0 m); D, (3 m, 0 m); E, (3 m, 3 m); F, (6 m, 0 m). Explain your
reasoning. [Based on Ranking Task 139, O’Kuma, et. al., Ranking
Task Exercises (Prentice Hall, Upper Saddle River, NJ, 2000).]

Examine each of the lines and in-
dicate whether it is a correctly
drawn field line. If a line is not
correct, explain why. (b) Redraw
the diagram with a pattern of field
lines that is more correct.

70. Field Lines Two Figure 23-63
shows the electric field lines for
three point charges that are posi-
tive and negative as indicated. (a)
Show the direction of each of the
electric field lines with an arrow,
and (b) if the central charge is
�1.0 �C what are the values of the outer charges?
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67. Dependence of E Figure
23-60 shows a fixed charge
(specified by a circle) and a lo-
cation (specified by the x). A
test charge is placed at the x to
measure the electric effect of
the fixed charge. Complete the
following two statements as
quantitatively as you can. (For
example, if the result is larger
by a factor of three, don’t say
“increases”—say “triples” or
“is multiplied by three.”) Each statement is meant to be compared
with the original situation. (The changes don’t accumulate).

(a) If the test charge is replaced by one with half the amount of
charge, then the electric field it experiences will ———.
(b) If the fixed charge is replaced by one with twice the amount
of charge, then the electric field experiences by the test charge
will ———.

68. What Is Going on at P? Figure 23-61 shows two charges of �q
arranged symmetrically about
the y axis. Each produces an
electric field at point P. (a)
Are the magnitudes of the
fields equal? Why or why
not? (b) Does each electric
field point toward or away
from the charge producing it?
Explain. (c) Is the magnitude
of the net electric field equal
to the sum of the magnitudes
of the two field vectors (that
is, equal to 2E)? Why or why
not? (d) Do the x-components of the two fields add or cancel? Ex-
plain. (e) Do the y-components of the two fields add or cancel? Ex-
plain. [Based on question 5.20, Arons, Homework and Test Questions
for Introductory Physics Teaching (Wiley, New York, 1994).]

69. Field Lines Figure 23-62 shows the region in the neighborhood
of a negatively charged conducting sphere and a large positively
charged conducting plate extending far beyond the region shown.
Someone claims that lines A–F are possible field lines representing
the electric field lying in the region between the two conductors. (a)

FIGURE 23-60 ■ Problem 67.
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71. Field Lines Three Figure 23-64 shows the electric field lines for
three point charges separated by a small distance. The two outer
charges are identical and
the one in the center is dif-
ferent. (a) Determine the
ratio, qA/qB, of one of the
outer charges to the inner
one. (b) Determine the signs
of qA and qB.

72. Functional Dependence
and the Electric Field (a)
Suppose you want to pur-
chase a sweater in Maryland
that has a list price of $40
for which you pay $2 in
sales tax. Your friend
bought the same sweater in
Maryland, but it had a list price of $80 for which she paid $4 in sales
tax. How does the ratio of sales tax to price of the sweater compare
for you and your friend [i.e., compare the ratios (sales tax)/(sweater
price)]? What does that ratio tell us? As what is that ratio defined?
(b) Suppose a charge exerts a repulsive force of 4 N on a test
charge of 0.2 �C that is 2 cm from it. However, the charge exerts a
repulsive force of 8 N on a test charge of 0.4 �C that is 2 cm from it.
How does the ratio of the force on the test charge to the test charge
itself compare in each case [i.e., compare (force felt by test
charge)/(test charge)]? What does that ratio tell us? What is that ra-
tio defined as? (c) Suppose a charge Q exerts a force F on a test
charge q that is placed near it. By how much would the force ex-
erted by Q increase if the test charge increased by a factor of �,
where � can be any constant (i.e., � � �17 or 5 or 7.812, etc.)? By
how much would the ratio of the force on the test charge to the test
charge itself increase if the test charge increased by a factor of �?
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FIGURE 23-64 ■ Problem 71.



Explain. (d) When the value of one quantity depends on the value
of a second quantity (and perhaps on others), we say that the first
quantity is a function of the second. How the first quantity changes
when the second changes is called the functional dependence. For
example, if t � As, we say that t has a linear functional dependence
on s. When s doubles, so does t. If s is divided by 10, so is t. As a sec-
ond example, if we had y � Bx2, we would say that y depends qua-
dratically on x. If x doubles, y quadruples. If x is divided by 10, then
y is divided by 100. (Try this with some numbers, picking whatever
values of the constants A and B you would like.)

(i) What is the functional dependence on the sales tax paid on
the price of the sweater in part (a)? Explain. Write an equa-
tion that relates the tax paid (t) to the cost of the sweater (s).

(ii) What is the functional dependence of the sales tax percent-
age rate on the price of the sweater in part (a)? Explain.

(iii) In part (c), what is the functional dependence of the force
magnitude, F, on the amount of the test charge, �q �? Ex-
plain.

(iv) In part (c), what is the functional dependence of the
electric field magnitude established by Q, EQ, on the test
charge, q? Explain.

73. E-Field Multiple Representations Figure 23-65a displays a grid
with coordinates measured in meters. On the grid two charges
are placed with their positions indicated as red circles. We call
the charge at the position (1 m, 0 m) qA, and the charge at the posi-
tion (�1 m, 0 m) qB. Figure 23-65b shows a set of possible vector
directions. Below is a list of the components of possible E fields. For
each of the following three cases:

I qA � 0 qB � 8��0 E field at the point 
(x, y) � (�1 m, 1 m)

II qA � 0 qB � �8��0 E field at the point 
(x, y) � (�1 m, �1 m)

III qA � 160��0 qB � �16��0 E field at the point 
(x, y) � (0 m, �1 m)

specify an arrow corresponding to the directions of the E field from
figure (b) and a set of components from the list on the right. Each
of your answers should consist of a capital letter and a small letter.

(Note: The values of the charges in Coulombs are chosen to make
the messy “4��0” in Coulomb’s law cancel. Don’t put in numbers
first!)

a. N/C)î e. � N/C� î � � N/C� ĵ
b. (� N/C)ĵ f. � N/C� î � � N/C�ĵ
c. (�2 N/C)î g. None of the above

d. (2 N/C)ĵ

√51
2√8

√51
2

1
2√8
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74. The Size of an Oil Drop In the Millikan oil drop experiment,
an atomizer (a sprayer with a fine nozzle) is used to introduce many
tiny droplets of oil between two oppositely charged parallel metal
plates. Some of the droplets pick up one or more excess electrons.
The charge on the plates is adjusted so that the electric force on the
excess electrons exactly balances the weight of the droplet. The idea
is to look for a droplet that has the smallest electric force and as-
sume that it has only one excess electron. This lets the observer
measure the charge on the electron. Suppose we are using an elec-
tric field of 3 � 104 N/C. The charge on one electron is about 1.6 �
10�19 C. Estimate the radius of an oil drop whose weight could be
balanced by the electric force of this field on one electron.

75. What’s a Field? In this class, we repeatedly refer to an “electric
field.” Describe what an electric field is. Discuss how you would
know a nonzero field was present and how you would measure it.

76. Charge from Field
Lines Figure 23-66
shows some represen-
tative electric field
lines associated with
some charges. Both
pictures show the
same charges, but they
are masked in differ-
ent ways by imaginary
closed surfaces drawn
for the purpose of hid-
ing the charges from
your view.

(a) From the field
lines in the two pic-
tures, which of the fol-
lowing statements is
most likely to be true?

A. There are no
charges contained in A.

B. The charge contained in A is positive.
C. The charge contained in A is negative.
D. The total charge contained in A is zero.
E. None of the above can be true.

(b) From the field lines in the two pictures, which of the following
statements is most likely to be true?

A. There are no charges contained in B.
B. The charge contained in B is positive.
C. The charge contained in B is negative.
D. The total charge contained in B is zero.
E. None of the above.

(c) From the field lines in the two pictures, which of the following
statements is most likely to be true?

A. The charge contained in C is positive and greater in amount
than the charge in B.

B. The charge contained in C is positive and smaller in amount
than the charge in B.

C. The charged contained in C is negative and greater in
amount than the charge in B.

D. The total charge contained in C is negative and smaller in
amount than the charge in B.

E. None of the above.

G C

D

H B

F

E

Ay (m)

x (m)

1

0 1–1–2 2
–1

–2

2

(a) (b)

Electric field lines

Electric field lines

A

B

C

FIGURE 23-65 ■ Problem 73.

FIGURE 23-66 ■ Problem 76.



77. Finding the E Field Figure 23-67 shows two charges placed on a
coordinate grid. Each of the tic marks on the axes represents 1 m.
The amount of the charge is represented by the solid circle is qA

and is at the position (2 m, 0 m), while the charge represented by
the open circle is qB and is at the position
(0 m, 2 m). Below is a list of five sets of
configurations (labeled a–e) specifying
the value of the charges and the positions
at which the E field is to be measured.
For ease of calculation, these are repre-
sented in terms of the Coulomb contant
k � 1/4��0. On the right is a list of 12
possible electric fields represented as x-
and y-components. For each of the five
configurations, select the E-field compo-
nents that represent the field found at
that position.

Configuration

qA qB Position to 
Test the E Field

(a) 4/k �4/k (0 m, 0 m)

(b) 4/k �4/k (2 m, 2 m)

(c) 4/k 0 (0 m, 0 m)

(d) 0 �8/k (�2 m, 2 m)

(e) 0 �8/k (2 m, 0 m)

Possible E-Fields

1. (1 N/C)î 7. N/C î � N/C ĵ

2. (�1 N/C)ĵ 8. N/C î � N/C ĵ

3. (1 N/C)î � (1 N/C)ĵ 9. (2 N/C)î

4. (�1 N/C)î 10. (2 N/C)ĵ

5. (�1 N/C)î � (1 N/C)ĵ 11. (�2 N/C)î

6. (1 N/C)ĵ 12. None of the above

�� 1
√2

���
1

√2

�� 1
√2

�� 1
√2

78. Beads on a Ring Two charged beads are on the plastic ring in
Fig. 23-68a. Bead 2, which is not shown, is fixed in place on the
ring, which has radius R � 60.0 cm. Bead 1 is initially at the right
side of the ring, at angle  � 0°. It is then moved to the left side, at
angle  � 180°, through the first and second quadrants of the xy
coordinate system. Figure 23-68b gives the x-component of the net
electric field produced at the origin by the two beads as a function
of . Similarly, Fig. 23-68c gives the y-component. (a) At what angle
 is bead 2 located? What are the charges of (b) bead 1 and
(c) bead 2?
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x
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FIGURE 23-67 ■

Problem 77.
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x
R

Bead 1
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FIGURE 23-68 ■ Problem 78.
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24 Gauss’ Law

A demonstrator at the Boston Museum of Science is en-

closed in a large conducting cage made of wire mesh. An

electrical discharge from a giant Van de Graaff generator,

like the one discussed in Chapter 25, is charging the metal

cage to a dangerously high voltage. Yet the demonstrator

cannot detect the fact that the cage is electrically charged

even while touching the inside of the cage.  

How can a closed conduct-
ing surface such as this
metal cage or an automo-
bile prevent someone from
being harmed by lightning
or other high-voltage
sources?

The answer is in this chapter.



24-1 An Alternative to Coulomb’s Law

We associate a vector electric field with a distribution of charges. The electric field has
a vector at every location in space telling us what force a test charge qt will experience
at that location. In Sections 23-5 through 23-10 in the last chapter, we used Coulomb’s
law and the principle of superposition to calculate the electric field vectors at various
points in space due to charges that were distributed in different ways. Although
Coulomb’s law can be used to calculate the electric force (and hence electric field) ex-
erted on a test charge by any possible arrangement of charges we could imagine, this
is usually a very difficult task. For example, even calculating the electric field outside
the surface of a hollow, charged, conducting sphere would require us to do a triple
integration.

In Chapter 23 we used Coulomb’s law to find electric fields from charge distribu-
tions, but what if we want to turn our calculation around and determine a distribution
of charges from an electric field pattern? Unless our distribution of charges is very
simple, this reverse calculation is also difficult to perform using Coulomb’s law. Thus
Coulomb’s law appears to be valid but difficult to use in many circumstances. In this
chapter we introduce Gauss’ law as another method for relating a known electric field
to the charge distribution generating it and, conversely, for relating a known charge
distribution to its associated electric field. Gauss’ law in the integral form discussed in
this chapter allows us to find electric fields easily for very symmetrical charge
distributions.

To explore how we might find a general relationship between a collection of
charges and their electric field, let’s consider the electric field associated with the sim-
plest possible charge distribution—a point charge (see Fig. 24-1). By applying
Coulomb’s law we have already found that the magnitude of the charge’s electric field
decreases as the inverse square of the distance r, as expressed in Eq. 23-8,

However, if we construct an imaginary spherical surface around our source charge we
find that the surface area of the sphere increases as the square of the distance of the
spherical surface from the source charge. The equation for the surface area is given by

. Thus, we see that the product of the electric field magnitude and the sur-
face area of any imaginary spherical boundary is constant no matter how large or
small the distance from the charge is, as shown in Eq. 24-1,

(24-1)

Here we use Eq. 22-7 to replace the electrostatic constant k with 1/4��0 where �0 is
the electric (or permittivity) constant.

Equation 24-1 is remarkable for two reasons. First, as the electric field magnitude
gets smaller, the area over which it can act gets larger by exactly the same factor.
Second, the product of the electric field magnitude anywhere on a spherical surface
and the area of the spherical surface is proportional to the amount of charge en-
closed by that surface. Does this proportionality still exist when the closed surface
takes on other shapes? These questions were addressed by German mathematician
and physicist Carl Friedrich Gauss (1777–1855). We begin our study of Gauss’ ap-
proach to relating charge distributions, electric fields, and closed surfaces to each
other by defining a new quantity called electric flux.

� q �

EA � k
� q �
r2 (4�r2) �

1
4��0

� q �
r2 (4�r2) �

� q �
�0

.

A � 4�r 2

E � � E
:

� � k
� q �
r 2 .
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+

E

FIGURE 24-1 ■ If a single charge is lo-
cated at the center of an imaginary sphere,
Coulomb’s law tells us the magnitudes of
the electric field vectors are the same at all
points on the surface of the sphere and the
direction of each electric field vector is
normal (perpendicular) to the surface.
Only the field vectors that lie in the plane
of the page are shown in this drawing.



24-2 Electric Flux

For the case of a single point charge at the center of an imaginary sphere, Eq. 24-1 tells us
that the product of the electric field magnitude (at the surface of a sphere) and the sur-
face area of the sphere are proportional to the charge. This product is known as the
electric flux through the sphere. In our simple situation the directions of electric field
vectors created by the point charge happen to be normal (that is, perpendicular) to the
surface of our imaginary sphere at all points along its surface.What if we have a complex
array of charges or decide to surround our charge with an imaginary enclosure with a
different shape? In that case we need to break our surface into little elements of area
and find the component of the electric field vector that is normal to each area element as
depicted in Fig. 24-2. We took a similar approach in Section 15-10 in defining volume flux
for fluids flowing in pipes and streams. If the definitions of volume flux and normal vec-
tor for an area are not familiar to you, we suggest you read this earlier section.

EA

Electric Flux   691

(a) (b)

θ
θ

(c)

θΔAi

Ei Ei

E  cos ΔAi

Ai

FIGURE 24-2 ■ (a) A small area vector element is perpendicular to
the plane of a square loop of area A with a magnitude of A. (b) The com-
ponent of perpendicular to the plane of the loop is cos �,where � is
the angle between and a normal to the plane. (c) The area vector 
makes an angle � with .E

:
�A

:
E
:

�E
:

�E
:

�A
:

If we know the nature of the velocity vector field, , characterizing the motion of the
fluid, we can use the definition of volume flux presented in Chapter 15 to calculate the
amount of fluid flowing through any very small element, , of a larger surface area*. If
we look at the ith element of a larger area, the volume flux element, , for that small
area is defined as the scalar or dot product of the normal vector representing an area ele-
ment and the velocity vector at the location of the area element as shown in Eq. 15-33,

(volume flux definition for a small area element).

What is a normal vector? Recall that we defined the normal vector to a small flat area to al-
low us to represent both the magnitude and the orientation of an element of area. If the ele-
ment of area is part of a closed surface completely surrounding a space, we define the nor-
mal vector to be pointing out of the surface (Fig. 24-3). The normal vector points at right
angles, or normal, to the plane of the area and has a magnitude equal to the area (Fig. 24-4).

Although electric flux does not involve the flow of anything, we define it in a way
mathematically analogous to volume flux introduced in Chapter 15. An electric flux
element is defined as the dot product of the normal vector representing an area
element and the electric field vector at the location of the area element as shown in
Fig. 24-2 and in Eq. 24-2,

(electric flux definition for a small area), (24-2)

where Ei and are magnitudes while � is the angle between the two vectors. If a
curved surface like the one in Fig. 24-3 is broken into small area elements, each of the

vectors can point in different directions.�A
:

i

�Ai

�i � (Ei)(�Ai)cos � � E
:

i��A
:

i

�i � v:i�� A
:

i

�i

�A
:

i

v:

FIGURE 24-3 ■ In order to make net flux
calculations, a curved surface area must be
divided into N small area elements. Each
element must be small enough so it is
essentially flat and has electric field vectors
that have the same magnitude and
direction at every location on a given
surface element. The ith area element and
its normal vector are shown assuming that
an outside piece of a closed surface is be-
ing shown here.

*Our use of the symbol instead of just Ai is to signify that the areas are very small. In this context, the
delta does not signify change.

�Ai



As is the case for volume flux, if our area is not small enough to be considered as
flat or if the electric field vectors are not uniform over the area we choose, then we
must break the area into smaller elements that are essentially flat (Fig. 24-4). We can
then determine the net electric flux as the sum of individual flux elements. For N flux
elements, this is given by 

(net electric flux), (24-3)

where and so on represent the electric field vectors at the location of each
of the N area elements. The flux associated with an electric field is a scalar, and its SI
unit is the newton-meter-squared per coulomb or [N � m2/C].

Some possible orientations for area elements and electric field vectors needed to
calculate electric flux elements are shown in Fig. 24-4.

In everyday language the term flux is often used to represent flow or change. This
is suggested by expressions such as “an influx of population” or “the economy is in a
state of flux.” These popular uses of the word flux can be deceptive when applied to
electrostatic phenomena that we are dealing with in Chapters 22 through 25. Electric
flux can be defined whenever an electric field exists, even when an electric field is sta-
tic and not changing. Furthermore, even if a redistribution of charges causes an elec-
tric field to change over time, the changing flux associated with electric field is not
related to the flow of anything.

Instead of representing change or flow, electric flux at an area represents the summation
over a surface of flux elements. Each flux element represents the product of an essentially
flat area element on the surface and the component of the electric field vector that lies
along the normal to that area element.

READI NG EXERC IS E  24-1: The figure shows two situations in which the angle be-
tween a field vector and the normal vector representing the orientation of the area is � � 60	.
Assume the magnitude of the area in each case is . (a) If the imaginary area
element is placed at a location in a stream where the magnitude of the stream velocity is

, what is the volume flux through the area? Is anything flowing through the area ele-
ment? If so, what? (b) Suppose the imaginary area element is placed in an electric field where
the magnitude of the field vector is . What is the electric flux through the area ele-
ment? Is anything flowing through the area element? If so, what? ■

24-3 Net Flux at a Closed Surface

In the introductory section we posed the question of whether there is a proportional-
ity between an enclosed charge distribution and the flux at a surface that encloses it.
To answer this question we need to examine carefully the procedures for determining
net electric flux at an imaginary surface that encloses charges. The word “enclose” is

E � 3 N/C

v � 3 m/s

�A � 2 
 10�4 m2

E
:

1, E
:

2, E
:

3,

� �
N

n�1
E
:

n � �A
:

n

� E
:

1 � �A
:

1 � E
:

2 � �A
:

2 � � � � � E
:

N � �A
:

N

 �net � �1 � �2 � � � � � �N
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(a)

θ = 60°
A

v

(b)

θ = 60°
A

E

Δ

θ

Φ1 < 0 Φ2 = 0 Φ3 > 0

A1

1
θ2

θ3

ΔA2

ΔA3

E1
E2 E3

FIGURE 24-4 ■ Three small areas that subtend different angles with respect to
various electric field vectors. The first flux element is negative, the second zero,
and the third positive. Note that nothing is “flowing” in the case of electric flux
to exist.



important here. In the discussion that follows, we will not be discussing calculations of
electric flux at any arbitrary surface. We will limit our discussion to the electric flux at
closed surfaces that are continuous and connected. That is, a closed surface must be
without cuts or edges. Nothing can get into or out of such surfaces without passing
through the surface itself.

In order to define the net electric flux at any closed surface, consider Fig. 24-5,
which shows an arbitrary (irregularly shaped) imaginary surface immersed in a
nonuniform electric field. For historical reasons, any imaginary closed surface used in
the calculation of a net electric flux is called a Gaussian surface. Since the electric field
vector might be different at each location on our Gaussian surface, we must divide the
entire surface into small area elements and take the sum as shown in Eq. 24-3.

Let’s consider the arbitrary closed surface shown in Fig. 24-5. The vectors and
for each square have some angle �i between them. Figure 24-5 shows an enlarged

view of three small squares (1, 2, and 3) on the Gaussian surface, and the angle �i be-
tween and . Our net flux equation (Eq. 24-3) instructs us to visit each square on
the Gaussian surface, to evaluate the scalar product at the location of each,
and to sum the results algebraically (that is, with signs included) for all the squares
that make up the surface. The sign or a zero resulting from each scalar product deter-
mines whether the flux at a square is positive, negative, or zero. Squares like 1, in
which points inward, make a negative contribution to the sum. Squares like 2, in
which lies in the surface, make zero contribution. Squares like 3, in which points
outward, make a positive contribution. (Note that the particular signs for the flux ele-
ments discussed above are a consequence of the convention adopted on the previous
page; the area vectors point outward for closed surfaces.)

The exact definition of the flux of the electric field at a surface is found by allow-
ing the area of the squares shown in Fig. 24-5 to become smaller and smaller, ap-
proaching a differential limit . The normal vectors for each tiny surface area then
approach a differential limit . Thus, the electric flux at a closed surface is given by
the integral of the electric field components parallel to the normal of each surface
area element over the magnitude of each surface area element. In mathematical nota-
tion the equation for electric flux becomes

(net electric flux at a Gaussian surface). (24-4)

The circle on the integral sign indicates that the integration is to be taken over the en-
tire closed surface (Gaussian surface).

� �E
:

� dA
:

�net � lim
�A::0

�
N

i�1
E
:

i��A
:

i

dA
:

dA

E3
:

E2
:
E1
:

Ei
:

��A
:

i

�A
:

iEi
:

Ei
:

�A
:

i
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Gaussian
surface

1 3

2

Δ

1
ΔΦ1 < 0

ΔΦ2 = 0

ΔΦ3 > 0
3

θ

2

A1

ΔA2

ΔA3
E1

E2

E33
θ1

θ2

FIGURE 24-5 ■ A Gaussian surface of
arbitrary shape is immersed in an electric
field. The surface is divided into small area
elements. The electric field vectors and
the area vectors are shown for three
representative area elements marked 1, 2,
and 3. The other electric field vectors are
not shown.

TOUCHSTONE EXAMPLE 24-1: Net Flux for a Uniform Field

Figure 24-6 shows a Gaussian surface in the form of a cylinder of
radius R immersed in a uniform electric field , with the cylinder
axis parallel to the field. What is the flux of the electric field
through this closed surface?

�net
E
:

S O L U T I O N ■ The Ke y  I d e a here is that we can find the flux
through the surface by integrating the scalar product over

the Gaussian surface. We can do this by writing the flux as the sum
of three terms: integrals over the left disk cap a, the cylinder surface
b, and the right disk cap c. Thus, from Eq. 24-4,

(24-5)� �
a
E
:

� dA
:

� �
b
E
:

�dA
:

� �
c
E
:

�dA
:

.

�net � �E
:

� dA
:

E
:

�dA
:

�

Gaussian
surface

θ

a c

θ
b

dA

dA

dA
E

E

E

FIGURE 24-6 ■ A cylin-
drical Gaussian surface,
closed by end caps, is im-
mersed in a uniform elec-
tric field. The cylinder
axis is parallel to the field
direction.
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For all points on the left cap, the angle � between and is
180°, and the magnitude E of the field is constant. Thus,

where gives the cap’s area, . Similarly, for the right
cap, where for all points,

�
c
E
:

� dA
:

� �E(cos0	) dA � E�dA � �EA.

� � 0
A(� �R2)�dA

�
a
E
:

�dA
:

� �E(cos180	) dA � �E�dA � �EA,

dA
:

E
: Finally, for the cylindrical surface, where the angle � is 90° at all points,

Substituting these results into Eq. 24-5 leads us to

(Answer)

This result is perhaps not surprising because the field lines that rep-
resent the electric field all pass entirely through the Gaussian sur-
face, entering through the left end cap, leaving through the right
end cap, and giving a net flux of zero.

� � �EA � EA � 0.

�
b
E
:

� dA
:

� �E(cos 90	) dA � 0.

TOUCHSTONE EXAMPLE 24-2: Flux for a Nonuniform Field

A nonuniform electric field given by 
pierces the Gaussian cube shown in Fig. 24-7. What is the electric flux
through the right face, the left face, and the top face?

S O L U T I O N ■ The
Key Idea here is that we
can find the flux through
the surface by integrating
the scalar product 
over each face.

Right face: An area
vector is always per-
pendicular to its surface
and always points away
from the interior of a
Gaussian surface. Thus,
the vector for the
right face of the cube
must point in the positive x direction. In unit vector notation, then,

From Eq. 24-4, the flux through the right face is then

� �(3.0 N/C � m)xdA � (0.0 N�m2/C) � (3.0 N/C � m)�x dA.

� �[(3.0 N/C � m)(x)(dA)î � î � (4.0 N/C)(dA)ĵ� î]

�r � �E
:

� dA
:

� �[(3.0 N/C �  m)x î � (4.0 N/C)ĵ] �  (dA î)

�r

dA
:

� dA î.

dA
:

A
:

E
:

� dA
:

�

x î � (4.0 N/C) ĵE
:

� (3.0 N/C � m) We are about to integrate over the right face, but we note that x has
the same value everywhere on that face—namely, . This
means we can substitute that constant value for x. Then

Now the integral merely gives us the area of the right
face, so

(Answer)

Left face: The procedure for finding the flux through the left
face is the same as that for the right face. However, two factors
change. (1) The differential area vector points in the negative x
direction and thus . (2) The term x again appears in our
integration, and it is again constant over the face being considered.
However, on the left face, . With these two changes, we
find that the flux through the left face is

(Answer)

Top face: The differential area vector points in the positive y
direction and thus . The flux through the top face is then

(Answer)� 16  N �  m2/C.

� (0.0 N �  m2/C) � �(4.0  N/C) dA) � (4.0 N/C)�dA

� �[(3.0 N/C �m)(x dA)î � ĵ � (4.0 N/C)(dA)ĵ � ĵ]

�t � �[(3.0 N/C �m)x î � (4.0 N/C) ĵ]�(dA ĵ)

�tdA
:

� dA ĵ
dA

:

�l � �12 N�m2/C.

�l

x � 1.0 m

dA
:

� �dAî
dA

:

�r � (9.0 N/C)(4.0 m2) � 36  N�m2/C.

A � 4.0 m2

�r � (3.0  N/C � m)�(3.0 m)dA � (9.0 N/C)�dA.

x � 3.0 m

y

x

z

Top
face

x = 1.0 m x = 3.0 m

Right
face

FIGURE 24-7 ■ A Gaussian cube
with one edge on the x axis lies
within a nonuniform electric field.

24-4 Gauss’ Law

Let’s return for a moment to the consequence of Coulomb’s law we presented in the
first section, where we surrounded a single charge with a spherical Gaussian surface.
We found that a flux-like quantity (namely, the product of the magnitude of the elec-
tric field at the sphere’s surface multiplied by the area of the sphere’s surface) is equal
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to a constant times the enclosed charge. The surprising thing is this is true no matter
what the radius of the sphere is, because the amount by which the surface area of the
sphere increases just compensates for the amount by which the electric field magnitude
decreases. This suggests that the net flux through a Gaussian surface of any shape en-
closing a single charge will be proportional to the amount of charge enclosed.

Visualizing Flux through a Gaussian Surface
Since the relationship between flux and charge enclosed by a Gaussian surface is hard
to visualize in three dimensions, let’s consider the special case of an infinitely long rod
that has a uniform charge density. While infinitely long rods do not exist, our result
will be valid providing the Gaussian surfaces are far from the ends of the rod. Imagine
a Gaussian surface that has the shape of a coin and surrounds a small segment of the
rod. This is shown in Fig. 24-8.

ΔA, a radial area
element on edge

of surface

One face of the
imaginary closed
gaussian surface

Uniformly charged
insulating rod

x

+ + + + + + + + + + + + + + + + +

(a) Side view (b) End view

FIGURE 24-8 ■ (a)An infinitely long uniformly charged rod has a
Gaussian surface that looks like a coin with front and back faces that
are perpendicular to the rod and enclose a small charge. (b) An end
view of the rod and Gaussian surface face can help us visualize flux at
the surface’s edges.

FIGURE 24-9 ■ Three imaginary Gaussian surfaces surround the same point charge. Here the
red lines show only a two-dimensional cross section of three-dimensional surfaces. The contri-
bution of electric flux at a series of small area elements is calculated and represented by rectan-
gles. Note that whenever part of a surface is close to the charge, the flux elements are bigger but
there are fewer of them. We can see visually that the net flux (which is proportional to the area
occupied by all the outgoing flux (shown as green) minus the incoming flux (shown as pink) is
approximately the same in the three cases.

Because the charged rod is infinitely long it is symmetric about any point on it. As
we showed in Section 23-5 (see Fig. 23-12), it turns out the electric field vectors cre-
ated by a symmetric pair of charges point outward in a radial direction and have no
components parallel to the line that the charges lie on (in this case, the line deter-
mined by the rod). We can also show that for a thin rod the field magnitude falls off as
1/r where r is the radial distance from the center of the rod. (Likewise, a similar nega-
tively charged rod has electric field vectors pointing radially inward). The key factor
in surrounding a piece of long rod with a coin-shaped closed surface is that all the flux
at the surface will be at the edges and there will be no flux at the faces of the surface.
For this reason, we can calculate and depict the “amount” of flux at elements of area
on the edges of the surface by looking at an end view of the rod. This is true not only
for coin-like closed surfaces that have circular faces but also for any shaped faces so
long as the two faces are parallel to each other and perpendicular to the rod. End
views depicting flux amounts as green rectangles are shown in Fig. 24-9 for three dif-
ferent imaginary Gaussian surfaces outlined in red.

+++
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A small bundle of enclosed charge yields the same net electric flux at a Gaussian
surface no matter what the shape of the surface. By superposition, if there are two
charges enclosed by a Gaussian surface, each charge contributes its proportional
share to the net flux no matter where each of the charges is located, provided both are
inside the Gaussian surface. This leads us to a statement of Gauss’ law that describes a
plausible general relationship between the net flux through a Gaussian surface of any
shape and the total enclosed charge no matter how it is distributed.

GAUSS’ LAW: The net flux through any imaginary closed surface is directly proportional to
the net charge enclosed by that surface.

Based on consideration of SI units, the constant of proportionality must be 1/�0

where �0 is the permittivity constant, so that the mathematical expression of Gauss’ law is 

(Gauss’ law). (24-6)

By substituting the definition of electric flux at a Gaussian surface, we
can also write Gauss’ law as

(Gauss’ law). (24-7)

Here, the circle on the integral sign indicates that the surface over which we integrate
must be “closed.” The use of the permittivity constant for a vacuum, �0, in Eqs. 24-6 and
24-7 indicates this form of Gauss’ law only holds when the net charge is located in air or
some other medium that doesn’t polarize easily. In Section 28-6, we modify Gauss’ law to
include situations in which so-called dielectric materials that can polarize, such as paper,
oil, or water, are present. In Fig. 24-10 we show how the net flux can have the same value
for two different charge distributions involving the same amount of enclosed charge.

Gauss’ law is useful for finding both charge and flux. That is, if we can calculate
the net flux through a closed surface, we can deduce the amount of charge enclosed.
On the other hand, if we know the amount of charge enclosed, we can use Gauss’ law
to deduce the net flux through any surface that encloses the charge.

Interpreting Gauss’ Law
One use of Gauss’ law is to calculate how much net charge is contained inside any
closed surface. To make the calculation, you need know only the net electric flux at
the surface enclosing the collection of charges. This net flux is related to the strength
of the normal components of the electric field at all locations on the surface.

�net � � E
:

� dA
:

�
q enc

�0

�net � �E
:

�dA
:

,

�net �
q enc

�0

+1

+1

+1

+2

–1

FIGURE 24-10 ■ Each Gaussian surface encloses a differ-
ent charge distribution but encloses the same net charge.
The electric flux calculated at the edges of the surface is
represented by green rectangles (outward flux) or pink rec-
tangles (inward flux). The total space covered by all of the
green rectangles minus that occupied by the pink rectan-
gles turns out to be the same for the two situations, which
is compatible with the predictions of Gauss’ law.



In Eqs. 24-6 and 24-7, the net charge q enc is the algebraic sum of all the enclosed
positive and negative charges, and it can be positive, negative, or zero. We include the
sign, rather than just use the amount of enclosed charge, because the sign tells us
something about the net flux at the Gaussian surface. Here we continue to use our
convention that the normal area vectors representing the area elements of a closed
surface point outward. If the net charge enclosed, q enc, is positive, its electric field vec-
tors point mostly outward too. This leads to a net flux that is outward and positive as
shown in Fig. 24-11a. If q enc is negative, the area vector still points outward but the
electric field vector points inward. This leads to a net flux that is inward and negative,
as shown in Fig. 24-11. Figure 24-11c shows how positive and negative charges inside a
Gaussian surface can lead to zero net flux.
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(a) (b) (c)

+ – + –

FIGURE 24-11 ■ Each of these Gaussian surfaces has the same
shape. (a) One unit of enclosed positive charge causes a positive net
outward flux shown in green. (b) One unit of enclosed negative
charge causes a negative net inward flux shown in pink. Note that the
amount of negative flux is the same as the amount of positive flux
shown in the previous diagram. (c) If both the positive and negative
charges are enclosed the net charge is zero and so is the net flux.

Charge outside a Gaussian surface, no matter how large or how close it may be, is
not included in the term q enc in Gauss’ law. We expect this since there is no source of
electric field inside the surface, and negative and positive flux elements will cancel
each other, as shown in Fig. 24-12. The exact form or location of the charges inside the
Gaussian surface is also of no concern; the only things that matter are the amount of
the net charge enclosed and its sign. The quantity on the left side of Eq. 24-7, how-
ever, is the electric field resulting from all charges, both those inside and those outside
the Gaussian surface. This may seem to be inconsistent, but keep in mind the electric
field due to a charge outside the Gaussian surface contributes zero net flux on the sur-
face (as shown in Fig. 24-12). This is the case even though a charge outside the surface
does contribute to the actual values of the electric field at each point on the surface.

E
:

+

FIGURE 24-12 ■ A charge element along a rod is located outside a
Gaussian surface. When the electric flux is calculated at each area
element using Coulomb’s law, its outward values are represented by
green rectangles and the inward flux by pink rectangles. The net flux is
zero because the negative inward flux at the portion of the surface near
the charge just cancels the positive outward flux at the location of the
portions of the surface far away from the charge.

S1

S4

S2

S3

–

+

Let us apply these ideas to Fig. 24-13, which shows the electric field lines sur-
rounding two point charges, equal in amount but opposite in sign. Four Gaussian sur-
faces are also shown, in cross section. Let us consider each in turn.

Surface S1 (encloses only the positive charge): The electric field is dominated by the
nearby positive charge and so points outward for the majority of the points on this sur-
face. Thus, the flux of the electric field at this surface is positive, and so is the net charge
within the surface, as Gauss’ law requires. (That is, if is positive, qenc must be also.)

Surface S2 (encloses only the negative charge): The electric field is dominated by the
nearby negative charge and so points inward for the majority of the points on this sur-
face. Thus, the flux of the electric field is negative and so is the enclosed charge, as
Gauss’ law requires.

�

FIGURE 24-13 ■ An idealization showing
two point charges of equal amount and op-
posite sign are shown with the field lines
that depict their net electric field as if all
lines lie in a plane. The cross sections of
four Gaussian surfaces are shown. Surface
S1 encloses the positive charge, S2 encloses
the negative charge, and S3 encloses no
charge. Since S4 surrounds both charges, it
encloses no net charge.



Surface S3 (encloses no charges): Since and there are comparable contribu-
tions to the electric field at points on the surface from both charges, the field on some
parts of the surface will point out and on other parts it will point in. Gauss’ law (Eq. 24-7)
requires the net electric flux through this surface to be zero. That is reasonable because
in calculating the net flux, the inward and outward flux elements cancel each other.

Surface S4 (encloses both charges): This surface encloses no net charge, because equal
amounts of positive and negative charge are enclosed. Gauss’ law requires the net flux
of the electric field at this surface be zero. That is reasonable because in this case the
field vectors point outward for the portion of the surface nearest to the positive charge
(yielding positive flux) and inward for the portion of the surface near the negative
charge (yielding negative flux). In calculating the net flux, the positive and negative flux
elements cancel each other, even though the field is nonzero along most of the surface.

What would happen if we were to bring an enormous charge Q up close to (but
still outside of) surface S4 in Fig. 24-13? The pattern of the electric field would cer-
tainly change, but the net flux for the four Gaussian surfaces would not change. We
can understand this because the inward and outward flux elements associated with
the added Q at any of the four surfaces would cancel each other, making no contribu-
tion to the net flux at any of them. The value of Q would not enter Gauss’ law in any
way, because Q lies outside all four of the Gaussian surfaces that we are considering.

READI NG EXERC IS E  24-2: The figure shows three situations in which a Gaussian
cube sits in an electric field. The arrows indicate the directions of the electric field vectors for
the top, front, and right faces of each cube. The flux at the six sides of each cube is listed in the
table below. In which situations do the cubes enclose (a) a positive net charge, (b) a negative
net charge, and (c) zero net charge?

qenc � 0
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Eright

E top
E top

E front

Eright

E front

E top

Eright

E front

Flux [N � m2/C]

Face Cube 1 Cube 2 Cube 3

Front �2 �4 �7

Back �3 �3 �8

Left �7 �3 �2

Right �4 �5 �5

Top �5 �10 �6

Bottom �7 �6 �5
■

24-5 Symmetry in Charge Distributions 

Why go through all this trouble to develop a method of calculating electric fields that
is equivalent to Coulomb’s law? We suggested in the introduction to this chapter
that it is because Gauss’ law makes it possible to calculate the field for highly symmet-
ric charge distributions. What we mean by symmetric charge distributions are



arrangements of charges that can be rotated about an axis or reflected in a mirror and
still look the same. Figure 24-14 shows several examples of symmetric objects.

Why do charge distributions need to be symmetric in order for Gauss’ law to be
helpful in finding an electric field? Because we can use symmetry arguments to find
the direction of the electric field and surfaces along which it is constant. This allows us
to choose an imaginary Gaussian surface over which the electric field is constant.
Then we can take the dot product and turn the vectors into scalar magnitudes. Finally,
we know the electric field magnitude is constant at the surface we are integrating
over, so we can pull the electric field vector outside of the integral sign. By following
the steps we outlined, in some cases Gauss’ law can be reduced to 

Better still is to be able to find a Gaussian surface over which both the electric
field and the angle between the field and area vectors, �, are constant over the entire
area. In that case, both the electric field and the cosine functions can be moved out-
side the integral and Gauss’ law reduces to:

This expression is very easy to evaluate because the integral of is simply the mag-
nitude of the total area of the Gaussian surface, which we will denote as A. Hence, if
we can find a Gaussian surface over which the field and angle � are constant, Gauss’
law allows us to calculate the electric field of an extended charge distribution without
doing an integral. In those cases, Gauss’ law tells us that the electric field magnitude is

(constant E and �), (24-8)

where A is the area of the Gaussian surface, � is the angle between the field and each
area vector, and q enc is the net charge enclosed by the Gaussian surface. In some cases
where the angle, �, has one value for some parts of a surface and another value for
other parts of a surface, we can handle the calculation by breaking the surface integral
into parts.

A word of caution: There are only a few charge distributions with sufficient sym-
metry for Gauss’ law to be useful. These include single point charges and spherically
symmetric ones. Charge distributions that work with Gauss’ law also include the infi-
nitely long cylinder, with cylindrical symmetry, and that of a uniformly charged slab
with infinitely long sides with planar symmetry. Fortunately, there are many physical
situations for which these geometries are important. Hence, Gauss’ law is an extraor-
dinarily useful tool.

However, for many charge distributions, we cannot use Gauss’ law to find the
field because the flux integral on the left-hand side of the expression

is too complicated to evaluate. In these cases, Gauss’ law is still valid but not useful.

24-6 Application of Gauss’ Law to Symmetric 
Charge Distributions

As we determined in the last section, Gauss’ law is useful if we already know what the
general shape of the vector electric field plot looks like. In some cases we can derive
this knowledge from symmetry of the charge distribution without using equations or
doing calculations. Only then can we choose an imaginary closed surface and use the

�0� E
:

�dA
:

� q enc

E �
� q enc �

�0 A cos �

dA

(�0 E cos � ) � dA � � q enc �.

�0� E cos� dA � �0E � cos� dA � � q enc �.
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FIGURE 24-14 ■ Some symmetrically
charged objects—a plane, a sphere, and a
cylinder.
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r
R

S1

q

S2

FIGURE 24-15 ■ A thin, charged,
spherical shell with total charge q, in cross
section. Two Gaussian surfaces S1 and S2

are also shown in cross section. Surface S2

encloses the shell, and S1 encloses only the
empty interior of the shell.

mathematical form of Gauss’ law to calculate the magnitude of the electric field at
points on the surface. In this section we take this approach to determining the electric
field for three highly symmetric charge distributions.

Spherical Symmetry for a Shell of Charge
Figure 24-15 shows a charged spherical shell of total positive charge q and radius R and
two concentric spherical Gaussian surfaces, S1 and S2. (Note that we chose the shape of
the Gaussian surface to mirror the symmetry of the charge distribution.) Because the
charge distribution is spherically symmetric no matter how we rotate the spherical shell
around its center, the shell looks the same. This means that the electric field must have a
spherical symmetry too. Thus, it must have the same magnitude at every point on the
spherical Gaussian surface S2 and it must point in a radial direction. Further, since the
area vector points radially outward at all points on S2, the angle between the electric
field and the area is constant. As a result of the spherical symmetry of the distrib-
uted charge, we know the electric field also points in a radial direction at all points on
S2. Hence, the angle � is not only constant but it is also 0	 at all points on the surface.
Applying Gauss’ law to surface S2 then comes down to evaluating the expression for the
electric field magnitude that we derived in Eq. 24-8 for constant E and �,

.

Note that and the area of a sphere (the Gaussian sphere) of radius r
is 4�r2. Hence, for any , we find that

(spherical shell, field at ). (24-9)

What is surprising is that outside the shell the electric field is the same as if the
shell of charge were replaced by a single point-like charge, q, provided that the single
charge is placed where the center of the shell of charge was. Thus, if the charge on a
shell is evenly distributed, a shell of total charge q would produce the same force on a
small test charge placed anywhere outside the shell as a single point-like charge q
would.

A shell with a uniform charge distribution attracts or repels a charged particle that is out-
side the shell as if all the shell’s charge were concentrated at the center of the shell.

This shell theorem is identical to the one developed by Isaac Newton for gravitation
in Section 14-2.

What happens to the electric field inside the shell of charge? Applying Gauss’ law
to surface S1, for which r < R, leads directly to

(spherical shell, field at r  R), (24-10)

because this Gaussian surface encloses no charge. Thus, when a small test charge is
enclosed by a shell of uniform charge distribution, the shell exerts no net electrostatic
force on it.

A shell of uniform charge exerts no electrostatic force on a charged particle that is located
inside the shell.

E
:

� 0 [N/C]

r � RE �
1

4��0

� q enc �
r 2

r � R
cos � � cos 0 � 1

E �
� q enc �

�0 A cos �

A
:

E
:



A Spherically Symmetric Charge Distribution
Any spherically symmetric charge distribution, such as that of Fig. 24-16, can be con-
structed with a nest of concentric spherical shells. This is a good starting point for
treating a wide variety of charged objects with nearly spherical distribution of charge
such as nuclei and atoms. For purposes of applying the two shell theorems stated
above, the volume charge density �, defined as the charge per unit volume, should
have a single value for each shell but need not be the same from shell to shell. Thus,
for the charge distribution as a whole, �, can vary only with r, the radial distance from
the center of the sphere and not with direction. We can then examine the effect of the
charge distribution “shell by shell.”

In Fig. 24-16a the entire charge lies within a Gaussian surface with r > R. The
charge produces an electric field on the Gaussian surface as if the charge were a point
charge located at the center, and Eq. 24-9 holds.

Figure 24-16b shows a Gaussian surface with r  R. To find the electric field at
points on this Gaussian surface, we consider two sets of charged shells—one set in-
side the Gaussian surface and one set outside. The charge lying outside the Gaussian
surface does not set up a net electric field on the Gaussian surface. Gauss’ law tells us
that the charge enclosed by the surface sets up an electric field as if that enclosed
charge were concentrated at the center. Letting q� represent that enclosed charge, we
can then write the electric field magnitude  as

(spherical distribution, field at r  R), (24-11)

where the term signifies that depends on r. (It is not the product of and r.)
Equation 24-11 is valid for any spherically symmetric charge distribution, even

one that is not uniform. For example, Fig. 24-16 shows a situation in which the vol-
ume charge density is spherically symmetric but larger near the center of the
sphere than further out. In other words, Eq. 24-11 is valid whenever � � �(r) or � is
a constant. But the equation is not useful unless we know how to use a knowledge
of the volume charge density to determine the charge q� enclosed by a sphere of
radius r.

Spherical Symmetry for a Uniform Volume Charge Distribution
Consider the simple case where the charge is distributed uniformly through the vol-
ume of a sphere of radius R containing an excess charge q. In this case it is possible to
find the magnitude of the electric field at any location inside the sphere in terms of
the total charge in the sphere.

Whenever the total charge q enclosed within a sphere of radius R is distributed
uniformly, we can use the definition of volume charge density (presented in Table 23-
2) and the knowledge that the volume of a sphere of radius R is given by to
write

(24-12)

Since the charge density is a constant the amount of charge in a smaller sphere of ra-
dius r is proportional to its volume. Since its volume is then

. Substituting Eq. 24-12 for � gives

(24-13)q� � q
r3

R3 .

q� � �V� � � (4
3 �r3)

V� � 4
3 �r3

� � 
q
V

�
q

4
3�R3 .

4
3�R3

q�q�q�(r)

� E
:

� �
1

4��0

� q enc �
r 2 �

1
4��0

� q�(r) �
r 2
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FIGURE 24-16 ■ Spherically symmetric
distributions of charge of radius R, whose
volume charge density � is a function only
of distance from the center. The charged
object is not a conductor, so the charge is
assumed to be fixed in position. A 
cross-section of concentric spherical
Gaussian surface with r > R is shown in
(a). A similar Gaussian surface with r < R
is shown in (b).
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FIGURE 24-17 ■ A Gaussian surface in
the form of a closed cylinder surrounds a
section of a very long, uniformly charged,
cylindrical plastic rod.

Substituting this into Eq. 24-11 gives us the electric field magnitude in terms of the to-
tal charge on the sphere.

(uniform volume charge density for ). (24-14)

Cylindrical Symmetry for a Uniform Line Charge Distribution
Figure 24-17 shows a section of a very long thin cylindrical plastic rod with a uniform
distribution of positive charge, so that linear charge density � (as defined in Table 23-
2) is constant. Let us find an expression for the magnitude of the electric field out-
side of the rod at a distance r from its axis in terms of the linear charge density of the
rod. In doing so, we assume that r is small compared to the length of the rod so that
we can ignore the effect of the rod’s ends.

We start by choosing a Gaussian surface that matches the cylindrical symmetry of
the rod. So our imaginary surface is a circular cylinder of radius r and length h, coaxial
with the rod. The Gaussian surface must be closed, so we include two end caps as part
of the surface. We pick the end caps of the Gaussian surface so they are far from the
end of the rod.

Imagine that, while you are not watching, someone rotates the plastic rod around
its longitudinal axis or moves it a finite distance along the axis. When you look again
at the rod, you will not be able to detect any change in either the appearance of the
rod or the behavior of the electric field that surrounds it. Furthermore, when we ex-
periment, we find that if the rod is flipped end for end we still detect no change in the
rod’s electric field. What does this tell us about the nature of the electric field? If the
electric field has only a component that points radially inward or outward from the
rod, then the field should be unaffected by the changes in orientation that we have
discussed. If however, the field had any component tangent to the rod’s surface,
pointed toward or away from the rod, we would detect a change in the electric field as
we rotated or flipped the rod. Hence, we conclude from these symmetry arguments
that at every point on the cylindrical part of the Gaussian surface, the electric field
must have the same magnitude and must be directed radially outward (for a
positively charged rod).

Since is the circumference of the cylinder and h is its height, the area A of the
cylindrical surface is . The flux of at this cylindrical surface is then

There is no flux at the end caps because , being radially directed, is parallel to the
end caps at every point, so is perpendicular to the normal and the dot product van-
ishes. Thus the flux through the cylindrical surface is equal to the net flux ( ).

According to Gauss’ law, shown in Eq. 24-6,

.

We can find the enclosed charge in terms of the linear charge density, defined as the
charge per unit length. If the charge enclosed by the surface that encompasses a
length h of the rod has a uniform density �, then . Thus, the previous two
equations reduce to so that

(long line of uniformly distributed charge). (24-15)E �
� � �

2��0r

E(2�rh) � � � �h/�0,
q enc � �h

�net �
q enc

�0

�net � �
E
:

E
:

� � EA cos � � E(2�rh)cos 0 � E(2�rh).

E
:

2�rh
2�r

E � � E
:

�

E
:

r � RE � � � q �
4��0R3 	r



This is the expression for the electric field magnitude due to a very long, straight line
of uniformly distributed charge, at a point that is a radial distance r from the line. The
direction of is radially outward from the line of charge if the charge is positive, and
radially inward if it is negative. Equation 24-15 also approximates the field of a finite
line of charge, at points that are not too near the ends (compared with the distance
from the line).

A Sheet of Uniform Charge
Figure 24-18 shows a portion of a thin, very large, sheet with a uniform (positive) surface
charge density � (as defined in Table 23-2). A large sheet of thin plastic wrap, uniformly
charged on one side, can serve as a simple example of a nonconducting sheet. A large
sheet of aluminum foil serves as an example of a conducting sheet. Let us find the elec-
tric field a distance r from the uniformly charged sheet. Here we assume that we are
far from the edges of the sheet and that the thickness of the sheet is much less than r.

Even though it doesn’t have the same shape as a charged sheet, something called
a Gaussian pillbox turns out to make a useful imaginary surface in this case. The pill-
box is a closed cylinder with end caps of area A, arranged so that it is perpendicular to
the sheet with each end cap located at the same distance from the sheet. This Gauss-
ian pillbox is shown in Fig. 24-18a. Using symmetry (considerations like those used
earlier in this section or those depicted in Fig. 23-12 and Fig. 23-13 in the previous
chapter), must be perpendicular to the sheet and hence to the end caps. Further-
more, since the charge is positive, is directed away from the sheet, and thus the
electric field vectors point in an outward direction from the two Gaussian end caps.
Because the electric field vectors are perpendicular to the normal vectors on the
curved surface, there is no flux at this portion of the Gaussian surface. Thus is
simply —the product of the magnitudes of and . In this case Gauss’ law
(Eq. 24-7) gives us

Since there are two caps on our pillbox we need to break the integral into two parts
so in terms of the area and electric field magnitudes,

Next we can find the amount of charge on the sheet enclosed by our Gaussian pillbox
in terms of the surface charge density, �, on the sheet. Since the surface charge is uni-
form and the surface charge density is defined as the ratio of the charge on a given
surface to its area, we know that . If we replace in the equation above
with �� and solve it for the electric field magnitude we get

(sheet of uniformly distributed charge). (24-16)

The equation holds whether the sheet is conducting or nonconducting as long as the
layer of charge on the sheet is thin.

Equation 24-16 tells us that the electric field has the same value for all locations
outside a large uniformly charged sheet and points in a direction that is perpendicu-
lar to the sheet. This result is quite surprising! The fact that the net field is perpen-
dicular to the sheet can be explained using symmetry arguments. But how can it be
that as you get farther away from the charged sheet the electric field doesn’t
decrease? The answer lies in considering the influences of the charges as we move
away from the sheet. When a test charge is placed very close to the sheet, the

E �
� � �
2�0

q enc� � q enc/A

EA � EA ��
end
caps

EdA � �q enc �/�0.

� E
:

�dA
:
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:

E
:
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FIGURE 24-18 ■ Perspective view (a) and
side view (b) of a portion of a very large,
thin plastic sheet, uniformly charged
with surface charge density �. A closed
cylindrical Gaussian surface passes through
the sheet and is perpendicular to it.
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FIGURE 24-19 ■ (a) Two large, parallel insu-
lating sheets, uniformly charged on one side.
(b) The individual electric fields resulting
from the two charged sheets. (c) The net field
due to both charged sheets, found by superpo-
sition.

TOUCHSTONE EXAMPLE 24-3: for Two Sheets of ChargeE
:

Figure 24-19a shows portions of two large, parallel, nonconducting
sheets, each with a fixed uniform charge on one side. The amounts
of the surface charge densities are for the posi-
tively charged sheet and for the negatively charged
sheet.

Find the electric field (a) to the left of the sheets, (b) be-
tween the sheets, and (c) to the right of the sheets.

S O L U T I O N ■ The Ke y  I d e a here is that with the charges
fixed in place, we can find the electric field of the sheets in Fig. 24-
19a by (1) finding the field of each sheet as if that sheet were iso-
lated and (2) adding the vector fields of the isolated sheets via the
superposition principle. (The vector addition is simple here since
the fields lie along the same axis. We can add the fields algebraically
because they are parallel to each other.) From Eq. 24-16, the mag-

E
:

�(�) � 4.3�C/m2
�(�) � 6.8�C/m2

nitude E(+) of the electric field due to the positive sheet at any
point is

Similarly, the magnitude of the electric field at any point due
to the negative sheet is

� 2.43 
 105 N/C.

� E
:

(�) � �
� �(�) �

2�0
�

4.3 
 10�6 C/m2

(2)(8.85 
 10�12 C2/N�m2)

� E
:

(�) �

� 3.84 
 105 N/C.

� E
:

(�) � �
� �(�) �

2�0
�

6.8 
 10�6 C/m2

(2)(8.85 
 10�12 C2/N�m2)

influence on it by the charge closest to it dominates. If the test charge is moved far-
ther from the sheet the influence of the nearest sheet charge gets weaker, but the
normal components of the electric field vectors from neighboring sheet charges
start to contribute and compensate for the loss of influence of the nearest sheet
charge. If the test charge is moved even farther the influence of the nearest and
nearby charges diminish but the components of additional surrounding charges
come into play and so on.

Equation 24-16 agrees with what we would have found by integration of the elec-
tric field components that are produced by individual charges. That would be a very
time-consuming and challenging integration, and note how much more easily we ob-
tain the result using Gauss’ law. This is one reason for devoting a whole chapter to
Gauss’ law. For certain symmetric arrangements of charge, it is much easier to use it
than to integrate field components.

READI NG EXERC IS E  24-3: Consider an array of 9 charges evenly distributed on a
square insulating sheet as shown in the diagram. Use symmetry arguments to explain why the
electric field vector anywhere on a line normal to the central charge and passing through it has
no component that is parallel to the sheet.

■

+ + +
+ + +

+ + +
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Figure 24-19b shows the fields set up by the sheets to the left of the
sheets (L), between them (B), and to their right (R).

The resultant fields in these three regions follow from the su-
perposition principle. To the left of the sheets, the field magnitude is

(Answer)

Because is larger than , the net electric field in this
region points to the left, as Fig. 24-19c shows. To the right of the

E
:

L� E(�) �� E(�) �

� 1.4 
 105 N/C.

� 3.84 
 105 N/C � 2.43 
 105 N/C

� E
:

L � � � E
:

(�) � � � E
:

(�) �

sheets, the electric field has the same magnitude but points to
the right, as Fig. 24-19c shows.

Between the sheets, the two fields add and we have

(Answer)

The electric field points to the right.E
:

B

� 6.3 
 105 N/C.

� 3.84 
 105 N/C � 2.43 
 105 N/C

� E
:

B � � � E
:

(�) � � � E
:

(�) �

E
:

R

24-7 Gauss’ Law and Coulomb’s Law

If Gauss’ law and Coulomb’s law are equivalent, we should be able to derive each
from the other. Here we derive Coulomb’s law from Gauss’ law and some symmetry
considerations.

Figure 24-20 shows a positive point charge q, around which we have drawn a con-
centric spherical Gaussian surface of radius r. Let us divide this surface into differen-
tial areas . By definition, the area vector at any point is perpendicular to the
surface and directed outward from the interior. From the symmetry of the situation,
we know at any point the electric field is also perpendicular to the surface and di-
rected outward from the interior. Thus, since the angle � between and is zero,
we can rewrite Gauss’ law expressed in Eq. 24-7 as

(24-17)

Here . Although the magnitude of the vector varies radially with the dis-
tance from q, it has the same value everywhere on the spherical surface. Since the in-
tegral in this equation is taken over that surface, the electric field magnitude
( ) is a constant in the integration and can be brought out in front of the inte-
gral sign. That gives us

(24-18)

The integral is now merely the sum of the magnitudes of all the differential area ele-
ments on the sphere and thus is just the surface area, . Substituting this, we
have

or since q � qenc (24-19)

This is exactly the electric field due to a point charge (Eq. 23-8), which we found using
Coulomb’s law. Thus, we have shown that Gauss’ law and Coulomb’s law give us the
same result for the electric field due to a single point-like charge. However, Gauss’
law is also valid for complex arrays of charges. It can be shown using the principle of
superposition that the information about electric fields obtained by using either
Gauss’ or Coulomb’s law will yield the same results even for charge arrays. The differ-
ence between the two laws is this: It is easier to use Coulomb’s law if we have an array
of a few point-like charges, and it is easier to use Gauss’ law if we have certain kinds

E �
1

4��0

� q enc �
r 2 � k

� q �
r 2  .

�0E(4�r2) � � q enc �,

4�r2dA
:

�0E � dA � � q enc �.

E � � E
:

�

E
:

qenc � q

� E
:

�dA
:

� � EdA � qenc/�0.

dA
:

E
:

E
:

dA
:

dA
:

r

q

Gaussian
surface

+
E

FIGURE 24-20 ■ A spherical Gaussian
surface centered on a point charge q.
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of highly symmetric charge distributions like those discussed in Section 24-6. In still
other situations, it is quite difficult to use either law.

READI NG EXERC IS E  24-4: There is a certain net flux at a Gaussian sphere of
radius r enclosing an isolated charged particle. Suppose the enclosing Gaussian surface is
changed to (a) a larger Gaussian sphere, (b) a Gaussian cube with edge length equal to r, and
(c) a Gaussian cube with edge length equal to 2r. In each case, is the net flux at the new Gauss-
ian surface greater than, less than, or equal to ? ■

24-8 A Charged Isolated Conductor

Gauss’ law permits us to prove an important theorem about isolated conductors:

If excess charges are placed on an isolated conductor, that amount of charge will move en-
tirely to the surface of the conductor. Once the charges stop moving, none of the excess
charge will be found within the body of the conductor.

This might seem reasonable, considering charges with the same sign repel each other.
You might imagine that by moving to the surface, the added charges are getting as far
away from each other as they can. We turn to Gauss’ law for verification of this
speculation.

Figure 24-21a shows, in cross section, an isolated lump of copper hanging from an
insulating thread and having an excess charge q. We place a Gaussian surface just in-
side the actual surface of the conductor.

Once the excess charges stop moving, the electric field inside this conductor must
be zero. If this were not so, the field would exert forces on the conduction (free) elec-
trons, which are always present in a conductor such as copper, and thus current would
always exist within a conductor. (That is, charge would flow from place to place within
the conductor.) Of course, there are no such perpetual currents in an isolated conduc-
tor, and so we know that the internal electric field is zero.

An internal electric field does appear as a conductor is being charged. However,
the added charge quickly distributes itself in such a way that the net internal electric
field—the vector sum of the electric fields due to all the charges, both inside and out-
side—is zero. The movement of charge then ceases because there are drag forces
known as resistance in conductors that dissipate the charges’ kinetic energies and
eventually bring them to rest. Since the net field is zero, the net force on each charge
is zero. So, once the charges are stopped by resistance in the conductor, they remain at
rest. Some special materials can be “superconductors” at very low temperatures and
allow charges to move without resistance. Therefore, these materials can support long-
lasting currents.

If is zero everywhere inside our copper conductor, it must be zero for all points
on the Gaussian surface because that surface, though close to the surface of the con-
ductor, is definitely inside the conductor. This means the flux at the Gaussian surface
must be zero. Gauss’ law then tells us the net charge inside the Gaussian surface must
also be zero. Then because the excess charge is not inside the Gaussian surface, it
must be outside that surface, which means it must lie on the actual surface of the
conductor.

An Isolated Conductor with a Cavity
Figure 24-21b shows the same hanging conductor, but now with a cavity totally within
the conductor. It is perhaps reasonable to suppose that when we scoop out the electri-
cally neutral material to form the cavity we do not change the distribution of charge

E
:

�net

�net

Copper
surface

Gaussian
surface

(a)

(b)

Copper
surface

Gaussian
surface

FIGURE 24-21 ■ (a) A lump of copper
with a charge q hangs from an insulating
thread. A Gaussian surface is placed within
the metal, just inside the actual surface.
(b) The lump of copper now has a cavity
within it. A Gaussian surface lies within
the metal, close to the cavity surface.
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or the pattern of the electric field that exists in Fig. 24-21a. Again, we can turn to
Gauss’ law for a quantitative proof.

We draw a Gaussian surface surrounding the cavity, close to its surface but inside
the conducting body. Because inside the conductor, there can be no flux at this
new Gaussian surface. Therefore, from Gauss’ law, that surface can enclose no net
charge. We conclude there is no net charge on the cavity walls; all the excess charge
remains on the outer surface of the conductor, as in Fig. 24-21a.

The Conductor Removed
Consider now an object that has the same shaped surface, but consists of only a con-
ducting shell of charge. This is equivalent to enlarging the cavity of Fig. 24-21b until it
consumes the entire conductor, leaving only the charges. The electric field would not
change at all; it would remain zero inside the thin shell of charge and would remain
unchanged for all external points. This reminds us that the electric field is set up by
the charges and not by the conductor. The conductor simply provides an initial path-
way for the charges to take up their positions.

The External Electric Field
You have seen that the excess charge on an isolated conductor moves entirely to the
conductor’s surface. However, unless the conductor is spherical, the charge does not
distribute itself uniformly. Put another way, the surface charge density � (charge per
unit area) varies over the surface of any nonspherical conductor. Generally, this varia-
tion makes the determination of the electric field set up by the surface charges very
difficult.

Suppose we know the surface charge density, �, on a region of a conductor. Then
it is easy to use Gauss’ law to calculate the electric field just outside the surface of a
conductor. To do this, we consider a section of the surface small enough to permit us
to neglect any curvature and thus to take the section to be flat. We then imagine a tiny
cylindrical Gaussian surface to be embedded in the section as in Fig. 24-22: One end
cap is fully inside the conductor, the other is fully outside, and the cylinder is perpen-
dicular to the conductor’s surface.

The electric field at and just outside the conductor’s surface must also be per-
pendicular to that surface. If it were not, then it would have a component along the
conductor’s surface exerting forces on the surface charges, causing them to move.
However, such motion would violate our implicit assumption that we are dealing with
electrostatic equilibrium. Therefore, is perpendicular to the conductor’s surface.

We now sum the flux at the Gaussian surface. There is no flux at the internal end
cap, because the electric field within the conductor is zero. There is no flux at the
curved surface of the cylinder, because internally (in the conductor) there is no elec-
tric field and externally the electric field is parallel to the curved portion of the Gauss-
ian surface. The only flux at the Gaussian surface is at the external end cap, where 
is perpendicular to the plane of the cap. We assume the cap area A is small enough
that the field magnitude is constant over the cap. Then the amount of the flux at
the cap is , and that is the net amount of flux at the Gaussian surface.

The charge q enc enclosed by the Gaussian surface lies on the conductor’s surface
in an area A. If � is the charge per unit area, then q enc is equal to ��. When we substi-
tute �� for q enc and for , Gauss’ law, , becomes

from which we find
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FIGURE 24-22 ■ Perspective view (a) and
side view (b) of a tiny portion of a large,
isolated conductor with excess positive
charge on its surface. A (closed) cylindrical
Gaussian surface, embedded perpendicu-
larly in the conductor, encloses some of the
charge. Electric field lines pierce the exter-
nal end cap of the cylinder, but not the in-
ternal end cap. The external end cap has
area A and area vector .A

:



Thus, the magnitude of the electric field at a location just outside a conductor is pro-
portional to the surface charge density at that location on the conductor. If the charge
on the conductor is positive, the electric field is directed away from the conductor as
in Fig. 24-22. It is directed toward the conductor if the charge is negative.

The difference between Eq. 24-20 and Eq. 24-16 ( ) results from the
fact that our conductor is no longer thin so that one of our Gaussian pillbox endcaps
lies inside the conductor where the electric field is zero. Although the situation in Figs.
24-18 and 24-22 look similar, there is an important difference. There must be other
charges in Fig. 24-22 that contribute to making the field zero inside the conductor.
Even though these charges are outside the Gaussian surface and therefore do not
contribute to the total flux, they change the values of the E field on the surface and
therefore change the value we extract.

The field vectors in Fig. 24-22 point toward negative charges somewhere in the
environment. If we bring those charges near the conductor, the charge density at any
given location on the conductor’s surface changes, and so does the magnitude of the
electric field. However, the relation between the amount of the surface charge per
unit area and the electric field magnitude is still given by Eq. 24-20,

.

The Faraday Cage
The fact that an isolated conductor with a cavity has no electric field inside of it has
led to the construction of a very valuable electrical device. Many research environ-
ments today involve the measurement of very low power electrical signals. This might
occur when measuring the electrical signals from the neuron of a live mouse running
a maze or while trying to measure the electrical properties of a microscopic device
meant as part of a micro-miniaturized computer chip. In our modern world there are
numerous electrical signals traveling through space, arising from everything from the
60 Hz power running in our walls to the radio signals from TV stations and cellular
phones. These signals can interfere with sensitive electrical measurements.

To prevent these stray electric fields from ruining sensitive measurements, re-
searchers often conduct their experiments inside a thin-walled metal cage known as a
Faraday cage. Examples of Faraday cages are shown in the photo on the first page of
this chapter as well as in Fig. 24-23. The Faraday cage in Fig. 24-23 is like the object
shown in Fig. 24-21b except that now the “cavity” takes up almost the whole volume
of the material. In addition, the thin metal shell in a Faraday cage is typically made of
wire mesh. As long as the mesh is fairly fine, charge can spread out evenly on its sur-
face. This type of cage can prevent even strong electrical signals from producing elec-
tric fields inside the cage. How? The external electric field induces charges on the sur-
face of the Faraday cage to move so that the field they produce will precisely cancel
the external field at points inside the surface. This rearrangement occurs naturally and
is predictable by Gauss’ law. This is why a demonstrator in a Faraday cage that is
highly charged by a Van de Graaff generator can touch the inside of the cage and sur-
vive as shown in the opening photograph. The principle of the Faraday cage is also
what makes it safe to be inside an automobile in a lightning storm. Even if lightning
strikes your car, the effects inside the conductor are substantially reduced. This would
not be the case if you were in a wooden crate, because the lightning could pass right
through it. The crate could also catch on fire.

READI NG EXERC IS E  24-5: Suppose a single positive charge is suddenly placed in
the cavity shown in Fig. 24-21b. What has to happen in the conductor at the cavity walls to en-
sure that the electric field everywhere inside the conductor remains at zero? ■

E �
� � �
�0

� E
:
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To external
charge source

FIGURE 24-23 ■ A charged Faraday cage
consisting of a sphere made of curved brass
rods. Charges on the outside of the cage
travel along conducting strings to the small
balls causing them to be repelled from the
cage. There is no charge inside the cage so
the balls in the cage do not repel.



Problems

Problems 709

TOUCHSTONE EXAMPLE 24-4: Spherical Metal Shell

Figure 24-24a shows a cross section of a spherical metal shell of in-
ner radius R. A point charge of is located at a distance 
from the center of the shell. If the shell is electrically neutral, what
are the (induced) charges on its inner and outer surfaces? Are
those charges uniformly distributed? What is the field pattern in-
side and outside the shell?

S O L U T I O N ■ Figure 24-24b shows a cross section of a spherical
Gaussian surface within the metal, just outside the inner wall of the

R/2�5.0�C
shell. One Ke y  I d e a here is that the electric field must be zero in-
side the metal (and thus on the Gaussian surface inside the metal).
This means that the electric flux through the Gaussian surface must
also be zero. Gauss’ law then tells us that the net charge enclosed by
the Gaussian surface must be zero. With a point charge of �5.0 �C
within the shell, a charge of must lie on the inner wall of
the shell.

If the point charge were centered, this positive charge would
be uniformly distributed along the inner wall. However, since the
point charge is off-center, the distribution of positive charge is
skewed, as suggested by Fig. 24-24b, because the positive charge
tends to collect on the section of the inner wall nearest the (nega-
tive) point charge.

A second Ke y  I d e a is that because the shell is electrically
neutral, its inner wall can have a charge of only if elec-
trons, with a total charge of , leave the inner wall and move
to the outer wall. There they spread out uniformly, as is also sug-
gested by Fig. 24-24b. This distribution of negative charge is uni-
form because the shell is spherical and because the skewed distrib-
ution of positive charge on the inner wall cannot produce an
electric field in the shell to affect the distribution of charge on the
outer wall.

The field lines inside and outside the shell are shown approxi-
mately in Fig. 24-24b. All the field lines intersect the shell and the
point charge perpendicularly. Inside the shell the pattern of field lines
is skewed owing to the skew of the positive charge distribution. Out-
side the shell the pattern is the same as if the point charge were cen-
tered and the shell were missing. In fact, this would be true no matter
where inside the shell the point charge happened to be located.
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R/2
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FIGURE 24-24 ■ (a) A negative point charge is located within a
spherical metal shell that is electrically neutral. (b) As a result, posi-
tive charge is nonuniformly distributed on the inner wall of the
shell, and an equal amount of negative charge is uniformly distrib-
uted on the outer wall. The electric field lines are shown.

SEC. 24-3 ■ NET FLUX AT A CLOSED SURFACE

1. Cube The cube in Fig. 24-25
has edge lengths of 1.40 m and is
oriented as shown with its bot-
tom face in the x-y plane at z �
0.00 m. Find the electric flux
through the right face if the uni-
form electric field, in newtons
per coulomb, is given by (a) 6.00 ,
(b) �2.00 ĵ, and (c) �3.00 �
4.00k̂. (d) What is the total flux
through the cube for each of
these fields?

2. Square Surface The square
surface shown in Fig. 24-26 mea-
sures 3.2 mm on each side. It is immersed in a uniform electric field
with magnitude � 1800 N/C. The field lines make an angle of
35° with a normal to the surface, as shown. Take that normal to be
directed “outward,” as though the surface were one face of a box.
Calculate the electric flux through the surface.

� E
:

�

î
î

SEC. 24-4 ■ GAUSS’ LAW

3. Charge at Center of Cube A point charge of 1.8 �C is at the
center of a cubical Gaussian surface 55 cm on edge. What is the net
electric flux through the surface?

4. Four Charges You have four point charges, 2q, q, �q, and �2q. If
possible describe how you would place a closed surface that encloses
at least the charge 2q (and perhaps other charges) and through which
the net electric flux is (a) 0 (b) �3q/�0, and (c) �2q/�0.

5. Flux Through Cube Find the net flux through the cube of Problem 1
and Fig. 24-25 if the electric field is given by (a) � (3.00 y [N/(C�m)])ĵE

:

FIGURE 24-25 ■ Problems 1, 5,
and 10.

z

y

x

Normal

35°

FIGURE 24-26 ■ Problem 2.



and (b) � �(4.00 N/C)î � (6.00 N/C � 3.00 y [N/(C�m)]ĵ. (c) In each
case, how much charge is enclosed by the cube?

6. Butterfly Net In Fig. 24-27, a
butterfly net is in a uniform elec-
tric field of magnitude . The rim,
a circle of radius a, is aligned per-
pendicular to the field. Find the
electric flux through the netting.

7. Earth’s Atmosphere It is
found experimentally that the
electric field in a certain region of
Earth’s atmosphere is directed vertically down. At an altitude of
300 m the field has magnitude 60.0 N/C; at an altitude of 200 m, the
magnitude is 100 N/C. Find the net amount of charge contained in a
cube 100 m on edge, with horizontal faces at altitudes of 200 and
300 m. Neglect the curvature of Earth.

8. Shower When a shower is turned on in a closed bathroom, the
splashing of the water on the bare tub can fill the room’s air with
negatively charged ions and produce an electric field in the air
as great as 1000 N/C. Consider a bathroom with dimensions of
2.5 m 
 3.0 m 
 2.0 m. Along the ceiling, floor, and four walls,
approximate the electric field in the air as being directed per-
pendicular to the surface and as having a uniform magnitude of
600 N/C. Also, treat those surfaces as forming a closed Gaussian
surface around the room’s air. What are (a) the volume charge
density � and (b) the number of excess elementary charges e per
cubic meter in the room’s air?

9. Point Charge A point charge q is placed at one corner of a cube
of edge a. What is the flux through each of the cube faces? (Hint:
Use Gauss’ law and symmetry arguments.)

10. Surface of Cube At each point on the surface of the cube
shown in Fig 24-25, the electric field is along the y-axis. The length
of each edge of the cube is 3.0 m. On the right surface of the cube,

� (�34 N/C)ĵ, and on the left face of the cube � (�20 N/C)ĵ.
Determine the net charge contained within the cube.

SEC. 24-6 ■ APPLICATION OF GAUSS’ LAW TO SYMMETRIC

CHARGE DISTRIBUTIONS

11. Conducting Sphere A conducting sphere of radius 10 cm has
an unknown charge. If the electric field 15 cm from the center of
the sphere has the magnitude 3.0 
 103 N/C and is directed radially
inward, what is the net charge on the sphere?

12. Charge Causes Flux A point charge causes an electric flux of
�750 N � m2/C to pass through a spherical Gaussian surface of
10.0 cm radius centered on the charge. (a) If the radius of the
Gaussian surface were doubled, how much flux would pass through
the surface? (b) What is the value of the point charge?

13. Rutherford In a 1911 paper, Ernest Rutherford said: “In order
to form some idea of the forces required to deflect an � particle
through a large angle, consider an atom [as] containing a point posi-
tive charge Ze at its center and surrounded by a distribution of neg-
ative electricity �Ze uniformly distributed within a sphere of radius
R. The electric field E . . . at a distance r from the center for a point
inside the atom [is]

”
.

Verify this equation.

E �
Ze

4��0
� 1

r 2 �
r

R3 	
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E
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E
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14. Concentric Spheres Two charged concentric spheres have radii
of 10.0 cm and 15.0 cm. The charge on the inner sphere is 4.00 

10�8 C, and that on the outer sphere is 2.00 
 10�8 C. Find the elec-
tric field (a) at r � 12.0 cm and (b) at r � 20.0 cm.

15. Proton A proton with speed v � 3.00 
 105 m/s orbits just out-
side a charged sphere of radius r � 1.00 cm. What is the charge on
the sphere?

16. Charge at Center of Shell A point charge �q is placed at the
center of an electrically neutral, spherical conducting shell with in-
ner radius a and outer radius b. What charge appears on (a) the in-
ner surface of the shell and (b) the outer surface? What is the net
electric field at a distance r from the center of the shell if (c) r  a,
(d) b � r � a, and (e) r � b? Sketch field lines for those three re-
gions. For r � b, what is the net electric field due to (f) the central
point charge plus the inner surface charge and (g) the outer surface
charge? A point charge �q is now placed outside the shell. Does
this point charge change the charge distribution on (h) the outer
surface and (i) the inner surface? Sketch the field lines now. (j) Is
there an electrostatic force on the second point charge? (k) Is there
a net electrostatic force on the first point charge? (l) Does this situ-
ation violate Newton’s Third Law?

17. Solid Nonconducting Sphere A solid nonconducting sphere of
radius R has a nonuniform charge distribution of volume charge
density � � �sr/R, where �s is a constant and r is the distance from
the center of the sphere. Show (a) that the total charge on the
sphere is Q � ��sR3 and (b) that

gives the magnitude of the electric field inside the sphere.

18. Hydrogen Atom A hydrogen atom can be considered as hav-
ing a central point-like proton of positive charge �e and an elec-
tron of negative charge �e that is distributed about the proton ac-
cording to the volume charge density � � A exp(�2r/a1). Here A is
a constant, a1 � 0.53 
 10�10 m is the Bohr radius, and r is the dis-
tance from the center of the atom. (a) Using the fact that hydrogen
is electrically neutral, find A. (b) Then find the electric field pro-
duced by the atom at the Bohr radius.

19. Sphere of Radius a In Fig
24-28 an insulating sphere, of ra-
dius a and charge �q uniformly
distributed throughout its vol-
ume, is concentric with a spheri-
cal conducting shell of inner ra-
dius b and outer radius c. This
shell has a net charge of �q. Find
expressions for the electric field,
as a function of the radius r, (a)
within the sphere (r  a), (b)
between the sphere and the shell
(a  r  b), (c) inside the shell
(b  r  c), and (d) outside the shell (r � c). (e) What are the
charges on the inner and outer surfaces of the shell?

20. Uniform Volume Charge Density Figure 24-29a shows a spher-
ical shell of charge with uniform volume charge density �. Plot E
due to the shell for distances r from the center of the shell ranging
from zero to 30 cm. Assume that � � 1.0 
 10�6 C/m3, a � 10 cm,
and b � 20 cm.

�E
:

� � k
�Q�
R 4 r 2
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a

FIGURE 24-27 ■ Problem 6.

a b

c

+q

–q

FIGURE 24-28 ■ Problem 19.



21. Nonconducting Spherical Shell In Fig. 24-29b, a nonconducting
spherical shell, of inner radius a and outer radius b, has a positive
volume charge density � � A/r (within its thickness), where A is a
constant and r is the distance from the center of the shell. In addi-
tion, a positive point charge q is located at that center. What value
should A have if the electric field in the shell (a � r � b) is to be
uniform? (Hint: The constant A depends on a but not on b.)

22. Show That A nonconducting sphere has
a uniform volume charge density �. Let be
the vector from the center of the sphere to a
general point P within the sphere. (a) Show
that the electric field at P is given by � �
/3�0. (Note that the result is independent of
the radius of the sphere.) (b) A spherical cav-
ity is hollowed out of the sphere, as shown in
Fig. 24-30. Using superposition concepts,
show that the electric field at all points within
the cavity is uniform and equal to � � /3�0, where is the posi-
tion vector from the center of the sphere to the center of the cavity.
(Note that this result is independent of the radius of the sphere and
the radius of the cavity.) 

23. Spherically Symmetrical A spherically symmetrical but nonuni-
form volume distribution of charge produces an electric field of
magnitude � Kr4, directed radially outward from the center of
the sphere. Here r is the radial distance from that center, and K is a
positive constant. What is the volume density � of the charge distrib-
ution as a function of r?

24. Long Metal Tube Figure 24-31
shows a section of a long, thin-
walled metal tube of radius R, with
a positive charge per unit length �
on its surface. Derive expressions
for in terms of the distance r
from the tube axis, considering
both (a) r � R and (b) r  R. Plot
your results for the range r � 0 to 
r � 5.0 cm, assuming that � � 2.0 

10�8 C/m and R � 3.0 cm. (Hint:
Use cylinderical Gaussian surfaces,
coaxial with the metal tube.)

25. Infinite Line of Charge An infinite line of charge produces a
field magnitude of 4.5 
 104 N/C at a distance of 2.0 m. Calculate
the amount of linear charge density .

26. Long Straight Wire A long, straight wire has fixed negative
charge with a linear charge density of �3.6 nC/m. The wire is to be

� � �

�E
:

�

�E
:

�

a:a:E
:

r:E
:

r:
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enclosed by a thin, nonconducting cylinder of outside radius 1.5 cm,
coaxial with the wire. The cylinder is to have positive charge on its
outside surface with a surface charge density � such that the net ex-
ternal electric field is zero. Calculate the required �.

27. Cylindrical Rod A very long
conducting cylindrical rod of length
L with a total charge �q is sur-
rounded by a conducting cylindrical
shell (also of length L) with total
charge �2q, as shown in Fig. 24-32.
Use Gauss’ law to find (a) the elec-
tric field at points outside the con-
ducting shell, (b) the distribution of
charge on the shell, and (c) the elec-
tric field in the region between the
shell and rod. Neglect end effects.

28. Solid Cylinder A long, noncon-
ducting, solid cylinder of radius 4.0
cm has a nonuniform volume charge density � that is a function of
the radial distance r from the axis of the cylinder, as given by � �
Ar2 with A � 2.5 �C/m5. What is the magnitude of the electric field
at a radial distance of (a) 3.0 cm and (b) 5.0 cm from the axis of the
cylinder?

29. Two Concentric Cylinders Two long, charged, concentric cylin-
ders have radii of 3.0 and 6.0 cm. Assume the outer cylinder is hol-
low. The charge per unit length is 5.0 
 10�6 C/m on the inner cylin-
der and �7.0 
 10�6 C/m on the outer cylinder. Find the electric
field at (a) r � 4.0 cm and (b) r � 8.0 cm, where r is the radial dis-
tance from the common central axis.

30. Geiger Counter Figure 24-33
shows a Geiger counter, a device
used to detect ionizing radiation
(radiation that causes ionization of
atoms). The counter consists of a
thin, positively charged central
wire surrounded by a concentric,
circular, conducting cylinder with
an equal negative charge. Thus, a
strong radial electric field is set up
inside the cylinder. The cylinder
contains a low-pressure inert gas.
When a particle of radiation enters
the device through the cylinder
wall, it ionizes a few of the gas
atoms. The resulting free electrons
(labelled e) are drawn to the posi-
tive wire. However, the electric
field is so intense that, between
collisions with other gas atoms, the free electrons gain energy suffi-
cient to ionize these atoms also. More free electrons are thereby cre-
ated, and the process is repeated until the electrons reach the wire.
The resulting “avalanche” of electrons is collected by the wire gener-
ating a signal that is used to record the passage of the original parti-
cle of radiation. Suppose that the radius of the central wire is 25 �m,
the radius of the cylinder 1.4 cm, and the length of the tube 16 cm. If
the electric field component Er at the cylinder’s inner wall is �2.9 

104 N/C, what is the total positive charge on the central wire?

31. Charge Is Distributed Uniformly Charge is distributed uni-
formly throughout the volume of an infinitely long cylinder of
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FIGURE 24-29 ■ Problems 20 and 21.
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FIGURE 24-31 ■ Problem 24.
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radius R. (a) Show that, at a distance r from the cylinder axis (for
r  R),

where is the amount of volume charge density. (b) Write an ex-
pression for when r � R.

32. Parallel Sheets Figure 24-34
shows cross sections through two
large, parallel, nonconducting sheets
with identical distributions of positive
charge with area charge density �.
What is at points (a) above the
sheets, (b) between them, and (c)
below them?

33. Square Metal Plate A square metal plate of edge length 8.0 cm
and negligible thickness has a total charge of 6.0 
 10�6 C. (a) Esti-
mate the magnitude E of the electric field just off the center of the
plate (at, say, a distance of 0.50 mm) by assuming that the charge is
spread uniformly over the two faces of the plate. (b) Estimate E at
a distance of 30 m (large relative to the plate size) by assuming that
the plate is a point charge.

34. Thin Metal Plates Two large, thin metal plates are parallel and
close to each other. On their inner faces, the plates have excess sur-
face charge of opposite signs. The amount of charge per unit area is
given by ��� � 7.0 
 10�22 C/m2, with the negatively charged plate
on the left. What are the magnitude and direction of the electric
field (a) to the left of the plates, (b) to
the right of the plates, and (c) between the
plates?

35. Ball on Thread In Fig. 24-35, a small,
nonconducting ball of mass m � 1.0 mg
and charge q � 2.0 
 10�8 C (distributed
uniformly through its volume) hangs from
an insulating thread that makes an angle �
� 30° with a vertical, uniformly charged
nonconducting sheet (shown in cross sec-
tion). Considering the gravitational force
on the ball and assuming that the sheet ex-
tends far vertically and into and out of the
page, calculate the surface charge density
� of the sheet.

E
:

E
:

�E
:

�
� � �

�E
:

� �
� � �r
2�0

,

36. Large Metal Plates Two large metal plates of area 1.0 m2 face
each other. They are 5.0 cm apart and have equal but opposite
charges on their inner surfaces. If the magnitude of the electric
field between the plates is 55 N/C, what is the amount of charge on
each plate? Neglect edge effects.

37. An Electron Is Shot An electron is shot directly toward the
center of a large metal plate that has excess negative charge with
surface charge density �2.0 
 10�6 C/m2. If the initial kinetic en-
ergy of the electron is 1.60 
 10�17 J and if the electron is to stop
(owing to electrostatic repulsion from the plate) just as it reaches
the plate, how far from the plate must it be shot?

38. Planar Slab A planar slab of thickness d has a uniform vol-
ume charge density �. Find the magnitude of the electric field at
all points in space both (a) within and (b) outside the slab, in
terms of x, the distance measured from the central plane of the
slab.

SEC. 24-8 ■ A CHARGED ISOLATED CONDUCTOR

39. Photocopying Machine The electric field just above the surface
of the charged drum of a photocopying machine has a magnitude

of 2.3 
 105 N/C. What is the surface charge density on the
drum, assuming that the drum is a conductor?

40. Space Vehicles Space vehicles traveling through Earth’s radia-
tion belts can intercept a significant number of electrons. The result-
ing charge buildup can damage electronic components and disrupt
operations. Suppose a spherical metallic satellite 1.3 m in diameter
accumulates �2.4 �C of charge in one orbital revolution. (a) Find
the resulting surface charge density. (b) Calculate the magnitude of
the electric field just outside the surface of the satellite due to the
surface charge.

41. Charged Sphere A uniformly charged conducting sphere of
1.2 m diameter has a surface charge density of 8.1 �C/m2. (a) Find
the net charge on the sphere. (b) What is the total electric flux leav-
ing the surface of the sphere?

42. Arbitrary Shape Conductor An isolated conductor of arbitrary
shape has a net charge of �10 
 10�6 C. Inside the conductor is a
cavity within which is a point charge q � �3.0 
 10�6 C. What is
the charge (a) on the cavity wall and (b) on the outer surface of the
conductor?

�E
:

�

�E
:

�
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FIGURE 24-35 ■

Problem 35.

Additional Problems

43. If/Can If the electric field in a region of space is zero, can you
conclude there are no electric charges in that region? Explain.

44. If/Than If there are fewer electric field lines leaving a Gaussian
surface than there are entering the surface, what can you conclude
about the net charge enclosed by that surface?

45. Net Flux What is the net electric flux through each of the
closed surfaces in Fig. 24-36 if the value of q is �1.6 
 10�19 C?

46. Net Flux Two What is the net electric flux through each of the
closed surfaces in Fig. 24-37 if the value of q is 8.85 
 10�12 C? Ex-
plain the reasons for your answers.

–3q
–q

+3q
+4q

(a)
(b) (c)

(d)

FIGURE 24-36 ■ Problem 45.
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47. Fair Weather During fair weather, an electric field of about 100
N/C points vertically downward into Earth’s atmosphere. Assuming
that this field arises from charge distributed in a spherically sym-
metric manner over the surface of Earth,
determine the net charge of Earth and its
atmosphere if the radius of Earth and its
atmosphere is 6.37 
 106 m.

48. Hollow Sphere Suppose a charge is
located at the center of a hollow sphere
as shown in Fig. 24-38.

(a) Are the intersections of the field
lines with the surface of the sphere uni-
formly distributed throughout? In other
words, is the density of lines passing through the surface of the
sphere uniform? Explain why or why not.
(b) Consider surface elements A and B, which have exactly the
same area. Is the number of field lines passing through surface ele-
ment A greater than, less than, or equal to the number of field lines
through surface element B? Explain.
(c) Is the flux through surface element A greater than, less than, or
equal to the flux through surface element B? Explain.

49. Center of Cube Suppose a charge is
located at the center of the cube shown in
Fig. 24-39.

(a) Are the intersections of the field lines
with a side of the cube uniformly distrib-
uted across the side? In other words, is the
density of lines passing through the box
uniform? Explain why or why not.
(b) Is the number of field lines through
surface element A greater than, less than,
or equal to the number of field lines
through surface element B? Explain.
(c) Is the flux through surface element A greater than, less than, or
equal to the flux through surface element B? Explain.

50. Using Gauss’ Law Gauss’ law is usually written as an equation
in the form

(a) For this equation, specify what each term in this equation
means and how it is to be calculated when doing some specific (but
arbitrary—not a special case) calculation.

� E
:

� dA
:

� qenc/�0.

A long thin cylindrical shell
like that shown in Fig. 24-40 has
length L and radius R with
L��R and is uniformly covered
with a charge Q. If we look for
the field near the cylinder some-
where about the middle, we can treat the cylinder as if it were an in-
finitely long cylinder. Using this assumption, we can calculate the
magnitude and direction of the field at a point a distance d from the
axis of the cylinder (outside the cylindrical shell; i.e., L��d � R but
d not very close to R) using Gauss’s law. Do so by explicitly follow-
ing the steps below.

(b) Select an appropriate Gaussian surface. Explain why you chose it.
(c) Carry out the integral on the left side of the equation, express-
ing it in terms of the unknown value of the magnitude of the E
field.
(d) What is the relevant value of q for your surface?
(e) Use your results in (c) and (d) in the equation and solve for the
magnitude of E.

51. Interpreting Gauss Gauss’ law states

where A is a surface and qA is a charge.

(a) Which of the following statements are true about the surface A
appearing in Gauss’ law for the equation to hold? You may list any
number of these statements including all or none.

i. The surface A must be a closed surface (must cover a volume).

ii. The surface A must contain all the charges in the problem.

iii. The surface A must be a highly symmetrical surface like a
sphere or a cylinder.

iv. The surface A must be a conductor.

v. The surface A is purely imaginary.

vi. The normals to the surface A must all be in the same direction
as the electric field on the surface.

(b) Which of the following statements are true about the charge qA

appearing in Gauss’ law? You may list any number of these state-
ments including all or none.

i. The charge qA must be all the charge lying on the Gaussian sur-
face.

ii. The charge qA must be the charge lying within the Gaussian sur-
face.

iii. The charge qA must be all the charge in the problem.

iv. The charge qA flows onto the Gaussian surface once the surface
is established.

v. The electric field E in the integral on the left of Gauss’ law is
due only to the charge qA.

vi. The electric field E in the integral on the left on Gauss’ law is
due to all charges in the problem.

E
:

� dA
:

� q
A

/�0,�
A

(a) (b)

(c)

(d) Encloses
           all
       charges

+3q

–q

–3q

+4q
–q

FIGURE 24-37 ■ Problem 46.
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25 Electric Potential

At more than 115 years old,

the Eiffel Tower is arguably the

world’s most famous landmark.

Among other things, the tower

is an engineering feat, a work

of art, a scenic lookout, and a

radio tower. Less well known is

the tower’s ability to protect

people, trees, and other build-

ings from being struck by

lightning that might emanate

from thunderheads 

behind it.

How can the Eiffel
Tower protect people
from lightning?

The answer is in this
chapter.
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25-1 Introduction

In the last few chapters we have explored the nature of interaction forces between
charged particles. We have developed the concept of electric field as a way to repre-
sent the forces a point charge would experience at any point in the space surrounding
a collection of charges.

In certain situations it is difficult to understand the motions of charges in terms of
an electric field. This difficulty is analogous to problems encountered in describing the
motion of an object in the presence of gravitational forces. We developed the con-
cepts of work and energy in Chapters 9 and 10 to deal with these problems. We will
now investigate the application of the concepts of work and energy to situations in
which the forces involved are electrostatic forces. In this chapter we develop the con-
cept of electric potential—commonly referred to as voltage. We then explore some of
its properties, including how charges are distributed on a metal conductor placed in
an electric field.

Since the concept of potential or voltage is essential to an understanding of elec-
tric circuits, we will use the concept of electric potential in the next chapter to help us
understand the role that batteries play in maintaining currents.

25-2 Electric Potential Energy

Newton’s law for the gravitational force and Coulomb’s law for the electrostatic force
are mathematically similar. In Section 14-2 we saw that the gravitational force be-
tween two particle-like masses depends directly on the product of the masses and in-
versely with the square of the distance between them (Eq. 14-2). In like manner, the
electrostatic forces between two point charges depend directly on the product of the
charges and inversely with the square of the distance between them (Eq. 22-4). This
similarity gives us a starting point in our search for additional useful concepts related
to the interactions between charged objects. In this chapter, we consider whether
some of the general features we have established for the gravitational force apply to
the electrostatic force as well.

For example, the gravitational force is a conservative force. The work done by it is
independent of the path along which an object moves. In experimental tests the work
done by the electrostatic force has also been found to be path independent. If a
charged particle moves from point i to point f while an electrostatic force is acting on
it, the work W done by the force is the same for all paths between points i and f.
Hence, we can infer that the electrostatic force is a conservative force as well.

Definition of Electric Potential Energy
In Chapter 10 we defined potential energy as the energy associated with the configu-
ration of a system of objects that interact and hence exert forces on each other. We
then proceeded to define gravitational potential energy as the negative of the amount
of gravitational work objects in the system do on each other when their positions
relative to one another change. From Eq. 10-5, �U � �Wcons or �Ugrav � �Wgrav

(Eq. 10-6). This general definition of work can be applied to a system of charges that
interact by means of electrostatic forces.

Since electrostatic forces, like gravitational forces, are conservative, then it makes
sense to assign an electric potential energy change to a system of interacting
charges in a similar manner. If we cause or allow a system to change its configuration
from an initial potential energy state U1 to a different final state U2, the internal elec-
trostatic forces do a total amount of work W elec on the particles in the system. As in

�U



Chapter 10, we define the potential energy change �U as the negative of the work the
system does on itself when it undergoes the reconfiguration. This can be expressed
symbolically as

(25-1)

Figure 25-1 shows a system of charges losing electrostatic potential energy as a result
of a natural reconfiguration. Figure 25-2 shows the same system gaining electrostatic
potential energy as an external agent (doing positive work) causes the system to re-
configure. This results in the system doing negative work on itself.

�U � U2 � U1 � W ext � �W elec.
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+
q1 q3

q3q2q1q2

(a) Initial configuration (b) Final configuration

+
– –

– –

FIGURE 25-1 ■ (a) A system of three charges is in an initial configuration in which the charges
are separated and have an electric potential energy U1 associated with them. (b) Since both of
the negative charges will be attracted to the positive charge, they will coalesce into a final con-
figuration with potential energy U2. The net electrostatic work the charges do on each other is
positive so the system loses potential energy. Thus U2 � U1 so that .�U � 0

FIGURE 25-2 ■ (a) A system of three charges is in an initial configuration in which the charges
are close together and have an electric potential energy U1 associated with them. (b) Since q1

and q3 are both attracted to q2, it will take positive external work, Wext, to pull the charges
apart. The net electrostatic work the charges do on each other is negative so the system gains
potential energy. Thus U2 � U1 so that .�U � 0

+
q1 q3

q3q2q1 q2

(a) Initial configuration (b) Final configuration

+– –
– –

As you may recall, we determined that only differences in gravitational potential
energy were physically significant. In Chapter 10 the system of masses we considered
consisted of the Earth and a single object near its surface. We chose a convenient
height at which to set the gravitational potential energy to zero. For example, we may
have defined an Earth–object system as having zero potential energy when an object
is at floor level or at the level of a tabletop. In doing so, we set the absolute scale for
gravitational potential energy differently in different situations. This is legitimate
since only potential energy differences are meaningful.

Potential energy difference is also of primary importance in keeping track of electric
potential energy. Typically, we define the electric potential energy of a system of charges to
be zero when the particles are all infinitely separated from each other, just as we did in
Chapter 14 with the general form of gravitational potential energy. Using this zero of
electric potential energy makes sense because the charges making up such a system have
no interaction forces in that configuration. Using a standard reference potential (instead
of moving it around as we typically do for Earth–object systems) allows us to find
unique values of and . For example suppose several charged particles come to-
gether from initially infinite separations (state 1) to form a system of nearby particles
(state 2).Then using the conventional reference configuration, the initial potential energy
U1 is zero. If represents the internal work done by the electrostatic forces between
particles during the move in from infinity, then from Eq. 25-1,

(25-2)�U � U2 � U1 � U2 � �W elec.

W elec

U2U1



Since U1 is zero, the final potential energy of the system can simply be denoted as
. Then, in terms of symbols,

(for initial potential energy = 0). (25-3)

As usual, the use of the symbol “�” signifies that the expression is a definition.

External Forces and Energy Conservation
Since opposite charges attract, they will come together naturally if they are free to
move. In these cases the charges “fall together” and the potential energy of the system
of charges will be reduced. Similarly, like charges that are free will move apart and
their potential energy will also be reduced. However, we can raise the potential en-
ergy of a system of charges by using energy from another system. Two common exam-
ples of external agents that can raise the potential energy of a system of charges are
the Van de Graaff generator and the battery. Van de Graaff generators (see Fig. 25-3)
use mechanical energy to force charges of like sign onto metal conductors. Batteries
use chemical potential energy (which is actually a combination of electric and quan-
tum effects) to force charges onto an electrode having the same sign charges.

U � �W elec

U
U2
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Conducting shell
with high potential
energy due to
charges deposited
via a metal needle.

Insulated belt
transports charge
to sphere using
mechanical energy.

Electrons are
deposited on belt
by a metal needle.

FIGURE 25-3 ■ A Van de Graaff generator uses mechanical energy
from either (a) a motor or (b) a hand crank to transport charge to a
conducting sphere, raising its potential energy. (Photo courtesy of
PASCO scientific.)(a) (b)

Suppose an external force outside of the system under consideration causes a test
particle of charge q to move from an initial location to a final location in the presence
of an unchanging electric field generated by the source charges in the system. As the
test charge moves, our outside force does work on the charge. At the same time,
the electric field does work on it. By the work-kinetic energy theorem, the
change in the kinetic energy of the particle is 

But since ,

(25-4)

Now suppose the particle is stationary before and after the move. Then K2 and K1 are
both zero, and this reduces to 

(for no kinetic energy change). (25-5)�U � W ext

�K � �U � W ext.

W elec � ��U

�K � K2 � K1 � W ext � W elec.

�K
W elec

W ext
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FIGURE 25-4 ■ A 1.5 V D-cell can act as
an external agent that does the work
needed to move electrons through a wire
from a metal plate with excess positive
charges to one with excess negative
charges.

E

2 1
+

That is, the work, W ext, done by our external force during the move is equal to the
change in electric potential energy—provided there is no change in kinetic energy.

So in what direction will a positive or negative charge move if released? Will the
charge move to raise or lower the potential energy of the system? The expression above
can be used to determine this. For example, let the external force (perhaps the push or
pull of your hand) do positive work. Recall from Section 9-4 the sign convention associ-
ated with work in general. If W ext is positive, then �U must also be positive (by the
equation above) and so we know that U2 � U1. In other words, the motion of a charge
from a lower potential energy to a higher potential energy requires positive work to be
done on the system. This motion would not happen if the particle were simply released.
Spontaneous or naturally occuring motion is associated with reduced potential energy.
This is very similar to the situations encountered in Section 9-8, where we considered an
object under the influence of the Earth’s attractive gravitational force. Often a battery
does this work in a circuit, as in Fig. 25-4.

READI NG EXERC IS E  25-1: Why is a configuration with charges separated by an in-
finite distance a good choice for our reference (zero) potential energy? Would a zero separa-
tion be equally good? Why or why not? ■

READI NG EXERC IS E  25-2: In the figure, a proton moves
from point 1 to point 2 in a uniform electric field directed as shown.
(a) Does the electric field do positive or negative work on the pro-
ton? (b) Does the electric potential energy of the proton increase or 
decrease? (c) In this case we don’t choose the potential energy to be zero at infinity. Why not?

■

25-3 Electric Potential

When considering gravitational potential energy we dealt primarily with a system con-
sisting of the Earth and a single object much smaller than the Earth. If the object were
to fall toward the Earth the interaction forces between them would be equal in magni-
tude, but as the object moves toward the Earth, the Earth’s motion would be negligibly
small. Thus the change in the system’s gravitational potential energy would simply be
the change in potential energy of the falling object. Similarly, as we did in Section 23-2,
we can consider systems in which a small “test” charge moves in the presence of an elec-
tric field but does not change the electric field significantly. In these systems, the electric
potential energy of the system can be calculated as the negative of work done by the
electric field on a single test charge as we bring it to a location of interest from infinity.

In the next several chapters we will focus primarily on systems in which the change in po-
tential energy of a single test charge moving in an electric field is for all practical purposes
the same as the change in potential energy of the entire system of charges.

This situation applies if the only charge that moves is our test charge. In this case, the
electric field generated by the fixed source charges remains the same, so that the
change in the system’s potential energy will be proportional to the magnitude of the
test charge. (This will not be true if other charges move.)

Defining Electric Potential
Recall that we defined and used the concept of electric field as the electric force per
unit charge so we could easily analyze the forces experienced by a charge of any
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+
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q

Charges fixed in an
insulating material

FIGURE 25-5 ■ A test charge moves in an
electric field created by a stable configura-
tion of source charges. If the test charge
doesn’t affect the electric field significantly
as it changes location, the change in 
electric potential, , of the system 
(consisting of the source charges and the
test charge) is due entirely to the work per
unit charge done on the test charge by the
electric field.

�V

sign or magnitude. It is advantageous to develop an analogous concept for the de-
termination of the electric potential energy of a system associated with the change
in location of a test charge of any reasonable sign or magnitude. We will do that
now, defining electric potential as a potential energy per unit charge. Once we have
chosen a reference configuration with zero energy, our electric potential (potential
energy per unit charge) has a unique value at any point in space. For example, sup-
pose we move a test particle of positive charge from a location
at infinity where the electric potential energy is defined as zero to a location in an
electric field where the particle has an electric potential energy of .
Then the change in electric potential, �V, of the system associated with the change
in location of a test charge can be calculated as

Next, suppose we replace that test particle with one having twice as much positive
charge, . We would find that, at the same point, the second particle has
an electric potential energy of , twice that of the first particle. However,
the potential energy per unit charge or electric potential would be the same, still

.
Thus, the system potential energy per unit charge, which can be symbolized as ,

is independent of the charge of the test particle we happen to be considering
(Fig. 25-5). It is characteristic only of the electric field that is present. The potential en-
ergy per unit charge at a point in an electric field is defined as the electric potential V
(or simply the potential) at that point. Thus V is defined as

(25-6)

Note that potential energy and charge are both scalar quantities, so the electric poten-
tial is also a scalar, not a vector.

The electric potential difference, �V, associated with moving a charge q between
any two points 1 and 2 in an electric field is equal to the difference between the po-
tential energy per unit charge at the two points:

(25-7)

Using (Eq. 25-1) to substitute the work done by electrosta-
tic forces for in the equation above, we can define the potential difference
between points 1 and 2 as 

(potential difference defined). (25-8)

That is, the potential difference between two points is the negative of the work done
by the electrostatic force to move a unit charge from one point to the other. A poten-
tial difference can be positive, negative, or zero, depending on the signs and magni-
tudes of the charge q and the electrostatic work .

As we already mentioned, we have set infinitely far from any charges as
our reference potential energy. So since V � U/q (Eq. 25-6), the electric potential

U1 � 0
W elec

�V � V2 � V1��
W elec

q

�U�W elec
�U � U2 � U1 � �W elec

�V � V2 � V1 �
U2

q
�

U1

q
�

�U
q

.

V �
U
q

.

qt

U/qt

150 J/C

4.80 � 10�17 J
3.20 � 10�19 C

�V � V2 � V1 �
2.40 � 10�17 J
1.60 � 10�19 C

� 0 � 150 J/C.

2.40 � 10�17 J

qt � 1.60 � 10�19 C
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must also be zero there. Then using Eq. 25-8, we can define the electric potential V
(measured relative to infinity) at any point in an electric field to be 

(potential defined relative to infinity), (25-9)

where is the work done by the electrostatic force on a charged particle as that
particle moves in from infinity to point f. As was the case with potential difference
�V, a potential can be positive, negative, or zero, depending on the signs and magni-
tudes of q and .

The SI unit for electric potential that follows from Eq. 25-9 is the joule per
coulomb. This combination occurs so often that a special unit, the volt (abbreviated V)
is used to represent it. Thus,

1 volt � 1 joule/coulomb. (25-10)

Although the terms electric potential energy and electric potential are very similar,
they are not the same thing. This is probably one of the reasons why it is so common
to refer to electric potential as voltage after its unit—the volt.

This new unit called the volt allows us to adopt a more conventional unit for the
electric field , which we have measured up to now in newtons per coulomb. With
two unit conversions, we obtain 

(25-11)

The conversion factor in the second set of parentheses comes from Eq. 25-10, and that
in the third set of parentheses is derived from the definition of the joule. From now
on, we shall express values of the electric field in volts per meter rather than in new-
tons per coulomb.

The Electron Volt
Because we often have situations in which the charges involved are very small (a few
times the charge of an electron), we define an energy unit that is a convenient one for
energy measurements in the atomic and subatomic domain. One electron-Volt (eV) is
the energy equal to the work required to move a single positive elementary charge e
(the charge magnitude of the electron or the proton) through a potential difference of
exactly one volt. Equation 25-8,

tells us that the magnitude of this work is , so 

(25-12)

where the units for electron volt are joules because it is actually a unit of energy
rather than electric potential.

� (1.60 � 10�19 C)(1 J/C) � 1.60 � 10�19 J,

 1 eV � e(1 V)

e �V

�V � V2 � V1 � �
W elec

q
�

�W elec

e
,

1 N/C � �1
N
C �� 1 V

1 J/C �� 1 J
1 N	m � � 1 V/m.

E
:

W elec



V

W elec



V � �
W elec




q
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TOUCHSTONE EXAMPLE 25-1: Electron Motion

An electron starts from rest at a point in space at which the electric
potential is 9.0 V. If the only force acting on the electron is that as-
sociated with the electric potential, how fast will the electron be
moving when it passes a second point in space where the electric
potential is 10.0 V?

S O L U T I O N ■ First we need to convince ourselves that this
problem describes a physical situation that is even possible. Equa-
tion 25-4 tells us that Since W ext � 0 here and
since must be positive if the electron speeds up, this means that

must be negative. But is it? After all, is positive here since
However, the charge of the electron is negative,

so Eq. 25-7 tells us that:

so that ,

which is positive.

�K � ��U � �(�1.0 eV) � �1.0 eV

�U � q�V � (�e)�V � (�e)(�1.0 V) � �1.0 eV,

V2 � V1 � �1.0 V.
�V�U

�K
�K � �U � W ext.

The Ke y  I d e a here is that a negative charge loses potential
energy and gains kinetic energy when it moves from a region of
lower potential to a region of higher potential. This is just the oppo-
site of what would happen to a positive charge!

Now that we know the electron has 1.0 eV of kinetic energy,
we need to determine how fast it is going. The Ke y  I d e a here is
that (Eq. 25-12). Then

which gives us

(Answer)� 5.9 � 105 m/s.

� √2(1.0 eV)(1.60 � 10�19 J/eV/(9.1 � 10�31 kg)

v2 � √2�K/m

�K � K2 � K1 � ( 1
2)mv2

2 � 0,

1 eV � 1.60 � 10�19 J

25-4 Equipotential Surfaces

We are interested in what our knowledge of electric potential can tell us about how
small test charges might move. We can infer from the discussion above that charged
particles will not spontaneously move from one point to another point of equal poten-
tial. This is quite analogous to movement of mass in a gravitational field. A skier on a
flat surface with no kinetic energy will not spontaneously move from one part of the
surface to another. On the other hand, if the skier is on a slope and is free to move,
the skier will spontaneously start moving down the slope, from higher to lower poten-
tial energy. Thus, it would be useful to know where all the points of equal potential
energy are in a given region of space. That way, we can easily infer the directions of
the forces on each of the charges. An equipotential surface is defined as a surface hav-
ing the same potential at all points on it. Topographical maps show equipotential sur-
faces (lines on a two-dimensional map) in regard to gravitational potential energy.

Let’s consider the electric field associated with a source consisting of a single
fixed point charge we designate as the source charge. What happens if we place a test
charge at a distance r from the source charge and move it around? If we move the
charge anywhere on the surface of a sphere of radius r, no electrostatic work is done
on the test charge as it is always moving perpendicular to the electric field vectors.
However, we cannot move our test charge from one distance from the source charge
to another distance without the electric field doing work on it. This is illustrated in
Fig. 25-6. Thus, any sphere centered on the source charge is an equipotential surface.
If our source charge is positive, then the potential decreases as the distance from the
source charge increases. We know this because from �U � �Welec (Eq. 25-1) a charge
naturally moves from high potential energy to low. Thus the equipotential surfaces

FIGURE 25-6 ■ All of the electric field
vectors created by the presence of a single
charge point radially outward in three 
dimensions. If a test charge moves around
on a sphere that is centered on the charge
(where the dashed circle shows a cross 
section of the sphere), no work is done on
it by the electric field since all the electric
field vectors on surface elements of the
sphere are normal to the sphere. If the
charge is moved from one radius to the
other (black squiggly line) it has to move
parallel to the field vectors some of the
time, and work is done on it.

q+

READI NG EXERC IS E  25-3: In the figure shown in Reading Exercise 25-2, we
moved a proton from point i to point f in a uniform electric field directed as shown. (a) Does
our external force do positive or negative work? (b) Does the proton move to a point of higher
or lower potential? ■



associated with a positive point charge consist of an infinite family of concentric
spheres centered on the source charge. Each sphere has a different potential.

An equipotential surface can be either imaginary, such as a mathematical sphere, or
a real, physical surface such as the outside of a wire. The set of all equipotential surfaces
fills all of space, since every point in space has some value of electric potential associ-
ated with it. We could draw an equipotential surface through any one of these points,
just like we can draw a field line through every point in space. However, in order to
simplify illustrations and diagrams, we typically show just a few of the surfaces.

No work W elec is done on a charged particle by an electric field when the particle
moves between two points i and f on the same equipotential surface. This follows
from Eq. 25-8,

which tells us W elec must be zero if . Because of the path independence of
work (and thus of potential energy and potential), for any path connecting
points 1 and 2, regardless of whether that path lies entirely on the equipotential sur-
face. In other words, if the charge moves away from the equipotential surface during
the motion, the work done (positive or negative) is exactly canceled by the work done
(negative or positive) in moving back onto the surface.

Figure 25-7 shows a family of equipotential surfaces associated with the electric
field due to some distribution of charges. The work done by the electrostatic force on
a charged particle as the particle moves from one end to the other of paths I and II is
zero because each of these paths begins and ends on the same equipotential surface.
The work done as the charged particle moves from one end to the other of paths III
and IV is not zero but has the same value for both these paths because the initial and
final potentials are identical for the two paths; that is, paths III and IV connect the
same pair of equipotential surfaces.

As we already noted, the equipotential surfaces produced by a point charge or a
spherically symmetrical charge distribution are a family of concentric spheres. For a
uniform electric field it is not difficult to see that the equipotential surfaces are a fam-
ily of planes perpendicular to the field lines.

The fact that the value of the potential is constant along an equipotential surface
implies that the electric field must always be perpendicular to the equipotential sur-
faces. Why? Because, if were not perpendicular to an equipotential surface, it would
have a component lying along that surface. This component would then do work on a

E
:

W elec � 0
V2 � V1

�V � V2 � V1 � �
W elec

q
,
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Equipotential surface
Field line

Field line Spherical
equipotential

surface Field line

Non-spherical
equipotential

surface

(b ) (c )(a)

+

+

FIGURE 25-8 ■ Electric field lines (solid purple lines with arrows) and cross sections of equipo-
tential surfaces (dashed gold lines) for (a) a uniform field with planar equipotential 
surfaces, (b) the field of a point charge with spherical equipotential surfaces, and (c) the field of
an electric dipole with distorted equipotential surfaces that are not quite spherical.

I

II

III IV

V1

V2

V3

V4

FIGURE 25-7 ■ Portions of four equipo-
tential surfaces at electric potentials

, , , and
. Four paths along which a test

charge may move are shown. Two electric
field lines are also indicated.

V4 � 40 V
V3 � 60 VV2 � 80 VV1 � 100 V
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1

2

ds
qt

qt E

Field linePath

+

FIGURE 25-9 ■ A test charge qt moves
from point 1 to point 2 along the path
shown in a nonuniform electric field repre-
sented by curved electric field lines. During
a displacement an electrostatic force

acts on the test charge. This force
points in the direction of the field line at
the location of the test charge.

qtE
:

ds:,

charged particle as it moved along the surface. However, to prove that work cannot
be done if the surface is truly an equipotential surface we use Eq. 25-8 once again,

The only possible conclusion is that the electric field lines must be perpendicular to
the surface everywhere along it.

If electric field lines are perpendicular to an equipotential surface, then con-
versely the equipotential surface must be perpendicular to the field lines. Thus,
equipotential surfaces are always perpendicular to the direction of the electric field ,
which is tangent to the field lines. Figure 25-8 shows electric field lines and cross sec-
tions of the equipotential surfaces for a uniform electric field and for the field associ-
ated with a point charge and with an electric dipole.

25-5 Calculating Potential from an E-Field

Can we calculate the potential difference between any two points 1 and 2 in an elec-
tric field if we know the electric field vector all along any path connecting those
points? We can if we can find the work done on a charge by the field as the charge
moves from 1 to 2, and then use Eq. 25-8 again,

For example, consider an arbitrary electric field, represented by the field lines in Fig.
25-9, and a positive test charge qt moving along the path shown from point 1 to point 2.
At any point on the path, an electrostatic force acts on the charge as it moves
through an infinitesimally small differential displacement . From Chapter 9, we know
the differential work dW done on a particle by a force during a displacement is

. (25-13)

For the situation of Fig. 25-9, , and Eq. 25-13 becomes

. (25-14)

To find the total work W elec done on the particle by the field as the particle moves
from point 1 to point 2, we sum—via integration—the differential work done on the
charge as it moves through all the differential displacements along the path:

. (25-15)

If we substitute the total electrical work W elec from Eq. 25-15 into Eq. 25-8,
, we find

. (25-16)

Thus, the potential difference between any two points 1 and 2 in an electric
field is equal to the negative of the line integral (meaning the integral along a particular
path) of from 1 to 2. However, because the electrostatic force is conservative,E

:
	ds:

V2 � V1

V
2

� V
1

� ��2

1
E
:

	ds:

�V � V2 � V1 � �W elec/q

W elec � qt�2

1
E
:

	ds:

ds:

dW elec � qtE
:

	ds:

F
:

� qtE
:

dW � F
:

	ds:

ds:F
:

ds:
qtE

:

�V � V2 � V1 � �
W elec

q
.

E
:

E
:

�V � V2 � V1 � �
W elec

q
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all paths (whether easy or difficult to use) yield the same result. So, choose an easy-to-
use path.

If the electric field is known throughout a certain region, Eq. 25-16 allows us to
calculate the difference in potential between any two points in the field. If we choose
the potential V1 at point 1 to be zero, then Eq. 25-16 becomes 

(for V1 � 0), (25-17)

where we have dropped the subscript 2 on V2. Equation 25-17 gives us the potential V
at any point 2 in the electric field relative to the zero potential at point 1. If we let point
1 be at infinity, then Eq. 25-17 gives us the potential V at any point 2 relative to the
zero potential at infinity.

READI NG EXERC IS E  25-4: The figure
shows a family of parallel equipotential surfaces (in
cross section) and five paths along which we shall
move an electron from one surface to another. (a)
What is the direction of the electric field associated
with the surfaces? (b) For each path, is the work we
do positive, negative, or zero? (c) Rank the paths
according to the work we do, greatest first.

■

V � ��2

1
E
:

	ds:

90 V 80 V 70 V 60 V 50 V 40 V

5

3
4

2

1

TOUCHSTONE EXAMPLE 25-2: Finding the Potential Difference

(a) Figure 25-10a shows two points 1 and 2 in a uniform electric
field . The points lie on the same electric field line (not shown)
and are separated by a distance d. Find the potential difference

by moving a positive test charge qt from 1 to 2 along the
path shown, which is parallel to the field direction.
V2 � V1

E
:

S O L U T I O N ■ The Ke y  I d e a here is that we can find the po-
tential difference between any two points in an electric field by in-
tegrating along a path connecting those two points according
to Eq. 25-16. We do this by mentally moving a test charge qt along
that path, from initial point 1 to final point 2. As we move such a
test charge along the path in Fig. 25-10a, its differential displace-
ment always has the same direction as . Thus, the angle � be-
tween and is zero and the dot product in Eq. 25-16 is 

(25-18)

Equations 25-16 and 25-18 then give us 

(25-19)

Since the field is uniform, E is constant over the path and can be
moved outside the integral, giving us 

in which the integral is simply the length d of the path. The minus
sign in the result shows that the potential at point 2 in Fig. 25-10a is
lower than the potential at point 1. This is a general result: The
potential always decreases along a path that extends in the direc-
tion of the electric field lines.

(b) Now find the potential difference by moving the positive
test charge qt from 1 to 2 along the path 1-3-2 shown in Fig. 25-10b.

V2 � V1

V2 � V1 � ��E
:

��2

1
� ds: � � � � E

:
� �d

:
�,

V2 � V1 � ��2

1
E
:

	ds: � ��2

1
� E

:
� � ds: �.

E
:

	ds: � � E
:

�� ds: �cos � � � E
:

�� ds: �.

ds:E
:

E
:

ds:

E
:

	ds:
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2
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ds

E

E

E

FIGURE 25-10 ■ (a) A test charge qt moves in a straight
line from point 1 to point 2, along the direction of a uni-
form electric field. (b) Charge qt moves along path 1-3-2
in the same electric field.



25-6 Potential Due to a Point Charge

Imagine a single point charge in space. What would the value of the potential be at a
distance of 3 m away from the charge? Consider a point P at a distance R from a fixed
particle of positive charge q as in Fig. 25-11. To use Eq. 25-16,

we imagine that we move a positive test charge qt from infinity to its final location
at point P. We need to bring our test charge from infinity to a point P that is a
distance R from the source charge. Because the path we choose will not change our
final result, we are free to choose it. Mathematically, the simplest path between in-
finity and point P involves traveling along the same line that the electric field vec-
tors lie along so no nonradial vector components of the electric field have to be
considered.

We must then evaluate the dot product 

(25-20)

The electric field in Fig. 25-11 is directed radially outward from the fixed particle.
So the differential displacement of the test particle along our chosen path is radi-
ally inward and has the opposite direction as . That means that the angle � � 180�
and . Because the path is radial, let us write ds as dr. Then, substituting the
limits and R, we can write Eq. 25-16,

,

as (25-21)

where Er is the component of the electric field in the radial direction. Next we set
(at ) and (at R). Then, for the magnitude of the electric field at the

site of the test charge, we substitute from Chapter 23:

(25-22)E � k
� q �
r2 .

V2 � V
V1 � 0

V2 � V1 � ��R




Er dr,

V2 � V1 � ��2

1
E
:

	ds:



cos � � �1

E
:

ds:
E
:

E
:

	ds: � � E
:

�cos � � ds: � � (E)(ds)cos �.

V2 � V1 � ��2

1
E
:

	ds: ,
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S O L U T I O N ■ The Ke y  I d e a of (a) applies here too, except
now we move the test charge along a path that consists of two lines:
1-3 and 3-2. At all points along line 1-3, the displacement of the
test charge is perpendicular to . Thus, the angle � between and

is 90°, and the dot product is 0. Equation 25-16 then tells
us that points 1 and 3 are at the same potential: .

For line 3-2 we have and, from Eq. 25-16,

� �� E
:

�(cos 45�)�2

3
� ds: �.

V2 � V1 � V2 � V3 � ��2

3
E
:

	ds: � ��2

3
� E

:
�(cos 45�)� ds: �

� � 45�
V3 � V1 � 0

E
:

	ds:ds:
E
:

E
:

ds:

The integral in this equation is just the length of line 3-2; from
Fig. 25-10b, that length is . Thus,

(Answer)

This is the same result we obtained in (a), as it must be; the potential
difference between two points does not depend on the path connect-
ing them. Moral: When you want to find the potential difference be-
tween two points by moving a test charge between them, you can save
time and work by choosing a path that simplifies the use of Eq. 25-16.

V2 � V1 � �� E
:

�(cos 45�)
� d

:
�

sin 45�
� �� E

:
�� d

:
�.

d/sin 45�

qt

r

R

P

q

+

+

ds

E

FIGURE 25-11 ■ The positive point charge
q produces an electric field and an elec-
tric potential at point P. We find the
potential by moving a test charge qt from
its initial location at infinity to a point P.
The test charge is shown at distance r from
the point charge undergoing differential
displacement ds:.

�V
E
:
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(a)

x

y

V(r)

(b )

x

y

z

V(r)

FIGURE 25-12 ■ (a) A computer-
generated plot of the electric potential
V(r) due to a positive point charge located
at the origin of an x-y plane. The potentials
at points in that plane are plotted verti-
cally. (Curved lines have been added to
help you visualize the plot.) The infinite
value of V predicted by Eq. 25-24 for r � 0
is not plotted. (b) The same plot of electric
potential is shown for a negative charge.

With these changes, Eq. 25-21 then gives us 

(for positive q). (25-23)

We want to generalize finding the potential relative to infinity for any distance, not
just distance R. So, switching from R to r, we have an expression for potential at a dis-
tance r from a source charge of

(for positive q).

Although we have derived this expression above for a positively charged particle,
the derivation also holds for a negatively charged particle as well. However, if q in
Fig. 25-11 were a negative charge, the electric field vectors would point in the same
direction as the path (radially inward). Thus, the differential displacement of the
test particle along our chosen path has the same direction as . That means the angle
� � 0� and so . This introduces a negative sign that remains throughout
the derivation and results in a negative final result for the potential. So, we conclude
that the sign of V is the same as the sign of q. This gives us

(relative to infinity for either sign of charge), (25-24)

as the electric potential V relative to infinity due to a particle of charge q at any radial
distance r from the particle.

A positively charged particle produces a positive electric potential. A negatively charged
particle produces a negative electric potential.

Figure 25-12 shows a computer-generated plot of Eq. 25-24 for a positively
charged particle; the magnitude of V is plotted vertically. Note that the magnitude in-
creases as . In fact, according to the expression above, V is infinite at , al-
though Fig. 25-12 shows a finite, smoothed-off value there.

Equation 25-24 also gives the electric potential outside or on the external
surface of a spherically symmetric charge distribution. We can prove this by using an

r � 0r : 0

V � k
q
r

cos � � �1
E
:

ds:

V � k
� q �
r

� k
� q �
R

V � 0 � �k� q ��R




1
r2 dr � k� q �� 1

r �
R






electrostatic analogy to the shell theorem we found so useful in our study of gravita-
tion (Section 14-2). This theorem allows us to replace the actual spherical charge
distribution with an equal charge concentrated at its center. Then the derivation
leading to Eq. 25-24 follows, provided we do not consider a point within the actual
distribution.
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TOUCHSTONE EXAMPLE 25-3: Near a Proton

The nucleus of a hydrogen atom consists of a single proton, which
can be treated as a particle (or point charge).

(a) With the electric potential equal to zero at infinite distance,
what is the electric potential V due to the proton at a radial dis-
tance from it?

S O L U T I O N ■ The Ke y  I d e a here is that, because we can
treat the proton as a particle, the electric potential V it produces at
distance r is given by Eq. 25-24,

Here charge q is Substituting this and the given
value for r, we find

(Answer)

(b) What is the electric potential energy U in electron-volts of an
electron at the given distance from the nucleus? (The potential

� 6.78 V.

V �
(8.99 � 109 N	m2/C2)(1.60 � 10�19 C)

2.12 � 10�10 m

e(�1.6 � 10�19 C).

V � k
q
r

.

r � 2.12 � 10�10 m

energy is actually that of the electron–proton system—the hydro-
gen atom.)

S O L U T I O N ■ The Ke y  I d e a here is that when a particle of
charge q is located at a point where the electric potential due to
other charges is V, the electric potential energy U is given by
Eq. 25-6 . Using the electron’s charge �e, we find

(Answer)

(c) If the electron moves closer to the proton, does the electric po-
tential energy increase or decrease?

S O L U T I O N ■ The Ke y  I d e a s of parts (a) and (b) apply here
also. As the electron moves closer to the proton, the electric poten-
tial V due to the proton at the electron’s position increases because
r decreases). Thus, the value of V in part (b) increases. Because the
electron is negatively charged, this means that the value of U be-
comes more negative. Hence, the potential energy U of the electron
(that is, of the system or atom) decreases.

� �1.0848 � 10�18 J � �6.78 eV.

U � qV � (�1.60 � 10�19 C)(6.78 V)

(V � U/q)

25-7 Potential and Potential Energy Due to a 
Group of Point Charges

Now let’s consider what happens when there are lots of charges. First we will look at
the case where we only move a small test charge while all the other charges remain
fixed. In this case, the changes in the system’s potential energy as the test charge
moves lead us to the same definition of electric potential, V, as we already developed.
At the end of this section we consider the situation in which many charges move and
find that the total potential energy of the system changes. In this case, even though the
system has a potential energy associated with it, we cannot define an electric
potential.

We found in Chapter 23 that the electric field arising from a group of point
charges satisfies a superposition principle. That is, the total electric field is the sum of
the individual electric fields arising from each individual point charge. Since the
potential V is the line integral of the electric field and the integral of a sum of terms
is the sum of the integrals, the superposition principle also holds for electrostatic
potential.

Hence, we use the principle of superposition to find the electric potential at a par-
ticular location due to a group of point charges. We calculate the potential resulting
from the influence of each charge in the system one at a time, using Eq. 25-24 with the
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sign of the charge included. Then we sum the potentials. For n charges, the net poten-
tial (measured relative to a zero at infinity) is 

(potential due to n point charges). (25-25)

Here qi is the value of the ith charge, and ri is the radial distance of the given point
from the ith charge. The sum in Eq. 25-25 is an algebraic sum, not a vector sum like
the sum used to calculate the electric field resulting from a group of point charges.
Herein lies an important computational advantage of potential over electric field: it is
a lot easier to sum several scalar quantities than to sum several vector quantities
whose directions and components must be considered.

In Section 25-2, we discussed the electric potential energy of a charged particle as
an electrostatic force does work on it. In that section, we assumed that the charges
that produced the force were fixed in place, so that neither the force nor the corre-
sponding electric field could be influenced by the presence of the test charge. If we
consider a system with charges that move when a test charge moves around, there is
no logical way to determine a charge-independent electric potential for it. The electric
field will keep changing due to the presence of the test charge. But we can take a
broader view and find the electric potential energy of the entire system of charges due
to the electric field produced by those same charges.

We can start simply by pushing two bodies that have charges of like sign into the
same vicinity. For example, imagine that we have one excess electron on the conducting
shell of the Van de Graaff generator shown in Fig. 25-3 and we want to put a second
electron in place. Our second electron is sprayed on the insulated belt and the generator
motor does work as it forces the second electron toward the conducting shell in the
presence of the first one. The first electron is no doubt relocating and acting on the sec-
ond electron during the forcing process. Nonetheless, we can keep track of the work the
motor does. This work is stored as electric potential energy in the two-body system
(provided the kinetic energy of the bodies does not change). As we bring up a third
electron we can measure the work we have to bring it up to the shell in the presence of
the other two electrons, which are relocating as a result of the interactions of all three
electrons. The work needed to bring the third electron to the conducting shell adds to
the work needed to bring up the second electron. The total work is stored as the poten-
tial energy of the three-body system. This process of doing more work and causing the
excess electrons on the shell to relocate goes on until there are billions and billions of
electrons on the conducting shell. If you later release the charges but touch the shell
with a conductor attached to the ground, you can recover this stored energy, in whole or
in part, as the kinetic energy of the charged bodies as they rush away from each other.

We define the electric potential energy of a system of point charges in terms of the
final locations of all the charges as follows:

The electric potential energy of a system of point charges that are not moving is equal to the
work that must be done by an external agent to assemble the system one charge at a time.

We assume that the charges are stationary both in their initial infinitely distant posi-
tions and in their final assembled configuration. In equation form, the total electric
potential energy of the system is given by the sum of the potential energies of all the
possible pairs in the system so that

(system potential energy of n point charges). (25-26)U � �
all pairs

k
qiqj

� r:i � r:j �

V � �
n

i�1
Vi � k�

n

i�1

qi

ri



READI NG EXERC IS E  25-5: So far in this chapter, we have discussed two ways to
calculate the electric potential V. Describe how one would calculate the electric potential given
information about the charge distribution (the magnitudes of the charges and where they are
located). Describe how one would calculate the electric potential given information regarding
the electric field .

■

READI NG EXERC IS E  25-6: The figure shows three arrangements of two protons.
Rank the arrangements according to the net electric potential produced at point P by the pro-
tons, greatest first.

■

E
:

Potential and Potential Energy Due to a Group of Point Charges   729

P

d
D

(b)

P

Dd
D

d

P Proton
1

Proton 1

Proton 1

Proton 2Proton 2Proton
2

(a) (c)

TOUCHSTONE EXAMPLE 25-4: A Square of Charges

What is the electric potential at point P, located at the center of the
square of point charges shown in Fig. 25-13a? The distance d is
1.3 m, and the charges are

S O L U T I O N ■ The Ke y  I d e a here is that the electric poten-
tial V at P is the algebraic sum of the electric potentials contributed

q4 � �17 nC.q2 � �24 nC,

q3 � �31 nC,q1 � �12 nC,

by the four point charges. (Because electric potential is a scalar, the
orientations of the point charges do not matter.) Thus, from Eq. 25-25,
we have 

The distance r is , which is 0.919 m, and the sum of the charges
is

Thus,

(Answer)

Close to any of the three positive charges in Fig. 25-13a, the poten-
tial has very large positive values. Close to the single negative
charge, the potential has very large negative values. Therefore,
there must be points within the square that have the same interme-
diate potential as that at point P. The curve in Fig. 25-13b shows the
intersection of the plane of the figure with the equipotential surface
that contains point P. Any point along that curve has the same po-
tential as point P.

� 350 V.

V �
(8.99 � 109N	m2/C2)(36 � 10�9 C) 

0.919 m

 � 36 � 10�9 C.

q1 � q2 � q3 � q4 � (12 � 24 � 31 � 17) � 10�9 C

d/√2

V � �
4

i�1
Vi � k	 q1

r
�

q2

r
�

q3

r
�

q4

r 
.

d d

d

d

P

q1 q2

q3 q4

P

q1 q2

q3 q4

V = 350 V

(a) (b )

FIGURE 25-13 ■ (a) Four point charges are held fixed at
the corners of a square. (b) The closed curve is a cross sec-
tion, in the plane of the figure, of the equipotential surface
that contains point P. (The curve is only roughly drawn.)

TOUCHSTONE EXAMPLE 25-5: A Dozen Electrons

(a) In Fig. 25-14a, 12 electrons (of charge �e) are equally spaced
and fixed around a circle of radius R. Relative to at infinity,
what are the electric potential and electric field at the center C of
the circle due to these electrons?

S O L U T I O N ■ The Ke y  I d e a here is that the electric poten-
tial V at C is the algebraic sum of the electric potentials contributed

V � 0
by all the electrons. (Because electric potential is a scalar, the orien-
tations of the electrons do not matter.) Because the electrons all
have the same negative charge �e and are all the same distance R
from C, Eq. 25-25 gives us 

(Answer) (25-27)�V � �12k
e
R

.



For the electric field at C, the Key  Idea is that electric field is a
vector quantity and thus the orientation of the electrons is important.
Because of the symmetry of the arrangement in Fig. 25-14a, the elec-
tric field vector at C due to any given electron is canceled by the field
vector due to the electron that is diametrically opposite it. Thus, at C,

(Answer)

(b) If the electrons are moved along the circle until they are
nonuniformly spaced over a 120° arc (Fig. 25-14b), what then is the
potential at C? How does the electric field at C change (if at all)?

S O L U T I O N ■ The potential is still given by Eq. 25-27, because
the distance between C and each electron is unchanged and orien-
tation is irrelevant. The electric field is no longer zero, because the
arrangement is no longer symmetric. There is now a net field that is
directed toward the charge distribution.

E
:

� 0.

25-8 Potential Due to an Electric Dipole

Electrically neutral matter is made of equal amounts of positive and negative charges.
Electric forces pull in opposite directions on those charges. Thus, an electric field can
cause a small separation of the positive and negative charges in matter (called polar-
ization). In addition, many molecules distribute their electrons throughout their vol-
ume in a nonuniform way. This results in their having more positive charge on one
end and one negative charge on the other end. For example, the water molecule
shown in Fig. 23-22 has a nonuniform charge distribution.

A small separation produces an electric field very similar to that of a pair of
equal and opposite charges separated by a small distance. If the charges were right
on top of each other, their electric fields would cancel and they would appear
neutral. But if they are a bit separated, their fields don’t cancel perfectly, leaving a
field pattern known as an electric dipole. The electric dipole fields produced by
molecules play an essential role in a large number of processes in chemistry and
biology, as well as in determining the electrical properties of matter such as color
and transparency.

Now let us apply Eq. 25-25,

to an electric dipole to find the potential at an arbitrary point P in Fig. 25-15a. At P,
the positive point charge (at distance r(�)) sets up potential and the negative
point charge (at distance r(�)) sets up potential . Then the net potential at P is
given by Eq. 25-25 as 

(25-28)

Naturally occurring dipoles—such as those possessed by many molecules—are
quite small, so we are usually interested only in points that are relatively far from the

�
q

4�0

r(–) � r(�)

r(�)r(�)
.

V � �
2

i�1
Vi � V(�) � V(�) �

1
4�0

	 q
r(�)

�
�q
r(�)




V(�)

V(�)

V � �
n

i�1
Vi �

1
4�0

�
n

i�1

qi

ri
,
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R

C
R

C

(a) (b )

120°

FIGURE 25-14 ■ (a) Twelve electrons uniformly
spaced around a circle. (b) Those electrons are now
nonuniformly spaced along an arc of the original
circle.
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r(–)
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r

P

(a)

+

z

d
θ

r(–) – r(+)
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r(+)

(b )

+
+q

–q

FIGURE 25-15 ■ (a) Point P is a distance r from the midpoint O of a 
dipole. The line OP makes an angle with the dipole axis. (b) If P is far
from the dipole, the lines of lengths r(�) and r(�) are approximately paral-
lel to the line of length r, and the dashed line is approximately perpendic-
ular to the line of length r(�).

�

dipole, such that , where d is the distance between the charges. Under those
conditions, the approximations that follow from Fig. 25-15b are

and

If we substitute these quantities into Eq. 25-28, we can approximate V to be 

(for r >> d).

Here is measured from the dipole axis as shown in Fig. 25-15a. We can now write 
V as

(electric dipole for r >> d), (25-29)

in which is the magnitude of the electric dipole moment defined in Section
23-7. The vector is directed along the dipole axis, from the negative to the positive
charge. (Thus, is measured from the direction of .)

Induced Dipole Moment
Many molecules such as water have permanent electric dipole moments. In other mol-
ecules (called nonpolar molecules) and in every isolated atom, the centers of the posi-
tive and negative charges coincide (Fig. 25-16a) and thus no dipole moment is set up.
However, if we place an atom or a nonpolar molecule in an external electric field, the
field affects the locations of the electrons relative to the nuclei and separates the

p:�
p:

p:p(�qd)

V � k
p cos �

r 2

�

V �
q

4ε0

d cos �
r 2

r(�)r(�) � r 2.r(�) � r(�) � d cos �

r �� d

+

(a)

+

(b )

p

E
FIGURE 25-16 ■ (a) An atom, showing the positively charged nucleus (green) and a
cloud of negatively charged electrons (gold shading). The centers of positive and nega-
tive charge coincide. (b) If the atom is placed in an external electric field , the elec-
tron orbits are distorted so that the centers of positive and negative charge no longer
coincide. An induced dipole moment appears. The distortion is exaggerated here by
many orders of magnitude.

p:

E
:
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centers of positive and negative charge (Fig. 25-16b). Because the electrons are nega-
tively charged, they tend to be shifted in a direction opposite the field. This shift sets
up a dipole moment pointing in the direction of the field. This dipole moment is
said to be induced by the field, and the atom or molecule is then said to be polarized
by the field (it has a positive side and a negative side). When the field is removed, the
induced dipole moment and the polarization disappear.

READI NG EXERC IS E  25-7: Suppose three points are set at equal (large) distances r
from the center of the dipole in Fig. 25-15: Point a is on the dipole axis above the positive
charge, point b is on the axis below the negative charge, and point c is on a perpendicular bisec-
tor through the line connecting the two charges. Rank the points according to the electric po-
tential of the dipole there, greatest (most positive) first. ■

25-9 Potential Due to a Continuous Charge Distribution

When a charge distribution q is continuous (as on a uniformly charged thin rod or
disk), we cannot use a summation to find the potential V at a point P. Instead, we
must choose a differential element of charge dq. A differential element of charge is a
very small bit of charge, small enough so we can treat it as if it were a point charge.
We can then determine the potential dV at P due to dq, and then integrate over the
entire charge distribution.

Let us again take the zero of potential to be at infinity. If we treat the element of
charge dq as a point charge, then we can use Eq. 25-24,

to express the potential dV at point P due to dq:

(positive or negative dq). (25-30)

Here r is the distance between P and dq. To find the total potential V at P, we inte-
grate to sum the potentials due to all the charge elements:

(25-31)

The integral must be taken over the entire charge distribution. Note that because the
electric potential is a scalar, there are no vector components to consider in the equa-
tion above.

We now examine a continuous charge distribution, a line of charge.

Line of Charge
In Fig. 25-17a, a thin, nonconducting rod of length L has a positive charge of uniform
linear density . Let us determine the electric potential V due to the rod at point P, a
perpendicular distance d from the left end of the rod.

We consider a differential element dx of the rod as shown in Fig. 25-17b. This (or
any other) element of the rod has a differential charge of 

(25-32)dq � � dx.

�

V � �dV � k� dq
r

.

dV � k
dq
r

V � k
q
r

,

p:



This element produces a potential dV at point P, which is a distance 
from the element. Treating the element as a point charge, we can use Eq. 25-30,

to write the potential dV as

(25-33)

Since the charge on the rod is positive and we have taken V = 0 at infinity, we know
dV in this expression must be positive.

We now find the total potential V (measured relative to a zero at infinity) pro-
duced by the rod at point P by integrating along the length of the rod, from to

. We evaluate the integral using an integral table or a symbolic manipulation
program like Mathcad or Maple. We then find

We can simplify this result by using the general relation . We
then find

(25-34)

Because V is the sum of positive values of dV, it should be positive—but does this ex-
pression give a positive V? Since the argument of the logarithm is greater than one,
the logarithm is a positive number and V is indeed positive.

25-10 Calculating the Electric Field from the Potential

In Section 25-5, you saw how to find the potential at a point f if you know the electric
field along a path from a reference point to point f. In this section, we propose to go
the other way—that is, to find the electric field when we know the potential. As
Fig. 25-8 shows, graphically finding the direction of the field is easy: If we know the
potential V at all points near an assembly of charges, we can draw in a family of
equipotential surfaces. The electric field lines, sketched perpendicular to those
surfaces, reveal the direction of . What we are seeking here is the mathematical
equivalent of this graphical procedure.

Figure 25-18 shows cross sections of a family of closely spaced equipotential sur-
faces, the potential difference between each pair of adjacent surfaces being dV. As the
figure suggests, the field at any point P is perpendicular to the equipotential surface
through P.

Suppose a positive test charge qt moves through a displacement from one
equipotential surface to the adjacent surface. From Eq. 25-8, we can relate the change

ds:

E
:

E
:

V � k� ln� L � (L2 � d 2)1/2

d �.

ln A � ln B � ln (A/B)

� k�[ln(L � (L2 � d 2)1/2) � ln d].

� k�[ln(x � (x2 � d 2)1/2)]L
0

� k��L

0

dx
(x2 � d 2)1/2

V � �dV � �L

0
k

�

(x2 � d 2)1/2 dx

x � L
x � 0

dV � k
dq
r

� k
� dx

(x2 � d2)1/2 .

dV � k
dq
r

,

r � (x2 � d2)1/2
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FIGURE 25-17 ■ (a) A thin, uniformly
charged rod produces an electric potential

at point P. (b) A differential element of
charge produces a differential potential dV
at P.

V

L

d

P

x

(a)

(b )

x

d

P

x
dx

r

s
qt

P θ
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equipotential

surfaces

+
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E

FIGURE 25-18 ■ A test charge qt

undergoes a displacement from one
equipotential surface to another. (The sep-
aration between the surfaces has been ex-
aggerated for clarity.) The displacement

makes an angle with the direction of
the electric field .E

:
�ds:

ds:
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in electric potential to the work done by the electric field on our test charge

.

Let’s consider the potential difference associated with an infinitesimally small dis-
placement denoted by We see that the electric field does an infinitesimal amount
of work on the test charge during the move. Using Eq. 25-8, we can denote this as

. From Eq. 25-14, and Fig. 25-18, we see that the infinitesimal
work done by the force may also be written as or , where 
is the angle between the electric field and displacement vectors as shown in Fig. 25-18.
Equating these two expressions for the work yields 

(25-35)

or (25-36)

Since is the component of in the direction of the equation above
becomes

(25-37)

We have added a subscript to the component of and switched to the partial deriva-
tive symbols to emphasize that this expression involves only the variation of along
a specified axis (here called the s axis) and only the component of along that axis.
In words, Eq. 25-37 is essentially the inverse of Eq. 25-16,

and states:

The component of in any direction is the negative of the rate of change of the electric
potential with distance in that direction. Hence, points in the direction of decreasing
electric potential V.

If we take the s axis to be, in turn, the x, y, and z axes, we find that the x-, y-, and
z-components of at any point are 

(25-38)

Thus, if we know V for all points in the region around a charge distribution—that is, if
we know the function —we can find the components of , and thus itself,
at any point by taking partial derivatives. Each component of the electric field is sim-
ply the negative of the slope of the curve representing the electric potential vs. dis-
tance along each chosen axis.

For the simple situation in which the electric field is uniform, the equipotential
surfaces are a set of parallel planes that lie perpendicularly to the direction of the
electric field. In addition, for a given potential difference, the distance between any
two equipotential planes is the same. So, when the component of the electric field
along the direction of is uniform, we can rewrite Eq. 25-37 ( ) in termsEs � ��V/�sds:

E
:

E
:

E
:

V(x,y,z)

Ex � �
�V
�x

;  Ey � �
�V
�y

;  Ez � �
�V
�z

.

E
:

E
:

E
:

V2 � V1 � ��2

1
E
:

	ds:,

E
:

�V
E
:

Es � �
�V
�s

.

ds:,E
:

Es � � E
:

�cos �

E
:

(cos �) � �
dV
ds

.

�qt dV � qt � E
:

�(cos �)� ds: �,

�qt �E
:

� (cos �) �ds:�(qtE
:

)	ds:
dW � qtE

:
	ds:,�qt dV

ds:.

�V � V2 � V1 � �
W elec

qt



of the magnitude of the electric field as

(25-39)

where is the component of displacement perpendicular to the equipotential sur-
faces. Equation 25-36 tells us that whenever the potential is constant along a surface
so that , the electric field is zero. The component of the electric field is zero in
any direction parallel to the equipotential surfaces. Thus, for a given potential differ-
ence , the magnitude of the electric field is given by the magnitude of the potential
difference divided by the distance between any two equipotential surfaces.

READI NG EXERC IS E  25-8: The figure shows three pairs of parallel plates with the
same separation, and the electric potential of each plate. The electric field between the plates is
uniform and perpendicular to the plates. (a) Rank the pairs according to the magnitude of the
electric field between the plates, greatest first. (b) For which pair is the electric field pointing
rightward? (c) If an electron is released midway between the third pair of plates, does it remain
there, move rightward at constant speed, move leftward at constant speed, accelerate rightward,
or accelerate leftward?

�V

�V � 0

�s

E � � �V
�s �,

E � � E
:

�
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–50 V +150 V –20 V +200 V –200 V –400 V

(1) (2) (3)

READI NG EXERC IS E  25-9: In what ways is the superposition principle for energy
discussed above the same as, and different from, the superposition principle for electric field? ■

TOUCHSTONE EXAMPLE 25-6: Obtaining from VE
:

The electric potential at any point on the axis of a uniformly
charged disk is given by 

Starting with this expression, derive an expression for the electric
field at any point on the axis of the disk.

S O L U T I O N ■ We want the electric field as a function of dis-
tance z along the axis of the disk. For any value of z, the direction

E
:

V �
�

2ε0
(√z2 � R2 � z).

of must be along that axis because the disk has circular symmetry
about that axis. Thus, we want the component Ez of in the direc-
tion of z. Then the Ke y  I d e a is that this component is the nega-
tive of the rate of change of the electric potential with distance z.
Thus, from the last of Eqs. 25-38, we can write 

(Answer)�
�

2ε 0
	1 �

z

√z2 � R2 
.

Ez � �
�V
�z

� �
�

2ε0

d
dz

(√z2 � R2 � z)

E
:

E
:

25-11 Potential of a Charged Isolated Conductor

In Section 24-8, we concluded for all points inside an electrically isolated con-
ductor. We then used Gauss’ law to prove that an excess charge placed on an isolated
conductor lies entirely on its surface. (This is true even if the conductor has an empty
internal cavity.) Here we use the first of these facts to prove an extension of the
second:

E
:

� 0

■
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An excess charge placed on an isolated conductor will distribute itself on the surface of that
conductor so that all points of the conductor—whether on the surface or inside—come to
the same potential. This is true even if the conductor has an internal cavity and even if that
cavity contains a net charge.

This fact is rather obvious since any potential difference inside a conductor requires
an electric field inside it. The nonzero electric field would, in turn, cause the free con-
duction electrons to redistribute themselves until the potential difference disappears.

The mathematical proof that an electrically isolated conductor is an equipotential
region follows directly from Eq. 25-16,

Since for all points within a conductor, it follows directly that for all
possible pairs of points i and f in the conductor.

A Spherical Shell with No External Electric Field
Figure 25-19a shows a plot of potential against radial distance r from the center for an
isolated spherical conducting shell of 1.0 m radius, having a net excess charge of

. In the absence of an external field, we know by symmetry the surface charges
will be uniformly distributed over the surface of the shell. For points outside the shell,
we can calculate , the electric potential. Obviously this potential also has a spheri-
cal symmetry and can be given by Eq. 25-24,

because the total charge on the shell, denoted as q, behaves for external points as if it
were concentrated at the center of the shell. That equation holds right up to the surface
of the shell. Now let us push a small test charge through the shell—assuming a small
hole exists—to its center. No extra work is needed to do this because no net electric
force acts on the test charge once it is inside the shell. Thus, the potential at all points
inside the shell has the same value as on the surface, as shown in the Fig. 25-19a graph.

The Fig. 25-19b graph shows the variation of electric field with radial distance for
the same shell. Note that everywhere inside the shell. The curves of Fig. 25-19b
can be derived from the curve of Fig. 25-19a by differentiating with respect to r, using
Eq. 25-37 (the derivative of a constant, recall, is zero). The curve of Fig. 25-19a can be
derived from the curves of Fig. 25-19b by integrating 

.

The Charge Distribution on a Nonspherical Conductor
Consider a nonspherical charged conductor. Assume the conductor is electrically iso-
lated and there is no external electric field in its vicinity. It turns out its surface
charges do not distribute themselves uniformly. When compared to the uniform den-
sity of excess charge on a spherical conductor, the charges redistribute themselves so
there is a higher charge density when the radius of curvature is convex and small and
a lower charge density where the radius of curvature is concave and small (Fig. 25-20).
Why? We can use the characteristics of equipotential surfaces to develop a qualitative
explanation for this phenomenon.
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FIGURE 25-19 ■ (a) A plot of both
inside and outside a charged spherical
shell of radius 1.0 m. (b) A plot of the 
electric field magnitude, E(r), for the same
shell.

V(r)

FIGURE 25-20 ■ The magnitude of the
charge density on a conductor is greatest
on a convex surface with a small radius of
curvature (A) and least on a concave sur-
face having small radius of curvature (D).
The ranking of the magnitude of the
charge density is A � B � C � D.
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FIGURE 25-21 ■ The net positive charge on an
odd-shaped isolated conductor distributes itself
on the conductor’s surface so the electric field
generated by it is zero inside and normal to the
surface elements of the conductor. This requires
the equipotential surfaces (shown with dotted
lines) to be closest together on the left where the
conductor’s convex radius of curvature is small-
est. The electric field lines (shown with solid lines)
and the excess charges also have the greatest
density on the left where the curvature of the
conductor’s surface is smallest.

The explanation is as follows: There is no electric field inside the conductor, and
the electric field at each point on the surface of the conductor must be normal (in
other words perpendicular) to the surface. This requirement is obvious since any com-
ponent of electric field parallel to the surface would cause free electrons to reconfig-
ure themselves until all tangential components along the surface disappear. This also
means the entire surface of our conductor is an equipotential surface no matter what
its shape is. However, if we are far away from our charged conductor, the equipoten-
tial surfaces look more and more like those of a point charge. Thus, the family of
equipotential surfaces that are each apart from the previous one become more
and more spherical in shape. As the successive equipotential surfaces morph (change
shape) slowly from that of our odd-shaped surface to that of a sphere, the parts of the
equipotential surfaces near small-radius convex surface elements must be closer to-
gether than those elements having large radii of curvature. This is shown in Fig. 25-21.
Now, equipotential surfaces more closely spaced occur where the electric field is the
strongest and can do the most work on test charges, but the electric field is largest
where the charge density that is its source is largest. The implication is that:

On an isolated conductor the concentration of charges and hence the strength of the elec-
tric field is greater near sharp points where the curvature is large.

An Isolated Conductor in an External Electric Field
Suppose an uncharged isolated conductor is placed in an external electric field, as in
Fig. 25-22. The electric field at the conductor’s surface must have the same character-
istics as it does when no external field is present. However, this doesn’t mean its
charges will be distributed in the same way as if no external electric field were pre-
sent. All points of the conductor still come to a single potential regardless of whether
the conductor is electrically neutral or has an excess charge. The free conduction
electrons distribute themselves on the surface in such a way that the electric field
they produce at interior points cancels the external electric field that would other-
wise be there. Furthermore, the electron distribution causes the net electric field at
all points on the surface to be normal to the surface. If the conductor in Fig. 25-22
could somehow be removed, leaving the surface charges frozen in place, the pattern
of the electric field would remain absolutely unchanged for both exterior and
interior points.

One common natural source of an external electric field that can affect isolated
metal objects are excess negative charges at the bases of clouds contributing to the
onset of thunderstorms. Such an external electric field can cause charge separation in
conducting objects at the Earth’s surface such as golf clubs and rock hammers. Since
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FIGURE 25-22 ■ An uncharged conductor
is suspended in an external electric field.
The free electrons in the conductor distrib-
ute themselves on the surface as shown, so
as to reduce the net electric field inside the
conductor to zero and make the net field
outside normal to each surface element.



these objects have points where the curvature is high, the surface charge density—
and thus the external electric field, which is proportional to it—may reach very high
values. The air around sharp points may become ionized, producing the corona dis-
charge that golfers and mountaineers see on their tools when thunderstorms threaten.
Such corona discharges, like hair that stands on end, are often the precursors of light-
ning strikes.

The cells and blood inside a human body contain salt water that acts as a conduc-
tor. The natural oil found on hair is also conductive. A person placed in a strong elec-
tric field can act like an uncharged conductor. For example, the woman shown in
Fig. 25-23 was standing on a platform connected to the mountainside, and was at
about the same potential as the mountainside. Overhead, a cloud system that had a
high degree of charge separation with excess negative charges at its base moved in
and created a strong electric field around her and the mountainside. Electrostatic
forces due to this field drove some of the conduction electrons in the woman down-
ward through her body, leaving her head and strands of her hair positively charged.
The magnitude of this electric field was apparently large, but less than the value of
about needed to cause electrical breakdown of the air molecules. (That
value was exceeded when lightning struck the platform shortly after the picture was
taken.)

As we just discussed, the surface charges on a nonspherical conductor concen-
trate in regions where the curvature is greatest. Thus, we expect the electric field to
be greatest near the top of the woman’s head—an equipotential surface. This suspi-
cion is confirmed because the strands of her hair, containing excess positive charge,
are pulled out most strongly where her head has the most curvature. Also, the
strands of hair are extended along the direction of perpendicular to her head.
Since the magnitude of was greatest just above her head, this is where the equipo-
tential surfaces were most closely spaced. A sketch showing this close spacing is
shown in Fig. 25-23.

The lesson here is simple. If an electric field causes the hairs on your head to
stand up, you’d better run for shelter rather than pose for a snapshot.

What If Lightning Might Strike?
Speaking of lightning, what is the best way to protect yourself if lightning strikes?
There are two ways to protect yourself using your knowledge of how conductors be-
have in electric fields. One is to enclose yourself in a relatively spherical conducting
shell. The other is to use a lightning rod.

Using a Spherical Shell: If you enclose yourself inside a more or less spherical
cavity, the electric field inside the cavity is guaranteed to be zero. A car (unless it is a
convertible) is almost ideal (Fig. 25-24) because it protects the passengers from the ef-
fects of lightning for the same reason that the Faraday cage shown in Chapter 24 pro-
tects the demonstrator from the high voltage caused by the transfer of charge to the
cage by a Van de Graaff generator.

Using a Lightning Rod: If you live in an area where thunderstorms are com-
mon, you can embed the base of a tall metal lightning rod in the ground. Recall that
the bottoms of thunderclouds have an excess of negative charge that creates strong
electric fields at the Earth’s surface. What happens if a conducting rod, like the Eif-
fel Tower, has a sharp point and is taller than its immediate surroundings? A couple
of factors come into play. First, the distance between the cloud bases and the
top of a lightning rod is smaller than the distance to the ground, even though the
electric field strength near the top of a tall rod is not really uniform. Equation 25-39
( ) tells us that the magnitude of the electric field between the cloud
bases and the top of the rod is greater than that between the clouds and the ground.
Second, as we discussed earlier in this section the magnitude of the electric field
near a conductor that has a sharp point is quite strong compared to that on level
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Equipotential
surfaces

E

EE

E

FIGURE 25-23 ■ This enhanced photo-
graph shows the result of an overhead
cloud system creating a strong electric field

near a woman’s head. Many of the hair
strands extended along the field, which was
perpendicular to the equipotential surfaces
and greatest where those surfaces were
closest, near the top of her head.

E
:

FIGURE 25-24 ■ A large spark jumps to a
car’s body and then exits by moving across
the insulating left front tire, leaving the
person inside unharmed because the elec-
tric potential difference remains zero in-
side the car.
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ground. This means that the free electrons at the top of a lightning rod (such as the
Eiffel Tower) will move toward the ground leaving a large accumulation of positive
metal ions at the sharp point at the top of the tower. The tip of the rod will attract
electrons from the atmosphere to it and down to the ground in a corona discharge
process that can serve to prevent a major discharge or lightning strike in the vicinity
of the tower. Lightning is shown hitting the Eiffel Tower in Fig. 25-25.

READI NG EXERC IS E  25-10: The figure below shows
the region in the neighborhood of a negatively charged conducting
sphere and a large positively charged conducting plate extending
far beyond the region shown. Someone claims lines A through F
are possible field lines describing the electric field lying in the re-
gion between the two conductors. (a) Examine each of the lines
and indicate whether it is a correctly drawn field line. If a line is
not correct, explain why. (b) Redraw the diagram with a pattern of
field lines that is more nearly correct. (Based on Arnold Arons’
Homework and Test Questions, Wiley, New York, 1994.)

■

READI NG EXERC IS E  25-11: Why are the equipotential surfaces shown in
Fig. 25-23 closer together just above the woman’s head than they are at the side of her head? ■

FIGURE 25-25 ■ In this historic 1902
postcard photo, bolts of lightning are
shown converging at the top of the Eiffel
Tower. The tower is acting as a “lightning
rod” protecting people, trees, and other
buildings from being struck by lightning.
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SEC. 25-3 ■ ELECTRIC POTENTIAL

1. Car Battery A particular 12 V car battery can send a total
charge of 3.0 � 105 C through a circuit, from one terminal to the
other. (a) How many coulombs of charge does this represent? (b) If
this entire charge undergoes a potential difference of 12 V, how
much energy is involved?

2. Ground and Cloud The electric potential difference between
the ground and a cloud in a particular thunderstorm is 1.2 � 109 V.
What is the magnitude of the change in the electric potential en-
ergy (in multiples of the electron-volt) of an electron that moves
between the ground and the cloud?

3. Lightning Flash In a given lightning flash, the potential difference
between a cloud and the ground is 1.0 � 109 V and the quantity of
charge transferred is 30 C. (a) What is the decrease in energy of that
transferred charge. (b) If all that energy could be used to accelerate a
1000 kg automobile from rest, what would be the automobile’s final
speed? (c) If the energy could be used to melt ice, how much ice
would it melt at 0°C? The heat of fusion of ice is 3.33 � 105 J/kg.

SEC. 25-5 ■ CALCULATING THE POTENTIAL

FROM AN E-FIELD

4. From A to B When an electron moves from A to B along an
electric field line in Fig. 25-26, the electric field does 3.94 �

10�19 J of work on it. What are 
the electric potential differences
(a) VB � VA, (b) VC � VA, and 
(c) VC � VB?

5. Infinite Sheet An infinite non-
conducting sheet has a surface
charge density � � 0.10 �C/m2 on
one side. How far apart are equipo-
tential surfaces whose potentials dif-
fer by 50 V?

6. Parallel Plates Two large, paral-
lel, conducting plates are 12 cm apart
and have charges of equal magni-
tude and opposite sign on their facing surfaces. An electrostatic
force of 3.9 � 10�15 N acts on an electron placed anywhere be-
tween the two plates. (Neglect fringing.) (a) Find the electric field at
the position of the electron. (b) What is the potential difference be-
tween the plates?

7. Geiger Counter A Geiger counter has a metal cylinder 2.00 cm
in diameter along whose axis is stretched a wire 1.30 � 10�4 cm in
diameter. If the potential difference between the wire and the
cylinder is 850 V, what is the electric field at the surface of (a) the
wire and (b) the cylinder? (Hint: Use the result of Problem 30 of
Chapter 24.)

Problems

Electric
field
line

Equipotentials

A

B

C

FIGURE 25-26 ■

Problem 4.
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8. Field Inside The electric field inside a nonconducting sphere of
radius R, with charge spread uniformly throughout its volume, is ra-
dially directed and has magnitude

Here q (positive or negative) is the total charge within the sphere,
and r is the distance from the sphere’s center. (a) Taking V � 0 at
the center of the sphere, find the electric potential V(r) inside the
sphere. (b) What is the difference in electric potential between a
point on the surface and the sphere’s center? (c) If q is positive,
which of those two points is at the higher potential?

9. Uniformly Distributed A charge q is distributed uniformly
throughout a spherical volume of radius R. (a) Setting V � 0 at in-
finity, show that the potential at a distance r from the center, where
r � R, is given by

.

(Hint: See Section 24-6.) (b) Why does this result differ from that in
(a) of Problem 8? (c) What is the potential difference between a
point on the surface and the sphere’s center? (d) Why doesn’t this
result differ from that of (b) of Problem 8?

10. Infinite Sheet Two Figure 25-27 shows, edge-on, an infinite non-
conducting sheet with positive surface charge density � on one side.
(a) Use Eq. 25-16 and Eq. 24-16 to show that the electric potential of
an infinite sheet of charge can be written V � V0 � (�/2�0)z, where
V0 is the electric po-
tential at the surface
of the sheet and z
is the perpendicular
distance from the
sheet. (b) How much
work is done by the
electric field of the
sheet as a small positive test charge q0 is moved from an initial posi-
tion on the sheet to a final position located a distance z from the
sheet?

11. Thick Spherical Shell A thick spherical shell of charge Q and
uniform volume charge density � is bounded by radii r1 and r2,
where r2 � r1. With V � 0 at infinity, find the electric potential �V
as a function of the distance r from the center of the distribution,
considering the regions (a) r � r2, (b) r2 � r � r1, and (c) r � r1.
(d) Do these solutions agree at r � r2 and r � r1? (Hint: See
Section 24-6.)

SEC. 25-7 ■ POTENTIAL AND POTENTIAL ENERGY DUE TO

A GROUP OF POINT CHARGES

12. Space Shuttle As a space shuttle moves through the dilute
ionized gas of Earth’s ionosphere, its potential is typically
changed by �1.0 V during one revolution. By assuming that the
shuttle is a sphere of radius 10 m, estimate the amount of charge it
collects.

13. Diametrically Opposite Consider a point charge q � 1.0 �C,
point A at distance d1 � 2.0 m from q, and point B at distance d2 �
1.0 m. (a) If these points are diametrically opposite each other, as in

V �
q(3R2 � r2)

8ε0R3

E(r) � � E
:

(r) � �
� q �r

4ε0R3 .

Fig. 25-28a, what is the electric potential difference VA � VB?
(b) What is that electric potential difference if points A and B are
located as in Fig. 25-28b?

+ + + + + + + + + + + + + + + + + + + + +
σ

z

q0 +

FIGURE 25-27 ■ Problem 10.
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14. Field Lines and Equipotentials
Figure 25-29 shows two charged
particles on an axis. Sketch the elec-
tric field lines and the equipotential
surfaces in the plane of the page for
(a) q1 � �q and q2 � �2q and (b)
q1 � �q and q2 � �3q.

15. In Terms of d In Fig. 25-29, set
V � 0 at infinity and let the particles have charges q1 � �q and q2

� �3q. Then locate (in terms of the separation distance d) any
point on the x axis (other than at infinity) at which the net potential
due to the two particles is zero.

16. E-Field Is Zero Two particles, of charges q1 and q2, are sepa-
rated by distance d in Fig. 25-29. The net electric field of the parti-
cles is zero at x � d/4. With V � 0 at infinity, locate (in terms of d)
any point on the x axis (other than at infinity) at which the electric
potential due to the two particles is zero.

17. Spherical Drop of Water A spherical drop of water carrying a
charge of 30 pC has a potential of 500 V at its surface (with V � 0
at infinity). (a) What is the radius of the drop? (b) If two such drops
of the same charge and radius combine to form a single spherical
drop, what is the potential at the surface of the new drop?

18. Charge and Charge Density What are (a) the charge and (b)
the charge density on the surface of a conducting sphere of radius
0.15 m whose potential is 200 V (with V � 0 at infinity)?

19. Field Near Earth An electric field of approximately 100 V/m is
often observed near the surface of Earth. If this were the field over
the entire surface, what would be the electric potential of a point on
the surface? (Set V � 0 at infinity.)

20. Center of Rectangle In
Fig. 25-30, point P is at the
center of the rectangle. With
V � 0 at infinity, what is the
net electric potential at P
due to the six charged parti-
cles?

21. Potential at P In Fig.
25-31, what is the net poten-
tial at point P due to the
four point charges, if V � 0
at infinity?

22. Potential Energy (a) What is the electric potential energy of
two electrons separated by 2.00 nm? (b) If the separation increases,

q1

d

x

y

q2

FIGURE 25-29 ■ Problems
14, 15, 16.

FIGURE 25-28 ■ Problem 13.
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FIGURE 25-30 ■ Problem 20.
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its speed when it is distance r2 from P. Let q � 3.1 �C, m � 20 mg,
r1 � 0.90 mm, and r2 � 2.5 mm.

30. Thin Plastic Ring A charge of �9.0 nC is uniformly distributed
around a thin plastic ring of radius 1.5 m that lies in the yz plane
with its center at the origin. A point charge of �6.0 pC is located on
the x axis at x � 3.0 m. Calculate the work done on the point
charge by an external force to move the point charge to the origin.

31. Tiny Metal Spheres Two tiny metal spheres A and B of mass
mA � 5.00 g and mB � 10.0 g have equal positive charges 
q � 5.00 �C. The spheres are connected by a massless nonconduct-
ing string of length d � 1.00 m, which is much greater than the radii
of the spheres. (a) What is the electric potential energy of the sys-
tem? (b) Suppose you cut the string. At that instant, what is the ac-
celeration of each sphere? (c) A long time after you cut the string,
what is the speed of each sphere?

32. Conducting Shell on Support A thin, spherical, conducting
shell of radius R is mounted on an isolating support and charged to
a potential of �V. An electron is then fired from point P at distance
r from the center of the shell (r � R) with initial speed v1 and di-
rectly toward the shell’s center. What value of v1 is needed for the
electron to just reach the shell before reversing direction? 

33. Two Electrons Two electrons are fixed 2.0 cm apart. Another
electron is shot from infinity and stops midway between the two.
What is its initial speed?

34. Charged, Parallel Surfaces Two charged, parallel, flat conduct-
ing surfaces are spaced d � 1.00 cm apart and produce a potential
difference �V � 625 V between them. An electron is projected
from one surface directly toward the second. What is the initial
speed of the electron if it stops just at the second surface?

35. An Electron Is Projected An electron is projected with an ini-
tial speed of 3.2 � 105 m/s directly toward a proton that is fixed in
place. If the electron is initially a great distance from the proton, at
what distance from the proton is the speed of the electron instanta-
neously equal to twice the initial value?

SEC. 25-8 ■ POTENTIAL DUE TO AN ELECTRIC DIPOLE

36. Ammonia The ammonia molecule NH3 has a permanent elec-
tric dipole moment equal to 1.47 D, where 1 D � 1 debye unit �
3.34 � 10�30 C 	 m. Calculate the electric potential due to an ammo-
nia molecule at a point 52.0 nm away along the axis of the dipole.
(Set V � 0 at infinity.)

37. Three Particles Figure 25-35 shows three charged particles
located on a horizontal axis. For points (such as P) on the axis with 
r � d, show that the electric potential V(r) is given by

V(r) �
kq
r 	1 �

2d
r 
.

does the potential energy increase
or decrease?

23. Work Required Derive an
expression for the work required
to set up the four-charge configu-
ration of Fig. 25-32, assuming the
charges are initially infinitely far
apart.

24. Electric Potential Energy
What is the electric potential en-
ergy of the charge configuration
of Fig. 25-13a? Use the numerical values
provided in Touchstone Example 25-4.

25. The Rectangle In the rectangle of Fig.
25-33, the sides have lengths 5.0 cm and 15
cm, q1 � �5.0 �C, and q2 � �2.0 �C. With 
V � 0 at infinity, what are the electric poten-
tials (a) at corner A and (b) at corner B? (c)
How much work is required to move a third
charge q3 � �3.0 �C from B to A along a
diagonal of the rectangle? (d) Does this
work increase or decrease the electric en-
ergy of the three-charge system? Is
more, less, or the same work re-
quired if q3 is moved along paths
that are (e) inside the rectangle but
not on a diagonal and (f) outside the
rectangle?

26. How Much Work In Fig. 25-34,
how much work is required to bring
the charge of �5q in from infinity
along the dashed line and place it as
shown near the two fixed charges
�4q and �2q? Take distance d �
1.40 cm and charge q � 1.6 �
10�19 C.

27. A Particle of Positive Charge A
particle of positive charge Q is fixed
at point P. A second particle of mass
m and negative charge �q moves at
constant speed in a circle of radius
r1, centered at P. Derive an expres-
sion for the work W that must be
done by an external agent on the second particle to increase the ra-
dius of the circle of motion to r2.

28. How Much Energy Calculate (a) the electric potential
established by the nucleus of a hydrogen atom at the average
distance (r � 5.29 � 10�11 m) of the atom’s electron (take V � 0 at
infinite distance), (b) the electric potential energy of the atom when
the electron is at this radius, and (c) the kinetic energy of the elec-
tron, assuming it to be moving in a circular orbit of this radius
centered on the nucleus. (d) How much energy is required to ionize
the hydrogen atom (that is, to remove the electron from the nucleus
so that the separation is effectively infinite)? Express all energies in
electron-volts.

29. Fixed at Point P A particle of charge q is fixed at point P, and a
second particle of mass m and the same charge q is initially held a
distance r1 from P. The second particle is then released. Determine

FIGURE 25-33 ■

Problem 25.
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(Hint: The charge configuration can be viewed as the sum of an iso-
lated charge and a dipole.)



742 CHAPTER 25 Electric Potential

SEC. 25-9 ■ POTENTIAL DUE TO A CONTINUOUS

CHARGE DISTRIBUTION

38. Plastic Rod (a) Figure 25-36a shows a positively charged plas-
tic rod of length L and uniform linear charge density �. Setting V
� 0 at infinity and considering Fig. 25-17 and Eq. 25-34, find the
electric potential at point P without written calculation. (b) Figure
25-36b shows an identical rod, except that it is split in half and the
right half is negatively charged; the left and right halves have the
same magnitude � of uniform linear charge density. With V
still zero at infinity, what is the electric potential at point P in
Fig. 25-36b?

at points on the ring’s axis; compare your result with the
calculation of E in Section 23-7

44. Why Not The plastic rod of length L in Fig. 25-37 has the non-
uniform linear charge density � � cx, where c is a positive constant.
(a) With V � 0 at infinity, find the electric potential at point P2 on
the y axis, a distance y from one end of the rod. (b) From that
result, find the electric field component Ey at P2. (c) Why cannot the
field component Ex at P2 be found using the result of (a)?

45. Find Component (a) Use the result of Problem 39 to find the
electric field component Ex at point P1 in Fig. 25-37 (Hint: First sub-
stitute the variable x for the distance d in the result.) (b) Use sym-
metry to determine the electric field component Ey at P1.

SEC. 25-11 ■ POTENTIAL OF A CHARGED ISOLATED

CONDUCTOR

46. Hollow Metal Sphere An empty hollow metal sphere has a po-
tential of �400 V with respect to ground (defined to be at V � 0)
and has a charge of 5.0 � 10�9 C. Find the electric potential at the
center of the sphere.

47. Excess Charge What is the excess charge on a conducting
sphere of radius r � 0.15 m if the potential of the sphere is 1500 V
and V � 0 at infinity?

48. Widely Separated Consider two widely separated conducting
spheres, 1 and 2, the second having twice the diameter of the first.
The smaller sphere initially has a positive charge q, and the larger
one is initially uncharged. You now connect the spheres with a long
thin wire. (a) How are the final potentials V1 and V2 of the spheres
related? (b)What are the final charges q1 and q2 on the spheres, in
terms of q? (c) What is the ratio of the final surface charge density
of sphere 1 to that of sphere 2?

49. Two Metal Spheres Two metal spheres, each of radius 3.0 cm,
have a center-to-center separation of 2.0 m. One has a charge of
�1.0 � 10�8 C; the other has a charge of �3.0 � 10�8 C. Assume
that the separation is large enough relative to the size of the
spheres to permit us to consider the charge on each to be uniformly
distributed (the spheres do not affect each other). With V � 0 at in-
finity, calculate (a) the potential at the point halfway between their
centers and (b) the potential of each sphere.

50. Charged Metal Sphere A charged metal sphere of radius 15 cm
has a net charge of 3.0 � 10�8 C. (a) What is the electric field at the
sphere’s surface? (b) If V � 0 at infinity, what is the electric poten-
tial at the sphere’s surface? (c) At what distance from the sphere’s
surface has the electric potential decreased by 500 V?

51. Surface Charge Density (a) If Earth had a net surface charge
density of 1.0 electron per square meter (a very artificial assump-
tion), what would its potential be? (Set V � 0 at infinity.) (b)
What would be the electric field due to the Earth just outside its
surface?

52. Concentric Spheres Two thin, isolated, concentric conducting
spheres of radii R1 and R2 (with R1 � R2) have charges q1 and q2.
With V � 0 at infinity, derive expressions for the electric field mag-
nitude E(r) and the electric potential V(r), where r is the distance
from the center of the spheres. Plot E(r) and V(r) from 
r � 0 to r � 4.0 m for R1 � 0.50 m, R2 � 1.0 m, q1 � �2.0 �C, and
q2 � �1.0 �C.

� E
:

� � E

+ + + + + + + + + + + + +

L/2 L/2

P

d

+ + + + + + + – – – – – – –

L/2 L/2

P

d

(a) (b)

FIGURE 25-36 ■ Problem 38.

39. Nonlinear Charge Density The
plastic rod shown in Fig. 25-37 has
length L and a nonuniform linear
charge density � � cx, where c is a
positive constant. With V � 0 at in-
finity, find the electric potential at
point P1 on the axis, at distance d
from one end.

40. Rod of Length L Figure 25-37
shows a plastic rod of length L and
uniform positive charge Q lying on
an x axis. With V � 0 at infinity, find the electric potential at point
P1 on the axis, at distance d from one end of the rod.

SEC. 25-10 ■ CALCULATING THE

ELECTRIC FIELD FROM THE POTENTIAL

41. Points in the xy Plane The electric potential at points in an xy
plane is given by V � (2.0 V/m2)x2 � (3.0 V/m2)y2. What are the
magnitude and direction of the electric field at the point (3.0 m,
2.0 m)?

42. Parallel Metal Plates Two large parallel metal plates are 1.5 cm
apart and have equal but opposite charges on their facing surfaces.
Take the potential of the negative plate to be zero. If the potential
halfway between the plates is then �5.0 V, what is the electric field
in the region between the plates? 

43. Show That (a) Using Eq. 25-31, show that the electric potential
at a point on the central axis of a thin ring of charge of radius R and
a distance z from the ring is 

.

(b) From this result, derive an expression for the E-field magnitude

V �
kq

√z2 � R2

+ + + + + + + + + +
L

x

P2

y

y

d

P1

FIGURE 25-37 ■ Problems
39, 40, 44, 45.
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Additional Problems

53. Work Done Consider a charge q �
�2.0 �C that moves from A to B or
C to D along the paths shown in 
Fig. 25-38. This charge is moving in the
presence of a uniform electric field of
magnitude E � 100 N/C.

(a) What is the total work done on the
charge if the distance between A and B
is 0.62 m?
(b) What is the total work done on the
charge if the distance between C and D
is 0.58 m?

54. Orienteering an Electric Potential. (a) Figure 25-39 shows a
contour plot of part of a range of hills in Virginia. The outer part of
the figure is at sea level (marked 0). Each contour line from the
region marked 0 shows a level 10 m higher than the previous line.
The maximum height is 70 m and is shown by the number 70.

Answer the following questions by giving the pair of grid markers
(a letter and a number) closest to the point being requested.

i. Where is there a steep cliff?
ii. Where is there a pass be-

tween two hills?
iii. Where is the easiest climb

up the hill?

(b) Now suppose the figure
represents a plot of the electric
equipotentials for the surface
of a glass plate, and the num-
bers now represent voltage. The
maximum is 70 V and each con-
tour line from the region
marked 0 shows a level 10 V
higher than the previous line.

i. Where would a test charge placed on the glass feel the strongest
electric force? In what direction would the force point?

ii. Is there a place on the glass where a charge could be placed so it
feels no electric force? Where?

E

B

A
D C

A
1

2

3

4

5

6

7

B C D E F G

70
0

FIGURE 25-38 ■

Problem 53.

FIGURE 25-39 ■ Problem 54.
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26 Current and
Resistance

When the zeppelin Hindenburg was built, it was the pride of

Germany. Almost three football fields long, it was the largest

flying machine ever built. Although the zeppelin was kept

aloft by 16 cells of highly flammable hydrogen gas, it made

many uneventful trans-Atlantic trips. However, on May 6,

1937, the Hindenburg burst into flames while landing at a

U.S. naval air station in New Jersey during a rainstorm.

While its handling ropes were being let down to a ground

crew, ripples were sighted on the outer fabric near the rear

of the ship. Seconds later, flames erupted from that region

and 32 seconds after that the Hindenburg fell to the ground.

After so many successful
flights of hydrogen zep-
pelins, why did this one
burst into flames?

The answer is in this chapter.
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26-1 Introduction

The interpretation of electrostatics experiments (described in Chapters 22 through 25)
is that matter consists of two kinds of electrical charges, positive and negative. At least
some negative charge can be moved from one object to another, leaving the first posi-
tively charged (with a deficit of negative charge) and the second negatively charged
(with an excess of negative charge). Once the charges stopped moving we explored the
electrostatic forces between them.

It turns out that the electrical devices we encounter most often in modern life
such as computers, lights, and telephones are not purely electrostatic but involve mov-
ing charges which we will come to call electric currents. In addition, natural phenom-
ena such as lightning, the flow of protons between the Earth’s magnetic poles, and
cosmic ray currents involve electric currents.

In this chapter we explore electric currents, or charge flow, with a primary focus
on how current passes through conductors in electric circuits. We will see that the crit-
ical idea is to understand that a potential difference across a conductor causes a flow
of charge (a current) through that conductor.

26-2 Batteries and Charge Flow 

By the end of the 18th century, Alessandro Volta had discovered that when two metal
plates were placed in contact with a moist piece of metal, they seemed to have electri-
cal properties like those of rubbed amber and glass. To magnify this effect, Volta piled
up pairs of unlike metals. When he grasped the plates (terminals) at each end of the
pile with his hands, he claimed to feel electric charges move through his body on a
continuous basis. Volta had invented the battery, and his experience with early batter-
ies is an indication that there is a connection between electric charges, as discussed in
Chapters 22–25, and the continuous flow of electricity created by batteries and other
power sources. However, it is not obvious without further investigation that there is
actually a connection between the sensation of electric flow that Volta experienced
and the electric charges we believe exist based on the electrostatic observations dis-
cussed in Chapter 22.

In order to investigate this further, let’s examine the results of several experi-
ments involving a metal wire connected to oppositely charged conducting plates
as shown in Fig. 26-1a and the same wire connected to a battery instead as shown in
Fig. 26-1b.

Experiment 1 (Electrostatic Discharge): Suppose we use glass and amber rods that
have been rubbed to transfer electrons to or from conducting plates. We can use a
hanging amber or glass rod shown in Fig. 22-2 to verify that we have excess electric
charge on each plate. Since it is easier to add excess electrons to a conductor than re-
move electrons from a conductor, the negatively charged plate will tend to have a
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+
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–
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–

– –
–

– –
––
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–
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(a) (b)

BATTERY
+–

FIGURE 26-1 ■ (a) When a conducting wire connects two oppositely charged plates,
charge flows from the negatively charged plate to the positively charged plate until
both plates have the same number of excess electrons. As a result the wire becomes
hot. (b) When a battery is placed between the ends of the wire instead, the wire also
becomes hot, indicating that charge is also flowing.



greater magnitude of charge. Initially the negative electrons on the left plate repel
each other and spread out but cannot leave the plate. Since a positive test charge
placed between the plates will be repelled from the positive plate (on the right) and
attracted to the negative plate (on the left), we know there is an electric field between
the plates. So, Eq. 25-17 tells us there will be a potential difference between the plates.

If we connect the two plates with a piece of thread nothing happens. But when a
conducting wire is connected across the two plates, (Fig. 26-1a) we observe that excess
electrons on the left-hand plate will flow to the right-hand plate until both plates have
the same number of excess electrons on them. This is not surprising since we expect
the repulsive forces between the electrons on the left plate to push the charges
through the wire while the attractive forces on the right plate pull on the charges. If
we have enough excess charge on the plates, the wire will feel hot just after the dis-
charge and then cool down again. If the wire has a properly connected small bulb in
the middle of it, the bulb will light up briefly and then go out. We conclude from these
observations that charge is flowing through the wire for a short time.

Experiment 2 (Battery Current): As we mentioned in Chapter 25, a battery is capa-
ble of doing work on electric charges and increasing their potential energy. So there
must be a potential difference across its terminals. If we connect a piece of thread be-
tween the terminals of a battery nothing happens. On the other hand, if we connect a
wire between the terminals of a battery, we observe that the wire gets very hot and
stays that way for a long time as shown in Fig. 26-1b. If we also properly connect a
bulb to the middle of the wire, as shown in Fig. 26-2, the bulb stays continuously lit un-
til the battery eventually runs down. (In the next section we discuss how to connect a
bulb to a battery properly, so that it lights.)

Because, at first, the electrostatic charging in Experiment 1 has the same result as
the battery in Experiment 2, we infer that the underlying electric effects are the same
in both cases. The hot wires and the lighting of bulbs lead us to conclude that charge is
flowing through the wires. We call this flow of charge electric current.

READI NG EXERC IS E  26-1: Although you were not provided with any details, what
sensations might Volta have felt that led him to believe that electric charge was flowing through
his body? ■

26-3 Batteries and Electric Current

There are some additional observations that help us understand the nature of electric
current. Suppose we want to use a battery and perhaps a wire to light a flashlight bulb.
By fiddling around we discover that many of the possible arrangements for lighting a
bulb do not work. For example, none of the arrangements shown in Fig. 26-3 work.

To understand why these arrangements do not work, we need to examine a flash-
light bulb much more carefully. The flashlight bulb consists of a piece of thin conduct-
ing “filament” wire encapsulated in glass that has no air inside. This wire glows and so
gives off light when electric current passes through it. One end of the filament wire is
in contact with a conductor that surrounds the bottom part of the bulb. The other end
is connected to another conductor at the bulb’s base. These conductors are separated
by an insulator. A cutaway diagram of the bulb is shown in Fig. 26-4.
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Filament
wire

Insulator
Conductor

FIGURE 26-2 ■ If there is a complete 
conducting loop between the two 
terminals of a battery, a bulb will stay lit
until the battery runs down.

BATTERY BATTERY BATTERY
FIGURE 26-3 ■ Three of many arrange-
ments of a battery and bulb and wire that
do not cause the bulb to light.
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Conducting
metallic
material Nonconducting

ceramic material FIGURE 26-4 ■ A cutaway diagram of a
flashlight bulb.

BATTERY

FIGURE 26-5 ■ When two identical bulbs
in holders are connected in a row to a bat-
tery, they have the same brightness as each
other. We conclude that the same current
is passing through both bulbs. This indi-
cates that the battery is not a source of ex-
cess charge used up by the bulbs.

After some more fiddling we discover that all of the arrangements of wires, bulb,
and battery that cause the bulb to light have one thing in common. They all have a
continuous, complete loop or circuit for current to pass from one terminal of a battery
through conductors back to other terminal of the battery. In addition to the arrange-
ment shown in Fig. 26-2, another of the many arrangements that forms a complete
loop and causes a bulb to light is shown in Fig. 26-5.

When bulb filaments get old they sometimes break. In this case the circuit is in-
complete and our “burned out” bulb does not light. Another requirement is that the
battery must have a potential difference between its terminals. When a battery loses
its potential difference after much use we refer to it as a “dead battery.”

What Is Stored in a Battery?
It is commonly (and wrongly) believed that batteries store excess charge that can be
“used up” in a circuit, and that a battery is “dead” when this excess charge is used up.
The fact that people often refer to “charging” and “discharging” batteries is evidence
of this belief. Careful observation tells us that this idea is wrong. The excess charge a
fresh alkaline flashlight battery would have to store to keep a flashlight bulb lit as
long as it does is more than 20 000 coulombs. This is a hundred million times the
amount of charge we can typically place on a light metal-coated ball on a string. Yet,
we observe no forces between such a charged ball and a fresh battery. There are also
no forces between a charged ball and the wires carrying current in a circuit.

Observations indicate that both batteries and any current-carrying wires connected to them
are electrically neutral.

We conclude from these observations that batteries do not store charge. Batteries
store energy. The energy in the battery is transformed to mechanical energy, light energy,
and thermal energy as it pushes charges through wires and bulbs. Thus our observations
support the idea that a battery acts as a pump that absorbs electrons at the negative ter-
minal and releases higher potential energy electrons from the positive terminal. We dis-
cuss how chemical reactions can create a charge pump in more detail in Section 27-6.

If we connect two identical bulbs to the same battery as shown in Fig. 26-5, they
shine with the same brightness. Based on this observation we conclude that the same
current is passing through both bulbs.

When wires and other conducting elements such as bulbs are placed between the battery
terminals to make a continuous loop or circuit, the battery acts as a pump that pushes
charge carriers already available in the wires around the loop. The battery is not a source of
charge and electrical elements like bulbs do not use up charge.

Figure 26-6a shows a very simplified representation of a small segment of wire
made up of electrically neutral atoms. In Fig. 26-6b the ends of the wire segment are
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connected to a battery (not shown). A few of the conduction electrons in the metal start
moving, but the stationary charges, consisting of neutral atoms and ions (with missing
conduction electrons) still exist in the wire. The stationary ions neutralize the moving
conduction electrons. To reduce clutter, Fig. 26-6b shows the stationary ions but not the
neutral atoms. In other figures in this chapter we just show moving electrons and not the
stationary ions. This type of depiction can give the false impression that there is excess
charge in the wire.This is not so. Conducting wires are electrically neutral.

Defining Current Mathematically
Figure 26-2 shows a complete circuit with a battery (or other power source) that main-
tains a constant potential difference across its terminals. In this case, charge pushed
through the circuit by the battery flows through a conducting wire, and then through
the filament of a bulb, which is usually a very thin wire. In order to think more care-
fully about the current, we need to develop a mathematical definition for current.

Figure 26-7 shows a section of a conducting loop with different cross-sectional ar-
eas in which a current has been established. If net charge dq passes through a hypo-
thetical plane (such as a) in time dt, then the current through that plane is defined as

(definition of current). (26-1)

Regardless of the details of the geometry of the charge flow, we can find the
net charge passing through any plane in a time interval extending from 0 to t by
integration:

(26-2)

Measurements of current through various locations in a single loop circuit show
that the current is the same in all parts of a circuit where there are no junctions or al-
ternate paths for the current to take. The current or rate of charge flow is the same
passing through the imaginary planes a, b, and c shown in Fig. 26-7. Indeed, the cur-
rent is the same for any plane that passes completely through the conducting ele-
ments in a continuous circuit with no branches, no matter what their locations or ori-
entations. That is, a charge carrier must pass through plane a for every charge carrier
that passes through plane c.

The unit for current is called the ampere (A), and it can be related to the coulomb
by the expression 

The Directions of Currents
How can we tell whether there are positive or negative charges moving when a current
is established in electrically neutral conductors? When we place a conducting wire be-
tween the plates shown in Fig. 26-8, charge carriers flow until the plates are neutralized.

1 ampere � 1 A � 1 coulomb/second � 1C/s.

q � �dq � �t

0
idt.

i � 
dq
dt

= Neutral atom

(a)

= Electron

(b)

+

+ = Atom with
missing electron
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FIGURE 26-6 ■ (a) A representation of many electrically neutral atoms
in a wire. (b) A diagram that shows a potential difference across the ends
of the wire so a very small fraction of the electrons surrounding atoms
start moving and a few ions with missing conduction electrons are pre-
sent. These ions have excess positive charge. Note: The neutral atoms are
still present but are not shown.

FIGURE 26-7 ■ The current i or charge
per unit time through the conductor has
the same value at imaginary planes a, b,
and c as long as the planes cut through the
entire conductor at the points of 
intersection.
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It is not possible for us to design an experiment based on macroscopic observations that
will allow us to tell whether the charge carriers are positive or negative because the end
result (neutralized plates) will be the same in either case. Early experimenters with elec-
tricity had no knowledge of atomic structure and could only use macroscopic observa-
tions of electrical effects to guide them. They assumed that charge carriers were
positive. Even though we now know that negatively charged electrons are the charge
carriers in conductors, for historical reasons we will stick with the assumption that the
charge carriers are positive. This historical assumption makes it easier to use traditional
references on electricity, and all the characteristics of circuits we will study on a macro-
scopic level will be exactly the same. Furthermore, this early assumption would have
been correct if Benjamin Franklin had decided to designate the excess charges on rub-
ber rods as positive and those on glass as negative instead of the other way around!

Although the charge carriers in conductors are negative, other currents, for exam-
ple, protons streaming out of our Sun, create positive currents. Also charge carriers in
fluids can be either positive ions (atoms with missing electrons) or negative electrons
or ions (atoms with extra electrons). In fact, the movement of charge within most bat-
teries is due to the migration of positive ions that undergo chemical reactions. Also,
currents in biological systems are carried by sodium and potassium ions, which are
positive charge carriers.

Current arrows show only a direction (or sense) of flow of charge carriers along
the connected conductors as they bend and turn between battery terminals, not a
fixed direction in space. Since current is actually a flux, which is a scalar quantity, these
current arrows do not represent vectors with magnitude and direction.

A current arrow, although not a mathematical vector, is drawn in the direction in which pos-
itive charge carriers would move through wires and circuit elements from a higher potential
to a lower (more negative) potential, even though the actual charge carriers are usually
negative and move in the opposite direction.

Charge Conservation at Junctions
So far we have only considered circuits like the one shown in Fig. 26-9a, ones for
which there is only one path for charge carriers to follow. Such circuits are called
series circuits. However, it is also common to find circuits or portions of circuits in
which charge carriers encounter a junction where they can take either of two (or
more) paths as shown in Fig. 26-9b. We call this type of circuit a parallel circuit.
Although we introduce the terms “series” and “parallel” here, we will focus on the
quantitative evaluation of series and parallel circuits in Chapter 27.

Figure 26-9b shows the moving charge carriers splitting up at a junction and then
moving in parallel. If the bulbs are identical, how do the currents split at junction 1?

i

i1 i2

i

i

i

(a) (b)

Junction 1

Junction 2

+

–

+

–

FIGURE 26-9 ■ We use a lightbulb as an example of a circuit element. (a) A
series connection involves two or more circuit elements that are connected
together so that the same current that passes through one element must pass
through the other element. The potential differences across the elements is
the sum of the drops across each element. (b) A parallel connection requires
that one terminal of each two or more elements are connected together at
one point and then the other terminal of each of the elements is connected
together at another point. These points of connection are called junctions.
Because of the connections at the junctions the potential difference across
each element is the same when the parallel network is placed in a circuit.

FIGURE 26-8 ■ No macroscopically-
oriented experiment will allow us to detect
whether the charge carriers in a conduct-
ing wire are (a) positive or (b) negative.
So we define the current flow to be from
right to left in both cases. Although 
stationary charges are not depicted, the
conducting wires are neutral.
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What happens when they come back together at junction 2? Since the bulbs are iden-
tical, we expect that the current coming into junction 1 will divide equally so half
takes the left path and half the right. If charge is conserved, when the currents com-
bine at junction 2, they should add up to the original current. We can verify this by
making a very simple observation with a couple of flashlight batteries in series and
four bulbs as shown in Fig. 26-10. Bulbs A and D have the same brightness as each
other. This fact indicates that the amount of current through bulb A is the same
amount of current passing through bulb D and back through the battery. The fact that
bulbs B and C have the same brightness as each other but are dimmer than A and D
suggests that the current is splitting in half at the junction. We conclude

(special case with identical parallel elements), (26-3)

where i is the total current and i1 and i2 are the currents in the two branches.
If charge is conserved, the magnitudes of the currents in two parallel branches

must add to yield the magnitude of the current in the original conductor even when
the branches have different circuit elements. This statement, called Kirchhoff’s cur-
rent law, states that in general

(three-way junction of Fig. 26-11a). (26-4)

We treat Kirchhoff’s circuit laws in more detail in Chapter 27.
Experiments indicate that bending or reorienting the wires in space does not

change the validity of Eq. 26-4. The fact that current is not affected by wire orienta-
tion can be explained by the accumulation of static surface charges. These charges
keep the electric field associated with a potential difference pointing along a wire,
regardless of how the wire twists. The lack of influence of bending is depicted in
Fig. 26-11.

READI NG EXERC IS E  26-2: Explain why the word “circuit,” as used in everyday
speech, is an appropriate term for application to electrical situations. ■

READI NG EXERC IS E  26-3: Suppose a battery sets up a flow of charges through
wires and a bulb. (a) Will the overall circuit, consisting of the battery, bulb, and wires, remain
electrically neutral, become positive, or become negative? Explain. (b) Will the wires remain
electrically neutral, become positive, or become negative? (c) What ordinary observations
would support your answers? ■

READI NG EXERC IS E  26-4: Apply your understanding of the concept of flux, the
nature of electrical charge, and the definition of current presented to explain why a flow of
equal amounts of opposite charge in the same direction would not be considered a current.
That is, explain why there must be a net flow of charge through a surface for there to be a
current. ■

READI NG EXERC IS E  26-5: The figure below shows a portion of a circuit. What are
the magnitude and direction of the current i in the lower right-hand wire?

■

i � i1 � i2

i � i1 � i2 �
i
2

�
i
2
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FIGURE 26-10 ■ To verify what we think
would happen to current at the junctions,
four identical lightbulbs and a battery are
connected in a circuit having both series
and parallel elements. Observations tell us
that the brightness of bulb A is the same as
that in bulb D. Bulbs B and C have the
same brightness as each other but share
the battery’s current, so they are much
dimmer than A and D. Note that even
though they are not adjacent, bulbs A and
D are in series.
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FIGURE 26-11 ■ The relation 
is true at junction a no matter what the
orientation of the three wire segments is.
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26-4 Circuit Diagrams and Meters

As we move into the remaining sections in this chapter and the next, we will be draw-
ing electric circuits with elements such as batteries, bulbs, wires, and switches. We will
also be introducing new elements such as resistors and meters for measuring current
and voltage.

Symbols for Basic Circuit Elements
Before proceeding with our study of current and resistance, we
pause and introduce a few of the symbols scientists and engi-
neers have created to represent circuit elements. Figure 26-12
shows the common symbols used to make the circuits we dis-
cuss in this chapter easier to draw.

Using these symbols, the circuit shown in Fig. 26-2 with a
switch added can be represented as shown in Fig. 26-13.

Meters
Current and potential differences are very important properties
of electrical circuits, and we have well-established convenient
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TOUCHSTONE EXAMPLE 26-1: Charged Fuel

If you’ve ever gone to a gas station to fill a gas can with fuel for
your lawn mower, you may have noticed the sign that tells you to
take the gas can out of your car and place it on the ground before
you fill it with gasoline. Why is this important? As fuel is pumped
from its underground storage tank, it can acquire a net electrical
charge. If so, as you pump fuel into a container, the can will build up
a net electrical charge if it is electrically isolated from its surround-
ings. If this charge builds up to a sufficient level, it can create a
spark, igniting the fumes around your container with very unfortu-
nate consequences.

Suppose the maximum safe charge that can be deposited on
your 5.0 gal gas can is 1.0 �C.

(a) What is the maximum safe charge per liter that the fuel you are
pumping can have?

S O L U T I O N ■ The Ke y  I d e a here is simply that the maxi-
mum safe “charge density” is

(Answer)

(b) If the pump delivers fuel at a rate of 8.0 gallons per minute,
what is the maximum safe electrical current associated with the
flow of the fuel into the can?

S O L U T I O N ■ The Ke y  I d e a here is that the fuel delivery
rate is

Since each liter of fuel can deliver no more than 0.0528 �C safely,
the maximum safe electrical current is just (0.0528 �C/L)
(0.50505 L/s) � 0.027 �C/s � 27 nA.

(8.0 gal/min)(1 L/0.264 gal)(1 min/60 s) � 0.50505 L/s.

� 0.0528 �C/L.

(1.0 �C)/(5.0 gal) � (0.20 �C/gal)(264 gal/m3)(1 m3/1000 L)

Black wire

Red wire
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FIGURE 26-13 ■ A circuit sketch and corresponding 
diagram.
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Switch (SPST)

Bulb

Double pole
double throw switch (DPDT)

Single pole
double throw switch (SPDT)

Wire

FIGURE 26-12 ■ Some circuit symbols.



ways to measure these quantities using meters. The device with which
one measures current is called an ammeter. Potential difference is mea-
sured with a device called a voltmeter. An ammeter and voltmeter
along with their circuit symbols are depicted in Fig. 26-14.

Since an ammeter measures current through a circuit (or a branch
of a more complex circuit), it is placed in series with circuit elements. A
voltmeter measures the potential difference between two locations (or
points) in a circuit, so a voltmeter is placed across or in parallel with
the two points of interest. This is shown in Fig. 26-15.

Often ammeters and voltmeters are combined in a device used to
measure either potential difference or current. When the two or more
meters are combined, the meter is typically called a multimeter. A digi-

tal multimeter is shown in Fig. 26-16. Many modern digital multimeters are also capa-
ble of measuring other quantities we will discuss, such as resistance and capacitance.

752 CHAPTER 26 Current and Resistance

Ammeter symbol

Current measurements

A
Voltmeter symbol

V

– AMPS + Volts– +FIGURE 26-14 ■ An analog ammeter for
measuring current and an analog volt-
meter for measuring potential difference
(or “voltage”), along with their circuit
symbols.

FIGURE 26-15 ■ Three analog ammeters
measure the same current flowing through
three locations in a series circuit consisting
of two #14 flashlight bulbs.

FIGURE 26-16 ■ The digi-
tal multimeter pictured can
be configured to act as an
ammeter to measure cur-
rent through a given part of
a circuit, a voltmeter to
measure potential differ-
ence across any two points
in a circuit, or the resistance
of any circuit element.

DVCDirect current volts ACV

Ω DCA

VΩ CO MA 10A

Direct current amps

Receptacles for
input leads

Dial for selection
of measurement
type and scale

Scales:
K = 103

m = 10–3

M = 106

Ohms

READI NG EXERC IS E  26-6: In Fig. 26-17, the voltmeter is attached across the bulb and
the ammeter is inserted into the circuit. Why are these devices connected this way? How would the
ammeter reading change if it were inserted in the circuit before the bulb instead of after it? ■

26-5 Resistance and Ohm’s Law

In professional applications of physics like designing electronic devices, we often need
to know what effect adding more circuit elements will have on the flow of current.
Given devices like ammeters and voltmeters, with which we can measure current and
potential difference, we can do quantitative studies of the relationship between cur-
rent and potential difference. For example, what will happen to the current in a circuit

A

V
+

–

FIGURE 26-17 ■ A basic circuit for mea-
suring the current flowing through a circuit
element as a function of potential differ-
ence across it.



element, such as a bulb, that is part of a circuit if we add more batteries in series with
our original battery? What will happen to the current in a conducting wire as voltage
increases? The experimental setup for this investigation is shown in Fig. 26-17. The re-
sults are presented in Fig. 26-18 as graphs of applied potential difference and the
resulting current i in two different circuit elements.

We can draw several interesting conclusions from looking at the two graphs in
Fig. 26-18. First, we see in both graphs that as the potential difference increases, the
amount of current through a given device increases. Second, it is not possible to tell
how much current exists just by knowing the potential difference across a circuit ele-
ment. For instance, when 1.0 V is placed across the lightbulb, the current through it is
greater than the current in the Nichrome wire with the same potential difference

�V
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Current through a Nichrome wire vs.
applied voltage
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Current through a #14 bulb
vs. applied voltage
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FIGURE 26-18 ■ Graph (a) shows amme-
ter data for current passing through a #14
lightbulb as a function of potential
difference between the terminals of the
lightbulb. Graph (b) shows ammeter data
for the current through a length of cylin-
drical Nichrome wire as a function 
of potential difference between the ends of
the wire.

across it. Third, for the length of Nichrome wire, the current is directly proportional to
the potential difference, , across it. Thus, if we know the slope of the line, we can
predict the current associated with any value of . Because of this direct propor-
tionality, we refer to the Nichrome wire as a linear device. For the lightbulb, there is
no convenient direct proportionality, so it is called a nonlinear device.

Definition of Resistance
In both the small bulb and the Nichrome wire, once we measure a specific potential
difference, �V, across a circuit element and the corresponding current through it we
have a measure of the resistance of the element to current but only at that �V. The
resistance of a given circuit element is defined as the ratio of the potential difference
across the element to the current through the element. When a small potential differ-
ence causes a relatively large current, the circuit element has a small resistance to flow
of charge. Conversely, when the same potential difference produces a current that is
small, we say the resistance is large. For example, in the data presented in Fig. 26-18, a
potential difference of 1V across the bulb causes a current of 0.19A to flow, while the
same potential difference across that Nichrome wire causes only 0.13A to flow. So we
say that at the specific potential difference of 0.25V, the Nichrome wire has more re-
sistance than the bulb.

We define resistance as the ratio of potential difference applied to the current
that results:

(definition of R). (26-5)

Here we use the notation to emphasize we are dealing with the difference in po-
tential between two locations in a circuit, which changes the potential energy of the
charges as they flow. When discussing circuits, potential difference is often referred to
by an alternate name of voltage.

�V

R �
�V

i

�V
�V
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The SI unit for resistance that follows from Eq. 26-5 is the volt per ampere. This
combination occurs so often that we give it a special name, the ohm (symbol );
that is,

(26-6)

If we rewrite Eq. 26-5 as 

,

it emphasizes the fact that the potential difference across a device with resistance R
produces an electric current. The most common way to express the definition of resis-
tance in Eq. 26-5 is

. (26-7)

For a linear device like Nichrome wire we will get the same value for R no matter
what potential difference we impress across the device. However, we must be careful
in the case of a nonlinear device like a light bulb to specify at what potential differ-
ence we are measuring the current, i, in order to determine its resistance.

Ohm’s Law
As we just pointed out, our Nichrome wire has the same resistance no matter what
the value of the applied potential difference (as shown in Fig. 26-18b). Other con-
ducting devices, such as lightbulbs, have resistances that change with the applied
potential difference (as shown in Fig. 26-18a). Although both the Nichrome wire and
the bulb contain metallic conductors, the wire in the bulb is so thin that its tempera-
ture rises noticeably as the potential difference increases, and the bulb’s resistance
increases.

In 1827, George Simm Ohm, a Bavarian, reported that he had observed a linear
relationship between current and potential difference for metallic conductors kept at
a fairly constant temperature. Because of this, linear devices such as the length of
Nichrome wire are sometimes referred to as ohmic.

A device is said to obey Ohm’s law whenever the current through it is always directly pro-
portional to the potential difference applied. That is, the device’s resistance is constant in
the �V � iR relation.

Many elements used in electric circuits, whether they are conductors like copper or
semiconductors like pure silicon or silicon containing special impurities, obey Ohm’s
law within some range of values of potential difference. If the current in a resistive de-
vice is large enough to cause significant temperature changes in it, then Ohm’s law of-
ten breaks down.

It is sometimes contended that (or ) is a statement of Ohm’s
law. That is not true! This equation is the defining equation for resistance, and it ap-
plies to all conducting devices, whether they obey Ohm’s law or not. If we measure
the potential difference across and the current i through any device, even a bulb
or other non-ohmic device, we can find its resistance at that value of as .
The essence of Ohm’s law, however, is a plot of i versus that is a straight line, so
that the value of R is independent of the value of .�V

�V
R � �V/i�V

�V

�V � iRR � �V/i

�V � iR

i �
�V
R

� 1V/A.

1ohm � 1 � � 1 volt/ampere

�



Resistors
A conductor whose function in a circuit is to obey Ohm’s law so that it pro-
vides a specified resistance to the flow of charge independent of the potential
difference impressed across it is called a resistor (see Fig. 26-19). Carbon re-
sistors are the most standard sources of ohmic resistance used in electrical
circuits for several reasons. Unlike a lightbulb, a resistor has a resistance that
remains constant as current changes. Carbon resistors are inexpensive to
manufacture, and they can be produced with a large range of resistances. The
circuit diagram symbol for a resistor is shown in Fig. 26-20.

A typical carbon resistor contains graphite, a form of carbon, suspended
in a hard glue binder. It usually is surrounded by a plastic case with a color
code painted on it as shown in Fig. 26-21.

READI NG EXERC IS E  26-7: The following table gives the current i (in amperes)
through three devices for several values of potential difference (in volts). From these data,
determine which devices, if any, obey Ohm’s law.

Device 1 Device 2 Device 3

i i i

2.00 4.50 2.00 1.50 2.00 6.50

3.00 6.75 3.00 2.50 3.00 8.75

4.00 9.00 4.00 3.00 4.00 11.00 ■

�V�V�V

�V
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FIGURE 26-19 ■ An assortment of carbon
resistors. The circular bands are color-cod-
ing marks that identify the value of the re-
sistance.

R

A B C D

FIGURE 26-20 ■ Circuit diagram symbol
for an ohmic resistor.

FIGURE 26-21 ■ Depiction of the four
color bands on a color-coded resistor with
R � 47 K� � 10%. See Table 26-1 for 
details

26-6 Resistance and Resistivity

Next we consider how the resistance of ohmic circuit elements such as metal wires or
carbon resistors depends on their geometries. That is, how does the resistance of a
short, broad object change if we stretch it so it is long and thin? To determine this, we
fix our investigation on a single material. For example, we might experiment with cop-
per wire. Relatively thick copper wire is commonly used in electric circuits because it
has a very low resistance compared to other circuit elements. Thus, it can be used to
connect circuit elements without adding much resistance to a circuit.

Observations
Consider a conducting wire with a potential difference across its ends as shown in
Fig. 26-22. To start with, we will keep the thickness of the wire fixed and just decrease
its length. If we apply a potential difference across the ends of the wire and use cur-
rent and potential difference measurements, we can determine its resistance as a
function of length. We find that its resistance is proportional to its length L. Thus, we
can write

.

If instead we fix the length of the wire and decrease its thickness or cross-sectional
area A, then the measured resistance of the wire increases as its cross-sectional area

R � kL

TA B L E 2 6 - 1
The Resistor Codea

Black � 0 Blue � 6

Brown � 1 Violet � 7

Red � 2 Gray   � 8

Orange � 3 White � 9

Yellow � 4 Silver � �10%

Green � 5 Gold � �5%

aThe value in ohms � AB � 10C � D.
(AB means the A band digit placed be-
side the B band digit, not A times B). The
colors on bands A, B, and C represent
the digits shown in Table 26-1. The D
band represents the “tolerance” of the
resistor. No band denotes �20%, a silver
band denotes �10%, and a gold band
denotes �5%. For example, a resistor
with bands of Blue-Gray-Red-Silver has
a value: AB � 10C � D � 68 � 102� �

10% or (6800 � 680)�, since A � 6, B �

8, C � 2, D � silver, (�10%).



756 CHAPTER 26 Current and Resistance

decreases. In fact we get an inverse relationship so that

.

To combine these two results, we write that R is proportional to L and inversely pro-
portional to A with a new proportionality constant, , which we define as the resistiv-
ity of the wire. Thus,

(26-8)

The results of these resistivity observations are important for two reasons. First,
the fact that resistance varies inversely with cross-sectional area implies that current
passes through the volume of the conductor, and not just along the surface. This
knowledge will be useful as we continue to think about how charge moves through
wires and other circuit elements.

Second, we know that every conducting material has a resistivity 	. Is it the same
for all materials? The answer is no. Is it the same if the length (or area) of a wire is
changed? The answer is yes. What we observe is that if we apply the same potential
difference between the ends of geometrically similar (same L and same A) rods of
copper and of glass, very different currents result. This investigation reveals that resis-
tivity varies with material. That is, it is a property of the material from which the ob-
ject is fashioned.

We have just made an important distinction:

Resistance is a property of an object. Resistivity is a property of a material.

It is important to note that resistivity is analogous in many ways to the concept of
density. Density depends only on the kind of material being used (such as lead or Sty-
rofoam). The density can be used to calculate the mass of a certain volume of a sub-
stance. Similarly, resistivity depends only on the material being used in the wire and
not on the length or cross-sectional area of the wire. If you know the resistivity of a
material then the resistance of a given wire can be calculated using Eq. 26-8 once its
length and cross-sectional area are known.

Variation of Resistivity with Temperature
The values of most physical properties vary with temperature, and resistivity is no ex-
ception. Figure 26-23, for example, shows the variation of this property for copper
over a wide temperature range. The relation between temperature and resistivity for
copper—and for metals in general—is fairly linear over the temperature range com-
monly found in circuits. For such linear relations we can write an approximation
based on the results of measurements as 

(approx. temperature dependence of ). (26-9)

Here T0 is a selected reference temperature and is the resistivity at that tempera-
ture. Usually (room temperature), for which for
copper. This approximate relationship is good enough for most engineering purposes.

Because temperature enters into this expression only as a difference, it does not
matter whether you use the Celsius or Kelvin scale in that equation because the sizes
of degrees on these scales are identical. The quantity , called the temperature
coefficient of resistivity, is chosen so that the equation gives good agreement with




	0 � 1.69 � 10�8 � � mT0 � 293 K
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FIGURE 26-22 ■ A potential difference
is applied between the ends of a con-

ducting wire of length L and cross section
A, establishing a current i. Although the
stationary ions that neutralize the conduc-
tion electrons that make up the current are
not shown, the wire is, as always,
essentially neutral electrically.
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experimental values for temperatures in the chosen range. Some values of for met-
als are listed in Table 26-2.

The Hindenburg
When the zeppelin Hindenburg was preparing to land on May 6th, 1937, the han-
dling ropes were let down to the ground crew. Exposed to the rain, the ropes be-
came wet (and thus were able to conduct a current). In this condition, the ropes
“grounded” the metal framework of the zeppelin to which they were attached; that
is, the wet ropes formed a conducting path between the framework and the ground,
making the electric potential of the framework the same as the ground’s. This
should have also grounded the outer fabric of the zeppelin. The Hindenburg, how-
ever, was the first zeppelin to have its outer fabric painted with a sealant of large
electrical resistivity. The fabric remained at the electric potential of the atmosphere
at the zeppelin’s altitude of about 43 m. Due to the rainstorm, that potential was
large relative to the potential at ground level.

The handling of the ropes apparently ruptured one of the hydrogen cells and re-
leased hydrogen between that cell and the zeppelin’s outer fabric, causing the re-
ported rippling of the fabric. There was then a dangerous situation: the fabric was wet
with conducting rainwater and was at a potential much different from the framework
of the zeppelin. Apparently, charge flowed along the wet fabric and then sparked
through the released hydrogen to reach the metal framework of the zeppelin, igniting
the hydrogen in the process. The burning rapidly ignited the cells of hydrogen in the
zeppelin and brought the ship down. If the sealant on the outer fabric of the Hinden-
burg had been of less resistivity (like that of other zeppelins), the Hindenburg disaster
probably would not have occurred.
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TA B L E 2 6 - 2
Resistivities of Some Materials at Room Temperature (20°C)

Resistivity, � Temperature Coefficient 
Material (� � m) of Resistivity, � (K�1)

Typical Metals

Silver 1.62 � 10�8 4.1 � 10�3

Copper 1.69 � 10�8 4.3 � 10�3

Aluminum 2.75 � 10�8 4.4 � 10�3

Tungsten 5.25 � 10�8 4.5 � 10�3

Iron 9.68 � 10�8 6.5 � 10�3

Platinum 10.6 � 10�8 3.9 � 10�3

Manganina 48.2 � 10�8 0.002 � 10-3

Typical Semiconductors

Silicon, pure 2.5 � 103 �70 � 10�3

Silicon, n-typeb 8.7 � 10�4

Silicon, p-typec 2.8 � 10�3

Typical Insulators

Glass 1010 � 1014

Fused quartz �1016

aAn alloy specifically designed to have a small value of 
.
bPure silicon doped with phosphorus impurities to a charge carrier density of 1023 m�3.
cPure silicon doped with aluminum impurities to a charge carrier density of 1023 m�3.



READI NG EXERC IS E  26-8: Sketch a graph of for a Nichrome wire like that
in Fig. 26-22 but with the diameter of the wire cut in half. ■

READI NG EXERC IS E  26-9: In the section above, we cited the fact the resistance of
a wire to current was inversely proportional to the cross-sectional area of the wire as evidence
that the current passes through the volume of the wire rather than along the surface of the
wire. (a) Justify this assertion. (b) What expression would you expect to replace Eq. 26-8 if the
current was along the surface of the wire instead? ■

READI NG EXERC IS E  26-10: The figure shows three cylindrical copper conductors
along with their face areas and lengths. Rank them according to the current through them,
greatest first, when the same potential difference is placed across their lengths.�V

i vs �V
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(a) (b)
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FIGURE 26-24 ■ A battery B sets up a
current i in a circuit containing an unspeci-
fied conducting device.

The wire coils within a toaster have appre-
ciable resistance. When there is a current
through them, electrical energy is trans-
ferred to thermal energy of the coils, in-
creasing their temperature. The coils then
emit infrared radiation and visible light
that can toast bread.

■

26-7 Power in Electric Circuits

Batteries store a certain amount of chemical energy. This chemical energy is trans-
formed to electrical and other forms of energy as current flows through various circuit
elements. At times we are interested in the rate at which a battery’s energy is used up
by a circuit. Just as we did in Section 9-10 where power is defined as the rate at which
work is done by a force, we also use the term power to describe the rate at which elec-
trical energy is delivered to a circuit.

We start our consideration of power by examining the energy delivered to an
electrical device that is connected to a battery by ideal wires. Figure 26-24 shows a cir-
cuit consisting of a battery B that is connected by wires to an unspecified conducting
device. The device might be a resistor, a storage battery (a rechargeable battery), a
motor, or some other electrical device. If the wires in the circuit are thick enough they
are ideal because they have essentially no resistance. When current is present in a
wire with no resistance the entire wire is at the same potential. In other words, there is
no potential difference between one end of an ideal wire and the other end. In this
case, a battery maintains a potential difference of magnitude across its own termi-
nals, and thus across the terminals of the unspecified device, with a greater potential
at terminal a of the device than at terminal b.

Since there is an external conducting path between the two terminals of the battery,
and since the battery maintains a fixed potential difference, the battery produces a
steady current i in the circuit. This current is directed from terminal a to terminal b. The
amount of charge dq moving between those terminals in time interval dt is equal to i dt.
This charge dq moves through a decrease in potential difference across the terminals of
the device of magnitude , and thus its electric potential energy U decreases in magni-
tude by the amount 

The principle of conservation of energy tells us that the decrease in electric po-
tential energy from a to b is accompanied by a transfer of energy to some other form.
Since (Eq. 9-48), the power P associated with that transfer is the rate at
which the battery does work. Since , we get

(rate of electric energy transfer). (26-10)P � i �V

dW � �dU � idt(�V)
P � dW/dt

dU � �dq�V � �idt(�V).

�V

�V
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Moreover, this power P is also the rate at which energy is transferred from the battery
to the unspecified device. If that device is a motor connected to a mechanical load, the
energy is transferred as work done on the load. If the device is a storage battery being
charged, the energy is transferred to stored chemical energy in the storage battery. We
know from observations that if the device is a resistor, the energy is transferred to in-
ternal thermal energy, tending to increase the resistor’s temperature.

The unit of power following from the equation above is the volt-ampere .
We can write it as 

The course of an electron moving through a resistor at constant speed is much
like that of a stone falling through syrup at constant terminal speed. The average ki-
netic energy of the electron remains constant, and its lost electric potential energy ap-
pears as thermal energy in the resistor and its surroundings. On a microscopic scale
this energy transfer is due to collisions between the electron and the molecules of the
resistor, which leads to an increase in the temperature of the resistor lattice. The me-
chanical energy thus transferred to thermal energy is lost because the transfer cannot
be reversed. This energy transfer due to atomic collisions is discussed in more detail in
Sections 26-10 and 26-11.

For a resistor or some other device with resistance R, we can combine Eqs. 26-5
and 26-10 to obtain, for the rate of electric energy loss (or dissipation) due

to a resistance, either 

(resistive dissipation) (26-11)

or (resistive dissipation). (26-12)

Caution: We must be careful to distinguish these two new equations from Eq. 26-10:
applies to electric energy transfers of all kinds; and 

apply only to the transfer of electric potential energy to thermal energy in a device
with resistance.

READI NG EXERC IS E  26-11: A potential difference is connected across a de-
vice with resistance R, causing current i through the device. Rank the following variations ac-
cording to the change in the rate at which electrical energy is converted to thermal energy due
to the resistance, greatest change first: (a) is doubled with R unchanged, (b) i is doubled
with R unchanged, (c) R is doubled with unchanged, (d) R is doubled with i unchanged. ■�V

�V

�V

P � (�V)2/RP � i2RP � i �V

P �
(�V)2

R

P � i2R

(R � �V/i)

1 V �  A � �1
J
C ��1

C
s � � 1

J
s

� 1 W.

(V �  A)

TOUCHSTONE EXAMPLE 26-2: Heating Wire

You are given a length of uniform heating wire made of a nickel-
chromium-iron alloy called Nichrome; it has a resistance R of .
At what rate is energy dissipated in each of the following situa-
tions? (1) A potential difference of 120 V is applied across the full
length of the wire. (2) The wire is cut in half, and a potential differ-
ence of 120 V is applied across the length of each half.

S O L U T I O N ■ The Ke y  I d e a is that a current in a resistive
material produces a transfer of electrical energy to thermal energy;
the rate of transfer (dissipation) is given by Eqs. 26-10 to 
26-12. Because we know the potential and resistance R, we use�V

72 �
Eq. 26-12, which yields, for situation 1,

(Answer)

In situation 2, the resistance of each half of the wire is ,
or . Thus, the dissipation rate for each half is 

P �
(120 V)2

36 �
� 400 W,

36 �
(72 �)/2

P �
(�V)2

R
�

(120 V)2

72 �
� 200 W.
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and that for the two halves is 

(Answer)

This is four times the dissipation rate of the full length of wire.

P � 2P � 800 W.

Thus, you might conclude that you could buy a heating coil, cut it in
half, and reconnect it to obtain four times the heat output. Why is
this unwise? (What would happen to the amount of current in the
coil?)

*However, steady charge flow throughout a conductor is not true for the high-frequency alternating
currents we treat in Chapter 33.

26-8 Current Density in a Conductor

We defined current so that it was a scalar — basically a “count” of the amount of
charge crossing a surface per second with a sign to tell us in which direction the
charge is crossing the surface — in the direction we choose as positive or opposite
to it. Since in a current, charges are actually moving and have a velocity associated
with them, there is a vector “hidden” in the concept of current. We can make it
explicit by defining a new concept, the current density. If we have a volume that
contains a set of moving charged particles, let the charge on each particle be e, let
the density of the charges be n (number per unit volume), and let their average ve-
locity be . We then define the current density (or current percentage of cross-
sectional area) as 

(definition of current density). (26-13)

As is the case for the volume flux of water described in Eq. 15-33, the total amount of
charge flowing through a given element of area can be defined as the dot product of
the current density and an area element. If the area element is infinitesimal we can
write the amount of current through it as , where is the area vector of the
element, perpendicular to the plane of the area element. The total conventional cur-
rent through the surface of a cross section of wire is then 

(26-14)

In most electrical conductors the charge carriers are negative. As we mentioned
earlier, the term “conventional current” refers to the direction of flow of positive
charge carriers. For a typical conductor such as copper, the electrons are moving in
the opposite direction to the direction of the conventional current.

In Section 26-6 we concluded that in steady current through a conductor the
charges must be flowing throughout the volume of the conductor. The key evidence
for this is the inverse proportionality between resistance and the cross-sectional area
of a conductor.* If we further assume that the direction of the current is parallel to

, then is also uniform and parallel to . In this case Eq. 26-14 can be rewritten
in terms of the magnitudes of the current density and area.

so , (26-15)J �
� i �
A

� i � � �JdA � J�dA � JA,

dA
:

J
:

dA
:

i � �J
:

� dA
:

.

dA
:

J
:

� dA
:

J
:

� ne	v:


	 v:




where A is the total area of the surface. From these equations, we see that the SI unit
for current density is the ampere per square meter .

In Chapter 23 we represented an electric field with electric field lines. Figure 26-25
shows how current density can be represented with a similar set of lines, which we can
call streamlines. The current, which is toward the right in Fig. 26-25, makes a transition
from the wider conductor at the left to the narrower conductor at the right. Because
charge is conserved during the transition, the current or rate at which the charges flow
through the wire cannot change. However, the current density (or rate of charge flow
per unit of cross-sectional area) does change—it is greater in the narrower conductor.
The spacing of the streamlines suggests this increase in current density; streamlines
that are closer together imply greater current density.

READI NG EXERC IS E  26-12: The sketches below show several copper wires with
the same potential difference across them. Rank the current density magnitude from largest to
smallest.

■

26-9 Resistivity and Current Density

Although i, , and R are the quantities that are directly measurable in electrical cir-
cuits, if we want to think more explicitly about what is happening in terms of the mo-
tion of charges it makes sense to reframe our Ohm’s law relation in terms of the
forces (or the electric field) and the current density. This gives us a generic relation
that describes how forces affect the motion of charges without relying in any way on
the properties of specific circuit elements in the way that Ohm’s law does.

Recall that, for materials that obey Ohm’s law, the resistance of a segment of a
conductor R is related to the potential difference across it as well as the conven-
tional current i passing through it. This relationship is given by

. (Eq. 26-7)

We can write this expression in an alternate form if we replace the potential differ-
ence with an expression involving the electric field . From Chapter 25, we know
that the relationship between the electric field and the potential difference between
two locations a and b is

For a wire of length L with one end at location a and the other at location b,
(Fig. 26-26), the electric field set up within the wire is constant. As a result, the ex-
pression above can be expressed in terms of the electric field magnitude E and the
length of the wire L as

Va � Vb � �EL,

E
:

Va � Vb � �b

a
E
:

� ds:.

E
:

�V

�V � iR

�V

�V

(A/m2)
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FIGURE 26-25 ■ Streamlines represent-
ing current density in the flow of charge
through a constricted conductor.
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To negative
battery terminal

To positive
battery terminal

L

a b

E EE

FIGURE 26-26 ■ A length L between
points a and b along a current-carrying
conductor.

where we use the plus sign if and are in the same direction and the minus sign if
and point in opposite directions. Combining the expression above with 

and ignoring signs gives us .

The substitution for i comes from the relationship between current i, current density
and the cross section of the wire A. We compare this relation with that presented

earlier when we introduced as the resistivity of the material in Eq. 26-8:

By combining the previous two equations, we see that resistivity can be defined in
terms of the magnitudes of the microscopic quantities and as

(definition of ). (26-16)

If we combine the SI units of and we get, for the unit of , the ohm-meter
:

(Do not confuse the ohm-meter, the unit of resistivity, with the ohmmeter, which is an
instrument that measures resistance.) 

Since and always point in the same direction, we can rewrite this expression
in vector form as 

(26-17)

However, be aware that these two relations hold only for isotropic materials—mate-
rials whose electrical properties are the same in all directions (like the metals used to
make wires).

26-10 A Microscopic View of Current and Resistance

Our macroscopic studies tell us that there is a current in a conductor whenever there
is a potential difference across it. Whenever Ohm’s law holds, the current is directly
proportional to the potential difference that causes it. Let’s consider a length L of
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FIGURE 26-27 ■ Conduction electrons
which are negative charge carriers drift at
an average velocity in the opposite di-
rection of the applied electric field . Their
size is greatly exaggerated. By convention,
the direction of the current density and
the sense of the arrow representing the
flow of conventional current are drawn in
that same direction.

J
:

E
:

	v:


thin conducting wire with a potential difference of between its ends. What hap-
pens microscopically to the charge carriers in this situation? 

We already know that the conduction electrons in a metal serve as charge carriers,
and that when there is a steady current, we can represent the density of electrons as n
and the charge on each electron as e. What does Ohm’s law tell us about the average
velocity of these electrons? When Ohm’s law holds so that (Eq. 26-7),
then according to Eq. 26-13, the current density is proportional to the average velocity
of the charge carriers by definition,

(Eq. 26-13)

Since (Eq. 26-17), we find that the electric field across the wire (associ-
ated with potential difference across the wire) is also proportional to the average
velocity of the charge carriers,

(26-18)

However, the electrostatic force on a charge carrier is given by (Eq. 23-4),
so that

(26-19)

This is a dramatic and interesting result. It tells us that the average velocity, , of a
charge carrier is proportional to the electrostatic force on it! However, if the electro-
static force is the only force acting on the electron, then Newton’s Second Law tells us
that the electron should accelerate and not maintain a constant average velocity. To
maintain a constant velocity, the net force on the charge carrier must be zero. Thus,
there must be a second force. This situation is very similar to that associated with air
drag where an object falling in the presence of a gravitational force reaches a terminal
velocity as a result of an air drag acting in the opposite direction. Using Eq. 6-24 we
see that

so that
(26-20)

This leads us to conclude that there must be a drag force that is proportional to
the average velocity of the charge carriers. The air drag force on a falling object is at-
tributed to the action of many small air molecules hitting the falling object as it
moves. Similarly, we can imagine that a charge carrier is being slowed down by hitting
many stationary atoms and ions as it passes through the conductor. The interactions
between charge carriers and the atoms in a conductor can only be described properly
using quantum mechanics. Nonetheless, we attempt to picture the flow of charge past
positive ions in Fig. 26-27.

What Is a Typical Average Charge Carrier Speed?
Solving (Eq. 26-13) for the average velocity and recalling Eq. 26-15

, we obtain the following expression for the average speed of the charge
carrier,

(26-21)

The product ne, whose SI unit is the coulomb per cubic meter , is the carrier
charge density.

At this point we can use Eq. 26-21 to find a typical value for the average speed for
electrons flowing in a copper wire. Since copper has one conduction electron per atom
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we can use measurements for the density of copper atoms of .
Assume that our wire carries a current of 1.0 A and has a diameter of 2 mm so its
cross-sectional area is . Then, according to Eq. 26-21, the average speed of
the electrons is about

This typical average speed is extremely small compared to very high speed random
thermal motion of the electrons. It would take an electron about 11 hours to move
across a 10 cm stretch of wire. Although the conduction electrons move along a wire
very slowly like tired snails, there are so many of them that the current can actually be
relatively large.

A Microscopic View of Resistivity
We can carry our microscopic analysis further, by relating the resistivity of a conduc-
tor to the properties of its charge carriers and the average time between electron col-
lisions. If an electron of mass m is placed in an electric field of magnitude , the elec-
tron will experience an acceleration given by Newton’s Second Law:

(26-22)

The nature of the collisions experienced by conduction electrons is such that, after a
typical collision, each electron will—so to speak—completely lose its memory of its
previous average velocity. Between collisions a conduction electron will have a mean
free path like that derived in Section 20-5 for molecules traveling in a gas. However,
it moves with a typical random speed where is the average time between
collisions. Each electron will then start off fresh after every encounter, moving off in a
random direction. In the average time between collisions, a typical electron will un-
dergo an acceleration in a direction opposite to that of the electric field as shown in
Fig. 26-27. Thus, the average speed (often called the drift speed), the electron acquires
in that direction is given by . Using Eq. 26-22 we get

(26-23)

Combining this result with yields the average velocity of

where we use the plus (�) sign for positive charge carriers and the minus (�) sign for
negative charge carriers. We can combine the last two terms in the previous equation
and solve for to get

This equation shows a proportionality between the electric field in a wire and the
amount of current. Note that the magnitude of the electric field in a wire is in turn
proportional to the potential difference across the wire. Thus, our microscopic
picture of resistivity for metallic conductors is consistent with our macroscopic

E
:

� � m
e2n� �J

:
.

E
:

	v:
 � �
J
:

ne
� �

eE
:

�

m
,

J
:

� ne 	v:


� 	v:
 � � a� �
eE�

m
.

� 	v:
 � � a�

a:
�

�veff � �/�
�

a: �
F
:

m
�

eE
:

m
.

E

� 2.5 � 10�5 m/s.

� 	v:
 � �
� i �

nAe
�

1 C/s
(8.5 � 1028 atoms/m3)(3 � 10�6 m2)(1.6 � 10�19 C/atom)

3 � 10�6 m2

n � 8.5 � 1028 atoms/m3



A Microscopic View of Current and Resistance   765

+ + +
+ +

TOUCHSTONE EXAMPLE 26-3: Mean Free Time 

What is the mean free time � between collisions for the conduction
electrons in copper?

S O L U T I O N ■ The Ke y  I d e a here is that the mean free time 
of copper is approximately constant, and in particular does not de-
pend on any electric field that might be applied to a sample of the
copper. Thus, we need not consider any particular value of applied
electric field. However, because the resistivity displayed by
copper under an electric field depends on , we can find from 
Eq. 26-24 . That equation gives us 

Taking the value of n, the number of conduction electrons per unit
volume in copper, to be , and taking the value of 
from Table 26-2, the denominator then becomes 

� 3.67 � 10�17 kg/s,

� 3.67 � 10�17 C2 ��/m2

(8.5 � 1028 m�3)(1.6 � 10�19 C)2(1.69 � 10�8 ��m)

	8.5 � 1028 m�3

� �
m

ne2	
.

(	 � m/e2n�)
��

	

�

where we converted units as 

Using these results and substituting for the electron mass m, we
then have

(Answer)

(b) The mean free path of the conduction electrons in a conduc-
tor is the average distance traveled by an electron between colli-
sions. (This definition parallels that in Section 20-5 for the mean
free path of molecules in a gas.) What is for the conduction elec-
trons in copper?

S O L U T I O N ■ The Ke y  I d e a here is that the distance d any
particle travels in a certain time t at a constant speed v is . To
estimate veff, the speed at which the electrons typically move be-
tween collisions, we can think of the electrons as a “gas” of particles
in thermal equilibrium with their surroundings inside the metal

d � vt

�

�

� �
9.1 � 10�31 kg

3.67 � 10�17 kg/s
� 2.5 � 10�14 s.

C2 ��

m2 �
C2 �V
m2 �A

�
C2 �J/C
m2 �C/s

�
kg �m2/s2

m2/s
�

kg
s

.

measurements, and it predicts a proportionality between potential difference and
current.

Comparing the equation above with Eq. 26-17 leads to an expression
for the resistivity in terms of the mass and charge of the carriers, the charge density n,
and the average time between collisions

(26-24)

Conductivity
As well as referring to the resistivity of a material, we often speak of the conductivity

of a material. This is simply the reciprocal of its resistivity, so 

(definition of ). (26-25)

The SI unit of conductivity is the reciprocal ohm-meter . The unit name
mhos per meter is sometimes used (mho is ohm backward). The definition of conduc-
tivity, , allows us to write Eq. 26-17 in the alternative form 

(26-26)

READI NG EXERC IS E  26-13: The figure shows
positive charge carriers moving leftward through a wire. Are 
the following leftward or rightward: (a) the conventional cur-
rent i, (b) the current density (c) the electric field in the wire? Hint: You may want to re-
view the discussion of conventional current in Section 26-8. ■
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26-11 Other Types of Conductors

In the last few chapters we have assumed that the conductors under consideration are
metallic like copper or nichrome. As you can see from Table 26-2, one of the distinctive
properties of metallic conductors is that they have positive temperature coefficients in-
dicating that their resistivities increase with temperature. This property seems reason-
able since the thermal energy in the metal lattice causes the atoms in the metal to vi-
brate more, which further impedes the flow of conduction electrons. In addition, Eq.
26-9 indicates that this increase of resistivity with temperature is approximately linear.

There are other types of conductors with resistivities that do not simply increase
linearly with temperature. The most important of these are semiconductors, which lie at
the heart of the microelectronic revolution. The resistivity of semiconductors decreases
more or less linearly with temperature. Superconductors are another class of conductors
that do not have the same temperature behavior as conductors. Although the resistivity
of superconductors increases with temperature, it does so in a very nonlinear fashion.

Because of the importance of semiconductors and superconductors we describe
some of their properties here. Both of these nonmetallic conductors have some amaz-
ing properties that we describe briefly in this section. However, in the next few chap-
ters we return to the study—within the framework of classical physics—of steady
currents of conduction electrons moving through metallic conductors.

Semiconductors
The basic element found in virtually all semiconductors is either silicon or germa-
nium. Table 26-3 compares the properties of silicon—a typical semiconductor—and
copper—a typical metallic conductor. We see that silicon has significantly fewer
charge carriers, a much higher resistivity, and a temperature coefficient of resistivity
that is both large and negative. Thus, although the resistivity of copper increases with
temperature, that of pure silicon decreases.

Pure silicon has such a high resistivity that it is effectively an insulator and not of
much direct use in microelectronic circuits. However, its resistivity can be greatly
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TA B L E 2 6 - 3
Some Electrical Properties of Copper and Silicona

Property Copper Silicon

Type of material Metal Semiconductor

Charge carrier density, m�3 9 � 1028 1 � 1016

Resistivity, � � m 2 � 10�8 3 � 103

Temperature coefficient �4 � 10�3 �70 � 10�3

of resistivity, K�1

aRounded to one significant figure for easy comparison.

wire. Equation 20-21 then tells us that a typical electron has a
kinetic energy related to the Kelvin temperature of its environment
by (where kB is the Boltzmann constant). Taking
the electron’s effective speed in a room temperature (300 K)
environment to be gives

� 1.168 � 105 m/s

veff � √3kBT/m � √(3(1.38 � 10�23 J/K)(300 K)/(9.11 � 10�31 kg))

vrms � √	v2


(1
2)m	v2
 � ( 3

2)kBT

and

(Answer)

This is about 10 times the distance between nearest-neighbor atoms
in a copper lattice. While this is a reasonable sounding result, it
turns out that the actual value of � is about 10 times larger than this
due to quantum effects.

� 2.9 � 10�9 m � 2.9 nm.

� � veff� � (1.168 � 105 m/s)(2.5 � 10�14 s)



reduced in a controlled way by adding minute amounts of specific “impurity” atoms in
a process called doping. Table 26-2 gives typical values of resistivity for silicon before
and after doping with two different impurities, phosphorus and aluminum. Most semi-
conducting devices, such as transistors and junction diodes, are fabricated by the selec-
tive doping of different regions of the silicon with impurity atoms of different kinds.

A full explanation of the difference in resistivity between semiconductors and
metallic conductors requires an understanding of quantum theory developed to ex-
plain atomic behavior. However, the difference has to do with the probability that
electrons in a material can be made mobile. As we discuss in Section 22-6, in a metal-
lic conductor some of the outermost electrons associated with an atom can move from
one atom to the next without any additional energy. Thus, the electric field set up in
the wire when a potential difference is applied drives current through a conductor.

In an insulator, considerable energy is required to free electrons so they can move
through the material. Thermal energy cannot supply enough energy, and neither can
any reasonable electric field applied to the insulator. Thus, no electrons are available
to move through the insulator, and hence no current occurs even with an applied
electric field. A semiconductor is like an insulator except that the energy required to
free some electrons can be adjusted through doping. Doping can supply either elec-
trons or positive charge carriers held very loosely within the material that are easy to
get moving.* 

In a semiconductor, the density of charge carriers is small but increases very
rapidly with temperature as the increased thermal agitation makes more charge carri-
ers available. This causes a decrease of resistivity with increasing temperature, as indi-
cated by the negative temperature coefficient of resistivity for silicon in Table 26-3.
The same increase in collision rate we noted for metals also occurs for semiconduc-
tors, but its effect is swamped by the rapid increase in the number of charge carriers.

Superconductors
In 1911, Dutch physicist Kamerlingh Onnes discovered that the resistivity of mercury
absolutely disappears at temperatures below about 4 K (Fig. 26-28). This phenomenon
of superconductivity is of vast potential importance in technology because it means
charge can flow through a superconducting conductor without producing thermal en-
ergy losses. Currents created in a superconducting ring, for example, have persisted
for several years without any measurable decrease; the electrons making up the cur-
rent require a force and a source of energy at start-up time, but not thereafter.

Prior to 1986, the technological development of superconductivity was throttled
by the cost of producing the extremely low temperatures that were required to
achieve the effect. In 1986, however, new ceramic materials were discovered that be-
come superconducting at considerably higher (and thus cheaper to produce) tempera-
tures. Practical application of superconducting devices at room temperature may
eventually become feasible.

Superconductivity is a much different phenomenon from conductivity. In fact, the
best of the normal conductors, such as silver and copper, cannot become supercon-
ducting at any temperature, and the new ceramic superconductors are actually insula-
tors when they are not at low enough temperatures to be in a superconducting state.

One explanation for superconductivity is that the electrons making up the current
move in coordinated pairs. One of the electrons in a pair may electrically distort the
molecular structure of the superconducting material as it moves through, creating a
short-lived concentration of positive charge nearby. The other electron in the pair
may then be attracted toward this positive charge. According to the theory, such coor-

Other Types of Conductors   767

A disk-shaped magnet is levitated above a
superconducting material that has been
cooled by liquid nitrogen. The goldfish is
along for the ride.

FIGURE 26-28 ■ The resistance of mer-
cury drops to zero at a temperature of
about 4 K.

*Explaining what positive charge carriers are and how they move is complex. For now just consider the
charge carriers as negative (that is, electrons).
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dination between electrons would prevent them from colliding with the molecules of
the material and thus would eliminate electrical resistance. The theory worked well to
explain the pre-1986, lower temperature superconductors, but new theories appear to
be needed for the newer, higher temperature superconductors.
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SEC. 26-3 ■ BATTERIES AND ELECTRIC CURRENT

1. Coulombs and Electrons A current of 5.0 A exists in a 10 � re-
sistor for 4.0 min. How many (a) coulombs and (b) electrons pass
through any cross section of the resistor in this time?

2. Charged Belt A charged belt, 50 cm wide, travels at 30 m/s be-
tween a source of charge and a sphere. The belt carries charge into
the sphere at a rate corresponding to 100 �A. Compute the surface
charge density on the belt.

3. Isolated Sphere An isolated conducting sphere has a 10 cm ra-
dius. One wire carries a current of 1.000 002 0 A into it. Another
wire carries a current of 1.000 000 0 A out of it. How long would it
take for the sphere to increase in potential by 1000 V?

SEC. 26-5 ■ RESISTANCE AND OHM’S LAW

4. Electrical Cable An electrical cable consists of 125 strands of
fine wire, each having 2.65 �� resistance. The same potential differ-
ence is applied between the ends of all the strands and results in a
total current of 0.750 A. (a) What is the current in each strand? (b)
What is the applied potential difference? (c) What is the resistance
of the cable?

5. Electrocution A human being can be electrocuted if a current as
small as 50 mA passes near the heart. An electrician working with
sweaty hands makes good contact with the two conductors he is
holding, one in each hand. If his resistance is 2000 �, what might
the fatal voltage be?

SEC. 26-6 ■ RESISTANCE AND RESISTIVITY

6. Trolley Car A steel trolley-car rail has a cross-sectional area of
56.0 cm2. What is the resistance of 10.0 km of rail? The resistivity of
the steel is 3.00 � 10�7 � � m.

7. Conducting Wire A conducting wire has a 1.0 mm diameter, a
2.0 m length, and a 50 m� resistance. What is the resistivity of the
material?

8. A Wire A wire 4.00 m long and 6.00 mm in diameter has a resis-
tance of 15.0 m�. A potential difference of 23.0 V is applied between
the ends. (a) What is the current in the wire? (b) Calculate the resis-
tivity of the wire material. Identify the material. (Use Table 26-2.)

9. A Coil A coil is formed by winding 250 turns of insulated 16-
gauge copper wire (diameter � 1.3 mm) in a single layer on a cylin-
drical form of radius 12 cm. What is the resistance of the coil? Ne-
glect the thickness of the insulation (Use Table 26-2.)

10. What Temperature (a) At what temperature would the resis-
tance of a copper conductor be double its resistance at 20.0°C?
(Use 20.0°C as the reference point in Eq. 26-9; compare your an-

swer with Fig. 26-23.) (b) Does this same “doubling temperature”
hold for all copper conductors regardless of shape or size?

11. Longer Wire A wire with a resistance of 6.0 � is drawn out
through a die so that its new length is three times its original length.
Find the resistance of the longer wire, assuming that the resistivity
and density of the material are unchanged.

12. A Certain Wire A certain wire has a resistance R. What is the
resistance of a second wire, made of the same material, that is half
as long and has half the diameter?

13. Two Conductors Two conductors are made of the same mater-
ial and have the same length. Conductor A is a solid wire of diame-
ter 1.0 mm. Conductor B is a hollow tube of outside diameter 2.0
mm and inside diameter 1.0 mm. What is the resistance ratio RA/RB,
measured between their ends?

14. Flashlight Bulb A common flashlight bulb is rated at 0.30 A
and 2.9 V (the values of the current and voltage under operating
conditions). If the resistance of the bulb filament at room tempera-
ture (20°C) is 1.1 �, what is the temperature of the filament when
the bulb is on? The filament is made of tungsten.

15. Metal Rod When a metal rod is heated, not only its resistance
but also its length and its cross-sectional area change. The relation
R � 	L/A suggests that all three factors should be taken into ac-
count in measuring 	 at various temperatures. (a) If the tempera-
ture changes by 1.0 C°, what percentage changes in R, L, and A oc-
cur for a copper conductor? (b) The coefficient of linear expansion
for copper is 1.7 � 10�5/K. What conclusion do you draw?

16. Gauge Number If the gauge number of a wire is increased by
6, the diameter is halved; if a gauge number is increased by 1, the
diameter decreases by the factor 21/6 (see the table in Problem 32).
Knowing this, and knowing that 1000 ft of 10-gauge copper wire has
a resistance of approximately 1.00 �, estimate the resistance of 25 ft
of 22-gauge copper wire.

SEC. 26-7 ■ POWER IN ELECTRIC CIRCUITS

17. X-Ray Tube A certain x-ray tube operates at a current of 7.0
mA and a potential difference of 80 kV. What is its power in watts?

18. A Student A student kept his 9.0 V, 7.0 W radio turned on at
full volume from 9:00 P.M. until 2:00 A.M. How much charge went
through it?

19. Space Heater A 120 V potential difference is applied to a
space heater whose resistance is 14 � when hot. (a) At what rate is
electric energy transferred to heat? (b) At 5.0¢/kW� h, what does it
cost to operate the device for 5.0 h?

20. Thermal Energy Thermal energy is produced in a resistor at a
rate of 100 W when the current is 3.00 A What is the resistance?

Problems
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21. Energy Is Dissipated An unknown resistor is connected be-
tween the terminals of a 3.00 V battery. Energy is dissipated in the
resistor at the rate of 0.540 W. The same resistor is then connected
between the terminals of a 1.50 V battery. At what rate is energy
now dissipated?

22. Space Heater Two A 120 V potential difference is applied to a
space heater that dissipates 500 W during operation. (a) What is its
resistance during operation? (b) At what rate do electrons flow
through any cross section of the heater element?

23. Radiant Heater A 1250 W radiant heater is constructed to op-
erate at 115 V. (a) What will be the current in the heater? (b) What
is the resistance of the heating coil? (c) How much thermal energy
is produced in 1.0 h by the heater?

24. Heating Element A heating element is made by maintaining a
potential difference of 75.0 V across the length of a Nichrome wire
that has a 2.60 � 10�6 m2 cross section. Nichrome has a resistivity
of 5.00 � 10�7 �� m. (a) If the element dissipates 5000 W, what is its
length? (b) If a potential difference of 100 V is used to obtain the
same dissipation rate, what should the length be?

25. Nichrome Heater A Nichrome heater dissipates 500 W when
the applied potential difference is 110 V and the wire temperature
is 800°C. What would be the dissipation rate if the wire temperature
were held at 200°C by immersing the wire in a bath of cooling oil?
The applied potential difference remains the same, and 
 for
Nichrome at 800°C is 4.0 � 10�4/K.

26. 100 W Lightbulb A 100 W lightbulb is plugged into a standard
120 V outlet. (a) How much does it cost per month to leave the
light turned on continuously? Assume electric energy costs
12¢/kW� h. (b) What is the resistance of the bulb? (c) What is the
current in the bulb? (d) Is the resistance different when the bulb is
turned off?

27. Linear Accelerator A linear accelerator produces a pulsed
beam of electrons. The pulse current is 0.50 A, and each pulse has a
duration of 0.10 �s. (a) How many electrons are accelerated per
pulse? (b) What is the average current for an accelerator operating
at 500 pulses/s? (c) If the electrons are accelerated to an energy of
50 MeV, what are the average and peak powers of the accelerator?

28. Cylindrical Resistor A cylindrical resistor of radius 5.0 mm and
length 2.0 cm is made of material that has a resistivity of 3.5 � 10�5

�� m. What is the potential difference when the energy dissipation
rate in the resistor is 1.0 W?

29. Copper Wire A copper wire of cross-sectional area 2.0 � 10�6

m2 and length 4.0 m has a current of 2.0 A uniformly distributed
across that area. How much electric energy is transferred to ther-
mal energy in 30 min?

SEC. 26-8 ■ CURRENT DENSITY IN A CONDUCTOR

30. Small But Measurable A small but measurable current of 
1.2 � 10�10 A exists in a copper wire whose diameter is 2.5 mm. As-
suming the current is uniform, calculate (a) the current density and
(b) the average electron speed.

31. A Beam A beam contains 2.0 � 108 doubly charged positive
ions per cubic centimeter, all of which are moving north with a
speed of 1.0 � 105 m/s. (a) What are the magnitude and direction of
the current density ? (b) Can you calculate the total current i in
this ion beam? If not what additional information is needed?

J
:

32. The U.S. Electric Code The (United States) National Electric
Code, which sets maximum safe currents for insulated copper wires
of various diameters, is given (in part) in the table. Plot the safe cur-
rent density as a function of diameter. Which wire gauge has the
maximum safe current density? (“Gauge” is a way of identifying
wire diameters, and 1 mil � 10�3 in.)

Gauge 4 6 8 10 12 14 16 18

Diameter, mils 204 162 129 102 81 64 51 40

Safe current, A 70 50 35 25 20 15 6 3

33. A Fuse A fuse in an electric circuit is a wire that is designed to
melt, and thereby open the circuit, if the current exceeds a prede-
termined value. Suppose that the material to be used in a fuse melts
when the current density rises to 440 A/cm2. What diameter of
cylindrical wire should be used to make a fuse that will limit the
current to 0.50 A?

34. Near Earth Near the Earth, the density of protons in the solar
wind (a stream of particles from the Sun) is 8.70 cm�3, and their
speed is 470 km/s. (a) Find the current density of these protons.
(b) If the Earth’s magnetic field did not deflect them, the protons
would strike the planet. What total current would the Earth then
receive?

35. Steady Beam A steady beam of alpha particles (q � �2e)
traveling with constant kinetic energy 20 MeV carries a current of
0.25 �A. (a) If the beam is directed perpendicular to a plane sur-
face, how many alpha particles strike the surface in 3.0 s? (b) At
any instant, how many alpha particles are there in a given 20 cm
length of the beam? (c) Through what potential difference is it nec-
essary to accelerate each alpha particle from rest to bring it to an
energy of 20 MeV?

36. Current Density (a) The current density across a cylindrical
conductor of radius R varies in magnitude according to the
equation

where r is the distance from the central axis. Thus, the current den-
sity has a maximum magnitude of J0 � at that axis (r � 0) and
decreases linearly to zero at the surface (r � R). Calculate the cur-
rent in terms of J0 and the conductor’s cross-sectional area A �
�R2. (b) Suppose that, instead, the current density is a maximum J0

at the cylinder’s surface and decreases linearly to zero at the axis:
J � J0 r/R. Calculate the magnitude of the current. Why is the result
different from that in (a)?

37. How Long How long does it take electrons to get from a car
battery to the starting motor? Assume the current is 300 A and the
electrons travel through a copper wire with cross-sectional area
0.21 cm2 and length 0.85 m. (Hint: Assume one conduction electron
per atom and take the number density of copper atoms to be 8.5 �
1028 atoms/m2.)

38. Nichrome A wire of Nichrome (a nickel-chromium-iron alloy
commonly used in heating elements) is 1.0 m long and 1.0 mm2 in
cross-sectional area. It carries a current of 4.0 A when a 2.0 V po-
tential difference is applied between its ends. Calculate the conduc-
tivity � of Nichrome.

39. When Applied When 115 V is applied across a wire that is 10 m
long and has a 0.30 mm radius, the current density is 1.4 � 104 A/m2.
Find the resistivity of the wire.

� J
:

0�

J � J0�1 �
r
R �,
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40. Truncated Right-
Circular Cone A resis-
tor has the shape of a
truncated right-circular
cone (Fig. 26-29). The
end radii are a and b,
and the altitude is L. If
the taper is small, we
may assume that the
current density is uniform across any cross section. (a) Calculate
the resistance of this object. (b) Show that your answer reduces to
	(L/A) for the special case of zero taper (that is, for a � b).

SEC. 26-10 ■ A MICROSCOPIC VIEW OF CURRENT AND

RESISTANCE

41. Gas Discharge Tube A current is established in a gas discharge
tube when a sufficiently high potential difference is applied across
the two electrodes in the tube. The gas ionizes; electrons move to-
ward the positive terminal and singly charged positive ions toward
the negative terminal. (a) What is the magnitude of the current in a
hydrogen discharge tube in which 3.1 � 1018 electrons and 1.1 �
1018 protons move past a cross-sectional area of the tube each sec-
ond? (b) What is the direction of the current density ?

42. A Block A block in the shape of a rectangular solid has a cross-
sectional area of 3.50 cm2 across its width, a front-to-rear length of
15.8 cm, and a resistance of 935 �. The material of which the block is
made has 5.33 � 1022 conduction electrons/m3. A potential difference

J
:

of 35.8 V is maintained between its front and rear faces. (a) What is
the current in the block? (b) If the current density is uniform, what is
its value? (c) What is the average or drift speed of the conduction
electrons? (d) What is the magnitude of the electric field in the
block?

43. Earth’s Lower Atmosphere Earth’s lower atmosphere contains
negative and positive ions that are produced by radioactive ele-
ments in the soil and cosmic rays from space. In a certain region,
the atmospheric electric field strength is 120 V/m, directed vertically
down. This field causes singly charged positive ions, at a density
of 620/cm3, to drift downward and singly charged negative ions, at
a density of 550/cm3, to drift upward (Fig. 26-30). The measured
conductivity of the air in that region is 2.70 � 10�14(1/� � m). Cal-
culate (a) the average ion speed, assumed to be the same for posi-
tive and negative ions, and (b) the current density.

Additional Problems
44. Saving on Your Electric Bill Fluorescent bulbs deliver the
same amount of light using much less power. If one kW-hr costs
12¢, estimate the amount of money you would save each month by
replacing all the 75 W incandescent bulbs in your house by 10 W
fluorescent ones than incandescent ones. Be sure to clearly state
your assumptions.

45. Building a Water Heater The nickel-chromium alloy Nichrome
has a resistivity of about 10�6 �-m. Suppose you want to build a
small heater out of a coil of Nichrome wire and a 6 V battery in
order to heat 30 ml of water from a temperature of 20 C to 40 C in
1 min. Assume the battery has negligible internal resistance.
(a) How much heat energy (in joules) do you need to do this?
(b) How much power (in watts) do you need to do it in the time in-
dicated?
(c) What resistance should your Nichrome coil have in order to
produce this much power in heat?
(d) Can you create a coil having these properties? (Hint: Can you
find a plausible length and cross-sectional area for your wire that
will give you the resistance you need?)
(e) If the internal resistance of the battery were 1/3 �, how would it
affect your calculation? (Only explain what you would have to do;
don’t recalculate the size of your coil.)
46. A Confusing Thing One of the most confusing things about
wiring circuits and figuring out what you’ve done is that many
arrangements are electrically equivalent. Unless you have unusual

powers of visualization it is often hard to recognize this. For exam-
ple, three of the circuits shown in Fig. 26-31 are electrically equiva-
lent and one is not. Answer questions (a) through (d) that follow.
(a) Which circuit is not like the others? Explain why it’s different.
(b) Draw circuit diagrams for each of the arrangements and label
each diagram as A, B, C, or D. (c) Examine your diagrams. Is it pos-
sible for neat circuit diagrams that look superficially different to
represent the same set of electrical connections?

L

i i

a b

FIGURE 26-29 ■ Problem 40.
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FIGURE 26-30 ■ Problem 43.

FIGURE 26-31 ■ Problem 46.

A

C D

B+
–

+
–

+
–

+
–

47. Draw the Circuit Diagram Draw a neat circuit diagram for
each of the two circuits shown in Fig. 26-32 using the standard sym-
bols for bulbs, batteries, and switches.



48. Charge Through Conductor The charge passing through a con-
ductor increases over time as q(t) � (1.6 C/s2)t2 � (2.2 C/s)t, where
t is in seconds. (a) What equation describes the current in the circuit
as a function of time? (b) What is the current in the conductor at 
t � 0.0 s and at t � 2.0 s?

49. Increases Over Time The charge passing through a conductor
increases over time as q(t) � (1.5 C/s3)t3 � (4.5 C/s2)t2 � (2 C/s)t,

Additional Problems 771

where t is in seconds. (a) What equation describes the current in the
circuit as a function of time? (b) What is the current in the conduc-
tor at t � 0.0 s and at t � 1.0 s?

50. 1994 Honda Accord Consider a 1994 Honda Accord with a
battery that is rated at 52 ampere-hours. This battery is supposed to
be able to deliver 1 ampere of current to electrical devices in a car
for at least 52 hours or 2 amperes for 26 hours, and so on. Suppose
you leave the car lights turned on when you park the car and the
car lights draw 20 amperes of current. How long will it be before
your battery is dead?

51. The Resistance of a Pocket Calculator A typical AAA battery
delivers a nearly constant voltage of 1.5 V and stores about 3 kJ of
energy. From the time it takes you to use up the batteries in your
calculator, estimate the resistance of your calculator. (If you don’t
have a calculator of this type, make a plausible estimate of how
long it might take to use up the batteries. Give some reason for
your estimate.)

FIGURE 26-32 ■ Problem 47.

(a) (b)
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The electric eel (Electrophorus)

lurks in rivers of South Amer-

ica, killing the fish on which it

preys with pulses of current. It

does so by producing a poten-

tial difference of several hun-

dred volts along its length; the

resulting current in the sur-

rounding water, from near the

eel’s head to the tail region,

can be as much as one am-

pere. If you were to brush up

against this eel while swim-

ming, you might wonder (after

recovering from the very

painful stun):

How can the electric
eel manage to pro-
duce a current that
large without shock-
ing itself?

The answer is in this
chapter.



27-1 Electric Currents and Circuits

Knowing how to analyze circuits by predicting the currents through their elements
and the potential differences across them is a valuable skill. Such knowledge en-
ables engineers and scientists to design electrical devices and helps them make pro-
ductive use of existing devices. Our goal in this chapter is to understand the behav-
ior of relatively simple electric circuits by applying concepts such as current,
potential difference, and resistors developed in the previous chapter. We will start
by considering very simple ideal circuits and then go on to consider circuits with
multiple loops and batteries such as those shown in Fig. 27-1. Toward the end of the
chapter we will introduce the concept of emf or electromotive force associated with
batteries and other power sources. In particular, we will consider how to extend our
analysis to the behavior of circuits powered by nonideal batteries that have internal
resistance.

Ideal Circuits
As we so often do in developing physical ideas, we start by analyzing how a system
behaves under ideal conditions. Only then do we introduce real-world complexities
that require us to modify our methods of analysis. The ideal circuits we consider first
have three characteristics:

1. They are powered by ideal batteries. As stated in Section 26-3, an ideal battery
“maintains a constant potential difference across its terminals.” This means there
is a negligible amount of “electric friction” and the potential difference, ,
across the terminals of an ideal battery stays the same, regardless of the amount
of charge flowing through it. But as the chemical potential energy of a real bat-
tery decreases, it develops some internal resistance, and the potential difference
across its terminals decreases if its current increases.

2. All circuit elements, other than the battery and connecting wires, are ohmic de-
vices having a significant resistance. As discussed in Section 26-5, an ohmic device
has a constant value of resistance, R, that is not a function of the amount of current
passing through it. Although lightbulbs and some other circuit elements are not
ohmic, standard carbon resistors obey Ohm’s law and have a constant resistance
over a large current range. We make use of the fact that the potential difference
across the terminals of an ohmic device is directly proportional to the current, i,
flowing through it and is given by (Eq. 26-7).

3. Ideal conducting wires connect the battery to circuit elements. Copper wiring is
used in most circuits found in consumer devices, households, and industries. We
can use Eq. 26-7 and data from Table 26-2 to determine that the resistance of a 30
cm length of common 22 gauge copper wire is about . If this wire was con-
nected to a resistor, the additional resistance of the wire would add 1% to
the overall resistance. In connecting larger resistors, the influence of the resis-
tance of the wire is even smaller. Because the resistance in the wire is so small,
the potential difference between the ends of even a relatively long continuous
connecting wire is for all practical purposes negligible. In ideal circuits, we assume
there is no potential drop across connecting wires.

READI NG EXERC IS E  27-1: Show that the resistance of a 30 cm ( ) length
of 22 gauge copper wire of diameter 0.024 cm has a resistance of about . Hint: You will
need to use information from Table 26-2 along with Eq. 26-7. ■

0.1 �
�12 inch

10 �
0.1 �

�V � iR

�VB
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FIGURE 27-1 ■ Several types of ideal cir-
cuits we will learn to analyze in this chap-
ter consist of ideal batteries, conducting
wires with negligible resistance and ohmic
resistors. (a) A single-loop circuit.
(b) A single-battery, multiple-loop circuit.
(c) A multiple-loop circuit with multiple
batteries.



27-2 Current and Potential Difference 
in Single-Loop Circuits

Suppose we want to design or operate an electrical device such as a CD player or re-
frigerator. The operation of the given device will require a certain minimum current
or potential difference. How would we calculate the amount of current in a circuit or
the potential difference between two points within the device? That is the topic of this
section.

We start out our discussion of current in circuits by focusing on the part of the cir-
cuit outside of the battery. That is, we will focus on current that passes from one bat-
tery terminal, through the circuit, and back to the other terminal. At the end of the
chapter we will review and extend our previous discussions about what goes on inside
devices like batteries and generators.

Consider the simple single-loop circuit of Fig. 27-2 consisting of an ideal battery, a
resistor, R, and two ideal connecting wires. Unless otherwise indicated, we assume
that wires in circuits have negligible resistance. Their function, then, is merely to pro-
vide pathways along which charge carriers can move. Through use of stored chemical
energy (a form of internal potential energy), the battery keeps one of its terminals
(called the positive terminal and often labeled �) at a higher electric potential than
the other terminal (called the negative terminal and labeled �).

The mobile negative charge carriers in the circuit wires move preferentially to-
ward the positive terminal and away from the negative terminal. As a result, for the
circuit shown in Fig. 27-2, we have a net flow of negative charge in a counterclockwise
direction. In Chapter 26, we discussed the fact that a flow of negative electrons in one
direction is macroscopically indistinguishable from a flow of positive charges in the
other direction. For historical reasons we continue the practice established in that
chapter of working with current as if the charge carriers are positive.

The direction of the conventional current in the circuit shown in Fig. 27-2 is noted
with arrows that are labeled i. Unless otherwise noted, we will continue the practice
of using conventional (positive) current in our analysis of electric circuits. We will
reach the same conclusions about the fundamental behavior of circuits as we would if
we had used electron currents.

To begin learning how to calculate currents in circuits, let’s start with the ideal cir-
cuit depicted in Fig. 27-2. We have marked the points just before and after each ele-
ment with the letters a, b, c, and d. Let’s start at point a and proceed around the cir-
cuit in either direction, adding any changes in potential we encounter. Once we return
to our starting point, we must also have returned to our starting potential. In words,
the potential energy change per unit of charge traveling through the battery plus the
potential energy change of the charge traveling through the wires and the resistors
must be zero. This can be denoted as

For our simple circuit in Fig. 27-2 the charges gain potential while traveling from
a to b due to the energy boost from the battery so that . The
charges then flow freely from b to c through the first segment of the ideal conductor
with no potential loss since the wire has a negligible resistance. Then the charges flow
through the resistor, R. Finally, they flow back to point a, through another length of
ideal wire.

where represents a positive change in potential per unit charge as charges pro-
ceed from point a to point b by moving through the battery. Recall that if our ohmic
resistor has a fixed value R, then we noted in Eq. 26-7 that where i is the cur-�V � iR

�VB

�VB � �Vc:d � 0 V,

�Va:b � Vb � Va � �VB

�Va:b � �Vb:c � �Vc:d � �Vd:a � �Va:a � 0 V.
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FIGURE 27-2 ■ A single-loop circuit in
which a resistor R is connected across an
ideal battery B with potential difference

. The resulting current i is the same
throughout the circuit.
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rent passing through the circuit. However, Eq. 26-7 didn’t specify whether the 
refers to or . It is clear from the context that if we proceed
through the loop from c to d, must be negative so it will cancel the , which
we know is positive. This tells us the following about the mathematics of finding the
potential difference across a resistor:

and

In other words, charges lose potential as they travel through a resistor. This makes
sense physically because resistors give off energy in the form of heat and light. So our
battery acts as a pump to increase the potential energy of a charge and the charge
loses potential energy in passing through a resistive device.

This can be summarized as the loop rule.

LOOP RULE: The algebraic sum of the changes in potential encountered in a complete tra-
versal of any loop of a circuit must be zero.

This is often referred to as Kirchhoff’s loop rule (or Kirchhoff’s voltage law), after
German physicist Gustav Robert Kirchhoff. This rule is analogous to what happens
when you hike around a mountain. If you start from any point on a mountain and re-
turn to the same point after walking around it, the algebraic sum of the changes in el-
evation you encounter must be zero. Thus, you end up at the same gravitational po-
tential as you had before you started. Although we developed this rule through
consideration of a single-loop circuit, it also holds for any complete loop in a multi-
loop circuit, no matter how complicated.

In Fig. 27-2, we will start at point a, whose potential is Va, and mentally walk
clockwise around the circuit until we are back at a, keeping track of potential changes
as we move. (Our starting point is at the low-potential terminal of the battery—the
negative terminal.) The potential difference between the battery terminals is equal to

. When we pass through the battery from the low to high-potential terminal, the
change in potential is positive.

As we walk along the top wire to the top end of the resistor, there is no potential
change because the wire has negligible resistance; it is at the same potential as the
high-potential terminal of the battery. So too is the top end of the resistor. When we
pass through the resistor in the direction of the current flow, the potential decreases
by an amount equal to . We know the potential decreases because we are moving
from the higher potential terminal of the resistor to the lower potential terminal.

For a walk around a single-loop circuit of total resistance R in the direction of the
current our loop rule gives us 

Solving this equation for i gives us

(single-loop circuit). (27-1)

If we apply the loop rule to a complete walk around a single-loop circuit of total
resistance R against the direction of current, the rule gives us 

and we again find that

(single-loop circuit).i �
�VB

R

��VB � iR � 0 V,

i �
�VB

R

�VB � iR � 0 V.

�iR

�VB

�Vc:d � �iR.�Vd:c � iR

�VB�Vc:d

�Vd:c � ��Vc:d�Vc:d

�V
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Thus, you may mentally circle a loop in either direction to apply the loop rule.
To prepare for circuits more complex than Fig. 27-2, let us summarize two rules

for finding potential differences as we move around a chosen loop:

RESISTANCE RULE: For a move through a resistor in the direction of the conventional cur-
rent, the change in potential is �iR; in the opposite direction of current flow it is �iR.

POTENTIAL RULE: For a move through a source of potential difference from low potential
(for example, the negative terminal on a battery denoted a) to high potential (for example,
the positive terminal on a battery denoted b) the change in potential is positive and given
by ; in the opposite direction it is negative and given by 

What happens to the amount of current as it passes through a resistor? Is the cur-
rent going into the resistor the same as the current coming out of the resistor? Or
does a resistor (for example, a lightbulb) “use up” current? Recall that in Fig. 26-5 we
depicted observations involving batteries and bulbs that clearly showed current is
constant throughout a single loop circuit when resistors are connected in series. You
can easily replicate these observations using fresh flashlight batteries, copper wires,
and 1.5 V bulbs.

READI NG EXERC IS E  27-2: It is asserted above that we can infer that the current
flow into and out of a resistor is the same because three lightbulbs connected in series glow
equally brightly. Suppose the resistors shown in Fig. 27-3a are lightbulbs. Describe the bright-
ness of the third bulb relative to the first and second bulbs under the following assumptions: (a)
All the current is used up by the first bulb; (b) most of the current is used up by the first bulb;
(c) a small amount of the current was used up by the first bulb. ■

READI NG EXERC IS E  27-3: The figure to the
right shows the conventional current i in a single-loop cir-
cuit with a battery B and a resistor R (and wires of negligi-
ble resistance). At points a, b, and c, rank (a) the amount of
the current and (b) the electric potential, greatest first.

■

27-3 Series Resistance

We now turn our attention to more complicated single-loop circuits. Figure 27-3a
shows three resistors connected in series to an ideal battery with potential difference

between its terminals. Note that the three resistors are connected one after an-
other between b and c, c and d, and d and a. Also an ideal battery maintains a poten-
tial difference across the series of resistors (between points a and b). If we apply the
loop rule for charges moving in the direction of conventional current from point a at
the negative terminal of the battery and proceeding through the loop until we en-
counter point a, again we get

. (27-2)

Because we know that current is not used up by a resistor, we know the current flow-
ing through the loop is the same everywhere, and so the current through each resistor
must be the same. We also assume there is no potential difference along any segment
of wire. If we consider the three resistors separately, applying the loop rule in the

�Va:b � �Vb:c � �Vc:d � �Vd:a � 0 V

�VB

Va � Vb � ��VB.Vb � Va � �VB
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FIGURE 27-3 ■ (a) Three resistors are
connected in series between points a and
b. (b) An equivalent circuit, with the three
resistors replaced with their equivalent re-
sistance Req.
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same manner (starting at the positive terminal of the battery and proceeding through
the loop in the direction of conventional current) gives 

By rearranging terms in the equation above we get

(27-3)

and defining an equivalent resistance as we find that Eq. 27-3 re-
duces to the same form as Eq. 27-1 with the equivalent resistance playing the role of
the resistance in a circuit that has only one resistance. This is illustrated in Fig. 27-3.

Equating these two expressions tells us two things. First, the potential difference
across the whole series of resistors is equal to the sum of the potential differences
across the three resistors. Second, the potential difference across the whole series of
resistors is equal to the potential difference across our ideal battery. Figure 27-3b
shows the equivalent resistance, with a new resistor , that can replace the three re-
sistors of Fig. 27-3a.

The result is not surprising because it is compatible with the
experimental findings we presented in Section 26-6: the resistance of a length of wire
is directly proportional to its length (Eq. 26-8). Imagine three different carbon resis-
tors like those depicted in the previous chapter (Fig. 26-21). Suppose these resistors
are connected by ideal conductors (with almost no resistivity) having the same
graphite material in their centers each with the same cross-sectional area. Giving the
resistors different values of resistance would involve having the centers of the resis-
tors be three different lengths. We would then expect the total resistance to be pro-
portional to the sum of the three lengths of the resistors’ graphite centers.

Obviously, we can extend our method of finding the equivalent resistance from 3
to N resistors by expanding Eq. 27-3 into the equation 

(N resistors in series). (27-4)

Note that when resistors are in series, their equivalent resistance is always greater than
that of any of the individual resistors. Also, the current moving through resistors wired
in series can move along only a single route. If there are additional routes so the cur-
rents in different resistors are different, the resistors are not connected in series.

In general:

If N resistors in series were covered by a box, the resistors could be replaced by a single
equivalent resistor with a value. . Someone making mea-
surements outside the box could not tell whether there is a single equivalent resistor or a
series of individual resistors.

In short, we conclude that if we replace a series of resistors with a single equivalent
resistor, the new circuit will have the same overall potential differences and currents as
the original one (so long as we don’t measure potential drops between the resistors
wired in series).

More on Ammeters
Analog ammeters work by measuring the torque exerted by magnetic forces on a cur-
rent-carrying wire. We discuss more about their operation in Chapter 29 on magnetic

Req � R1 � R2 � R3 � � � � � RN

Req � R1 � R2 � R3 � � � � � RN � �
N

j�1
Rj

Req � R1 � R2 � R3

Req

Req � R1 � R2 � R3

�VB � i (R1 � R2 � R3) � 0 V,

�VB � (�iR1) � (�iR2) � (�iR3) � 0 V.
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fields. However, we continue our discussion of these devices from Chapter 26 and
consider some important attributes the ammeter must have.

Recall from Chapter 26 that to measure the current in a wire, you are to break or
cut the wire and insert the ammeter in series with an arm of the circuit so the current
to be measured passes through the meter. (In Fig. 27-4, ammeter A is set up to mea-
sure current i).

When measuring the current in a circuit (or anything else for that matter) it is im-
perative that the measurement tool does not significantly change the quantity you are
trying to measure. Hence, it is essential that the resistance RA of the ammeter be very
small compared to other resistances in the circuit. Otherwise, the presence of the me-
ter will significantly change the current flow in the circuit, and measured current will
be an inaccurate representation of the true current.

READI NG EXERC IS E  27-4: In Fig. 27-3a, if , rank the three resis-
tances according to (a) the current through them and (b) the potential difference across them,
greatest first. ■

READI NG EXERC IS E  27-5: Consider an ammeter inserted into the circuit shown in
Fig. 27-4. Compare the amount of current flowing through R1 under the following three condi-
tions: (a) without the ammeter inserted, (b) when the ammeter has a resistance much less than
the equivalent resistance of R1 � R2, and (c) when the ammeter has a resistance equal to the
equivalent resistance of R1 � R2. Explain your reasoning. Discuss the implications of your re-
sult on designing an ammeter. ■

27-4 Multiloop Circuits

Figure 27-5 shows a circuit containing more than one loop. There are two points (b and
d) at which the current branches split off or come together. We call such branching
points junctions. For the circuit shown in Fig. 27-5, we would say there are two junc-
tions, at b and d, and there are three branches connecting these junctions. The branches
are the left branch (bad), the right branch (bcd), and the central branch (bd).

What are the currents in the three branches? We arbitrarily label the currents, us-
ing a different subscript for each branch. Because current is not used up and there are
no additional branching points, current i1 has the same value everywhere in branch
bad, i2 has the same value everywhere in branch bcd, and i3 is the current through
branch bd. The directions of the currents are assigned arbitrarily.

Consider junction d for a moment: charge comes into that junction via incoming
currents i1 and i3, and it leaves via outgoing current i2. Because charged particles nei-
ther accumulate nor disperse at the junction, the total incoming charge must be equal
to the total outgoing charge. Hence, through conservation of charge arguments, we
conclude that the total current coming into junction d must equal the total current
leaving junction d,

or (27-5)

You can easily check that application of this condition to junction b leads to exactly
the same equation. This expression for the current in branch 2 thus suggests a general
principle:

JUNCTION RULE: The sum of the currents entering any junction must be equal to the sum of
the currents leaving that junction.

i1 � i3 � i2.

iin � iout,

R1 � R2 � R3
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FIGURE 27-4 ■ This depicts how an am-
meter can be inserted into a series circuit
to measure the current. The third resistor
represents the small resistance RA of the
ammeter itself.
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FIGURE 27-5 ■ A multiloop circuit
consisting of three branches: left-
hand branch bad, right-hand branch
bcd, and central branch bd. The cir-
cuit has three loops we could choose
to follow: left-hand loop badb, right-
hand loop bcdb, and big loop badcb.



This rule is often called Kirchhoff’s junction rule (or Kirchhoff’s current law). It is sim-
ply a statement of the conservation of charge for a steady flow of charge—there is
neither a buildup nor a depletion of charge at a junction. Thus, our basic tools for
solving complex circuits are the loop rule (based on the conservation of energy) and
the junction rule (based on the conservation of charge).

The relationship between i1, i2, and i3 above is a single equation involving three
unknowns. To solve the circuit completely (that is, to find all three currents), we need
two more equations involving those same unknowns. We obtain them by applying the
loop rule twice. In the circuit of Fig. 27-5, we have three loops from which to choose:
the left-hand loop (badb), the right-hand loop (bcdb), and the big loop (badcb).
Which two loops we choose turns out not to matter so long as we manage to pass
through all the circuit elements at least once. For now, let’s choose the left-hand loop
and the right-hand loop.

If we traverse the left-hand loop in a counterclockwise direction from point b, the
loop rule gives us 

(27-6)

where is the difference in potential between the terminals of battery 1. If we tra-
verse the right-hand loop in a counterclockwise direction from point b, the loop rule
gives us an equation involving battery 2,

(27-7)

We now have three equations (Eqs. 27-5, 27-6, and 27-7) containing the three un-
known currents, and they can be solved by a variety of mathematical techniques.

If we had applied the loop rule to the big loop, we would have obtained (moving
counterclockwise from b) the equation 

This equation may look like fresh information, but in fact it is only the sum of Eqs. 27-6
and 27-7. (It would, however, yield the proper results when used with Eq. 27-5 and
either 27-6 or 27-7.)

It is important to note that the assumed direction of the currents in a branch of
the circuit do not have to be correct to get a correct solution. We must only keep track
of the assumptions we have made. If in solving the resulting algebraic expressions we
find that one of our currents turns out to have a negative value, then (because of the
negative value) we know we made a wrong assumption about the direction of the cur-
rent in that branch of the circuit.

In general, the total number of equations needed will be equal to the total num-
ber of independent loops in the circuit. The number of independent loops is simply
the minimum number of loops needed to cover every branch in the circuit. Although
some branches could be covered twice, every circuit element would be “covered” at
least once. For example, we need at least two equations to cover all the loops in the
circuit in Fig. 27-5 and at least three equations to cover all the loops in the more com-
plex circuit in Fig. 27-6.

27-5 Parallel Resistance

Figure 27-6a shows three resistances connected by branching junctions. Resistances
that are parts of separate loops like those in Fig. 27-6a are said to be connected in par-
allel to the battery. Resistors connected “in parallel” are directly wired together on
one side and directly wired together on the other side, and a potential difference �V

�VB 1 � i1R1 � i2R2 � �VB 2 � 0 V.

�i3R3 � i2R2 � �VB2 � 0 V.

�VB1

�VB1 � i1R1 � i3R3 � 0 V,
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i 2 + i 3

FIGURE 27-6 ■ (a) Three resistors con-
nected in parallel across points a and b.
(b) An equivalent circuit, with the three
resistors replaced with their equivalent
resistance Req.



is applied across the pair of connected sides. Thus, the resistances have the same po-
tential difference across them, producing a current through each. Because we are
assuming ideal wires, there is no potential difference across the wires. Therefore, the
potential across the top branch of the circuit is constant everywhere equal to the po-
tential at the positive pole of the battery, and the potential across the bottom branch
of the circuit is constant everywhere equal to the potential at the negative pole of the
battery. In general,

When a potential difference is applied across resistances connected in parallel, each
resistor has the same potential difference across it.

Notice that we have again labeled the currents in each of the branches i1, i2, and i3.
We have discussed the way in which the current into a junction is equal to the current
out of the junction. We have not yet discussed in what proportions currents divide
when there is a branch (a choice of path) in a circuit. Are all three currents i1, i2, and i3

equal? If not, which of these currents is largest? The answer to this question becomes
clear when we write out the expressions for current through each of the resistors in
Fig. 27-6 using the potential rule for loops. For the case pictured here, we have 

. (27-8)

Since each resistor is connected so it has the same potential difference across it, it is
straightforward to see how the sizes of the currents compare to each other. If the re-
sistances are all equal, the current through each is the same. However, if the three re-
sistances are not equal, more current flows through the smaller resistances. This out-
come is consistent with what we might predict based solely on an understanding that
a resistor is just a device that resists the flow of current.

If we want to simplify how we think about a circuit that has resistors wired in par-
allel (like that shown in Fig. 27-6a), we can treat the three resistors in parallel as if
they have been replaced by a single equivalent resistor Req. Figure 27-6b shows the
three parallel resistances replaced with an equivalent resistance Req. The applied po-
tential difference is maintained by a battery. We can see from this figure that the
potential difference across the equivalent resistance would have to be the same as the
potential difference applied across each of the original resistors. Furthermore, the
equivalent resistor would have to have the same total current through it
as the original three resistors.

Resistances connected in parallel can be replaced with an equivalent resistance Req. If the
equivalent resistance has the same potential difference applied across it, then the current
through it will equal the sum of currents flowing through the original resistors.

To derive an expression for Req in Fig. 27-6b, we first write the current in each of
the resistors in Fig. 27-6a as

, and (Eq. 27-8)

where is the potential difference between a and b. If we apply the junction rule at
point a in Fig. 27-6a and then substitute these values, we find

(27-9)i � i1 � i2 � i3 � �V� 1
R1

�
1

R2
�

1
R3

�.

�V

i3 �
�V
R3

,i2 �
�V
R2

i1 �
�V
R1

,

(i1 � i2 � i3)

�VB

i1 �
�V
R1

, i2 �
�V
R2

, and i3 �
�V
R3

�V
�V

�V
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If we instead consider the parallel combination with the equivalent resistance Req

(Fig. 27-6b), we have 

(27-10)

Comparing the two equations above leads to 

(27-11)

The result is not surprising because it is compatible
with the experimental findings we presented in Section 26-6: the resistance of a length
of wire is inversely proportional to its cross-sectional area (Eq. 26-8). To see this con-
nection, imagine three different carbon resistors like those depicted in the last chapter
(Fig. 26-21) connected in parallel. Then giving them different values of resistance
would involve having the centers of the resistors have three different cross-sectional
areas. Because the resistors are connected in parallel, we would then expect the total
cross-sectional area to be the sum of the three cross-sectional areas of the resistors’
graphite centers so . Since the cross-sectional area and resistance
are inversely proportional, we get .

Extending Eq. 27-11 to the case of n resistors, we have 

(n resistors in parallel). (27-12)

Since we often deal with the case of two resistors in parallel, it is worth it for us to
consider this case a bit more. For the case of two resistors, the equivalent resistance is 

.

With a bit of algebra, this becomes 

(2 resistors in parallel). (27-13)

If you accidentally took the equivalent resistance to be the sum divided by the prod-
uct, you would notice at once that this result would be dimensionally incorrect.

Note that when two or more resistors are connected in parallel, the equivalent re-
sistance is smaller than any of the combining resistances.

More on the Voltmeter
Recall from our discussion in Chapter 26 that a meter used to measure potential dif-
ferences is called a voltmeter. To measure the potential difference between any two
points in the circuit, the voltmeter terminals are connected across those points, with-
out breaking or cutting the wire. In Fig. 27-7, voltmeter V is set up to measure the po-
tential difference across a resistor R1. The voltmeter is inserted in parallel to R1 by
connecting its terminals to points d and e in the circuit.

To prevent the voltmeter from affecting a measurement, it is essential that the
resistance RV of a voltmeter be very large compared to the resistance of the circuit
element across which the voltmeter is connected. Otherwise, the meter becomes an
important circuit element by drawing a significant current through itself. This change

Req �
R1R2

R1 � R2

1
Req

�
1

R1
�

1
R2

1
Req

� �
n

j�1

1
Rj

1/Req � 1/R1 � 1/R2 � 1/R3

Aeq � A1 � A2 � A3

1/Req � 1/R1 � 1/R2 � 1/R3

1
Req

�
1

R1
�

1
R2

�
1

R3
.

i �
�V
Req

� �V� 1
Req

�.
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FIGURE 27-7 ■ A single-loop circuit,
showing how to connect a voltmeter (V).
The third resistor RV represents the resis-
tance of the voltmeter itself.We assume that
RV is very large compared to R1 and R2.



in current flow can alter the potential difference to be measured. On the other hand,
even if the potential difference across the voltmeter is large, if a very small current
flows through the voltmeter, the flow of current through R1 will not change very
much.

READI NG EXERC IS E  27-6: A battery, with potential across it, is connected to a
combination of two identical resistors and a current i flows through the battery. What is the po-
tential difference across and the current through either resistor if the resistors are (a) in series,
and (b) in parallel? ■

READI NG EXERC IS E  27-7: Consider the voltmeter inserted into the circuit shown
in Fig. 27-7. Describe what would happen if the voltmeter has a resistance . How
would this affect the potential difference measured across the resistor R1? Describe what would
happen if the voltmeter has a resistance . How would this affect the potential differ-
ence measured across the resistor R1? Which case would give the most “accurate” measure of
the potential difference across the resistor when the voltmeter is not a part of the circuit? ■

READI NG EXERC IS E  27-8: Suppose the resistors in Fig. 27-6a are all identical light-
bulbs. Rank the brightness of the three bulbs. Compare the brightness of each of the bulbs to
the brightness of one of the bulbs alone connected to the same battery. ■

RV �� R1

RV 		 R1

�VB
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TOUCHSTONE EXAMPLE 27-1: One Battery and Four Resistances

Figure 27-8a shows a multiloop circuit containing one ideal battery
and four resistances with the following values:

, ,

, and

(a) What is the current through the battery?

S O L U T I O N ■ First note that the current through the battery
must also be the current through R1. Thus, one Ke y  I d e a here is
that we might find that current by applying the loop rule to a loop
that includes R1 because the current would be included in the po-
tential difference across R1. Either the left-hand loop or the big
loop will do. Noting that the potential difference arrow of the bat-
tery points upward so the current the battery supplies is clockwise,
we might apply the loop rule to the left-hand loop, clockwise from
point a. With i being the current through the battery, we would get 

(incorrect)��VB � iR1 � iR2 � iR4 � 0 V.

R4 � 8.0 �.R3 � 30 �

�VB � 12 V,R2 � 20 �R1 � 20 �

However, this equation is incorrect because it assumes that R1,
R2, and R4 all have the same current i. Resistances R1 and R4 do
have the same current, because the current passing through R4 must
pass through the battery and then through R1 with no change in
value. However, that current splits at junction point b—only part
passes through R2, and the rest through R3.

To distinguish the several currents in the circuit, we must label
them individually as in Fig. 27-8b. Then, circling clockwise from a,
we can write the loop rule for the left-hand loop as 

Unfortunately, this equation contains two unknowns, i1 and i2; we
need at least one more equation to find them.

A second Ke y  I d e a is that an easier option is to simplify the
circuit of Fig. 27-8b by finding equivalent resistances. Note carefully
that R1 and R2 are not in series and thus cannot be replaced with an
equivalent resistance. However, R2 and R3 are in parallel, so we can
use either Eq. 27-12 or Eq. 27-13 to find their equivalent resistance
R23. From the latter,

��VB � i1R1 � i2R2 � i1R4 � 0 V.

R 2

(a)

a

+
–

R 4

R 1

c

b

R 3

R 2

a

+
–

R 4

R 1

c

b

R 3

 i 2

 i 1

 i 1  i 3

(b)

a

+
–

R 4

R 1

c

b

 i 1

 i 1

 i 1

(c)

R 23ΔVBΔVBΔVB

FIGURE 27-8 ■ (a) A multiloop circuit with
an ideal battery of potential difference 
and four resistances. (b) Assumed currents
through the resistances. (c) A simplification
of the circuit, with resistances R2 and R3 re-
placed with their equivalent resistance R23.
The current through R23 is equal to that
through R1 and R4.

�VB
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We can now redraw the circuit as in Fig. 27-8c; note that the current
through R23 must be i1 because charge that moves through R1 and
R4 must also move through R23. For this simple one-loop circuit, the
loop rule (applied clockwise from point a) yields 

Substituting the given data, we find

which gives us 

(Answer)

(b) What is the current i2 through R2?

S O L U T I O N ■ One Ke y  I d e a here is that we must work back-
ward from the equivalent circuit of Fig. 27-8c, where R23 has re-
placed the parallel resistances R2 and R3. A second Ke y  I d e a is

i1 �
12 V
40 �

� 0.30 A.

12 V � i1(20 �) � i1(12 �) � i1(8.0 �) � 0 V,

��VB � i1R1 � i1R23 � i1R4 � 0 V.

R23 �
R2R3

R2 � R3
�

(20 �)(30 �)
50 �

� 12 �.
that, because R2 and R3 are in parallel, they both have the same po-
tential difference across them as their equivalent R23. We know the
current through R23 is . Thus, we can use Eq. 26-5

to find the potential difference �V23 across R23:

The potential difference across R2 is thus 3.6 V, so the current i2 in
R2 must be, by Eq. 26-5,

(Answer)

(c) What is the current i3 through R3?

S O L U T I O N ■ We can answer by using the same technique as in
(b), or we can use this Ke y  I d e a : The junction rule tells us that at
point b in Fig. 27-8b, the incoming current i1 and the outgoing cur-
rents i2 and i3 are related by 

This gives us 

(Answer)i3 � i1 � i2 � 0.30 A � 0.18 A � 0.12 A.

i1 � i2 � i3.

i2 �
�V2

R2
�

3.6 V
20 �

� 0.18 A.

�V23 � i1R23 � (0.30 A)(12 �) � 3.6 V.

R � �V/i
i1 � 0.30 A

TOUCHSTONE EXAMPLE 27-2: Three Batteries and Five Resistances

Figure 27-9 shows a circuit with three ideal batteries in it. Two
of these batteries labeled �VB2 are identical. The circuit elements
have the following values:

, R2 � 4.0 �.R1 � 2.0 �,�VB 2 � 6.0 V,�VB 1 � 3.0 V

Using arbitrarily chosen directions for the currents as shown in
Fig. 27-9, we apply the junction rule at point a by writing 

(27-14)

An application of the junction rule at junction b gives only the
same equation, so we next apply the loop rule to any two of the
three loops of the circuit. We first arbitrarily choose the left-hand
loop, arbitrarily start at point a, and arbitrarily traverse the loop in
the counterclockwise direction, obtaining 

Substituting the given data and simplifying yield 

(27-15)

For our second application of the loop rule, we arbitrarily choose to
traverse the right-hand loop clockwise from point a, finding

Substituting the given data and simplifying yield 

(27-16)

Using Eq. 27-14 to eliminate i3 from Eq. 27-16 and simplifying give
us

(27-17)i1(4.0 �) � i2(8.0 �) � 0 V.

i2(4.0 �) � i3(4.0 �) � 0 V.

�i3R1 � �VB 2 � i3R1 � �VB 2 � i2R2 � 0 V.

i1(4.0 �) � i2(4.0 �) � 3.0 V.

�i1R1 � �VB 1 � i1R1 � �VB 2 � i2R2 � 0 V.

i3 � i1 � i2.

ΔVB1

ΔVB2

ΔVB2

+
–

R 2

R1 R1

R1

R1

+
–

+
–

i1
i3

i1 i3
a

b

i2

FIGURE 27-9 ■ A multiloop circuit with three
ideal batteries and five resistances.

Find the amount and direction of the current in each of the three
branches.

S O L U T I O N ■ It is not worthwhile to try to simplify this circuit,
because no two resistors are in parallel, and the resistors that are in
series (those in the right branch or those in the left branch) present
no problem. So our Ke y  I d e a is to apply the junction and loop
rules to this circuit.



27-6 Batteries and Energy

So far we have discussed ideal batteries that can be characterized as maintaining a
constant potential difference between their terminals no matter what current is flow-
ing through them. Also, we have concentrated on analyzing what happens in the part
of the circuit that lies outside the battery. In this section we consider more about what
goes on inside batteries and how real, not so ideal, batteries behave.

The amazing thing about a battery is that positive charge carriers enter with a low
potential energy and other carriers emerge from the battery at a higher potential. En-
ergy transformations inside a battery enable charges to overcome the forces exerted
on them by the electric field inside the battery. Positive carriers seem to move oppo-
site to the battery’s electric field, whereas negative charge carriers move with it. There
must be some other force present inside an energy-providing device enabling charges
to swim upstream against electrical forces. The outdated term given to this “force” is
electromotive force. Its abbreviation, which we still use today, is emf. How is this
“force” defined? Where does it come from in a typical battery? 

We define the emf, �, of a battery in terms of the work done per unit charge on
charges flowing into it:

(definition of electromotive force). (27-18)

In words, the battery emf is the work per unit charge it does to move charge from
one terminal to the other. The SI unit for emf is the joule/coulomb. In Chapter 25 we
defined one joule/coulomb as the volt. There must be some source of energy within a
battery, enabling it to do work on the charges. The energy source may be chemical, as
in a battery (or a fuel cell). Temperature differences may supply the energy, as in a
thermopile; or the Sun may supply it, as in a solar cell. As you can see, the term elec-
tromotive force is very misleading since it is not a force at all, but has the same units
as electrostatic potential (energy per unit charge). Furthermore emf is a scalar quan-
tity and is not a vector quantity like a force is.

When a battery is connected to a circuit, it transfers energy to the charge carriers
passing through it. Let’s look at one example of how chemical action can do this. For
this purpose we will consider the chemical reactions that take place inside one cell of
a lead acid battery used in most automobiles. A lead acid battery consists of several
cells wired together in series. Each cell has two metal plates surrounded by a liquid
bath of chemicals. In a lead-acid cell, the negative plate is made of pure lead, and the
positive plate is made of lead-oxide. These plates are immersed in sulfuric acid mixed
with water. The acid dissociates in the water into hydronium ions (H3O�) and bisul-
fate ions (HSO4

�). This is shown in Fig. 27-10. Both the lead and lead oxide can react

��
dW
dq
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We now have a system of two equations (Eqs. 27-15 and 27-17) in
two unknowns (i1 and i2) to solve either by hand (which is easy
enough here) or with a math computer software package. (One so-
lution technique is Cramer’s rule, given in Appendix E.) We find

(The minus sign signals that our arbitrary choice of direction for i2

in Fig. 27-9 is wrong; i2 should point up through and R2.) Sub-
stituting into Eq. 27-17 and solving for i1 then give us 

(Answer)i1 � 0.50 A.

i2 � �0.25 A
�VB2

i2 � �0.25 A.

With Eq. 27-14 we then find that 

(Answer)

The positive answers we obtained for i1 and i3 signal that our
choices of directions for these currents are correct. We can now cor-
rect the direction for i2 and write its amount as 

(Answer)i2 � 0.25 A.

i3 � i1 � i2 � 0.25 A.

Sulfuric acid
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–

–

–

–

+
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+

+

Pure lead
(Pb)

Lead oxide
(PbO2)

FIGURE 27-10 ■ The chemical con-
stituents of the lead acid battery.
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with the bisulfate ions as follows:

The two electrons produced on the pure lead plate pile up on it. The second reac-
tion removes the two electrons it needs from the lead oxide plate. Thus, each time the
pair of reactions occur, electrons are added to the negative plate and removed from
the positive plate. If the cell were not connected to a circuit, the reactions would stop
when the charge difference gets so large that the energy needed to put more charges
on the plates is greater than the energy released by the reactions. If the battery is con-
nected to an external circuit, then as the charges flow through the circuit, they are re-
moved from one plate and put back on the other; the process can keep going until all
the sulfuric acid (HSO4) is consumed.

Note that when we talk about a battery as a charge pump, this is somewhat mis-
leading because the electrons removed by the chemical reaction at one battery termi-
nal (plate) are not the same electrons released at the other terminal.

There are hundreds of different types of chemical batteries. The lead-acid battery
action described here simply serves as an example of how chemical reactions can
cause charge separation in a battery.

27-7 Internal Resistance and Power

In our evaluation of circuits up to this point, we have assumed the current passes
through the battery (or other emf source) without encountering any resistance within
it. We call such a battery or other emf device “ideal.”

An ideal emf device is one that lacks any resistance to the movement of charge
through it. The potential difference between the terminals of an ideal emf device is
equal to the emf of the device. For example, an ideal battery with an emf of 12.0 V has
a potential difference of 12.0 V between its terminals. Very fresh alkaline batteries are
nearly ideal.

A real emf device has internal resistance to the movement of charge through it. For
a real emf device (for example, a real battery), the only situation for which the potential
difference between its terminals is equal to its emf is when the device is not connected
to a circuit, and thus does not have current through it. However, when the device has
current through it, the potential difference between its terminals differs from its emf.

Figure 27-11a shows circuit elements that describe the behavior of a real battery,
with internal resistance r, wired to an external resistor of resistance R. The internal

PbO2 � HSO4
� � 3H3O� � 2e � :  PbSO4 � 4H2O

Pb � HSO4
� � H2O :  PbSO4 � H3O � � 2e �

R i

i

i
r

i

a

b
+

–

(a)

Emf device Resistor

a b a

r

ir

Po
te

n
ti

al
 (

V
)

R

i

iR
VaVa

Vb

(b)

Real battery
“circuit”

FIGURE 27-11 ■ (a) A single-loop circuit containing a real battery having internal resistance r and emf �. (b)
The same circuit, now spread out in a line. The potentials encountered in traversing the circuit clockwise from
a are also shown. The potential Va is arbitrarily assigned a value of zero, and other potentials in the circuit are
graphed relative to Va.
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resistance of the battery is the electrical resistance of the conducting materials of the
battery and thus is an unavoidable feature of any real battery. However, as an illustra-
tion, a real battery is depicted in Fig. 27-11b as if it could be separated into an ideal
battery with potential difference � between its terminals and a resistor of resistance r.
The order in which the symbols for these separated parts are drawn does not matter.

If we apply the potential (loop) rule, proceeding clockwise and beginning at point
a, the changes in potential give us 

or (27-19)

It is customary to keep track of potential differences as if the charge carriers are posi-
tive. Thus, we go through both resistances in the direction of the conventional current
(defined in the previous chapter as the direction of flow we would find if the charge
carriers were positive instead of negative):

(27-20)

Solving for the current, we find

(27-21)

Note that this equation reduces to Eq. 27-1 if the battery is ideal so that r � 0 �.
Figure 27-11b shows graphically the changes in electric potential around the cir-

cuit. (To better link Fig. 27-11b with the closed circuit in Fig. 27-11a, imagine curling
the graph into a cylinder with point a at the left overlapping point a at the right.)
Note how traversing the circuit is like walking up and down a (potential) mountain
and returning to your starting point—you also return to the starting elevation.

In this book, if a battery is not described as real or if no internal resistance is indi-
cated, you can assume for simplicity that it is ideal .

Implications of Internal Resistance in Real EMF Devices
To understand the implications of internal resistance in emf devices for real circuits,
let’s try to make our understanding a bit more quantitative. To start with, let’s see
how , the potential difference across the battery terminals in
Fig. 27-11, is affected by the existence of an internal resistance in the battery. To calcu-
late , we start at point a and follow the shorter path around to b, which takes
us clockwise through the battery. We then have 

or (27-22)

where r is the internal resistance of the battery and � is the emf of the battery. This
expression tells us the potential difference of the battery is equal to the emf minus the
drop in potential associated with internal resistance.

Furthermore, if we refer back to Eq. 27-21,

i �
�

R � r
,

Vb � Va � �VB � � � ir,

Va � � � ir � Vb,

Vb � Va

�VB � �Va:b � Vb � Va

i �
�

R � r
.

� � ir � iR � 0 V.

� � �Vinternal resistance � �VR � 0 V.

�Va:b � �VR � 0 V,



and substitute this expression for current (in the circuit shown in Fig. 27-11) into our
expression for the potential difference across the battery terminals, we get

.

With some algebra, we get the following generally applicable expression:

. (27-23)

For example, suppose that in Fig. 27-11, , , and . Then
the equation above tells us the potential across the battery’s terminals is 

In “pumping” charge through itself, the battery (via electrochemical reactions) does
work per unit charge of , or 12 V. However, because of the internal resis-
tance of the battery, it produces a potential difference of only , or 10 V, across
its terminals.

If the internal resistance becomes large compared to the overall resistance in the
circuit, the available potential difference of the battery, electrical generator, or other
emf device will drop significantly. This drop in available potential difference results in
a reduction in the amount of current in the circuit. This is especially important to
consider when circuits are designed with a low resistance so they will carry a large
current.

For example, consider the circuit shown in Fig. 27-6 (three resistors in parallel
with a battery) and let for each resistor. The equivalent resistance in the cir-
cuit is . If the potential difference source is taken to be an ideal battery (in-
ternal resistance r � 0), the current in the circuit is 

The 12 amps are split evenly between each branch (because the resistances are all
equal), so each resistor has 4 amps of current flowing through it.

However, if the potential difference source is a real battery with and in-
ternal resistance , then the available potential difference from the battery is 

The total current in the circuit is then 

.

This current is still split between each of the branches of the circuit, so for the case of
the real battery, the current flowing through each resistor is now only 4/3 amp. In
comparison to the 4 amps produced by the ideal battery, one can see how the internal
resistance of an emf device can play a significant role in the functioning of real
circuits.

i �
�VB

Req
�

4 V
1 �

� 4 A

�VB � (12  V)
1�

1 � � 2.0 �
� 4  V.

r � 2.0 �
� � 12  V

i �
�VB

Req
�

12 V
1 �

� 12 A.

Req � 1 �
R � 3 �

10  J/C
� � 12 J/C

�VB � (12  V)
10 �

10 � � 2.0 �
� 10  V.

r � 2.0 �R � 10 �� � 12 V

�VB � �
R

R � r

�VB � � � � �r
R � r �
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Power 
When a battery or some other type of emf device does work on the charge carriers to
establish a current i, it transfers energy from its source of energy (such as the chemi-
cal source in a battery) to the charge carriers. Because a real emf device has an inter-
nal resistance r, it also transfers energy to internal thermal energy via resistive dissi-
pation, discussed in Chapter 26. Let us relate these transfers.

The net rate P of energy transfer from the emf device to the charge carriers is
given by 

(27-24)

where is the potential across the terminals of the emf device. (Note that this is the
power associated with the transfer). If we apply this expression to the circuit shown in
Fig. 27-11 (from Eq. 27-24 above), we can substitute into Eq. 27-24 to
find

(27-25)

We see that the term i2r in Eq. 27-25 is the rate Pr of energy transfer to thermal en-
ergy within the emf device:

(internal dissipation rate). (27-26)

Then the term i� in Eq. 27-25 must be the rate Pemf at which the emf device transfers
energy to both the charge carriers and to internal thermal energy. Thus,

(power of emf device). (27-27)

If a battery is being recharged, with a “wrong way” current through it, the energy
transfer is then from the charge carriers to the battery—both to the battery’s chemi-
cal energy and to the energy dissipated in the internal resistance r. The rate of change
of the chemical energy is given by Eq. 27-27, the rate of dissipation is given by Eq. 27-
26, and the rate at which the carriers supply energy is given by Eq. 27-24.

As is the case for mechanics, the accepted SI unit for electrical power is the watt.
One watt is equal to one joule-sec.

Pemf � i�

Pr � i2r

P � i(� � ir) � i� � i2r.

�VB � � � ir

�V

P � i �V,
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TOUCHSTONE EXAMPLE 27-3: Two Real Batteries

Let’s consider a circuit with two nonideal batteries that have internal
resistances. Since the potential differences across the terminals of
these batteries are not constant, we characterize each battery in
terms of its emf ( ) and internal resistances (r1 or r2). The emfs
and resistances in the circuit of Fig. 27-12a have the following values:

(a) What is the current i in the circuit?

SOLUTION ■ The Key Idea here is that we can get an expression
involving the current i in this single-loop circuit by applying the loop
rule. Although knowing the direction of i is not necessary, we can
easily determine it from the emfs of the two batteries. Because is
greater than , battery 1 controls the direction of i, so that direction�2

�1

R � 5.5 �.r2 � 1.8 �,r1 � 2.3 �,�2 � 2.1 V,�1 � 4.4 V,

�1 or �2

is clockwise. Let us then apply the loop rule by going counterclock-
wise—against the current—and starting at point a. We find

Check that this equation also results if we apply the loop rule
clockwise or start at some point other than a. Also, take the time to
compare this equation term by term with Fig. 27-12b, which shows
the potential changes graphically (with the potential at point a arbi-
trarily taken to be zero).

Solving the above loop equation for the current i, we obtain 

(Answer)� 0.2396 A � 240 mA.

i �
�1 � �2

R � r1 � r2
�

4.4 V � 2.1 V
5.5 � � 2.3 � � 1.8 �

��1 � ir1 � iR � ir2 � �2 � 0 V.
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Vb

Va

Vc

Po
te

n
ti

al
 (

V
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b c
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(b) What is the potential difference between the terminals of bat-
tery 1 in Fig. 27-12a?

S O L U T I O N ■ The Ke y  I d e a is to sum the potential differ-
ences between points a and b. Let us start at point b (effectively the
negative terminal of battery 1) and travel clockwise through battery
1 to point a (effectively the positive terminal), keeping track of po-
tential changes. We find that 

Vb � ir1 � �1 � Va,

which gives us 

which is less than the emf of the battery. You can verify this result
by starting at point b in Fig. 27-12a and traversing the circuit coun-
terclockwise to point a.

� �3.84 V � 3.8 V,

� �(0.2396 A)(2.3 �) � 4.4 V

Va � Vb � �ir1 � �1

FIGURE 27-12 ■ (a) A single-loop circuit containing two real batteries and a
resistor. The batteries oppose each other; that is, they tend to send current in
opposite directions through the resistor. (b) A graph of the potentials encoun-
tered in traversing this circuit counterclockwise from point a, with the poten-
tial at a arbitrarily taken to be zero. (To better link the circuit with the graph,
mentally cut the circuit at a and then unfold the left side of the circuit toward
the left and the right side of the circuit toward the right.)

TOUCHSTONE EXAMPLE 27-4: Electric Eel

Electric fish generate current with biological cells called electro-
plaques, which are physiological emf devices. The electroplaques in
the South American eel shown in the photograph that opens this
chapter are arranged in 140 rows, each row stretching horizontally
along the body and each containing 5000 electroplaques. The
arrangement is suggested in Fig. 27-13a; each electroplaque has an
emf � of 0.15 V and an internal resistance r of . The water
surrounding the eel completes a circuit between the two ends of the
electroplaque array, one end at the animal’s head and the other
near its tail.

(a) If the water surrounding the eel has resistance ,
how much current can the eel produce in the water?

S O L U T I O N ■ The Ke y  I d e a here is that we can simplify the
circuit of Fig. 27-13a by replacing combinations of emfs and internal

Rwater � 800 �

0.25 �

resistances with equivalent emfs and resistances. We first consider a
single row. The total emf along a row of 5000 electroplaques is
the sum of the emfs:

The total resistance Rrow along a row is the sum of the internal re-
sistances of the 5000 electroplaques:

We can now represent each of the 140 identical rows as having a
single emf and a single resistance Rrow, as shown in Fig. 27-13b.

In Fig. 27-13b, the emf between point a and point b on any row
is . Because the rows are identical and because they
are all connected together at the left in Fig. 27-13b, all points b in

�row � 750 V

�row

Rrow � 5000r � (5000)(0.25 �) � 1250 �.

�row � 5000� � (5000)(0.15 V) � 750 V.

�row
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Rwater

i

(b)

a c

row

R row

R row

R row

b

b

b

Rwater(c)

a c
row

R row

R row

b

= 750 V

Rwater(d)

row

R eq

+ –
i

Rwater(a)

r
Electroplaque

 5000 electroplaques per row

140 rows

–+

750 V

–+ –+

–+ –+ –+

–+ –+ –+

–+

–+

–+

R row

row

–+
row

a b c

that figure are at the same electric potential. Thus, we can consider
them to be connected so that there is only a single point b. The emf
between point a and this single point b is , so we can
draw the circuit as shown in Fig. 27-13c.

Between points b and c in Fig. 27-13c are 140 resistances
, all in parallel. The equivalent resistance Req of this

combination is given by Eq. 27-12 as 

or

Replacing the parallel combination with Req, we obtain the simpli-
fied circuit of Fig. 27-13d. Applying the loop rule to this circuit
counterclockwise from point b, we have 

Solving for i and substituting the known data, we find

�row � iRwater � iReq � 0 V.

Req �
Rrow

140
�

1250 �

140
� 8.93 �.

1
Req

� �
140

j�1

1
Rj

� 140
1

Rrow
,

Rrow � 1250 �

�row � 750 V
(Answer)

If the head or tail of the eel is near a fish, much of this current could
pass along a narrow path through the fish, stunning or killing it.

(b) How much current i row travels through each row of Fig. 27-13a?

S O L U T I O N ■ The Ke y  I d e a here is that since the rows are
identical, the current into and out of the eel is evenly divided
among them:

(Answer)

Thus, the current through each row is small, about two orders of
magnitude smaller than the current through the water. This tends to
spread the current through the eel’s body, so that it need not stun
or kill itself when it stuns or kills a fish.

irow �
i

140
�

0.927 A
140

� 6.6 
 10�3 A.

� 0.927 A � 0.93 A.

i �
�row

Rwater � Req
�

750 V
800 � � 8.93 �

FIGURE 27-13 ■ (a) A model of the electric
circuit of an eel in water. Each electroplaque of
the eel has an emf � and internal resistance r.
Along each of 140 rows extending from the
head to the tail of the eel, there are 5000 electro-
plaques.The surrounding water has resistance
Rwater. (b) The emf �row and resistance Rrow of
each row. (c) The emf between points a and b is
�row. Between points b and c are 140 parallel re-
sistances Rrow. (d) The simplified circuit, with Req

replacing the parallel combination.

SECS. 27-2 AND 27-3 ■ CURRENT AND POTENTIAL

DIFFERENCE IN SINGLE LOOP CIRCUITS, SERIES RESISTANCE

1. Three Resistors In Fig. 27-14, take R1 � R2 � R3 � 10 �. If the
potential difference across the ideal battery is �VB � 12 V, find: (a)
the equivalent resistance of the circuit and (b) the direction the
current flows in the circuit. (c) Which point, A or B, is at higher
potential?

ΔVB R 2

R 1

R 3

A

B FIGURE 27-14 ■

Problems 1, 3, and 5.



2. Two Ideal Batteries Figure 27-15
shows two ideal batteries with �VB1 �
12 V and �VB2 � 8 V. (a) What is the di-
rection of the current in the resistor? (b)
Which  battery is doing positive work?
(c) Which point, A or B, is at the higher
potential?

3. Total Current In Fig. 27-14, take R1 �
10 �, R2 � 15 �, and R3 � 20 �. If the
potential difference across the ideal bat-
tery is �VB � 15 V, find: (a) the equivalent resistance of the circuit,
(b) the current through each of the resistors, and (c) the total cur-
rent in the circuit.

4. If Potential at P Is In Fig. 27-16, if
the potential at point P is
100 V, what is the potential at point
Q?

5. Voltages In Fig. 27-14, take R1 �
12 �, R2 � 15 �, and R3 � 25 �. If
the potential difference across the
ideal battery is �VB � 15 V, find the
potential differences across each of
the resistors.

6. Neglecting Wires Figure 27-17
shows a 6.00 � resistor connected to
a 12.0 V battery by means of two
copper wires. The wires each have
length 20.0 cm and radius 1.00 mm.
In such circuits we generally neglect
the potential differences along wires
and the transfer of energy to ther-
mal energy in them. Check the va-
lidity of this neglect for the circuit of Fig. 27-17: What are the poten-
tial differences across (a) the resistor and (b) each of the two
sections of wire? At what rate is energy lost to thermal energy in
(c) the resistor and (d) each of the two sections of wire?

7. Single Loop The current in a single-loop circuit with one resis-
tance R is 5.0 A. When an additional resistance of 2.0 � is inserted
in series with R, the current drops to 4.0 A. What is R?

8. Ohmmeter A simple ohmme-
ter is made by connecting an ideal
1.50 V flashlight battery in series
with a resistance R and an amme-
ter that reads from 0 to 1.00 mA,
as shown in Fig. 27-18. Resistance
R is adjusted so that when the clip
leads are shorted together, the me-
ter deflects to its full-scale value of
1.00 mA. What external resistance across the leads results in a de-
flection of (a) 10%, (b) 50%, and (c) 90% of full scale? (d) If the
ammeter has a resistance  of 20.0 � and the internal resistance of
the battery is negligible, what is the value of R?

SECS. 27-4 AND 27-5 ■ MULTILOOP CIRCUITS AND

PARALLEL RESISTANCE

9. Sizes and Directions What are the sizes and directions of the
currents through resistors (a) R2 and (b) R3 in Fig. 27-19, where
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each of the three resistances is 
4.0 �?

10. Changes The resistances in
Figs. 27-20a and b are all 6.0 �,
and the batteries are ideal 12 V
batteries. (a) When switch S in Fig.
27-20a is closed, what is the change
in the electric potential difference
� across resistor 1, or does
� remain the same? (b) When switch S in Fig. 27-20b is closed
what is the change in the electric potential difference � across
resistor 1, or does � remain the same?VR1

VR1

VR1

VR1

ΔVB1 ΔVB2

R

–
+

–
+

BA

FIGURE 27-15 ■

Problem 2.

–
+

–
+

Q

P

150 V 50 V

2.0 Ω

3.0 Ω

FIGURE 27-16 ■

Problem 4.

12.0 V

Wire 1

Wire 2

6.00 Ω

FIGURE 27-17 ■ Problem 6.

+
–

0–1.00
mA

R

ΔVB

FIGURE 27-18 ■ Problem 8.

10 V

5.0 V

R1

R3

R2

FIGURE 27-19 ■ Problem 9.

(a) (b)

R2R1

S

R2R1

R3

S

FIGURE 27-20 ■ Problem 10.

11. Equivalent (a) In Fig. 27-21,
what is the equivalent resistance
of the network shown? (b) What is
the current in each resistor? Put
R1 � 100 �, R2 � R3 � 50 �, R4 �
75 �, and �VB � 6.0 V; assume the
battery is ideal.

12. Plots Plot 1 in Fig. 27-22a
gives the electric potential difference set up across R1 versus
the current i that can appear in resistor 1. Plots 2 and 3 are similar
plots for resistors 2 and 3, respectively. Figure 27-22b shows a cir-
cuit with those three resistors and a 6.0 V battery. What is the cur-
rent in resistor 2 in that circuit?

�VR1

ΔVB R2
+
–

R1

R3

R4

FIGURE 27-21 ■ Problem 11.

ΔV
 (

V
)

18

12

6

1

1

i (mA)
2

2

3

3

(a)

R2R1

R3

6.0 V

(b)

FIGURE 27-22 ■ Problem 12.

13. Equivalent Resistance Two In
Fig. 27-23, R � 10 �. What is the
equivalent resistance between
points A and B? (Hint: This circuit
section might look simpler if you
first assume that points A and B
are connected to a battery.)

4.0R

2.0R

6.0R

3.0R

R

B

A

FIGURE 27-23 ■ Problem 13.



14. Three Switches Figure 27-24
shows a circuit containing three
switches, labeled S1, S2, and S3. Find
the current at a for all possible
combinations of switch settings. Put
�VB � 120 V, R1 � 20.0 �, and R2

� 10.0 �. Assume that the battery
has no resistance.

15. Two Lightbulbs Two light-
bulbs, one of resistance R1 and the
other of resistance R2, are con-
nected to a battery (a) in parallel and (b) in series. Which bulb is
brighter in each case if R1 � R2? How is your answer different if 
R1 � R2?

16. Calculate Potential In Fig. 27-5,
calculate the potential difference be-
tween points c and d by as many paths
as possible. Assume that �VB1 � 4.0 V,
�VB2 � 1.0 V, R1 � R2 � 10 �, and 
R3 � 5.0 �.

17. Ammeter (a) In Fig. 27-25, deter-
mine what the ammeter will read,
assuming �VB � 5.0 V (for the 
ideal battery), R1 � 2.0 �,
R2 � 4.0 �, and R3 � 6.0 �. (b) The
ammeter and the source of emf are
now physically interchanged. Show
that the ammeter reading remains
unchanged.

18. Equivalent Resistance In Fig. 27-
26, find the equivalent resistance be-
tween points (a) F and H and (b) F
and G. (Hint: for each pair of points,
imagine that a battery is connected
across the pair).

19. Current in Each In Fig. 27-27
find the current in each resistor and
the potential difference between
points a and b. Put �VB1 � 6.0 V,
�VB2 � 5.0 V, �VB3 � 4.0 V, R1 �
100 �, and R2 � 50 �.

20. Two Resistors By using only
two resistors—singly, in series, or in
parallel—you are able to obtain re-
sistances of 3.0, 4.0, 12, and 
16 �. What are the two resistances?

21. Wire of Radius A copper wire
of radius a � 0.250 mm has an alu-
minum jacket of outer radius b � 0.380 mm. (a) There is a current 
i � 2.00 A in the composite wire. Using Table 26-2, calculate the
current in each material. (b) If a po-
tential difference V � 12.0 V be-
tween the ends maintains the cur-
rent, what is the length of the
composite wire?

22. Between D and E In Fig. 27-28,
find the equivalent resistance be-

tween points D and E. (Hint:
Imagine that a battery is connected
between points D and E.)

23. Four Resistors Four 18.0 � re-
sistors are connected in parallel
across a 25.0 V battery. What is the
current through the battery?

24. Network Shown (a) In Fig. 27-
29, what is the equivalent resistance
of the network shown? (b) What is the current in each resistor? Put
R1 � 100 �, R2 � R3 � 50 �, R4 � 75 �, and �VB � 6.0 V; assume
the battery is ideal.

25. Nine Copper Wires Nine copper wires of length l and diameter
d are connected in parallel to form a single composite conductor of
resistance R. What must be the diameter D of a single copper wire
of length l if it is to have the same resistance?

26. Voltmeter A voltmeter (of resistance R�V) and an ammeter (of
resistance RA) are connected to measure a resistance R, as in Fig.
27-30a. The resistance is given by R � �V/i, where �V is the volt-
meter reading and i is the current in the resistance R. Some of the
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FIGURE 27-24 ■
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FIGURE 27-25 ■

Problem 17.
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FIGURE 27-26 ■
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FIGURE 27-28 ■

Problem 22.

ΔVB R2
+
–

R1

R3

R4
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FIGURE 27-30 ■ Problems 26 to 28.

current i� registered by the ammeter goes through the voltmeter, so
that the ratio of the meter readings (��V/i�) gives only an apparent
resistance reading R�. Show that R and R� are related by

.

Note that as R�V : �, R� : R. Ignore R0 for now.

27. Ammeter and Voltmeter (See Problem 26.) If an ammeter and
a voltmeter are used to measure resistance, they may also be con-
nected as in Fig. 27-30b. Again the ratio of the meter readings 
gives only an apparent resistance R�. Show that now R� is related to
R by

R � R� � RA,

in which RA is the ammeter resistance. Note that as RA : 0 �,
R� : R. Ignore R0 for now.

28. What Will the Meters Read (See Problems 26 and 27.) In
Fig. 27-30, the ammeter and voltmeter resistances are 3.00 � and
3.00 �, respectively. Take �VB � 12.0 V for the ideal battery and
R0 � 100 �. If R � 85.0 �, (a) what will the meters read for the two
different connections (Figs. 27-30a and b)? (b) What apparent resis-
tance R� will be computed in each case?

1
R

�
1

R�
�

1
R�V



29. Given a Number You are given a number of 10 � resistors,
each capable of dissipating only 1.0 W without being destroyed.
What is the minimum number of such resistors that you need to
combine in series or in parallel to make a 10 � resistance that is ca-
pable of dissipating at least 5.0 W?

30. Asymptote In Fig. 27-31a, resistor 3 is a variable resistor and
the battery is an ideal 12 V battery. Figure 27-31b gives the current i
through the battery as a function of R3. The curve has an asymptote
of 2.0 mA as R3 : � . What are (a) resistance R1 and (b) resistance
R2?
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negative current occurs when the direction of the current through
the battery is opposite the direction of that battery’s potential dif-
ference. What are (a) �VB1 (b) resistance R1, and (c) resistance R2?

35. Work Done by Ideal Battery (a) How much work does an
ideal battery with �VB � 12.0 V do on an electron that passes
through the battery from the positive to the negative terminal? (b)
If 3.4 
 1018 electrons pass through each second, what is the power
of the battery?

36. Portion of a Circuit Figure 27-36 shows a portion of a circuit.
The rest of the circuit draws current i at the connections A and B, as
indicated. Take �VB1 � 10 V, �VB2 � 15 V, R1 � R2 � 5.0 �, R3 �
R4 � 8.0 �, and R5 � 12 �. For each of four values of i—0, 4.0, 8.0,
and 12 A—find the current through each ideal battery and state
whether the battery is charging or discharging. Also find the poten-
tial difference �VAB between points A and B.
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12 V
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m

A
)
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FIGURE 27-31 ■ Problem 30.

31. Box Figure 27-32
shows a section of a
circuit. The electric
potential difference
between points A and
B that connect the
section to the rest of
the circuit is VA � VB

� 78 V, and the cur-
rent through the 6.0 � resistor is 6.0 A. Is the device represented by
“Box” absorbing or providing energy to the circuit and at what
rate?

32. Arrangement of N Resistors In Fig.
27-33, a resistor and an arrangement of
n resistors in parallel are connected in
series with an ideal battery. All the resis-
tors have the same resistance. If one
more identical resistor were added in
parallel to the n resistors already in par-
allel, the current through the battery
would change by 1.25%. What is the value of n?

33. Rate of Energy Transfer In
Fig. 27-34, where each resistance is
4.00 �, what are the sizes and di-
rections of currents (a) i1 and (b)
i2? At what rates is energy being
transferred at (c) the 4.00 V bat-
tery and (d) the 12.0 V battery, and
for each, is the battery supplying
or absorbing energy?

34. Both Batteries Are Ideal
Both batteries in Fig. 27-35a are
ideal. �VB1 of battery 1 has a fixed value but �VB2 of battery 2 can
be varied between 1.0 V and 10 V. The plots in Fig. 27-35b give the
currents through the two batteries as a function of �VB2. You must
decide which plot corresponds to which battery, but for both plots, a
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37. Adjusted Value In Fig. 27-37,
Rs is to be adjusted in value by
moving the sliding contact across
it until points a and b are brought
to the same potential. (One tests
for this condition by momentarily
connecting a sensitive ammeter
between a and b; if these points
are at the same potential, the am-
meter will not deflect.) Show that
when this adjustment is made, the
following relation holds:

Rx � Rs .

An unknown resistance (Rx) can be measured in terms of a stan-
dard (Rs) using this device, which is called a Wheatstone bridge.

� R2

R1
�

+ –
R0

b

a

Rs Rx

R1
R2

Sliding contact

ΔVB

FIGURE 27-37 ■ Problem 37.



38. What Are
the Currents In
Fig. 27-38, what
are currents (a)
i2, (b) i4, (c) i1,
(d) i3, and (e)
i5?

39. Sizes and
Directions Two
What are the
sizes and direc-
tions of (a) current i1 and (b) cur-
rent i2 in Fig. 27-39, where each re-
sistance is 2.00 �? (Can you
answer this making only mental
calculations?) (c) At what rate is
energy being transferred in the
5.00 V battery at the left, and is
the energy being supplied or ab-
sorbed by the battery?

40. Size and Direction Three (a)
What are the size and direction of
current i1 in Fig. 27-40, where each
resistance is 2.0 �? What are the
powers of (b) the 20 V battery, (c)
the 10 V battery, and (d) the 
5.0 V battery, and for each, is en-
ergy being supplied or absorbed?

43. Flashlight Battery A standard flashlight battery can deliver
about 2.0 W� h of energy before it runs down. (a) If a battery costs
80¢, what is the cost of operating a 100 W lamp for 8.0 h using bat-
teries? (b) What is the cost if energy is provided at 12¢ per kilo-
watt-hour?

44. Power Supplied Power is supplied by a device of emf � to a
transmission line with resistance R. Find the ratio of the power dis-
sipated in the line for � � 110 000 V to that dissipated for � �
110 V, assuming the power supplied is the same for the two cases.

45. Car Battery A certain car battery with a 12 V emf has an initial
charge of 120 A� h. Assuming that the potential across the terminals
stays constant until the battery is completely discharged, for how
long can it deliver energy at the rate of 100 W?

46. Energy Transferred A wire of resistance 5.0 � is connected to a
battery whose emf � is 2.0 V and whose internal resistance is 
1.0 �. In 2.0 min, (a) how much energy is transferred from chemical
to electrical form? (b) How much energy appears in the wire as
thermal energy? (c) Account for the
difference between (a) and (b).

47. Assume the Batteries Assume
that the batteries in Fig. 27-42 have
negligible internal resistance. Find
(a) the current in the circuit, (b) the
power dissipated in each resistor,
and (c) the power of each battery,
stating whether energy is supplied
by or absorbed by it.

48. Both Batteries In Fig. 27-43a,
both batteries have emf � � 1.20 V and the external resistance R is
a variable resistor. Figure 27-43b gives the electric potentials �VT

between the terminals of each battery as functions of R: Curve 1
corresponds to battery 1 and curve 2 corresponds to battery 2. What
are the internal resistances of (a) battery 1 and (b) battery 2?
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FIGURE 27-40 ■ Problem 40.

41. Size and Direction Four (a)
What are the size and direction of
current i1 in Fig. 27-41? (b) How
much energy is dissipated by all four
resistors in 1.0 min?

SEC. 27-7 ■ INTERNAL

RESISTANCE AND POWER

42. Chemical Energy A 5.0 A cur-
rent is set up in a circuit for 
6.0 min by a rechargeable battery with a 6.0 V emf. By how much is
the chemical energy of the battery reduced?

12 V 6.0 Ω

18 Ω

18 Ω

18 Ω

i 1

FIGURE 27-41 ■
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FIGURE 27-43 ■ Problem 48.

49. Find Internal Resistance The following table gives the electric
potential difference �VT across the terminals of a battery as a func-
tion of current i being drawn from the battery. (a) Write an equa-
tion that represents the relationship between the terminal potential
difference �VT and the current i. Enter the data into your graphing
calculator and perform a linear regression fit of �VT versus i. From
the parameters of the fit, find (b) the battery’s emf and (c) its inter-
nal resistance.

i (A): 50 75 100 125 150 175 200
�VT (V): 10.7 9.0 7.7 6.0 4.8 3.0 1.7



50. Make Plots In Fig. 27-11a, put � � 2.0 V and r � 100 �. Plot
(a) the current and (b) the potential difference across R, as func-
tions of R over the range 0 to 500 �. Make both plots on the same
graph. (c) Make a third plot by multiplying together, for various
values of R, the corresponding values on the two plotted curves.
What is the physical significance of this third plot?

51. Energy Converted A car battery with a 12 V emf and an inter-
nal resistance of 0.040 � is being charged with a current of 50 A.
(a) What is the potential difference across its terminals? (b) At
what rate is energy being dissipated as thermal energy in the bat-
tery? (c) At what rate is electric energy being converted to chemi-
cal energy? (d) What are the answers to (a) and (b) when the bat-
tery is used to supply 50 A to the starter motor?

52. What Value of R (a) In Fig. 27-
44, what value must R have if the
current in the circuit is to be
1.0 mA? Take �1 � 2.0 V, �2 �
3.0 V, and r1 � r2 � 3.0 �. (b) What
is the rate at which thermal energy
appears in R?

53. Circuit Section In Fig. 27-45, cir-
cuit section AB absorbs energy at a
rate of 50 W when a current i � 1.0
A passes through it
in the indicated di-
rection. (a) What is
the potential differ-
ence between A and
B? (b) emf device X
does not have inter-
nal resistance. What is its emf? (c) What is its polarity (the orienta-
tion of its positive and negative terminals)?

54. Lights of an Auto When the lights of an automobile are
switched on, an ammeter in series with them reads 10 A and a volt-
meter connected across
them reads 12 V. See Fig.
27-46. When the electric
starting motor is turned on,
the ammeter reading drops
to 8.0 A and the lights dim
somewhat. If the internal
resistance of the battery is
0.050 � and that of the am-
meter is negligible, what
are (a) the emf of the bat-
tery and (b) the current
through the starting motor when the lights are on?

55. Same EMF Two batteries having the same emf � but different
internal resistances r1 and r2 (r1 � r2) are connected in series to an
external resistance R. (a) Find the value of R that makes the poten-
tial difference zero between the terminals of one battery. (b) Which
battery is it?

56. Starting Motor The starting motor of an automobile is turning
too slowly, and the mechanic has to decide whether to replace the
motor, the cable, or the battery. The manufacturer’s manual says
that the 12 V battery should have no more than 0.020 � internal re-
sistance, the motor no more than 0.200 � resistance, and the cable
no more than 0.040 � resistance. The mechanic turns on the motor
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and measures 11.4 V across the battery, 3.0 V across the cable, and a
current of 50 A. Which part is defective?

57. Maximum Power (a) In Fig. 27-11a, show that the rate at which
energy is dissipated in R as thermal energy is a maximum when 
R � r. (b) Show that this maximum power is P � �2/4r.

58. Solar Cell A solar cell generates a potential difference of 0.10
V when a 500 � resistor is connected across it, and a potential dif-
ference of 0.15 V when a 1000 � resistor is substituted. What are 
(a) the internal resistance and (b) the emf of the solar cell? (c) The
area of the cell is 5.0 cm2, and the rate per unit area at which it
receives energy from light is 2.0 mW/cm2. What is the efficiency of
the cell for converting light energy to thermal energy in the 1000 �
external resistor?

59. Maximum Energy Two batteries of emf � and internal resis-
tance r are connected in parallel across a resistor R, as in Fig. 27-
47a. (a) For what value of R is the rate of electrical energy dissipa-
tion by the resistor a maximum? (b) What is the maximum energy
dissipation rate?
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FIGURE 27-47 ■ Problems 59 and 60.

60. Either Parallel or Series You are
given two batteries of emf � and inter-
nal resistance r. They may be con-
nected either in parallel (Fig. 27-47a)
or in series (Fig. 27-47b) and are to be
used to establish a current in a resistor
R. (a) Derive expressions for the cur-
rent in R for both arrangements.
Which will yield the larger current 
(b) when R � r and (c) when R 	 r?

61. Batteries Are Ideal In Fig. 27-48, �1 � 3.00 V, �2 � 1.00 V,
R1 � 5.00 �, R2 � 2.00 �, R3 � 4.00
�, and both batteries are ideal. What
is the rate at which energy is dissi-
pated in (a) R1, (b) R2, and (c) R3?
What is the power of (d) battery 1
and (e) battery 2?

62. For What Value of R In the cir-
cuit of Fig. 27-49, for what value of R
will the ideal battery transfer energy
to the resistors (a) at a rate of 60.0
W, (b) at the maximum possible rate,
and (c) at the minimum possible
rate? (d) What are those rates?

+
–2R1

+
– 1

R2R3

FIGURE 27-48 ■
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63. Calculate Current (a) Calcu-
late the current through each ideal
battery in Fig. 27-50. Since the bat-
teries are ideal � � �VB in each
case. Assume that R1 � 1.0 �,
R2 � 2.0 �, �1 � 2.0 V and �2 �
�3 � 4.0 V. (b) Calculate Va � Vb.

64. Constant Value In the circuit
of Fig. 27-51, � has a constant
value but R can be varied. Find the
value of R that results in the maxi-
mum heating in that resistor. The
battery is ideal.
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Additional Problems

65. True or False For the circuit in Fig. 27-52, indicate whether the
statements are true or false. If a statement is false, give a correct
statement.

(a) Some of the current is used up when
the bulb is lit; the current in wire B is
smaller than the current in wire A.
(b) A current probe will have the same
readings if connected to read the cur-
rent in wire A or wire B. The current
flows from the battery, through wire A,
through the bulb, and then back to the
battery through wire B.
(c) The current flows toward the bulb in both wires A and B.
(d) The (positive) current flows from the battery, through wire A,
and then back to the battery through wire B.
(e) If wire A is left connected but wire B is disconnected, the bulb
will still light.

66. Use the
Model (a)
Use our
model for
electric cur-
rent to rank
the net-
works shown in Fig. 27-53 in order by resistance. Explain your rea-
soning. (b) If a battery were connected to each of the circuits, in
which case would the current through the battery be the largest?
The smallest? Explain your reasoning.

67. Examine the Cir-
cuits Examine the cir-
cuits shown in Fig. 27-
54 and indicate whether
you think each of the
following two state-
ments are true or false.
Please explain your rea-
soning.

(a) Circuits 1 and 2 are
different. The brightness of the two bulbs in circuit 1 are the same,
but in circuit 2 the bulb closest to the battery in brighter than the
bulb that is further away.
(b) Circuit diagrams only show electrical connections, so the draw-
ings in circuits 1 and 2 are electrically equivalent and the brightness
of the two bulbs is the same in both circuits 1 and 2.

68. Which Diagram (a) Identify which of the nice, neat circuit dia-
grams (A, B, C, or D) in Fig. 27-55c corresponds to the messy circuit
drawing in Fig. 27-55a. Explain the reasons for your answer.
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B

FIGURE 27-52 ■

Problem 65.

A B C D E

FIGURE 27-53 ■ Problem 66.

(1) (2)

FIGURE 27-54 ■ Problem 67.

B A

D E

#1

(a)

D

A

C

B

#2

(b)

(c)

A B C D

FIGURE 27-55 ■ Problem 68.

(b) Which neat circuit diagram
corresponds to the messy circuit
drawing in Fig. 27-55b. Explain
the reasons for your answer.

69. At Which Point (a) For the
circuit in Fig. 27-56, at which
point A, B, C, D or E is the volt-
age the lowest? Explain. (b) At
which point is the potential energy
of a positive charge the highest?
Explain. (c) At which point is the
current the largest? Explain.

70. Bulbs 1 Through 6 (a) For the
circuit shown in Fig. 27-57, rank
bulbs 1 through 6 in order of de-
scending brightness. Explain the
reasoning for your ranking. (b)
Now assume that the filament of
lightbulb 6 breaks. Again rank the
bulbs in order of descending
brightness. Explain the reasoning
for your ranking.
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E A

C B

+–

FIGURE 27-56 ■ Problem 69.
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FIGURE 27-57 ■ Problem 70.



71. The Circuit Diagram The circuit di-
agram in Fig. 27-58 shows two unlabeled
resistors attached to identical bulbs. Ex-
plain how you would interpret the
brightness of bulbs A and B to decide
which resistor is larger.

72. Three Circuits Which of the three
circuits shown in Fig. 27-59, if any, are
electrically identical? Which are differ-
ent? Explain your answers.
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77. Which Are Connected In the circuits shown in Fig. 27-64, state
which resistors are connected in series with which other resistors,
which are connected in parallel with which other resistors, and
which are neither in series nor parallel.

A

B

#1

#2

FIGURE 27-58 ■
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FIGURE 27-59 ■ Problem 72.

73. An Unscrewed Bulb Exam-
ine the circuit shown in Fig. 27-
60. (a) Rank the bulbs according
to brightness and explain your
reasoning. (b) How will the
brightness of bulbs 1 and 3
change if bulb 4 is unscrewed?
Explain. (c) How will the bright-
ness of bulbs 1, 3, 5, and 6
change if a conducting wire is
connected between points A
and F? Explain.

74. Examine the Circuit Ex-
amine the circuit shown in
Fig. 27-61. (a) Assume that
the switch is open. State
which bulbs or combination
of bulbs are in series, and in
parallel. (b) Assume that the
switch is closed. State
whether the bulbs in the cir-
cuit are arranged in series or parallel.

75. Examine the Circuit Two
Examine the circuit shown in
Fig. 27-62. (a) Assume that
the switch is open. Rank the
bulbs according to brightness
and explain your reasoning.
(b) Assume that the switch is
closed. Rank the bulbs ac-
cording to brightness and ex-
plain your reasoning.

76. More Current If the batteries in Fig. 27-63 are identical, which
circuit draws more current? Circuit A? Circuit B? Neither? Show
your calculations and reasoning.
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78. Lots of Batteries and a Bulb Figure 27-65 shows identical bat-
teries connected in different arrangements to the same lightbulb.
Assume the batteries have negligible internal resistances. The posi-
tive terminal of each battery is marked with a plus. Rank these
arrangements on the basis of bulb brightness from the highest to
the lowest. Please explain your reasoning.

79. Constant Current Source We have studied batteries that pro-
vide a fixed voltage across their terminals. In that case, we had to
examine our circuit and use our physical principles in order to cal-
culate the current through the battery. In neuroscience, it is some-
times useful to use a constant current source (CCS), which instead
provides a fixed amount of current through itself. In this case, we
have to use our physical principles in order to calculate the voltage
drop across the source.



Suppose we have a constant current source (denoted CSS) that
always provides a current of ic � 10�6 amps. For the three circuits
shown in Fig. 27-66, find the voltage drop across the current source.
Each resistor has a resistance R � 2000 �. (If you prefer, you may
leave your answer in terms of the symbols ic and R.)

Part of the process can be
modeled by treating the mem-
brane as if it were a simple elec-
tric circuit consisting of batteries,
resistors, and a switch. A simple
model of the membrane of a
nerve cell is shown in Fig. 27-68.
It consists of two batteries (ion
pumps) with voltages �V1 �
100 mV and V2 � 50 mV. The re-
sistance to flow across the mem-
brane is represented by two resis-
tors with resistances R1 � 10 K � and R2 � 90 K �. The variability
is represented by a switch, S1.

Four points on the circuit are labeled by the letters a–d. The
point b represents the outside of the membrane and the point d the
inside of the membrane.

(a) What is the voltage difference across the membrane (i.e., be-
tween d and b) when the switch is open?
(b) What is the current flowing around the loop when the switch is
closed?
(c) What is the voltage drop across the resistor R1 when the switch
is open? Closed?
(d) What is the voltage drop across the resistor R2 when the switch
is open? Closed?
(e) What is the potential difference across the membrane (i.e., be-
tween d and b) when the switch is closed?
(f) If the locations of resistances R1 and R2 were reversed, would
the voltages across the cell membrane be different?

82. Find the Five Currents
Consider the circuit in Fig.
27-69. (a) Apply the junc-
tion rule to junctions d
and a and the loop rule to
the three loops to produce
five simultaneous, linearly
independent equations. (b)
Represent the five linear
equations by the matrix
equation [A][B] � [C],
where

� �
What are the matrices [A] and [C]? (c) Have the calculator perform
[A]�1 [C] to find the values of i1, i2, i3, i4, and i5.

83. Knowing the Currents For the same situation as in Problem 82
and having already solved for the five unknown currents, do the fol-
lowing. (a) Find the electric potential difference across the 9 � re-
sistor. (b) Find the rate at which work is being done on the 7 � re-
sistor. (c) Find the rate at which the 12 V battery is doing work on
the circuit. (d) Find the rate at which the 4 V battery is doing work
on the circuit. (e) Of the points in the circuit labeled a and c, which
is at the higher electric potential?

[B] �

i1

i2

i3

i4

i5
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80. Tracking Around a Circuit The circuit shown in Fig. 27-67 con-
tains an ideal battery and three resistors. The battery has an emf of
1.5 V, R1 � 2 �, R2 � 3 �, and R3 � 5 �. Also shown in Fig. 27-67 is
a graph tracking some quantity around the circuit. Make three
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FIGURE 27-69 ■ Problem 82 and 83.

copies of this graph. On the first, plot the voltage a test charge
would experience as it moved through the circuit. On the second,
plot the electric field a test charge would experience as it moved
through the circuit. On the third, plot the current one would mea-
sure crossing a plane perpendicular to the wire of the circuit as one
goes through the circuit.

81. Modeling a Nerve Membrane (From a homework set in a grad-
uate course in synaptic physiology) As a result of a complex set of
biochemical reactions, the cell membrane of a nerve cell pumps
ions (Na� and K�) back and forth across itself, thereby maintaining
an electrostatic potential difference from the inside to the outside
of the membrane. Modifications on the conditions can result in
changes in those potentials.

R1

ΔV1 ΔV2

R2

S1

Outside membrane

Inside membrane

b

d

ca

FIGURE 27-68 ■ Problem 81.
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28 Capacitance

In 1964 Harold “Doc” Edgerton of MIT, who was renowned

for his ability to take high-quality stop-action photos, cap-

tured this image of a bullet penetrating an apple. This stop-

action photo was made by leaving the camera shutter open

and tripping a high-speed electronic flash device at just the

right time to illuminate the apple and bullet. Since the bullet

was moving at 900 m/s, Edgerton used a flash with a dura-

tion of only 0.3 �s. This meant that the bullet only moved

0.3 mm during the flash. If we were doing ordinary photog-

raphy we would probably illuminate the apple with a 100 W

lightbulb using an exposure time of 1/20 s to provide about

5 J of energy for illumination. But providing the necessary

5 J of electrical energy for the illumination in a time period

of 0.3 �s requires 15 MW of power.

How is it possible to provide
the energy needed to stop a
bullet’s action when it is
only illuminated for a tiny
fraction of a second?

The answer is in this chapter.



28-1 The Uses of Capacitors

In Chapter 26 we discussed transferring excess charge to a pair of metal plates as
shown in Fig. 26-1. The pair of metal plates is an example of the basic component of a
capacitor. A capacitor can be constructed using any two conductors separated by an
insulator. If we connect each conductor making up a capacitor to one of the terminals
of a source of potential difference such as a battery, one conductor acquires a net pos-
itive charge while the other conductor acquires the same amount of net negative
charge. The conductors can be any shape. Figure 28-1 shows some possible capacitor
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Cylindrical capacitor with air
as an insulator

Parallel plate capacitor
with paper and air
as an insulator
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capacitor (blobs)
with air as an
insulator
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FIGURE 28-1 ■ Three capacitors of differ-
ent sizes and shapes have been connected
to a battery. They each consist of a pair of
conductors separated by an insulator. In
each case the battery removes electrons
from one of the two conductors, leaving it
with excess positive charge and forces the
same number of electrons to the opposite
conductor.

geometries. No matter what shape or size a capacitor’s conductors are, we often casu-
ally refer to the conductors as “plates.”

There are many reasons for constructing and studying capacitors: they are useful
circuit elements and they can store energy.

Capacitors in Electrical Circuits
Since a capacitor consists of conductors separated by an insulator, no current can flow
through it. So at first glance, it doesn’t seem to make sense to use a capacitor as a cir-
cuit element. Surprisingly, capacitors have very interesting and useful properties in
circuits with changing currents through their other components. For example, variable
capacitors are vital elements that enable us to tune radio and television receivers.
They are found in most household electrical devices. Capacitors are used to control
the frequency of the flashing lights used for warning signals at construction sites. The
coaxial cables used to carry high-frequency microwave and radio signals are cylindri-
cal capacitors. Microscopic capacitors are used in communications and computers to
shape the timing and strength of time-varying signal transmissions. Figure 28-2 shows
some of the many sizes and shapes of capacitors commonly found in electric circuits.

Capacitors as Energy Storage Devices
Just as you can store potential energy by pulling a bowstring, stretching a spring, com-
pressing a gas, or lifting a book, you can also store electrical energy in the electric field
found inside a “charged” capacitor as shown in Figs. 28-3 and 28-4. For example, en-
ergy storage in microscopic capacitors enables them to function as memory devices in
modern digital computers and in the charge-coupled devices (CCDs) used in video
cameras. Energy stored in capacitors can also be used to keep computer circuits run-
ning smoothly during brief power outages. A much larger capacitor lies at the heart of
a battery-powered photoflash unit. This capacitor accumulates electrical energy rela-
tively slowly during the time between flashes, building up an electric field as it does so.

FIGURE 28-2 ■ An assortment of capaci-
tors commonly found in electrical circuits.
The structures of these devices are hidden.

FIGURE 28-3 ■ When a battery is con-
nected across the terminals of a capacitor,
the capacitor stores electrical energy.
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The electric field across the capacitor plates stores energy that can be released rapidly
to create an intensive flash of light. (It is important to note that because capacitors are
storehouses for electrical energy, some electrical devices can give you a nasty shock if
you open them and accidentally touch both terminals of a capacitor—even when the
device is turned off.)

28-2 Capacitance

Figure 28-5 shows a capacitor made from a conventional arrangement of a pair of
metal plates. A device consisting of two parallel conducting plates of area A separated
by a distance d is called a parallel-plate capacitor. The circuit symbol we use to repre-
sent a capacitor (�� ��) is based on the structure of a parallel-plate capacitor but is
used for capacitors of all shapes. For the purpose of defining capacitance in a simple
manner, we will consider an ideal capacitor as two flat parallel conductors (or plates)
with a perfect insulator between its plates. This perfect insulator allows absolutely no
current to pass between them. For simplicity, at first we choose to consider the situa-
tion where there is no matter (such as air, glass, or plastic) between the capacitor
plates. We just have a vacuum between the plates. We further assume we will charge
our capacitor with an ideal battery. Recall that an ideal battery has no internal resis-
tance, so its emf and the potential difference across its terminals are always the same.
In Section 28-6 and those following we will relax some of these idealized restrictions.

Equal and Opposite Excess Charge on Plates 
When capacitor plates of any shape are connected to a battery or some other voltage
source, electrons flow from the negative terminal of the battery through the connect-
ing wire and onto one plate of the capacitor. Meanwhile, the positive terminal of the
battery attracts electrons from the other plate. These electrons are pulled through the
wires of the circuit, away from the capacitor plate, and leave behind an excess of posi-
tive metal atoms with missing electrons. During this process, we cannot find an electric
field outside of the capacitor so the overall capacitor seems to be electrically neutral.
Hence, we must conclude that at any given time one plate has net or excess charge of
�q while the other has a net charge of �q. The chemical reactions taking place in the
battery are complex, so the electrons pulled off one plate are not necessarily the same
ones being pushed through the wires of the circuit onto the other plate. However, the
battery does deposit one electron on the negative plate for every one it pulls off the
positive plate. We will call this process charge separation. Sometimes the process is
called charging.

To understand how a capacitor works, it is important to note that charge separation occurs
as a result of charge flow in the wires of the circuit. Charges are not transferred from one
plate to the other inside an ideal capacitor.

Why Do Capacitor Plates Stop Accumulating Charge?
Observations show that the battery eventually stops pulling electrons off the posi-
tively charged plate and depositing electrons on the negatively charged plate. This is
because as electrons build up on the negative plate, they oppose the battery’s action
and start repelling the flow of additional electrons. Similarly, it becomes harder and
harder for the battery to pull electrons off the positive plate as the atoms carrying
positive net charge pull back on them. When enough charge has accumulated on the

FIGURE 28-4 ■ When a “charged” capaci-
tor is disconnected from its battery and
wired in series with a bulb, the energy
stored in it can light the bulb for a short
period of time.

ΔV

d

A

d = spacing
A = area
ΔV = potential difference

FIGURE 28-5 ■ A parallel-plate capacitor
with identical plates of area A and spacing
d is connected to a battery with potential
difference . The plates have equal and
opposite excess charges of amount on
their facing surfaces.

� q �
�V



plates, the force exerted on an electron by the battery and the oppositely directed
forces exerted on it by the other charges on a plate cancel each other. No more elec-
trons can flow from one plate to the other. We can use a high-quality voltmeter to
measure the potential difference across a capacitor just disconnected from a battery.
This measurement shows that charge separation stops when the potential difference
across a capacitor is the same as the potential difference across the battery.

Factors Affecting Charge Separation Capacity
By convention we refer to the charge on a capacitor as , the absolute value of the
net charge on each plate. Although we refer to a capacitor with charges q and �q on
its plates as “charged,” a capacitor is electrically neutral so we are actually describing
its charge separation created by a voltage source. What factors might affect the capac-
ity for charge separation in a parallel-plate capacitor? We can use our knowledge of
electrostatics to explore the effects of several factors. In particular, we will explore
how we expect charge to depend on the potential difference across the battery termi-
nals and on geometric factors such as the area of the plates and their spacing 
(Fig. 28-6):

1. Potential Difference, �V: For a given capacitor of any shape, we would expect the
charge separation to be larger when the potential difference the battery places
across the capacitor plates is larger. How much larger? Consider a group of n
charges distributed on the plates of a capacitor. Since the plates are conductors,
each one is an equipotential surface. According to Eq. 25-25 we can find the elec-
tric potential at a given point on a plate relative to infinity. We just need to know
the locations of the group of n charges distributed on the capacitor plates. The po-
tential is given by

(Eq. 25-25)

where represents the radial distance between the point where the potential is
being calculated and the location of the ith charge. By examining this equation we
can see that if the potential is to be doubled, there needs to be twice as much
charge at each location on the capacitor plates. We expect the amount of the
charge separation on a capacitor to be proportional to the potential difference
across its plates. We predict 

As you will see in the next subsection, the constant of proportionality between
the amount of excess charge on each plate and the potential difference across the
plates for a given capacitor is known as its capacitance. We will deal more for-
mally with the definition of capacitance and its units in the next section.

2. Influence of Plate Area, A: Consider a parallel-plate capacitor. For a given poten-
tial difference and plate spacing, d, how do we expect the charge separation ca-
pacity to depend on the area of the plates? When the plates have a large area, the
electrons the battery is trying to push on the negative plate have more room to
spread out. Likewise, the unneutralized atoms left behind when electrons are
pulled off the positive plate can be distributed further apart. We expect that as the
area of the plates increases, it will be easier to remove or deposit electrons on
them.

A simple experiment can be done to show that the charge separation capacity
is in fact directly proportional to area. In this experiment, two sheets of aluminum

� q � � ��V �.

ri

V � k�
n

i�1

qi

ri

� q �

802 CHAPTER 28 Capacitance

A

–q

q

Electric field lines

FIGURE 28-6 ■ As the field lines show, the
electric field due to the charged plates is
uniform in the central region between the
plates. The field is not uniform at the edges
of the plates, as indicated by the “fringing”
of the field lines there.



foil are placed opposite each other and separated by the insulating pages of a
book. A multimeter like that described in Section 26-4 can be used to measure
capacitance. Measurements are taken for different areas of foil. The results are
shown in Fig. 28-7. We derive this relationship theoretically in the next section.

3. Influence of Plate Spacing, d: Once again we consider a parallel-plate capacitor.
For a given potential difference and plate area, A, how do we expect the charge
separation capacity to depend on the spacing between the plates? When the
plates have a small spacing, the excess positive charges on one plate are quite
close to the excess negative charges on the other plate. Since opposite charges at-
tract each other, these charges pull on each other across the insulating gap even
though they cannot cross the gap. This attraction helps to counterbalance the
repulsion between the like charges on each plate. As the spacing between plates
becomes smaller, we expect the overall capacity for the charge separation caused
by the battery action to become larger.

A simple experiment can be done to show that the charge separation capacity
does in fact increase as the spacing between plates decreases. In this experiment,
two sheets of aluminum foil are placed opposite each other and separated by the
insulating pages of a book. A multimeter is used to measure capacitance as differ-
ent numbers of pages are inserted between the foil plates. The results are shown
in Fig. 28-8. This graph shows that the capacitance of the foil plate system is 
inversely proportional to the spacing, d, between the plates. We derive this
relationship theoretically in the next section.

Defining Capacitance
As we just discussed in the last subsection, the amount of the excess charge on each
plate of a capacitor, , and the size of the potential difference, , across it should
be proportional to each other, so 

(28-1)� q � � C��V �.

� �V �� q �
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FIGURE 28-7 ■ Two rectangular pieces of
aluminum foil are wedged between the
insulating pages of a book. A multimeter
is used to measure the capacitance of the
system. The result shows capacitance in-
creasing in direct proportion to the area
of the conducting aluminum plates.
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FIGURE 28-8 ■ Two rectangular pieces of
aluminum foil are wedged between the in-
sulating pages of a book. The capacitance
of the system is measured as a function of
the spacing between the plates. The result
shows that capacitance is inversely pro-
portional to the spacing.
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The proportionality constant C is defined as the capacitance. The capacitance is a
measure of how much excess charge must be put on each of the plates to produce a
certain potential difference between them: the greater the capacitance, the larger the
charge separation created by a given potential difference.

For a parallel-plate capacitor, experimental results have shown us its capacitance
depends directly on the plate areas and inversely on the spacing between plates. We
will see in Sections 28-6 and 28-7 that capacitance will also depend on the nature of
the insulating material inserted between the plates. Capacitors having different shapes
will not have the same simple relationships between plate area and spacing. In the
next section, we will use the definition of electric potential and Gauss’ law to identify
the theoretical geometric factors for several different types of capacitors including
parallel-plate, cylindrical, and spherical capacitors.

Capacitance Units
The SI unit of capacitance following from this expression is the coulomb per volt. This
unit occurs so often that it is given a special name, the farad (F):

(28-2)

As you will see, the farad is a very large unit. Fractions of the farad, such as the
microfarad and the picofarad , are more convenient
units in practice. A summary of units and their common notations is shown in
Table 28-1.

READI NG EXERC IS E  28-1: Does the capacitance C of a capacitor increase,
decrease, or remain the same (a) when the excess charge of amount on its plates is doubled
and (b) when the potential difference across it is tripled? ■

28-3 Calculating the Capacitance

Our task here is to calculate the capacitance of a capacitor once we know its geome-
try. Because we will consider a number of different geometries, it seems wise to de-
velop a general plan to simplify the work. In brief, our plan is as follows:

1. Assume a charge of amount �q� on each of the “plates.”

2. Calculate the electric field between the plates in terms of this amount of
charge, using Gauss’ law.

3. Knowing , calculate the potential difference between the plates from 

. (Eq. 25-16) 

4. Calculate C from (Eq. 28-1).

Before we start, we can simplify the calculation of both the electric field and the
potential difference by making certain assumptions. We discuss each in turn.

Calculating the Electric Field
To relate the electric field between the plates of a capacitor to the amount of excess
charge on either plate, we shall use Gauss’ law:

(28-3)ε0�E
:

�dA
:

� q net � q.

� q �
E
:

� q � � C ��V�

V2 � V1 � ��2

1
E
:

�ds:

�VE
:

E
:

�Vc

� q �

(1 pF � 10�12 F)(1 �F � 10�6 F)

1 farad � 1 F � 1 coulomb per volt � 1 C/V.TA B L E 2 8 - 1
Units of Capacitance

microfarad: 10�6 F � 1 �F

nanofarad: 10�9 F � 1 nF � 1000 ��F

picofarad: 10�12 F � 1 pF � 1 ��F
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Here q is the net charge enclosed by a Gaussian surface, and is the net elec-
tric flux through that surface. In all cases we shall consider, the Gaussian surface will
be such whenever electric flux passes through it, will have a uniform magnitude
E � , and the vectors and will be parallel. This equation will then reduce to 

(special case of Eq. 28-3), (28-4)

in which A is the area of the part of the Gaussian surface through which flux passes.
For convenience, we shall always draw the Gaussian surface in such a way it com-
pletely encloses the charge on the positive plate; see Fig. 28-9 for an example.

Calculating the Potential Difference
In the notation of Chapter 25 (Eq. 25-16), the potential difference between the plates
of a capacitor is related to the field by 

, (28-5)

in which the integral is to be evaluated along any path starting on one plate and end-
ing on the other. We shall always choose a path following an electric field line, from
the negative plate to the positive plate. For this path, the vectors and will have
opposite directions, so the dot product will be equal to . The right
side of this equation will then be positive. Letting represent the difference,

, we can then recast the relationship as 

(special case of Eq. 28-5), (28-6)

in which the “ � ” and “ � ” remind us that our path of integration starts on the nega-
tive plate and ends on the positive plate.

We are now ready to apply (Eq. 28-4) and 
(Eq. 28-6) to some particular cases.

A Parallel-Plate Capacitor
We assume, as Fig. 28-9 suggests, that the plates of our parallel-plate capacitor are so
large and so close together we can neglect the fringing of the electric field at the edges
of the plates, taking to be constant throughout the region between the plates. This
configuration was used in old-time radios. As we will see in Chapter 33, the frequency
of an oscillating circuit depends on the capacitance. In old radios (those built before
the time that tiny transistors became ubiquitous), the dial was connected to a set of
nested metal plates. When the dial was turned, some of the plates rotated while others
stayed fixed. By turning the dial, the overlap of the plates changed, changing the ca-
pacitance and thereby the frequency of the signal selected.

We draw a Gaussian surface enclosing just the excess charge q on the positive
plate, as in Fig. 28-9. Recall from above that

(28-7)

where A is the area of each of the plates.
Equation 28-6 yields 
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FIGURE 28-9 ■ A charged parallel-plate
capacitor. A Gaussian surface encloses the
charge on the positive plate. The integra-
tion of Eq. 28-6 is taken along a path ex-
tending directly from the negative plate to
the positive plate.
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Here, � E can be placed outside the integral because it is a constant; the second
integral then is simply the plate separation d.

Combining these two expressions with the relation (Eq. 28-1), we
find

(parallel-plate capacitor). (28-9)

This theoretical relationship matches the results of the experiments we presented in
the last section. The capacitance does indeed depend only on geometrical factors—
namely, the plate area A and the plate separation d. Note that C increases as we in-
crease the plate area A or decrease the separation d.

As an aside, we point out that this expression suggests one of our reasons for
writing the electrostatic constant in Coulomb’s law in the form . If we had not
done so, the expression for the capacitance of a parallel-plate capacitor above—
which is used more often in engineering practice than Coulomb’s law—would have
been less simple in form. We note further that it permits us to express the permittivity
constant in a unit more appropriate for use in problems involving capacitors;
namely,

(28-10)

We have previously expressed this constant as 

. (28-11)

A Cylindrical Capacitor
Fig. 28-10 shows, in cross section, a cylindrical capacitor of length L formed by two
coaxial cylinders of radii a and b. We assume so we can neglect the fringing of
the electric field occurring at the ends of the cylinders. Each plate contains an amount
of excess charge . This configuration is important because coaxial cables are used
in the communications industry for the long distance transmission of electrical signals
(Fig 28-11).

The electric field inside the cylinder is highly symmetrical, so we can use
Gauss’s law to determine its values. As a Gaussian surface, we choose a cylinder 
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FIGURE 28-10 ■ A cross section of a long
cylindrical capacitor, showing a cylindrical
Gaussian surface of radius r (that encloses
the positive “plate”) and the radial path of
integration along which Eq. 28-6 is to be
applied. If we visualize the central conduc-
tor as the cross section of a sphere rather
than that of a long cylindrical wire then
this figure also illustrates a spherical
capacitor.

FIGURE 28-11 ■ Coaxial cables and connectors are used for long-distance
transmission of television and radio signals. The cable consists of a central
conducting wire surrounded by a layer of insulation and then a cylindrical
conductor. All three elements are centered on the same axis. Coaxial cables
are good examples of cylindrical capacitors.
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of length L and radius r, closed by end caps and placed as is shown in Fig. 28-10.
Then 

in which is the area of the curved part of the Gaussian surface. There is no flux
through the end caps. Solving for yields 

(28-12)

Substitution of this result into our general expression for potential difference yields 

(28-13)

where here (we integrated radially inward). From the relation ,
we then have 

(cylindrical capacitor). (28-14)

We see that the capacitance of a cylindrical capacitor, like that of a parallel-plate ca-
pacitor, depends only on geometrical factors, in this case L, b, and a.

A Spherical Capacitor
Fig. 28-10 can also serve as a central cross section of a capacitor consisting of two con-
centric spherical shells, of radii a and b. As a Gaussian surface we draw a sphere of ra-
dius r concentric with the two shells; then 

in which is the area of the spherical Gaussian surface. We solve this equation for
, obtaining 

E � (28-15)

which we recognize as the expression for the electric field due to a uniform spherical
charge distribution from Chapter 24.

If we substitute this expression into Eq. 28-6, we find

(28-16)

where again we have substituted �dr for ds. If we now substitute this into
(Eq. 28-1) and solve for C, we find

(spherical capacitor). (28-17)C � 4�ε0
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An Isolated Sphere
We can assign a capacitance to a single isolated spherical conductor of radius R by as-
suming that the “missing plate” is a conducting sphere of infinite radius. After all, the
field lines leaving the surface of a positively charged isolated conductor must end
somewhere; the walls of the room in which the conductor is housed can serve effec-
tively as our sphere of infinite radius.

To find the capacitance of the isolated conductor, we first rewrite the expression
for a spherical capacitor above as 

If we then let and substitute R for a, we find

(isolated sphere). (28-18)

Note that this formula and the others we have derived for capacitance (Eqs. 28-9,
28-14, and 28-17) involve the constant multiplied by a quantity having the dimen-
sions of a length.

READI NG EXERC IS E  28-2: Consider capacitors charged by and then removed from
the same battery. Does the charge on the capacitor plates increase, decrease, or remain the
same in each of the following situations? (a) The plate separation of a parallel-plate capacitor is
increased. (b) The radius of the inner cylinder of a cylindrical capacitor is increased. (c) The ra-
dius of the outer spherical shell of a spherical capacitor is increased. ■

READI NG EXERC IS E  28-3: Consider capacitors charged by identical batteries. If
the capacitors stay connected to the batteries, does the amount of excess charge on the capaci-
tor plates increase, decrease, or remain the same in each of the following situations? (a) The
plate separation of a parallel-plate capacitor is increased. (b) The radius of the inner cylinder of
a cylindrical capacitor is increased. (c) The radius of the outer spherical shell of a spherical ca-
pacitor is increased. ■

28-4 Capacitors in Parallel and in Series

When there is a combination of capacitors in a circuit, we can often replace that com-
bination with an equivalent capacitor—that is, a single capacitor having the same be-
havior as the actual combination of capacitors. With such a replacement, we can sim-
plify circuits This is similar to the approach we took with resistors in Chapter 27. In
addition, circuits often have what is termed stray capacitance due to the presence of
conductors and insulators in other types of circuit elements. Knowing how the effec-
tive capacitance of such elements might combine with each other and other capacitors
in the vicinity is vital to the design of high-performance circuits. In this section we dis-
cuss the behavior of two basic types of capacitor combinations—parallel and series.

Capacitors in Parallel
Figure 28-12a shows an electric circuit in which three capacitors are connected in par-
allel with battery B. This description has little to do with where the capacitor plates
appear in the diagram. Rather, “in parallel” means that one plate of each capacitor is
wired directly to one plate of the other capacitors. The opposite plates of the capaci-
tors are also wired to each other. When the parallel combination is connected to a
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FIGURE 28-12 ■ (a) Three capacitors con-
nected in parallel to battery B. The battery
maintains a positive potential difference

� Vb � Va across its terminals and
thus across each fully charged capacitor.
(b) The equivalent capacitor, with
capacitance Ceq, replaces the parallel
combination.
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battery, the battery’s potential difference is applied across all three capacitors as
shown in Fig. 28-12a.

We can anticipate how the parallel combination will behave by considering the
special case in which all three capacitors are parallel-plate capacitors with the same
spacing. What happens in this case is that the effective area of the plates of the com-
bined network of capacitors is equal to the sum of the three areas. Using Eq. 28-9
we see 

Even if the three capacitors are of different types with each having a different
geometry, we expect the effective area of the combination will be increased. The proof
of the pudding is in the experiment. It turns out that a multimeter set to measure ca-
pacitance can be used to verify 

for parallel combinations of three capacitors of all sorts of different types. Since the
potential difference across a parallel combination of capacitors connected to a voltage
source is the same, we can use the expression (Eq. 28-1) to show that if

, then

,

so that 

In general,

When a potential difference is applied across several capacitors connected in parallel,
that potential difference is applied across each capacitor. The total amount of the excess
charge found on each plate of the equivalent capacitor is equal to the sum of the excess
charge amounts found on each of the capacitors.

When we analyze a circuit of capacitors in parallel, we can simplify it with this
mental replacement:

Capacitors connected in parallel can be replaced with an equivalent capacitor that has the
same total charge and the same potential difference as the actual capacitors.

We can easily extend our method for finding the equivalent capacitance for three
capacitors to any number of capacitors. For n capacitors wired in parallel,

(n capacitors in parallel). (28-19)

To find the equivalent capacitance of a parallel combination, we simply add the indi-
vidual capacitances.
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ε0(A1 � A2 � A3)

d
�

ε0A1

d
�

ε0A2

d
�

ε0A3

d
� C1 � C2 � C3.

�VB
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Capacitors in Series
Figure 28-13a shows three capacitors connected in series to battery B. This description
has little to do with where the capacitors are located on the drawing. Rather, “in se-
ries” means the capacitors are wired serially, one after the other, so a battery can set
up a potential difference across the two ends of the series as shown in Fig. 28-13a.

Let’s consider what goes on with the charges on the capacitor plates by following a
chain reaction of events, in which the charging of each capacitor causes the charging of
the next capacitor. We start with capacitor 3 and work upward to capacitor 1. When the
battery is first connected to the series of capacitors, it produces a net charge �q on the
bottom plate of capacitor 3. That charge then repels negative charge from the top plate
of capacitor 3 (leaving it with a net or excess charge �q). The repelled negative charge
moves to the bottom plate of capacitor 2 (giving it charge �q). That excess negative
charge on the bottom plate of capacitor 2 then repels negative charge from the top plate
of capacitor 2 (leaving it with charge �q) to the bottom plate of capacitor 1 (giving it a
net charge �q). Finally the excess charge on the bottom plate of capacitor 1 helps move
negative charge from the top plate of capacitor 1 to the battery, leaving that top plate
with net charge �q. We see then that the potential differences existing across the capac-
itors in the series produce identical amounts of excess charge on their plates.

Since the amounts of excess charge on each pair of plates in a series connection
are the same, we can use Eq. 28-1, , to summarize our reasoning in equa-
tion form:

,

and so

.

The total potential difference due to the battery is the sum of these three poten-
tial differences. Thus,

,

so that

The equivalent capacitance is then 

and also

When a potential difference of size is applied across several capacitors connected in
series, each of the capacitors has the same amount of excess charge on its plates. The
sum of the potential differences across the entire network of capacitors is equal to the size
of the applied potential difference .

Here is an important point about capacitors in series: When charge is shifted from
one capacitor to another in a series of capacitors, it can move along only one route,
such as from capacitor 3 to capacitor 2 in Fig. 28-13a. If there are additional routes,
the capacitors are not in series. Hence, when we analyze a circuit of capacitors in se-
ries, we can simplify it with this mental replacement:

� �V �

� q �
� �V �

1
Ceq

�
1

C1
�

1
C2

�
1

C3
.Ceq �

� q �
� �V �

� q �
Ceq

�
� q �
C1

�
� q �
C2

�
� q �
C3

.

� �V � � � �V1 � � � �V2 � � � �V3 �

�V

� �V1 � �
� q �
C1

, � �V2 � �
� q �
C2

, and � �V3 � �
� q �
C3

� q1 � � � q2 � � � q3 � � � q �

� q � � C� �V �

� q �

�V

ΔV

ΔV

(b)

Ceq

+
–

(a)

B

q

C1

C2

C3

ΔV1

ΔV2

ΔV3

–
+

B

Terminal

Terminal

–q

q

–q

–q

q

–q

q

a

a

b

b

FIGURE 28-13 ■ (a) Three capacitors con-
nected in series to battery B. The battery
maintains a positive potential difference

between the top and bottom plates of
the series combination. (b) The equivalent
capacitor, with capacitance Ceq, replaces
the series combination.

�V
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TOUCHSTONE EXAMPLE 28-1: Equivalent Capacitance

(a) Find the equivalent capacitance for the combination of capaci-
tances shown in Fig. 28-14a, across which potential difference is
applied. Assume

and

SOLUTION ■ The Ke y  I d e a here is that any capacitors con-
nected in series can be replaced with their equivalent capacitor, and

C3 � 4.50 �F.C2 � 5.30 �F,C1 � 12.0 �F,

�V
any capacitors connected in parallel can be replaced with their
equivalent capacitor. Therefore, we should first check whether any
of the capacitors in Fig. 28-14a are in parallel or series.

Capacitors 1 and 3 are connected one after the other, but are
they in series? No. The potential that is applied to the capaci-
tors forces excess charge on the bottom plate of capacitor 3. That
charge causes charge to shift from the top plate of capacitor 3.
However, note that the shifting charge can move to the bottom

�V

Capacitors connected in series can be replaced with an equivalent capacitor having the
same amount of excess charge on each plate and the same size of potential difference

as the size of the total potential differences across the individual capacitors.

We can easily extend our method of determining the equivalent capacitance of a set of
capacitors wired in series from three capacitors to n capacitors by using the expression

(n capacitors in series). (28-20)

Using this expression, you can show that the equivalent of a series of capacitances is
always less than the least capacitance in the series. This can also be predicted qualita-
tively since the effective insulated separation between the top and bottom plate in-
creases since d � d1 � d2 � d3. According to Eq. 28-9, capacitance is inversely pro-
portional to plate separation.

Table 28-2 summarizes the equivalence relations for resistors and capacitors in se-
ries and in parallel. It also presents the information about potential differences and
charges on the combinations we determined by thinking about the physics of how the
charges move and distribute themselves in these different geometrical configurations.

READI NG EXERC IS E  28-4: A battery with a potential difference is used to
store an amount of excess charge on each of two identical capacitors and is then discon-
nected. The two capacitors are then connected to each other. What is the potential difference
across each capacitor and the amount of excess charge on each capacitor plate when the capaci-
tors are wired (a) in parallel and (b) in series? ■

� q �
�V

1
Ceq

� �
n

j�1

1
Cj

� �V �
� q �

TA B L E 2 8 - 2
Series and Parallel Resistors and Capacitors

Resistors Capacitors

Series Parallel Series Parallel

Eq. 27-4 Eq. 27-12 Eq. 28-20 Eq. 28-19

1. Same current 1. Same potential 1. Same excess 1. Same potential
through all difference across charge on all difference across
resistors all resistors capacitors all capacitors

2. Potential 2. Currents through 2. Potential 2. Excess charges on
differences across each resistor add differences across attached plates add
each resistor add each capacitor add

Ceq � �
n

j�1
Cj

1
Ceq

� �
n

j�1

1
Cj

1
Req

� �
n

j�1

1
Rj

Req � �
n

j�1
Rj
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28-5 Energy Stored in an Electric Field

Work must be done by an external agent to charge a capacitor. Starting with an un-
charged capacitor, for example, imagine—using “magic tweezers”—that you remove
electrons from one plate and deposit them one at a time to the other plate. The elec-
tric field building up in the space between the plates has a direction that tends to op-
pose further separation of charge. As excess charge accumulates on the capacitor
plates, you have to do increasingly larger amounts of work to transfer additional elec-
trons. In practice, this work is done not by “magic tweezers” but by a battery, at the
expense of its store of chemical energy.

We visualize the work required to charge a capacitor as being stored in the form
of electric potential energy U in the electric field between the plates. You can recover
this energy at will, by discharging the capacitor in a circuit, just as you can recover the
potential energy stored in a stretched bow by releasing the bowstring to transfer the
energy to the kinetic energy of an arrow. Another example is carrying rocks up a hill
against gravity. Energy is stored because of the hill’s height and can be recovered by
letting the rocks fall down again. In a capacitor, we can recover the stored energy by
connecting wires to the ends.

plates of both capacitor 1 and capacitor 2. Because there is more
than one route for the shifting charge, capacitor 3 is not in series
with capacitor 1 (or capacitor 2).

Are capacitor 1 and capacitor 2 in parallel? Yes. Their top
plates are directly wired together and their bottom plates are di-
rectly wired together, and electric potential is applied between the
top-plate pair and the bottom-plate pair. Thus, capacitor 1 and ca-
pacitor 2 are in parallel, and Eq. 28-19 tells us that their equivalent
capacitance C12 is

In Fig. 28-14b, we have replaced capacitors 1 and 2 with their
equivalent capacitor, call it capacitor 12 (say “one two”). (The
connections at points A and B are exactly the same in Figs. 28-14a
and b.)

Is capacitor 12 in series with capacitor 3? Again applying the
test for series capacitances, we see that the charge that shifts from
the top plate of capacitor 3 must entirely go to the bottom plate of
capacitor 12. Thus, capacitor 12 and capacitor 3 are in series, and we
can replace them with their equivalent C123, as shown in Fig. 28-14c.

C12 � C1 � C2 � 12.0 �F � 5.30 �F � 17.3 �F.

From Eq. 28-20, we have 

from which 

(Answer)

(b) The potential difference that is applied to the input terminals
in Fig. 28-14a is . What is the excess charge on each plate
of C1?

SOLUTION ■ One Ke y  I d e a here is that, to get the excess
charge q1 on each plate of capacitor 1, we now have to work backward
to that capacitor, starting with the equivalent capacitor 123. Since the
given potential difference is applied across the actual
combination of three capacitors in Fig. 28-14a, it is also applied across
capacitor 123 in Fig. 28-14c.Thus, Eq. 28-1 gives us 

A second Ke y  I d e a is that the series capacitors 12 and 3 in 
Fig. 28-1b have the same charge as their equivalent capacitor 123.
Thus, capacitor 12 has charge . From Eq. 28-1,
the potential difference across capacitor 12 must be 

A third Ke y  I d e a is that the parallel capacitors 1 and 2 both have
the same potential difference as their equivalent capacitor 12. Thus,
capacitor 1 has the potential difference . Thus,
from Eq. 28-1, the excess charge on each plate of capacitor 1 must be

(Answer)� 31.0 �C.

� q1 � � C1� �V1 � � (12.0 �F)(2.58 V)

�V1 � �V12 � 2.58 V

� �V12 � �
� q12 �
C12

�
44.6 �C
17.3 �F

� 2.58 V.

q12 � q123 � 44.6 �C

� q123 � � C123� �V � � (3.57 �F)(12.5 V) � 44.6 �C.

(� q � � C� �V �)

�V � 12.5 V

V � 12.5 V

C123 �
1

0.280 �F�1 � 3.57 �F.

1
C123

�
1

C12
�

1
C3

�
1

17.3 �F
�

1
4.50 �F

� 0.280 �F�1,

(a)

C3

C2C1

A

B
B

A

(b)

C12

(c )

C123

C3

ΔV ΔVΔV

FIGURE 28-14 ■ (a) Three capacitors. (b) C1 and C2, a paral-
lel combination, are replaced by C12. (c) C12 and C3, a series
combination, are replaced by the equivalent capacitance C123.
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Suppose that at a given instant, a charge has been moved from one plate of a
capacitor, through the wires in the circuit, to the other plate. The amount of the poten-
tial difference between the plates at that instant will be . If an extra incre-
ment of charge is then removed from one plate and deposited on the other, the
amount of the increment of work required will be (from Chapter 25) 

The work required to bring the total capacitor charge separation up to a final value
is

This work is stored as potential energy U in the capacitor, and since q2 �

(potential energy). (28-21)

From , we can also write this as 

(potential energy). (28-22)

These relations hold no matter what the geometry of the capacitor is.
To gain some physical insight into energy storage, consider two parallel-plate ca-

pacitors identical except that capacitor 1 has twice the plate separation of capacitor 2.
Then capacitor 1 has twice the volume between its plates and also, from Eq. 28-9, half
the capacitance of capacitor 2. Equation 28-4 tells us that if both capacitors have the
same amount of charge the electric fields between their plates are identical.
Equation 28-21 tells us capacitor 1 has twice the stored potential energy of capacitor
2. Of two otherwise identical capacitors with the same charge and same electric field,
the one with twice the volume between its plates has twice the stored potential en-
ergy. Arguments like this tend to verify our earlier assumption:

The potential energy of a charged capacitor may be viewed as being stored in the electric
field between its plates.

A High-Speed Electronic Flash Unit
The ability of a capacitor to store potential energy is the basis of high-speed electronic
flash devices, like those used in stop-action photography. In an electronic flash unit, a
battery charges a capacitor relatively slowly to a high potential difference, storing a
large amount of energy in the capacitor. The battery maintains only a modest poten-
tial difference; an electronic circuit repeatedly uses that potential difference to greatly
increase the potential difference of the capacitor. The power, or rate of energy trans-
fer, during this process is also modest.

When a high-speed flash unit fires, the capacitor releases its stored energy by
sending a burst of electric current through a Xenon gas discharge tube that gives off a
brief flash of white light. As an example, when a capacitor in a high-speed flash
unit is charged to 300 V, Eq. 28-22 gives the energy stored in the capacitor as 

U � 1
2C(�V)2 � 1

2(200 
 10�6 F)(300 V)2 � 9 J.

200 �F

� q �,

U � 1
2C(�V)2 � 1

2q�V

� q � � C� �V �

U �
q2

2C

� q �2

W � �dW �
1
C
�q

0
q�dq� �

�q�2

2C
.

� q �

� dW � � � �V �� dq � �
� q �
C

� dq �.

� dq �
� q �/C� �V �

� q �



As mentioned in the puzzler at the beginning of this chapter, this should be more than
enough energy to provide the illumination needed to take a photograph with ordinary
film. Suppose the flashtube in the high-speed flash unit Edgerton used to take the
photo of the bullet passing through the apple has a very rapid discharge rate. If the
Xenon tube takes only one-third of a microsecond to discharge, then the power asso-
ciated with the discharge is 

.

Energy Density
In a parallel-plate capacitor, neglecting fringing, the electric field has the same value
at all points between the plates. The energy density u—that is, the potential energy
per unit volume between the plates—should also be uniform. We can find u by divid-
ing the total potential energy by the volume Ad of the space between the plates.
Using Eq. 28-22, we obtain 

With Eq. 28-9 , this result becomes 

However, from Eq. 25-39, equals the electric field magnitude � E, so 

(energy density). (28-23)

Although we derived this result for the special case of a parallel-plate capacitor, it
holds generally, whatever may be the source of the electric field. If an electric field
exists at any point in space, we can think of that point as a site of electric potential en-
ergy whose amount per unit volume is given by Eq. 28-23.

E
:

u � 1
2ε0E 2

� E
:

��V/d

u � 1
2ε0� �V

d �
2

.

(C � ε0A/d)

u �
U

Ad
�

C(�V)2

2Ad
.

P �
U
t

�
9 J

0.33 
 10�6 s
� 27 
 106 W � 27 MW
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TOUCHSTONE EXAMPLE 28-2: Redistributing Charge

(a) Capacitor 1, with , is charged to a potential differ-
ence , using a 6.30 V battery. The battery is then
removed and the capacitor is connected as in Fig. 28-15 to an un-
charged capacitor 2, with . When switch S is closed,
charge flows between the capacitors until they have the same po-
tential difference . Find .

SOLUTION ■ The situation here differs from Touchstone Exam-
ple 28-1 because an applied electric potential is not maintained

�V�V

C2 � 8.95 �F

�V0 � 6.30 V
C1 � 3.55 �F across a combination of capacitors by a battery or some other

source. Here, just after switch S is closed, the only applied electric
potential is that of capacitor 1 on capacitor 2, and that potential is
decreasing. Thus, although the capacitors in Fig. 28-15 are con-
nected end to end, in this situation they are not in series; and al-
though they are drawn parallel, in this situation they are not in
parallel.

To find the final electric potential (when the system comes to
equilibrium and charge stops flowing), we use this Ke y  I d e a :
After the switch is closed, the original excess charge on each
plate of capacitor 1 is redistributed (shared) between capacitor 1
and capacitor 2. When equilibrium is reached, we can relate the
original charge with the final charges and q2 by writing 

�q0 � � � q1 � � �q2 �.

� q1 �� q0 �

� q0 �

ΔV0

S

C2C1

q0

FIGURE 28-15 ■ A potential differ-
ence is applied to capacitor 1
and the charging battery is removed.
Switch S is then closed so that the
charge on capacitor 1 is shared with
capacitor 2.

�V0
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28-6 Capacitor with a Dielectric

If you fill the space between the plates of a capacitor with a dielectric, which is usually
an insulating material such as mineral oil or plastic, what happens to the capacitance?
Michael Faraday—to whom the whole concept of capacitance is largely due and for
whom the SI unit of capacitance is named—first looked into this matter in 1837. Us-
ing simple equipment much like that shown in Fig. 28-16, he found that the capaci-
tance increased by a numerical factor �, which he called the dielectric constant of the
insulating material. Table 28-3 shows some dielectric materials and their dielectric
constants. The dielectric constant of a vacuum is unity by definition. Because air is
mostly empty space, its measured dielectric constant is only slightly greater than unity.

Another effect of the introduction of a dielectric is to limit the potential differ-
ence that can be applied between the plates to a certain value , called the
breakdown potential. If this value is substantially exceeded, the dielectric material will
break down and form a conducting path between the plates. That is, when the capaci-
tor is filled with a dielectric, the charge separation you can maintain with a given po-
tential difference increases. Every dielectric material has a characteristic dielectric
strength, which is the maximum value of the electric field that it can tolerate without
breakdown. A few such values are listed in Table 28-3.

As we discussed in connection with Eq. 28-18, the capacitance of any capacitor
can be written in the form 

(28-24)

in which L has the dimensions of a length. For example, for a parallel-plate
capacitor. Faraday’s discovery was, with a dielectric completely filling the space be-
tween the plates, Eq. 28-24 becomes 

(28-25)

where Cair is the value of the capacitance with only air between the plates.

C � �ε0L � �Cair,

L � A/d

C � ε0L,

�V max

Applying the relation (Eq. 28-1) to each term of this
equation yields 

from which 

(Answer)

When the capacitors reach this steady value of electric potential
difference, the charge flow stops.

(b) How much energy is stored in the original capacitor when it is
first charged up?

S O L U T I O N ■ The Ke y  I d e a here is that the potential energy
stored in a capacitor, given by Eq. 28-22, is just 

(Answer)� 70.4 �J.

� (1
2)(3.55 �F)(6.30 V)2

U � (1
2 )C(�V)2

� 1.79 V.

� �V � � � �V0 �
C1

C1 � C2
�

(6.30 V)(3.55 �F)
3.55 �F � 8.95 �F

C1� �V0 � � C1� �V � � C2� �V �,

� q � � C� �V � (c) How much energy is stored in the two capacitors after they are
connected together?

S O L U T I O N ■ The Ke y  I d e a here is that the potential energy
stored in each capacitor, given by Eq. 28-22, so that

(Answer)

But how can this be? Before the second capacitor was placed
across the first one, there was over 70 �J of energy stored in the
system. What happened to the 50 �J of energy that seems to have
vanished when the second capacitor was charged from the first
one? You might argue that the “lost” energy must have been dissi-
pated as heat in the resistance of the wires connecting the two ca-
pacitors. But suppose we used superconducting wires with zero re-
sistance? Then where does the missing energy go? The answer, as
you will learn in Chapters 33 and 34, is that the charge would oscil-
late back and forth between the two capacitors until the 50 �J of
“excess” energy was radiated away in the form of electromagnetic
waves.

� 20.0 �J.

� (1
2)((3.55 �F) � (8.95 �F))(1.79 V)2

U total � U1 � U2 � (1
2)C1(�V1)2 � (1

2)C2(�V2)2

FIGURE 28-16 ■ The simple electrostatic
apparatus used by Faraday. An assembled
apparatus (second from left) forms a
spherical capacitor consisting of a central
brass ball and a concentric brass shell.
Faraday placed dielectric materials in the
space between the ball and the shell.



Figure 28-17 provides some insight into Faraday’s experiments. In Fig. 28-17a the
battery ensures that the potential difference between the plates will remain con-
stant. When a dielectric slab is inserted between the plates, the excess amount of
charge on the plates increases by a factor of �, where � is always greater than 1;
the additional charge is delivered to the capacitor plates by the battery. In Fig. 28-17b
there is no battery and therefore the amount of excess charge must remain con-
stant when the dielectric slab is inserted; then the potential difference between
the plates decreases by a factor of �. Both these observations are consistent (through
the relation ) with the increase in capacitance caused by the dielectric.

Comparison of Eqs. 28-24 and 28-25 suggests that the effect of a dielectric can be
summed up in more general terms:

In a region completely filled by a dielectric material of dielectric constant �, all electrostatic
equations containing the permittivity constant are to be modified by replacing with .

A point charge inside a dielectric produces an electric field that, by Coulomb’s law,
has the magnitude 

(28-26)

Also, the expression for the electric field just outside an isolated conductor immersed
in a dielectric (see Eq. 24-20) becomes 

(28-27)

Both these equations show that for a fixed distribution of charges, the effect of a dielec-
tric is to weaken the magnitude of the electric field that would otherwise be present. In

�E
:

� �
�� �
�ε0

.

� q �
r2 .�E

:
� �

1
4��ε0

�ε0ε0ε0

� q � � C ��V�

�V
� q �

� q �

�V

816 CHAPTER 28 Capacitance

TA B L E 2 8 - 3
Some Properties of Dielectricsa

Dielectric Dielectric Strength
Material Constant � (kV/mm)

Air (1 atm) 1.00054 3

Polystyrene 2.6 24

Paper 3.5 16

Transformer oil 4.5

Pyrex 4.7 14

Ruby mica 5.4

Porcelain 6.5

Tantalum oxide 11.6

Silicon 12

Germanium 16

Ethanol 25

Water (20°C)b 80.4

Water (25°C)b 78.5

Titania ceramic 130

Strontium titanate 310 8

For a vacuum, � � unity.

aMeasured at room temperature, except for the water.
bNote that water is not an insulating material. It is listed because it has dielectric 
properties.

(a)

B

B
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V = a constant

(b)

q = a constant
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VOLTS

0

VOLTS

FIGURE 28-17 ■ (a) If the potential differ-
ence between the plates of a capacitor is
maintained, as by battery B, the effect of a
dielectric is to increase the excess charge
on each plate. (b) If the charge on the ca-
pacitor plates is maintained, as in this case,
the effect of a dielectric is to reduce the
potential difference between the plates.
The scale shown is that of a potentiometer,
a device used to measure potential
difference (here, between the plates).
A capacitor cannot discharge through a
potentiometer.



addition, the amount of energy stored is reduced because work must be done by the
field to pull in the dielectric.
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TOUCHSTONE EXAMPLE 28-3: A Dielectric’s Energetics

A parallel-plate capacitor whose capacitance C is 13.5 pF is charged
by a battery to a potential difference between its
plates. The charging battery is now disconnected and a porcelain
slab is slipped between the plates. What is the potential
energy of the device, both before and after the slab is put into
place?

SOLUTION ■ The Ke y  I d e a here is that we can relate the po-
tential energy U of the capacitor to the capacitance C and either
the potential (with Eq. 28-22) or the capacitor charge (with
Eq. 28-21):

Because we are given the initial potential , we use Eq.
28-22 to find the initial stored energy:

(Answer)

To find the final potential energy U2 (after the slab is intro-
duced), we need another Ke y  I d e a : Because the battery has been

� 1.055 
 10�9 J � 1055 pJ � 1100 pJ.

U1 � 1
2CV2 � 1

2(13.5 
 10�12 F)(12.5 V)2

�V(�12.5V)

U1 � 1
2C�V2 �

q2

2C
.

� q ��V

(� � 6.50)

�V � 12.5 V
disconnected, the amount of excess charge on each capacitor plate
cannot change when the dielectric is inserted. However, the poten-
tial does change. Thus, we must now use Eq. 28-21 (based on q) to
write the final potential energy U2, but now that the slab is within
the capacitor, the capacitance is �C. We then have 

(Answer)

When the slab is introduced, the potential energy decreases by a
factor of �.

The “missing” energy, in principle, would be apparent to the
person who introduced the slab. The capacitor would exert a tiny
tug on the slab and would do work on it, in amount 

If the slab were allowed to slide between the plates with no re-
straint and if there were no friction, the slab would oscillate back
and forth between the plates with a (constant) mechanical energy
of 893 pJ, and this system energy would transfer back and forth be-
tween kinetic energy of the moving slab and potential energy
stored in the electric field.

W � U1 � U2 � (1055 � 162) pJ � 893 pJ.

U2 �
q2

2�C
�

U1

�
�

1055 pJ
6.50

� 162 pJ � 160 pJ.

28-7 Dielectrics: An Atomic View

What happens, in atomic and molecular terms, when we put a dielectric in an electric
field? There are two possibilities, depending on the nature of the molecules:

1. Polar dielectrics. The molecules of some dielectrics, like water, have permanent
electric dipole moments. In such materials (called polar dielectrics), the electric
dipoles tend to line up with an external electric field as in Fig. 28-18. Because the
molecules are continuously jostling each other as a result of their random thermal
motion, this alignment is not complete, but it becomes more complete as the mag-
nitude of the applied field is increased (or as the temperature, and thus the
jostling, is decreased). The alignment of the electric dipoles produces an electric
field directed opposite the applied field and smaller in magnitude.

2. Nonpolar dielectrics. Regardless of whether they have permanent electric dipole
moments, molecules acquire dipole moments by induction when placed in an
external electric field. In Section 25-9 (see Fig. 25-16), we saw that this occurs be-
cause the external field tends to “stretch” the molecules, slightly separating the
centers of negative and positive charge.

Figure 28-19a shows a nonpolar dielectric slab with no external electric field ap-
plied. An electric field is present due to the excess charges shown on the capacitor
plates in Fig. 28-19a. The result is a slight separation of the centers of the positive and
negative charge distributions within the slab, producing positive charge on one face of
the slab (due to the positive ends of dipoles there) and negative charge on the opposite
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FIGURE 28-18 ■ (a) Molecules with a per-
manent electric dipole moment, showing
their random orientation in the absence of
an external electric field. (b) An electric
field is applied, producing partial align-
ment of the dipoles. Thermal agitation pre-
vents complete alignment.
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face (due to the negative ends of dipoles there). The slab as a whole remains electrically
neutral and—within the slab—there is no excess charge in any volume element.

Figure 28-19c shows that the induced surface charges on the faces produce an
electric field , in the direction opposite the applied electric field . The resultant
field inside the dielectric (the vector sum of fields and ) has the direction of 
but is smaller in magnitude.

Both the field produced by the surface charges in Fig. 28-19c and the electric
field produced by the permanent electric dipoles in Fig. 28-18 act in the same way—
they oppose the applied field . (Inside the material, the field fluctuates wildly, de-
pending on whether you are close to one side of a molecule or another. The effects we
are looking at are the average effects of the molecules.) Thus, the effect of both polar
and nonpolar dielectrics is to weaken any applied field within them, as between the
plates of a capacitor. As a result, a given charge separation can be maintained at a
lower potential difference, , with a dielectric than with a vacuum. This means that a
capacitor with a dielectric added has a higher capacitance.

We can now see why the dielectric porcelain slab in Touchstone Example 28-3 is
pulled into the capacitor: As it enters the space between the plates, the excess surface
charge appearing on each slab face has a sign that is opposite to that of the excess
charge on the nearby capacitor plate. Thus, slab and plates attract each other.

28-8 Dielectrics and Gauss’ Law

In our discussion of Gauss’ law in Chapter 24, we assumed that the charges existed in
a vacuum. Here we shall see how to modify and generalize that law if dielectric mate-
rials, such as those listed in Table 28-3, are present. Figure 28-20 shows a parallel-plate
capacitor of plate area A, both with and without a dielectric. We assume the amount
of excess charge on the plates is the same in both situations. Note the field be-
tween the plates induces charge buildup on the faces of the dielectric by one of the
methods discussed in Section 28-7.

For the situation of Fig. 28-20a, without a dielectric, we can find the electric field
between the plates as we did in Fig. 28-9: We enclose the excess charge q on the top

plate with a Gaussian surface and then apply Gauss’ law. Letting E0 � represent
the magnitude of the field, we find

(28-28)

or (28-29)E0 �
� q �
ε0A

.

� ε0�E
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FIGURE 28-19 ■ (a) A nonpolar dielectric slab. The circles represent the electrically neutral
atoms within the slab. (b) An electric field is applied via charged capacitor plates; the field
slightly stretches the atoms, separating the centers of positive and negative charge. (c) The sepa-
ration produces surface charges on the slab faces. These charges set up a field , which opposes
the applied field . The resultant field inside the dielectric (the vector sum of and ) has
the same direction as but smaller magnitude.E
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In Fig. 28-20b, with the dielectric in place, we can find the electric field between
the plates (and within the dielectric) by using the same Gaussian surface. However,
now the surface encloses two types of charge: it still encloses a net charge q on the top
plate but it now also encloses the induced charge q on the top face of the dielectric.
The excess charge on each conducting plate is said to be free charge because it can
move through the circuit if we change the electric potential of the plate. The induced
charge on the surfaces of the dielectric is bound charge. It’s stuck to the molecules of
an insulator. It can only be displaced from its original position by microscopic
amounts and cannot move from the surface.

The amount of net charge enclosed by the Gaussian surface in Fig. 28-20b is
, so Gauss’ law now gives 

(28-30)

or (28-31)

Since q and q have different signs, this means that the effect of the dielectric is to
weaken the original field by a factor of �, so we may write 

(28-32)

Comparison of Eqs. 28-31 and 28-32 shows 

(28-33)

Equation 28-33 shows correctly that the amount of induced surface charge is less
than that of the excess free charge and is zero if no dielectric is present (then, in
Eq. 28-33).

By substituting for from Eq. 28-33 in Eq. 28-30, we can write Gauss’ law
in the form 

(Gauss’ law with dielectric), (28-34)

where q is the net free charge on the plate of interest. Here we drop the absolute
value sign to account for the fact that the excess charge on a plate of interest, q, can
be either positive or negative.

This important equation, although derived for a parallel-plate capacitor, is true gener-
ally and is the most general form in which Gauss’ law can be written. Note the following:

1. The flux integral now involves , not just . (The vector is sometimes
called the electric displacement , so Eq. 28-34 can be written in the form

).

2. The amount of excess charge enclosed by the Gaussian surface is now taken
to be the free charge only. The induced surface charge is deliberately ignored on
the right side of Eq. 28-34, having been taken fully into account by introducing
the dielectric constant � on the left side.

3. Equation 28-34 differs from Eq. 24-7, our original statement of Gauss’ law, only in
that in the latter equation has been replaced by . We keep � inside the
integral of Eq. 28-34 to allow for cases in which � is not constant over the entire
Gaussian surface.

�ε0ε0

� q �

�D
:

�dA
:

� q

D
:

ε0�E
:

E
:

�E
:

ε0��E
:

�dA
:

� q

� q � q�

� � 1

� q net � � � q � q � �
� q �
�

.

E �
E0

�
�

� q �
�ε0A

.

E0

E �
� q � q�

ε0A
.

�ε0�E
:

�dA
:

� � ε0EA � � q � q�,

� q � q �

Dielectrics and Gauss’ Law   819



820 CHAPTER 28 Capacitance

TOUCHSTONE EXAMPLE 28-4: Adding a Dielectric

Figure 28-21 shows a parallel-plate capacitor of plate area A and
plate separation d. A potential difference is applied between
the plates. The battery is then disconnected, and a dielectric slab of
thickness b and dielectric constant � is placed between the plates as
shown. Assume 

�

and � � 2.61.b � 0.780 cm,

V0 � 85.5 V,d � 1.24 cm,A � 115 cm2,

�V0

passes through the gap, and so it encloses only the free charge on
the upper capacitor plate. Because the area vector and the field
vector are both directed downward, the dot product in Eq. 28-34
becomes

Equation 28-34 then becomes 

The integration now simply gives the surface area A of the plate.
Thus, we obtain 

or

One more Ke y  I d e a is needed before we evaluate E0; that is, we
must put here because Gaussian surface I does not pass
through the dielectric. Since the charge q on the upper plate is posi-
tive, we have 

(Answer)

Note that the value of E0 does not change when the slab is intro-
duced because the amount of charge enclosed by Gaussian surface
I in Fig. 28-21 does not change.

(d) What is the magnitude of the electric field E1 in the dielectric
slab?

S O L U T I O N ■ The Ke y  I d e a here is to apply Eq. 28-34 to
Gaussian surface II in Fig. 28-21. That surface encloses free charge
�q and induced charge �q, but we ignore the latter when we use
Eq. 28-34. We find

(28-35)

(The first minus sign in this equation comes from the dot product
, because now the field vector is directed downward and

the area vector is directed upward.) Equation 28-35 gives us 

(Answer)E1 �
q

ε 0�A
�

E0

�
�

6.90kV/m
2.61

� 2.64 kV/m.

dA
E
:

1E
:

1 �dA
:

ε0��E
:

1 �dA
:

� �ε0�E1A � �q.

� 6900 V/m � 6.90 kV/m.

E0 �
q

ε0�A
�

7.02 
 10�10 C
(8.85 
 10�12 F/m)(1)(115 
 10�4 m2)

� � 1

E0 �
q

ε0�A
.

ε0� �E
:

0 ��dA � q,

ε0�E0�dA � q.

E
:

0 � dA
:

� � E
:

0 �dA cos0� � E0 dA.

E
:

0

dA
:

Gauss’s law still holds when charged molecules are present, but it’s hard to use, since
we don’t know where those molecular charges are. We only know their average effect,
which is summarized by the measured constant �. Here, we saw how to create a form
of Gauss’s law including the effect of the molecules automatically, and this allows us
to work only with the charges we control directly—the “free” charges.
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surface I

–q'

– – – –

q

–q
Gaussian
surface II

+ + + + + + + +

– – – – – – – –

+ + + +κ
q'

b d

FIGURE 28-21 ■ A parallel-plate capacitor
containing a dielectric slab that only partially
fills the space between the plates.

(a) What is the capacitance C0 before the dielectric slab is
inserted?

S O L U T I O N ■ From Eq. 28-9 we have 

(Answer)

(b) What is the amount of free excess charge that appears on each
plate?

S O L U T I O N ■ From Eq. 28-1,

(Answer)

Because the charging battery was disconnected before the slab was
introduced, the free charge remains unchanged as the slab is put
into place.

(c) What is the magnitude of the electric field E0 in the gaps be-
tween the plates and the dielectric slab?

S O L U T I O N ■ A Key Idea here is to apply Gauss’ law, in the
form of Eq. 28-34, to Gaussian surface I in Fig. 28-21—that surface

� 7.02 
 10�10 C � 702 pC.

� q � � C0 ��V0 � � (8.21 
 10�12 F)(85.5 V)

� 8.21 
 10�12 F � 8.21 pF.

C0 �
ε0 A

d
�

(8.85 
 10�12 F/m)(115 
 10�4 m2)
1.24 
 10�2 m
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(e) What is the potential difference between the plates after
the slab has been introduced?

S O L U T I O N ■ The Ke y  I d e a here is to find by integrating
along a straight-line path extending directly from the bottom plate
to the top plate. Within the dielectric, the path length is b and the
electric field is E1. Within the two gaps above and below the
dielectric, the total path length is and the electric field is E0.
Equation 28-6 then yields 

(Answer)� 52.3 V.

� (2640 V/m)(0.00780 m)

� (6900 V/m)(0.0124 m � 0.00780 m)

�V � ��

�

�E
:

�� ds: � � E0(d � b) � E1b

d � b

�V

�V This is less than the original potential difference of 85.5 V.

(f) What is the capacitance with the slab in place?

S O L U T I O N ■ The Ke y  I d e a now is that the capacitance C is
related to the free charge q and the potential difference via 
Eq. 28-1, just as when a dielectric is not in place. Taking q from (b)
and from (e), we have 

(Answer)

This is greater than the original capacitance of 8.21 pF.

� 1.34 
 10�11 F � 13.4 pF.

C �
� q �

� �V �
�

7.02 
 10�10 C
52.3 V

�V

�V

28-9 RC Circuits

In preceding sections we dealt only with circuits in which the currents did not vary
with time. Here we begin a discussion of time-varying currents.

Charging a Capacitor
The capacitor of capacitance C in Fig. 28-22 is initially uncharged. To charge it, we
close switch S on point a. This completes an RC series circuit consisting of the
capacitor, an ideal battery of emf , and a resistance R. Since an ideal battery has
no internal resistance, its emf is the same as the potential difference across the
battery, .

From Section 28-2, we already know that as soon as the circuit is complete, charge
begins to flow (current exists) between a capacitor plate and a battery terminal on
each side of the capacitor. This current increases the amount of excess charge on the
plates, and the size of the potential difference across the capacitor.
When that potential difference across the capacitor equals the potential difference
across the battery (which here is equal to the emf of the battery, ), the current is
zero. From Eq. 28-1 , the equilibrium (final) amount of excess charge
on each plate of the fully charged capacitor is equal to .

Here we want to examine the charging process. In particular we want to know
how the amount of excess charge on each capacitor plate, the potential differ-
ence across the capacitor, and the current i(t) in the circuit vary with time dur-
ing the charging process. We begin by applying the loop rule to the circuit, traversing
it clockwise from the negative terminal of the battery. We find

, (28-36)

where q represents the excess charge on the top plate of the capacitor, which is posi-
tive in this case.

The last term on the left side represents the potential difference across the capac-
itor. The term is negative because the capacitor’s top plate, which is connected to the
battery’s positive terminal, is at a higher potential than the lower plate. Thus, there is a
drop in potential as we move down through the capacitor.

�VB � iR �
q
C

� 0

�VC(t)
�q(t)�

C��VB�
(� q � � C ��VC �)

�VB

� �VC � � � q �/Cq

�VB

ε
C

+
–

S

Rb

a

ΔVB

FIGURE 28-22 ■ When switch S is closed
on a, the capacitor is charged through the
resistor. When the switch is afterward
closed on b, the capacitor discharges
through the resistor.
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We cannot immediately solve Eq. 28-36 because it contains two variables, i and q.
However, those variables are not independent but are related by 

(28-37)

Substituting this for i and rearranging, we find

(charging equation). (28-38)

This differential equation describes the time variation of the excess positive charge q
on the top plate of the capacitor shown in Fig. 28-23. To solve it, we need to find the
function q(t) that satisfies this equation and also satisfies the condition the capacitor
be initially uncharged: C at s.

The solution to Eq. 28-38 is 

(charging a capacitor). (28-39)

(Here e is the exponential base, 2.718 . . . , and not the elementary charge.) You can
verify by substitution that Eq. 28-39 is indeed a solution to Eq. 28-38. We can see that
this expression does indeed satisfy our required initial condition, because at the
term is unity, so the equation gives . Note also that as t goes to (that is, a
long time later), the term goes to zero; so the equation gives the proper
value for the full (equilibrium) excess charge on the positive plate of the capacitor—
namely, . A plot of q(t) for the charging process is given in Fig. 28-23a.

The derivative of q(t) is the positive current i(t) charging the capacitor:

(charging a capacitor). (28-40)

A plot of i(t) for the charging process is given in Fig. 28-23b. Note that the current has
the initial value and it decreases to zero as the capacitor becomes fully
charged.

A capacitor being charged initially acts like ordinary connecting wire relative to the charg-
ing current. A long time later, it acts like a broken wire.

By combining (Eq. 28-1) and (Eq. 28-39), we
find the potential difference across the capacitor during the charging process is 

(charging a capacitor). (28-41)

This tells us at and when the capacitor is fully charged as
the time approaches infinity ( ).

The Time Constant
The product RC appearing in the equations above has the dimensions of time (both
because the argument of an exponential must be dimensionless and because, in fact,

). RC is called the capacitive time constant of the circuit and is
represented with the symbol �:

(time constant). (28-42)� � RC

1.0 � 
 1.0 F � 1.0 s 

t : �
�VC � �VBt � 0�VC � 0

� �VC � �
q
C

� � �VB(1 � e�t/RC)�

�VC(t)
q � C�VB(1 � e�t/RC)� q � � C� �VC�

�VB/R

i �
dq
dt

� � �VB

R �e�t/RC

q � C�VB

e�t/RC
�q � 0e�t/RC

t � 0

q � C�VB(1 � e�t/RC)

t � 0q � 0

R
dq
dt

�
q
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� �VB

i �
dq
dt
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FIGURE 28-23 ■ (a) A plot of Eq. 28-39,
which shows the buildup of excess charge
on the capacitor plates of Fig. 28-22. (b) A
plot of Eq. 28-40. The charging current in
the circuit of Fig. 28-22 declines as the
capacitor becomes more fully charged.
The curves are plotted for ,
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one time constant .�
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From the expression for the excess charge as a function of time on one plate of a
charging capacitor (Eq. 28-39), we can now see that at time

, the excess charge on the top plate of the initially uncharged capacitor of
Fig. 28-22 has increased from zero to 

(28-43)

In words, after the first time constant, , the amount of excess charge has increased
from zero to 63% of its final value, . In Fig. 28-22, the small triangles along the
time axes mark successive intervals of one time constant during the charging of the
capacitor. The charging times for RC circuits are often stated in terms of . The
greater is, the greater is the charging time.

Discharging a Capacitor
Assume that now the capacitor of Fig. 28-22 is fully charged to a potential 
equal to the potential difference, of the battery. At a new time , switch S
is thrown from a to b so the capacitor can discharge through resistance R. How do
the excess charge q(t) on the top plate of the capacitor and the current i(t) through
the discharge loop of capacitor and resistance now vary with time?

The differential equation describing q(t) in this case is similar to the one we
worked with for the case of charging Eq. 28-38, except now there is no battery in the
discharge loop and so . Thus,

(discharging equation), (28-44)

where the current term, , and the voltage across the capacitor, , can be posi-
tive or negative. The solution to this differential equation is 

(discharging a capacitor), (28-45)

where is the initial amount of excess charge on the capacitor plates.
You can verify by substitution that Eq. 28-45 is indeed a solution of Eq. 28-44.

Equation 28-45 tells us that the amount of excess charge on each capacitor plate
decreases exponentially with time, at a rate set by the capacitive time constant

. At time , the capacitor’s excess charge has been reduced to , or
about 37% of the initial value. That is, the amount of excess charge on the plates has
decreased by 63%. Note that a greater means a greater discharge time.

Differentiating Eq. 28-45 gives us the current i(t):

(discharging a capacitor). (28-46)

This tells us the current also decreases exponentially with time, at a rate set by . The
initial current i0 is equal to . Note that you can find i0 by simply applying the
loop rule to the circuit at the moment when the capacitor’s initial potential 
is connected across the resistance R. So the current must be 

The minus sign in the discharging capacitor expression (Eq. 28-46) can be ignored; it
merely means the amount of excess charge on the plate is decreasing.

i0 �
�V0

R
�

(q0 /C)
R

�
q0

RC
.

�V0t � 0
q0/RC

�

i �
dq
dt

� �� q0

RC �e�t/RC

�

� q0 �e�1t � �� � RC

� q0�(�C��V0 �)

q � q0e�t/RC

q/Cdq/dt

R
dq
dt

�
q
C

� 0

�VB � 0

t � 0�VB,
�V0

�
�

C�VB

�

q � C�VB(1 � e�1) � 0.63C�VB.

t � � (�RC)
q � C�VB(1 � e�t/RC)
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TOUCHSTONE EXAMPLE 28-5: Discharging a Capacitor

A capacitor of capacitance C is discharging through a resistor of re-
sistance R.

(a) In terms of the time constant , when will the excess
charge on each plate of the capacitor be half its initial value?

S O L U T I O N ■ The Ke y  I d e a here is that the excess charge on
each plate of the capacitor varies according to Eq. 28-45,

in which q0 is the initial charge. We are asked to find the time t at
which or at which

(28-47)

After canceling q0, we realize that the time t we seek is “buried” in-
side an exponential function. To expose the symbol t in Eq. 28-47,
we take the natural logarithms of both sides of the equation. (The
natural logarithm is the inverse function of the exponential func-
tion.) We find

or (Answer)

(b) When will the energy stored in the capacitor be half its initial
value?

t � (�ln1
2)RC � 0.69RC � 0.69�.

ln 1
2 � ln(e�t/RC) � �

t
RC

,

1
2q0 � q0e�t/RC.

q � 1
2q0

q � q0e�t/RC,

� � RC

S O L U T I O N ■ There are two Ke y  I d e a s here. First, the energy
U stored in a capacitor is related to the charge on the each plate
according to Eq. 28-21 (U = q2/2C). Second, that charge is decreas-
ing according to Eq. 28-45. Combining these two ideas gives us

in which U0 is the initial stored energy. We are asked to find the
time at which or at which

Canceling U0 and taking the natural logarithms of both sides, we
obtain

or (Answer)

It takes longer (0.69� versus 0.35�) for the charge to fall to half its
initial value than for the stored energy to fall to half its initial value.
Does this result surprise you?

t � �RC
ln 1

2

2
� 0.35RC � 0.35�.

ln 1
2 � �

2t
RC

,

1
2 U0 � U0e�2t/RC.

U � 1
2U0,

U �
q2

2C
�

q2
0

2C
e�2t/RC � U0e�2t/RC,

� q �

READI NG EXERC IS E  28-5: The table gives four sets of values for the circuit ele-
ments in Fig. 28-22. Rank the sets according to (a) the initial current (as the switch is closed on
a) and (b) the time required for the current to decrease to half its initial value, greatest first.

1 2 3 4

(V) 12.0 12.0 10.0 10.0

R (�) 2.0 3.0 10.0 5.0

C (�F) 3.0 2.0 0.5 2.0 ■

�VB

Problems

SEC. 28-2 ■ CAPACITANCE

1. Electrometer An electrometer is a device used to measure sta-
tic charge—an unknown excess charge is placed on the plates of
the meter’s capacitor, and the potential difference is measured.
What minimum charge can be mea-
sured by an electrometer with a ca-
pacitance of 50 pF and a voltage
sensitivity of 0.15 V?

2. Two Metal Objects The two
metal objects in Fig. 28-24 have net

(or excess) charges of �70 pC and �70 pC, which result in a 20 V
potential difference between them.
(a) What is the capacitance of the
system? (b) If the excess charges are
changed to �200 pC and �200 pC,
what does the capacitance become?
(c) What does the potential differ-
ence become?

3. Initially Uncharged The capacitor
in Fig. 28-25 has a capacitance of 

FIGURE 28-24 ■

Problem 2.

C
+
–

S

FIGURE 28-25 ■

Problem 3.



25 �F and is initially uncharged. The battery provides a potential
difference of 120 V. After switch S is closed, how much charge will
pass through it?

SEC. 28-3 ■ CALCULATING THE CAPACITANCE

4. Show That If we solve Eq. 28-9 for ε0 we see that its SI unit is
the farad per meter. Show that this unit is equivalent to that ob-
tained earlier for ε0 —namely, the coulomb squared per newton-
meter squared (C2/N� m2).

5. Circular Plates A parallel-plate capacitor has circular plates of
8.2 cm radius and 1.3 mm separation. (a) Calculate the capacitance.
(b) What excess charge will appear on each of the plates if a poten-
tial difference of 120 V is applied?

6. Two Flat Metal Plates You have two flat metal plates, each of
area 1.00 m2, with which to construct a parallel-plate capacitor. If the
capacitance of the device is to be 1.00 F, what must be the separation
between the plates? Could this capacitor actually be constructed?

7. Spherical Drop of Mercury A spherical drop of mercury of ra-
dius R has a capacitance given by C � 4�ε0R. If two such drops
combine to form a single larger drop what is its capacitance?

8. Spherical Capacitor The plates of a spherical capacitor have
radii 38.0 mm and 40.0 mm. (a) Calculate the capacitance. (b) What
must be the plate area of a parallel-plate capacitor with the same
plate separation and capacitance?

9. Two Spherical Shells Suppose that the two spherical shells of a
spherical capacitor have approximately equal radii. Under these
conditions the device approximates a parallel-plate capacitor with
b � a � d. Show that Eq. 28-17
does indeed reduce to Eq. 28-9 in
this case.

SEC. 28-4 ■ CAPACITORS IN

PARALLEL AND IN SERIES

10. Equivalent In Fig. 28-26, find
the equivalent capacitance of the
combination. Assume that C1 � 10.0
�F, C2 � 5.00 �F, and C3 � 4.00 �F.

11. How Many How many 1.00 �F
capacitors must be connected in
parallel to store an excess charge
of 1.00 C with a potential of 110 V
across the capacitors?

12. Each Uncharged Each of the
uncharged capacitors in Fig. 28-27
has a capacitance of 25.0 �F. A po-
tential difference of 4200 V is estab-
lished when the switch is closed.
How many coulombs of charge then
pass through meter A?

13. Combo In Fig. 28-28 find the
equivalent capacitance of the com-
bination. Assume that C1 � 10.0 �F,
C2 � 5.00 �F, and C3 � 4.00 �F.

14. Breaks Down In Fig. 28-28 sup-
pose that capacitor 3 breaks down
electrically, becoming equivalent to

Problems 825

a conducting path. What changes in (a) the
amount of excess charge and (b) the poten-
tial difference occur for capacitor 1? Assume
that �V � 100 V.

15. Two in Series Figure 28-29 shows two ca-
pacitors in series; the center section of length
b is movable vertically. Show that the equiva-
lent capacitance of this series combination
is independent of the position of the center
section and is given by C � ε0A/(a � b),
where A is the plate area.

16. Battery Potential In Fig. 28-30,
the battery has a potential difference
of 10 V and the five capacitors each
have a capacitance of 10 �F. What is
the excess charge on (a) capacitor 1
and (b) capacitor 2?

17. Parallel with Second 100 pF
capacitor is charged to a potential
difference of 50 V, and the charging
battery is disconnected. The capacitor
is then con-
nected in paral-
lel with a sec-
ond (initially
uncharged) ca-
pacitor. If the
potential differ-
ence across the
first capacitor
drops to 35 V,
what is the
capacitance of
this second
capacitor?

18. Charge Stored In Fig. 28-31, the
battery has a potential difference of
20 V. Find (a) the equivalent capaci-
tance of all the capacitors and (b) the
excess charge stored by that equiva-
lent capacitance. Find the potential
across and charge on (c) capacitor 1,
(d) capacitor 2, and (e) capacitor 3.

19. Opposite Polarity In Fig. 28-32,
the capacitances are C1 � 1.0 �F
and C2 � 3.0 �F and both capacitors
are charged to a potential difference
of �V � 100 V but with oppo-
site polarity as shown. Switches
S1, and S2 are now closed. (a)
What is now the potential dif-
ference between points a and
b? What are now the amounts
of excess charge on capacitors
(b) 1 and (c) 2?

20. Battery Supplies In Fig. 28-
33, battery B supplies 12 V. Find
the excess charge on each capac-
itor (a) first when only switch S1
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switch S2 is also closed. Take C1 � 1.0
�F, C2 � 2.0 �F, C3 � 3.0 �F, and C4

� 4.0 �F.

21. Switch Is Thrown When switch
S is thrown to the left in 
Fig. 28-34, the plates of capacitor 1
acquire a potential difference �V0.
Capacitors 2 and 3 are initially un-
charged. The switch is now thrown to
the right. What are the final amounts
of excess charge , , and on the capacitors?

SEC. 28-5 ■ ENERGY STORED IN AN ELECTRIC FIELD

22. Air How much energy is stored in one cubic meter of air due
to the “fair weather” electric field of magnitude 150 V/m?

23. Capacitance Required What capacitance is required to store
an energy of 10  kW � h at a potential difference of 1000 V?

24. Air-Filled Capacitor A parallel-plate air-filled capacitor having
area 40 cm2 and plate spacing 1.0 mm is charged to a potential
difference of 600 V. Find (a) the capacitance, (b) the amount of ex-
cess charge on each plate, (c) the stored energy, (d) the electric field
between the plates, and (e) the energy density between the plates.

25. Two Capacitors Two capacitors, of 2.0 and 4.0 �F capacitance,
are connected in parallel across a 300 V potential difference. Calcu-
late the total energy stored in the capacitors.

26. Connected Bank A parallel-connected bank of 5.00 �F capaci-
tors is used to store electric energy. What does it cost to charge the
2000 capacitors of the bank to 50,000 V assuming 12.0¢/kW � h?

27. One Capacitor One capacitor is charged until its stored energy is
4.0 J. A second uncharged capacitor is then connected to it in paral-
lel. (a) If the charge distributes equally, what is now the total energy
stored in the electric fields? (b) Where did the excess energy go?

28. Find In Fig. 28-28 find (a) the excess charge, (b) the potential
difference, and (c) the stored energy for each capacitor. Assume the
numerical values of Problem 13, with �V � 100 V.

29. Plates of Area A A parallel-plate capacitor has plates of area
A and separation d and is charged to a potential difference �V. The
charging battery is then disconnected, and the plates are pulled
apart until their separation is 2d. Derive expressions in terms of A,
d, and �V for (a) the new potential difference; (b) the initial and fi-
nal stored energies, Ui and Uf and (c) the work required to separate
the plates.

30. Find the Charge In Fig. 28-26, find (a) the excess charge, (b)
the potential difference, and (c) the stored energy for each capaci-
tor. Assume the numerical values of Problem 10, with �V � 100 V.

31. Cylindrical Capacitor A cylindrical capacitor has radii a and b
as in Fig. 28-10. Show that half the stored electric potential energy
lies within a cylinder whose radius is r � .

32. Metal Sphere A charged isolated metal sphere of diameter 
10 cm has a potential of 8000 V relative to V � 0 at infinity. Calcu-
late the energy density in the electric field near the surface of the
sphere.

33. Force of Magnitude (a) Show that the plates of a parallel-plate
capacitor attract each other with a force of magnitude given by 
F � q2/2ε0A. Do so by calculating the work needed to increase the

√ab

� q3 �� q2�� q1�

plate separation from x to x � dx, with the excess charge re-
maining constant. (b) Next show that the magnitude of the force
per unit area (the electrostatic stress) acting on either capacitor
plate is given by ε0E2. (Actually, this is the force per unit area on
any conductor of any shape with an electric field at its surface.)

SEC. 28-6 ■ CAPACITOR WITH A DIELECTRIC

34. Wax An air-filled parallel-plate capacitor has a capacitance of
1.3 pF. The separation of the plates is doubled and wax is inserted
between them. The new capacitance is 2.6 pF. Find the dielectric
constant of the wax.

35. Convert It Given a 7.4 pF air-filled capacitor, you are asked to
convert it to a capacitor that can store up to 7.4 �J with a maximum
potential difference of 652 V. What dielectric in Table 28-3 should
you use to fill the gap in the air capacitor if you do not allow for a
margin of error?

36. Separation A parallel-plate air-filled capacitor has a capaci-
tance of 50 pF. (a) If each of its plates has an area of 0.35 m2, what is
the separation? (b) If the region between the plates is now filled
with material having � � 5.6, what is the capacitance?

37. Coaxial Cable A coaxial cable used in a transmission line has
an inner radius of 0.10 mm and an outer radius of 0.60 mm. Calcu-
late the capacitance per meter for the cable. Assume that the space
between the conductors is filled with polystyrene.

38. Construct a Capacitor You are asked to construct a capacitor
having a capacitance near 1 nF and a breakdown potential in
excess of 10 000 V. You think of using the sides of a tall Pyrex
drinking glass as a dielectric, lining the inside and outside curved
surfaces with aluminum foil to act as the plates. The glass is 15 cm
tall with an inner radius of 3.6 cm and an outer radius of 3.8 cm.
What are the (a) capacitance and (b) breakdown potential of this
capacitor?

39. Certain Substance A certain substance has a dielectric con-
stant of 2.8 and a dielectric strength of 18 MV/m. If it is used as the
dielectric material in a parallel-plate capacitor, what minimum area
should the plates of the capacitor have to obtain a capacitance of
7.0 
 10�2 �F and to ensure that the capacitor will be able to with-
stand a potential difference of 4.0 kV?

40. Two Dielectrics A parallel-plate capacitor of plate area A is
filled with two dieletrics as in Fig. 28-35a. Show that the capacitance
is

Check this formula for limiting cases. (Hint: Can you justify this
arrangement as being two capacitors in parallel?)

C �
ε0A
d

�1 � �2

2
.

E
:

1
2

� q �
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41. Limiting Cases A parallel-plate capacitor of plate area A is
filled with two dielectrics as in Fig. 28-35b. Show that the capaci-
tance is

Check this formula for limiting
cases. (Hint: Can you justify this
arrangement as being two capaci-
tors in series?)

42. What is Capacitance What is
the capacitance of the capacitor,
of plate area A, shown in Fig. 28-
36? (Hint: See Problems 40 and
41.)

SEC. 28-8 ■ DIELECTRICS AND GAUSS’ LAW

43. Mica A parallel-plate capacitor has a capacitance of 100 pF, a
plate area of 100 cm2, and a mica dielectric (� � 5.4) completely
filling the space between the plates. At 50 V potential difference,
calculate (a) the electric field magnitude E in the mica, (b) the
amount of excess free charge on each plate, and (c) the amount of
induced surface charge on the mica.

44. Electric Field Two parallel plates of area 100 cm2 are given ex-
cess charges of equal amounts 8.9 
 10�7 C but opposite signs. The
electric field within the dielectric material filling the space between
the plates is 1.4 
 106 V/m. (a) Calculate the dielectric constant of
the material. (b) Determine the amount of bound charge induced
on each dielectric surface.

45. Concentric Conducting Shells The space between two concen-
tric conducting spherical shells of radii b and a (where b 	 a) is filled
with a substance of dielectric constant �. A potential difference �V
exists between the inner and outer shells. Determine (a) the capaci-
tance of the device, (b) the excess free charge q on the inner shell,
and (c) the charge q induced along the surface of the inner shell.

SEC. 28-9 ■ RC CIRCUITS

46. Initial Charge A capacitor with initial excess charge of amount
is discharged through a resistor. In terms of the time constant �,

how long is required for the capacitor to lose (a) the first one-third
of its charge and (b) two-thirds of its charge?

47. How Many Time Constants How many time constants must
elapse for an initially uncharged capacitor in an RC series circuit to
be charged to 99.0% of its equilibrium charge?

� q0 �

C �
2ε0A

d
�1�2

�1 � �2
.
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48. Leaky Capacitor The potential difference between the plates of
a leaky (meaning that charges leak directly across the “insulated”
space between the plates) 2.0 �F capacitor drops to one-fourth its
initial value in 2.0 s. What is the equivalent resistance between the ca-
pacitor plates?

49. Time Constant A 15.0 k� resistor and a capacitor are con-
nected in series and then a 12.0 V potential difference is suddenly
applied across them. The potential difference across the capacitor
rises to 5.00 V in 1.30 �s. (a) Calculate the time constant of the cir-
cuit. (b) Find the capacitance of the capacitor.

50. Flashing Lamp Figure 28-37 shows the circuit of a flashing
lamp, like those attached to barrels
at highway construction sites. The
fluorescent lamp L (of negligible ca-
pacitance) is connected in parallel
across the capacitor C of an RC cir-
cuit. There is a current through the
lamp only when the potential differ-
ence across it reaches the breakdown
voltage VL; in this event, the capaci-
tor discharges completely through
the lamp and the lamp flashes briefly.
Suppose that two flashes per second are needed. For a lamp with
breakdown voltage �VL � 72.0 V, wired to a 95.0 V ideal battery and
a 0.150 �F capacitor, what should be the resistance R?

51. Initial Potential Difference A capacitor with an initial poten-
tial difference of 100 V is discharged through a resistor when a
switch between them is closed at t � 0. At t � 10.0 s, the potential
difference across the capacitor is 1.00 V. (a) What is the time con-
stant of the circuit? (b) What is the potential difference across the
capacitor at t � 17.0 s?

52. Electronic Arcade Game A controller on an electronics arcade
games consists of a variable resistor connected across the plates of
a 0.220 �F capacitor. The capacitor is charged to 5.00 V, then dis-
charged through the resistor. The time for the potential difference
across the plates to decrease to 0.800 V is measured by a clock in-
side the game. If the range of discharge times that can be handled
effectively is from 10.0 �s to 6.00 ms, what should be the resistance
range of the resistor?

53. Initial Stored Energy A 1.0 �F capacitor with an initial stored
energy of 0.50 J is discharged through a 1.0 M� resistor. (a) What
is the initial amount of excess charge on the capacitor plates? (b)
What is the current through the resistor when the discharge starts?
(c) Determine �VC, the potential difference across the capacitor,
and �VR, the potential difference across the resistor, as functions
of time. (d) Express the production rate of thermal energy in the
resistor as a function of time.

2d
d

d
κ1

κ2

κ3

A/2 A/2

FIGURE 28-36 ■ Problem 42. +
–

R

C L

FIGURE 28-37 ■

Problem 50.

Additional Problems

54. Capacitance (a) What is the physical definition and description
of a capacitor? (b) What is the mathematical definition of capaci-
tance? (c) Based on the physical description of a capacitor, why
would you expect it to hold more excess charge on each of its con-
ducting surfaces when the voltage difference between the two
pieces of conductor increases?

55. Net Charge What is the net charge on a capacitor in a circuit?
Is it ever possible for the amount of excess charge on one conduc-
tor to be different from the amount of excess charge on the other
conductor? Explain.

56. Attraction and Repulsion Consider the attraction and repul-
sion of different types of charge. (a) Explain why you expect to find



that the amount of excess charge a battery can pump onto a paral-
lel-plate capacitor will double if the area of each plate doubles. (b)
Explain why you expect to find that the amount of excess charge a
battery can pump onto a parallel-plate capacitor will be cut in half
if the distance between each plate doubles.

57. Three Parallel-Plate Capacitors
Suppose you have three parallel-plate
capacitors as follows:

Capacitor 1: Area A, spacing d
Capacitor 2: Area A, spacing 2d
Capacitor 3: Area 2A, spacing d
The three graph lines (labeled a, b,
and c) in Fig. 28-38 represent data for
the amounts of excess of charge on
the plates of each capacitor as a func-
tion of the potential difference across
it. Which capacitor {l, 2, or 3} belongs
to which line {a, b, and c}? Explain your reasoning carefully.

58. Capacitors in Series Give as clear an explanation as possible as
to why it is physically reasonable to expect that two identical
parallel-plate capacitors that are placed in series ought to have half
the capacitance as one capacitor. Hints: What happens to the effec-
tive spacing between the first plate of capacitor 1 and the second
plate of capacitor 2 when they are wired in series? What does the
fact that like charges repel and opposites attract have to do with
anything?

59. Capacitors in Parallel Give as clear an explanation as possible
as to why it is physically reasonable to expect that two identical
parallel-plate capacitors placed in parallel ought to have twice the
capacitance as one capacitor. Hints: What happens to the effective
area of capacitors wired in parallel? What does the fact that like
charges repel and opposites attract have to do with anything?

60. Charge Ratios on Capacitors (Adapted from a TYC WS Pro-
ject ranking task by D. Takahashi). Eight capacitor circuits are

shown in Fig. 28-39. All of the capacitors are identical and all are
fully charged. The batteries are also identical. In each circuit, one
capacitor is labeled C1 and another is labeled C2. Assuming de-
notes the amount of excess charge on C1, denotes the amount
of excess charge on C2, and the value of the ratio is denoted 
rank the circuit in which the value of the ratio is largest first,
and rank the circuit in which the value of the ratio is the smallest
last. If two or more circuits result in identical values for the ratio,
give these circuits equal ranking. Express your ranking symboli-
cally. (For example, suppose the ratio was highest for D and G and
lowest for A and E with the in-between ratios being equal, then the
symbolic ranking would be

D � G 	 B � C � H � F 	 A � E

(Beware: This is only a sample, not a correct answer!)

61. Physicists Claim Physicists claim that charge never flows
through an ideal capacitor. Yet when an uncharged capacitor is first
placed in series
with a resistor and
a battery, current
flows through the
battery and the re-
sistor. Explain how
this is possible.

62. Voltage Graphs
Figure 28–40 shows 
plots of voltage
across the capaci-
tor as a function of
time for three different capacitors that have each been separately
discharged through the same resistor. Rank the plots according to
the capacitances, the greatest first. Explain the reasons for your
rankings.

63. A Cell Membrane The inner and outer surfaces of a cell mem-
brane carry excess negative and positive charge, respectively. Be-
cause of these charges, a potential difference of about 70 mV exists
across the membrane. The thickness of the membrane is 8 nm.

(a) If the membrane were empty (filled with air), what would be the
magnitude of the electric field inside the membrane?
(b) If the dielectric constant of the membrane were � � 3 what
would the field be inside the membrane?
(c) Cells can carry ions across a membrane against the field (“up-
hill”) using a variety of active transport mechanisms. One mecha-
nism does so by using up some of the cell’s stored energy convert-
ing ATP to ADP. How much work does it take to carry one sodium
ion (charge � �e) across the membrane against the field? Calcu-
late your answer in eV, joules, and kcal/mole (the last for 1 mole of
sodium ions).

� q1/q2 �
� q1/q2 �,

� q2 �
� q1 �
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29 Magnetic Fields

Ocean water contains huge quantities of the light atomic

nuclei found in “heavy water” needed to produce fusion

power. If we could produce a cost-effective fusion reactor,

the world’s power problems could be solved. We have

known this for over 50 years and still not produced fusion

power. Why? A key problem is that it takes a temperature

of at least 100 million degrees Celsius to force two light

nuclei to fuse together. At this temperature, any material

we tried to squeeze together to fuse would be so hot that it

would vaporize any material it touches. The torus-shaped

chamber of the large Tokomak reactor in this photo was

built in an attempt to contain fusion reactions.

How can this Tokomak
contain matter at 100 million
degrees Celsius?

The answer is in this chapter.



29-1 A New Kind of Force?

In Chapter 14 we studied gravitational interaction forces that we experience on an
everyday basis. Gravitational forces are so weak that it takes a source the size of a
planet or star to produce a noticeable effect. This made the study of the effects of
gravity near the Earth’s surface relatively simple. In most cases, we treat the gravita-
tional force on an object as a constant.

Then, in Chapter 22, we studied the electrostatic force—a long-range force that is
much stronger than the gravitational force. If you run a comb through your hair, a bit
of paper near the comb hops up and sticks to the comb. The electrostatic force ex-
erted on the paper by the comb is somewhat larger than the gravitational force that
the whole Earth exerts on the paper.

Are there any other long-range (or, action-at-a-distance) forces, or are we done?
If you think about your personal experiences, you probably have had the opportunity
to play with small disk-shaped refrigerator magnets or pairs of bar magnets. On a
larger scale, electromagnets are used for sorting scrap metal (Fig. 29-1) and many
other things. Magnets are fun because they behave in such an unusual way. You can
use one magnet to chase a second magnet around a table without even touching it.
But if you come at the magnet from a slightly different direction, it will suddenly
seem to change what it’s doing and will be pulled toward the other. A refrigerator
magnet will seem to leap to the door of the refrigerator, being drawn to it from a dis-
tance. Clearly a long-range force is at work here. But is it a new kind of force? Or is it
merely a form of gravitational or electrical force?

29-2 Probing Magnetic Interactions

We know from our everyday experiences with small bar magnets that we can feel a
force on one bar magnet as it interacts with another. This means we can use a bar
magnet as a test object for investigating the nature of magnetic interactions. In order
to answer the question of whether magnetic interactions are really gravitational or
electrostatic forces, let’s investigate what happens when a small bar magnet or disk-
shaped refrigerator magnet experiences a significant force.

Is the Magnetic Force a Type of Gravitational Force?
The force on our test magnet near the Earth’s surface is clearly in addition to the
gravitational attraction of the Earth. The fact that a refrigerator magnet can stick to
the refrigerator and not fall means that it is experiencing a force that is stronger than
the gravitational force exerted on it by the entire Earth.

What happens if we replace our test magnet with another nonmagnetic object of
equal mass and the same shape? We find that the magnetic force disappears. Hence,
we must surmise that the force we detected with the bar magnet is not a gravitational
force associated with the presence of another object. It is too strong and exists
only for certain probe objects. Furthermore, we know from playing with magnets that
the force can be attractive or repulsive. As we know, this is not true for the gravita-
tional force.

Is the Magnetic Force a Type of Electrostatic Force?
Could the magnetic force be the electrostatic force we have learned about? After all,
the magnetic force, like the electrostatic force, is sometimes attractive and sometimes
repulsive. To test this idea, we replace our test magnet with a test charge (such as a
tiny Styrofoam ball charged by a rubber rod) at the former location of our test
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FIGURE 29-1 ■ A large electromagnet is
used to collect and transport scrap metal at
a steel mill.



magnet. Again, we find that our new probe (the charge) is only weakly attracted—as
is any charged object to a neutral object. So, we must also surmise that the force the
bar magnet detects is not a type of electrostatic force.

The Magnetic Force and a Moving Charge
We have just described observations that show that forces between magnets are fun-
damentally different from either electrostatic or gravitational forces. So it appears
that we have a new action-at-a-distance force to learn about. This force can be either
attractive or repulsive. We can detect this force with a magnet, and so we will refer to
it as a magnetic force.

Having completed our investigations of electric force in earlier chapters, we now
take the electric charge we had been using as a probe and move it rapidly away from
a magnet. When we do this, we find something strange. When we move the charge, we
do detect a force! 

OBSERVATION: A magnet exerts a force on a moving charged object, but not on a stationary
charged object.

Furthermore, when we try moving the charge at different velocities, we find that the
larger the magnitude of the velocity, the larger is the force exerted on the charge. Is
the same true for uncharged, nonmagnetic masses? Experimentation shows the same
is not true for uncharged masses. No magnetic force is detected when an uncharged,
nonmagnetic mass is used as a probe—regardless of whether the probe is moving or
stationary.

In the early 19th century, both Oersted and Ampère discovered that magnets in-
teract with moving charges. In fact, these two scientists showed that current-carrying
wires both exert forces on and feel forces from bar magnets. Their observations pro-
vide us with important information in our quest to understand the magnetic force. We
have found that magnetic forces are not just exerted on other magnets. Magnetic
forces are also exerted on a nonmagnetic small charged particle in rough proportion
to the degree to which the particle is both charged and moving. What is the simplest
relationship between magnetic force, charge, and velocity that is consistent with our
observations? Mathematically stated, it is a proportional relationship given by 

,

where �q� represents the amount of electric charge on the particle and v is the parti-
cle’s speed.

Is this relationship correct? Well, if it is, we should see a doubling of the force
when we double the velocity of the charged particle we are using as a probe. Experi-
mentally, this does turn out to be the case. Furthermore, we also find that doubling the
charge on the probe doubles the force detected. Hence, the linear relationship ex-
pressed above is a good start toward a more precise mathematical description of the
magnetic force on a moving charged particle. We will return to experimentation as a
means for developing a precise expression for the magnetic force in just a moment.

29-3 Defining a Magnetic Field 

When we play with two bar magnets, we quickly see that the magnetic force can 
be attractive or repulsive. Furthermore, if we observe more carefully, we find that
the strength of the force decreases as the distance between the two magnets is in-
creased. These observations are distinctly reminiscent of our observations of the
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electrostatic force between two charges. So our first guess in developing a model of
the magnetic force might turn out to be somewhat similar to our model of the elec-
trostatic force.

In order to develop a model of magnetism that parallels our model of electrostat-
ics, we should have two different kinds of “magnetic charges.” These conceptual ob-
jects are referred to as magnetic monopoles. We can model our bar magnet as
containing a south and a north pole with at least some separation between them. If we
assume that like poles repel and unlike poles attract, then this model allows us to cor-
rectly predict all our observations. Playing with bar magnets informs us that poles of
the same kind repel one another and poles of different kinds attract one another. This
is just as we found for electric charges. However, careful observation of the interac-
tion between bar magnets shows that their behavior is similar to that of electric
dipoles. Recall that an electric dipole consists of two charges of opposite sign with a
small spacing between them. If two electric dipoles that are placed with all their
charges lying on the same line are brought together, they will attract. Why? Because a
negative charge from the end of one dipole will be closest to the positive charge
of the other dipole. However, if we turn one of the electric dipoles around so the
dipoles are anti-aligned, then the two like charges will be closest together. Now the
dipoles will repel.

Two bar magnets when aligned and then anti-aligned will behave just like electric
dipoles. For this reason, we often refer to magnets as magnetic dipoles. That is, one
end appears to be one kind of magnetic charge and the other end appears to be the
other kind of magnetic charge. By convention, we can assign names to the poles of a
bar magnet as follows. If we suspend a bar magnet by a string placed halfway between
its ends and take other magnetic sources away from its vicinity, one pole of the mag-
net will point more or less north and the other more or less south. We can call the
north-pointing end the north pole of the magnet and the other end the south pole of
the magnet.

This idea that a bar magnet is a magnetic dipole with a north charge at one end
and a south charge at the other end provides us with a start in describing magnetic
interactions. However, to continue with the analogy between the magnetism and elec-
tricity, we would like to isolate a magnetic charge. After all, we can separate a nega-
tive charge from a positive charge. So we need to be able to separate the north pole of
a bar magnet from the south pole of a bar magnet. To do this, we take our bar magnet
and cut it in half. But, when we do this we find a surprising thing. The result of break-
ing the bar magnet in half is simply that we have two weaker half-sized bar magnets.
Each one still behaves as a dipole with both a north and a south pole. If we again try
to break the magnet in half, we find we have a still smaller magnet, but still with a
north and south pole (Fig. 29-2). In fact, if we break the magnet down into subatomic
parts, we find that even the electrons, protons, and neutrons within atoms behave as
magnetic dipoles (that is, very little bar magnets).

As it turns out, the magnetic effect of a bar magnet arises from the combination
of the effects of the little bar magnets in the electrons in iron, nickel, and cobalt align-
ing with each other and producing a strong effect. Each electron’s magnet is small, but
when you turn them in the same direction and add them all up, the total effect is
strong—the full magnetic effect of the bar magnet. So, in short, although the exis-
tence of separate magnetic charges (or magnetic monopoles) have been predicted by
some physicists, they have never actually been found.

Does the fact that we cannot find an isolated magnetic monopole mean that we
must abandon our effort to find parallels between magnetic and electrostatic forces?
Not at all. In Chapter 23, we found that the concept of an electric field was quite
useful. With so many different possible sources of significant electrostatic forces, it
was helpful to think about the force field associated with a given charge (the source
of electrostatic force)—without having to decide on what object the force will be
exerted on. That is, we wanted to separate the discussion of the source of the force
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FIGURE 29-2 ■ Whenever a magnet is
broken into pieces between its poles, the
pieces behave like smaller, weaker
magnets.



from the discussion of the object the force is exerted on. So we defined the electric
field as 

(Eq. 23-4)

We determined the electric field at a point by putting a test particle of charge q at
rest at that point and measuring the electrostatic force acting on the particle.
We saw that  electric charges set up an electric field that can then affect other electric
charges.

Perhaps the same idea could be useful to us in describing magnetic forces. If we
could develop a parallel concept of a magnetic field, we could separate the issue of
sources of magnetic forces from discussions of the objects that magnetic forces are ex-
erted on. This would be helpful since the concept of a magnetic monopole is so prob-
lematic. If a magnetic monopole were available, we could define the magnetic field
in a way similar to that used for electric fields. However, because such particles have
not been found, we must using another method to define a magnetic field .

For nonmagnetic particles, we have already observed that the magnetic force is
proportional to the charge and the magnitude of the velocity of the particle being
acted on (the probe). We can use this information and define the magnetic field in
terms of the force exerted on a moving, electrically charged test particle.
The magnitude of the force seems to depend on the direction of the particle’s velocity

as well. We will examine this effect in more detail in the next section, but for now
we define the magnetic field in terms of the maximum force magnitude we measure
after trying all different directions for . So we can express the magnitude of the mag-
netic field in terms of this maximum force magnitude as:

(29-1)

where q is the particle’s charge and v is its speed.
Having defined the magnitude of the magnetic field is a big step forward. It is a

concept that will turn out to be extremely useful. Right now, it is helpful because we
have not identified the source of the force exerted on our probe. But, having defined
the magnitude of the magnetic field in this way, we can at least say that we know that
there is a vector magnetic field in the region of space we have been probing. We make
extensive use of the concept of a magnetic field in this chapter. Next we turn our at-
tention to this issue of how to define the direction of the magnetic field.

29-4 Relating Magnetic Force and Field

In order to determine the direction of the magnetic field, we can fire a charged par-
ticle through a region of space where a magnetic field is known to exist. If we 
shoot the charged particle in various directions, we find something surprising—the di-
rection of is always perpendicular to the direction of (Fig. 29-3). After many
such trials we find that when the particle’s velocity is along a particular axis through
the region of space, force is zero. Furthermore, we find that for all other
directions of , the magnitude of depends on the direction of . In fact, it is
proportional to where � is the angle between the zero-force axis and the
direction of . Thinking back to our work on torque and angular momentum, these
observations suggest that a cross product is involved. But a cross product of what two
vectors?

Clearly, one of the two vectors involved in the cross product is the velocity vector.
Our observation that the force is zero when the velocity is along a certain axis implies
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that the other vector must be aligned with this “zero magnetic force” axis. Referring
back to our definition of the magnetic field magnitude, B, in Eq. 29-1, we note that the
magnitude of the observed magnetic force is given by

,

where v is the particle speed and is the amount of charge the particle has. Suppose
the direction of the magnetic field is taken to be along the “zero magnetic force” axis.
We could then represent all of our observations with the following vector equation,
known as the magnetic force law or Lorentz force law:

(magnetic force law). (29-2)

That is, the force on the particle is equal to the charge q times the cross product
of its velocity and the magnetic field . If this expression is correct, the force on a
negatively charged particle should be opposite in direction from the force on a posi-
tively charged particle. This does in fact turn out to be the case.

Furthermore, expressing the magnetic force on a charged particle moving through a
magnetic field as requires that we adopt a standard convention for
the direction of the magnetic field.That is,

The direction of a magnetic field is defined to be related to the direction of the force on and
the velocity of a positively charged particle by .

Although this is not a very intuitive statement of how one goes about finding the di-
rection of a magnetic field, we are forced to use it if we want to use 
to determine the magnitude and direction of the magnetic force on a moving charged
particle.

Using the mathematical definition of a cross product to evaluate this expression,
we see that we can write the magnitude of the magnetic force as 

(29-3)

where is the smaller angle (the one whose value lies between 0° and 180°) between
the directions of velocity and magnetic field .B
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FIGURE 29-3 ■ (a) An electron beam is
accelerated by a voltage source and travels
through an evacuated glass tube to the
center of a phosphorescent screen. (b) If a
magnet is oriented vertically and placed
just below the beam (along the �z axis),
the electrons are deflected horizontally
along the �x axis.
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We have seen that magnetic force and electric force are not the same. However, a
magnetic force is exerted on a moving charged particle as well as on bar magnets. This
suggests that there is a profound connection between electricity and magnetism—
even though they are not the same thing. As it turns out, the theory of relativity,
treated in Chapter 38, reveals a deep underlying connection between and . Fur-
thermore, much of the technology that makes our lives more comfortable today re-
sults from an understanding of this relationship. In Chapter 30, we show how moving
electrical charges can create magnetic fields and in Chapter 31 we show an even
deeper and more surprising link between electricity and magnetism (called Faraday’s
law). What we find is that a magnetic field can, if it changes in time, create an electric
field without any electric charge present!

Finding the Magnetic Force on a Moving Charged Particle
Equation 29-3 reveals that the magnitude of the force acting on a particle in a
magnetic field is proportional to the amount of charge �q� and speed v of the particle.
Thus, the force is equal to zero if the charge is zero or if the particle is stationary.
Equation 29-3 also tells us that the magnitude of the force is zero if and are ei-
ther parallel or antiparallel , and the force is a maximum when 
and are perpendicular to each other.

Equation 29-2 tells us all this and the direction of . From Section 12-4, we
know that the cross product in Eq. 29-2 is a vector that is perpendicular to 
the two vectors and . The right-hand rule (Fig. 29-4a) specifies that the thumb of the
right hand points in the direction of when the fingers sweep into . If q is
positive, then (by Eq. 29-2) the force has the same sign as and thus must
be in the same direction. That is, for positive q, is directed along the thumb as in
Fig. 29-4b. If q is negative, then the force and the cross product have op-
posite signs and thus must be in opposite directions. For negative q, is directed
opposite the thumb as in Fig. 29-4c.

Regardless of the sign of the charge, however,

The force acting on a charged particle moving with velocity through a magnetic
field is always perpendicular to and .

Thus, never has a component parallel to . This means that cannot change
the particle’s speed v � (and thus it cannot change the particle’s kinetic energy).
The force can change only the direction of (and thus the direction of travel); only in
this sense can accelerate the particle. If there are no other forces acting on the
charged particle and the velocity of the particle is perpendicular to the direction of
the magnetic field, this means that the particle will move in a circle. If the particle has
a component perpendicular to the magnetic field and a component of velocity parallel
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to the magnetic field, the particle will move along a helix of constant radius. These
paths are discussed in more detail in Section 29-5.

To develop a feeling for the relationship between the magnetic force on a moving
charged particle and the magnetic field, , consider Fig. 29-5. This
figure shows some tracks left by charged particles moving rapidly through a bubble
chamber at the Lawrence Berkeley Laboratory. The chamber, which is filled with liquid
hydrogen, is immersed in a strong uniform magnetic field that is directed out of the
plane of the figure. An incoming gamma ray particle—which leaves no track because it
is uncharged—transforms into an electron (spiral track marked e�) and a positron
(track marked e�) while it knocks an electron out of a hydrogen atom (long track
marked e�). At first these newly created charged particles are moving in the same
direction as the gamma ray. As they move, they each experience a magnetic force of
magnitude F mag � vB and begin to move in a circular path given by F mag � mv2/r.
Since qvB � mv2/r, a particle has a path of radius r � mv/ B. You can use Eq. 29-2
and Fig. 29-4 to confirm that the three tracks made by these two negative particles and
one positive particle curve in the proper directions. It is interesting to note that the
electrons and positron do not move in a pure circle. Instead, they move in a shrinking
spiral because they are slowed down through their interaction with the gas in the bubble
chamber.This makes sense because r � mv/ B and as each particle’s speed, v, becomes
smaller, so does its radius r. When this happens, the magnetic force, which is proportional
to the particle’s velocity, decreases and so the radius of the particle’s path decreases.

What Produces a Magnetic Field?
We have discussed how a charged plastic rod produces a vector field—the electric
field —at all points in the space around it. Similarly, a magnet produces a vector
field—the magnetic field —at all points in the space around it. You get a hint of
that magnetic field whenever you attach a note to a refrigerator door with a small
magnet, or accidentally erase a computer disk by bringing it near a strong magnet.
The magnet acts on the door or disk by means of its magnetic field.

In a common type of magnet, a wire coil is wound around an iron core and a cur-
rent is sent through the coil; the strength of the magnetic field is determined by the
size of the current. In industry, such electromagnets are used for sorting scrap metal
(Fig. 29-1) among many other things. You are probably more familiar with permanent
magnets—magnets, like the refrigerator-door type, that do not need current to have a
magnetic field.

How then are magnetic fields set up? We know about two ways to create mag-
netic fields. (1) We observe that moving electrically charged particles, such as the cur-
rent in a wire or charged beams of cosmic rays create magnetic fields. (2) We find that
elementary particles such as protons, neutrons, and electrons have intrinsic magnetic
moments that create magnetic fields. In Chapter 30 we discuss how moving charges
create magnetic fields, and in Chapter 32 we consider the role of intrinsic magnetic
moments in the creation of magnetic fields. In this chapter we stay focused on how to
represent magnetic fields and how they influence charged particles that are moving.

The SI unit for that follows from Eqs. 29-2 and 29-3 is the newton per coulomb-
meter per second. For convenience, the SI unit for magnetic field is called the
tesla (T):

Recalling that a coulomb per second is an ampere, we have 

(29-4)1 T � 1
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FIGURE 29-5 ■ Color enhanced tracks
showing two electrons (e�) and a positron
(e�) in a bubble chamber that is immersed
in a uniform magnetic field that is directed
out of the plane of the page.



An earlier (non-SI) unit for , that is still in common use is the gauss (G), and 

(29-5)

Table 29-1 lists the magnetic fields that occur in a few situations. Note that Earth’s
magnetic field near the planet’s surface is about 10�4 T ( or 1 gauss).

READI NG EXERC IS E  29-1: The figure shows three situations in which a charged
particle with velocity travels through a uniform magnetic field . In each situation, what is
the direction of the magnetic force on the particle?

■

Magnetic Field Lines
We can represent magnetic fields with field lines, as we did for electric fields. Similar
rules apply; that is, (1) the direction of the tangent to a magnetic field line at any point
gives the direction of at that point, and (2) the spacing of the lines represents the
magnitude of —the magnetic field is stronger where the lines are closer together,
and conversely.

Figure 29-6a shows how the magnetic field near a bar magnet (a permanent mag-
net in the shape of a bar) can be represented by magnetic field lines. The lines all pass
through the magnet, and they all form closed and continuous loops (even those that
are not shown closed in the figure). They don’t start or end anywhere. Since electric
field lines begin and end on electric charges, this is consistent with our assumption
that there are no magnetic charges (monopoles). As shown with field lines, the exter-
nal magnetic effects of a bar magnet are strongest near its ends, where the field lines
are most closely spaced. Thus, the magnetic field of the bar magnet in Fig. 29-6b col-
lects the iron filings mainly near the two ends of the magnet. Overall, outside of the
bar magnet the field lines look just like they would for an electric dipole, but inside
the magnet they point in the opposite direction.

The (closed) field lines enter one end of a magnet and exit the other end. The end
of a magnet from which the field lines emerge is called the north pole of the magnet;
the other end, where field lines enter the magnet, is called the south pole. (Remember
that the direction of the field line is related to the direction of the force on a moving
positively charged particle.) Some of the magnets we use to fix notes on refrigerators
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TA B L E 2 9 - 1
Some Approximate Magnetic Fields

At the surface of a neutron star 108 T

Near a big electromagnet 1.5 T

Near a small bar magnet 10�2 T

At Earth’s surface 10�4 T

In interstellar space 10�10 T

Smallest value in a magnetically shielded room 10�14 T
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FIGURE 29-6 ■ (a) The magnetic field
lines for a bar magnet. (b) A “cow mag-
net”—a bar magnet that is intended to be
slipped down into the rumen (first stom-
ach) of a cow to prevent accidentally in-
gested bits of scrap iron from reaching the
cow’s intestines. The iron filings at its ends
reveal the directions of the magnetic field
lines in the vicinity of the magnet.

(b)
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are short bar magnets. Figure 29-7 shows two other common shapes for magnets: a
horseshoe magnet and a magnet that has been bent around into the shape of a C so
that the pole faces are facing each other. (The magnetic field between the pole faces
can then be approximately uniform.) Regardless of the shape of the magnets, if we
place two of them near each other we find:

Opposite magnetic poles attract each other, and like magnetic poles repel each other.

Earth has a magnetic field that is produced in its core. We discuss current theories
about the nature and origin of the Earth’s magnetic field in Section 32-9. On Earth’s
surface, we can detect this magnetic field with a compass, which is essentially a slender
bar magnet on a low-friction pivot. This bar magnet, or this needle, turns because its
north pole end is attracted toward the Arctic region, or North Pole, of Earth. Thus, the
south pole of Earth’s magnetic field must be located toward the North Pole. Logically,
we then should call the pole there a south pole. However, because we call that direc-
tion north, we are trapped into the statement that Earth has a geomagnetic north pole
in that direction.

With more careful measurement we would find that in the northern hemisphere,
the magnetic field lines of Earth generally point down into Earth and toward the Arc-
tic. In the southern hemisphere, they generally point up out of Earth and away from
the Antarctic—that is, away from Earth’s geomagnetic south pole.

TOUCHSTONE EXAMPLE 29-1: Proton in a Magnetic Field

A uniform magnetic field , with magnitude 1.2 mT, is directed ver-
tically upward throughout the volume of a laboratory chamber. A
proton with kinetic energy 5.3 MeV enters the chamber, moving
horizontally from south to north. What is the magnitude of the
magnetic deflecting force acting on the proton as it enters the
chamber? The proton mass is . (Neglect Earth’s
magnetic field.)

SOLUTION ■ Because the proton is charged and moving through
a magnetic field, a magnetic force can act on it. The Ke y
I d e a here is that, because the initial direction of the proton’s
velocity is not along a magnetic field line, is not simply zero.
To find the magnitude of , we can use Eq. 29-3 provided we
first find the proton’s speed � v. We can find v from the given� v: �
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B
: kinetic energy, since . Solving for , we find

Equation 29-3 then yields 

(Answer)� 6.1 � 10�15 N.

 � (1.2 � 10�3 T) (sin 90�)

� (1.60 � 10�19 C)(3.2 � 107 m/s)
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FIGURE 29-7 ■ (a) A horseshoe magnet
and (b) a C-shaped magnet. (Only a few of
the possible of the external field lines are
shown.)
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This may seem like a small force, but it acts on a particle of small
mass, producing a large magnitude of acceleration; namely,

To find the direction of , we use the Ke y  I d e a that
has the direction of the cross product . Because the

charge q is positive, must have the same direction as ,
which can be determined with the right-hand rule for cross prod-
ucts (as in Fig. 29-4b). We know that is directed horizontally from
south to north and is directed vertically up. The right-hand rule
shows us that the deflecting force must be directed horizon-
tally from west to east, as Fig. 29-8 shows. (The array of dots in the
figure represents a magnetic field directed out of the plane of the
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figure. An array of Xs would have represented a magnetic field
directed into that plane.)

If the charge of the particle were negative, the magnetic
deflecting force would be directed in the opposite direction—that
is, horizontally from east to west. This is predicted automatically by
Eq. 29-2, if we substitute a negative value for q.
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FIGURE 29-8 ■ An overhead
view of a proton moving from
south to north with velocity in
a chamber.A magnetic field is
directed vertically upward in the
chamber, as represented by the
array of dots (which resemble
the tips of arrows).The proton is
deflected toward the east.

v:

29-5 A Circulating Charged Particle

Remember that when we studied projectile motion we found that the (vertical) gravi-
tational acceleration had no effect on the horizontal velocity of the projectile.
Furthermore, when we studied uniform circular motion, we found that the (radial)
centripetal acceleration only changed the direction of the object’s velocity (keeping it
moving in a circle), but did not speed it up or slow it down. This is a general relation-
ship: The component of acceleration that is perpendicular to the direction of velocity
only changes the direction of the velocity, not the magnitude.

We have a similar situation here. If we have a charged particle whose size is small
enough to ignore, the magnetic force the particle feels is always perpendicular to its
velocity and not its magnitude. As we established earlier, if the velocity and magnetic
field are perpendicular (and there are no other forces on the particle), the particle will
move in a circle.

If a particle moves in a circle at constant speed, we can be sure that the net force
acting on the particle is constant in magnitude and is centripetal. That is, the force
points toward the center of the circle, always perpendicular to the particle’s velocity.
Think of a stone tied to a string and whirled in a circle on a smooth horizontal sur-
face, or of a satellite moving in a circular orbit around the Earth. In the first case, the
tension in the string provides the necessary force and centripetal acceleration. In the
second case, Earth’s gravitational attraction provides the force and acceleration.

Figure 29-9 shows another example of a centripetal magnetic force: A beam of
electrons is projected into a chamber by an electron gun G. The electrons enter in the
plane of the page with speed v and move in a region of uniform magnetic field di-
rected out of the plane of the figure. As a result, a magnetic force 
continually deflects the electrons, and because the particle’s velocity, , and the mag-
netic field it passes through, , are always perpendicular to each other, this deflection
causes the electrons to follow a circular path. The path is visible in the photo because
atoms of gas in the chamber emit light when some of the circulating electrons collide
with them.

We would like to determine the parameters that characterize the circular motion
of these electrons, or of any particle having an amount of charge and mass m mov-
ing perpendicular to a uniform magnetic field at speed v. From Eq. 29-3, the force
acting on the particle has a magnitude of . From Newton’s Second Law

applied to uniform circular motion (Eq. 5-34),
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we have 

(29-7)

Solving for r, we find the radius of the circular path as 

(radius of circular path). (29-8)

The period T (the time for one full revolution) is equal to the circumference divided
by the speed:

(period). (29-9)

The frequency f (the number of revolutions per unit time) is 

(frequency). (29-10)

The angular frequency � of the motion is then 

(angular or cyclotron frequency). (29-11)

The quantities T, f, and � do not depend on the speed of the particle (provided that
speed is much less than the speed of light). Fast particles move in large circles and
slow ones in small circles, but all particles with the same charge-to-mass ratio q/m
take the same time T (the period) to complete one round trip. A bigger velocity
makes the particle travel in a larger circle. The increase in speed is exactly compen-
sated by the increase in distance, so the time it takes to go around the circle is the
same. We see later that this plays an important role in the construction of a charged
particle accelerator known as a cyclotron. Using Eq. 29-2, you can show that if you
are looking in the direction of , the direction of rotation for a positive particle is al-
ways counterclockwise; the direction for a negative particle is always clockwise.
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FIGURE 29-9 ■ Electrons circulating in a
chamber containing gas at low pressure
(their path is the glowing circle). A uni-
form magnetic field , pointing directly
out of the plane of the page, fills the cham-
ber. Note the radially directed magnetic
force ; for circular motion to occur,

must point toward the center of the
circle. Use the right-hand rule for cross
products to confirm that 
gives the proper direction. (Don’t
forget to incude the sign of q.)
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Helical Paths
As we discussed in regard to the electrons and positron in the bubble chamber of
Figure 29-5, if the velocity of a charged particle moving through a magnetic field is
changing, the particle will move in a shrinking spiral, rather than a circle. One way this
can happen is for the particle to be slowed by frictional or other forces. Furthermore,
if the velocity of a charged particle has a component parallel to the (uniform) mag-
netic field, the particle will move in a helical path about the direction of the field vec-
tor. Figure 29-10a, for example, shows the velocity vector of such a particle resolved
into two components, one parallel to and one perpendicular to it:

(29-12)

The parallel component determines the pitch p of the helix—that is, the distance be-
tween adjacent turns (Fig. 29-10b). The perpendicular component determines the ra-
dius of the helix and is the quantity to be substituted for in Eq. 29-8.

Figure 29-10c shows a charged particle spiraling in a nonuniform magnetic field.
The more closely spaced field lines at the left and right sides indicate that the mag-
netic field is stronger there. When the field at an end is strong enough, the particle “re-
flects” from that end. If the particle reflects from both ends, it is said to be trapped in
a magnetic bottle.

Confining Particles in a Tokomak Reactor
In the chapter opener we explained that in order to induce fusion reactions capable of
releasing large amounts of energy, we must fuse light atoms together. To do this we
need to confine ions having very high energy, and hence high temperature. Magnetic
fields are ideal for containing the ions because both the ions and the electrons are
charged and will spiral along magnetic field lines instead of hitting the walls of a con-
tainment vessel.

Scientists have not yet been able to confine charged particles at high enough
temperatures to achieve controlled fusion. However, experiments reveal that one of
the most effective configurations of magnetic field lines for containing the light
atomic ions is shaped like a torus. A torus is basically a donut shape. The contain-
ment vessel of the Joint European Torus, commonly known as a tokomak, is shown at
the beginning of this chapter. In a tokomak reactor, the magnetic field is produced by
a series of magnetic coils that are evenly spaced around the torus-shaped contain-
ment vessel as shown in Fig. 29-11. The magnetic field lines form continuous loops in-
side the ring of the torus. In theory, when a tokomak is working properly, the high
temperature ions and electrons should revolve in helical paths around the field lines.
An ion can then travel in a continuous loop until it undergoes a fusion reaction with
another ion.
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FIGURE 29-10 ■ (a) A charged particle
moves in a uniform magnetic field , its
velocity making an angle � with the field
direction. (b) The particle follows a helical
path, of radius r and pitch p. (c) A charged
particle spiraling in a nonuniform mag-
netic field. (The particle can become
trapped, spiraling back and forth between
the strong field regions at either end.)
Note that the magnetic force vectors at the
left and right sides have a component
pointing toward the center of the figure.
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FIGURE 29-11 ■ A cutaway drawing of
the JET tokomak showing the donut
shaped containment vessel and surround-
ing magnetic coils.



Particles Trapped in the Earth’s Magnetic Field
The terrestrial magnetic field acts as a magnetic bottle, trapping electrons and pro-
tons; the trapped particles form the Van Allen radiation belts, which loop well above
the Earth’s atmosphere between Earth’s north and south geomagnetic poles. These
particles bounce back and forth, from one end of this magnetic bottle to the other,
within a few seconds.

When a large solar flare shoots additional energetic electrons and protons into
the radiation belts, an electric field is produced in the region where electrons normally
reflect. This field eliminates the reflection and instead drives electrons down into the
atmosphere, where they collide with atoms and molecules of air, causing that air to
emit light. This light forms the aurora—a curtain of light that hangs down to an alti-
tude of about 100 km. Green light is emitted by oxygen atoms, and pink light is emit-
ted by nitrogen molecules, but often the light is so dim that we perceive only white
light.

READI NG EXERC IS E  29-2: The figure shows the circular paths
of two particles that travel at the same speed in a uniform magnetic field

, which is directed into the page. One particle is a proton; the other is an
electron (which is less massive). The relative sizes of the circles are not to
scale. (a) Which particle follows the smaller circle, and (b) does that
particle travel clockwise or counterclockwise? ■

B
:

842 CHAPTER 29 Magnetic Fields

TOUCHSTONE EXAMPLE 29-2: Mass Spectrometer

Figure 29-12 shows the essentials of a mass spectrometer, which can
be used to measure the mass of an ion; an ion of mass m (to be
measured) and charge q is produced in source S. The initially sta-
tionary ion is accelerated by the electric field due to a potential dif-
ference . The ion leaves S and enters a separator chamber in
which a uniform magnetic field is perpendicular to the path of
the ion. The magnetic field causes the ion to move in a semicircle,
striking (and thus altering) a photographic plate at distance x from
the entry slit. Suppose that in a certain trial and

, and ions of charge strikeq � �1.6022 � 10�19 CV � 1000.0 V
B � 80.000 mT

B
:

V

the plate at . What is the mass m of the individual ions,
in unified atomic mass units ?

S O L U T I O N ■ One Ke y  I d e a here is that, because the (uni-
form) magnetic field causes the (charged) ion to follow a circular
path, we can relate the ion’s mass m to the path’s radius r with Eq.
29-8 . From Fig. 29-12 we see that r � x�2, and we
are given the magnitude of the magnetic field. However, we
don’t know the ion’s speed v in the magnetic field, after it has been
accelerated due to the potential difference .

To relate v and , we use the Key Idea that mechanical en-
ergy of the mass spectrometer system is con-
served during the acceleration. When the ion emerges from the
source, its kinetic energy is approximately zero. At the end of the
acceleration, its kinetic energy is . Also, during the accelera-
tion, the positive ion moves through a change in potential of .
Thus, because the ion has positive charge q, its potential energy
changes by . If we now write the conservation of the sys-
tem’s mechanical energy as 

we get 

or (29-13)v � √ 2� qV �
m

.

1
2 mv2 � qV � 0

K � U � 0,

�qV

�V

1
2 mv2

(Emec � K � U)
V

V

�B
:

�
(r � m� v: ��� qB

:
�)

(1 u � 1.6605 � 10�27 kg)
x � 1.6254 m

B

x

S

ΔV
+q

r

–

+

B

FIGURE 29-12 ■ Essentials of an early model of a mass spectrome-
ter. A positive ion, after being accelerated from its source S by po-
tential difference , enters a chamber of uniform magnetic field .
There it travels through a semicircle of radius r and strikes a photo-
graphic plate at a distance x from where it entered the chamber.
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Substituting this into Eq. 29-8 gives us 

.

Thus, x � 2r �
2
B √ 2m� V �

� q �
.

r �
m v

� qB
:

�
�

m

� q �B √ 2� qV �
m

�
1
B √ 2m� V �

� q �

Solving this for m and substituting the given data yield 

(Answer)� 3.3863 � 10�25 kg � 203.93 u. 

�
(0.080000 T)2 (1.6022 � 10�19 C)(1.6254 m)2

8(1000.0 V)

m �
B2 � q �x2

8� V �

29-6 Crossed Fields: Discovery of the Electron

As we have seen, both an electric field and a magnetic field can produce a force
on a charged particle. When the two fields are perpendicular to each other, they are
said to be crossed fields. Here we shall examine what happens to charged particles—
namely, electrons—as they move through crossed fields. We use as our example the
experiment that led to the discovery of the electron in 1897 by J. J. Thomson at Cam-
bridge University.

Figure 29-13 shows a modern, simplified version of Thomson’s experimental ap-
paratus—a cathode ray tube (which is like the picture tube in a standard television
set). Charged particles (which we now know as electrons) are emitted by a hot fila-
ment at the rear of the evacuated tube and are accelerated by an applied potential
difference . After the electrons pass through a slit in screen C, they form a narrow
beam. They then pass through a region of crossed and fields, headed toward a
fluorescent screen S, where they produce a spot of light (on a television screen the
spot is part of the picture). The forces on the charged particles in the crossed-fields re-
gion can deflect them from the center of the screen. By controlling the magnitudes
and directions of the fields, Thomson could thus control where the spot of light ap-
peared on the screen. Recall that the force on a negatively charged particle due to an
electric field is directed opposite the field. Thus, for the particular field arrangement of
Fig. 29-13, electrons are forced up the page by the electric field and down the page
by the magnetic field ; that is, the forces are in opposition. Thomson’s procedure was
equivalent to the following series of steps:

1. Set N/C and T and note the position of the spot on screen S due to
the undeflected beam.

2. Turn on and measure the resulting beam deflection.

3. Maintaining , now turn on and adjust its value until the beam returns to the
undeflected position. (With the forces in opposition, they can be made to cancel.)
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B E FIGURE 29-13 ■ A modern version of J. J.
Thomson’s apparatus for measuring the ra-
tio of mass to the amount of charge of an
electron. The electric field is established
by connecting a battery across the deflect-
ing-plate terminals. The magnetic field is
set up by means of a current in a system of
coils (not shown). The magnetic field
shown is into the plane of the figure, as
represented by the array of Xs (which re-
semble the feathered ends of arrows).
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We discussed the deflection of a charged particle moving perpendicular to an
electric field between two plates (step 2 here) in Touchstone Example 23-4. We
found that the magnitude of the deflection of the particle at the far end of the plates is 

(29-14)

where v is the particle’s initial speed (which was vx in Touchstone Example 23-4), m its
mass, and q its charge, and L is the length of the plates. So long as the particle’s deflection
is small, we can apply this same equation to the beam of electrons in Fig. 29-13; if neces-
sary, we can calculate the deflection by measuring the deflection of the beam on screen S
and then working back to calculate the deflection y at the end of the plates. (Because the
direction of the deflection is set by the sign of the particle’s charge, Thomson was able to
show that the particles lighting up his screen were negatively charged.)

When the two fields in Fig. 29-13 are adjusted so that the two deflecting forces
cancel (step 3), we have from Eqs. 29-1 and 29-3,

so the particle speed v is given by the ratio of the field magnitudes 

(29-15)

Thus, the crossed fields allow us to measure the speed of the charged particles passing
through them. Substituting Eq. 29-15 for in Eq. 29-14 and rearranging yield 

(29-16)

in which all quantities on the right can be measured. Thus, the crossed fields allow us
to measure the mass-charge amount ratio of the particles moving through
Thomson’s apparatus.

Thomson claimed that these particles are found in all matter. He also claimed
that they are lighter than the lightest known atom (hydrogen) by a factor of more
than 1000. (The exact ratio proved later to be 1836.15.) His measurement, cou-
pled with the boldness of his two claims, is considered to be the moment of “discovery
of the electron.”

READI NG EXERC IS E  29-3: The figure shows
four directions for the velocity vector of a positively
charged particle moving through a uniform electric field
(directed out of the page and represented by an encircled
dot) and a uniform magnetic field (pointing to the left).
(a) Rank directions 1, 2, 3, and 4 according to the magni-
tude of the net force on the particle, greatest first. (b) Of all
four directions, which might result in a net force of zero?

■

29-7 The Hall Effect

In Chapters 22 and 26 we claimed that currents in solid conductors are due to moving
electrons, and that the positive nuclei are at rest. What evidence do we have for 
this claim? In the late 1870s, Edwin H. Hall, a 24-year-old graduate student at the
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Johns Hopkins University, investigated the deflection of electric current passing
through copper wire when the wire is placed in a magnetic field. The result of his
work, which is called the Hall effect after him, allows us to answer important ques-
tions about the nature of charge carriers. For example, Hall’s findings allowed him to
determine whether charge carriers in a conductor are positive or negative. In addi-
tion, Hall’s measurements enabled him to deduce the number of charge carriers per
unit volume contained in a given conductor.

What happens to a current-carrying metal wire in a magnetic field if the charge
carriers are positive and negative charges are at rest? Figure 29-14a shows a copper
strip of width d, carrying a current i that is assumed to be made up of positive charge
carriers (the convention at the time) moving from the top of the figure to the bottom.
The charge carriers drift (with an average speed ) in the direction of the current,
from top to bottom. At the instant shown in Fig. 29-14a, an external magnetic field ,
pointing into the plane of the figure, has just been turned on. From Eq. 29-2 we see
that a deflecting magnetic force will act on each drifting positive charge, pushing
it toward the right edge of the strip.

As time goes on, positive charges pile up on the right edge of the strip, leaving un-
compensated negative charges in fixed positions at the left edge. The separation of
positive and negative charges produces a constant electric field within the strip,
pointing from right to left. This field exerts an average electrostatic force on a
typical positive charge, tending to push it back toward the left.

An equilibrium quickly develops in which the electric force on each positive
charge (pushing left) builds up until it just cancels the magnetic force (pushing right).
When this happens, as Fig. 29-14b shows, the force due to and the force due to 
are in balance. The drifting positive charges then move along the strip toward the bot-
tom of the page at an average velocity , with no further collection of positive
charge on the right edge of the strip and thus no further increase in the electric
field .

A Hall potential difference is associated with the electric field across strip
width d. Because the field is constant, we use Eq. 25-39 to get 

(29-17)

By connecting a voltmeter across the width, we can measure the potential difference
between the two edges of the strip. Moreover, the voltmeter can tell us which edge is
at higher potential. This information, in turn, tells us whether our charge carriers are
positive or negative.

So what do we find? For the situation of Fig. 29-14a, we find that the left edge is at
higher potential, meaning we have a buildup of positive charge there. This result is in-
consistent with our assumption that the charge carriers are positive.

Suppose we make the opposite assumption, that the charge carriers in current i
are negative, as shown in Fig. 29-15. The negative charge carriers drift (with an aver-
age speed ) in the opposite direction of the conventional current, from bottom to
top. You can use the magnetic force law (Eq. 29-2) to convince yourself that as these
charge carriers move from bottom to top in the strip, they are pushed to the right
edge by and thus that the left edge is at higher potential. Because that last state-
ment is in fact what we actually observe with a voltmeter, we conclude that the charge
carriers must be negative.

Now for the quantitative part. When the electric and magnetic forces are in bal-
ance (Fig. 29-14b), Eqs. 29-1 and 29-3 give us a relationship between the magnitudes
of the electric and magnetic fields:

(29-18)eE � e� � v:� �B,
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FIGURE 29-14 ■ What would happen if a
positive current were to flow through a
strip of copper immersed in a magnetic
field ? (a) As soon as the magnetic field
is turned on, the positive charges follow a
curved path as shown. (b) A short time
later positive charges pile up on the right
side of the strip. Thus, the right side of the
strip has a higher potential than the left
side. Since the higher potential is observed
on the left not the right, we conclude that
the charge carriers are not positive.
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where e is the amount of the charge on the electron. From Eq. 26-21, the average or
drift speed is 

(29-19)

in which is the current density in the strip, A is the cross-sectional area
of the strip, and n is the number density of charge carriers (their number per unit
volume).

In Eq. 29-18, substituting �V ��d for E (Eq. 29-17) and substituting for with
the rightmost term in Eq. 29-19, we obtain 

(29-20)

in which is the thickness of the strip. With this equation we can find n from
measurable quantities.

It is also possible to use the Hall effect to measure directly the average or drift
speed of the charge carriers, which you may recall is of the order of centimeters
per hour. In this clever experiment, the metal strip is moved mechanically through
the magnetic field in a direction opposite that of the drift velocity of the charge carri-
ers. The speed of the moving strip is then adjusted until the Hall potential difference
vanishes. At this condition, with no Hall effect, the velocity of the charge carriers
with respect to the laboratory frame must be zero, so the velocity of the strip must be
equal in magnitude but opposite in direction to the velocity of the negative charge
carriers.
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FIGURE 29-15 ■ What should happen
when the conventional current, i, actually
consists of a negative electron current flow-
ing in the opposite direction? (a) As soon as
the magnetic field is turned on, electrons fol-
low the curved path shown. (b) A short time
later negative charges pile up on the right
side of the strip so that a higher potential
develops on the left. Since this prediction
matches experimental findings we must con-
clude that the charge carriers are negative.

TOUCHSTONE EXAMPLE 29-3: Motional Potential Difference

Figure 29-16 shows a solid metal cube, of edge length ,
moving in the positive y direction at a constant velocity of magni-
tude . The cube moves through a uniform magnetic field
of magnitude 0.050 T directed toward positive z.

(a) Which cube face is at a lower electric potential and which is at a
higher electric potential because of the motion through the field?

S O L U T I O N ■ One Ke y  I d e a here is that, because the cube is
moving through a magnetic field , a magnetic force acts on
its charged particles, including its conduction electrons. A second
Ke y  I d e a is how causes an electric potential difference be-
tween certain faces of the cube. When the cube first begins to move

F
: mag

F
: magB

:

B
:

4.0 m/s
v:
d � 1.5 cm through the magnetic field, its electrons do also. Because each elec-

tron has charge q � �e and is moving through a magnetic field with
velocity , the magnetic force acting on it is given by Eq. 29-2.
Because q is negative, the direction of is opposite the cross
product , which is in the positive direction of the x axis
in Fig. 29-16. Thus, acts in the negative direction of the x
axis, toward the left face of the cube (which is hidden from view in
Fig. 29-16).

Most of the electrons are fixed in place in the molecules of the
cube. However, because the cube is a metal, it contains conduction
electrons that are free to move. Some of those conduction electrons
are deflected by to the left cube face, making that face nega-
tively charged and leaving the right face positively charged. This
charge separation produces an electric field directed from the
positively charged right face to the negatively charged left face.
Thus, the left face is at a lower electric potential, and the right face
is at a higher electric potential.

(b) What is the potential difference between the faces of higher and
lower electric potential?

S O L U T I O N ■ The Ke y  I d e a s here are these:

1. The electric field created by the charge separation produces
an electric force on each electron. Because q isF
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FIGURE 29-16 ■ A solid
metal cube of edge length d
moves at constant velocity 
through a uniform magnetic
field .B
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29-8 Magnetic Force on a Current-Carrying Wire

We have just seen that a magnetic field exerts a sideways force on electrons moving in
a wire. This force must then be transmitted to the wire itself, because the conduction
electrons cannot escape sideways out of the wire.

In Fig. 29-17a, a vertical wire, carrying no current and fixed in place at both ends,
extends through the gap between the vertical pole faces of a magnet represented by
the shaded circle. The magnetic field between the faces is directed outward from the
page. In Fig. 29-17b, a current is sent upward through the wire; the wire deflects to the
right. In Fig. 29-17c, we reverse the direction of the current and the wire deflects to
the left.

Figure 29-18 shows what happens inside the wire of Fig. 29-17. We see one of the
conduction electrons, drifting downward with an assumed average (drift) speed .
Equation 29-3, in which we must put , tells us that a force of magnitude

must act on a typical electron. From Eq. 29-2 we see that this force
must be directed to the right. We expect then that the wire as a whole will experience
a force to the right, in agreement with Fig. 29-17b.

If, in Fig. 29-18, we were to reverse either the direction of the magnetic field or the
direction of the current, the force on the wire would reverse, being directed now to
the left. Note too that it does not matter whether we consider negative charges drift-
ing downward in the wire (the actual case) or positive charges drifting upward. The
direction of the deflecting force on the wire is the same. We are safe then in dealing
with a current of positive charge.

Consider a length L of the wire in Fig. 29-18. All the conduction electrons in this
section of wire will drift past a plane that is parallel to xx� (shown in Fig. 29-18) in a
time . Thus, in that time the charge that will pass through the plane is
given by 

q � it � i
L

� � v:� �
.

t � L�� � v:� �

F mag � e� � v:� �B
� � 90�

� � v:� �
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negative, this force is directed opposite the field —that is, to-
ward the right. Thus on each electron, acts toward the
right and acts toward the left.

2. When the cube had just begun to move through the magnetic
field and the charge separation had just begun, the magnitude
of began to increase from zero. Thus, the magnitude of 
also began to increase from zero and was initially smaller than
the magnitude . During this early stage, the net force on
any electron was dominated by , which continuously
moved additional electrons to the left cube face, increasing the
charge separation.

3. However, as the charge separation increased, eventually mag-
nitude became equal to magnitude . The net
force on any electron was then zero, and no additional elec-
trons were moved to the left cube face. Thus, the magnitude of

could not increase further, and the electrons were then in
equilibrium.

We seek the potential difference between the left and right
cube faces after equilibrium was reached (which occurred quickly).
We can obtain the magnitude of with Eq. 29-17 (� V � � Ed)V

V
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provided we first find the magnitude � E of the electric field at
equilibrium. We can do so with the equation for the balance of
force magnitudes .

For F elec, we substitute For F mag, we substitute 
from Eq. 29-3. From Fig. 29-16, we see that the angle � between v
and B is 90°; so sin � � 1. We can now write as 

This gives us E � vB, so Eq. 29-17 becomes 

(29-21)

Substituting known values gives us 

Since the left face of the cube has excess negative charges, the right
face is at a higher potential than the left face by 3.0 mV. (Answer)

� 0.0030 V � 3.0 mV.

� V � � (4.0 m/s)(0.050 T)(0.015 m)

� V � � � Vleft � Vright � � vBd.

(� V � � Ed)

� q �E � �q�vBsin90� � � q �vB.

(F elec � F mag)

� q �vB sin �� q �E.
(� F
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B B B

FIGURE 29-17 ■ A flexible wire passes be-
tween the pole faces of a magnet (only the
farther pole face is shown). (a) Without
current in the wire, the wire is straight. (b)
With upward current, the wire is deflected
rightward. (c) With downward current, the
deflection is leftward. Connections for get-
ting the current into one end of the wire
and out of the other are not shown.
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Substituting this into Eq. 29-3 yields the following expressions for the magnitude of
the magnetic force

or . (29-22)

This equation gives the magnetic force that acts on a length L of straight wire carry-
ing a current i and immersed in a magnetic field that is perpendicular to the wire.

If the magnetic field is not perpendicular to the wire, as in Fig. 29-19, the magnetic
force is given by a generalization of Eq. 29-22:

(force on a current). (29-23)

Here is a length vector that has magnitude and is directed along the wire seg-
ment in the direction of the (conventional) current. The magnitude of the magnetic
field is 

(29-24)

where � is the smaller angle between the directions of and . The direction of
is that of the cross product , because we take current i to be a positive

quantity. Equation 29-23 tells us that is always perpendicular to the plane de-
fined by and , as indicated in Fig. 29-19.

Equation 29-23 is equivalent to Eq. 29-2 in that either can be taken as the defin-
ing equation for . In practice, we define from Eq. 29-23. It is much easier to mea-
sure the magnetic force acting on a wire than that on a single moving charge.

If a wire is not straight or the field is not uniform, we can imagine it broken up
into small straight segments and apply Eq. 29-23 to each short segment . The force
on the wire as a whole is then the vector sum of all the forces on the segments that
make it up. In the differential limit, we can write 

(29-25)

and we can find the resultant force on any given arrangement of currents by integrat-
ing Eq. 29-25 over that arrangement.

In using Eq. 29-25, bear in mind that there is no such thing as an isolated current-
carrying wire segment of length . There must always be a way to introduce the cur-
rent into the segment at one end and take it out at the other end.

READI NG EXERC IS E  29-4: The figure shows a
current i through a wire in a uniform magnetic field , as
well as the magnetic force acting on the wire. The field
is oriented so that the magnitude force is a maximum. In
what direction is the field?

■

F
: mag

B
:

dL
:

dF
:mag � idL

:
� B

:
,

dL
:

B
:

B
:

B
:

L
:

F
: mag

L
:

� B
:

F
: mag

B
:

L
:

F mag � � i �LBsin�,

� L
:

�L
:

F
: mag � � i �L

:
� B

:

B
:

F mag � � i �LB

F mag � � q �� � v:� �Bsin� �
� i �L� � v:� �B

� � v:� �
 sin90�

L

x

i

x

B

<v>
F mag

FIGURE 29-18 ■ A close-up view of a sec-
tion of the wire of Fig. 29-17b. The current
direction is upward, which means that elec-
trons drift downward. A magnetic field
that emerges from the plane of the page
causes the electrons and the wire to be de-
flected to the right.
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FIGURE 29-19 ■ A wire carrying current i
makes an angle � with magnetic field .
The wire has length L in the field and
length vector (in the direction of the
current). A magnetic force 
acts on the wire.
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TOUCHSTONE EXAMPLE 29-4: Levitating a Wire

A straight, horizontal length of copper wire has a current 
through it. If this current is directed out of the page as shown in
Fig. 29-20, what are the magnitude and direction of the minimum

i � 28 A magnetic field needed to suspend the wire—that is, to balance
the gravitational force on it? The linear density (mass per unit
length) is .46.6 g/m

B
:
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29-9 Torque on a Current Loop

Much of the world’s work is done by electric motors. The forces that do this work
are magnetic. In principle a direct current motor can be constructed from a single
loop of current-carrying wire that is immersed in a magnetic field and is attached
to a battery. If the current were to flow through the loop in the same direction all
the time, the magnetic field would push on this loop in one direction at one instant
of time, but would reverse the direction of the force when the loop was rotated
halfway around. We would get a vibration that would quickly damp out. We can,
however, get a continuous rotation if we use a connection, called a commutator,
that reverses the current direction when the loop has gone halfway around (Fig. 29-
21). Then, the force will continue to push the loop in the same direction and the
motor will spin. Although many essential details have been omitted, the figure does
suggest how the action of a magnetic field on a current loop produces rotary mo-
tion. To understand how the dc motor works in detail, we need to understand how
a magnetic field can cause a current-carrying wire loop to rotate by exerting a
torque on it.

How a Current Loop Can Experience a Torque
Figure 29-22a shows a front view of a rectangular loop of sides a and b. The loop is
carrying a current i and is immersed in a uniform magnetic field . We start our con-
sideration of the torque on the loop with a special case in which the plane of the loop
is parallel to the magnetic field as shown in Fig. 29-22a.

Let’s use Eq. 29-24 to find the forces on each side of the loop for our special case.
For sides 1 and 3 the vector points in the direction of the current and has magni-
tude a. The angle between and for these is � � 0°. Thus, the magnitude of the
forces acting on this side is 

Fmag
1 � Fmag

3 � � i �aBsin 0� � 0 N.

B
:

L
:

L
:

B
:

S O L U T I O N ■ One Ke y  I d e a is that, because the wire carries
a current, a magnetic force can act on the wire if we place it in
a magnetic field . To balance the downward gravitational force

on the wire, we want to be directed upward (Fig. 29-20).
A second Ke y  I d e a is that the direction of is related to

the directions of and the wire’s length vector by Eq. 29-23.
Because is directed horizontally (and the current is taken to be
positive), Eq. 29-23 and the right-hand rule for cross products tell
us that must be horizontal and rightward (in Fig. 29-20) to give
the required upward .

The magnitude of is given by Eq. 29-24 
� . Because we want to balance , we want 

(29-26)� i �LBsin� � mg,
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where mg is the magnitude of and m is the mass of the wire.
We also want the minimal field magnitude B for to balance

. Thus, we need to maximize sin � in Eq. 29-26. To do so, we set
� � 90°, thereby arranging for to be perpendicular to the wire.
We then have sin � � 1, so Eq. 29-26 yields a magnetic field magni-
tude of 

(29-27)

We write the result this way because we know m/L, the linear
density of the wire. Substituting known data then gives us a magni-
tude of 

(Answer)

This is about 160 times the strength of Earth’s magnetic field. As
stated in the second paragraph of this solution, the right-hand rule
tells us that B must point to the right.

� 1.6 � 10�2 T.

B �
(46.6 � 10�3 kg/m)(9.8 m/s2)

28 A

� B
:

� � B �
mg

� i �Lsin�
�

(m�L)g
� i �

.
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FIGURE 29-20 ■ A current-carrying wire
(shown in cross section) can be made to
“float” in a magnetic field. The current in the
wire emerges from the plane of the page, and
the magnetic field is directed to the right.

Commutator

– +

Battery

Wire loop

B

B

FIGURE 29-21 ■ The elements of an elec-
tric motor. A rectangular loop of wire, car-
rying a current and free to rotate about a
fixed axis, is placed in a magnetic field.
Magnetic forces on the wire produce a
torque that rotates it. A commutator re-
verses the direction of the current every
half-revolution so that the torque always
acts in the same direction.



The situation is different for sides 2 and 4. For them, , which has magnitude b, is
perpendicular to so � � 90°. Thus, the forces and have the common magni-
tude given by

(29-28)

However, since the direction of the current is different on each of these sides,
the right-hand rule tells us that these two forces point in opposite directions. The vector

points out of the page while the vector points into the page. However, as Fig.
29-22a shows, these two forces do not share the same line of action so they do produce
a net torque. The torque tends to rotate the loop toward an orientation for which the
plane of the loop is perpendicular to the direction of the magnetic field . At � � 90°
that torque has a moment arm of magnitude a/2 about the central axis of the loop.
The magnitude of the torque due to forces and is then (see Fig. 29-22a),

. (29-29)

As the coil in Fig. 29-22a starts to rotate, the moment arm between sides 2 and 4
decreases, and it reaches zero when the loop is in the position shown in Fig. 29-22b. In
general, the torque on the loop is given by

(29-30)

where � is the smaller angle normal to the area subtended by the loop and the exter-
nal magnetic field (Fig. 22-22c).

Suppose we replace the single loop of current with a coil of N loops, or turns. Fur-
ther, suppose that the turns are wound tightly enough that they can be approximated
as all having the same dimensions and lying in a plane. Then the turns form a flat coil
and a torque with the magnitude found in Eq. 29-29 acts on each of the turns. The
total torque on the coil then has magnitude 

(29-31)

in which A(� ab) is the area enclosed by the coil. Equation 29-31 holds for all flat
coils, no matter what their shape, provided the magnetic field is uniform.

How a DC Motor Works
Consider the operation of a motor like that shown in Fig. 29-21. When the coil is at
the point where the plane of the coil is perpendicular to the field direction so � � 0°,
the polarity of the battery is suddenly reversed. Since the coil is accelerated by the ini-
tial torque on it, it sails past the point where  � � 0°, and a new torque takes over and
continues to rotate the coil in the same direction. This automatic reversal of the cur-
rent occurs every half cycle and is accomplished with a commutator that electrically
connects the rotating coil with the stationary contacts connected to the battery (or
other power source).

29-10 The Magnetic Dipole Moment

We can describe the current-carrying coil of the preceding section with a single vector
, its magnetic dipole moment. The direction of the magnetic dipole is determined

by another right hand rule similar to the one shown in Fig. 29-4. If you wrap your right
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(a)
Front view (maximum torque)

a
Rotation axis

1

2
4

3
To batteryi

F4 (in)

B

B

F2 (out)

(b)
Side view in perspective

(no torque)

B

B

i

F2 (out
of
paper)

F3 (down)

F4 (into
paper)

F1 (up)

φi

Side 1

Side 2

Side 4

(c)
Top view (intermediate torque)

Rotation
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FIGURE 29-22 ■ A rectangular loop, of
length a and width b and carrying a cur-
rent i, is located in a uniform magnetic
field. A torque that is perpendicular to
the magnetic field acts on the loop. The
angle, �, perpendicular or normal to the
plane of the loop and the B-field varies. (a)
The plane of the loop is aligned with the
magnetic field so that � � 90°. (b) A per-
spective drawing of the loop after it has ro-
tated to � � 0° due to the torque exerted
on it by the magnetic field. (c) A top view
of the loop when it is part way between
� � 90° (part a) and � � 0° (part b).

�:



The Magnetic Dipole Moment   851

hand around the coil in the direction of the positive current, your thumb points in the
direction of the magnetic dipole .

We define the magnitude of 
 � as

(magnetic moment magnitude), (29-32)

in which N is the number of turns in the coil, is the magnitude current through the
coil, and A is the area enclosed by each turn of the coil. (Equation 29-32 tells us that
the unit of is the ampere-square meter.) Using , we can rewrite Eq. 29-31 for the
magnitude of the torque on the coil due to a magnetic field as 

(29-33)

in which � is the smallest angle between the vectors and .
We can generalize this to the vector relation 

, (29-34)

which reminds us very much of the corresponding equation for the torque exerted by
an electric field on an electric dipole—namely, Eq. 23-37:

.

In each case the torque exerted by the external field—either magnetic or electric—is
equal to the vector product of the corresponding dipole moment and the field vector.

A magnetic dipole in an external magnetic field has a magnetic potential energy
that depends on the dipole’s orientation in the field. For electric dipoles,

.

In strict analogy, we can write for the magnetic case 

. (29-35)

A magnetic dipole has its lowest energy when its dipole mo-
ment is lined up with the magnetic field (Fig. 29-23). It has its highest energy

when the vector is directed opposite the field.
When a magnetic dipole rotates in the presence of a magnetic field from an initial

orientation �1 to another orientation �2, the work done on the dipole by the
magnetic field is 

(29-36)

where U2 and U1 are calculated with Eq. 29-35. If an external torque acts on the dipole
during the change in its orientation, then work is done on the dipole by the ex-
ternal torque. If the dipole is stationary before and after the change in its orientation,
then work is the negative of the work done on the dipole by the field. Thus,

. (29-37)

So far, we have identified only a current-carrying coil as a magnetic dipole.
However, a simple bar magnet is also a magnetic dipole, as is a rotating sphere of
charge. Earth itself is (approximately) a magnetic dipole. And, most subatomic particles,
including the electron, the proton, and the neutron, have magnetic dipole moments. As
you will see in Chapter 32, all these quantities can be viewed as current loops. For com-
parison, some approximate magnetic dipole moments are shown in Table 29-2.
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FIGURE 29-23 ■ The orientations of high-
est and lowest energy of a magnetic dipole
in an external magnetic field . In each
case, the direction of the current i deter-
mines the direction of the magnetic dipole
moment shown in Fig. 29-23 via the
right-hand rule.
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TA B L E 2 9 - 2
Some Magnetic Dipole Moments

A small bar magnet 5 J/T

Earth 8.0 � 1022 J/T

A proton 1.4 � 10�26 J/T

An electron 9.3 � 10�24 J/T
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READI NG EXERC IS E  29-5: The figure shows
four orientations, at angle �, of a magnetic dipole moment 
in a magnetic field. Rank the orientations according to (a)
the magnitude of the torque on the dipole and (b) the po-
tential energy of the dipole, greatest first.

■
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θ

θ
θ
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TOUCHSTONE EXAMPLE 29-5: Coil in an External Magnetic Field

Figure 29-24 shows a circular coil with 250 turns, an area A of
, and a current of 100 
A. The coil is at rest in a 

uniform magnetic field of magnitude , with its mag-
netic dipole moment initially aligned with .

(a) In Fig. 29-24, what is the direction of the current in the coil?

S O L U T I O N ■ The Ke y  I d e a here is to apply the right-hand
rule to the coil by curling your fingers around the current in the coil
so your right thumb points in the direction. Thus, in the wires on
the near side of the coil—those we see in Fig. 29-24—the current is
from top to bottom.

(b) How much work would the torque applied by an external
agent have to do on the coil to rotate it 90° from its initial orien-


:

B
:


:
� B

:
� � 0.85 T

2.52 � 10�4 m2
tation, so that  is perpendicular to and the coil is again at
rest?

S O L U T I O N ■ The Ke y  I d e a here is that the work 
done by the applied torque would be equal to the change in
the coil’s potential energy due to its change in orientation. From
Eq. 29-37 we find

.

Substituting for from Eq. 29-32 , we find that 

(Answer)� 5.356 � 10�6 J � 5.4 
J.

� (250)(100 � 10�6 A)(2.52 � 10�4 m2)(0.85 T)
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FIGURE 29-24 ■ A side view of a circular
coil carrying a current and oriented so that
its magnetic dipole moment is aligned with
magnetic field .B

:
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29-11 The Cyclotron

Physicists have been able to use their understanding of how charged particles behave
in magnetic fields to develop devices that can accelerate protons to high speeds. These
high-energy protons are extremely useful to scientists for several reasons. Collisions
between energetic protons and matter allow them to learn about the nature of atomic
and subatomic particles. High-energy protons and ions can also be used to create new
radioactive elements. In addition, physicians can use high-energy protons to destroy
tumors in cancer patients. In 1939, E. O. Lawrence was awarded a Nobel Prize in
physics for the development of the cyclotron—the first of many magnetic accelera-
tors capable of accelerating protons, ions, and electrons.

The principles that govern the operation of the cyclotron are quite simple.
Figure 29-9 showed experimental evidence that a charged particle projected into an
evacuated chamber perpendicular to a uniform magnetic field moves in a circular or-
bit. We used the magnetic force law (Eq. 29-2) to derive the frequency of revolution
of the orbit. In Eq. 29-10 we found that . This is known as the cyclotron
frequency, and its derivation had a rather surprising outcome. The frequency, f, with
which a charged particle moves in its circular orbit depends only on its charge, its
mass, and the magnetic field strength. So f is independent of speed. This is because a
particle with low speed moves in a small circle whereas one with a higher speed
moves in a larger circle. The particle speeds and orbital sizes are related in such a way
that all charged particles take the same amount of time to make a revolution in a uni-
form magnetic field. (At least this is true for all speeds that are well below the speed

f � � q �B/2�m



of light.) Lawrence used the fact that the orbital frequency of a charged particle does
not depend on its speed in the design of the cyclotron.

The original cyclotron was first used to accelerate protons. It consisted of two
hollow semicircular disks shaped more or less like a capital D as shown in Fig. 29-25.
In early cyclotrons, the dees, as they are called, were made of copper sheeting. The di-
ameter of a dee was only about one meter. The dees were then placed in a vacuum
chamber and oriented perpendicular to a large uniform magnetic field having a
strength of a few teslas. There was a small gap between them. The dees were con-
nected to an electrical oscillator that can alternate the potential difference across the
gap between them at exactly the same frequency as an orbiting proton would have in
the magnetic field. This arrangement is shown in Fig. 29-26.

To begin the operation of the original cyclotron, an oscillator was set at the cy-
clotron frequency. Then hydrogen gas was leaked into the vacuum chamber. Next a
beam of high-energy electrons was injected into the center of the chamber so that
other electrons were knocked out of hydrogen atoms. This ionization process pro-
duced protons. At a time when the oscillator caused the left dee to be at a lower po-
tential than the right dee, the proton received a kick in the direction of the right dee.
It moved into the right dee where the electric field was zero. However, the magnetic
field penetrated the dee and caused the proton to start into a small, low-speed orbit.
Only half a cycle later the proton reached the gap again. Since the oscillator was
tuned to the cyclotron frequency, the potential of the right dee was now lower than
that of the left dee and the proton got another kick as it crossed the gap. The proton
then proceeded into another circular orbit that involved a larger speed and radius,
given by Eq. 29-8,

.

When the proton reached the gap again it completed one full cycle but so had the
alternating voltage oscillator. Thus the proton got another kick. This process contin-
ued, with the circulating proton always being in step with the oscillations of the dee
potential. When the proton finally spiraled out to the edge of the dee system, a deflec-
tor plate sent it out through a portal. The path of such a proton is shown in Fig. 29-27.

Recall that the key to the operation of the cyclotron is that the frequency f at
which the proton circulates in the field (and that does not depend on its speed) must
be equal to the fixed frequency fosc of the electrical oscillator, or 

(resonance condition). (29-38)

This resonance condition says that, if the energy of the circulating proton is to in-
crease, energy must be fed to it at a frequency fosc that is equal to the natural fre-
quency f at which the proton circulates in the magnetic field.

Combining Eqs. 29-10 and 29-38 allows us to write the resonance condition as

(29-39)

For the proton, q and m are fixed. The oscillator (we assume) is designed to work at a
single fixed frequency fosc. We can then either “tune” the cyclotron by varying either 
or fosc until Eq. 29-39 is satisfied. Then many protons can circulate through the mag-
netic field and emerge as a beam.

If the cyclotron is powerful enough to accelerate protons, electrons, or ions to
speeds close to that of light, relativistic effects come into play. In such cases the simple
resonance condition between orbital and oscillator frequencies no longer hold. More
sophisticated magnetic field-based high-energy accelerators called synchrotrons and
betatrons have been designed. We introduce relativistic effects in Chapter 38 where
we discuss special relativity.

B
:

� q �B � 2�mfosc.

f � fosc

r �
mv

� q �B
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FIGURE 29-25 ■ Cyclotron dees are hol-
low semicircular metal containers that are
open along their diameters.
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Vacuum
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FIGURE 29-26 ■ Cutaway view of dees
placed between the poles of a large elec-
tromagnet. The dotted line showns the
plane in which the paths of the particles
orbit.
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FIGURE 29-27 ■ Top view of dees show-
ing the path of a charged particle beam in
a cyclotron. Each time the particle passes
through the gap three things happen: (1)
the particle gets a kick and is accelerated
to a higher speed, (2) the oscillator
changes the sign of the gap’s potential dif-
ference, and (3) the particle goes into a
new semicircular orbit with a larger radius
than before.
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TOUCHSTONE EXAMPLE 29-6: Cyclotron

Suppose a cyclotron is operated at an oscillator frequency of
12 MHz and has a dee radius R � 53 cm.

(a) What is the magnitude of the magnetic field needed for
deuterons to be accelerated in the cyclotron? A deuteron is the nu-
cleus of deuterium, an isotope of hydrogen. It consists of a proton
and a neutron and thus has the same charge as a proton. Its mass is
m � 3.34 � 10�27 kg.

S O L U T I O N ■ The Ke y  I d e a here is that, for a given oscilla-
tor frequency fosc, the magnetic field magnitude B required to accel-
erate any particle in a cyclotron depends on the ratio m/q of mass
to charge for the particle, according to Eq. 29-39. For deuterons and
the oscillator frequency , we find

(Answer)

Note that, to accelerate protons, B would have to be reduced by a
factor of 2, providing the oscillator frequency remained fixed at
12 MHz.

� 1.57 T � 1.6 T .

B �
2�mfosc

q
�

(2�)(3.34 � 10�27 kg)(12 � 106 s�1)
1.60 � 10�19 C

fosc � 12 MHz

(b) What is the resulting kinetic energy of the deuterons?

S O L U T I O N ■ One Ke y  I d e a here is that the kinetic energy
of a deuteron exiting the cyclotron is equal to the kinetic en-

ergy it had just before exiting, when it was traveling in a circular
path with a radius approximately equal to the radius R of the cy-
clotron dees. A second Ke y  I d e a is that we can find the speed v of
the deuteron in that circular path with Eq. 29-8 .
Solving that equation for v, substituting R for r, and then substitut-
ing known data, we find

This speed corresponds to a kinetic energy of 

(Answer)

or about 17 MeV.

� 2.7 � 10�12 J,

� 1
2 (3.34 � 10�27 kg)(3.99 � 107 m/s)2

K � 1
2 mv2

� 3.99 � 107 m/s.

v �
Rq B

m
�

(0.53 m)(1.60 � 10�19 C)(1.57 T)
3.34 � 10�27 kg

(r � mv��q �B)

1
2 mv2

Problems

SEC. 29-3 ■ DEFINING A MAGNETIC FIELD

1. Alpha Particle An alpha particle travels at a velocity of magni-
tude 550 m/s through a uniform magnetic field of magnitude 0.045 T.
(An alpha particle has a charge of �3.2 � 10�19 C and a mass of 6.6 �
10�27 kg.) The angle between and is 52°.What are the magnitudes
of (a) the force acting on the particle due to the field and (b) the
acceleration of the particle due to ? (c) Does the speed of the
particle increase, decrease, or remain equal to 550 m/s? 

2. TV Camera An electron in a TV camera tube is moving at 
7.20 � 106 m/s in a magnetic field of strength 83.0 mT. (a) Without
knowing the direction of the field, what can you say about the
greatest and least magnitudes of the force acting on the electron
due to the field? (b) At one point the electron has an acceleration
of magnitude 4.90 � 1014 m/s2. What is the angle between the elec-
tron’s velocity and the magnetic field?

3. Proton Traveling A proton traveling at 23.0° with respect to the
direction of a magnetic field of strength 2.60 mT experiences a mag-
netic force of 6.50 � 10�17 N. Calculate (a) the proton’s speed and
(b) its kinetic energy in electron-volts.

4. Force on Charges An electron that has velocity

� (2.0 � 106 m/s)î � (3.0 � 106 m/s)ĵ

moves through the magnetic field � (0.030 T)î � (0.15 T)ĵ.
(a) Find the force on the electron. (b) Repeat your calculation for
a proton having the same velocity.
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: mag
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B
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B
: 5. Television Tube Each of the electrons in the beam of a televi-

sion tube has a kinetic energy of 12.0 keV. The tube is oriented so
that the electrons move horizontally from geomagnetic south to ge-
omagnetic north. The vertical component of Earth’s magnetic field
points down and has a magnitude of 55.0 
T. (a) In what direction
will the beam deflect? (b) What is the magnitude of the accelera-
tion of a single electron due to the magnetic field? (c) How far will
the beam deflect in moving 20.0 cm through the television tube?

SEC. 29-5 ■ A CIRCULATING CHARGED PARTICLE

6. Accelerated from Rest An electron is accelerated from rest by a
potential difference of 350 V. It then enters a uniform magnetic
field of magnitude 200 mT with its velocity perpendicular to the
field. Calculate (a) the speed of the electron and (b) the radius of
its path in the magnetic field.

7. Field Perpendicular to Beam A uniform magnetic field is applied
perpendicular to a beam of electrons moving at 1.3 � 106 m/s. What
is the magnitude of the field if the electrons travel in a circular arc
of radius 0.35 m? 

8. Heavy Ions Physicist S. A. Goudsmit devised a method for mea-
suring the masses of heavy ions by timing their periods of revolu-
tion in a known magnetic field. A singly charged ion of iodine
makes 7.00 rev in a field of 45.0 mT in 1.29 ms. Calculate its mass, in
atomic mass units. (Actually, the method allows mass measure-
ments to be carried out to much greater accuracy than these ap-
proximate data suggest.)



9. Kinetic Energy An electron with kinetic energy 1.20 keV circles
in a plane perpendicular to a uniform magnetic field. The orbit ra-
dius is 25.0 cm. Find (a) the speed of the electron, (b) the magnetic
field, (c) the frequency, and (d) the period of the motion.

10. Circular Path An alpha particle (q � �2e, m � 4.00 u) travels
in a circular path of radius 4.50 cm in a uniform magnetic field with
magnitude B � 1.20 T. Calculate (a) its speed, (b) its period of rev-
olution, (c) its kinetic energy in electron-volts, and (d) the potential
difference through which it would have to be accelerated to achieve
this energy.

11. Frequency of Revolution (a) Find the frequency of revolution
of an electron with an energy of 100 eV in a uniform magnetic field
of magnitude 35.0 
T. (b) Calculate the radius of the path of this
electron if its velocity is perpendicular to the magnetic field.

12. Source of Electrons A source injects an electron of speed v �
1.5 � 107 m/s into a uniform magnetic field of magnitude B �
1.0 � 10�3 T. The velocity of the electron makes an angle � � 10°
with the direction of the magnetic field. Find the distance d from the
point of injection at which the electron next crosses the field line
that passes through the injection point.

13. Beam of Electrons A beam of
electrons whose kinetic energy is K
emerges from a thin-foil “window”
at the end of an accelerator tube.
There is a metal plate a distance d
from this window and perpendicular
to the direction of the emerging
beam (Fig. 29-28). Show that we can
prevent the beam from hitting the
plate if we apply a uniform magnetic
field such that its magnitude is

in which m and e are the electron mass and charge. How should 
be oriented?

14. Proton, Deuteron, Alpha A proton, a deuteron (q � �e, m �
2.0 u), and an alpha particle (q � �2e, m � 4.0 u) with the same 
kinetic energies enter a region of uniform magnetic field , moving
perpendicular to . Compare the radii of their circular paths.

15. Nuclear Experiment In a nuclear experiment a proton with ki-
netic energy 1.0 MeV moves in a circular path in a uniform mag-
netic field. What energy must (a) an alpha particle (q � �2e, m �
4.0 u) and (b) a deuteron (q � �e, m � 2.0 u) have if they are to
circulate in the same circular path?

16. Uniform Magnetic Field A proton of charge �e and mass m
enters a uniform magnetic field � B with an initial velocity 

� � . Find an expression in unit-vector notation for its
velocity at any later time t.

17. Mass Spectrometer A certain commercial mass spectrometer
(see Touchstone Example 29-2) is used to separate uranium ions of
mass 3.92 � 10�25 kg and charge 3.20 � 10�19 C from related
species. The ions are accelerated through a potential difference of
100 kV and then pass into a uniform magnetic field, where they are
bent in a path of radius 1.00 m. After traveling through 180° and
passing through a slit of width 1.00 mm and height 1.00 cm, they are
collected in a cup. (a) What is the magnitude of the (perpendicular)
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magnetic field in the separator? If the machine is used to separate
out 100 mg of material per hour, calculate (b) the current of the
desired ions in the machine and (c) the thermal energy produced in
the cup in 1.00 h.

18. Half Circle In Fig 29-29, a
charged particle moves into a re-
gion of uniform magnetic field B,
goes through half a circle, and
then exits that region. The parti-
cle is either a proton or an elec-
tron (you must decide which). It
spends 130 ns within the region.
(a) What is the magnitude ? (b) If the particle is sent back through
the magnetic field (along the same initial path) but with 2.00 times its
previous kinetic energy, how much time does it spend within the field?

19. Positron A positron with kinetic energy 2.0 keV is projected
into a uniform magnetic field of magnitude 0.10 T, with its veloc-
ity vector making an angle of 89° with . Find  (a) the period, (b)
the pitch p, and (c) the radius r of its helical path.

20. Neutral Particle A neutral particle is at rest in a uniform mag-
netic field . At time t � 0 it decays into two charged particles, each
of mass m. (a) If the charge of one of the particles is �q, what is the
charge of the other? (b) The two particles move off in separate
paths, both of which lie in the plane perpendicular to . At a later
time the particles collide. Express the time from decay until colli-
sion in terms of m, , and .

SEC. 29-6 ■ CROSSED FIELDS: DISCOVERY OF

THE ELECTRON

21. Horizontal Motion An electron with kinetic energy 2.5 keV
moves horizontally into a region of space in which there is a down-
ward-directed uniform electric field of magnitude 10 kV/m.
(a) What are the magnitude and direction of the (smallest) uniform
magnetic field that will cause the electron to continue to move hori-
zontally? Ignore the gravitational force, which is small. (b) Is it pos-
sible for a proton to pass through the combination of fields unde-
flected? If so, under what circumstances? 

22. At One Instant A proton travels through uniform magnetic and
electric fields. The magnetic field is � (�2.5 mT) . At one instant
the velocity of the proton is � (2000 m/s) . At that instant, what
is the magnitude of the net force acting on the proton if the electric
field is (a) (4.0 V/m) and (b) (4.0 V/m) ?

23. Potential Difference An electron is accelerated through a po-
tential difference of 1.0 kV and directed into a region between two
parallel plates separated by 20 mm with a potential difference of
100 V between them. The electron is moving perpendicular to the
electric field of the plates when it enters the region between the
plates. What magnitude of uniform magnetic field, applied perpen-
dicular to both the electron path and the electric field, will allow the
electron to travel in a straight line?

24. Electric and Magnetic Field An electric field of magnitude
1.50 kV/m and a magnetic field of 0.400 T act on a moving electron
to produce no net force. (a) Calculate the minimum speed of
the electron. (b) Draw a set of vectors , , and that could yield
the net force.

25. Ion Source An ion source is producing ions of 6Li (mass �
6.0 u), each with a charge of �e. The ions are accelerated by a
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potential difference of 10 kV and pass horizontally into a region in
which there is a uniform vertical magnetic field of magnitude �
1.2 T. Calculate the strength of the smallest electric field, to be set
up over the same region, that will allow the 6Li ions to pass through
undeflected.

26. Initial Velocity An electron has an initial velocity of 
(12.0 km/s) � (15.0 km/s) and a constant acceleration of (2.00 �
1012 m/s2) in a region in which uniform electric and magnetic fields
are present. If � (400 
T) , find the electric field .

SEC. 29-7 ■ THE HALL EFFECT

27. Field Ratio (a) In Fig 29-14, show that the ratio of the mag-
nitudes of the Hall electric field to the electric field re-
sponsible for moving charge (the current) along the length of the
strip is 

where � is the resistivity of the material and n is the number density
of the charge carriers and e is the amount of charge on the
electron. (b) Compute this ratio numerically for Problem 28. (See
Table 26-2.)

28. Strip of Copper A strip of copper 150 
m wide is placed in a uni-
form magnetic field of magnitude 0.65 T, with perpendicular to
the strip. A current i � 23 A is then sent through the strip such that a
Hall potential difference V appears across the width of the strip.
Calculate V. (The number of charge carries per unit volume for cop-
per is 8.47 � 1028 electrons/m3.)

29. Metal Strip A metal strip
6.50 cm long, 0.850 cm wide, and
0.760 mm thick moves with con-
stant velocity through a uni-
form magnetic field of magnitude

� 1.20 mT directed perpen-
dicular to the strip, as shown in
Fig. 29-30. A potential difference
of 3.90 
V is measured between
points x and y across the strip.
Calculate the speed 

SEC. 29-8 ■ MAGNETIC FORCE ON A CURRENT-
CARRYING WIRE

30. A Wire Carries a Current A wire 1.80 m long carries a current
of 13.0 A and makes an angle of 35.0° with a uniform magnetic field
of magnitude B � 1.50 T. Calculate the magnitude of the magnetic
force on the wire.

31. Horizontal Conductor A horizontal conductor that is part of a
power line carries a current of 5000 A from south to north. The
magnitude of the Earth’s magnetic field is 60.0 
T. The field is
directed toward the north and is inclined downward at 70° to the
horizontal. Find the magnitude and direction of the magnetic force
on 100 m of the conductor due to Earth’s field.

32. Along the x Axis A wire 50 cm long lying along the x axis car-
ries a current of 0.50 A in the positive x direction. It passes through
a magnetic field � (0.0030 T) � (0.0100 T) . Find the magnetic
force on the wire.
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33. A Wire of Length A wire of
62.0 cm length and 13.0 g mass is
suspended by a pair of flexible leads
in a uniform magnetic field of mag-
nitude 0.440 T (Fig. 29-31). What are
the magnitude and direction of the
current required to remove the ten-
sion in the supporting leads?

34. Electric Train Consider the pos-
sibility of a new design for an electric train. The engine is driven by
the force on a conducting axle due to the vertical component of
Earth’s magnetic field. To produce the force, current is maintained
down one rail, through a conducting wheel, through the axle,
through another conducting wheel, and then back to the source via
the other rail. (a) What amount of current is needed to provide a
modest force of magnitude 10kN? Take the vertical component of
Earth’s field to be 10 
T and the length of the axle to be 3.0 m.
(b) At what rate would electric energy be lost for each ohm of resis-
tance in the rails? (c) Is such a train totally or just marginally unre-
alistic?

35. Copper Rod A 1.0 kg copper rod rests on two horizontal rails
1.0 m apart and carries a current of 50 A from one rail to the other.
The coefficient of static friction between rod and rails is 0.60. What
is the magnitude of the smallest magnetic field (not necessarily ver-
tical) that would cause the rod to slide?

SEC. 29-9 ■ TORQUE ON A CURRENT LOOP

36. Current Loop A single-turn current loop, carrying a current
of 4.00 A, is in the shape of a right triangle with sides 50.0, 120,
and 130 cm. The loop is in a uniform magnetic field of magnitude
75.0 mT whose direction is parallel to the current in the 130 cm side
of the loop. (a) Find the magnitude of the magnetic force on each of
the three sides of the loop. (b) Show that the total magnetic force
on the loop is zero.

37. Rectangular Coil Figure 29-32
shows a rectangular 20-turn coil of
wire, of dimensions 10 cm by 5.0 cm.
It carries a current of 0.10 A and is
hinged along one long side. It is
mounted in the xy plane, at 30° to
the direction of a uniform magnetic
field of magnitude 0.50 T. Find the
magnitude and direction of the
torque acting on the coil about the
hinge line.

38. Arbitrarily Shaped Coil Prove
that the relation � (Eq. 29-31) holds for closed
loops of arbitary shape and not only for rectangular loops as in Fig.
29-22. (Hint: Replace the loop of arbitrary shape with an assembly
of adjacent long, thin, approximately rectangular loops that are
nearly equivalent to the loop of arbitrary shape as far as the distrib-
ution of current is concerned.)

39. Show That A length L of wire carries a current i. Show that if
the wire is formed into a circular coil, then the magnitude of the
maximum torque in a given magnetic field is developed when the
coil has one turn only. Also show that maximum torque has the
magnitude � � L2iB/4�.

N � i �AB sin ��
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40. Zero Total Force A closed wire loop with current i is in a uni-
form magnetic field , with the plane of the loop at angle � to the
direction of . Show that the total magnetic force on the loop is
zero. Does your proof also hold for a nonuniform magnetic field?

41. Wire Ring Figure 29-33 shows a
wire ring of radius a that is perpen-
dicular to the general direction of a
radially symmetric, diverging mag-
netic field. The magnetic field at the
ring is everywhere of the same mag-
nitude , and its direction at the
ring everywhere makes an angle �
with a normal to the plane of the
ring. The twisted lead wires have no
effect on the problem. Find the magnitude and direction of the force
the field exerts on the ring if the ring carries a positive current i.

42. Maximum Torque A particle of charge q moves in a circular
wire loop of radius a with speed . Find the maximum torque ex-
erted on the loop by a uniform magnetic field of magnitude .

43. Wooden Cylinder Figure 29-34
shows a wooden cylinder with mass
m � 0.250 kg and length L � 0.100
m, with N � 10.0 turns of wire
wrapped around it longitudinally, so
that the plane of the wire coil con-
tains the axis of the cylinder. Also
the plane of the coil is parallel to the
inclined plane. There is a vertical,
uniform magnetic field of magnitude
0.500 T. What is the least amount of
current through the coil that will
prevent the cylinder from rolling
down a plane inclined at an angle �
to the horizontal?

SEC. 29-10 ■ THE MAGNETIC DIPOLE MOMENT

44. Earth’s Moment The magnitude of magnetic dipole moment of
Earth is 8.00 � 1022 J/T. Assume that this is produced by charges
flowing in Earth’s molten outer core. If the radius of their circular
path is 3500 km, calculate the amount of current associated with
each moving charge.

45. Calculate the Current A circular coil of 160 turns has a radius
of 1.90 cm. (a) Calculate the current that results in a magnetic di-
pole moment of 2.30 A 	 m2. (b) Find the maximum magnitude of
torque that the coil, carrying this current, can experience in a uni-
form 35.0 mT magnetic field.

46. Moment and Torque A circular wire loop whose radius is 
15.0 cm carries an amount of current of 2.60 A. It is placed so that
the normal to its plane makes an angle of 41.0° with a uniform mag-
netic field of magnitude 12.0 T. (a) Calculate the magnitude of the
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magnetic dipole moment of the loop. (b) What is the magnitude of
torque that acts on the loop?

47. Right Triangle A current loop, carrying an amount of cur-
rent of 5.0 A, is in the shape of a right triangle with sides 30, 40,
and 50 cm. The loop is in a uniform magnetic field of magnitude 
80 mT whose direction is parallel to the current in the 50 cm side 
of the loop. Find the magnitude of (a) the magnetic dipole moment
of the loop and (b) the torque on the loop.

48. Wall Clock A stationary circular wall clock has a face with a
radius of 15 cm. Six turns of wire are wound around its perimeter;
the wire carries a current of 2.0 A in the clockwise direction. The
clock is located where there is a constant, uniform external mag-
netic field of magnitude 70 mT (but the clock still keeps perfect
time). At exactly 1:00 P.M., the hour
hand of the clock points in the direc-
tion of the external magnetic field.
(a) After how many minutes will the
minute hand point in the direction
of the torque on the winding due to
the magnetic field? (b) Find the
torque magnitude.

49. Concentric Loops Two concen-
tric, circular wire loops, of radii 20.0
and 30.0 cm, are located in the xy
plane; each carries a clockwise cur-
rent of 7.00 A (Fig. 29-35). (a) Find
the magnitude of the net magnetic
dipole moment of this system. (b)
Repeat for reversed current in the
inner loop.

50. ABCDEFA Figure 29-36
shows a current loop
ABCDEFA carrying a current i
� 5.00 A. The sides of the loop
are parallel to the coordinate
axes, with AB � 20.0 cm, BC �
30.0 cm, and FA � 10.0 cm.
Calculate the magnitude and
direction of the magnetic di-
pole moment of this loop.
(Hint: Imagine equal and op-
posite currents i in the line seg-
ment AD; then treat the two
rectangular loops ABCDA and ADEFA.)

51. Circular Loop A circular loop of wire having a radius of 8.0 cm 
carries a current of 0.20 A. A vector of unit length and parallel 
to the dipole moment of the loop is given by 0.60 � 0.80 .
If the loop is located in a uniform magnetic field given by �
(0.25 T) � (0.30 T) , find (a) the torque on the loop (in unit-
vector notation) and (b) the magnetic potential energy of the
loop.
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Additional Problems

52. Permanent Magnet You can observe that a permanent magnet
can exert forces on moving charges or currents. (a) If a magnet exerts

a force on a moving charge, would the magnet experience any
forces? Explain. (b) In the case of the gravitational or electrostatic



interaction between two objects, each object has a common prop-
erty, such as mass in the case of gravitational interaction or excess
charge in the case of the electrostatic interaction. A permanent
magnet and a moving electron seem very different. Can you think
of any way that they might have a common property? Explain.

53. U-Shaped Magnet An
electron having a velocity of
magnitude v enters a region
between the poles of a U-
shaped magnet. This region has
a uniform magnetic field, ,
pointing out of the paper in
the positive z direction as
shown in Fig. 29-37.

(a) If the magnetic field points out of the paper, where is the north
pole of the magnet—in front of or behind the image shown? 
(b) Use the right-hand rule to find the direction of force on the
electron as it passes into the region where the magnetic field is uni-
form. (c) Sketch the path of the electron, assuming that the mag-
netic field is relatively weak. (d) If the speed of the electron is
4.79 � 106 m/s and the magnitude of the magnetic field is 0.234 T,
what is the magnitude of the force on the electron?

54. A Velocity Selector A group of physicists at Argonne National
Laboratory in Illinois wants to bombard metals with monoener-
getic beams of alpha particles to study radiation damage. (Alpha
particles are helium nuclei, which consist of two neutrons and two
protons and thus have a net charge of �2e where e is the amount of
the charge on the electron.) They have managed to create a beam
of alpha particles from the decay of radioactive elements, but some
of the alpha particles lose energy as they collide with other atoms in
the source. As a new physicist assigned to the group you have been
asked to use a velocity selector to select only the alpha particles in
the beam that are close to one velocity and get rid of the others.
The velocity selector consists of: (1) a power supply capable of de-
livering large potential differ-
ences between capacitor plates
and (2) a large permanent mag-
net that has a uniform magnetic
field perpendicular to the beam.
The setup for the velocity selec-
tor is shown in Fig. 29-38. The di-
rection of the B-field is out of
the paper. Your magnet has a
field of 0.22 T and the capacitor
plates have a spacing of 2.5 cm.
You are asked to figure out how
the velocity selector works and
then tell your group what volt-
age to put across the capacitor
plates to select a velocity of 
4.2 � 106 m/s.

This is your first job and you feel overwhelmed by the assign-
ment, but you calm down and begin to analyze the situation one
step at a time. You come up with the following:
(a) The magnet is oriented so its magnetic field is out of the paper
in the diagram you are given, so you use the right-hand rule to de-
termine the direction of the magnetic force on an alpha particle
passing from left to right into the magnetic field. What direction did
you come up with for the force?

B
:

(b) You realize that by using you can calculate
the magnitude of force on an alpha particle moving at speed v just
as it enters the uniform magnetic field as a function of the charge
on the alpha particle and the magnitude of the magnetic field B.
What is the expression for the magnitude of the force in terms of e,
v, and B?
(c) You realize that you might be able to put just the right voltage
across the two capacitor plates so that the electrical force on a
given alpha particle will be equal in magnitude and opposite in di-
rection to the Lorentz magnetic force. Then any alpha particles with
just the right velocity will pass straight through the poles of the
magnet without being deflected. First you think about whether the
voltage on the upper capacitor plate should be positive or negative
to give a canceling force. What do you decide?
(d) Next you realize that if you know the electric field between the
plates and the charge on the alpha particle then you can compute
the electrical force on it. What is the relationship between the elec-
trical force , charge, q, and electric field ?
(e) Finally, you use the fact that the magnitude of the electric field
between capacitor plates is given by E � �d where d is the
spacing between the plates. Show that the voltage needed to have
the electrical force and the magnetic force be “equal and opposite”
can be calculated using the equation � vBd. Calculate the
voltage needed.

55. Region A—Region B
Figure 29-39 shows a
charged particle that is
moving in the positive x
direction when it en-
counters region A with a
uniform magnetic field.
Its path is bent in a half-
circle and then moves
into region B also with a
uniform magnetic field.
The particle undergoes
another half revolution.
Finally it passes between two charged capacitor plates and is de-
flected downward in the negative y direction.
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(a) Is the charge positive or negative? Explain.
(b) What is the direction of the magnetic field in region A?
Explain.
(c) What is the direction of the magnetic field in region B?
Explain.
(d) Which region has the larger magnetic field, A or B? Explain.

56. A Mass Spectrometer It is possible to accelerate ions to a
known kinetic energy in an electric field. Sometimes chemists and
physicists do this as part of a method to identify the chemical ele-
ments present in a beam of ions by determining the mass of each
ion. This can be done by bending the ion beam in a uniform mag-
netic field and measuring the radius of the semicircular path each
ion takes. A device that does this is called a mass spectrometer. A
schematic of a mass spectrometer is shown in Fig. 29-40.

Boron is the
fifth element in the
periodic table so it
always has 5 protons.
However, different
isotopes of boron
have 3, 5, 6, 7, or 8
neutrons in addition
to the 5 protons to
make up boron-8,
boron-10, boron-11
and so on. As a re-
search chemist for
the Borax Company
you have been asked
to use a mass spectrometer to determine the relative abundance of
different isotopes of boron in a sample of boron obtained from a
mine near Death Valley in California. You decide to accelerate a
beam of singly charged boron ions (i.e., those that have lost one of
their orbital electrons). You use an accelerating potential difference
of �2.68 � 103 volts. The boron beam then enters a uniform mag-
netic field you set up to have a magnetic flux density of 0.182 T in a
direction perpendicular to the direction of the boron beam. You ob-
serve two bright spots on your photographic plate with the spot
corresponding to a radius of 13.0 cm having four times the intensity
of the one corresponding to a radius of 13.6 cm. There are very faint
spots at 11.6 cm, 14.2 cm, and 14.8 cm. Which isotope of boron has
approximately 80% abundance? Which one has about 20% abun-
dance? Which ones are present in only trace amounts? Please show
all your reasoning and calculations. Hints: (1) An atomic mass unit
is given by 1.66 � 10�27 kg, which is close to the mass of the proton
and neutron. (2) Find the velocity of each isotope of boron in me-
ters per second just after it has been accelerated by the potential
difference of �2.68 � 103 volts. (3) It is helpful to do the calcula-
tions for each of the five isotopes on a spreadsheet.

57. Bubble Chamber Tracks Energetic gamma rays like those com-
ing from outer space can disappear near a heavy nucleus producing
a rapidly moving pair of particles consisting of an electron and a
positron. (A positron is a small positively charged particle that has
the same mass and amount of charge as an electron). This process is
called pair production. A device called a bubble chamber allows
one to observe the path taken by electron–positron pairs produced
by gamma rays. The study of bubble chamber tracks in the presence
of magnetic fields has revealed a great deal about high-energy
gamma rays, the processes of pair production, and the loss of
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energy by electrons and positrons. A
sample bubble chamber track is shown in
Fig. 29-41.

(a) If the magnetic field is uniform point-
ing into the paper, which trajectory (the
upper one or the lower one) shows the
motion of the positron? Explain your rea-
soning. (b) In which part of the spiral does
the positron have the greatest energy—
the large radius part or the small radius
part? Explain the reasons for your an-
swer. (c) Is the electron moving faster,
slower, or at the same speed as the
positron at the point in time when the two
particles are created? Cite the evidence
for your answer. (d) Suppose the bubble
chamber photograph in Fig. 29-41 is an enlargement of the actual
event so that the length L is actually only 2.4 � 10�3 m. Show that
the radius of curvature of the electron path just after the electron is
created is approximately 0.8 � 10�3 m. Hint: Measure L in picture
units to find a scale factor and then measure the appropriate fea-
ture of the electron path in picture units and use the scale factor to
find R in meters. (e) Use the Lorentz force law and the expression
for centripetal force to find the equation relating the speed of the
electron to B, R, e, and m. (f) Suppose the magnitude of the mag-
netic field in the bubble chamber is B � 0.54 T. Calculate the ap-
proximate speed of the electron when it is first created in the bub-
ble chamber.

58. Three Force Fields We have studied three long-range forces:
gravity, electricity, and magnetism. Compare and contrast these
three forces giving at least one feature that all three forces have in
common, and at least one feature that distinguishes each force.

59. Comparing and Fields We have studied two fields: electric
and magnetic. Explain why we introduce the idea of field, and com-
pare and contrast the electric and magnetic fields. In your compari-
son, be certain to discuss at least one similarity and one difference.

60. Anti-matter Ion Cosmic Rays An international consortium is
presently building a device to look for anti-matter nuclei in cosmic
rays to help us decide whether there are galaxies made of anti-mat-
ter. Anti-matter is just like ordinary matter except the basic parti-
cles (anti-protons and anti-electrons) have opposite charge from 
ordinary matter counterparts. Anti-protons are negative, and 
anti-electrons (positrons) are positive.

A schematic of the device is shown in Fig. 29-42. A cosmic
ray—say, a carbon nucleus or an anti-carbon nucleus—enters the
device at the left where its position and velocity are measured. It
then passes through a (reasonably uniform) magnetic field. Its path
is bent in one direction if its charge is positive and in the opposite
direction it its charge is negative. Its deflection is measured as it
goes out of the device.

(a) In Fig. 29-42, what is the direction of the magnetic field? How
do you know?
(b) Which path is followed by each particle in the device? How do
you know?
(c) If you were given the magnetic field, B, the size of the device,
D, the amount of charge on the incoming particle, q, and the mass
of the incoming particle, M, would this be enough to calculate the
displacement of the charge, d? If so, describe briefly how you would
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FIGURE 29-40 ■ Problem 56.
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do it (but don’t do it). If not, explain what additional information
you would need (but don’t estimate it).

61. Magnets and Charge A bar magnet is
hung from a string through its center as shown
in Fig. 29-43. A charged rod is brought up
slowly into the position shown. In what direc-
tion will the magnet tend to rotate? Suppose
the charged rod is replaced by a bar magnet
with the north pole on top. In what direction
will the magnet tend to rotate? Is there a dif-
ference between what happens to the hanging
magnet in the two situations? Explain why you
either do or do not think so.

62. Buying a Mass Spectrometer* You are assigned the task of
working with a desktop-sized magnetic spectrometer for the pur-
pose of measuring the ratio of C12 to C14 atoms in a sample in order
to determine the sample’s age. For this problem, let’s concentrate on
the magnet that will perform the separation of masses. Suppose you
have burned and vaporized the sample so that the carbon atoms are
in a gas. You now pass this gas through an “ionizer” that on the av-
erage strips one electron from each atom. You then accelerate the
ions by putting them through an electrostatic accelerator—two ca-
pacitor plates with small holes that permit the ions to enter and
leave. (From the University of Washington Physics Education
Group)

The two plates are charged  so that they are at a voltage differ-
ence of V volts. The electric field produced by charges on the ca-
pacitor plates accelerates the ions to an energy of qV. These are
then introduced into a nearly constant, vertical magnetic field. If we
ignore gravity, the magnetic field will cause the charged particles to
follow a circular path in a horizontal plane. The radius of the circle
will depend on the atom’s mass. (Assume the whole device will be
placed inside a vacuum chamber.)

Answer these three questions about how the device works.

(a) We want to keep the voltage at a moderate level. If V is 1000
volts, how big of a magnetic field would we require to have a plausi-
ble tabletop-sized instrument? Is this a reasonable magnetic field to
have with a tabletop-sized magnet?
(b) Do the C12 and C14 atoms hit the collection plate far enough
apart? (If they are not separated by at least a few millimeters at the
end of their path, we will have trouble collecting the atoms in sepa-
rate bins.)
(c) Can we get away with ignoring gravity? (Hint: Calculate the
time it would take the atom to travel its semicircle and calculate
how far it would fall in that time.)
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Problem 61.* C14 is a radioactive isotope of carbon that behaves 
chemically almost identically to its more common but 
slightly lighter sibling, C12. The amount of C14 in the atmosphere stays
about constant since it is being produced continually by cosmic rays. Once
carbon from the air is bound into an organic substance, the C14 will decay
with half of them vanishing every 5730 years. The ratio of C14 to C12 in an
organic substance therefore tells how long ago it died.
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30 Magnetic Fields 
Due to Currents

This is the way we presently

launch materials into space.

However, when we begin min-

ing the Moon and the

asteroids, where we will not

have a source of fuel for such

conventional rockets, we shall

need a more effective way.

Electromagnetic launchers may

be the answer. A small

prototype, the electromagnetic

rail gun, can accelerate a pro-

jectile from rest to a speed of

10 km/s (36 000 km/h) within

1 ms.

How can such rapid 
acceleration possibly
be accomplished?

The answer is in this
chapter.



30-1 Introduction

When people first began to study magnetism scientifically (say, starting from Gilbert’s
Treatise de Magnete in 1600), they focused on the properties of magnets. For example,
they studied lodestones (pieces of iron naturally magnetized by the Earth’s magnetic
field) and found that magnets interact with other magnets through an “action-at-a-
distance” force that we now call magnetism. Magnetism was found to be a third
distinct noncontact force to add to the list of the two already known: gravity and
electricity.

As we learned in the previous chapter, stationary electric charges and magnets do
not interact (except for the polarization effects that stationary charges can induce in
all objects). However, moving electric charges do experience a force in the presence
of a magnet. Since magnets can exert forces on other magnets, could it be that moving
charges behave like magnets?

We have postulated the existence of an entity called the magnetic field in order
to introduce a magnetic force law that provides a mathematical description of the
force that a permanent magnet can exert on moving electrical charges. Newton’s
Third Law states that whenever one object exerts a force on another object, the
latter object exerts an equal and opposite force on the former. So, if a magnet
exerts a force on a current-carrying wire, shouldn’t the wire exert an equal and
opposite force on the magnet? The symmetry demanded by Newton’s Third Law
leads us to predict that if moving charges feel forces as they pass through magnetic
fields, then they should be capable of exerting forces on the sources of these
magnetic fields. In the early 19th century the Danish physicist Hans Christian
Oersted demonstrated that an electric current does indeed exert forces on a
magnet in its vicinity.

In this chapter we describe how to determine the magnetic fields associated
with current-carrying wires and the forces they exert on other wires and magnets.
We begin with a summary of Oersted’s observations of magnetic phenomena 
associated with current-carrying wires. We also discuss the work of Biot and Savart,
two French scientists. Biot and Savart made a series of careful observations to for-
mulate a mathematical expression describing the magnetic field from a short seg-
ment of current-carrying wire, doing for magnetism what Coulomb did for electric-
ity. Next we show how the Biot – Savart law and an alternative law known as
Ampère’s law (much as Gauss’ law was an alternative to Coulomb’s) can be used to
calculate the magnetic fields and forces associated with various configurations of
current-carrying wires. The ability to make such calculations has had a tremendous
impact on the design of devices ranging from electric toothbrushes to gigantic parti-
cle accelerators.

30-2 Magnetic Effects of Currents—Oersted’s
Observations

The Earth has a relatively weak magnetic field that interacts with magnets. This phe-
nomenon was exploited for navigational purposes through the development of the
compass—a small bar magnet suspended so it pivots freely. Hence a compass is a sen-
sitive magnetic field detector. Oersted and other scientists used the orientation of a
compass to detect magnetic fields and determine their directions. By convention, the
north-seeking pole of a magnet points in the direction of the magnetic field at its 
location.

In 1820, H. C. Oersted reported on a famous experiment connecting magnetism
with electric currents. He placed a conducting wire along the north–south line of the
Earth’s magnetic field and laid a compass on top of the wire. The needle pointed
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along the wire (and the Earth’s north–south line). When Oersted connected the ends
of the wire to the terminals of a battery, the compass needle swung perpendicular to
the wire as shown in Fig. 30-1, demonstrating that moving charges in a wire affect a
compass in the same way a magnet does. Oersted also noticed that when the direc-
tion of the current is reversed, the compass needle flips so it points in the opposite 
direction.

Oersted found that moving charged particles, such as a current in a wire, create
magnetic fields. Oersted’s observation was especially surprising because this was the
first known instance in which the force on an object (in this case the compass) was not
observed to act along a line connecting it with the source of the force (in this case the
wire). Within a week of the time that Oersted announced his observations, a French
physicist, André Marie Ampère, began to refine them. Ampère noted that the mag-
netic field lines lay in concentric circles around the wire. His careful observations re-
vealed that a long current-carrying wire sets up a magnetic field that orients small
compass magnets so they are tangent to a circle centered on the wire that lies in a
plane perpendicular to the wire. The alignment of iron filings, which act like small
compasses, is shown in Fig. 30-2. Drawing the direction of the compass needle align-
ments at many different points that completely surround the wire results in an image
of concentric circles like those shown in Fig. 30-3.

Ampère also developed a graphic way of relating the direction of conventional
current (that is, traveling from the positive to the negative terminal of a battery) and
the orientation of the magnetic field, which is indicated by the direction of the north
pole of a compass needle. Ampère stated his right-hand rule as follows:

Encircle the wire with the fingers of the right hand, thumb extended in the direction of posi-
tive current. The fingers then point in the direction of deflection of the north pole.

This right-hand rule is shown graphically in Fig. 30-4.
You can easily replicate the following observations made by Oersted, Ampère,

and many others in the early 19th century using a battery, wire, a piece of cardboard,
and one or more small compasses:

• The compass needles are more strongly deflected when they are close to the wire
than when they are far from the wire.

• For a given current, the amount of needle deflection depends only on the needle’s
radial distance from the wire.

• At a given radial distance from the wire, increasing the current in the wire in-
creases the needle deflection.

• The direction of the needle deflection flips (change by 180°) if you reverse the di-
rection of the current flow.

• Drawing the directions of the needle orientations at many different points that
completely surround the wire results in an image of concentric circles like those
shown in Fig. 30-3.

READI NG EXERC IS E  30-1: In each of the following situations, assume that the
magnetic field associated with a current-carrying wire can point up, down, left, right, into the
page, or out of the page. (a) If the direction of the conventional
current in the wire is out of the page, what is the direction of the
magnetic field it generates at point 1? (b) At point 2? (c) If the
direction of the conventional current in the wire is into the page,
what is the direction of the magnetic field it generates at point 1?
(d) At point 2? ■
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FIGURE 30-1 ■ Oersted’s experiment
showing how a compass needle becomes
aligned in a direction that is perpendicular
to the direction of the current in a length
of wire.

FIGURE 30-2 ■ Iron filing slivers that have
been sprinkled onto cardboard collect in
concentric circles when a strong current is
sent through the central wire. The filings
are magnetized and align themselves like
tiny compasses in the direction of the mag-
netic field produced by the current.
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into the page
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FIGURE 30-3 ■ The magnetic field lines
produced by a current in a long straight
wire form concentric circles around the
wire. Here the current is into the page, as
indicated by the . The field lines are far-
ther apart as the distance from the wire in-
creases, signifying a decrease in the magni-
tude of the field with distance.
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30-3 Calculating the Magnetic Field 
Due to a Current

It is very useful to be able to compute the net magnetic field created by a current-
carrying wire. We would also like to be able to do this either for long straight wires or
for any wire no matter how it bends around.

Two French physicists named Biot and Savart (rhymes with “Leo and bazaar”)
were able to develop a mathematical description of the magnetic field in the vicinity
of a short segment of current-carrying wire. To do this, these investigators made a set
of very clever experimental measurements:

• First, the two investigators positioned magnets around their experimental setup in
order to cancel out the local magnetic field of the Earth.

• Next they placed sharp bends in a current-carrying wire so they could observe the
approximate effect that an “isolated” short element of wire would have.

• Then they ran a known current through the wire and measured the direction of
the magnetic field produced by the small wire segment at various locations using
the final orientation of the suspended compass needles.

• Finally, they measured the relative magnitude of the torque on the suspended
compass needles before they reached their final orientation and thus the relative
force applied to the needles. In doing this, they were actually making measure-
ments of the strength of the field at various locations.

Given what we know of the observations summarized in the previous section, it is
not surprising that Biot and Savart found that the magnitude of the magnetic field
contribution is directly proportional to the amount of the current and
the length of the small segment of wire. They also found that the magnitude of the
magnetic field at a point P in space decreases as the inverse square of the distance be-
tween the segment of wire and point P. The two investigators proposed that the mag-
nitude of the field contribution produced at a point P by a segment of wire 
carrying a current i is

(30-1)

where is a vector of magnitude ds equal to the length of the piece of wire and di-
rection given by the direction of the current. � is the angle between the directions of

and , where is the vector that extends from to point P. (See Figure 30-5b.)
The symbol is called the magnetic constant (or permeability). By definition its value
in SI units is exactly 

(magnetic constant). (30-2)

Equation 30-1 is similar in many ways to that found for the differential electric
field from a small segment of wire holding static charge described by Eq. 23-21. How-
ever, the perpendicular relationship between the direction of a segment of wire and
the magnetic field it produces is a new phenomenon. Fortunately, it turns out that a
vector crossproduct can be used to find the direction of the magnetic field contribu-
tion. The direction of , shown as being into the page in Fig. 30-5b, is the same as that
given by the cross product . We can therefore recast Eq. 30-1 in vector form as 

(Biot–Savart law). (30-3)dB
:

�
�0

4�

i ds: � r:

r 3

ds: � r:
dB
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FIGURE 30-4 ■ Ampère’s right-hand rule
gives the direction of the magnetic field
relative to the conventional current in a
wire. (a) The situation of Fig. 30-3, seen
from the side. The magnetic field at any
point to the left of the wire is perpendicu-
lar to the dashed radial line and directed
into the page, in the direction of the finger-
tips, as indicated by the . (b) If the cur-
rent is reversed, at any point to the left
is still perpendicular to the dashed radial
line but now is directed out of the page, as
indicated by the dot.
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This vector equation is known as the Biot–Savart law. The law, which was experimen-
tally deduced, is an inverse-square law (the exponent in the denominator of Eq. 30-3
is 3 only because of the factor in the numerator). How can we use this law to calcu-
late the net magnetic field produced at a point by various distributions of current?

If our goal is to calculate the magnetic field that is produced by a given current
distribution based on the field produced by segments of the distribution, perhaps we
should use the same basic procedure we used in Chapter 23 to calculate the electric
field produced by a given distribution of charged particles. Let us quickly review that
basic procedure. We first mentally divide the charge distribution into charge elements
dq, as is done for a charge distribution of arbitrary shape in Fig. 30-5a. We then calcu-
late the field produced at some point P by a single charge element. Because the
electric fields contributed by different elements can be superimposed, we calculate
the net field at P by summing, via integration, the contributions from all the 
elements.

Recall that we express the magnitude of as 

(30-4)

in which r is the distance between the charge element dq and point P. For a positively
charged element, the direction of is that of , where is the vector that extends
from the charge element dq to the point P. Using , we can rewrite Eq. 30-4 in vector
form as 

(30-5)

which indicates that the direction of the vector produced by a positively charged
element is the direction of the vector . Note that just as is the case for the Biot-
Savart law this is an inverse-square law ( depends on inverse r2) in spite of the 
term in the denominator. This is because the term in the numerator cancels one of
the r’s in the denominator.

We can use the same basic procedure to calculate the magnetic field due to a cur-
rent. Figure 30-5b shows a wire of arbitrary shape carrying a current i. We want to find
the magnetic field at a nearby point P. We first mentally divide the wire into differ-
ential elements ds and then define for each element a length vector that has length
ds and whose direction is the direction of the current in ds. We can then define a dif-
ferential current-length element to be i ; we wish to calculate the field produced
at P by a single current-length element. From experiment we find that magnetic fields,
like electric fields, can be superimposed to find a net field. Thus, we can calculate the
net field at P by summing contributions for discrete sources or by integrating the
contributions from all the current-length elements in a continuous source. How-
ever, this summation (or integration) is more challenging than the process associated
with electric fields because of a complexity. The charge element dq that produces an
electric field is a scalar, but a current-length element i that produces a magnetic
field is the product of a scalar and a vector.

Magnetic Field Due to a Current in a Long Straight Wire
Shortly we shall use the law of Biot and Savart to prove that the magnitude of the
magnetic field at a perpendicular distance R from a long (infinite) straight wire carry-
ing a current i is given by 

(long straight wire). (30-6)B �
�0 � i �
2�R
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FIGURE 30-5 ■ (a) A charge element dq
produces a differential electric field at
point P. (b) A current-length element i
isolated by sharp bends in the wire, pro-
duces a differential magnetic field at
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rected into the page there for the special
case where i and are parallel. If a small
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points into the page.

ds:

dB
:

�
dB

:

ds:,
dE

:



The field magnitude in Eq. 30-6 depends only on the amount of current
and the perpendicular distance R of the point from the wire. We shall show in our
derivation that the field lines of form concentric circles around the wire, as
Fig. 30-3 shows and as the iron filings in Fig. 30-2 suggest. The increase in the spac-
ing of the lines in Fig. 30-3 with increasing distance from the wire represents the 1/R
decrease in the magnitude of predicted by (Eq. 30-6). The lengths
of the two vectors in Fig. 30-3 also show the 1/R decrease when we use Ampère’s
right-hand rule for finding the direction of the magnetic field set up by a current-
length element, such as a section of a long wire. What we are really doing is describ-
ing the orientation of concentric circles centered on the wire. A careful review of
Fig. 30-3 yields two additional points that are often quite useful in solving magnetic
field problems. Namely, the magnetic field due to a current-carrying wire at any
point is tangent to a magnetic field line and it is perpendicular to a dashed radial line
connecting the point and the current.

Proof of Equation 30-6
Figure 30-6, which is just like Fig. 30-5b except that now the wire is straight and of
infinite length, illustrates the task at hand; we seek the field at point P, a perpendic-
ular distance R from the wire. The magnitude of the differential magnetic field pro-
duced at P by the current-length element located a distance r from P is given by
Eq. 30-1:

Since the direction of is always in the direction of the current, we find that the di-
rection of in Fig. 30-6 (given by ) is into the page.

Note that at point P has this same direction (into the page) for all the current-
length elements into which the wire can be divided. Thus, we can find the magnitude
of the magnetic field produced at P by the current-length elements in the upper half
of the infinitely long wire by integrating dB in Eq. 30-1 from 0 to .

Now consider a current-length element in the lower half of the wire, one that is
as far below P as is above P. By Eq. 30-6, the magnetic field produced at P by
this current-length element has the same magnitude and direction as that from i
in Fig. 30-6. Further, the magnetic field produced by the lower half of the wire is ex-
actly the same as that produced by the upper half. To find the magnitude of the total
magnetic field at P, we need only multiply the result of our integration by 2.
We get 

(30-7)

The variables �, s, and r in this equation are not independent but (see Fig. 30-6)
are related by 

and

Using these substitutions along with the solution to integral 19 in Appendix E,
Eq. 30-7 describing the magnitude of the magnetic field becomes 
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Substituting the limits in the expression above gives a B-field magnitude of

(infinite straight wire), (30-8)

which is the relation we set out to prove. Note that the magnitude of the magnetic
field at P due to either the lower half or the upper half of the infinite wire in Fig. 30-6
is half this value; that is,

(semi-infinite straight wire). (30-9)

Magnetic Field Due to a Current in a Circular Arc of Wire
To find the magnetic field produced at a point by a current in a curved wire, we would
again use Eq. 30-1 to write the magnitude of the field produced by a single current-
length element, and we would again integrate to find the net field produced by all the
current-length elements. That integration can be difficult, depending on the shape of
the wire; it is fairly straightforward, however, when the wire is a circular arc and the
point is the center of curvature.

Figure 30-7a shows such an arc-shaped wire with central angle �C, radius R, and
center C, carrying current i. At C, each current-length element  i of the wire pro-
duces a magnetic field element of magnitude given by Eq. 30-1. Moreover, as
Fig. 30-7b shows, no matter where the element is located on the wire, the angle � be-
tween the vectors and is 90°; also, . Thus, by substituting R for r and 90° for
�, we obtain from Eq. 30-1,

(30-10)

The field at C due to each current-length element in the circular arc has this same
magnitude.

An application of the right-hand rule anywhere along the wire (as in Fig. 30-7c)
will show that all the differential fields have the same direction at C—directly out
of the page. Thus, the total field at C is simply the sum (via integration) of all the fields

. We use the identity to change the variable of integration from ds to d�
and obtain, from Eq. 30-10, a magnitude of

Integrating, we find that 

(at center of circular arc). (30-11)

Note that this equation gives us the magnitude of the magnetic field only at
the center of curvature of a circular arc of current. When you insert data into the
equation, you must be careful to express �C in radians rather than degrees. For exam-
ple, to find the magnitude of the magnetic field at the center of a full circle of current,
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FIGURE 30-7 ■ (a) A wire in the shape of
a circular arc with center C carries current
i. (b) For any element of wire along the
arc, the angle between the directions of 
and is 90°. (c) Determining the direction
of the magnetic field at the center C due to
the current in the wire; the field is out of
the page, in the direction of the fingertips,
as indicated by the colored dot at C.
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you would substitute 2� for �C in Eq. 30-11, finding 

(at center of full circle). (30-12)

READI NG EXERC IS E  30-2: A uniform magnetic field is directed toward the right in
the plane of the paper as shown in the diagram that follows. A wire oriented perpendicular to
the plane of the paper carries a current i. Suppose that the resultant magnetic field at point 1
due to a superposition of the uniform magnetic field of magnitude and the magnetic field of
the wire at point 1 is zero. (a) Is the direction of the current in the wire into or out of the pa-
per? Explain how you arrived at your conclusion. (b) Assume that point 2 lies at the same dis-
tance from the center of the wire as point 1 and that the length of the vector assigned to repre-
sent the magnitude of the uniform external magnetic field is that shown to the left. Construct a
vector arrow showing the length and direction of the resultant magnetic field vector at point 2.
Explain how you deduced what the vector should be. (Adapted from A. Arons, Homework and
Test Questions for Introductory Physics Teaching, John Wiley and Sons, 1947.)

■
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TOUCHSTONE EXAMPLE 30-1: An Arc and Two Straight Lines

The wire in Fig. 30-8a carries a current i and consists of a circular
arc of radius R and central angle rad, and two straight sections
whose extensions intersect the center C of the arc. What magnetic
field does the current produce at C?B

:

�/2
S O LUT I O N ■ One Key  I dea here is that we can find the mag-
netic field at point C by applying the Biot–Savart law of Eq. 30-3
to the wire. A second Key  I dea is that the application of Eq. 30-3
can be simplified by evaluating separately for the three distin-
guishable sections of the wire—namely, (1) the straight section at
the left, (2) the straight section at the right, and (3) the circular arc.

Straight sections. For any current-length element in section 1,
the angle � between and is zero (Fig. 30-8b), so Eq. 30-1 
gives us 

Thus, the current along the entire length of wire in straight section 1
contributes no magnetic field at C:

The same situation prevails in straight section 2, where the angle
� between and for any current-length element is 180°.Thus,

Circular arc. The Ke y  I d e a here is that application of the
Biot–Savart law to evaluate the magnetic field at the center of a
circular arc leads to Eq. 30-11 . Here the cen-
tral angle � of the arc is . Thus from Eq. 30-11, the magni-
tude of the magnetic field at the arc’s center C is

�B
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4�R
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�0 � i �
8R

.
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(� B � � �0 � i �� /4�R)
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FIGURE 30-8 ■ (a) A wire consists of two straight sec-
tions (1 and 2) and a circular arc (3), and carries current
i. (b) For a current-length element in section 1, the angle
between and is zero. (c) Determining the direction
of magnetic field at C due to the current in the circu-
lar arc; the field is into the page there.

B
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r:ds:
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To find the direction of , we apply the right-hand rule dis-
played in Fig. 30-4. Mentally grasp the circular arc with your right
hand as suggested in Fig. 30-8c, with your thumb in the direction of
the current. The direction in which your fingers curl around the wire
indicates the direction of the magnetic field lines around the wire. In
the region of point C (inside the circular arc), your fingertips point
into the plane of the page. Thus, is directed into that plane.

Net field. Generally, when we must combine two or more mag-
netic fields to find the net magnetic field, we must combine the

B
:

3

B
:

3
fields as vectors and not simply add their magnitudes. Here, how-
ever, only the circular arc produces a magnetic field at point C.
Thus, we can write the magnitude of the net field as 

(Answer)

The direction of is the direction of —namely, into the plane of
Fig. 30-8.

B
:

3B
:

� B
:

� � � B
:

1 
 B
:

2 
 B
:

3 � � 0 
 0 
 � �0 i
8R � � � �0 i

8R �.
B
:

TOUCHSTONE EXAMPLE 30-2: Two Long Parallel Wires

Figure 30-9a shows two long parallel wires carrying currents i1 and
i2 in opposite directions. What are the magnitude and direction of
the net magnetic field at point P? Assume the following values:

, , and .d � 5.3 cmi2 � 32 Ai1 � 15 A

We want to combine and to find their vector sum, which is
the net field at P. To find the directions of and , we apply
the right-hand rule of Fig. 30-4 to each current in Fig. 30-9a. For wire
1, with current out of the page, we mentally grasp the wire with the
right hand, with the thumb pointing out of the page. Then the curled
fingers indicate that the field lines run counterclockwise. In particu-
lar, in the region of point P, they are directed upward to the left. Re-
call that the magnetic field at a point near a long, straight current-car-
rying wire must be directed perpendicular to a radial line between
the point and the current. Thus, must be directed upward to the
left as drawn in Fig. 30-9b. (Note carefully the perpendicular symbol
between vector and the line connecting point P and wire 1.)

Repeating this analysis for the current in wire 2, we find that
is directed upward to the right as drawn in Fig. 30-9b. (Note the

perpendicular symbol between vector and the line connecting
point P and wire 2.)

We can now vectorially add and to find the net magnetic
field at point P, either by using a vector-capable calculator 
or by resolving the vectors into components and then combining
the components of . However, in Fig. 30-9b, there is a third
method: Because and are perpendicular to each other, they
form the legs of a right triangle, with as the hypotenuse. The
Pythagorean theorem then gives us

(Answer)

The angle between the directions of and in Fig. 30-9b fol-
lows from 

which, with B1 and B2 as given above, yields 

The angle between the direction of and the x axis shown in
Fig. 30-9b is then 

(Answer)� 
 45� � 25� 
 45� � 70�.
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FIGURE 30-9 ■ (a) Two wires carry currents i1 and i2 in oppo-
site directions (out of and into the page). Note the right angle
at P. (b) The separate fields and are combined vectori-
ally to yield the net field .B

:net
B
:
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S O L U T I O N ■ One Ke y  I d e a here is that the net magnetic
field at point P is the vector sum of the magnetic fields due to the
currents in the two wires. A second Ke y  I d e a is that we can find
the magnetic field due to any current by applying the Biot–Savart
law to the current. For points near the current in a long straight
wire, that law leads to Eq. 30-6.

In Fig. 30-9a, point P is distance R from both currents i1 and i2.
Thus, Eq. 30-6 tells us that at point P those currents produce mag-
netic fields and with magnitudes 

and

In the right triangle of Fig. 30-9a, note that the base angles (between
sides R and d) are both 45°. Thus, we may write cos 45° � R/d and
replace R with d cos 45°. Then the field magnitudes B1 and B2

become

and B2 �
�0 � i2 �

2�d cos 45�
.B1 �

�0 � i1 �
2�d cos 45�

B2 �
�0 � i2 �
2�R

.B1 �
� 0 � i1 �
2�R
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30-4 Force Between Parallel Currents

Back in 1820, when Ampère was first replicating Oersted’s observations, he predicted
that two current-carrying wires in parallel would exert forces on each other. This is a
logical consequence of the Biot–Savart law, which quantifies the magnetic field sur-
rounding a current-carrying wire, and the magnetic force law, which describes the force
on a current in the presence of a magnetic field. Indeed, Ampère observed that there is
a mutual interaction between the two wires. In other words, each wire exerts a force on
the other.As shown in Fig. 30-10, the application of the right-hand rules that accompany
the Biot–Savart law (Eq. 30-3) and the expression for the magnetic force on a current
(Eq. 29-22) lead us to predict that wires that carry currents in the same direction will at-
tract, whereas wires that carry currents in opposite directions will repel. It is interesting
that the attractions and repulsions are opposite to the electrostatic and magnetic rela-
tionships, where unlike charges or poles attract and like charges or poles repel.

We can use the two equations just mentioned to derive a third equation that de-
scribes the forces between two parallel current-carrying wires. Why do we want to de-
termine these interaction forces? Three reasons come to mind. First, we can compare
the measurement of these forces to the forces predicted by our third equation to ver-
ify the Biot–Savart law. Second, these mutual interaction forces enable us to define
the ampere as the SI unit of current. Finally, by understanding the nature of these
forces we can design an electromagnetic launcher (like that mentioned in the “puz-
zler” on the first page of this chapter).

Figure 30-10 shows two parallel wires, separated by a distance d and carrying cur-
rents ia and ib. The first step in analyzing the forces between these wires is to find an
expression for the force on wire b due to the current in wire a. The current in wire a
produces a magnetic field at the location of wire b, and it is this magnetic field
produced by wire a that actually causes wire b to experience a force denoted as .
According to Eq. 30-6, the magnitude of at every point along wire b is

(30-13)

The right-hand rule tells us that the direction of at wire b is down, as shown in
Fig. 30-10.

Now that we have determined the magnetic field vector, we can find the force that
wire a produces on wire b. The expression for the force on a length of current-
carrying wire (Eq. 29-22) tells us that the force on wire b is

(30-14)

where is the length vector (direction given by the direction of current i) of the wire.
In Fig. 30-10 the vectors and are perpendicular, so using Eqs. 30-13 and 30-14,
we can express the magnitude of the force on wire b due to the current in wire a as

(30-15)

The direction of is the direction of the cross product . Applying the
right-hand rule for cross products to and in Fig. 30-10, we find that 
points directly toward wire a, as shown.

The general procedure for finding the force on a current-carrying wire is this:

To find the force on a current-carrying wire due to a second current-carrying wire, first find
the field due to the second wire at the site of the first wire. Then find the force on the first
wire due to that field.
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FIGURE 30-10 ■ Two parallel wires carry-
ing currents in the same direction attract
each other. is the magnetic field at
wire b produced by the current in wire a.
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We could now use this procedure to compute the force on wire a due to the cur-
rent in wire b. We would find that the force has the same magnitude but is in the op-
posite direction. This is true regardless of whether the currents are the same or in op-
posite directions. Once again, Newton’s Third Law holds:

Parallel currents attract, and antiparallel currents repel.

The forces acting between currents in parallel wires provide us with the basis for
defining the ampere, which is one of the seven SI base units. It is appropriately named
after André Marie Ampère, who was the first to demonstrate the forces acting be-
tween parallel currents. The official SI definition, adopted in 1946, is:

The ampere is that constant current which, if maintained in two straight, parallel conductors
of infinite length, of negligible circular cross section, and placed 1 m apart in a vacuum,
would produce between each of these conductors a force equal to newton per
meter of length.

Rail Gun
A rail gun is a device in which a magnetic force can accelerate a projectile to a high
speed in a short time. The basics of a rail gun are shown in Fig. 30-11a. A large current
flows in a circuit consisting of two conducting rails joined by a conducting “fuse” (such as
a narrow piece of copper) between the rails, and then back to the current source along
the second rail. The projectile to be fired lies on the far side of the fuse and fits loosely
between the rails. Immediately after the current is established, the fuse element melts
and vaporizes, creating a conducting gas between the rails where the fuse had been.

The right-hand rule of Fig. 30-4 shows that the current in the rails of Fig. 30-11a
produces a magnetic field that is directed downward between the rails. The net
magnetic field exerts a force on the gas due to the current i through the gas 
(Fig. 30-11b). Using Eq. 30-14 and the right-hand rule for cross products, we find that

points outward along the rails. As the gas is forced outward along the rails, it pushes
the projectile, accelerating it by as much as or and then
launches it with a speed of , all within less than one millisecond.

READI NG EXERC IS E  30-3: The figure shows three long, straight, parallel, equally
spaced wires with identical amounts of current either
into or out of the page. Rank the wires according to
the magnitude of the force on each due to the currents
in the other two wires, greatest first. ■

30-5 Ampère’s Law

We can find the net electric field due to any distribution of charges with the inverse-
square law for the differential field (Eq. 30-5), but if the distribution is compli-
cated, we may have to use a computer. Recall, however, that if the distribution has
planar, cylindrical, or spherical symmetry, we can apply Gauss’ law to find the net
electric field with considerably less effort.

Similarly, we can find the net magnetic field due to any distribution of currents
with the inverse-square law for the differential field (Eq. 30-3), but again we may
have to use a computer for a complicated distribution. However, if the distribution
has enough symmetry, we can apply Ampère’s law to find the magnetic field with
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FIGURE 30-11 ■ (a) A rail gun, as a cur-
rent i is set up in it. The current rapidly
causes the conducting fuse to vaporize. (b)
The current produces a magnetic field
between the rails, and the field causes a
force to act on the conducting gas, which
is part of the current path. The gas propels
the projectile along the rails, launching it.
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considerably less effort. This law, which can be derived from the Biot–Savart law, has
traditionally been credited to André Marie Ampère (1775–1836), for whom the SI
unit of current is named. However, the law actually was advanced by English physicist
James Clerk Maxwell.

Ampère’s law is

(Ampère’s law). (30-16)

The circle on the integral sign means that the scalar (or dot) product is to be
integrated around an imaginary closed loop, called an Ampèrian loop. The current 
on the right is the net current encircled by that loop.

In Gauss’ law we choose a closed surface on which to evaluate the integral. The
integral flux is proportional to the net charge enclosed by the surface. In Ampère’s
law, we choose a closed loop on which to evaluate the integral. The integral is propor-
tional to the net current passing through the loop.

To see the meaning of the scalar product and its integral, let us first apply
Ampère’s law to the general situation shown in Fig. 30-12. This figure depicts the cross
sections of three long straight wires that carry currents i1, i2, and i3 either directly into
or directly out of the page. An arbitrary Ampèrian loop lying in the plane of the page
encircles two of the currents but not the third. The counterclockwise direction marked
on the loop indicates the arbitrarily chosen direction of integration for Eq. 30-16.

To apply Ampère’s law, we mentally divide our imaginary loop into short, nearly
straight, directed pieces, . The direction of each of these pieces is tangent to the
loop along the direction of integration. Assume that at the location of the element 
shown in Fig. 30-12, the net magnetic field due to the three currents is . Because the
wires are perpendicular to the page, we know that the magnetic field at due to
each current is in the plane of Fig. 30-12; thus, the net magnetic field at must
also be in that plane. However, we do not know the orientation of within the plane.
In Fig. 30-12, is arbitrarily drawn at an angle � to the direction of .

The scalar product on the left side of Eq. 30-16 is then equal to
Thus, Ampère’s law can be written as

(30-17)

We can now interpret the scalar product as being the product of a length ds of
the Ampèrian loop and the field component that is tangent to the loop. Then
we can interpret the integration as being the summation of all such products around
the entire loop.

When we can actually perform this integration, we do not need to know the direc-
tion of before integrating. Instead, we arbitrarily assume to be generally in the
direction of integration (as in Fig. 30-12). Then we use the following curled fingers-
straight thumb right-hand rule to assign a plus sign or a minus sign to each of the cur-
rents that make up the net encircled current :

CURLED-STRAIGHT RIGHT-HAND RULE FOR AMPÈRE’S LAW: Curl your right hand around
the Ampèrian loop, with the fingers pointing in the direction of integration. A current
through the loop in the general direction of your outstretched thumb is assigned a plus sign,
and a current generally in the opposite direction is assigned a minus sign.

Finally, we solve Eq. 30-17 for the magnitude of . Once we have chosen a coordinate
system to describe the system, we can use Ampère’s law right-hand rule to decide
whether is positive or negative.B
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FIGURE 30-12 ■ Ampère’s law applied to
an arbitrary Ampèrian loop that encircles
two long straight wires but excludes a third
wire. Note the directions of the currents.



In Fig. 30-13 we apply the curled-straight rule for Ampère’s law to the situation of
Fig. 30-12. With the indicated counterclockwise direction of integration, the net cur-
rent encircled by the loop is 

(Current i3 is not encircled by the loop.) We can then rewrite Eq. 30-17 as 

(30-18)

You might wonder why, since current i3 contributes to the magnetic-field magnitude B
on the left side of Eq. 30-18, it is not needed on the right side. The answer is that the
contributions of current i3 to the magnetic field cancel out because the integration in
Eq. 30-18 is made around the full loop. In contrast, the contributions of an encircled
current to the magnetic field do not cancel out.

We cannot solve Eq. 30-18 for the magnitude B of the magnetic field, because for
the situation of Fig. 30-12 we do not have enough information to solve the integral.
However, we do know the magnitude of the integral; it must be equal to the value of

, which is set by the net current passing through the loop. Next we apply
Ampère’s law to two situations in which symmetry does allow us to solve the integrals
and determine the magnetic fields.

The Magnetic Field Outside a Long Straight Wire with Current
Figure 30-14 shows a long straight wire that carries current i (assumed to be uniformly
distributed) that points directly out of the page. The equation for the magnetic field
magnitude, B, produced by a long straight wire (Eq. 30-6) tells us that B depends only
on the radial distance from the wire. That is, the field has cylindrical symmetry
about the wire. We can take advantage of that symmetry to simplify the integral in
Ampère’s law (Eqs. 30-16 and 30-17) if we encircle the wire with a concentric circular
Ampèrian loop of radius r, as in Fig. 30-14. The magnetic field then has the same
magnitude at every point on the loop. We shall integrate counterclockwise, so that

has the direction shown in Fig. 30-14.
We can further simplify the quantity in Eq. 30-17 by noting that is tan-

gent to the loop at every point along the loop, as is . Thus, and are parallel at
each point on the loop. Then at every point the angle � between and is 0° (so

. The magnitude of the integral in Eq. 30-17 then becomes 

Note that above is the summation of all the line segment lengths around the
circular loop; that is, it simply gives the circumference of the loop.

The right side of Ampère’s law becomes 
 and we then have 

or . (30-19)

With a slight change in notation, this is Eq. 30-6, which we derived earlier—with con-
siderably more effort—using the Biot-Savart law. We know that the correct direction
of must be the counterclockwise one shown in Fig. 30-14 when i is positive. When i
is negative, the correct direction for is clockwise.B
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–i2
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integration

FIGURE 30-13 ■ A right-hand rule for
Ampère’s law, to determine the signs for
currents encircled by an Ampèrian loop.
The situation is that of Fig. 30-12.
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FIGURE 30-14 ■ Using Ampère’s law to
find the magnetic field produced by a cur-
rent i in a long straight wire. The Ampèrian
loop is a concentric circle that lies outside
the wire.



The Magnetic Field Inside a Long Straight Wire with Current
Figure 30-15 shows the cross section of a long straight wire of radius R that carries a
uniformly distributed current i either directly out of the page or directly into the page.
Because the current is uniformly distributed over a cross section of the wire, the mag-
netic field that it produces must have cylindrical symmetry. Thus, to find the mag-
netic field at points inside the wire, we can again use an Amperian loop of radius r, as
shown in Fig. 30-15, where now . Symmetry again requires that is tangent to
the loop, as shown, so the left side of Ampère’s law again yields 

(30-20)

To find the right side of Ampère’s law, we note that because the current is uniformly
distributed, the current encircled by the loop is proportional to the area encircled
by the loop; that is,

(30-21)

Then Ampère’s law gives us 

or (30-22)

Thus, inside the wire, the magnitude B of the magnetic field is proportional to r; that
magnitude is zero at the center and a maximum at the surface, where r � R. Note that
Eqs. 30-19 and 30-22 give the same value for B at r � R; that is, the expressions for the
magnetic field outside the wire and inside the wire yield the same result at the surface
of the wire.

READI NG EXERC IS E  30-4: The figure shows three equal currents i (two parallel
and one antiparallel) and four Amperian loops. Rank the loops according to the magnitude of

along each, greatest first. ■�B: � ds:
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FIGURE 30-15 ■ Using Ampère’s law to
find the magnetic field that a current i pro-
duces inside a long straight wire of circular
cross section. The current is uniformly dis-
tributed over the cross section of the wire
and emerges from the page. An Ampèrian
loop is drawn inside the wire.
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TOUCHSTONE EXAMPLE 30-3: Hollow Conducting Cylinder

Figure 30-16a shows the cross section of a long hollow conducting
cylinder with inner radius and outer radius .
The cylinder carries a current out of the page, and the current 
density in the cross section is given by , with

and r in meters. What is the magnitude of the
magnetic field at a point that is 3.0 cm from the central axis of
the cylinder?

S O L U T I O N ■ The point at which we want to evaluate is in-
side the material of the conducting cylinder, between its inner and
outer radii. We note that the current distribution has cylindrical
symmetry (it is the same all around the cross section for any given
radius). Thus, the Ke y  I d e a here is that the symmetry allows us
to use Ampère’s law to find at the point. We first draw the
Ampèrian loop shown in Fig. 30-16b. The loop is concentric with
the cylinder and has radius , because we want to evalu-
ate at that distance from the cylinder’s central axis.B
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FIGURE 30-16 ■ (a) Cross sec-
tion of a conducting cylinder of
inner radius a and outer radius b.
(b) An Ampèrian loop of radius
R is added to compute the
magnetic field at points that are a
distance R from the central axis.



30-6 Solenoids and Toroids

Magnetic Field of a Solenoid
We now turn our attention to another situation in which Ampère’s law proves useful.
It concerns the magnetic field produced by the current in a long, tightly wound helical
coil of wire. Such a coil is called a solenoid (Fig. 30-17). Solenoids are very common
electrical devices that are important in many technological applications.

To make the calculation simpler here, we will assume that the length of the sole-
noid is much greater than the diameter. Figure 30-18 shows a section through a por-
tion of a “stretched-out” solenoid. The solenoid’s magnetic field is the vector sum of
the fields produced by the individual turns (loops) that make up the solenoid. For
points very close to each turn, the wire behaves magnetically almost like a long
straight wire, and the lines of there are almost concentric circles. Figure 30-18
suggests that the field tends to cancel between adjacent turns. It also suggests that,
at points inside the solenoid and reasonably far from the wire, is approximatelyB

:

B
:
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Next, we must compute the current i enc that is encircled by the
Ampèrian loop. However, a second Ke y  I d e a is that we cannot
set up a proportionality as in Eq. 30-21, because here the current is
not uniformly distributed. Instead, we must integrate the current
density from the cylinder’s inner radius a to the loop radius r. Since

and are parallel, so

since since R  a.

The direction of integration indicated in Fig. 30-16b is (arbitrarily)
clockwise. Applying the right-hand rule for Ampère’s law to that
loop, we find that we should take i enc as negative because the current
is directed out of the page but our thumb is directed into the page.

We next evaluate the left side of Ampère’s law exactly as we
did in Fig. 30-15, and we again obtain Eq. 30-20. Then Ampère’s law,

�B
:

� ds: � �0i enc,

� ienc � �
�c(R 4 � a4)

2
,

� � 2�c�R

a
r 3 dr � � �2�c� r 4

4 �
R

a
�

� i enc � � ��J
:

� dA
:

� � ��R

a
cr 2 (2�r dr) �

J
:

�dA
:

� JdA,dA
:

J
:

gives us 

where if is parallel to and cos � �
cos 180° � �1 if is antiparallel to . Solving for for 
� � 180°and substituting known data yield 

Thus, the magnetic field at a point 3.0 cm from the central axis is

(Answer)

and forms magnetic field lines that are directed opposite our direc-
tion of integration, hence counterclockwise in Fig. 30-16b.

B � 2.0 � 10�5 T

B
:

�B � �2.0 � 10�5 T.

� [(0.030 m)4 � (0.020 m)4]

�B � �
(4� � 10�7 T �  m/A)(3.0 � 106 A/m4)

4(0.030 m)

(B cos �) � �
� 0c
4R

(R 4 � a4)

(B cos�)ds:B
:

ds:B
:

cos� � cos 0� � 
1

(B cos�)(2�R) � �
�0�c

2
(R4 � a4),

i

i

FIGURE 30-18 ■ A vertical cross section
through the central axis of a “stretched-
out” solenoid. The back portions of five
turns are shown, as are the magnetic field
lines due to a current through the sole-
noid. Each turn produces circular magnetic
field lines near it. Near the solenoid’s axis,
the field lines combine into a net magnetic
field that is directed along the axis. The
closely spaced field lines there indicate a
strong magnetic field. Outside the solenoid
the field lines are widely spaced; the field
there is very weak.

FIGURE 30-17 ■ A solenoid carrying
current i.

P



parallel to the (central) solenoid axis. In the limiting case of an ideal solenoid, which is
infinitely long and consists of tightly packed (close-packed) turns of square wire, the
field inside the coil is uniform and parallel to the solenoid axis.

At points above the solenoid, such as P in Fig. 30-18, the field set up by the upper
parts of the solenoid turns (marked �) is directed to the left (as drawn near P) and
tends to cancel the field set up by the lower parts of the turns (marked ⊗), which is di-
rected to the right (not drawn). In the limiting case of an ideal solenoid, the magnetic
field outside the solenoid is zero. Taking the external field to be zero is an excellent
assumption for a real solenoid if its length is much greater than its diameter and if we
consider external points such as point P that are not near either end of the solenoid.
The direction of the magnetic field along the solenoid axis is given by a curled-straight
right-hand rule: Grasp the solenoid with your right hand so that your fingers follow
the direction of the current in the windings; your extended right thumb then points in
the direction of the axial magnetic field.

Figure 30-19 shows the lines of for a real solenoid. The spacing of the lines of 
in the central region shows that the field inside the coil is fairly strong and uniform
over the cross section of the coil. The external field, however, is relatively weak.

Let us now apply Ampère’s law,

(30-23)

to the ideal solenoid of Fig. 30-20, where is uniform within the solenoid and zero
outside it, using the rectangular Amperian loop abcda. We write as the sum of
four integrals, one for each loop segment:

(30-24)

The first integral on the right of Eq. 30-24 is Bh, where B is the magnitude of the
uniform field inside the solenoid and h is the (arbitrary) length of the segment from
a to b. The second and fourth integrals are zero because for every element ds of these
segments, either is perpendicular to ds or is zero, and thus is zero. The third
integral, which is taken along a segment that lies outside the solenoid, is zero because

at all external points. Thus, for the entire rectangular loop has the
value Bh.

The net current encircled by the rectangular Ampèrian loop in Fig. 30-20 is
not the same as the current i in the solenoid windings because the windings pass more
than once through this loop. Let n be the number of turns per unit length of the sole-
noid; then the loop encloses nh turns, so 

Ampère’s law then gives us 

or (inside ideal solenoid). (30-25)

Although we derived Eq. 30-25 for an infinitely long ideal solenoid, it holds quite
well for actual solenoids if we apply it only at interior points, well away from the solenoid
ends. Equation 30-25 is consistent with the experimental fact that the magnetic field
magnitude within a solenoid does not depend on the diameter or the length of
the solenoid and that B is uniform over the solenoidal cross section. A solenoid thus

� B
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� � B

B � n�0� i �

Bh � �0 � i �nh,

i enc � i(nh).
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P2

P1

FIGURE 30-19 ■ Magnetic field lines for a
real solenoid of finite length. The field is
strong and uniform at interior points such
as P1 but relatively weak at external points
such as P2.

a b

d c
h

i

B

FIGURE 30-20 ■ Application of Ampère’s
law to a section of a long ideal solenoid
carrying a current i. The Ampèrian loop is
the rectangle abcd.
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provides a practical way to set up a known uniform magnetic field for experimenta-
tion, just as a parallel-plate capacitor provides a practical way to set up a known uni-
form electric field.

Magnetic Field of a Toroid
Figure 30-21a shows a toroid, which may be described as a solenoid bent into the
shape of a hollow doughnut. What magnetic field is set up at its interior points
(within the hollow of the doughnut)? We can find out from Ampère’s law and the
symmetry of the toroid.

From the symmetry, we see that the lines of form concentric circles inside the
toroid, directed as shown in Fig. 30-21b. Let us choose a concentric circle of radius r as
an Ampèrian loop and traverse it in the clockwise direction. Ampère’s law (Eq. 30-16)
yields

where i is the current in the toroid windings (and is positive for those windings en-
closed by the Ampèrian loop) and N is the total number of turns. This gives 

(toroid). (30-26)

In contrast to the situation for a solenoid, is not constant over the cross section of a
toroid. With Ampère’s law, it is easy to show that for points outside an ideal
toroid (as if the toroid were made from an ideal solenoid).

The direction of the magnetic field within a toroid follows from our curled-
straight right-hand rule: Grasp the toroid with the fingers of your right hand curled in
the direction of the current in the windings; your extended right thumb points in the
direction of the magnetic field.

30-7 A Current-Carrying Coil as a Magnetic Dipole

So far we have examined the magnetic fields produced by current in a long straight
wire, a solenoid, and a toroid. We turn our attention here to the field produced by a
coil carrying a current. You saw in Section 29-10 that such a coil behaves as a mag-
netic dipole in that, if we place it in an external magnetic field , a torque given by 

(30-27)�: � �: � B
:

�:B
:

B
:

� 0
B
:

B �
N�0� i �

2�

1
r

B(2�r) � N�0 � i �,

B
:

B
:

Amperian loop

r

i

(b)

i

(a)

B

FIGURE 30-21 ■ (a) A toroid carrying a
current i. (b) A horizontal cross section of
the toroid. The interior magnetic field (in-
side the doughnut-shaped tube) can be
found by applying Ampère’s law with the
Ampèrian loop shown.



acts on it. Here is the magnetic dipole moment of the coil and has the magnitude
NiA, where N is the number of turns (or loops), i is the current in each turn, and A is
the area enclosed by each turn.

Recall that the direction of is given by a curled-straight right-hand rule:
Grasp the coil so that the fingers of your right hand curl around it in the direction
of the current; your extended thumb then points in the direction of the dipole
moment .

Magnetic Field of a Coil
We turn now to the other aspect of a current-carrying coil as a magnetic dipole.
What magnetic field does it produce at a point in the surrounding space? The prob-
lem does not have enough symmetry to make Ampère’s law useful, so we must turn
to the Biot – Savart law. For simplicity, we first consider only a coil with a single
circular loop and only points on its central axis, which we take to be a z axis. We
shall show that the magnetic field at such points only has a z-component, which
is given by 

(30-28)

where R is the radius of the circular loop and z is the distance of the point in question
from the center of the loop. Furthermore, the direction of the magnetic field is the
same as the direction of the magnetic dipole moment of the loop.

For axial points far from the loop, we have z  R in Eq. 30-28. With that approx-
imation, the equation for the z-component of , which is a function of z only,
reduces to 

Recalling that is the area A of the loop and extending our result to include a coil
of N turns, we can write this equation as 

Further, since and have the same direction, we can write the equation in vector
form, substituting from (Eq. 29-32):

(current-carrying coil). (30-29)

Note that the magnetic constant �0 and the magnetic moment vector are com-
pletely different quantities with different units. The choice of the symbol � to repre-
sent both quantities is unfortunate.

In summary, we have two ways in which we can regard a current-carrying coil
as a magnetic dipole: (1) it experiences a torque when we place it in an external
magnetic field; (2) it generates its own intrinsic magnetic field, given by Eq. 30-29
for distant points along its axis. Figure 30-22 shows some magnetic field lines for a
current loop; one side of the loop acts as a north pole (in the direction of ) and
the other side as a south pole, as suggested by the lightly drawn magnet in the
figure.

�:

�:

B
:

� Bzk̂ �
�0

2 �

�:

z3

� � NiA
�:B

:

Bz �
�0

2�

NiA
z3 .

�R2

Bz �
�0iR2

2z3 .

B
:

�:
B
:

B
:

� Bzk̂ �
�0 iR2

2(R2 
 z2)3/2 k̂,

Bz

�:

�:

�:

878 CHAPTER 30 Magnetic Fields Due to Currents

N

S

i

i

B

μ

FIGURE 30-22 ■ A current loop produces
a magnetic field like that of a bar magnet
and thus has associated north and south
poles. The magnetic dipole moment of
the loop, given by a curled-straight right-
hand rule, points from the south pole to
the north pole, in the direction of the field

within the loop.B
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Proof of Equation 30-28
Figure 30-23 shows the back half of a circular loop of radius R carrying a current i.
Consider a point P on the axis of the loop, a distance z from its plane. Let us apply the
Biot–Savart law to a differential element of the loop, located at the left side of the
loop. The length vector for this element points perpendicularly out of the page.
The angle � between and in Fig. 30-23 is 90°; the plane formed by these two vec-
tors is perpendicular to the plane of the figure and contains both and . Using the
Biot–Savart law and the right-hand rule, we see that the differential field pro-
duced at point P by the current in this element is perpendicular to this plane. Thus 
lies in the plane of the figure, perpendicular to (as indicated in Fig. 30-23).

Let us resolve into two components: along the axis of the loop and 
perpendicular to this axis. From the symmetry, the vector sum of all the perpendicular
components due to all the loop elements ds is zero. This leaves only the
axial components and we have the magnitude of the axial component given by

For the element in Fig. 30-23, the Biot–Savart law (Eq. 30-1) tells us that the
magnitude of the axial magnetic field component at distance r is

We also have 

Combining these two relations, we obtain 

(30-30)

Figure 30-23 shows that r and � are not independent but are related to each other. Let
us express each in terms of the variable z, the distance between point P and the center
of the loop. The relations are 

(30-31)

and (30-32)

Substituting Eqs. 30-31 and 30-32 into Eq. 30-30, we find

Note that i, R, and z have the same values for all elements around the loop, so
when we integrate this equation, we find that the magnitude of the axial field compo-
nent is given as
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FIGURE 30-23 ■ A current loop of radius
R. The plane of the loop is perpendicular
to the page and only the back half of the
loop is shown. We use the law of Biot and
Savart to find the magnetic field at point P
on the central axis of the loop.



or, since is simply the circumference of the loop, the axial or z-component of
the magnetic field is

which is Eq. 30-28, the relation we sought to prove.

READI NG EXERC IS E  30-5: The figure here shows four arrangements of circular
loops of radius r or 2r, centered on vertical axes (perpendicular to the loops) and carrying iden-
tical currents in the directions indicated. Assume the sizes of the loops are exaggerated and that
z � R. Rank the arrangements according to the magnitude of the net magnetic field at the dot,
midway between the loops on the central axis, greatest first.
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Problems

SEC. 30-3 ■ CALCULATING THE MAGNETIC FIELD

DUE TO A CURRENT

1. Surveyor A surveyor is using a magnetic compass 6.1 m below a
power line in which there is a steady current of 100 A. (a) What is
the magnitude of the magnetic field at the site of the compass due
to the power line? (b) Will this interfere seriously with the compass
reading? The horizontal component of the Earth’s magnetic field at
the site is 20 �T.

2. Electron Gun The electron gun in a traditional television tube
fires electrons of kinetic energy 25 keV at the screen in a circular
beam 0.22 mm in diameter; 5.6 � 1014 electrons arrive each second.
Calculate the magnitude of the magnetic field produced by the
beam at a point 1.5 mm from the beam axis.

3. Philippines At a certain position in the Philippines, the magni-
tude of the Earth’s magnetic field of 39 �T is horizontal and di-
rected due north. Suppose the net field is zero exactly 8.0 cm above
a long, straight, horizontal wire that carries a constant current. What
are (a) the size and (b) the direction of the current?

4. Locate Points A long wire carrying a current of 100 A is placed
in a uniform external magnetic field of 5.0 mT. The wire is perpen-
dicular to this magnetic field. Locate the points at which the net
magnetic field is zero.

5. Particle with Positive Charge A particle with positive charge q is
a distance d from a long straight wire that carries a current i; the
particle is traveling with speed perpendicular to the wire. What
are the direction and magnitude of the force on the particle if it is
moving (a) toward and (b) away from the wire?

6. Semicircular Arcs A straight conductor carrying a current i
splits into identical semicircular arcs as shown in Fig. 30-24. What is

� v: �

the magnitude of the magnetic field
at the center C of the resulting circu-
lar loop?

7. Two Semi-Infinite A wire carry-
ing current i has the configuration
shown in Fig. 30-25. Two semi-infinite
straight sections, both tangent to the
same circle, are connected by a circu-
lar arc, of central angle �, along the
circumference of the circle, with all
sections lying in the same plane. What
must � be in order for to be zero at
the center of the circle?

8. Use Biot–Savart Use the Biot–Savart
law to calculate the magnitude and di-
rection of the magnetic field at C, the
common center of the semicircular arcs
AD and HJ in Fig. 30-26a. The two arcs, of radii R2 and R1,
respectively, form part of the circuit ADJHA carrying current i.

B
:

� B
:

�

i i

C

FIGURE 30-24 ■

Problem 6.

i

R

i

φ

FIGURE 30-25 ■

Problem 7.

A H J DC

R1

R2i
i

P

i i
φ

a

b

(a) (b)

FIGURE 30-26 ■ Problems 8 and 9.



9. Curved Segments In the circuit of Fig. 30-26b, the curved seg-
ments are arcs of circles of radii a and b with common center P. The
straight segments are along radii. Find the magnitude and direction
of the magnetic field at point P, assuming a current i in the
circuit.

10. Magnitude and Directions The wire
shown in Fig. 30-27 carries current i.
What are the magnitude and direction
of the magnetic field produced at the
center C of the semicircle by (a) each
straight segment of length L, (b) the
semicircular segment of radius R, and
(c) the entire wire?

11. Straight Wire In
Fig. 30-28, a straight
wire of length L car-
ries current i. Show
that the magnitude of
the magnetic field
produced by this seg-
ment at P1, a distance
R from the segment
along a perpendicular bisector, is

Show that this expression for reduces to an expected result as 
L : 	.

12. Square Loop A square loop of wire of edge length a carries
current i. Using the results of Problem 11, show that, at the center
of the loop, the magnitude of the magnetic field produced by the
current is

13. Length L In Fig. 30-28, a straight wire of length L carries cur-
rent i. Show that

gives the magnitude of the magnetic field produced by the wire
at P2, a perpendicular distance R from one end of the wire.

14. Rectangular Loop Using the results of Problem 11, show that
the magnitude of the magnetic field produced at the center of a rec-
tangular loop of wire of length L and width W, carrying a current i, is

15. Square Loop Two A square loop of wire of edge length a car-
ries current i. Using the results of Problem 11, show that the magni-
tude of the magnetic field produced at a point on the axis of the
loop and a distance x from its center is
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Prove that this result is consistent with the
result of Problem 12.

16. Length a In Fig. 30-29, a straight wire
of length a carries a current i. Show that
the magnitude of the magnetic field pro-
duced by the current at point P is

17. Two Wires Two wires, both of 
length L, are formed into a circle
and a square, and each carries
current i. Show that the square
produces a greater magnetic field
at its center than the circle
produces at its center. (See
Problem 12.)

18. Magnetic Field Find the
magnitude and direction of the
magnetic field at point P in
Fig. 30-30. (See Problem 16.)

19. Long Thin Ribbon Figure
30-31 shows a cross section of a
long thin ribbon of width w that is
carrying a uniformly distributed to-
tal current i into the page. Calculate
the magnitude and direction of the
magnetic field at a point P in the
plane of the ribbon at a distance d
from its edge. (Hint: Imagine the
ribbon to be constructed from many
long, thin, parallel wires.)

20. Find Magnitude and Direction
Find the magnitude and direction 
of the magnetic field at point 
P in Fig. 30-32, for � 10 A and 
a � 8.0 cm. (See Problems 13 
and 16.)

21. Perpendicular Bisector Figure
30-33 shows two very long straight
wires (in cross section) that each
carry currents of 4.00 A directly 
out of the page. Distance d1 � 6.00 m
and distance d2 � 4.00 m. What is 
the magnitude of the net magnetic
field at point P, which lies on a 
perpendicular bisector to the 
wires?

22. Greatest and 10% In Fig. 30-34,
point P is at perpendicular distance
R � 2.00 cm from a very long
straight wire carrying a current. The
magnetic field set up at point P is
due to contributions from all the
identical current-length elements i

along the wire. What is the dis-
tance s to the current-length element
that makes (a) the greatest contribu-
tion to field and (b) 10% of the
greatest contribution?
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SEC. 30-4 ■ FORCE BETWEEN TWO PARALLEL CURRENTS

23. Two Parallel Wires Two long parallel wires are 8.0 cm apart.
What equal currents must be in the wires if the magnetic field
halfway between them is to have a magnitude of 300 �T? Answer
for both (a) parallel and (b) antiparallel currents.

24. i and 3i Two long parallel wires a distance
d apart carry currents of i and 3i in the same
direction. Locate the point or points at which
their magnetic fields cancel.

25. Two Parallel Wires Two Two long, straight,
parallel wires, separated by 0.75 cm, are per-
pendicular to the plane of the page as shown in
Fig. 30-35. Wire 1 carries a current of 6.5 A into
the page. What must be the current (magnitude
and direction) in wire 2 for the resultant mag-
netic field at point P to be zero?

26. Five Parallel Wires Figure
30-36 shows five long parallel
wires in the xy plane. Each wire
carries a current i � 3.00 A in
the positive x direction. The sep-
aration between adjacent wires
is d � 8.00 cm. In unit-vector
notation, what are the magni-
tude and direction of the magnetic force per meter exerted on each
of these five wires by the other wires?

27. Four Long Wires Four long copper
wires are parallel to each other, their cross
sections forming the corners of a square
with sides a � 20 cm. A 20 A current exists
in each wire in the direction shown in Fig.
30-37. What are the magnitude and direc-
tion of at the center of the square?

28. Four Currents Form a Square Four
identical parallel currents i are arranged to
form a square of edge length a as in Fig. 30-
37, except that they are all out of the page.
What is the force per unit length (magni-
tude and direction) on any one wire?

29. Force per Unit Length In Fig. 30-37, what is the force per unit
length acting on the lower left wire, in magnitude and direction,
with the current directions as shown? The currents are i.

30. Idealized Schematic Figure 30-38 is an idealized schematic
drawing of a rail gun. Projectile P sits between two wide rails of cir-
cular cross section; a source of current sends current through the
rails and through the (conducting) projectile itself (a fuse is not
used). (a) Let w be the distance between the rails, R the radius of

B
:

the rails, and i the current. Show that the magnitude of the force on
the projectile is directed to the right along the rails and is given ap-
proximately by 

(b) If the projectile starts from the
left end of the rails at rest, find the
speed at which it is expelled at the
right. Assume that � 450 kA, w
� 12 mm, R � 6.7 cm, L � 4.0 m,
and the mass of the projectile is
m � 10 g.

31. Rectangular Loop Two In Fig.
30-39, the long straight wire carries
a current of 30 A and the rectangu-
lar loop carries a current of 20 A.
Calculate the resultant force acting
on the loop. Assume that a � 1.0
cm, b � 8.0 cm, and L � 30 cm.

SEC. 30-5 ■ AMPÈRE’S LAW

32. Eight Wires Eight wires cut the
page perpendicularly at the points
shown in Fig. 30-40. A wire labeled
with the integer k (k � 1, 2, . . . ,
8) carries the current ki. For those
with odd k, the current is out of the
page; for those with even k, it is into
the page. Evaluate along the
closed path in the direction shown.

33. Eight Conductors Each of the
eight conductors in Fig. 30-41 car-
ries 2.0 A of
current into
or out of the
page. Two
paths are in-
dicated for
the line inte-
gral
What is the
value of the
integral for
the path (a)
at the left and
(b) at the right?

34. Cross Section of a Cylindrical Conductor
Figure 30-42 shows a cross section of a long
cylindrical conductor of radius a, carrying a uni-
formly distributed current i. Assume that a �
2.0 cm and i � 100 A, and plot the magnitude of
the magnetic field over the range
0 � r � 6.0 cm.

35. Cannot Drop to Zero Show that a uni-
form magnetic field cannot drop abruptly to
zero (as is suggested by the lack of field lines
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to the right of point a in Fig. 30-43) as
one moves perpendicular to , say
along the horizontal arrow in the figure.
(Hint: Apply Ampère’s law to the rec-
tangular path shown by the dashed
lines.) In actual magnets “fringing” of
the magnetic field lines always occurs,
which means that approaches zero in
a gradual manner. Modify the field lines
in the figure to indicate a more realistic
situation.

36. Two Square Con-
ducting Loops Two
square conducting
loops carry currents of
5.0 and 3.0 A as shown
in Fig. 30-44. What is
the value of 
for each of the two
closed paths shown?

37. Current Density The current density inside a long, solid, cylin-
drical wire of radius a is in the direction of the central axis and
varies linearly with radial distance r from the axis according to

Find the magnitude and direction of the magnetic
field inside the wire.

38. Uniformly Distributed Current A long straight wire (radius �
3.0 mm) carries a constant current distributed uniformly over a
cross section perpendicular to the axis of the wire. If the magnitude
of the current density is 100 A/m2, what are the magnitudes of the
magnetic fields (a) 2.0 mm from the axis of the wire and (b) 4.0 mm
from the axis of the wire?

39. Cylindrical Hole Figure 30-45 shows a
cross section of a long cylindrical conductor of
radius a containing a long cylindrical hole of
radius b. The axes of the cylinder and hole are
parallel and are a distance d apart; a current i
is uniformly distributed over the tinted area.
(a) Use superposition to show that the magni-
tude of the magnetic field at the center of the
hole is

(b) Discuss the two special cases b � 0 and d � 0. (Hint: Regard
the cylindrical hole as resulting from the superposition of a com-
plete cylinder (no hole) carrying a current in one direction and a
cylinder of radius b carrying a current in the opposite direction,
both cylinders having the
same current density.)

40. Circular Pipe A long cir-
cular pipe with outside radius
R carries a (uniformly dis-
tributed) current i into the
page as shown in Fig. 30-46.
A wire runs parallel to the
pipe at a distance of 3R from

B �
�0� i �d

2�(a2 � b2)
.

� J
:
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:

0 �r/a.
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B
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center to center. Find the amount and direction of the current in
the wire such that the net magnetic field at point P has the same
magnitude as the net magnetic field at the center of the pipe but is
in the opposite direction.

41. Conducting Sheet Figure 30-47
shows a cross section of an infinite
conducting sheet lying in the x-y
plane, carrying a current per unit x-
length of �; the current emerges per-
pendicularly out of the page. (a) Use
the Biot–Savart law and symmetry
to show that for all points P above
the sheet, and all points P� below it, the magnetic field is parallel
to the sheet and directed as shown. (b) Use Ampère’s law to prove
that at all points P and P �.

42. Field at P is Zero Figure 30-48 shows, in cross section, two long
straight wires; the 3.0 A current in
the right-hand wire is out of the
page. What are the size and direction
of the current in the left-hand wire if
the net magnetic field at point P is to
be zero?

SEC. 30-6 ■ SOLENOIDS AND TOROIDS

43. Field Inside Solenoid A 200-turn solenoid having a length of
25 cm and a diameter of 10 cm carries a current of 0.30 A. Calculate
the magnitude of the magnetic field inside the solenoid.

44. Field Inside Solenoid Two A solenoid that is 95.0 cm long has a
radius of 2.00 cm and a winding of 1200 turns; it carries a current of
3.60 A. Calculate the magnitude of the magnetic field inside the
solenoid.

45. Toroid A toroid having a square cross section, 5.00 cm on a
side, and an inner radius of 15.0 cm has 500 turns and carries a cur-
rent of magnitude 0.800 A. (It is made up of a square solenoid—
instead of a round one as in Fig. 30-21—bent into a doughnut
shape.) What is the magnitude of the magnetic field inside the
toroid at (a) the inner radius and (b) the outer radius of the toroid?

46. Length of Wire A solenoid 1.30 m long and 2.60 cm in diame-
ter carries a current of 18.0 A. The magnitude of the magnetic field
inside the solenoid is 23.0 mT. Find the length of the wire forming
the solenoid.

47. Field Inside Toroid In Section 30-6, we showed that the magni-
tude of the magnetic field at any radius r inside a toroid is given by

Show that as you move from any point just inside a toroid to a
point just outside, the magnitude of the change in that you
encounter is just �0 . Here is the amount of current per unit
length along a circumference of radius r within the toroid. Compare
this with the similar result found in Problem 48. Isn’t the equality
surprising?

48. Solenoid as Cylindrical Conductor Treat an ideal solenoid as a
thin cylindrical conductor whose current per unit length, measured
parallel to the cylinder axis, is �. (a) By doing so, show that the mag-
nitude of the magnetic field inside an ideal solenoid can be written
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as This is the value of the change in that you en-
counter as you move from inside the solenoid to outside, through
the solenoid wall. (b) Show that the same change occurs as you
move through an infinite flat current sheet such as that of Fig. 30-47
(see Problem 41). Does this equality surprise you?

49. Direction of Field A long solenoid with 10.0 turns/cm and a
radius of 7.00 cm carries a current of 20.0 mA. A current of 6.00 A
exists in a straight conductor located along the central axis of the
solenoid. (a) At what radial distance from the axis will the direction
of the resulting magnetic field be at 45.0° to the axial direction? 
(b) What is the magnitude of the magnetic field there?

50. Find Current in Solenoid A long solenoid has 100 turns/cm
and carries current i. An electron moves within the solenoid in a
circle of radius 2.30 cm perpendicular to the solenoid axis. The
speed of the electron is 0.0460c (c � speed of light). Find the
amount of current in the solenoid.

SEC. 30-7 ■ A CURRENT-CARRYING COIL AS A

MAGNETIC DIPOLE

51. Magnetic Dipole What is the magnetic dipole moment of the
solenoid described in Problem 43?

52. One Turn Coil Figure 30-49a shows
a length of wire carrying a current i and
bent into a circular coil of one turn. In
Fig. 30-49b the same length of wire has
been bent more sharply, to give a coil of
two turns, each of half the original ra-
dius. (a) If and are the magnitudes
of the magnetic fields at the centers of
the two coils, what is the ratio / ? 
(b) What is the ratio of the magnitude of
the dipole moments, / of the coils?

53. Student’s Electromagnet A student makes a short electromag-
net by winding 300 turns of wire around a wooden cylinder of diam-
eter d � 5.0 cm. The coil is connected to a battery producing a cur-
rent of 4.0 A in the wire. (a) What is the magnetic moment of this
device? (b) At what axial distance z � d will the magnetic field of
this dipole have the magnitude 5.0 �T (approximately one-tenth
that of the Earth’s magnetic field)?

54. Helmholtz Figure 30-50 shows
an arrangement known as a
Helmholtz coil. It consists of two cir-
cular coaxial coils, each of N turns
and radius R, separated by a dis-
tance R. The two coils carry equal
currents i in the same direction. Find
the magnitude of the net magnetic
field at P, midway between the coils.

55. Field as a Function of Distance
Two 300-turn coils of radius R each

�a�b

BaBb

BbBa

�:

� i �

B
:

B � �0� � �. carry a current i. They are arranged a distance R apart, as in Fig. 30-
50. For R � 5.0 cm and i � 50 A, plot the magnitude 
of the net magnetic field as a function of distance x along the com-
mon x axis over the range x � �5 cm to x � 
5 cm, taking x � 0 at
the midpoint P. (Such coils provide an especially uniform field
near point P.) (Hint: See Eq. 30-28).

56. Square Current Loop The magnitude of the magnetic
field at points on the axis of a square current loop of side a is given
in Problem 15. (a) Show that the axial magnetic field of this loop,
for x � a, is that of a magnetic dipole (see Eq. 30-29). (b) What is
the magnitude of the magnetic dipole moment of this loop?

57. Let the Separation Be In Problem 54 (Fig. 30-50), let the sepa-
ration of the coils be a variable s (not necessarily equal to the coil
radius R). (a) Show that the first derivative of the magnitude of the
net magnetic field of the coils vanishes at the midpoint P
regardless of the value of s. Why would you expect this to be true
from symmetry? (b) Show that the second derivative (d2B/dx2) also
vanishes at P, provided s � R. This accounts for the uniformity of B
near P for this particular coil separation.

58. abcdefgha A conductor car-
ries a current of 6.0 A along the
closed path abcdefgha involving 8
of the 12 edges of a cube of side
10 cm as shown in Fig. 30-51. (a)
Why can one regard this as the su-
perposition of three square loops:
bcfgb, abgha, and cdefc? (Hint:
Draw currents around those
square loops.) (b) Use this super-
position to find the magnetic di-
pole moment (magnitude and
direction) of the closed path. (c)
Calculate the magnitude and direction of the magnetic field at the
points (x, y, z) � (0.0 m, 5.0 m, 0.0 m) and (5.0 m, 0.0 m, 0.0 m).

59. What Torque A circular loop of radius 12 cm carries a current
of 15 A. A flat coil of radius 0.82 cm, having 50 turns and a current of
1.3 A, is concentric with the loop. (a) What magnetic field (magni-
tude and direction) does the loop produce at its center? (b) What
torque acts on the coil? Assume that the planes of the loop and coil
are perpendicular and that the mag-
netic field due to the loop is essen-
tially uniform throughout the vol-
ume occupied by the coil.

60. Two Different Arcs A length
of wire is formed into a closed cir-
cuit with radii a and b, as shown in
Fig. 30-52 and carries a current i. (a)
What are the magnitude and direc-
tion of at point P? (b) Find the
magnetic dipole moment of the
circuit.
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Additional Problems

61. Cross Section of a Wire Figure 30-53 shows the cross section of a
wire that is perpendicular to the plane of the paper. Suppose a com-

pass is placed at location A, which is a distance r from the wire. The
compass points in the direction shown in the diagram. (a) Resketch



the diagram and draw arrows
to show what direction you
expect the compass to point if
it were moved to locations B
and C. Note: Use the symbol
� if the flow is out of the
page and the symbol � if the
flow is into the page. (b) Indi-
cate in what direction positive
current is flowing through the wire and describe the rule you are
using to deduce the direction of current in the wire. (c) What is the
direction of the flow of electrons through the wire?

62. Wires in a B-Field A uniform magnetic field is directed toward
the right in the plane of the paper as shown in Fig. 30-54. A wire
lying perpendicular to the plane of the paper at location A carries

Additional Problems 885

A beam of electrons passing from left to right through a vacuum in-
side a cathode ray tube. The direction of the electric current and of
the electron flow are from left to right. Figure 30–56 shows a loca-
tion marked x and a set of directions with labels on the right.

(a) For each of the three lines of matter, indicate in what direction
the electric and magnetic fields at the location x would point. To in-
dicate the direction, use one of the letters associated with a direc-
tional arrow on the “compass” in Fig. 30-56. If any of the fields are
zero, write 0.
(b) Now consider placing a positive charge at the location x. In one
case it is stationary, while in a second case it is moving in the direc-
tion C (to the right). Indicate the direction nearest to the total force
the charge would feel. (Ignore gravity and air resistance.) Do this
for all three lines of matter and for both cases.

65. Comparing
Electric and
Magnetic Forces
Two Figure 30-
57 shows a long
wire carrying a
current i to the
right and a long
amber rod with
a charge density
(charge/unit length) of �. Assume that i and � are both positive.

(a) The two are separated by a distance d. The point marked x is
halfway between them. Copy this figure onto your paper and draw
arrows to represent the following. (Be sure to label your arrows
clearly to show which one is which.)

i. the direction of the magnetic field at the point marked x
ii. the direction of the electric field at the point marked x

iii. the direction of the electric force that a positive charge q placed
at x would feel

iv. the direction of the magnetic force that a positive charge q
placed at x would feel if it were moving to the right.

(b) The current, i, is 
10 A, the charge density, �, is �1 nC/m 
(� 10�9 C/m) (note that it is negative), and the distance between
the wires is 40 cm. At the instant shown, a proton with charge q �
1.6 � 10�19 C is moving into the page with a speed v � 106 m/s.
Ignoring gravity, what is the magnitude and direction of the net
force the proton feels at that time?

66. Direction of Magnetic Forces Figure 30-58 shows a cross sec-
tion of four long parallel wires (labeled A through D) taken in a
plane perpendicular to the wires. One or more of the wires may be
carrying a current. If a wire carries a current, i0, it is in the direction
indicated and has strength .� i0 �
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a current i. Suppose that the resultant magnetic field at point D
due to a superposition of the uniform magnetic field of magnitude
B and the magnetic field of the wire of magnitude Bw is zero.
(a) Is the direction of the current in the wire into or out of the pa-
per? Explain how you arrived at your conclusion. (b) Assume that
point A lies at the same distance from the center of the wire as
point D and that the length of the vector assigned to represent the
magnitude of the uniform external magnetic field is that shown on
the right. Construct a vector diagram showing the net magnetic
field vector BA

net at point A. (c) Assume that point C is twice the dis-
tance from the center of the wire as point D. Construct a vector dia-
gram showing the net magnetic field vector, BC

net, at point C.
(Adapted from A. Arons, Homework and Test Questions for Intro-
ductory Physics Teaching, John Wiley and Sons, 1994.)

63. Earth’s Field The magnitude of the Earth’s magnetic field, B,
at either geomagnetic pole, is about 7 � 10�5 T. Using a model in
which you assume that this field is produced by a single current
loop at the equator, determine the current that would generate
such a field (Re � 6.37 � 106 m). Hint: The magnitudes of the mag-
netic field due to a single current loop of radius R at a distance R
from its center and perpen-
dicular to the plane of the
loop is given by the equa-
tion

and see Fig. 30-55.

64. Comparing Electric and Magnetic Forces One In this problem
we consider situations corresponding to three different long thin
lines of matter containing charges: 1. A copper wire carrying an
electric current from left to right, 2. A long amber rod that has been
rubbed with fur and has a uniform excess of negative charge, and 3.
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For each of the four vector quantities listed in (i) through (iv)
below give the direction of the quantity. To indicate the direction,
use one of the directions on the “compass” in Fig. 30-58. If the mag-
nitude of the quantity is zero, write “0.” If it is nonzero but in none
of the indicated directions, write “Other.”

i. Only wires B and D are carrying current. The direction of the
force on wire D is .

ii. Only wires B and D are carrying current. The direction of the
force felt by an electron traveling in the E direction (on the
compass) is .

iii. Only wires B and D are carrying current. The direction of the
force felt by an electron traveling in the N direction (on the
compass) is .

iv. All four wires are carrying current. The direction of the net
force felt by wire A is .

67. Magnetic Forces and Fields Figure 30-59 shows a cross section
of three long parallel wires (labeled A through C) taken in a plane
perpendicular to the wires. One or more of the wires may be carry-
ing a current. If a wire carries a current, i0, it is in the direction indi-
cated and has strength . For each of the five vector quantities (1)
through (5) shown, indicate the direction of the quantity on the
compass in Fig. 30-59. If the magnitude of the quantity is zero, write
“0.” If the result is not zero but points in a direction other than one
of those indicated, write “other.”

� i0 �

rules for obtaining the direction or sign of various quantities. De-
scribe three right-hand rules. In your discussion of each one, include
a statement of the equation or law in which the rule is applied, and
whether the rule is “fundamental” or derived from a more basic
principle.

69. Magnetic Forces Figure 30-60 shows parts of two long, current-
carrying wires labeled 1 and 2. The wires lie in the same plane and
cross at right
angles at the
point indi-
cated. When
carrying a cur-
rent, each wire
carries the
same amount
of current in
the direction
shown. At the
right is shown
a set of coordinate directions for describing the direction of vectors.

For each of the vectors discussed, indicate the direction of the
vector using the coordinate system shown. For example, you might
specify “the 
x direction” or “the �z direction” or “in the x-y plane
at 45° between the 
x and 
y directions.” If the magnitude of the
vector requested is zero, write “0.”

(a) The direction of the force on a positively charged ion at the
point B moving in the 
y direction if only wire 1 carries current
(b) The direction of the force on a positively charged ion at the
point B moving in the �z direction if both wires carry current
(c) The direction of the force on a positively charged ion at the
point A moving in the 
x direction if only wire 2 carries current

For the next two parts of the problem, select which answer is
correct if both wires carry current.
(d) The magnetic force on wire 1 will

i. push it in the �z direction
ii. push it in the 
z direction

iii. tend to rotate it clockwise about the joining point
iv. tend to rotate it counterclockwise about the joining point
v. none of the above

(e) The magnetic force on wire 2 will

i. push it in the �z direction
ii. push it in the 
z direction

iii. tend to rotate it clockwise about the joining point
iv. tend to rotate it counterclockwise about the joining point
v. none of the above

70. Constrained to a Circle Figure 30-61 shows, in cross section,
two long straight wires held against a
plastic cylinder of radius 20.0 cm.
Wire 1 carries current i1 � 60.0 mA
out of the page and is fixed in place
at the left side of the cylinder. Wire 2
carries current i2 � 40.0 mA out of
the page and can be moved around
the cylinder. At what angle �2 should
wire 2 be positioned such that the
net magnetic field at the origin from
the two currents has a magnitude of
80.0 nT?
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1. The magnetic field at point P if only wire A is carrying a current
2. The magnetic field at wire C if only wire A is carrying a current
3. The magnetic force on wire C if only wires A and C carry
currents
4. The magnetic force on wire C if only wire A is carrying a current
5. The magnetic force on a proton at P traveling to the right (i.e., in
direction E) if only wire B is carrying a current.

68. Right-Hand Rules During our discussions of magnetism and
rotation we have encountered a number of different right-hand
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71. Element Length Figure 30-62a shows an element of length
ds � 1.00 �m in a very long straight wire carrying current. The cur-
rent in that element sets up a differential magnetic field at
points in the surrounding space. Figure 30-62b gives the magnitude
dB of the field in pico-Teslas (10�12 T) for points 2.5 cm from the el-
ement, as a function of angle � between the wire and a straight line
to the point. What is the magnitude of the magnetic field set up by
the entire wire at perpendicular distance 2.5 cm from the wire?

dB
:
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nent By in nano-Teslas (10�9 T) of their net magnetic field along the
x axis to the right of wire 2. (a) At what value of x  0 is By maxi-
mum? (b) If mA, what is the value of the maximum? What
are the directions of (c) current i1 and (d) current i2?
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72. Where Is Wire 2 Two long straight thin wires with current lie
against an equally long plastic cylinder, at radius R � 20.0 cm from
the cylinder’s central axis. Figure 30-63a shows, in cross section, the
cylinder and wire 1 but not wire 2. With wire 2 fixed in place, wire 1
is moved around the cylinder, from angle �1 � 0° to angle �1 � 180°,
through the first and second quadrants of the xy coordinate system.
The net magnetic field at the center of the cylinder is measured as
a function of �1. Figure 30-63b gives the x-component Bx of that field
in micro-Teslas (10�6 T) and Fig. 30-63c gives the y-component By,
both as functions of �1. (a) At what angle �2 is wire 2 located? What
are the size and direction of the currents in (b) wire 1 and (c) wire 2?

B
:

74. Same Radius Different Current In Fig. 30-65a two circular
loops, with different currents but the same radius of 4.0 cm, are
centered on a y axis. They are initially separated by distance L �
3.0 cm, with loop 2 positioned at the origin of the axis. The currents
in the two loops produce a net magnetic field at the origin, with 
y-component By. That component is to be measured as loop 2 is
gradually moved in the positive direction of the y axis. Figure 30-65b
gives By in micro-Teslas (10�6 T) as a function of the position y
of loop 2. The curve approaches an asymptote of By � 7.20 �T as
y : 	. What are (a) current i1 in loop 1 and (b) current i2 in loop 2?

75. How Many Revolutions An electron is shot into one end of a
solenoid, as it enters the uniform magnetic field within the solenoid,
its speed is 800 m/s and its velocity vector makes an angle of 30°
with the central axis of the solenoid. The solenoid carries 4.0 A and
has 8000 turns along its length. How many revolutions does the
electron make along its helical path within the solenoid by the time
it emerges from the solenoid’s opposite end? (In a real solenoid,
where the field is not uniform at the two ends, the number of revo-
lutions would be slightly less than the answer here.)

76. Force per Unit Length Two Figure 30-66 shows wire 1 in cross
section; the wire is long and straight, carries a current of 4.00 mA
out of the page, and is at distance d1

� 2.4 cm from a surface. Wire 2,
which is parallel to wire 1 and also
long, is at horizontal distance d2 �
5.0 cm from wire 1 and carries a cur-
rent of 6.80 mA into the page. What
is the x component of the magnetic
force per unit length on wire 2 due
to the current in wire 1?

73. The Ratio of Currents Figure 30-64a shows, in cross section,
two long, parallel wires carrying current and separated by distance
L. The ratio of their current amounts is 4.00; the directions of
the currents are not indicated. Figure 30-64b shows the y-compo-
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31 Induction and
Maxwell’s Equations

The General Motors EV1 electric car was marketed in the

southwest with two generations of vehicles in 1997 and

1999. Production was completed in 1999 and all leases 

have been assigned. The EV1 had no engine, tailpipe,

valves, pistons, timing belts, or crankshaft. The EV1 came

with an inductive charging system in which there was no

metal-to-metal connection. The charger, which plugged

into a 220-volt outlet, had a paddle which, when inserted

into the charge port at the front of the car, provided the

electricity to re-charge the batteries.

How can electric car 
batteries be charged 
without making electrical
contact with the power
source?

The answer is in this chapter.



31-1 Introduction

In the previous chapter we discovered that the moving charges that make up electric
currents create magnetic fields. We also learned that both permanent magnets and
moving charges can exert forces on each other. These discoveries have powerful prac-
tical consequences. They allow us to build electromagnets to create large magnetic
fields. More significantly, they enable us to harness the forces these large magnetic
fields can exert on moving charges to create electric motors capable of moving mas-
sive objects.

In 1820, when Oersted observed that electric currents create magnetic fields, a num-
ber of prominent scientists began to look for ways to use magnetic fields to create cur-
rents. For more than a decade, scientists searched for current induced by static magnetic
fields and failed to find it. By 1831, both Michael Faraday (Fig 31-1) and an American
physicist, Joseph Henry, had discovered that a changing magnetic field is required to in-
duce electric current.This phenomenon is called electromagnetic induction.

The discovery of electromagnetic induction, usually credited to Faraday, was of
tremendous technological importance. Induction made it possible to create electric
power from motion. Indeed, by the end of the 19th century, systems had been devel-
oped for the generation and transmission of electric power. Applications of Faraday’s
and Henry’s discoveries are found in the design of thousands of electrical devices in-
cluding transformers, high-speed trains, inductive battery chargers, and electric guitar
pickups.

Although the practical benefits of the discovery of induction are tremendous, so is
its impact on science. Many scientists view Faraday’s law of induction as one of the
most profound laws in all of classical physics because it “closed the loop” between
magnetism and electricity. By combining Faraday’s law with Ampère’s law, we can 
understand how electricity and magnetism can be treated as complimentary aspects 
of the same phenomenon. By the middle of the 19th century, James Clerk Maxwell
incorporated the ideas of Faraday and others into a famous set of four equations
describing electromagnetic phenomena. In this chapter you will learn about the char-
acteristics of electromagnetic induction and about Maxwell’s synthesis of electromag-
netic interactions.

READI NG EXERC IS E  31-1: Why did it take so long for scientists working in the
early 19th century to actually observe magnetic induction? ■

31-2 Induction by Motion in a Magnetic Field

Let us start our treatment of electromagnetic induction by considering what happens
if we move a coil of conducting wire at a constant velocity through a uniform mag-
netic field and then out of the field as shown in Fig. 31-2. This is not the observation
made by Faraday. We will describe that later. Notice that the diagram shows the plane
of the coil is always perpendicular to the direction of the magnetic field. Under what
conditions can a current be induced? We will consider this situation from both an ex-
perimental and a theoretical perspective.
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FIGURE 31-1 ■ Michael Faraday, a famous
English scientist, is credited with the dis-
covery of electromagnetic induction.
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FIGURE 31-2 ■ It is not difficult to mea-
sure the current induced in a coil of wire
while it is being pulled out of the gap be-
tween a pair of ferrite blocks separated by
wooden spacers. The magnetic field in the
central area between the magnetic blocks
is essentially uniform. The ends of a multi-
loop coil are connected to an electronic
current sensor.



A Conductor Moving Through a Magnetic Field—Observation
If we connect the ends of the coil to an ammeter, we see the needle jump back and
forth a bit erratically during the time that the coil is passing out of the gap between
the magnets. When the whole area of the coil is still in the central part of the gap be-
tween the magnets, the ammeter needle points to zero. When the coil has completely
emerged from the region of space influenced by the magnets, the ammeter needle
points to zero once again. This current jump can be seen in more detail using an elec-
tronic current sensor as shown in Fig. 31-3.

Both casual observation with a sensitive ammeter and the data gathered using an
electronic current sensor show that for this situation:

• When the coil is not moving, there is no induced current no matter what the
steady magnetic field is like at its location.

• When the coil is moving through a region where the magnetic field is entirely uni-
form or zero, there is no induced current.

• When the coil is moving through a region where the steady magnetic field is not
uniform, a current is induced.

We can draw the following conclusion from these observations:

OBSERVATION: When a conducting loop moves perpendicular to a magnetic field, a current
will be induced whenever the coil experiences a changing magnetic field.

A Conductor Moving Through a Magnetic Field—Theory
Although it’s not obvious without reflection, you are capable of predicting that a
changing magnetic field is required to induce an electric current in a moving coil. This
induction is a natural consequence of the magnetic force laws described in Eqs. 29-2
and 29-23.

Straight Conductor Moving in a Uniform -Field: Let’s start by using the force law to
predict what happens to a straight piece of conducting wire if we pull it at a constant
velocity in a direction perpendicular to a uniform magnetic field (Fig. 31-4). Each of
the charges in the conductor experiences a force given by the magnetic force law,

(Eq. 29-2). The direction of the force is given by the right-hand rule
for cross products as shown in Fig. 31-5. Since there are mobile electrons in metals,
these electrons will move toward the bottom of the wire, exposing fixed excess positive
charge at the top of the wire. Thus, a current will flow in the wire for an instant until
the electric field created by the charge separation opposes any further electron flow.

Loop Moving in a Uniform -Field: Perhaps we can induce a current by forming a
closed loop instead of a single length of wire. This doesn’t help because both the left
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FIGURE 31-3 ■ A computer data acquisi-
tion system is used to measure the induced
current 200 times a second as the coil
shown in Fig. 31-2 is pulled steadily out of
the uniform magnetic field in the central
part of the gap between the two magnetic
ferrite blocks. From 0.0 s to 0.3 s the entire
coil is in the uniform magnetic field.After
0.9 s the coil is entirely outside the magnetic
field. Between 0.3 s and 0.9 s part of the coil
is in the B-field and part is outside of it.
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FIGURE 31-4 ■ A piece of wire is pulled
through a uniform magnetic field at a con-
stant velocity and becomes polarized.
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FIGURE 31-5 ■ The right-hand rule for the
magnetic force law provides an “upward”
force on positive changes and a “down-
ward” force on mobile negative charges
present in the wire shown in Fig. 31-4.



and right segments (a and c in Fig. 31-6) are perpendicular to the motion, so they be-
come polarized in the same manner. This merely results in excess charge piling up on
the top and bottom segments (b and d as shown in Fig. 31-6).

Loop Moving from a Uniform -Field to No Field: The easiest way to create a cur-
rent using the polarization caused by the magnetic force law is to pull our loop in such
a way that segment a is inside the magnetic field and segment c is not. Now what hap-
pens? We can see from Fig. 31-7 that the electrons in segment a, which is the trailing
loop segment, continue to have magnetic forces exerted on them. But there are no
forces on electrons in segment c of the loop because these electrons are not in the
magnetic field. The only force that contributes to the current flow in the loop is the
force on the left segment of wire, so the electrons in this segment of wire are pushed
downward. The result is a net flow of electrons in a counterclockwise direction. Since
“conventional current” as defined in Chapter 26 represents the flow of positive charge
carriers, conventional current flow would be clockwise as shown in Fig. 31-7.

Nonuniform -Field: Theoretically we still expect to be able to induce a current in
our loop in any nonuniform magnetic field. For example, suppose the magnetic field in
Fig. 31-7 is weaker (but not necessarily zero) on the right side of the loop (near seg-
ment c) than it is at the left (near segment a). In this case, the magnetic forces on elec-
trons in the left and right segments of the loop will no longer be equal and the forces
on the charges in one of the segments will overpower those on the charges in the
other segments. This will cause a net current to be induced.

Our theoretical considerations enable us to conclude that by applying the magnetic
force law, we can predict the results of the observations presented in the first part of this
section: When a conducting loop moves perpendicular to a magnetic field, then a cur-
rent will be induced whenever the coil experiences a changing magnetic field through it.

READI NG EXERC IS E  31-2: In the discussion above, we determined that the forces
on the electrons in the top and bottom segments of the wire loop shown in Fig. 31-6 did not
contribute to the current flow. Why is this the case? ■

READI NG EXERC IS E  31-3: Suppose the magnetic field shown in Fig. 31-6 varies
continuously in such a way that it  is always stronger on the right than it is on the left. What will
be the direction of the resulting (conventional) current in the loop? Explain. ■

31-3 Induction by a Changing Magnetic Field

Michael Faraday made a significant contribution to physics when he asked: What
happens if instead of moving the wire loop in a magnetic field we keep the wire
loop stationary and move a magnet toward or away from the loop to create a “mov-
ing” or changing magnetic field? One might argue that since the electrons in the
wire are not moving in this case, the velocity of the loop segments used in the mag-
netic force law expression is zero and so there should be no force on the electrons
and therefore no current. On the other hand, in many ways these two situations are
the same. In order to answer his question, Faraday made observations similar to
those discussed below.

Observation 1, with a magnet: Figure 31-8 shows a conducting loop connected to a
sensitive ammeter. Since there is no battery or other source of emf included, there is
no current in the circuit. What happens if we move a bar magnet toward the loop? We
observe that a current suddenly appears in the circuit! But the current disappears as
soon as the magnet stops moving. If we then move the magnet away, a current again
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FIGURE 31-6 ■ A wire loop is pulled by a
string through a uniform magnetic field at
a constant velocity. Although excess charge
accumulates on the top and bottom seg-
ments (b and d), no current is induced in
the loop.
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FIGURE 31-7 ■ A wire loop is pulled by a
string through a region where the mag-
netic field is uniform on one side and zero
on the other. Electrons from segment a are
allowed to flow counterclockwise around
the loop. The conventional current flow is
clockwise.
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FIGURE 31-8 ■ An idealized setup show-
ing a current meter registering  nonzero
currents in a stationary wire loop when a
magnet is moving near the loop. (Typically
a multiturn loop is needed to generate a
detectable current.)



suddenly appears, but now in the opposite direction. If we experimented for a while,
we would observe the following:

1. A current appears only if there is relative motion between the loop and the mag-
net (one must move relative to the other, but it doesn’t matter which one); the
current disappears when the relative motion between them ceases. See Fig. 31-9
for a graph of the current induced by a magnet dropped through a stationary coil.

2. Faster motion produces a greater current.

3. If moving the magnet’s north pole toward the loop causes, say, clockwise current,
then moving the north pole away causes counterclockwise current. Moving the
south pole toward or away from the loop also causes current, but in the reversed
direction.

We call the current produced in the loop an induced current; the work done per
unit charge to produce that current (to move the conduction electrons that constitute
the current) is called an induced emf, and the process of producing the current and
emf is called induction. Currents that are caused by batteries in a circuit and those
caused by induction in a wire loop are the same—mobile electrons are flowing
through wires.

Observation 2, replacing the magnet with a current-carrying coil: Let us now perform
a second observation. For this observation we use the apparatus of Fig. 31-10, with the
two conducting loops close to each other but not touching. If we close switch S to turn
on a current in the right-hand loop, the meter suddenly and briefly registers a cur-
rent—an induced current—in the left-hand loop. If we then open the switch, another
sudden and brief induced current appears in the left-hand loop, but in the opposite di-
rection. We get an induced current (and thus an induced emf) only when the current
in the right-hand loop is changing (either when turning on or off) and not when it is
constant (even if the current is large). The outcome of this second observation is not
surprising. We know from Ampère’s law (Chapter 30) that the magnitude of the mag-
netic field surrounding a current-carrying wire increases as the current increases and
its direction changes when the direction of current changes.

Faraday also noticed that the actual amount of magnetic field present at the area
enclosed by the loop does not matter. Instead, the values of the induced emf and in-
duced current are determined by the rate at which the amount changes.

When we pull all of these observations together, the way Faraday did, we con-
clude that

Induced emf and current are present whenever the magnetic field present in the area sub-
tended by the conducting loop changes for any reason.

The amount of induced emf and current increases as a function of the rate of change of the
magnetic field present at the area subtended by the loop.

Charging an Electric Car by Induction
Suppose we replace the switch in Fig. 31-10 with a source of current in the right-hand
loop that varies over time sinusoidally. Then we create a magnetic field at the location
of the left-hand loop that is also changing sinusoidally in time. This time-varying mag-
netic field then induces current in the left-hand loop that varies with time as well. By
using some circuitry to filter out the negative current, we can use this induced current
to charge a battery even though there is no electrical contact between the right- and
left-hand loops. This type of noncontact charging is also used for charging familiar
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FIGURE 31-9 ■ The current induced as a
magnet is dropped through a stationary
multiturn coil (like that shown in Fig. 31-
8). A computer data acquisition system is
used to record current data at 2000
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FIGURE 31-10 ■ An idealized setup show-
ing an ammeter registering a current in the
left-hand wire loop while switch S is being
closed or opened (to turn the current in
the right-hand loop on and off). No motion
of the coils is involved. Faraday made es-
sentially the same observation using multi-
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devices such as electric toothbrushes. Although an actual charger for an electric tooth-
brush or car like that discussed in the chapter-opening puzzler has more loops of wire
and electrical circuits in it, it works on the same principle of electromagnetic induc-
tion discovered by Henry and Faraday in the early 19th century.

One drawback of inductive charging is that it is slower than direct charging. This
is not a problem for electric toothbrush charging, but it is for electric car charging.
This is probably one reason why the inductively charged General Motors EV1 cars
like the one shown in the chapter puzzler have been taken off the market. You will
learn more about the practical applications of induction in Chapter 32.

READI NG EXERC IS E  31-4: Can the magnetic force law be used to explain why a
current appears in a stationary loop when a bar magnet is brought close to it? If so, use your
understanding of this force law to explain how this happens. If not, justify why not. ■

READI NG EXERC IS E  31-5: Consider the induced current data shown in Fig. 31-9.
The magnet is accelerating as it falls through the stationary coil. The magnet is dropped in free
fall. The extrema of currents are about �8mA and �35mA. Why is the negative extremum
larger? ■

31-4 Faraday’s Law

We can enhance the predictive power of Faraday’s qualitative observations by devel-
oping a mathematical formulation of electromagnetic induction. The mathematical
expression that describes electromagnetic induction is commonly known as Faraday’s
law. Although we derive Faraday’s law for a simplified situation using concepts and
laws that we have already introduced, it can be applied to virtually any situation.

Magnetic Flux
To begin we use the concept of magnetic flux to quantify the amount of magnetic field
at the area enclosed by a loop. In Chapter 24, in a similar situation, we needed to cal-
culate the amount of an electric field present on a surface. There we determined elec-
tric flux for a small element of essentially flat area in Eq. 24-2 as (the
dot product of the normal vector representing a small area and the electric field vec-
tor at the location of the area). By analogy, the magnetic flux at the surface of a small
area element that is located in a magnetic field is defined as 

(magnetic flux at an area ). (31-1)

Simply put, the flux of magnetic field at an area element A is the product of the
area element and the component of the field perpendicular to it for a uniform mag-
netic field. The validity of this basic definition depends on the assumption that the
magnetic field is uniform over the surface element . If the field varies over the
area, we must break the area up into little pieces in such a way that the field will be
about constant for each piece. We then calculate the flux in each little piece and per-
form an integration to add up all the little contributions in analogy to the more gen-
eral definition of electric flux.

From Eq. 31-1, we see that the SI unit for magnetic flux is the tesla-square meter,
which is called the weber (abbreviated Wb):

(31-2)

Using our simplified formulation of magnetic flux, we are now ready to derive
Faraday’s law.

1 weber � 1 Wb � 1 T �m2.
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A Simplified Derivation of Faraday’s Law
Consider the simple situation depicted in Fig. 31-7 in which a wire loop is being pulled
out of a uniform magnetic field at a constant velocity. Next we derive the relationship
between the emf induced in the loop and the rate of change of the magnetic flux en-
closed by the loop. To help us with the derivation we have redrawn the situation and
introduced symbols for the dimensions of the loop and the axis along which it moves
in Fig. 31-11.

According to the magnetic force law, each charge in the left part of the loop
(segment a) will experience a force of magnitude . As the positive and
negative charges separate, an electric field of magnitude

(31-3)

will be generated. If segment a has a length L, then the potential difference of in-
duced emf across it is given by

(31-4)

Next we need to relate the right side of Eq. 31-4 to the rate at which the magnetic
flux at the area subtended by the loop is decreasing as it moves out of the uniform B-
field. If we designate the loop as being pulled in the x direction, then its velocity com-
ponent can be expressed as . Note that the area of the moving loop is de-
creasing at a rate given by . Since the magnetic field that
subtends the left part of the area enclosed by the loop is constant, the rate of change
of the magnetic flux at the loop can be expressed as

. (31-5)

Combining Eqs. 31-4 with 31-5, we get an expression for Faraday’s law for a single
loop or coil,

(Faraday’s law for a single-turn coil). (31-6)

As you will see in the next section, the induced emf � tends to oppose the flux change,
and the minus sign indicates that opposition. Faraday’s law can also be expressed in
words:

The amount of the emf � induced in a conducting loop is equal to the rate at which the
magnetic flux at the area enclosed by the loop changes with time.

If we change the magnetic flux at a coil of N turns, an induced emf appears in every
turn and the total emf induced in the coil is the sum of these individual induced emfs.
If the coil is tightly wound (closely packed), so that the same magnetic flux is
present in each turn, the total emf induced in the coil is 

(Faraday’s law for an N-turn coil). (31-7)

Although we have used simple geometry to derive Faraday’s law (Eq. 31-7), ex-
periments (such as the one shown in Fig. 31-12) have verified that the mathematical
expression we have derived is true for any situation where the flux enclosed by a set

� � �N
d�mag

dt

�mag

� mag

� � �
d�mag

dt

d� mag

dt
�

d(BA)
dt

� B
dA
dt

� �vxBL

dA/dt � �Ldx/dt � �Lvx

vx � dx/dt

� � EL � vBL.

E �
F mag

� q �
� vB

F mag � qvB

v

b

ca

d
Current
flow

w

L

FIGURE 31-11 ■ A wire loop is moving at
a constant velocity through a region where
the magnetic field is uniform on one side
and zero on the other. While this is hap-
pening, the magnetic flux at the area sub-
tended by the coil is decreasing at a con-
stant rate.

FIGURE 31-12 ■ It is quite easy to verify
Faraday’s law with modern apparatus and 
computer data acquisition systems. Here a
student holds a small multiturn pickup coil
inside a larger field coil that is generating a
“sawtooth” magnetic field that increases
and then decreases continuously. The B-
field is shown on the jagged dark red trace
on the computer screen. The induced cur-
rent in the pickup coil is shown by the
squarish lighter green trace. (Photo cour-
tesy of PASCO scientific.)



of conducting loops or coils is changing. In fact, there are many ways to change the
magnetic flux at a coil and thus induce emfs and currents:

1. Change the magnitude B of the magnetic field within the coil.

2. Change the area of the coil, or the portion of that area that happens to lie within
the magnetic field (for example, by expanding the coil or sliding it out of the
field).

3. Change the angle between the direction of the magnetic field and the area of
the coil (for example, by rotating the coil so that is first perpendicular to the
plane of the coil and then is along that plane).

Later on in the chapter we will derive a more general form of Faraday’s law that
relates flux change to electric field induction even when no charges or conducting
loops are present.

READI NG EXERC IS E  31-6: The
graph gives the magnitude of a magnetic
field that exists throughout the area subtended
by a conducting loop, perpendicular to the
plane of the loop. Although it changes with
time, at any particular instant the magnetic
field is uniform over the area of the loop. (a)
Rank the five time intervals (a, b, c, d, and e)
shown on the graph according to the amount of the emf induced in the loop, greatest first.
(b) Explain your reasoning. ■
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TOUCHSTONE EXAMPLE 31-1: Coil in a Long Solenoid

The long solenoid S shown (in cross section) in Fig. 31-13 has 220
turns/cm and carries a current i � 1.5 A; its diameter D is 3.2 cm.
At its center we place a 130-turn, closely packed coil C of diameter
d � 2.1 cm. The current in the solenoid is reduced to zero at a
steady rate in 25 ms. What is the size of the emf that is induced
in coil C while the current in the solenoid is changing?

S O L U T I O N ■ The Ke y  I d e a s here are these:

1. Because coil C is located in the interior of the solenoid, it lies
within the magnetic field produced by current i in the solenoid;
thus, there is a magnetic flux present in coil C.

2. Because current i decreases, flux also decreases.

3. As decreases, emf � is induced in coil C, according to
Faraday’s law.

Because coil C consists of more than one turn, we apply Faraday’s
law in the form of Eq. 31-7 , where the number(� � �Nd� mag/dt)

� mag

� mag

� mag

� � �

of turns N is 130 and is the rate at which the flux in each
turn changes.

Because the current in the solenoid decreases at a steady rate,
flux also decreases at a steady rate and we can write 
as . Then, to evaluate , we need the final and initial
flux. The final flux is zero because the final current in the
solenoid is zero. To find the initial flux , we need two more
Ke y  I d e a s :

4. The flux at the area enclosed by each turn of coil C depends on
the area A and orientation of that turn in the solenoid’s mag-
netic field . Because is uniform and directed perpendicular
to area A, the flux is given by Eq. 31-1 .

5. The magnitude of the magnetic field in the interior of a sole-
noid depends on the solenoid’s current i and its number n of
turns per unit length, according to Eq. 30-25 

For the situation of Fig. 31-13, A is and n is
220 turns/cm, or 22 000 turns/m. Substituting Eq. 30-25 into Eq. 31-1
then leads to

� 1.44 � 10�5 Wb.

�(22 000 turns/m)(4	 � 10�7 T �m/A)(1.5 A)(3.46 � 10�4 m2)
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i � BA � (n
0� i �)A
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FIGURE 31-13 ■ A coil C is located inside solenoid S,
which carries current i.
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31-5 Lenz’s Law

Soon after Faraday proposed his law of induction, Heinrich Friedrich Lenz devised a
rule—now known as Lenz’s law—for determining the direction of an induced cur-
rent in a loop:

An induced current has a direction such that the magnetic field due to the current opposes
the change in the magnetic flux that has induced the current.

It is important to notice that it is the change in the flux that determines the direction
of the induced current rather than the direction of the magnetic field or motion. Fur-
thermore, the direction of an induced emf is that of the induced current. To get a feel
for Lenz’s law, let us apply it in two different but equivalent ways to Fig. 31-14, where
the north pole of a magnet is being moved toward a conducting loop.

1. Opposition to Flux Change. In Fig. 31-14, with the magnet initially distant, there
is no magnetic flux at the area encircled by the loop. As the north pole of the magnet
then nears the loop with its magnetic field directed toward the left, the flux at the
loop increases. To oppose this increase in flux, the induced current i must set up its
own field directed toward the right inside the loop, as shown in Fig. 31-15a; then the
rightward flux of field opposes the increasing leftward flux of field . The right-
hand rule of Fig. 30-19 then tells us that i must be counterclockwise in Fig. 31-15a.

2. Opposition to Pole Movement. The approach of the magnet’s north pole in Fig.
31-14 increases the magnetic flux in the loop and thereby induces a current in the loop.
From Fig. 30-22, we know that the loop then acts as a magnetic dipole with a south
pole and a north pole, and that its magnetic dipole moment is directed from south to
north. To oppose the magnetic flux increase being caused by the approaching magnet,
the loop’s north pole (and thus ) must face toward the approaching north pole so as
:
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�
(0 � 1.44 � 10�5 Wb)

25 � 10�3 s

d� mag

dt
�

�� mag

�t
�

�mag
f � �mag

i

�t

We are interested only in the size of the emf, so we ignore the mi-
nus signs here and in Eq. 31-7, writing

(Answer)� 7.5 � 10�2 V � 75 mV.
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FIGURE 31-14 ■ Lenz’s law at work. As
the magnet is moved toward the loop, a
current is induced in the loop. The current
produces its own magnetic field, with mag-
netic dipole moment oriented so as to
oppose the motion of the magnet. Thus, the
induced current must be counterclockwise
as shown.
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to repel it (Fig. 31-14). Then the curled-straight right-hand rule for (Fig. 30-22) tells
us that the current induced in the loop must be counterclockwise in Fig. 31-14.

If we next pull the magnet away from the loop, a current will again be induced.
Now, however, the loop will have a south pole facing the retreating north pole of the
magnet, so as to oppose the retreat. Thus, the induced current will be clockwise.

As we noted above, be careful to remember that the flux of always opposes the
change in the flux of , but that does not always mean that points opposite . For
example, if we pull the magnet away from the loop in Fig. 31-14, the flux from
the magnet is still directed to the left at the area subtended by the loop, but it is now
decreasing. The flux of must now be to the left inside the loop, to oppose the de-
crease in , as shown in Fig. 31-15b. Thus, and are now in the same direction.

Figures 31-15c and d show the situations in which the south pole of the magnet
approaches and retreats from the loop, respectively. Figure 31-16 is a photo of a
demonstration of Lenz’s law in action.

Electric Guitars
Soon after rock began in the mid-1950s, guitarists switched from acoustic guitars to elec-
tric guitars—but it was Jimi Hendrix who first used the electric guitar as an electronic
instrument. He was able to create new sounds that continue to influence rock music to-
day. What is it about an electric guitar that enabled Hendrix to make different sounds?

Whereas an acoustic guitar depends for its sound on the acoustic resonance pro-
duced in the hollow body of the instrument by the oscillations of the strings, an elec-
tric guitar like that being played by Hendrix in Fig. 31-17 is a solid instrument, so
there is no body resonance. Instead, the oscillations of the metal strings are sensed by
electric “pickups” that send signals to an amplifier and a set of speakers.

The basic construction of a pickup is shown in Fig. 31-18. Wire connecting the in-
strument to the amplifier is coiled around a small magnet. The magnetic field of the
magnet produces a north and south pole in the section of the metal string just above
the magnet. That section of string then has its own magnetic field. When the string is
plucked and thus made to oscillate, its motion relative to the coil changes the flux of
its magnetic field at the area encircled by the coil, inducing a current in the coil. As
the string oscillates toward and away from the coil, the induced current changes direc-
tion at the same frequency as the string’s oscillations, thus relaying the frequency of
oscillation to the amplifier and speaker.

On a Stratocaster©, there are three groups of pickups, placed near the bridge at
the end of the wide part of the guitar body. The group closest to the bridge better de-
tects the high-frequency oscillations of the strings; the group farthest from the near
end better detects the low-frequency oscillations. By throwing a toggle switch on the
guitar, the musician can select which group or which pair of groups will send signals to
the amplifier and speakers.

To gain further control over his music, Hendrix sometimes rewrapped the wire in the
pickup coils of his guitar to change the number of turns. In this way, he altered the
amount of emf induced in the coils and thus their relative sensitivity to string oscillations.
Even without this additional measure, you can see that the electric guitar offers far more
control over the sound that is produced than can be obtained with an acoustic guitar.

READI NG EXERC IS E  31-7: Lenz’s law states: “An induced current has a direction
such that the magnetic field due to the current opposes the change in the magnetic flux that in-
duces the current.” (a) Suppose there is a magnetic field directed into the plane of this page and
that the strength of the field is decreasing. Would a magnetic field that opposes this change in
magnetic flux be directed into the page, out of the page, or in some other direction? Explain
your reasoning. (b) Suppose that there is a magnetic field directed into the plane of this page
that is increasing in strength. Would a magnetic field that opposes this change in magnetic
flux be directed into the page, out of the page, or in some other direction? Explain your
reasoning. ■
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FIGURE 31-16 ■ This demonstration of
Lenz’s law occurs when an electromagnet
is switched on suddenly. The current in-
duced in a metal ring opposes the electro-
magnet’s current. The repulsive forces be-
tween the magnet and the ring cause the
ring to jump more than a meter. (Photo
courtesy of PASCO scientific.)

FIGURE 31-17 ■ Jimi Hendrix playing his
Fender Stratocaster©. This guitar has three
groups of six electric pickups each (within
the wide part of the body). A toggle switch
(at the bottom of the guitar) allows the
musician to determine which group of
pickups sends signals to an amplifier and
thus to a speaker system.
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READI NG EXERC IS E  31-8: The figure shows three situations in which identical cir-
cular conducting loops are in uniform magnetic fields that are either increasing (Inc) or
decreasing (Dec) in magnitude at identical rates. In each, the dashed line coincides with a diam-
eter. (a) Rank the situations according to the amount of the current induced in the loops, great-
est first. (b) Explain your reasoning.

■

Magnet

To amplifierCoil

Metal guitar string

N
S

N

S

FIGURE 31-18 ■ A side view of an electric
guitar pickup. When the metal string
(which acts like a magnet) oscillates, it
causes a variation in magnetic flux that in-
duces a current in the coil.

Inc

Inc

Inc

Dec

Dec

Inc

(a) (b) (c)

TOUCHSTONE EXAMPLE 31-2: Induced Emf

Figure 31-19 shows a conducting loop consisting of a half-circle of
radius r � 0.20 m and three straight sections. The half-circle lies in a
uniform magnetic field that is directed out of the page; the field
magnitude is given by . An
ideal battery with is connected to the loop. The resis-
tance of the loop is 2.0 �.

(a) What are the amount and direction of the emf induced
around the loop by field at t � 10 s?

S O L U T I O N ■ One Ke y  I d e a here is that, according to Fara-
day’s law, is equal to the negative rate at which the
magnetic flux at the area encircled by the loop changes. A second
Ke y  I d e a is that the flux at the loop depends on the loop’s area
A and its orientation in the magnetic field . Because is uniform
and is perpendicular to the plane of the loop, the flux is given by
Eq. 31-1 . Using this equation and realizing that only
the field magnitude B changes in time (not the area A), we rewrite
Faraday’s law, Eq. 31-6, as

� � ind � � � d�mag

dt � � � d(BA)
dt � � A� dB

dt �.

(� mag � BA)

B
:

B
:

d� mag/dt� ind

B
:

� ind

�bat � 2.0 V
B � (4.0 T/s2)t 2 � (2.0 T/s)t � 3.0  T

B
:

A third Ke y  I d e a is that, because the flux penetrates the loop
only within the half-circle, the area A in this equation is . Sub-
stituting this and the given expression for B yields

At t � 10 s, then,

(Answer)

To find the direction of , we first note that in Fig. 31-19 the
flux at the loop is out of the page and increasing. Then the Ke y
I d e a here is that the induced field Bind (due to the induced cur-
rent) must oppose that increase, and thus be into the page. Using
the curled-straight right-hand rule (Fig. 30-8c), we find that the in-
duced current contribution must be clockwise around the loop. The
induced emf must then also be clockwise.

(b) What is the current in the loop at t � 10 s?

S O L U T I O N ■ The Ke y  I d e a here is that two emfs tend to
move charges around the loop. The induced tends to drive a
current clockwise around the loop; the battery’s tends to drive
a current counterclockwise. Because is greater than , the
net emf is clockwise, and thus so is the current. To find the cur-
rent at t � 10 s, we use :

(Answer)�
5.152 V � 2.0 V

2.0�
� 1.58 A � 1.6 A.

i �
� net

R
�

� ind � �bat

R

i � �/R
�net

�bat� ind
�bat

� ind

� ind

� ind

� 5.152 V � 5.2 V.

� � ind � �
	(0.20 m)2

2
[(8.0 T/s)(10 s) � (2.0 T/s)]

�
	r 2

2
[(8.0 T/s2)t � (2.0 T/s)].

� �ind � � A� dB
dt � �

	r 2

2
d
dt

[(4.0 T/s)t 2 � (2.0 T/s)t � 3.0 T]
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FIGURE 31-19 ■ A battery is connected
to a conducting loop consisting of a half-
circle of radius r that lies in a uniform
magnetic field. The field is directed out of
the page; its magnitude is changing.



31-6 Induction and Energy Transfers

Let us return to the simple situation we considered in Fig. 31-7. What are the conse-
quences of the fact that a clockwise current is induced when the loop is pulled to the
right and a counterclockwise current is induced when the loop is pushed to the left? If
one pushes the loop back and forth (right and left), the result is an alternating current
in the loop. This is current just like the current in our household electric system. It is a
current that could run a motor, light a bulb, or provide heating through the resistive
dissipation. If it took no effort on our part to push the loop back and forth, we could
solve the energy crisis. Of course, it does take effort (work) on our part to push and
pull the loop back and forth.

If you want to drag a metal loop out of a magnetic field at a constant velocity, you
have to exert a force on the loop to balance the magnetic force associated with the
charges moving in the magnetic field. This requires you to do work on the loop, but
doing work adds energy to a system. We certainly cannot violate the principle of con-
servation of energy. So, where does this energy go? One place the energy could go is
into an increase in the internal energy of the loop’s wires. Since we observe a temper-
ature rise in the wires, we conclude that the work done has been transformed into
thermal energy—one form of internal energy. This makes sense. There is a current i in
the loop that has some resistance R, and we learned in Section 26-7 that the electric
power dissipation (or rate of thermal energy increase in the wires) is given by

(resistive dissipation). (Eq. 26-11)

How does this rate of energy loss compare to the rate we are doing work? Perhaps
they are the same. In that case, we might conclude that the work we do in moving the
loop is transformed into thermal energy in the loop. Let’s work out the details.

Figure 31-11 shows a situation involving induced current. A rectangular loop of
wire of width L has one end in a uniform external magnetic field that is directed per-
pendicularly into the plane of the loop. This field may be produced, for example, by a
large electromagnet. The dashed lines in the figure show the assumed limits of the
magnetic field; the fringing of the field at its edges is neglected. You are asked to pull
this loop to the right at a constant velocity .

In the situation of Fig. 31-11, the flux of the field at the loop is changing with time.
Let us now calculate the rate at which you do mechanical work as you pull steadily on
the loop. The amount of work done by a force in moving a loop a small distance 
in a time dt is

.

For simplicity, let us consider a force , which is completely in the direction of the
displacement . Then 

.

The rate of doing work (which is called the power P) is

.

So , (31-8)

where is the speed at which we move the loop.
Suppose that we wish to find an expression for the power, P, in terms of the magni-

tude of the magnetic field and the characteristics of the loop—namely, its resistanceB

v

P � Fv

P �
dW
dt

� F
dx
dt

dW � F
:

�dx: � Fdx

dx:
F
:

dW � F
:

�dx:

dx:F
:

v:

P � i2R
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R to current and its dimension L. As you move the loop to the right in Fig. 31-11, the
portion of its area within the magnetic field decreases. Thus, the flux at the loop also
decreases and, according to Lenz’s law, a current is produced in the loop. It is the pres-
ence of this current that causes the force that opposes your pull.

To find the amount of the current, we first apply Faraday’s law for a single loop in
conjunction with Eq. 31-4. We can write the amount of this emf as 

. (31-9)

Figure 31-20 shows the loop depicted in Fig. 31-7, as a circuit. The induced emf, �,
is represented on the left, and the collective resistance R of the loop is represented on
the right. The direction of the induced current i is shown as in Fig. 31-7, and we have
already established that � must have the same direction as the conventional current, i.

To find the amount of the induced current, we cannot apply the loop rule for po-
tential differences in a circuit because, as you will see in Section 31-7, we cannot de-
fine a potential difference for an induced emf. However, we can apply the equation

. With Eq. 31-9, the current amount becomes 

(31-10)

Because three segments of the loop in Fig. 31-7 carry this current through the
magnetic field, sideways deflecting forces act on those segments. From Chapter 29, we
know that the magnitude of such a deflecting force is given in general notation by 

. (31-11)

The deflecting forces acting on segments a, b, and d of the loop shown in Fig. 31-7
can be denoted as , , and . Application of the right-hand rule to each of these
segments shows that the forces are perpendicular to each segment and point outward
from the loop. Note, however, that from the symmetry, and are oppositely di-
rected and equal in magnitude, so they cancel. This leaves only , which is directed
opposite the force you apply to the loop. Therefore, .

Using Eq. 31-11 to obtain the magnitude of and noting that the angle between
and the length vector for the left segment is 90°, we can write 

(31-12)

Substituting Eq. 31-10 for i in Eq. 31-12 then gives us 

(31-13)

Since , L, and R are constants, the speed at which you move the loop is constant if
the magnitude of the force you apply to the loop is also constant.

By substituting Eq. 31-13 into Eq. 31-8, we find the rate at which you do work on
the loop as you pull it out of the magnetic field:

(rate of doing work). (31-14)

To complete our analysis, let us find the rate at which internal energy appears in
the loop as you pull it along at constant speed. We calculate it from Eq. 26-11,

(31-15)P � i2R.
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B2v2L2
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F
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FIGURE 31-20 ■ A circuit diagram for the
loop of Fig. 31-7 while it is moving.



Substituting for i from Eq. 31-10, we find

(rate of internal energy gain), (31-16)

which is exactly equal to the rate at which you are doing work on the loop (Eq.
31-14). Thus, the work that you do in pulling the loop through the magnetic field is
transferred to thermal energy in the loop, manifesting itself as a small increase in the
loop’s temperature.

Eddy Currents
Suppose we replace the conducting loop of Fig. 31-7 with a solid conducting plate as
shown in Fig. 31-21a. If we then move the plate out of the magnetic field, the relative mo-
tion of the field and the conductor again induces a current in the conductor. Thus, we
again encounter an opposing force and must do work because of the induced current.
With the plate, however, the conduction electrons making up the induced current do not
follow one path as they do with the loop. Instead, the electrons swirl about within the
plate as if they were caught in an eddy (or whirlpool) of water. Such a current is called an
eddy current and can be represented as in Fig. 31-21a as if it followed a single path.

Eddy currents are used to cook food on an induction stove. To do this an oscillat-
ing current is sent through a conducting coil that lies just below the cooking surface.
The magnetic field produced by that current oscillates and induces an oscillating cur-
rent in the conducting cooking pan. Because the pan has some resistance to that
current, the electrical energy of the current is continuously transformed to the pan’s
energy, resulting in a temperature increase of the pan and the food in it. What’s amaz-
ing is that the stove itself might not get hot at all—only the pan.

As with the conducting loop of Fig. 31-7, the current induced in the plate results
in mechanical energy being dissipated as it increases the pan’s thermal energy. The
dissipation is more apparent in the arrangement of Fig. 31-21b; a conducting plate,
free to rotate about a pivot, is allowed to swing down through a magnetic field like a
pendulum. Each time the plate enters and leaves the field, a portion of its mechanical
energy is transferred to its thermal energy. After several swings, no mechanical energy
remains and the warmed-up plate just hangs from its pivot.

READI NG EXERC IS E  31-9: The figure shows four wire loops, with edge lengths of
either L or 2L. All four loops will move through a region of uniform magnetic field (directed
out of the page) at the same
constant velocity. (a) Rank the
four loops according to the max-
imum amount of the emf in-
duced as they move through the
field, greatest first. (b) Explain
your reasoning. ■

31-7 Induced Electric Fields

Let us place a copper ring of radius r in a uniform external magnetic field, as in Fig. 31-
22a. The field—neglecting fringing—fills a cylindrical volume of radius R. Suppose that
we increase the strength of this field at a steady rate, perhaps by increasing—in an ap-
propriate way—the current in the windings of the electromagnet that produces the field.
The magnetic flux at the ring will then change at a steady rate and—by Faraday’s law—
an induced emf and thus an induced current will appear in the ring. From Lenz’s law we
can deduce that the direction of the induced current is counterclockwise in Fig. 31-22a.

B
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R �

2
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FIGURE 31-21 ■ (a) As you pull a solid
conducting plate out of a magnetic field,
eddy currents are induced in the plate. A
typical loop of eddy current is shown; it
has the same clockwise sense of circulation
as the current in the conducting loop of
Fig. 31-7. (b) A conducting plate is allowed
to swing like a pendulum about a pivot
and into a region of magnetic field. As it
enters and leaves the field, eddy currents
are induced in the plate.
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If there is a current in the copper ring, an electric field must be present along the
ring; an electric field is needed to do the work of moving the conduction electrons.
Moreover, the electric field must have been produced by the changing magnetic flux.
This induced electric field is just as real as an electric field produced by static
charges; either field will exert a force on a particle of charge q.

By this line of reasoning, we are led to a more general and informative restate-
ment of Faraday’s law of induction:

A changing magnetic field produces an electric field.

The striking feature of this statement is that the electric field is induced even if there
is no copper ring.

To fix these ideas, consider Fig. 31-22b, which is just like Fig. 31-22a except the
copper ring has been replaced by a hypothetical circular path of radius r. We assume,
as previously, that the magnetic field is increasing in magnitude at a constant 
rate . The electric field induced at various points around the circular path
must—from the symmetry—be tangent to the circle, as Fig. 31-22b shows.* Hence,
the circular path is an electric field line. There is nothing special about the circle of ra-
dius r, so the electric field lines produced by the changing magnetic field must be a set
of concentric circles, as in Fig. 31-22c.

As long as the magnetic field is increasing with time, the electric field represented
by the circular field lines in Fig. 31-22c will be present. If the magnetic field remains
constant with time, there will be no induced electric field and thus no electric field
lines. If the magnetic field is decreasing with time (at a constant rate), the electric field
lines will still be concentric circles as in Fig. 31-22c, but they will now have the oppo-
site direction. All this is what we have in mind when we say: A changing magnetic
field produces an electric field.

A Reformulation of Faraday’s Law
Consider a particle of charge q moving around the circular path of Fig. 31-22b. The
work W done on it in one revolution by the induced electric field is , where � is theq�

dB/dt
B
:

qE
:

E
:
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FIGURE 31-22 ■ (a) If the magnetic field increases at a steady rate, a constant induced current appears, as shown, in the
copper ring of radius r. (b) An induced electric field exists even when the ring is removed; the electric field is shown at
four points. (c) The complete picture of the induced electric field, displayed as field lines. (d) Four similar closed paths that
enclose identical areas. Equal emfs are induced around paths 1 and 2, which lie entirely within the region of the changing
magnetic field. A smaller emf is induced around path 3, which only partially lies in that region. No emf is induced around
path 4, which lies entirely outside the magnetic field.

* Arguments of symmetry would also permit the lines of around the circular path to be radial, rather than
tangential. However, such radial lines would imply that there are free charges, distributed symmetrically
about the axis of symmetry, on which the electric field lines could begin or end; there are no such charges.
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induced emf—that is, the work done per unit charge in moving the test charge
around the path. From another point of view, the work is 

(31-17)

where is the magnitude of the force acting on the test charge and is the dis-
tance over which that force acts. Setting these two expressions for W equal to each
other and canceling q, we find that 

(31-18)

More generally, we can rewrite Eq. 31-17 to give the work done on a particle of
charge q moving along any closed path:

(31-19)

(The circle indicates that the integral is to be taken around the closed path.) Substi-
tuting q� for W, we find that 

(31-20)

This integral reduces at once to Eq. 31-18 if we evaluate it for the special case of Fig.
31-22b.

With Eq. 31-20, we can expand the meaning of induced emf. Previously, induced
emf meant the work per unit charge done in maintaining current due to a changing
magnetic flux, or it meant the work done per unit charge on a charged particle that
moves around a closed path in a changing magnetic flux. However, we can see in Fig.
31-22b and Eq. 31-20 that an induced emf can exist without the need of a current or
particle: An induced emf is the sum—via integration—of quantities around a
closed path, where is the electric field induced by a changing magnetic flux and 
is a differential length vector along the closed path.

If we combine Eq. 31-20 with Faraday’s law in Eq. 31-6 , we can
rewrite Faraday’s law as 

(Faraday’s law, general formula). (31-21)

This equation says simply that a changing magnetic field induces an electric field. The
changing magnetic field appears on the right side of this equation, the electric field on
the left.

Faraday’s law in the form of Eq. 31-21 can be applied to any closed path that can
be drawn in a changing magnetic field. But can only be evaluated for symmet-
rical situations. Figure 31-22d, for example, shows four such paths, all having the same
shape and area but located in different positions in the changing field. For paths 1 and
2, the induced emfs are equal because these paths lie entirely in the mag-
netic field and thus have the same value of . This is true even though the elec-
tric field vectors at points along these paths are different, as indicated by the patterns
of electric field lines in the figure. For path 3 the induced emf is smaller because the
enclosed flux (hence, ) is smaller, and for path 4 the induced emf is zero,
even though the electric field is not zero at any point on the path.
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A New Look at Electric Potential
Induced electric fields are produced not by static charges but by a changing magnetic
flux. Although electric fields produced in either way exert forces on charged particles,
there is an important difference between them. The difference is not in the way they
affect charges at a given point (the electric force on a charge q in this field is still qE),
but in their global properties. Their field lines behave differently and there is a prob-
lem defining the electric potential associated with induced electric fields. The simplest
evidence of this difference is that the field lines of induced electric fields form closed
loops, as in Fig. 31-22c. Field lines produced by static charges never do so but rather
must start on positive charges and end on negative charges. Since the induced fields
are not caused by charges, there is no place for the field lines to start or end. Instead,
they form closed loops, similar to those of magnetic fields. (But these are still electric
fields! They act on stationary charges whereas magnetic fields don’t.)

So, a varying magnetic field is accompanied by circular electric field lines. An elec-
tric current is known to be accompanied by circular magnetic field lines. But is an
electric current the only source of circular magnetic field lines? Might it be possible
that a varying electric field is accompanied by a circulating magnetic field? This is a
question we will consider in the next chapter.

What we are immediately concerned with is that the electric field lines make
closed loops, which has a powerful implication for trying to define an electrostatic po-
tential. Since the potential difference equals the work per unit charge, if we carry a
charge around a loop of electric field line, the field always acts in the direction of
motion, so every small step we make makes a positive contribution to the work. But
since the field follows a loop, we can come back to our starting point after having only
done positive work! The implication is:

Electric potential has meaning only for electric fields that are produced by static charges; it
has no meaning for electric fields that are produced by induction.

You can understand this statement quantitatively by considering what happens to a
charged particle that makes a single journey around the circular path in Fig. 31-22b. It
starts at a certain point and, on its return to that same point, has experienced an emf
� of, let us say, 5 V; that is, work of 5 has been done on the particle, and thus the
particle should then be at a point that is 5 V greater in potential. However, that is im-
possible because the particle is back at the same point, which cannot have two differ-
ent values of potential. We must conclude that potential has no meaning for electric
fields that are set up by changing magnetic fields.

We can take a more formal look by recalling Eq. 25-16, which defines the poten-
tial difference between two points 1 and 2 in an electric field :

(31-22)

In Chapter 25 we had not yet encountered Faraday’s law of induction, so the electric
fields involved in the derivation of Eq. 25-16 were those due to static charges. If 1 and
2 in Eq. 31-22 are the same point, the path connecting them is a closed loop, V1 and V2

are identical, and Eq. 31-22 reduces to 

(31-23)

However, when a changing magnetic flux is present, this integral is not zero but is
, as Eq. 31-21 asserts. Thus, assigning electric potential to an induced electric�d� mag/dt
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field leads us to a contradiction. We must conclude that electric potential difference is
path dependent for the electric fields associated with induction.

READI NG EXERC IS E  31-10: The figure shows five lettered regions in which a uni-
form magnetic field extends either directly out of the page (as in region a) or into the page. The
field is increasing in magnitude at the same steady rate in all five regions; the regions are identi-
cal in area. Also shown are four numbered paths along which has the magnitudes given
below in terms of a unit “mag.” Determine whether the magnetic fields in regions b through e
are directed into or out of the page.

Path: 1 2 3 4

1(mag) 2(mag) 3(mag) 0(mag) ■�E
:

�ds::

� E
:

�ds:

1

3

2

4a

b d

c

e

TOUCHSTONE EXAMPLE 31-3: Inducing an Electric Field

In Fig. 31-22b, take R � 8.5 cm and dB/dt � 0.13 T/s.

(a) Find an expression for the magnitude E of the induced electric
field at points within the magnetic field, at radius r from the center
of the magnetic field. Evaluate the expression for r � 5.2 cm.

S O L U T I O N ■ The Ke y  I d e a here is that an electric field is
induced by the changing magnetic field, according to Faraday’s law.
To calculate the field magnitude E, we apply Faraday’s law in the
form of Eq. 31-21. We use a circular path of integration with radius
r  R because we want E for points within the magnetic field. We
assume from the symmetry that in Fig. 31-22b is tangent to the
circular path at all points. The path vector is also always tan-
gent to the circular path, so the dot product in Eq. 31-21
must have the magnitude E ds at all points on the path. We can
also assume from the symmetry that E has the same value at all
points along the circular path. Then the left side of Eq. 31-21 be-
comes

(31-24)

(The integral is the circumference 2	r of the circular path.)
Next, we need to evaluate the right side of Eq. 31-21. Because

is uniform over the area A encircled by the path of integration
and is directed perpendicular to that area, the magnetic flux is given
by Eq. 31-1:

(31-25)

Substituting this and Eq. 31-24 into Eq. 31-21 and dropping the mi-
nus sign, we find that the magnitude of the electric field is 

E(2	r) � (	r 2)
dB
dt

� mag � BA � B(	r 2).

B
:

�ds

�E
:

�ds: � �Eds � E �ds � E(2	r).

E
:

�ds:
ds:

E
:

or (Answer) (31-26)

Equation 31-26 gives the magnitude of the electric field at any point
for which r  R (that is, within the magnetic field). Substituting
given values yields, for the magnitude of at r � 5.2 cm,

(Answer)

(b) Find an expression for the magnitude E of the induced electric
field at points that are outside the magnetic field, at radius r. Evalu-
ate the expression for r � 12.5 cm.

S O L U T I O N ■ The Ke y  I d e a of part (a) applies here also, ex-
cept that we use a circular path of integration with radius r � R, be-
cause we want to evaluate E for points outside the magnetic field.
Proceeding as in (a), we again obtain Eq. 31-24. However, we do
not then obtain Eq. 31-25, because the new path of integration is
now outside the magnetic field, and we need this Ke y  I d e a : The
magnetic flux encircled by the new path is only that in the area 
of the magnetic field region. Therefore,

(31-27)

Substituting this and Eq. 31-24 into Eq. 31-21 (without the 
minus sign) and solving for the magnitude of yield

(Answer) (31-28)

Since E is not zero here, we know that an electric field is induced
even at points that are outside the changing magnetic field, an

E �
R2

2r
dB
dt

.

E
:

� mag � BA � B(	R2).

	R2

� 0.0034 V/m � 3.4 mV/m.

E �
(5.2 � 10�2 m)

2
(0.13 T/s)

E
:

E �
r
2

dB
dt

.
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31-8 Induced Magnetic Fields

Let’s consider a region in space where no electric currents are present. As we have
seen, a changing magnetic flux induces an electric field, and we end up with Faraday’s
law of induction in the form

(Faraday’s law of induction). (31-29)

Here is the electric field induced along a closed loop by the changing magnetic flux
encircled by that loop. Because symmetry is often so powerful in physics, we

should be tempted to ask whether induction can occur in the opposite sense; that is,
can a changing electric flux induce a magnetic field?

The answer is that it can; furthermore, the equation governing the induction of a
magnetic field is almost symmetric with Eq. 31-21. We often call it Maxwell’s law of
induction after James Clerk Maxwell, and we write it as 

(Maxwell’s law of induction—no currents). (31-30)

Here is the magnetic field induced along a closed loop by the changing electric flux
in the region encircled by that loop.

As an example of this sort of induction, we consider the charging of a parallel-
plate capacitor with circular plates, as shown in Fig. 31-24a. (Although we shall focus
on this particular arrangement, a changing electric flux will always induce a magnetic
field whenever it occurs.) We assume that the charge on the capacitor is being in-
creased at a steady rate by a constant current i in the connecting wires. Then the
amount of the electric field between the plates must also be increasing at a steady
rate.

Figure 31-24b is a view of the right-hand plate of Fig. 31-24a from between the
plates. The electric field is directed into the page. Let us consider a circular loop
through point 1 in Figs. 31-24a and b, concentric with the capacitor plates and with a
radius smaller than that of the plates. Because the electric field at the area subtended
by the loop is changing, the electric flux at the loop must also be changing. According
to Eq. 31-22, this changing electric flux induces a magnetic field around the loop.

Experiment proves that a magnetic field is indeed induced around such a loop,
directed as shown. This magnetic field has the same magnitude at every point around
the loop and thus has circular symmetry about the central axis of the capacitor plates.

If we now consider a larger loop—say, through point 2 outside the plates in Figs.
31-24a and b—we find that a magnetic field is induced around that loop as well. Thus,
while the electric field is changing, magnetic fields are induced between the plates,

B
:

� elec
B
:

�B
:

�ds: � 
0�0
d� elec

dt

�mag
E
:

�E
:

�ds: � �
d� mag

dt

important result that (as you shall see in Section 32-5) makes trans-
formers possible. With the given data, Eq. 31-28 yields the magni-
tude of at r � 12.5 cm:

(Answer)

Equations 31-26 and 31-28 give the same result, as they must,
for r � R. Figure 31-23 shows a plot of E(r) based on these two
equations.

� 3.8 � 10�3 V/m � 3.8 mV/m.

E �
(8.5 � 10�2 m)2

(2)(12.5 � 10�2 m)
(0.13 T/s)

E
:

6

4

2

0
0 10 20 30 40

r  (cm)

E 
(m

V/
m

)

FIGURE 31-23 ■ A plot of the in-
duced electric field E(r) for the
conditions given in Touchstone
Example 31-3.

R

r

+ –

+ –

+ –

+ –

+ –

+ –
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(b)

(a)

1

1

i i

2

2

E

E

B

B

B

B

FIGURE 31-24 ■ (a) A circular parallel-
plate capacitor, shown in side view, is being
charged by a constant current i. (b) A view
from within the capacitor, toward the plate
at the right. The electric field is uniform,
is directed into the page (toward the
plate), and grows in magnitude as the
charge on the capacitor increases. The
magnetic field induced by this changing
electric field is shown at four points on a
circle with a radius r less than the plate ra-
dius R.

B
:

E
:
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both inside and outside the gap. When the electric field stops changing, these induced
magnetic fields disappear.

Although Eq. 31-30 is similar to Eq. 31-29, the equations differ in two ways. First,
Eq. 31-30 has the two extra symbols, and , but they appear only because we em-
ploy SI units. Second, Eq. 31-30 lacks the minus sign of Eq. 31-29. That difference in
sign means that the induced electric field and the induced magnetic field have
opposite directions when they are produced in otherwise similar situations.

To see this opposition of directions, examine Fig. 31-25, in which an increasing
magnetic field , directed into the page, induces an electric field . The induced field

is counterclockwise, whereas the induced magnetic field in Fig. 31-24b is clock-
wise.

Ampère–Maxwell Law
Now recall that the left side of Eq. 31-30, the integral of the dot product around
a closed loop, appears in another equation—namely, Ampère’s law:

(Ampère’s law), (31-31)

where i enc is the current encircled by the closed loop. Thus, our two equations that
specify the magnetic field produced by means other than a magnetic material (that
is, by a current and by a changing electric field) give the field in exactly the same form.
We can combine the two equations into the single equation 

(Ampère–Maxwell law). (31-32)

When there is a current but no change in electric flux (such as with a wire carrying a
constant current), the first term on the right side of Eq. 31-32 is zero, and Eq. 31-32 re-
duces to Eq. 31-31, Ampère’s law. When there is a change in electric flux but no cur-
rent (such as inside or outside the gap of a charging capacitor), the second term on
the right side of Eq. 31-32 is zero, and Eq. 31-32 reduces to Eq. 31-30, Maxwell’s law
of induction.

READI NG EXERC IS E  31-11: Referring back to Chapter 30, where we first studied
Ampère’s law, describe how we found the direction of the magnetic field produced by a current.
What did the magnetic field lines look like for a long, straight, current-carrying wire? Discuss
any connections or similarities between the case of the current-carrying wire and the case
shown in Fig. 31-24. ■

�B
:

�ds: � 
0�0
d� elec

dt
� 
0i enc

B
:

�B
:

�ds: � 
0i enc

B
:

�d s:

B
:

E
:

E
:

B
:

B
:

E
:

�0
0 R r

E

E

E

E

B

B

FIGURE 31-25 ■ A uniform magnetic field
in a circular region. The field, directed

into the page, is increasing in magnitude.
The electric field induced by the chang-
ing magnetic field is shown at four points
on a circle concentric with the circular re-
gion. Compare this situation with that of
Fig. 31-24b.

E
:

B
:

TOUCHSTONE EXAMPLE 31-4: Inducing a Magnetic Field

A parallel-plate capacitor with circular plates of radius R is being
charged as in Fig. 31-24a.

(a) Derive an expression for the magnitude of the magnetic field at
radii r for the case r  R.

S O L U T I O N ■ The Ke y  I d e a here is that a magnetic field can
be set up by a current and by induction due to a changing electric
flux; both effects are included in Eq. 31-32. There is no current be-
tween the capacitor plates of Fig. 31-24, but the electric flux there is

changing. Thus, Eq. 31-32 reduces to

(31-33)

We shall separately evaluate the left and right sides of this equation.
Left side of Eq. 31-33: We choose a circular Ampèrian loop

with a radius r  R as shown in Fig. 31-24, because we want to eval-
uate the magnetic field for r  R—that is, inside the capacitor. The
magnetic field at all points along the loop is tangent to the loop,B

:

�B
:

�ds: � 
0�0
d� elec

dt
.
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31-9 Displacement Current 

If you compare the two terms on the right side of Eq. 31-32, you will see that the
product in the first term must have the units associated with a current.
Since no charge actually flows, historically, that product has been treated as being a
fictitious current called the displacement current idis:

(displacement current). (31-37)

“Displacement” is a poorly chosen term in that nothing is being displaced, but we are
stuck with the word. Nevertheless, we can now rewrite Eq. 31-32 as 

idis � �0
d� elec

dt

�0(d� elec/dt)

as is the path element . Thus, and are either parallel or an-
tiparallel at each point of the loop. For simplicity, assume they are
parallel (the choice does not alter our outcome here). Then

Due to the circular symmetry of the plates, we can also assume that
has the same magnitude at every point around the loop. Thus, B

can be taken outside the integral on the right side of the above
equation. The integral that remains is , which simply gives the
circumference of the loop. The left side of Eq. 31-33 is then

.
Right side of Eq. 31-33: We assume that the electric field is

uniform between the capacitor plates and directed perpendicular to
the plates. Then the electric flux encircled by the Ampèrian
loop is EA, where A is the area encircled by the loop within the
electric field. Thus, the right side of Eq. 31-33 is .

Substituting our results for the left and right sides into 
Eq. 31-33, we get

Because A is a constant, we write d(EA) as A dE, so we have

(31-34)

We next use this Ke y  I d e a : The area A that is encircled by the
Ampèrian loop within the electric field is the full area of the
loop, because the loop’s radius r is less than (or equal to) the plate
radius R. Substituting for A in Eq. 31-34 and solving the result
for B give us, for ,

(Answer) (31-35)

This equation tells us that, inside the capacitor, B increases linearly
with increased radial distance r, from zero at the center of the
plates to a maximum value at the plate edges (where r � R).

(b) Evaluate the field magnitude B for r � R/5 � 11.0 mm and
.dE/dt � 1.50 � 1012 V/m�s

B �

0�0r

2
dE
dt

.

r  R
	r 2

	r 2

B(2	r) � 
0�0A
dE
dt

.

B(2	r) � 
0�0
d(EA)

dt
.


0�0 d(EA)/dt

� elec

E
:

(B)(2	r)
2	r

�ds

B
:

�B
:

�ds: � �B�ds cos 0� � �Bds.

ds:B
:

ds: S O L U T I O N ■ From the answer to (a), we have

(Answer)

(c) Derive an expression for the induced magnetic field for the case
r � R.

S O L U T I O N ■ Our procedure is the same as in (a) except we
now use an Ampèrian loop with a radius r that is greater than the
plate radius R, to evaluate B outside the capacitor. Evaluating the
left and right sides of Eq. 31-33 again leads to Eq. 31-34. However,
we then need this subtle Ke y  I d e a : The electric field exists only
between the plates, not outside the plates. Thus, the area A that is
encircled by the Ampèrian loop in the electric field is not the full
area of the loop. Rather, A is only the plate area .

Substituting for A in Eq. 31-34 and solving the result for B
give us, for r � R,

(Answer) (31-36)

This equation tells us that, outside the capacitor, B decreases with
increased radial distance r, from a maximum value at the plate
edges (where r � R). By substituting r � R into Eqs. 31-35 and
31-36, you can show that these equations are consistent; that is, they
give the same maximum value of B at the plate radius.

The magnitude of the induced magnetic field calculated in (b)
is so small that it can scarcely be measured with simple apparatus.
This is in sharp contrast to the magnitudes of induced electric fields
(Faraday’s law), which can be measured easily. This experimental
difference exists partly because induced emfs can easily be multi-
plied by using a coil of many turns. No technique of comparable
simplicity exists for multiplying induced magnetic fields. In any
case, the experiment suggested by this sample problem has been
done, and the presence of the induced magnetic fields has been ver-
ified quantitatively.

B �

0�0R2

2r
dE
dt

.

	R2
	R2	r 2

� 9.18 � 10�8 T.

� (11.0 � 10�3 m)(1.50 � 1012 V/m�s)

� 1
2(4	 � 10�7 T �m/A)(8.85 � 10�12 C2/N�m2)

B � 1
2 
0�0r

dE
dt
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(Ampère–Maxwell law), (31-38)

in which is the displacement current that is encircled by the integration loop.
Let us again focus on a charging capacitor with circular plates, as in Fig. 31-26a.

The real current i that is charging the plates changes the electric field between the
plates. The fictitious displacement current idis between the plates is associated with
that changing field . Let us relate these two currents.

The amount of excess charge |q| on each of the plates at any time is related to the
magnitude of the field between the plates at that time by Eq. 28-4:

(31-39)

in which A is the plate area. To get the real current i, we differentiate Eq. 31-39 with
respect to time, finding

(31-40)

To get the displacement current idis, we can use Eq. 31-37. Assuming that the electric
field between the two plates is uniform (we neglect any fringing), we can replace
the electric flux in that equation with EA. Then Eq. 31-37 becomes 

(31-41)

Comparing Eqs. 31-40 and 31-41, we see that the real current i charging the capac-
itor and the fictitious displacement current idis between the plates have the same
value:

(displacement current in a capacitor). (31-42)

Thus, we can consider the fictitious displacement current idis to be simply a continua-
tion of the real current i from one plate, across the capacitor gap, to the other plate.
Because the electric field is uniformly spread over the plates, the same is true of this
fictitious displacement current idis, as suggested by the spread of current arrows in Fig.
31-26a. Although no charge actually moves across the gap between the plates, the idea
of the fictitious current idis can help us to quickly find the direction and magnitude of
an induced magnetic field, as follows.

Finding the Induced Magnetic Field
In Chapter 30 we found the direction of the magnetic field produced by a real current
i by using the right-hand rule of Fig. 30-4. We can apply the same rule to find the di-
rection of an induced magnetic field produced by a fictitious displacement current idis,
as shown in the center of Fig. 31-26b for a capacitor.

We can also use idis to find the magnitude of the magnetic field induced by a
charging capacitor with parallel circular plates of radius R. We simply consider the
space between the plates to be an imaginary circular wire of radius R carrying the
imaginary current idis. Then, from Eq. 30-22, the magnitude of the magnetic field at a
point inside the capacitor at radius r from the center is 

(inside a circular capacitor). (31-43)B � � 
0� i dis �
2	R2 �r

i dis � i

� idis � � �0� d� elec

dt � � �0� d(EA)
dt � � �0A� dE

dt �.
� elec

E
:

d� q �
dt

� � i � � �0 A
dE
dt

.

� q � � �0AE,

� E
:

� � E

E
:

E
:

ienc
dis

�B
:

�ds: � 
0i enc
dis � 
0i enc

(a)

(b)

i dis

–

B
Field due

to current i

B
Field due

to current i

+ –

i

i i

+

i

B
Field due

to current i dis

FIGURE 31-26 ■ (a) The displacement
current idis between the plates of a capaci-
tor that is being charged by a current i. (b)
The right-hand rule for finding the direc-
tion of the magnetic field around a wire
with a real current (as at the left) also
gives the magnetic field direction around a
displacement current (as in the center).
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Similarly, from Eq. 30-19, the magnitude of the magnetic field at a point outside the
capacitor at radius r is

(outside a circular capacitor). (31-44)

READI NG EXERC IS E  31-12: Discuss the ways in which it is useful for us to think of
the quantity as a current. ■�0 d�elec/dt

B �

0� idis �

2	r

TOUCHSTONE EXAMPLE 31-5: Displacement Current

The circular parallel-plate capacitor in Touchstone Example 31-4 is
being charged with a current i.

(a) Between the plates, what is the magnitude of , in terms of
and i, at a radius r � R/5 from their center?

S O L U T I O N ■ The first Ke y  I d e a of Touchstone Example 31-
4a holds here too. However, now we can replace the product

in Eq. 31-32 with a fictitious displacement current i dis.
Then integral is given by Eq. 31-38, but because there is no
real current i between the capacitor plates, the equation reduces to

(31-45)

Because we want to evaluate at radius r � R/5 (within the
capacitor), the integration loop encircles only a portion of the
total displacement current i dis. A second Ke y  I d e a is to assume
that idis is uniformly spread over the full plate area. Then the
portion of the displacement current encircled by the loop is propor-
tional to the area encircled by the loop:

This gives us a current magnitude of 

Substituting this into Eq. 31-45, we obtain

(31-46)�B
:

�ds: � 
0idis 	r 2

	R2 .

i enc
dis � i dis 	r 2

	R2 .

(encircled displacement current i enc
dis )

(total displacement current i dis)
�

encircled area 	r 2

full plate area 	R2 .

i enc
dis

� B
:

�ds:

�B
:

�ds: � 
0 i enc
dis .

� B
:

�ds:
�0 d�elec/dt


0

� B
:

�ds:

Now substituting idis = i (from Eq. 31-42) and r = R/5 into Eq. 31-46
leads to

(Answer)

(b) In terms of the maximum induced magnetic field, what is the
magnitude of the magnetic field induced at r = R/5, inside the 
capacitor?

S O L U T I O N ■ The Ke y  I d e a here is that, because the capaci-
tor has parallel circular plates, we can treat the space between the
plates as an imaginary wire of radius R carrying the imaginary cur-
rent idis. Then we can use Eq. 31-43 to find the induced magnetic
field magnitude B at any point inside the capacitor. At r = R/5, that
equation yields

(31-47)

The maximum field magnitude Bmax within the capacitor occurs at 
r � R. It is

(31-48)

Dividing Eq. 31-47 by Eq. 31-48 and rearranging the result, we find

(Answer)

We should be able to obtain this result with a little reasoning and
less work. Equation 31-43 tells us that inside the capacitor, B increases
linearly with r.Therefore, a point the distance out to the full radius R
of the plates, where Bmax occurs, should have a field B that is .1

5B
max

1
5

B �
B max

5
,

B max � � 
0� i dis �
2	R2 �R �


0� i dis �
2	R

.

B � � 
0� idis �
2	R2 �r �


0� idis �(R/5)
2	R2 �


0� idis �
10	R

.

�B
:

�ds: � 
0i
(R/5)2

R2 �

0i
25

.

31-10 Gauss’ Law for Magnetic Fields

In this chapter and the two that precede it, we have investigated several fundamental
aspects of electricity and magnetism. Furthermore, we have seen many ways in which
magnetism and electricity are connected. When combined as a set of laws, these ideas
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provide a framework from which we can understand all of the electromagnetic phe-
nomena that fill our world, much like Newton’s laws do in regard to forces and motion.

However, there remains one last idea that we must discuss before our view of
electromagnetism is complete. This idea is contained in an idea known as Gauss’ law
for magnetic fields. Gauss’ law for magnetic fields is a formal way of saying that mag-
netic monopoles do not exist. The law asserts that the net magnetic flux at any
closed Gaussian surface is zero:

(Gauss’ law for magnetic fields). (31-49)

Contrast this with Gauss’ law for electric fields,

(Gauss’ law for electric fields).

In both equations, the integral is taken over a closed Gaussian surface. Gauss’ law for
electric fields says that this integral (the net electric flux at the surface) is proportional
to the net electric charge q enc enclosed by the surface. Gauss’ law for magnetic fields
says that there can be no net magnetic flux at the surface because there can be no net
“magnetic charge” (individual magnetic poles) enclosed by the surface. The simplest
magnetic structure that can exist and thus be enclosed by a Gaussian surface is a di-
pole, which consists of both a source and a sink for the field lines. Thus, there must al-
ways be as much magnetic flux into the surface as out of it, and the net magnetic flux
must always be zero.

Gauss’ law for magnetic fields holds for more complicated structures than a mag-
netic dipole, and it holds even if the Gaussian surface does not enclose the entire
structure. Gaussian surface II near the bar magnet of Fig. 31-27 encloses no poles, and
we can easily conclude that the net magnetic flux at it is zero. Gaussian surface I is
more difficult to understand. It may seem to enclose only the north pole of the mag-
net because it encloses the label N and not the label S. However, a south pole must be
associated with the lower boundary of the surface, because magnetic field lines enter
the surface there. (The enclosed section is like one piece of the broken cylindrical
magnet in Fig. 31-28.) Thus, Gaussian surface I encloses a magnetic dipole and the net
flux at the surface is zero.

READI NG EXERC IS E  31-13: The figure below shows four closed surfaces with flat
top and bottom faces and curved sides. The table gives the areas A of the faces and the magni-
tudes B of the uniform and perpendicular magnetic fields at those faces; the units of A and B
are arbitrary but consistent. (a) Rank the surfaces according to the magnitudes of the magnetic
flux at their curved sides, greatest first. (b) Explain your reasoning.

Surface Atop , direction Abot , direction

a 2 6, outward 4 3, inward

b 2 1, inward 4 2, inward

c 2 6, inward 2 8, outward

d 2 3, outward 3 2, outward
■

BbotBtop

� elec � �E
:

�dA
:

�
qenc

�0

�mag � �B
:

�dA
:

� 0

�mag
Surface IN

S

Surface II

B

FIGURE 31-27 ■ The field lines for the
magnetic field of a short bar magnet.
The red curves represent cross sections of
closed, three-dimensional Gaussian sur-
faces.

B
:

S

S

S

S

N

N

N

N

FIGURE 31-28 ■ If you break a magnet,
each fragment becomes a separate magnet,
with its own north and south poles.

(a) (b) (c) (d)

φ   = 0
curve
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31-11 Maxwell’s Equations in a Vacuum

Many 18th and 19th century scientists contributed to our understanding of electricity
and magnetism including Franklin, Coulomb, Gauss, Oersted, Biot, Savart, Lorentz,
Ampère, Henry, Faraday, and Maxwell. But it was James Clerk Maxwell who reformu-
lated many of the basic equations describing electric and magnetic effects we have al-
ready presented. A special case of Maxwell’s equations are shown in Table 31-1 for
situations in which no dielectric or magnetic materials are present.

It is amazing that these four rather compact equations can be used to derive a
complete description of all electromagnetic interactions that were understood by the end
of the 19th century. Taken together they describe a diverse range of phenomena, from
how a compass needle points north to how a car starts when you turn the ignition key.
They have been used to design electric motors, cyclotrons, television transmitters and
receivers, telephones, fax machines, radar, and microwave ovens.

In addition, many of the equations you have seen since Chapter 22 can be derived
from Maxwell’s equations. Perhaps the most exciting intellectual outcome of
Maxwell’s equations is their prediction of electromagnetic waves and our eventual
understanding of the self-propagating nature of these waves that will be introduced in
Chapter 34. Maxwell’s picture of electromagnetic wave propagation was not fully ap-
preciated until scientists abandoned the idea that all waves had to propagate through
an elastic medium and accepted Einstein’s theory of special relativity formulated in
the early part of the 20th century.

Because we now know that visible light is a form of electromagnetic radiation,
these equations provide the basis for many of the equations you will see in Chapters
34 through 37, which introduce you to optics and optical devices such as telescopes
and eyeglasses.

The significance of Maxwell’s equations should not be underestimated.
Richard Feynman, a leading famous 20th-century physicist, recognized this when
he stated:

Now we realize that the phenomena of chemical interaction and ultimately of life itself are
to be understood in terms of electromagnetism . . . . The electrical forces, enormous as
they are, can also be very tiny, and we can control them and use them in many ways . . .
From a long view of the history of mankind—seen from, say, ten thousand years from
now—there can be little doubt that the most significant event of the nineteenth century will
be judged as Maxwell’s discovery of the laws of electrodynamics.

TA B L E 31 - 1
Maxwell’s Equations for Vacuuma

Name Equation

Gauss’ law for electricity Relates net electric flux to net
enclosed electric charge

Gauss’ law for magnetism Relates net magnetic flux
to net enclosed magnetic 
charge

Faraday’s law (Eq. 31-7) Relates induced electric field
to changing magnetic flux

Ampère–Maxwell law Relates induced magnetic 
(Eq. 31-32) field to changing electric flux

and to current

aWritten on the assumption that no dielectric or magnetic materials are present.
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0�0
d� elec

dt
� 
0i

�E
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(Eq. 24-7)

(Eq. 31-49)



SEC. 31-4 ■ FARADAY’S LAW

1. UHF Antenna A UHF television loop antenna has a diameter
of 11 cm. The magnetic field of a TV signal is normal to the plane of
the loop and, at one instant of time, its magnitude is changing at the
rate 0.16 T/s. The magnetic field is uniform. What emf is induced in
the antenna?

2. Small Loop A small loop of area A is
inside of, and has its axis in the same di-
rection as, a long solenoid of n turns per
unit length and current i. If i � Imax sin � t,
find the magnitude of the emf induced in
the loop.

3. Magnetic Flux The magnetic flux en-
circled by the loop shown in Fig. 31-29
increases according to the relation
�mag � (6.0 mWb/s2)t2 � (3.7 mWb/s)t. (a)
What is the magnitude of the emf induced
in the loop when t � 2.0 s? (b) What is the
direction of the current through R?

4. Calculate emf The magni-
tude of the magnetic field encir-
cled by a single loop of wire,
12 cm in radius and of 8.5 � re-
sistance, changes with time as
shown in Fig. 31-30. Calculate
the magnitude of the emf in the
loop as a function of time. Con-
sider the time intervals (a) t1 �
0.0 s to t2 � 2.0 s, (b) t2 � 2.0 s to t3 � 4.0 s, (c) t3 � 4.0 s to t4 � 6.0 s.
The (uniform) magnetic field is perpendicular to the plane of the loop.

5. Uniform Magnetic Field A uniform magnetic field is normal to
the plane of a circular loop 10 cm in diameter and made of copper
wire (of diameter 2.5 mm). (a) Calculate the resistance of the wire.
(See Table 26-2.) (b) At what rate must the magnetic field change
with time if an induced current of 10 A is to appear in the loop?

6. Current in Solenoid The current in the solenoid of Touchstone
Example 31-1 changes, not as stated there, but according to i �
(3.0 A/s)t � (1.0A/s2)t2. (a) Plot the
induced emf in the coil from 
t1 � 0.0 s to t2 � 4.0 s. (b) The resis-
tance of the coil is 0.15 �. What is
the current in the coil at t � 2.0 s?

7. Coil Outside Solenoid In Fig. 31-
31 a 120-turn coil of radius 
1.8 cm and resistance 5.3 � is placed

Problems 913

outside a solenoid like that of Touchstone Example 31-1. If the cur-
rent in the solenoid is changed as in that sample problem, what cur-
rent appears in the coil while the solenoid current is being
changed?

8. Elastic Conducting Material An elastic conducting material is
stretched into a circular loop of 12.0 cm radius. It is placed with its
plane perpendicular to a uniform 0.800 T magnetic field. When re-
leased, the radius of the loop starts to shrink at an instantaneous
rate of 75.0 cm/s. What magnitude of emf is induced in the loop at
that instant?

9. Square Loop A square loop of wire is held in a uniform, mag-
netic field 0.24 T directed perpendicularly to the plane of the loop.
The length of each side of the square is decreasing at a constant
rate of 5.0 cm/s. What emf is induced in the loop when the length is
12 cm?

10. Rectangular Loop A rectangular loop (area � 0.15 m2) turns in
a uniform magnetic field, B � 0.20 T. When the angle between the
field and the normal to the plane of the loop is 	 /2 rad and increas-
ing at 0.60 rad/s, what emf is induced in the loop?

SEC. 31-5 ■ LENZ’S LAW

11. Two Parallel Loops Though not
to scale, Fig. 31-32 shows two parallel
loops of wire with a common axis.
The smaller loop (radius r) is above
the larger loop (radius R) by a dis-
tance x � R. Consequently, the mag-
netic field due to the current i in the
larger loop is nearly constant
throughout the smaller loop. Suppose
that x is increasing at the constant
rate of dx/dt � v. (a) Determine the
magnetic flux at the area bounded by
the smaller loop as a function of x. (Hint: See Eq. 30-29.) In the
smaller loop, find (b) the induced emf and (c) the direction of the
induced current.

12. Circular Loop In Fig. 31-33, a circular loop
of wire 10 cm in diameter (seen edge-on) is
placed with its normal at an angle � � 30° with
the direction of a uniform magnetic field of
magnitude 0.50 T. The loop is then rotated such
that the normal rotates in a cone about the field
direction at the constant rate of 100 rev/min;
the angle � remains unchanged during the
process. What is the emf induced in the loop?

B
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READI NG EXERC IS E  31-14: Discuss several ways in which Gauss’ law for electric-
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■
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Ampère–Maxwell law are similar. Discuss several ways in which they are different. ■
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13. Flux At Loop In Fig. 31-29 let the flux encircled by the loop be
�mag(0) at time t1 � 0. Then let the magnetic field vary in a con-
tinuous but unspecified way, in both magnitude and direction, so
that at time t2 the flux is represented by �mag(t2). (a) Show that the
net charge q(t2) that has passed through resistor R in time t2 is

and is independent of the way has changed. (b) If � mag(t2) �
� mag(0) in a particular case, we have q(t2) � 0. Is the induced cur-
rent necessarily zero throughout the interval from 0 to t2?

14. Big Loop, Little Loop A small circular loop of area 2.00 cm2 is
placed in the plane of, and concentric with, a large circular loop of
radius 1.00 m. The current in the large loop is changed uniformly
from 200 A to �200 A (a change in direction) in a time of 1.00 s, be-
ginning at t1 � 0. (a) What is the magnitude of the magnetic field at
the center of the small circular loop due to the current in the large
loop at t1 � 0 s, t2 � 0.500 s, and t3 � 1.00 s? (b) What is the magni-
tude of the emf induced in the small loop at t2 � 0.500 s? (Since the
inner loop is small, assume the field due to the outer loop is uni-
form over the area of the smaller loop.)

15. Copper Wire on Wooden Core One hundred turns of insulated
copper wire are wrapped around a wooden cylindrical core of
cross-sectional area 1.20 � 10�3 m2. The two ends of the wire are
connected to a resistor. The total resistance in the circuit is 13.0 �.
If an externally applied uniform longitudinal magnetic field in the
core changes from 1.60 T in one direction to 1.60 T in the opposite
direction, how much charge flows through the circuit? (Hint: See
Problem 13.)

16. Earth’s Field At a certain place, Earth’s magnetic field has
magnitude � 0.590 gauss and is inclined downward at an angle
of 70.0° to the horizontal. A flat horizontal circular coil of wire with
a radius of 10.0 cm has 1000 turns
and a total resistance of 85.0 �. It is
connected to a meter with 140 � re-
sistance. The coil is flipped through
a half-revolution about a diameter,
so that it is again horizontal. How
much charge flows through the
meter during the flip? (Hint: See
Problem 13.)

17. Square Loop A square wire
loop with 2.00 m sides is perpendic-
ular to a uniform magnetic field,
with half the area of the loop in the
field as shown in Fig. 31-34. The loop
contains a 20.0 V battery with negli-
gible internal resistance. If the mag-
nitude of the field varies with time
according to � (0.0420 T) �
(0.870 T/s)t, what are (a) the magni-
tude of the net emf in the circuit and
(b) the direction of the current
through the battery?

18. Three Circular Segments A
wire is bent into three circular seg-
ments, each of radius r � 10 cm, as
shown in Fig. 31-35. Each segment is

B

�B
:

�

B
:

B
:

q(t2) �
1
R

 [� mag(0) � � mag(t2)]

B
:

a quadrant of a circle, ab lying in the xy plane, bc lying in the yz
plane, and ca lying in the zx plane. (a) If a uniform magnetic field
points in the positive x direction, what is the magnitude of the emf
developed in the wire when increases at the rate of 3.0 mT/s in
the x direction? (b) What is the direction of the current in segment
bc?

19. Rectangular Coil A rectangular coil of N turns and of length a
and width b is rotated at frequency f in a uniform magnetic field ,
as indicated in Fig. 31-36. The coil is connected to co-rotating
cylinders, against which metal brushes slide to make contact. If we
arbitrarily define emf as being positive during the first quarter-turn,
(a) show that the emf induced in the coil is given (as a function of
time t) by

This is the principle of the commercial alternating-current genera-
tor. (b) Design a loop that will produce an emf with �0 � 150 V
when rotated at 60.0 rev/s in a uniform magnetic field of 0.500 T.

� � 2	fNabBsin(2	ft) � �0 sin(2	ft).
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20. Semicircle A stiff wire
bent into a semicircle of radius
a is rotated with frequency f in
a uniform magnetic field, as
suggested in Fig. 31-37. What
are (a) the frequency and (b)
the amplitude of the varying
emf induced in the loop?

21. Electric Generator An
electric generator consists of
100 turns of wire formed into a
rectangular loop 50.0 cm by 30.0 cm, placed entirely in a uniform
magnetic field with magnitude � 3.50 T. What is the maximum
value of the emf produced when the loop is spun at 1000 rev/min
about an axis perpendicular to ?

22. Closed Circular Loop In
Fig. 31-38, a wire forms a closed cir-
cular loop, with radius R � 2.0 m
and resistance 4.0 �. The circle is
centered on a long straight wire; at
time t � 0, the current in the long
straight wire is 5.0 A rightward.
Thereafter, the current changes ac-
cording to i � 5.0 A � (2.0 A/s2)t2.
(The straight wire is insulated, so
there is no electrical contact between it and the wire of the loop.)
What are the magnitude and direction of the current induced in the
loop at times t � 0?
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23. Square Loop Two In Fig. 31-39,
the square loop of wire has sides of
length 2.0 cm. A magnetic field is di-
rected out of the page; its magnitude is
given by � (4.0 T/m � s2) t 2y, where

is in teslas, t is in seconds, and y is in
meters. Determine the emf around the
square at t � 2.5s and indicate
whether its direction is clockwise or
counterclockwise.

24. Square Loop Three For the
situation shown in Fig. 31-40, a � 12.0
cm and b � 16.0 cm. The current
in the long straight wire is given
by ,
where i is in amperes and t is in sec-
onds. (a) Find the magnitude of the
emf in the square loop at t � 3.00 s.
(b) Indicate whether the direction of
the induced current in the loop is
clockwise or counterclockwise at t �
3.00 s.

25. Parallel Copper Wires Two
long, parallel copper wires of diameter 2.5 mm carry currents of 10
A in opposite directions. (a) Assuming that their central axes are 20
mm apart, calculate the magnetic flux per meter of wire that exists
in the space between those axes. (b) What fraction of this flux lies
inside the wires? (c) Repeat part (a) for parallel currents.

26. Rectangular Wire Loop A rectangular loop of wire with length
a, width b, and resistance R is placed near an infinitely long wire car-
rying current i, as shown in Fig.
31-41. The distance from the long
wire to the center of the loop is r.
Find (a) the magnitude of the mag-
netic flux encircled by the loop and
(b) the amount of induced current in
the loop as it moves away from
the long wire with velocity . (c) In-
dicate whether the induced current
is clockwise or counterclockwise.

SEC 31-6 ■ INDUCTION AND ENERGY TRANSFERS

27. Internal Energy If 50.0 cm of copper wire (diameter � 1.00 mm)
is formed into a circular loop and placed perpendicular to a uni-
form magnetic field that is increasing at the constant rate of 10.0
mT/s, at what rate does internal energy increase in the loop?

28. Loop Antenna A loop antenna of area A and resistance R is
perpendicular to a uniform magnetic field . The field drops lin-
early to zero in a time interval �t. Find an expression for the total
internal energy added to the loop.

29. Rod on Rails A metal rod is
forced to move with constant veloc-
ity along two parallel metal rails,
connected with a strip of metal at
one end, as shown in Fig. 31-42. A
magnetic field of magnitude �
0.350 T points out of the page. (a) If

� B
:

�

v:

B
:

v:
� i ind �

i � (4.50 A/s2)t 2 � (10.0 A/s)t

B
B
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the rails are separated by 25.0 cm and the speed of the rod is 55.0
cm/s, what emf is generated? (b) If the rod has a resistance of 18.0
� and the rails and connector have negligible resistance, what is the
current in the rod? (c) At what rate is mechanical energy being
transformed to thermal energy?

30. Find Terminal Speed In Fig. 31-
43, a long rectangular conducting
loop, of width L, resistance R, and
mass m, is hung in a horizontal, uni-
form magnetic field that is di-
rected into the page and that exists
only above line aa. The loop is then
dropped; during its fall, it acceler-
ates until it reaches a certain termi-
nal speed . Ignoring air drag, find
that terminal speed.

31. Rod on Rails Two The conduct-
ing rod shown in Fig. 31-42 has
length L and is being pulled along
horizontal, frictionless conducting
rails at a constant velocity . The rails are connected at one end
with a metal strip. A uniform magnetic field , directed out of the
page, fills the region in which the rod moves. Assume that L � 10
cm, m/s, and (a) What is the magnitude of the
emf induced in the rod? (b) What is the magnitude and direction
(clockwise or counterclockwise) of the current in the conducting
loop? Assume that the resistance of the rod is 0.40 � and that the
resistance of the rails and metal strip is negligibly small. (c) At what
rate is thermal energy added to the rod? (d) What magnitude of
force must be applied to the rod by an external agent to maintain
its motion? (e) At what rate does this external agent do work on
the rod? Compare this answer with the answer to (c).

32. Rods Bent into V Two straight
conducting rails form a right angle
where their ends are joined. A con-
ducting bar in contact with the rails
starts at the vertex at time t � 0 and
moves with a constant velocity of
magnitude 5.20 m/s along them, as
shown in Fig. 31-44. A magnetic field
of magnitude � 0.350 T is di-
rected out of the page. Calculate (a)
the flux through the triangle formed by the rails and bar at t � 3.00
s and (b) the magnitude of emf around the triangle at that time. (c)
If we write the emf as � � atn, where a and n are constants, what is
the value of n?

33. Rod on Conducting Rails Two
Figure 31-45 shows a rod of length L
caused to move at constant speed v
along horizontal conducting rails.
The magnetic field in which the rod
moves is not uniform but is provided
by a current i in a long wire parallel
to the rails. Assume that v � 5.00
m/s, a � 10.0 mm, L � 10.0 cm, and
i � 100 A. (a) Calculate the magni-
tude of the emf induced in the rod.
(b) What is the magnitude of the
current in the conducting loop?
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Assume that the resistance of the rod is 0.400 � and that the resis-
tance of the rails and the strip that connects them at the right is
negligible. (c) At what rate is internal energy added to the rod? (d)
What magnitude of force must be applied to the rod by an external
agent to maintain its motion? (e) At what rate does this external
agent do work on the rod? Compare this answer to that for (c).

SEC. 31-7 ■ INDUCED ELECTRIC FIELDS

34. Two Circular Regions Figure
31-46 shows two circular regions R1

and R2 with radii r1 � 20.0 cm and
r2 � 30.0 cm. In R1 there is a uni-
form magnetic field of magnitude
B1 � 50.0 mT into the page, and in
R2 there is a uniform magnetic field
of magnitude B2 � 75.0 mT out of
the page (ignore any fringing of
these fields). Both fields are de-
creasing at the rate of 8.50 mT/s.
Calculate the integral for
each of the three dashed paths.

35. Long Solenoid A long solenoid has a diameter of 12.0 cm.
When a current i exists in its windings, a uniform magnetic field of
magnitude � 30.0 mT is produced in its interior. By decreasing i,
the field is caused to decrease at the rate of 6.50 mT/s. Calculate the
magnitude of the induced electric field (a) 2.20 cm and (b) 8.20 cm
from the axis of the solenoid.

36. Magnet Lab Early in 1981 the Francis Bitter National Magnet
Laboratory at M.I.T. commenced operation of a 3.3-cm-diameter
cylindrical magnet that produces a 30 T field, then the world’s
largest steady-state field. The field magnitude can be varied sinu-
soidally between the limits of 29.6 and 30.9 T at a frequency of
15 Hz. When this is done, what is the maximum value of the magni-
tude of the induced electric field at a radial distance of 1.6 cm from
the axis? (Hint: See Touchstone Example 31-3.)

37. Drop to Zero Prove that the electric field in a charged
parallel-plate capacitor cannot drop abruptly to zero (as is sug-
gested at point a in Fig. 31-47), as one moves perpendicular to the
field, say, along the horizontal arrow
in the figure. Fringing of the field
lines always occurs in actual capaci-
tors, which means that approaches
zero in a continuous and gradual
way (see Problem 35 in Chapter 30).
(Hint: Apply Faraday’s law to the
rectangular path shown by the
dashed lines).

SEC 31-8 ■ INDUCED MAGNETIC FIELDS

38. Charging Capacitor Touchstone Example 31-4 describes the
charging of a parallel-plate capacitor with circular plates of radius
55.0 mm. At what two radii r from the central axis of the capacitor
is the magnitude of the induced magnetic field equal to 50% of its
maximum value?

39. Induced Magnetic Field The induced magnetic field 6.0 mm
from the central axis of a circular parallel-plate capacitor and

E
:

E
:

B

�E
:

� ds:

between the plates has magnitude of 2.0 � 10�7 T. The plates have
radius 3.0 mm. At what rate is the electric field magnitude
between the plates changing?

40. Parallel-Plate Capacitor Suppose that a parallel-plate capaci-
tor has circular plates with radius R � 30 mm and a plate separa-
tion of 5.0 mm. Suppose also that a sinusoidal potential difference
with a maximum value of 150 V and a frequency of 60 Hz is applied
across the plates. That is,

�V � (150 V) sin[2	(60 Hz)t].

(a) Find , the maximum value of the magnitude of the
induced magnetic field that occurs at r � R. (b) Plot B max(r) for 0 �
r � 10 cm.

41. Uniform Electric Flux Figure 31-48 shows a
circular region of radius R � 3.00 cm in which
a uniform electric flux is directed out of the
page. The total electric flux enclosed by the re-
gion is given by � elec � (3.00 mV � m/s)t, where
t is time. What is the magnitude of the magnetic
field that is induced at radial distances (a) 2.00
cm and (b) 5.00 cm?

42. Nonuniform Electric Flux Figure 31-48
shows a circular region of radius R � 3.00 cm
in which an electric flux is directed out of the
page. The flux encircled by a concentric circle of radius r is given by
�elec � (0.600 V � m/s)(r/R)t, where r  R and t is time. What is
the magnitude of the induced magnetic field at radial distances
(a) 2.00 cm and (b) 5.00 cm?

43. Uniform Electric Field In Fig. 31-48, a  uniform electric field is
directed out of the page within a circular region of radius R �
3.00 cm. The magnitude of the electric field is given by E � (4.5 �
10�3 V/m � s)t, where t is time. What is the magnitude of the induced
magnetic field at radial distances (a) 2.00 cm and (b) 5.00 cm?

44. Nonuniform Electric Field In Fig. 31-48, an electric field is
directed out of the page within a circular region of radius R �
3.00 cm. The magnitude of the elec-
tric field is given by E �
(0.500 V/m � s)(1 � r/R)t, where t is
the time and r is the radial distance
(r  R). What is the magnitude of
the induced magnetic field at radial
distances (a) 2.00 cm and (b) 5.00
cm?

45. Discharging Capacitor A capac-
itor with square plates of edge
length L is being discharged by a
current of 0.75 A. Figure 31-49 is a
head-on view of one of the plates
from inside the capacitor. A dashed
rectangular path is shown. If L � 12 cm,
W � 4.0 cm, and H � 2.0 cm, what is the
value of around the dashed path?

46. Charging Capacitor The circuit in
Fig. 31-50 consists of switch S, a 12.0 V
ideal battery, a 20.0 M� resistor, and an
air-filled capacitor. The capacitor has
parallel circular plates of radius 5.00 cm,

�B
:

�ds:

B max(R)

� dE
:

/dt �
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separated by 3.00 mm. At time t � 0 s, switch S is closed to begin
charging the capacitor. The electric field between the plates is uni-
form. At t � 250 
s, what is the magnitude of the magnetic field
within the capacitor, at radial distance 3.00 cm?

SEC. 31-9 ■ DISPLACEMENT CURRENT

47. Prove That Displacement Prove that the displacement current
in a parallel-plate capacitor of capacitance C can be written as i dis �
C(d�V/dt), where �V is the potential difference between the plates.

48. At What Rate At what rate must the potential difference be-
tween the plates of a parallel-plate capacitor with a 2.0 
F capaci-
tance be changed to produce a displacement current of 1.5 A?

49. Current Density For the situation of Touchstone Example 31-4,
show that the magnitude of the current density of the displacement
current is for r  R.

50. Being Discharged A parallel-plate capacitor with circular
plates of radius 0.10 m is being discharged. A circular loop of radius
0.20 m is concentric with the capacitor and halfway between the
plates. The displacement current through the loop is 2.0 A. At what
rate is the magnitude of the electric field between the plates chang-
ing?

51. Displacement Current As a parallel-plate capacitor with circu-
lar plates 20 cm in diameter is being charged, the current density of
the displacement current in the region between the plates is uni-
form and has a magnitude of 20 A/m2. (a) Calculate the magnitude
B of the magnetic field at a distance r � 50 mm from the axis of
symmetry of this region. (b) Calculate in this region.

52. Electric Field The magnitude of the
electric field between the two circular par-
allel plates in Fig. 31-51 is E � (4.0 �
105 V � m) � (6.0 � 104 V � m/s)t, with E in
volts per meter and t in seconds. At t �
0 s, the field is upward as shown. The plate
area is 4.0 � 10�2 m2. For t � 0 s, (a) what
are the magnitude and direction of the 
displacement current between the plates
and (b) is the direction of the induced 
magnetic field clockwise or counterclockwise around the plates?

53. Magnitude of Electric Field The magnitude of a uniform elec-
tric field collapses to zero from an initial strength of 6.0 � 105 N/C
in a time of 15 
s in the manner shown in Fig. 31-52. Calculate 
the amount of displacement current, through a 1.6 m2 area
perpendicular to the field, during each of the time intervals, a, b,
and c shown on the graph. (Ignore the behavior at the ends of the
intervals.)

� i �,

dE/dt

Jdis � � 0 (dE/dt)
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54. Displacement Current Two A parallel-plate capacitor with cir-
cular plates is being charged. Consider a circular loop centered on
the central axis between the plates. The loop radius is 0.20 m, the
plate radius is 0.10 m, and the displacement current through the
loop is 2.0 A. What is the rate at which the magnitude of the electric
field between the plates is changing?

55. Square Plates A parallel-
plate capacitor has square
plates 1.0 m on a side as shown
in Fig. 31-53. A current of 2.0 A
charges the capacitor, produc-
ing a uniform electric field
between the plates, with per-
pendicular to the plates. (a)
What is the displacement cur-
rent i dis through the region be-
tween the plates? (b) What is in this region? (c) What is the
displacement current through the square dashed path between the
plates? (d) What is around this square dashed path?

56. Consider a Loop A capacitor with parallel circular plates of
radius R is discharging via a current of 12.0 A. Consider a loop of
radius R/3 that is centered on the central axis between the plates.
(a) How much displacement current is encircled by the loop? The
maximum induced magnetic field has a magnitude of 12.0 mT.
(b) At what radial distance from the central axis of the plate is the
magnitude of the induced magnetic field 3.00 mT?

57. Uniform Displacement-Current Density. Figure 31-48 shows
a circular region of radius R � 3.00 cm in which a displacement
current is directed out of the page. The magnitude of the displace-
ment current has a uniform density J dis � 6.00 A/m2. What is the
magnitude of the magnetic field due to the displacement current at
radial distances (a) 2.00 cm and (b) 5.00 cm?
58. Actual and Displacement
Figure 31-54a shows current i
that is produced in a wire of re-
sistivity 1.62 � 10�8 � � m in the
direction indicated. The magni-
tude of the current versus time t
is shown in Fig. 31-54b. Point P is
at radius 9.00 mm from the
wire’s center. Determine the
magnitude of the magnetic field
at point P due to the real current
i in the wire at (a) t1 � 20 ms, (b)
t2 � 40 ms, (c) t3 � 60 ms, and
(d) t4 � 70 ms. Next, assume that
the electric field driving the cur-
rent is confined to the wire.
Then determine the magnitude
of the magnetic field at point P due to the displacement current idis

in the wire at (e) t1 � 20 ms, (f) t2 � 40 ms, (g) t3 � 60 ms, and (h) 
t4 � 70 ms. (i) When both magnetic fields are present at point P,
what are their directions in Fig. 31-54a?

59. Nonuniform Displacement-Current Density. Figure 31-48 shows
a circular region of radius R � 3.00 cm in which a displacement cur-
rent is directed out of the page. The displacement current has a den-
sity of magnitude J dis � (4.00 A/m2)(1 � r/R), where r is the radial
distance r  R.What is the magnitude of the magnetic field due to the
displacement current at radial distances (a) 2.00 cm and (b) 5.00 cm?
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60. Uniform Displacement Current. Figure 35-48 shows a circular
region of radius R � 3.00 cm in which a uniform displacement cur-
rent idis � 0.500 A is directed out of the page. What is the magni-
tude of the magnetic field due to the displacement current at radial
distances (a) 2.00 cm and (b) 5.00 cm?

SEC. 31-10 ■ GAUSS’ LAW FOR MAGNETIC FIELDS

61. Rolling a Sheet of Paper Imagine rolling a sheet of paper
into a cylinder and
placing a bar magnet
near its end as shown
in Fig. 31-55. (a)
Sketch the magnetic
field lines that pass
through the surface of the cylinder. (b) What can you say about the
sign of for every area on the surface? (c) Does this re-
sult contradict Gauss’ law for magnetism? Explain.

62. Die Suppose the magnetic flux at each of five faces of a die
(singular of “dice”) is given by �mag � �N Wb, where N( � 1 to 5)

dA
:

B
:

� dA
:

is the number of spots on the face. The flux is positive (outward) for
N even and negative (inward) for N odd. What is the flux at the
sixth face of the die? Is it directed in or out?

63. Right Circular Cylinder A Gaussian surface in the shape of a
right circular cylinder with end caps has a radius of 12.0 cm and a
length of 80.0 cm. One end encircles an inward
magnetic flux of 25.0 
Wb. At the other end
there is a uniform magnetic field of 1.60 mT,
normal to the surface and directed outward.
What is the net magnetic flux at the curved sur-
face?

64. Weird Shape Figure 31-56 shows a closed
surface. Along the flat top face, which has a ra-
dius of 2.0 cm, a magnetic field of magnitude
0.30 T is directed outward. Along the flat bot-
tom face, a magnetic flux of 0.70 mWb is di-
rected outward. What are (a) the magnitude
and (b) the net magnetic flux at the curved part
of the surface?

B
:
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Additional Problems

65. Power from a Tether A few
years ago, the space shuttle Co-
lumbia tried an experiment with
a tethered satellite. The satellite
was released from the shuttle
and slowly reeled out on a long
conducting cable as shown in Fig.
31-57 (not to scale). For this
problem we will make the fol-
lowing approximations:

The shuttle is moving at a
constant velocity.

The Earth’s magnetic field is
constant and uniform.

The line of the tether, the
velocity of the system, and
the magnetic field are all
perpendicular to each other.

The Earth’s field produces an
emf from one end of the cable to
the other. The idea is to use a system like this to generate electric
power in space more efficiently than with solar panels.

(a) Explain why a voltage difference is produced.
(b) If the Earth’s magnetic field is given by a magnitude , the
shuttle– satellite system is moving with a velocity , and the tether
has a length L, calculate the magnitude of the emf � from one end
of the tether to the other.
(c) At the shuttle’s altitude, the Earth’s field is about 0.3 gauss and
the shuttle’s speed is about 7.5 km/s. The tether is 20 km long (!).
What is the expected potential difference in volts?
(d) At the altitude of the shuttle, the thin atmosphere is lightly ion-
ized, allowing a current of about 0.5 amps to flow from the satellite

v:
B
:

back to the shuttle through the thin air. What is the resistance of
the 20 km of ionized air?

66. Building a Generator The apparatus shown in Fig. 31-58 can be
used to build a motor. This device can also be used to build a gener-
ator that will produce
a voltage. (a) Explain
the setup that one
would use to make a
motor and explain
how it works. Do the
same for the genera-
tor. (b) Estimate the
maximum voltage that
would be produced if
you cranked the gen-
erator by hand. (Hint:
As a comparison for
estimating the strength
of the bar magnet, the
Earth’s magnetic field
at our location is about
0.4 gauss.)

67. Faraday’s Law Faraday’s law describes the emf produced by
magnetic fields in a variety of circumstances. State and discuss
Faraday’s law, being careful to include a discussion of different
physical situations that may be described by the statement of the
law.

68. Magnetic Field, Force, and Torque Figure 31-59 shows two long,
current-carrying wires and a bar magnet. At the right is shown a
compass specifying set of direction labels. For each of the vectors
(a)–(e) below, select the direction label that best gives the direction
of the item. If the magnitude of the item is zero, write 0. If none of
the directions are correct, write N.

B

v

FIGURE 31-57 ■ Problem 65.
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(a) The magnetic field due to the lower wire at the center of the
upper wire
(b) The force on the lower wire due to the magnetic field from the
upper wire
(c) The net torque acting on the upper wire
(d) The magnetic field due to the currents at the center of the mag-
net
(e) The net force acting on the lower wire due to the bar magnet

69. B Increases in Time In Fig. 31-60a, a uniform magnetic field 
increases in magnitude with time t as given by Fig. 31-60b. A circu-
lar conducting loop of area 8.0 � 10�4 m2 lies in the field, in the
plane of the page. The amount of charge q that has passed point A
on the loop is given in Fig. 31-60c as a function of t. What is the
loop’s resistance?

B
:
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72. Two Concentric Regions Figure 31-63a shows two concentric
circular regions in which uniform magnetic fields can change. Re-
gion 1, with radius r1 � 1.0 cm, has an outward magnetic field 
that is increasing in magnitude. Region 2, with radius r2 � 2.0 cm,
has an outward magnetic field that may also be changing. Imag-
ine that a conducting ring of radius R is centered on the two regions
and then the emf � around the ring is determined. Figure 31-63b
gives emf � as a function of the square of the ring’s radius, R2, to
the outer edge of region 2. What are the rates of B-field magnitude
change (a) dB1/dt and (b) dB2/dt? (c) Is the magnitude of in-
creasing, decreasing, or remaining constant?
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70. Circular Loop Around a Solenoid In Fig. 31-61a, a circular loop
of wire is concentric with a solenoid and lies in a plane that is per-
pendicular to the solenoid’s central axis. The loop has radius 6.00 cm.
The solenoid has radius 2.00 cm, consists of 8000 turns per meter, and
has a current isol that varies with time t as given in Fig. 31-61b. Figure
31-61c shows, as a function of time, the energy E thermal that is trans-
formed to thermal energy in the loop. What is the loop’s resistance?

71. Magnitudes and Direction Figure 31-62a shows a wire that
forms a rectangle and has a resistance of 5.0 m�. Its interior is split
into three equal areas with different magnetic fields , and 
that are either directly out of or into the page, as indicated. The
fields are uniform within each region. Figure 31-62b gives the
change in the z components Bz of the three fields with time t. What
are the magnitude and direction of the current induced in the wire?

B
:

3B
:

1, B
:

2

73. Pulled at Constant Speed Figure 31-64a shows a rectangular
conducting loop of resistance R � 0.020 �, height H � 1.5 cm, and
length D � 2.5 cm being pulled at constant speed v � 40 cm/s
through two regions of uniform magnetic field. Figure 31-64b gives
the current i induced in the loop as a function of the position x of
the right side of the loop. For example, a current of 3.0 
A is in-
duced clockwise as the loop enters region 1. What are the magni-
tudes and directions of the magnetic field in (a) region 1 and (b)
region 2?



74. Plane Loop A plane loop of wire consisting of a single turn of
area 8.0 cm2 is perpendicular to a magnetic field that increases
uniformly in magnitude from 0.50 T to 2.5 T in a time of 1.0 s.
What is the resulting induced current if the coil has a total resis-
tance of 2.0 �?

75. At What Rate Must B Change The plane of a rectangular coil
of dimensions 5.0 cm by 8.0 cm is perpendicular to the direction of
magnetic field B. If the coil has 75 turns and a total resistance of
8.0 �, at what rate must the magnitude of B change in order to in-
duce a current of 0.10 A in the windings of the coil?

76. Rod on Rails 3 In the arrangement shown in Fig. 31-65, a con-
ducting rod rolls to the right along parallel conducting rails con-
nected on one end by a 6.0 � resistor. A 2.5 T magnetic field is di-
rected into the paper. Let L � 1.2 m. Neglect the mass of the bar
and friction. (a) Calculate the applied force required to move the
bar to the right at a constant speed of 2.0 m/s. (b) At what rate is en-
ergy dissipated in the resistor?

ing to check on the validity of the results that have been reported
without doing any formal calculations or measurements. Sketches
from the engineer’s notebook are shown in Fig. 31-66b. (a) Look at
the graph pair in Fig. 31-66b. Sketch the measured emf induced in
the pickup coil if the engineer has adjusted the scope so the maxi-
mum emf is the first positive grid line and the minimum emf is on
the first negative grid line. Assume that the normal to each of the
coils is pointing in the same direction. (b) According to the engi-
neer’s notebook, she fed exactly the same pattern of current to the
field coil but she turned the pickup coil so its normal makes an an-
gle of �45° with respect to the normal to the plane of the field coil.
Carefully sketch the pattern of emf observed in the pickup coil.
What is the maximum and minimum amplitude of the emf in “grid”
units? (c) What happens when she flips the pickup coil over around
so its normal is 180° from the normal to the field coil? Sketch the
emf and use the correct signs for the values of the induced emf for
this situation. Explain the reasons for the shape and magnitude of
your sketch in each case.
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77. An Engineer An engineer has designed a setup with a small
pickup coil placed in the center of a large field coil as shown in
Fig. 31-66. Both coils have many turns of conducting wire. The field
coil produces a magnetic field that is proportional in magnitude to
the amount of current flowing through its wires. The pickup coil is
smaller and its many turns can sense or “pick up” the changing
magnetic field in the field coil. The pickup coil produces an emf that
is proportional in magnitude to the rate of change of the magnetic
field and the angle �. Here � is the angle between the normal to the
field coil and the normal to the pickup coil. You have been hired as
a consultant to check on the reliability of the engineer’s work. You
figure out how to use Faraday’s law along with proportional reason- once again the normal to the pickup coil is in the same direction as

the normal to the field coil. Please take care to sketch not only the
shape of the emf graph but also its proper magnitude using the same
gain setting on the oscilloscope as you did in Problem 77. Use a solid
line for your sketch. (b) Suppose the engineer reduced the number
of turns in the pickup coil by a factor of 2 and redid the measure-
ments. Sketch a new graph showing the shape and proper magni-
tudes for the expected pickup coil emf using a dashed line. Explain
the reasons for the shape and magnitude of your sketch in each case.

79. Engineer Task 3 You are still double-checking the work of the
engineer from Problem 31-77. Assume that the number of turns in
both the field and pickup coils is the same as in that problem, as is
the oscilloscope setting. Consider the graph shown in Fig. 31-68. (a)
What should our honest and competent engineer have reported for
the pattern of current fed into the field coil as a function of time?
Assume that once again the normal to the pickup coil is in the same

A.+

0 0

–C
ur

re
n

t (
am

ps
)

Field coil
+

–

em
f (

m
V

)

Time (ms) Time (ms)

Pickup coil

FIGURE 31-66b ■ Problem 77.

78. Engineer Task 2 You are still double-checking the work of the
engineer from Problem 77. Consider the graph shown in Fig. 31-67.
(a) What should our honest and competent engineer have reported
for the pattern of emf values as a function of time? Assume that



direction as the normal to the field coil. Please take care to sketch
not only the shape of the emf graph but also its proper magnitude
using the same gain setting on the oscilloscope as you did in
Problem 31-77. Use a solid line for your sketch. (b) Suppose the en-
gineer reduced the number of turns in the pickup coil by a factor of
2 and redid the measurements. Sketch a new graph showing the
shape and proper magnitudes for emf in the field coil using a
dashed line. Explain the reasons for the shape and magnitude of
your sketch in each case.

80. Engineer Task 4 You are still double-checking the work of
the engineer from Problem 31-77. Assume that the number of
turns in both the field and pickup coils is the same as in that
problem. Consider the graph shown in Fig. 31-69. What should
our honest and competent engineer have reported for the pattern
of emf induced in the pickup coil if the oscilloscope gain is ad-
justed to give a maximum value of emf of �2 oscilloscope grid
units and a minimum value of �2 oscilloscope units? (Hint: What
is the derivative of the sine function?) Explain the reason for the
shape and magnitude of your sketch in each case.
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81. Ring of Copper
Figure 31-70 shows a
ring of copper with its
plane perpendicular to
the axis of the nearby
rod-shaped magnet. In
which of the following
situations will a current
be induced in the ring?
Choose all correct an-
swers.

(a) The magnet is moved
horizontally toward the
left.
(b) The ring is moved away from the magnet.
(c) The ring is rotated around any of its diameters.
(d) The magnet is moved up or down.
(e) The ring is rotated around its center in the plane in which it
lies.
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32 Inductors and
Magnetic Materials 

This is a microscopic view of a

bacterium found in Australia

that will swim to the muddy

bottom of a pond to escape

oxygen in its environment and

find the nutrients it needs to

survive. But if this bacterium

were transported to a pond in

the United States, it would

swim to the top of the pond

and die.

How does this
bacterium know 
how to swim down in
Australia but 
not in the U.S.?

The answer is in this
chapter.



32-1 Introduction

In the previous chapter we described how an electric car or toothbrush could be
charged without electrical contacts. Likewise the guitar pickup described in Section
31-5 amplifies sound. These devices make practical use of inductance. In this chapter
we consider some additional practical uses of inductance phenomena in common
electric circuit elements known as inductors and transformers. You will consider the
basic behaviors of these elements in circuits where the voltage changes in time. Then
you will move on to what appears to be an unrelated topic—the behavior of magnetic
materials.

The simplest magnetic structure contained in magnetic materials is a magnetic di-
pole. We will trace the origin of magnetic dipoles, and the associated magnetic proper-
ties of materials back to atoms and electrons. You will then reconsider inductors and
transformers and learn how magnetic materials can be used to enhance their perfor-
mance. Some of the first inductors are pictured in Fig. 32-1.

Finally, we will discuss recent theories that enable us explain why the Earth be-
haves like a huge magnetic dipole, and we will consider the possible role induction
plays in explaining the characteristics and changing nature of the Earth’s magnetic
field.

32-2 Self-Inductance

Let’s explore how the phenomenon of inductance introduced in the previous chapter
can be useful in the design of electric circuits with changing currents. In Section 31-3
we saw that when two coils are near each other, a changing current in one of the coils
can induce an emf in the other according to Faraday’s law (� � �Nd �mag/dt). But if
the second coil is part of an electric circuit, the current induced in it can also induce
an emf in the first coil. This phenomenon, known as mutual induction, is used in the
design of inductive chargers—noncontact charging systems like those used for electric
toothbrushes and other devices. In multiple-loop coils the emfs produced by mutual
induction are proportional to the number of loops in the coil. For this reason mutual
induction is also used in the design of transformers—devices that can transform time-
varying voltages to larger or smaller time-varying voltages.

In addition, when current in a single coil with one or more loops changes, this in-
duces an emf in the same coil. This emf is produced as the result to the changing flux
the coil produces in the area it encloses. This process is known as self induction. In
general,

A self-induced emf appears in any coil whenever its current is changing.

According to Lenz’s law the self-induced emf acts to oppose the change of cur-
rent in the coil. For this reason, coils of wire called inductors (sometimes called
“chokes”) are useful in circuits whenever it is desirable to stabilize currents. In a cir-
cuit diagram, an inductor is denoted by a symbol that looks like helical loops of wire
( ). See Figs. 32-2 and 32-3. In addition, inductors can be combined with resistors
and capacitors to modify the characteristics in circuits driven by oscillating voltage
sources. In this chapter we consider the role of inductors in stabilizing currents. In the
next chapter we will study the behavior of inductors in circuits with oscillating
voltages.

A typical inductor consists of a wire that is coiled into a very large number of
loops wrapped around a piece of hollow cardboard or perhaps a magnetic rod. Induc-
tors come in many shapes. A common shape is a solenoid, which consists of a tightly

�L
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FIGURE 32-1 ■ The crude inductors with
which Michael Faraday discovered the law
of induction. In those days amenities such
as insulated wire were not commercially
available. It is said that Faraday insulated
his wires by wrapping them with strips cut
from one of his wife’s petticoats.
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FIGURE 32-2 ■ If the current in a coil is
changed by varying the contact position on
a variable resistor, a self-induced emf 
will appear in the coil while the current is
changing.
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wound helical coil of wire—like the one Faraday wound shown in the lower part of
Fig. 32-1. Because the magnetic field inside a solenoid is very uniform, it is not difficult
to calculate the emfs created by current changes in solenoids. For this reason, we shall
consider a solenoid as our basic type of inductor. Also, at first we assume that all in-
ductors are air-core inductors that have no magnetic materials such as iron in their
vicinity to distort their magnetic fields.

The Mathematics of Self-Inductance
We start our mathematical treatment of self-inductance with a solenoid-shaped induc-
tor of length l and total number of loops N. When a charge flows through an inductor,
the coil produces a magnetic field inside its coils whose strength is directly propor-
tional to the current. For an ideal solenoid, the magnitude of the magnetic field is
given by Eq. 30-25,

(inside an ideal solenoid), (Eq. 30-25)

where is the magnetic constant and n the number of turns per unit length.
This magnetic field yields an amount of flux over the area A enclosed by the coil

of . Now, if we try to change the current by changing the re-
sistance in the circuit shown in Fig. 32-2, then the magnetic field and hence the flux at
the center of the coil changes. According to Faraday’s law this change in flux will pro-
duce an emf in the coil given by Eq. 31-7 (� � �Nd �mag/dt). According to Lenz’s law
this emf will act to oppose the change in the current. Thus, if you close a switch that
connects a voltage source to an inductor, the induced “back” emf will retard the rise
in current through the circuit. An emf that acts to oppose a change in current is
known as a back emf. Alternately, if a current already exists in a circuit then opening
a switch will slow the rate of reduction of the current (Fig. 32-3). Applying Faraday’s
law and noting that the total number of turns N is the product of the turns per unit
length, n, and the length, l, of the solenoid gives us

(solenoidal air-core inductor), (32-1)

where �L is the self-induced emf in the solenoid.
If the solenoid is very much longer than its radius, then Eq. 32-1 expresses its in-

ductance to a good approximation. However, we have neglected the spreading of the
magnetic field lines near the ends of the solenoid, just as the parallel-plate capacitor
formula neglects the fringing of the electric field lines near the edges of
the capacitor plates.

Equation 32-1 tells us that the amount of self-induced back emf is directly pro-
portional to the rate of change of the current through the coil. The minus sign tells us
that �L is a back emf. It is customary to combine the product of constants (which for a
solenoid is ) and write this proportionality between the self-induced emf and
the rate of current change as

(32-2)

where L is known as the self-inductance of the coil. As we learned in Chapter 31, the
minus sign in the equation indicates that the emf acts to oppose the change in current.
From Eq. 32-2 we see that when the inductance L is large, a large emf will be pro-
duced for a given rate of current change.

This combination of terms (such as area, length, and so on) that makes up the con-
stant of proportionality, L, is only valid for a long solenoid. The terms will be different if

�L � �L
di
dt

,

�0An2l

C � �0A/d

�L � �N
d�mag

dt
� �nl

d�mag

dt
� ��0An2l

di
dt

� � mag � � BA � n(�0A� i �)

�0

B � �0n� i �

924 CHAPTER 32 Inductors and Magnetic Materials

–

+

–

+

i (increasing)

(a)

i (decreasing)

(b)

L

L

FIGURE 32-3 ■ The arrow and the � and
� signs on either side of the inductor indi-
cate the direction the emf acts in rela-
tive to the direction of the current in the
circuit alongside the coil. (a) The current i
is increasing and the self-induced emf 
appears along the coil in a direction such
that it opposes the increase. (b) The
current i is decreasing and the self-induced
emf appears in a direction such that it
opposes the decrease.
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the coil has a flat shape or if the inductor wire is wrapped around an iron core. In addi-
tion, since any electric circuit is basically a loop of some sort, all circuits have a certain
amount of self-inductance even when no inductor is present. Self-inductance is usually
negligible, but it can be significant when high-voltage circuits are switched on or off or
when the circuit current oscillates at high frequencies. If we have a complicated geome-
try and cannot calculate inductance simply, the inductance L can be determined experi-
mentally by measuring both the emf and the rate of change of current and taking the ra-
tio of these quantities. Thus, for any geometry the self-inductance of an inductor or a
circuit can be defined as the ratio of the induced emf to the rate of current change or

(self-inductance defined). (32-3)

For any inductor having a self-inductance L, Eqs. 32-1 and 32-2 tell us that
N(d�mag/dt) � L di /dt. Thus we conclude that �L � �Nd �mag/dt � � L di/dt, so

, where N is the number of turns in the coil producing flux and i is the cur-
rent in the coil producing the flux. The windings of the inductor are said to be linked by
the shared flux, and the product is called the magnetic flux linkage. This leads us
to an alternate definition of inductance (which is equivalent to that given in Eq. 32-3):

(alternative definition of self-inductance). (32-4)

The inductance L is thus a measure of the flux linkage produced by the inductor per
unit of current.

Because the SI unit of magnetic flux is the tesla-square meter, the SI unit of in-
ductance is the tesla square-meter per ampere . We call this the henry (H),
after American physicist Joseph Henry, the co-discoverer, with Faraday, of the law of
induction. Thus,

(32-5)

In any inductor (such as a flat coil, a solenoid, or a toroid) a self-induced emf appears when-
ever the current changes with time. The amount of the current has no influence on the
amount of induced emf. Only the rate of change of the current matters.

You can find the direction of a self-induced emf from Lenz’s law. The minus signs
in Eqs. 32-2 and 32-3 indicate that—as the law states and Fig. 32-2 shows—the self-
induced emf has an orientation such that it opposes the change in current i.

Ideal Inductors
In Section 31-7 we saw that we cannot define an electric potential for an emf that is
induced by a changing magnetic flux. This means that when a self-induced emf is
produced, we cannot define an electric potential within the inductor itself. However,
electric potentials can still be defined at points in a circuit that are not within the in-
ductor—points where the electric fields are due to charge distributions.

Moreover, we can define a self-induced potential difference across an induc-
tor (between its terminals, which we assume to be outside the region of changing
flux). If the inductor is ideal so that its wire has negligible resistance, the amount of
the measured voltage change is equal to the amount of the self-induced emf .

If, instead, the wire in the inductor has resistance RL, we mentally separate the in-
ductor into a resistance RL (which we take to be outside the region of changing flux)
and an ideal inductor of self-induced emf . As with a real battery of emf � and�L

�L	VL

	VL

�L

1 henry � 1 H � 1T 
m2/A.

(T 
m2/A)

L � 
N�mag

i

N�mag

Li � N�mag

L � �
�L

di/dt



internal resistance R, the potential difference across the terminals of a real inductor
then differs from the emf. Unless otherwise indicated, we assume here that inductors
are ideal.

READI NG EXERC IS E  32-1: (a) What happens to the inductance of a solenoid if: (a)
the number of turns per unit length doubles, (b) the cross-sectional area enclosed by the wind-
ings doubles? ■

READI NG EXERC IS E  32-2: The figure shows an emf �L

induced in a coil. Which of the following can describe the current
through the coil: (a) constant and rightward, (b) constant and left-
ward, (c) increasing and rightward, (d) decreasing and rightward,
(e) increasing and leftward, (f) decreasing and leftward? ■

32-3 Mutual Induction

In this section we return to the case of two interacting coils, which we started dis-
cussing in the previous section. We saw earlier that if two coils are close together as in
Fig. 32-4 (or Fig. 31-10), a steady current i in one coil will set up a magnetic flux �mag

at the other coil (linking the other coil). If we change the current, i, in the first coil
with time, an emf � given by Faraday’s law (� � �Nd �mag/dt) will be induced in the
second coil. We called this process mutual induction, to suggest the mutual interaction
of the two coils and to distinguish it from self-induction, in which only one coil is in-
volved.

Let us look at mutual induction quantitatively. For any inductor having a self-
inductance L, Eq. 32-3 tells us that 

where i is the current in the coil producing the flux. Figure 32-4a shows two circular
coils near each other that share a common central axis. Assume there is a steady cur-
rent i1 in coil 1, produced by the battery in the external circuit. This current creates a
magnetic field represented by the lines of in the figure. Coil 2 is connected to aB

:

1

L � �
�L

di/dt
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L

+ –

i 1

N 1

Coil 1 Coil 2

B1

Φ

(a)

+ –

i 2

N 2

Coil 1 Coil 2

(b)

B2

B2

B1

N 2    1   2

N 1    2   1Φ

FIGURE 32-4 ■ Mutual induction. (a) If
the current in coil 1 changes, an emf will be
induced in coil 2. (b) If the current in coil 2
changes, an emf will be induced in coil 1.



sensitive meter but contains no battery. A magnetic flux (the flux associated with
the current in coil 1 that passes through coil 2) links the N2 turns of coil 2.

Suppose that by external means we cause i1 to vary with time. Then by analogy to
the definition of self-inductance, we can write a mutual induction equation that is
analogous to Eq. 32-2,

This leads us to define the mutual inductance of coil 2 due to coil 1 as 

(mutual inductance defined). (32-6)

Once again we can formulate an alternate definition of mutual induction using the 
relationship between flux linkage in coil 2 and the current in coil 1, which is

. The factor is the number of turns in coil 2 and the factor is
the magnetic flux present inside coil 2 due to coil 1. This allows us to define mutual in-
ductance as

(alternate definition of mutual inductance). (32-7)

If we take the time derivative of all terms in the expression we 
can write

. (32-8)

According to Faraday’s law, the right side of this equation is just the amount of the
emf �2 appearing in coil 2 due to the changing current in coil 1. As usual, the minus
sign reminds us that induced emf acts to oppose the change in current.

Let us now interchange the roles of coils 1 and 2, as in Fig. 32-4b; that is, we set up
a current i2 in coil 2 by means of a battery, and this produces a magnetic flux that
links coil 1. If we change i2 with time, we have, by the arguments given above,

. (32-9)

Thus, we see that the emf induced in either coil is proportional to the rate of
change of current in the other coil. The proportionality constants and 
seem to be different. We assert, without proof, that they are in fact the same so that no
subscripts are needed. (This conclusion is true but is not obvious.) Thus, we have 

(32-10)

and we can rewrite Eqs. 32-9 and 32-10 as 

(32-11)

and (32-12)

The induction is indeed mutual. The SI unit for M (as for L) is the henry.

�1 � �M
di2

dt
.

�2 � �M
di1

dt

M1:2 � M2:1 � M,

M2:1M1:2

�1 � �M2:1
di2

dt
� �N1

d�2:1

dt

�2:1

� 2 � �M1:2
di1

dt
� �N2

d�1:2

dt

M1:2i1 � N2�1:2

M1:2 �
N2�1:2

i1

�1:2N2M1:2i1 � N2�1:2

M1:2 � �
� 2

di1/dt

M1:2

� 2 � �M1:2
di1

dt
.

�1:2
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TOUCHSTONE EXAMPLE 32-1: Two Coupled Coils

Figure 32-5 shows two circular close-packed coils, the smaller (ra-
dius R2, with N2 turns) being coaxial with the larger (radius R1, with
N1 turns) and in the same plane.

(a) Derive an expression for the mutual inductance M for this
arrangement of these two coils, assuming that .R1 �� R2

where B1 is the magnitude of the magnetic field at points within the
small coil due to the larger coil, and is the area enclosed
by the coil. Thus, the flux linkage in the smaller coil (with its N2

turns) is

(32-14)

A third Key Idea is that to find B1 at points within the
smaller coil, we can use Eq. 30-28, with z set to 0 because the
smaller coil is in the plane of the larger coil. That equation tells
us that each turn of the larger coil produces a magnetic field of
magnitude at points within the smaller coil. Thus, the
larger coil (with its N1 turns) produces a total magnetic field of
magnitude

(32-15)

at points within the smaller coil.
Substituting Eq. 32-15 for B1 and for A2 in Eq. 32-14 yields

Substituting this result into Eq. 32-7, and using Eq. 32-10, we find

(Answer) (32-16)

Just as capacitance does not depend on the amount of charge on ca-
pacitor plates, mutual inductance, M, does not depend on the cur-
rent in the coils.

(b) What is the value of M for N1 � N2 � 1200 turns, R2 � 1.1 cm,
and R1 � 15 cm?

S O L U T I O N ■ Equation 32-16 yields

(Answer)

Consider the situation if we reverse the roles of the two coils—
that is, if we produce a current i2 in the smaller coil and try to calcu-
late M from Eq. 32-7 in the form

The calculation of (the nonuniform flux of the smaller coil’s
magnetic field encompassed by the larger coil) is not simple. If we
were to do the calculation numerically using a computer, we would
find M to be 2.3 mH, as above! This emphasizes that Eq. 32-10

is not obvious.(M1:2 � M2:1 � M)

�2:1

M2:1 �
N2�2:1

i2
.

� 2.29 � 10�3 H �  2.3 mH.

M �
()(4 � 10�7 H/m)(1200)(1200)(0.011 m)2

(2)(0.15 m)

M � M1:2 �
N2�1:2

i1
�

�0N1N2R2
2

2R1
.

N2�1:2 �
�0N1N2R2

2i1

2R1
.

R2
2

B1 � N1
�0i1

2R1

�0i1/2R1

N2�1:2 � N2B1A2.

A2(�R2
2)

R1
R2

i1

+ –

FIGURE 32-5 ■ A small coil is located at the
center of a large coil. The mutual inductance of
the coils can be determined by sending current i1

through the large coil.

S O L U T I O N ■ The Ke y  I d e a here is that the mutual induc-
tance M for these coils is the ratio of the flux linkage ( )
through one coil to the current i in the other coil, which produces
that flux linkage. Thus, we need to assume that currents exist in
the coils; then we need to calculate the flux linkage in one of the
coils.

The magnetic field through the larger coil due to the smaller
coil is nonuniform in both magnitude and direction, so the flux in
the larger coil due to the smaller coil is nonuniform and difficult to
calculate. However, the smaller coil is small enough for us to as-
sume that the magnetic field through it due to the larger coil is ap-
proximately uniform. Thus, the flux in it due to the larger coil is also
approximately uniform. Hence, to find M we shall assume a current
i1 in the larger coil and calculate the flux linkage in the
smaller coil:

(32-13)

A second Ke y  I d e a is that the flux through each turn
of the smaller coil is, from Eq. 31-1,

,�1:2 � B1A2

�1:2

M1:2 �
N2�1:2

i1
.

N2�1:2

N�
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32-4 RL Circuits (With Ideal Inductors)

In Section 28-9 we saw that if we suddenly switch an emf � on in a series circuit con-
taining a resistor R and a capacitor C, the charge on the capacitor q does not build up
immediately to its final equilibrium value C� but approaches it in an exponential
fashion:

. (32-17)

The rate at which the charge builds up is determined by the capacitive time constant
, defined in Eq. 28-42 as 

(32-18)

If we suddenly remove the emf from this same circuit, the charge does not imme-
diately fall to zero but approaches zero in an exponential fashion:

(32-19)

The time constant describes the fall of the charge as well as its rise and q0 is the ini-
tial charge on the capacitor.

An analogous slowing of the rise (or fall) of the current occurs if we introduce an
emf � into (or remove it from) a single-loop circuit containing a resistor R and an in-
ductor L. We assume the inductor is ideal and has a resistance RL that is much less
than R. When the switch S in Fig. 32-6 is closed on a, for example, the current in the
resistor starts to rise. If the inductor were not present, the current would rise rapidly
to a steady value . Because of the inductor, however, a self-induced emf ap-
pears in the circuit. As predicted from Lenz’s law, this emf opposes the rise of the cur-
rent. This means that it opposes the battery emf � in polarity. Thus the current in the
resistor responds to the difference between two emfs, a constant one � due to the bat-
tery, and a variable one due to self-induction. As long as �L is pres-
ent, the current in the resistor will be less than . As time goes on, the rate at 
which the current increases becomes less rapid and the amount of the self-induced
emf, which is proportional to , becomes smaller. Thus, the current in the circuit
approaches asymptotically.

We can generalize these results as follows: When a switch is opened or closed in a
dc circuit, an inductor initially acts to oppose changes in the current through it. A long
time later, it acts like ordinary connecting wire that has some resistance RL.

Now let us analyze the situation quantitatively. With the switch S in Fig. 32-6
thrown to a, the circuit is equivalent to that of Fig. 32-7. Let us apply the loop rule,
starting at point x in this figure and moving clockwise around the loop along with cur-
rent i.

1. Resistor. Because we move through the resistor in the direction of current i, the
electric potential decreases by iR. Thus, as we move from point x to point y
where these points lie outside the inductor, we encounter a potential change 
of .

2. Inductor. Because current i is changing, there is a self-induced emf in the in-
ductor. The amount of is given by Eq. 32-2 as . The direction of is
upward in Fig. 32-7 because current i is downward through the inductor and in-
creasing. Thus, as we move from point y to point z, opposite the direction of ,
we encounter a potential change of .

3. Battery. As we move from point z back to starting point x, we encounter a poten-
tial change of due to the battery’s emf.��

�L di/dt
�L

�LL di/dt�L

�L

�iR

� /R
di/dt

� /R
�L( � �L di/dt)

�L� /R

�C

q � q0e�t/�C.

�C � RC.

�C

q � C �(1 � et/�C)

Sa

b R

L–
+

FIGURE 32-6 ■ An RL circuit. When
switch S is closed on a, the current rises
and approaches a limiting value of .� /R

R

L–
+

–

+

i
yx

z

L

FIGURE 32-7 ■ The circuit of Fig. 32-6 with
the switch closed on a.We apply the loop
rule for circuits clockwise, starting at x.
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Thus, the loop rule gives us 

or (RL circuit). (32-20)

Equation 32-20 is a differential equation involving the variable i and its first deriva-
tive . To solve it, we seek the function i(t) such that when i(t) and its first deriva-
tive are substituted in Eq. 32-20, the equation is satisfied and the initial condition

A is satisfied.
Equation 32-20 and its initial condition are of exactly the form of Eq. 28-38 for an

RC circuit, with i replacing q, L replacing R, and R replacing . The solution of Eq.
32-20 must then be of exactly the form of Eq. 28-39 with the same replacements. That
solution is 

, (32-21)

which we can rewrite as 

(rise of current). (32-22)

Here , the inductive time constant, is given by 

(time constant). (32-23)

What happens to the current described in Eq. 32-22 between the time the switch is
closed (at time ) and a later time ? If we substitute into Eq. 32-22,
the exponential becomes . Thus, Eq. 32-22 tells us that the current is initially

, as expected. Next, if we let t go to infinity, then the exponential goes to
. Thus, Eq. 32-22 tells us that the current goes to its equilibrium value of �/R.

We can also examine the potential differences in the circuit. The graphs of
Fig. 32-8 show experimental data describing how the potential differences 
across a resistor and across an inductor vary with time for particular� 	VL � � L di/dt

� 	VR � � iR

e�� � 0
i � 0 A

e�0 � 1
t � 0 s(t : �)t � 0 s

�L �
L
R

�L

i �
�

R
(1 � e�t/�L)

i �
�

R
(1 � e�(R/L)t)

1/C

i(0) � 0

di/dt

L
di
dt

� Ri � �

�iR � L
di
dt

� � � 0

6
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2

1

0
0 2 4

t (ms)

Voltage across the resistor
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ΔV
R

(V
)
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ΔV
L

(V
)

FIGURE 32-8 ■ A computer data acquisi-
tion system is used to record the time vari-
ation of potential differences (a)
across the resistor in Fig. 32-7 and (b)
across the inductor in that circuit. The data
were obtained at 10 000 samples per sec-
ond for , , and
� � 5.88 V. The inductor has a direct
current resistance of 167 �, so it is not
ideal. The data show some different
characteristics than those predicted by
Eqs. 32-22 and 32-23.

L � 20 HR � 9830 �

	VL

	VR



values of �, L, and R. Compare this figure carefully with the corresponding figure for
an RC circuit (Fig. 28-23).

To show that the quantity has the dimension of time, we convert from
henries per ohm as follows:

The first quantity in parentheses is a conversion factor based on Eq. 32-20, and the
second one is a conversion factor based on the relation .

The physical significance of the time constant follows from Eq. 32-21. If we put
in this equation, it reduces to 

(32-24)

Thus, the time constant is the time it takes the current in the circuit to reach about
63% of its final equilibrium value . Since the potential difference across the
resistor is proportional to the current i, a graph of the increasing current versus time
has the same shape as that of in Fig. 32-8a.

If the switch S in Fig. 32-6 is closed on a long enough for the equilibrium current
to be established and then is thrown to b, the effect will be to remove the battery

from the circuit. (The connection to b must actually be made an instant before the
connection to a is broken. A switch that does this is called a make-before-break
switch.)

With the battery gone, the current through the resistor will decrease. However,
because of the inductor it cannot drop immediately to zero but must decay to zero
over time. The differential equation that governs the decay can be found by putting

in the RL circuit voltage loop equation (Eq. 32-20):

(32-25)

By analogy with Eqs. 28-44 and 28-45, the solution of this differential equation that
satisfies the initial condition is 

(decay of current). (32-26)

We see that both current rise (Eq. 32-21) and current decay (Eq. 32-26) in an RL cir-
cuit are governed by the same inductive time constant, .

We have used i0 in Eq. 32-26 to represent the current at time . In our case
that happened to be �/R, but it could be any other initial value.

t � 0
�L

i �
�

R
e�t/�L � i0e�t/�L

i(0) � i0 � � /R

L
di
dt

� iR � 0.

� � 0

� /R

	VR

	VR� /R
�L

i �
�

R
(1 � e�1) � 0.63

�

R
.

t � �L � L/R

	V � iR

1
H
�

� 1
H
� � 1 V
s

1 H
A �� 1�
A
1 V � � 1 s.

�L(�L/R)
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TOUCHSTONE EXAMPLE 32-2: Two Inductors and Three Resistors

Figure 32-9a shows a circuit that contains three identical resistors
with resistance R � 9.0 �, two identical ideal inductors with induc-
tance L � 2.0 mH, and an ideal battery with emf .

(a) What is the current i through the battery just after the switch is
closed?

� � 18 V

S O L U T I O N ■ The Ke y  I d e a here is that just after the switch
is closed, the inductor acts to oppose a change in the current
through it. Because the current through each inductor is zero be-
fore the switch is closed, it will also be zero just afterward. Thus, im-
mediately after the switch is closed, the inductors act as broken
wires, as indicated in Fig. 32-9b. We then have a single-loop circuit
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32-5 Inductors, Transformers, and Electric Power

In most countries the electrical power used in homes and industries involves voltages
and currents that change over time periodically, often sinusoidally. Such power is usu-
ally referred to as alternating current or ac electricity. Alternating electrical power is
usually generated using induction. An ac generator simply consists of a magnet or
electromagnet rotating inside an inductor coil or, alternatively, an inductor coil rotat-
ing in a magnetic field like that shown in Fig. 32-10.

for which the loop rule gives us

Substituting given data, we find that

(Answer)

(b) What is the current i through the battery long after the switch
has been closed?

S O L U T I O N ■ The Ke y  I d e a here is that long after the switch
has been closed, the currents in the circuit have reached their equi-
librium values, and the inductors act as simple connecting wires, as
indicated in Fig. 32-9c. We then have a circuit with three identical
resistors in parallel; from Eq. 27-12, their equivalent resistance is

The equivalent circuit shown in
Fig. 32-9d then yields the loop equation , or

(Answer)i �
�

Req �
18 V
3.0 �

� 6.0 A.

� � iR eq � 0.0 V
Req � R/3 � (9.0 �)/3 � 3.0 �.

i �
�

R
�

18 V
9.0 �

� 2.0 A.

� � iR � 0.

L
–
+

R

R

R

L

–
+

R

R

R

(a) (b)

–
+

R

R

R

(c)

–
+

R/3

(d)

FIGURE 32-9 ■ (a) A multiloop RL circuit with an 
open switch. (b) The equivalent circuit just after the
switch has been closed. (c) The equivalent circuit a long
time later. (d) The single-loop circuit that is equivalent to
circuit (c).

V

0

– +V

t

FIGURE 32-10 ■ A simplified diagram
of an electric generator showing how a
crank can be used to rotate a pickup coil
in a magnetic field such that the flux
through the coil is changing periodically.
Most large generators have a geometry
in which the coil rotates outside of an
electromagnet.
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FIGURE 32-11 ■ A periodic emf
is induced in a coil that is being
turned by a hand crank in the
presence of a magnet. The gener-
ator is similar to that shown in
Fig. 32-10. If the coil were less
bulky and the -field were more
uniform, the emf would vary si-
nusoidally when the crank is
turned steadily.

B
:

Generators don’t care what form of energy is used to cause the rotation
(Fig. 32-11). The shaft can turn when steam produced by a coal-fired or nuclear power
plant pushes on propeller-like blades. In hydroelectric plants, falling water can pro-
vide the rotational energy. Since the potential difference and current in a generator
vary sinusoidally, the voltages and currents are reported as root mean square (or rms)
values. The use of rms values is explained in the next chapter, where we deal with 
alternating-current circuits in more detail.

The Role of Transformers
Generators typically produce power at low voltage, but it is important to transmit this
power from generation stations to consumers with minimum energy loss. It turns out
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that the losses are minimized when ac power is transmitted at high voltages. The rea-
son has to do with how power loss is related to current and voltage. The total power
generated is given by Eq. 26-10 as Pgen � . If this power is transmitted to con-
sumers with an rms current flowing over long distances, then the power lost in
heating transmission lines is given by

(power lost in transmission), (32-27)

where R is the total resistance of the wires that make up the transmission lines. The
power available to consumers is then . Although we can’t get something
for nothing, it is obvious from Eq. 32-27 that reorganizing the generated power so that
it is transmitted at high voltage and low current would greatly reduce the transmission
losses. In other words, we would like to achieve

(32-28)

where so that .
As an example, consider the 735 kV line used to transmit electric energy from the

La Grande 2 hydroelectric plant in Quebec to Montreal, 1000 km away. Suppose that
the current is 500 A. Then from Eq. 32-28, energy is supplied at the average rate 

The resistance of the transmission line is about . Thus, there is a total resis-
tance of about for the 1000 km stretch. Energy is dissipated due to that resis-
tance at a rate of about 

,

which is nearly 15% of the supply rate.
Imagine what would happen if we could halve the current and double the voltage.

Energy would be supplied by the plant at the same average rate of 368 MW as before,
but now energy would be dissipated at the much lower rate of about 

This rate of energy loss is only 4% of the supply rate. Hence the general energy
transmission rule: Transmit at the highest possible voltage and the lowest possible cur-
rent. There is an upper limit to the voltage that can be used. If the voltage gets too
high, the power line insulation and the surrounding air will not be able to prevent the
current from passing through them and leaking to the ground.

The Ideal Transformer
The ideal transformer in Fig. 32-12 consists of two coils, a primary and a secondary.
These coils have different numbers of turns and are wound around the same iron core.
The coils experience mutual induction. The iron core concentrates the flux so that it is
the same in both coils. (We will discuss the role iron plays in Section 32-7 on ferromag-
netism.) In use, the primary coil, of Np turns, is connected to an alternating-current
generator whose emf � at any time t is given by

(32-29)

The secondary coil, of Ns turns, is connected to load resistance R, but its circuit is an
open circuit as long as switch S is open (which we assume for the present). Thus, there

� � �max sin �t.

P lost � (igen)2 R � (250 A)2(220 �) � 13.8 MW,

Plost � (igen)2R � (500 A)2(220 �) � 55.0 MW

220 �
0.220 �/km

P gen � i gen	V gen � (7.35 � 105V)(500 A) � 368 MW.

i trans �� i gen	V trans �� 	V gen

P gen � i gen	V gen � i trans	V trans,

P gen � P lost

P lost � (igen)2R

igen
igen	V gen

RΔVp ΔVs

S

Np

Ns

Φmag

Primary Secondary

FIGURE 32-12 ■ An ideal transformer
(two coils wound on an iron core) in a ba-
sic transformer circuit. An ac generator
produces current in the coil at the left (the
primary). The coil at the right (the sec-
ondary) is connected to the resistive load
R when switch S is closed.



can be no current through the secondary coil. We assume further for this ideal trans-
former that the resistances of the primary and secondary coils (or windings) are negli-
gible as are energy losses in the iron core. Well-designed, high-capacity transformers
can have energy losses as low as 1%, so our assumptions are reasonable.

For the assumed conditions, the primary winding (or primary) is a pure induc-
tance that carries a small alternating primary current . This current induces an alter-
nating magnetic flux in the iron core. Because the core extends through the sec-
ondary winding (or secondary), this induced flux also extends through the turns of the
secondary. At any given time the flux in the primary and secondary coils are the same.
Therefore, Faraday’s law of induction (Eq. 31-7) tells us that the amount of the in-
duced emf per turn, denoted as , is the same for both the primary and the sec-
ondary coils. Also, the voltage across the primary is equal to the emf induced in
the primary, and the voltage across the secondary is equal to the emf induced in
the secondary. Thus, we can write 

and thus,

(transformation of voltage). (32-30)

If , the transformer is called a step-up transformer because it steps the pri-
mary’s voltage up to a higher voltage . Alternatively, if , the device is
a step-down transformer.

So far, with switch S open, no energy is transferred from the generator to the rest
of the circuit. Now let us close S to connect the secondary to the resistive load R. (In
general, the load would also contain inductive and capacitive elements, but here we
neglect the capacitance.) We find that now energy is transferred from the generator.
To see why, let’s explore what happens when we close switch S.

1. An alternating current appears in the secondary circuit, with corresponding en-
ergy dissipation rate in the resistive load. Since the emf produced
in the secondary coil is a back emf that opposes the direction of the change in cur-
rent in the primary, the secondary current is out of phase with the primary current.

2. This current produces its own alternating magnetic flux in the iron core, and this
flux induces (from Faraday’s law and Lenz’s law) an opposing emf in the primary
windings.

3. The voltage of the primary, however, cannot change in response to this op-
posing emf because it must always be equal to the emf � that is provided by the
generator; closing switch S cannot change this fact.

In order to relate is to ip, we can apply the principle of conservation of energy. For the
ideal transformer without losses in the magnetic core, the power drawn from the pri-
mary is equal to the power transferred to the secondary (via the alternating magnetic
field linking the two coils). Conservation of energy requires that 

(32-31)

Substituting for from Eq. 32-30, we find that 

(transformation of currents). (32-32)is � ip
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This equation tells us that the amount of the current is in the secondary can be greater
than, less than, or the same as the amount of current ip in the primary, depending on
the ratio of turns (or loops) in the coils given by .

Current ip appears in the primary circuit because of the resistive load R in the sec-
ondary circuit. To find ip, we substitute into Eq. 32-32 and then we substi-
tute for from Eq. 32-30. We find

(32-33)

This equation has the form , where equivalent resistance Req is

(32-34)

Here R is the actual resistance in the secondary circuit and Req is the value of the load
resistance as “seen” by the generator. The generator produces the current ip and volt-
age as if it were connected to a resistance Req.

Impedance Matching
Equation 32-34 suggests still another function for the transformer. For maximum
transfer of energy from an emf device to a resistive load, the resistance of the emf
device and the resistance of the load must be equal. The same relation holds for ac
circuits (discussed in Chapter 33) except that the impedance (rather than just the
resistance) of the generator must be matched to that of the load. Often this condition
is not met. For example, in a music-playing system, the amplifier can have high imped-
ance and the speaker set have low impedance. We can match the impedances of the
two devices by coupling them through a transformer with a suitable turns ratio .

READI NG EXERC IS E  32-3: An alternating-current emf device has a smaller resis-
tance than that of the resistive load; to increase the transfer of energy from the device to the
load, a transformer will be connected between the two. (a) Should Ns be greater than or less
than Np? (b) Will that make it a step-up or step-down transformer? ■

32-6 Magnetic Materials—An Introduction

Today, magnets and magnetic materials are ubiquitous. In addition to naturally mag-
netic lodestones, magnets are also in VCRs, audiocassettes, credit cards, electronic
speakers, audio headsets, and even the inks in paper money. In fact, some breakfast
cereals that are “iron fortified” contain small bits of magnetic materials (you can col-
lect them from a slurry of cereal and water with a magnet). In this section we are in-
terested in understanding more about why so-called bulk matter, made of billions
upon billions of individual atoms, has magnetic properties.

Characteristics of Magnetic Materials
When we speak of magnetism in everyday conversation, we usually have a mental pic-
ture of a bar magnet, a disk magnet (probably clinging to a refrigerator door), or even
a tiny compass needle. That is, we picture a ferromagnetic material made of iron hav-
ing strong, permanent magnetism. Although most bulk matter does not behave like
the familiar iron bar magnets, it turns out that almost all bulk materials have some
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magnetic behaviors. There are three general types of magnetism: ferromagnetism,
paramagnetism, and diamagnetism.

1. Ferromagnetism is present if a material produces a strong magnetic field of its
own in the presence of an external field, and if its magnetic field partially persists
after the external field is removed. We usually use the term ferromagnetic mater-
ial, and also the common term magnetic material, to refer to materials that exhibit
primarily ferromagnetism. Iron, nickel, and cobalt (and compounds and alloys of
these elements) are ferromagnetic.

2. Paramagnetism is present if a material that is placed in an external magnetic
field is attracted to the region of greater magnetic field and produces a magnetic
field of its own—but only while it is in the presence of the external field. The
term paramagnetic material usually refers to materials that exhibit primarily para-
magnetism. This type of magnetism is exhibited by materials such as liquid oxy-
gen and aluminum as well as transition elements, rare earth elements, and ac-
tinide elements (see Appendix G).

3. Diamagnetism is present if a material that is placed near a magnet is repelled
from the region of greater magnetic field. This is opposite to the behavior of the
other two types of magnetism. Diamagnetism is exhibited by all common materi-
als, but it is so weak that it is masked if the material exhibits magnetism of either
of the other two types. Thus, the term diamagnetic material refers to materials that
only exhibit diamagnetism. Metals such as bismuth, copper, gold, silver, and lead,
as well as many nonmetals such as water and most organic compounds, are dia-
magnetic. Because people and other animals are made largely of water and or-
ganic compounds, they are diamagnetic too.

What causes magnetism? Why are there three types of magnetism? We now be-
lieve that magnetism is caused by tiny magnetic dipoles that are intrinsic to the atoms
contained in all materials. For this reason, understanding the characteristics of mag-
netic dipoles is essential to understanding the behavior of magnetic materials. We will
conclude this section with a discussion of magnetic dipoles, and then in the next two
sections we will explore how the characteristics of atomic magnetic dipoles help us
understand the three types of magnetism.

Characteristics of Magnetic Dipoles
Both the bar magnets with which we are familiar and small coils of wire carrying cur-
rent are magnetic dipoles. Let’s review some of the characteristics of magnetic dipoles
that we have already discussed. A magnetic dipole:

• Has a magnetic field pattern associated with it similar to that of an electric dipole
(like that shown in Fig. 32-13 or that described by the equations derived in Sec-
tions 23-6 and 30-7).

• Always has two poles, which we have chosen to call north (seeking) and south
(seeking) because of the way they behave when placed in the Earth’s magnetic
field, as shown in Fig. 32-14 (see Section 29-3 for a review).

• Can be described by a magnetic dipole moment , which is a vector quantity
whose magnitude tells us how strong the magnetic field associated with the
dipole is and whose direction tells how the field pattern is oriented. The orienta-
tion is along the axis of a bar magnet pointing from its south pole and to its
north pole or perpendicular to the plane of a current-carrying coil with a direc-
tion determined by the right-hand rule (Section 29-10). Note: Our use of conven-
tional notation is unfortunate here. The magnetic moment should not be�:

�:
S
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N

N

N

N

FIGURE 32-14 ■ If you break a bar mag-
net, each fragment becomes a smaller mag-
net, with its own north and south poles. It
is impossible to break a fragment into sep-
arate north and south poles.

FIGURE 32-13 ■ A bar magnet is a mag-
netic dipole. The orientations of the iron
filings suggest the direction of magnetic
field lines.



confused with the permeability constant or that sometimes appears in the
same equation.

• Will attempt to align its magnetic dipole moment with an external magnetic field, ,
because the dipole experiences a torque, , given by (Section 30-7).

• Has a potential energy in an external magnetic field given by , so
that the dipole’s potential energy is a minimum when its dipole moment is aligned
with an external magnetic field.

Magnetism in Atoms
We believe that the combined effect of tiny magnetic dipole moments in atoms are re-
sponsible for all magnetic interactions in bulk matter. Before we attempt to explain
why different materials exhibit certain types of magnetism, we need to discuss what is
known about atomic magnetism.

The focus of this book is on classical physics. However, understanding atomic
phenomena requires some familiarity with quantum physics, which is in general be-
yond the scope of this book. So, we will present some basic ideas of quantum physics
that apply to atomic magnetism without discussing the existing body of experimental
evidence.

So far in our classical treatment of magnetism we have already identified two
sources of magnetic dipole fields: (1) electric charges that create a current if they
move in a loop and (2) magnetic dipoles consisting of a bar or rod of magnetized iron.
Also, some effects of atomic magnetism can be explained using a classical model that
identifies two types of atomic magnetic dipoles—orbital and spin. First, if we think of
electrons as “orbiting” around a nucleus, then an orbit is a current loop with an orbital
magnetic moment. Second, we think of the electron as having an intrinsic magnetic di-
pole moment that we call spin. This model is quite comfortable because it is rather
like the familiar picture of the Earth spinning about its own axis as it orbits the Sun.
But when we try to predict the magnetic behavior of various types of materials using
this classical model, its usefulness is limited and it is completely wrong in many ways.

The bad classical predictions are not surprising since quantum physics, devised to
explain atomic behavior, tells us that: (1) We cannot think of electrons as having dis-
tinct orbits. Instead we visualize them as swarming about in the vicinity of a nucleus
without having distinct paths. So all we can know is something about the probability
of finding the electron at various locations in the vicinity of the nucleus and that these
probabilities are different for each type of atom or molecule. (2) The spin magnetic
moments are a fundamental property of electrons and should not be thought of as be-
ing produced by an electron spinning about an internal axis. (3) The spin and orbital
magnetic moments associated with atomic electrons are quantized. This means they
can only have certain values.

Next let’s examine the characteristics of these two types of atomic magnetic mo-
ments in more detail.

Spin Magnetic Dipole Moment
An electron has an intrinsic spin magnetic dipole moment . (By intrinsic, we
mean that is a basic characteristic of an electron, like its mass and electric
charge.) According to quantum theory,

1. itself cannot be measured directly. Only its component along a single axis
can be well-defined (and therefore measured) at any one time.

2. A measured component of is quantized, which is a general term that means
it is restricted to certain values.
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Let us assume that the component of the spin magnetic moment is measured
along the z axis of a coordinate system you have chosen. Then the measured compo-
nent can have only the two values given by 

or (32-35)

where and is the well-known Planck constant used often in
quantum physics. The constants e and m represent the charge and mass of the elec-
tron, respectively. The plus and minus signs given in Eq. 32-35 describe the direction
of along the chosen z axis. The plus sign indicates that is parallel to the z
axis, and the electron is said to be “spin up.” When is antiparallel to the z axis, the
minus sign is used and the electron is said to be “spin down.”

The combination of constants in Eq. 32-35 is called the Bohr magneton , which
can be calculated from the known values of Planck’s constant and the electron charge
and mass:

(Bohr magneton value for an electron). (32-36)

Spin magnetic dipole moments of electrons and other elementary particles can be
expressed in terms of . In terms of the Bohr magneton, we can substitute in to
Eq. 32-35 to rewrite the expression for the two possible values of as

or (32-37)

When an electron is placed in an external magnetic field , a potential energy
U can be associated with the orientation of the electron’s spin magnetic dipole
moment just as a potential energy can be associated with the orientation of the
magnetic dipole moment of a current loop placed in an external magnetic field .
From Eq. 29-35, the potential energy for the electron due to its spin orientation has
only two possible values

(32-38)

where the z axis is taken to be in the direction of .
Again, although we use the word “spin” here, according to quantum theory the

fact that electrons have intrinsic magnetic moments does not mean that they spin like
tops.

Protons and neutrons also have intrinsic magnetic dipole moments. In fact, these
nuclear magnetic moments are a critical element in the development of magnetic res-
onance imaging—a valuable diagnostic tool in medicine. The masses of protons and
neutrons are almost 2000 times that of the electron, so the magnetic moment for these
particles is much smaller than that of the electron. For this reason, the contributions
of nuclear dipole moments to the magnetic fields of atoms are negligible.

Orbital Magnetic Dipole Moment
An electron that is part of an atom has an additional dipole magnetic moment. This is
called its orbital magnetic moment . Again, although we use the “orbital” here,
electrons do not orbit the nucleus of an atom like planets orbiting the Sun. According
to quantum physics, an “orbit” roughly defines a region in space where the electron is
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most likely to be found. The orientation of this region specifies the direction of the
electron’s orbital angular momentum. The so-called “outer electrons” in an atom with
many electrons will tend to be found further from its nucleus. An outer electron has a
larger orbital angular momentum and, hence, a larger magnetic moment. It turns out
that in any given atom there are typically more than two possible quantized values for
the z-components of orbital magnetic moments. We can express these possible com-
ponents along a chosen z axis in terms of the Bohr magneton as

(32-39)

where is an integer that designates the magnitude of the orbital magnetic mo-
ment component an electron can have.

When an atom is placed in an external magnetic field , an orbital potential en-
ergy can be associated with the orientation of the orbital magnetic dipole mo-
ment of each electron in the atom. Its value is 

(32-40)

where the z axis is taken in the direction of so that � .

The Magnetic Dipole Moment of an Atom
Each electron in an atom has an orbital magnetic dipole moment and a spin magnetic
dipole moment that combine vectorially. The resultant of these two vector quantities
combines vectorially with similar resultants for all other electrons in the atom, and
the resultant for each atom combines with those for all the other atoms in a bulk sam-
ple of matter. If the combination of all these magnetic dipole moments produces a
magnetic field, then the material is magnetic.

We have one more step in preparing to explain the magnetic behavior of bulk
material on the basis of the magnetic behavior of its atoms. We need to consider how
the spin and orbital magnetic moments associated with all the electrons in a single
atom of a certain element (such as iron, arsenic, and so on) could combine to deter-
mine its total magnetic moment.

If the spin and orbital magnetic moments of all the electrons in a given atom
lined up with each other and then if all the individually aligned atoms lined up with
each other in a solid or liquid, we would have an incredibly strong magnet. Most ma-
terials are not strongly magnetic because whenever possible it is natural for the elec-
tron magnetic moments in an atom to cancel out. Atomic electrons are located in
regions around the nucleus called shells. The number of electrons in a shell is gov-
erned by a quantum mechanical rule known as the Pauli exclusion principle. This ex-
clusion principle requires that no two electrons in the same shell can have both the
same components of orbital magnetic moment and the same components of spin mag-
netic moment. When all different combinations of orbital and spin states have
occurred in a shell it is full. Once a shell is full the pairing of electrons in their loca-
tions with respect to the nucleus cancel each other. Each successive shell has more
possible orbital magnetic moment components than its electrons can have. In addi-
tion, the electrons in a given shell have more energy than the ones in the previous
shell. If the atom is in its lowest possible energy state, the shells usually fill in order.

In an atom with many electrons, the number of electrons in a full shell is 4n � 2,
where n is 0, 1, 2, 3, and so on. So the first shell can have 2 electrons, the second 6
electrons, the third 10, the fourth 14, and so on. Typically it is unpaired outermost elec-
trons in an atom that determine the magnetic behavior of bulk matter. Magnetism de-
pends critically on how atoms combine with each other as a result of the sharing and
interaction of the outermost electrons.
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READI NG EXERC IS E  32-4: In this section, we discuss three types of magnetism in
materials. Which one is associated with a refrigerator magnet? A standard paper clip? A piece
of silver wire? Explain your reasoning. ■

READI NG EXERC IS E  32-5: The figure shows the spin ori-
entations of two particles in an external magnetic field . (a) If the
particles are electrons, which spin orientation is at lower potential en-
ergy? (b) If, instead, the particles are protons, which spin orientation
is at lower potential energy? Explain your reasoning.

■

32-7 Ferromagnetism

Iron, cobalt, nickel, gadolinium, dysprosium, and alloys of these become strongly mag-
netized in the presence of an external magnetic field. Because they retain this magnet-
ism when the external field is removed, we call them ferromagnetic.

Atomic Magnetic Moments in Ferromagnetism
Although most heavy elements are not ferromagnetic, all ferromagnetic materials are
relatively heavy elements with complex electronic structures. The lightest of these is
iron, which has 26 electrons. The best explanation to date for iron’s ferromagnetism
involves the complex behavior of its electrons. The 20 innermost electrons are paired
in such a way that their spin and orbital magnetic moments cancel each other. The
other 6 electrons behave in a manner that is unusual for most materials. Instead of pil-
ing into the third shell that has plenty of room for them, 2 of the 6 electrons move out
into the fourth shell. These 2 electrons form outer conduction electrons. The key to
the ferromagnetism of iron is that the third shell is unfilled, which allows 4 of 14 elec-
trons in that shell to have spin magnetic moments that end up being aligned. How-
ever, these aligned electrons do not participate in chemical bonding with other atoms.
The detailed quantum mechanical calculations reveal that this unusual arrangement
of electrons gives an individual iron atom both a net magnetic moment and a lower
energy—a situation that is similar for cobalt and nickel.

Even though individual iron atoms have permanent magnetic dipole moments, we
might assume that their orientations relative to each other are random, leaving a bulk
sample of iron with no net magnetic moment. We know this is not the case. Although
various explanations have been put forth to explain why individual atoms line up in
ferromagnetic materials, the situation is not well understood. It is currently believed
that the spin-aligned electrons in the third shell, which causes the magnetism, influ-
ence the outermost conduction electrons, which are wandering through the material.
Because of the Pauli exclusion principle, the spin magnetic moment of a conduction
electron will have a tendency to be aligned in a direction opposite to that of the third-
shell electrons. This anti-aligned conduction electron could, in turn, influence the
alignment of the third shell electrons in a neighboring atom. This interaction could
align the third-shell spin magnetic moments in the two neighboring atoms, and so on.
The jargon for this quantum physical effect, in which spins of the electrons in one
atom interact with those of neighboring atoms via conduction electrons, is called ex-
change coupling. The result is an alignment of the magnetic dipole moments of the
atoms, in spite of the randomizing effects of thermal energy that causes atomic colli-
sions. We currently believe that this type of coupling is what gives ferromagnetic ma-
terials their permanent magnetism.
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Magnetic Domains
Exchange coupling in which spins of the electrons in one atom interact with those of
neighboring atoms via conduction electrons, produces strong alignment of adjacent
atomic dipoles in a ferromagnetic material. So we might expect that all the atoms in a
sample of iron would align themselves into a permanent magnet even in the absence
of an external magnetic field. This doesn’t happen. Instead, a piece of iron, nickel, or
cobalt is always made up of a number of magnetic domains. Each domain is a region
in which the alignment of the atomic dipoles is essentially perfect. The domains, how-
ever, are not all aligned. For the sample as a whole, the domains are so oriented that
they largely cancel each other as far as their external magnetic effects are concerned.

Two reasons are often given for the existence of domains in ferromagnetic mate-
rials. First, calculations reveal that a pure sample with perfectly aligned atoms (known
as a single crystal) has a lower energy state when there are distinct domains with
boundaries between them. Second, most real samples have impurities that can cause
even more boundaries between domains to form.

A photograph of a single crystal of nickel is shown in Fig. 32-15. A suspension of
powdered iron oxide was sprinkled on the crystal surface. The domain boundaries,
which are thin regions in which the alignment of the elementary dipoles changes from
a certain orientation in one domain to a different orientation in the other, are the
sites of intense, but highly localized and nonuniform, magnetic fields. The suspended
iron oxide particles are attracted to some of the more prominent boundaries and
show up as the white lines. Although the atomic dipoles in each domain are com-
pletely aligned as shown by the arrows, the crystal as a whole has a very small resul-
tant magnetic moment.

Actually, a piece of iron as we ordinarily find it is not a single crystal but an as-
sembly of many tiny crystals, randomly arranged; we call it a polycrystalline solid.
Each tiny crystal, however, has its array of variously oriented domains, just as in Fig.
32-15. We can magnetize such a specimen by placing it in an external magnetic field

of gradually increasing strength, and measuring the magnetization of the iron.
(The measurement process is explained in the next subsection on Bulk Properties.) A
common way to display the results is to plot a magnetization curve. If the piece of
iron had all of its magnetic dipoles aligned perfectly with the external field, its magne-
tization would be a maximum represented by . The magnetization curve consists of
a plot of the ratio as a function of the external field (shown in Fig. 32-16). Note
that is always less than one, so the iron does not become perfectly magnetized.

By photographing domain patterns as in Fig. 32-15, we see two microscopic ef-
fects that serve to explain the shape of the magnetization curve: One effect is a
growth in size of the domains that are oriented along the external field at the expense
of those that are not. The second effect is a shift of the orientation of the dipoles
within a domain, as a unit, to become closer to the field direction.

Exchange coupling and domain shifting give us the following result:

A ferromagnetic material placed in an external magnetic field develops a strong mag-
netic dipole moment in the direction of . If the field is nonuniform, the ferromagnetic
material is attracted toward a region of greater magnetic field from a region of lesser field.

Bulk Properties of Ferromagnetic Materials
If the temperature of a ferromagnetic material is raised above a certain critical value,
called the Curie temperature, the exchange coupling ceases to be effective. Most such
materials then become simply paramagnetic. That is, the dipoles still tend to align with
an external field but much more weakly, and thermal agitation can now more easily
disrupt the alignment. The Curie temperature for iron is 1043 K (� 770°C).
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FIGURE 32-15 ■ A photograph of domain
patterns within a single crystal of nickel;
white lines reveal the boundaries of the do-
mains. The white arrows superimposed on
the photograph show the orientations of
the magnetic dipoles within the domains
and thus the orientations of the net mag-
netic dipoles of the domains. The crystal as
a whole is unmagnetized if the net mag-
netic field (the vector sum over all the do-
mains) is zero.
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FIGURE 32-16 ■ A magnetization
curve for a ferromagnetic core mater-
ial in the Rowland ring of Fig. 32-17.
On the vertical axis, 1.0 corresponds to
complete alignment (saturation) of the
atomic dipoles within the material.



We can express the extent to which a given paramagnetic sample is magnetized by
finding the ratio of its magnetic dipole moment to its volume V. This vector quantity,
the magnetic dipole moment per unit volume, is called the magnetization of the
sample, and its magnitude is 

(32-41)

The unit of is the ampere-square meter per cubic meter, or ampere per meter
. Complete alignment of the atomic dipole moments, called saturation of the

sample, corresponds to the maximum magnetization of magnitude 
where N is the number of atoms in the volume V.

The magnetization of a ferromagnetic material such as iron can be studied using a
toroidal coil called a Rowland ring (Fig. 32-17). A Rowland ring is basically a long so-
lenoid with an iron cylinder at its core, except the whole thing is bent into the shape
of a donut. Assume that the ring’s primary coil P has n turns per unit length and car-
ries current iP. If the iron core were not present, the magnitude of the magnetic field
inside the coil caused by the “external” solenoid windings (as distinct from the mag-
netization of a core material inside the windings) would be given by Eq. 30-25,

(no iron core). (32-42)

Here represents the magnetic constant (or permeability) of air (and is not a mag-
netic moment).

If an iron core is present, the magnitude of the magnetic field B inside the coil is
proportional to but is on the order of 1000 to 10 000 times greater due to the
magnetization of the iron core. This magnetization results from the alignment of the
atomic dipole moments within the iron. The field inside the coil should be the vec-
tor sum of the field contributed by the coil without the core and the field con-
tributed by the magnetization of the core. Since the magnitude of field is much
smaller than that produced by the core magnetization

(32-43)

To determine we use a secondary coil S to measure and hence If needed,
we compute using Eq. 32-42.

Figure 32-18 shows a magnetization curve for a ferromagnetic material in a Rowland
ring: the ratio of magnitudes is plotted as a function of (where is
the maximum possible value of , corresponding to saturation). The curve is similar
to that for the magnetization curve for a paramagnetic substance shown in Fig. 32-19.
Both curves are measures of the extent to which an applied magnetic field can align
the atomic dipole moments of a material.

For the ferromagnetic core described by the graph in Fig. 32-16, the alignment
of the dipole moments is about 70% complete for . If were
increased to 1 T, the alignment would be almost complete (but , and thus
almost complete saturation, is quite difficult to achieve).

Hysteresis
Magnetization curves for ferromagnetic materials are not retraced as we increase and
then decrease and then reverse the external magnetic field . Let’s assume that we
choose the z axis to be along the direction of the external magnetic field. Figure 32-18 is
a plot of the z-component of the magnetization field versus the z-component of the
external field during the following operations with a Rowland ring: (1) Starting with
the iron unmagnetized (point a), increase the current in the toroid until has
the value corresponding to point b; (2) reduce the current in the toroid winding (and
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Primary coil (P)Iron
core

iS

iP

Secondary “pickup”
coil (S)

FIGURE 32-17 ■ A toroidal Rowland ring
coil in which a current iP is sent through a
primary coil P. This current is used to study
the behavior of the ferromagnetic material
of the iron core inside the windings. The
extent of magnetization of the core deter-
mines the total magnetic field within
coil P. Field can be measured by means
of a secondary or “pickup” coil.
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FIGURE 32-18 ■ A magnetization curve
(ab) for a ferromagnetic specimen and an
associated hysteresis loop (bcdeb).



thus ) back to zero (point c); (3) reverse the toroid current and increase it in amount
until has the value corresponding to point d; (4) reduce the current to zero again
(point e); (5) reverse the current once more until point b is reached again.

The lack of retraceability shown in Fig. 32-18 is called hysteresis, and the curve
bcdeb is called a hysteresis loop. Note that at points c and e the iron core is magne-
tized, even though there is no current in the toroid windings; this is the familiar phe-
nomenon of permanent magnetism. In fact when engineers are designing permanent
magnets, they look for materials that have a high degree of hysteresis.

Hysteresis can be understood through the concept of magnetic domains. When
the magnetic field in the coil due to the current in the solenoid windings, , is in-
creased and then decreased back to its initial value, the domains do not return com-
pletely to their original configuration but retain some “memory” of their alignment
after the initial increase. This memory of magnetic materials is essential for the mag-
netic storage of information, as on cassette tapes and computer disks.

This memory of the alignment of domains can also occur naturally. When light-
ning sends currents along multiple tortuous paths through the ground, the currents
produce intense magnetic fields that can suddenly magnetize any ferromagnetic mate-
rial in nearby rock. Because of hysteresis, such rock material retains some of that
magnetization after the lightning strike (after the currents disappear) then becomes
lodestones.

Inductors and Transformers with Iron Cores
Based on our discussion above of the Rowland ring, it is clear that the use of iron and
iron alloys in inductors and transformers can literally increase the performance of
these devices by a thousandfold or more.

A great deal of engineering has gone into the design of cores for large inductors and
high-performance transformers. For example, these cores should not behave like perma-
nent magnets with large hysteresis. Instead, they should have small hysteresis so that the
magnetization of the core can change rapidly in the presence of alternating currents. In
addition, transformer cores are not single hunks of iron. Rather, they are built up in lay-
ers to prevent eddy currents from being induced in the cores that could reduce the effi-
ciency of the power transfer from the primary to secondary coils in a transformer.

READI NG EXERC IS E  32-6: Iron is a ferromagnetic material. Why then isn’t every
piece of iron—for example, an iron nail—a naturally strong magnet? ■

READI NG EXERC IS E  32-7: What is hysteresis and why does it occur? ■

32-8 Other Magnetic Materials

Paramagnetism
In paramagnetic materials, the spin and orbital magnetic dipole moments of the elec-
trons in individual atoms do not cancel but add vectorially to give each atom a net
(and permanent) magnetic dipole moment . In the absence of an external magnetic
field, these atomic dipole moments are randomly oriented, and the net magnetic di-
pole moment of the material is zero. However, if a sample of the material is placed in
an external magnetic field , the magnetic dipole moments tend to line up with the
field, which gives the sample a net magnetic dipole moment not unlike that found in a
ferromagnetic sample. However, paramagnetic materials lack the exchange coupling
needed to set up permanent magnetic domains. Paramagnetism is fairly weak com-
pared to ferromagnetism because the forces of alignment from external magnetic
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Liquid oxygen is suspended between the
two pole faces of a magnet because the
liquid is paramagnetic and is magnetically
attracted to the magnet.
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fields are smaller than the randomizing forces due to thermal motions. Also, paramag-
netic materials do not retain their magnetism once an external magnetic field is
turned off.

A paramagnetic material placed in an external magnetic field develops a magnetic di-
pole moment in the direction of . If the field is not uniform, the paramagnetic material
is attracted toward a region of greater magnetic field from a region of lesser field.

As is the case for ferromagnetism, we can express the extent to which a given
paramagnetic sample is magnetized by measuring the magnetization (defined in
Eq. 32-41). In 1895, Pierre Curie discovered that the magnitude of the magnetization
of a paramagnetic sample is directly proportional to the external magnetic field mag-
nitude and inversely proportional to the temperature T in kelvins; that is,

(32-44)

Equation 32-44 is known as Curie’s law, and C is called the Curie constant. Curie’s
law is reasonable in that increasing tends to align the atomic dipole moments in a
sample and thus to increase , whereas increasing T tends to disrupt the align-
ment via thermal agitation and thus to decrease . However, the law is actually an
approximation that is valid only when the ratio is not too large.

Figure 32-19 shows the ratio as a function of for a sample of the salt
potassium chromium sulfate, in which chromium ions are the paramagnetic substance.
The plot is called a magnetization curve. The straight line for Curie’s law fits the experi-
mental data at the left, for below about . The curve that fits all the data
points is based on quantum physics. The data on the right side, near saturation, are very
difficult to obtain because they require very strong magnetic fields (about 100 000 times
Earth’s field), even at the very low temperatures noted in Fig. 32-19.

Diamagnetism
The atoms in diamagnetic materials have no net magnetic dipole moments. However,
diamagnetic materials do undergo a very weak nonpermanent alignment in the pres-
ence of an external magnetic field. The strength of the alignments is still proportional
to the strength of the external magnetic field (as is the case for both ferro- and para-
magnetism). However, the behavior of diamagnetic materials is not very temperature
dependent.

The most interesting characteristic of diamagnetism is that in the presence of an
external magnetic field that is nonuniform, each atom experiences a net force that is
directed away from the region of greater magnetic field. Thus, in diamagnetism the
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FIGURE 32-19 ■ A magnetization curve
for potassium chromium sulfate, a para-
magnetic salt. The ratio of the magnitudes
of the salt magnetization to the maxi-
mum possible magnetization is plot-
ted versus the ratio of the magnitude of
the applied magnetic field to the tem-
perature T. Curie’s law fits the data at the
left; quantum theory fits all the data.
(Based on research by Warren E. Henry,
1909–2001.)
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alignment of atomic magnetic moments with an external magnetic field is opposite to
that associated with ferromagnetic and paramagnetic materials. In general,

A diamagnetic material placed in an external magnetic field develops a magnetic di-
pole moment directed opposite . If the field is nonuniform, the diamagnetic material is
repelled from a region of greater magnetic field toward a region of lesser field.

Animals like the frog shown in Fig. 32-20 are diamagnetic. This frog has been
placed in the diverging magnetic field near the top end of a vertical current-carrying
solenoid; every atom in the frog was repelled upward, away from the region of
stronger magnetic field at that end of the solenoid. The frog moved upward into
weaker and weaker magnetic field until the upward magnetic force balanced the grav-
itational force on it, and there it hung in midair. People are also diamagnetic, so if we
built a large enough solenoid, we could also suspend a person in midair.

READI NG EXERC IS E  32-8: The figure here shows two paramagnetic spheres
located near the south pole of a bar magnet. Are (a) the magnetic forces on the spheres and
(b) the magnetic dipole moments of the spheres directed
toward or away from the bar magnet? (c) Is the magnetic
force on sphere 1 greater than, less than, or equal to that
on sphere 2? ■

READI NG EXERC IS E  32-9: The figure shows two diamagnetic spheres located near
the south pole of a bar magnet. Are (a) the magnetic forces on the spheres and (b) the mag-
netic dipole moments of the spheres directed toward or
away from the bar magnet? (c) Is the magnetic force on
sphere 1 greater than, less than, or equal to that on
sphere 2? ■

32-9 The Earth’s Magnetism

The Earth has a magnetic field associated with it that behaves approximately like
that of a magnetic dipole. In other words, the Earth’s magnetic field can be thought of
as being produced by a bar magnet that straddles the center of the planet with its axis
more or less aligned with the Earth’s rotation axis. Figure 32-21 is an idealized depic-
tion of the Earth’s dipole field that ignores the distortion of field lines caused by
charged particles streaming out of the Sun and other factors.

Characteristics of the Earth’s Magnetic Field
For the idealized magnetic field shown in Fig. 32-21, the Earth’s magnetic dipole moment

has a magnitude of . The point where the Earth’s rotation axis intersects
the surface is known at the geographic north pole. In 2001, the geological survey of
Canada placed the direction of the Earth’s dipole moment at an angle of � � 8.7° from
the rotation axis (RR) of the Earth.* The dipole axis (MM in Fig. 32-21) lies along and
intersects the Earth’s surface at the geomagnetic north and south poles, These days the
magnetic north pole is estimated to be somewhere in the Arctic Ocean north of Canada
and the south pole is in the Antarctic Ocean. Since the poles are currently moving at
about 40 km/yr, the possibility exists that the magnetic north pole could pass north of
Alaska and in about fifty years end up in Siberia, although this outcome is not certain.
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FIGURE 32-20 ■ An overhead view of a
diamagnetic frog that is being levitated in
a magnetic field. The -field is produced
by current in a vertical solenoid below the
frog. The solenoid’s upward magnetic force
on the frog balances the downward gravi-
tational force on the frog. (The frog is not
in discomfort; the sensation is like floating
in water, which frogs don’t seem to mind.)
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FIGURE 32-21 ■ An idealized view of the
Earth’s magnetic field as a dipole field. At
present, dipole axis MM makes an angle of
8.7° with Earth’s rotational axis RR. The
“south pole” of the dipole is in Earth’s
northern hemisphere.

*http://www.geolab.nrcan.gc.ca/geomag/northpole_e.shtml
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The lines of the magnetic field generally emerge in the southern hemisphere
and reenter Earth in the northern hemisphere. Thus, the magnetic pole that is in the
Earth’s northern hemisphere and known as a “north magnetic pole” is really the south
pole of the Earth’s magnetic dipole. This means that the north pole of a compass is at-
tracted to the Earth’s geographic north pole.

The direction of the magnetic field varies from location to location on the Earth.
The field direction at any location on the Earth’s surface is commonly specified in
terms of two angles. The field declination is the angle (left or right) between geo-
graphic north (which is toward 90° latitude) and the horizontal component of the
field. The field inclination is the angle (up or down) between a horizontal plane and
the field’s direction.

The field’s inclination and declination at a given location can be measured with a
compass and a dip meter. A compass is simply a needle-shaped magnet that is
mounted so it can rotate freely about a vertical axis. When it is held in a horizontal
plane, the north-pole end of the needle points, generally, toward the geomagnetic
north pole (really a south magnetic pole). The angle between the compass needle and
geographic north is the field declination.* A dip meter, used to measure inclination, is
simply another needle-shaped magnet mounted so it can rotate freely about a hori-
zontal axis. If the plane of the dip meter is aligned with the direction of the compass
needle used to measure the declination, then the angle the dip meter needle makes
with the horizontal is defined as the inclination angle. The magnetic north pole is de-
fined as the location in the northern hemisphere for which the dip angle is 90°.

Causes of the Earth’s Magnetism
The mechanisms that produce the Earth’s magnetic field are not completely under-
stood. However, it is helpful to begin our discussion of the latest models with a con-
sideration of what is known about the Earth’s formation and structure.

The Earth’s Structure: Measurements of the spread of seismic waves tell us that the
structure of the Earth is rather like that of a chocolate-covered cherry with gooey liq-
uid between the cherry and the chocolate. This structure makes sense when we con-
sider the currently accepted theory that the Earth was formed five billion years ago as
a conglomeration of colliding meteorites and comets. Iron and other dense elements
from meteorites were pulled by gravitational forces toward the center of the Earth.
Compounds made of lighter elements, as well as the water contained in comets, mi-
grated toward the surface. In between the solid core at the center of the Earth and the
solid crust at the Earth’s surface there is the gooey liquid consisting of molten lava
(Fig. 32-22).

Continuous Molten Lava Currents: Many scientists believe that most of the Earth’s
magnetic field is produced by electromagnetic interactions that depend on the molten
lava acting like a moving electrical conductor. We know from our study of Faraday’s law
that if even a small magnetic field is present in a region of the core, the electrical cur-
rents can be induced in the conducting fluid that travels through it. These induced cur-
rents can, in turn, produce magnetic fields that can act on other parts of the liquid core
that are also moving. Thus a continuous cycle of induction and magnetic field produc-
tion can take place as long as the material in the liquid core keeps flowing. In principle,
this process is rather like that described for the generator shown in Fig. 32-10.

Two mechanisms have been proposed that explain the flow of molten lava in the liq-
uid core. One possible mechanism is thermal convection produced by the temperature
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*Inclination is the angle that a magnetic needle makes with the plane of the horizon. It is also called the
angle of dip. Declination is the angle between magnetic north and geographic north.

FIGURE 32-22 ■ Seismic data reveal that
the Earth has an inner core (white) of solid
iron with a radius of about 1200 km, an
outer core (yellow) of iron rich molten
lava about 2200 km thick, a more or less
solid mantle (orange and red—not to
scale) of less dense matter about 2600 km
thick, and a very thin crust of rocks and
soils at the surface with an average
thickness of 20 km.
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difference between the hot solid inner core and the much cooler mantle. A second
proposed mechanism for the flow of lava involves condensation of the heavier
elements onto a growing inner core. This causes lighter, less dense, elements to flow
toward the Earth’s surface. In either case liquid convection currents are produced that
are not unlike those in a pot of boiling water.

The Earth’s magnetic field depends critically on the existence of continuous con-
vection currents that requires the solid core to remain very hot for billions of years.
Some scientists believe that nuclear energy in the core is being transformed to ther-
mal energy through the decay of heavy radioactive elements. Other scientists have
suggested that thermal energy can be released if the inner core expands by condens-
ing material from the liquid core.

Changes in the Earth’s Magnetic Field Over Time: Some mysterious characteristics
of the Earth’s magnetic field have been gleaned from fossil records and other geo-
magnetic measurements. The strength of the field and the location of the magnetic
poles are constantly changing. For example, in recent years the geographic location of
the magnetic poles has changed by an average of about 100 meters a day. These rela-
tively small day-to-day changes are not obvious to someone a long distance from a
magnetic pole who uses a compass and dip meter to measure a local field direction.
It’s another story when longer time scales are involved. We can use simple instru-
ments to detect changes over a time period of a year or more. When even longer time
periods are considered, the changes have been dramatic. In fact, the orientations of
magnetized minerals imbedded in ancient rocks indicate that the Earth’s magnetic
field has completely reversed itself many times in the Earth’s five billion year history,
though reversals seem to take 1000 years or more.

The Glatzmaier/Roberts Model: A few years ago, two scientists, Gary Glatzmaier
and Paul Roberts, developed a comprehensive numerical model of the electromag-
netic and fluid dynamic processes in the Earth’s interior. When this model was run on
a CRAY supercomputer for thousands of hours these investigators were able to simu-
late over 300,000 years of magnetic field conditions. Their results showed many of the
key features revealed by geological data, including the existence of a dipole field out-
side the Earth, a preference for approximate alignment between the Earth’s dipole
moment and its rotation axis, field strength variations, migration of the magnetic poles
over the Earth’s surface, and several field reversals. One such configuration of mag-
netic field lines is seen in Fig. 32-23.

There is still a great deal to be learned about the actual mechanisms responsible
for the continual changes in the Earth’s magnetic field, but scientists expect to resolve
many of their uncertainties within the next few decades.

Magnetic Bacteria
The survival of many organisms depends on their ability to sense the Earth’s magnetic
field. For example, it is believed that the Earth’s dipole field is critical to the naviga-
tion of migrating birds and fish as well as certain types of bacteria.

Magnetotactic bacteria are one-celled organisms that can be found almost any-
where in the world where there are ponds, marshes, or muddy lake bottoms. Many
species of these bacteria are anaerobic or microanaerobic and must burrow in mud
both to get away from oxygen and to feed on nutrients. Notice that on the lower left
side of the bacterium shown in the photo at the beginning of this chapter there is a
string of tiny 100-nanometer-long particles. These particles, known as magnetosomes,
are oriented along the bacterium’s long axis. An enlarged view of a set of magneto-
somes is shown in Fig. 32-24.

Magnetotactic bacteria synthesize these magnetic particles out of iron-oxygen or
iron sulfur compounds. Each magnetosome is just big enough to have a permanent

FIGURE 32-23 ■ This image shows one of
many configurations of the Earth’s mag-
netic field lines created by the model de-
veloped by Glatzmaier and Roberts.

FIGURE 32-24 ■ The type of bacterium
shown in the puzzler at the beginning of
the chapter is magnetotactic because it
contains a chain of dense iron-rich magne-
tosomes each having a length of about 100
nm. The chain shown in this transmission
electron micrograph has a net magnetic
moment and tends to align itself with the
Earth’s magnetic field.
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magnetic dipole moment and just small enough to be a single ferromagnetic domain.
When strung together like a set of microscopic refrigerator magnets, the array has a
net dipole moment. So instead of bumbling around randomly, these bacteria align
with the Earth’s magnetic field. This allows them to swim naturally along field lines.

Through natural selection, the bacteria that have their magnetosome strings ori-
ented so they swim down along magnetic field lines to the mud at the bottom of a
pond or lake will survive and multiply. Those that don’t will swim up and die. An ex-
amination of the pattern of the Earth’s magnetic field lines shown in Fig. 32-21 reveals
that “down” is opposite to the direction of the field lines in the southern hemisphere
and in the same direction as the field lines in the northern hemisphere. Thus, an Aus-
tralian bacterium evolved to swim down in its normal habitat would swim up if trans-
ported to the United States. Alternatively, a healthy bacterium that evolves in the
United States would be preset by evolutionary processes to have its magnetosomes
oriented in the opposite direction, so it will swim down.

It is interesting to note that the orientations of bacterial magnetosome strings in
fossils have helped scientists piece together evidence for past changes in the Earth’s
magnetic field.

READI NG EXERC IS E  32-10: Describe the ways in which the Earth’s magnetic field
varies over its surface. Does the Earth’s magnetic field vary in time as well? ■

Problems

SEC. 32-2 ■ SELF-INDUCTANCE

1. Close-Packed Coil The inductance of a close-packed coil of
400 turns is 8.0 mH. Calculate the magnetic flux through the coil
when the current is 5.0 mA.

2. Circular Coils and Flux A circular coil has a 10.0 cm radius and
consists of 30.0 closely wound turns of wire. An externally produced
magnetic field of magnitude 2.60 mT is perpendicular to the coil.
(a) If no current is in the coil, what is the magnitude of the mag-
netic flux that links its turns? (b) When the current in the coil is
3.80 A in a certain direction, the net flux through the coil is found
to vanish. What is the inductance of the coil?

3. Equal Currents, Opposite Directions Two long parallel wires,
both of radius a and whose centers are a distance d apart, carry
equal currents in opposite directions. Show that, neglecting the flux
within the wires, the inductance of a length l of such a pair of wires
is given by 

(Hint: Calculate the flux through a rectangle of which the wires
form two opposite sides.)

4. Wide Copper Strip A wide copper strip of width W is bent to
form a tube of radius R with two
parallel planar extensions, as
shown in Fig. 32-25. There is a
current i through the strip, dis-
tributed uniformly over its
width. In this way a “one-turn
solenoid” is formed. (a) Derive
an expression for the magnitude
of the magnetic field in theB

:

L �
�0l


 ln 
d � a

a

tubular part (far away from the edges). (Hint: Assume that the
magnetic field outside this one-turn solenoid is negligibly small.)
(b) Find the inductance of this one-turn solenoid, neglecting the
two planar extensions.

5. Inductor Carries Steady Current A 12 H inductor carries a
steady current of 2.0 A. How can a 60 V self-induced emf be made
to appear in the inductor?

6. At a Given Instant At a given instant the current and self-
induced emf in an inductor are di-
rected as indicated in Fig. 32-26. (a)
Is the current increasing or de-
creasing? (b) The induced emf is
17 V and the rate of change of the
current is 25 kA/s; find the
inductance.

7. Inductors in Series Two inductors L1 and L2 are connected in
series and are separated by a large distance. (a) Show that the
equivalent inductance is given by 

Leq � L1 � L2.

(Hint: Review the derivations for resistors in series and capacitors
in series. Which is similar here?) (b) Why must their separation be
large for this relationship to hold? (c) What is the generalization of
(a) for N inductors in series?

8. Current Varies with Time The current i through a 4.6 H inductor
varies with time t as shown by the graph of Fig. 32-27. The inductor
has a resistance of 12 �. Find the magnitude of the induced emf �
during the time intervals (a) t1 � 0 to t2 � 2 ms, (b) t2 � 2 ms to
t3 � 5 ms, (c) t3 � 5 ms to t4 � 6 ms. (Ignore the behavior at the
ends of the intervals.)

i
i

i
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FIGURE 32-25 ■ Problem 4.
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FIGURE 32-26 ■ Problem 6.



9. At What Rate At time t � 0 ms, a 45 V potential difference is
suddenly applied to the leads of a coil with inductance L � 50 mH
and resistance R � 180 �. At what rate is the current through the
coil increasing at t � 1.2 ms?

10. Inductors in Parallel Two inductors L1 and L2 are connected in
parallel and separated by a large distance. (a) Show that the equiva-
lent inductance is given by

.

(Hint: Review the derivations for resistors in parallel and capacitors
in parallel. Which is similar here?) (b) Why must their separation be
large for this relationship to hold? (c) What is the generalization of
(a) for N inductors in parallel?

11. What Is L The inductance of a closely wound coil is such that
an emf of 3.0 mV is induced when the current changes at the rate
of 5.0 A/s. A steady current of 8.0 A produces a magnetic flux of
40 � Wb through each turn. (a) Calculate the inductance of the coil.
(b) How many turns does the coil have?

SEC. 32-3 ■ MUTUAL INDUCTION

12. Coil 1, Coil 2 Coil 1 in Fig. 32-4 has L1 � 25 mH and N1 �
100 turns. Coil 2 has L2 � 40 mH and N2 � 200 turns. The coils are
rigidly positioned with respect to each other; their mutual induc-
tance M is 3.0 mH. A 6.0 mA current in coil 1 is changing  at the
rate of 4.0 A/s. (a) What magnetic flux �1 : 2 links coil 2, and what
self-induced emf appears there? (b) What magnetic flux �2 :1 links
coil 1, and what mutually induced emf appears there?

13. Two Coils at Fixed Locations Two coils are at fixed locations.
When coil 1 has no current and the current in coil 2 increases at the
rate 15.0 A/s, the emf in coil 1 is 25.0 mV. (a) What is their mutual
inductance? (b) When coil 2 has no current and coil 1 has a current
of 3.60 A, what is the flux linkage in coil 2?

14. Two Solenoids Two solenoids
are part of the spark coil of an auto-
mobile. When the current in one
solenoid falls from 6.0 A to zero in
2.5 ms, an emf of 30 kV is induced in
the other solenoid. What is the
mutual inductance M of the sole-
noids?

15. Two Connected Coils Two coils,
connected as shown in Fig. 32-28,
separately have inductances L1 and
L2. Their mutual inductance is M.
(a) Show that this combination can

1
Leq

�
1

L1
�

1
L2
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be replaced by a single coil of equivalent inductance given by 

Leq � L1 � L2 � 2M.

(b) How could the coils in Fig. 32-28 be reconnected to yield an
equivalent  inductance of 

Leq � L1 � L2 � 2M?

(This problem is an extension of Problem 7, but the requirement
that the coils be far apart has been removed.)

16. Coil Around Solenoid A coil C
of N turns is placed around a long so-
lenoid S of radius R and n turns per
unit length as in Fig. 32-29. Show that
the mutual inductance for the
coil–solenoid combination is given by
M � �0R2nN. Explain why M does
not depend on the shape, size, or pos-
sible lack of close-packing of the coil.

17. Coaxial Solenoid Figure 32-30 shows, in cross section, two
coaxial solenoids. Show that the mutual inductance M for a length l
of this solenoid–solenoid combination is given by M � R2

1l�0n1n2,
in which n1 and n2

are the respective
numbers of turns
per unit length and
R1 is the radius of
the inner solenoid.
Why does M de-
pend on R1 and not
on R2?

18. Coils Over a Toroid Figure
32-31 shows a coil of N2 turns
wound as shown around part of a
toroid of N1 turns. The toroid’s in-
ner radius is a, its outer radius is
b, and its height is h. Show that
the mutual inductance M for the
toroid–coil combination is 

19. Rectangular Loop A rectan-
gular loop of N close-packed
turns is positioned near a long
straight wire as shown in Fig. 32-32.
(a) What is the mutual inductance M
for the loop–wire combination? (b)
Evaluate M for N � 100, a � 1.0
cm, b � 8.0 cm, and l � 30 cm.

SEC. 32-4 ■ RL CIRCUITS

(WITH IDEAL INDUCTORS)

20. Inductive Time Constant The current in an RL circuit builds
up to one third of its steady-state value in 5.00 s. Find the inductive
time constant.

M �
�0N1N2h
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FIGURE 32-27 ■ Problem 8.
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21. How Long Must We Wait In terms of �L, how long must we
wait for the current in an RL circuit to build up to within 0.100% of
its equilibrium value?

22. In Terms of the emf Consider the RL circuit of Fig. 32-6. In
terms of the battery emf �, (a) what is the self-induced emf 	V2

when the switch has just been closed on a, and (b) what is 	V2

when t � 2.0�L? (c) In terms of �L, when will 	V2 be just one-half
the battery emf �?

23. First Second The current in an RL circuit drops from 1.0 A to
10 mA in the first second following removal of the battery from the
circuit. If L is 10 H, find the resistance R in the circuit.

24. emf Varies with Time Suppose the emf of the battery in the
circuit of Fig. 32-7 varies with time t so that the current is given by
i(t) � 3.0 A � (5.0 A/s)t, where i is in amperes and t is in seconds.
Take R � 4.0 � and L � 6.0 H, and find an expression for the bat-
tery emf as function of time. (Hint: Apply the loop rule.)

25. Solenoid A solenoid having an inductance of 6.30 �H is con-
nected in series with a 1.20 k� resistor. (a) If a 14.0 V battery is in-
serted into the circuit, how long will it take for the current through
the resistor to reach 80.0% of its final value? (b) What is the cur-
rent through the resistor at time t � 1.0�

L
?

26. Wooden Toroidal Core A wooden torodial core with a square
cross section has an inner radius of 10 cm and an outer radius of
12 cm. It is wound with one layer of wire (of diameter 1.0 mm and
resistance per meter 0.020 �/m). What are (a) the inductance and
(b) the inductive time constant of the resulting toroid? Ignore the
thickness of the insulation on the wire.

27. Suddenly Applied At time t � 0 ms, a 45.0 V potential differ-
ence is suddenly applied to a coil with L � 50.0 mH and R �
180 �. At what rate is the current in-
creasing at t � 1.20 ms?

28. In the Circuit In the circuit of
Fig. 32-33, � � 10 V, R1 � 5.0 �, R2

� 10 �, and L � 5.0 H. For the two
separate conditions (I) switch S just
closed and (II) switch S closed for a
long time, calculate (a) the current i1

through R1, (b) the current i2

through R2, (c) the current i through
the switch, (d) the potential differ-
ence across R2, (e) the potential dif-
ference across L, and (f) the rate of
change di2/dt.

29. In the Figure In Fig. 32-34, � �
100 V, R1 � 10.0 �, R2 � 20.0 �, R3

� 30.0 �, and L � 2.00 H. Find the
values of i1 and i2 (a) immediately
after closing of switch S, (b) a long
time later, (c) immediately after the
reopening of switch S, and (d) a long
time after the reopening.

30. What Is the Constant Figure 32-35a shows a circuit consisting
of an ideal battery with emf � � 6.00 �V, a resistance R, and a
small wire loop of area 5.0 cm2. For the time interval tl � 10 to t2 �
20 s, an external magnetic field is set up throughout the loop. The
field is uniform, its direction is into the page in Fig. 32-35a, and the
field magnitude is given by B � at, where B is in teslas, a is a

constant with units of teslas per second, and t is in seconds. Figure
32-35b gives the current i in the circuit before, during, and after the
external field is set up. Find a.

31. Once the Switch Is Closed Once the
switch S is closed in Fig. 32-36 the time re-
quired for the current to reach any obtain-
able value depends, in part, on the value of
resistance R. Suppose the emf � of the
ideal battery is 12 V and the inductance of
the ideal (resistanceless) inductor is 18 mH.
How much time is needed for the current
to reach 2.00 A if R is (a) 1.00 �, (b) 5.00
�, and (c) 6.00 �? (d) Why is there a huge
jump between the answers to (b) and (c)? (e) For what value of R is
the time required for the current to reach 2.00 A least? (f)What is
that least time? (Hint: Rethink Eq. 32-21.)

32. Circuit Shown In the circuit
shown in Fig. 32-37, switch S is
closed at time t � 0. Thereafter, the
constant current source, by varying
its emf, maintains a constant current
i out of its upper terminal. (a) De-
rive an expression for the current
through the inductor as a function of
time. (b) Show that the current
through the resistor equals the cur-
rent through the inductor at time 
t � (L/R) ln 2.

33. When Is the Flux Equal In Fig. 32-38a, switch S has been
closed on A long enough to establish a steady current in the induc-
tor of inductance L1 � 5.00 mH and the resistor of resistance R1 �
25 �. Similarly, in Fig. 32-38b, switch S has been closed on A long
enough to establish a steady current in the inductor of inductance
L2 � 3.00 mH and the resistor of resistance R2 � 30 �. The ratio
�02/�01 of the magnetic flux through a turn in inductor 2 to that in
inductor 1 is 1.5. At time t � 0, the two switches are closed on B. At
what time t is the flux through a turn in the two inductors equal?
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34. When Is emf Equal Switch S in Fig. 32-36 is closed at time t �
0, initiating the buildup of current in the 15.0 mH inductor and the
20.0 � resistor. At what time is the emf across the inductor equal to
the potential difference across the resistor?



SEC. 32-5 ■ INDUCTORS, TRANSFORMERS,
AND ELECTRIC POWER

35. A Transformer A transformer has 500 primary turns and
10 secondary turns. (a) If 	Vp is 120 V (rms), what is 	Vs with an
open circuit? (b) If the secondary now has a resistive load of 15 �,
what are the currents in the primary and secondary?

36. A Generator A generator supplies 100 V to the primary coil of
a transformer of 50 turns. If the secondary coil has 500 turns, what is
the secondary voltage?

37. Audio Amplifier In Fig. 32-39
let the rectangular box on the left
represent the (high-impedance) out-
put of an audio amplifier, with r �
1000 �. Let R � 10 � represent the
(low-impedance) coil of a loud-
speaker. For maximum transfer of
energy to the load R we must have
R � r, and that is not true in this
case. However, a transformer can be
used to “transform” resistances,
making them behave electrically as if they were larger or smaller
than they actually are. Sketch the primary and secondary coils of a
transformer that can be introduced between the amplifier and the
speaker in Fig. 32-39 to match the imped-
ances. What must be the turns ratio?

38. Autotransformer Figure 32-40 shows an
“autotransformer.” It consists of a single coil
(with an iron core). Three taps TN are pro-
vided. Between taps T1 and T2 there are 200
turns, and between taps T2 and T3 there are
800 turns. Any two taps can be considered
the “primary terminals” and any two taps
can be considered the “secondary terminals.”
List all the ratios by which the primary volt-
age may be changed to a secondary voltage.

SEC. 32-6 ■ MAGNETIC MATERIALS—AN INTRODUCTION

39. Orbital Magnetic Dipole What is the measured component of
the orbital magnetic dipole moment of an electron with (a) ml � 1
and (b) ml � �2?

40. Energy Difference What is the energy difference between  par-
allel and antiparallel alignment of the z-component of an electron’s
spin magnetic dipole moment with an external magnetic field of
magnitude 0.25 T, directed parallel to the z axis?

41. Electron in an Atom If an electron in an atom has an orbital
angular momentum with ml � 0, (a) what is the component �orb

z ?
If the atom is in an external magnetic field of magnitude 35 mT
and directed along z axis, what are the potential energies associated
with the orientations of (b) the electron’s orbital magnetic dipole
moment and (c) the electron’s spin magnetic dipole moment? 
(d) Repeat (a) through (c) for ml � �3.

42. Spin Magnetic Moment An electron is placed in a magnetic
field that is directed along a z axis. The energy difference be-
tween parallel and antiparallel alignments of the z-component of
the electron’s spin magnetic moment with is 6.00 � 10�25 J. What
is the magnitude of ?B

:
B
:

B
:

B
:
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43. How Many Suppose that �4 are the limits to the values of ml

for an electron in an atom. (a) How many different values of the
z-component �orb

z    of the electron’s orbital magnetic dipole moment
are possible? (b) What is the greatest magnitude of those possible
values? Next, suppose that the atom is in a magnetic field of magni-
tude 0.250 T, in the positive direction of the z axis. What are (c) the
maximum potential energy and (d) the minimum  potential energy
associated with those possible values of �orb

z ?

44. NMR and MRI Nuclear Magnetic Resonance (NMR) and
Magnetic Resonance Imaging (MRI) exploit the interactions be-
tween charged particles and very strong magnetic fields in order to
produce images (including images of soft tissue). The magnetic field
in a certain MRI machine is 0.5 Tesla. What is the maximum differ-
ence in energy that one might measure for a single electron placed
in this field?

SEC. 32-7 ■ FERROMAGNETISM

45. Saturation Magnetization The saturation magnetization M max

of the ferromagnetic metal nickel is 4.70 � 105 A/m. Calculate the
magnetic moment of a single nickel atom. (The density of nickel is
8.90 g/cm3 and its molar mass is 58.71 g/mol.)

46. Iron The dipole moment associated with an atom of iron in an
iron bar has magnitude 2.1 � 10�23 J/T. Assume that all the atoms
in the bar, which is 5.0 cm long and has a cross-sectional area of
1.0 cm2, have their dipole moments aligned. (a) What is the magni-
tude of the dipole moment of the bar? (b) What is the magnitude of
the torque that must be exerted to hold this magnet perpendicular
to an external field of 1.5 T? (The density of iron is 7.9 g/cm3.)

47. Earth’s Magnetic Moment The magnetic dipole moment of
Earth has magnitude 8.0 � 1022 J/T. (a) If the origin of this magnet-
ism were a magnetized iron sphere at the center of the Earth, what
would be its radius? (b) What fraction of the volume of the Earth
would such a sphere occupy? Assume complete alignment of the
dipoles. The density of the Earth’s inner core is 14 g/cm3. The mag-
netic dipole moment of an iron atom is 2.1 � 10�23 J/T. (Note: The
Earth’s inner core is in fact thought to be in both liquid and solid
forms and partly iron, but a permanent magnet as the source of the
Earth’s magnetism has been ruled out by several considerations.
For one, the temperature is certainly above the Curie point.)

48. Mines and Boreholes Measurements in mines and boreholes
indicate that the Earth’s interior temperature increases with depth
at the average rate of 30 C°/km. Assuming a surface temperature of
10°C, at what depth does iron cease to be ferromagnetic? (The
Curie temperature of iron varies very little with pressure.)

SEC. 32-8 ■ OTHER MAGNETIC MATERIALS

49. Electron Assume that an electron of mass m and charge mag-
nitude e moves in a circular orbit of radius r about a nucleus. A uni-
form magnetic field is then established perpendicular to the
plane of the orbit. Assuming also that the radius of the orbit does
not change and that the change in the speed of the electron due to
field is small, find an expression for the change in the orbital
magnetic dipole moment of the electron due to the field.

50. Loop Model Figure 32-41 shows a loop model (loop L) for a
diamagnetic material. (a) Sketch the magnetic field lines through
and about the material due to the bar magnet. (b) What are the

B
:

B
:
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R
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directions of the loop’s net magnetic
dipole moment and the conven-
tional current i in the loop? (c) What
is the direction of the magnetic force
on the loop?

51. Cylindrical Magnet A magnet in
the form of a cylindrical rod has a length of 5.00 cm and a diameter
of 1.00 cm. It has a uniform magnetization of 5.30 � 103 A/m. What
is the magnitude of its magnetic dipole moment?

52. Paramagnetic Gas A magnetic field of magnitude 0.50 T is ap-
plied to a paramagnetic gas whose atoms have an intrinsic magnetic
dipole moment of magnitude 1.0 � 10�23 J/T. At what temperature
will the mean kinetic energy of translation of the gas atoms be
equal to the energy required to reverse such a dipole end for end in
this magnetic field?

53. Paramagnetic Salt A sample of the paramagnetic salt to which
the magnetization curve of Fig. 32-19 applies is to be tested to see
whether it obeys Curie’s law. The sample is placed in a uniform
0.50 T magnetic field that remains constant throughout the experi-
ment. The magnetization M is then measured at temperatures rang-
ing from 10 to 300 K. Will Curie’s law be valid under these condi-
tions?

54. Paramagnetic Material Repeat Problem 50 for the case in
which loop L is the model for a paramagnetic material.

55. Electron’s Kinetic Energy An electron with kinetic energy K
travels in a circular path that is perpendicular to a uniform mag-
netic field, the electron’s motion is subject only to the force due to
the field. (a) Show that the magnetic dipole moment of the electron
due to its orbital motion has magnitude � � K/ and that it is in
the direction opposite that of . (b) What are the magnitude and
direction of the magnetic dipole moment of a positive ion with ki-
netic energy Kion under the same circumstances? (c) An ionized gas
consists of 5.3 � 1021 electrons/m3 and the same number density of
ions. Take the average electron kinetic energy to be 6.2 � 10�20 J
and the average ion kinetic energy to be 7.6 � 10�21 J. Calculate the
magnetization of the gas when it is in a magnetic field of 1.2 T.

56. Magnetization Curve A sample of the paramagnetic salt to
which the magnetization curve of Fig. 32-17 applies is held at room
temperature (300 K). At what applied magnetic field will the degree

B
:

� B
:

�

�:
of magnetic saturation of the sample be (a) 50% and (b) 90%?
(c) Are these fields attainable in the laboratory?

SEC. 32-9 ■ THE EARTH’S MAGNETISM

57. New Hampshire In New Hampshire the average horizontal
component of the Earth’s magnetic field in 1912 was 16 �T and the
average inclination or “dip” was 73°. What was the corresponding
magnitude of the Earth’s magnetic field?

58. Earth’s Field Assume the average value of the vertical compo-
nent of the Earth’s magnetic field is 43 �T (downward) for all of
Arizona, which has an area of 2.95 � 105 km2, and calculate the net
magnetic flux through the rest of the Earth’s surface (the entire
surface excluding Arizona). Is that net magnetic flux outward or
inward?

59. Earth’s Field Two Use the results of Problem 60 to predict the
Earth’s magnetic field (both magnitude and inclination) at (a) the
geomagnetic equator, (b) a point at geomagnetic latitude 60°, and
(c) the north geomagnetic pole.

60. Magnetic Field of Earth The magnetic field of the Earth can be
approximated as the magnetic field of a dipole, with horizontal and
vertical components, at a point a distance r from the Earth’s center,
given by

where �m is the magnetic latitude (this type of latitude is measured
from the geomagnetic equator toward the north or south geomag-
netic pole). Assume that the Earth’s magnetic dipole moment is
� � 8.00 � 1022 A 
 m2. (a) Show that the magnitude of the Earth’s
field at latitude �m is given by

(b) Show that the inclination �i of the magnetic field is related to
the magnetic latitude �m by

tan �i � 2 tan �m.

B �
�0�

4r 3 √1 � 3 sin2 �m .

Bv �
�0�

2r 3  sin �m,Bh �
�0�

4r 3  cos �m,
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Additional Problems

61. Rate of Energy Transfer In Fig. 32-36, a 12.0 V ideal battery, a
20 � resistor, and an ideal inductor are connected by a switch at
time t � 0 s. At what rate is the battery transferring energy to the
inductor’s field at t � 1.61�L?

62. Compass Needle You place a magnetic compass on a horizon-
tal surface, allow the needle to settle into equilibrium position, and
then give the compass a gentle wiggle to cause the needle to oscil-
late about that equilibrium position. The frequency of oscillation is
0.312 Hz. The Earth’s magnetic field at the location of the compass
has a horizontal component of 18.0 �T. The needle has a magnetic
moment of 0.680 mJ/T. What is the needle’s rotational inertia about
its (vertical) axis of rotation?

63. Induced Current in a Coil A long narrow coil is surrounded by
a short wide coil as shown in Fig. 32-42. Both coils have negligible
resistance. The short wide coil has a diameter dS, nS turns per unit
length, and a length S. Its ends are connected through a resistor of
resistance R. The long narrow inner coil has a diameter dL, nL turns
per unit length, and a length L. Its ends are connected across a vari-
able power source.

For each of the partial sentences below, indicate whether they
are correctly completed by the phrase greater than (�), less than
(�), or the same as (�). If you cannot determine which is the case
from the information given, indicate not sufficient information
(NSI).



The current through
an inner coil is in-
creased from 0.0 amps
to 0.1 amps over a pe-
riod of 10 seconds in a
smooth fashion accord-
ing to the rule

(a) The magnitude of
the current in the long
narrow coil at time t �
1 s is the
current in that coil at
time t � 5 s.
(b) The magnitude of
the current in the short wide coil at time t � 1 s is the
current in that coil at time t � 5 s.
(c) The magnitude of the current in the long narrow coil at time
t � 1 s is the current in the short wide coil at that same
time.
(d) If the long narrow coil was compressed to half its length (with-
out changing its diameter) before the current was turned on, the
current in the short wide coil would be it was without
the compression.

64. Inducing Current Figure 32-43 shows a solenoid and two
hoops. When the switch is closed, the solenoid carries a current in
the direction indicated. The planes of the small loops are parallel to
the planes of the hoops of the solenoid.

iL(t) � (0.01 A/s) t.

Additional Problems 953

Hoop 1 consists of a single turn of resistive wire that has a resis-
tance per unit length of �. Hoop 2 consists of N turns of the same
wire. Each hoop is a circle of radius r.

(a) The switch is closed and remains closed for a few seconds.
Hoop 1 is then moved to the right. Is there a current flow induced?
If there is a cur-
rent, indicate the
direction and ex-
plain how you fig-
ured it out.
(b) The hoops
are now returned
to their original
locations and
held fixed. The
switch is opened.
For a short time,
the magnetic field
at the hoops de-
creases like 

Bx (t) � Bx (0)��t,

where � is a constant with units of gauss per second. Is there a cur-
rent flow induced in the hoops? If there is a current, indicate the di-
rection.
(c) Calculate the current flow in each hoop for situation (b).
(d) If Bx (0) � 10 gauss, � � 2.5 gauss/s, the resistivity of the wire is 
1 ��/m, and the hoops have a radius of 2 cm, calculate the current
induced in hoop 1 as the B-field from the solenoid begins to fall.

R

FIGURE 32-42 ■ Problem 63.
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1
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x direction

FIGURE 32-43 ■ Problem 64.
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33 Electromagnetic
Oscillations and
Alternating Current

When a high-voltage power transmission line requires

repair, a utility company cannot just shut it down, perhaps

blacking out an entire city. Repairs must be made while the

lines are electrically “hot.” The man outside the helicopter in

this photograph has just replaced a spacer between 500 kV

lines by hand, a procedure that requires considerable

expertise.

How does he manage
this repair without being
electrocuted?

The answer is in this chapter.



33-1 Advantages of Alternating Current

So far we have confined our study of electric circuits to direct current or dc circuits in
which the direction of current does not change over time. In reality the vast majority
of electric power systems and electrical devices involve alternating current or ac cir-
cuits where the current direction is continuously oscillating back and forth. Why did
ac power become so popular? By 1879 the famous American inventor, Thomas Edison,
refined the electric lightbulb invented by Humphry Davy in England. Almost
overnight, there was high demand in Europe and the United States for the creation of
systems for the generation and distribution of electric power.

Edison’s quest for a practical lightbulb was apparently motivated by his desire to
promote the use of the dc power system that he and his colleagues were developing.
Indeed, his dc power station in lower Manhattan quickly become a monopoly, but
only temporarily. By 1888 the Serbian immigrant Nikola Tesla (Fig. 33-1) had
patented a complete system of alternating current generators, transformers, transmis-
sion lines, and induction motors. Shortly thereafter, entrepreneur-inventor George
Westinghouse (Fig. 33-2) purchased Tesla’s patents. After the Westinghouse Com-
pany’s ac system was featured at the 1893 Chicago World Fair, more than 80% of all
electrical devices were powered by ac circuits.

You already know some of the key factors that render ac power superior to dc.
In Section 32-5 we discussed how electricity generated by induction naturally pro-
duces alternating current. We discussed how transformers can be used to step up
voltages so that power can be transmitted more efficiently over long distances.*
There were other factors that favored the Westinghouse system. Alternating current
power transmission requires far less copper wire than Edison’s dc system. Further-
more, the ac induction motors invented by Tesla were so efficient and easy to manu-
facture that they quickly became the heart of almost all labor-saving household
devices, including water pumps, washing machines, dryers, electric drills, blenders,
dishwashers, and garbage disposals.

There are other more recent inventions that we now take for granted that operate
on ac circuits. Examples include radio and television transmission (treated in Chapter
34) and reception, computer monitors, and even the graphic equalizers in hi-fi equip-
ment. Thus, without an understanding of ac circuits, it is impossible to understand how
modern electrical systems and devices work. So, the major focus of this chapter is to
use what you already know about induction and dc circuits to help you understand ac
circuits. Resistors, capacitors, and inductors are the basic building blocks of both ac
and dc circuits. We have already studied the independent functioning of each. In addi-
tion, we learned about dc resistor-capacitor (RC) combinations in Chapter 28 and dc
resistor-inductor (RL) combinations in Chapter 32.

We begin this chapter by deriving equations that quantify the energy and energy
density stored in the magnetic field created by current flowing through an inductor.
We also review what we learned in Section 28-5 about the energy and energy den-
sity stored in a capacitor’s electric field due to its charge. This will prepare you to
study electromagnetic oscillations in several types of ac circuits where energy shuttles
back and forth between the magnetic field in an inductor and the electric field in a
capacitor.

Advantages of Alternating Current   955

*The method of repairing high-voltage lines shown in the opening photograph is patented by Scott H.
Yenzer and is licensed exclusively to Haverfield Corporation of Gettysburg, Pennsylvania. As the lineman
approaches a hot line, the electric field surrounding the line brings his body to nearly the potential of the
line. To match the two potentials, he then extends a conducting “wand” to the line. To avoid being electro-
cuted, he must be isolated from anything electrically connected to the ground. To ensure that his body is
always at a single potential—that of the line he is working on—he wears a conducting suit, hood, and
gloves, all of which are electrically connected to the line via the wand.

FIGURE 33-1 ■ Nikola Tesla, an eccentric
Serbian-American scientist and electrical
engineer, invented the first successful ac
power generation system.

FIGURE 33-2 ■ George Westinghouse
developed the first ac power distribution
system in the United States. It was based
on Tesla’s design. The system went online
at Niagara Falls in 1896. After only a few
years it was found to be superior to
existing dc systems.



33-2 Energy Stored in a -Field

When we pull two particles with opposite signs of charge away from each other, the
resulting electric potential energy is stored in the electric field of the particles. We get
this energy back from the field by letting the particles move toward each other again.
In the same way we can consider energy to be stored in a magnetic field.

To derive a quantitative expression for that stored energy, consider Fig. 33-3,
which shows a source of emf connected to a resistor R and an inductor L. After a
switch is closed, the growth of current can be described by Eq. 32-20, which is restated
here for convenience,

. (33-1)

This differential equation follows immediately from the loop rule for potential differ-
ences in single-loop circuits. If we multiply each side of this expression by the current
i we obtain 

(33-2)

which has the following physical interpretation in terms of work and energy:

1. If a charge dq passes through the battery of emf in Fig. 33-3 in time dt, the bat-
tery does work on it in the amount . The rate at which the battery does work
is , or . Thus, the left side of Eq. 33-2 represents the rate at which the
emf device delivers energy to the rest of the circuit.

2. The rightmost term in Eq. 33-2 represents the rate at which energy is transformed
to thermal energy in the resistor.

3. Energy that is delivered to the circuit but does not appear as thermal energy
must, by the conservation-of-energy hypothesis, be stored in the magnetic field of
the inductor. Since Eq. 33-2 represents conservation of energy for RL circuits, the
middle term must represent the rate at which energy is stored in the
magnetic field.

Thus 

(33-3)

We can write this as 

Integrating yields 

or (magnetic energy), (33-4)

which represents the total energy stored in the magnetic field of an inductor L car-
rying a current i. Note the similarity in form between this expression and the ex-
pression for the energy a capacitor stores in its electric field due to its capacitance

U mag � 1
2 Li2

�U mag

0
dU mag � �i

0
Li di

dU mag � Li di.

dU mag

dt
� Li

di
dt

.

dU mag/dt

� i(� dq)/dt
� dq

�

�i � L i
di
dt

� i 2R,

� � L
di
dt

� iR

�

B
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FIGURE 33-3 ■ The circuit of Fig. 32-6 with
the switch closed on a.We apply the loop
rule for circuits clockwise, starting at x.



C and charge q. That equation is given by Eq. 28-21 and restated here for conve-
nience as 

(33-5)

(The variable i corresponds to q, and the constant L corresponds to 1/C.)

33-3 Energy Density of a -Field

Since a typical inductor has the shape of either a solenoid or a toroid (a solenoid bent
into a donut shape) it is often useful to know the magnetic field energy per unit volume
stored in the magnetic field of this type of inductor. Consider a length l near the middle
of a long solenoid of cross-sectional area A carrying current i. The volume associated
with this length is Al. The energy U mag stored by the length l of the solenoid must lie en-
tirely within this volume because the magnetic field outside such a solenoid is approxi-
mately zero. Moreover, the stored energy must be uniformly distributed within the sole-
noid because the magnetic field inside a solenoid is also essentially uniform.

Thus, the energy u mag stored per unit of magnetic field volume is given by

.

But since 

we have 

Here L/l is the inductance of length l of the solenoid. Since the self-induced emf 
�L � �L di/dt (Eq. 32-2) and �L � ��0 An2l di/dt (Eq. 32-1) for an air-filled solenoid,
we can replace L /l in the expression above to find

(33-6)

where n is the number of turns per unit length. By using Eq. 30-25 we
can write this energy density as

(magnetic energy density). (33-7)

The magnetic energy density, umag, is the density of stored energy at any point where
the magnetic field is . Even though we derived it by considering a special case, the
solenoid, it turns out that Eq. 33-7 holds for all magnetic fields, no matter how they
are generated. Equation 33-7 is comparable to Eq. 28-23; namely,

(33-8)

which gives the energy density (in a vacuum) at any point in an electric field. Note that
both u mag and u elec are proportional to the square of the appropriate field, or .E

:
B
:

u elec � 1
2 �0E2,

B
:

umag �
1
2

B2

�0

(B � n�0 � i �)

u mag � 1
2 �0n2i2,

u mag �
Li 2

2Al
� � L

l �
i 2

2A
.

U mag � 1
2L i2,

u mag �
U mag

Al

B
:

U elec � 1
2� 1

C �q 2.
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READI NG EXERC IS E  33-1: The table lists the number of turns per unit length, cur-
rent, and cross-sectional area for three solenoids. Rank the solenoids according to the magnetic
energy density within them, greatest first.

Turns per
Solenoid Unit Length Current Area

a 2n1 i1 2A1

b n1 2i1 A1

c n1 i1 6A1 ■

33-4 LC Oscillations, Qualitatively

We now turn our attention to how electromagnetic oscillations can occur in various
types of circuits. We begin with the consideration of a dc circuit. Of the three circuit
elements, resistance R, capacitance C, and inductance L, we have so far discussed dc
circuits with the series combinations RC (Section 28-9) and RL (Section 32-4). In
these two kinds of circuits we found that under certain circumstances, the charge, cur-
rent, and potential differences across circuit elements can grow or decay exponen-
tially. The exponential nature of the growth and decay curves is the result of energy
losses in the resistor. The time constant associated with the exponential growth or de-
cay is denoted by �, which is either called capacitive or inductive depending on which
circuit element is present.

What if there is almost no resistance in a circuit to dissipate energy? We now ex-
amine qualitatively the two-element combination LC in a series circuit. Then in Sec-
tion 33-6 we will derive equations that describe the behavior of the circuit.

We assume that our LC circuit shown in Fig. 33-4 has a negligible resistance. You
will see that in this case, the potential difference across the circuit elements is alter-
nately associated with the inductor and capacitor. Why? The sequence of events is as
follows:

• This initial state of the circuit at t � 0 as shown in Fig. 33-5a. The bar graphs for
energy included there indicate that at this instant, with zero current through the
inductor and maximum charge on the capacitor, the energy U mag of the magnetic
field is zero and the energy U elec of the electric field is a maximum.

• As soon as the switch is thrown from b to a, the potential difference across the
capacitor will start a flow of charge from one capacitor plate through the inductor
to the other capacitor plate. The back emf generated by the inductor will slow the
rate of capacitor discharge. The energy stored in the capacitor’s electric field will
decrease while the current through the inductor begins to increase its magnetic
field energy as shown in Fig. 33-5b. Eventually as the capacitor is fully discharged,
all the energy in its electric field will be transformed into energy stored in the
magnetic field. At this point there will be no potential difference across the capac-
itor as shown in Fig. 33-5c.

• Without the potential difference, the current flowing through the inductor will
start to decrease. However, in response to this changing current, a self-induced
current will be set up through the inductor: this current will be in the same direc-
tion as the original current. Thus excess positive charge will begin to build up on
the lower capacitor plate while the upper plate will begin to accumulate negative
charge as shown in Fig. 33-5d. This will continue until no current flows through
the inductor and the charges on the capacitor plates will be opposite in sign to
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FIGURE 33-4 ■ A series LC circuit. where
a switch is thrown from b to a so that an
ideal inductor and a charged capacitor are
in series.



that just after the switch was thrown. At this time all the circuit energy is in the
capacitor’s electric field once again as shown in Fig. 33-5e.

• Events 1 and 2 happen again but with the current flowing in the opposite direc-
tion until the capacitor is back to its original state (at t � 0) as shown in Fig. 33-5f,
g, h, and a. Without a resistor in the circuit to dissipate energy, the maximum cur-
rent through the inductor and the maximum amount of charge on the capacitor
plates do not decay with time. In theory, for a perfectly ideal inductor, these oscil-
lations can continue forever.

In the next section we do a mathematical analysis that fortunately agrees with ob-
servations that the current in the inductor i and the charge on the upper capacitor
plate vary sinusoidally with time as shown in Fig. 33-6. The resulting oscillations of
the capacitor’s electric field and the inductor’s magnetic field are said to be electro-
magnetic oscillations.

Parts a through h of Fig. 33-5 show succeeding stages of the oscillations in a sim-
ple LC circuit. We know that the energy stored in the electric field of the capacitor at
any time is given by (Eq. 33-5) where q is the charge on the capacitor
at that time. The energy stored in the magnetic field of the inductor at any time is
given by (Eq. 33-4) where i is the current through the inductor at that
time.

U mag � 1
2L i 2

U elec � 1
2(q2/C)

q
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FIGURE 33-5 ■ Stages in a cycle of oscillation of an ideal LC circuit. The small bar graphs
show levels of stored magnetic and electric energies. The inductor magnetic field lines and
the capacitor electric field lines are shown. (a) Capacitor with maximum charge, no current.
(b) Capacitor discharging, current increasing. (c) Capacitor fully discharged, current maximum.
(d) Capacitor charging with opposite polarity to that in (a), current decreasing. (e) Capacitor
with maximum charge with opposite polarity to that in (a), no current. (f ) Capacitor discharg-
ing, current increasing with direction opposite that in (b). (g) Capacitor fully discharged,
current maximum. (h) Capacitor charging, current decreasing.
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FIGURE 33-6 ■ (a) The charge q on the
upper plate of the capacitor in an ideal LC
circuit with almost no resistance (Fig. 33-5)
as a function of time. (b) The current i in
the circuit of Fig. 33-5 (q and i are deter-
mined from measurements of �VC and
�VR across a very small resistor added to
the circuit). The letters refer to the corre-
spondingly labeled oscillation stages in 
Fig. 33-5.



In an actual LC circuit, the oscillations will not continue indefinitely because
there is always some resistance present that will drain energy from the electric 
and magnetic fields and dissipate it as thermal energy (the circuit becomes
warmer). The oscillations, once started, will die away as suggested in 
Fig. 33-7 (which displays a potential difference vs. time for a similar LC circuit
with a resistor added to it). Compare this figure with Fig. 16-27, which shows the
decay of mechanical oscillations caused by damping forces acting on a physical
pendulum.

READI NG EXERC IS E  33-2: A charged capacitor and an inductor are connected in
series at time t � 0. In terms of the period T of the resulting sinusoidal oscillations shown in
Fig. 33-6, determine how much later the following reach their maximums: (a) the charge on the
capacitor; (b) the voltage across the capacitor, with its original polarity; (c) the energy stored in
the electric field; and (d) the current. ■
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FIGURE 33-7 ■ An oscilloscope trace
showing how the oscillations in an RLC
circuit actually die away because energy is
dissipated in the resistor as thermal energy.

TOUCHSTONE EXAMPLE 33-1: LC Oscillation

A 1.5 �F capacitor is charged to 57 V. The charging battery is then
disconnected, and a 12 mH coil is connected in series with the ca-
pacitor so that LC oscillations occur. What is the maximum current
in the coil? Assume that the circuit contains no resistance.

S O L U T I O N ■ The Ke y  I d e a s here are these:

1. Because the circuit contains no resistance, the electromagnetic
energy of the circuit is conserved as the energy is transferred
back and forth between the electric field of the capacitor and
the magnetic field of the coil (inductor).

2. At any time t, the energy U mag(t) of the magnetic field is re-
lated to the current i(t) through the coil by Eq. 33-4 (U mag �
Li2/2). When all the energy is stored as magnetic energy,
the current is at its maximum value I and that energy is

.

3. At any time t, the energy U elec(t) of the electric field is related
to the charge q(t) on the capacitor by Eq. 33-5 (U elec � q2/2C).
When all the energy is stored as electric energy, the charge is at
its maximum value Q and that energy is .U max

elec � Q2/2C

U max
mag � LI 2/2

With these ideas, we can now write the conservation of energy
as

or

Solving for I gives us

We know L and C, but not Q. However, with Eq. 28-1
we can relate Q to the maximum potential differ-

ence across the capacitor, which is the initial potential differ-
ence of 57 V. Thus, substituting leads to a maximum
current magnitude of 

(Answer)� 0.637 A � 640 mA.

I � �V√ C
L

� (57 V)√ 1.5 	 10�6 F
12 	 10�3 H

� Q � � C� �V �
�V

(� q � � C� �V �)

I � √ Q2

LC
.

LI2

2
�

Q2

2C
.

U max
mag � U max

elec

33-5 The Electrical–Mechanical Analogy

Let us look a little at an analogy between the ideal oscillating LC system like that
shown in Fig. 33 -5 and an oscillating block–spring system that experiences no friction
forces. Two kinds of energy are involved in the block-spring system. One is potential
energy of the compressed or extended spring; the other is kinetic energy of the mov-
ing block. These two energies are given by the familiar equations in the left energy
column in Table 33-1.

The table also shows, in the right energy column, the two kinds of energy involved
in LC oscillations. By looking across the table, we can see an analogy between the forms
of the two pairs of energies—the mechanical energies of the block–spring system and
the electromagnetic energies of the LC oscillator. The equations for velocity and cur-
rent at the bottom of the table help us see the details of the analogy. They tell us that



the charge q corresponds to the displacement x and the current i corresponds to the
block velocity v (in both equations, the former is differentiated to obtain the latter).

These correspondences suggest that in the energy expressions for an LC oscilla-
tor, the inverse of the capacitance is mathematically like the spring constant in a
block–spring system. It is easy to place charge on the capacitor when 1/C is small, just
as it’s easy to displace a spring when k is small. The inductor is like the block mass.
The inductor resists a change of the current in the circuit, and the mass on a spring re-
sists a change in velocity.

In summary,

q corresponds to x, 1/C corresponds to k, i corresponds to v, L corresponds to m.

In Section 16-3 we saw that the angular frequency of oscillation of a (frictionless)
block–spring system is 

(block–spring system). (33-9)

The correspondences listed above suggest that to find the angular frequency of oscil-
lation for a (resistanceless) LC circuit, k should be replaced by 1/C and m by L, yielding 

(LC circuit). (33-10)

Experimentally, we find this expression is correct. We derive it more formally in the
next section.

READI NG EXERC IS E  33-3: What is the standard unit for angular frequency in Eq.
33-10 above? Show that this expression does in fact yield the correct unit. (Hint: The unit of
ampere can be written as a coulomb per second. How would one write the units of henry and
farad in the fundamental units of kilograms, meters, seconds, and coulombs?) ■

33-6 LC Oscillations, Quantitatively

Here we want to show explicitly that Eq. 33-10 for the angular frequency of LC oscil-
lations is theoretically valid and that the oscillations should be sinusoidal. At the same
time, we want to examine even more closely the analogy between LC oscillations and
block–spring oscillations. We start by extending somewhat our earlier treatment of
the mechanical block–spring oscillator.

The Block–Spring Oscillator—A Review
We analyzed block-spring oscillations in Chapter 16 in terms of energy transfers and
did not—at that early stage—derive the fundamental differential equation that gov-
erns those oscillations. We do so now.


 �
1

√LC


 � √ k
m
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TA B L E 33-1
Comparison of the Energy in Two Oscillating Systems 

Block–Spring System LC Oscillator

Element Energy Element Energy

Spring Potential, kx2 Capacitor Electric,

Block Kinetic, mv2 Inductor Magnetic,

Block velocity, Circuit current, i � dq/dtv � dx/dt

1
2 Li21

2

1
2 (1/C)q21

2
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We can write, for the total energy U of a block–spring oscillator with a massless
spring at any instant,

(33-11)

where U blk and U spr are, respectively, the kinetic energy of the moving block and the
potential energy of the stretched or compressed spring. If there is no friction —
which we assume — the total energy U remains constant with time, even though the
values of velocity v and displacement x vary. In more formal language, dU/dt � 0.
This leads to 

(33-12)

However, by definition, v � dx/dt and dv/dt � d 2x/dt2. With these substitutions,
Eq. 33-12 becomes 

(block–spring oscillations). (33-13)

Equation 33-13 is the fundamental differential equation that governs the frictionless
block–spring oscillations. It involves the displacement x and its second derivative
with respect to time.

The general solution to Eq. 33-13—that is, the function x(t) that describes the
block–spring oscillations—is (as we saw in Eq. 16-5) 

(displacement), (33-14)

where X is the amplitude (or maximum displacement) of the mechanical oscillations
undergoing simple harmonic motion, 
 is the angular frequency of the oscillations,
and � is a phase constant.

The LC Oscillator
Now let us analyze the oscillations of an ideal LC circuit with no resistance. We pro-
ceed exactly as we just did for the block–spring oscillator. The total energy U present
at any instant in an oscillating LC circuit is given by 

(33-15)

where U mag is the energy stored in the magnetic field of the inductor and U elec is the
energy stored in the electric field of the capacitor. Since we have assumed the circuit
resistance to be zero, no energy is transferred to thermal energy and U remains con-
stant with time. In more formal language, dU/dt must be zero. This leads to 

(33-16)

However, and . With these substitutions, Eq. 33-16 becomes 

(LC oscillations). (33-17)L
d2q
dt2 �

1
C

q � 0

di/dt � d2q/dt2i � dq/dt

dU
dt

�
d
dt �

Li2

2
�

q2

2C � � Li
di
dt

�
q
C

dq
dt

� 0.

U � U mag � U elec � 1
2L i2 �

1
2 � 1

C �q2

x(t) � X cos(
t � �)

m
d2x
dt2 � kx � 0

dU
dt

�
d
dt

(1
2 mv2 � 1

2 kx2) � mv
dv
dt

� kx
dx
dt

� 0.

U � Ublk � U spr � 1
2 mv2 � 1

2 kx2,



This is the differential equation that describes the oscillations of a resistanceless LC
circuit. Careful comparison shows that Eqs. 33-17 and 33-13 have exactly the same
mathematical form, differing only in the symbols used.

Charge and Current Oscillations
Since the differential equations are mathematically identical, their solutions must also
be mathematically identical. Because q corresponds to x, we can write the general so-
lution of Eq. 33-17, giving q(t) as a function of time, by analogy to Eq. 33-14 as 

(charge), (33-18)

where Q is the amplitude or maximum amount of charge on the capacitor during the
charge variations, while 
 represents the angular frequency of the electromagnetic os-
cillations, and � is the phase constant.

Taking the first derivative of Eq. 33-18 with respect to time gives us the time-vary-
ing current i(t) of the LC oscillator:

(current). (33-19)

The amplitude I of this sinusoidally varying current is 

(33-20)

so we can rewrite Eq. 33-19 as 

. (33-21)

Angular Frequencies
We can test whether Eq. 33-18 is a solution of Eq. 33-17 by substituting it and its sec-
ond derivative with respect to time into Eq. 33-17. The first derivative of Eq. 33-18 is
Eq. 33-19. The second derivative is then 

Substituting for q and in Eq. 33-17, we obtain 

Canceling and rearranging lead to 

Thus, Eq. 33-18 is indeed a solution of Eq. 33-17 if 
 has the constant value .
Note that this expression for 
 is exactly that given by Eq. 33-10, which we arrived at
by examining correspondences.

The phase constant � in Eq. 33-18 is determined by the conditions that prevail at
any certain time—say, . If the conditions yield at , Eq. 33-18 requirest � 0� � 0t � 0

1/√LC


 �
1

√LC
.

Q cos(
t � �)

�L
2Q cos(
t � �) � � 1
C �Q cos(
t � �) � 0.

d2q/dt2

d2q
dt2 � �
2Q cos(
t � �).

i(t) � �I sin(
t � �)

I � 
Q,

i(t) �
dq
dt

� �
Q sin(
t � �)

q(t) � Q cos(
t � �)
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that and Eq. 33-19 requires that ; these are the initial conditions repre-
sented in Fig. 33-5.

Electric and Magnetic Energy Oscillations
The electric energy stored in the LC circuit at any time t is, from Eqs. 33-5 and 33-18,

(33-22)

The magnetic energy is, from Eqs. 33-4 and 33-19,

Substituting for 
 from Eq. 33-10 then gives us 

(33-23)

Figure 33-8 shows plots of U elec(t) and U mag(t) for the case of . Note that 

1. The maximum values of U elec and U mag are both Q2/2C.

2. At any instant the sum of U elec and U mag is equal to Q2/2C, a constant.

3. When U elec is maximum, U mag is zero, and conversely.

READI NG EXERC IS E  33-4: A capacitor in an LC oscillator has a maximum poten-
tial difference of 20 V and a maximum energy of 160 �J. When the capacitor has a potential dif-
ference of 5 V and an energy of 10 �J, what are (a) the emf across the inductor and (b) the en-
ergy stored in the magnetic field? ■

� � 0

U mag �
Q2

2C
 sin2(
t � �).

U mag � 1
2 Li2 � 1

2 L
2Q2 sin2(
t � �).

U elec �
q2

2C
�

Q2

2C
cos2(
t � �).

i � 0q � Q
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FIGURE 33-8 ■ The stored magnetic en-
ergy and electric energy in the circuit of
Fig. 33-5 as a function of time. Note that
their sum remains constant. T is the period
of oscillation.

TOUCHSTONE EXAMPLE 33-2: LC Oscillation Continued

For the situation described in Touchstone Example 33-1, let the coil
(inductor) be connected to the charged capacitor at time t � 0. The
result is an LC circuit like that in Fig. 33-4.

(a) What is the potential difference �vL(t) across the inductor as a
function of time?

S O L U T I O N ■ One Ke y  I d e a here is that the current and po-
tential differences of the circuit undergo sinusoidal oscillations. An-
other Ke y  I d e a is that we can still apply the loop rule to this os-
cillating circuit—just as we did for the nonoscillating circuits of
Chapter 27. At any time t during the oscillations, the loop rule and
Fig. 33-4 give us

(33-24)

that is, the potential difference �vL across the inductor must always
be equal to the potential difference �vC across the capacitor, so that
the net potential difference around the circuit is zero. Thus, we will

�vL(t) � �vC(t);

find �vL(t) if we can find �vC(t), and we can find �vC(t) from q(t)
with Eq. 28-1 .

Because the potential difference �vC(t) is maximum when the
oscillations begin at time t � 0, the charge q on the capacitor must
also be maximum then. Thus, phase constant � must be zero, so that
Eq. 33-18 gives us

(33-25)

(Note that this cosine function does indeed yield maximum q (= Q)
when t = 0.) To get the potential difference �vC(t), we divide both
sides of Eq. 33-25 by C to write

and then use Eq. 28-1 to write

(33-26)�vC � �VC cos
t.

q
C

�
Q
C

 cos
t,

q � Q cos
t.

� q � � C� �V �



33-7 Damped Oscillations in an RLC Circuit

A circuit containing resistance, inductance, and capacitance is called an RLC circuit. We
shall here discuss only series RLC circuits like that shown in Fig. 33-9. With a resistance
R present, the total electromagnetic energy U of the circuit (the sum of the electric en-
ergy and magnetic energy) is no longer constant; instead, it decreases with time as en-
ergy is transferred to thermal energy in the resistance. Because of this loss of energy, the
oscillations of charge, current, and potential difference continuously decrease in ampli-
tude, and the oscillations are referred to as damped. As you will see, they are damped in
exactly the same way as those of the damped block–spring oscillator of Section 16-8.

To analyze the oscillations of our RLC circuit, we write an equation for the total
electromagnetic energy U in the circuit at any instant. Because the resistance does not
store electromagnetic energy, we can use Eq. 33-15:

(33-28)

Now, however, this total energy decreases as energy is transferred to thermal energy.
The rate of that transfer is, from Eq. 26-11,

(33-29)

where the minus sign indicates that U decreases. By differentiating Eq. 33-28 with re-
spect to time and then substituting the result in Eq. 33-29, we obtain 

Substituting for i and for , we obtain 

(RLC circuit), (33-30)L
d2q
dt2 � R

dq
dt

�
1
C

q � 0

di/dtd2q/dt2dq/dt

dU
dt

� Li
di
dt

�
q
C

dq
dt

� �i2R.

dU
dt

� �i2R,

U � U mag � U elec �
Li2

2
�

q2

2C
.
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Here, �VC is the amplitude of the oscillations in the potential dif-
ference �vC across the capacitor.

Next, substituting �vC � �vL from Eq. 33-24, we find

(33-27)

We can evaluate the right side of this equation by first noting that
the amplitude �VC is equal to the initial (maximum) potential dif-
ference of 57 V across the capacitor. Then, using the values of L and
C from Touchstone Example 33-1, we find 
 with Eq. 33-10:

Thus, Eq. 33-27 becomes

(Answer)

(b) What is the maximum rate (di/dt)max at which the current i
changes in the circuit?

�vL � (57 V) cos(7500 rad/s)t.

� 7454 rad/s � 7500 rad/s.


 �
1

√LC
�

1
[(0.012 H)(1.5 	 10�6 F)]0.5

�vL � �VC cos
t.

S O L U T I O N ■ The Ke y  I d e a here is that, with the charge on
the capacitor oscillating as in Eq. 33-18, the current is in the form of
Eq. 33-19. Because � � 0, that equation gives us

Then

We can simplify this equation by substituting C�VC for Q (because we
know C and �VC but not Q) and for 
 according to Eq. 33-10.
We get

This tells us that the current changes at a varying (sinusoidal) rate,
with its maximum rate of change being

(Answer)
�VC

L
�

57 V
0.012 H

� 4750 A/s � 4800 A/s.

di
dt

� �
1

LC
C�VC cos
t � �

�VC

L
cos
t.

1�√LC

di
dt

�
d
dt

(�
Q sin
t) � �
2Q cos
t.

i � �
Q sin
t.

CL

R

FIGURE 33-9 ■ A series RLC circuit. As
the charge contained in the circuit oscil-
lates back and forth through the resistance,
electromagnetic energy is dissipated as
thermal energy, damping (decreasing the
amplitude of) the oscillations.



which is the differential equation that describes damped oscillations in an RLC cir-
cuit. The solution to Eq. 33-30 is 

(33-31)

where

(33-32)

with , as with an undamped oscillator. Equation 33-31 tells us how the
charge on the capacitor oscillates in a damped RLC circuit. That equation is the elec-
tromagnetic counterpart of Eq. 16-37, which gives the displacement of a damped
block–spring oscillator.

Equation 33-31 describes a sinusoidal oscillation (the cosine function) with an
exponentially decaying amplitude (the factor that multiplies the cosine) as
shown in Fig. 33-7. The angular frequency of the damped oscillations is always less
than the angular frequency 
 of the undamped oscillations; however, we shall here
consider only situations for which R is small enough for us to replace 
� with 
.

Let us next find an expression for the energy of the electric field in the capacitor,
which is given by Eq. 33-5 . By substituting Eq. 33-31 into Eq. 33-5, we
obtain

(33-33)

Thus, the energy of the electric field oscillates according to a cosine-squared term and
the amplitude of that oscillation decreases exponentially with time.

If we do a similar derivation for the energy of the magnetic field in the inductor
we find that it too oscillates in such a way that its amplitude decreases exponentially
in time. Since energy is being traded back and forth between the inductor and the ca-
pacitor, the total electromagnetic energy (which is the sum of the electric and mag-
netic energies) does not oscillate. Instead it just decays exponentially as the total en-
ergy is transformed to thermal energy by the total resistance in the circuit.

U elec �
q2

2C
�

[Qe�Rt/2L cos(
�t � �)]2

2C
�

Q2

2C
e�Rt/L cos2(
�t � �).

(U elec � q2/2C)


�
Qe�Rt/2L


 � 1/√LC


� � √
2 � (R/2L)2,

q � Qe�Rt/2L cos(
�t � �),
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TOUCHSTONE EXAMPLE 33-3: Decaying Oscillation

A series RLC circuit has inductance L � 12 mH, capacitance C �
1.6 �F, and resistance R � 1.5 V.

(a) At what time t will the amplitude of the charge oscillations in
the circuit be 50% of its initial value?

S O L U T I O N ■ The Ke y  I d e a here is that the amplitude of the
charge oscillations decreases exponentially with time t: According
to Eq. 33-31, the charge amplitude at any time t is Qe�Rt/2L, in which
Q is the amplitude at time t � 0. We want the time when the charge
amplitude has decreased to 0.50Q—that is, when

Canceling Q and taking the natural logarithms of both sides, we have

�
Rt
2L

� ln 0.50.

Qe�Rt /2L � 0.50Q.

Solving for t and then substituting given data yield

(Answer)

(b) How many oscillations are completed within this time?

S O L U T I O N ■ The Ke y  I d e a here is that the time for one
complete oscillation is the period , where the angular
frequency for decaying LC oscillations is given by Eq. 33-32

where

� 52.1 	 106 (rad/s)2,


2 � 1/(LC) � 1/[(0.012 H)(1.6 	 10�6 F)]

(
� � √
2 � (R/2L)2)

T� � 2/
�

� 0.0111 s �  11 ms.

t � �
2L
R

 ln 0.50 � �
(2)(12 	 10�3 H)(ln 0.50)

1.5 �
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while

Since (R/2L)2 �� 
2, we can neglect compared with , so
here

The time for one period of the decaying oscillation is then

� 0.871 	 10�3 s.

T� �
2


�
	

2



� 2/(7.22 	 103 rad/s)


� 	 
 � √52.1 	 106 (rad/s2) � 7.22 	 103 rad/s.

2(R/2L)2

� 3.91 	 103(rad/s)2.

(R/2L)2 � [(1.5 �)/(2)(0.012 H)]2
Thus, in the time interval �t = 0.0111 s, the number of complete os-
cillations is

(Answer)

Thus, the amplitude decays by 50% in about 13 complete oscilla-
tions. This damping is less severe than that shown in Fig. 33-7, where
the amplitude decays by a little more than 50% in one oscillation.

�t
T�

�
0.0111 s

0.871 	 10�3 s
	 13.

33-8 More About Alternating Current

The oscillations in an RLC circuit will not damp out if an external emf device supplies
enough energy to make up for the energy dissipated as thermal energy in the resis-
tance R. As we discussed at the beginning of the chapter, the United States and most
other countries deliver alternating current or ac electricity. These oscillating emfs and
currents vary sinusoidally with time, reversing direction (in North America) 120 times
per second and thus having frequency .

At first sight this may seem to be a strange arrangement. We have seen that the
drift speed of the conduction electrons in household wiring may typically be

. If we now reverse their direction every of a second, such elec-
trons can move only about in a half-cycle. At this rate, a typical electron
can drift past no more than about 10 atoms in the wiring before it is required to re-
verse its direction. How, you may wonder, can the electron ever get anywhere?

Although this question may be worrisome, it is a needless concern. The conduc-
tion electrons do not have to “get anywhere.” This is similar to the idea that the mole-
cules in a spring do not have to move far longitudinally to transmit energy a long
distance. Here, the electrons don’t have to move far to have a long-range effect. When
we say that the current in a wire is one ampere, we mean that charge passes through
any plane cutting across that wire at the rate of one coulomb per second. The speed at
which the charge carriers cross that plane does not matter directly; one ampere may
correspond to many charge carriers moving very slowly or to a few moving very
rapidly.

Furthermore, the signal to the electrons to reverse directions—which originates
in the alternating emf provided by the power company’s generator—is propagated
along the conductor at a speed close to that of light. All electrons, no matter where
they are located, get their reversal instructions at about the same instant. Finally, we
note that for many devices, such as lightbulbs and toasters, the direction of motion is
unimportant as long as the electrons do move so as to transfer energy to the device
via collisions with atoms in the device.

Generator Equations
Figure 33-10 shows a simplified model of an ac generator like that shown in Fig. 32-12.
As the conducting loop is forced to rotate through the external magnetic field , a si-
nusoidally oscillating emf is induced in the loop:

(33-34)

The angular frequency of the emf is equal to the angular speed with which the
loop rotates in the magnetic field, the phase of the emf is , and the amplitude of
 drt


 dr

� � � max sin
 drt.

�
B
:

3 	 10�7 m
1/120th4 	 10�5 m/s

f � 60 Hz

Slip rings

Metal
brush

i

i

i

i

B

FIGURE 33-10 ■ The basic mechanism of
an alternating-current generator is a
conducting loop rotated in an external
magnetic field. In practice, the alternating
emf induced in a coil of many turns of wire
is made accessible by means of slip rings
attached to the rotating loop. Each ring is
connected to one end of the loop wire and
is electrically connected to the rest of the
generator circuit by a conducting brush
against which it slips as the loop (and it)
rotates.



the emf is (where the superscript stands for maximum). When the rotating loop is
part of a closed conducting path, this emf produces (drives) a sinusoidal (alternating)
current along the path with the same angular frequency , which then is called the
driving angular frequency. Following Eq. 33-21, we can write the current as 

(33-35)

where I is the amplitude or maximum value of the driven current. (The phase
of the current is traditionally written with a minus sign instead of as

.) We include the phase constant in Eq. 33-35 to emphasize that the current
i may not be in phase with the emf . (As you will see, the phase constant depends on
the circuit to which the generator is connected.) We can also write the current i in
terms of the driving frequency f dr of the emf, by substituting 2f dr for in Eq. 33-35.

33-9 Forced Oscillations

We have seen that once started, the charge, potential difference, and current in both
undamped LC circuits and damped RLC circuits (with small enough R) oscillate at
angular frequency . Such oscillations are said to be free oscillations (free of
any external emf), and the angular frequency 
 is said to be the circuit’s natural angu-
lar frequency.

When the external alternating emf of Eq. 33-34 is connected to an RLC circuit,
the oscillations of charge, potential difference, and current are said to be driven oscil-
lations or forced oscillations. These oscillations always occur at the driving angular
frequency :

No matter what the natural angular frequency 
 of a circuit is, forced oscillations of charge,
current, and potential difference in the circuit always occur at the driving angular frequency

.

However, as you will see in Section 33-11, the amplitudes of the oscillations very much
depend on how close is to 
. When the two angular frequencies match—a condi-
tion known as resonance—the amplitude I of the current in the circuit is maximum.

33-10 Representing Oscillations with Phasors: 
Three Simple Circuits

Later in this chapter, we shall connect an external alternating emf device to a series
RLC circuit as in Fig. 33-11. We shall then find expressions for the amplitude I and
phase constant � of the sinusoidally oscillating current in terms of the amplitude 
and angular frequency of the external emf. First, however, let us consider three
simpler circuits, each having an external emf and only one other circuit element: R, C,
or L. We start with a resistive element (a purely resistive load). We continue to use the
convention here that uppercase letters such as Q, I, and V represent constants, while
lowercase letters represent time-varying quantities such as q, i, and v.

A Resistive Load
Figure 33-12a shows a circuit containing a resistance element of value R and an ac
generator with the alternating emf of Eq. 33-34. By the loop rule, we have 

� � �vR � 0.


 dr
� max


 dr


 dr


 dr


 � 1/√LC


 dr

�
��
 dr t � �


 dr t � ��

i � �I sin(
 drt � �) � I sin(
 drt � ��),


 dr

� max
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i

i

iC

R

L

FIGURE 33-11 ■ A single-loop circuit con-
taining a resistor, a capacitor, and an in-
ductor. A generator, represented by a sine
wave in a circle, produces an alternating
emf that establishes an alternating current;
the directions of the emf and current are
indicated here at only one instant.



Note that in this context, represents a potential difference across the resistance
element and not a velocity change. With Eq. 33-34, this gives us 

Because the amplitude of the alternating potential difference (or voltage)
across the resistance is equal to the amplitude of the alternating emf, we can
write this as 

(33-36)

From the definition of resistance , we can now write the current iR in the
resistor as 

(33-37)

From Eq. 33-35, we can also write this current as 

(33-38)

where IR is the amplitude of the current iR passing through the resistance. Comparing
Eqs. 33-37 and 33-38, we see that for a purely resistive load the phase constant .
We also see that the voltage amplitude and current amplitude are related by 

(resistor). (33-39)

Although we found this relation for the circuit of Fig. 33-12a, it applies to any resis-
tance in any ac circuit.

By comparing Eqs. 33-36 and 33-37, we see that the time-varying quantities 
and iR are both functions of with . Thus, these two quantities are in
phase, which means that their corresponding maxima (and minima) occur at the same
times. Figure 33-12b, which is a plot of and iR(t), illustrates this fact. Note that

and iR do not decay here, because the generator supplies energy to the circuit to
make up for the energy dissipated in R.

Since we have chosen to drive our circuits with a voltage that varies as sin(
t),
and constant speed motion around a circle has x- and y-components that vary sinu-
soidally, it is convenient to use a component of a rotating vector to represent our os-
cillations. Such a rotating vector representation is called a phasor. Recall from Section
17-12 that phasors are vectors that rotate around an origin. Those that represent the
voltage across and current in the resistor of Fig. 33-12a are shown in Fig. 33-12c at an
arbitrary time t. Such phasors have the following properties:

Angular speed: Both phasors rotate counterclockwise about the origin with an
angular speed equal to the angular frequency of both and iR.

Length: The length of each phasor represents the amplitude of the alternating
quantity: for the voltage and iR for the current.

Projection: The projection of each phasor on the vertical axis represents the value
of the alternating quantity at time t: for the voltage and IR for the current.

Rotation angle: The rotation angle of each phasor is equal to the phase of the al-
ternating quantity at time t. In Fig. 33-12c, the voltage and current are in phase, so
their phasors always have the same phase and the same rotation angle, and
thus they rotate together.


 drt

�vR

�VR

�vR
 dr

�vR

�vR(t)

� � 0�sin 
 dr t
�vR

�VR � IRR

� � 0�

iR � IR sin(
 drt � �),

iR �
�vR

R
�

�VR

R
 sin
 drt.

(R � �vR/i)

� � �vR � �VR sin
 dr t.

� max
�VR

�vR � � max sin
 drt.

�vR
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ΔvR, iR

T

IR

 = 0° = 0 rad

ΔVR

0

Instants
represented in (c)

iRR ΔvR

(a)

(b)

(c)

iR

ΔvR

ΔVR

IR

Rotation of
phasors at

rate dr

t

drtω

ΔvR

iR

T/2

ω

φ

FIGURE 33-12 ■ (a) A resistor is con-
nected across an alternating-current gener-
ator. (b) The current iR and the potential
difference across the resistor are plot-
ted on the same graph, both versus time t.
They are in phase and complete one cycle
in one period T. (c) A phasor diagram
shows the same thing as (b).

�vR
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Mentally follow the rotation. Can you see that when the phasors have rotated so
that (so they point vertically upward), then ? Equations 33-36
and 33-38 give the same results. For this case, the voltage and the current oscillate to-
gether. Hence, it is not especially useful to introduce the phasor representation. How-
ever, the value of this representation becomes clearer with more complex situations
such as the capacitor and inductor discussed below.

A Capacitive Load
Figure 33-13a shows a circuit containing a capacitance and a generator with the alter-
nating emf of Eq. 33-34. Using the loop rule and proceeding as we did when we ob-
tained Eq. 33-36, we find that the potential difference across the capacitor is 

(33-40)

where is the amplitude of the alternating voltage across the capacitor. From the
definition of capacitance we can also write 

(33-41)

Our concern, however, is with the current rather than the charge. Thus, we differenti-
ate Eq. 33-41 to find

(33-42)

We now modify Eq. 33-42 in two ways. First, for reasons of symmetry of notation,
we introduce the quantity XC, called the capacitive reactance of a capacitor, defined as 

(capacitive reactance). (33-43)

Its value depends not only on the capacitance but also on the driving angular fre-
quency . We know from the definition of the capacitive time constant 
that the SI unit for C can be expressed as seconds per ohm. Applying this to Eq. 33-43
shows that the SI unit of XC is the ohm, just as for resistance R.

Second, we replace with a phase-shifted sine:

You can verify this identity by shifting a sine curve in the negative direction by 90°.
With these two modifications, Eq. 33-42 becomes 

. (33-44)

From Eq. 33-35, we can also write the current iC in C as

, (33-45)

where IC is the amplitude of iC. Comparing Eqs. 33-44 and 33-45, we see that for a
purely capacitive load the phase constant � for the current is �90°. We also see that
the voltage amplitude and current amplitude are related by 

(capacitor). (33-46)�VC � ICXC

iC � IC sin(
 drt � �)

iC � � �VC

XC
�sin(
 drt � 90°)

cos
 drt � sin(
 drt � (�90�)).

cos
 drt

(� � RC)
 dr

XC �
1


 drC

iC �
dqC

dt
� 
 drC�VC cos 
 drt.

qC � C�vC � C�VC sin
 drt.

�VC

�vC � �VC sin
 drt,

�vR � �VR
 drt � 90�

ΔvC , iC

T
iC

ΔvC

0

Instants
represented in (c)

(b)

iC ΔvC

(a)

(c)

iC

ΔvC ΔVC

IC
Rotation of

phasors at
rate dr

C

drtω

T/2

IC

ΔVC

= –90° = –   /2 radφ π

ω

t

FIGURE 33-13 ■ (a) A capacitor is con-
nected across an alternating-current gener-
ator. (b) The current in the capacitor leads
the voltage by . (c) A phasor
diagram shows the same thing.

90�(� /2 rad)



Although we found this relation for the circuit of Fig. 33-13a, it applies to any capaci-
tance in any ac circuit. Note that using phasors allowed us to write the equation asso-
ciated with a capacitor in such a way that it looks just like Ohm’s law for a resistor.
Although this expression is true for the amplitude of the phasor, the full voltage and
current don’t look like Ohm’s law because of the shift in phase. We’ll see in the next
case that a similar thing happens for the inductor.

Comparison of Eqs. 33-40 and 33-44, or inspection of Fig. 33-13b, shows that the
quantities and iC are 90°, or one-quarter cycle, out of phase. Furthermore, we see
that iC leads , which means that, if you monitored the current iC and the potential
difference in the circuit of Fig. 33-13a, you would find that iC reaches its maximum
before does, by one-quarter cycle.

This relation between iC and is illustrated by the phasor diagram of Fig. 33-13c.
As the phasors representing these two quantities rotate counterclockwise together, the
phasor labeled IC does indeed lead that labeled , and by an angle of 90°; that is, the
phasor IC coincides with the vertical axis one-quarter cycle before the phasor 
does. Be sure to convince yourself that the phasor diagram of Fig. 33-13c is consistent
with Eqs. 33-40 and 33-44.

An Inductive Load
Now let’s consider a third situation in which we connect an external alternating emf
to a circuit containing just one of our basic circuit elements. Figure 33-14a shows a cir-
cuit containing an inductance and a generator with the alternating emf of Eq. 33-34.
Using the loop rule and proceeding as we did to obtain Eq. 33-36, we find that the po-
tential difference across the inductance is 

(33-47)

where is the amplitude of . From Eq. 32-2, we can write the potential differ-
ence across an inductance L, in which the current is changing at the rate , as 

(33-48)

If we combine Eqs. 33-47 and 33-48 we have 

(33-49)

Our concern, however, is with the current rather than with its time derivative. We find
the former by integrating Eq. 33-49, obtaining 

(33-50)

We now modify this equation in two ways. First, for reasons of symmetry of nota-
tion, we introduce the quantity XL, called the inductive reactance of an inductor,
which is defined as 

(inductive reactance). (33-51)

The value of XL depends on the driving angular frequency . The unit of the induc-
tive time constant indicates that the SI unit of XL is the ohm, just as it is for XC and
for R.

�L


 dr

XL � 
 drL

iL � �diL �
�VL

L
�sin
 drdt � �� �VL


 drL �cos
 drt.

diL

dt
�

�VL

L
 sin
 drt.

�vL � L
diL

dt
.

diL/dt
�vL�VL

�vL � �VL sin
 drt,

�VC

�VC

�vC

�vC

�vC

�vC

�vC

Representing Oscillations with Phasors: Three Simple Circuits   971

ΔvL, iL

T

iL

ΔvL

0

Instants
represented in (c)

(b)

(a)

(c)

iL

ΔvL ΔVL

IL

  ω

Rotation of
phasors at

rate dr

iL ΔvLL

t

drtω

ΔVL
IL

T/2

= +90° = +   /2 radφ π

FIGURE 33-14 ■ (a) An inductor is con-
nected across an alternating-current gener-
ator. (b) The current in the inductor lags
the voltage by . (c) A phasor
diagram shows the same thing.

90�(� /2 rad)



Second, we replace the function in Eq. 33-50 with a phase-shifted
sine—namely,

You can verify this identity by shifting a sine curve in the positive direction by 90°.
With these two changes, Eq. 33-50 becomes 

(33-52)

From Eq. 33-35, we can also write this current in the inductance as 

(33-53)

where IL is the amplitude of the current iL. Comparing Eqs. 33-52 and 33-53, we see
that for a purely inductive load the phase constant � for the current is �90°. We also
see that the voltage amplitude and current amplitude are related by 

(inductor). (33-54)

Although we found this relation for the circuit of Fig. 33-14a, it applies to any induc-
tance in any ac circuit.

Comparison of Eqs. 33-47 and 33-52, or inspection of Fig. 33-14b, shows that
the quantities iL and are 90° out of phase. In this case, however, iL lags ; that is,
if you monitored the current iL and the potential difference in the circuit of
Fig. 33-14a, you would find that iL reaches its maximum value after does, by one-
quarter cycle.

The phasor diagram of Fig. 33-14c also contains this information. As the phasors
rotate counterclockwise in the figure, the phasor labeled IL does indeed lag that la-
beled , and by an angle of 90°. Be sure to convince yourself that Fig. 33-14c repre-
sents Eqs. 33-47 and 33-52.

READI NG EXERC IS E  33-5: The figure shows, in (a), a sine curve and
three other sinusoidal curves A(t), B(t), and C(t), each of the form . (a) Rank the
three other curves according to the value of �, most positive first and most negative last. (b) Which
curve corresponds to which phasor in (b) of the figure? (c) Which curve leads the others?

■

33-11 The Series RLC Circuit

We are now ready to apply the alternating emf of Eq. 33-34,

(applied emf), (33-55)� � � max sin
 drt

sin(
 dr t � �)
S(t) � sin(
 drt)

�VL

�vL

�vL

�vL�vL

�VL � ILXL

iL � ILsin (
 drt � �),

iL � � �VL

XL
� sin(
 dr t � 90�).

�cos
 drt � sin(
 drt � (�90�)).

�cos
 drt
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to the full RLC circuit of Fig. 33-11. Because R, L, and C are in series, the same current 

(33-56)

is driven in all three of them. We wish to find the current amplitude I and the phase
constant �. The solution is simplified by the use of phasor diagrams.

Table 33-2 summarizes the relations between the current i and the voltage V for
each of the three kinds of circuit elements we have considered. When an applied al-
ternating voltage produces an alternating current in them, the current is in phase with
the voltage across a resistor, leads the voltage across a capacitor, and lags the voltage
across an inductor.

The Current Amplitude
We start with Fig. 33-15a, which shows the phasor representing the current of Eq. 33-56
at an arbitrary time t. The length of the phasor is the current amplitude I, the projec-
tion of the phasor on the vertical axis is the current i at time t, and the angle of rotation
of the phasor is the phase of the current at time t.

Figure 33-15b shows the phasors representing the voltages across R, L, and C at
the same time t. Each phasor is oriented relative to the angle of rotation of current
phasor I in Fig. 33-15a, based on the information in Table 33-2:

Resistor: Here current and voltage are in phase, so the angle of rotation of volt-
age phasor is the same as that of phasor I.

Capacitor: Here current leads voltage by 90°, so the angle of rotation of voltage
phasor is 90° less than that of phasor I.

Inductor: Here current lags voltage by 90°, so the angle of rotation of voltage
phasor is 90° greater than that of phasor I.�VL

�VC

�VR


 drt � �

i � I sin(
 drt � �)
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TA B L E 33-2
Phase and Amplitude Relations for Alternating Currents and Voltages

Circuit Resistance Phase of Phase Constant (or Amplitude
Element Symbol or Reactance the Current Angle �) Relation

Resistor R R In phase with vR 0° (� 0 rad) � I R R

Capacitor C XC � 1/
 drC Leads by 90° �90° � ICXC

Inductor L XL � 
 dr L Lags by 90° �90° � ILXL�VL(� �/2 rad)(� /2 rad)�vL

�VC(� �/2 rad)(� /2 rad)�vC

�VR

    φ

ΔvR

(a)

–ω

i

(b)

I

ΔvL

ΔvC

ΔVL

ΔVR

ΔVC

(d)

ΔVL – ΔVC

ΔVRφ
drt

ωdrt
    φ–ωdrt

(c)

max max

    φ–ωdrt    ωdrt

FIGURE 33-15 ■ (a) A phasor representing the alternating current in the driven RLC circuit of
Fig. 33-11 at time t. The amplitude I, the instantaneous value i, and the phase are
shown. (b) Phasors representing the voltages across the inductor, resistor, and capacitor,
oriented with respect to the current phasor in (a). (c) A phasor representing the alternating emf
that drives the current of (a). (d) The emf phasor is equal to the vector sum of the three voltage
phasors of (b). Here, voltage phasors and have been added to yield their net phasor

.(�VL � �VC)
�VC�VL


 drt � �



Figure 33-15b also shows the instantaneous voltages , , and across R, C,
and L at time t; those voltages are the projections of the corresponding phasors on the
vertical axis of the figure.

Figure 33-15c shows the phasor representing the applied emf of Eq. 33-55. The
length of the phasor is the emf amplitude , the projection of the phasor on the
vertical axis is the emf at time t, and the angle of rotation of the phasor is the phase

of the emf at time t.
From the loop rule we know that at any instant the sum of the voltages , ,

and is equal to the applied emf :

(33-57)

Thus, at time t the projection in Fig. 33-15c is equal to the algebraic sum of the pro-
jections , , and in Fig. 33-15b. In fact, as the phasors rotate together, this
equality always holds. This means that phasor in Fig. 33-15c must be equal to the
vector sum of the three voltage phasors , , and in Fig. 33-15b.

That requirement is indicated in Fig. 33-15d, where phasor is drawn as the
sum of phasors , , and . Because phasors and have opposite di-
rections in the figure, we simplify the vector sum by first combining and to
form the single phasor . Then we combine that single phasor with to
find the net phasor. Again, the net phasor must coincide with phasor , as shown.

Both triangles in Fig. 33-15d are right triangles. Applying the Pythagorean theo-
rem to either one yields 

(33-58)

From the amplitude information displayed in Table 33-2 we can rewrite this as 

(33-59)

and then rearrange it to the form 

(33-60)

The denominator in Eq. 33-60 is called the impedance Z of the circuit for the driving
angular frequency :

(impedance defined). (33-61)

We can then write Eq. 33-60 as 

(33-62)

If we substitute for XC and XL from Eqs. 33-43 and 33-51, we can write Eq. 33-60
more explicitly as 

(current amplitude) (33-63)

We have now accomplished half our goal: We have obtained an expression for the
current amplitude I in terms of the sinusoidal driving emf and the circuit elements in
a series RLC circuit.

I �
� max

√R2 � (
 drL � 1/
 drC)2

I �
� max

Z
.

Z � √R2 � (XL � XC)2


 dr

I �
� max

√R2 � (XL � XC)2
.

(� max)2 � (IR)2 � (IXL � IXC)2,

(� max)2 � �V 2
R � (�VL � �VC)2.

� max
�VR�VL � �VC

�VC�VL

�VC�VL�VC�VL�VR

� max
�VL�VC�VR

� max
�vL�vC�vR

�

� � �vR � �vC � �vL.

��vL

�vC�vR


d t
�

� max

�vL�vC�vR
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The value of I depends on the difference between and in Eq. 33-63
or, equivalently, the difference between XL and XC in Eq. 33-60. In either equation, it
does not matter which of the two quantities is greater because the difference is always
squared.

The current that we have been describing in this section is the steady-state current
that occurs after the alternating emf has been applied for some time. When the emf is
first applied to a circuit, a brief transient current occurs. Its duration (before settling
down into the steady-state current) is determined by the time constants and

as the inductive and capacitive elements “turn on.” This transient current
can be large and can, for example, destroy a motor on startup if it is not properly
taken into account in the motor’s circuit design.

The Phase Constant
From the right-hand phasor triangle in Fig. 33-15d and from Table 33-2 we can write 

(33-64)

which gives us 

(phase constant). (33-65)

This is the other half of our goal: an equation for the phase constant � in a sinu-
soidally driven series RLC circuit. In essence, it gives us three different results for the
phase constant, depending on the relative values of XL and XC:

XL � XC: The circuit is said to be more inductive than capacitive. Equation 33-65 tells
us that � is positive for such a circuit, which means that phasor I rotates behind
phasor (Fig. 33-16a). A plot of and i versus time is like that in Fig. 33-16b. (The
phasors in Figs. 33-16c and d were drawn assuming .)

XC � XL: The circuit is said to be more capacitive than inductive. Equation 33-65 tells
us that � is negative for such a circuit, which means that phasor I rotates ahead of
phasor (Fig. 33-16c). A plot of and i versus time is like that in Fig. 33-16d.

XC � XL: The circuit is said to be in resonance, a state that is discussed next.
Equation 33-65 tells us that for such a circuit, which means that phasors

and I rotate together (Fig. 33-16e). A plot of and i versus time is like that in
Fig. 33-16f.

As an illustration, let us reconsider two extreme circuits. In the purely inductive
circuit of Fig. 33-14a, where XL is nonzero and , Eq. 33-65 tells us that

(the greatest value of �), consistent with Fig. 33-14c. In the purely capaci-
tive circuit of Fig. 33-13a, where XC is nonzero and , Eq. 33-65 tells us that

(the least value of �), consistent with Fig. 33-13c.

Resonance
Equation 33-63 gives the current amplitude I in an RLC circuit as a function of the dri-
ving angular frequency of the external alternating emf. For a given resistance R,
that amplitude is a maximum when the quantity in the denominator is
zero—that is, when 


 drL � 1/
 drC

 dr

� � �90�
XL � R � 0

� � �90�
XC � R � 0

�� max
� � 0�

�� max

XL � XC

�� max

tan� �
XL � XC

R

tan� �
�VL � �VC

�VR
�

IXL � IXC

IR
,

�C � RC
�L � L/R

1/
 drC
 drL
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or (for maximum I). (33-66)

Because the natural angular frequency 
 of the RLC circuit is also equal to ,
the maximum value of I occurs when the driving angular frequency matches the nat-
ural angular frequency—that is, at resonance. Thus, in an RLC circuit, resonance and
maximum current amplitude I occur when 

(resonance). (33-67)

Figure 33-17 shows three resonance curves for sinusoidally driven oscillations in
three series RLC circuits differing only in R. Each curve peaks at its maximum cur-
rent amplitude I when the ratio is 1.00, but the maximum value of I decreases
with increasing R. (The maximum I is always ; to see why, combine Eqs. 33-61
and 33-62.) In addition, the curves increase in width (measured in Fig. 33-17 at half
the maximum value of I) with increasing R.

To make physical sense of Fig. 33-17, consider how the reactances XL and XC

change as we increase the driving angular frequency , starting with a value much
less than the natural frequency 
. For small , reactance is small and
reactance is large. Thus, the circuit is mainly capacitive and the imped-
ance is dominated by the large XC, which keeps the current low.

As we increase , reactance XC remains dominant but decreases while reac-
tance XL increases. The decrease in XC decreases the impedance, allowing the current


 dr

XC (1/
 drC)
XL (� 
 drL)
 dr


 dr

� max/R

 dr/



 dr � 
 �
1

√LC

1/√LC


 dr �
1

√LC


 drL �
1


 drC
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FIGURE 33-16 ■ Phasor diagrams and graphs of the alternating emf and current for the driven
RLC circuit of Fig. 33-11. In the phasor diagram of (a) and the graph of (b), the current i lags
the driving emf � and the current’s phase constant � is positive. In (c) and (d), the current i
leads the driving emf � and its phase constant � is negative. In (e) and (f), the current i is in
phase with the driving emf � and its phase constant � is zero.



to increase, as we see on the left side of any resonance curve in Fig. 33-17. When the
increasing XL and the decreasing XC reach equal values, the current is greatest and
the circuit is in resonance, with .

As we continue to increase , the increasing reactance XL becomes progres-
sively more dominant over the decreasing reactance XC. The impedance increases be-
cause of XL and the current decreases, as on the right side of any resonance curve in
Fig. 33-17. In summary, then: The low-angular-frequency side of a resonance curve is
dominated by the capacitor’s reactance, the high-angular-frequency side is dominated
by the inductor’s reactance, and resonance occurs between the two regions.

READI NG EXERC IS E  33-6: Here are the capacitive reactance and inductive reac-
tance, respectively, for three sinusoidally driven series RLC circuits: (1) , ; (2) ,

; (3) , . (a) For each, does the current lead or lag the applied emf, or are the two in
phase? (b) Which circuit is in resonance? ■

50 �50 �50 �
100 �100 �50 �


 dr

 dr � 
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XL > XCXC > XL

R = 100 Ω

R = 30 Ω

FIGURE 33-17 ■ Resonance curves for the
driven RLC circuit of Fig. 33-11 with

H, , and three values
of R. The current amplitude I of the alter-
nating current depends on how close the
driving angular frequency is to the nat-
ural angular frequency 
. The horizontal
arrow on each curve measures the curve’s
width at the half-maximum level, a mea-
sure of the sharpness of the resonance. To
the left of , the circuit is
mainly capacitive, with to the
right, it is mainly inductive, with .XL � XC

XC � XL


 dr/
 � 1.00


 dr

C � 100 pFL � 100 �

TOUCHSTONE EXAMPLE 33-4: Series RLC Circuit

In Fig. 33-11 let R � 200 �, C � 15.0 �F, L � 230 mH, f dr �
60.0 Hz, and � 36.0 V.

(a) What is the current amplitude I?

S O L U T I O N ■ The Ke y  I d e a here is that current amplitude I
depends on the amplitude of the driving emf and on the im-
pedance Z of the circuit, according to Eq. 33-62 . Thus,
we need to find Z, which depends on the circuit’s resistance R, ca-
pacitive reactance XC, and inductive reactance XL.

The circuit’s only resistance is the given resistance R. Its only ca-
pacitive reactance is due to the given capacitance. From Table 33-2,

with , we can write

From Table 33-2 , with , we can write

Thus, the circuit’s impedance is

� 86.7 �.

XL � 2f drL � (2)(60.0 Hz)(230 	 10�3 H)


 dr � 2f dr(XL � 
 drL)

� 177 �.

XC �
1

2f drC
�

1
(2)(60.0 Hz)(15.0 	 10�6 F)


 dr � 2f dr(XC � 1/
 drC),

(I � � max/Z)
� max

� max

We then find

(Answer)

(b) What is the phase constant � of the current in the circuit rela-
tive to the driving emf?

S O L U T I O N ■ The Ke y  I d e a here is that the phase constant
depends on the inductive reactance, the capacitive reactance, and
the resistance of the circuit, according to Eq. 33-65. Solving that
equation for � leads to

(Answer)

The negative phase constant is consistent with the fact that the load
is mainly capacitive; that is, XC � XL.

� �24.3� � �0.424 rad.

� � tan�1 XL � XC

R
� tan�1 86.7 � � 177 �

200 �

� I � �
� � max �

Z
�

36.0 V
219 �

� 0.164 A.

� 219 �.

� √(200 �)2 � (86.7 � � 177 �)2

Z � √R2 � (XL�XC)2



33-12 Power in Alternating-Current Circuits

In the RLC circuit of Fig. 33-11, the source of energy is the alternating-current gener-
ator. Some of the energy that it provides is stored in the electric field in the capacitor,
some is stored in the magnetic field in the inductor, and some is dissipated as thermal
energy in the resistor. In steady-state operation—which we assume—the average en-
ergy stored in the capacitor and inductor together remains constant. The net transfer
of energy is thus from the generator to the resistor, where electromagnetic energy is
dissipated as thermal energy.

The instantaneous rate at which energy is dissipated in the resistor can be written,
with the help of Eqs. 27-26 and 33-35, as 

(33-68)

where I is the maximum value of the current.
The average rate at which energy is dissipated in the resistor, however, is the aver-

age of Eq. 33-68 over time. Although the average value of sin �, where � is any vari-
able, is zero (Fig. 33-18a), the average value of sin2� over one complete cycle is 1/2
(Fig. 33-18b). (Note in Fig. 33-18b how the shaded areas under the curve but above
the horizontal line marked �1/2 exactly fill in the unshaded spaces below that line.)
Thus, we can write, from Eq. 33-68,

(33-69)

The quantity is defined as the root-mean-square, or rms, value of the current i in
a cycle. The square of the rms current is the average of the squares of the instanta-
neous currents in a cycle. It represents an effective dc current that would produce the
same heating effect as an ac current with a maximum value of I. So,

(definition of rms current). (33-70)

We can now rewrite Eq. 33-69 as 

(average power). (33-71)

Equation 33-71 looks much like Eq. 26-11 for dc currents ; the purpose of
defining rms current is that we can use it to compute the average rate of energy dissi-
pation for alternating-current circuits using essentially the same equation we use for
dc circuits.

We can also define rms values of voltages and emfs for alternating-current circuits
in terms of the maximum values of those quantities in a cycle. So 

(rms voltage) and (rms emf). (33-72)

Alternating-current instruments, such as ammeters and voltmeters, are usually
calibrated to read I rms, , and . Thus, if you plug an alternating-current
voltmeter into a household electric outlet and it reads 120 V, it represents an rms
voltage. The maximum value of the potential difference at the outlet is ,
or 170 V.

√2 	 (120 V)

� rms�V rms

� rms �
� max

√2
�V rms �

�V
√2

(P � i2R)


P� � (I rms)2R

I rms � 
I

√2

I/√2


P� �
I 2R

2
� � I

√2 �
2

R.

P � i2R � [I sin(
 drt � �)]2 R � I 2R sin2(
 drt � �),
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FIGURE 33-18 ■ (a) A plot of sin � versus
�. The average value over one cycle is zero.
(b) A plot of sin2 � versus �. The average
value over one cycle is .1
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Because the proportionality factor in Eqs. 33-70 and 33-72 is the same for all
three variables, we can write Eqs. 33-62 and 33-60 as 

(33-73)

and, indeed, this is the form that we almost always use.
We can use the relationship to recast Eq. 33-71 in a useful equiva-

lent way. We write 

(33-74)

From Fig. 33-15d, Table 33-2, and Eq. 33-62, however, we see that R/Z is just the co-
sine of the phase constant �:

(33-75)

Equation 33-74 then becomes 

(average power), (33-76)

in which the term is called the power factor. Because , Eq. 33-76
is independent of the sign of the phase constant �.

To maximize the rate at which energy is supplied to a resistive load in an RLC
circuit, we should keep the power factor cos � as close to unity as possible. This is
equivalent to keeping the phase constant � in Eq. 33-35 as close to zero as possible. If,
for example, the circuit is highly inductive, it can be made less so by putting more ca-
pacitance in the circuit, connected in series. Adding capacitive reactance counters the
excess inductive reactance in the circuit. This makes Z closer in value to R and so re-
duces the phase constant and increases the power factor in Eq. 33-76. Power compa-
nies place series-connected capacitors throughout their transmission systems to get
these results.

READI NG EXERC IS E  33-7: (a) If the current in a sinusoidally driven series RLC
circuit leads the emf, would we increase or decrease the capacitance to increase the rate at
which energy is supplied to the resistance? (b) Will this change bring the resonant angular fre-
quency of the circuit closer to the angular frequency of the emf or move it further away? ■

cos� � cos(��)cos�


P� � � rmsI rms cos�

cos� �
�VR

� max �
IR
IZ

�
R
Z

.


P� �
� rms

Z
I rmsR � � rmsI rms R

Z
.

I rms � � rms/Z

I rms �
� rms

Z
�

� rms

√R2 � (XL � XC)2 ,

1/√2
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TOUCHSTONE EXAMPLE 33-5: Power Factor

A series RLC circuit, driven with at frequency f dr =
60.0 Hz, contains a resistance R � 200 �, an inductance with XL �
80.0 �, and a capacitance with XC � 150 �.

(a) What are the power factor cos � and phase constant � of the
circuit?

S O L U T I O N ■ The Ke y  I d e a here is that the power factor
cos � can be found from the resistance R and impedance Z via
Eq. 33-75 (cos � � R/Z). To calculate Z, we use Eq. 33-61:

� √(200 �)2 � (80.0 � � 150 �)2 � 211.90 �.

Z � √R2 � (XL � XC)2

� rms � 120 V Equation 33-75 then gives us

(Answer)

Taking the inverse cosine then yields

Both �19.3° and �19.3° have a cosine of 0.944. To determine which
sign is correct, we must consider whether the current leads or lags
the driving emf. Because XC > XL, this circuit is mainly capacitive,
with the current leading the emf. Thus, � must be negative:

. (Answer)� � �19.3�

� � cos�1 0.944 � �19.3�.

cos� �
R
Z

�
200 �

211.90 �
� 0.9438 � 0.944.
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We could, instead, have found � with Eq. 33-65. A calculator would
then have given us the complete answer, with the minus sign.

(b) What is the average rate at which energy is dissipated in the
resistance?

S O L U T I O N ■ One way to answer this question is to use this
Ke y  I d e a : Because the circuit is assumed to be in steady-state
operation, the rate at which energy is dissipated in the resistance is
equal to the rate at which energy is supplied to the circuit, as given
by Eq. 33-76 .

We are given the rms driving emf and we know cos �
from part (a). To find I rms we use the Ke y  I d e a that the rms cur-
rent is determined by the rms value of the driving emf and the cir-
cuit’s impedance Z (which we know), according to Eq. 33-73:

Substituting this into Eq. 33-76 then leads to

(Answer)

A second way to answer the question is to use the Ke y  I d e a
that the rate at which energy is dissipated in a resistance R depends
on the square of the rms current I rms through it, according to
Eq. 33-69. We then find

�
(120 V)2

211.90 �
(0.9438) � 64.1 W.


P� � � rmsI rms cos� �
(� rms)2

Z
 cos�

I rms �
� rms

Z
.

� rms
(
P� � � rmsI rms cos�)


P� (Answer)

(c) What new capacitance C new is needed to maximize if the
other parameters of the circuit are not changed?

S O L U T I O N ■ One Ke y  I d e a here is that the average rate 
at which energy is supplied and dissipated is maximized if the
circuit is brought into resonance with the driving emf. A second
Ke y  I d e a is that resonance occurs when XC � XL. From the
given data, we have XC � XL. Thus, we must decrease XC to reach
resonance. From Eq. 33-43 , we see that this means
we must increase C to the new value C new.

Using Eq. 33-43, we can write the condition XC � XL as

Substituting 2f dr for 
 dr (because we are given f dr and not 
 dr)
and then solving for C new, we find

(Answer)

Following the procedure of part (b), you can show that with C new,
would then be at its maximum value of 72.0 W.
P�

� 3.32 	 10�5 F � 33.2 �F.

C new �
1

2f drXL
�

1
(2)(60 Hz)(80.0 �)

1

 drC new � XL.

(XC � 1/
 dr C)


P�


P�

�
(120 V)2

(211.90 �)2 (200 �) � 64.1 W.


P� � (I rms)2R �
(� rms)2

Z 2 R

Problems

SEC. 33-2 ■ ENERGY STORED IN A -FIELD

1. Current Is Zero Suppose that
the inductive time constant for
the circuit of Fig. 33-19 is 37.0 ms
and the current in the circuit is
zero at time t � 0 s. At what time
does the rate at which energy is
dissipated in the resistor equal
the rate at which energy is being
stored in the inductor?

2. Consider the Circuit Consider
the circuit of Fig. 33-19. In terms
of the inductive time constant, at what instant after the battery is
connected will the energy stored in the magnetic field of the induc-
tor be half its steady-state value?

3. Coil Connected in Series A coil is connected in series with a
10.0 k � resistor. A 50.0 V battery is applied across the two devices,
and the current reaches a value of 2.00 mA after 5.00 ms. (a) Find
the inductance of the coil. (b) How much energy is stored in the coil
at this same moment?

B
: 4. Rates A coil with an inductance of 2.0 H and a resistance of

10 � is suddenly connected to a resistanceless battery with � �
100 V. At 0.10 s after the connection is made, what are the rates at
which (a) energy is being stored
in the magnetic field, (b) thermal
energy is appearing in the resis-
tance, and (c) energy is being de-
livered by the battery?

5. Prove That Prove that, after
switch S in Fig. 33-20 has been
thrown from a to b, all the energy
stored in the inductor will ulti-
mately appear as thermal energy
in the resistor.

6. Energy Delivered For the circuit of Fig. 33-19, assume that � �
10.0 V, R � 6.70 �, and L � 5.50 H. The battery is connected at
time t � 0 s. (a) How much energy is delivered by the battery dur-
ing the first 2.00 s? (b) How much of this energy is stored in the
magnetic field of the inductor? (c) How much of this energy is dissi-
pated in the resistor?

R

L–
+

i
yx

z

L

FIGURE 33-19 ■ Problems 1, 2,
and 6.

Sa

b R

L–
+

FIGURE 33-20 ■ Problem 5.



SEC. 33-3 ■ ENERGY DENSITY OF A -FIELD

7. Energy Density A solenoid that is 85.0 cm long has a cross-sec-
tional area of 17.0 cm2. There are 950 turns of wire carrying a cur-
rent of 6.60 A. (a) Calculate the energy density of the magnetic
field inside the solenoid. (b) Find the total energy stored in the
magnetic field there (neglect end effects).

8. Toroidal Inductor A toroidal inductor with an inductance of 
90.0 mH encloses a volume of 0.0200 m3. If the average energy density
in the toroid is 70.0 J/m3, what is the current through the inductor?

9. Magnitude of E-Field What must be the magnitude of a uniform
electric field if it is to have the same energy density as that pos-
sessed by a 0.50 T magnetic field?

10. Interstellar Space The magnetic field in the interstellar space
of our galaxy has a magnitude of about 10�10 T. How much energy
is stored in this field in a cube 10 light-years on edge? (For scale,
note that the nearest star is 4.3 light-years distant and the radius of
our galaxy is about 8 	 104 light-years.)

11. Length of Copper Wire A length of copper wire carries a cur-
rent of 10 A, uniformly distributed through its cross section. Calcu-
late the energy density of (a) the magnetic field and (b) the electric
field at the surface of the wire. The wire diameter is 2.5 mm, and its
resistance per unit length is 3.3 �/km.

12. Circular Loop A circular loop of wire 50 mm in radius carries a
current of 100 A. (a) Find the magnetic field strength at the center of
the loop. (b) Calculate the energy density at the center of the loop.

SEC. 33-4 ■ LC OSCILLATIONS, QUALITATIVELY

13. What Is the Capacitance What is the capacitance of an oscillat-
ing LC circuit if the maximum charge on the capacitor is 1.60 �C
and the total energy is 140 �J?

14. Maximum Charge In an oscillating LC circuit, L � 1.10 mH
and C � 4.00 �F. The maximum charge on the capacitor is 3.00 �C.
Find the maximum current.

15. Total Energy An oscillating LC circuit consists of a 75.0 mH
inductor and a 3.60 �F capacitor. If the maximum charge on the
capacitor is 2.90 �C, (a) what is the total energy in the circuit and
(b) what is the maximum current?

16. Electric to Magnetic Energy In a certain oscillating LC circuit
the total energy is converted from electric energy in the capacitor to
magnetic energy in the inductor in 1.50 �s. (a) What is the period of
oscillation? (b) What is the frequency of oscillation? (c) How long af-
ter the magnetic energy is a maximum will it be a maximum again?

17. Maximum Positive Charge The frequency of oscillation of a
certain LC circuit is 200 kHz. At time t � 0 s, plate A of the capaci-
tor has maximum positive charge. At what times t � 0 s will (a)
plate A again have maximum positive charge, (b) the other plate of
the capacitor have maximum positive charge, and (c) the inductor
have maximum magnetic field?

SEC. 33-5 ■ THE ELECTRICAL–MECHANICAL ANALOGY

18. SHM A 0.50 kg body oscillates in simple harmonic motion on a
spring that, when extended 2.0 mm from its equilibrium, has an 8.0 N
restoring force. (a) What is the angular frequency of oscillation? 
(b) What is the period of oscillation? (c) What is the capacitance of
an LC circuit with the same period if L is chosen to be 5.0 H?

B
:

Problems 981

19. Energy The energy in an oscillating LC circuit containing a
1.25 H inductor is 5.70 �J. The maximum charge on the capacitor is
175 �C. Find (a) the mass, (b) the spring constant, (c) the maximum
displacement, and (d) the maximum speed for a mechanical system
with the same period.

SEC. 33-6 ■ LC OSCILLATIONS, QUANTITATIVELY

20. Loudspeakers LC oscillators have been used in circuits con-
nected to loudspeakers to create some of the sounds of electronic
music. What inductance must be used with a 6.7 �F capacitor to
produce a frequency of 10 kHz, which is near the middle of the au-
dible range of frequencies?

21. Initially a Maximum In an oscillating LC circuit with L � 50 mH
and C � 4.0 �F, the current is initially a maximum. How long will it
take before the capacitor is fully charged for the first time?

22. Single Loop A single loop consists of inductors (L1, L2, . . . ),
capacitors (C1, C2, . . . ), and resistors (R1, R2, . . . ) connected in
series as shown, for example, in Fig. 33-21a. Show that regardless of
the sequence of these circuit elements in the loop, the bahavior of
this circuit is identical to that of the simple LC circuit shown in
Fig. 33-21b. (Hint: Consider the loop rule and see Problem 7 in
Chapter 32.)

L C R

(b)(a)

L 2C 1
L 1 C 2

R 2R 1

FIGURE 33-21 ■ Problem 22.

23. Maximum Voltage An oscillating LC circuit consisting of a
1.0 nF capacitor and a 3.0 mH coil has a maximum voltage of 3.0 V.
(a) What is the maximum charge on the capacitor? (b) What is the
maximum current through the circuit? (c) What is the maximum
energy stored in the magnetic field of the coil?

24. Maximum Potential Difference In an  oscillating LC circuit in
which C � 4.00 �F, the maximum potential difference across the
capacitor during the oscillations is 1.50 V and the maximum current
through the inductor is 50.0 mA. (a) What is the inductance L?
(b) What is the frequency of the oscillations? (c) How much time is
required for the charge on the capacitor to rise from zero to its
maximum value?

25. Switch Is Thrown In the circuit
shown in Fig. 33-22 the switch is kept
in position a for a long time. It is then
thrown to position b. (a) Calculate
the frequency of the resulting oscil-
lating current. (b) What is the ampli-
tude of the current oscillations?

26. One Inductor, Two Capacitors
You are given a 10 mH inductor and
two capacitors, of 5.0 �F and 2.0 �F
capacitance. List the oscillation fre-
quencies that can be generated by connecting these elements in
various combinations.

27. Variable Capacitor A variable capacitor with a range from
10 to 365 pF is used with a coil to form a variable-frequency LC

a

b

34.0 V

14.0 Ω
6.20 μ

54.0 mH

F

FIGURE 33-22 ■

Problem 25.



circuit to tune the input to a radio. (a) What ratio of maximum to
minimum frequencies may be obtained with such a capacitor? (b)
If this circuit is to obtain frequencies from 0.54 MHz to 1.60 MHz,
the ratio computed in (a) is too large. By adding a capacitor in par-
allel to the variable capacitor, this range may be adjusted. What
should be the capacitance of this added capacitor, and what induc-
tance should be used to obtain the desired range of frequencies?

28. Energy Stored in Magnetic Field In an oscillating LC circuit,
75.0% of the total energy is stored in the magnetic field of the in-
ductor at a certain instant. (a) In terms of the maximum charge on
the capacitor, what is the charge there at that instant? (b) In terms
of the maximum current in the inductor, what is the current there at
that instant?

29. Capacitor Is Charging In an oscillating LC circuit, L � 25.0 mH
and C � 7.80 �F. At time t � 0 s the current is 9.20 mA, the charge
on the capacitor is 3.80 �C, and the capacitor is charging. (a) What
is the total energy in the circuit? (b) What is the maximum charge
on the capacitor? (c) What is the maximum current? (d) If the
charge on the capacitor is given by q � �Q� cos(
t��), what is the
phase angle �? (e) Suppose the data are the same, except that the
capacitor is discharging at t � 0 s. What then is �?

30. Varied by a Knob An inductor is connected across a capacitor
whose capacitance can be varied by turning a knob. We wish to make
the frequency of oscillation of this LC circuit vary linearly with the
angle of rotation of the knob, going from 2 	 105 to 4 	 105 Hz as the
knob turns through 180°. If L � 1.0 mH, plot the required capaci-
tance C as a function of the angle of rotation of the knob.

31. Oscillating LC Circuit In an oscillating LC circuit, L � 3.00 mH
and C � 2.70 �F. At t � 0 s the charge on the capacitor is zero and
the current is 2.00 A. (a) What is the maximum charge that will ap-
pear on the capacitor? (b) In terms of the period T of oscillation,
how much time will elapse after t � 0 until the energy stored in the
capacitor will be increasing at its greatest rate? (c) What is this
greatest rate at which energy is transferred to the capacitor?

32. Angular Frequency A series circuit containing inductance L1 and
capacitance C1 oscillates at angular frequency 
. A second series cir-
cuit, containing inductance L2 and capacitance C2, oscillates at the
same angular frequency. In terms of 
, what is the angular frequency of
oscillation of a series circuit containing all four of these elements?
Neglect resistance. (Hint: Use the for-
mulas for equivalent capacitance and
equivalent inductance; see Section 28-
4 and Problem 7 in Chapter 32.)

33. Current as Function of Time
In an oscillating LC circuit with 
C � 64.0 �F, the current as a func-
tion of time is given by i � (1.60 A)
sin[(2500 rad/s) t � 0.680 rad],
where t is in seconds. (a) How soon
after t � 0 s will the current reach
its maximum value? What are 
(b) the inductance L and (c) the to-
tal energy?

34. Three Identical Inductors
Three identical inductors L and two
identical capacitors C are connected
in a two-loop circuit as shown in
Fig. 33-23. (a) Suppose the currents

are as shown in Fig. 33-23a. What is the current in the middle induc-
tor? Write the loop equations and show that they are satisfied if the
current oscillates with angular frequency 
 � 1/ (b) Now sup-
pose the currents are as shown in Fig. 33-23b. What is the current in
the middle inductor? Write the loop equations and show that they
are satisfied if the current oscillates with angular frequency 
 �
1/ Because the circuit can oscillate at two different frequencies,
we cannot find an equivalent single-loop LC circuit to replace it.

35. Capacitor One, Capacitor Two
In Fig. 33-24, capacitor 1 with C1 �
900 �F is initially charged to 100 V
and capacitor 2 with C2 � 100 �F is
uncharged. The inductor has an in-
ductance of 10.0 H. Describe in de-
tail how one might charge capacitor
2 to 300 V by manipulating switches
S1 and S2.

SEC. 33-7 ■ DAMPED OSCILLATIONS IN AN RLC CIRCUIT

36. Damped LC Consider a damped LC circuit. (a) Show that the
damping term e�Rt/2L (which involves L but not C) can be rewritten
in a more symmetric manner (involving L and C) as .
Here T is the period of oscillation (neglecting resistance). (b) Using
(a), show that the SI unit of is the ohm. (c) Using (a), show
that the condition that the fractional energy loss per cycle be small
is .

37. What Resistance What resistance R should be connected in se-
ries with an inductance L � 220 mH and capacitance C � 12.0 �F
for the maximum charge on the capacitor to decay to 99.0% of its
initial value in 50.0 cycles? (Assume 
� � 
.)

38. Single-Loop Circuit A single-loop circuit consists of a 7.20 �
resistor, a 12.0 H inductor, and a 3.20 �F capacitor. Initially the ca-
pacitor has a charge of 6.20 �C and the current is zero. Calculate
the charge on the capacitor N complete cycles later for N � 5, 10,
and 100.

39. Oscillating Series RLC In an oscillating series RLC circuit, find
the time required for the maximum energy present in the capacitor
during an oscillation to fall to half its initial value. Assume q � Q
at t � 0.

40. No Charge on Capacitor At time t � 0 s there is no charge on
the capacitor of a series RLC circuit but there is current I through
the inductor. (a) Find the phase constant � in Eq. 33-31 for the cir-
cuit. (b) Write an expression for the charge q on the capacitor as a
function of time t and in terms of the current amplitude and angular
frequency 
� of the oscillations.

41. Fraction of Energy Lost In an oscillating series RLC circuit,
show that the fraction of the energy lost per cycle of oscillation,
�U/U, is given to a close approximation by 2R/
L. The quantity

L/R is often called the Q of the circuit (for quality). A high-Q
circuit has low resistance and a low fractional energy loss (� 2/Q)
per cycle.

SEC. 33-10 ■ REPRESENTING OSCILLATIONS WITH

PHASORS: THREE SIMPLE CIRCUITS

42. Amplitude A 1.50 �F capacitor is connected as in Fig. 33-13a
to an ac generator with |�max| � 30.0 V. What is the amplitude of

R � √L/C

√L/C

e�R(√C/L)t/T

√3LC.

√LC.
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the resulting alternating current if the frequency of the emf is (a)
1.00 kHz and (b) 8.00 kHz?

43. AC Generator A 50.0 mH inductor is connected as in Fig. 33-
14a to an ac generator with |�max| � 30.0 V. What is the amplitude
of the resulting alternating current if the frequency of the emf is (a)
1.00 kHz and (b) 8.00 kHz?

44. Frequency of emf Is A 50 � resistor is connected as in 
Fig. 33-12a to an ac generator with |�max| � 30.0 V. What is the am-
plitude of the resulting alternating current if the frequency of the
emf is (a) 1.00 kHz and (b) 8.00 kHz?

45. At What Frequency (a) At what frequency would a 6.0 mH in-
ductor and a 10 �F capacitor have the same reactance? (b) What
would the reactance be? (c) Show that this frequency would be the
natural frequency of an oscillating circuit with the same L and C.

46. When the Current Is Maximum An ac generator has emf � �
�max sin t, with �max � 25.0 V and � 377 rad/s. It is con-
nected to a 12.7 H inductor. (a) What is the maximum value of the
current? (b) When the current is a maximum, what is the emf of the
generator? (c) When the emf of the generator is �12.5 V and in-
creasing in magnitude, what is the current?

47. At What Time An ac generator has emf � � �max sin( t �
/4), where �max � 30.0 V and � 350 rad/s. The current pro-
duced in a connected circuit is i(t) � I sin( t � 3/4), where I �
620 mA. (a) At what time after t � 0 does the generator emf first
reach a maximum? (b) At what time after t � 0 does the current
first reach a maximum? (c) The circuit contains a single element
other than the generator. Is it a capacitor, an inductor, or a resistor?
Justify your answer. (d) What is the value of the capacitance, induc-
tance, or resistance, as the case may be?

48. Generator from Above The ac generator of Problem 46 is con-
nected to a 4.15 �F capacitor. (a) What is the maximum value of the
current? (b) When the current is a maximum, what is the emf of the
generator? (c) When the emf of the generator is �12.5 V and in-
creasing in magnitude, what is the current?

SEC. 33-11 ■ THE SERIES RLC CIRCUIT

49. Find Z, �, and I (a) Find Z, �, and I for the situation of Touch-
stone Example 33-4 with the capacitor removed from the circuit, all
other parameters remaining unchanged. (b) Draw to scale a phasor
diagram like that of Fig. 33-15d for this new situation.

50. Find Z, �, and I Two (a) Find Z, �, and I for the situation of
Touchstone Example 33-4 with the inductor removed from the cir-
cuit, all other parameters remaining unchanged. (b) Draw to scale a
phasor diagram like that of Fig. 33-15d for this new situation.

51. Find Z, �, and I Three (a) Find Z, �, and I for the situation
of Touchstone Example 33-4 with C � 70.0 �F, the other parame-
ters remaining unchanged. (b) Draw
a phasor diagram like that of Fig. 33-
15d for this new situation and com-
pare the two diagrams closely.

52. Adjustable Frequency In Fig 33-
25, a generator with an adjustable
frequency of oscillation is connected
to a variable resistance R, a capacitor
of C � 5.50 �F, and an inductor of
inductance L. The amplitude of the


 dr

 dr


 dr


 dr
 dr
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current produced in the circuit by the generator is at half-maximum
level when the generator’s frequency is 1.30 or 1.50 kHz. (a)What is
L? (b) If R is increased, what happens to the frequencies at which
the current amplitude is at half-maximum level?

53. At Resonance In an RLC circuit, can the amplitude of the volt-
age across an inductor be greater than the amplitude of the genera-
tor emf? Consider an RLC circuit with max � 10 V, R � 10 �, L �
1.0 H, and C � 1.0 �F. Find the amplitude of the voltage across the
inductor at resonance.

54. Emf Is Maximum When the generator emf in Touchstone
Example 33-4 is a maximum, what is the voltage across (a) the gen-
erator, (b) the resistance, (c) the capacitance, and (d) the induc-
tance? (e) By summing these with appropriate signs, verify that the
loop rule is satisfied.

55. Unknown Resistance A coil of inductance 88 mH and un-
known resistance and a 0.94 �F capacitor are connected in series
with an alternating emf of frequency 930 Hz. If the phase constant
between the applied voltage and the current is 75°, what is the resis-
tance of the coil?

56. Capacitive Reactance An ac generator with �max � 220 V and
operating at 400 Hz causes oscillations in a series RLC circuit hav-
ing R � 220 �, L � 150 mH, and C � 24.0 �F. Find (a) the capaci-
tive reactance XC, (b) the impedance Z, and (c) the current ampli-
tude I. A second capacitor of the same capacitance is then
connected in series with the other components. Determine whether
the values of (d) XC, (e) Z, and (f) I increase, decrease, or remain
the same.

57. Half-Width An RLC circuit such as that of Fig. 33-11 has 
R � 5.00 �, C � 20.0 �F, L � 1.00 H, and �max � 30.0 V. (a) At
what angular frequency 
 dr will the current amplitude have its
maximum value, as in the resonance curves of Fig. 33-17? (b) What
is this maximum value? (c) At what two angular frequencies 

 1

dr and 
 2
dr will the current amplitude be half this maximum value?

(d) What is the fractional half-width [� (
 1
dr � 
 2

dr)/
] of the reso-
nance curve for this circuit?

58. Generator in Series An ac generator is to be connected in se-
ries with an inductor of L � 2.00 mH and a capacitance C. You are
to produce C by using capacitors of capacitances C1 � 4.00�F and
C2 � 6.00 �F, either singly or together. What resonant frequencies
can the circuit have, depending on how you use C1 and C2?

59. Fractional Half-Width Show that the fractional half-width (see
Problem 57) of a resonance curve is given by

in which 
 is the angular frequency at resonance and � is the
width of the resonance curve at half-amplitude. Note that � /

increases with R, as Fig. 33-17 shows. Use this formula to check the
answer to Problem 57d.

60. Adjustable Frequency Two
In Fig. 33-26, a generator with an
adjustable frequency of oscilla-
tion is connected to resistance 
R � 100 �, inductances L1 �
1.70 mH and L2 � 2.30 mH, and
capacitances C1 � 4.00 �F,


 dr

 dr

�
 dr
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C2 � 2.50 �F, and C3 � 3.50 �F. (a) What is the resonant frequency
of the circuit? (Hint: See Problem 7 in Chapter 32.) What happens
to the resonant frequency if (b) the value of R is increased, (c) the
value of L1 is increased, and (d) capacitance C3 is removed from the
circuit?

SEC. 33-12 ■ POWER IN ALTERNATING-CURRENT CIRCUITS

61. Thermal Energy What direct current will produce the same
amount of thermal energy, in a particular resistor, as an alternating
current that has a maximum value of 2.60 A?

62. AC Voltmeter An ac voltmeter with large impedance is con-
nected in turn across the inductor, the capacitor, and the resistor in
a series circuit having an alternating emf of 100 V(rms); it gives the
same reading in volts in each case. What is this reading?

63. AC Voltage What is the maximum value of an ac voltage
whose rms value is 100 V?

64. Give or Take (a) For the conditions in Problem 46c, is the gen-
erator supplying energy to or taking energy from the rest of the cir-
cuit? (b) Repeat for the conditions of Problem 48c.

65. Average Rate of Dissipation Calculate the average rate of en-
ergy dissipation in the circuits of Problems 43, 44, 49, and 50.

66. Energy Is Supplied Show that the average rate at which energy
is supplied to the circuit of Fig. 33-11 can also be written as �
(� rms)2R/Z2. Show that this expression for average power gives rea-
sonable results for a purely resistive circuit, for an RLC circuit at
resonance, for a purely capacitive circuit, and for a purely inductive
circuit.

67. Air Conditioner An air conditioner connected to a 120 V rms
ac line is equivalent to a 12.0 � resistance and a 1.30 � inductive re-
actance in series. (a) Calculate the impedance of the air condi-
tioner. (b) Find the average rate at which energy is supplied to the
appliance.

68. Oscillating RLC In a series oscillating RLC circuit, R � 16.0 �,
C � 31.2 �F, L � 9.20 mH, and � � � �max� sin 
 drt with � �max� �
45.0 V and 
 dr � 3000 rad/s. For time t � 0.442 ms find (a) the rate
at which energy is being supplied by the generator, (b) the rate at
which the energy in the capacitor is changing, (c) the rate at which
the energy in the inductor is changing, and (d) the rate at which en-
ergy is being dissipated in the resistor. (e) What is the meaning of a
negative result for any of (a), (b), and (c)? (f) Show that the results
of (b), (c), and (d) sum to the result of (a).

69. Black Box Figure 33-27 shows
an ac generator connected to a “black
box” through a pair of terminals. The
box contains an RLC circuit, possibly
even a multiloop circuit, whose ele-
ments and connections we do not
know. Measurements outside the


P�

box reveal that

�(t) � (75.0 V)sin 

and i(t) � (1.20 A) sin ( t � 42.0°).

(a) What is the power factor? (b) Does the current lead or lag the
emf? (c) Is the circuit in the box largely inductive or largely capaci-
tive? (d) Is the circuit in the box in resonance? (e) Must there be a
capacitor in the box? An inductor? A resistor ? (f) At what average
rate is energy delivered to the box by the generator? (g) Why don’t
you need to know the angular fre-
quency 
 dr to answer all these ques-
tions?

70. Average Rate In Fig. 33-28
show that the average rate at which
energy is dissipated in resistance R is
a maximum when R is equal to the
internal resistance r of the ac gener-
ator. (In the text discussion we have
tacitly assumed that r � 0.)

71. Energy Is Dissipated In an RLC circuit such as that of
Fig. 33.11 assume that R � 5.00 �, L � 60.0 mH f dr � 60.0 Hz, and
� �m ax � � 30.0 V. For what values of the capacitor would the average
rate at which energy is dissipated in the resistance be (a) a maxi-
mum and (b) a minimum? (c) What are these maximum and mini-
mum energy dissipation rates? What are (d) the corresponding
phase angles and (e) the corresponding power factors?

72. Light Dimmer A typical “light
dimmer” used to dim the stage lights
in a theater consists of a variable in-
ductor L (whose inductance is ad-
justable between zero and Lmax) con-
nected in series with the lightbulb B
as shown in Fig. 33-29. The electrical
supply is 120 V (rms) at 60.0 Hz; the lightbulb is rated as “120 V,
1000 W.” (a) What L max is required if the rate of energy dissipation
in the lightbulb is to be varied by a factor of 5 from its upper limit of
1000 W? Assume that the resistance of the lightbulb is independent
of its temperature. (b) Could one use a variable resistor (adjustable
between zero and R max) instead of an inductor? If so, what R max is
required? Why isn’t this done?

73. Sinusoidal Voltage In Fig. 33-30,
R � 15.0 �, C � 4.70 �F, and L �
25.0 mH. The generator provides a sinu-
soidal voltage of 75.0 V (rms) and fre-
quency f � 550 Hz.

(a) Calculate the rms current.
(b) Find the rms voltages �Vab, �Vbc,
�Vcd, �Vbd, �Vad. (c) At what average rate is energy dissipated by
each of the three circuit elements?


 dr


 dr
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34 Electromagnetic
Waves

A comet is often referred to as a dirty snowball. As a comet

swings around the Sun, ice on its surface vaporizes, 

releasing trapped dust and charged particles. The “solar

wind,” mostly consisting of protons streaming away from

the Sun, forces the charged particles released by the comet

into a straight “tail” that points radially away from the Sun.

The dust continues to travel in the comet’s orbit.

Why does most of the dust
released by the comet 
remain in the tail of dust on
the right in the photograph?

The answer is in this chapter.



34-1 Introduction

At the end of Chapter 31 we presented James Clerk Maxwell’s (Fig. 34-1) four equa-
tions that synthesized 50 years of research on electricity and magnetism. Maxwell’s
equations are compact and elegant in the way that they reveal the inherent symmetry
between electrical and magnetic phenomena. But their importance also stems from the
fact that they led Maxwell and others to predict a wide range of new phenomena. The
design of the communication systems that support radio and television broadcasting,
cellular phones, and the Internet are all informed by Maxwell’s equations. So is much
of our understanding of the nature of light. For these reasons, Maxwell’s equations are
considered to be the crowning achievement of 19th-century theoretical physics.

One of the most incredible outcomes of Maxwell’s work was his prediction of
electromagnetic waves in 1864, long before investigators were able to generate and
detect them. In fact, Maxwell’s hypothesis was not taken seriously until almost 25
years later, when Heinrich Hertz first generated and detected electromagnetic waves.
We begin this chapter by reviewing the remarkable chain of reasoning that led
Maxwell to postulate the existence of this yet unknown type of wave. We also con-
sider why it took Hertz until 1887 to confirm Maxwell’s prediction. Next we describe
how the electromagnetic wave pulses and continuous waves used for radio transmis-
sion are generated. We also examine how and why the orientation of radio and TV
antennas is related to an idea called “polarization” of electromagnetic waves.

Maxwell predicted that all electromagnetic waves would move at a speed that was
quite close to the measured value for the speed of visible light in air. For this reason
he correctly asserted from the beginning that visible light was an electromagnetic
wave. We can use what we learn about electromagnetic waves in this chapter to build
a foundation for our study of optics in Chapter 35, where we will learn about how
light waves interact with lenses and mirrors to form images.

34-2 Maxwell’s Prediction of Electromagnetism

Maxwell’s prediction of the electromagnetic wave was a result of the way in which he
rewrote and reinterpreted the mathematical expressions for experimentally determined
laws named after Faraday and Ampère.We start with a review of these two laws.

Generating Fields in the Absence of Conductors
Faraday’s law 

(Eq. 31-6)

was originally based on his measurements of the electric currents induced within a
conducting loop when the magnetic flux enclosed by it changes. The fact that an elec-
tric field is needed to produce the current in the conductor led Maxwell to a bold con-
jecture. He predicted that an electric field would always be induced in the region of
varying magnetic flux regardless of whether or not a conducting loop was present.
Thus, Faraday’s law in the more general form shown below should probably be called
the Faraday–Maxwell law:

(Faraday’s law). (Eq. 31-21)

We owe to Faraday and Maxwell the discovery that a changing magnetic field
produces an electric field. We owe to Maxwell alone the symmetric prediction that a

� �
d�mag

dt
� � �E

:
� ds:
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d�mag

dt
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changing electric field ought to produce a magnetic field. Maxwell made this predic-
tion by noting a mathematical similarity between Ampère’s law, which describes the
nature of the magnetic field generated by current flow in a conductor 

(Ampère’s law), (Eq. 30-16)

and the general formulation of Faraday’s law 

(Faraday’s law). (Eq. 31-21)

At this point Maxwell speculated that the magnetic field induced along a closed loop
(Ampère’s law) was more generally a function of the rate of change of the electric
flux enclosed by the loop. He predicted that any region in space with changing electric
flux (like that found between plates when a capacitor is charged or discharged) could
induce a magnetic field in the region—even without the presence of a conductor. This
notion prompted Maxwell in 1861 to invent the concept of displacement current (dis-
cussed in Section 31-9). This fictitious current was devised to describe the possible, but
as yet unobserved, magnetic effects of changing electric flux. Maxwell incorporated
his displacement current concept into the reformulation of Ampère’s law that we pre-
sented in Section 31-8,

(Ampère–Maxwell law). (Eq. 31-32)

Since there was no experimental evidence that changing electric flux could gener-
ate a magnetic field in the absence of real current, the proposed Ampère–Maxwell
law was perhaps the most remarkable of Maxwell’s many predictions.

Note that in free space, with no conductors present, the term in the expression
above (Eq. 31-32) disappears and it becomes symmetric to Faraday’s law (Eq. 31-21).
The symmetry between these equations provided the basis for Maxwell’s belief in the
existence of electromagnetic waves almost 25 years before Hertz was able to generate
and detect them. To find out why, read on.

Electromagnetic Wave Propagation 
Maxwell used the symmetric relationship between Faraday’s law and the
Ampère–Maxwell law to predict a phenomenon that at first glance seems quite
bizarre. He noted that if a changing magnetic field could create a changing electric
field, then the changing electric field could, in turn, create another changing magnetic
field. These changing fields could continuously generate each other and propagate,
carrying “electromagnetic” energy with them.

In his 1861 paper (where he also introduced the displacement current concept)
Maxwell rewrote the Faraday and Ampère–Maxwell laws as differential equations
and solved them to describe and fields separately as functions of time. This pro-
duced differential equations that have the same algebraic form as those that describe
the propagation of pressure variations in air (sound waves), ripples on the surface of a
pond (water waves), and transverse displacements of a stretched string. Hence, the
concept of an “electromagnetic wave” was born.

A rigorous treatment of Maxwell’s mathematical description of electromagnetic
waves would require us to solve differential equations and interpret the results. These
methods are beyond the scope of this text. Instead we present some new results that
arise from Maxwell’s equations and show that they are consistent with experimental
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results. This will provide us with insight into the generation and properties of electro-
magnetic radiation. For example, one outcome of solving Maxwell’s wave equations
was the revelation that an electromagnetic wave ought to travel in a vacuum at a
speed given by

(predicted wave speed in a vacuum). (34-1)

Maxwell was quite surprised to find that the wave speed depends on the familiar
electric and magnetic constants, and , previously measured in static, electric, and
magnetic experiments. He was equally surprised to find that a calculation of the speed
in a vacuum agreed well with what was known at the time to be the speed of light.
This led Maxwell to make the additional, rather bold, hypothesis that light was an
electromagnetic wave.

34-3 The Generation of Electromagnetic Waves

In this section we give a more detailed description of how electromagnetic waves are
generated. Observations summarized in Maxwell’s equations reveal that electromag-
netic waves (sometimes called “radiation”) should be generated by accelerating
charges. We begin by considering the generation of radio-frequency waves used for
radio and TV transmission. These waves (wavelength 	 � 1m) provide a source of ra-
diation (the emitted waves) that is both macroscopic and of manageable dimensions
so that classical physics rules. Some electromagnetic waves, including x-rays, gamma
rays, and visible light, are radiated (emitted) from sources that are of atomic or nu-
clear size, where quantum physics rules.

At this point, you may find it helpful to quickly review mechanical waves dis-
cussed in Chapter 17. It was there that we first introduced important and pertinent
wave-related concepts such as wavelength and frequency. We begin this section by
considering the analogy between the generation and propagation of an electromag-
netic wave pulse and a pulse traveling on a stretched string (Section 17-3) or along the
surface of a pond (Section 18-1). We end the section with a discussion of how sinu-
soidal radio-frequency electromagnetic waves are generated.

An Electromagnetic Wave Pulse
How does a wave pulse propagate? Let’s consider a more familiar situation in which a
small bucket of water is dumped onto the surface of a pond. The water that is dumped
on the pond’s surface will undergo a rapid oscillation as it falls and rises again. How-
ever, the water that is dumped on the surface cannot undergo this oscillation without
causing the ring of water that surrounds it to begin oscillating. This oscillation is passed
along to the next ring of surrounding water, and so on. We see a two-dimensional wave
crest like that shown in Fig. 18-3 traveling along the pond’s surface at a constant
speed.

In 1842, prior to Maxwell’s prediction of electromagnetic waves, Joseph Henry
observed electrical oscillations produced by a spark discharge from a capacitor. Be-
cause the theoretical basis for explaining electrical oscillations was not yet developed,
the significance of these oscillations was not appreciated. Hertz generated electrical
oscillations once again in 1888 using an induction coil to create sparks.

In order to better understand the connection between electromagnetic waves,
electric oscillations, and the spark discharges with which Henry and Hertz experi-
mented, we need to pull together ideas from other chapters. First, we know from

�0�0

c �
1

√�0�0
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Section 23-10 that electric field arrows indicate the direction of the electric field. Sec-
ond, although we do not discuss this until Section 38-3, Einstein’s principle of relativ-
ity establishes that nothing can travel faster than the speed of light. This includes 
information about the position of a charge. Keeping these ideas in mind, we can visu-
alize how the field lines from a charge must readjust when the charge undergoes a
sudden and brief acceleration like the spark discharge with which Henry and Hertz
experimented. Specifically, suppose that at a time s a point charge initially at
rest is suddenly accelerated straight downward and then stopped, all in an extremely
short time period . This is shown in Fig. 34-2. The original location of the charge is
marked with an “X” in Fig. 34-2b and c.

What happens? As discussed below Maxwell’s equations would lead us to predict
that the accelerating charge will generate a three-dimensional electromagnetic wave
crest. Furthermore, if you consider how this situation is like the momentary accelera-
tion of the bit of mass at the end of a taut string when it is given a quick downward
jerk, the generation of a pulse makes some intuitive sense as well. Let’s look at the sit-
uation more carefully.

Before the acceleration, the electric field lines associated with the charge look
just like those depicted Fig. 34-2a. Electromagnetic information travels at the speed of
light, so after a time period the field lines will point to the charge’s new posi-
tion at the end of the acceleration—but only up to a distance ct. This is shown in Fig.
34-2b. Beyond that distance, the field lines will point to the charge’s old position be-
cause the “news” of the charge’s changed position will not have had time to spread
that far.

At the distance ct, the field lines will have a kink joining the new set and the old
set. This kink is increasingly close to perpendicular to the direction of motion of the
wave front the farther you get from the accelerating charge. If we assume that field
lines are continuous and that the field vectors are tangent to the line at each point,
then the field vectors in the kink are also increasingly perpendicular to the direc-
tion of motion of the wavefronts. The kink travels outward at the speed of light so
that it has moved to a distance of 2ct after a time of . This pulse continues to
move out at speed c from the original location of the charge. Figure 34-3 shows a mag-
nified view of a circled piece of Fig. 34-2b with extra field vectors drawn in.

In the brief moment that the charge is being accelerated, the “current” created by
it is increasing (di/dt = d2q/dt 
 0). We can use Ampère’s law to determine the direc-
tion of the increasing magnetic field associated with this increasing “current.” Taking
the line of motion to be the direction of our “current” (shown with a red dashed line

�t � 2t

E
:

�t � t

�t

t1 � 0

The Generation of Electromagnetic Waves   989

Time = 0 Time = t Time = 2t

(a) (b) (c)

FIGURE 34-2 ■ (a) Electric field lines in the plane of a resting point charge at the exact
moment the jerk starts. (b) After an elapsed time t the kink at the interface between the
old set of lines and the set associated with the jerk has traveled a distance ct. The original
location of the charge is marked with an X and the line of motion is shown with a red
dashed line. The region within the small circle is shown enlarged in Fig. 34-3. (c) After a
time 2t, the kink is at a distance 2ct. (Diagrams adapted from Electric & Magnetic
Interactions: The Movies, © 1996 Ruth Chabay and Bruce Sherwood, Carnegie Mellon
University.)

FIGURE 34-3 ■ Here more field vectors
are assigned to the charge and shown in a
magnified view of a circled piece of 
Fig. 34-2b. The crest of the wave pulse at
time t show that the density of electric field
lines is higher than the density of lines
created when the charge is resting. Note
that the field in the kink points in a
direction that is nearly perpendicular to
the propagating electromagnetic wave
pulse.
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in Fig. 34-2b) and using Ampère’s law, we see that the magnetic field points into the
page to the left of the line of motion of the charge and out of the page to the right.
The direction of these field vectors (into or out of the page) is always perpendicular
to that of the field vectors. So, we surmise that the field vectors associated with
the kink will point perpendicular to the direction of motion of the kink. There are no
propagating or fields along the line of motion of the charge. We define the wave
disturbance as the propagation of the field and field vectors that are each per-
pendicular to the direction of motion of the wave. So, we have an electromagnetic
wave pulse that is transverse. (See Chapter 17 for a review of wave properties if this
last comment is not clear.) 

Although this informal consideration of a single wave pulse created by a sudden
acceleration of a charge is not rigorous or complete, it does give us a useful qualitative
picture of how a pulsed electromagnetic wave might be generated.

Continuous Electromagnetic Wave Generation
How can we generate a continuous electromagnetic wave? What corresponds to the
generation of the sinusoidal oscillation in a stretched string as shown in Fig. 17-6?
Suppose we cause charges to oscillate back and forth along a line with sinusoidal or
simple harmonic motion (SHM). We know from Section 16-4 that these charges will
also have a sinusoidal acceleration, and so by the discussion above, we know that they
will generate continuous electromagnetic (EM) waves.

Figure 34-4 is a schematic of an apparatus that can be used to generate radio
frequency waves. The apparatus is an LC oscillator like that described in Section 33-6,
but with a broadcast antenna coupled to it. This oscillator, mentioned in the previous
sentence, establishes a sinusoidal current with an angular frequency given by

. An ac generator provides a source of energy to compensate for thermal
losses in the oscillator circuit and also for the energy carried away by the radiated
electromagnetic wave.

The LC oscillator is coupled by a transformer and a transmission line to an
antenna, which consists essentially of two thin, solid, conducting rods. Through this
coupling, the sinusoidally varying current in the oscillator causes charge to oscillate
sinusoidally along the antenna rods. The antenna behaves like an electric dipole de-
scribed in Section 25-8, except that its electric dipole moment along the antenna
changes sinusoidally in magnitude and direction over time. Since the charges are
oscillating, they are continually accelerating and thereby produce electromagnetic
radiation.

Because the dipole moment varies in the antenna in magnitude and direction, the
electric and magnetic fields produced by the dipole vary in magnitude and direction.
However, the changes in the electric and magnetic fields do not happen everywhere
instantaneously. Rather, the changes travel outward from the antenna at the speed of
light c. Together the changing fields form an electromagnetic wave that travels away
from the antenna at speed c. The angular frequency of this wave, , is the same as that
of the LC oscillator.
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FIGURE 34-4 ■ Apparatus for generating
a traveling electromagnetic wave at a
“shortwave” radio frequency. An LC
oscillator produces a sinusoidal current in
an antenna. This generates an oscillating
magnetic field and thus an EM wave. P is a
distant point at which a detector (consisting
of a dipole receiving antenna) could be
placed to monitor the wave traveling past it.



The wave moves out in all directions except along the line of motion of the
charges. In a direction perpendicular to the antenna the wavefronts will be approxi-
mately spherical in shape. If we go to a point that is far from the charge, the spherical
wavefronts seem almost flat (just as the Earth seems flat to us because we are so far
from its center). If we block all but a small piece of this wavefront, we get what looks
like a series of planes marching forward at the speed of light. Hence, we often refer to
electromagnetic waves as “plane waves.” Although the plane wave approximation is a
simplification of the real situation, it describes the nature of waves quite well when
the distance from the source, in this case the antenna, is large compared to the wave-
length of electromagnetic wave. The value to us in looking at electromagnetic waves
as “plane waves” is that they are simpler to deal with mathematically than spherical
waves.

There are several ways to depict a traveling sinusoidal electromagnetic plane
wave. One of these is shown in Fig. 34-5. Here we show a “snapshot” of a few equally
spaced planes of a sinusoidal electromagnetic wave traveling in the �x direction. In
this particular wave, the darker, vertically oriented field vectors always point along
the y axis. The lighter, horizontally oriented field vectors always point along the z
axis. This diagram emphasizes the fact that, at a given instant, field vectors are the
same everywhere in a given y-z plane. The figure also shows that as the wave passes a
point in space, the field vector values will sinusoidally vary from a maximum to a min-
imum and back again. This is shown by the dashed lines representing curves through
the tips of the vectors and the vectors at the bottom of each plane. The planes
are labeled a through h to correspond to the and field vector configurations
shown in Fig. 34-6.

Figure 34-6 shows how the electric field and the magnetic field change with
time as one wavelength of the wave sweeps past the distant point P of Fig. 34-4. In
each part of Fig. 34-5, the wave is traveling directly along the x axis. There are several
key features of any sinusoidal plane electromagnetic wave that are shown in Fig. 34-5
and Fig. 34-6 that are present whenever a plane electromagnetic wave is created with
charges that oscillate sinusoidally along a line:

1. The electric and magnetic fields and are always perpendicular to the direc-
tion of travel of the wave. Thus, the wave is a transverse wave, as discussed in
Chapter 17.

2. The electric field is always perpendicular to the magnetic field.

3. The cross product always points in the direction of travel of the wave.

4. For a single simple plane wave, the fields always vary sinusoidally over time, just
like the transverse waves discussed in Chapter 17. Moreover, the fields vary with
the same frequency and are in phase (in step) with each other. More complex
fields can be described mathematically as a superposition of plane waves.
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FIGURE 34-5 ■ A “snapshot” of some
equally spaced planes of a sinusoidal
electromagnetic wave traveling in the +x
direction. In this particular wave, the
darker, vertically oriented field vectors
always point along the y axis. The lighter,
horizontally oriented field vectors
always point along the z axis. The planes
are labeled a through h to correspond to
the and field vector configurations
shown in Fig. 34-6.
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FIGURE 34-6 ■ (a)–(h) The variation in
the electric field and the magnetic field

at the distant point P of Fig. 34-4 as one
wavelength of the electromagnetic wave
shown in Fig. 34-5 travels past it. In this
perspective, the wave is traveling directly
out of the page. The two fields vary
sinusoidally in magnitude and direction.
Each of the planes that correspond to
parts of this diagram (a)–(h) are also
shown in Fig. 34-5.
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34-4 Describing Electromagnetic Wave 
Properties Mathematically

Suppose an electromagnetic wave like that shown in Fig. 34-5 is traveling toward P,
the electric field in Fig. 34-5 is oscillating parallel to the y axis, and the magnetic field
is then oscillating parallel to the z axis. Then we can represent the electric and mag-
netic fields mathematically as sinusoidal functions of position x (along the path of the
wave) and time t:

(34-2)

and (34-3)

where and represent the amplitudes of the fields and, as in Chapter 17,
and k are the angular frequency and wave number, respectively. From these equa-
tions, we note that each type of field forms its own wave. Equation 34-2 gives the elec-
tric wave component of the electromagnetic wave, and Eq. 34-3 gives the magnetic
wave component. As we already realize from considering Maxwell’s formulation,
these two wave components cannot exist independently. The wave propagates
because a changing electric field creates a changing magnetic field, which generates
another changing electric field, and so on.

At this point it is useful to devise a second “snapshot” representation of the plane
electromagnetic wave. This is shown in Fig. 34-7b. Instead of emphasizing the planar
nature of a selected sample of wave fronts as we did in Fig. 34-5, we show just one
vector that represents the length of electric and magnetic field vectors in each sample
plane. The curves through the tips of the vectors display the sinusoidal nature of 
the oscillations described by and 
(Eqs. 34-2 and 34-3) above. The wave components and are depicted as in phase,
perpendicular to each other, and perpendicular to the wave’s direction of travel.

Figure 34-7a shows how the new representation is tied to the old one. Only three
sample planes with vectors along one line, separated by a half wavelength

of the wave, are shown.
In some cases waves are traveling in approximately the same direction and form a

beam, such as a laser beam or a beam of radio waves. A beam can be represented with
a “ray,” which is just a line showing the direction of motion of the beam. This is also
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FIGURE 34-7 ■ (a) A plane electromag-
netic wave represented with a ray and
three wavefronts separated by a half wave-
length 	 /2. (b) The same wave represented
in a “snapshot” of its electric field and
magnetic field at points on the x axis,
along which the wave travels at speed c. As
it travels past point P, the fields vary as
shown in Fig. 34-5. The dashed rectangle at
P is used in Fig. 34-8a.
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shown in Fig. 34-7a. “Rays” of light will become increasing prominent in our discus-
sions of image formations in Chapters 35 and 36.

Interpretation of Fig. 34-7b requires some care. The similar drawings for a transverse
wave on a taut string that we discussed in Chapter 17 represented the up and down dis-
placement of sections of the string as the wave passed (something actually moved). Figure
34-7b is more abstract. At the instant shown, the electric and magnetic fields each have a
certain magnitude and direction (but always perpendicular to the x axis) at each point
along the x axis. We choose to represent these vector quantities with a pair of arrows for
each point, so we must draw arrows of different lengths for different points, all directed
away from the x axis, like thorns on a rose stem. For each line parallel to the x axis there
is a similar picture. In viewing figures such as this, it is important to remember that the
length of the arrows represents the field values along the line chosen as the x axis. Nei-
ther the arrows nor the sinusoidal curves represent a sideways displacement of anything.

A Most Curious Wave
From our previous work with waves in Chapters 17 and 18, we know that the speed of
the wave is (Eq. 17-12). However, it is customary to use the symbol c (rather than
v) to denote an electromagnetic wave speed in a vacuum (or air):

All electromagnetic waves, including visible light, have the same speed c in a vacuum.
Hence, c is called “the speed of light.”*

The waves we discussed in Chapters 17 and 18 require a medium (some material)
through which or along which to travel. We had waves traveling along a string, through
the Earth, and through the air. Maxwell and other 19th-century investigators assumed
there was a medium through which electromagnetic waves traveled. However, we now
believe that electromagnetic waves are curiously different in that they require no
medium for travel. They can, indeed, travel through a medium such as air or glass, but
they can also travel through the vacuum of space between a distant star and the Earth.

Once Albert Einstein proposed the special theory of relativity in 1905, scientists
realized that visible light waves and other electromagnetic waves were special entities.
The reason is that light has the same speed in any inertial frame of reference. If you
send a beam of light along an axis and ask several observers to measure its speed
while they move at different speeds along that axis, either in the direction of the light
or opposite it, the observers will all measure the same speed for the light. This result is
an amazing one and quite different from what would have been found if those ob-
servers had measured the speed of any other type of wave. For other waves, the speed
of the observers relative to the wave would have affected their measurements. The
implications of this are striking and include some seemingly bizarre effects that we
will learn about in Chapter 38 on special relativity.

As we saw in Chapter 1, the speed of light (any electromagnetic wave) in vacuum
has the exact value 

c � 299 792 458 m/s.†

The Ratio of to and the Induced Electric Field
We can use Faraday’s law 
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* The letter c comes from the Latin word celar, which means “fast”.
† The value is “exact” so the meter could be redefined as a length of path traveled by light in a specified
time. (See Section 1-6 for details.)



to find the ratio of the electric and magnetic fields at any location along an electro-
magnetic wave. We start by considering the dashed rectangle (of dimensions dx and h
in Fig. 34-7b) that is fixed at point P on the x axis and in the xy plane. As the electro-
magnetic wave moves to the right past the rectangle, the magnetic flux through
the rectangle changes and—according to Faraday’s law of induction—induced elec-
tric fields appear throughout the region of the rectangle. We take and to be
the induced fields along the two long sides of the rectangle. These induced electric
fields are, in fact, the electric component of the electromagnetic wave at those points.

Let us consider these fields at the instant when the magnetic wave component
passing through the rectangle is the small section marked with red on the line marked
“a magnetic field component” in Fig. 34-7b. Just then, the magnetic field through the
rectangle points in the positive z direction and is decreasing in magnitude (the magni-
tude was greater just before the red section arrived). Because the magnetic field is out
of the page and decreasing, the magnetic flux through the rectangle is also de-
creasing. According to Faraday’s law, this change in flux is opposed by induced electric
fields. This implies that a counterclockwise induced current would appear along the
rectangle if it were a conductor (which it is not). This in turn implies that a counter-
clockwise induced electric field would have to appear along the rectangle. So, the in-
duced electric field vectors and are indeed oriented as shown in Fig. 34-8a,
with the magnitude of greater than that of . Otherwise, the net induced
electric field would not act counterclockwise around the rectangle.

Let us now apply Faraday’s law of induction,

(34-4)

proceeding counterclockwise around the rectangle of Fig. 34-8a. There is no contribu-
tion to the integral from the top or bottom of the rectangle because and are
perpendicular there. The integral then has the value 

(34-5)

The flux through this rectangle is 

(34-6)

where is the magnitude of within the rectangle and h dx is the area of the rec-
tangle. Differentiating this expression (Eq. 34-6) with respect to t gives

(34-7)

If we substitute this result (Eq. 34-7) and (Eq. 34-5) into Faraday’s
law (Eq. 34-4), we find

or (34-8)
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FIGURE 34-8 ■ (a) As the electromag-
netic wave travels rightward past point P
in Fig. 34-7, the sinusoidal variation of the
magnetic field through a rectangle
centered at P induces electric fields along
the rectangle. At the instant shown, is
decreasing in magnitude and the induced
electric field is therefore greater in magni-
tude on the right side of the rectangle than
on the left. (b) The sinusoidal variation of
the electric field through this rectangle,
located (but not shown) at point P in
Fig. 34-8a, induces magnetic fields along
the rectangle. The instant shown is that of
Fig. 34-8a: is decreasing in magnitude,
and the induced magnetic field is greater
in magnitude on the right side of the
rectangle than on the left.
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and are functions of two variables, x and t. However, in evaluating , we
can assume that t is constant because we consider only an “instantaneous snapshot.”
Also, in evaluating we can assume that x is constant because we are dealing
with the time rate of change of at a particular place, the point P in Fig. 34-7b. The
derivatives under these circumstances are partial derivatives, and Eq. 34-8 must be
written

(34-9)

The minus sign in this equation is appropriate and necessary because, although is
increasing with x at the site of the rectangle in Fig. 34-8, is decreasing with t.

From (Eq. 34-2) we have 

and from (Eq. 34-3)

Then (Eq. 34-9 ) reduces to 

(34-10)

The ratio for a traveling wave is its speed, which we are calling c. Hence, we see
that

(amplitude ratio). (34-11)

If we divide by (Eqs. 34-2 and 34-3)
and then substitute into Eq. 34-10, we find that the ratio of magnitudes of the fields at
every instant is given by 

(magnitude ratio). (34-12)

Induced Magnetic Field and the Equation for Wave Speed
If we use the Ampère–Maxwell law 

,

we can find an alternative expression for the wave speed in the case where no real cur-
rent is present (so ienc � 0 A). We start with Fig. 34-8b, which shows another dashed
rectangle at point P of Fig. 34-7; this one is in the xz plane. As the electromagnetic
wave moves rightward past this new rectangle, the electric flux through the rec-
tangle changes and—according to the Ampère–Maxwell law of induction—induced
magnetic fields appear throughout the region of the rectangle. These induced magnetic
fields are, in fact, the magnetic field components of the electromagnetic wave.
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We see from Fig. 34-7 that at the instant chosen for the magnetic field in Fig. 34-8,
the electric field through the rectangle of Fig. 34-8b is directed as shown. Recall that at
the chosen instant, the magnetic field in Fig. 34-8a is decreasing. Because the two fields
are in phase, the electric field in Fig. 34-8b must also be decreasing, and so must the
electric flux through the rectangle. By applying the same reasoning we applied to
Fig. 34-8a, we see that the changing flux will induce a magnetic field with vectors

and oriented as shown in Fig. 34-8b, where is greater than .
Let us also apply Maxwell’s law of induction with no real current present,

(34-13)

by proceeding counterclockwise around the dashed rectangle of Fig. 34-8b. Only the
long sides of the rectangle contribute to the integral, whose value is 

(34-14)

The flux through the rectangle is

(34-15)

where is the average magnitude of within the rectangle. Differentiating this ex-
pression with respect to t gives

If we substitute this and (Eq. 34-14 from above) into Maxwell’s
law of induction we find that

.

Changing to partial-derivative notation as we did before (Eq. 34-9),

(34-16)

Again, the minus sign in this equation makes sense because, although is increasing
with x at point P in the rectangle in Fig. 34-8b, is decreasing with t.

Evaluating this expression by using and �
(Eqs. 34-2 and 34-3) leads to 

which we can write as 

Combining this with (Eq. 34-11) leads at once to

(wave speed), (34-17)

which is exactly Eq. 34-1.
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READI NG EXERC IS E  34-1: The magnetic field through the rectangle of 
Fig. 34-8a is shown at a different instant in part 1 of the accompanying figure; is directed in
the xz plane, parallel to the z axis, and its magnitude is increasing. (a) Complete part 1 by
drawing the induced electric fields,
indicating both directions and rela-
tive magnitudes (as in Fig. 34-8a).
(b) For the same instant, complete
part 2 of the figure by drawing the
electric field of the electromagnetic
wave. Also draw the induced mag-
netic fields, indicating both direc-
tions and relative magnitudes (as in
Fig. 34-8b). ■

34-5 Transporting Energy with Electromagnetic Waves

From our experience with capacitors, we know that energy is stored in an electric
field. Likewise, from our experience with inductors we know that energy is stored in a
magnetic field. So, it makes sense that as an electromagnetic wave moves through
space, it carries energy with it. Sunbathers will confirm this hunch. An electromagnetic
wave can transport energy and deliver it to a body on which it falls. In this section, we
develop an expression that will allow us to quantify the rate per unit area at which
energy is transported by an electromagnetic wave. This quantity is a measure of the
intensity of the electromagnetic wave.

From Chapter 28 on capacitors, we know that the energy per unit area or energy
density within an electric field is 

.

Because you also know (from this chapter) that and c is such a very large
number, you might conclude that the energy associated with the electric field in an
electromagnetic wave is much greater than that associated with the magnetic field.
That conclusion is incorrect; the densities of the two energies are exactly equal. To
show this, we substitute for ; then we can write 

If we now substitute for c with (Eq. 34-1)

,

we get

In Section 33-3, we found that is the energy density of a magnetic field .
So, we see that everywhere along an electromagnetic wave.

The energy density of the electric field is equal to the energy density of the magnetic field at
every instant and for every point along an electromagnetic wave.

The total energy density for the electromagnetic wave is the sum of the energy
density associated with the magnet field and the energy density associated with the
electric field:
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998 CHAPTER 34 Electromagnetic Waves

.

However, since these values are equal to one another, we can also write the total en-
ergy density as twice either value:

or .

This result is quite helpful in developing an expression for the rate of energy (or
power) transport across a unit of area perpendicular to the direction of propagation
of the electromagnetic wave. At any instant, the rate of energy transport per unit
area is

(instantaneous). (34-18)

Note that from this we can see that the SI unit for S must be the watt per square me-
ter ( ). Since an electromagnetic wave moves with a speed c, in a time period �t,
the wave travels a distance c �t. During that motion, if it passes through a surface of
some area A, the volume of space through which the wave passes is c �tA. The total
energy transported by the wave is the total energy density (electric and magnetic)
multiplied by this volume. That is, the total energy (U) transported by the wave to an
area A in a time period �t is

where .

Hence, .

As expressed by Eq. 34-18 above, the rate of energy transport is this total energy
transported divided by the area through which the wave travels and the time period.
That is,

.

Since , we can multiply this expression by one in the form of . This
gives an alternative expression for the instantaneous energy flow rate:

(instantaneous energy flow rate). (34-19)

By substituting into Eq. 34-19, we could obtain an
equation for the energy transport rate as a function of time. More useful in practice,
however, is the average energy transported over time. For that, we need to find the
time-averaged value of S, written . We call this quantity the intensity I of the wave.
Thus the intensity I is
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(34-20)

With (Eq. 34-19), we find

(34-21)

Over a full cycle, the average value of , for any angular variable , is . In addi-
tion, we define a new quantity E rms, the root-mean-square value of the electric field
magnitude as 

(34-22)

We can then rewrite Eq. 34-21 as 

(34-23)

If we combine the ideas that we have developed above for the rate of energy
transported by an electromagnetic wave per unit area with knowledge of the direction
in which the wave is traveling, we can define a vector that describes both the en-
ergy transport rate S and the direction in which the transfer in occurring. This vector
is an important quantity, so we give it a name. It is called the Poynting vector after
John Henry Poynting (1852–1914), who first discussed its properties.

The direction of the Poynting vector of an electromagnetic wave at any point gives the
wave’s direction of travel and so the direction of energy transport at that point.

We can combine everything that we have developed in this section into a single
expression defining the Poynting vector as 

(instantaneous Poynting vector), (34-24)

where magnitude of the Poynting vector is the instantaneous intensity of the elec-
tromagnetic wave. and are perpendicular to each other in an electromagnetic
wave. Hence, the magnitude of is . Since , this is consistent
with the expression that we developed above,

,

for the magnitude of energy transport rate. You can confirm for yourself that the cross
product gives the correct direction for the wave propagation, and hence for the en-
ergy transport.

Variation of Intensity with Distance
The intensity variation of electromagnetic radiation with distance is often complex—es-
pecially when the source beams the radiation in a particular direction (like a searchlight
at a movie premiere). We know that as a wavefront spreads out over a wider surface,
its energy density must diminish, but how? Let’s consider the simplest case we can
imagine. Assume that the source is a point source that emits the light isotropically—
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that is, with equal intensity in all directions. The spherical wavefronts spreading from
such an isotropic point source S at a particular instant are shown in cross section in
Fig. 34-9.

In a vacuum there is no mechanism for dissipation of energy, so it is conserved.
Let us center an imaginary sphere of radius r on the source, as shown in Fig. 34-9. All
the energy emitted by the source must pass through the sphere. Thus, the rate at
which energy is transferred through the sphere by the radiation must equal the rate at
which energy is emitted by the source—that is, the power Ps of the source. The inten-
sity I (= power/area) at the sphere must then be 

(34-25)

where is the area of the sphere. This expression tells us that the intensity of the
electromagnetic radiation from an isotropic point source decreases with the square of
the distance r from the source.

Since from Eq. 34-23 we also know

,

we can equate these two expressions to give 

,

or .

Simplification gives the relationship between the average electric field E rms for a radi-
ating charge, the power of the source Ps and the distance from the source r:

(34-26)

This equation tells us that the electric field associated with an isotropic radiation
point source falls off as 1/r, rather than as 1/r2 as it does for a static electric field.

READI NG EXERC IS E  34-2: The figure gives the electric field of
an electromagnetic wave at a certain point and a certain instant. The wave is
transporting energy in the negative z direction. What is the direction of the
magnetic field of the wave at that point and instant?

■
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As we stated in the introduction, visible light is now known to con-
sist of electromagnetic waves. An observer is 1.8 m from an
isotropic point light source whose power Ps is 250 W. Calculate the
rms values of the electric and magnetic fields due to the source at
the position of the observer.

S O L U T I O N ■ The first two Ke y  I d e a s here are these:

1. The rms value E rms of the electric field in light is related to the
intensity I of the light by I � (E rms)2/c�0.

TOUCHSTONE EXAMPLE 34-1: Isotropic Light Source

S

r

FIGURE 34-9 ■ A point source S emits
electromagnetic waves uniformly in all
directions. The spherical wavefronts pass
through an imaginary sphere of radius r
that is centered on S.
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2. Because the source is a point source emitting light with equal
intensity in all directions, the intensity I at any distance r from
the source is related to the source’s power Ps via Eq. 34-25

.

Putting these two ideas together gives us

,

which leads to

(Answer)

The third Ke y  I d e a here is that magnitudes of the electric
field and magnetic field of an electromagnetic wave at any instant
and at any point in the wave are related by the speed of light c

� 48.1 V/m � 48 V/m.

� √ (250 W)(3.00  108 m/s)(4�  10�7 H/m)
(4�)(1.8 m)2
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according to Eq. 34-12 . Thus, the rms values of those
fields are also related by Eq. 34-12 and we can write

(Answer)

Note that E rms (� 48 V/m) is appreciable as judged by ordinary
laboratory standards, but is quite small. This
difference helps to explain why most instruments used for the de-
tection and measurement of electromagnetic waves are designed to
respond to the electric component of the wave. It is wrong, how-
ever, to say that the electric component of an electromagnetic wave
is “stronger” than the magnetic component. You cannot compare
quantities that are measured in different units. As we have seen, the
electric and magnetic components are on an equal basis as far as
the propagation of the wave is concerned, because their average en-
ergies, which can be compared, are exactly equal.
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34-6 Radiation Pressure

Electromagnetic waves carry linear momentum as well as energy. This means that we
can exert a pressure—a radiation pressure—on an object by shining light on it. How-
ever, the pressure must be very small because, for example, you do not feel a camera
flash pushing on you when it is used to take your photograph.

To see how Maxwell related radiation pressure to light intensity, let us shine a
beam of electromagnetic radiation—visible light, for example—on an object for a
time interval . Further, let us assume that the object is free to move and that the ra-
diation is entirely absorbed (taken up) by the object. This means that during the inter-
val , the object gains an energy from the radiation. Maxwell showed that the ob-
ject also gains linear momentum. As usual we can represent momentum with a
lowercase p and an object’s momentum change as . The magnitude

of the momentum change of the object is related to the energy change by 

(total absorption), (34-27)

where c is the speed of light. The direction of the momentum change of the object is
the direction of the incident (incoming) beam that the object absorbs.

Instead of being absorbed, the radiation can be reflected by the object; that is, the
radiation can be sent off in a new direction as if it bounced off the object. If the radia-
tion is entirely reflected back along its original path, the magnitude of the momentum
change of the object is twice that given above, or 

(total reflection back along path). (34-28)

In the same way, an object undergoes twice as much momentum change when a per-
fectly elastic tennis ball is bounced from it as when it is struck by a perfectly inelastic

� �p: � �
2 �U

c

� �p: � �
�U

c

�U� �p: �
�p: � p:2 � p:1

�U�t

�t



1002 CHAPTER 34 Electromagnetic Waves

ball (a lump of wet putty, say) of the same mass and velocity. If the incident radiation
is partly absorbed and partly reflected, the momentum change of the object is be-
tween and 2 .

From Newton’s Second Law, we know that a change in momentum is related to a
force by 

(34-29)

To find expressions for the force exerted by radiation in terms of the intensity I of
the radiation, suppose that a flat surface of area A, perpendicular to the path of the
radiation, intercepts the radiation. In time interval , the energy intercepted by
area A is

(34-30)

If the energy is completely absorbed, then Eq. 34-27 tells us that .
Then with (Eq. 34-29), the magnitude of the force on the area A is

(total absorption). (34-31)

Similarly, if the radiation is totally reflected back along its original path, Eq. 34-28 tells
us that and, from Eq. 34-29,

(total reflection back along path). (34-32)

If the radiation is partly absorbed and partly reflected, the magnitude of the force on
area A is between the values of and 

The force per unit area on an object due to radiation is the radiation pressure P.
(Note that we represent pressure, as usual, with a capital P.) We can find the pressure
for total absorption and total reflection by dividing both sides of each equation (34-31
and 34-32) by A. We obtain 

(pressure for total wave absorption), (34-33)

and (pressure for total wave reflection back along path). (34-34)

Just as with fluid pressure in Chapter 15, the SI unit of radiation pressure is the pascal
(Pa) which equals a newton per square meter ( ).

The development of laser technology has permitted researchers to achieve radia-
tion pressures much greater than, say, that due to a camera flashlamp. This comes
about because a beam of laser light—unlike a beam of light from a small lamp fila-
ment—can be focused to a tiny spot only a few wavelengths in diameter. This permits
the delivery of great amounts of energy and momentum to small objects placed at
that spot.

READI NG EXERC IS E  34-3: Light of uniform intensity shines perpendicularly on a
totally absorbing surface, fully illuminating the surface. If the area of the surface is decreased,
do (a) the radiation pressure and (b) the radiation force on the surface increase, decrease, or
stay the same? ■
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When dust is released by a comet, it does not continue along the
comet’s orbit because radiation pressure from sunlight pushes it ra-
dially outward from the Sun. Assume that a dust particle is spheri-
cal with radius R, has density � � 3.5  103 kg/m3, and totally ab-
sorbs the sunlight it intercepts. For what value of R does the
gravitational force on the dust particle due to the Sun just bal-
ance the radiation force on it from the sunlight?

S O L U T I O N ■ We can assume that the Sun is far enough from
the particle to act as an isotropic point source of light. Then because
we are told that the radiation pressure pushes the particle radially
outward from the Sun, we know that the radiation force on the
particle is directed radially outward from the center of the Sun. At
the same time, the gravitational force on the particle is di-
rected radially inward toward the center of the Sun. Thus, we can
write the balance of these two forces as

(34-35)

Let us consider these forces separately.
Radiation force: To evaluate the left side of Eq. 34-35, we use

these three Ke y  I d e a s .

1. Because the particle is totally absorbing, the force magnitude
can be found from the intensity I of sunlight at the parti-

cle’s location and the particle’s cross-sectional area A, via 
Eq. 34-31 

2. Because we assume that the Sun is an isotropic point source of
light, we can use Eq. 34-25 to relate the Sun’s
power Psun to the intensity I of the sunlight at the particle’s dis-
tance r from the Sun.

3. Because the particle is spherical, its cross-sectional area A is
�R2 (not half its surface area).

Putting these three ideas together gives us

(34-36)

Gravitational force: The Ke y  I d e a here is Newton’s law of
gravitation (Eq. 14-2), which gives us the magnitude of the gravita-
tional force on the particle as

(34-37)

where Msun is the Sun’s mass and m is the particle’s mass. Next, the
particle’s mass is related to its density � and volume , for
a sphere) by

Solving this for m and substituting the result into Eq. 34-37 give us
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TOUCHSTONE EXAMPLE 34-2: Comet Dust
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path

Comet

(34-38)

Then substituting Eqs. 34-36 and 34-38 into Eq. 34-35 and solving
for R yield

Using the given value of � and the known values of G (Appendix
B) and Msun (Appendix C), we can evaluate the denominator:



Using Psun from Appendix C, we then have

(Answer)

Note that this result is independent of the particle’s distance r from
the Sun.

Dust particles with radius follow an approxi-
mately straight path like path b in Fig. 34-10. For larger values of R,
comparison of Eqs. 34-36 and 34-38 shows that, because varies
with R3 and varies with R2, the gravitational force domi-
nates the radiation force . Thus, such particles follow a path
that is curved toward the Sun like path c in Fig. 34-10. Similarly, for
smaller values of R, the radiation force dominates, and the dust fol-
lows a path that is curved away from the Sun like path a. The com-
posite of these dust particles is the dust tail of the comet.

F
: rad

F
: gravF

: rad
F
: grav

R � 1.7  10�7 m

R �
(3)(3.9  1026 W)

7.0  1033 N/s
� 1.7  10�7 m.

� 7.0  1033 N/s.

(6.67  10�11 N �  m2/kg2)(1.99  1030 kg)

(16�)(3  108 m/s)(3.5  103 kg/m3)

R �
3Psun

16�c�GMsun
.

� F
:grav � �

GMsun ��4
3�R3�

r 2 .

FIGURE 34-10 ■ A comet is now at position 6. Dust it
has released at five previous positions has been pushed
outward by radiation pressure from sunlight, has taken
the dashed paths, and now forms the comet’s curved dust
tail. Its ion trail points directly away from the Sun.
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34-7 Polarization

At the beginning of the chapter we talked about a charge oscillating along a line. We
observed that the charge’s oscillation produced kinks in its field lines that are inter-
preted as wavefronts. We noted that the electric field in the kink was perpendicular to
the direction of the propagation and pointed along the line of oscillation of the
charge. This means that the electric field in the outgoing wave points back and forth in
a single direction. It doesn’t wander around pointing in all directions as it would if the
electromagnetic wave was the result of many charges oscillating in many different di-
rections. We call such a wave polarized. This is an important concept since many of
our sources of radiation—such as antennas—impart this property.

Figure 34-11a shows an electromagnetic wave with its electric field oscillating
parallel to the vertical y axis. The plane containing the vectors is called the plane
of oscillation of the wave (hence, the wave is said to be plane-polarized parallel to
the y axis). We can represent the wave’s polarization (state of being polarized) by
showing the direction of the electric field oscillations in a “head-on” view of 
the plane of oscillation, as in Fig. 34-11b. The two vertical arrows in that fig-
ure indicate that as the wave travels past us, its electric field oscillates vertically,
continuously changing between being directed up and down along the y axis. VHF
(very high frequency) television antennas in England are oriented vertically, but
those in North America are horizontal. The difference is due to the direction of
oscillation of the electromagnetic waves carrying the TV signal. In England, the
transmitting equipment is designed to produce waves that are polarized vertically;
that is, their electric field oscillates vertically. Thus, for the electric field of the
incident television waves to drive a current along an antenna (and provide a signal
to a television set), the antenna must be vertical. In North America, the antenna
must be horizontal.

Polarized Light
The electromagnetic waves emitted by a television station all have the same polar-
ization because they are generated by electrons moving up and down (or right and
left) along a transmission antenna. On the other hand, electromagnetic waves emit-
ted by any common source of light (such as the Sun or a lightbulb) are generated
by the individual atoms or molecules that comprise the light source. The fact that
light is generated by individual atoms or molecules within an object means that
there is no preferred orientation associated with the electromagnetic waves that
make up the light emerging from a source, even in cases where there is a preferred
direction of travel.

We call electromagnetic waves with random orientations (like the light pro-
duced by atoms and molecules in the sun) randomly polarized or unpolarized. This
is because the direction of the electric field at a given point in space changes direc-
tion quickly and randomly. It is still perpendicular to both the direction of travel of
the wave and the magnetic field vector on a moment by moment basis, but its orien-
tation in space changes continuously. Figure 34-12 shows an unpolarized electro-
magnetic wave traveling into or out of the page. If we try to represent a head-on
view of the oscillations over some time period, we do not have a simple drawing
with a single double arrow like that of Fig. 34-11b; instead we have a mess of double
arrows like that in Fig. 34-12.

We can (and often do) transform randomly polarized (or unpolarized) visible light
into polarized light by sending it through a polarizing sheet, as is shown in Fig. 34-13.
Such sheets, commercially known as Polaroids or Polaroid filters, were invented in 1932
by Edwin Land while he was an undergraduate student. A polarizing sheet consists of
certain long molecules embedded in plastic. When the sheet is manufactured, it is
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FIGURE 34-11 ■ (a) The plane of oscilla-
tion of a polarized electromagnetic wave.
(b) To represent the polarization, we view
the plane of oscillation “head-on” and in-
dicate the possible directions of the oscil-
lating electric field with two arrows, which
we refer to as a “double arrow.”

E

FIGURE 34-12 ■ Unpolarized light con-
sists of waves with randomly directed elec-
tric fields. Here the waves are all traveling
along the same axis, directly out of the
page, and all have the same amplitude .� E
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Incident light ray

Unpolarized light
wavefront

Polarizing sheet showing
length of long molecules

Vertically polarized light
wavefront

FIGURE 34-13 ■ Unpolarized light be-
comes polarized when it is sent through a
polarizing sheet. The polarization is then
parallel to the polarizing axis of the sheet.



stretched to align the long molecules in parallel rows, like rows in a plowed field.
When light is then sent through the sheet, electric field components perpendicular to
the long molecules pass through the sheet, while components parallel to the long mol-
ecules are absorbed and disappear.

This is not surprising. The electrons surrounding long molecules are more free to
move up and down along the molecular axis and absorb the radiation. Those perpen-
dicular to the long axis are not as free to oscillate. We shall not dwell on the orienta-
tion of the molecules but, instead, shall assign a polarizing axis to the sheet, along
which electric field components are passed:

An electric field component parallel to the polarizing axis is passed (transmitted) by a polar-
izing sheet; a component perpendicular to it is absorbed.

Thus, the electric field of the light emerging from the sheet consists of only the
components that are parallel to the polarizing axis of the sheet. Hence, the light is po-
larized in that direction. In Fig. 34-13, the vertical electric field components are trans-
mitted by the sheet; the horizontal components are absorbed. The transmitted waves
are then vertically polarized.

In some situations, light is partially polarized (its field oscillations are not com-
pletely random as in Fig. 34-12 nor are they parallel to a single axis as in Fig. 34-11b).
Partially polarized light can be viewed as a superposition of plane polarized and un-
polarized light waves.

Intensity of Transmitted Polarized Light
We now consider the intensity of light transmitted by a polarizing sheet. We start
with unpolarized light, whose electric field oscillations we can resolve into y- and z-
components as represented in Fig. 34-12b. Further, we can arrange for the y axis to be
parallel to the polarizing direction of the sheet. Then only the y-components of the
light’s electric field are passed by the sheet; the z-components are absorbed. As sug-
gested by Fig. 34-12b, if the original waves are randomly oriented, the sum of the y-
components and the sum of the z-components are equal. When the z-components are
absorbed, half the original intensity I0 of the light is lost. The intensity I of the emerg-
ing polarized light is then 

(34-39)

Let us call this the one-half rule; we can use it only when the light reaching a polariz-
ing sheet is unpolarized.

Suppose now that the light reaching a polarizing sheet is already polarized.
Figure 34-14 shows a polarizing sheet in the plane of the page and the electric field
of such a polarized light wave traveling toward the sheet (and thus prior to any ab-
sorption). We can resolve into two components relative to the polarizing axis of the
sheet: parallel component Ey is transmitted by the sheet, and perpendicular compo-
nent Ez is absorbed. Since is the angle between and the polarizing axis of the
sheet, the transmitted parallel component is 

(34-40)

Recall that the intensity of an electromagnetic wave (such as our light wave) is
proportional to the square of the electric field’s magnitude (Eq. 34-23).
In our present case then, the intensity I of the emerging wave is proportional to andE 2
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FIGURE 34-14 ■ Polarized light approach-
ing a polarizing sheet. The electric field
of the light can be resolved into compo-
nents Ey (parallel to the polarizing axis of
the sheet) and Ez (perpendicular to that
axis). Component Ey will be transmitted by
the sheet; component Ez will be absorbed.
Note: The long molecules are oriented
perpendicular to the polarizing axis.
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the intensity I0 of the original wave is proportional to . Hence, from 
(Eq. 34-40) we can write , or 

(Malus’ law). (34-41)

This expression was first introduced in the nineteenth century by Ètienne Malus, a
French mathematician who studied polarized light. So, Eq. 34-41 is called Malus’
law or the cosine-squared rule. We can use it only when the light reaching a polariz-
ing sheet is already polarized. Then the transmitted intensity I is a maximum and is
equal to the original intensity I0 when the original wave is polarized parallel to the
polarizing axis of the sheet (when in Eq. 34-41 is 0° or 180°). I is zero when the
original wave is polarized perpendicular to the polarizing axis of the sheet (when 

is 90°).
Figure 34-15 shows an arrangement in which initially unpolarized light is sent

through two polarizing sheets P1 and P2. (Often, the first sheet is called the polarizer,
and the second the analyzer.) Because the polarizing axis of P1 is vertical, the light
transmitted by P1 to P2 is polarized vertically. If the polarizing axis of P2 is also verti-
cal, then all the light transmitted by P1 is transmitted by P2. If the polarizing axis of P2

is horizontal, none of the light transmitted by P1 is transmitted by P2. We reach the
same conclusions by considering only the relative orientations of the two sheets: If
their polarizing axes are parallel, all the light passed by the first sheet is passed by the
second sheet. If those axes are perpendicular (the sheets are said to be crossed), no
light is passed by the second sheet. These two extremes are displayed with polarized
sunglasses in Fig. 34-16.

Finally, if the two polarizing axes of Fig. 34-15 make an angle between 0° and 90°,
some of the light transmitted by P1 will be transmitted by P2. The intensity of that
light is determined by (Eq. 34-41).

Light can be polarized by means other than polarizing sheets, such as by reflec-
tion (discussed in Section 34-10) and by scattering from atoms or molecules. In scat-
tering, light that is intercepted by an object, such as a molecule, is sent off in many,
perhaps random, directions. An example is the scattering of sunlight by molecules in
the atmosphere, which gives the sky its general glow.

Although direct sunlight is unpolarized, light from much of the sky is at least par-
tially polarized by such scattering. Bees use the polarization of sky light in navigating
to and from their hives. Similarly, the Vikings used it to navigate across the North Sea
when the daytime Sun was below the horizon (because of the high latitude of the
North Sea). These early seafarers had discovered certain crystals (now called
cordierite) that changed color when rotated in polarized light. By looking at the sky
through such a crystal while rotating it about their line of sight, they could locate the
hidden Sun and thus determine which way was south.

I � I0 cos2�
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I � I0 cos2�
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Ey � � E

:
�cos�E

:2

Polarizing
axis

Polarizing
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FIGURE 34-15 ■ The light transmitted by
polarizing sheet P1 is vertically polarized,
as represented by the vertical double
arrow. The amount of that light that is then
transmitted by polarizing sheet P2 depends
on the angle between the polarization axis
of that light and the polarizing axis of P2 .

FIGURE 34-16 ■ Polarizing sunglasses
consist of sheets whose polarizing axes are
vertical when the sunglasses are worn. (a)
Overlapping sunglasses transmit light
fairly well when their polarizing axes have
the same orientation, but (b) they block
most of the light when they are crossed.



34-8 Maxwell’s Rainbow

In Maxwell’s time (the mid-1800s), the visible, infrared, and ultraviolet forms of light
were the only electromagnetic waves known. Spurred on by Maxwell’s work, how-
ever, Heinrich Hertz discovered what we now call radio waves and verified that they
move through the laboratory at the same speed as visible light.

As Fig. 34-18 shows, we now know a wide spectrum (or range) of electromagnetic
waves, referred to by one imaginative writer as “Maxwell’s rainbow” but generally
referred to as “light” or “electromagnetic radiation” by physicists.

Maxwell’s Rainbow   1007

TOUCHSTONE EXAMPLE 34-3: Polarizing Sheets

Figure 34-17 shows a system of three polarizing sheets in the path
of initially unpolarized light. The polarizing axis of the first sheet is
parallel to the y axis, that of the second sheet is 60° counterclock-
wise from the y axis, and that of the third sheet is parallel to the
x axis. What fraction of the initial intensity I0 of the light emerges
from the system, and how is that light polarized?

S O L U T I O N ■ The Ke y  I d e a s here are these:

1. We work through the system sheet by sheet, from the first one
encountered by the light to the last one.

2. To find the intensity transmitted by any sheet, we apply either the
one-half rule or the cosine-squared rule, depending on whether
the light reaching the sheet is unpolarized or already polarized.

3. The light that is transmitted by a polarizing sheet is always po-
larized parallel to the polarizing axis of the sheet.

First sheet: The original light wave is represented in Fig. 34-17b,
using the head-on, double-arrow representation of Fig. 34-11b. Be-

I 0

x

y

I 160°

90°
I 2

I 3

60°

(a) (e)

(d)

(c)

(b)

Polarizing
Axis

cause the light is initially unpolarized, the intensity I1 of the light
transmitted by the first sheet is given by the one-half rule (Eq. 34-39):

Because the polarizing axis of the first sheet is parallel to the y axis,
the polarization of the light transmitted by it is also, as shown in the
head-on view of Fig. 34-17c.

Second sheet: Since the light reaching the second sheet is polar-
ized, the intensity I2 of the light transmitted by that sheet is given
by the cosine-squared rule (Eq. 34-41). The angle in the rule is the
angle between the polarization axis of the entering light (parallel to
the y axis) and the polarizing axis of the second sheet (60° counter-
clockwise from the y axis), and so is 60°. Then

The polarization of this transmitted light is parallel to the polariz-
ing axis of the sheet transmitting it—that is, 60° counterclockwise
from the y axis, as shown in the head-on view of Fig. 34-17d.

Third sheet: Because the light reaching the third sheet is polar-
ized, the intensity I3 of the light transmitted by that sheet is given by
the cosine-squared rule.The angle is now the angle between the po-
larization axis of the entering light (Fig. 34-17d) and the polarizing
axis of the third sheet (parallel to the x axis), and so Thus,

This final transmitted light is polarized parallel to the x axis
(Fig. 34-17e). We find its intensity by substituting first for I2 and
then for I1 in the equation above:

Thus, (Answer)

That is to say, 9.4% of the initial intensity emerges from the three-
sheet system.

If we now remove the second sheet, what fraction of the initial
intensity emerges from the system?

I3

I0
� 0.094.

� (1
2I0)cos260�cos230� � 0.094I0.

I3 � I2 cos2 30� � (I1cos2 60�)cos2 30�

I3 � I2cos2 30�.

� � 30�.

�

I2 � I1cos2 60�.

�

�

I1 � 1
2 I0.

FIGURE 34-17 ■ (a) Initially unpolarized light
of intensity I0 is sent into a system of three
polarizing sheets. The intensities I1, I2, I3 of the
light transmitted by the sheets are labeled.
Shown also are the polzarizations, from head-
on views, of (b) the initial light and the light
transmitted by (c) the first sheet, (d) the second
sheet, and (e) the third sheet.
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Consider the extent to which we are bathed in electromagnetic waves through-
out this spectrum. The Sun, whose radiations define the environment in which we as
a species have evolved and adapted, is the dominant source. We are also crisscrossed
by radio, television and cellular phone signals. Microwaves from radar systems and
from telephone relay systems may reach us. There are electromagnetic waves from
lightbulbs, from the heated engine blocks of automobiles, from x-ray machines, from
lightning flashes, and from buried radioactive materials. Beyond this, radiation
reaches us from stars and other objects in our galaxy and from other galaxies. Elec-
tromagnetic waves also travel in the other direction. Television signals, transmitted
from the Earth since about 1950, have now transmitted news about us (along with
episodes of I Love Lucy) to whatever technically sophisticated inhabitants there may
be on the  planets that encircle the nearest 400 or so stars.

In the wavelength scale in Fig. 34-18 (and similarly the corresponding frequency
scale), each scale marker represents a change in wavelength (and correspondingly in
frequency) by a factor of 10. The scale is open-ended; the wavelengths of electromag-
netic waves have no inherent upper or lower bounds.

There are many regions of the electromagnetic spectrum in Fig. 34-18, including
radio waves, infrared light produced by the thermal motion of charged particles, visi-
ble and ultraviolet light emitted by energetic atoms, x rays that are generated when
charged particles collide with solid matter, and gamma rays that originate inside
atomic nuclei. These regions denote roughly defined wavelength ranges within which
certain kinds of sources and detectors of electromagnetic waves are in common use.
Other regions of Fig. 34-18, such as those labeled television and AM radio, represent
specific wavelength bands assigned by law for certain commercial or other purposes.
There are no gaps in the electromagnetic spectrum—and all electromagnetic waves,
no matter where they lie in the spectrum, travel through free space (vacuum) with the
same speed c.

The visible region of the spectrum is of course of particular interest to us. Figure
34-19 shows the relative sensitivity of the human eye to visible light of various wave-
lengths. The center of the visible region is about 555 nm, which produces the sensation
that we call yellow-green.
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FIGURE 34-18 ■ The electromagnetic spectrum.

FIGURE 34-19 ■ The relative sensitivity
of the average human eye to electromag-
netic waves at different wavelengths. This
portion of the electromagnetic spectrum to
which the eye is sensitive is called visible
light.
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The limits of this visible spectrum are not well defined because the eye sensitivity
curve approaches the zero-sensitivity line asymptotically at both long and short wave-
lengths. If we take the limits, arbitrarily, as the wavelengths at which eye sensitivity
has dropped to 1% of its maximum value, these limits are about 430 and 690 nm.
However, the eye can detect electromagnetic waves somewhat beyond these limits if
they are intense enough.
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SEC. 34-3 ■ THE GENERATION OF ELECTROMAGNETIC

WAVES

1. What Inductance What inductance must be connected to a
17 pF capacitor in an oscillator capable of generating 550 nm (i.e.,
visible) electromagnetic waves? Comment on your answer.

2. Wavelength What is the wavelength of the electromagnetic
wave emitted by the oscillator–antenna system of Fig. 34-4 if L �
0.253 �H and C � 25.0 pF?

SEC. 34-4 ■ DESCRIBING ELECTROMAGNETIC WAVE

PROPERTIES MATHEMATICALLY

3. Electric Field The electric field of a certain plane electromag-
netic wave is given by Ex � 0; Ey � 0; Ez � (2.0 V/m) cos[(� 
1015 s�1)(t � x/c)], with c � 3.0  108 m/s. The wave is propagating
in the positive x direction. Write expressions for the components of
the magnetic field of the wave.

4. Plane Wave A plane electromagnetic wave has a maximum elec-
tric field of 3.20  10�4 V/m. Find the maximum magnetic field.

SEC. 34-5 ■ TRANSPORTING ENERGY

WITH ELECTROMAGNETIC WAVES

5. Neodymium–Glass Lasers Some neodymium–glass lasers can
provide 100 terawatts of power in 1.0 ns pulses at a wavelength of
0.26 �m. How much energy is contained in a single pulse?

6. Poynting Vector Show, by finding the direction of the Poynting
vector , that the directions of the electric and magnetic fields at all
points in Figs. 34-6 to 34-8 are consistent at all times with the as-
sumed directions of propagation.

7. Radiation Emitted The radia-
tion emitted by a laser spreads out
in the form of a narrow cone with
circular cross section. The angle �
of the cone (see Fig. 34-20) is called
the full-angle beam divergence. An
argon laser, radiating at 514.5 nm,
is aimed at the Moon in a ranging experiment. If the beam has a
full-angle beam divergence of 0.880 �rad, what area on the Moon’s
surface is illuminated by the laser?

8. Closest Neighbor Our closest stellar neighbor, Proxima Cen-
tauri, is 4.3 lightyears away. It has been suggested that TV programs
from our planet have reached this star and may have been viewed
by the hypothetical inhabitants of a hypothetical planet orbiting it.
Suppose a television station on Earth has a power of 1.0 MW. What
is the intensity of its signal at Proxima Centauri?

S
:

9. Plane Radio Wave In a plane radio wave the maximum value of
the electric field component is 5.00 V/m. Calculate (a) the maxi-
mum value of the magnetic field component and (b) the wave in-
tensity.

10. Intensity What is the intensity of a plane traveling electromag-
netic wave if is 1.0  10�4 T?

11. Maximum Electric Field The maximum electric field at a dis-
tance of 10 m from anisotropic point light source is 2.0 V/m. What
are (a) the maximum value of the magnetic field and (b) the aver-
age intensity of the light there? (c) What is the power of the
source?

12. Sunlight Sunlight just outside the Earth’s atmosphere has an
intensity of 1.40 kW/m2. Calculate and for sunlight
there, assuming it to be a plane wave.

13. An Airplane An airplane flying at a distance of 10 km from a
radio transmitter receives a signal of intensity 10 �W/m2. Calculate
(a) the amplitude of the electric field at the airplane due to this
signal, (b) the amplitude of the magnetic field at the airplane, and
(c) the total power of the transmitter, assuming the transmitter to
radiate uniformly in all directions.

14. Frank Drake Frank D. Drake, an investigator in the SETI
(Search for Extra-Terrestrial Intelligence) program, once said that
the large radio telescope in Arecibo, Puerto Rico, “can detect a sig-
nal which lays down on the entire surface of the earth a power of
only one picowatt.” (a) What is the power that would be received
by the Arecibo antenna for such a signal? The antenna diameter is
300 m. (b) What would be the power of a source at the center of our
galaxy that could provide such a signal? The galactic center is 2.2 
104 ly away. Take the source as radiating uniformly in all directions.

15. Isotropic Point Source An isotropic point source emits light at
wavelength 500 nm, at the rate of 200 W. A light detector is posi-
tioned 400 m from the source. What is the maximum rate �B/�t at
which the magnetic component of the light changes with time at the
detector’s location?

16. Magnetic Component The magnetic component of an electro-
magnetic wave in vacuum has an amplitude of 85.8 nT and an angu-
lar wave number of 4.00 m�1. What are (a) the frequency of the
wave, (b) the rms value of the electric component, and (c) the in-
tensity of the light?

17. Magnetic Component Two The magnetic component of a po-
larized wave of light is 

Bx � (4.0  10�6 T) sin[(1.57  107 m�1)y � � t]

(a) Parallel to which axis is the light polarized? What are the
(b) frequency and (c) intensity of the light?

�B
: max ��E

: max �
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: max �
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FIGURE 34-20 ■ Problem 7.



18. Rms Value of Electric Component An electromagnetic wave
with a wavelength of 450 nm travels through vacuum in the nega-
tive direction of a y axis with its electric component directed paral-
lel to the x axis. The rms value of the electric component is 5.31 
10�6 V/m. Write an equation for the magnetic component in the
form of Eq. 34-3, but complete with numbers.

19. Direct Solar Radiation The intensity of direct solar radiation
that is not absorbed by the atmosphere on a particular summer day
is 100 W/m2. How close would you have to stand to a 1.0 kW elec-
tric heater to feel the same intensity? Assume that the heater radi-
ates uniformly in all directions.

20. Isotropic Point Source Two The
intensity I of light from an isotropic
point light source is determined as a
function of the distance r from the
source. Figure 34-21 gives intensity I
versus the inverse square r�2 of that
distance. What is the power of the
source?

21. What Is the Power During a test,
a NATO surveillance radar system,
operating at 12 GHz and 180 kW of
power, attempts to detect an incoming stealth aircraft at 90 km.
Assume that the radar beam is emitted uniformly over a hemi-
sphere. (a) What is the intensity of the beam when it reaches the
aircraft’s location? The aircraft reflects radar waves as though it has
a cross-sectional area of only 0.22 m2. (b) What is the power of the
aircraft’s reflection? Assume that the beam is reflected uniformly
over a hemisphere. Back at the radar site, what are the (c) intensity,
(d) maximum value of the electric field vector, and (e) rms value of
the magnetic field of the reflected (and now detected) radar beam?

22. Average Energy Transport Show that in a plane traveling elec-
tromagnetic wave the intensity—that is, the average rate of energy
transport per unit area—is given by

SEC. 34-6 ■ RADIATION PRESSURE

23. High-Power Laser High-power lasers are used to compress a
plasma (a gas of charged particles) by radiation pressure. A laser
generating pulses of radiation of peak power 1.5 GW is focused
onto 1.0 mm2 of high-electron-density plasma. Find the pressure ex-
erted on the plasma if the plasma reflects all the light pulses directly
back along their paths.

24. Black Cardboard A black, totally absorbing piece of cardboard
of area A � 2.0 cm2 intercepts light with an intensity of 10 W/m2

from a camera strobe light. What radiation pressure is produced on
the cardboard by the light?

25. Radiation Pressure What is the radiation pressure 1.5 m away
from a 500 W lightbulb? Assume that the surface on which the
pressure is exerted faces the bulb and is perfectly absorbing and
that the bulb radiates uniformly in all directions.

26. Radiation from the Sun Radiation from the Sun reaching the
Earth (just outside the atmosphere) has an intensity of 1.4 kW/m2. (a)
Assuming that the Earth (and its atmosphere) behaves like a flat disk
perpendicular to the Sun’s rays and that all the incident energy is

�S� �
(E max)2

2�0c
�

(B max)2

2�0
.

absorbed, calculate the force on the Earth due to radiation pressure.
(b) Compare it with the force due to the Sun’s gravitational attraction.

27. Electromagnetic Wave A plane electromagnetic wave, with
wavelength 3.0 m, travels in vacuum in the positive x direction with
its electric field , of amplitude 300 V/m, directed along the y axis.
(a) What is the frequency f of the wave? (b) What are the direction
and amplitude of the magnetic field associated with the wave? (c)
What are the values of k and � if sin(kx � �t)? (d) What
is the time-averaged rate of energy flow in watts per square meter
associated with this wave? (e) If the wave falls on a perfectly ab-
sorbing sheet of area 2.0 m2, at what rate is momentum delivered to
the sheet and what is the radiation pressure exerted on the sheet?

28. Helium–Neon Laser A helium–neon laser of the type often
found in physics laboratories has a beam power of 5.00 mW at a
wavelength of 633 nm. The beam is focused by a lens to a circular
spot whose effective diameter may be taken to be equal to 2.00
wavelengths. Calculate (a) the intensity of the focused beam, (b)
the radiation pressure exerted on a tiny perfectly absorbing sphere
whose diameter is that of the focal spot, (c) the force exerted on
this sphere, and (d) the magnitude of the acceleration imparted to
it. Assume a sphere density of 5.00  103 kg/m3.

29. Normally Incident Prove, for a plane electromagnetic wave
that is normally incident on a plane surface, that the radiation pres-
sure on the surface is equal to the energy density in the incident
beam. (This relation between pressure and energy density holds no
matter what fraction of the incident energy is reflected.)

30. Laser Beam In Fig. 34-22, a laser beam of power 4.60 W and
diameter 2.60 mm is directed upward at one 
circular face (of diameter d � 2.60 mm)
of a perfectly reflecting cylinder, which is
made to “hover” by the beam’s radiation
pressure. The cylinder’s density is 1.20
g/cm3. What is the cylinder’s height H?

31. Small Spaceship A small spaceship
whose mass is 1.5  103 kg (including an
astronaut) is drifting in outer space with
negligible gravitational forces acting on it.
If the astronaut turns on a 10 kW laser
beam, what speed will the ship attain in
1.0 day because of the momentum carried
away by the beam?

32. Average Pressure Prove that the average pressure of a stream
of bullets striking a plane surface perpendicularly is twice the ki-
netic energy density in the stream outside the surface. Assume that
the bullets are completely absorbed by the surface. Contrast this
with Problem 29.

33. Particle in Solar System A particle in the solar system in under
the combined influence of the Sun’s gravitational attraction and the
radiation force due to the Sun’s rays. Assume that the particle is a
sphere of density 1.0  103 kg/m3 and that all the incident light is
absorbed. (a) Show that, if its radius is less than some critical radius
R, the particle will be blown out of the solar system. (b) Calculate
the critical radius.

34. Radiation Propelled It has been proposed that a spaceship
might be propelled in the solar system by radiation pressure, using
a large sail made of foil. How large must the sail be if the radiation
force is to be equal in magnitude in the Sun’s gravitational attrac-
tion? Assume that the mass of the ship � sail is 1500 kg, that the
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sail is perfectly reflecting, and that the sail is oriented perpendicular
to the Sun’s rays. See Appendix C for needed data. (With a larger
sail, the ship is continually driven away from the Sun.)

35. Totally Absorbing Someone plans to float a small, totally ab-
sorbing sphere 0.500 m above an isotropic point source of light,
so that the upward radiation force from the light matches the
downward gravitational force on the sphere. The sphere’s density is
19.0 g/cm3 and its radius is 2.00 mm. (a) What power would be re-
quired of the light source? (b) Even if such a source were made,
why would the support of the sphere be unstable?

36. frac Radiation of intensity I is normally incident on an object
that absorbs a fraction frac of it and reflects the rest back along the
original path. What is the radiation pressure on the object?

SEC. 34-7 ■ POLARIZATION

37. Unpolarized Light A beam of unpolarized light of intensity
10 mW/m2 is sent through a polarizing sheet as in Fig. 34-13. (a) Find
the maximum value of the electric field of the transmitted beam. (b)
What radiation pressure is exerted on the polarizing sheet?

38. Magnetic Field Equations The magnetic field equations for an
electromagnetic wave in vacuum are Bx � B sin(ky � �t),
By � Bz � 0. (a) What is the direction of propagation? (b) Write
the electric field equations. (c) Is the wave polarized? If so, in what
direction?

39. Three Polarizing Sheets In Fig. 34-23, initially unpolarized light
is sent through three polarizing sheets whose polarizing axes make
angles of �1 � 40°, �2 � 20°, and �3 � 40° with the direction of the
y axis. What percentage of
the light’s initial intensity is
transmitted by the system?
(Hint: Be careful with the
angles.)

40. Initially Unpolarized In
Fig. 34-23, initially unpolar-
ized light is sent through
three polarizing sheets whose
polarizing axes make angles
of �1 � �2 � �3 � 50° with
the direction of the y axis.
What percentage of the ini-
tial intensity is transmitted
by the system of the three
sheets? (Hint: Be careful
with the angles.)

41. Vertically Polarized A horizontal beam of vertically polarized
light of intensity 43 W/m2 is sent through two polarizing sheets. The
polarizing axis of the first is at 70° to the vertical, and that of the
second is horizontal. What is the intensity of the light transmitted
by the pair of sheets?

42. Two Polarizing Sheets A beam of polarized light is sent
through a system of two polarizing sheets. Relative to the polariza-
tion axis of that incident light, the polarizing axes of the sheets are
at angles � for the first sheet and 90° for the second sheet. If 0.10 of
the incident intensity is transmitted by the two sheets, what is �?

43. Partially Polarized A beam of partially polarized light can be
considered to be a mixture of polarized and unpolarized light. Sup-
pose we send such a beam through a polarizing filter and then

Problems 1011

rotate the filter through 360° while keeping it perpendicular to the
beam. If the transmitted intensity varies by a factor of 5.0 during
the rotation, what fraction of the intensity of the original beam is
associated with the beam’s polarized light?

44. What Is the Intensity Suppose that in Problem 41 the initial
beam is unpolarized. What then is the intensity of the transmitted
light?

45. Rotate the Polarization We want to rotate the direction of po-
larization of a beam of polarized light through 90° by sending the
beam through one or more polarizing sheets. (a) What is the mini-
mum number of sheets required? (b) What is the minimum number
of sheets required if the transmitted intensity is to be more than
60% of the original intensity?

46. At a Beach At a beach the light is generally partially polarized
due to reflections off sand and water. At a particular beach on a
particular day near sundown, the horizontal component of the elec-
tric field vector is 2.3 times the vertical component. A standing sun-
bather puts on polarizing sunglasses; the glasses eliminate the hori-
zontal field component. (a) What fraction of the light intensity
received before the glasses were put on now reaches the sun-
bather’s eyes? (b) The sunbather, still wearing the glasses, lies on
his side. What fraction of the light intensity received before the
glasses were put on now reaches his eyes?

47. Four Polarizing Sheets An unpolarized beam of light is sent
through a stack of four polarizing sheets, oriented so that the angle
between the polarizing directions of adjacent sheets is 30°. What
fraction of the incident intensity is transmitted by the system?

48. Four Polarizing Sheets Two In Fig. 34-24, unpolarized light with an
intensity of 25 W/m2 is sent into a system of four polarizing sheets.
What is the intensity of the
light that emerges from
the system?

49. Two Polarizing Sheets
Two A beam of unpolar-
ized light is sent through
two polarizing sheets
placed one on top of the
other. What must be the
angle between the polar-
izing directions of the
sheets if the intensity of
the transmitted light is to
be one-third the incident
intensity?

50. Two Polarizing
Sheets Three In Fig. 34-
25a, unpolarized light is

y

x

θ3

θ1

θ2

FIGURE 34-23 ■ Problems 39 
and 40.

x

y

20°

40°

20°

30°

FIGURE 34-24 ■ Problem 48.

y

x
θ1

θ2

(a)

θ2

(b)

I

0
90° 180°

FIGURE 34-25 ■ Problem 50.



sent through a system of two
polarizing sheets. The angles
�1 and �2 of the polarizing
axes of the sheets are mea-
sured counterclockwise from
the positive direction of the
y axis (they are not drawn to
scale in the figure). Angle �1

is fixed but angle �2 can be
varied. Figure 34-25b gives
the intensity of the light
emerging from sheet 2 as a
function of �2. (The scale of
the intensity axis is not indi-
cated.) What percentage of
the light’s initial intensity is
transmitted by the two-sheet
system when �2 � 90°?

51. Three Polarizing Sheets Two In
Fig. 34-26, light that is initially unpo-
larized is sent into a system of three
polarizing sheets. What fraction of
the initial light intensity emerges
from the system?

52. Three Polarizing Sheets Three
In Fig. 34-27a, unpolarized light is
sent through a system of three po-
larizing sheets. The angles �1, �2, and
�3 of the polarizing axes of the
sheets are measured counterclock-
wise from the positive direction of
the y axis (they are not drawn to
scale). Angles �1 and �3 are fixed
but angle �2 can be varied. Figure
34-28 gives the intensity of the light
emerging from sheet 3 as a function
of �2. (The scale of the intensity axis
is not indicated.) What percentage
of the light’s initial intensity is
transmitted by the three-sheet sys-
tem when �2 � 90°?

53. Three Polarizing Sheets Four
A system of three polarizing sheets is shown in Fig. 34-29. When ini-
tially unpolarized light is sent into the system, the intensity of the
transmitted light is 5.0% of the initial intensity. What is the value
of �?

54. Three Polarizing
Sheets Five In Fig. 34-
27a, unpolarized light is
sent through a system of
three polarizing sheets.
The angles �1, �2, and �3

of the polarizing axes of
the sheets are measured counterclockwise from the positive direc-
tion of the y axis (they are not drawn to scale). Angles �1 and �3 are
fixed but angle �2 can be varied. Figure 34-27b gives the intensity of
the light emerging from sheet 3 as a function of �2. (The scale of the
intensity axis is not indicated.) What percentage of the light’s initial
intensity is transmitted by the three-sheet system when �2 � 30°?

SEC. 34-8 ■ MAXWELL’S
RAINBOW

55. How Long (a) How long
does it take a radio signal to
travel 150 km from a trans-
mitter to a receiving an-
tenna? (b) We see a full
Moon by reflected sunlight.
How much earlier did the
light that enters our eye leave
the Sun? The Earth–Moon
and Earth–Sun distances are
3.8  105 km and 1.5  108

km. (c) What is the round-trip
travel time for light between
the Earth and a spaceship or-
biting Saturn, 1.3  109 km distant? (d) The Crab nebula, which is
about 6500 light-years (ly) distant, is thought to be the result of a su-
pernova explosion recorded by Chinese astronomers in A.D. 1054. In
approximately what year did the explosion actually occur?

56. Project Seafarer Project Seafarer was an ambitious proposal to
construct an enormous antenna, buried underground on a site
about 10 000 km2 in area. Its purpose was to transmit signals to sub-
marines while they were deeply submerged. If the effective wave-
length were 1.0  104 Earth radii, what would be (a) the frequency
and (b) the period of the radiations emitted? Ordinarily, electro-
magnetic radiations do not penetrate very far into conductors such
as seawater.

57. At What Wavelengths (a) At what wavelengths does the eye of
a standard observer have half its maximum sensitivity? (b) What
are the wavelength, frequency, and period of the light for which the
eye is the most sensitive?

58. Helium–Neon Laser Two A certain helium–neon laser emits red
light in a narrow band of wavelengths centered at 632.8 nm and with a
“wavelength width” (such as on the scale of Fig. 34-18) of 0.0100 nm.
What is the corresponding “frequency width” for the emission?

59. Speed of Light One method for measuring the speed of light,
based on observations by Roemer in 1676, consisted of observing
the apparent times of revolution of one of the moons of Jupiter.
The true period of revolution is 42.5 h. (a) Taking into account the
finite speed of light, how would you expect the apparent time for
one revolution to change as the Earth moves in its orbit from point
x to point y in Fig. 34-30? (b) What observations would be needed
to compute the speed of light? Neglect the motion of Jupiter in its
orbit. Figure 34-30 is not drawn to scale.
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Additional Problems

60. Wave of Frequency An electromagnetic wave with frequency
400 terahertz travels through vacuum in the positive direction of an
x axis. The wave is polarized, with its electric field directed parallel
to the y axis, with amplitude E max. At time t � 0, the electric field at
point P on the x axis has a value of �E max/4 and is decreasing with
time. What is the distance along the x axis from point P to the first
point with E � 0 if we search in (a) the negative direction and (b)
the positive direction of the x axis?

61. Earth’s Surface At the Earth’s surface, what intensity of light is
needed to suspend a totally absorbing spherical particle against its
own weight if the mass of the particle is 2.0  10�13 kg and its ra-
dius is 2.0 �m?

62. Tracking a Plane Wave in a Box An oscillating current in an
antenna is producing an electromagnetic wave. The region shown in
Fig. 34-31 enclosed by a dashed box (not to scale) is far from the
antenna. In it, the field produced is well approximated by a plane
wave traveling in the z direction and having its E-field pointed
along the x direction (using the coordinate system shown).

(a) You perform a series of measurements of the electric field at
the origin of your coordinate system and obtain a result that points
in the y direction and is well represented by the function

E(t) � E0 cos(�t).

What result would you find if instead of at the origin, you repeated
the experiment at a point with coordinates {0, 0, z}? Explain how
you know.
(b) What result would you get if you made your measurements at a
point in the box with coordinates {2, 3, z} cm? (The point is still well
within the dashed box.)
(c) For what values of z would you find exactly the same result as
you found at the origin?

65. Measuring the Speed of Light à la Galileo Galileo tried to
measure the speed of light by having two people stand on hills
about 5 km apart. Each would hold a shuttered lantern. The first
would open his lantern and when the second saw the light, he
would open his lantern. The first person would then measure how
much time it took between the time he first opened his lantern and
the time he saw the light returning.

(a) How much time would it take the light to travel between the
two hills?
(b) Is this a good way to measure the speed of light? Support your
argument with a brief explanation that includes some quantitative
discussion of the uncertainty in the measurement.

66. Solar Power for Your House The amount of energy from the
sun that reaches the ground is on the order of 1 kW/m2. Use this in-
formation to estimate the area you would need for a solar energy
collector to provide all the electricity in your house. Explain care-
fully your assumptions and reasoning.

67. Boiling Water in a Microwave Most of you have had the expe-
rience of using a microwave oven to boil a cup of water. [If you
have not, ask a friend or roommate to help you estimate the time in
part (a)]. According to a Pyrex measuring cup that is marked in
both English and SI units, one cup contains about 230 ml.

(a) From the amount of time it takes to heat one cup of water from
room temperature to boiling in a microwave oven, estimate the
power that the oven delivers to the water in watts (joules/second).
(b) Assuming that electromagnetic radiation is flowing into the cup
in the microwave from all sides, estimate the electromagnetic en-
ergy flux, S, in W/m2.
(c) From the flux you calculated in (b), estimate the strength of the
electric and magnetic fields in a microwave oven.

68. Speed of Light and the GPS System Although light appears to
travel at a speed that is for all practical purposes infinite, for some
modern purposes the time delay due to light travel time is of great
importance. The Global Positioning System (GPS) allows you to de-
termine your position from comparison of the time delays between
radio signals from 4 satellites at a height of 20,000 km above the
surface of the earth. (There are actually 24 of these satellites. Your
GPS picks out the closest 4 to your current position.) In order to
get some idea of how important the speed of light is in establishing
your position with one of these gadgets, make some simple assump-
tions. Assume that a satellite is almost directly overhead. Then fig-
ure out how far the satellite will move in the time it takes light (the
radio signal) to get from the satellite to your GPS receiver. This 

Oscillator Antenna

x

z
y

FIGURE 34-31 ■ Problem 62.

63. Electromagnetic Light After completing the construction of
his equations for electromagnetism, Maxwell proposed that visible
light was actually an electromagnetic wave. Discuss whether or not
this is plausible and what evidence there is for his hypothesis.

64. E-Field and String Pulses Compare and contrast the propaga-
tion of a pulse on a string and an electromagnetic pulse shown in
Fig. 34-32. In particular, address the similarities and differences for
(a) how the pulse “knows” to move from one position to the next;
(b) what will happen if the wave is passed through a slit. (See the
figure.)

Displacement

Position

E-field strength

Position

Pulse on string Electromagnetic pulse

FIGURE 34-32 ■ Problem 64.



estimates how far off the reading of your position would be if your
device didn’t include the speed of light in its calculations. To 
do this:

(a) Figure out what speed the satellite must be traveling to be in a
circular orbit.
(b) Estimate the time it would take for a radio signal to get from
the satellite to your receiver.
(c) Estimate how far the satellite would move in that time. If you
ignore light travel time, this tells about how wrong you would get
the satellite’s position (and therefore how wrong you would get
your position).

69. Laser Eye Surgery Laser eye surgery is carried out by deliver-
ing highly intense bursts of energy using electromagnetic waves. A
typical laser used in such surgery has a wavelength of 190 nm (ul-
traviolet light) and produces bursts of light that last for 1 ms. The
laser delivers an energy of 0.5 mJ to a circular spot on the cornea
with a diameter of 1 mm. (The light is well approximated by a plane
wave for the short distance between the laser and the cornea.)

(a) Assuming that the energy of a single pulse is delivered to a
volume of the cornea about 1 mm3, and assuming that the pulses
are delivered so quickly that the energy deposited has no time to

flow out of that volume, how many pulses are required to raise the
temperature of that volume from 20°C to 100°C? (Assume that the
cornea has a heat capacity similar to that of water.)
(b) Estimate the maximum strength of the electric field in one of
these pulses.

70. Insolation of the Earth The power radiated by the sun is 3.9 
1026 W. The Earth orbits the Sun
in a nearly circular orbit of radius 
1.5  l011 m. The Earth’s axis of
rotation is tilted by 23° relative to
the plane of the orbit (see Fig. 34-
33) so sunlight does not strike the
equator perpendicularly.

(a) At the time of year depicted
in Fig. 34-33, what power strikes a
1 m2 patch of horizontal flat land
at the equator at the point P?
(b) Will a 1 m2 patch of horizon-
tal flat land at the point R or S receive more radiation?
(c) Explain how your answer to part (b) tells you at which of the
points R or S it is summer or winter.
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35 Images

Edouard Manet’s A Bar at the Folies-Bergère has

enchanted viewers ever since it was painted in 1882. Part of

its appeal lies in the contrast between an audience ready for

entertainment and a bartender whose eyes betray her 

fatigue. Its appeal also depends on subtle distortions of 

reality that Manet hid in the painting—distortions that give

an eerie feel to the scene even before you recognize what

is “wrong.”

Can you find those subtle
distortions of reality?

The answer is in this chapter.



35-1 Introduction

In Chapter 34 we began our study of electromagnetic waves. In this chapter, our focus
is on electromagnetic image formation. Although most of us are familiar with optical
images of visible light created by lenses and mirrors, image formation occurs in many
other regions of the electromagnetic spectrum, including x rays, ultraviolet and in-
frared light, microwaves, and radio waves. In this chapter we will concentrate on im-
ages formed by visible light.

Electromagnetic waves with wavelengths that are within or near the visually de-
tectable range (typically 400 to 700 nanometers) are commonly referred to as light.
Visible light and its interaction with materials in our everyday world is of obvious im-
portance. For many species, the ability to see (the visual system of an organism’s for-
mation of a mental image that is based on the detection of light) is often a necessary
condition for survival. Light-based (or optical) instruments including eyeglasses, mi-
croscopes, and mirrors are important to most people on a daily basis. Whether these
instruments have allowed you or someone around you to read the words on a page,
diagnose a bacterial infection, or detect the car behind you as you back up in the
parking lot, an optical instrument has inevitably impacted your life today. The human
eye is an optical instrument.

In Chapter 34, we focused on the wave nature of electromagnetic radiation. In
this chapter we will use a simplified wave model call the ray model of light.
Although a light wave spreads as it moves away from its source, we can often ap-
proximate its travel as being in a straight line. For example, we did so in Chapter 34
for the light wave in Fig. 34-7a. This straight-line approximation is the basis of the
ray model of light in which light waves are represented as lines called rays or
beams. The study of the properties of light waves under this approximation is
called geometrical optics. It is a perfectly productive (and simpler) approach to un-
derstanding how optical instruments function. We will use it extensively in this
chapter.

In order to understand how the optical instruments that are so important in our
lives work, we first need to understand some fundamental concepts related to the way
light interacts with objects around us. For example,

1. Each small area on the surface of most ordinary objects scatters incident light
rays in many directions. So anyone who has a line of sight to parts of an object’s
surface that are illuminated can see them.

2. Objects with smooth surfaces act as mirrors that reflect a light ray in a single di-
rection rather than scattering it.

3. In transparent materials that are uniform like glass, plastic, air, and water, a ray
of light travels in a straight line. However, light rays that cross an interface
between two different transparent materials at an angle change direction at that
interface.

4. When your eye receives neighboring rays of light that are diverging slightly, your
brain assumes that the rays are coming from a common point. This is how your
brain constructs a visual model of your surroundings.

In the first few sections of this chapter, we discuss “reflection” and “refrac-
tion.” These are the two fundamental scattering processes that can occur when
light strikes an object with a smooth surface such as a mirror or polished glass. This
discussion will provide the foundation required to understand image formation by
simple mirrors and lenses, which is covered in Sections 35-6 to 35-10. Finally, we
will use our understanding of mirrors and lenses to consider more complex optical
devises like microscopes and telescopes. We will continue to use both the wave
model and the ray model of light in Chapters 36 and 37.
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35-2 Reflection and Refraction

The black-and-white photograph in Fig. 35-1a shows an example of light waves travel-
ing in approximately straight lines. A narrow beam of incoming light (the incident
beam), angled downward from the left and traveling through air, encounters a plane
(flat) glass surface. Part of the light seems to bounce off the smooth glass surface,
forming a smooth glass reflected beam directed upward toward the right. The rest of
the light travels through the surface and into the glass, forming a refracted beam di-
rected downward to the right. Since the surface of the glass is smooth and the glass is
uniform, the refracted light forms a beam rather than being scattered in many direc-
tions. Because light can travel through the glass like this, the glass is said to be trans-
parent; that is, we can see through it. (In this chapter we shall consider only transpar-
ent materials with smooth surfaces.)

The passage of light from one homogeneous surface to another with a smooth
surface (for example, from air to glass) is called refraction, and the light is said to be
refracted. Unless an incident beam of light is perpendicular to a surface, refraction at
the surface (or interface) changes the light’s direction of travel. For this reason, the
beam is said to be “bent” by the refraction. Note that as shown in Fig. 35-1a, the bend-
ing occurs only at the surface.

In Figure 35-1b, the beams of light in the photograph are represented with an in-
cident ray, a reflected ray, and a refracted ray (and wave fronts). Each ray is oriented
with respect to a line, called the normal, that is perpendicular to the surface at the
point of reflection and refraction. In Fig. 35-1b, the angle of incidence is , the angle
of reflection is , and the angle of refraction is . These are all measured relative to
the normal as a line perpendicular to the surface. The plane containing the incident
ray and the normal is the plane of incidence, which is in the plane of the page in Fig.
35-1b.

Experiment shows that reflection and refraction from smooth transparent sur-
faces are governed by two laws:

Law of reflection: A reflected ray lies in the plane of incidence and has an angle of
reflection equal to the angle of incidence. In Fig. 35-1b, this means that 

(reflection from a smooth surface). (35-1)

(We shall now usually drop the prime on the angle of reflection.) As we will see in the
sections that follow, the law of reflection is the fundamental basis for understanding
image formation from any kind of mirror. Hence, this simple statement is really quite
important.

��1 � �1

�2��1

�1

Incident
ray

  1θ   '1θ

  2θ

Normal

Wavefront

Reflected
ray

Air
Glass

Refracted
ray

(b)

Interface

FIGURE 35-1 ■ (a) A black-and-white photograph showing
the reflection and refraction of an incident beam of light by a
horizontal plane glass surface. At the bottom surface, which is
curved, the beam is perpendicular to the surface, so the refrac-
tion there does not bend the beam. (Note: It is not possible to
view a beam of light from the side as it passes through air or a
lens. The path of the beams are visible because they are skim-
ming along a piece of paper that is underneath the lens.) (b) A
representation of (a) using rays. The angles of incidence ,
of reflection , and of refraction are marked.(�2)(��1)

(�1)
(a)



Law of refraction (or Snell’s law): A refracted ray lies in the plane of incidence and
has an angle of refraction that is related to the angle of incidence by 

(refraction in a transparent medium). (35-2)

Here each of the symbols n1 and n2 is a dimensionless constant, called the index of
refraction, that is associated with a medium involved in the refraction. We derive this
equation, called Snell’s law, in Chapter 36. As we shall discuss there, the index of
refraction, n, of a medium is equal to c/v, where v is the speed of light in that medium
and c is its speed in vacuum.

Table 35-1 gives the indices of refraction for visible light of vacuum and some
common substances. For vacuum, n is defined to be exactly 1; for air, n is very close to
1.0 (an approximation we shall often make). No material used in basic optical devices
has an index of refraction less than 1.

We can rearrange Eq. 35-2 as 

(35-3)

to compare the angle of refraction with the angle of incidence . We can then see
that the relative value of depends on the relative values of n2 and n1. In fact, we can
have three basic results:

1. If n2 is equal to n1, then is equal to . In this case, refraction does not bend the
light beam, which continues in the undeflected direction, as in Fig. 35-2a.

2. If n2 is greater than n1, then is less than . In this case, refraction bends the light
beam away from the undeflected direction and toward the normal, as in Fig. 35-2b.

�1�2

�1�2

�2

�1�2

sin�2 �
n 1

n 2
 sin�1

n 2 sin�2 � n 1 sin�1

�1�2
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TA B L E 3 5 - 1
Some Indices of Refractiona

Medium Index Medium Index

Vacuum Exactly 1 Typical crown glass 1.52

Air (STP)b 1.00029 Sodium chloride 1.54

Water (20°C) 1.33 Polystyrene 1.55

Acetone 1.36 Carbon disulfide 1.63

Ethyl alcohol 1.36 Heavy flint glass 1.65

Sugar solution (30%) 1.38 Sapphire 1.77

Fused quartz 1.46 Heaviest flint glass 1.89

Sugar solution (80%) 1.49 Diamond 2.42

a For a wavelength of 589 nm (yellow sodium light).
b STP means “standard temperature (0°C) and pressure (1 atm).”

Normal

θ1

θ2

n1
n2

n2 = n1

(a)

Normal

θ1

θ2

n1
n2

n2 > n1

(b)

Normal

θ1

θ2

n1
n2

n2 < n1

(c)

FIGURE 35-2 ■ Light refracting from a medium with an index of refraction n1

and into a medium with an index of refraction n2. (a) The beam does not bend
when ; the refracted light then travels in the undeflected direction (the
dotted line), which is the same as the direction of the incident beam. The beam
bends (b) toward the normal when and (c) away from the normal when

.n 2 � n 1

n 2 � n 1

n 2 � n 1



3. If n2 is less than n1, then is greater than . In this case, refraction bends the
light beam away from the undeflected direction and away from the normal, as in
Fig. 35-2c.

Refraction cannot bend a beam so much that the refracted ray is on the same side of
the normal as the incident ray.

Chromatic Dispersion
The index of refraction n encountered by light in any medium except a vacuum de-
pends on the wavelength of the light. The dependence of n on wavelength implies that
when a light beam consists of rays of different wavelengths, the rays will be refracted
at different angles by a surface; that is, the light will be spread out by the refraction.
This spreading of light is called chromatic dispersion, in which “chromatic” refers to
the colors associated with the individual wavelengths (as discussed in Section 34-8)
and “dispersion” refers to the spreading of the light according to its wavelengths. The
refractions of Figs. 35-1 and 35-2 do not show chromatic dispersion because the beams
are monochromatic (of a single wavelength or color).

Generally, the index of refraction of a given medium is greater for a shorter wave-
length (corresponding to, say, blue light) than for a longer wavelength (say, red light).
As an example, Fig. 35-3 shows how the index of refraction of fused quartz depends
on the wavelength of light. Such dependence means that when a beam with waves of
both blue and red light is refracted through a surface, such as from air into quartz or
vice versa, the blue component (the ray corresponding to the wave of blue light)
bends more than the red component.

A beam of white light consists of components of all (or nearly all) the colors in
the visible spectrum with approximately uniform intensities. When you see such a
beam, you perceive white rather than the individual colors. In Fig. 35-4a, a beam of
white light in air is incident on a glass surface. (Because the pages of this book are
white, a beam of white light is represented with a gray ray here. Also, a beam of
monochromatic light is generally represented with a red ray.) Of the refracted light in
Fig. 35-4a, only the red and blue components are shown. Because the blue component
is bent more than the red component, the angle of refraction for the blue compo-
nent is smaller than the angle of refraction for the red component. (Remember,
angles are measured relative to the normal.) In Fig. 35-4b, a ray of white light in glass
is incident on a glass–air interface. Again, the blue component is bent more than the
red component, but now is greater than .

To increase the color separation, we can use a solid glass prism with a triangular
cross section, as in Fig. 35-5a. The dispersion at the first surface (on the left in
Fig. 35-5a, b) is then enhanced by that at the second surface.

The most charming example of chromatic dispersion is a rainbow. As shown in
Fig. 35-6, when white sunlight is intercepted by a falling raindrop, some of the light re-

�2 r�2 b

�2 r
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FIGURE 35-3 ■ The index of refraction as
a function of wavelength for fused quartz.
The graph indicates that a beam of short-
wavelength light, for which the index of re-
fraction is higher, is bent more upon enter-
ing or leaving quartz than a beam of
long-wavelength light.
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FIGURE 35-4 ■ Chromatic dispersion of
white light. The blue component is bent
more than the red component. (a) Passing
from air to glass, the blue component ends
up with the smaller angle of refraction. (b)
Passing from glass to air, the blue compo-
nent ends up with the greater angle of re-
fraction.



fracts into the drop and then reflects from the drop’s inner surface, via total internal
reflection (discussed in the next section). Finally it refracts out of the drop (Fig. 35-6).
As with a prism, the first refraction separates the sunlight into its component colors,
and the second refraction increases the separation.

The rainbow you see is formed by light that emerges from many drops; the red
comes from drops angled slightly higher in the sky, the blue from drops angled slightly
lower, and the intermediate colors from drops at intermediate angles. All the drops
sending separated colors to you are angled at about 42° from a point that is directly
opposite the Sun in your view. If the rainfall is extensive and brightly lit, you see a cir-
cular arc of color, with red on top and blue on bottom. Your rainbow is a personal
one, because another observer intercepts light from other drops.
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(b)

White
light

FIGURE 35-5 ■ (a) A triangular prism
separating white light into its component
colors. (b) Chromatic dispersion occurs at
the first surface and is increased at the sec-
ond surface.

Sunlight

To
observer

Water drops

(b)

FIGURE 35-6 ■ (a) A rainbow is always a
circular arc that is centered on the direc-
tion you would look if you looked directly
away from the Sun. Under normal condi-
tions, you are lucky if you see a long arc,
but if you are looking downward from an
elevated position, you might actually see a
full circle. (b) The separation of colors
when sunlight refracts into and out of
falling raindrops leads to a rainbow. The
figure shows the situation for the Sun on
the horizon (the rays of sunlight are then
horizontal). The paths of red and blue rays
from two drops are indicated. Many other
drops also contribute red and blue rays, as
well as the intermediate colors of the visi-
ble spectrum.

READI NG EXERC IS E  35-1: Which of the three drawings (if any) show physically
possible refraction?

■

n = 1.4

n = 1.6

n = 1.8

n = 1.6

n = 1.6
n = 1.5

(a) (b) (c)

(a)

(a)
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TOUCHSTONE EXAMPLE 35-1: Reflection and Refraction

(a) In Fig. 35-7a, a beam of monochromatic light reflects and re-
fracts at point A on the interface between material 1 with index of
refraction n1 � 1.33 and material 2 with index of refraction n2 �
1.77. The incident beam makes an angle of 50° with the interface.
What is the angle of reflection at point A? What is the angle of re-
fraction there?

S O L U T I O N ■ The Ke y  I d e a of any reflection is that the an-
gle of reflection is equal to the angle of incidence. Further, both
angles are measured between the corresponding light ray and a
normal to the interface at the point of reflection. In Fig. 35-7a, the
normal at point A is drawn as a dashed line through the point.
Note that the angle of incidence is not the given 50° but rather is
90° � 50° � 40°. Thus, the angle of reflection is

(Answer)

The light that passes from material 1 into material 2 undergoes
refraction at point A on the interface between the two materials.
The Ke y  I d e a of any refraction is that we can relate the angle of
incidence, the angle of refraction, and the indexes of refraction of
the two materials via Eq. 35-2:

(35-4)n 2 sin�2 � n 1 sin�1.

��1 � �1 � 40�.

�1

Again we measure angles between light rays and a normal, here at
the point of refraction. Thus, in Fig. 35-7a, the angle of refraction is
the angle marked . Solving Eq. 35-4 for gives us

(Answer)

This result means that the beam swings toward the normal (it was
at 40° to the normal and is now at 29°). The reason is that when the
light travels across the interface, it moves into a material with a
greater index of refraction.

(b) The light that enters material 2 at point A then reaches point B
on the interface between material 2 and material 3, which is air, as
shown in Fig. 35-7b. The interface through B is parallel to that
through A. At B, some of the light reflects and the rest enters the
air. What is the angle of reflection? What is the angle of refraction
into the air?

S O L U T I O N ■ We first need to relate one of the angles at point
B with a known angle at point A. Because the interface through
point B is parallel to that through point A, the incident angle at B
must be equal to the angle of refraction , as shown in Fig. 35-7b.
Then for reflection, we use the same Ke y  I d e a as in (a): the law
of reflection. Thus, the angle of reflection at B is

(Answer)

Next, the light that passes from material 2 into the air undergoes re-
fraction at point B, with refraction angle . Thus, the Ke y  I d e a
here is again to apply the law of refraction, but this time by writing
Eq. 35-4 as

(35-5)

Solving for then leads to

(Answer)

This result means that the beam swings away from the normal (it
was at 29° to the normal and is now at 59°). The reason is that when
the light travels across the interface, it moves into a material (air)
with a lower index of refraction.

� 58.75� � 59�.

�3 � sin�1� n2

n3
 sin�2� � sin�1� 1.77

1.00
 sin 28.88��

�3

n3 sin�3 � n2 sin�2.

�3

��2 � �2 � 28.88� � 29�.

�2

� 28.88� � 29�.

�2 � sin�1� n 1

n 2
 sin�1� � sin�1� 1.33

1.77
 sin 40��

�2�2

θ1 θ'1

θ2

A

n1

n2

50°

θ2
θ2

θ3

θ'2

A

Bn3

Air

n2

(a) (b)

FIGURE 35-7 ■ (a) Light reflects and refracts at point A on
the interface between materials 1 and 2. (b) The light that
passes through material 2 reflects and refracts and point B on
the interface between materials 2 and 3 (air).

35-3 Total Internal Reflection

Figure 35-8 shows rays of monochromatic light from a point source S in glass incident
on the interface between the glass and air. For ray a, which is perpendicular to the in-
terface, part of the light reflects at the interface and the rest travels through it with no
change in direction.
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For rays b through e, which have progressively larger angles of incidence at the
interface, there are also both reflection and refraction at the interface. As the angle of
incidence increases, the angle of refraction increases; for ray e it is 90°, which means
that the refracted ray points directly along the interface. The angle of incidence that
gives this situation is called the critical angle . For angles of incidence larger than ,
such as for rays f and g, there is no refracted ray and all the light is reflected; this ef-
fect is called total internal reflection.

To find , we use Eq. 35-2; we arbitrarily associate subscript 1 with the glass and
subscript 2 with the air, and then we substitute for and 90° for , finding

which gives us

(critical angle). (35-6)

Because the sine of an angle cannot exceed unity, n2 cannot exceed n1 in this equation.
This restriction tells us that total internal reflection cannot occur when the incident
light is in the medium of lower index of refraction. If source S were in the air in
Fig. 35-8, all its rays that are incident on the air–glass interface (including f and g)
would be both reflected and refracted at the interface.

Total internal reflection has found many applications in medical technology. For
example, a physician can search for an ulcer in the stomach of a patient by running two
thin bundles of optical fibers (Fig. 35-9) down the patient’s throat. Light introduced at
the outer end of one bundle undergoes repeated total internal reflection within the
fibers so that, even though the bundle provides a curved path, most of the light ends up
exiting the other end and illuminating the interior of the stomach. Some of the light re-
flected from the interior then comes back up the second bundle in a similar way, to be
detected and converted to an image on a monitor’s screen for the physician to view.

�c � sin�1 n2

n1

n 1 sin �c � n 2 sin 90�,

�2�1�c

�c

�c�c

TOUCHSTONE EXAMPLE 35-2: Triangular Prism

Figure 35-10 shows a triangular prism of glass in air; an incident ray
enters the glass perpendicular to one face and is totally reflected at
the far glass–air interface as indicated. If �1 is 45°, what can you say
about the index of refraction n of the glass?

S O L U T I O N ■ One Ke y  I d e a here is that because the light
ray is totally reflected at the interface, the critical angle for that
interface must be less than the incident angle of 45°. A second Ke y

�c

Air
Glass

S

a b c d e gf

θc

Critical case

FIGURE 35-8 ■ Total internal reflection of
light from a point source S in glass occurs
for all angles of incidence greater than the
critical angle . At the critical angle,
shown at point e, the refracted ray points
along the air–glass interface.

�c

FIGURE 35-9 ■ Light sent into one end of
an optical fiber like those shown here is
transmitted to the opposite end with little
loss of light through the sides of the fiber.

i r
θ1

Total
internal
reflection

FIGURE 35-10 ■ The incident ray i is to-
tally internally reflected at the glass–air
interface, becoming the reflected ray r.

I d e a is that we can relate the index of refraction n of the glass to
with the law of refraction, Eq. 35-2. Substituting n2 � 1 (for the�c



35-4 Polarization by Reflection

As we discuss in Chapter 34, you can increase and decrease the glare you see in sun-
light that has been reflected from, say, water by looking through a polarizing sheet
(such as a polarizing sunglass lens) and then rotating the sheet’s polarizing axis
around your line of sight. You can do so because reflected light is fully or partially po-
larized by the reflection from a surface.

Figure 35-11 shows a ray of unpolarized light incident on a glass surface. Let us
resolve the electric field vectors of the light into two components. The perpendicular
components are perpendicular to the plane of incidence and thus also to the page in
Fig. 35-11; these components are represented with dots (as if we see the tips of the
vectors). The parallel components are parallel to the plane of incidence and the page;
they are represented with double-headed arrows. Because the light is unpolarized,
these two components are of equal magnitude.

In general, the reflected light also has both components but with unequal magni-
tudes. This means that the reflected light is partially polarized—the electric fields os-
cillating along one direction have greater amplitudes than those oscillating along
other directions. However, when the light is incident at a particular incident angle,
called the Brewster angle , the reflected light has only perpendicular components, as
shown in Fig. 35-11. The reflected light is then fully polarized perpendicular to the
plane of incidence. The parallel components of the incident light do not disappear;
they and perpendicular components form the light that is refracted through the glass
surface.

Glass, water, and the other dielectric materials discussed in Section 28-6 can par-
tially and fully polarize light by reflection. When you intercept sunlight reflected from
such a surface, you see a bright spot (the glare) on the surface where the reflection
takes place. If the surface is horizontal as in Fig. 35-11, the reflected light is partially or
fully polarized horizontally. To eliminate such glare from horizontal surfaces, the
lenses in polarizing sunglasses are mounted with their polarizing direction vertical.

Brewster’s Law
For light incident at the Brewster angle , we find experimentally that the reflected
and refracted rays are perpendicular to each other. Because the reflected ray is re-
flected at the angle in Fig. 35-11 and the refracted ray is at an angle �2 � �r, we have 

(35-7)

These two angles can also be related with Eq. 35-2. Arbitrarily assigning subscript 1 in
Eq. 35-2 to the material through which the incident and reflected rays travel, we have,
from that equation,

n 1sin �B � n2sin �r.

�B 	 �r � 90�.

�B

�B

�B
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air) and n1 = n (for the glass) into Eq. 35-2 yields

Because must be less than the incident angle of 45°, and the sine
function is increasing between 0� and 90�,

sin�1 1
n

� 45�,

�c

�c � sin�1 n 2

n 1
� sin�1 1

n
.

which gives us

or (Answer)

The index of refraction of the glass must be greater than 1.4; otherwise,
total internal reflection would not occur for the incident ray shown.

n �
1

sin 45�
� 1.4.

1
n

� sin 45�

θ

  rθ

Incident
unpolarized

ray
Reflected

ray

Air
Glass

90°

Refracted
ray

n = 1.5

Component perpendicular to page

Component parallel to page

B
θB

FIGURE 35-11 ■ A ray of unpolarized
light in air is incident on a glass surface at
the Brewster angle . The electric fields
along that ray have been resolved into
components perpendicular to the page
(the plane of incidence) and components
parallel to the page. The reflected light
consists only of components perpendicular
to the page and is thus polarized in that
direction. The refracted light consists of the
original components parallel to the page
and weaker components perpendicular to
the page; this light is partially polarized.

�B
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Combining these equations leads to 

which gives us 

(Brewster angle). (35-8)

(Note carefully that the subscripts in Eq. 35-8 are not arbitrary because of our deci-
sion as to their meaning.) If the incident and reflected rays travel in air, we can
approximate n1 as unity and let n represent n2 in order to write Eq. 35-8 as 

(only if n1 � 1). (35-9)

This simplified version of Eq. 35-8 is also named after Sir David Brewster, who veri-
fied both equations experimentally in 1812.

35-5 Two Types of Image

Up to this point, most of our study of physics in general and optics in particular has
been focused on understanding physical phenomena. We have not had to pay particu-
lar attention to the role of the observer in determining information about the physical
system. (Even though there always is such an observer assumed, we also assume the
measurements can be made gently enough so as not to disturb the system so the ob-
server can be ignored.) That will need to change now. In studying image formation, we
cannot be concerned only with what happens to the light. We must also be concerned
with what it looks like to the observer. For this reason, we have to think about how
your eyes and brain interpret the signals they receive. This new concern with the ob-
server continues as we move into the study of relativity in Chapter 38 and as you
move into quantum physics in your later studies.

For you to see an object, your eye must intercept some of the light rays spreading
from the object and then redirect them onto the retina at the rear of the eye. Your vi-
sual system, starting with the retina and ending with the visual cortex at the rear of
your brain, automatically and subconsciously processes the information provided by
the light. That system identifies edges, orientations, textures, shapes, and colors and
then rapidly brings to your consciousness an image (a reproduction derived from
light) of the object; you perceive and recognize the object as being in the direction
from which the light rays came and at the proper distance.

Your visual system goes through this processing and recognition even if the light
rays do not come directly from the object, but instead reflect toward you from a mir-
ror or refract through the lenses in a pair of binoculars. However, independent of
whether the light rays come directly from an object or indirectly from a reflection or
refraction event, the visual system in the human brain always forms an image as
follows:

The apparent location of an object is the common point from which the diverging straight
line light rays seem to have come (even if the light rays have actually been bent). See Figs.
35-13 and 35-14 for examples.

�B � tan�1n

�B � tan�1 n 2

n 1

n 1 sin �B � n 2 sin(90� � �B) � n 2 cos �B,



For example, if the light rays have been reflected toward you from a standard flat
mirror, the object appears to be behind the mirror because the rays you intercept
come from that direction. Of course, the object is not back there. This type of image,
which is called a virtual image, truly exists only on your retina but nevertheless is said
to exist at the perceived location.

A real image differs in that it can be formed on a surface, such as a card or a
movie screen. You can see a real image (otherwise movie theaters would be empty),
but the existence of the image does not depend on your seeing it and it is present
even if you are not.

In this chapter we explore several ways in which virtual and real images are
formed by reflection (as with mirrors) and refraction (as with lenses). We also distin-
guish between the two types of image more carefully. We start by considering an ex-
ample of a natural virtual image.

A Common Mirage
A common example of a virtual image is a pool of water that appears to lie on the
road some distance ahead of you on a sunny day, but that you can never reach. The
pool is a mirage (a type of illusion), formed by light rays coming from the low section
of the sky in front of you (Fig. 35-12a). As the rays approach a road that has been
heated by the Sun, they travel through progressively warmer air that has been heated
by the road. With an increase in air temperature, the speed of light in air increases
slightly and, correspondingly, the index of refraction of the air closer to the road
decreases continuously. Thus, as the rays descend, encountering progressively smaller
indices of refraction, they gradually bend more and more toward the horizontal 
(Fig. 35-12b).

Once a ray is horizontal, somewhat above the road’s surface, it still bends be-
cause the lower portion of each associated wave front is in slightly warmer air and is
moving slightly faster than the upper portion of the wavefront (Fig. 35-12c). This
nonuniform motion of the wavefronts bends the ray upward. As the ray then as-
cends, it continues to bend upward through progressively greater indexes of refrac-
tion (Fig. 35-12d).

If some of this light enters your eyes, your visual system automatically infers
that it originated along a backward extension of the rays you have intercepted and,
to make sense of the light, assumes that it came from the road surface. If the light
happens to be bluish from blue sky, the mirage appears bluish, like water. Because
the air is probably turbulent due to the heating, the mirage shimmies, as if water
waves were present. The bluish coloring and the shimmy enhance the illusion of a
pool of water, but you are actually seeing a virtual image of a low section of the
sky.

Two Types of Image   1025

Pool mirage Road

Light ray

Warm

Warmer

Road

Warm

Warmer

Road

Fast

Faster

(c)(b) (d)

(a)

FIGURE 35-12 ■ (a) A ray from a low section of the sky refracts through air
that is heated by a road (without reaching the road). An observer who inter-
cepts the light perceives it to be from a pool of water on the road. (b) Bending
(exaggerated) of a light ray descending across an imaginary boundary from
warm air to warmer air. (c) Shifting of wavefronts and associated bending of a
ray, which occurs because the lower ends of wavefronts move faster in warmer
air. (d) Bending of a ray ascending across an imaginary boundary to warm air
from warmer air.
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35-6 Plane Mirrors

A mirror is a very smooth surface that can reflect a beam of light (or other electro-
magnetic radiation) in one direction instead of either scattering it widely in many di-
rections or absorbing it. A shiny metal surface acts as a mirror; a concrete wall does
not. In this section we examine the images that a plane mirror (a flat reflecting sur-
face) can produce.

Figure 35-13 shows a point source of light O, which we shall call the object, at a
perpendicular distance o in front of a plane mirror. The light that is incident on the
mirror is represented with rays spreading from O.

Caution: Since O is a point while o is a distance, it is important to distinguish between the
two, not to confuse them with zero, and to write each one differently.

The reflection of that light is represented with reflected rays spreading from the mir-
ror. If we extend the reflected rays backward (behind the mirror), we find that the ex-
tensions intersect at a point that is a perpendicular distance i behind the mirror.

If you look into the mirror of Fig. 35-13, your eyes intercept some of the reflected
light. To make sense of what you see, you perceive a point source of light located at
the point of intersection of the extensions. This point source is the image I of object
O. It is called a point image because it is a point, and it is a virtual image because the
rays do not actually pass through it. (As you will see, rays do pass through a point of
intersection for a real image.) Your eyes (and brain) trace the rays back to their ap-
parent intersection point and are fooled into thinking that’s where the object is.

Figure 35-14 shows two rays selected from the many rays in Fig. 35-13. One
reaches the mirror at point b, perpendicularly. The other reaches it at an arbitrary
point a, with an angle of incidence . The extensions of the two reflected rays are also
shown. The right triangles aOba and aIba have a common side and three equal angles
and are thus congruent, so their horizontal sides are congruent. That is,

(35-10)

where Ib and Ob are the distances from the mirror to the image and the object, re-
spectively. Equation 35-10 tells us that the image is as far behind the mirror as the ob-
ject is in front of it. By convention (that is, to get our equations to work out), object
distances o are taken to be positive quantities, and image distances i for virtual images
(as here) are taken to be negative quantities. Thus, Eq. 35-10 can be written as ,
or as 

(plane mirror). (35-11)

Only rays that are fairly close together can enter the eye after reflection at a mir-
ror. For the eye position shown in Fig. 35-15, only a small portion of the mirror near
point a (a portion smaller than the pupil of the eye) is useful in forming the image. To
find this portion, close one eye and look at the mirror image of a small object such as
the tip of a pencil. Then move your fingertip over the mirror surface until you cannot
see the image. Only light coming from that small portion of the mirror under your fin-
gertip produced the image.

Extended Objects
In Fig. 35-16, an extended object O, represented by an upright arrow, is at perpendicu-
lar distance o in front of a plane mirror. Each small portion of the object that faces

i � �o

� i � � o

Ib � Ob,

�

O I

Mirror

o i

θ
θ

FIGURE 35-13 ■ A point source of light
O, called the object, is a perpendicular
distance o in front of a plane mirror. Light
rays reaching the mirror from O reflect
from the mirror. If your eye intercepts
some of the reflected rays, you perceive a
point source of light I to be behind the
mirror, at a perpendicular distance i. The
perceived source I is a virtual image of
object O.

O I

θ
θ a

θ θb
io

Mirror

FIGURE 35-14 ■ Two rays from Fig. 35-13.
Ray Oa makes an arbitrary angle with
the normal to the mirror surface. Ray Ob
is perpendicular to the mirror.

�

O I

Mirror

a

FIGURE 35-15 ■ A “pencil” of rays from
O enters the eye after reflection at the mir-
ror. Only a small portion of the mirror
near a is involved in this reflection. The
light appears to originate at point I behind
the mirror.



the mirror acts like the point source O of Figs. 35-13 and 35-14. If you intercept the
light reflected by the mirror, you perceive a virtual image I that is a composite of the
virtual point images of all those portions of the object and seems to be at distance i
behind the mirror. Distances i and o are related by Eq. 35-11.

We can also locate the image of an extended object as we did for a point object in
Fig. 35-13: we draw some of the rays that reach the mirror from the top of the object,
draw the corresponding reflected rays, and then extend those reflected rays behind
the mirror until they intersect to form an image of the top of the object. We then do
the same for rays from the bottom of the object. As shown in Fig. 35-16, we find that
virtual image I has the same orientation and height (measured parallel to the mirror)
as object O.

Manet’s A Bar at the Folies-Bergère
In A Bar at the Folies-Bergère you see the barroom via reflection by a large mirror on
the wall behind the woman tending bar, but the reflection is subtly wrong in three
ways. First note the bottles at the left. Manet painted their reflections in the mirror
but misplaced them, painting them farther toward the front of the bar than they
should be.

Now note the reflection of the woman. Since your view is from directly in front of
the woman, her reflection should be behind her, with only a little of it (if any) visible
to you; yet Manet painted her reflection well off to the right. Finally, note the reflec-
tion of the man facing her. He must be you, because the reflection shows that he is di-
rectly in front of the woman, and thus he must be the viewer of the painting. You are
looking into Manet’s work and seeing your reflection well off to your right. The effect
is eerie because it is not what we expect from either a painting or a mirror.

READI NG EXERC IS E  35-2: In the figure you look into a system of two vertical
parallel mirrors A and B separated by distance d. A grinning gargoyle is perched at point O, a
distance 0.2d from mirror A. Each mirror produces a first
(least deep) image of the gargoyle. Then each mirror pro-
duces a second image with the object being the first image
in the opposite mirror. Then each mirror produces a third
image with the object being the second image in the oppo-
site mirror, and so on—you might see hundreds of grinning
gargoyle images. How deep behind mirror A are the first,
second, and third images in mirror A? ■

READI NG EXERC IS E  35-3: Is an object in a mirror reversed left to right? How
does this happen? Why isn’t it also upside down? If you look at your image in a flat mirror,
your left hand becomes your right hand, but your head and feet are not interchanged. Can you
explain why? ■

35-7 Spherical Mirrors

We turn now from images produced by plane mirrors to images produced by mirrors
with curved surfaces. In particular, we shall consider spherical mirrors, which are sim-
ply mirrors in the shape of a small section of the surface of a sphere. A plane mirror is
in fact a spherical mirror with an infinitely large radius of curvature. This is like treat-
ing a small piece of the Earth as if it were flat. If the Earth has a large enough radius,
we can’t tell the difference.

A plane mirror fooled your visual system into thinking an object was in a differ-
ent place than it really was by bending the rays so they didn’t come directly from the
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FIGURE 35-16 ■ An extended object O
and its virtual image I in a plane mirror.
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object in straight lines. A curved mirror does even more interesting things by bending
the rays in a different way.

Making a Spherical Mirror
We start with the plane mirror of Fig. 35-17a, which faces leftward toward an object O
and an observer. We make a concave mirror by curving the mirror’s surface so it is
concave (“caved in”) as in Fig. 35-17b. Curving the surface in this way changes several
characteristics of the mirror and the image it produces of the object:

1. The center of curvature C (the center of the sphere of which the mirror’s surface is
part) was infinitely far from the plane mirror; it is now closer and in front of the
concave mirror.

2. The field of view—the extent of the scene that is reflected to the observer—was
wide for the plane mirror; it is now smaller.

3. The image of the object was as far behind the plane mirror as the object was in
front; the image is farther behind the concave mirror; that is, is greater.

4. The height or size of the image was equal to the height or size of the object for
the plane mirror. The height of the image is now greater than the height of the
object. This feature is why many makeup mirrors and shaving mirrors are con-
cave—they produce a larger image of a face.

We can make a convex mirror by curving a plane mirror so its surface is convex
(“flexed out”) as in Fig. 35-17c. Curving the surface in this way:

1. Moves the center of curvature C to behind the mirror.

2. Increases the field of view. It is wider with a convex mirror than with a plane
mirror.

3. Moves the image of the object closer to the mirror as compared to the plane mir-
ror.

4. Shrinks the size of the image. It is now smaller than the actual size of the object.

Side view mirrors on cars and store surveillance mirrors are usually convex to take
advantage of the increase in the field of view—more of the store can then be moni-
tored with a single mirror.

In looking at Fig. 35-17b and c, you should note that when both surfaces of a
curved mirror are reflective, the side the observer is on determines whether the mir-
ror is convex or concave.

Focal Points of Spherical Mirrors
In order to figure out how a ray of light reflects from a curved mirror, we will look at
a very small region of mirror around the point that the ray we are considering strikes.
For the small enough region, the mirror looks flat (like a bit of the Earth looks flat al-
though it is actually curved). Then, we use our plane mirror principle from above: an-
gle of incidence is equal to angle of reflection (Eq. 35-1). To do this, first we need to
draw a normal to the surface of the mirror at the point that the ray strikes. Then,

For a spherical mirror, the reflected ray is in the plane determined by the incident ray and
the normal to the surface. The angle between the normal and the reflected ray is equal to
the angle between the normal and the incident ray.

� i �
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FIGURE 35-17 ■ (a) An object O forms a
virtual image I in a plane mirror. (b) If the
mirror is bent so that it becomes concave,
the image moves farther away and becomes
larger. (c) If the plane mirror is bent so
that it becomes convex, the image moves
closer and becomes smaller.
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For a plane mirror, the magnitude of the image distance i is always equal to the
object distance o. Before we can determine how these two distances are related for a
spherical mirror, we find it convenient to consider the reflection of light from an ob-
ject O located an effectively infinite distance in front of a spherical mirror, on the mir-
ror’s central axis. That axis extends through the center of curvature C and the center c
of the mirror. Because of the great distance between the object and the mirror, the
light waves spreading from the object are nearly plane waves when they reach the
mirror along the central axis. This means that the rays representing the light waves are
all parallel to the central axis when they reach the mirror.

When these parallel rays reach a concave mirror like that of Fig. 35-18a, those
near the central axis are reflected through a common point F; two of these reflected
rays are shown in the figure. If we placed a (small) card at F, a point image of the infi-
nitely distant object O would appear on the card since rays actually converge at that
point. (This would occur for any infinitely distant object.) Point F is called the focal
point (or focus) of the mirror, and its distance from the center of the mirror is the
focal length f of the mirror.

If we now substitute a convex mirror for the concave mirror, we find that the par-
allel rays are no longer reflected through a common point. Instead, they diverge as
shown in Fig. 35-18b. However, if your eye or a camera lens intercepts some of the re-
flected light, you perceive the light as originating from a point source behind the mir-
ror. Although no rays actually converge behind the convex mirror, this perceived
source is located where extensions of the reflected rays pass through a common point
(F in Fig. 35-18b). That point is the focal point (or focus) F of the convex mirror, and
its distance from the mirror surface is the focal length f of the mirror. If we placed a
card at this focal point, an image of object O would not appear on the card, so this fo-
cal point is a virtual focal point and is not like that of a concave mirror.

To distinguish the actual focal point of a concave mirror from the perceived focal
point of a convex mirror, the former is said to be a real focal point and the latter is
said to be a virtual focal point. Moreover, the focal length f of a concave mirror is
taken to be a positive quantity, and that of a convex mirror a negative quantity. For
mirrors of both types, the focal length f is related to the radius of curvature r of the
mirror by 

(spherical mirror), (35-12)

where, consistent with the signs for the focal length, r is a positive quantity for a con-
cave mirror and a negative quantity for a convex mirror.

35-8 Images from Spherical Mirrors

With the focal point of a spherical mirror defined, we can find the relation between
image distance i and object distance o for concave and convex spherical mirrors. We
discussed the law of reflection (Eq. 35-1) in Section 35-2. This law states that the angle
of reflection is equal to the angle of incidence. It alone is the foundation required to
understand the change in direction of light rays at the surface of a mirror. Ultimately,
it is the direction of the reflected light rays that determines where the image is per-
ceived to be located.

We begin by placing the object O inside the focal point of the concave mirror—
that is, between the mirror and its focal point F (Fig. 35-19a). An observer can then
see a virtual image of O in the mirror: The image appears to be behind the mirror, and
it has the same orientation as the object.

If we now move the object away from the mirror until it is at the focal point,
the image moves farther back from the mirror until it is at infinity (Fig. 35-19b).
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FIGURE 35-18 ■ (a) In a concave mirror,
incident parallel light rays are brought to a
real focus at F, on the same side of the
mirror as the light rays. (b) In a convex
mirror, incident parallel light rays seem to
diverge from a virtual focus at F, on the
side of the mirror opposite the light rays.
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The image is then ambiguous and imperceptible because neither the rays reflected
by the mirror nor the ray extensions behind the mirror cross to form an image 
of O.

If we next move the object outside the focal point—that is, farther away from the
mirror than the focal point—the rays reflected by the mirror converge to form an in-
verted image of object O (Fig. 35-19c) in front of the mirror. That image moves in
from infinity as we move the object farther outside F. If you were to hold a card at the
position of the image, the rays converging at that point would scatter in all directions,
when those scattered rays entered your eyes, your brain would see them as coming
from the card, and so an image of the object would appear on the card. In this case,
the image is said to be focused on the card by the mirror. (The verb “focus,” which in
this context means to produce an image, differs from the noun “focus,” which is an-
other name for the focal point.) Because this image can actually appear on a surface,
it is a real image—the rays actually intersect to create the image, regardless of
whether an observer is present. The image distance i of a real image is a positive
quantity, in contrast to that for a virtual image. We also see that 

Real images form on the side of a mirror where the object is, and virtual images form on the
opposite side.

As we shall prove in Section 35-8, when light rays from an object make only small
angles with the central axis of a spherical mirror and the proper sign conventions are
chosen, a simple equation relates the object distance o, the image distance i, and the
focal length f:

(spherical mirror). (35-13)

We assume such small angles in figures such as Fig. 35-19, but for clarity the rays are
drawn with exaggerated angles. With that assumption, Eq. 35-13 applies to any con-
cave, convex, or plane mirror. For a convex or plane mirror, only a virtual image can
be formed, regardless of the object’s location on the central axis. As shown in the ex-
ample of a convex mirror in Fig. 35-17c, the image is always on the opposite side of
the mirror from the object and has the same orientation as the object.

The size of an object or image, as measured perpendicular to the mirror’s central
axis, is called the object or image height. Let h represent the height of the object and

the height of the image. Then the ratio is called the lateral magnification m
produced by the mirror. However, by convention, the lateral magnification always in-
cludes a plus sign when the image orientation is the same as that of the object and a
minus sign when the image orientation is opposite that of the object (that is, upside
down). For this reason, we write the formula for m as

(lateral magnification). (35-14)� m � �
h�

h
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I
(i = +∞)
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Real
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f

I
(i = –∞)

FIGURE 35-19 ■ (a) An object O inside
the focal point of a concave mirror, and its
virtual image I. (b) The object at the focal
point F. (c) The object outside the focal
point, and its real image I.



We shall soon prove that the lateral magnification can also be written as 

(lateral magnification). (35-15)

For a plane mirror for which , we have . The magnification of 1
means that the image is the same size as the object. The plus sign means that the im-
age and the object have the same orientation. For the concave mirror of Fig. 35-19c,

Equations 35-12 through 35-15 hold for all plane mirrors, concave spherical mir-
rors, and convex spherical mirrors. In addition to those equations, you have been
asked to absorb a lot of information about these mirrors, and you should organize it
for yourself by filling in Table 35-2. Under Image Location, note whether the image is
on the same side of the mirror as the object or on the opposite side. Under Image
Type, note whether the image is real or virtual. Under Image Orientation, note
whether the image has the same orientation as the object or is inverted. Under Sign,
give the sign of the quantity or fill in ± if the sign is ambiguous. You will need this or-
ganization to tackle homework or examinations.

Locating Images by Drawing Rays
Figures 35-20a and b show an object O in front of a concave mirror. In general, a
point on an object puts out a spray of rays in all directions. For most of these rays, we
need a protractor to calculate where a ray that hits our mirror (and later in the

m � �1.5.

m � 	1i � �o

m � �
i
o
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TA B L E 3 5 - 2
Organizing Table for Mirrors

Mirror Object Image Sign

Type Location Location Type Orientation of f of r of i of m

Plane Anywhere

Concave Inside F

Outside F

Convex Anywhere

(a)

F c

2

1

I
O

(b)

F c

4

I
O C d

e
a

b

C

3

(c)

2

1

CO FI

(d)

c

4

3

CO
F

I
c

FIGURE 35-20 ■ (a, b) Four rays that can
easily be drawn to find the image of an ob-
ject in a concave mirror. For the object po-
sition shown, the image is real, inverted,
and smaller than the object. (c, d) Four
similar rays for the case of a convex mir-
ror. For a convex mirror, the image is al-
ways virtual, oriented like the object, and
smaller than the object. [In (c), ray 2 is ini-
tially directed toward focal point F. In (d),
ray 3 is initially directed toward center of
curvature C.]



chapter, our lens) will go. But for four special rays, we can easily draw where they are
going to go, using the focal point and symmetry. We can graphically locate the image
of any off-axis point of the object by drawing a ray diagram with any two of four spe-
cial rays through the point:

1. A ray that is initially parallel to the central axis reflects through the focal point F
(ray 1 in Fig. 35-20a).

2. A ray that reflects from the mirror after passing through the focal point emerges
parallel to the central axis (ray 2 in Fig. 35-20a).

3. A ray that reflects from the mirror after passing through the center of curvature
C returns along itself (ray 3 in Fig. 35-20b).

4. A ray that reflects from the mirror at its intersection c with the central axis is re-
flected symmetrically about that axis (ray 4 in Fig. 35-20b).

The image of the point is at the intersection of the two special rays you choose. The
image of the object can then be found by locating the images of two or more of its
off-axis points. You need to modify the descriptions of the rays slightly to apply them
to convex mirrors, as in Figs. 35-20c and d. By referring to Figs. 35-20c and d, you can
easily write a description of what happens to rays 1, 2, 3, and 4 as they are reflected
from a convex mirror.

Proof of Equation 35-15
We are now in a position to derive Eq. 35-15 , the equation for the lateral
magnification of an object reflected in a mirror. Consider ray 4 in Fig. 35-20b. It is
reflected at point c so that the incident and reflected rays make equal angles with the
axis of the mirror at that point.

The two right triangles abc and cde in the figure are similar, so we can write 

The quantity on the left (apart from the question of sign) is the lateral magnification
m produced by the mirror. Since we indicate an inverted image as a negative magnifi-
cation, we symbolize this as �m. However, and , so we have at once 

(magnification), (35-16)

which is the relation we set out to prove.

READI NG EXERC IS E  35-4: Use Figs. 35-20c and d to modify the rays developed for
a concave mirror to describe what happens to rays 1, 2, 3, and 4 when they are incident on a
convex mirror. ■

READI NG EXERC IS E  35-5: A Central American vampire bat, dozing on the central
axis of a spherical mirror, is magnified by m ��4. Is its image (a) real or virtual, (b) inverted or
of the same orientation as the bat, and (c) on the same side of the mirror as the bat or on the
opposite side? ■

m � �
i
o

ca � ocd � i

de
ab

�
cd
ca

.

(m � �i/o)
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TOUCHSTONE EXAMPLE 35-3: Tarantula

A tarantula of height h sits cautiously before a spherical mirror
whose focal length has absolute value The image of the� f � � 40 cm.

tarantula produced by the mirror has the same orientation as the
tarantula and has height h� � 0.20h.
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35-9 Spherical Refracting Surfaces

We now turn from images formed by reflections to images formed by refraction
through smooth surfaces of transparent materials, such as glass. We’ve seen that
curved mirrors scatter light rays so that our eyes see them in new and different
ways—in different places, of different sizes, and perhaps upside down. But the most
powerful applications of the bending of light rays come when we consider the effect
of the refraction of rays passing through transparent materials. We can then under-
stand how the human eye works and construct optical devices with which we can look
at objects and bring them into focus (eye glasses), make them bigger (microscopes
and telescopes), or create images for storing (cameras). We shall consider only spheri-
cal surfaces, with radius of curvature r and center of curvature C. The light will be
emitted by a point object O in a medium with index of refraction n1; it will refract
through a spherical surface into a medium of index of refraction n2.

To determine where the image forms (that is, whether it is real or virtual), we
need to once again consider the change in direction of the rays of light that strike the
refracting surface. However, as opposed to image formation by mirrors where we are
concerned with reflected rays, we are concerned here with the ray that enters the re-
fracting material and is bent (refracted). The final answer to whether the image is vir-
tual (assuming that an observer intercepts the rays) or real (no observer necessary)
depends on the relative values of n1 and n2 and on the geometry of the situation.
Specifically, to understand image formation by spherical refracting surfaces, we draw a
normal to the surface. Then,

The refracted ray is in the plane determined by the incident ray and the normal. The rela-
tionship between the angle of refraction and the angle of incidence is represented in the law
of refraction (or Snell’s law): (Eq. 35-2).

Six possible results are shown in Fig. 35-21. In each part of the figure, the medium
with the greater index of refraction is shaded, and an object O is located on a central
axis passing through the center of curvature of the refracting surface. O is always in

n 1sin �1 � n 2sin �2

(a) Is the image real or virtual, and is it on the same side of the mir-
ror as the tarantula or the opposite side?

S O L U T I O N ■ The Ke y  I d e a here is that because the image
has the same orientation as the tarantula (the object), it must be
virtual and on the opposite side of the mirror. (You can easily see
this result if you have filled out Table 35-2).

(b) Is the mirror concave or convex, and what is its focal length f,
sign included?

S O L U T I O N ■ We cannot tell the type of mirror from the type of
image, because both types of mirror can produce virtual images.
Similarly, we cannot tell the type of mirror from the sign of the fo-
cal length f, as obtained from Eq. 35-12 or 35-13, because we lack
enough information to use either equation. However—and this is
the Ke y  I d e a here—we can make use of the magnification infor-
mation. We know that the ratio of image height to object height
h is 0.20. Thus, from Eq. 35-14 we have

� m � �
h�

h
� 0.20.

h�

Because the object and image have the same orientation, we know
that m must be positive: m = +0.20. Substituting this into Eq. 35-15
and solving for, say, i gives us

which does not appear to be of help in finding f. However, it is help-
ful if we substitute it into Eq. 35-13. That equation gives us

from which we find

Now we have it: Because o is positive, f must be negative, which
means that the mirror is convex with

(Answer)f � �40 cm.

f � �o/4.

1
f

�
1
i

	
1
o

�
1

�0.20o
	

1
o

�
1
o

(�5 	 1),

i � �0.20o,

This insect has been entombed in amber
for about 25 million years. Because we
view the insect through a curved refracting
surface, the image we see does not coin-
cide with the insect.
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the medium with index of refraction n1, to the left of the refracting surface. In each
part, a representative ray is shown refracting through the surface. Another ray along
the axis has �1 � 0, which means �2 � 0, so it is undeviated. The undeviated ray on the
central axis and the ray refracting from an off-axis surface point along the central axis
and suffice to determine the position of the image in each case.

At the point of refraction of each ray, the normal to the refracting surface is a ra-
dial line through the center of curvature C. Because of the refraction, the ray bends to-
ward the normal if it is entering a medium of greater index of refraction, and away
from the normal if it is entering a medium of lesser index of refraction. If the refracted
ray is then directed toward the central axis, it and other (undrawn) rays will form a real
image on that axis. If it is directed away from the central axis, it cannot form a real im-
age; however, backward extensions of it and other refracted rays can form a virtual im-
age, provided (as with mirrors) some of those rays are intercepted by an observer.

Real images I are formed (at image distance i) in parts a and b of Fig. 35-21, where
the refraction directs the ray toward the central axis. Virtual images are formed in parts c
and d, where the refraction directs the ray away from the central axis. Note that, in these
four parts, real images are formed when the object is relatively far from the refracting
surface, and virtual images are formed when the object is nearer the refracting surface. In
the final situations (Figs. 35-21e and f), refraction always directs the ray away from the
central axis and virtual images are always formed, regardless of the object distance.

Note the following major difference from reflected images:

For a single spherical refracting surface, real images form on the side of a refracting surface
that is opposite the object, and virtual images form on the same side as the object.

In Section 35-12, we shall show that (for light rays making only small angles with
the central axis) 

(35-17)
n 1

o
	

n 2

i
�

n 2 � n 1

r
.

C I
n2n1

O

r

io

Real

C I
n2n1

O

r

io

Real

CI
n2n1

O C
n2n1

O

Virtual
Virtual

I

CI
n2

O C
n2

O

Virtual

I

Virtual

(a) (b)

(c) (d)

(e) (f )

n1 n1

FIGURE 35-21 ■ Six possible ways in which an image can be formed by re-
fraction through a spherical surface of radius r and center of curvature C.
The surface separates a medium with index of refraction n1 from a medium
with index of refraction n2. The point object O is always in the medium with
n1, to the left of the surface. The material with the lesser index of refraction is
unshaded (think of it as being air, and the other material as being glass). Real
images are formed in (a) and (b); virtual images are formed in the other four
situations.
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Just as with mirrors, the object distance o is positive, and the image distance i is positive
for a real image and negative for a virtual image. However, to keep all the signs correct
in Eq. 35-17, we must use the following rule for the sign of the radius of curvature r :

When the object faces a convex refracting surface, the radius of curvature r is positive.
When it faces a concave surface, r is negative.

Be careful: This is just the reverse of the sign convention we have for mirrors. Figure
35-20a shows the case of a image formation by a mirror in which the values of o, i, r,
and f are all positive. Figure 35-21a shows the case of image formation by a lens in
which these values are all positive. Also, don’t forget that we write o, which is a dis-
tance, differently than O, which is a point, and 0, which is zero. Be careful not to con-
fuse these quantities.

READI NG EXERC IS E  35-6: A bee is hovering in front of the concave spherical
refracting surface of a glass sculpture. (a) Which of the general situations of Fig. 35-21 is like
this situation? (b) Is the image produced by the surface real or virtual, and is it on the same
side as the bee or the opposite side? ■

TOUCHSTONE EXAMPLE 35-4: Jurassic Mosquito

A Jurassic mosquito is discovered embedded in a chunk of amber,
which has index of refraction 1.6. One surface of the amber is
spherically convex with radius of curvature 3.0 mm (Fig. 35-22). The
mosquito head happens to be on the central axis of that surface
and, when viewed along the axis, appears to be buried 5.0 mm into
the amber. How deep is it really?

S O L U T I O N ■ The Ke y  I d e a here is that the head only
appears to be 5.0 mm into the amber because the light rays that the
observer intercepts are bent by refraction at the convex amber
surface. The image distance i differs from the actual object distance
o according to Eq. 35-17. To use that equation to find the actual
object distance, we first note:

1. Because the object (the head) and its image are on the same
side of the refracting surface, the image must be virtual and so 
i � �5.0 mm.

2. Because the object is always taken to be in the medium of
index of refraction n1, we must have n1 � 1.6 and n2 � 1.0.

3. Because the object faces a concave refracting surface, the
radius of curvature r is negative and so r � �3.0 mm.

Making these substitutions in Eq. 35-17,

yields

and (Answer)o � 4.0 mm.

1.6
o

	
1.0

�5.0 mm
�

1.0 � 1.6
�3.0 mm

n 1

o
	

n 2

i
�

n 2 � n 1

r
,

I O C

r
o

i

Mosquito
head

FIGURE 35-22 ■ A piece of amber with a mos-
quito from the Jurassic period, with the head
buried at point O. The spherical refracting surface
at the right end, with center of curvature C, pro-
vides an image I to an observer intercepting rays
from the object at O.

35-10 Thin Lenses

A lens is a transparent object with two refracting surfaces whose central axes coin-
cide. The common central axis is the central axis of the lens. When a lens is sur-
rounded by air, light refracts from the air into the lens, crosses through the lens, and
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then refracts back into the air. Each refraction can change the direction of travel of
the light.

A lens that causes light rays initially parallel to the central axis to converge is
(reasonably) called a converging lens. If, instead, it causes such rays to diverge, the
lens is a diverging lens. When an object is placed in front of a lens of either type, re-
fraction by the lens’s surface of light rays from the object can produce an image of the
object.

We shall consider only the special case of a thin lens—that is, a lens in which the
thickest part is thin compared to the object distance o, the image distance i, and the
radii of curvature r1 and r2 of the two surfaces of the lens. We shall also consider only
light rays that make small angles with the central axis (they are exaggerated in the fig-
ures here). In Section 35-12 we shall prove that for such rays, a thin lens has a focal
length f. Moreover, i and o are related to each other by 

(thin lens), (35-18)

which is the same form of equation we had for mirrors. We shall also prove that when a
thin lens with index of refraction n is surrounded by air, this focal length f is given by

(thin lens in air), (35-19)

which is often called the lens maker’s equation. Here r1 is the radius of curvature of
the lens surface nearer the object, and r2 is that of the other surface. The signs of these
radii are found with the rules in Section 35-9 for the radii of spherical refracting sur-
faces. If the lens is surrounded by some medium other than air (say, corn oil) with in-
dex of refraction nmedium, we replace n in Eq. 35-19 with . Keep in mind the
basis of Eqs. 35-18 and 35-19:

A lens can produce an image of an object only if it bends light rays, but it can bend light
rays only if its index of refraction differs from that of the surrounding medium.

Figure 35-23a shows a thin lens with convex outer surfaces, or sides. Once again,
we figure out how the rays of light will be bent by taking a small part of the lens, near
where the ray hits, and treating it as flat surface. Then, using the law of refraction
(Snell’s law, Eq. 35-2) which tells us n1sin �1 � n2sin �2, we know how the rays will be
bent.

When rays that are parallel to the central axis of the lens are sent through the
lens, they refract twice, as is shown enlarged in Fig. 35-23b. This double refraction
causes the rays to converge and pass through a common point F2 at a distance f from
the center of the lens. Hence, this lens is a converging lens; further, a real focal point
(or focus) exists at F2 (because the rays really do pass through it), and the associated
focal length is f. When rays parallel to the central axis are sent in the opposite direc-
tion through the lens, we find another real focal point at F1 on the other side of the
lens. For a thin lens, these two focal points are equidistant from the lens.

Because the focal points of a converging lens are real, we take the associated
focal lengths f to be positive, just as we do with a real focus of a concave mirror.
However, signs in optics can be tricky, so we had better check this in Eq. 35-19. The
left side of that equation is positive if f is positive; how about the right side? We ex-
amine it term by term. Because the index of refraction n of glass or any other ma-
terial is greater than 1, the term must be positive. Because the source of the
light (which is the object) is at the left and faces the convex left side of the lens, the

(n � 1)

n/nmedium

1
f

� (n � 1)� 1
r1

�
1
r2
�

1
f

�
1
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radius of curvature r1 of that side must be positive according to the sign rule for re-
fracting surfaces. Similarly, because the object faces a concave right side of the lens,
the radius of curvature r2 of that side must be negative. Thus, the term 
is positive, the whole right side of Eq. 35-19 is positive, and all the signs are
consistent.

Figure 35-23c shows a thin lens with concave outer surfaces. When rays that are
parallel to the central axis of the lens are sent through this lens, they refract twice, as
is shown enlarged in Fig. 35-23d; these rays diverge, never passing through any com-
mon point, and so this lens is a diverging lens. However, extensions of the rays do pass
through a common point F2 at a distance f from the center of the lens. Hence, the lens
has a virtual focal point at F2. (If your eye intercepts some of the diverging rays, you
perceive a bright spot to be at F2, as if it is the source of the light.) Another virtual fo-
cus exists on the opposite side of the lens at F1, symmetrically placed if the lens is thin.
Because the focal points of a diverging lens are virtual, we take the focal length f to
be negative. Note: For a thin lens, the two focal points are at the same distance from
the lens on either side even if the curvatures of the two sides are not equal and
opposite.

Images from Thin Lenses
We now consider the types of image formed by converging and diverging lenses. In
thinking about the image formed of an object by a lens, it is important to keep in
mind that the object scatters light falling on it in all directions. However, only those
rays of light that fall on the lens are refracted and have their directions changed.
Thus, all of the rays that are incident on the lens contribute to the image that
forms.*

Figure 35-24a shows an object O outside the focal point F1 of a converging lens.
The two rays drawn in the figure show that the lens forms a real, inverted image I of
the object on the side of the lens opposite the object.

(1/r1 � 1/r2)
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* In Section 35-8, we use Eq. 35-12 to construct diagrams (Figs. 35-19 and 35-20) for spherical mirrors in
which the center curvature of the mirror is replaced by its focal point. We can construct similar diagrams
for thin lenses using Eq. 35-19 to determine the locations of F based on the value of f.

r2 r1
f

F1C2 F2 C1

(a) (b)

r1

f

F2C1 F1 C2

(c)

r2

(d)

Extension

FIGURE 35-23 ■ (a) Rays initially parallel
to the central axis of a converging lens are
made to converge to a real focal point F2

by the lens. The lens is thinner than drawn,
with a width like that of the vertical line
through it, where we shall consider all the
bending of rays to occur. (b) An enlarge-
ment of the top part of the lens of (a);
normals to the surfaces are shown dashed.
Note that both refractions of the ray at the
surfaces bend the ray downward, toward
the central axis. (c) The same initially
parallel rays are made to diverge by a
diverging lens. Extensions of the diverging
rays pass through a virtual focal point F2.
(d) An enlargement of the top part of the
lens of (c). Note that both refractions of
the ray at the surfaces bend the ray
upward, away from the central axis.

A fire is being started by focusing sunlight
onto newspaper by means of a converging
lens made of clear ice. The lens was made
by freezing water in the shallow vessel
(which has a curved bottom).



When the object is placed inside the focal point F1, as in Fig. 35-24b, the lens
forms a virtual image I on the same side of the lens as the object and with the same
orientation but larger in size. In this situation, the lens acts as a magnifying glass.
Hence, a converging lens can form either a real image or a virtual image, depending
on whether the object is outside or inside the focal point, respectively.

Figure 35-24c shows an object O in front of a diverging lens. Regardless of the ob-
ject distance (regardless of whether O is inside or outside the virtual focal point), this
lens produces a virtual image that is on the same side of the lens as the object and has
the same orientation.

As with mirrors, we take the image distance i to be positive when the image is
real and negative when the image is virtual. However, the locations of real and virtual
images from lenses are the reverse of those from mirrors:

Real images form on the side of a lens that is opposite the object, and virtual images form
on the side where the object is.

The lateral magnification m produced by converging and diverging lenses is given by
Eqs. 35-14 and 35-15, the same as for mirrors.

You have been asked to absorb a lot of information in this section, and you
should organize it for yourself by filling in Table 35-3 for thin lenses. Under Image Lo-
cation note whether the image is on the same side of the lens as the object or on the
opposite side. Under Image Type note whether the image is real or virtual. Under Im-
age Orientation note whether the image has the same orientation as the object or is
inverted.
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FIGURE 35-24 ■ (a) A real, inverted image I
is formed by a converging lens when the object
O is outside the focal point F1. (b) The image I
is virtual and has the same orientation as O
when O is inside the focal point. (c) A diverg-
ing lens forms a virtual image I, with the same
orientation as the object O, whether O is
inside or outside the focal point of the lens.

TA B L E 3 5 - 3
Organizing Table for Lenses

Lens Object Image Sign

Type Location Location Type Orientation of f of i of m

Converging Inside F

Outside F

Diverging Anywhere

Locating Images of Extended Objects with Principal Rays
Converging Lens: Object Outside of F1 Figure 35-25a shows an object O outside fo-
cal point F1 of a converging lens. We can graphically locate the image of any off-axis
point on such an object (such as the tip of the arrow in Fig. 35-25a) by drawing a ray
diagram with any two of three easy-to-draw principal rays through the point. These
principal rays are chosen for convenience from the infinite number of rays that pass
through the lens to form the image:
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1. A ray (from outside the focal point) that is initially parallel to the central axis of a
converging lens will pass through focal point F2 (ray 1 in Fig. 35-25a).

2. A ray that initially passes through focal point F1 will emerge from a converging
lens parallel to the central axis (ray 2 in Fig. 35-25a).

3. A ray that is initially directed toward the center of a converging lens will emerge
from the lens with no change in its direction (ray 3 in Fig. 35-25a) because the ray
encounters the two sides of the lens where they are almost parallel.

The image of the point is located where the rays intersect on the far side of the con-
verging lens. The image of the object is found by locating the images of two or more
of its points.

Rules for Other Situations Figure 35-25b shows how the extensions of the three spe-
cial rays can be used to locate the image of an object placed inside focal point F1 of a
converging lens. Notice that although ray 2 is determined by the focal point, no part of
the ray goes through it. It is the reversal of ray 1—what ray 1 would do if it came from
the other side of the lens. We suggest you develop rules like these three for Fig. 35-25a
and 35-25b.

You need to modify the descriptions of rays 1 and 2 to use them to locate an im-
age placed (anywhere) in front of a diverging lens. In Fig. 35-25c, for example, we find
the intersection of ray 3 and the backward extensions of rays 1 and 2.

Two-Lens Systems
When an object O is placed in front of a system of two lenses whose central axes coin-
cide, we can locate the final image of the system (that is, the image produced by the
lens farther from the object) by working in steps. Let lens 1 be the nearer lens and
lens 2 the farther lens.

Step 1. We let o1 represent the distance of object O from lens 1. We then find the dis-
tance i1 of the image produced by lens 1, by use of Eq. 35-18. The image could be
real or virtual.

Step 2. Now, ignoring the presence of lens 1, we treat the image found in step 1 as the
object for lens 2. If this new object is located beyond lens 2, the object distance o2

for lens 2 is taken to be negative. (Note this exception to the rule that says the ob-
ject distance is positive; the exception occurs because the object here is on the
side opposite the source of light.) Otherwise, o2 is taken to be positive as usual.

FIGURE 35-25 ■ Three special rays allow
us to locate an image formed by a thin lens
whether the object O is (a) outside or (b)
inside the focal point of a converging lens,
or (c) anywhere in front of a diverging
lens.



We then find the distance i2 of the (final) image produced by lens 2 by use of
Eq. 35-18.

A similar step-by-step solution can be used for any number of lenses or if a mirror is
substituted for lens 2.

The overall lateral magnification M produced by a system of two lenses is the
product of the lateral magnifications m1 and m2 produced by the two lenses:

(35-20)M � m 1m 2.
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TOUCHSTONE EXAMPLE 35-6: Jalapeño Seed

Figure 35-26a shows a jalapeño seed O1 that is placed in front of
two thin symmetrical coaxial lenses 1 and 2, with focal lengths f1 �
	24 cm and f2 � 	9.0 cm, respectively, and with lens separation 
L � 10 cm. The seed is 6.0 cm from lens 1. Where does the system
of two lenses produce an image of the seed?

S O L U T I O N ■ We could locate the image produced by the
system of lenses by tracing light rays from the seed through the
two lenses. However, the Key Idea here is that we can, instead,
calculate the location of that image by working through the
system in steps, lens by lens. We begin with the lens closer to the

TOUCHSTONE EXAMPLE 35-5: Praying Mantis

A praying mantis preys along the central axis of a thin symmetric
lens, 20 cm from the lens. The lateral magnification of the mantis
provided by the lens is m = �0.25, and the index of refraction of the
lens material is 1.65.

(a) Determine the type of image produced by the lens, the type of
lens, whether the object (mantis) is inside or outside the focal point,
on which side of the lens the image appears, and whether the image
is inverted.

S O L U T I O N ■ The Ke y  I d e a here is that we can tell a lot
about the lens and the image from the given value of m. From it
and Eq. 35-16 (m = �i/o), we see that

Even without finishing the calculation, we can answer the questions.
Because o is positive, i here must be positive. That means we have a
real image, which means we have a converging lens (the only lens
that can by itself produce a real image). The object must be outside
the focal point (the only way a real image can be produced). Also,
the image is inverted and on the side of the lens opposite the ob-
ject. (That is how a converging lens makes a real image.)

(b) What are the two radii of curvature of the lens?

S O L U T I O N ■ The Ke y  I d e a s here are these:

1. Because the lens is symmetric, r1 (for the surface nearer the
object) and r2 have the same magnitude r.

2. Because the lens is a converging lens, the object faces a convex
surface on the nearer side and so r1 � 	r. Similarly, it faces a
concave surface on the farther side and so r2 � �r.

i � �(m)(o) � 0.25o.

3. We can relate these radii of curvature to the focal length f via
the lens maker’s equation, Eq. 35-19 (our only equation involv-
ing the radii of curvature of a lens).

4. We can relate f to the object distance o and image distance i
via Eq. 35-18.

We know o but we do not know i. Thus, our starting point is to fin-
ish the calculation for i in part (a); we obtain

Now Eq. 35-18 gives us

from which we find f � 4.0 cm.
Equation 35-19 then gives us

or, with known values inserted,

which yields

(Answer)r � (0.65)(2)(4.0 cm) � 5.2 cm.

1
4.0 cm

� (1.65 � 1)
2
r

,

1
f

� (n � 1)� 1
r1

�
1
r2
� � (n � 1)� 1

	r
�

1
�r �

1
f

�
1
o

	
1
i

�
1

20 cm
	

1
5.0 cm

,

i � (0.25)(20 cm) � 5.0 cm.



35-11 Optical Instruments

The human eye is a remarkably effective organ, but its range can be extended in many
ways by optical instruments such as eyeglasses, simple magnifying lenses, motion pic-
ture projectors, cameras (including TV cameras), microscopes, and telescopes. Many
such devices extend the scope of our vision beyond the visible range; satellite-borne
infrared cameras, x-ray microscopes, and radio telescopes are examples. Furthermore,
electron microscopes and magnets in particle accelerators can focus electron and pro-
ton beams.

The mirror and thin-lens formulas can be applied only as approximations to most
sophisticated optical instruments. The lenses in typical laboratory microscopes are by
no means “thin.” In most optical instruments the lenses are compound lenses; that is,
they are made of several components, the interfaces rarely being exactly spherical. A
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(a)

(b)

(c)

Lens 1 Lens 2

Lo1

Lens 1

L

o1

O1
I 1

i1

f1

Lens 2

O2

I 2

i2
o2

f2

seed. The image we seek is the final one — that is, image I2 pro-
duced by lens 2.

Lens 1. Ignoring lens 2, we locate the image I1 produced by
lens 1 by applying Eq. 35-18 to lens 1 alone:

The object O1 for lens 1 is the seed, which is 6.0 cm from the lens;
thus, we substitute o1 � 	6.0 cm. Also substituting the given value
of f1, we then have

which yields i1 � �8.0 cm.
This tells us that image I1 is 8.0 cm to the left of lens 1 and vir-

tual. (We could have guessed that it is virtual by noting that the
seed is inside the focal point of lens 1.) Since I1 is virtual, it is on the
same side of the lens as object O1 and has the same orientation as
the seed, as shown in Fig. 35-26b.

Lens 2. In the second step of our solution, the Ke y  I d e a is
that we can treat image I1 as an object O2 for the second lens and
now ignore lens 1. We first note that this object O2 is outside the
focal point of lens 2. So the image I2 produced by lens 2 must be
real, inverted, and on the side of the lens opposite O2. Let us see.

The distance o2 between this object O2 and lens 2 is, from 
Fig. 35-26c,

Then Eq. 35-18, now written for lens 2, yields

Hence, (Answer)

The plus sign confirms our guess: Image I2 produced by lens 2 is
real, inverted, and on the side of lens 2 opposite O2, as shown in 
Fig. 35-26c.

i2 � 	18 cm.

1
	18 cm

	
1
i2

�
1

	9.0 cm
.

o2 � L 	 � i1 � � 10 cm 	 8.0 cm � 18 cm.

1
	6.0 cm

	
1
i1

�
1

	24 cm
,

1
o1

	
1
i1

�
1
f1

.

FIGURE 35-26 ■ (a) Seed O1 is distance o1 from a
two-lens system with lens separation L. We use the
arrow to orient the seed. (b) The image I1 produced
by lens 1 alone. (c) Image I1 acts as object O2 for
lens 2 alone, which produces the final image I2.



more complex treatment is needed for these systems. Now we discuss three optical in-
struments, assuming for simplicity, that the thin-lens formulas apply.

Simple Magnifying Lens
The normal human eye can focus a sharp image of an object on the retina (at the
rear of the eye) if the object is located anywhere from infinity to a certain point
called the near point Pn. If you move the object closer to the eye than the near point,
the perceived retinal image becomes fuzzy. The location of the near point normally
varies with age. We have all heard about people who claim not to need glasses but
read their newspapers at arm’s length; their near points are receding. To find your
own near point, remove your glasses or contacts if you wear any, close one eye, and
then bring this page closer to your open eye until it becomes indistinct. In what fol-
lows, we take the near point to be 25 cm from the eye, a bit more than the typical
value for 20-year-olds.

Figure 35-27a shows an object O placed at the near point Pn of an eye. The size of
the image of the object produced on the retina depends on the angle that the object
occupies in the field of view from that eye. By moving the object closer to the eye, as
in Fig. 35-27b, you can increase the angle and, hence, the possibility of distinguishing
details of the object. However, because the object is then closer than the near point, it
is no longer in focus; that is, the image is no longer clear.

You can restore the clarity by looking at O through a converging lens, placed so
that O is just inside the focal point F1 of the lens, which is at focal length f (Fig. 35-
27c). What you then see is the virtual image of O produced by the lens. That image is
farther away than the near point; thus, the eye can see it clearly.

Moreover, the angle occupied by the virtual image is larger than the largest an-
gle that the object alone can occupy and still be seen clearly. The angular magnifica-
tion (not to be confused with lateral magnification m) of what is seen is 

In words, the angular magnification of a simple magnifying lens is a comparison of the
angle occupied by the image the lens produces with the angle occupied by the object
when the object is moved to the near point of the viewer.

From Fig. 35-27, assuming that O is at the focal point of the lens, and approximat-
ing tan as and tan as for small angles, we have 

and �� � h/f.� � h/25 cm

������

m� � ��/�.

m �

�
��

�
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(b)
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(c)

O
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To distant virtual image

FIGURE 35-27 ■ (a) An object O of
height h, placed at the near point of a hu-
man eye, occupies angle in the eye’s view.
(b) The object is moved closer to increase
the angle, but now the observer cannot
bring the object into focus. (c) A converg-
ing lens is placed between the object and
the eye, with the object just inside the focal
point F1 of the lens. The image produced
by the lens is then far enough away to be
focused by the eye, and the image occupies
a larger angle than object O does in (a).��

�



We then find that 

(maximum magnification). (35-21)

Note that this is an equation for a person with a near point of 25 cm. It is an example
of how the study of optics depends on the observer. That is, the value of the magnifi-
cation depends not only on the lens but also on the person using the lens.

Compound Microscope
Figure 35-28 shows a thin-lens version of a compound microscope. The instrument
consists of an objective (the front lens) of focal length fobj and an eyepiece (the lens
near the eye) of focal length feye. It is used for viewing small objects that are very close
to the objective.

The object O to be viewed is placed just outside the first focal point Fobj of the ob-
jective lens, close enough to Fobj that we can approximate its distance o from the lens
as being fobj. Combining this with a consideration of the thin-lens equation

(Eq. 35-18)

when an object under a microscope is very close to the focal point, we see that ob-
ject distance o is approximately equal to focal length of the objective lens fobj, so
1/fobj � 1/o is very close to zero. As a result, the image distance i is very sensitive to
exactly how close the object is to the focal point.

The separation between the lenses is then adjusted so that the enlarged, inverted,
real image I produced by the objective is located just inside the first focal point of the
eyepiece. The tube length s shown in Fig. 35-28 is actually large relative to fobj, and we can
approximate the distance i between the objective and the image I as being length s.

From Eq. 35-15, and using our approximations for o and i, we can write the lateral
magnification produced by the objective as 

(35-22)

Since the image I is located just inside the focal point of the eyepiece, the eyepiece
acts as a simple magnifying lens, and an observer sees a final (virtual, inverted) image

through it. The overall magnification of the instrument is the product of the lateral
magnification mobj produced by the objective (Eq. 35-22) and the angular magnifica-
tion produced by the eyepiece meye � m� (Eq. 35-21) so that

(microscope magnification). (35-23)M � mobjm eye � �
s

fobj

25 cm
feye

I�

F�1

mobj � �
i
o

� �
s

fobj
.

F�1

1
f

�
1
o

	
1
i

m� �
25 cm

f
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fobj feyes

Objective

To distant virtual image

Eyepiece
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F2
O

I

F1'

I'
FIGURE 35-28 ■ A thin-lens representation of a compound microscope (not
to scale). The objective produces a real image I of object O just inside the focal
point of the eyepiece. Image I then acts as an object for the eyepiece, which
produces a virtual final image I� that is seen by the observer. The objective has
focal length fobj; the eyepiece has focal length feye; and s is the tube length.

F�1



The microscope designer must also take into account the difference between real
lenses and the ideal thin lenses we have discussed. A real lens with spherical surfaces
does not form sharp images, a flaw called spherical aberration. Also, because refraction
by the two surfaces of a real lens depends on wavelength, a real lens does not focus
light of different wavelengths to the same point, a flaw called chromatic aberration.

Refracting Telescope
Telescopes come in a variety of forms. The form we describe here is the simple re-
fracting telescope that consists of an objective and an eyepiece; both are represented
in Fig. 35-29 with simple lenses, although in practice, as is also true for most micro-
scopes, each lens is usually a compound-lens system to reduce distortions.

The lens arrangements for telescopes and for microscopes are similar, but tele-
scopes are designed to view large objects, such as galaxies, stars, and planets, at large
distances, whereas microscopes are designed for just the opposite purpose. This differ-
ence requires that in the telescope of Fig. 35-29 the second focal point of the objective
F2 coincide with the first focal point of the eyepiece , whereas in the microscope of
Fig. 35-28 these points are separated by the tube length s.

In Fig. 35-29a, parallel rays from a distant object strike the objective, making an
angle with the telescope axis and forming a real, inverted image at the common
focal point F2, . This image I acts as an object for the eyepiece, through which an ob-
server sees a distant (still inverted) virtual image . The rays defining the image make
an angle with the telescope axis.

The angular magnification of the telescope is . From Fig. 35-29b, for rays
close to the central axis, we can write and , which gives us

(telescope), (35-24)

where the minus sign indicates that is inverted. In words, the angular magnification
of a telescope is a comparison of the angle occupied by the image the telescope pro-
duces with the angle occupied by the distant object as seen without the telescope.

Magnification is only one of the design factors for an astronomical telescope and
is indeed easily achieved. A good telescope needs light-gathering power, which deter-
mines how bright the image is. This is important for viewing faint objects such as
distant galaxies and is accomplished by making the objective diameter as large as pos-
sible. A telescope also needs resolving power, which is the ability to distinguish

I�

m � � �
fobj

feye

�eye � h�/feye�obj � h�/fobj

�eye/�objm �

�eye

I�
F�1

�obj

F �1
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FIGURE 35-29 ■ (a) A thin-lens representation of a refracting telescope. The objective
produces a real image I of a distant source of light (the object), with approximately parallel
light rays at the objective. (One end of the object is assumed to lie on the central axis.)
Image I, formed at the common focal points F2 and , acts as an object for the eyepiece,
which produces a virtual final image at a great distance from the observer. The objective
has focal length fobj; the eyepiece has focal length feye. (b) Image I has height and takes up
angle �obj measured from the objective and angle �eye measured from the eyepiece.
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between two distant objects (stars, say) whose angular separation is small. Field of
view is another important design parameter. A telescope designed to look at galaxies
(which occupy a tiny field of view) is much different from one designed to track mete-
ors (which move over a wide field of view).

The telescope designer must also take into account the differences between real
lenses and the ideal thin lenses we have discussed. Designers use compound lens sys-
tems to minimize spherical and chromatic aberrations.

This brief discussion by no means exhausts the design parameters of astronomical
telescopes—many others are involved. We could make a similar listing for any other
high-performance optical instrument.

35-12 Three Proofs

The Spherical Mirror Formula (Eq. 35-13)
Let us prove that Eq. 35-13, 1/i 	 1/o � 1/f is true for a spherical mirror. Figure 35-30
shows a point object O placed on the central axis of a concave spherical mirror, out-
side its center of curvature C. Here, we use the reflection principle that comes from
treating the mirror as approximately flat near where the ray hits. A ray from O that
makes an angle 
 with the axis intersects the axis at I after reflection from the mirror
at a. A ray that leaves O along the axis is reflected back along itself at c and also
passes through I. Thus, I is the image of O; it is a real image because light actually
passes through it. Let us find the image distance i.

A trigonometry theorem that is useful here tells us that an exterior angle of a tri-
angle is equal to the sum of the two opposite interior angles. Applying this to triangles
OaC and OaI in Fig. 35-30 yields 

and

If we eliminate between these two equations, we find

(35-25)

We can write angles , , and , in radian measure, as 

and (35-26)

Only the equation for is exact, because the center of curvature of arc ac is at C.
Here, ac is the arc extending from the point that the ray reflects from the mirror to
the central axis. However, the equations for and are approximately correct if these
angles are small enough (that is, for rays close to the central axis). Substituting Eqs.
35-26 into Eq. 35-25, using Eq. 35-12 to replace r with 2f, and canceling ac lead exactly
to Eq. 35-13, the relation that we set out to prove.

The Refracting Surface Formula (Eq. 35-17)
Next we prove that when light from an object passes through a medium having an in-
dex of refraction n1 and encounters a smooth spherical refracting surface of a
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FIGURE 35-30 ■ A concave spherical
mirror forms a real point image I by re-
flecting light rays from a point object O.



medium with an index of refraction n2, the image and object distances are related by
Eq. 35-17,

Let’s start by considering how an incident ray from point object O in Fig. 35-31 is re-
fracted. According to Eq. 35-2,

If is small, and will also be small and we can replace the sines of these an-
gles with the angles themselves. Thus, the equation above becomes 

(35-27)

We again use the fact that an exterior angle of a triangle is equal to the sum of the
two opposite interior angles. Applying this to triangles COa and ICa yields

and (35-28)

If we use Eqs. 35-28 to eliminate and from Eq. 35-27, we find

(35-29)

In radian measure the angles , , and , are 

(35-30)

Only the second of these equations is exact. The other two are approximate because I
and O are not the centers of circles of which ac is a part. However, for small enough
(for rays close to the axis), the inaccuracies in Eqs. 35-30 are small. Substituting
Eqs. 35-30 into Eq. 35-29 leads directly to Eq. 35-17, the relation we set out to prove.

The Thin-Lens Formulas (Eqs. 35-18 and 35-19)
Finally, we set out to show that for a thin lens, the object and image distances are re-
lated to the focal length of the lens by Eq. 35-18, 1/o 	 1/i � 1/f. Our plan is to con-
sider each lens surface as a separate refracting surface, and to use the image formed
by the first surface as the object for the second.

We start with the thick glass “lens” of length L in Fig. 35-32a whose left and right
refracting surfaces are ground to radii and . A point object is placed near the
left surface as shown. A ray leaving along the central axis is not deflected on enter-
ing or leaving the lens.

A second ray leaving at an angle with the central axis intersects the 
left surface at point , is refracted, and intersects the second (right) surface at point

. The ray is again refracted and crosses the axis at , which, being the intersection of
two rays from , is the image of point , formed after refraction at two surfaces.

Figure 35-32b shows that the first (left) surface also forms a virtual image of at
. To locate , we use Eq. 35-17,

Putting for air and for lens glass and bearing in mind that the image
distance is negative (that is, in Fig. 35-32b), we obtain 

(35-31)
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FIGURE 35-31 ■ A real point image I of a
point object O is formed by refraction at a
spherical convex surface between two
media.



Figure 35-32c shows the second surface again. Unless an observer at point were
aware of the existence of the first surface, the observer would think that the light
striking that point originated at point in Fig. 35-32b and that the region to the left of
the surface was filled with glass as indicated. Thus, the (virtual) image formed by
the first surface serves as a real object for the second surface. The distance of this
object from the second surface is 

(35-32)

To apply Eq. 35-17 to the second surface, we must insert and be-
cause the object now is effectively imbedded in glass. If we substitute with Eq. 35-31,
then Eq. 35-17 becomes 

(35-33)

Let us now assume that the thickness L of the “lens” in Fig. 35-32a is so small that
we can neglect it in comparison with our other linear quantities (such as

). In all that follows we make this thin-lens approximation. Putting
in Eq. 35-33 and rearranging the right side lead to 

(35-34)

Adding Eqs. 35-31 and 35-34 leads to 

Finally, calling the original object distance simply o and the final image distance sim-
ply i leads to 

(35-35)

which, with r� � r1 and r � r2, reduces to Eqs. 35-18 and 35-19, the relations we set
out to prove.
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face at the right side. The ray traveling
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Problems

SEC. 35-2 ■ REFLECTION AND REFRACTION

1. Light in a Vacuum Light in vacuum is incident on the surface of
a glass slab. In the vacuum the beam makes an angle of 32.0° with
the normal to the surface, while in
the glass it makes an angle of 21.0°
with the normal. What is the index
of refraction of the glass?

2. Two Perpendicular Surfaces Fig-
ure 35-33 shows light reflecting from
two perpendicular reflecting sur-
faces A and B. Find the angle be-
tween the incoming ray i and the
outgoing ray r�.

3. Rectangular Metal
Tank When the rec-
tangular metal tank
in Fig. 35-34 is filled
to the top with an un-
known liquid, an ob-
server with eyes level
with the top of the
tank can just see the
corner E; a ray that
refracts toward the
observer at the top surface of the liquid is shown. Find the index of
refraction of the liquid.

4. Claudius Ptolemy In about A.D. 150, Claudius Ptolemy gave the
following measured values for the angle of incidence �1 and the an-
gle of refraction �2 for a light beam passing from air to water:

�1 �2 �1 �2

10° 8°00� 50° 35°00�

20° 15°30� 60° 45°30�

30° 22°30� 70° 45°30�

40° 29°00� 80° 50°00�

(a) Are these data consistent with
the law of refraction? (b) If so,
what index of refraction results?
These data are interesting as per-
haps the oldest recorded physical
measurements.

5. Vertical Pole In Fig. 35-35, a
2.00-m-long vertical pole extends
from the bottom of a swimming
pool to a point 50.0 cm above the
water. Sunlight is incident at 55.0°
above the horizon. What is the
length of the shadow of the pole on
the level bottom of the pool?

6. Four Transparent Materials In Fig. 35-36, light is incident at an-
gle �1 � 40.1° on a boundary between two transparent materials.
Some of the light then travels down through the next three layers

of transparent materials, while some
of it reflects upward and then es-
capes into the air. What are the val-
ues of (a) �5 and (b) �4?

7. Sideways Displacement Prove
that a ray of light incident on the
surface of a sheet of plate glass of
thickness t emerges from the oppo-
site face parallel to its initial direc-
tion but displaced sideways, as in
Fig. 35-37. Show that, for small an-
gles of incidence �, this displacement
is given by

x � t� ,

where n is the index of refraction of
the glass and � is measured in radians.

8. White Light A ray of white light
makes an angle of incidence of 35° on
one face of a prism of fused quartz;
the prism’s cross section is an equilat-
eral triangle. Sketch the light as it
passes through the prism, showing the
paths traveled by rays representing
(a) blue light, (b) yellow-green light,
and (c) red light.

9. Triangu-
lar Prism In
Fig. 35-38, a
ray is inci-
dent on one
face of a tri-
angular glass
prism in air.
The angle of
incidence �
is chosen so
that the emerging ray also makes the same angle � with the normal
to the other face. Show that the index of refraction n of the glass
prism is given by

where � is the vertex angle of the prism and � is the deviation an-
gle, the total angle through which the beam is turned in passing
through the prism. (Under these
conditions the deviation angle � has
the smallest possible value, which is
called the angle of minimum devia-
tion.)

10. Perpendicular Mirrors In Fig.
35-39 two perpendicular mirrors
form the sides of a vessel filled with

n �
sin 1

2(� 	 �)
sin 1

2�
,

n � 1
n
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water. (a) A light ray is incident from above, normal to the water
surface. Show that the emerging ray is parallel to the incident ray.
Assume that there are reflections at both mirror surfaces. (b) Re-
peat the analysis for the case of oblique incidence with the incident
ray in the plane of the figure.

SEC. 35-3 ■ TOTAL INTERNAL REFLECTION

11. Glass Slab In Fig. 35-40 a light
ray enters a glass slab at point A and
then undergoes total internal reflec-
tion at point B. What minimum
value for the index of refraction of
the glass can be inferred from this
information?

12. Benzene The index of refrac-
tion of benzene is 1.8. What is the
critical angle for a light ray traveling
in benzene toward a plane layer of
air above the benzene?

13. Perpendicular to Face In Fig.
35-41, a ray of light is perpendicular
to the face ab of a glass prism (n �
1.52). Find the largest value of the
angle � so that the ray is totally re-
flected at face ac if the prism is im-
mersed (a) in air and (b) in water.

14. Point Source A point source of
light is 80.0 cm below the surface of
a body of water. Find the diameter
of the circle at the surface through which light emerges from the
water.

15. Solid Glass Cube A solid glass cube, of edge length 10 mm and
index of refraction 1.5, has a small spot at its center. (a) What parts
of each cube face must be covered to prevent the spot from being
seen, no matter what the direction of viewing? (Neglect light that
reflects inside the cube and then refracts out into the air.) (b) What
fraction of the cube surface must be so covered?

16. Fused Quartz A ray of white light travels through fused quartz
that is surrounded by air. If all the color components of the light
undergo total internal reflection at the surface, then the reflected
light forms a reflected ray of white light. However, if the color com-
ponent at one end of the visible range (either blue or red) partially
refracts through the surface into the air, there is less of that compo-
nent in the reflected light. Then the reflected light is not white but
has the tint of the opposite end of the visible range. (If blue were
partially lost to refraction, then the reflected beam would be red-
dish, and vice versa.) Is it possible for the reflected light to be (a)
bluish of (b) reddish? (c) If so, what must be the angle of incidence
of the original white light on the
quartz surface? (See Fig. 35-31.)

17. 90° Prism In Fig. 35-42, light en-
ters a 90° trianglular prism at point
P with incident angle � and then
some of it refracts at point Q with
an angle of refraction of 90°. (a)
What is the index of refraction of
the prism in terms of �? (b) What,
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numerically, is the maximum value that the index of refraction can
have? Explain what happens to the light at Q if the incident angle
at Q is (c) increased slightly and (d) decreased slightly.

18. Apex Angle Given Suppose the prism of Fig. 35-38 has apex
angle � � 60.0° and index of refraction n � 1.60. (a) What is small-
est angle of incidence � for which a ray can enter the left face of the
prism and exit the right face? (b) What angle of incidence � is re-
quired for the ray to exit the prism with an identical angle � for its
refraction, as it does in Fig. 35-38? (See Problem 9.)

SEC. 35-4 ■ POLARIZATION BY REFLECTION

19. Light in Water Light traveling in water of refractive index 1.33
is incident on a plate of glass with index of refraction 1.53. At what
angle of incidence is the reflected light fully polarized?

20. Completely Polarized (a) At what angle of incidence will the
light reflected from water be completely polarized? (b) Does this
angle depend on the wavelength of the light?

SEC. 35-6 ■ PLANE MIRRORS

21. Moth A moth at about eye level is 10 cm in front of a plane
mirror; you are behind the moth, 30 cm from the mirror. What is the
distance between your eyes and the apparent position of the moth’s
image in the mirror?

22. Hummingbird You look through a camera toward an image of
a hummingbird in a plane mirror. The camera is 4.30 m in front 
of the mirror. The bird is at camera level, 5.00 m to your right and
3.30 m from the mirror. What is the distance between the camera
and the apparent position of the bird’s image in the mirror?

23. Two Verti-
cal Mirrors Fig-
ure 35-43a is an
overhead view
of two vertical
plane mirrors
with an object
O placed be-
tween them. If
you look into
the mirrors, you
see multiple im-
ages of O. You can find them by drawing the reflection in each mir-
ror of the angular region between the mirrors, as is done for the
left-hand mirror in Fig. 35-43b. Then draw the reflection of the re-
flection. Continue this on the left and on the right until the reflec-
tions meet or overlap at the rear of the mirrors. Then you can count
the number of images of O. (a) If � � 90°, how many images of O
would you see? (b) Draw their locations and orientations (as in Fig.
35-43b).

24. Repeat Repeat Problem 23 for the mirror angle � equal to (a)
45°, (b) 60°, and (c) 120°. (d) Explain why there are several possible
answers for (c).

25. Prove That Prove that if a plane mirror is rotated through an
angle 
, the reflected beam is rotated through an angle 2
. Show
that this result is reasonable for 
 � 45°.

26. Corridor Figure 35-44 shows an overhead view of a corridor
with a plane mirror M mounted at one end. A burglar B sneaks
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along the corridor directly toward
the center of the mirror. If d � 3.0
m, how far from the mirror will she
be when the security guard S can
first see her in the mirror?

27. S and d You put a point source
of light S a distance d in front of a
screen A. How is the light intensity
at the center of the screen changed
if you put a completely reflecting
mirror M a distance d behind the
source, as in Fig. 35-45? (Hint: Use
Eq. 34-25.)

28. Small Lightbulb Figure 35-46 shows a
small lightbulb suspended above the surface of
the water in a swimming pool. The bottom of
the pool is a large mirror. How far below the
mirror’s surface is the image of the bulb?
(Hint: Construct a diagram of two rays like
that of Fig. 35-14, but take into account the
bending of light rays by refraction. Assume
that the rays are close to a vertical axis through
the bulb, and use the small-angle approxima-
tion that sin � � tan �.)

SEC. 35-8 ■ IMAGES FROM

SPHERICAL MIRRORS

29. Concave Shaving Mirror A con-
cave shaving mirror has a radius of
curvature of 35.0 cm. It is positioned
so that the (upright) image of a
man’s face is 2.50 times the size of
the face. How far is the mirror from
the face?

30. Fill in Table Fill in Table 35-4,
each row of which refers to a different combination of an object
and either a plane mirror, a spherical convex mirror, or a spherical
concave mirror. Distances are in centimeters. If a number lacks a
sign, find the sign. Sketch each combination and draw in enough
rays to locate the object and its image.

31. Short Straight Object A short straight object of length L lies
along the central axis of a spherical mirror of focal length f, a dis-
tance o from the mirror. (a) Show that its image in the mirror has a
length L� where

(Hint: Locate the two ends of the object.) (b) Show that the longitu-
dinal magnification m� (� L�/L) is equal to m2, where m is the lat-
eral magnification.

32. Luminous Point (a) A luminous point is moving at speed vO to-
ward a spherical mirror with radius of curvature r, along the central
axis of the mirror. Show that the image of this point is moving at
speed

where o is the distance of the luminous point from the mirror at
any given time. (Hint: Start with Eq. 35-13.) Now assume that the
mirror is concave, with r � 15 cm, and let vO � 5.0 cm/s. Find the
speed of the image when (b) o � 30 cm (far outside the focal
point), (c) o � 8.0 cm (just outside the focal point), and (d) o �
10 mm (very near the mirror).

SEC. 35-9 ■ SPHERICAL REFRACTING SURFACES

33. Parallel Light Rays A beam of
parallel light rays from a laser is inci-
dent on a solid transparent sphere of
index of refraction n (Fig. 35-47). (a)
If a point image is produced at the
back of the sphere, what is the index
of refraction of the sphere? (b) What
index of refraction, if any, will pro-
duce a point image at the center of
the sphere?

34. Fill in Table Two Fill in Table 35-5, each row of which refers to
a different combination of a point object and a spherical refracting
surface separating two media with different indexes of refraction.
Distances are in centimeters. If a number lacks a sign, find the sign.
Sketch each combination and draw in enough rays to locate the ob-
ject and image.

vI � �� r
2o � r �

2

vO,

L� � L� f
o � f �

2

.
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TA B L E 3 5 - 4
Problem 30: Mirrors

Real Inverted
Type f r i o m Image? Image?

(a) Concave 20 	10

(b) 	10 	1.0 No

(c) 	20 	30

(d) 	60 �0.50

(e) �40 �10

(f) 20 	0.10

(g) Convex 40 4.0

(h) 	24 0.50 Yes

FIGURE 35-47 ■
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TA B L E 3 5 - 5
Problem 34: Spherical Refracting Surfaces

Inverted 
n1 n2 o i r Image?

(a) 1.0 1.5 	10 	30

(b) 1.0 1.5 	10 �13

(c) 1.0 1.5 	600 	30

(d) 1.0 	20 �20 �20

(e) 1.5 1.0 	10 �6.0

(f) 1.5 1.0 �7.5 �30

(g) 1.5 1.0 	70 	30

(h) 1.5 	100 	600 �30



35. Coin in a Pool You look down-
ward at a coin that lies at the bottom
of a pool of liquid with depth d and
index of refraction n (Fig. 35-48).
Because you view with two eyes,
which intercept different rays of
light from the coin, you perceive the
coin to be where extensions of the
intercepted rays cross, at depth da in-
stead of d. Assuming that the inter-
cepted rays in Fig. 35-48 are close to
a vertical axis through the coin, show
that da � d/n. (Hint: Use the small-
angle approximation that sin � � tan
� � �.)

36. Carbon Tetrachloride A 20-
mm-thick layer of water (n � 1.33)
floats on a 40-mm-thick layer of carbon tetrachloride (n � 1.46) in
a tank. A coin lies at the bottom of the tank. At what depth below
the top water surface do you perceive the coin? (Hint: Use the re-
sult and assumptions of Problem 35 and work with a ray diagram of
the situation.)

SEC. 35-10 ■ THIN LENSES

37. Thin Diverging Lens An object is 20 cm to the left of a thin di-
verging lens having a 30 cm focal length. What is the image distance
i? Find the image position with a ray diagram.

38. Image of Sun You produce an image of the Sun on a screen,
using a thin lens whose focal length is 20.0 cm. What is the diameter
of the image? (See Appendix C for needed data on the Sun.)

39. Double-Convex A double-convex lens is to be made of glass
with an index of refraction of 1.5. One surface is to have twice the
radius of curvature of the other and the focal length is to be 60 mm.
What are the radii?

40. One Side Is Flat A lens is made of glass having an index of re-
fraction of 1.5. One side of the lens is flat, and the other is convex
with a radius of curvature of 20 cm. (a) Find the focal length of the
lens. (b) If an object is placed 40 cm in front of the lens, where will
the image be located?

41. Newtonian Form The formula 

	 �

is called the Gaussian form of the thin-lens formula. Another form
of this formula, the Newtonian form, is obtained by considering the
distance x from the object to the first focal point and the distance x�
from the second focal point to the image. Show that

xx� � f 2

is the Newtonian form of the thin-lens formula.

42. Movie Camera A movie camera with a (single) lens of focal
length 75 mm takes a picture of a 180-cm-high person standing 
27 m away. What is the height of the image of the person on the
film?

1
f

1
i

1
o
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43. Illuminated Slide An illuminated slide is held 44 cm from a
screen. How far from the slide must a lens of focal length 11 cm be
placed to form an image of the slide’s picture on the screen?

44. Fill in Table Three To the extent possible, fill in Table 35-6,
each row of which refers to a different combination of an object
and a thin lens. Distances are in centimeters. For the type of lens,
use C for converging and D for diverging. If a number (except for
the index of refraction) lacks a sign, find the sign. Sketch each com-
bination and draw in enough rays to locate the object and image.

d

To left
eye

To right
eye

Air
n

da

FIGURE 35-48 ■ Problem
35.

TA B L E 3 5 - 6
Problem 44: Thin Lenses

Real Inverted
Type f r1 r2 i o n m Image? Image?

(a) C 10 	20

(b) 	10 	5.0

(c) 10 	5.0 � 1.0

(d) 10 	5.0 � 1.0

(e) 	30 �30 	10 1.5

(f) �30 	30 	10 1.5

(g) �30 �60 	10 1.5

(h) 	10 0.50 No

(i) 	10 �0.50

45. Show That Show that the distance between an object and its
real image formed by a thin converging lens is always greater than
or equal to four times the focal length of the lens.

46. Diverging and Converging A diverging lens with a focal length
of �15 cm and a converging lens with a focal length of 12 cm have
a common central axis. Their separation is 12 cm. An object of
height 1.0 cm is 10 cm in front of the diverging lens, on the common
central axis. (a) Where does the lens combination produce the final
image of the object (the one produced by the second, converging
lens)? (b) What is the height of that image? (c) Is the image real or
virtual? (d) Does the image have the same orientation as the object
or is it inverted?

47. Final Image A converging lens with a focal length of 	20 cm is
located 10 cm to the left of a diverging lens having a focal length of
�15 cm. If an object is located 40 cm to the left of the converging
lens, locate and describe completely the final image formed by the
diverging lens.

48. Location and Size An object is 20 cm to the left of a lens with a
focal length of 	10 cm. A second lens of focal length 	12.5 cm is
30 cm to the right of the first lens. (a) Find the location and relative
size of the final image. (b) Verify your conclusions by drawing the
lens system to scale and constructing a ray diagram. (c) Is the final
image real of virtual? (d) Is it inverted?

49. Two Thin Lenses Two thin lenses of focal lengths f1 and f2 are
in contact. Show that they are equivalent to a single thin lens with

as its focal length.

f �
f1 f2

f1 	 f2



50. Real Inverted In Fig 35-49, a
real inverted image I of an object O
is formed by a certain lens (not
shown); the object– image separa-
tion is d � 40.0 cm, measured along
the central axis of the lens. The im-
age is just half the size of the object.
(a) What kind of lens must be used
to produce this image? (b) How far
from the object must the lens be
placed? (c) What is the focal length of the lens?

51. Object–Screen Distance A luminous object and a screen are a
fixed distance D apart. (a) Show that a converging lens of focal
length f, placed between object and screen, will form a real image
on the screen for two lens positions that are separated by a
distance

(b) Show that

gives the ratio of the two image sizes for these two positions of the
lens.

SEC. 35-11 ■ OPTICAL INSTRUMENTS

52. Astronomical Telescope If an angular magnification of an as-
tronomical telescope is 36 and the diameter of the objective is
75 mm, what is the minimum diameter of the eyepiece required to
collect all the light entering the objective from a distant point
source on the telescope axis?

53. Microscope In a microscope of the type shown in Fig. 35-28,
the focal length of the objective is 4.00 cm, and that of the eyepiece
is 8.00 cm. The distance between the lenses is 25.0 cm. (a) What is
the tube length s? (b) If image I in Fig. 35-28 is to be just inside fo-
cal point F1�, how far from the objective should the object be? What
then are (c) the lateral magnification m of the objective, (d) the
angular magnification m� of the eyepiece, and (e) the overall magni-
fication M of the microscope?

54. Magnifying Lens A simple magnifying lens of focal length f is
placed near the eye of someone whose near point Pn is 25 cm from
the eye. An object is positioned so that its image in the magnifying
lens appears at Pn. (a) What is the lens’s angular magnification? (b)
What is the angular magnification if the object is moved so that its
image appears at infinity? (c) Evaluate the angular magnifications
of (a) and (b) for f � 10 cm. (Viewing an image at Pn requires ef-
fort by muscles in the eye, whereas for many people viewing an im-
age at infinity requires no effort.)

� D � d
D 	 d �

2

d � √D(D � 4f ).

55. Human Eye Figure 35-50a
shows the basic structure of a human
eye. Light refracts into the eye
through the cornea and is then fur-
ther redirected by a lens whose
shape (and thus ability to focus the
light) is controlled by muscles. We
can treat the cornea and eye lens as a
single effective thin lens (Fig. 35-
50b). A “normal” eye can focus par-
allel light rays from a distance object
O to a point on the retina at the back
of the eye, where processing of the
visual information begins. As an ob-
ject is brought close to the eye, how-
ever, the muscles must change the
shape of the lens so that rays form an
inverted real image on the retina
(Fig. 35-50c). (a) Suppose that for the
parallel rays of Figs. 35-50a and b, the
focal length f of the effective thin
lens of the eye is 2.50 cm. For an ob-
ject at distance o � 40.0 cm, what fo-
cal length f� of the effective lens is
required for it to be seen clearly? (b)
Must the eye muscles increase or de-
crease the radii of curvature of the
eye lens to give focal length f�?

56. Compound Microscope An ob-
ject is 10.0 mm from the objective of
a certain compound microscope. The
lenses are 300 mm apart and the in-
termediate image is 50.0 mm from
the eyepiece. What overall magnifica-
tion is produced by the instrument?

57. Camera Figure 35-51a shows
the basic structure of a camera. A
lens can be moved forward or back
to produce an image on film at the
back of the camera. For a certain
camera, with the distance i between
the lens and the film set at f � 5.0
cm, parallel light rays from a very
distant object O converge to a point
image on the film, as shown. The ob-
ject is now brought closer, to a dis-
tance of o � 100 cm, and the
lens–film distance is adjusted so that
an inverted real image forms on the
film (Fig. 35-51b). (a) What is the
lens–film distance i now? (b) By how much was i changed?
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Additional Problems

58. Bizarre Behavior with Light You may have observed people
with cameras behaving strangely:

(a) At a conference in North Carolina, one of the physics graduate
students (who should have known better!) tried to take a picture of



the overheads projected on a white screen. Since the room was
darkened, he used a flash. Explain why this is a bad idea and what
his pictures are likely to show.
(b) Someone mentioned to the student that he probably should not
be using his flash, so he turned it off. He then proceeded to try and
take pictures of the participants in the darkened room! Explain
why this is a bad idea and what his pictures are likely to show.
(c) A woman on an airplane at night with a camera was impressed
with the view of the city lights in the dark as the plane flew over
Washington, D.C. She stood back in the aisle with her camera and
tried to take a picture through the window using her flash. Explain
why this is a bad idea and what her pictures are likely to show.

59. Closer Than They May Appear When a T. rex pursues a jeep in
the movie Jurassic Park, we see a reflected image of the (very large)
T. rex via a side-view mirror, on which is printed the (then darkly
humorous) warning: “Objects in mirror are closer than they ap-
pear.” Is the mirror flat, convex, or concave? Why do you think so?

60. Where Can
You See the
Bulb? In Fig. 35-
52, M is a plane
mirror; B is a very
small bright light-
bulb that can be
treated as a point
source of light;
and H is an
opaque housing
that does not
transmit light. An
observer can stand anywhere along a line O to try to see the image
of the lightbulb in the mirror. By using relevant rays of light, deter-
mine those locations along the line O from which the image of B is
visible and those locations from which it is not visible. Mark the re-
gions along line O accordingly, and explain the reasoning you used
in drawing the rays. (Arons, Arnold, A Guide to Introductory
Physics Teaching, John Wiley and Sons, New York, 1990.)

61. Who Sees What? Figure 35-53 shows a small object (repre-
sented by an arrow) in front of a curved mirror. At the tip of the ar-
row is a black dot. The mirror is a piece of a sphere. The center of
the sphere is marked in the picture with an x. Eyes corresponding to
three different observers are shown. For each question, explain how
you got your result. Be sure to include a ray diagram as part of your
explanation.

(a) How many black dots will the observer at position A see?
Where will the dots appear to be? Specify quantitatively how far
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from the mirror the dots will appear to be and how far off the axis
they will be.
(b) How many black dots will the observer at position B see? Ex-
plain how you know.
(c) How many black dots will the observer at position C see? Ex-
plain how you know.

62. The Camera and the Slide Projector Address each part of this
question in two ways: (1) by drawing and interpreting appropriate
geometrical diagrams and (2) by appealing to the lens equation and
the expression for lateral magnification and demonstrating your re-
sult mathematically. If your two approaches do not agree, explain
which one is correct and why the other is wrong.

(a) Suppose you are using a camera and wish to have a larger im-
age of a distant object than you are obtaining with the lens cur-
rently in use. Would you change to a lens with a longer or a shorter
focal length? Explain your reasoning. (Hint: Note that the object
distance is essentially fixed.)
(b) Suppose you are using a slide projector and wish to obtain a
larger image on the screen. You cannot achieve this by moving the
screen farther from the projector because you are already using the
entire length of the room. Would you change to a lens with a longer
or a shorter focal length than the one you are using? Explain your
reasoning. (Hint: Note that the image distance is essentially fixed.)

63. Mirrors and Lenses Each of the parts of this problem has a de-
scription of an object and an optical device (lens or mirror). A
sketch is shown in Fig. 35-54. For each case, specify whether
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• The image is real (R), virtual (V), or no image is formed (N).
• The image is on the same side of the device as the object (S) or
the opposite side (O). If there is no image put a null mark (�).
• If an image is formed, on which side of the system must the
observer be in order to see it, left (�) or right (	)?

For each problem you should therefore give three answers (for ex-
ample, VO 	). For the mirrors, the center is shown. For the lenses,
the focal points are shown. The radius of curvature of the mirrors is
R, and the focal length of the lenses is f.

(a) An object on the right side of a spherical mirror, a distance 
s � R from the mirror. The mirror is concave toward the object.
(b) An object on the right side of a spherical mirror, a distance 
s � R/2 from the mirror. The mirror is convex toward the object.



(c) An object on the left side of a spherical mirror, a distance R � s
� R/2 from the mirror. The mirror is concave toward the object.
(d) An object on the right side of a convex lens, a distance s � f
from the lens.
(e) An object on the left side of a convex lens, a distance s � f
from the lens.

64. The Diverging Lens In Fig. 35-55, point A (marked by a circle)
is the top of a small object (indicated as an arrow). Near it is a con-
cave lens, as shown. The focal points of the lens are marked with
black dots.

66. Alice and the Looking Glass Alice faces a looking glass (mir-
ror) and is standing at a level so that her eyes appear to her to be
right at the top of the mirror as shown in Fig. 35-57. At the position
she is standing, she can just see her hands at the bottom of the mir-
ror. If she steps back far enough,
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A

FIGURE 35-55 ■ Problem 64.

O

C

FIGURE 35-58 ■ Problem 67.

Image
and
screen

Bulb Object
(slide) Lens

FIGURE 35-56 ■ Problem 65.

Alice

Mirror

FIGURE 35-57 ■ Problem 66.

(a) She will eventually be able to see all of herself in the mirror at
the same time.
(b) There will be no change in how much of herself she can see.
(c) She will see less of herself as she steps back.
(d) Some other result (explain).

Choose the letter of the choice that completes the sentence cor-
rectly and explain why you think so with a few sentences and some
rays on the diagram.

67. A Bigger Lens Point O in Fig. 35-58 is a source of light. Two
rays from O are shown passing through a thin converging lens and
crossing each other at the point marked C.

(a) Using a ray diagram, show where an image of point A would be
formed.
(b) If the focal length of the lens is 8 cm and the object is 6 cm
from the lens, where will the image be?
(c) If the object is 1 cm tall, how tall will the image be?
(d) Will the image created by the lens be real or virtual?
(e) Where will you have to be to see the image?

65. The Half Lens A projector has an arrangement of lenses as
shown in Fig. 35-56. A bulb illuminates an object (a slide) and the
light then passes through a lens that creates an image on a distant
screen as shown.

When a sheet of a cardboard is brought up to cover the lower half
of the lens, what happens to the image on the screen?

(a) The top half of the image disappears.
(b) The bottom half of the image disappears.
(c) The image remains but is weaker (not as bright).
(d) The image remains unchanged.
(e) The bottom half of the image becomes weaker, the top is
unchanged.
(f) The top half of the image becomes weaker, the bottom is
unchanged.
(g) Something else happens. (Tell what it is.)

Explain your reasoning, drawing whatever rays are needed to make
your point clear.

(a) On a copy of the figure on your answer sheet, find the two prin-
cipal foci of the lens by drawing appropriate rays. Label the foci F1
and F2. Explain your reasoning.
(b) Suppose the lens is replaced by another lens having the same
focal length but a larger diameter. Indicate whether each of the fol-
lowing partial sentences is correctly completed by the phrase
greater than (�), less than (�), or the same as (�).

• The distance of the image from the principal axis is it
was with the smaller lens.
• The brightness of the image with the large lens is it
was with the smaller lens.



68. Where’s the Image? Figure 35-59 shows a thin lens (indicated
by a gray rectangle) and a coordinate system. The x axis passes
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A small object is placed at the position (x, 0). For each of the
four cases (i)–(iv) below, indicate whether the location of the im-
age formed (� x�) is on the positive or negative side of the axis, and
closer to the lens than the focal point or farther away.
i. �f � x � 0 iii. x � f � 0

ii. f � 0 � x iv. 0 � f � x

Hint: Your answer should take a form such as (x� � f � 0) to
indicate that the image is on the positive side of the axis and farther
away than the focal point or (0 � x� � f ) to indicate that the image
is on the negative side of the axis between the lens and the focal
point. Note that in some cases the focal length specified is negative
and in some cases it is positive.

y

x

FIGURE 35-59 ■ Problem 68.

through the center of the lens and runs along its axis of symmetry,
with the positive x direction indicated by the arrowhead. The lens
may be treated as being of negligible thickness and has a focal
length f. The points (x, y) � (f, 0) and (�f, 0) are marked by black
dots.
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36 Interference

At first glance, the top surface of the Morpho butterfly’s

wing is simply a beautiful blue-green. There is something

strange about the color, however, for it almost glimmers,

unlike the colors of most objects—and if you change your

perspective, or if the wing moves, the tint of the color

changes. The wing is said to be iridescent, and the blue-

green we see hides the wing’s “true” dull brown color that

appears on the bottom surface.

What is so different about
the top surface that gives us
this arresting display?

The answer is in this chapter.
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36-1 Interference

Sunlight, as the rainbow shows us, is a composite of all the colors of the visible spec-
trum. The colors reveal themselves in the rainbow because the incident wavelengths
refract and so are bent through different angles as they pass through raindrops that
produce the bow. However, soap bubbles and oil slicks can also show striking colors
produced not by refraction but by constructive and destructive interference of light
waves. The interfering waves combine either to enhance or to suppress certain colors
in the spectrum of the incident sunlight. Interference of light waves is thus a superpo-
sition phenomenon. Hence, this chapter is a significant point of connection between
much of what we have just learned in Chapters 34 and 35 about electromagnetic
waves in general and light in particular and what we learned earlier regarding the in-
terference of waves on a string and sound waves in Chapters 17 and 18.

Interference, which can lead to the selective enhancement or suppression of
wavelengths, has many applications. When light encounters an ordinary glass surface,
for example, about 4% of the incident energy is reflected, thus weakening the trans-
mitted beam by that amount. This unwanted loss of light can be a real problem in op-
tical systems with many components. A thin, transparent “interference film,” de-
posited on the glass surface, can reduce the amount of reflected light (and thus
enhance the transmitted light) by destructive interference. The bluish cast of a camera
lens reveals the presence of such a coating. Interference coatings can also be used to
enhance—rather than reduce—the ability of a surface to reflect light.

To understand interference, we must go beyond the restrictions of geometrical
optics and employ the full power of wave optics. In fact, as you will see, the existence
of interference phenomena is perhaps our most convincing evidence that light is a
wave—because interference cannot be explained other than with waves.

36-2 Light as a Wave

The first person to advance a convincing wave theory for light was Dutch physicist
Christian Huygens, in 1678. Although much less comprehensive than the later elec-
tromagnetic theory of Maxwell, Huygens’ theory was simpler mathematically 
and remains useful today. Its great advantages are that it accounts for the laws of re-
flection and refraction in terms of waves and gives physical meaning to the index 
of refraction.

Huygens’ wave theory is based on a geometrical construction that allows us to tell
where a given wavefront will be at any time in the future if we know its present posi-
tion. This construction is based on Huygens’ principle, which is:

All points on a wavefront serve as point sources of spherical secondary wavelets. After a
time �t, the new position of the wavefront will be that of a surface tangent to these sec-
ondary wavelets.*

Here is a simple example. At the left in Fig. 36-1, the present location of a wavefront
of a plane wave traveling to the right in vacuum is represented by plane ab, perpen-
dicular to the page. Where will the wavefront be at time �t later? We let several points
on plane ab (the dots) serve as sources of spherical secondary wavelets that are emit-
ted at t � 0. At time �t, the radius of all these spherical wavelets will have grown to

* When using this principle in calculations, there is a factor which gives a greater wave amplitude in the di-
rection of propagation of the original wavefront. This prevents the back wavelets from combining to create
a backwards wavefront.

New position
of wavefront
at time t = Δt

a e

b d

 Wavefront at 
t = 0

c Δt

FIGURE 36-1 ■ The propagation of a
plane wave in vacuum, as portrayed by
Huygens’ principle.
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c�t, where c is the speed of light in vacuum. We draw plane de tangent to these
wavelets at time �t. This plane represents the wavefront of the plane wave at time �t;
it is parallel to plane ab and a perpendicular distance c�t from it.

The Law of Refraction
We now use Huygens’ principle to derive the law of refraction or Snell’s law,
n1 sin�1 � n2 sin�2 (Eq. 35-2). Recall that here n1 is the index of refraction in the
medium from which the light is incident, n2 is the index of refraction in the refracting
medium, and �1 and �2 are the angles of incidence and refraction, respectively. There
are two key ideas behind this derivation:

1. The oscillating electromagnetic wave (with its oscillating E- and B-fields) hitting
the surface of a material drives the electrons in the surface to oscillate and hence
to reradiate. As a result, the outgoing wave the electrons produce will have the
same frequency as the incoming wave.

2. The wavelength is determined by how far the wave propagates into the media
while the electrons at the surface are undergoing one full oscillation. Since the re-
lationship between wavelength �, period T, and speed of the wave v is v � �/T,
and the wave speed in a denser medium is slower, the wavelength is smaller in a
denser medium.

Figure 36-2 shows three stages in the refraction of several wavefronts at a plane
interface between air (medium 1) and glass (medium 2). By convention, we choose
the wavefronts in the incident beam to be separated by �1, the wavelength in medium
1. Let the speed of light in air be v1 and that in glass be v2. We assume that 
v2 � v1, which happens to be true. (Since in this chapter we do not use vector compo-
nents, we run no risk of confusing the magnitude of a velocity vector with its com-
ponents. Therefore, we will simplify notation and write the speed as simply v, rather
than .)

Angle �1 in Fig. 36-2a is the angle between the wavefront and the interface; it has
the same value as the angle between the normal to the wavefront (that is, the incident
ray) and the normal to the interface. Thus, �1 is the angle of incidence.

As the incident light wave moves into the glass, a wavefront at point e will travel a
distance of �1 to point c. The time period required for the wave to travel this distance
is the distance divided by the speed of the wavelet, or �1/v1. In this same time period, a
Huygens wavelet (a new wave created by the oscillating electrons in the material) at
point h will travel to point g, at the reduced speed v2 and with wavelength �2.
Thus, this time period must also be equal to �2/v2. By equating these times, we obtain
the relation 

(36-1)

which shows that the wavelengths of light in two media are proportional to the speeds
of light in those media.

By Huygens’ principle, the refracted wavefront must be tangent to an arc of ra-
dius �2 centered on h, say, at point g. The refracted wavefront must also be tangent to
an arc of radius �1 centered on e, say, at c. Then the refracted wavefront must be ori-
ented as shown. Note that �2, the angle between the refracted wavefront and the in-
terface, is actually the angle of refraction.

For the right triangles hce and hcg in Fig. 36-2b we may write

(for triangle hce)sin�1 �
�1

hc

�1

�2
�

v1

v2
,

� v: �

Incident wave

Air
Glass

v1

(a)

λ  1

(b)

λ  1

c

e

h

g
λ  2

θ1
θ2

(c)

Refracted wave
v2

λ  2

θ1

FIGURE 36-2 ■ The refraction of a plane
wave at an air–glass interface, as por-
trayed by Huygens’ principle. The wave-
length in glass is smaller than that in air.
For simplicity, the reflected wave is not
shown. Parts (a) through (c) represent
three successive stages of the refraction.
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and (for triangle hcg).

Dividing the first of these two equations by the second and using Eq. 36-1, we find

(36-2)

We can define an index of refraction n for each medium as the ratio of the speed
of light in vacuum to the speed of light v in the medium. Thus,

(definition of index of refraction). (36-3)

In particular, for our two media, we have 

and (36-4)

If we combine Eqs. 36-2 and 36-4 we find

, (36-5)

or n1 sin�1 � n2 sin�2 (law of refraction), (36-6)

as introduced in Chapter 34. This result demonsrates that Huygen’s Principle is a con-
struct that can be used to explain the law of refraction.

Wavelength and Index of Refraction
We have now seen that the wavelength of light changes when the speed of the light
changes, as happens when light crosses an interface from one medium into another.
Further, the speed of light in any medium depends on the index of refraction of the
medium, according to Eq. 36-3. Thus, the wavelength of light in any medium depends
on the index of refraction of the medium. Let a certain monochromatic light have
wavelength � and speed c in vacuum and wavelength �n and speed v in a medium with
an index of refraction n. Now we can rewrite Eq. 36-1 as 

(36-7)

Using Eq. 36-3 to substitute 1/n for v/c then yields

(36-8)

This equation relates the wavelength of light in any medium to its wavelength in vac-
uum. It tells us that the greater the index of refraction of a medium, the smaller is the
wavelength of light in that medium.

�n �
�

n
.

�n � �
v
c

.

sin�1

sin�2
�

c/n 1

c/n 2
�

n 2

n 1

n 2 �
c
v2

.n 1 �
c
v1

n#
c
v

sin�1

sin�2
�

�1

�2
�

v1

v2
.

sin�2 �
�2

hc



What about the frequency of the light? Let fn represent the frequency of the light
in a medium with index of refraction n. Then from the general relation of Eq. 17-12 
(v � �f ), we can write 

Substituting Eqs. 36-3 and 36-8 then gives us 

where f is the frequency of the light in vacuum. Thus, although the speed and wave-
length of light are different in the medium than in vacuum, the frequency of the light
in the medium is the same as it is in vacuum. Since we started this discussion with the
assumption that the periods of the waves were the same, this result indicates that our
equations are consistent.

The fact that the wavelength of light depends on the index of refraction via Eq.
36-8 is important in certain situations involving the interference of light waves. For ex-
ample, in Fig. 36-3, the waves of the rays (that is, the waves associated with the rays)
have identical wavelengths � and are initially in phase in air (n � 1). One of the
waves travels through medium 1 of index of refraction n1 and length L. The other
travels through medium 2 of index of refraction n2 and the same length L. Each ray
acquires a different wavelength when traveling through its medium. When the waves
leave the two media, they will have the same wavelength once again—their wave-
length � in air. However, because their wavelengths differed in the two media, the two
waves may no longer be in phase.

The phase difference between two light waves can change if the waves travel through differ-
ent materials having different indexes of refraction.

As we shall discuss soon, this phase difference change can determine how the light
waves will interfere if they reach some common point.

To find their new phase difference in terms of wavelengths, we first count the
number N1 of wavelengths there are in the length L of medium 1. From Eq. 36-8, the
wavelength in medium 1 is �n1 � �/n1, so

(36-9)

In general, the term Ln is known as the optical path difference. Similarly, we count
the number N2 of wavelengths there are in the length L of medium 2, where the wave-
length is �n 2 � �/n2:

(36-10)

To find the new phase difference between the waves, we subtract the smaller of N1

and N2 from the larger. Assuming n2 � n1, we obtain 

(36-11)

Thus the phase difference is simply the optical path length difference divided by the
wavelength of the light in a vacuum.

N2 � N1 �
Ln 2

�
�

Ln 1

�
�

L
�

(n 2 � n 1).

N2 �
L

�n 2
�

Ln 2

�
.

N1 �
L

�n 1
�

Ln 1

�
.

fn �
c/n
�/n

�
c
�

� f,

fn �
v
�n

.
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n1,   1λ
λ λ

L

n2,   2λ

FIGURE 36-3 ■ Two light rays with the
same initial wavelength � in air travel
through two media having different
indexes of refraction. During that time,
�1 � �2.
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Suppose Eq. 36-11 tells us that the waves now have a phase difference of 45.6
wavelengths. That is equivalent to taking the initially in-phase waves and shifting one
of them by 45.6 wavelengths. However, a shift of an integer number of wavelengths
(such as 45) would put the waves back in phase, so it is only the decimal fraction
(here, 0.6) that is important. A phase difference of 45.6 wavelengths is equivalent to
an effective phase difference of 0.6 wavelength.

A phase difference of 0.5 wavelength puts two waves exactly out of phase. If the
waves had equal amplitudes and were to reach some common point, they would then
undergo fully destructive interference, producing darkness at that point. With an ef-
fective phase difference of 0.0 wavelength, they would, instead, undergo fully con-
structive interference, resulting in brightness at the common point. Our effective
phase difference of 0.6 wavelength is an intermediate situation, but closer to destruc-
tive interference, and the waves would produce a dimly illuminated common point.

We can also express phase difference in terms of radians and degrees, as we have
done already.

A phase difference of one wavelength is equivalent to phase differences of 2	 rad or 360°.

READI NG EXERC IS E  36-1: The figure shows a
monochromatic ray of light traveling across parallel interfaces,
from an original material a, through layers of material b and c,
and then back into material a. Rank the materials according to
the speed of light in them, greatest first.

■

TOUCHSTONE EXAMPLE 36-1: Phase Difference and Interference

In Fig. 36-3, the two light waves that are represented by the rays
have wavelength 550.0 nm before entering media 1 and 2. They also
have equal amplitudes and are in phase. Medium 1 is now just air,
and medium 2 is a transparent plastic layer of index of refraction
1.600 and thickness 2.600 
m.

(a) What is the phase difference of the emerging waves in wave-
lengths, radians, and degrees? What is their effective phase differ-
ence (in wavelengths)?

S O L U T I O N ■ One Key Idea here is that the phase difference of
two light waves can change if they travel through different media,
with different indexes of refraction. The reason is that their wave-
lengths are different in the different media. We can calculate the
change in phase difference by counting the number of wavelengths
that fits into each medium and then subtracting those numbers.
When the path lengths of the waves in the two media are identical,
Eq. 36-11 gives the result. Here we have n1 � 1.000 (for the air), n2

� 1.600, L � 2.600 
m, and � � 550.0 nm. Thus, Eq. 36-11 yields

(Answer)� 2.84.

�
2.600 � 10�6 m
5.500 � 10�7 m

(1.600 � 1.000)

N2 � N1 �
L
�

(n 2 � n 1)

Thus, the phase difference of the emerging waves is 2.84 wave-
lengths. Because 1.0 wavelength is equivalent to 2	 rad and 360°,
you can show that this phase difference is equivalent to

phase difference � 17.8 rad � 1020°. (Answer)

A second Ke y  I d e a is that the effective phase difference is the
decimal part of the actual phase difference expressed in wave-
lengths. Thus, we have

effective phase difference � 0.84 wavelength. (Answer)

You can show that this is equivalent to 5.3 rad and about 300°. Cau-
tion: We do not find the effective phase difference by taking the
decimal part of the actual phase difference as expressed in radians
or degrees. For example, we do not take 0.8 rad from the actual
phase difference of 17.8 rad.

(b) If the rays of the waves were angled slightly so that the waves
reached the same point on a distant viewing screen, what type of in-
terference would the waves produce at that point?

S O L U T I O N ■ The Ke y  I d e a here is to compare the effective
phase difference of the waves with the phase differences that give
the extreme types of interference. Here the effective phase

a c a
b
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difference of 0.84 wavelength is between 0.5 wavelength (for fully
destructive interference, or the darkest possible result) and 1.0
wavelength (for fully constructive interference, or the brightest pos-

sible result), but closer to 1.0 wavelength. Thus, the waves would
produce intermediate interference that is closer to fully construc-
tive interference—they would produce a relatively bright spot.

36-3 Diffraction

In the next section we shall discuss the experiment that first proved that light is a
wave. To prepare for that discussion, we must introduce the idea of diffraction of
waves, a phenomenon that we explore much more fully in Chapter 37. Its essence is
this: If a wave encounters a barrier that has an opening of dimensions similar to the
wavelength, the part of the wave that passes through the opening will flare (spread)
out—will diffract—into the region beyond the barrier. The flaring out is consistent
with the spreading of the wavelets in the Huygens construction of Fig. 36-1. Diffrac-
tion occurs for waves of all types, not just light waves. Figure 36-4 shows the diffrac-
tion of water waves traveling across the surface of water in a shallow tank.

Figure 36-5a shows the situation schematically for an incident plane wave of
wavelength � encountering a slit that has width a � 6.0� and extends into and out of
the page. The wave flares out on the far side of the slit. Figures 36-5b (with a � 3.0�)
and 36-5c (a � 1.5�) illustrate the main feature of diffraction: the narrower the slit,
the greater the diffraction.

Diffraction limits geometrical optics, in which we represent an electromagnetic
wave with a ray. If we actually try to form a ray by sending light through a narrow slit,
or through a series of narrow slits, diffraction will always defeat our effort because it
always causes the light to spread. Indeed, the narrower we make the slits (in the hope
of producing a narrower beam), the greater the spreading is. Thus, geometrical optics
holds only when slits or other apertures that might be located in the path of light have
dimensions that are much larger than the wavelength of the light.

FIGURE 36-4 ■ The diffraction of water
waves in a ripple tank. The waves are pro-
duced by an oscillating paddle at the left.
As they move from left to right, they flare
out through an opening in a barrier along
the water surface.

Incident
wave

λ

a

(6.0  )λ

Diffracted
wave

(a)

λ

a

(3.0  )λ

(b)

λ

a

(1.5  )λ

(c)

Screen

FIGURE 36-5 ■ Diffraction represented schematically. For a given wavelength �, the diffrac-
tion is more pronounced the smaller the slit width a. The figures show the cases for (a) slit
width a � 6.0�, (b) slit width a � 3.0�, and (c) slit width a � 1.5�. In all three cases, the screen
and the length of the slit extend well into and out of the page, perpendicular to it.

36-4 Young’s Interference Experiment

In 1801, Thomas Young experimentally proved that light is a wave, contrary to what
most other scientists then thought. He did so by demonstrating that light undergoes in-
terference, as do water waves, sound waves, and waves of all other types. In addition,
he was able to measure the average wavelength of sunlight; his value, 570 nm, is
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impressively close to the modern accepted value of 555 nm. We shall here examine
Young’s historic experiment as an example of the interference of light waves.

Figure 36-6 gives the basic arrangement of Young’s experiment. Light from a dis-
tant monochromatic source illuminates slit S0 in screen A. The emerging light then
spreads via diffraction to illuminate two slits S1 and S2 in screen B. Diffraction of the
light by these two slits sends overlapping circular waves into the region beyond screen
B, where the waves from one slit interfere with the waves from the other slit.

The “snapshot” of Fig. 36-6 depicts the interference of the overlapping waves
from very small slits. However, we cannot see evidence for the interference except
where a viewing screen C intercepts the light. Where it does so, points of interference
maxima form visible bright rows—called bright bands, bright fringes, or (loosely
speaking) maxima—that extend across the screen (into and out of the page in 
Fig. 36-6). Dark regions—called dark bands, dark fringes, or (loosely speaking) min-
ima—result from fully destructive interference and are visible between adjacent pairs
of bright fringes. (Maxima and minima more properly refer to the center of a band.)
The pattern of bright and dark fringes on the screen is called an interference pattern.
Figure 36-7 is a photograph of part of the interference pattern as seen from the left in
Fig. 36-6. The fringes that appear on a flat screen get further apart and dimmer as the
distance from the center of the screen increases.

Note: These are very small slits, so we assume diffraction acts to spread out the
waves passing through each slit. This explains why the waves from the two slits can
overlap at a distant point. However, for now we ignore the fact that a diffracted wave
has more intensity in the direction of the wavefront incident on the slit. In Chapter 37
we will analyze diffraction mathematically, which is the cause of the weakening inten-
sity away from the center of the pattern seen in Fig. 36-7.

Locating the Fringes
Light waves produce fringes in a Young’s double-slit interference experiment, as it is
called, but what exactly determines the locations of the fringes? To answer, we shall
use the arrangement in Fig. 36-8a. There, a plane wave of monochromatic light is inci-
dent on two slits S1 and S2 in screen B; the light diffracts through the slits and pro-
duces an interference pattern on screen C. We draw a central axis from the point
halfway between the slits to screen C as a reference. We then pick, for discussion, an
arbitrary point P on the screen, at angle � to the central axis. This point intercepts the
wave of ray r1 from the bottom slit and the wave of ray r2 from the top slit.

Max

Max

Max

Max

Max

Max

Max

Max

Max

Max

Max

Max

Max
Incident

wave

S0

A B

S2

S1

C

FIGURE 36-6 ■ In Young’s interference
experiment, incident monochromatic light
is diffracted by slit S0, which then acts as a
point source of light that emits semicircu-
lar wavefronts. As that light reaches screen
B, it is diffracted by slits S1 and S2, which
then act as two point sources of light. The
light waves traveling from slits S1 and S2

overlap and undergo interference, forming
an interference pattern of maxima and
minima on viewing screen C. This figure is
a cross section; the screens, slits, and inter-
ference pattern extend into and out of the
page. Between screens B and C, the semi-
circular wavefronts centered on S2 depict
the waves that would be there if only S2

were open. Similarly, those centered on S1

depict waves that would be there if only S1

were open.

FIGURE 36-7 ■ A photograph of the in-
terference pattern produced by the
arrangement shown in Fig 36-6. (The pho-
tograph is a front view of part of screen C.)
The alternating maxima and minima are
called interference fringes (because they re-
semble the decorative fringe sometimes
used on clothing and rugs).



These waves are in phase when they pass through the two slits because there they
are just portions of the same incident wave. However, once they have passed the slits,
the two waves must travel different distances to reach P. We saw a similar situation in
Section 18-4 with sound waves and concluded that 

The phase difference between two waves can change if the waves travel paths of different
lengths.

The change in phase difference is due to the path length difference �L in the paths
taken by the waves. Consider two waves initially exactly in phase, traveling along paths
with a path length difference �L, and then passing through some common point. When
�L is zero or an integer number of wavelengths, the waves arrive at the common point
exactly in phase and they interfere fully constructively there. If that is true for the
waves of rays r1 and r2 in Fig. 36-8, then point P is part of a bright fringe. When, instead,
�L is an odd multiple of half a wavelength, the waves arrive at the common point ex-
actly out of phase and they interfere fully destructively there. If that is true for the
waves of rays r1 and r2, then point P is part of a dark fringe (and, of course, we can have
intermediate situations of interference and thus intermediate illumination at P.) Thus,

What appears at each point on the viewing screen in a Young’s double-slit interference ex-
periment is determined by the path length difference �L of the rays reaching that point.

We can specify where each bright or dark fringe is located on the screen by giving
the angle � from the central axis to that fringe. To find �, we must relate it to �L. We
start with Fig. 36-8a by finding a point b along ray r1 such that the path length from
points b to P equals the path length from S2 to P. Then the path length difference �L
between the two rays is the distance from S1 to b.

The relation between this S1-to-b distance and � is complicated, but we can simplify
it considerably if we arrange for the distance D from the slits to the screen to be much
greater than the slit separation d.Then we can approximate rays r1 and r2 as being paral-
lel to each other and at angle � to the central axis (Fig. 36-8b). We can also approximate
the triangle formed by S1, S2, and b as being a right triangle, and approximate the angle
inside that triangle at S2 as being �.Then, for that triangle, sin � � �L/d and thus 

�L � d sin� (path length difference). (36-12)

For a bright fringe, we saw that �L must be zero or an integer number of wavelengths.
Using Eq. 36-12, we can write this requirement as 

�L � d sin� � (integer)(�), (36-13)

or as d sin� � m�, for m � 0, 1, 2, . . . (maxima—bright fringes). (36-14)

For a dark fringe, �L must be an odd multiple of half a wavelength. Again using Eq.
36-12, we can write this requirement as 

�L � d sin� � (odd number) , (36-15)

or as d sin � � (m � )�, for m � 0, 1, 2, . . . (minima—dark fringes). (36-16)1
2

(1
2�)
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FIGURE 36-8 ■ (a) Waves from slits S1

and S2 (which extend into and out of the
page) with spacing d combine at P, an arbi-
trary point on screen C at distance y from
the central axis. The angle � serves as a
convenient locator for P. (b) For a slit
screen distance of D �� d, we can approxi-
mate rays r1 and r2 as being parallel, at an-
gle � to the central axis. Note: In a typical
demonstration of these effects d might be
on the order of 1 mm or some fraction
thereof and D might be 1–2 meters or
more.
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With Eqs. 36-14 and 36-16, we can find the angle � to any fringe and thus locate that
fringe; further, we can use the values of m to label the fringes. For m � 0, Eq. 36-14 tells
us that a bright fringe is at � � 0—that is, on the central axis. This central maximum is
the point at which waves arriving from the two slits have a path length difference 
�L � 0, hence zero phase difference.

For, say, m � 2, Eq. 36-14 tells us that bright fringes are at

above and below the central axis. Waves from the two slits arrive at these two fringes
with �L � 2� and with a phase difference of two wavelengths. These fringes are said
to be the second-order fringes (meaning m � 2) or the second side maxima (the
second maxima to the side of the central maximum), or they are described as being
the second fringes from the central maximum.

For m � 1, Eq. 36-16 tells us that dark fringes are at 

above and below the central axis. Waves from the two slits arrive at these two fringes
with �L � 1.5� and with a phase difference, in wavelengths, of 1.5. These fringes are
called the second dark fringes or second minima because they are the second dark
fringes from the central axis. (The first dark fringes, or first minima, are at locations
for which m � 0 in Eq. 36-16.)

We derived Eqs. 36-14 and 36-16 for the situation D �� d. However, they also
apply if we place a converging lens between the slits and the viewing screen and
then move the viewing screen closer to the slits, to the focal point of the lens. (The
screen is then said to be in the focal plane of the lens; that is, it is in the plane per-
pendicular to the central axis at the focal point.) One property of a converging lens
is that it focuses all rays that are parallel to one another to the same point on its fo-
cal plane. Thus, the rays that now arrive at any point on the screen (in the focal
plane) were exactly parallel (rather than approximately) when they left the slits.
They are like the initially parallel rays in Fig. 35-23a that are directed to a point (the
focal point) by a lens.

READI NG EXERC IS E  36-2: In Fig. 36-8, what are �L (as a multiple of the wave-
length) and the phase difference (in wavelengths) for the two rays if point P is (a) a third side
maximum and (b) a third minimum? ■

� � sin�1� 1.5�

d �

� � sin�1� 2�

d �

TOUCHSTONE EXAMPLE 36-2: Distance Between Adjacent Maxima

What is the distance on screen C in Fig. 36-8a between adjacent
maxima near the center of the interference pattern? The wave-
length � of the light is 546 nm, the slit separation d is 0.12 mm, and
the slit– screen separation D is 55 cm. Assume that � in Fig. 36-8 is
small enough to permit use of the approximations sin � � tan� � �,
in which � is expressed in radian measure.

S O L U T I O N ■ First, let us pick a maximum with a low value of
m to ensure that it is near the center of the pattern. Then one Ke y
I d e a is that, from the geometry of Fig. 36-8a, the maximum’s verti-

cal distance ym from the center of the pattern is related to its angle
� from the central axis by

A second Ke y  I d e a is that, from Eq. 36-14, this angle � for the
mth maximum is given by

sin� � � �
m�

d
.

tan� � � �
ym

D
.



36-5 Coherence

For the interference pattern to appear on viewing screen C in Fig. 36-6, the light
waves reaching any point P on the screen must have a phase difference that does not
vary in time. That is the case in Fig. 36-6, because the waves passing through slits S1

and S2 are portions of the single light wave that illuminates the slits. Because the
phase difference remains constant, the light from slits S1 and S2 is said to be com-
pletely coherent.

Direct sunlight is partially coherent; that is, sunlight waves intercepted at two
points have a constant phase difference only if the points are very close. If you look
closely at your fingernail in bright sunlight, you can see a faint interference pattern
called speckle that causes the nail to appear to be covered with specks. You see this ef-
fect because light waves scattering from very close points on the nail are sufficiently
coherent to interfere with one another at your eye. The slits in a double-slit experi-
ment, however, are not close enough, and in direct sunlight, the light at the slits would
be incoherent. To get coherent light, we would have to send the sunlight through a
single slit as in Fig. 36-6; because that single slit is small, light that passes through it is
coherent. In addition, the smallness of the slit causes the coherent light to spread suf-
ficiently via diffraction to illuminate both slits in the double-slit experiment.

If we replace the double slits with two similar but independent monochromatic
light sources, such as two fine incandescent wires, the phase difference between the
waves emitted by the sources varies rapidly and randomly. (This occurs because the
light is emitted by vast numbers of atoms in the wires, acting randomly and indepen-
dently for extremely short times—of the order of nanoseconds.) As a result, at any
given point on the viewing screen, the interference between the waves from the two
sources varies rapidly and randomly between fully constructive and fully destructive.
The eye (and most common optical detectors) cannot follow such changes, and no in-
terference pattern can be seen. The fringes disappear, and the screen is seen as being
uniformly illuminated.

A laser differs from common light sources in that its atoms emit light in a cooper-
ative manner, thereby making the light coherent. Moreover, the light is almost mono-
chromatic, is emitted in a thin beam with little spreading, and can be focused to a
width that almost matches the wavelength of the light.

36-6 Intensity in Double-Slit Interference

Equations 36-14 and 36-16 tell us how to locate the maxima and minima of the double-
slit interference pattern on screen C of Fig. 36-8 as a function of the angle � in that figure.
Here we wish to derive an expression for the intensity I of the fringes as a function of �.
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If we equate these two expressions for � and solve for ym, we find

(36-17)

For the next farther out maximum, we have

(36-18)

We find the distance between these adjacent maxima by subtracting
Eq. 36-17 from Eq. 36-18:

ym�1 �
(m � 1)�D

d
.

ym �
m�D

d
.

(Answer)

As long as d and � in Fig. 36-8a are small, the separation of the in-
terference fringes is independent of m; that is, the fringes are evenly
spaced.

� 2.50 � 10�3 m �  2.5 mm.

�
(546 � 10�9 m)(55 � 10�2 m)

0.12 � 10�3 m

�y � ym�1 � ym �
�D
d
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The light leaving the slits is in phase. However, let us assume that the light waves
from the two slits are not in phase when they arrive at point P. Instead, the electric
field components of those waves at point P are not in phase and vary with time as 

E1 � E0 sint (36-19)

and E2 � E0 sin(t � �), (36-20)

where  is the angular frequency of the waves and � is the phase constant of wave E2.
Note that when � is small the two waves have approximately the same amplitude E0

and a phase difference of �. Because that phase difference does not vary, the waves
are coherent. We shall show that these two waves will combine at P to produce an il-
lumination of intensity I given by

(36-21)

where

(36-22)

In Eq. 36-21, I0 is the intensity of the light that arrives on the screen from one slit
when the other slit is temporarily covered. We assume that the slits are so narrow in
comparison to the wavelength that this single-slit intensity is essentially uniform over
the central region of the screen in which we wish to examine the fringes.

Equations 36-21 and 36-22, which together tell us how the intensity I of the fringe
pattern varies with the angle � in Fig. 36-8, necessarily contain information about the
location of the maxima and minima. Let us see if we can extract it.

Study of Eq. 36-21 shows that intensity maxima will occur when 

for m � 0, 1, 2, . . . . (36-23)

If we put this result into Eq. 36-22, we find

for m � 0, 1, 2, . . . ,

or �L � d sin� � m� for m � 0, 1, 2, . . . (maxima), (36-24)

which is exactly Eq. 36-14, the expression that we derived earlier for the locations of
the maxima.

The minima in the fringe pattern occur when

for m � 0, 1, 2, . . . .

If we combine this relation with Eq. 36-22 we are led at once to 

for m � 0, 1, 2, . . . (minima), (36-25)

which is just Eq. 36-16, the expression we derived earlier for the locations of the
fringe minima.

Figure 36-9, which is a plot of Eq. 36-21, shows the intensity of double-slit interfer-
ence pattern fringes near the central maxima as a function of the phase difference �

d sin� � (m � 1
2)�

1
2� � (m � 1

2)	

2m	 �
2	d

�
 sin�

1
2� � m	

� �
2	d

�
 sin�.

I � 4I0 cos2 1
2�,



between the waves at the screen. The horizontal solid line is I0, the (uniform) intensity
on the screen when one of the slits is covered up. Note in Eq. 36-21 and the graph that
the intensity I (which is always positive) varies from zero at the fringe minima to 4I0

at the fringe maxima.
If the waves from the two sources (slits) were incoherent, so that no enduring

phase relation existed between them, there would be no fringe pattern and the inten-
sity would have the uniform value 2I0 for all points on the screen; the horizontal
dashed line in Fig. 36-9 shows this uniform value.

Interference cannot create or destroy energy but merely redistributes it over the
screen. Thus, the average intensity on the screen must be the same 2I0 regardless of
whether the sources are coherent. This follows at once from Eq. 36-21; if we substitute
, the average value of the cosine-squared function, this equation reduces to �I � � 2I0.

Proof of Eqs. 36-21 and 36-22
We shall combine the electric field components E1 and E2, given by Eqs. 36-19 and 
36-20, respectively, by the method of phasors discussed in Section 17-12. In Fig. 36-10a,
the waves with components E1 and E2 are represented by phasors of magnitude E0 that
rotate around the origin at angular speed . The values of E1 and E2 at any time are the
projections of the corresponding phasors on the vertical axis. Figure 36-10a shows the
phasors and their projections at an arbitrary time t. Consistent with Eqs. 36-19 and 36-
20, the phasor for E1 has a rotation angle t and the phasor for E2 has a rotation angle
t � �.

To combine the field components E1 and E2 at any point P in Fig. 36-8, we add
their phasors as if they were vectors (which they are not), as shown in Fig. 36-10b. The
magnitude of the phasor sum is the amplitude E of the resultant wave at point P, and
that wave has a certain phase constant �. To find the amplitude E in Fig. 36-10b, we
first note that the two angles marked � are equal because they are opposite equal-
length sides of a triangle. From the theorem (for triangles) that an exterior angle (�)
is equal to the sum of the two opposite interior angles (� � �), we see that � � �.
Thus, we have 

E � 2(E0 cos �)
(36-26)

� 2E0 cos �.

If we square each side of this relation we obtain

E2 � 4E0
2 cos2 �. (36-27)

Now, from Eq. 34-24, we know that the intensity of an electromagnetic wave is
proportional to the square of its amplitude. Therefore, the waves we are combining in
Fig. 36-10b, whose amplitudes are E0, each have an intensity I0 that is proportional to

1
2

1
2

1
2

1
2
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Intensity
at screen

2I0

(two coherent sources)

(two incoherent
sources)

4I0

I0 (one source)

2 1 0 0 1 2

5π 3π π π 3π 5π4π 2π 2π 4π0

0

φ

m, for maxima 
m, for minima 

2 1 1 2

2.5 1.5 0.5 0.5 1.5 2.502 1 1 2 ΔL/λ

FIGURE 36-9 ■ A plot of Eq. 36-21,
showing the intensity of a double-slit inter-
ference pattern as a function of the phase
difference between the waves when they
arrive from the two slits. I0 is the (uniform)
intensity that would appear on the screen
if one slit were covered. The average inten-
sity of the fringe pattern is 2I0, and the
maximum intensity (for coherent light) is
4I0.

(a)

E1
E0

ωt

ωE0

E2

φ

(b)

E1
E0

ωt

E

E2

φ

β

β

E0

ω

FIGURE 36-10 ■ (a) Phasors representing,
at time t, the electric field components
given by Eqs. 36-19 and 36-20. Both
phasors have magnitude E0 and rotate with
angular speed . Their phase difference is
�. (b) Addition of the two phasors gives the
phasor representing the resultant wave,
with amplitude E and phase constant �.
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E0
2, and the resultant wave, with amplitude E, has an intensity I that is proportional to

E2. Thus,

Substituting Eq. 36-27 into this equation and rearranging then yield

I � 4I0 cos2 �,

which is Eq. 36-21, which we set out to prove.
It remains to prove Eq. 36-22, which relates the phase difference � between the

waves arriving at any point P on the screen of Fig. 36-8 to the angle � that serves as a
locator of that point.

The phase difference � in Eq. 36-20 is associated with the path difference �L � S1b
in Fig. 36-8b. If �L is �, then � is 	 ; if �L is �, then � is 2	, and so on.This suggests

(36-28)

The path difference �L in Fig. 36-8b is d sin �, so Eq. 36-28 becomes 

which is Eq. 36-22, the other equation that we set out to prove.

Combining More Than Two Waves
In a more general case, we might want to find the resultant of more than two sinu-
soidally varying waves at a point. The general procedure is this:

1. Construct a series of phasors representing the waves to be combined. Draw them
end to end, maintaining the proper phase relations between adjacent phasors.

2. Construct the vector-like phasor sum of this array. The length of this sum gives
the amplitude of the resultant phasor. The angle between the phasor sum and the
first phasor is the phase of the resultant with respect to this first phasor. The pro-
jection of this resultant-sum phasor on the vertical axis gives the time variation of
the resultant wave.

� �
2	d

�
 sin�,

(phase difference) �
2	

�
 (path length difference).

1
2

1
2

I
I0

�
E 2

E 2
0

.

TOUCHSTONE EXAMPLE 36-3: Three Light Waves

Three light waves combine at a certain point where their electric
field components are

E1 � E0 sin t,

E2 � E0 sin(t � 60°),

E3 � E0 sin(t � 30°).

Find their resultant component E(t) at that point.

S O L U T I O N ■ The resultant wave is

E(t) � E1(t) � E2(t) � E3(t).

The Ke y  I d e a here is two-fold: We can use the method of pha-
sors to find this sum, and we are free to evaluate the phasors at any
time t. To simplify the solution we choose t � 0, for which the pha-
sors representing the three waves are shown in Fig. 36-11. We can
add these three phasors either directly on a vector-capable calcula-

E 0

E

E 0

β

ER

E 0
30°

60°

FIGURE 36-11 ■ Three phasors,
representing waves with equal
amplitudes E0 and with phase
constants 0°, 60°, and 230°, shown
at time t � 0.The phasors com-
bine to give a resultant phasor
with magnitude ER, at angle �.



36-7 Interference from Thin Films

The colors we see when sunlight illuminates a soap bubble or an oil slick are caused
by the interference of light waves reflected from the front and back surfaces of a thin
transparent film. The thickness of the soap or oil film is typically of the order of mag-
nitude of the wavelength of the (visible) light involved. (We shall not consider greater
thicknesses, which spoil the coherence of the light needed to produce colors by inter-
ference; we shall discuss lesser thicknesses shortly.)

Figure 36-12 shows a thin transparent film of uniform thickness L and index of re-
fraction n2, illuminated by bright light of wavelength � from a distant point source.
For now, we assume that air lies on both sides of the film and thus that n1 � n3 in Fig.
36-12. For simplicity, we also assume that the light rays are almost perpendicular to
the film (� � 0). We are interested in whether the film is bright or dark to an observer
viewing it almost perpendicularly. (Since the film is brightly illuminated, how could it
possibly be dark? You will see.)

The incident light, represented by ray i, hits the front (left) surface of the film at
point a and undergoes both reflection and refraction there. The reflected ray r1 enters
the observer’s eye. The refracted light crosses the film to point b on the back surface,
where it undergoes both reflection and refraction. The light reflected at b crosses back
through the film to point c, where it undergoes both reflection and refraction. The
light refracted at c, represented by ray r2, also enters the observer’s eye.

If the light waves of rays r1 and r2 are exactly in phase at the eye, they produce an
interference maximum, and region ac on the film is bright to the observer. If they are
exactly out of phase, they produce an interference minimum, and region ac is dark to
the observer, even though it is illuminated. If there is some intermediate phase differ-
ence, there are intermediate interference and intermediate brightness.

Thus, the key to what the observer sees is the phase difference between the waves
of rays r1 and r2. Both rays are derived from the same ray i, but the path involved in
producing r2 involves light traveling twice across the film (a to b, and then b to c),
whereas the path involved in producing r1 involves no travel through the film. Be-
cause � is close to zero, we approximate the path length difference between the waves
of r1 and r2 as 2L. However, to find the phase difference between the waves, we can-
not just find the number of wavelengths � that is equivalent to a path length differ-
ence of 2L. This simple approach is impossible for two reasons: (1) the path length
difference occurs in a medium other than air, and (2) the reflections involved can
change the phase.

The phase difference between two waves can change if one or both are reflected.
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tor or by components. For the component approach, we first write
the sum of their horizontal components as

Eh � E0 cos 0 � E0 cos 60° � E0 cos(�30°) � 2.37E0.

The sum of their vertical components, which is the value of E at t �
0, is

Ev � E0 sin 0 � E0 sin 60° � E0 sin(�30°) � 0.366E0.

The resultant wave E(t) thus has an amplitude ER of

and a phase angle � relative to the phasor representing E1 of

ER � √(2.37E0)2 � (0.366E0)2 � 2.4E0 ,

�

�
We can now write, for the resultant wave E(t),

E � ER sin(t � �)

� 2.4 E0 sin(t � 8.8°). (Answer)

Be careful to interpret the angle � correctly in Fig. 36-11: It is the
constant angle between ER and the phasor representing E1 as the
four phasors rotate as a single unit around the origin. The angle be-
tween ER and the horizontal axis in Fig. 36-11 does not remain
equal to �.

� � tan�1� 0.366E0

2.37E0
� � 8.8�.

θ
θ

n1 n3n2

L

r1

r2

c

a b

i

FIGURE 36-12 ■ Light waves, represented
with ray i, are incident on a thin film of
thickness L and index of refraction n2.
Rays r1 and r2 represent light waves that
have been reflected by the front and back
surfaces of the film, respectively. (All three
rays are actually nearly perpendicular to
the film.) The interference of the waves of
r1 and r2 with each other depends on their
phase difference. The index of refraction n1

of the medium at the left can differ from
the index of refraction n3 of the medium at
the right, but for now we assume that both
media are air, with n1 � n3 � 1.0, which is
less than n2.
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Before we continue our discussion of interference from thin films, we must discuss
changes in phase that are caused by reflections.

Reflection Phase Shifts
Refraction at an interface never causes a phase change—but reflection can, depending
on the indices of refraction on the two sides of the interface. Figure 36-13 shows what
happens when reflection of light waves causes a phase change, using as an example me-
chanical wave pulses on a denser string (along which pulse travel is relatively slow)
and a lighter string (along which pulse travel is relatively fast). This effect is just like
the one we discussed in Section 17-10. Recall that a pulse traveling down a string will
reflect differently from an end of the string that is tied to a post (a fixed end) than from
an end that is tied to a ring that can slide on the post (an open end) (see Fig. 17-25).
Reflecting off a heavy string is like reflecting off a fixed end. Reflecting off a light
string is like reflecting off an open end.

When a pulse traveling relatively slowly along the denser string in Fig. 36-13a
reaches the interface with the lighter string, the pulse is partially transmitted and par-
tially reflected, with no change in orientation. For light, this situation corresponds to
the incident wave traveling in the medium of greater index of refraction n (recall that
greater n means slower speed). In that case, the wave that is reflected at the interface
does not undergo a change in phase; that is, the reflection phase shift is zero.

When a pulse traveling more quickly along the lighter string in Fig. 36-13b
reaches the interface with the denser string, the pulse is again partially transmitted
and partially reflected. The transmitted pulse again has the same orientation as the in-
cident pulse, but now the reflected pulse is inverted. For a sinusoidal wave, such an in-
version involves a phase change of 	 rad, or half a wavelength. For light, this situation
corresponds to the incident wave traveling in the medium of lesser index of refraction
(with greater speed). In that case, the wave that is reflected at the interface undergoes
a phase shift of 	 rad, or half a wavelength.

We can summarize these results for light in terms of the index of refraction of the
medium off which (or from which) the light reflects:

Reflection Reflection phase shift Phase change (rad)

Off lower index 0.0 � 0

Off higher index 0.5 � 	

An aid to remembering this is “reflection off high, phase change is pi.”

Equations for Thin-Film Interference
In this chapter we have now seen three ways in which the phase difference between
two light waves can change:

1. by reflection,

2. by the waves traveling along paths of different lengths,

3. by the waves traveling through media of different indexes of refraction.

When light reflects from a thin film, producing the waves of rays r1 and r2 in Fig. 36-12,
all three ways are involved. Let us consider them one by one.

We first reexamine the two reflections in Fig. 36-12. At point a on the front inter-
face, the incident wave (in air) reflects from the medium having the higher of the two
indexes of refraction, so the wave of reflected ray r1 has its phase shifted by 0.5 wave-
length. At point b on the back interface, the incident wave reflects from the medium

Before

After

Before

After

(a)

(b )

Interface

FIGURE 36-13 ■ Phase changes when a
pulse is reflected at the interface between
two stretched strings of different linear
densities. The wave speed is greater in the
lighter string. (a) The incident pulse is in
the denser string. (b) The incident pulse is
in the lighter string. Only here is there a
phase change, and only in the reflected
wave.



(air) having the lower of the two indexes of refraction, so the wave reflected there is
not shifted in phase by the reflection, and thus neither is the portion of it that exits the
film as ray r2. We can organize this information with the first line in Table 36-1. It tells
us that, so far, as a result of the reflection phase shifts, the waves of r1 and r2 have a
phase difference of 0.5 wavelength and thus are exactly out of phase.

Based on the information presented in Table 36-1, we have the following rules for
predicting constructive interference (in phase) and destructive interference (out of
phase):

For a film thickness L, two waves of wavelength � traveling through a film with index of re-
fraction n2 will:

constructively interfere (in phase) if

destructively interfere (out of phase) if

These equations are valid for n2 � n1 and n2 � n3.

Now we must consider the path length difference 2L that occurs because the
wave of ray r2 crosses the film twice. (This difference 2L is shown in the expressions
above. If the waves of r1 and r2 are to be exactly in phase so that they produce fully
constructive interference, the path length 2L must cause an additional phase differ-
ence of 0.5, 1.5, 2.5, . . . wavelengths. Only then will the net phase difference be an in-
teger number of wavelengths. Thus, for a bright film, we must have

(in-phase waves). (36-29)

The wavelength we need here is the wavelength �n 2 of the light in the medium con-
taining path length 2L—that is, in the medium with index of refraction n2. Thus, we
can rewrite Eq. 36-29 as 

(in-phase waves). (36-30)

If, instead, the waves are to be exactly out of phase so that there is fully destruc-
tive interference, the path length 2L must cause either no additional phase difference
or a phase difference of 1, 2, 3, . . . , wavelengths. Only then will the net phase differ-
ence be an odd number of half-wavelengths. For a dark film, we must have 

2L � integer � wavelength, (36-31)

2L �
odd number

2
� �n 2

2L �
odd number

2
� wavelength

2L � integer �
�

n 2
.

2L �
odd number

2
�

�

n 2
,
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TA B L E 3 6 - 1
An Organizing Table for Thin-Film Interference in Aira

Reflection phase shifts
r1 r2

0.5 0

wavelength

Path length difference 2L

Index in which path length 
difference occurs n2

aValid for n2 � n1 and n2 � n3
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where, again, the wavelength is the wavelength �n 2 in the medium containing 2L.
Thus, this time we have 

2L � integer � �n 2 (out-of-phase waves). (36-32)

Now we can use Eq. 36-8 (�n � �/n) to write the wavelength of the wave of ray r2 in-
side the film as 

(36-33)

where � is the wavelength of the incident light in vacuum (and approximately also in
air). Substituting Eq. 36-33 into Eq. 36-30 and replacing “odd number/2” with (m � )
give us 

for m � 0, 1, 2, . . . (maxima—bright film in air). (36-34)

Similarly, with m replacing “integer,” Eq. 36-32 yields

for m � 0, 1, 2, . . . (minima—dark film in air). (36-35)

For a given film thickness L, Eqs. 36-34 and 36-35 tell us the wavelengths of light
for which the film appears bright and dark, respectively, one wavelength for each
value of m. Intermediate wavelengths give intermediate brightnesses. For a given
wavelength �, Eqs. 36-34 and 36-35 tell us the thicknesses of the films that appear
bright and dark in that light, respectively, one thickness for each value of m. Interme-
diate thicknesses give intermediate brightnesses.

A special situation arises when a film is so thin that L is much less than �, say,
L � 0.1�. Then the path length difference 2L can be neglected, and the phase differ-
ence between r1 and r2 is due only to reflection phase shifts. If the film of Fig. 36-12,
where the reflections cause a phase difference of 0.5 wavelength, has thickness L �
0.1�, then r1 and r2 are exactly out of phase, and thus the film is dark, regardless of the
wavelength and even the intensity of the light that illuminates it. This special situation
corresponds to m � 0 in Eq. 36-35. We shall count any thickness L � 0.1� as being
the least thickness specified by Eq. 36-35 to make the film of Fig. 36-12 dark. (Every
such thickness will correspond to m � 0.) The next greater thickness that will make
the film dark is that corresponding to m � 1.

Figure 36-14 shows a vertical soap film whose thickness increases from top to bot-
tom because the weight of the film has caused it to slump. Bright white light illumi-
nates the film. However, the top portion is so thin that it is dark. In the (somewhat
thicker) middle we see fringes, or bands, whose color depends primarily on the
wavelength at which reflected light undergoes fully constructive interference for a
particular thickness. Toward the (thickest) bottom of the film the fringes become
progressively narrower and the colors begin to overlap and fade.

Iridescence of a Morpho Butterfly Wing
A surface that displays colors due to thin-film interference is said to be iridescent be-
cause the tints of the colors change as you change your view of the surface. The irides-
cence of the top surface of a Morpho butterfly wing is due to thin-film interference of
light reflected by thin terraces of transparent cuticle-like material on the wing. These
terraces are arranged like wide, flat branches on a tree-like structure that extends
perpendicular to the wing.

2L � m
�

n 2

2L � (m � 1
2)

�

n 2

1
2

�n 2 �
�

n 2
,

FIGURE 36-14 ■ The reflection of light
from a soapy water film spanning a vertical
loop. The top portion is so thin that the
light reflected there undergoes destructive
interference, making that portion dark.
Colored interference fringes, or bands, dec-
orate the rest of the film but are marred by
circulation of liquid within the film as the
liquid is gradually pulled downward by
gravitation.



Suppose you look directly down on these terraces as white light shines directly
down on the wing. Then the light reflected back up to you from the terraces under-
goes fully constructive interference in the blue-green region of the visible spectrum.
Light in the yellow and red regions, at the opposite end of the spectrum, is weaker be-
cause it undergoes only intermediate interference. Thus, the top surface of the wing
looks blue-green to you.

If you intercept light that reflects from the wing in some other direction, the light
has traveled along a slanted path through the terraces. Then the wavelength at which
there is fully constructive interference is somewhat different from that for light re-
flected directly upward. Thus, if the wing moves in your view so that the angle at
which you view it changes, the color at which the wing is brightest changes somewhat,
producing the iridescence or brilliant rainbow-like colors of the wing.
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TOUCHSTONE EXAMPLE 36-4: Brightest Reflected Light

White light, with a uniform intensity across the visible wavelength
range of 400 to 690 nm, is perpendicularly incident on a water film,
of index of refraction n2 � 1.33 and thickness L � 320 nm, that is
suspended in air. At what wavelength � is the light reflected by the
film brightest to an observer?

S O L U T I O N ■ The Ke y  I d e a here is that the reflected light
from the film is brightest at the wavelengths � for which the re-
flected rays are in phase with one another. The equation relating
these wavelengths � to the given film thickness L and film index of
refraction n2 is either Eq. 36-34 or Eq. 36-35, depending on the re-
flection phase shifts for this particular film.

To determine which equation is needed, we should fill out an
organizing table like Table 36-1. However, because there is air on
both sides of the water film, the situation here is exactly like that in
Fig. 36-12, and thus the table would be exactly like Table 36-1. Then
from Table 36-1, we see that the reflected rays are in phase (and
thus the film is brightest) when

2L �
odd number

2
�

�

n 2
,

which leads to Eq. 36-34:

Solving for � and substituting for L and n2, we find

For m � 0, this gives us � � 1700 nm, which is in the infrared re-
gion. For m � 1, we find � � 567 nm, which is yellow-green light,
near the middle of the visible spectrum. For m � 2, � � 340 nm,
which is in the ultraviolet region. Thus, the wavelength at which the
light seen by the observer is brightest is

� � 567 nm. (Answer)

� �
2n 2L
m � 1

2

�
(2)(1.33)(320 nm)

m � 1
2

�
851 nm
m � 1

2

.

2L � (m � 1
2)

�

n 2
.

TOUCHSTONE EXAMPLE 36-5: Magnesium Fluoride Film

In Fig. 36-15, a glass lens is coated on one side with a thin film of
magnesium fluoride (MgF2) to reduce reflection from the lens sur-
face. The index of refraction of MgF2 is 1.38; that of the glass is 1.50.
What is the least coating thickness that eliminates (via interfer-
ence) the reflections at the middle of the visible spectrum (� � 550
nm)? Assume that the light is approximately perpendicular to the
lens surface.

S O L U T I O N ■ The Ke y  I d e a here is that reflection is elimi-
nated if the film thickness L is such that light waves reflected from
the two film interfaces are exactly out of phase. The equation relat-
ing L to the given wavelength � and the index of refraction n2 of
the thin film is either Eq. 36-34 or Eq. 36-35, depending on the re-
flection phase shifts at the interfaces.

Glass
n3 = 1.50

MgF2
n2 = 1.38

Air
n1 = 1.00

r1

r2

θ

L

a
b

c

i

θ

FIGURE 36-15 ■ Unwanted
reflections from glass can be
suppressed (at a chosen
wavelength) by coating the
glass with a thin transparent
film of magnesium fluoride of
the properly chosen
thickness.
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To determine which equation is needed, we fill out an organizing
table like Table 36-1. At the first interface, the incident light is in air,
which has a lesser index of refraction than the MgF2 (the thin film).
Thus, we fill in 0.5 wavelength under r1 in our organizing table
(meaning that the waves of ray r1 are shifted by 0.5� at the first inter-
face). At the second interface, the incident light is in the MgF2, which
has a lesser index of refraction than the glass on the other side of the
interface.Thus, we fill in 0.5 wavelength under r2 in our table.

Because both reflections cause the same phase shift, they tend
to put the waves of r1 and r2 in phase. Since we want those waves to
be out of phase, their path length difference 2L must be an odd
number of half-wavelengths:

2L �
odd number

2
�

�

n 2
.

This leads to Eq. 36-34. Solving that equation for L then gives us
the film thicknesses that will eliminate reflection from the lens and
coating:

for m � 0, 1, 2, . . . . (36-36)

We want the least thickness for the coating—that is, the least L.
Thus, we choose m � 0, the least possible value of m. Substituting it
and the given data in Eq. 36-36, we obtain

(Answer)L �
�

4n 2
�

550 nm
(4)(1.38)

� 99.6 nm.

L � (m � 1
2)

�

2n 2
,

TOUCHSTONE EXAMPLE 36-6: Red Light

Figure 36-16a shows a transparent plastic block with a thin wedge of
air at the right. (The wedge thickness is exaggerated in the figure.) A
broad beam of red light, with wavelength � � 632.8 nm, is directed
downward through the top of the block (at an incidence angle of 0°).
Some of the light is reflected back up from the top and bottom sur-
faces of the wedge, which acts as a thin film (of air) with a thickness
that varies uniformly and gradually from LL at the left-hand end to
LR at the right-hand end. (The plastic layers above and below the
wedge of air are too thick to act as thin films.) An observer looking
down on the block sees an interference pattern consisting of six dark
fringes and five bright red fringes along the wedge. What is the
change in thickness �L � (LR � LL) along the wedge?

S O L U T I O N ■ One Key  I dea here is that the brightness at
any point along the left–right length of the air wedge is due to the
interference of the waves reflected at the top and bottom interfaces
of the wedge. A second Key  I dea is that the variation of bright-
ness in the pattern of bright and dark fringes is due to the variation
in the thickness of the wedge. In some regions, the thickness puts the
reflected waves in phase and thus produces a bright reflection (a
bright red fringe). In other regions, the thickness puts the reflected
waves out of phase and thus produces no reflection (a dark fringe).

Because the observer sees more dark fringes than bright
fringes, we can assume that a dark fringe is produced at both the
left and right ends of the wedge. Thus, the interference pattern is
that shown in Fig. 36-16b, which we can use to determine the
change in thickness �L of the wedge.

Another Ke y  I d e a is that we can represent the reflection of
light at the top and bottom interfaces of the wedge, at any point
along its length, with Fig. 36-16c, in which L is the wedge thickness
at that point. Let us apply this figure to the left end of the wedge,
where the reflections give a dark fringe.

We know that, for a dark fringe, the waves of rays r1 and r2 in
Fig. 36-16c must be out of phase. We also know that the equation
relating the film thickness L to the light’s wavelength � and the
film’s index of refraction n2 is either Eq. 36-34 or Eq. 36-35, depend-
ing on the reflection phase shifts. To determine which equation
gives a dark fringe at the left end of the wedge, we should fill out an
organizing table like Table 36-1.

At the top interface of the wedge, the incident light is in the plas-
tic, which has a greater index of refraction than the air beneath that
interface. Thus, we fill in 0 under r1 in our organizing table. At the bot-
tom interface of the wedge, the incident light is in air, which has a
lesser index of refraction than the plastic beneath that interface. Thus,
we fill in 0.5 wavelength under r2 in our organizing table. Therefore,
the reflections alone tend to put the waves of r1 and r2 out of phase.

Since the waves are, in fact, out of phase at the left end of the
air wedge, the path length difference 2L at that end of the wedge
must be given by

2L � integer �
�

n 2
,

LL LR

L

n1

n2

n3

r1
r2

i

Incident light

(a)

(b)

(c)

FIGURE 36-16 ■ (a) Red light is incident on a
thin, air-filled wedge in the side of a transparent
plastic block. The thickness of the wedge is LL

at the left end and LR at the right end. (b) The
view from above the block: an interference pat-
tern of six dark fringes and five bright red
fringes lies over the region of the wedge. (c) A
representation of the incident ray i, reflected
rays r1 and r2, and thickness L of the wedge
anywhere along the length of the wedge.
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36-8 Michelson’s Interferometer

An interferometer is a device that can be used to measure lengths or changes in
length with great accuracy by means of interference fringes. We describe the form
originally devised and built by A. A. Michelson in 1881.

Consider light that leaves point P on extended source S in Fig. 36-17 and
encounters beam splitter M. A beam splitter is a mirror that transmits half the inci-
dent light and reflects the other half. In the figure we have assumed, for conve-
nience, that this mirror possesses negligible thickness. At M the light thus divides
into two waves. One proceeds by transmission toward mirror M1; the other pro-
ceeds by reflection toward mirror M2. The waves are entirely reflected at these
mirrors and are sent back along their directions of incidence, each wave eventually
entering telescope T. What the observer sees is a pattern of curved or approxi-
mately straight interference fringes; in the latter case the fringes resemble the
stripes on a zebra.

The path length difference for the two waves when they recombine at the
telescope is 2d2 � 2d1, and anything that changes this path length difference will
cause a change in the phase difference between these two waves at the eye. As an ex-
ample, if mirror M2 is moved by a distance �, the path length difference is changed by
� and the fringe pattern is shifted by one fringe (as if each dark stripe on a zebra had
moved to where the adjacent dark stripe had been). Similarly, moving mirror M2 by �
causes a shift by half a fringe (each dark zebra stripe shifts to where the adjacent
white stripe was).

A shift in the fringe pattern can also be caused by the insertion of a thin transpar-
ent material into the optical path of one of the mirrors—say, M1. If the material has
thickness L and index of refraction n, then the number of wavelengths along the
light’s to-and-fro path through the material is, from Eq. 36-9,

(36-39)

The number of wavelengths in the same thickness 2L of air before the insertion of the
material is 

(36-40)Na �
2L
�

.

Nm �
2L
�n

�
2Ln

�
.

1
4

1
2

which leads to Eq. 36-35:

for m � 0, 1, 2, . . . . (36-37)

Here is another Ke y  I d e a : Eq. 36-37 holds not only for the left
end of the wedge but also at any point along the wedge where a
dark fringe is observed, including the right end—with a different
integer value of m for each fringe. The least value of m is associated
with the least thickness of the wedge where a dark fringe is ob-
served. Progressively greater values of m are associated with pro-
gressively greater thicknesses of the wedge where a dark fringe is
observed. Let mL be the value at the left end. Then the value at the
right end must be mL � 5 because, from Fig. 36-16b, the right end is
located at the fifth dark fringe from the left end.

We want the change �L in thickness, from the left end to the
right end of the wedge. To find it we first solve Eq. 36-37 twice—

2L � m
�

n 2
,

once for the thickness LL at the left end and once for the thickness
LR at the right end:

(36-38)

To find the change in thickness �L, we can now subtract LL from
LR and substitute known data, including n2 � 1.00 for the air within
the wedge:

(Answer)� 1.58 � 10�6 m.

�
5
2

632.8 � 10�9 m
1.00

�L � LR � LL �
(mL � 5)�

2n 2
�

mL�

2n 2
�

5
2

�

n 2

LL � (mL)
�

2n 2
,  LR � (mL � 5)

�

2n 2
.

Movable
mirror

M2

d2

P

S

M d1

M1

T

FIGURE 36-17 ■ Michelson’s interferome-
ter, showing the path of light originating at
point P of an extended source S. Mirror M
splits the light into two beams, which re-
flect from mirrors M1 and M2 back to M
and then to telescope T. In the telescope
an observer sees a pattern of interference
fringes.
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When the material is inserted, the light returned by mirror M1 undergoes a phase
change (in terms of wavelengths) of 

(36-41)

For each phase change of one wavelength, the fringe pattern is shifted by one
fringe. Thus, by counting the number of fringes through which the material causes the
pattern to shift, and substituting that number for Nm � Na in Eq. 36-41, you can deter-
mine the thickness L of the material in terms of �.

By such techniques the lengths of objects can be expressed in terms of the wave-
lengths of light. In Michelson’s day, the standard of length—the meter—was chosen
by international agreement to be the distance between two fine scratches on a certain
metal bar preserved at Sèvres, near Paris. Michelson was able to show, using his inter-
ferometer, that the standard meter was equivalent to 1 553 163.5 wavelengths of a cer-
tain monochromatic red light emitted from a light source containing cadmium. For
this careful measurement, Michelson received the 1907 Nobel Prize in physics. His
work laid the foundation for the eventual abandonment (in 1961) of the meter bar as
a standard of length and for the redefinition of the meter in terms of the wavelength
of light. By 1983, as we have seen, even this wavelength standard was not precise
enough to meet the growing requirements of science and technology, and it was re-
placed with a new standard based on a defined value for the speed of light as dis-
cussed in Section 1-6.

Nm � Na �
2Ln

�
�

2L
�

�
2L
�

(n � 1).

Problems

SEC. 36-2 ■ LIGHT AS A WAVE

1. Yellow Sodium Light The wavelength of yellow sodium light in
air is 589 nm. (a) What is its frequency? (b) What is its wavelength
in glass whose index of refraction is 1.52? (c) From the results of (a)
and (b) find its speed in this glass.

2. Sapphire vs. Diamond How much faster, in meters per second,
does light travel in sapphire than in diamond? See Table 35-1.

3. Yellow Light The speed of yellow light (from a sodium lamp) in
a certain liquid is measured to be 1.92 � l08 m/s. What is the index
of refraction of this liquid for the light at this wavelength?

4. Fused Quartz What is the speed in fused quartz of light of wave-
length 550 nm? (See Fig. 35-3.)

5. Ocean Wave Ocean waves moving at a speed of 4.0 m/s are ap-
proaching a beach at an angle of 30°
to the normal, as shown from above
in Fig. 36-18. Suppose the water
depth changes abruptly at a certain
distance from the beach and the
wave speed there drops to 3.0 m/s.
Close to the beach, what is the angle
� between the direction of wave mo-
tion and the normal? (Assume the
same law of refraction as for light.)
Explain why most waves come in
normal to a shore even though at
large distances they approach at a
variety of angles.

6. Two Pulses In Fig. 36-19. Two
pulses of light are sent through lay-
ers of plastic with the indexes of re-
fraction indicated and with thick-
nesses of either L or 2L as shown.
(a) Which pulse travels through the
plastic in less time? (b) In terms of
L/c, what is the difference in the tra-
versal times of the pulses?

7. Two Waves In Fig. 36-3, assume
that two waves of light in air, of wave length 400 nm, are initially in
phase. One travels through a glass layer of index of refraction n1 �
1.60 and thickness L. The other travels through an equally thick
plastic layer of index of refraction n2 � 1.50. (a) What is the least
value L should have if the waves are to end up with a phase differ-
ence of 5.65 rad? (b) If the waves arrive at some common point af-
ter emerging, what type of interference do they undergo?

8. Two Media Suppose that the two waves in Fig. 36-3 have wave-
length 500 nm in air. In wavelengths, what is their phase difference
after traversing media 1 and 2 if (a) n1 � 1.50, n2 � 1.60, and L �
8.50 
m; (b) n1 � 1.62, n2 � 1.72, and L � 8.50 
m; and (c) n1 �
1.59, n2 � 1.79, and L � 3.25 
m? (d) Suppose that in each of
these three situations the waves arrive at a common point after
emerging. Rank the situations according to the brightness the
waves produce at the common point.

9. Initially in Phase Two waves of light in air, of wavelength 
600.0 nm, are initially in phase. They then travel through plastic
layers as shown in Fig. 36-20, with L1 � 4.00 
m, L2 � 3.50 
m,

θ

30°

Shoreline

Shallow water

Deep water

FIGURE 36-18 ■

Problem 5.

L

Pulse
2

Pulse
1

1.55 1.70 1.60 1.45

1.59 1.65 1.50

L L L

FIGURE 36-19 ■

Problem 6.



n1 � 1.40, and n2 � 1.60. (a) In wave-
lengths, what is their phase difference
after they both have emerged from
the layers? (b) If the waves later ar-
rive at some common point, what type
of interference do they undergo?

10. Two Light Waves In Fig. 36-3, as-
sume that the two light waves, of
wavelength 620 nm in air, are initially
out of phase by 	 rad. The indexes of
refraction of the media are n1 � 1.45
and n2 � 1.65. (a) What is the least
thickness L that will put the waves ex-
actly in phase once they pass through the two media? (b) What is
the next greater L that will do this?

SEC. 36-4 ■ YOUNG’S INTERFERENCE EXPERIMENT

11. Green Light Monochromatic green light, of wavelength 550
nm, illuminates two parallel narrow slits 7.70 
m apart. Calculate
the angular deviation (� in Fig. 36-8) of the third-order (for m � 3)
bright fringe (a) in radians and (b) in degrees.

12. Phase Difference What is the phase difference of the waves
from the two slits when they arrive at the mth dark fringe in a
Young’s double-slit experiment?

13. Blue-Green Light Suppose that Young’s experiment is per-
formed with blue-green light of wavelength 500 nm. The slits are
1.20 mm apart, and the viewing screen is 5.40 m from the slits. How
far apart are the bright fringes.

14. Angular Separation In a double-slit arrangement the slits are
separated by a distance equal to 100 times the wavelength of the
light passing through the slits. (a) What is the angular separation in
radians between the central maximum and an adjacent maximum?
(b) What is the distance between these maxima on a screen 50.0 cm
from the slits?

15. Interference Fringes A double-slit arrangement produces in-
terference fringes for sodium light (� � 589 nm) that have an angu-
lar separation of 3.50 � 10�3 rad. For what wavelength would the
angular separation be 10.0% greater?

16. Immersed in Water A double-slit arrangement produces inter-
ference fringes for sodium light (� � 589 nm) that are 0.20° apart.
What is the angular fringe separation if the entire arrangement is
immersed in water (n � 1.33)?

17. Radio Frequency Sources Two radio-frequency point sources
separated by 2.0 m are radiating in phase with � � 0.50 m. A detec-
tor moves in a circular path around the two sources in a plane con-
taining them. Without written calculation, find how many maxima it
detects.

18. Long-Range Radio Waves Sources A and B emit long-range ra-
dio waves of wavelength 400 m, with the phase of the emission from
A ahead of that from source B by 90°. The distance rA from A to a
detector is greater than the corresponding distance rB by 100 m.
What is the phase difference at the detector?

19. Two Interference Patterns In a double-slit experiment the dis-
tance between slits is 5.0 nm and the slits are 1.0 m from the screen.
Two interference patterns can be seen on the screen: one due to
light with wavelength 480 nm, and the other due to light with wave-
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length 600 nm. What is the separation on the screen between the
third-order (m � 3) bright fringes of
the two interference patterns?

20. Identical Radiators In Fig. 36-21,
S1 and S2 are identical radiators of
waves that are in phase and of the
same wavelength �. The radiators are
separated by distance d � 3.00�. Find
the greatest distance from S1, along
the x axis, for which fully destructive
interference occurs. Express this dis-
tance in wavelengths.

21. Mica Flake A thin flake of mica (n � 1.58) is used to cover one
slit of a double-slit interference arrangement. The central point on
the viewing screen is now occupied by what had been the seventh
bright side fringe (m � 7) before the mica was used. If � � 550 nm,
what is the thickness of the mica? (Hint: Consider the wavelength
of the light within the mica.)

22. Laser Light Laser light of wavelength 632.8 nm passes through
a double-slit arrangement at the front of a lecture room, reflects off
a mirror 20.0 m away at the back of the room, and then produces an
interference pattern on a screen at the front of the room. The dis-
tance between adjacent bright fringes is 10.0 cm. (a) What is the slit
separation? (b) What happens to the pattern when the lecturer
places a thin cellophane sheet over one slit, thereby increasing by
2.50 the number of wavelengths along the path that includes the
cellophane?

SEC. 36-6 ■ INTENSITY IN DOUBLE-SLIT INTERFERENCE

23. Same Frequency Two waves of the same frequency have ampli-
tudes 1.00 and 2.00. They interfere at a point where their phase dif-
ference is 60.0°. What is the resultant amplitude?

24. Find Sum Find the sum y of the following quantities:

y1 � 0 sin t and y2 � 8.0 sin(t � 30°).

25. Use Phasors Add the quantities 

y1 � 10 sin t

y2 � 15 sin(t � 30°)

y3 � 5.0 sin(t � 45°)

using the phasor method.

26. Sketch Intensity Light of wavelength 600 nm is incident
normally on two parallel narrow slits separated by 0.60 mm. Sketch
the intensity pattern observed on a distant screen as a function of
angle � from the pattern’s center for the range of values 0 � � �
0.0040 rad.

27. Electromagnetic Waves S1 and S2 in Fig. 36-21 are point
sources of electromagnetic waves of wavelength 1.00 m. They are in
phase and separated by d � 4.00 m, and they emit at the same
power. (a) If a detector is moved to the right along the x axis from
source S1, at what distances from S1 are the first three interference
maxima detected? (b) Is the intensity of the nearest minimum ex-
actly zero? (Hint: Does the intensity of a wave from a point source
remain constant with an increase in distance from the source?).

n2

n1

L 2

L 1

FIGURE 36-20 ■

Problem 9.

d

x
S 1

S 2

FIGURE 36-21 ■

Problems 20 and 27.
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28. Horizontal Arrow The double horizontal arrow in Fig. 36-9
marks the points on the intensity curve where the intensity of the
central fringe is half the maximum intensity. Show that the angular
separation �� between the corresponding points on the viewing
screen is

�� �

if � in Fig. 36-8 is small enough so that sin � � �.

29. Wider Slit Suppose that one of the slits of a double-slit inter-
ference experiment is wider than the other, so the amplitude of the
light reaching the central part of the screen from one slit, acting
alone, is twice that from the other slit, acting alone. Derive an ex-
pression for the light intensity I at the screen as a function of �, cor-
responding to Eqs. 36-21 and 36-22.

SEC. 36-7 ■ INTERFERENCE FROM THIN FILMS

30. Reflections In Fig. 36-22, light
wave W1 reflects once from a reflect-
ing surface while light wave W2 re-
flects twice from that surface and
once from a reflecting sliver at dis-
tance L from the mirror. The waves
are initially in phase and have a
wavelength of 620 nm. Neglect the
slight tilt of the rays. (a) For what
least value of L are the reflected waves exactly out of phase? (b)
How far must the sliver be moved to put the waves exactly out of
phase again?

31. Bright Light Bright light of wavelength 585 nm is incident per-
pendicularly on a soap film (n � 1.33) of thickness 1.21 
m, sus-
pended in air. Is the light reflected by the two surfaces of the film
closer to interfering fully destructively or fully constructively?

32. Exactly Out of Phase Suppose the light waves of Problem 30
are initially exactly out of phase. Find an expression for the values
of L (in terms of the wavelength �) that put the reflected waves ex-
actly in phase.

33. Soap Film Light of wavelength 624 nm is incident perpendicu-
larly on a soap film (with n � 1.33) suspended in air. What are the
least two thicknesses of the film for which the reflections from the
film undergo fully constructive interference?

34. Camera Lens A camera lens with index of refraction greater
than 1.30 is coated with a thin transparent film of index of refrac-
tion 1.25 to eliminate by interference the reflection of light at wave-
length � that is incident perpendicularly on the lens. In terms of �,
what minimum film thickness is needed?

35. Rhinestones The rhinestones in costume jewelry are glass with
index of refraction 1.50. To make them more reflective, they are of-
ten coated with a layer of silicon monoxide of index of refraction
2.00. What is the minimum coating thickness needed to ensure that
light of wavelength 560 nm and of perpendicular incidence will be
reflected from the two surfaces of the coating with fully construc-
tive interference?

36. Five Sections In Fig. 36-23, light of wavelength 600 nm is
incident perpendicularly on five sections of a transparent structure
suspended in air. The structure has index of refraction 1.50. The
thickness of each section is given in terms of L � 4.00 
m. For

�

2d

which sections will the light that is
reflected from the top and bottom
surfaces of that section undergo fully
constructive interference?

37. Coat Glass We wish to coat flat
glass (n � 1.50) with a transparent
material (n � 1.25) so that reflection
of light at wavelength 600 nm is
eliminated by interference. What
minimum thickness can the coating
have to do this?

38. Four Thin Layers In Fig. 36-24,
light is incident perpendicularly on
four thin layers of thickness L. The
indexes of refraction of the thin layers and of the media above and
below these layers are given. Let � represent the wavelength of the
light in air and n2 represent the index of refraction of the thin layer
in each situation. Consider only the transmission of light that un-
dergoes no reflection or two reflections, as in Fig. 36-24a. For which
of the situations does the expression

� � , for m � 1, 2, 3, . . . ,

give the wavelengths of the transmitted light that undergoes fully
constructive interference?

2Ln 2

m

W2

W1

L

FIGURE 36-22 ■

Problems 30 and 32.

(a) (b ) (c ) (d )

2L

L/2

3L

L/10

(e)

L

FIGURE 36-23 ■

Problem 36.

1.6

1.4

1.8

L

1.4

1.6

1.8

1.8

1.4

1.6

1.8

1.6

1.4

(a) (b ) (c ) (d )

FIGURE 36-24 ■ Problems 38 and 39.

39. Leaking Tanker A disabled tanker leaks kerosene (n � 1.20)
into the Persian Gulf creating a large slick on top of the water (n �
1.30). (a) If you are looking straight down from an airplane, while
the Sun is overhead, at a region of the slick where its thickness is
460 nm, for which wavelength(s) of visible light is the reflection
brightest because of constructive interference? (b) If you are scuba
diving directly under this same region of the slick, for which wave-
length(s) of visible light is the transmitted intensity strongest?
(Hint: Use Fig. 36-24a with appropriate indexes of refraction.)

40. Plane Wave A plane wave of monochromatic light is incident
normally on a uniform thin film of oil that covers a glass plate. The
wavelength of the source can be varied continuously. Fully destruc-
tive interference of the reflected light is observed for wavelengths
of 500 and 700 nm and for no wavelengths in between. If the index
of refraction of the oil is 1.30 and that of the glass is 1.50, find the
thickness of the oil film.

41. Monochromatic Light A plane monochromatic light wave in
air is perpendicularly incident on a thin film of oil that covers a
glass plate. The wavelength of the source may be varied continu-
ously. Fully destructive interference of the reflected light is



observed for wavelengths of 500 and 700 nm and for no wavelength
in between. The index of refraction of the glass is 1.50. Show that
the index of refraction of the oil must be less than 1.50.

42. Soap Film Two The reflection of perpendicularly incident white
light by a soap film in air has an interference maximum at 600 nm
and a minimum at 450 nm, with no minimum in between. If n �
1.33 for the film, what is the film thickness, assumed uniform?

43. Glass Plates In Fig. 36-25, a
broad beam of light of wavelength
683 nm is sent directly downward
through the top plate of a pair of
glass plates. The plates are 120 mm
long, touch at the left end, and are
separated by a wire of diameter
0.048 mm at the right end. The air
between the plates acts as a thin
film. How many bright fringes will
be seen by an observer looking
down through the top plate?

44. Directly Downward In Fig. 36-25, white light is sent directly
downward through the top plate of a pair of glass plates. The plates
touch at the left end and are separated by a wire of diameter 0.048
mm at the right end; the air between the plates acts as a thin film.
An observer looking down through the top plate sees bright and
dark fringes due to that film. (a) Is a dark fringe or a bright fringe
seen at the left end? (b) To the right of that end, fully destructive
interference occurs at different locations for different wavelengths
of the light. Does it occur first for the red end or the blue end of the
visible spectrum?

45. Wedge-Shaped A broad beam of light of wavelength 630 nm is
incident at 90° on a thin, wedge-shaped film with index of refraction
1.50. An observer intercepting the light transmitted by the film sees
10 bright and 9 dark fringes along the length of the film. By how
much does the film thickness change over this length?

46. Acetone A thin film of acetone (n � 1.25) coats a thick glass
plate (n � 1.50). White light is incident normal to the film. In the
reflections, fully destructive interference occurs at 600 nm and fully
constructive interference at 700 nm. Calculate the thickness of the
acetone film.

47. Two Glass Plates Two glass plates are held together at one end
to form a wedge of air that acts as a thin film. A broad beam of light
of wavelength 480 nm is directed through the plates, perpendicular
to the first plate. An observer intercepting light reflected from the
plates sees on the plates an interference pattern that is due to the
wedge of air. How much thicker is the wedge at the sixteenth bright
fringe than it is at the sixth bright fringe, counting from where the
plates touch?

48. Broad Beam A broad beam of monochromatic light is directed
perpendicularly through two glass plates that are held together at
one end to create a wedge of air between them. An observer inter-
cepting light reflected from the wedge of air, which acts as a thin
film, sees 4001 dark fringes along the length of the wedge. When the
air between the plates is evacuated, only 4000 dark fringes are seen.
Calculate the index of refraction of air from these data.

49. Radius of Curvature Figure 36-26a shows a lens with radius of
curvature R lying on plane glass plate and illuminated from above
by light with wavelength �. Figure 36-26b (a photograph taken from
above the lens) shows that circular interference fringes (called
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Newton’s rings) appear, associated with the variable thickness d of
the air film between the lens and the plate. Find the radii r of the in-
terference maxima assuming r/R � 1.

50. Newtons’s Rings One In a Newton’s rings experiment (see
Problem 49), the radius of curvature R of the lens is 5.0 m and the
lens diameter is 20 mm. (a) How many bright rings are produced?
Assume that � � 589 nm. (b) How many bright rings would be pro-
duced if the arrangement were immersed in water (n � 1.33)?

51. Newton’s Rings Two A Newton’s rings apparatus is to be used
to determine the radius of curvature of a lens (see Fig. 36-26 and
Problem 49). The radii of the nth and (n � 20)th bright rings are
measured and found to be 0.162 and 0.368 cm, respectively, in light
of wavelength 546 nm. Calculate the radius of curvature of the
lower surface of the lens.

120 mm

Incident light

Wire

FIGURE 36-25 ■ Problems
43 and 44.

Air
r

R

Glass

Glass

Incident
light

d

(a)

52. Newton’s Rings Three (a) Use the result of Problem 49 to
show that, in a Newton’s rings experiment, the difference in radius
between adjacent bright rings (maxima) is given by

assuming m � 1. (b) Now show that the area between adjacent
bright rings is given by

A � 	�R ,

assuming m � 1. Note that this area is independent of m.

�r � rm�1 � rm � 1
2√�R/m,

FIGURE 36-26 ■ Problems 49 through 52.

(b)
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53. Microwave Transmitter In Fig. 36-27, a microwave transmitter
at height a above the water level of a wide lake transmits
microwaves of wavelength � toward a receiver on the opposite
shore, a distance x above the water level. The microwaves reflecting
from the water interfere with the microwaves arriving directly from
the transmitter. Assuming that the lake width D is much greater
than a and x, and that � � a, at what values of x is the signal at the
receiver maximum? (Hint: Does the reflection cause a phase
change?)

Through what distance must mirror M2 be moved to shift the fringe
pattern for one wavelength by 1.00 fringe more than the fringe pat-
tern for the other wavelength?

57. Airtight Chamber In Fig. 36-28, an airtight chamber 5.0 cm
long with glass windows is placed in one arm of a Michelson inter-
ferometer. Light of wavelength � � 500 nm is used. Evacuating the
air from the chamber causes a shift of 60 fringes. From these data,
find the index of refraction of air at atmospheric pressure.

Source

Mirror

Mirror

To vacuum
pump

5.0 cm

FIGURE 36-28 ■ Problem 57.

xa

D

FIGURE 36-27 ■ Problem 53.

SEC. 36-8 ■ MICHELSON’S INTERFEROMETER

54. Thin Film A thin film with index of refraction n � 1.40 is
placed in one arm of a Michelson interferometer, perpendicular to
the optical path. If this causes a shift of 7.0 fringes of the pattern
produced by light of wavelength 589 nm, what is the film thickness? 

55. Move the Mirror If mirror M2 in a Michelson interferometer
(Fig. 36-17) is moved through 0.233 mm, a shift of 792 fringes occurs.
What is the wavelength of the light producing the fringe pattern?

56. Light at Two Wavelengths The element sodium can emit light
at two wavelengths, �1 � 589.10 nm and �2 � 589.59 nm. Light from
sodium is being used in a Michelson interferometer (Fig. 36-17).

58. Observed Intensity Write an expression for the intensity ob-
served in a Michelson interferometer (Fig. 36-17) as a function of
the position of the moveable mirror. Measure the position of the
mirror from the point at which d2 � d1.
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Additional Problems
59. Arranging the Patio Speakers You have set up two stereo
speakers on your patio as shown in the top view diagram in 
Fig. 36-29. You are worried that at certain positions you will lose
frequencies as a result of interference. The coordinate grid on the
edge of the picture has its large tick marks separated by 1 m. For
ease of calculation, make the following assumptions:

• Assume that the relevant objects lie on integer or half-integer
grid points of the coordinate system.

• Take the speed of sound to be 343 m/s.

• Ignore the reflection of sound from the house, trees, etc.

• Assume that the speakers are in phase.

(a) What will happen if you are sitting in the middle of the bench?
(b) If you are sitting in the lawn chair on the left, what will be the

lowest frequency you will lose to destructive interference?
(c) Can you restore the frequency lost in part (b) by switching the

leads to one of the speakers, thereby reversing the phase of that
source?

(d) With the leads reversed, what will happen to the sound for a
person sitting at the center of the bench?

60. What Happens If a Double Slit Winks?
When a laser beam is incident on a double slit,
a closeup of the center of the pattern looks like
that shown in Fig. 36-30. If one of the slits is
covered (the left one) but the other slit re-
mains open, what will the pattern look like?
Explain how you know.

Chairs

Speakers

Bench

FIGURE 36-29 ■ Problem 59.
FIGURE 36-30 ■

Problem 60.
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37 Diffraction

Georges Seurat painted Sunday Afternoon on the Island of

La Grande Jatte using not brush strokes in the usual sense,

but rather a myriad of small colored dots, in a style of paint-

ing now known as pointillism. You can see the dots if you

stand close enough to the painting, but as you move away

from it, they eventually blend and cannot be distinguished.

Moreover, the color that you see at any given place on the

painting changes as you move away—which is why Seurat

painted with the dots.

What causes this change in
color?

The answer is in this chapter.



37-1 Diffraction and the Wave Theory of Light

In Chapter 36 we defined diffraction rather loosely as the flaring of light as it emerges
from a narrow slit. More than just flaring occurs, however, because the light produces
an interference pattern called a diffraction pattern. For example, when monochro-
matic light from a distant source (or a laser) passes through a narrow slit and is then
intercepted by a viewing screen, the light produces on the screen a diffraction pattern
like that in Fig. 37-1. This pattern consists of a broad and intense (very bright) central
maximum and a number of narrower and less intense maxima (called secondary or
side maxima) to both sides. In between the maxima are minima.

Such a pattern would be totally unexpected in geometrical optics: If light traveled
in straight lines as rays, then the slit would allow some of those rays through and they
would form a sharp, bright rendition of the slit on the viewing screen. As in Chapter
36, we again must conclude that geometrical optics is only an approximation.

Diffraction of light is not limited to situations of light passing through a narrow
opening (such as a slit or pinhole). It also occurs when light passes an edge, such as
the edges of the razor blade whose diffraction pattern is shown in Fig. 37-2. Note the
lines of maxima and minima that run approximately parallel to the edges, at both the
inside edges of the blade and the outside edges. As the light passes, say, the vertical
edge at the left, it flares left and right and undergoes interference, producing the pat-
tern along the left edge. The rightmost portion of that pattern actually lies within what
would have been the shadow of the blade if geometrical optics prevailed.

You encounter a common example of diffraction when you look at a clear blue
sky and see tiny specks and hair-like structures floating in your view. These floaters, as
they are called, are produced when light passes the edges of tiny deposits in the vitre-
ous humor, the transparent material filling most of your eyeball. What you are seeing
when a floater is in your field of vision is the diffraction pattern produced on the
retina by one of these deposits. If you sight through a pinhole in an otherwise opaque
sheet so as to make the light entering your eye approximately a plane wave, you can
distinguish individual maxima and minima in the patterns.

The Fresnel Bright Spot
Diffraction finds a ready explanation in the wave theory of light. However, this the-
ory, originally advanced in the late 1600s by Huygens and used 123 years later by
Young to explain double-slit interference, was very slow in being adopted, largely be-
cause it ran counter to Newton’s theory that light was a stream of particles.

Newton’s view was the prevailing view in French scientific circles of the early
19th century, when Augustin Fresnel was a young military engineer. Fresnel, who
believed in the wave theory of light, submitted a paper to the French Academy of
Sciences describing his experiments with light and his wave-theory explanations of
them.

In 1819, the Academy, dominated by supporters of Newton and thinking to chal-
lenge the wave point of view, organized a prize competition for an essay on the sub-
ject of diffraction. Fresnel won. The Newtonians, however, were neither converted nor
silenced. One of them, S. D. Poisson, pointed out the “strange result” that if Fresnel’s
theories were correct, then light waves should flare into the shadow region of a sphere
as they pass the edge of the sphere, producing a bright spot at the center of the
shadow. The prize committee arranged to have Dominique Argo test the famous
mathematician’s prediction. He discovered (see Fig. 37-3) that the predicted Fresnel
bright spot, as we call it today, was indeed there!* Nothing builds confidence in a

1084 CHAPTER 37 Diffraction

* Since Poisson predicted the spot and Argo discovered it, an alternate name is the Poisson-Argo bright
spot.

FIGURE 37-1 ■ This diffraction pattern
appeared on a viewing screen when light
that had passed through a narrow but tall
vertical slit reached the screen. Diffraction
causes light to flare out perpendicular to
the long sides of the slit. That produces an
interference pattern consisting of a broad
central maximum less intense and nar-
rower secondary (or side) maxima, with
minima between them.

FIGURE 37-2 ■ The diffraction pattern
produced by a razor blade in monochro-
matic light. Note the lines of alternating
maximum and minimum intensity.



theory so much as having one of its unexpected and counterintuitive predictions veri-
fied by experiment.

37-2 Diffraction by a Single Slit: Locating the Minima

Let us now examine the diffraction pattern of plane waves of light of wavelength �
that are diffracted by a single, long, narrow slit of width a in an otherwise opaque
screen B, as shown in cross section in Fig. 37-4a. (In that figure, the slit’s length ex-
tends into and out of the page, and the incoming wavefronts are parallel to screen
B.) When the diffracted light reaches viewing screen C, waves from different points
within the slit undergo interference and produce a diffraction pattern of bright and
dark fringes (interference maxima and minima) on the screen. To locate the
fringes, we shall use a procedure somewhat similar to the one we used to locate the
fringes in a two-slit interference pattern. However, diffraction is more mathemati-
cally challenging, and here we shall be able to find equations for only the dark
fringes.

Before we do that, however, we can justify the central bright fringe seen in Fig.
37-1 by noting that the Huygens wavelets from all points in the slit travel about the
same distance to reach the center of the pattern and thus are in phase there. As for
the other bright fringes, we can say only that they are approximately halfway between
adjacent dark fringes.

To find the dark fringes, we shall use a clever (and simplifying) strategy that in-
volves pairing up all the rays coming through the slit and then finding what conditions
cause the wavelets of the rays in each pair to cancel each other. Figure 37-4a shows
how we apply this strategy to locate the first dark fringe, at point P1. First, we mentally
divide the slit into two zones of equal widths a/2. Then we extend to P1 a light ray 
r1 from the top point of the top zone and a light ray r2 from the top point of the
bottom zone. A central axis is drawn from the center of the slit to screen C, and P1 is
located at an angle � to that axis.

The wavelets of the pair of rays r1 and r2 are in phase within the slit because they
originate from the same wavefront passing through the slit, along the width of the slit.
However, to produce the first dark fringe they must be out of phase by �/2 when they
reach P1; this phase difference is due to their path length difference, with the wavelet
of r2 traveling a longer path to reach P1 than the wavelet of r1. To display this path
length difference, we find a point b on ray r2 such that the path length from b to P1

matches the path length of ray r1. Then the path length difference between the two
rays is the distance from the center of the slit to b.
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FIGURE 37-3 ■ A photograph of the diffraction pattern of a disk. Note the concentric
diffraction rings and the Fresnel bright spot at the center of the pattern. This experiment is
essentially identical to that arranged by the committee testing Fresnel’s theories, because both
the sphere they used and the disk used here have a cross section with a circular edge.
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FIGURE 37-4 ■ (a) Waves from the top
points of two zones of width a/2 undergo
totally destructive interference at point P1

on viewing screen C. (b) For D �� a, we
can approximate rays r1 and r2 as being
parallel, at angle � to the central axis.



When viewing screen C is near screen B, as in Fig. 37-4a, the diffraction pattern on
C is difficult to describe mathematically. However, we can simplify the mathematics
considerably if we arrange for the distance between the slit and screen D to be much
larger than the slit width a. Then we can approximate rays r1 and r2 as being parallel,
at angle � to the central axis (Fig. 37-4b). We can also approximate the triangle
formed by point b, the top point of the slit, and the center point of the slit as being a
right triangle, and one of the angles inside that triangle as being �. The path length dif-
ference between rays r1 and r2 (which is still the distance from the center of the slit to
point b) is then equal to (a/2) sin�.

We can repeat this analysis for any other pair of rays originating at corresponding
points in the two zones (say, at the midpoints of the zones) and extending to point P1.
Each such pair of rays has the same path length difference (a/2) sin�. Setting this com-
mon path length difference equal to �/2 (our condition for the first dark fringe), we
have

sin� � ,

which gives us 

a sin� � � (first minimum for D � a). (37-1)

Given slit width a and wavelength �, Eq. 37-1 tells us the angle � of the first dark
fringe above and (by symmetry) below the central axis.

Note that if we begin with a � � and then narrow the slit while holding the wave-
length constant, we increase the angle at which the first dark fringes appear; that is,
the extent of the diffraction (the extent of the flaring and the width of the pattern) is
greater for a narrower slit. When we have reduced the slit width to the wavelength
(that is, a � �), the angle of the first dark fringes is 90°. Since the first dark fringes
mark the two edges of the central bright fringe, that bright fringe must then cover the
entire viewing screen.

We find the second dark fringes above and below the central axis as we found the
first dark fringes, except that we now divide the slit into four zones of equal widths
a/4, as shown in Fig. 37-5a. We then extend rays r1, r2, r3, and r4 from the top points of
the zones to point P2, the location of the second dark fringe above the central axis. To
produce that fringe, the path length difference between r1 and r2, that between r2 and
r3, and that between r3 and r4 must all be equal to �/2.

For D �� a, we can approximate these four rays as being parallel, at angle � to
the central axis. To display their path length differences, we extend a perpendicular
line through each adjacent pair of rays, as shown in Fig. 37-5b, to form a series of right
triangles, each of which has a path length difference as one side. We see from the top
triangle that the path length difference between r1 and r2 is (a/4)sin�. Similarly, from
the bottom triangle, the path length difference between r3 and r4 is also (a/4)sin�. In
fact, the path length difference for any two rays that originate at corresponding points
in two adjacent zones is (a/4)sin�. Since in each such case the path length difference is
equal to �/2, we have 

sin� � ,

which gives us 

a sin� � 2� (second minimum for D � a). (37-2)

We could now continue to locate dark fringes in the diffraction pattern by split-
ting up the slit into more zones of equal width. We would always choose an even num-
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FIGURE 37-5 ■ (a) Waves from the top
points of four zones of width a/4 undergo
totally destructive interference at point P2.
(b) For D �� a, we can approximate rays
r1, r2, r3, and r4 as being parallel, at angle �
to the central axis.



ber of zones so that the zones (and their waves) could be paired as we have been
doing. We would find that the dark fringes above and below the central axis can be lo-
cated with the following general equation:

a sin� � m�, for m � 1, 2, 3, . . . (single slit minima—dark fringes). (37-3)

You can remember this result in the following way. Draw a triangle like the one in
Fig. 37-4b, but for the full slit width a, and note that the path length difference be-
tween the top and bottom rays from the slit equals a sin�. Thus, Eq. 37-3 says:

In a single-slit diffraction experiment, dark fringes are produced where the path length dif-
ferences (a sin�) between the top and bottom rays are equal to �, 2�, 3� . . . .

This may seem to be wrong, because the waves of those two particular rays will be
exactly in phase with each other when their path length difference is an integer
number of wavelengths. However, they each will still be part of a pair of waves that
are exactly out of phase with each other; thus, each will be canceled by some other
wave.

READI NG EXERC IS E  37-1: We produce a diffraction pattern on a viewing screen
by means of a long narrow slit illuminated by blue light. Does the pattern expand away from
the bright center (the maxima and minima shift away from the center) or contract toward it if
we (a) switch to yellow light or (b) decrease the slit width? ■

Diffraction by a Single Slit: Locating the Minima   1087

TOUCHSTONE EXAMPLE 37-1: White Light, Red Light

A slit of width a is illuminated by white light (which consists of all
the wavelengths in the visible range).

(a) For what value of a will the first minimum for red light of wave-
length � � 650 nm appear at � � 15°?

S O L U T I O N ■ The Ke y  I d e a here is that diffraction occurs
separately for each wavelength in the range of wavelengths passing
through the slit, with the locations of the minima for each wave-
length given by Eq. 37-3 (a sin � � m�). When we set m � 1 (for
the first minimum) and substitute the given values of � and �, Eq.
37-3 yields

(Answer)

For the incident light to flare out that much (�15° to the first min-
ima) the slit has to be very fine indeed—about four times the
wavelength. For comparison, note that a fine human hair may be
about 100 �m in diameter.

(b) What is the wavelength �	 of the light whose first side diffrac-
tion maximum is at 15°, thus coinciding with the first minimum for
the red light?

S O L U T I O N ■ The Ke y  I d e a here is that the first side maxi-
mum for any wavelength is about halfway between the first and sec-
ond minima for that wavelength. Those first and second minima can
be located with Eq. 37-3 by setting m � 1 and m � 2, respectively.
Thus, the first side maximum can be located approximately by set-
ting m � 1.5. Then Eq. 37-3 becomes

a sin� � 1.5�	.

Solving for �	 and substituting known data yield

(Answer)

Light of this wavelength is violet. The first side maximum for light
of wavelength 430 nm will always coincide with the first minimum
for light of wavelength 650 nm, no matter what the slit width is. If
the slit is relatively narrow, the angle � at which this overlap occurs
will be relatively large, and conversely for a wide slit the angle is
small.

� 430 nm.

�	 �
a sin�

1.5
�

(2511 nm)(sin 15
)
1.5

� 2511 nm �  2.5 �m.

a �
m�

sin�
�

(1)(650 nm)
sin 15




37-3 Intensity in Single-Slit Diffraction, Qualitatively

In Section 37-2 we saw how to find the positions of the minima and the maxima in a
single-slit diffraction pattern. Now we turn to a more general problem: Find an ex-
pression for the intensity I of the pattern as a function of �, the angular position of a
point on a viewing screen.

To do this, we divide the slit of Fig. 37-4a into N zones of equal widths �x small
enough that we can assume each zone acts as a source of Huygens wavelets. We wish
to superimpose the wavelets arriving at an arbitrary point P on the viewing screen, at
angle � to the central axis, so that we can determine the amplitude E� of the magni-
tude of the electric field of the resultant wave at P. The intensity of the light at P is
then proportional to the square of that amplitude.

To find E�, we need the phase relationships among the arriving wavelets. The
phase difference between wavelets from adjacent zones is given by 

For point P at angle �, the path length difference between wavelets from adjacent
zones is �x sin�, so the phase difference �� between wavelets from adjacent zones is 

(37-4)

We assume that the wavelets arriving at P all have the same amplitude �E. To
find the amplitude E� of the resultant wave at P, we add the amplitudes �E via pha-
sors. To do this, we construct a diagram of N phasors, one corresponding to the
wavelet from each zone in the slit.

For point P0 at � � 0 on the central axis of Fig. 37-4a, Eq. 37-4 tells us that the
phase difference �� between the wavelets is zero; that is, the wavelets all arrive in
phase. Figure 37-6a is the corresponding phasor diagram; adjacent phasors represent
wavelets from adjacent zones and are arranged head to tail. Because there is zero
phase difference between the wavelets, there is zero angle between each pair of
adjacent phasors. The amplitude E� of the net wave at P� is the vector-like sum of
these phasors. This arrangement of the phasors turns out to be the one that gives the
greatest value for the amplitude E�. We call this value Emax; that is, Emax is the value of 
E� for � � 0.

We next consider a point P that is at a small angle � to the central axis. Equation
37-4 now tells us that the phase difference �� between wavelets from adjacent zones
is no longer zero. Figure 37-6b shows the corresponding phasor diagram; as before,

�� � � 2

� �(�x sin�).

(phase difference) � � 2

� �(path length difference).
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E  (= E max)θ

EΔ

⎧ ⎨ ⎩ Eθ

E  = 0θ

Eθ

(a) (b ) (c ) (d )

Phasor for
top ray

Phasor for
bottom ray

FIGURE 37-6 ■ Phasor diagrams for N � 18 phasors, corresponding to the division of a single
slit into 18 zones. Resultant amplitudes E� are shown for (a) the central maximum at � � 0,
(b) a point on the screen lying at a small angle � to the central axis, (c) the first minimum, and
(d) the first side maximum.



the phasors are arranged head to tail, but now there is an angle �� between adjacent
phasors. The amplitude E� at this new point is still the vector sum of the phasors, but it
is smaller than the amplitude in Fig. 37-6a, which means that the intensity of the light
is less at this new point P than at P�.

If we continue to increase �, the angle �� between adjacent phasors increases,
and eventually the chain of phasors curls completely around so that the head of the
last phasor just reaches the tail of the first phasor (Fig. 37-6c). The amplitude E� is
now zero, which means that the intensity of the light is also zero. We have reached the
first minimum, or dark fringe, in the diffraction pattern. The first and last phasors now
have a phase difference of 2 rad, which means that the path length difference be-
tween the top and bottom rays through the slit equals one wavelength. Recall that this
is the condition we determined for the first diffraction minimum.

As we continue to increase �, the angle �� between adjacent phasors continues to
increase, the chain of phasors begins to wrap back on itself, and the resulting coil be-
gins to shrink. Amplitude E� now increases until it reaches a maximum value in the
arrangement shown in Fig. 37-6d. This arrangement corresponds to the first side maxi-
mum in the diffraction pattern.

If we increase � a bit more, the resulting shrinkage of the coil decreases E�, which
means that the intensity also decreases. When � is increased enough, the head of the
last phasor again meets the tail of the first phasor. We have then reached the second
minimum.

We could continue this qualitative method of determining the maxima and min-
ima of the diffraction pattern but, instead, we shall now turn to a quantitative method.

READI NG EXERC IS E  37-2: The figures represent, in
smoother form (with more phasors) than Fig. 37-6, the phasor dia-
grams for two points of a diffraction pattern that are on opposite
sides of a certain diffraction maximum. (a) Which maximum is it?
(b) What is the approximate value of m (in Eq. 37-3) that corre-
sponds to this maximum?

■

37-4 Intensity in Single-Slit Diffraction, Quantitatively

Equation 37-3 tells us how to locate the minima of the single-slit diffraction pattern
on screen C of Fig. 37-4a as a function of the angle � in that figure. Here we wish to
derive an expression for the intensity I� of the pattern as a function of �. We state, and
shall prove below, that the intensity is given by 

(37-5)

where (37-6)

The symbol � is just a convenient connection between the angle � that locates a point
on the viewing screen and the light intensity I� at that point. I max is the greatest value
of the intensity I� in the pattern and occurs at the central maximum (where � � 0),
and �� is the phase difference (in radians) between the top and bottom rays from the
slit width a.

Study of Eq. 37-5 shows that intensity minima will occur where 

� � m, for m � 1, 2, 3, . . . . (37-7)

� �
1
2

�� �
a
�

 sin�.

I� � I max� sin�

� �
2

,
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If we put this result into Eq. 37-6 we find

for m � 1, 2, 3, . . . ,

or a sin� � m�, for m � 1, 2, 3, . . . (minima—dark fringes), (37-8)

which is exactly Eq. 37-3, the expression that we derived earlier for the location of the
minima.

Figure 37-7 shows plots of the intensity of a single-slit diffraction pattern, calcu-
lated with Eqs. 37-5 and 37-6 for three slit widths: a � �, a � 5�, and a � 10�. Note
that as the slit width increases (relative to the wavelength), the width of the central
diffraction maximum (the central hill-like region of the graphs) decreases; that is, the
light undergoes less flaring by the slit. The secondary maxima also decrease in width
(and become weaker). In the limit of slit width a being much greater than wavelength
�, the secondary maxima due to the slit disappear; we then no longer have single-slit
diffraction (but we still have diffraction due to the edges of the wide slit, like that pro-
duced by the edges of the razor blade in Fig. 37-2).

Proof of Eqs. 37-5 and 37-6
The arc of phasors in Fig. 37-8 represents the wavelets that reach an arbitrary point P
on the viewing screen of Fig. 37-4, corresponding to a particular small angle �. The
amplitude E� of the resultant wave at P is the vector sum of these phasors. If we
divide the slit of Fig. 37-4 into infinitesimal zones of width �x, the arc of phasors in
Fig. 37-8 approaches the arc of a circle; we call its radius R as indicated in that figure.
The length of the arc must be Emax, the amplitude at the center of the diffraction pat-
tern, because if we straightened out the arc we would have the phasor arrangement of
Fig. 37-6a (shown lightly in Fig. 37-8).

The angle �� in the lower part of Fig. 37-8 is the difference in phase between the
infinitesimal vectors at the left and right ends of arc Emax. From the geometry, �� is
also the angle between the two radii marked R in Fig. 37-8. The dashed line in that fig-
ure, which bisects ��, then forms two congruent right triangles. From either triangle
we can write 

(37-9)

In radian measure, �� is (with Emax considered to be a circular arc)

Solving this equation for R, substituting the result into Eq. 37-9 and re-arranging
terms yields

(37-10)

In Section 34-4 we saw that the intensity of an electromagnetic wave is propor-
tional to the square of the amplitude of its electric field. Here, this means that the
maximum intensity Imax (which occurs at the center of the diffraction pattern) is pro-
portional to (Emax)2 and the intensity I� at angle � is proportional to E 2

�. Thus, we may
write

E� �
Emax

1
2��

 sin 1
2��.

�� �
Emax

R
.

sin 1
2 �� �

E�

2R
.

m �
a
�

 sin�,
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FIGURE 37-7 ■ The relative intensity in
single-slit diffraction for three values of
the ratio a/�. The wider the slit is, the nar-
rower is the central diffraction maximum.
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FIGURE 37-8 ■ A construction used to
calculate the intensity in single-slit diffrac-
tion. The situation shown corresponds to
that of Fig. 37-6b.



(37-11)

Substituting for E� with Eq. 37-10 and then substituting � � ��, we are led to the
following expression for the intensity as a function of � :

This is exactly Eq. 37-5, one of the two equations we set out to prove.
The second equation we wish to prove relates � to � : The phase difference �� be-

tween the rays from the top and bottom of the entire slit may be related to a path
length difference with Eq. 37-4; it tells us that 

where a is the sum of the widths �x of the infinitesimal zones. However, �� � 2�, so
this equation reduces to Eq. 37-6.

READI NG EXERC IS E  37-3:
Two wavelengths, 650 and 430 nm, are used
separately in a single-slit diffraction experi-
ment. The figure shows the results as
graphs of intensity I versus angle � for the
two diffraction patterns. If both wave-
lengths are then used simultaneously, what
color will be seen in the combined diffrac-
tion pattern at (a) angle A and (b) angle B?

■

�� � � 2

� �(a sin�),

I� � I max� sin�

� �
2

.

1
2

I�

I max �
E 2

�

(Emax)2 .
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TOUCHSTONE EXAMPLE 37-2: Maxima Intensities

Find the intensities of the first three secondary maxima (side max-
ima) in the single-slit diffraction pattern of Fig. 37-1, measured rela-
tive to the intensity of the central maximum.

S O L U T I O N ■ One Ke y  I d e a here is that the secondary max-
ima lie approximately halfway between the minima, whose angular
locations are given by Eq. 37-7 (� � m). The locations of the sec-
ondary maxima are then given (approximately) by

� � (m � ), for m � 1, 2, 3, . . . ,

with � in radian measure.
A second Ke y  I d e a is that we can relate the intensity I at

any point in the diffraction pattern to the intensity Imax of the cen-
tral maximum via Eq. 37-5. Thus, we can substitute the approximate
values of � for the secondary maxima into Eq. 37-5 to obtain the
relative intensities at those maxima. We get

for m � 1, 2, 3, . . . .

The first of the secondary maxima occurs for m � 1, and its relative
intensity is

(Answer)

For m � 2 and m � 3 we find that

and (Answer)

Successive secondary maxima decrease rapidly in intensity. Fig-
ure 37-1 was deliberately overexposed to reveal them.

I3

I max � 0.83%.
I2

I max � 1.6%

� 4.50 � 10�2 � 4.5%.

I1

I max � � sin(1 � 1
2)

(1 � 1
2)

�
2

� � sin1.5

1.5 �
2

I
I max � � sin�

� �
2

� � sin(m � 1
2)

(m � 1
2)

�
2

,

1
2



37-5 Diffraction by a Circular Aperture

Here we consider diffraction by a circular aperture—that is, a circular opening such
as a circular lens, through which light can pass. Figure 37-9 shows the image of a dis-
tant point source of light (a star, for instance) formed on photographic film placed in
the focal plane of a converging lens. This image is not a point, as geometrical optics
would suggest, but a circular disk surrounded by several progressively fainter sec-
ondary rings. Comparison with Fig. 37-1 leaves little doubt that we are dealing with a
diffraction phenomenon. Here, however, the aperture is a circle of diameter d rather
than a rectangular slit.

The analysis of such patterns is complex. It shows, however, that the first mini-
mum for the diffraction pattern of a circular aperture of diameter d is located by 

(first minimum—circular aperture). (37-12)

The angle � here is the angle from the central axis to any point on that (circular) mini-
mum. Compare this with Eq. 37-1,

(first minimum—single slit), (37-13)

which locates the first minimum for a long narrow slit of width a. The main difference
is the factor 1.22, which enters because of the circular shape of the aperture.

Resolvability
The fact that lens images are diffraction patterns is important when we wish to resolve
(distinguish) two distant point objects whose angular separation is small. Figure 37-10
shows, in three different cases, the visual appearance and corresponding intensity pat-
tern for two distant point objects (stars, say) with small angular separation. In Figure
37-10a, the objects are not resolved because of diffraction; that is, their diffraction pat-
terns (mainly their central maxima) overlap so much that the two objects cannot be
distinguished from a single point object. In Fig. 37-10b the objects are barely resolved,
and in Fig. 37-10c they are fully resolved.

sin� �
�

a

sin� � 1.22
�

d
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FIGURE 37-9 ■ The diffraction pattern of
a circular aperture. Note the central
maximum and the circular secondary
maxima. The figure has been overexposed
to bring out these secondary maxima,
which are much less intense than the
central maximum.

(a) (b) (c)

FIGURE 37-10 ■ At the top, the images of
two point sources (stars), formed by a
converging lens. At the bottom, represen-
tations of the image intensities. In (a) the
angular separation of the sources is too
small for them to be distinguished; in (b)
they can be marginally distinguished, and
in (c) they are clearly distinguished.
Rayleigh’s criterion is just satisfied in 
(b), with the central maximum of one dif-
fraction pattern coinciding with the first
minimum of the other.



In Fig. 37-10b the angular separation of the two point sources is such that the cen-
tral maximum of the diffraction pattern of one source is centered on the first mini-
mum of the diffraction pattern of the other, a condition called Rayleigh’s criterion for
resolvability. From Eq. 37-12, two objects that are barely resolvable by this criterion
must have an angular separation �R of

Since the angles involved are small, we can replace sin �R with �R expressed in
radians:

(Rayleigh’s criterion—circular aperture). (37-14)

Rayleigh’s criterion for resolvability is only an approximation, because resolvabil-
ity depends on many factors, such as the relative brightness of the sources and their
surroundings, turbulence in the air between the sources and the observer, and the
functioning of the observer’s visual system. Experimental results show that the least
angular separation that can actually be resolved by a person is generally somewhat
greater than the value given by Eq. 37-14. However, for the sake of calculations here,
we shall take Eq. 37-14 as being a precise criterion: If the angular separation � be-
tween the sources is greater than �R, we can resolve the sources; if it is less, we cannot.

Rayleigh’s criterion can explain the colors in Seurat’s Sunday Afternoon on the Is-
land of La Grande Jatte (or any other pointillistic painting). When you stand close
enough to the painting, the angular separations � of adjacent dots are greater than �R

and thus the dots can be seen individually. Their colors are the colors of the paints
Seurat used. However, when you stand far enough from the painting, the angular sep-
arations � are less than �R and the dots cannot be seen individually. The resulting
blend of colors coming into your eye from any group of dots can then cause your
brain to “make up” a color for that group—a color that may not actually exist in the
group. In this way, Seurat uses your visual system to create the colors of his art.

When we wish to use a lens instead of our visual system to resolve objects of
small angular separation, it is desirable to make the diffraction pattern as small as
possible. According to Eq. 37-14, this can be done either by increasing the lens diame-
ter or by using light of a shorter wavelength.

For this reason ultraviolet light is often used with microscopes; because of its
shorter wavelength, it permits finer detail to be examined than would be possible for
the same microscope operated with visible light. It turns out that under certain cir-
cumstances, a beam of electrons behaves like a wave. In an electron microscope such
beams may have an effective wavelength that is 10�5 of the wavelength of visible
light. They permit the detailed examination of tiny structures, like that in Fig. 37-11,
that would be blurred by diffraction if viewed with an optical microscope.

READI NG EXERC IS E  37-4: Suppose you can barely resolve two red dots, due to dif-
fraction by the pupil of your eye. If we increase the general illumination around you so that the
pupil decreases in diameter, does the resolvability of the dots improve or diminish? Consider
only diffraction. (You might experiment to check your answer.) ■

�R � 1.22
�

d

�R � sin�1 1.22�

d
.
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FIGURE 37-11 ■ A false-color scanning
electron micrograph of red blood cells
traveling through an arterial branch.

TOUCHSTONE EXAMPLE 37-3: Circular Converging Lens

A circular converging lens, with diameter d � 32 mm and focal
length f � 24 cm, forms images of distant point objects in the focal
plane of the lens. Light of wavelength � � 550 nm is used.

(a) Considering diffraction by the lens, what angular separation
must two distant point objects have to satisfy Rayleigh’s
criterion?
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S O L U T I O N ■ Figure 37-12 shows two distant point objects P1 and
P2, the lens, and a viewing screen in the focal plane of the lens. It also
shows, on the right, plots of light intensity I versus position on the
screen for the central maxima of the images formed by the lens. Note
that the angular separation �o of the objects equals the angular sepa-
ration �i of the images. Thus, the Key  Idea here is that if the images
are to satisfy Rayleigh’s criterion for resolvability, the angular separa-
tions on both sides of the lens must be given by Eq. 37-14 (assuming
small angles). Substituting the given data, we obtain from Eq. 37-14

(Answer)

At this angular separation, each central maximum in the two inten-
sity curves of Fig. 37-12 is centered on the first minimum of the
other curve.

�
(1.22)(550 � 10�9 m)

32 � 10�3 m
� 2.1 � 10�5 rad.

�o � �i � �R � 1.22
�

d

(b) What is the separation �x of the centers of the images in the fo-
cal plane? (That is, what is the separation of the central peaks in the
two curves?)

SOLUTION ■ The Key Idea here is to relate the separation �x
to the angle �i, which we now know. From either triangle between
the lens and the screen in Fig. 37-12, we see that tan �1/2 � �x/2f.
Rearranging this and making the approximation tan �<�, we 
find

�x � f�i, (37-15)

where �i is in radian measure. Substituting known data then yields

�x � (0.24 m)(2.1 � 10�5 rad) � 5.0 �m. (Answer)

__
2

Focal-plane
screen

I

P1

P2
θo__
2

θo__
2 θi

__
2

θi

f

Δx
FIGURE 37-12 ■ Light from two distant point objects P1 and P2 passes through a
converging lens and forms images on a viewing screen in the focal plane of the lens.
Only one representative ray from each object is shown. The images are not points
but diffraction patterns, with intensities approximately as plotted at the right. The
angular separation of the objects is �o and that of the images is �i; the central maxima
of the images have a separation �x.

37-6 Diffraction by a Double Slit

In the double-slit experiments of Chapter 36, we implicitly assumed that the slits were
narrow compared to the wavelength of the light illuminating them; that is, a �� �. For
such narrow slits, the central maximum of the diffraction pattern of either slit covers
the entire viewing screen. Moreover, the interference of light from the two slits pro-
duces bright fringes that all have approximately the same intensity (Fig. 36-9).

In practice with visible light, however, the condition a��� is rarely met. For rela-
tively wide slits, the interference of light from two slits produces bright fringes that do
not all have the same intensity. That is, the intensities of the fringes produced by dou-
ble-slit interference (as discussed in Chapter 36) are modified by diffraction of the
light passing through each slit (as discussed in this chapter).

As an example, the intensity plot of Fig. 37-13a (like that in Fig. 36-9) suggests the
double-slit interference pattern that would occur if the slits were infinitely narrow (for
a���); all the bright interference fringes would have the same intensity. The intensity
plot of Fig. 37-13b is that for diffraction by a single actual slit; the diffraction pattern
has a broad central maximum and weaker secondary maxima at �1.7°. The plot of Fig.
37-13c suggests the interference pattern for two actual slits. That plot was constructed
by using the curve of Fig. 37-13b as an envelope on the intensity plot in Fig. 37-13a. The
positions of the fringes are not changed; only the intensities are affected.

Figure 37-14a shows an actual pattern in which both double-slit interference and
diffraction are evident. If one slit is covered, the single-slit diffraction pattern of 
Fig. 37-14b results. Note the correspondence between Figs. 37-14a and 37-13c and
between Figs. 37-14b and 37-13b. In comparing these figures, bear in mind that 37-14
has been deliberately overexposed to bring out the faint secondary maxima and that
two secondary maxima (rather than one) are shown.
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With diffraction effects taken into account, the intensity of a double-slit interfer-
ence pattern is given by 

(double slit), (37-16)

in which (37-17)

and . (37-18)

Here d is the distance between the centers of the slits, and a is the slit width. Note
carefully that the right side of Eq. 37-16 is the product of Imax and two factors. (1) The

� �
a
�

 sin�

� �
d
�

 sin�

I(�) � I max(cos2 �)� sin �

� �
2

00.51.01.52.0 0.5 1.0 1.5 2.0
(degrees)θ

00.51.01.52.0 0.5 1.0 1.5 2.0
(degrees)θ

(a)

00.51.01.52.0 0.5 1.0 1.5 2.0
(degrees)θ

(b ) (c )

Relative intensity (2 slits, a > 0)Relative intensity (1 slit, a > 0)

Relative intensity (2 slits, a > 0)

FIGURE 37-13 ■ (a) The intensity plot to be expected in a double-slit interference experiment
with vanishingly narrow slits (here the distance between the center of the slits is d � 25 mm
and the incident light is reddish-orange with � � 623 mm). (b) The intensity plot for diffraction
by a typical slit of width a � 0.031 mm (not vanishingly narrow). (c) The intensity plot to be ex-
pected for two slits of width a � 0.031 mm. The curve of (b) acts as an envelope, limiting the in-
tensity of the double-slit fringes in (a). Note that the first minima of the diffraction pattern of
(b) eliminate the double-slit fringes that would occur near 1.2° in (c).

(b)

(a)

FIGURE 37-14 ■ (a) Interference fringes
for an actual double-slit system; compare
with Fig. 37-13c. (b) The diffraction pattern
of a single slit; compare with Fig. 37-13b.



interference factor cos2 � is due to the interference between two slits with slit separa-
tion d (as given by Eqs. 36-17 and 36-18). (2) The diffraction factor [(sin �)/�]2 is due
to diffraction by a single slit of width a (as given by Eqs. 37-5 and 37-6).

Let us check these factors. If we let a : 0 in Eq. 37-18, for example, then � : 0
and using L’Hopital’s rule, we find that (sin �)/� : 1. Equation 37-16 then reduces, as
it must, to an equation describing the interference pattern for a pair of vanishingly
narrow slits with slit separation d. Similarly, putting d � 0 in Eq. 37-17 is equivalent
physically to causing the two slits to merge into a single slit of width a. Then Eq. 37-17
yields � � 0 and cos2 � � 1. In this case Eq. 37-16 reduces, as it must, to an equation
describing the diffraction pattern for a single slit of width a.

The double-slit pattern described by Eq. 37-16 and displayed in Fig. 37-14a com-
bines interference and diffraction in an intimate way. Both are superposition effects,
in that they result from the combining of waves with different phases at a given point.
If the combining waves originate from a small number of elementary coherent
sources—as in a double-slit experiment with a���—we call the process interference.
If the combining waves originate in a single wavefront—as in a single-slit experi-
ment—we call the process diffraction. This distinction between interference and dif-
fraction (which is somewhat arbitrary and not always adhered to) is a convenient one,
but we should not forget that both are superposition effects and usually both are pre-
sent simultaneously (as in Fig. 37-14a).
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TOUCHSTONE EXAMPLE 37-4: Bright Fringes

Let’s consider a double slit with an unusually small spacing. Sup-
pose the wavelength � of the light source is 405 nm, the slit separa-
tion d is 19.44 �m, and the slit width a is 4.050 �m. Consider the in-
terference of the light from the two slits and also the diffraction of
the light through each slit.

(a) How many bright interference fringes are within the central
peak of the diffraction envelope?

S O L U T I O N ■ Let us first analyze the two basic mechanisms re-
sponsible for the optical pattern produced in the experiment:

Single-slit diffraction: The Ke y  I d e a here is that the limits
of the central peak are the first minima in the diffraction pattern
due to either slit, individually. (See Fig. 37-13.) The angular loca-
tions of those minima are given by Eq. 37-3 (a sin� � m�). Let us
write this equation as a sin� � m1�, with the subscript 1 referring to
the one-slit diffraction. For the first minima in the diffraction pat-
tern, we substitute m1 � 1, obtaining

a sin� � �. (37-19)

Double-slit interference: The Ke y  I d e a here is that the angular
locations of the bright fringes of the double-slit interference pattern
are given by Eq. 36-14, which we can write as

d sin� � m2�, for m2 � 1, 2, 3, . . . . (37-20)

Here the subscript 2 refers to the double-slit interference.
We can locate the first diffraction minimum within the double-

slit fringe pattern by dividing Eq. 37-20 by Eq. 37-19 and solving for
m2. By doing so and then substituting the given data, we obtain

This tells us that the bright interference fringe for m2 � 4 fits into
the central peak of the one-slit diffraction pattern, but the fringe for

m 2 �
d
a

�
19.44 �m
4.050 �m

� 4.8.
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FIGURE 37-15 ■ One side of the intensity plot for a two-slit interference experi-
ment; the diffraction envelope is indicated by the dotted curve. The smaller inset
shows (vertically expanded) the intensity plot within the first and second side peaks
of the diffraction envelope.



37-7 Diffraction Gratings

One of the most useful tools in the study of light and of objects that emit and absorb
light is the diffraction grating. A diffraction grating is a device that uses interference
phenomena to seperate a beam of light by wavelength. A diffraction grating is a more
elaborate form of the double-slit arrangement of Fig. 36-8. This device has a much
greater number N of slits, often called rulings, perhaps as many as several thousand
per millimeter. An idealized grating consisting of only five slits is represented in Fig.
37-16. When monochromatic light is sent through the slits, it forms narrow interfer-
ence fringes that can be analyzed to determine the wavelength of the light. (Diffrac-
tion gratings can also be opaque surfaces with narrow parallel grooves arranged like
the slits in Fig. 37-16. Light then scatters back from the grooves to form interference
fringes rather than being transmitted through open slits.)

With monochromatic light incident on a diffraction grating, if we gradually in-
crease the number of slits from two to a large number N, the intensity plot changes
from the typical double-slit plot of Fig. 37-13c to a much more complicated one and
then eventually to a simple graph like that shown in Fig. 37-17a. The pattern you
would see on a viewing screen using monochromatic red light from, say, a helium-
neon laser, is shown in Fig. 37-17b. The maxima are now very narrow (and so are
called lines); they are separated by relatively wide dark regions.

We use a familiar procedure to find the locations of the bright lines on the view-
ing screen. We first assume that the screen is far enough from the grating so that the
rays reaching a particular point P on the screen are approximately parallel when they
leave the grating (Fig. 37-18). Then we apply to each pair of adjacent rulings the same
reasoning we used for double-slit interference. The separation d between rulings is
called the grating spacing. (If N rulings occupy a total width w, then d � w/N.) The
path length difference between adjacent rays is again dsin� (Fig. 37-18), where � is the
angle from the central axis of the grating (and of the diffraction pattern) to point P. A
line will be located at P if the path length difference between adjacent rays is an inte-
ger number of wavelengths—that is, if 

d sin� � m�, for m � 0, 1, 2, . . . (maxima—lines), (37-22)

where � is the wavelength of the light. Each integer m represents a different line;
hence these integers can be used to label the lines, as in Fig. 37-17. The integers are
then called the order numbers, and the lines are called the zeroth-order line (the cen-
tral line, with m � 0), the first-order line, the second-order line, and so on.
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m2 � 5 does not fit. Within the central diffraction peak we have the
central bright fringe (m2 � 0), and four bright fringes (up to m2 � 4)
on each side of it. Thus, a total of nine bright fringes of the double-
slit interference pattern are within the central peak of the diffraction
envelope. The bright fringes to one side of the central bright fringe
are shown in Fig. 37-15.

(b) How many bright fringes are within either of the first side peaks
of the diffraction envelope?

S O L U T I O N ■ The Ke y  I d e a here is that the outer limits of
the first side diffraction peaks are the second diffraction minima,
each of which is at the angle � given by a sin � � m1� with m1 � 2:

a sin� � 2� (37-21)

Dividing Eq. 37-20 by Eq. 37-21, we find

This tells us that the second diffraction minimum occurs just before
the bright interference fringe for m2 � 10 in Eq. 37-20. Within ei-
ther first side diffraction peak we have the fringes from m2 � 5 to
m2 � 9 for a total of five bright fringes of the double-slit interfer-
ence pattern (shown in the inset of Fig. 37-15). However, if the
m2 � 5 bright fringe, which is almost eliminated by the first diffrac-
tion minimum, is considered too dim to count, then only four bright
fringes are in the first side diffraction peak.

m 2 �
2d
a

�
(2)(19.44 �m)

4.050 �m
� 9.6.

d

C

P

λ

FIGURE 37-16 ■ An idealized diffraction
grating, consisting of only five rulings, that
produces an interference pattern on a dis-
tant viewing screen C.
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1m = 0 2 3123

FIGURE 37-17 ■ A diffraction grating illu-
minated with a single wavelength of light.
(a) The intensity plot produced by a diffrac-
tion grating with a great many rulings con-
sists of narrow peaks, here labeled with their
order numbers m. (b) The corresponding
bright fringes seen on the screen are called
lines and are here also labeled with order
numbers m. Lines of the zeroth, first, second,
and third orders are shown.



If we rewrite Eq. 37-22 as � � sin�1 (m�/d) we see that, for a given diffraction
grating, the angle from the central axis to any line (say, the third-order line)
depends on the wavelength of the light being used. Thus, when light of an unknown
wavelength is sent through a diffraction grating, measurements of the angles to the
higher-order lines can be used in Eq. 37-22 to determine the wavelength. Even
light of several unknown wavelengths can be distinguished and identified in this
way. We cannot do that with the double-slit arrangement of Section 36-4, even
though the same equation and wavelength dependence apply there. In double-slit
interference, the bright fringes due to different wavelengths overlap too much to
be distinguished.

Width of the Lines
A grating’s ability to resolve (separate) lines of different wavelengths depends on the
width of the lines. We shall here derive an expression for the half-width of the central
line (the line for which m � 0) and then state an expression for the half-widths of the
higher-order lines. We measure the half-width of the central line as the angle ��hw

from the center of the line at � � 0 outward to where the line effectively ends and
darkness effectively begins with the first minimum (Fig. 37-19). At such a minimum,
the N rays from the N slits of the grating cancel one another. (The actual width of 
the central line is, of course 2(��hw), but line widths are usually compared via 
half-widths.)

In Section 37-2 we were also concerned with the cancellation of a great many
rays, there due to diffraction through a single slit. We obtained Eq. 37-3, which,
because of the similarity of the two situations, we can use to find the first minimum
here. It tells us that the first minimum occurs where the path length difference
between the top and bottom rays equals �. For single-slit diffraction, this difference
is a sin �. For a grating of N rulings, each separated from the next by distance d,
the distance between the top and bottom rulings is Nd (Fig. 37-20), so the path length
difference between the top and bottom rays here is Nd sin��hw. Thus, the first mini-
mum occurs where 

Nd sin ��hw � �. (37-23)

Because ��hw is small, sin��hw � ��hw (in radian measure). Substituting this in Eq.
37-23 gives the half-width of the central line as

(half-width of central line). (37-24)

We state without proof that the half-width of any other line depends on its location
relative to the central axis and is 

(half-width of line at �). (37-25)

Note that for light of a given wavelength � and a given ruling separation d, the
widths of the lines decrease with an increase in the number N of rulings. Thus, of
two diffraction gratings, the grating with the larger value of N is better able to dis-
tinguish between wavelengths because its diffraction lines are narrower and so
produce less overlap. But the line width of a monochromatic light beam is deter-
mined by the number of slits that the beam encounters. In a diffraction grating
spectrometer, a collimating telescope can be used to illuminate all N slits of the
grating.

��hw �
�

Ndcos�

��hw �
�

Nd
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FIGURE 37-18 ■ The rays from the rulings
in a diffraction grating to a distant point P
are approximately parallel. The path
length difference between each two adja-
cent rays is d sin�, where � is measured as
shown. (The rulings extend into and out of
the page.)

Δθ

Intensity

hw

0°
θ

FIGURE 37-19 ■ The half-width ��hw of
the central line is measured from the cen-
ter of that line to the adjacent minimum on
a plot of I versus � like Fig. 37-17a.

Δθhw

Δθhw

Path length
difference

Nd

To first
minimum

Top ray

Bottom ray

FIGURE 37-20 ■ The top and bottom rul-
ings of a diffraction grating of N rulings
are separated by distance Nd. The top and
bottom rays passing through these rulings
have a path length difference of Nd sin
��hw, where ��hw is the angle to the first
minimum. (The angle is here greatly exag-
gerated for clarity.)



The Diffraction Grating Spectrometer
Diffraction gratings are widely used to determine the wavelengths that are emitted by
sources of light ranging from lamps to stars. Figure 37-21 shows a simple grating
spectroscope in which a grating is used for this purpose. Light from source S is focused
by lens L1 on a vertical slit S1 placed in the focal plane of lens L2. The light emerging
from tube C (called a collimator) is a plane wave and is incident perpendicularly on
grating G, where it is diffracted into a diffraction pattern, with the m � 0 order dif-
fracted at angle � � 0 along the central axis of the grating.

We can view the diffraction pattern that would appear on a viewing screen at any
angle � simply by orienting telescope T in Fig. 37-21 to that angle. Lens L3 of the tele-
scope then focuses the light diffracted at angle � (and at slightly smaller and larger an-
gles) onto a focal plane FF	 within the telescope. When we look through eyepiece E,
we see a magnified view of this focused image.

By changing the angle � of the telescope, we can examine the entire diffraction
pattern. For any order number other than m � 0, the original light is spread out ac-
cording to wavelength (or color) so that we can determine, with Eq. 37-22, just what
wavelengths are being emitted by the source. If the source emits a number of dis-
crete wavelengths, what we see as we rotate the telescope horizontally through the
angles corresponding to an order m is a vertical line of color for each wavelength,
with the shorter-wavelength line at a smaller angle m � 0 than the longer-wave-
length line.

For example, the light emitted by a hydrogen lamp, which contains hydrogen gas,
has four discrete wavelengths in the visible range. If our eyes intercept this light di-
rectly, it appears to be white. If, instead, we view it through a grating spectroscope, we
can distinguish, in several orders, the lines of the four colors corresponding to these
visible wavelengths. (Such lines are called emission lines.) Four orders are represented
in Fig. 37-22. In the central order (m � 0), the lines corresponding to all four wave-
lengths are superimposed, giving a single white line at � � 0. The colors are separated
in the higher orders.

The third order is not shown in Fig. 37-22 for the sake of clarity; it actually over-
laps the second and fourth orders. The fourth-order red line is missing because it is
not formed by the grating used here. That is, when we attempt to solve Eq. 37-22 for
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FIGURE 37-21 ■ A simple type of grating
spectroscope used to analyze the wave-
lengths of light emitted by source S.
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m = 4m = 1 m = 2
m = 0

FIGURE 37-22 ■ The zeroth, first, second, and fourth orders of the visible emission lines from
hydrogen. Note that the lines are farther apart at greater angles. (The lines are also dimmer and
wider, although that is not shown here. Also, the third order line is eliminated for clarity.)

FIGURE 37-23 ■ The visible emission
lines of cadmium, as seen through a grat-
ing spectroscope.

the angle � for the red wavelength when m � 4, we find that sin � is greater than
unity, which is not possible. The fourth order is then said to be incomplete for this
grating; it might not be incomplete for a grating with greater spacing d, which will
spread the lines less than in Fig. 37-22. Figure 37-23 is a photograph of the visible
emission lines produced by cadmium.



READI NG EXERC IS E  37-5: The figure shows lines of
different orders produced by a diffraction grating in monochro-
matic red light. (a) Is the center of the pattern to the left or
right? (b) If we switch to monochromatic green light, will the half-widths of the lines then pro-
duced in the same orders be greater than, less than, or the same as the half-widths of the lines
shown? ■

37-8 Gratings: Dispersion and Resolving Power

There are two characteristics that are important in the design of a diffraction grating
spectrometer. First, the different wavelengths of light in a beam should be spread out.
This characteristic is called dispersion. The second characteristic is the resolving
power of the spectrometer. It should have a narrow line width for each wavelength so
the lines are sharp.

Dispersion
To be useful in distinguishing wavelengths that are close to each other (as in a grating
spectroscope), a grating must spread apart the diffraction lines associated with the
various wavelengths. This spreading, called dispersion, is defined as 

(dispersion defined). (37-26)

Here �� is the angular separation of two lines whose wavelengths differ by ��. The
greater D is, the greater is the distance between two emission lines whose wavelengths
differ by ��. We show below that the dispersion of a grating at angle � is given by

(dispersion of a grating). (37-27)

Thus, to achieve higher dispersion we must use a grating of smaller grating spacing d
and work in a higher order m. Note that the dispersion does not depend on the num-
ber of rulings. The SI unit for D is the degree per meter or the radian per meter.

Proof of Eq. 37-27
Let us start with Eq. 37-22, the expression for the locations of the lines in the diffrac-
tion pattern of a grating:

d sin� � m�.

Let us regard � and � as variables and take differentials of this equation. We find

d cos� (d�) � m (d�),

where the differentials d� and d� are placed in parentheses to distinguish them from
the product of the center to center slit spacing d and the angle � or wavelength �.

For small enough angles, we can write these differentials as small differences,
obtaining

d cos� (��) � m(��), (37-30)

or
(��)
(��)

�
m

dcos�
.

D �
m

d cos�

D �
��

��
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The fine rulings, each 0.5 �m wide, on a
compact disc function as a diffraction grat-
ing. When a small source of white light illu-
minates a disc, the diffracted light forms
colored “lanes” that are the composite of
the diffraction patterns from the rulings.



The ratio on the left is simply D (see Eq. 37-26), so we have indeed derived Eq. 37-27.

Resolving Power
To resolve lines whose wavelengths are close together (that is, to make the lines dis-
tinguishable), the line should also be as narrow as possible. Expressed otherwise, the
grating should have a high resolving power R, defined as 

(resolving power defined). (37-28)

Here ��� is the mean wavelength of two emission lines that can barely be recognized
as separate, and �� is the wavelength difference between them. The greater R is, the
closer two emission lines can be and still be resolved. We shall show below that the re-
solving power of a grating is given by the simple expression 

R � Nm (resolving power of a grating). (37-29)

To achieve high resolving power, we must spread out the light beam so it is incident
on many rulings (large N in Eq. 37-29).

Proof of Eq. 37-29
We start with Eq. 37-30, which was derived from Eq. 37-22, the expression for the lo-
cations of the lines in the diffraction pattern formed by a grating. Here �� is the small
wavelength difference between two waves that are diffracted by the grating, and �� is
the angular separation between them in the diffraction pattern. If �� is to be the
smallest angle that will permit the two lines to be resolved, it must (by Rayleigh’s cri-
terion) be equal to the half-width of each line, which is given by Eq. 37-25:

If we substitute ��hw as given here for �� in Eq. 37-30, we find that 

from which it readily follows that 

This is Eq. 37-29, which we set out to derive.

Dispersion and Resolving Power Compared
The resolving power of a grating must not be confused with its dispersion. Table 37-1
shows the characteristics of three gratings, all illuminated with light of wavelength
� � 589 nm, whose diffracted light is viewed in the first order (m � 1 in Eq. 37-22).
You should verify that the values of D and R as given in the table can be calculated
with Eqs. 37-27 and 37-29, respectively. (In the calculations for D, you will need to
convert radians per meter to degrees per micrometer.)

R �
�

��
� Nm.

�

N
� m��,

��hw �
�

Ndcos�
.

R �
���
��
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For the conditions noted in Table 37-1, gratings A and B have the same dispersion
and A and C have the same resolving power.

Figure 37-24 shows the intensity patterns (also called line shapes) that would be
produced by these gratings for two lines of wavelengths �1 and �2, in the vicinity of
� � 589 nm. Grating B, with the higher resolving power, produces narrower lines and
thus is capable of distinguishing lines that are much closer together in wavelength
than those in the figure. Grating C, with the higher dispersion, produces the greater
angular separation between the lines.
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TOUCHSTONE EXAMPLE 37-5: Diffraction Grating

A diffraction grating has 1.26 � 104 rulings uniformly spaced over
width w � 25.4 mm (so that it has 496 lines/mm). It is illuminated at
normal incidence by yellow light from a sodium vapor lamp. This
light contains two closely spaced emission lines (known as the
sodium doublet) of wavelengths 589.00 nm and 589.59 nm.

(a) At what angle does the first-order maximum occur (on either
side of the center of the diffraction pattern) for the wavelength of
589.00 nm?

S O L U T I O N ■ The Ke y  I d e a here is that the maxima pro-
duced by the diffraction grating can be located with Eq. 37-22 
(d sin � � m�). The grating spacing d for this diffraction grating is

The first-order maximum corresponds to m � 1. Substituting these
values for d and m into Eq. 37-22 leads to

(Answer)

(b) Using the dispersion of the grating, calculate the angular sepa-
ration between the two lines in the first order.

S O L U T I O N ■ One Ke y  I d e a here is that the angular separa-
tion �� between the two lines in the first order depends on their

wavelength difference �� and the dispersion D of the grating, ac-
cording to Eq. 37-26 (D � ��/��). A second Ke y  I d e a is that the
dispersion D depends on the angle � at which it is to be evaluated.
We can assume that, in the first order, the two sodium lines occur
close enough to each other for us to evaluate D at the angle � �
16.99° we found in part (a) for one of those lines. Then Eq. 37-27
gives the dispersion as

From Eq. 37-26, we then have

(Answer)

You can show that this result depends on the grating spacing d but
not on the number of rulings there are in the grating.

(c) What is the least number of rulings a grating can have and still
be able to resolve the sodium doublet in the first order?

S O L U T I O N ■ One Ke y  I d e a  here is that the resolving power
of a grating in any order m is physically set by the number of rul-
ings N in the grating according to Eq. 37-29 (R � Nm). A second
Ke y  I d e a is that the least wavelength difference �� that can be
resolved depends on the average wavelength involved and the re-
solving power R of the grating, according to Eq. 37-28 (R � ���/��).

� 3.06 � 10�4 rad � 0.0175
.

�� � D�� � (5.187 � 10�4 rad/nm)(589.59 nm � 589.00 nm)

� 5.187 � 10�4 rad/nm.

D �
m

d cos�
�

1
(2016 nm)(cos16.99
)

� 16.99
 � 17.0
.

� � sin�1 m�

d
� sin�1 (1)(589.00 nm)

2016 nm

� 2.016 � 10�6 m � 2016 nm.

d �
w
N

�
25.4 � 10�3 m

1.26 � 104

TA B L E 3 7 - 1
Three Gratingsa

Specifications Calculated Values

Grating N d (nm) � D (°/�m) R

A 10 000 2540 13.4° 23.2 10 000

B 20 000 2540 13.4° 23.2 20 000

C 10 000 1370 25.5° 46.3 10 000

aData are for � � 589 nm and m � 1.
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FIGURE 37-24: The intensity patterns for
light of two wavelengths sent through the
gratings of Table 37-1. Grating B has the
highest resolving power and grating C the
highest dispersion.
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37-9 X-Ray Diffraction

X rays are electromagnetic radiation whose wavelengths are of the order of 1 Å (�
0.1 nm � 10�10 m). Compare this with a wavelength of 550 nm (� 5.5 � 10�7 m) at
the center of the visible spectrum. Figure 37-25 shows that x rays are produced when
electrons escaping from a heated filament F are accelerated by a potential difference
V and strike a metal target T.

A standard optical diffraction grating cannot be used to discriminate between dif-
ferent wavelengths in the x-ray wavelength range. For � � 1 Å (� 0.1 nm) and d �
3000 nm, for example, Eq. 37-22 shows that the first-order maximum occurs at 

This is too close to the central maximum to be practical. A grating with d � � is desir-
able, but, since x-ray wavelengths are about equal to atomic diameters, such gratings
cannot be constructed mechanically.

In 1912, it occurred to German physicist Max von Laue that a crystalline solid,
which consists of a regular array of atoms, might form a natural three-dimensional
“diffraction grating” for x rays. The idea is that, in a crystal such as sodium chloride
(NaCl), a basic unit of atoms (called the unit cell) repeats itself throughout the array.
In NaCl four sodium ions and four chlorine ions are associated with each unit cell.
Figure 37-26a represents a section through a crystal of NaCl and identifies this basic
unit. The unit cell is a cube measuring a0 on each side.

When an x-ray beam enters a crystal such as NaCl, x rays are scattered—that is,
redirected—in all directions by the crystal structure. In some directions the scattered

� � sin�1 m�

d
� sin�1 (1)(0.1 nm)

3000 nm
� 0.0019
.

For the sodium doublet to be barely resolved, �� must be their
wavelength separation of 0.59 nm, and ��� must be their average
wavelength of 589.30 nm.

Putting these ideas together, we find that the least number of
rulings for a grating to resolve the sodium doublet is

(Answer)�
589.30 nm

(1)(0.59 nm)
� 999 rulings.

N �
R
m

�
���

m��

V

F

WX rays

C

T

FIGURE 37-25: X rays are generated
when electrons leaving heated filament F
are accelerated through a potential differ-
ence V and strike a metal target T. The
“window” W in the evacuated chamber C
is transparent to x rays.
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FIGURE 37-26: (a) The cubic structure of
NaCl, showing the sodium and chlorine
ions and a unit cell (shaded). (b) Incident x
rays undergo diffraction by the structure of
(a). The x rays are diffracted as if they
were reflected by a family of parallel
planes, with the angle of reflection equal to
the angle of incidence, both angles mea-
sured relative to the planes (not relative to
a normal as in optics). (c) The path length
difference between waves effectively re-
flected by two adjacent planes is 2d sin�.
(d) A different orientation of the incident
x rays relative to the structure. A different
family of parallel planes now effectively
reflects the x rays.



waves undergo destructive interference, resulting in intensity minima; in other direc-
tions the interference is constructive, resulting in intensity maxima. This process of
scattering and interference is a form of diffraction, although it is unlike the diffraction
of light traveling through a slit or past an edge as we discussed earlier.

Although the process of diffraction of x rays by a crystal is complicated, the max-
ima turn out to be in directions as if the x rays were reflected by a family of parallel
reflecting planes (or crystal planes) that extend through the atoms within the crystal
and that contain regular arrays of the atoms. (The x rays are not actually reflected; we
use these fictional planes only to simplify the analysis of the actual diffraction
process.)

Figure 37-26b shows three of the family of planes, with interplanar spacing d, from
which the incident rays shown are said to reflect. Rays 1, 2, and 3 reflect from the first,
second, and third planes, respectively. At each reflection the angle of incidence and
the angle of reflection are represented with �. Contrary to the custom in optics, these
angles are defined relative to the surface of the reflecting plane rather than a normal
to that surface. For the situation of Fig. 37-26b, the interplanar spacing happens to be
equal to the unit cell dimension a0.

Figure 37-26c shows an edge-on view of reflection from an adjacent pair of
planes. The waves of rays 1 and 2 arrive at the crystal in phase. After they are re-
flected, they must again be in phase, because the reflections and the reflecting planes
have been defined solely to explain the intensity maxima in the diffraction of x rays
by a crystal. Unlike light rays, the x rays have negligible refraction when entering the
crystal; moreover, we do not define an index of refraction for this situation. Thus, the
relative phase between the waves of rays 1 and 2 as they leave the crystal is set solely
by their path length difference. For these rays to be in phase, the path length differ-
ence must be equal to an integer multiple of the wavelength � of the x rays.

By drawing the dashed perpendiculars in Fig. 37-26c, we find that the path length
difference is 2d sin �. In fact, this is true for any pair of adjacent planes in the family
of planes represented in Fig. 37-26b. Thus, we have, as the criterion for intensity max-
ima for x-ray diffraction,

2d sin� � m�, for m � 1, 2, 3, . . . (Bragg’s law), (37-31)

where m is the order number of an intensity maximum. Equation 37-31 is called
Bragg’s law after British physicist W. L. Bragg, who first derived it. (He and his father
shared the 1915 Nobel Prize for their use of x rays to study the structures of crystals.)
The angle of incidence and reflection in Eq. 37-31 is called a Bragg angle.

Regardless of the angle at which x rays enter a crystal, there is always a family of
planes from which they can be said to reflect so that we can apply Bragg’s law. In Fig.
37-26d, the crystal structure has the same orientation as it does in Fig. 37-26a, but the
angle at which the beam enters the structure differs from that shown in Fig. 37-26b. This
new angle requires a new family of reflecting planes, with a different interplanar spacing
d and different Bragg angle �, in order to explain the x-ray diffraction via Bragg’s law.

Figure 37-27 shows how the interplanar spacing d can be related to the unit cell
dimension a0. For the particular family of planes shown there, the Pythagorean theo-
rem gives

or (37-32)

Figure 37-27 suggests how the dimensions of the unit cell can be found once the
interplanar spacing has been measured by means of x-ray diffraction.

d �
a0

√5
.

5d � √5a0,
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d

FIGURE 37-27: A family of planes
through the structure of Fig. 37-26a, and a
way to relate the edge length a0 of a unit
cell to the interplanar spacing d.



X-ray diffraction is a powerful tool for studying both x-ray spectra and the
arrangement of atoms in crystals. To study spectra, a particular set of crystal planes,
having a known spacing d, is chosen. These planes effectively reflect different wave-
lengths at different angles. A detector that can discriminate one angle from another
can then be used to determine the wavelength of radiation reaching it. The crystal it-
self can be studied with a monochromatic x-ray beam, to determine not only the spac-
ing of various crystal planes but also the structure of the unit cell.
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Problems

SEC. 37-2 ■ DIFFRACTION BY A SINGLE SLIT: LOCATING

THE MINIMA

1. Narrow Slit Light of wavelength 633 nm is incident on a narrow
slit. The angle between the first diffraction minimum on one side of
the central maximum and the first minimum on the other side is
1.20°. What is the width of the slit?

2. Distance Between Monochromatic light of wavelength 441 nm
is incident on a narrow slit. On a screen 2.00 m away, the distance
between the second diffraction minimum and the central maximum
is 1.50 cm. (a) Calculate the angle of diffraction � of the second
minimum. (b) Find the width of the slit.

3. Single Slit A single slit is illuminated by light of wavelengths �a

and �b, chosen so the first diffraction minimum of the �a component
coincides with the second minimum of the �b component. (a) What
relationship exists between the two wavelengths? (b) Do any other
minima in the two diffraction patterns coincide?

4. First and Fifth The distance between the first and fifth minima
of a single-slit diffraction pattern is 0.35 mm with the screen 40 cm
away from the slit, when light of wavelength 550 nm is used. (a)
Find the slit width. (b) Calculate the angle � of the first diffraction
minimum.

5. Plane Wave A plane wave of wavelength 590 nm is incident on a
slit with a width of a � 0.40 nm. A thin converging lens of focal
length �70 cm is placed between the slit and a viewing screen and
focuses the light on the screen. (a) How far is the screen from the
lens? (b) What is the distance on the screen from the center of the
diffraction pattern to the first minimum?

6. Sound Waves Sound waves with
frequency 3000 Hz and speed 343
m/s diffract through the rectangular
opening of a speaker cabinet and
into a large auditorium. The open-
ing, which has a horizontal width of
30.0 cm, faces a wall 100 m away
(Fig. 37-28). Where along that wall
will a listener be at the first diffrac-
tion minimum and thus have diffi-
culty hearing the sound? (Neglect
reflections).

7. Central Maximum A slit 1.00 mm wide is illuminated by light
of wavelength 589 nm. We see a diffraction pattern on a screen
3.00 m away. What is the distance between the first two diffrac-
tion minima on the same side of the central diffraction maxi-
mum?

SEC. 37-4 ■ INTENSITY IN SINGLE-SLIT DIFFRACTION,
QUANTITATIVELY

8. Off Central Axis A 0.10-mm-wide slit is illuminated by light of
wavelength 589 nm. Consider a point P on a viewing screen on
which the diffraction pattern of the slit is viewed; the point is at 30°
from the central axis of the slit. What is the phase difference be-
tween the Huygens wavelets arriving at point P from the top and
midpoint of the slit? (Hint: See Eq. 37-4.)

9. Explain Quantitatively If you double the width of a single slit,
the intensity of the central maximum of the diffraction pattern in-
creases by a factor of 4, even though the energy passing through the
slit only doubles. Explain this quantitatively.

10. Monochromatic Monochromatic light with wavelength 538 nm
is incident on a slit with width 0.025 mm. The distance from the slit
to a screen is 3.5 m. Consider a point on the screen 1.1 cm from the
central maximum. (a) Calculate � for that point. (b) Calculate �. (c)
Calculate the ratio of the intensity at this point to the intensity at
the central maximum.

11. FWHM The full width at half-maximum (FWHM) of a central
diffraction maximum is defined as the angle between the two points
in the pattern where the intensity is one-half that at the center of
the pattern. (See Fig. 37-7b.) (a) Show that the intensity drops to
one-half the maximum value when sin2 � � �2/2. (b) Verify that 
� � 1.39 rad (about 80°) is a solution to the transcendental equa-
tion of (a). (c) Show that the FWHM is �� � 2sin�1(0.443�/a),
where a is the slit width. (d) Calculate the FWHM of the central
maximum for slits whose widths are 1.0, 5.0, and 10 wavelengths.

12. Babinet’s Principle A monochromatic beam of parallel light is
incident on a “collimating” hole of diameter x �� �. Point P lies in
the geometrical shadow region on a distant screen (Fig. 37-29a).
Two diffracting objects, shown in Fig. 37-29b, are placed in turn
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FIGURE 37-28 ■
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FIGURE 37-29 ■ Problem 12.



over the collimating hole. A is an opaque circle with a hole in it and
B is the “photographic negative” of A. Using superposition con-
cepts, show that the intensity at P is identical for the two diffracting
objects A and B.

13. Values of � (a) Show that the values of � at which intensity
maxima for single-slit diffraction occur can be found exactly by dif-
ferentiating Eq. 37-5 with respect to � and equating the result to
zero, obtaining the condition tan� � �. (b) Find the values of � sat-
isfying this relation by plotting the curve y � tan � and the straight
line y � � and finding their intersections or by using a calculator
with an equation solver to find an appropriate value of � (or by us-
ing trial and error). (c) Find the (noninteger) values of m corre-
sponding to successive maxima in the single-slit pattern. Note that
the secondary maxima do not lie exactly halfway between minima.

SEC. 37-5 ■ DIFFRACTION BY A CIRCULAR APERTURE

14. Entopic Halos At night many people see rings (called entopic
halos) surrounding bright outdoor lamps in otherwise dark sur-
roundings. The rings are the first of the side maxima in diffraction
patterns produced by structures that are thought to be within the
cornea (or possibly the lens) of the observer’s eye. (The central
maxima of such patterns overlap the lamp.) (a) Would a particular
ring become smaller or larger if the lamp were switched from blue
to red light? (b) If a lamp emits white light, is blue or red on the
outside edge of the ring? (c) Assume that the lamp emits light at
wavelength 550 nm. If a ring has an angular diameter of 2.5°, ap-
proximately what is the (linear) diameter of the structure in the eye
that causes the ring?

15. Headlights The two headlights of an approaching automobile
are 1.4 m apart. At what (a) angular separation and (b) maximum
distance will the eye resolve them? Assume that the pupil diameter
is 5.0 mm, and use a wavelength of 550 nm for the light. Also as-
sume that diffraction effects alone limit the resolution so that
Rayleigh’s criterion can be applied.

16. An Astronaut An astronaut in a space shuttle claims she can
just barely resolve two point sources on the Earth’s surface, 160 km
below. Calculate their (a) angular and (b) linear separation,
assuming ideal conditions. Take � � 540 nm and the pupil diameter
of the astronaut’s eye to be 5.0 mm.

17. Moon’s Surface Find the separation of two points on the
Moon’s surface that can just be resolved by the 200 in. (� 5.1 m)
telescope at Mount Palomar, assuming that this separation is deter-
mined by diffraction effects. The distance from the Earth to the
Moon is 3.8 � 105 km. Assume a wavelength of 550 nm for the
light.

18. Large Room The wall of a large room is covered with acoustic
tile in which small holes are drilled 5.0 mm from center to center.
How far can a person be from such a tile and still distinguish the in-
dividual holes, assuming ideal conditions, the pupil diameter of the
observer’s eye to be 4.0 mm, and the wavelength of the room light
to be 550 nm?

19. Estimate Linear Separation Estimate the linear separation of
two objects on the planet Mars that can just be resolved under ideal
conditions by an observer on Earth (a) using the naked eye and (b)
using the 200 in. (� 5.1 m) Mount Palomar telescope. Use the fol-
lowing data: distance to Mars � 8.0 � 107 km, diameter of pupil �
5.0 mm, wavelength of light � 550 nm.

20. Radar System The radar system of a navy cruiser transmits at a
wavelength of 1.6 cm, from a circular antenna with a diameter of
2.3 m. At a range of 6.2 km, what is the smallest distance that two
speedboats can be from each other and still be resolved as two sep-
arate objects by the radar system?

21. Tiger Beetles The wings of tiger beetles (Fig. 37-30) are col-
ored by interference due to thin cuticle-like layers. In addition,
these layers are arranged in patches that are 60 �m across and pro-
duce different colors. The color you see is a pointillistic mixture of
thin-film interference colors that varies with perspective. Approxi-
mately what viewing distance from a wing puts you at the limit of
resolving the different colored patches according to Rayleigh’s cri-
terion? Use 550 nm as the wavelength of light and 3.00 mm as the
diameter of your pupil.
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FIGURE 37-30 ■ Problem 21. Tiger beetles are colored by
pointillistic mixtures of thin-film interference colors.

22. Discovery In June 1985, a laser beam was sent out from the Air
Force Optical Station on Maui, Hawaii, and reflected back from the
shuttle Discovery as it sped by, 354 km overhead. The diameter of
the central maximum of the beam at the shuttle position was said to
be 9.1 m, and the beam wavelength was 500 nm. What is the effec-
tive diameter of the laser aperture at the Maui ground station?
(Hint: A laser beam spreads only because of diffraction; assume a
circular exit aperture.)

23. Millimeter-Wave Radar Millimeter-wave radar generates a
narrower beam than conventional microwave radar, making it less
vulnerable to antiradar missiles. (a) Calculate the angular width of
the central maximum, from first minimum to first minimum, pro-
duced by a 220 GHz radar beam emitted by a 55.0-cm-diameter
circular antenna. (The frequency is chosen to coincide with a low-
absorption atmospheric “window.”) (b) Calculate the same quantity
for the ship’s radar described in Problem 20.

24. Circular Obstacle A circular obstacle produces the same dif-
fraction pattern as a circular hole of the same diameter (except
very near � � 0). Airborne water drops are examples of such obsta-
cles. When you see the Moon through suspended water drops, such
as in a fog, you intercept the diffraction pattern from many drops.



The composite of the central diffraction maxima of those drops
forms a  white region that surrounds the Moon and may obscure it.
Figure 37-31 is a photograph in which the Moon is obscured. There
are two, faint, colored rings around the Moon (the larger one may
be too faint to be seen in your copy of the photograph). The smaller
ring is on the outer edge of the central maxima from the drops; the
somewhat larger ring is on the outer edge of the smallest of the sec-
ondary maxima from the drops (see Fig. 37-3). The color is visible
because the rings are adjacent to the diffraction minima (dark
rings) in the patterns. (Colors in other parts of the pattern overlap
too much to be visible.)

(a) What is the color of these rings on the outer edges of the
diffraction maxima? (b) The colored ring around the central max-
ima in Fig. 37-31 has an angular diameter that is 1.35 times the
angular diameter of the Moon, which is 0.50°. Assume that the
drops all have about the same diameter. Approximately what is that
diameter?

25. Allegheny Observatory (a) What is the angular separation of
two stars if their images are barely resolved by the Thaw refracting
telescope at the Allegheny Observatory in Pittsburgh? The lens di-
ameter is 76 cm and its focal length is 14 m. Assume � � 550 nm.
(b) Find the distance between these barely resolved stars if each of
them is 10 light-years distant from Earth. (c) For the image of a sin-
gle star in this telescope, find the diameter of the first dark ring in
the diffraction pattern, as measured on a photographic plate placed
at the focal plane of the telescope lens. Assume that the structure of
the image is associated entirely with diffraction at the lens aperture
and not with lens “errors”.

26. Soviet–French Experiment In a joint Soviet–French experi-
ment to monitor the Moon’s surface with a light beam, pulsed radi-
ation from a ruby laser (� � 0.69 �m) was directed to the Moon
through a reflecting telescope with a mirror radius of 1.3 m. A re-
flector on the Moon behaved like a circular plane mirror with ra-
dius 10 cm, reflecting the light directly back toward the telescope on
the Earth. The reflected light was then detected after being brought
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to a focus by this telescope. What fraction of the original light en-
ergy was picked up by the detector? Assume that for each direction
of travel all the energy is in the central diffraction peak.

SEC. 37-6 ■ DIFFRACTION BY A DOUBLE SLIT

27. Bright Fringes Suppose that the central diffraction envelope of
a double-slit diffraction pattern contains 11 bright fringes and the
first diffraction minima eliminate (are coincident with) bright
fringes. How many bright fringes lie between the first and second
minima of the diffraction envelope?

28. Slit Separation In a double-slit experiment, the slit separation
d is 2.00 times the slit width w. How many bright interference
fringes are in the central diffraction envelope?

29. Eliminate Bright Fringes (a) In a double-slit experiment, what
ratio of d to a causes diffraction to eliminate the fourth bright side
fringe? (b) What other bright fringes are also eliminated?

30. Two Slits Two slits of width a and separation d are illuminated
by a coherent beam of light of wavelength �. What is the linear sep-
aration of the bright interference fringes observed on a screen that
is at a distance D away?

31. How Many (a) How many bright fringes appear between the
first diffraction-envelope minima to either side of the central maxi-
mum in a double-slit pattern if � � 550 nm, d � 0.150 mm, and a �
30.0 �m? (b) What is the ratio of the intensity of the third bright
fringe to the intensity of the central fringe?

32. Intensity Vs. Position Light of wavelength 440 nm passes
through a double slit, yielding a diffraction pattern whose graph of
intensity I versus angular position � is shown in Fig. 37-32. Calculate
the (a) slit width and (b) slit separation. (c) Verify the displayed in-
tensities of the m � 1 and m � 2 interference fringes.

FIGURE 37-31 ■ Problem 24. The corona around the Moon
is a composite of the diffraction patterns of airborne water
drops.
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FIGURE 37-32 ■ Problem 32.

SEC. 37-7 ■ DIFFRACTION GRATINGS

33. Calculate d A diffraction grating 20.0 mm wide has 6000 rul-
ings. (a) Calculate the distance d between adjacent rulings. (b) At
what angles � will intensity maxima occur on a viewing screen if the
radiation incident on the grating has a wavelength of 589 nm?

34. Visible Spectrum A grating has 315 rulings/mm. For what
wavelengths in the visible spectrum can fifth-order diffraction be
observed when this grating is used in a diffraction experiment?



35. How Many Orders A grating has 400 lines/mm. How many or-
ders of the entire visible spectrum (400–700 nm) can it produce in
a diffraction experiment, in addition to the m � 0 order?

36. Confuse a Predator Perhaps to confuse a predator, some tropi-
cal gyrinid beetles (whirligig beetles) are colored by optical inter-
ference that is due to scales whose alignment forms a diffraction
grating (which scatters light instead of transmiting it). When the in-
cident light rays are perpendicular to the grating, the angle between
the first-order maxima (on opposite sides of the zeroth-order maxi-
mum) is about 26° in light with a wavelength of 550 nm. What is the
grating spacing of the beetle?

37. Two Adjacent Maxima Light of wavelength 600 nm is incident
normally on a diffraction grating. Two adjacent maxima occur at an-
gles given by sin � � 0.2 and sin � � 0.3. The fourth-order maxima
are missing. (a) What is the separation between adjacent slits? (b)
What is the smallest slit width this grating can have? (c) Which or-
ders of intensity maxima are produced by the grating, assuming the
values derived in (a) and (b)?

38. Normal Incidence A diffraction grating is made up of slits of
width 300 nm with separation 900 nm. The grating is illuminated by
monochromatic plane waves of wavelength � � 600 nm at normal
incidence. (a) How many maxima are there in the full diffraction
pattern? (b) What is the width of a spectral line observed in the first
order if the grating has 1000 slits?

39. Visible Spectrum Assume that the limits of the visible spec-
trum are arbitrarily chosen as 430 and 680 nm. Calculate the num-
ber of rulings per millimeter of a grating that will spread the first-
order spectrum through an angle of 20°.

40. Gaseous Discharge Tube With
light from a gaseous discharge tube
incident normally on a grating with
slit separation 1.73 �m, sharp max-
ima of green light are produced at
angles � � � 17.6°, 37.3°, �37.1°,
65.2°, and �65.0°. Compute the
wavelength of the green light that
best fits these data.

41. Show That Light is incident on
a grating at an angle � as shown in
Fig. 37-33. Show that bright fringes
occur at angles � that satisfy the
equation

d(sin � � sin �) � m�, for m � 0, 1, 2, . . . .

(Compare this equation with Eq. 37-22.) Only the special case � �
0 has been treated in this chapter.

42. Plot A grating with d � 1.50 �m is illuminated at various
angles of incidence by light of wavelength 600 nm. Plot, as a func-
tion of the angle of incidence (0 to 90°), the angular deviation of
the first-order maximum from the incident direction. (See Prob-
lem 41.)

43. Derive Derive Eq. 37-25, the expression for the half-widths of
lines in a grating’s diffraction pattern.

44. Spectrum Is Formed A grating has 350 rulings per millimeter
and is illuminated at normal incidence by white light. A spectrum is
formed on a screen 30 cm from the grating. If a hole 10 mm square
is cut in the screen, its inner edge being 50 mm from the central

maximum and parallel to it, what is the range in the wavelengths of
the light that passes through the hole?

45. Derive Two Derive this expression for the intensity pattern for
a three-slit grating (ignore diffraction effects);

I� � Imax(1 � 4 cos� � 4 cos2 �),

where � � (2d sin�)/�. Assume that a << �; be guided by the de-
rivation of the corresponding double-slit formula (Eq. 36-21).

SEC. 37-8 ■ GRATINGS: DISPERSION AND RESOLVING

POWER

46. D Line The D line in the spectrum of sodium is a doublet with
wave-lengths 589.0 and 589.6 nm. Calculate the minimum number
of lines needed in a grating that will resolve this doublet in the
second-order spectrum. See Touchstone Example 37-5.

47. Hydrogen–Deuterium Mix A source containing a mixture of
hydrogen and deuterium atoms emits red light at two wavelengths
whose mean is 656.3 nm and whose separation is 0.180 nm. Find the
minimum number of lines needed in a diffraction grating that can
resolve these lines in the first order.

48. Smallest Wavelength A grating has 600 rulings/mm and is 
5.0 mm wide. (a) What is the smallest wavelength interval it can
resolve in the third order at � � 500 nm? (b) How many higher
orders of maxima can be seen?

49. Dispersion Show that the dispersion of a grating is D �
(tan �)/�.

50. Sodium Doublet With a particular grating the sodium doublet
(see Touchstone Example 37-5) is viewed in the third order at 10°
to the normal and is barely resolved. Find (a) the grating spacing
and (b) the total width of the rulings.

51. Resolving Power A diffraction grating has resolving power R
� 	�
/� � � Nm. (a) Show that the corresponding frequency
range �f that can just be resolved is given by �f � c/Nm�. (b)
From Fig. 37-18, show that the times required for light to travel
along the ray at the bottom of the figure and the ray at the top
differ by an amount �t � (Nd/c) sin�. (c) Show that (�f)(�t) � 1,
this relation being independent of the various grating parameters.
Assume N � 1.

52. Product (a) In terms of the angle � locating a line produced by
a grating, find the product of that line’s half-width and the resolving
power of grating. (b) Evaluate that product for the grating of Prob-
lem 38, for the first order.

SEC. 37-9 ■ X-RAY DIFFRACTION

53. Second-Order Reflection X rays of wavelength 0.12 nm are
found to undergo second-order reflection at a Bragg angle of 28°
from a lithium fluoride crystal. What is the interplanar spacing of
the reflecting planes in the crystal?

54. Diffraction by Crystal Figure 37-34 is a graph of intensity ver-
sus angular position � for the diffraction of an x-ray beam by a
crystal. The beam consists of two wavelengths, and the spacing
between the reflecting planes is 0.94 nm. What are the two wave-
lengths?

1
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55. NaCl Crystal An x-ray beam of a certain wavelength is inci-
dent on a NaCl crystal, at 30.0° to a certain family of reflecting
planes of spacing 39.8 pm. If the reflection from those planes is of
the first order, what is the wavelength of the x rays?

56. Two Beams An x-ray beam of wavelength A undergoes first-
order reflection from a crystal when its angle of incidence to a crystal
face is 23°, and an x-ray beam of wavelength 97 pm undergoes third-
order reflection when its angle of incidence to that face is 60°. As-
suming that the two beams reflect from the same family of reflecting
planes, find the (a) interplanar spacing and (b) wavelength A.

57. Not Possible Prove that it is not possible to determine both
wavelength of incident radiation and spacing of reflecting planes in
a crystal by measuring the Bragg angles for several orders.

58. Reflection Planes In Fig. 37-35, first-order reflection from the
reflection planes shown occurs when an x-ray beam of wavelength
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FIGURE 37-36 ■ Problems 60 and 61.

0.260 nm makes an angle of 63.8° with the top face of the crystal.
What is the unit cell size a0?

59. Square Crystal Consider a two-dimensional square crystal
structure, such as one side of the structure shown in Fig. 37-26a.
One interplanar spacing of reflecting planes is the unit cell size a0.
(a) Calculate and sketch the next five smaller interplanar spacings.
(b) Show that your results in (a) are consistent with the general
formula

where h and k are relatively prime integers (they have no common
factor other than unity).

60. X-Ray Beam In Fig. 37-36, an x-ray beam of wavelengths from
95.0 pm to 140 pm is incident at 45° to a family of reflecting planes
with spacing d � 275 pm. At which wavelengths will these planes
produce intensity maxima in their reflections?

61. NaCl In Fig. 37-36, let a beam of x-rays of wavelength 0.125 nm
be incident on an NaCl crystal at an angle of 45.0° to the top face of
the crystal and a family of reflecting planes. Let the reflecting
planes have separation d � 0.252 nm. Through what angles must
the crystal be turned about an axis that is perpendicular to the
plane of the page for these reflecting planes to give intensity max-
ima in their reflections?

d �
a0

h2 � k2
,
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62. Changing Interference Consider a plane wave of monochro-
matic green light, � � 500 nm, that is incident normally upon two
identical narrow slits (the widths of the individual slits are much
less than �). The slits are separated by a distance d � 30 �m. An in-
terference pattern is observed on a screen located a distance L
away from the slits. On the screen, the location nearest the central
maximum where the intensity is zero (i.e., the first dark fringe) is
found to be 1.5 cm from this central point. Let this particular posi-
tion on the screen be referred to as P1. (a) Calculate the distance, L,
to the screen. Show all work. (b) In each of the parts below, one
change has been made to the problem above (in each case, all para-
meters not explicitly mentioned have the value or characteristics
stated above). For each case, explain briefly whether the light inten-
sity at location P1 remains zero or not. If not, does P1 become the
location of a maximum constructive interference (bright) fringe? In
each case, explain your reasoning.

(1) One of the two slits is made slightly narrower, so that the
amount of light passing through it is less than that through the other.

(2) The wavelength is doubled so that � � 1000 nm.

(3) The two slits are replaced by a single slit whose width is exactly
60 �m.

63. Hearing and Seeing Around a Corner We can make the obser-
vation that we can hear around corners (somewhat) but not see

around corners. Estimate why this is so by considering a doorway
and two kinds of waves passing through it: (1) a beam of red light
(� � 660 nm), and (2) a sound wave playing an “A” (f � 440 Hz).
(See Fig. 37-37.) Treat these two waves as plane waves passing
through a slit whose width equals the width of the door. (a) Find
the angle that gives the position of the first dark diffraction fringe.
(b) From that, assuming you are 2 m back from the door, estimate
how far outside the door you could be and still detect the wave.
(See the picture for a clarification. The distance x is desired.)

Additional Problems
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FIGURE 37-37 ■ Problem 63.
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38 Special Relativity
Guest Author: Edwin F. Taylor Massachusetts Institute of Technology

Billions of dollars have been spent constructing gigantic

particle accelerators, such as this one 4 miles in 

circumference at Fermi National Accelerator Laboratory.

More and more advanced accelerators give more and 

more energy and momentum to particles being 

accelerated. Decades of experimentation have verified that

every particle, however great its energy and momentum,

moves slower than the speed of light in a vacuum.

How can the energy of a
particle increase without
limit while its speed remains
slower than the speed of
light?

The answer is in this chapter.



38-1 Introduction

Special relativity and general relativity both describe the behavior of radiation and
matter moving at or near the speed of light. However, special relativity is limited to
situations in which gravitational effects can be neglected. Both special and general
relativity are called classical theories because they do not describe atomic or molecu-
lar effects, for which quantum theory is needed.

Unfortunately, special relativity has a reputation for being difficult and mathe-
matically complex. But if you understand basic algebra and square roots, you have the
necessary mathematical tools to comprehend it. What makes special relativity seem
difficult is that we have no direct experience with objects moving anywhere near the
speed of light. It’s no wonder that our idea of space and time, molded by everyday ex-
perience, is limited. As a result, the predictions of special relativity—fully verified by
experiment—strike us as outlandish and outrageous. But these outlandish predictions
not only make special relativity fascinating, they also provide us with deep insights
into the nature of space and time—the arena in which we all live and in which science
operates.

In this chapter we will show how the outlandish predictions of special relativity
can be deduced logically from a single principle proposed by Albert Einstein at the
beginning of the 20th century.

38-2 Origins of Special Relativity

While waiting at a stoplight, you notice that the car next to yours appears to be mov-
ing forward slowly (Fig. 38-1). Instead you suddenly realize that you are drifting back-
ward, so you slam on the brakes to avoid bumping another car behind you. Before
you step on the brakes, which car is standing still? Which is moving? Without seeing a
“stationary” object such as a sign post, you cannot tell! Are such observations about
relative motion trivial or profound? Can we cover the windows of our car and carry
out some experiment inside—any experiment at all—to detect whether we are in
motion or at rest? 

Special relativity grew out of questions raised in the late 1800s and early 1900s
about relative motions of material objects and waves. Some of these questions in-
volved comparisons between everyday phenomena involving boats and ocean waves.
Other questions were raised about the relative motions of objects and light waves. For
example, consider ocean waves that move slowly past a swimmer moving in the same
direction as the waves. The same waves will move rapidly past a second swimmer trav-
eling in the opposite direction. Will the same thing happen when someone moves to-
ward or away from light waves? Will observers traveling in opposite directions mea-
sure different speeds for the same light wave? Do light waves move in a medium the
way ocean waves move in the medium of water?

From the age of 16 Albert Einstein (Fig. 38-2) puzzled over a thought experiment:
Suppose you run very fast while looking at yourself in a mirror that you hold up in
front of you. What happens as your running speed approaches the speed of light? Will
the light waves move more and more slowly past you? In modern terms, can you surf
light waves?

While Einstein was growing up, other people were trying to answer such questions
with experiments. Some scientists hypothesized that light moves in a medium they
called ether. In the late 1800s, Albert W. Michelson and Edward W. Morley carried out
experiments with light trying to measure the motion of the Earth through this ether,
under the assumption that the ether was at rest with respect to the Sun or some other
location (such as the center of our galaxy). They used the fastest-moving object avail-
able to them: the Earth itself. The Earth moves around the sun at approximately 30

SCHOOL
ZONE

15 MPH
?

?

FIGURE 38-1 ■ While waiting at a stop-
light, you find it hard to tell whether the
car next to you is rolling forward or you
are drifting backward—unless you are
looking at a fixed object such as the speed
limit sign.

FIGURE 38-2 ■ Albert Einstein in the
early 1900s at the patent office in Bern,
Switzerland, where he was employed when
he published his article on special relativ-
ity. In later life he was known to dress
much more informally.
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kilometers per second in one direction in January and in the opposite direction past
the sun in July. Michelson and Morley could detect no motion of the Earth through the
hypothesized ether. These negative results caused great puzzlement.

In 1905 Einstein, a 26-year-old patent examiner in Bern, Switzerland, published a
paper that changed the face of science.

R EADI NG EXERC IS E  38-1: You are sitting in a train that stopped at a station ten
minutes ago. Suddenly you notice that a second train on the track next to you is gliding past
you. You feel a slight vibration that tells you your train is rolling slowly along the track. Is the
second train in motion or at rest? ■

38-3 The Principle of Relativity

Einstein’s special relativity theory does not assume that light moves through a
medium. Even so, it appears that Einstein did not base his ideas on Michelson and
Morley’s earlier failure to detect ether. Instead, Einstein treasured simplicity, logic,
physical intuition, and his now famous thought experiments. He started from a clean
assertion that he called the Principle of Relativity. Think of an automobile or train ei-
ther at rest or moving at constant velocity. Define each of these enclosures as a refer-
ence frame. Then the Principle of Relativity says:

All the laws of physics are the same in every reference frame.

In other words: Pull down the shades in your room or vehicle. Then carry out as many
experiments as you need to create the laws of physics. Someone who carries out the
same experiments inside another vehicle will discover the same laws, as long as this
new vehicle moves at a constant velocity relative to yours.

The laws of physics contain fundamental numerical constants, such as the charge e
on the electron, Planck’s constant h, and the speed of light c in a vacuum. According
to the Principle of Relativity, each of these constants must have the same numerical
value when measured in any reference frame. In particular, all observers measure the
speed of light in a vacuum to have the value presented back in Chapter 1 of c �
299 792 458 m/s . The equality of the speed of light in all reference
frames eliminates the need to postulate the existence of ether through which light
propagates. The predictions of special relativity about space, time, mass, and motion
all spring from the single Principle of Relativity, including the postulate of the “uni-
versal speed” of light.

The Principle of Relativity solved Einstein’s puzzler about running fast while
holding a mirror in front of you. You will not observe light waves to slow down as you
move faster. Why not? Because, says the Principle of Relativity, light always moves
past you with the same speed c, no matter how fast you run along the ground. You
cannot surf light waves!

“Relativity theory” is a misleading term that Einstein avoided for years. What we
call the special theory of relativity is based on the Principle of Relativity, which tells
us that the laws of nature are the same for observers in different reference frames.
These laws are not relative. General relativity employs an even more radical version
than special relativity, of the Principle of Relativity—that the laws of nature are inde-
pendent of the observer’s viewpoint.

R EADI NG EXERC IS E  38-2: While standing beside a railroad track, we are startled
by a boxcar traveling past us at half the speed of light. A passenger (shown in the figure) stand-
ing at the front of the boxcar fires a laser pulse toward the rear of the boxcar. The pulse is

(� 3 � 108 m/s)



absorbed at the back of the box-
car. While standing beside the
track we measure the speed of
the pulse through the open side
door. (a) Is our measured value
of the speed of the pulse greater
than, equal to, or less than its
speed measured by the rider? (b)
Is our measurement of the distance between emission and absorption of the light pulse greater
than, equal to, or less than the distance between emission and absorption measured by the
rider? (c) What conclusion can you draw about the relation between the times of flight of the
light pulse as measured in the two reference frames? ■
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TOUCHSTONE EXAMPLE 38-1: Communications Storm!

A sunspot emits a tremendous burst of particles that travels toward
the Earth. An astronomer on the Earth sees the emission through a
solar telescope and issues a warning. The astronomer knows that
when the particle pulse arrives it will wreak havoc with broadcast
radio transmission. Communications systems require ten minutes to
switch from over-the-air broadcast to underground cable transmis-
sion. What is the maximum speed of the particle pulse emitted by
the Sun such that the switch can occur in time, between warning
and arrival of the pulse? Take the sun to be 500 light-seconds dis-
tant from the Earth.

S O L U T I O N ■ It takes 500 seconds for the warning light flash to
travel the distance of 500 light-seconds between the Sun and the
Earth and enter the astronomer’s telescope. If the particle pulse
moves at half the speed of light, it will take twice as long as light to
reach the Earth. If the pulse moves at one-quarter the speed of
light, it will take four times as long to make the trip. We generalize
this by saying that if the pulse moves with speed v/c, it will take
time �tpulse to make the trip given by the expression:

�tpulse �
500 s

vpulse/c
.

How long a warning time does the Earth astronomer have between
arrival of the light flash carrying information about the pulse and
the arrival of the pulse itself? It takes 500 seconds for the light to
arrive. Therefore the warning time is the difference between the
pulse transit time and the transit time of light:

But we know that the minimum possible warning time is 10 min �
600 s.

Therefore we have

which gives the maximum value for vpulse if there is to be sufficient
time for warning:

(Answer)

Observation reveals that pulses of particles emitted from the sun
travel much slower than this maximum value. So we would have a
much longer warning time than calculated here.

vpulse � 0.455c.

600 s �
500 s

vpulse/c
� 500 s,

�twarning � �tpulse�500 s.

38-4 Locating Events with an Intelligent Observer

In devising special relativity, Einstein stripped science to its bare essentials. The
essence of science is the description of events—occurrences in space and time. Sci-
ence has a simple task: to tell us how one event is related to another event. One of the
most important outcomes of special relativity is the ability to predict how events ob-
served in one reference frame will look to an observer in another frame. We need to
start by carefully defining what events are and how to observe them intelligently.

An event is an occurrence that happens at a unique place and time.

Examples of events include a collision, an explosion, the emission of a light flash,
and the fleeting touch of a friend’s hand. When can an occurrence be called an event?
When an observer finds it sufficiently localized in space and time to serve her pur-
poses. Your birth was an event unique in both time and place for a genealogist who
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studies family trees. Your birth mother, however, experienced the process as a series
of events, from first contraction (maybe at home) to delivery (perhaps in a hospital).
Since your birth mother’s experiences spanned both time and space, she might not
call your birth an event (at least while it is taking place!).

Locating an event in space and time is not always as simple as it might seem at
first because of the time delay between event and observation. Think about observing
a lightning flash in the night sky. We count the seconds, “one-thousand-one, one-
thousand-two, one-thousand-three.” Then we hear a crash of thunder. “Wow, lightning
struck only one kilometer away from us!” We know this from our knowledge that it
takes sound about three seconds to travel one kilometer in air. In making our calcula-
tion, we assume that the time it takes the lightning flash to reach us is negligible. This
means that the lapse between receiving the flash and hearing the thunder is entirely
due to the travel time of sound. In this case the signal travels with the speed of sound.

A pulse of high-energy particles may move at nearly the speed of light. How do
we determine the time of events that occur along its path? Suppose a pulse of high-
energy protons emerges from a particle accelerator and passes through detector A,
where we are standing. The pulse continues its flight to arrive at detector B that lies 30
meters away. When did the pulse arrive at detector B? We arrange in advance for de-
tector B to send us a light flash when the pulse arrives there. We time the arrival of
this light flash at detector A and from this arrival time we subtract the known time de-
lay that results when the light flash travels 30 meters. This difference gives us the time
at which the pulse arrived at detector B.

To account for the delay due to the speed of light, we define the intelligent
observer to be someone who takes into account the time delays required to locate dis-
tant events in space and time. Standing by detector A in the example above, we acted
as intelligent observers in determining the time at which the pulse reached detector B.

READI NG EXERC IS E  38-3: The Minute Waltz by Friedrich Chopin takes more than
a minute for most pianists to perform. Halfway through playing the Minute Waltz at a recital,
will you think of your performance as a single event? Is your performance a single event for
those who printed the program for the recital? Looking back ten years later, will you think of it
as a single event? ■

READI NG EXERC IS E  38-4: When the pulse of protons passes through detector A
(next to us), we start our clock from the time t � 0 microseconds. The light flash from detector
B arrives back at detector A at a time t � 0.225 microsecond (0.225 � 10�6 second) later.
(a) At what time did the pulse arrive at detector B? (b) Use the result from part (a) to find the
speed at which the proton pulse moved, as a fraction of the speed of light. ■

TOUCHSTONE EXAMPLE 38-2: Simultaneous?

You are an intelligent observer standing next to beacon A, which
emits a flash of light every 10 s. 100 km distant from you is a second
beacon, beacon B, stationary with respect to you, that also emits a
light flash every 10 s. You want to know whether or not each flash is
emitted from remote beacon B simultaneous with (at the same time
as) the flash from your own beacon A. Explain how to do this with-
out leaving your position next to beacon A. Be specific and use nu-
merical values. Assume that light travels 3 � 108 m/s.

S O L U T I O N ■ You are an intelligent observer, which means that
you know how to take into account the speed of light in determin-
ing the time of a remote event, in this case the time of emission of a
flash by the distant beacon B. You measure the time lapse between

emission of a flash by your beacon A and your reception of the
flash from beacon B. If this time lapse is just that required for light to
move from beacon B to beacon A, then the two emissions occur at
the same time. The two beacons are 100 km � 105 m apart. Call this
distance L. Then the time �t for a light flash to move from B to A is:

(Answer)

or 0.333 ms. If this is the time you record between the flash of
nearby beacon A and reception of the flash from distant beacon B,
then you are justified in saying that the two beacons emit their
flashes simultaneously in your frame.

t �
L
c

�
105 m

3 � 108 m/s
� 3.33 � 10�4 s,



38-5 Laboratory and Rocket Latticeworks of Clocks

There are difficulties with the procedure used by our intelligent observer. First, she
needs to make a separate calculation for each remote event. This is bothersome.
Second, and more fundamental, she cannot calculate the time delay in reporting remote
events unless she already knows the location of every event she wants to measure. Some-
times information about event location is easily available, sometimes not. We need a
general, conceptually simple way to observe both the location and time of events.

In principle, one way to do this is to assemble a cubical lattice of meter sticks with
a recording clock at each intersection (Fig. 38-3). Using this latticework, we say that
the position of an event is that of the recording clock nearest to the event. The time of
the event is the time recorded on that nearby clock. Observing an event then reduces
to recording the position of the clock nearest to the event and the time for the event
recorded on that clock. Now there is no delay in recording the position and the time
of any event that occurs in the lattice.

Synchronizing Latticework Clocks 
Before we can actually observe events with our latticework of meter sticks and clocks,
we need to set all the clocks in the lattice to read the same time. But how can we syn-
chronize all the clocks in the latticework? One method would be to carry a traveling
clock around the lattice and synchronize each lattice clock with it. This approach is
not only time-consuming but incorrect. You will see in the next section that a clock
traveling through the lattice runs at a different rate than a resting clock as recorded
by clocks in the lattice. In fact, if you set a lattice clock to the time of the traveling
clock and then later bring it back after it has traveled to other clocks, you will find
that the traveling clock no longer agrees with that lattice clock! 
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FIGURE 38-3 ■ Latticework of meter
sticks and clocks.
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Instead of a traveling clock, we use the speed of light to synchronize all the lattice
clocks. Our procedure starts by picking one clock in the lattice as the standard or
reference clock. We know the distance between the reference clock and every other
clock in the lattice. At midnight the reference clock sends out a synchronizing flash of
light. When an observer at any one of the distant clocks receives the flash, she quickly
sets the time on her clock to midnight plus the time it took for the light to reach her
over the known distance from the reference clock at the known speed of light. We say
that after this procedure is complete the clocks in the lattice read the same time as
one another—they are synchronized with respect to this lattice.

Now our latticework of synchronized clocks is ready to record the position and
time of events that occur during any experiment. Analyzing the results of that experi-
ment means relating events by collecting event data from all recording clocks in the
lattice and analyzing these data at some central location.

Laboratory and Rocket Frames as Inertial Reference Frames
We often hear talk in special relativity about the laboratory frame and the rocket
frame. Envision each of these frames as having a latticework of rods and clocks 
(Fig. 38-4). The rocket coasts at constant velocity in unpowered flight. By convention
we assign the positive x direction to be the direction of motion of the rocket with
respect to the laboratory lattice.

AN IMPORTANT ASIDE: Strictly speaking, reference frames used in special relativity must be
inertial frames, frames with respect to which Newton’s First Law of motion holds: A free
particle at rest remains at rest and a free particle in motion continues that motion in a straight
line at constant speed (see Section 3-2). Obviously the surface of the Earth is not an inertial
reference frame; a stone released from rest accelerates downward! However, for a particle
moving at a substantial fraction of the speed of light with respect to the Earth, the accelera-
tion of gravity can usually be ignored. In this chapter we make no distinction between
inertial frames and those at rest or moving at constant velocity with respect to the Earth’s
surface.

We can detect and record a single event using overlapping rocket and laboratory
lattice works. If the right rear tire of your car hits a nail, it goes flat with a bang. For
you as the driver (in the “rocket frame”) the bang occurs at the right rear of your car.
For the observer on the road (the “laboratory frame”), the bang takes place where the
nail sticks up at one end of the bridge that your car has just crossed. Neither you nor
the road observer “owns” the event. You both have equal status in observing and
recording the bang. The bang exists, and all other events exist, independent of refer-
ence frames. Events are the nails on which all of science hangs.

FIGURE 38-4 ■ Laboratory and rocket
frames. A moment ago the two lattice-
works were intermeshed. By convention,
the rocket frame moves in the positive x
direction of the laboratory frame.
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TOUCHSTONE EXAMPLE 38-3: Synchronizing Clocks

You are stationed at a latticework clock with the coordinates x �
3 � 108 m, y � 4 � 108 m, and z � 0 m. The reference clock at co-
ordinates x � y � z � 0 emits a reference flash at exactly midnight
on its clock. You want your clock to be synchronized with (set to
the same time as) the reference clock. To what time do you immedi-
ately set your clock when you receive the reference flash?

S O L U T I O N ■ Your distance D from the reference clock is 

    � 5 � 108 m.

D � [(3 � 108 m)2 � (4 � 108 m)2 � 0 m]1/2 � [25 m]1/2 � 108

The time �t that it takes the reference flash to reach you is there-
fore

(Answer)

So when you receive the reference flash, you quickly set your clock
to 1.66 seconds after midnight.

�t �
D
c

�
5 � 108 m

3 � 108 m/s
� 1.66 s.

38-6 Time Stretching

Every year hundreds of email messages, letters, and articles “disproving” relativity are
sent to textbook authors and scientific journal editors. Many of these papers are ex-
tremely ingenious, showing considerable insight and sometimes representing years of
labor. (Indeed, fighting a new idea often helps us to understand it and make it our
own. As you continue reading this chapter, you may want to make a note of the ideas
that seem paradoxical or outrageous. By the time you finish the chapter, see if you can
refute or defend some of your initial objections to relativity.)

A primary target of writers who object to special relativity is time stretching, the
conclusion that the time between two events can have different values as measured in
laboratory and rocket frames in relative motion. The clearest case of time stretching is
this: The time between two ticks measured on a clock at rest is always less than the time
between the same two ticks measured in a reference frame in which the clock is moving.
Many people remember this result by using a not-quite-exact motto: Moving clocks
run slow. However we express it, this conclusion is so obviously ridiculous that it stim-
ulates dozens of skeptics to write letters and articles.

Verification of Time Stretching 
Time stretching is verified experimentally every day as part of the ongoing enterprise
of experimental physics. Here are two examples of time stretching in action.

Time stretching with atomic clocks: In October 1971, J. C. Hafele and R. E. Keating
of the U.S. Naval Observatory sent atomic clocks (like the one described in Section 
1-5) around the Earth on regularly scheduled commercial airliners. One clock circled
the globe traveling eastward, the other clock traveled westward. When the clocks
were finally brought together, they did not read the same time. Also, the reading on
both clocks was different from that of a third atomic clock, which stayed at home in
one place on the Earth’s surface. Why the different readings? Think of the center of
the Earth as at rest. (Actually, the center of the Earth is in free fall around the sun.)
With respect to the Earth’s center, the speed of the eastward-moving clock is added to
the speed of the Earth’s rotation; it is the “faster-moving” clock. In contrast, the speed
of the westward-moving clock is subtracted from the eastward motion of the Earth’s
surface; this is the “slower-moving” clock. The stay-at-home clock moves with the
Earth’s surface at a speed that is intermediate between that of the other two clocks.
The result? The “faster-moving” eastward-going clock runs slow compared with the
stay-at-home clock of intermediate speed. And the “slower-moving” westward-going



Time Stretching   1119

clock runs fast compared with the stay-at-home clock. In the Hafele–Keating experi-
ment, the magnitudes of the different readings corresponded to the predictions of rel-
ativity. There was, however, at least one complication: The airplanes changed altitude
as they took off, flew their courses, and landed. General relativity, the theory that in-
cludes gravitational effects, predicts that changes in altitude, as well as relative speeds,
affect the relative rates at which clocks run. The results of the Hafele–Keating experi-
ment were actually consistent with the predictions of general relativity too, but that is
a story for another day.

Time stretching with pions: Our second example of time stretching is more technical
than the Hafele–Keating experiment, but a lot more convincing. It involves measur-
ing the lifetimes of pions, also called pi-mesons or �� mesons. These short-lived parti-
cles can be created during cosmic ray interactions or when a beam of protons ener-
gized by a particle accelerator strikes a target. On average, half the pions in a beam
will decay into other particles in 18 nanoseconds (18 � 10�9 seconds) as measured by
a clock carried with the pions. In this pion frame, half of the remainder will decay in
the next 18 nanoseconds, and so on. We call this time the pion half-life (t1/2). If pions
are moving at nearly the speed of light, how far can a pion beam travel before half the
pions decay? If the time were the same in our laboratory as it is in the rest frame of
the speeding pions, the maximum distance would be approximately equal to 

However, experiment shows that the flying pions travel tens of meters before half of
them decay. We conclude that in our laboratory frame the time for half of the pions to
decay is much greater than it is in the rest frame of the pions. Time stretching!

Why Time Stretching Makes Sense 
Objections to time stretching have always failed because they attack a result based on
an utterly simple idea: All the laws of nature are the same in every reference frame
(the Principle of Relativity). In particular, the speed of light is invariant (that is, it has
the same value) in every reference frame. The invariance of the speed of light leads
directly to the difference in time between two events as measured in laboratory and
rocket frames. To illustrate this, let’s consider the ticking of a “light clock” dia-
grammed in Fig. 38-5.

While riding in a transparent unpowered rocket ship, you fire a flash of light
upward toward a mirror that you hold on a stick 3 meters directly above you (the 
left-hand panel in Fig. 38-5). The flash reflects at the mirror and returns to you. Call
the emission of light event A and its reception upon return event B. For you, events A
and B occur at the same place. Between the events, the light moves first straight up

c � t1/2 � (3 � 108 m/s) � (18 � 10�9 s) � 5.4 m.
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FIGURE 38-5 ■ A flash of light emitted at
event A reflects from a mirror and returns
to the source, arriving as event B. Events A
and B are recorded in both the rocket and
laboratory frames. Einstein tells us that
each observer measures the same speed of
light. Therefore different path lengths for
the light flash in rocket and laboratory
frames mean that different times between
events A and B are measured in the two
frames. (The meanings of the symbols �x,
c �t, and c �� are discussed in the text.)



3 meters then straight down 3 meters. For you the total time between events A and B
equals the time that it takes light to travel a total of 6 meters.

The unpowered spaceship in which you carry out these experiments moves from
left to right past the rest of us, who stand in another transparent container arbitrarily
labeled “laboratory” (the right-hand panel in Fig. 38-5). We also observe the same
flash of light emitted at event A, reflected at your mirror, and received again at event
B. But for us in the laboratory, you and your mirror move together to the right. Thus
for us the path of the light slants upward from A along the 5-meter-long (for example)
hypotenuse of the first right triangle, reflects from the speeding mirror, then slants
back down along the 5-meter hypotenuse of the second right triangle to meet you
again at event B. Therefore for us events A and B are separated by the time it takes
light to travel a total of 10 meters. For us a longer time lapses between events A and B
than you measured in your rocket frame.

That’s it! Longer path length for light, longer time for light to travel that path at
its “universal speed,” therefore longer time between events as measured in that refer-
ence frame. No one has ever found an acceptable way around this simple and power-
ful result. The light clock demonstrates the longer time between two events in one
frame than in another frame. Hence the name for this effect is time stretching or time
dilation (dilation is a medical term for stretching).

The light flash and mirror make a kind of clock that we define as a light clock.
The Principle of Relativity assures us that all kinds of clocks at rest in a frame, once
calibrated, must run at the same rate as one another as observed in every frame in
uniform relative motion with respect to the first frame. Otherwise we could tell which
frame we are in by detecting different rates of different clocks all at rest in our frame.
In any given frame, properly calibrated clocks of every kind run at the same rate as one
another, including the “clock” of your body—namely, the aging process. Suppose the
mirror was so high above your head that it took 6 years in your rocket for the light to
return to you—and 10 years by our laboratory clocks. Then you would age 6 years be-
tween these new events A and B because your body’s “aging clock” and your “light
clock” ride together in your rocket frame. In contrast, between events A and B we in
the laboratory frame would age 10 years, and our light clock would also advance 
10 years. Between events A and B you would age less than we do!

How strange it is that the speed of light is invariant for all observers, no matter
what their relative velocity! But experiment continually verifies this result. Conse-
quences of the invariance of the speed of light include the fact that clocks run at dif-
ferent rates for observers in relative motion. Experiment continually verifies this re-
sult as well. More than one hundred years of the most rigorous testing have validated
beyond reasonable doubt that the speed of light is the same in all reference frames
and that clocks tick at different rates when observed in frames that are in motion with
respect to each other.

READI NG EXERC IS E  38-5: Suppose that a beam of pions moves so fast that at 
25 meters from the target in the laboratory frame exactly half of the original number remain
undecayed. As an experimenter, you want to put more distance between the target and your
detectors. You are satisfied to have one-eighth of the initial number of pions remaining when
they reach your detectors. How far can you place your detectors from the target? ■

READI NG EXERC IS E  38-6: A set of clocks is assembled in a stationary boxcar.
They include a quartz wristwatch, a balance wheel alarm clock, a pendulum grandfather
clock, a cesium atomic clock, fruit flies with average individual lifetimes of 2.3 days, a clock
based on radioactive decay of nuclei, and a clock timed by marbles rolling down a track. The
clocks are adjusted to run at the same rate as one another. The boxcar is then gently acceler-
ated along a smooth horizontal track to a final velocity of 300 km/hr. At this constant final
speed, which clocks will run at a different rate from the others as measured in that moving
boxcar? ■
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38-7 The Metric Equation

Time stretching occurs whenever the rocket has a velocity with respect to the laboratory
frame.We can prove this in general using symbols in Fig. 38-5. In the laboratory frame we
measure �x as the distance between events A and B and we measure �t as the time
between the events (that is, the time it takes the light flash to slant upward along one
hypotenuse at the speed c and then slant downward to the second event). Here delta (�)
indicates the lapse of time and the letter t tells us that the elapsed time refers to the time
between two events in our laboratory frame. One hypotenuse has a length given by 

length � velocity � time � c �t/2.

In your rocket frame the flash moves vertically upward to the mirror and back down
again in the time between events A and B. To describe your rocket frame time lapse
between events we use the notation ��. Here delta (�) indicates the lapse of time and
the Greek letter tau (�) tells us that the elapsed time refers to the time between two
events in your unpowered rocket, in which they occur at the same place. So for you
the upward distance covered in time ��/2 is equal to c ��/2. This vertical span is the
same as the vertical leg shared by the right triangles in the diagram at the right. Hence
we have expressions for the lengths of all sides of both of these right triangles. If we
use the Pythagorean Theorem for right triangles we get

(38-1)

where each term has dimensions of length squared. If we rearrange the terms in 
Eq. 38-1 so all the terms that refer to the laboratory frame are on the right, we get a
squared time-like interval called the metric equation:

(squared time-like interval). (38-2)

Now suppose two events occur in the same place (�x � 0), such as two sequential
ticks of a clock in its rest frame. The time lapse �� between the events measured on
the clock at rest is called the proper time or wristwatch time. The German term for
proper time is Eigenzeit, meaning “one’s own time.” The square root of the difference
of squares on the right side of Eq. 38-2 has the formal name invariant time-like 
interval. The interval is invariant because it has the same value as calculated by all ob-
servers. It is time-like because the magnitude of the time part c �t is greater than the
magnitude of the space part �x. (Both sides of Eq. 38-2 are necessarily positive).

The metric equation 38-2 is one of the most amazing equations in all of physics.
Look at its outrageous implications:

• First, the metric equation relates two different measures of the time between the
same two events. These are: (1) the time recorded on clocks in the reference
frame in which the events occur at different places, and also (2) the wristwatch
time read on the clock carried by a traveler who records the two events as occur-
ring at the same place. The ability to relate these two times is one of the greatest
scientific innovations in history.

• Second, the metric equation reveals an even deeper insight—space and time
combine in a single expression on the right side. We no longer speak of space and
time separately, but as a unity: space-time!

A wealth of other insights can be gleaned from Eq. 38-2. For example:

1. The time between events A and B as measured in the two frames cannot have the
same value if the laboratory and rocket frames are in relative motion.

(c ��)2 � (c �t)2 � (�x)2

(�x)2 � (c ��)2 � (c �t)2



2. Laboratory observers can correctly predict the proper time observers in the
rocket frame measure between events A and B on their rocket-frame wrist-
watches, in spite of the fact that this time is not the same as the time measured in
the laboratory frame. (Observers in the laboratory simply put their values for �t
and �x into Eq. 38-2 and calculate the value of the wristwatch time �� that the
rocket observer measures.)

3. If the rocket speed relative to the laboratory frame is reduced, then both �x/2 (the
length of the horizontal leg in Fig. 38-5) and c �t/2 (the hypotenuse) will be smaller
than before. But these terms become smaller in such a way that the difference be-
tween their squares, which represents the vertical distance between the rocket
observer and her mirror c ��/2, will remain the same. So the metric equation
(Eq. 38-2) will still hold. No matter how fast or slow the rocket is, the value of the
proper time �� (also known as the invariant time-like interval) remains the same.
Hence we call this interval between two events invariant, meaning that it has the
same value as measured in all reference frames in uniform relative motion.

If a rocket passes by our laboratory frame at a speed v, we can derive an equation
that relates �� and �t directly by setting �x � v �t. Substituting this expression into
Eq. 38-2 and dividing through by c2 gives us

Taking the square root of both sides gives us an expression known as the time-stretching
or time dilation equation,

(time-stretching equation). (38-3)

The time-stretching equation (Eq. 38-3) gives us the value of wristwatch time �� be-
tween two events that occur a time �t apart in some reference frame. In this equation,
v is the speed required for an observer in the rocket frame to move directly from one
event to the other event. The equation encompasses all possible values of speed v
from the very slow to the very fast.

What Happens at High and Low Speeds? 
The speeds we observe in everyday life are so much smaller than the speed of light c that
the value of v/c is extremely small compared to 1. Thus, for low relative speeds, the ex-
pression (1 � v2/c2) is approximately equal to 1. The time-stretching equation (Eq. 38-3)
tells us that in this case �t and �� are essentially equal; the time between events A and B
is the same for you in a passing airplane as it is for us standing on Earth. So at very low
relative speeds special relativity is consistent with our everyday assumption that time is a
universal quantity, that everyone measures the time between two events to have the
same value.This is the approximating assumption used in Newtonian mechanics.

In contrast, at a high relative speed v the outcome is quite different from what
happens at everyday speeds. Imagine that you start from Earth (event A: departure
from Earth) and travel to the star Alpha Centauri, about 4 light-years from Earth
(event B: arrival at Alpha Centauri). Both events A and B (departure and arrival) oc-
cur at the position of your cockpit. Equation 38-3 tells us that by making v/c closer
and closer to the value unity, your trip can take place in shorter and shorter wrist-
watch time �� as measured in your spaceship. (This is true even though the time �t
measured in the Earth frame can never be less than the time it takes light to move
from Earth to Alpha Centauri—4 years.) By extension of this argument, we arrive at
a result that frees the human spirit, if not yet the human body. Given sufficient rocket

�� � √1 � v2/c2 �t

(��)2 � (�t)2 � � �x
c �

2

� (�t)2 � � v�t
c �

2

� �1 �
v2

c2 � (�t)2.
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speed, we can go anywhere in the universe in the lifetime of a single astronaut! At
least this is the prediction of special relativity.

Nature’s Speed Limit 
The time-stretching equation (Eq. 38-3) also gives evidence that the natural speed
limit of the universe is the speed of light c. Imagine that we in the laboratory mea-
sured your rocket speed v to be greater than the speed of light c. Then v/c (and also
v2/c2) would have a value greater than unity, and the expression on the right side of
Eq. 38-3 would include the square root of a negative number. This would mean that
the time measurement �� would be proportional to the square root of a negative
number. But this is impossible: No real time can be proportional to the square root of
a negative number. Careful study and experiment have led to the conclusion, consis-
tent with this formula, that no object can be accelerated to a speed v greater than the
speed of light c in a vacuum. Experiment verifies this: Many nations together have
spent billions of dollars to build and operate huge particle accelerators that use elec-
tric and magnetic fields to urge protons or electrons to ever-higher energies. At higher
and higher energies, these particles approach closer and closer to the speed of light
but have never been observed to exceed this speed.

R EADI NG EXERC IS E  38-7: Find the rocket speed v at which the time �� between
ticks on the rocket clock is recorded by the laboratory clock as �t � 1.01 ��. ■

TOUCHSTONE EXAMPLE 38-4: Satellite Clock Runs Slow?

An Earth satellite in circular orbit just above the atmosphere cir-
cles the Earth once every T � 90 min. Take the radius of this orbit
to be r � 6500 kilometers from the center of the Earth. How long a
time will elapse before the reading on the satellite clock and the
reading on a clock on the Earth’s surface differ by one microsec-
ond? For purposes of this approximate analysis, assume that the
Earth does not rotate and ignore gravitational effects due the dif-
ference in altitude between the two clocks (gravitational effects de-
scribed by general relativity).

S O L U T I O N ■ First we need to know the speed of the satellite in
orbit. From the radius of the orbit we compute the circumference
and divide by the time needed to cover that circumference:

(38-4)

Light speed is almost exactly c � 3 � 105 km/s, so the satellite
moves at the fraction of the speed of light given by 

(38-5)

or

(38-6)

The relation between the time lapse �� recorded on the satellite
clock and the time lapse �t on the clock on Earth (ignoring the
Earth’s rotation and gravitational effects) is given by Eq. 38-3.
Square both sides of that equation to obtain:

v2/c2 � (2.52 � 10�5)2 � 6.35 � 10�10.

v
c

�
7.56 km/s

3 � 105 km/s
� 2.52 � 10�5.

v �
2�r
T

�
2� � 6500 km

90 � 60 s
� 7.56 km/s.

(38-7)

We want to know the difference between �t and ��. Rearrange this
equation to give the difference of squares:

(38-8)

Substituting the numerical result of Eq. 38-6 into Eq. 38-7, we see
that �� and �t have very nearly the same value. Therefore we can set 

(38-9)

With this substitution, Eq. 38-8 becomes

. (38-10)

Substitute from Eq. 38-6:

(38-11)

We are asked to find the elapsed �t for which the satellite clock and
the Earth clock differ in their reading by one microsecond �
10�6 second. Rearrange Eq. 38-11 to read

(Answer)

This is approximately equal to 52 minutes, or a little less than one
hour. A difference of one microsecond between atomic clocks is
easily detectable.

�t �
�t � ��

3.18 � 10�10 �
10�6 s

3.18 � 10�10 � 3.14 � 103 s.

�t � �� � 3.18 � 10�10�t.

v2/c2(�t/2) � �t � ��

�t � �� � 2�t.

v2/c2(�t)2 � (�t)2 � (��)2 � (�t � ��)(�t � ��) .

(��)2 � (1 � v2/c2) (�t)2.



38-8 Cause and Effect

The analysis thus far has omitted from our consideration a large number of possible
pairs of events. Suppose two events occur at the same time but not at the same place
in a reference frame. For example, what if two firecracker explosions occur simultane-
ously, one in New York City, the other in San Francisco? Since �� � 0 for this pair of
events, Eq. 38-2 for the space-time interval becomes

(for �t � 0).

What can this expression possibly mean? The left side contains the square of a time,
obviously a positive quantity. Yet on the right is a negative quantity. No clock records
a time lapse �� whose square is a negative quantity! We have a contradiction here,
and a contradiction that applies in a similar way to all possible pairs of events simulta-
neous in some frame.

The problem is not with physics but with mathematical notation. Pairs of simulta-
neous events were not envisioned in the derivation of the proper time equation (Eq.
38-2) based on Fig. 38-5. For this new class of event-pairs we need a new formalism.
To achieve this, reverse the order of squared quantities on the right side of Eq. 38-2
and give the result a different name. Earlier we used the notation �� (involving the
Greek letter tau—denoted �) to represent the elapsed time between two events mea-
sured on a clock for which the events occur at the same place. For our new expression
we use the notation �	 (involving the Greek letter sigma—denoted 	) to represent
the distance between two events measured in the frame in which they occur at the
same time. This new equation has the form

(squared space-like interval). (38-12)

The distance �	 between two events, measured in a frame in which the events occur
at the same time (�t � 0), is called the proper distance. This square root of the differ-
ence of squares on the right side of Eq. 38-12 also has the formal name invariant
space-like interval—space-like because the space part �x is greater than the time
part c �t.

The right-hand side of Eq. 38-12 also describes the space and time separations be-
tween these two events as measured in a second frame that moves past the first; in the
second frame �x and �t are both different from zero. The proper distance �	, like the
wristwatch time ��, is an invariant in the following sense: Observers in relative motion
may measure different values of �x and different values of �t between these two
events. However, when each observer substitutes these values into Eq. 38-12, he will
obtain the same numerical value for the proper distance �	. And the value of �	 is
just the distance between the two events as measured in that particular reference
frame in which they occur at the same time.

Some important consequences for events separated by a space-like interval can
be read from Eq. 38-12:

• If �x is greater in magnitude than c �t in one frame, then �x is greater in magni-
tude than c �t in all frames. Why? Because �	 is an invariant, so (�	)2 has the
same value whatever the values of �x and c �t in a particular frame. Both sides of
Eq. 38-12 must remain positive. But c �t is the distance that light can travel in the
time available between these events. Equation 38-12 says that �x is greater than
this distance c �t between the two events in that frame. Nothing, not even a light
flash, can move fast enough to travel from one event to the other in the elapsed
time �t between them. Therefore, for events connected by a space-like interval,
one event cannot cause the other event as observed in any frame.

(�	)2 � (�x)2 � (c �t)2

(c ��)2 � (c �t)2 � (�x)2 : �(�x)2
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• By definition, �	 is the separation between two events in a reference frame in
which the time between these events is zero so the events are simultaneous. But
the right side of Eq. 38-12 contains both �t and �x, implying that for another
frame in relative motion �t is not zero. That is, in this other frame the two events
are not simultaneous. As an example, for observers in a rocket streaking across
the continent from New York toward San Francisco, the two firecracker explo-
sions in New York and San Francisco will not occur at the same time. This leads to
a major result of special relativity: Two events simultaneous in one frame are not
necessarily simultaneous in other frames in motion relative to the first. For many
people this is the most difficult concept in special relativity, harder to believe even
than the difference in clock rates described by the time-stretching equation (Eq.
38-3). In Section 38-9 we elaborate on this result, which is called the relativity of
simultaneity.

Suppose that two events are separated in space �x and time �t so that a flash of light
moving directly between them can just make it from one event to the other event in
the time �t. Then the distance between them is given by �x � c �t. In this case both
the proper distance �	 and the proper time �� are zero:

(squared light-like interval). (38-13)

Two events that can be connected by a direct light flash are said to be related by an in-
variant light-like interval or null interval—null because the space part �x is equal in
magnitude to the time part c �t, so the difference between their squares is zero, or null.

Equations 38-2, 38-12, and 38-13 embrace all possible cause-and-effect relations
between pairs of events that occur along the x direction as described by special rela-
tivity. Equation 38-2 describes two events separated by a time-like interval. Some-
thing moving more slowly than light, a rocket for example, can travel directly between
these two events in the time between them, so it is possible for the earlier event to
cause the later event. This possible cause-and-effect relation between an earlier and a
later event is preserved in every reference frame. In contrast, not even light can travel
between the two events separated by a space-like interval described in Eq. 38-12, so
that neither one of these two events can cause the other event. This lack of possible
cause-and-effect relation is preserved in every frame. Equation 38-13 provides the
boundary between these two cases: the relation between two events that can be con-
nected only by a direct light flash. The earlier event in this pair can cause the other
event only through a directly connecting light flash. This cause-and-effect relation be-
tween the earlier and later events is also maintained in every reference frame.

In brief, the three-fold categories of time-like, space-like, and light-like intervals
between pairs of events preserve the possible cause-and-effect relation between these
events in all reference frames. Special relativity may be weird, but at least it reaffirms
the fact that cause comes before effect for all observers—a statement that most of us
consider to be a central requirement of science.

READI NG EXERC IS E  38-8: Points on the surfaces of the Earth and the Moon that
face each other are separated by a distance of 3.76 � 108 meters. How long does it take light to
travel between these points? A firecracker explodes at each of these two points; the time be-
tween these explosions is one second. Is it possible that one of these explosions caused the
other explosion? ■

38-9 Relativity of Simultaneity

In the previous section we obtained the following result from the space-like form of
the metric equation:

(c ��)2 � (�	)2 � 0



Two events that are simultaneous in one frame are not necessarily simultaneous in a second
frame in uniform relative motion.

This result becomes clear when we consider what observers on the ground and the
train see as each measures the time between the same two events, as shown in Fig. 38-6.
Suppose lightning bolts strike both ends of the train, emitting flashes and leaving char
marks on both the train and the track (top image in the figure). Assume that flashes
from the front and back of the train reach the observer on the ground at the same time
(bottom image in the figure). This ground observer measures his distance from the two
char marks on the track and finds these distances to be equal. He concludes that, for
him, the two lightning bolts struck simultaneously. In contrast, the rider at the middle of
the train sees the flash from the front of the train first (because in Fig. 38-6 she moves
toward the light flash coming from the front of the train and away from the light flash
coming from the back). She measures her distance from the char marks on the two
ends of the train and finds these distances equal. Following the Principle of Relativity,
she assumes that the speed of light has the same value in her train frame as in every
other frame. She concludes that, for her, the lightning struck the front end of the train
first. Her reasoning is explained in the caption to Fig. 38-6.
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FIGURE 38-6 ■ Einstein’s Train Paradox illustrating the relativity of simultaneity. Top: Light-
ning strikes the front and back ends of a moving train, leaving char marks on both track and
train. Each emitted flash spreads out in all directions. Center: Observer riding in the middle of
the train concludes that the two strokes are not simultaneous. Her argument: “(1) I am
equidistant from the front and back char marks on the train. (2) Light has the standard speed in
my frame, and equal speed in both directions. (3) The flash arrived from the front of the train
first. (4) Therefore, the flash must have left the front of the train first; the front lightning bolt fell
before the rear lightning bolt fell. I conclude that the lightning strokes were not simultaneous.”
Bottom: Observer standing by the tracks halfway between the char marks on the tracks con-
cludes that the two lightning strokes were simultaneous, since the flashes from the strokes reach
him at the same time and he is equidistant from the char marks on the track. Conclusion: Two
events that are simultaneous in one frame may not be simultaneous in another frame.

READI NG EXERC IS E  38-9: Susan, the rider on the train pictured in Fig. 38-6, is car-
rying an audio tape player. When she receives the light flash from the front of the train she
switches on the tape player, which plays very loud music. When she receives the light flash from
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the back end of the train, Susan switches off the tape player. Will Sam, the observer on the
ground, be able to hear this music? Later Susan and Sam meet for coffee and examine the tape
player. Will they agree that some tape has been wound from one spool to the other? ■

TOUCHSTONE EXAMPLE 38-5: Principle of Relativity Applied

Divide the following items into two lists. On one list, labeled
SAME, place items that name properties and laws that are always
the same in every frame. On the second list, labeled MAY BE DIF-
FERENT, place items that name properties that can be different in
different frames:

a. the time between two given events
b. the distance between two given events
c. the numerical value of Planck’s constant h
d. the numerical value of the speed of light c
e. the numerical value of the charge e on the electron
f. the mass m of an electron (measured at rest)
g. the elapsed time on the wristwatch of a person moving between

two given events
h. the order of elements in the periodic table
i. Newton’s First Law of Motion (“A particle initially at rest 

remains at rest, and . . .”)
j. Maxwell’s equations that describe electromagnetic fields in a

vacuum
k. the distance between two simultaneous events

S O L U T I O N ■ The Principle of Relativity says that the laws of
physics are the same in every frame. So items (i) and (j) should go
on the SAME list, along with item (h). The Principle of Relativity
extends to the values of fundamental constants, so items (c), (d),
(e), and (f) should also go on the SAME list.

In contrast, as we have seen in this chapter, the time between a
pair of events (item a) may be different in different frames. The

same is true for the distance between two events (item b). So these
go in the DIFFERENT list.

This leaves two items, (g) and (k). Item (g), the time on the
wristwatch of a person moving between two given events (the so-
called “wristwatch time”) is an invariant, the same as calculated us-
ing space and time separations measured in any frame (Eq. 38-2).
So this goes on the SAME list. The same is true of item (k), the
“proper distance” between two events. This is also an invariant and
goes on the SAME list.

In summary, here are the two lists requested: (Answer)

THE SAME IN ALL FRAMES MAY BE DIFFERENT IN
DIFFERENT FRAMES

c. numerical value of h a. time between two given 
d. numerical value of c events
e. numerical value of e b. distance between two given 
f. mass of electron (at rest) events
g. wristwatch time between two 

events
h. order of elements in the periodic 

table
i. Newton’s First Law of Motion
j. Maxwell’s equations
k. distance between two 

simultaneous events

38-10 Momentum and Energy

Shortly after his first paper on special relativity was published, Einstein submitted a
paper that added the most famous equation of all time, E � mc2, to his theory. This
equation tells us that every particle in the universe with mass is a storehouse of en-
ergy, useful to us provided we can find ways to transform this mass into other forms of
energy. The explosion of a nuclear weapon and burning of a star provide spectacular
examples of transformations of mass to energy, but every single energy-emitting reac-
tion—down to the burning of a match—carries with it a conversion of mass to a sig-
nificant amount of energy. For example, the wood in a kitchen match contains about
30,000 calories (or 30 food calories). Because of the huge magnitude of the conversion
factor c2, the corresponding predicted change in mass of the combustion products is
less than 2 billionths of a gram.

Where Does E � mc2 Come From?
How does the famous E � mc2 equation grow out of the special theory of relativity
discussed so far in this chapter? The connection is not direct. In this section we shall
present arguments for the development of E � mc2 using equations we have already



introduced in this and earlier chapters. We shall also explore some of the conse-
quences of the equivalence of mass and energy. Please be patient and follow the logic.
It will be rewarding.

Imagine that a moving particle emits two flashes a time �� apart as recorded on
its own wristwatch. We use these two emissions to track the motion of the particle.
These two flashes can be related using the metric equation (38-2):

where the values of �x and �t are measured with respect to the laboratory frame.
Starting with this equation, we can extract some important information about the mo-
mentum and energy of the particle. We start by multiplying both sides of the equation
by m2 c2/(��)2, where m is the mass of the particle. This gives us

(38-14)

Note that the famous expression mc2 appears on the left. The second term on the right
contains the fraction �x/��—namely, the distance �x traveled by the particle as mea-
sured by our laboratory observer, divided by the time �� it takes to move this dis-
tance as recorded on the wristwatch carried by the particle. This measures a kind of
velocity. Mass times velocity yields the formula for momentum; call it p. The labora-
tory observer reckons the momentum to have the value

(lab observer’s definition of particle momentum). (38-15)

But, why does the lab observer use �� in Eq. 38-15 rather than �t to define momen-
tum? Newtonian mechanics assumes that the time �t between two events is a univer-
sal quantity, with the same value as measured in all reference frames. But relativity
shows us (Eq. 38-3) that the time between the two flashes emitted by the particle has
a different value when measured in different frames. We have chosen to use the in-
variant proper time �� (as recorded on the wristwatch carried by the particle) to be
the time to use in reckoning the particle’s momentum. So Eq. 38-15 results from a de-
cision about time that Newton did not have to make.

What about the first term on the right side of Eq. 38-14, the one containing the
squared ratio of time lapses (�t/��)2? According to Eq. 38-3, this squared ratio is re-
lated to the ratio of the particle velocity and the speed of light by the equation

(38-16)

The (mc2)2 term on the left in Eq. 38-14 has the units of energy squared. Some power-
ful results follow if we assume that the first term on the right of that equation is the
square of the total energy, E, of the particle. Then, using Eqs. 38-14 and 38-16, energy
can be written in two ways:

(38-17)

We can substitute the definition of the momentum, p, from Eq. 38-15 and the defini-
tion of energy, E, from Eq. 38-17 into Eq. 38-14 to get

(38-18)(mc2)2 � E 2 � (pc)2.

E � mc2 �t
��

�
mc2

(1 � v2/c2)1/2 .

� �t
�� �

2

�
1

1 � v2/c2 .

p � m
�x
��

(mc2)2 � �mc2 �t
�� �

2

� �mc
�x
�� �

2

.

(c ��)2 � (c �t)2 � (�x)2
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When the particle is at rest, the momentum p � 0 and this equation takes the famous
form

(rest energy of a particle of mass m). (38-19)

Note that Eq. 38-19 describes only a particle that is at rest in a given frame. For a par-
ticle in motion, observers in that frame must use Eq. 38-17 to predict its energy.

Is there experimental evidence that the expressions for energy and momentum
derived above have a useful reality? Yes, overwhelming evidence. In analyzing
decades of experiments with high-speed particles, conservation of energy and momen-
tum continue to be valid in special relativity provided that one uses the relativistic ex-
pressions for energy and momentum. In analyzing high-speed particle collisions in an
isolated system, one adds up the total energy of particles before a collision, using Eq.
38-17 for each particle (being sure to include the rest energy of any particles at rest).
This number will be equal to the total energy of the system of particles after the colli-
sion, no matter how many particles are destroyed or created in the process. A similar
conservation law holds true for each spatial component of the total momentum of the
particles, using Eq. 38-15 for the x-component and similar equations for other direc-
tions (substituting �y or �z for �x).

Relativistic Kinetic Energy
When a given particle is not at rest in a given reference frame, then its momentum p is
not zero as measured in that frame. In this case the total particle energy, E, must be
greater than its rest value to keep the right side of Eq. 38-18 a constant, equal to the
left side. The increase in energy of a particle due to its motion is called kinetic energy.
In special relativity the kinetic energy is defined as the difference between the total
energy and the rest energy:

(38-20)

Equations 38-17 and 38-20 show that the total energy—and therefore also the kinetic
energy—increases without limit as the particle speed v approaches the speed of light
c (that is, as v/c approaches 1). And indeed we can add as much kinetic energy as we
want to a moving particle in order to increase the energy of collision with other parti-
cles, as is done in ever more powerful and ingeniously designed particle accelerators.
Yet even the highest-energy particle never moves faster than light as measured in any
frame (Fig. 38-7). This result provides the answer to the question asked at the begin-
ning of this chapter: How can the energy of a particle increase without limit while its
speed remains slower than the speed of light?

Kinetic Energy at Everyday Speeds 
In our everyday world the fastest speed we encounter is probably that of a fighter
plane moving above the speed of sound at Mach 3 (three times the speed of sound
or about 1000 m/s). This speed is not even close to the speed of light. In fact,

.
Equation 38-20 looks complicated. However, for speeds much less than the speed

of light (that is, for v 

 c) the equation reduces to the Newtonian expression for ki-
netic energy. To see this, we can use the following approximation:

for �d� 

 1 and �nd� 

 1. (38-21)(1 � d)n � 1 � nd

v/c � (1000)/(3 � 108 m/s) � 3 � 10�6

K � E � Erest �
mc2

(1 � v2/c2)1/2 � mc2.

Erest � mc2
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FIGURE 38-7 ■ The dots show measured
values of the kinetic energy of an electron
plotted against its measured speed. No
matter how much energy is given to an
electron (or to any other particle having
mass), it cannot be accelerated to a speed
that equals or exceeds the ultimate limiting
speed c. (The curve drawn through the
dots shows the predictions of Einstein’s
special theory of relativity.)



Apply this approximation to the first term on the right of Eq. 38-20. Then in the limit
of small values for v2/c2, Eq. 38-20 reduces to

(for v 

 c). (38-22)

In brief, the expression for kinetic energy reduces to the Newtonian form for speeds
very much less than the speed of light. This limiting case helps to justify our assign-
ment of the name energy to the relativistic expressions shown in Eqs. 38-17 and 38-20.
The total energy in these equations includes both relativistic kinetic energy and rest
energy.

Proper Time and Proper Distance in Three Space Dimensions
So far, for simplicity, we have used one space dimension x in the equations of this
chapter. Of course, there are three space dimensions, the additional two dimensions
often labeled with the symbols y and z. The more general expressions for the time-
like and space-like intervals, Eqs. 38-2 and 38-12, are

(squared time-like interval), (38-23)

and (squared space-like interval). (38-24)

READI NG EXERC IS E  38-10: Find the speed v at which the energy E of a particle is
equal to twice its rest energy. ■

(�	)2 � [(�x)2 � (�y)2 � (�z)2] � (c �t)2

(c ��)2 � (c �t)2 � [(�x)2 � (�y)2 � (�z)2]

�
1
2

mv2

� mc2 (1 � v2/2c2) � mc2

K � mc2(1 � v2/c2)�1/2 � mc2
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TOUCHSTONE EXAMPLE 38-6: Energy of a Fast Particle

A particle of mass m moves so fast that its total energy is equal to
1.1 times its rest energy.

(a) What is the speed v of the particle?

S O L U T I O N ■ From Eq. 38-19, the rest energy is equal to 

The statement of the example says we are looking for a speed such
that the energy is 1.1 times the rest energy. From Eq. 38-17, we have

Cancel mc2 from the second and fourth of these equal quantities
and equate the results:

1
(1 � v2/c2)1/2 � 1.1.

E �
mc2

(1 � v2/c2)1/2 � 1.1Erest � 1.1mc2.

Erest � mc2.

Square both sides and solve the resulting equation for v2/c2:

from which

(Answer)

(b) What is the kinetic energy of the particle?

S O L U T I O N ■ From Eq. 38-20, the kinetic energy is just the total
energy minus the rest energy. In our case,

(Answer)K � E � Erest � 1.1Erest � Erest � 0.1Erest.

v � 0.416 c.

v2/c2 � 0.1735
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TOUCHSTONE EXAMPLE 38-7: Decay of Ko Meson

A Ko meson at rest decays into a �� meson and a �� meson. As is
often done in particle physics, we express the masses of these parti-
cles in terms of energy divided by c2. The masses of the two �
mesons are identical, so call both m�. Then

What  is the speed of each of the � mesons after the decay? 

S O L U T I O N ■ This is assumed to be an isolated system, in which
both the total relativistic energy and the total relativistic momen-
tum are conserved. The initial Ko meson is at rest, so there is zero
momentum before and therefore also after the collision. From this
we conclude that the momenta labeled p1 and p2 in Fig. 38-8 have
equal magnitudes but opposite directions. From Eq. 38-18, this
guarantees that the two resulting particles also have equal energies

m� � 139.6 MeV/c2.

mK � 497.7 MeV/c2

after the decay. The conservation of energy equates total relativistic
energy before and after the collision, and this total energy includes
rest energy. Before the decay there is only the rest energy of the Ko

meson. After the decay, there are two � mesons of equal mass and
equal energy. From Eq. 38-17,

Into the first and last expressions in this equation, substitute the
values for the masses from the earlier equations. The factors c2 can-
cel, and the units MeV cancel, to yield the equation

Square both sides of this equation, solve for v2/c2, and take the
square root. The answer is

(Answer)

This is the speed of each � meson as the two move in opposite di-
rections after the decay.

v � 0.828c.

497.7 �
2 � 139.6

(1 � v2/c2)1/2 .

mKc2 � 2E� �
2m� c2

(1 � v2/c2)1/2 .

BEFORE

mK

AFTER

mπmπp1 p2

FIGURE 38-8 ■

38-11 The Lorentz Transformation

Most textbooks on special relativity do not emphasize invariant quantities that 
have the same value for all observers. Instead, they focus on the so-called Lorentz
transformation equations. These equations connect the distinct space and time separa-
tions between two events as measured in one frame with those separations as mea-
sured in another frame moving past the first. We display the Lorentz transformation
equations here without deriving them. (The derivation is not difficult and depends
only on the Principle of Relativity and some symmetry arguments.) 

In writing the Lorentz transformations it is customary to let unprimed coordi-
nates represent measurements made in the laboratory frame and primed coordinates
represent corresponding measurements made in a rocket frame that moves past the
laboratory with relative speed vrel along the positive x direction. Then the Lorentz
equations that transform the laboratory space and time separations to rocket space
and time separations are 

(Lorentz transformation). (38-25)

What happens to these equations when they describe our everyday life in which typi-
cal moving objects are trains, airplanes, and automobiles? These vehicles move at

�z� � �z

�y� � �y

�t� �
�t � (vrel�x/c2)
(1 � (vrel)2/c2)1/2

�x� �
�x � vrel�t

(1 � (vrel)2/c2)1/2



speeds very much less than the speed of light. Assume that vrel is much less than c, so
that vrel/c 

 1 in Eqs. 38-25. Then the first two of these equations become

( , Galilean transformation). (38-26)

These equations are called the Galilean transformation equations because they lay out
the consequences of relative motion first described by Galileo Galilei in the 1630s. The
second equation tells us that for small relative velocities the time between two events has
the same value for the moving observer as for the stationary observer. This is certainly
typical of our experience; we do not need to reset our watches after an automobile ride!
The first equation makes everyday sense as well. A race begins with a starting gun at the
starting line and ends with the firing of an “ending gun” at the finish line when the winner
crosses it. For observers in the stands the two firings occur a distance �x and a time �t
apart. Running as fast as we can, we come in second, behind the winner. For us the end-
ing gun goes off a distance ahead of us given by the distance of the racecourse, �x , minus
the distance we have run (vrel�t) at speed vrel during the time �t between the starting and
ending guns.This is just what the first Galilean transformation (Eq. 38-26) tells us.

On the other hand, the Lorentz transformation (Eq. 38-25) gives us the rocket
(primed) coordinates of an event if we know the laboratory (unprimed) coordinates
of that event. But “laboratory” is just a label; it could represent simply another un-
powered spaceship. Then the only difference between laboratory and rocket frames is
the artificial difference we have given them. The rocket moves in the positive x direc-
tion with respect to the laboratory, so the laboratory moves in the negative x direction
with respect to the rocket. It follows that the inverse transformation—the one that
gives unprimed laboratory space and time separations in terms of primed rocket
space-time separations—can be derived from the Lorentz transformation (Eq. 38-25)
merely by interchanging primed and unprimed coordinates and reversing the sign of
vrel, making all v-terms positive in the numerators. (Reversing the sign of vrel does not
change the sign of (vrel)2 in the denominators.) This leads to the equations

(the inverse Lorentz transformation). (38-27)

38-12 Lorentz Contraction

The Lorentz transformation equations predict a relativistic effect important in the
history of the subject—namely, that we as observers will measure an object moving
past us at high speed to be shortened—contracted—along its direction of relative
motion (but not changed in dimension perpendicular to this direction).

The Lorentz transformation describes the space and time separations between a
pair of events. What events can we use to measure the length of a moving object? One
choice is the explosions of two firecrackers, one at each end of the object at the same
time (�t � 0) in our frame. Then we can define the length to be the distance �x be-
tween the explosions as measured in our frame. By setting �t � 0 in the first term of
Eqs. 38-25 and multiplying through by the square-root quantity, we get 

(38-28)√1 � v2/c2 �x� � �x.

�z � �z�

�y � �y�

�t �
�t� � vrel�x�/c2

(1 � (vrel)2/c2)1/2

�x �
�x� � vrel�t�

(1 � (vrel)2/c2)1/2

vrel/c 

 1
�t� � �t

�x� � �x � vrel�t
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This equation tells us that the length �x we measure for the object in the laboratory
frame—the distance between simultaneous firecracker explosions—is less than the
distance �x� between the two ends as measured in the rocket frame in which the ob-
ject is at rest.

The Lorentz contraction is a curiosity, and is not used very often to analyze exper-
iments. However, it is the consequence of a deeper principle, the relativity of simul-
taneity, discussed following Eq. 38-12 in Section 38-8 and in Section 38-9. The two fire-
crackers may explode at the same time in our frame (�t � 0) but not in the frame of
the rocket (�t� � 0), as you can see by substituting �t � 0 into the second of 
Eqs. 38-25. The same-time explosions at the two ends of the moving rod in our frame
yield a measure of the length of the moving object in our frame. In contrast, the lack
of simultaneity in the rocket frame does not change the rocket measurement of �x�
because the object is at rest in the rocket frame; the distance between the explosions
at the two ends is the same whether or not these explosions occur at the same time.
However, this lack of simultaneity allows observers in the two frames to account for
the difference in measured length of the object.

R EADI NG EXERC IS E  38-11: What is the speed v of a passing rocket in the case
that we measure the length of the rocket to be half its length as measured in a frame in which
the rocket is at rest? ■

38-13 Relativity of Velocities

The speed of light c is the ultimate speed according to special relativity. No object can
be accelerated from rest to a speed greater than c. Yet some have found in this state-
ment a paradox that challenges the validity of special relativity. Someone who objects
to relativity says, “I ride in a rocket moving at 3/4 the speed of light with respect to the
laboratory. From my rocket I launch a stone forward at 3/4 the speed of light as mea-
sured in my rocket frame. The result should be an object moving at 3/4 � 3/4 � 1.5
times the speed of light in the laboratory frame. But relativity says that nothing can
move faster than light. So my thought experiment shows special relativity to be
illogical—and disproves it!”

Since the Lorentz transformation deals with space and time separation between
events, we can use it to investigate the validity of this thought experiment. Let the
stone that you launch forward from your rocket emit two flashes close together. Call
the separation between these flash emissions �x� and �t� in your rocket frame and �x
and �t in our laboratory frame. Then we can derive the velocities of the stone in the
two frames from the differential limits of �x�/�t� (velocity in rocket frame) and �x/�t
(velocity in laboratory frame).

Next we can use the first two entries in the Lorentz transformation (38-27):

Then we can divide corresponding sides of these two equations into each other. The
square root expressions in the denominators cancel and we have

(38-29)
�x
�t

�
�x� � vrel�t�

�t� � vrel�x�/c2 .

�t �
�t� � vrel�x�/c2

(1 � (vrel)2/c2)1/2 .

�x �
�x� � vrel�t�

(1 � (vrel)2/c2)1/2



On the right side of this equation, divide both the numerator and denominator by �t�:

(38-30)

Finally, we can take the differential limit and define u as the velocity of the stone in
the laboratory frame and u� as the velocity of the stone in the rocket frame. Then Eq.
38-30 becomes

(law of addition of velocities). (38-31)

Although Eq. 38-31 is called the law of addition of velocities, this is not a good name,
because the addition is not simple.

How does the law of addition of velocities support the conclusion that nothing
can move faster than the speed of light? Let’s use this law to find the value of the
stone’s velocity u in our laboratory frame when the rocket moves away from us at 3/4
the speed of light (vrel � 0.75c) while the stone moves away from the rocket at 3/4 the
speed of light (u� � 0.75c) as measured in the rocket frame. Substituting these values
into Eq. 38-31 yields

(38-32)

The result is that we observe the stone to move at the speed 0.96c in our laboratory
frame. Its speed does not exceed the speed of light. Once again relativity saves itself
from disproof!

READI NG EXERC IS E  38-12: A rocket moves with speed 0.9c in our laboratory
frame. A flash of light is sent forward from the front end of the rocket. Is the speed of that flash
equal to 1.9c as measured in our laboratory frame? If not, what is the speed of the light flash in
our frame? Verify your answer using Eq. 38-31. ■

u �
0.75c � 0.75c

1 � (0.75c)2/c2 �
1.5c

1 � 0.5625
� 0.96c.

u �
u� � vrel

1 � u�vrel/c2

�x
�t

�
�x�/�t� � vrel

1 � vrel(�x�/�t�)/c2 .
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TOUCHSTONE EXAMPLE 38-8: Relative Speed of Light

A rocket moves with speed 0.9c in our laboratory frame. A flash of
light is fired backward from the rear of the rocket.

(a) What is the speed of that light flash in our laboratory frame? 

S O L U T I O N ■ Using the Principle of Relativity, we can give an
answer immediately, without doing any calculations. The speed of
light is the same—invariant—in all reference frames. Therefore,
the speed of the light flash in our laboratory frame will be c as
usual, and in the backward direction. The equations should verify
this result.

Use Eq. 38-31:

u �
u� � vrel

1 � u�vrel/c2 .

In the example, vrel � 0.9c and u� � �c, with a minus since the light
is fired out the back of the rocket:

(Answer)

Therefore the speed of the light flash is equal to c in our laboratory
frame, as it has to be and as predicted at the beginning of this solu-
tion.

(b) What is the direction of the light flash in our laboratory frame?

S O L U T I O N ■ The minus sign in the most recent equation tells
us that in the laboratory frame the light flash moves in a direction
opposite to that of the rocket in the laboratory frame.

u �
�c � 0.9c

1 � 0.9c2/c2 �
�0.1c

0.1
� �c.
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38-14 Doppler Shift

A car approaches us and passes while sounding its horn. We hear the pitch of the horn
decrease as it passes, a change called the Doppler shift or Doppler effect. In Chapter
18 we found that the Doppler effect depends on two velocities—namely, the velocity
of the source and the velocity of the detector with respect to the air, the medium that
transmits the waves.

Light and other electromagnetic waves follow a different rule for the Doppler
shift, because they require no transmitting medium and can travel through a vacuum.
For this reason, the Doppler effect for light depends on only one velocity, the relative
velocity between source and detector.

Suppose that a source of light moves away from us with speed vrel, while sending
light backward toward us. Let the frequency of the light as measured by the source be
denoted f0. We detect a smaller frequency f than the frequency f0 and for two reasons:
(1) Each wave crest is emitted at a greater distance from us than the previous wave
crest, so it has to travel farther to reach us, and (2) for us the traveling clock runs slow
(Eq. 38-3). These two effects combine to change the frequency of the light that we re-
ceive according to the equation

(source moving away). (38-33)

In the case that the source moves toward us with speed vrel, we simply reverse the sign
of vrel, which occurs twice in Eq. 38-33.

We can measure the frequencies emitted by luminous elements, such as hydrogen
excited by an electric discharge in the laboratory. Looking out at stars in nearby
galaxies, we can identify hydrogen from the pattern of emitted frequencies. We notice
that galaxies farther from us have light shifted downward in frequency compared with
their laboratory value and conclude that these galaxies are moving away from us; we
call this the red shift.

Solving Eq. 38-33 for vrel, we can determine the velocity with which a galaxy re-
cedes from us. This analysis is approximately correct for nearby galaxies. However, the
red shift due to the most remote galaxies is not due to the Doppler shift described by
special relativity. Rather, the stretching out of the light waves heading toward us oc-
curs because space itself is stretching as the universe expands over time. Thus, general
relativity is required to describe this stretching of space with time.

R EADI NG EXERC IS E  38-13: A not-too-distant galaxy is moving directly away from
the Earth. Light from this galaxy includes a pattern of frequencies recognized as those emitted
by hydrogen gas. We detect one of these frequencies to have the value f � 0.9 f0, where f0 is the
corresponding frequency for light from hydrogen gas at rest in the laboratory. How fast is the
distant galaxy moving away from the Earth? ■

f � f0� 1 � (vrel/c)
1 � (vrel/c) 	

1/2

TOUCHSTONE EXAMPLE 38-9: Colliding with Andromeda

According to some predictions, the Andromeda galaxy, currently two
million light-years away from us, is moving toward our galaxy and the
two will collide in three billion years. Light of a particular frequency
f0 is emitted from hydrogen gas in the stars of the Andromeda galaxy.
What is the frequency f of that light measured on Earth?

S O L U T I O N ■ Equation 38-33 describes the case in which the
source is moving directly away from us. But in this example, the

Andromeda galaxy is moving directly toward us. For a source mov-
ing directly toward us, reverse the sign of vrel in Eq. 38-33:

(source approaching).

Andromeda is two million light-years distant and is predicted to
reach our galaxy in three billion years. Therefore it must be moving

f � f0� 1 � (vrel/c)
1 � (vrel/c) 	

1/2
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at the following fraction of the speed of light,

This has a magnitude very much less than one, so we can apply ap-
proximation Eq. 38-21 to the equation above:

� f0{1 � (vrel/c) � (vrel/2c)2}.

� f0{1 � (vrel/2c)}{1 � (vrel/2c)}

� f0{1 � (vrel/c)}1/2{1 � (vrel/c)}�1/2

f � f0� 1 � (vrel/c)
1 � (vrel/c) 	

1/2

vrel

c
�

2 � 106 (light) years
3 � 109 years

� 6.667 � 10�4.

Now, the second term in the last parenthesis has the approximate
value 10�3, while the third term has the approximate value 10�7.
Therefore we neglect the third term and reach our result:

(Answer)

This expression tells us how much higher is the frequency of light
from Andromeda than the frequency of the light from a source of
the same atoms viewed at rest in a laboratory on Earth.

f � f0{1 � (vrel/c)} � f0{1 � 6.667 � 10�4} � f0{1 � 7 � 10�4}.
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SEC. 38-2 ■ ORIGINS OF SPECIAL RELATIVITY

1. Chasing Light. What fraction of the speed of light does each of
the following speeds v represent? That is, what is the value of the
ratio v/c? (a) A typical rate of continental drift, 3 cm/y. (b) A high-
way speed limit of 100 km/h. (c) A supersonic plane flying at
Mach 2.5 � 3100 km/h. (d) The Earth in orbit around the Sun at
30 km/s. (e) What conclusion(s) do you draw about the need for
special relativity to describe and analyze most everyday phenom-
ena? (Note: Some everyday phenomena can be derived from rela-
tivity. For example, magnetism can be described as arising from
electrostatics plus special relativity applied to the slow-moving
charges in wires.)

SEC. 38-3 ■ THE PRINCIPLE OF RELATIVITY

2. Fast Computation. A “serial computer,” one that carries out one
instruction at a time, executes an instruction by transmitting data
from the memory to the processor (where computation takes place)
and then transmitting the result back to the memory. Estimate the
maximum size of a serial “teraflop” computer, one that carries out
1012 instructions per second.

3. Examples of the Principle of Relativity. Identical experiments
are carried out (1) in a high-speed train moving at constant speed
along a horizontal track with the shades drawn and (2) in a closed
freight container on the platform as the train passes. Copy the fol-
lowing list and mark with a “yes” quantities that will necessarily be
the same as measured in the two frames. Mark with a “no” quanti-
ties that are not necessarily the same as measured in the two
frames. (a) The time it takes for light to travel one meter in a
vacuum; (b) the kinetic energy of an electron accelerated from rest
through a voltage difference of one million volts; (c) the time for
half the number of radioactive particles at rest to decay;
(d) the mass of a proton; (e) the structure of DNA for an amoeba;
(f) Newton’s Second Law of Motion: F � ma; (g) the value of the
downward acceleration of gravity g.

4. Riding to Alpha Centauri. You are taking a trip from the solar
system to our nearest visible neighbor, Alpha Centauri, approxi-
mately 4 light-years distant. At launch you experienced a period of
acceleration that increased your speed with respect to Earth from
zero to nearly half the speed of light. Now your spaceship is coast-
ing in unpowered flight. Compare and contrast the observations
you make now with those you made before the rocket took off
from the Earth’s surface. Be as specific and detailed as possible.
Distinguish between observations made inside the cabin with the
windows covered and those made looking out of uncovered win-
dows at the front, side, and back of the cabin.

SEC. 38-4 ■ LOCATING EVENTS WITH AN

INTELLIGENT OBSERVER

5. Deducing a Speed. A pulse of protons arrives at detector D,
where you are standing. Prior to this, the pulse passed through de-
tector C, which lies 60 meters upstream. Detector C sent a light
flash in your direction at the same instant that the pulse passed
through it. At detector D you receive the light flash and the proton

pulse separated by a time of 2 nanoseconds (2 � 10�9 s). What is
the speed of the proton pulse?

6. Eruption from the Sun. You see a sudden eruption on the sur-
face of the Sun. From solar theory you predict that the eruption
emitted a pulse of particles that is moving toward the Earth at one-
eighth the speed of light. How long do you have to seek shelter
from the radiation that will be emitted when the particle pulse hits
the Earth? Take the light-travel time from the Sun to the Earth to
be 8 minutes.

SEC. 38-5 ■ LABORATORY AND

ROCKET LATTICEWORKS OF CLOCKS

7. Synchronizing a Clock. In a vast latticework of meter sticks and
clocks, you stand next to a lattice clock whose coordinates are x �
8 km, y � 40 km, z � 44 km. When you receive the synchronizing
flash, to what time do you quickly set your clock?

8. Earth’s Surface Inertial? Quite apart from effects due to the
Earth’s rotational and orbital motion, a laboratory reference frame
on the Earth is not an inertial frame, as required by a strict inter-
pretation of special relativity. It is not inertial because a particle re-
leased from rest at the Earth’s surface does not remain at rest; it
falls! Often, however, the events in an experiment for which one
needs special relativity happen so quickly that we can ignore effects
due to gravitational acceleration. Consider, for example, a proton
moving horizontally at speed v � 0.992c through a 10-m-wide de-
tector in a laboratory test chamber. (a) How long will the transit
through that detector take? (b) How far does the proton fall verti-
cally during this time lapse? (c) What do you conclude about the
suitability of the laboratory as an inertial frame in this case?

SEC. 38-6 ■ TIME STRETCHING

9. Light Clock for a Faster Rocket. Redo Fig. 38-5 with a vertical
distance c ��/2 � 7 m and horizontal distance in the lab frame 
�x/2 � 24 m. Find the ratio of the times �t/�� between events A
and B recorded on laboratory and rocket clocks.

SEC. 38-7 ■ THE METRIC EQUATION

10. Where and When? Two firecrackers explode at the same place
in the laboratory and are separated by a time of 12 years. (a) What
is the spatial distance between these two events in a rocket in which
the events are separated in time by 13 years? (b) What is the rela-
tive speed of the rocket and laboratory frames? Express your an-
swer as a fraction of the speed of light.

11. Traveling to Vega. Jocelyn DeGuia takes off from Earth and
moves toward the star Vega, which is 26 ly distant from Earth. As-
sume that Earth and Vega are relatively at rest and Jocelyn moves
at v � 0.99c in the Earth–Vega frame. How much time will have
elapsed on Earth (a) when Jocelyn reaches Vega and (b) when
Earth observers receive a radio signal reporting that Jocelyn has ar-
rived? (c) How much will Jocelyn age during her outward trip?

12. Travel to the Dog Star. In the 24th century the fastest available
interstellar rocket moves at v � 0.75c. Mya Allen is sent in this

Problems



rocket at full (constant) speed to Sirius, the Dog Star, the brightest
star in the heavens as seen from Earth, which is a distance 8.7 ly as
measured in the Earth frame. Assume Sirius is at rest with respect
to Earth. Mya stays near Sirius, slowly orbiting around that Dog
Star, for 7 years as recorded on her wristwatch while making obser-
vations and recording data, then returns to Earth with the same
speed v � 0.75c. According to Earth-linked observers: (a) When
does Mya arrive at Sirius? (b) When does Mya leave Sirius? 
(c) When does Mya arrive back at Earth? According to Mya’s wrist-
watch: (d) When does she arrive at Sirius? (e) When does she leave
Sirius? (f) When does she arrive back on Earth?

13. Fast-Moving Muons. The half-life of stationary muons is mea-
sured to be 1.6 microseconds. Half of any initial number of station-
ary muons decays in one half-life. Cosmic rays colliding with atoms
in the upper atmosphere of the Earth create muons, some of which
move downward toward the Earth’s surface. The mean lifetime of
high-speed muons in one such burst is measured to be 16 microsec-
onds. (a) Find the speed of these muons relative to the Earth. (b)
Moving at this speed, how far will the muons move in one half-life?
(c) How far would this pulse move in one half-life if there were no
relativistic time stretching? (d) In the relativistic case, how far will
the pulse move in 10 half-lives? (e) An initial pulse consisting of 108

muons is created at a distance above the Earth’s surface given in
part (d). How many will remain at the Earth’s surface? Assume that
the pulse moves vertically downward and none are lost to collisions.
(Ninety-nine percent of the Earth’s atmosphere lies below 40 km
altitude.)

14. Lifetime of a Fast Particle. An unstable high-energy particle is
created in a collision inside a detector and leaves a track 1.05 mm
long before it decays while still in the detector. Its speed relative to
the detector was 0.992c. How long did the particle live as recorded
in its rest frame?

15. Living a Thousand Years in One Year. You wish to make a
round trip from Earth in a spaceship, traveling at constant speed in a
straight line for 6 months on your watch and then returning at the
same constant speed.You wish, further, to find Earth to be 1000 years
older on your return. (a) What is the value of your constant speed
with respect to Earth? (b) How much do you age during the trip?
(c) Does it matter whether or not you travel in a straight line? For
example, could you travel in a huge circle that loops back to Earth?

16. Birthdays. An astronaut traveling in an unpowered spaceship
celebrates his 18th, 19th, 20th, and 21st birthdays. Five Earth-years
elapse between the 18th and 21st birthday parties. Find (a) the spatial
separation between the 18th and 21st birthday parties in the Earth
frame and (b) the speed of his spaceship with respect to Earth.

SEC. 38-8 ■ CAUSE AND EFFECT

17. Relations Between Events. The table shows the t and x coordi-
nates of three events as observed in the laboratory frame.

Laboratory Coordinates of Three Events

t x
Event years light-years

Event 1 2 1

Event 2 7 4

Event 3 5 6

On a piece of paper list vertically every pair of these events: (1, 2),
(1, 3), (2, 3). (a) Next to each pair write “time-like,” “light-like,” or
“space-like” for the relationship between those two events.
(b) Next to each pair, write “Yes” if it is possible for one of the
events to cause the other event and “No” if a cause and effect rela-
tion between them is not possible. (For full benefit of this exercise,
construct and analyze your own tables.)

18. Proper Distance and Proper Time. Use the equations in Chap-
ter 38 to show the following general results: (a) Given that two
events P and Q have a space-like separation, show that in all such
cases a reference frame can be found in which the two events oc-
cur at the same time. Also show that with respect to this frame the
distance between the two events is equal to the proper distance
between them. (b) Given that two events P and R have a time-like
separation, show that in all such cases a reference frame can be
found in which the two events occur at the same place. Also show
that in this frame the time lapse between the two events is equal
to the proper time between them. (c) Given that two events R and
W have a light-like separation, show that in all such cases a light
flash can be found that moves from R to W. Also show that the
proper time and proper distance between R and W are both equal
to zero.

SEC. 38-9 ■ RELATIVITY OF SIMULTANEITY

19. Symmetric Relativity of Simultaneity. In the thought experi-
ment pictured in Fig. 38-6, we arbitrarily chose events so that the
two light flashes from the lightning strikes arrived simultaneously at
the ground observer. Analyze a new version of this experiment in
which a completely different pair of lightning strikes fall at the two
ends of the train such that the resulting light flashes arrive simulta-
neously at the position of the rider at the center of the train. View
the experiment in the rest frame of the train. In this new version of
the experiment, which lightning bolt falls first according to the ob-
server on the ground?

SEC. 38-10 ■ MOMENTUM AND ENERGY

20. Boosting the Speed. How much work must be done to increase
the speed of an electron (a) from 0.08c to 0.09c? (b) from 0.98c to
0.99c? Note that the increase in speed is the same in both cases.

21. Lightbulb Radiating Mass. How much mass does a 100 W
lightbulb dissipate (in heat and light) when it burns for one full
year?

22. Proton Crosses Galaxy. Find the energy of a proton that
crosses our galaxy (diameter 100 000 light-years) in one minute of
its own time.

23. Converting Mass to Energy. The values of the masses in the re-
action

p � 19F : � � 16O

have been determined by a mass spectrometer to have the values:

m(O) � 15.994915u.

m(�) � 4.002603u,

m(F) � 18.998405u,

m(p) � 1.007825u,
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Here u is the atomic mass unit (Section 1.7). How much energy is
released in this reaction? Express your answer in both kilograms
and MeV.

24. Aspirin-Powered Automobile. An aspirin tablet contains 5
grains of aspirin (medicinal unit), which is equal to 325 mg. For how
many kilometers would the energy equivalent of this mass power
an automobile? Assume 12.75 km/L and a heat of combustion of
3.65 � 107 J/L for the gasoline used in the automobile.

25. Converting Energy to Mass. Two freight trains, each of mass 
6 � 106 kg (6 000 metric tons) travel in opposite directions on the
same track with equal speeds of 150 km/hr. They collide head-on
and come to rest. (a) Calculate in joules the kinetic energy (1/2)mv2

for each train before the collision. (Newtonian expression OK for
everyday speeds!) (b) After the collision, the mass of the trains plus
the mass of the track plus the mass of the roadbed plus the mass of
the surrounding air plus the mass of emitted sound and light has in-
creased by what number of milligrams?

26. Electrically Accelerated Electron. Through what voltage must
an electron be accelerated from rest in order to increase its energy
to 101% of its rest energy? 

27. Powerful Proton. A proton exits an accelerator with a kinetic
energy equal to N times its rest energy. Find expressions for its 
(a) speed and (b) momentum.

28. Relativistic Chemistry. One kilogram of hydrogen combines
chemically with 8 kilograms of oxygen to form water; about 108 J of
energy is released. Ten metric tons (104 kg) of hydrogen combines
with oxygen to produce water. (a) Does the resulting water have a
greater or less mass than the original hydrogen plus oxygen? 
(b) What is the numerical magnitude of this difference in mass? 
(c) A smaller amount of hydrogen and oxygen is weighed, then com-
bined to form water, which is weighed again. A very good chemical
balance is able to detect a fractional change in mass of 1 part in 108.
By what factor is this sensitivity more than enough—or insuffi-
cient—to detect the fractional change in mass in this reaction?

29. Finding the Mass. (a) Find an equation for the unknown mass
m of a particle if you know its momentum p and its kinetic energy
K. Show that this expression reduces to an expected result for non-
relativistic particle speeds. (b) Find the mass of a particle whose ki-
netic energy is K � 55.0 MeV and whose momentum is p �
121 MeV/c. Express your answer as a decimal fraction or multiple
of the mass me of the electron.

30. A Box of Light. Estimate the power in kilowatts used to light a
city of 8 million inhabitants. If all this light generated during one
hour in the evening could be captured and put in a box, how much
would the mass of the box increase? 

31. Creating a Proton–Antiproton
Pair. Two protons, each of mass m,
are fired toward one another with
equal energy (see Fig. 38-9). They
collide and create an additional
proton–antiproton pair, each with
the proton mass m. (a) Show that
the lowest total energy E of the incident protons for this creation to
take place leaves the resulting four particles at rest with respect to
one another. The value of this minimum energy for each incident
particle is called the threshold energy. (b) What is the threshold ki-
netic energy K of each incident particle for this creation to occur?
Express your answer in terms of the rest energy of the proton. (c)

Given that the mass of a proton is approximately equal to 1
GeV/c2, what is the value of the threshold kinetic energy of each in-
cident proton? Explain why this result is reasonable.

SEC. 38-11 ■ THE LORENTZ TRANSFORMATION

32. Really Simultaneous? (a) Two events occur at the same time in
the laboratory frame and at the laboratory coordinates (x1 �
10 km, y1 � 4 km, z1 � 6 km) and (x2 � 10 km, y2 � 7 km, z2 �
�10 km). Will these two events be simultaneous in a rocket frame
moving with speed vrel � 0.8c in the x direction in the laboratory
frame? Explain your answer. (b) Three events occur at the same
time in the laboratory frame and at the laboratory coordinates 
(x0, y1, z1), (x0, y2, z2), and (x0, y3, z3), where x0 has the same value for
all three events. Will these three events be simultaneous in a rocket
frame moving with speed vrel in the laboratory x direction? Explain
your answer. (c) Use your results of parts (a) and (b) to make a
general statement about simultaneity of events in laboratory and
rocket frames.

33. Transformation of y-velocity. A particle moves with uniform
speed in the y� direction with respect to a rocket
frame that moves along the x axis of a laboratory frame. Find ex-
pressions for the x-component and for the y-component of the par-
ticle’s velocity in the laboratory frame.

34. Transformation of Velocity Direction. A particle moves with
speed v� in the x�y� plane of the rocket frame and in a direction that
makes an angle � with the x� axis. Find the angle  that the veloc-
ity vector of this particle makes with the x axis of the laboratory
frame. (Hint: Transform space and time displacements rather than
velocities.) 

35. The Headlight Effect. A flash of light is emitted at an angle �
with respect to the x� axis of the rocket frame. (a) Show that the an-
gle  the direction of motion of this flash makes with respect to the
x axis of the laboratory frame is given by the equation

Optional: Show that your answer to Problem 34 gives the same re-
sult when the velocity v� is given the value c. (b) A light source at
rest in the rocket frame emits light uniformly in all directions. In
the rocket frame 50% of this light goes into the forward hemi-
sphere of a sphere surrounding the source. Show that in the labo-
ratory frame this 50% of the light is concentrated in a narrow for-
ward cone of half-angle 0 whose axis lies along the direction of
motion of the particle. Derive the following expression for the half-
angle 0:

This result is called the headlight effect. (c) What is the half-angle 0

in degrees for a light source moving at 99% of the speed of light?

SEC. 38-12 ■ LORENTZ CONTRACTION

36. Electron Shrinks Distance. An evacuated tube at rest in the
laboratory has a length 3.00 m as measured in the laboratory. An
electron moves at speed v � 0.999 987c in the laboratory along the

cos0 � vrel/c.

cos �
cos� � vrel/c

1 � (vrel/c)cos�
.

vy� � �y�/�t�

m m m
m

m
m

BEFORE AFTER

Antiproton

FIGURE 38-9 ■ Problem 31.



axis of this evacuated tube. What is the length of the tube measured
in the rest frame of the electron?

37. Passing Time. A spaceship of rest length 100 m passes a labora-
tory timing station in 0.2 microseconds measured on the timing sta-
tion clock. (a) What is the speed of the spaceship in the laboratory
frame? (b) What is the Lorentz-contracted length of the spaceship
in the laboratory frame?

38. Transformation of Angles. A meter stick lies at rest in the
rocket frame and makes an angle � with the x� axis as measured by
the rocket observer. The laboratory observer measures the x- and 
y-components of the meter stick as it streaks past. From these com-
ponents the laboratory observer computes the angle  that the
stick makes with his x axis. (a) Find an expression for the angle  in
terms of the angle � and the relative speed vrel between rocket and
laboratory frames. (b) What is the length of the “meter” stick mea-
sured by the laboratory observer? (c) Optional: Why is your expres-
sion in part (a) different from equations derived in Problems 34
and 35?

39. Traveling to the Galactic Center. (a) Can a person, in principle,
travel from Earth to the center of our galaxy, which is 23 000 ly dis-
tant, in one lifetime? Explain using either length contraction or
time dilation arguments. (b) What constant speed with respect to
the galaxy is required to make the trip in 30 y of the traveler’s life-
time?

40. Limo in the Garage. Carman has just purchased the world’s
longest stretch limo, which has proper length Lc � 30.0 m. Part 
(a) of Figure 38-10 shows the limo parked at rest in front of a
garage of proper length Lg � 6.00 m, which has front and back
doors. Looking at the limo parked in front of the garage, Carman
says there is no way that the limo can fit into the garage. “Au con-
traire!” shouts Garageman, “Under the right circumstances the
limo can fit into the garage with both garage doors closed and
room to spare!” Garageman envisions a fast-moving limo that
takes up exactly one-third of the proper length of the garage. Part
(b) of Figure 38-10 shows the speeding limo just as the front

garage door closes behind it as recorded in the garage frame. Part
(c) of Figure 38-10 shows the limo just as the back garage door
opens in front of it as recorded in the garage frame. Find the speed
of the limo with respect to the garage required for this scenario to
take place.

SEC. 38-13 ■ RELATIVITY OF VELOCITIES

41. Backfire. An unpowered rocket moves past you in the positive
x direction at speed vrel � 0.9c. This rocket fires a bullet out the
back that you measure to be moving at speed vbullet � 0.3c in the
positive x direction. With what speed relative to the rocket did the
rocket observer fire the bullet out the back of her ship?

42. Separating Galaxies. Galaxy A is measured to be receding
from us on Earth with a speed of 0.3c. Galaxy B, located in pre-
cisely the opposite direction, is also receding from us at the same
speed. What recessional velocity will an observer on galaxy A mea-
sure (a) for our galaxy, and (b) for galaxy B?

43. Decaying Ko Meson. Touchstone Example 38-7 concluded that
when a Ko meson at rest decays into two daughter � mesons, they
move in opposite directions in the rest frame of the original Ko me-
son, each with a speed of 0.828c. Now suppose that the initial Ko

meson moves with speed vrel � 0.9c as measured in the laboratory
frame. What are the maximum and minimum speeds of the daugh-
ter � mesons with respect to the laboratory?

44. Transit Time. An unpowered spaceship whose rest length is
350 meters has a speed 0.82c with respect to Earth. A micromete-
orite, also with speed of 0.82c with respect to Earth, passes the
spaceship on an antiparallel track that is moving in the opposite di-
rection. How long does it take the micrometeorite to pass the
spaceship as measured on the ship?

SEC. 38-14 ■ DOPPLER SHIFT

45. Listening to the Traveler. A spaceship moving away from
Earth at a speed 0.900c radios its reports back to Earth using a fre-
quency of 100 MHz measured in the spaceship frame. To what fre-
quency must Earth’s receivers be tuned in order to receive the re-
ports?

46. Speed Trap. How fast would you have to approach a red traffic
light in order that it appears green to you? 

47. Redshift Factor z. Astrophysicists describe the redshift of re-
ceding astronomical objects using the redshift factor z, defined im-
plicitly in the following equation:

Here �observed is the wavelength of light observed from Earth, while
�emitted is the wavelength of the light emitted from the source as
measured in the rest frame of the source. The emitted wavelength is
known if one knows the emitting atom, identified from the pattern
of different wavelengths characteristic of that atom. Astrophysicists
measuring the redshifts of light from extremely remote quasars
calculate a z-factor in the neighborhood of z � 6. Use the Doppler

�observed � (1 � z)�emitted.
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as front garage door closes.
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shift equations of special relativity to determine how fast such
quasars are moving away from Earth. Note: Actually, for such dis-
tant objects the unmodified Doppler shift formula of special relativ-
ity does not apply. Instead, one thinks of the space between Earth
and the source expanding as the universe expands; the wavelength
of the light expands with this expansion of the universe as it travels
from the source quasar to us.

48. Receding Galaxy. Figure 38-11 shows a graph of intensity ver-
sus wavelength for light reaching Earth from galaxy NGC 7319,
which is about 3 � 108 light-years away. The most intense light is
emitted by the oxygen in that galaxy. In a laboratory, that emission
is at wavelength � � 513 nm, but in the light from NGC 7319 it has
been shifted to 525 nm due to the Doppler effect. (Indeed, all the
emissions from that galaxy have been shifted.) (a) According to
special relativity Doppler shift theory, what is the radial speed of
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FIGURE 38-11 ■ Problem 48

Additional Problems

49. Exodus from Earth. A billion years from now our Sun will
increase its heat, destroying life on Earth. Still later the sun will ex-
pand as a red giant, swallowing the Earth and annihilating any re-
maining life on all planets in the solar system. In anticipation of
these catastrophes, an advanced Earth civilization a million years
from now develops a transporter mechanism that reduces living be-
ings to data and sends the data by radio to planets orbiting younger
stars. The living beings on Earth are destroyed by this process but
are reconstituted and restored to life on the distant planets. Your
descendent Rasmia Kirmani leaves Earth as data at a time we will
take to be zero and is quickly reconstituted after arrival of her data
set on the planet Zircon, 100 ly distant from Earth. Assume that
Earth and Zircon are relatively at rest.

(a) How much does Rasmia age during her outward trip to Zir-
con?

(b) How much older is Earth and its civilization when Rasmia is
resurrected on Zircon? 

(c) Rasmia has a productive and happy life on Zircon and dies
as a pioneer hero after 150 years living on that planet. How
soon after her departure from Earth can Rasmia’s obituary
be received on Earth? 

(d) Over the millennia between our time and then, specialists
whom we now call geneticists discover that there is no such
thing as a superperson (man or woman), but rather that a
minimum variety of genetic types must be maintained and
continually recombined (by whatever method is then cur-
rent) in order to sustain a healthy population. To this end,
several dozen healthy individuals are deconstructed on
Earth and transported to Zircon, where each individual is
quickly reproduced in thousands of copies (using the same
data set over and over) in order to populate the planet

rapidly. It takes 5 full generations from birth to death, each
generation an average of 200 years, to determine whether or
not the new population has been successfully established.
How soon after transmission of the dozens of original data
sets from Earth can Earth’s people learn whether or not this
project has been successful?

50. Electron in Orbit. Use Newtonian mechanics to calculate the
speed of an electron in the lowest Bohr orbit, which has one quan-
tum of angular momentum:

Carry out this calculation for (a) hydrogen (Z � 1) and (b) ura-
nium (Z � 92). Insofar as the Bohr model of the atom can be
trusted, is relativity required to find the correct answer for (c) hy-
drogen, (d) uranium? 

51. Super Cosmic Rays. The Giant Shower Array detector, spread
over 100 square kilometers in Japan, detects pulses of particles
from cosmic rays. Each detected pulse is assumed to originate in a
single high-energy cosmic proton that strikes the top of the Earth’s
atmosphere. The highest energy of a single cosmic ray proton in-
ferred from the data is 1020 eV. How long would it take that proton
to cross our galaxy (105 light-years in diameter) as recorded on the
wristwatch of the proton? (The answer is not zero!)

52. Synchronization by a Traveling Clock. Evelyn Brown does not
approve of our latticework of rods and clocks and the use of a light
flash to synchronize them.

(a) “I can synchronize my clocks in any way I choose!” she ex-
claims. Is she right? 

mvr � h �
h

2�
.

galaxy NGC 7319 relative to Earth? (b) Is the relative motion to-
ward or away from Earth?
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56. Resonant Absorption of a Gamma Ray. A gamma ray (an en-
ergetic photon) falls on a nucleus of initial mass m, initially at rest.
The energy Ep of the incoming gamma ray matches the energy sep-
aration between the lowest energy of the nucleus and its first ex-

(b) Evelyn wants to synchronize two identical clocks, called Big
Ben and Little Ben, which are at rest with respect to one an-
other and separated by one million kilometers in their rest
frame. She uses a third clock, identical in construction with
the first two, that travels with constant velocity between
them. As her moving clock passes Big Ben, it is set to read
the same time as Big Ben. When the moving clock passes Lit-
tle Ben, that outpost clock is set to read the same time as the
traveling clock. “Now Big Ben and Little Ben are synchro-
nized,” says Evelyn Brown. Is Evelyn’s method correct? 

(c) After Evelyn completes her synchronization of Little Ben by
her method, how does the reading of Little Ben compare
with the reading of a nearby clock on a latticework at rest
with respect to Big Ben (and Little Ben) and synchronized
by our standard method using a light flash? Evaluate in mil-
liseconds any difference between the reading on Little Ben
and the nearby lattice clock in the case that Evelyn’s travel-
ing clock moved at a constant velocity of 500 000 kilometers
per hour from Big Ben to Little Ben.

(d) Evaluate the difference in the reading between the Evelyn-
Brown-synchronized Little Ben and the nearby lattice clock
when Evelyn’s synchronizing traveling clock moves 1000
times as fast as the speed given in part (c).

53. Down with Relativity! Sara Settlemyer is an intelligent layper-
son who carefully reads articles about science in the public press.
She has the objections to relativity listed below. Respond to each of
Sara’s objections clearly, decisively, and politely—without criticiz-
ing her! 

(a) “Observer A says that observer B’s clock runs slow, while B
says that A’s clock runs slow. This is a logical contradiction.
Therefore relativity should be abandoned.”

(b) “Observer A says that B’s meter sticks are contracted along
their direction of relative motion. B says that A’s meter sticks
are contracted. This is a logical contradiction. Therefore rela-
tivity should be abandoned.”

(c) “Anybody with common sense knows that travel at high
speed in the direction of a receding light pulse decreases the
speed with which the pulse recedes. Hence a flash of light
cannot have the same speed for observers in relative motion.
With this disproof of the Principle of Relativity, all of relativ-
ity collapses.”

(d) “Relativity is preoccupied with how we observe things, not
with what is really happening. Therefore relativity is not a
scientific theory, since science deals with reality.”

(e) “Relativity offers no way to describe an event without coor-
dinates, and no way to speak about coordinates without re-
ferring to one or another particular reference frame. How-
ever, physical events have an existence independent of all
choice of coordinates and reference frames. Therefore the
special relativity you talk about in this chapter cannot be the
most fundamental theory of events and the relation between
events.”

54. The Photon as a Zero-Mass Particle. A photon, the quantum
of light, can be considered to be a zero-mass particle.

(a) Using this definition and Eq. 38-18, show that the relation
between energy and momentum for the photon is E � �pc�,
where the “absolute value” vertical lines ensure that energy
is positive.

(b) A �o meson decays rapidly into two gamma rays (high-
energy photons). In the rest frame of the original �o meson,
what are the relative directions of the two outgoing pho-
tons?

(c) If the mass of the �o meson is 135 MeV/c2, what is the en-
ergy of each outgoing gamma ray?

55. Pair Production with Gamma Rays. Two gamma rays of equal
energy Ep and equal and opposite momenta are incident on a nu-
cleus. (See Figure 38-12.) The collision leads to annihilation of the
gamma rays and creation of an electron–positron pair. The lowest
energy (the “threshold energy”) of incident photons for this pro-
duction leaves the resulting electron and positron at rest with re-
spect to the nucleus. (The nucleus acts as midwife to this birth and
is not changed by the interaction.) 

(a) What is the threshold energy Ep of each photon for this cre-
ation to take place? 

(b) Generalize Eq. 38-18 to define the mass Ms of a system of
particles, given the total energy Es and net momentum ps of
the system:

What is the mass Ms of the system of particles after the col-
lision? Before the collision? 

(c) Mass without mass? Now let the “nuclear” mass m become
less and less. In the limit m : 0, what is the mass of the sys-
tem after the collision? Before the collision? Before the
collision, you apparently have a system with mass com-
posed of “particles,” each of which has zero mass. Does this
make sense?

M 2
sc4 � E 2

s � p2
sc2.
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cited state, so the incident photon is absorbed. We want to know the
mass m* of the excited nucleus. (see Fig. 38-13.) 

(a) Show that the conservation of energy and momentum equa-
tions are, in an obvious notation:

and

(b) Combine the two conservation equations to find an expres-
sion for m* as a function of Ep, m, and c.

(c) Show that for very small values of Ep the limiting result is 
m* � m. Explain why this limiting result is reasonable.

Ep

c
� pm* �

(E 2
m* � m*2c4)1/2

c
.

Ep � mc2 � Em*

57. Photon Braking. A radioactive nucleus of known initial mass
M and known initial total energy EM emits a gamma ray (high-
energy photon) in the direction of its motion, drops to its stable
nonradioactive state of known mass m, and comes to rest. (see
Fig. 38-14). Find an expression for the total energy EM of the incom-
ing nucleus. The unknown energy Ep of the outgoing gamma ray
should not appear in your expression.

contracted. Carman protests that in the rest frame of the limo (in
which the limo is its full proper length) it is the garage that is
Lorentz-contracted. As a result, he claims, there is no possibility
whatever that the limo can fit into the garage. What could be the
possible basis for resolving this paradox? (Hint: Think about the
space and time locations of two events: event A, front garage door
closes and event B, rear garage door opens.)

59. Twin Paradox. The famous twin paradox is often introduced
as follows: Two identical twins grow up together on Earth. When
they reach adulthood, one twin zooms to a distant star and returns
to find her stay-at-home sister much older than she is. Thus far no
paradox. But Alexis Allen formulates the Twin Paradox for us:

“The theory of special relativity tells us that all motion is
relative. With respect to the traveling twin, the Earth-bound
twin moves away and then returns. Therefore it is the Earth-
bound twin who should be younger than the ‘traveling’ twin.
But when they meet again at the same place, it cannot possi-
bly be that each twin is younger than the other twin. This
Twin Paradox disproves relativity.”

The paradox is usually resolved by realizing that the trav-
eling twin turns around. Everyone agrees which twin turns
around, since the reversal of direction slams the poor trav-
eler against the bulkhead of the decelerating starship, break-
ing her collarbone. The turnaround, evidenced by the broken
collarbone, destroys the symmetry required for the paradox
to hold. Good-bye Twin Paradox! 

Still, Alexis’s father Cyril Allen has his doubts about this
resolution of the paradox. “Your solution is extremely unsat-
isfying. It forces me to ask: What if the retro-rockets mal-
function and will not fire at all to slow me down as I ap-
proach a distant star a thousand light-years from Earth?
Then I cannot even stop at that star, much less turn around
and head back to Earth. Instead, I continue moving away
from Earth forever at the original constant speed. Does this
mean that as I pass the distant star, one thousand light-years
from Earth, it is no longer possible to say that I have aged
less than my Earth-bound twin? But if not, then I would
never have even gotten to the distant star at all during my
hundred-year lifetime! Your resolution of the Twin Paradox
is insufficient and unsatisfying.”

Write a half-page response to Cyril Allen, answering his
objections politely but decisively.

60. The Runner on the Train Paradox. A train moves at 10 km/h
along the track. A passenger sprints toward the rear of the train at
10 km/h with respect to the train. Our knee-jerk motto says that the
train clocks “run slow” with respect to clocks on the track, and the
runner’s watch “runs slow” with respect to train clocks. Therefore
the runner’s watch should “run doubly slow” with respect to clocks
on the track. But the runner is at rest with respect to the track.
What gives? (This example illustrates the danger of the simple
knee-jerk motto “Moving clocks run slow.”)

61. A Summer Evening’s Fantasy. You and a group of female and
male friends stand outdoors at dusk watching the Sun set and notic-

58. Limo and Garage Paradox. Review Problem 40, in which we
concluded that a limo of proper length 30 m can fit into a garage of
proper length 6 m with room to spare. This result is possible be-
cause the speeding limo is observed by Garageman to be Lorentz -



ing the planet Venus in the same direction as the Sun. An alien ship
lands beside you at the same instant that you see the Sun explode.
The aliens admit that earlier they shot a laser flash at the Sun,
which caused the explosion. They warn that the Sun’s explosion
emitted an immense pulse of particles that will blow away Earth’s
atmosphere. In confirmation, a short time after the aliens land you

notice Venus suddenly change color. You and your friends plead
with the aliens to take your group away from Earth in order to es-
tablish the human gene pool elsewhere. They agree. Describe the
conditions under which your escape plan will succeed. Be specific
and use numbers. Assume that the Sun is 8 light-minutes from
Earth and Venus is 2 light-minutes from Earth.
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The International 
System of Units (SI)*
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1 SI Base Units

2. The SI Supplementary Units

Quantity Name of Unit Symbol

plane angle radian rad

solid angle steradian sr

1. The SI Base Units

Quantity Name Symbol Definition

length meter m “. . . the length of the path traveled by light in vacuum in
1/299 792 458 of a second.” (1983)

mass kilogram kg “. . . this prototype [a certain platinum–iridium cylinder] shall
henceforth be considered to be the unit of mass.” (1889)

time second s “. . . the duration of 9 192 631 770 periods of the radiation corre-
sponding to the transition between the two hyperfine levels of the
ground state of the cesium-133 atom.” (1967)

electric current ampere A “. . . that constant current which, if maintained in two straight par-
allel conductors of infinite length, of negligible circular cross sec-
tion, and placed 1 meter apart in vacuum, would produce between
these conductors a force equal to 2 � 10�7 newton per meter of
length.” (1946)

thermodynamic temperature kelvin K “. . . the fraction 1/273.16 of the thermodynamic temperature of the
triple point of water.” (1967)

amount of substance mole mol “. . . the amount of substance of a system which contains as many
elementary entities as there are atoms in 0.012 kilogram of carbon-
12.” (1971)

luminous intensity candela cd “. . . the luminous intensity, in a given direction, of a source that
emits monochromatic radiation of frequency 540 � 1012 hertz and
that has a radiant intensity in that direction of 1/683 watt per stera-
dian.” (1979)

2 The SI Supplementary Units

*Adapted from “The International System of Units (SI),” National Bureau of Standards Special Publica-
tion 330, 2001 edition. The definitions above were adopted by the General Conference of Weights and Mea-
sures, an international body, on the dates shown. In this book we do not use the candela.
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4 Mathematical Notation

Poorly chosen mathematical notation can be a source of considerable confusion to those trying
to learn and to do physics. For example, ambiguity in the meaning of a mathematical symbol
can prevent a reader from understanding the meaning of a crucial relationship. It is also diffi-
cult to solve problems when the symbols used ot represent different quantities are not distinc-
tive. In this text we have taken special care to use mathematical notation in ways that allow im-
portant distinctions to be easily visible both on the printed page and in handwritten work.

An excellent starting point for clear mathematical notation is the U.S. National Institute of
Standard and Technology’s Special Publication 811 (SP 811), Guide for the Use of the Interna-
tional System of Units (SI), available at http://physics.nist.gov/cuu/Units/bibliography.html.
In addition to following the National Institute guidelines, we have made a number of system-
atic choices to facilitate the translation of printed notation into handwritten mathematics. For
example:

• Instead of making vectors bold, vector quantities (even in one dimension) are denoted by
an arrow above the symbol. So printed equations look like handwritten equations. Exam-
ple: rather than v is used to denote an instantaneous velocity.v:

3 Some SI Derivations

3. Some SI Derived Units

In Terms of other 
Quantity Name of Unit Symbol SI Units

area square meter m2

volume cubic meter m3

frequency hertz Hz s�1

mass density (density) kilogram per cubic meter kg/m3

speed, velocity meter per second m/s

rotational velocity radian per second rad/s

acceleration meter per second per second m/s2

rotational acceleration radian per second per second rad/s2

force newton N kg � m/s2

pressure pascal Pa N/m2

work, energy, quantity of heat joule J N � m

power watt W J/s

quantity of electric charge coulomb C A � s

potential difference, electromotive force volt V W/A

electric field strength volt per meter (or newton per coulomb) V/m N/C

electric resistance ohm � V/A

capacitance farad F A � s/V

magnetic flux weber Wb V � s

inductance henry H V � s/A

magnetic flux density tesla T Wb/m2

magnetic field strength ampere per meter A/m

entropy joule per kelvin J/K

specific heat joule per kilogram kelvin J/(kg � K)

thermal conductivity watt per meter kelvin W/(m � K)

radiant intensity watt per steradian W/sr

http://physics.nist.gov/cuu/Units/bibliography.html


• In general, each vector component has an explicit subscript denoting that it represents the
component along a chosen coordinate axis. The one exception is the position vector, ,
whose components are simply written as x, y, and z. For example, ,
whereas, .

• To emphasize the distinction between a vector’s components and its magnitude, we write
the magnitude of a vector, such as , as | |. However, when it is obvious that a magnitude
is being described, we use the plain symbol (such as F with no coordinate subscript) to de-
note a vector’s magnitude.

• We often choose to spell out the names of objects that are associated with mathematical
variables—writing, for example, and not for the velocity of a ball.

• Numerical subscripts most commonly denote sequential times, positions, velocities, and so
on. For example, x1 is the x-component of the position of some object at time t1, whereas x2

is the value of that parameter at some later time t2. We have avoided using the subscript
zero to denote initial values, as in x0 to denote “the initial position along the x axis,” to em-
phasize that any time can be chosen as the initial time for consideration of the subsequent
time evolution of a system.

• To avoid confusing the numerical time sequence labels with object labels, we prefer to use
capital letters as object labels. For example, we would label two particles A and B rather
than 1 and 2. Thus, A 1 and B 1 would represent the translational momenta of two parti-
cles before a collision whereas A 2 and B 2 would be their momenta after a collision.

• To avoid excessively long strings of subscripts, we have made the unconventional choice to
write all adjectival labels as superscripts. Thus, Newton’s Second Law is written net � m
whereas the sum of the forces acting on a certain object might be written as net � grav

� app. To avoid confusion with mathematical exponents, an adjectival label is never a sin-
gle letter.

• Following a usage common in contemporary physics, the time average of a variable is
denoted as � � and not as avg.

• Physical constants such as e, c, g, G, are all positive scalar quantities.

Significant Figures and the Precision 
of Numerical Results

Quoting the result of a calculation or a measurement to the correct number of significant fig-
ures is merely a way of telling your reader roughly how precise you believe the result to be.
Quoting too many significant figures overstates the precision of your result and quoting too few
implies less precision than the result may actually possess. So how many significant figures
should you quote when reporting your result.

Determining Significant Figures

Before answering the question of how many significant figures to quote, we need to have a clear
method for determining how many significant figures a reported number has. The standard
method is quite simple:

METHOD FOR COUNTING SIGNIFICANT FIGURES: Read the number from left to right, and count the
first nonzero digit and all the digits (zero or not) to the right of it as significant.

Using this rule, 350 mm, 0.000350 km, and 0.350 m each has three significant figures. In fact,
each of these numbers merely represents the same distance, expressed in different units. As you
can see from this example, the number of decimal places that a number has is not the same as
its number of significant figures. The first of these distances has zero decimal places, the second
has six decimal places, and the third has three, yet all three of these numbers have three signifi-
cant figures.

5
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One consequence of this method is especially worth noting. Trailing zeros count as signifi-
cant figures. For example, 2700 m/s has four significant figures. If you really meant it to have
only three significant figures, you would have to write it either as 2.70 km/s (changing the unit)
or 2.70 � 103 m/s (using scientific notation.)

A Simple Rule for Reporting Significant Figures 
in a Calculated Result

Now that you know how to count significant figures, how many should the result of a calcula-
tion have? A simple rule that will work in most calculations is:

SIGNIFICANT FIGURES IN A CALCULATED RESULT: The common practice is to quote the result of a cal-
culation to the number of significant figures of the least precise number used in the calculation.

Although this simple rule will often either understate or (less frequently) overstate the precision
of a result, it still serves as a good rule-of-thumb for everyday numerical work. In introductory
physics you will only rarely encounter data that are known to better than two, three, or four sig-
nificant figures. This simple rule then tells you that you can’t go very far wrong if you round off all
your final results to three significant figures.

There are two situations in which the simple rule should not be applied to a calculation.
One is when an exact number is involved in the calculation and another is when a calculation is
done in parts so that intermediate results are used.

1. Using Exact Data There are some obvious situations in which a number used in a cal-
culation is exact. Numbers based on counting items are exact. For example, if you are told
that there are 5 people on an elevator, there are exactly 5 people, not 4.7 or 5.1. Another
situation arises when a number is exact by definition. For example, the conversion factor
2.54 cm/inch does not have three significant figures because the inch is defined to be ex-
actly 2.5400000 . . . cm. Data that are known exactly should not be included when deciding
which of the original data has the fewest significant figures.

2. Significant Figures in Intermediate Results Only the final result at the end of your calcu-
lation should be rounded using the simple rule. Intermediate results should never be
rounded. Spreadsheet software takes care of this for you, as does your calculator if you
store your intermediate results in its memory rather than writing them down and then
rekeying them. If you must write down intermediate results, keep a few more significant
figures than your final result will have.

Understanding and Refining the Simple 
Significant Figure Rule

Quoting the result of a calculation or measurement to the correct number of significant figures
is a way of indicating its precision. You need to understand what limits the precision of data be-
fore you fully understand how to use the simple rule or its exceptions.

Absolute Precision There are two ways of talking about precision. First there is absolute preci-
sion, which tells you explicitly the smallest scale division of the measurement. It’s always
quoted in the same units as the measured quantity. For example, saying “I measured the length
of the table to the nearest centimeter” states the absolute precision of the measurement. The
absolute precision tells you how many decimal places the measurement has; it alone does not
determine the number of significant figures. Example: if a table is 235 cm long, then 1 cm of
absolute precision translates into three significant figures. On the other hand, if a table is for a
doll’s house and is only 8 cm long, then the same 1 cm of absolute precision has only one sig-
nificant figure.

Relative Precision Because of this problem with absolute precision, scientists often prefer to
describe the precision of data relative to the size of the quantity being measured. To use the
previous examples, the relative precision of the length of the real table in the previous example
is 1 cm out of 235 cm. This is usually stated as a ratio (1 part in 235) or as a percentage (1/235 �
0.004255 � 0.4%). In the case of the toy table, the same 1 cm of absolute precision yields a rela-
tive precision of only 1 part in 8 or 1/8 � 0.125 � 12.5%.



Inconsistencies between Significant Figures and Relative Precision There is an inconsistency
that goes with using a certain number of significant figures to express relative precision. Quoted
to the same number of significant figures, the relative precision of results can be quite different.
For example, 13 cm and 94 cm both have two significant figures. Yet the first is specified to only
1 part in 13 or 1/13 � 10%, whereas the second is known to 1 part in 94 or 1/94 � 1%. This bias
toward greater relative precision for results with larger first significant figures is one weakness
of using significant figures to track the precision of calculated results. You can partially address
this problem, by including one more significant figure than the simple rule suggests, when the fi-
nal result of a calculation has a 1 as its first significant figure.

Multiplying and Dividing When multiplying or dividing numbers, the relative precision of the
result cannot exceed that of the least precise number used. Since the number of significant fig-
ures in the result tells us its relative precision, the simple rule is all that you need when you
multiply or divide. For example, the area of a strip of paper of measured size is 280 cm by 2.5
cm would be correctly reported, according to the simple rule, as 7.0 � 102 cm2. This result has
only two significant figures since the less precise measurement, 2.5 cm, that went into the calcu-
lation had only two significant figures. Reporting this result as 700 cm2 would not be correct
since this result has three significant figures, exceeding the relative precision of the 2.5 cm mea-
surement.

Addition and Subtraction When adding or subtracting, you line up the decimal points before
you add or subtract. This means that it’s the absolute precision of the least precise number that
limits the precision of the sum or the difference. This can lead to some exceptions to the simple
rule. For example, adding 957 cm and 878 cm yields 1835 cm. Here the result is reliable to an
absolute precision of about 1 cm since both of the original distances had this reliability. But the
result then has four significant figures whereas each of the original numbers had only three. If,
on the other hand, you take the difference between these two distances you get 79 cm. The dif-
ference is still reliable to about 1 cm, but that absolute precision now translates into only two
significant figures worth of relative precision. So, you should be careful when adding or
subtracting, since addition can actually increase the relative precision of your result and, more
important, subtraction can reduce it.

Evaluating Functions What about the evaluation of functions? For example, how many signifi-
cant figures does the sin(88.2°) have? You can use your calculator to answer this question. First
use your calculator to note that sin(88.2°) � 0.999506. Now add 1 to the least significant decimal
place of the argument of the function and evaluate it again. Here this gives sin(88.3°) �
0.999559. Take the last significant figure in the result to be the first one from the left that changed
when you repeated the calculation. In this example the first digit that changed was the 0; it be-
came a 5 (the second 5) in the recalculation. So, using the empirical approach gives you five sig-
nificant figures.
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Best (1998) Value

Constant Symbol Computational Value Valuea Uncertaintyb

Speed of light in a vacuum c 3.00 � 108 m/s 2.997 924 58 exact

Elementary charge e 1.60 � 10�19 C 1.602 176 462 0.039

Gravitational constant G 6.67 � 10�11 m3/s2 � kg 6.673 1500

Universal gas constant R 8.31 J/mol � K 8.314 472 1.7

Avogadro constant NA 6.02 � 1023 mol�1 6.022 141 99 0.079

Boltzmann constant kB 1.38 � 10�23 J/K 1.380 650 3 1.7

Stefan–Boltzmann constant � 5.67 � 10�8 W/m2 � K4 5.670 400 7.0

Molar volume of ideal gas at STPd Vm 2.27 � 10�2 m3/mol 2.271 098 1 1.7

Electric constant (permittivity) 	0 8.85 � 10�12 C2/N � m2 8.854 187 817 62 exact

Coulomb constant k � 1/4
	0 8.99 � 109 N � m2/C2 8.987 551 787 5 � 10�10

Magnetic constant (permeability) �0 1.26 � 10�6 N/A2 1.256 637 061 43 exact

Planck constant h 6.63 � 10�34 J� s 6.626 068 76 0.078

Electron massc me 9.11 � 10�31 kg 9.109 381 88 0.079

5.49 � 10�4 u 5.485 799 110 0.0021

Proton massc mp 1.67 � 10�27 kg 1.672 621 58 0.079

1.0073 u 1.007 276 466 88 1.3 � .10� 4

Ratio of proton mass to electron mass mp/me 1840 1836.152 667 5 0.0021

Electron charge-to-mass ratio e/me 1.76 � 1011 C/kg 1.758 820 174 0.040

Neutron massc mn 1.68 � 10�27 kg 1.674 927 16 0.079

1.0087 u 1.008 664 915 78 5.4 � 10�4

Hydrogen atom massc m1H 1.0078 u 1.007 825 031 6 0.0005

Deuterium atom massc m2H 2.0141 u 2.014 101 777 9 0.0005

Helium atom massc m4He 4.0026 u 4.002 603 2 0.067

Muon mass m� 1.88 � 10�28 kg 1.883 531 09 0.084

Electron magnetic moment �e 9.28 � 10�24 J/T 9.284 763 62 0.040

Proton magnetic moment �p 1.41 � 10�26 J/T 1.410 606 663 0.041

Bohr magneton �B 9.27 � 10�24 J/T 9.274 008 99 0.040

Nuclear magneton �N 5.05 � 10�27 J/T 5.050 783 17 0.040

Bohr radius rB 5.29 � 10�11 m 5.291 772 083 0.0037

Rydberg constant R 1.10 � 107 m�1 1.097 373 156 854 8 7.6 � 10�6

Electron Compton wavelength �C 2.43 � 10�12 m 2.426 310 215 0.0073

aValues given in this column should be given the same unit and power of 10 as the computational value.
bParts per million.
cMasses given in u are in unified atomic mass units, where 1 u � 1.660 538 73 � 10�27 kg.
dSTP means standard temperature and pressure: 0°C and 1.0 atm (0.1 MPa).

Some Fundamental 
Constants of Physics*
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*The values in this table were selected from the 1998 CODATA recommended values (www.physics.nist.gov).
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Some Astronomical 
Data

A P P E N D I X

C

Some Distances from Earth

To the Moon* 3.82 � 108 m To the center of our galaxy 2.2 � 1020 m

To the Sun* 1.50 � 1011 m To the Andromeda Galaxy 2.1 � 1022 m

To the nearest star (Proxima Centauri) 4.04 � 1016 m To the edge of the observable universe �1026 m

* Mean distance.

The Sun, Earth, and the Moon

Property Unit Sun Earth Moon

Mass kg 1.99 � 1030 5.98 � 1024 7.36 � 1022

Mean radius m 6.96 � 108 6.37 � 106 1.74 � 106

Mean density kg/m3 1410 5520 3340

Free-fall acceleration at the surface m/s2 274 9.81 1.67

Escape velocity km/s 618 11.2 2.38

Period of rotationa — 37 d at polesb 26 d at equatorb 23 h 56 min 27.3 d

Radiation powerc W 3.90 � 1026

a Measured with respect to the distant stars, b The Sun, a ball of gas, does not rotate as a rigid body; c Just outside Earth’s atmosphere solar energy is received,
assuming normal incidence, at the rate of 1340 W/m2.

Some Properties of the Planets

Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune Pluto

Mean distance from Sun, 106 km 57.9 108 150 228 778 1430 2870 4500 5900

Period of revolution, y 0.241 0.615 1.00 1.88 11.9 29.5 84.0 165 248

Period of rotation,a d 58.7 �243b 0.997 1.03 0.409 0.426 �0.451b 0.658 6.39

Orbital speed, km/s 47.9 35.0 29.8 24.1 13.1 9.64 6.81 5.43 4.74

Equatorial diameter, km 4880 12 100 12 800 6790 143 000 120 000 51 800 49 500 2300

Mass (Earth � 1) 0.0558 0.815 1.000 0.107 318 95.1 14.5 17.2 0.002

Surface value of g,c m/s2 3.78 8.60 9.78 3.72 22.9 9.05 7.77 11.0 0.5

Escape velocity,c km/s 4.3 10.3 11.2 5.0 59.5 35.6 21.2 23.6 1.1

a Measured with respect to the distant stars.
b Venus and Uranus rotate opposite their orbital motion.
c Gravitational acceleration measured at the planet’s equator.
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Conversion FactorsA P P E N D I X

D
Conversion factors may be read directly from these tables. For example, 1 degree � 2.778 � 10�3 revolutions, so 16.7° � 16.7 � 2.778 � 10�3

rev. The SI units are fully capitalized. Adapted in part from G. Shortley and D. Williams, Elements of Physics, 1971, Prentice-Hall, Englewood
Cliffs, N.J.

Plane Angle

� � � RADIAN rev

1 degree � 1 60 3600 1.745 � 10�2 2.778 � 10�3

1 minute � 1.667 � 10�2 1 60 2.909 � 10�4 4.630 � 10�5

1 second � 2.778 � 10�4 1.667 � 10�2 1 4.848 � 10�6 7.716 � 10�7

1 RADIAN � 57.30 3438 2.063 � 105 1 0.1592

1 revolution � 360 2.16 � 104 1.296 � 106 6.283 1

Length

cm METER km in. ft mi

1 centimeter � 1 10�2 10�5 0.3937 3.281 � 10�2 6.214 � 10�6

1 METER � 100 1 10�3 39.37 3.281 6.214 � 10�4

1 kilometer � 105 1000 1 3.937 � 104 3281 0.6214

1 inch � 2.540 2.540 � 10�2 2.540 � 10�5 1 8.333 � 10�2 1.578 � 10�5

1 foot � 30.48 0.3048 3.048 � 10�4 12 1 1.894 � 10�4

1 mile � 1.609 � 105 1609 1.609 6.336 � 104 5280 1

1 angström � 10�10 m 1 fermi � 10�15 m 1 light-year � 9.460 � 1012 km 1 fathom � 6 ft 1 yard � 3 ft 1 mil � 10�3 in.
1 nautical mile � 1852 m 1 parsec � 3.084 � 1013 km 1 Bohr radius � 5.292 � 10�11 m 1 rod � 16.5 ft 1 nm � 10�9 m

� 1.151 miles � 6076 ft 

Solid Angle

1 sphere
� 4
 steradians

� 12.57 steradians

Area

METER2 cm2 ft2 in.2

1 SQUARE METER � 1 104 10.76 1550

1 square centimeter � 10�4 1 1.076 � 10�3 0.1550

1 square foot � 9.290 � 10�2 929.0 1 144

1 square inch � 6.452 � 10�4 6.452 6.944 � 10�3 1

Volume

METER3 cm3 L ft3 in.3

1 CUBIC METER � 1 106 1000 35.31 6.102 � 104

1 cubic centimeter � 10�6 1 1.000 � 10�3 3.531 � 10�5 6.102 � 10�2

1 liter � 1.000 � 10�3 1000 1 3.531 � 10�2 61.02

1 cubic foot � 2.832 � 10�2 2.832 � 104 28.32 1 1728

1 cubic inch � 1.639 � 10�5 16.39 1.639 � 10�2 5.787 � 10�4 1

key: 1 square mile � 2.788 � 107 ft2 �

640 acres; 1 barn � 10�28 m2; 1 acre � 43 560 ft2;
1 hectare � 104 m2 � 2.471 acres.

key: 1 U.S. fluid gallon �

4 U.S. fluid quarts � 8 U.S.
pints � 128 U.S. fluid ounces �

231 in.3 1 British imperial 
gallon � 277.4 in.3 � 1.201 U.S.
fluid gallons.
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Mass

Quantities in the colored areas are not mass units but are often used as such. When we write, for example, 1 kg “�” 2.205 lb, this means that a
kilogram is a mass that weighs 2.205 pounds at a location where g has the standard value of 9.80665 m/s2.

g KILOGRAM slug u oz lb ton

1 gram � 1 0.001 6.852 � 10�5 6.022 � 1023 3.527 � 10�2 2.205 � 10�3 1.102 � 10�6

1 KILOGRAM � 1000 1 6.852 � 10�2 6.022 � 1026 35.27 2.205 1.102 � 10�3

1 slug � 1.459 � 104 14.59 1 8.786 � 1027 514.8 32.17 1.609 � 10�2

1 atomic
mass unit � 1.661 � 10�24 1.661 � 10�27 1.138 � 10�28 1 5.857 � 10�26 3.662 � 10�27 1.830 � 10�30

1 ounce � 28.35 2.835 � 10�2 1.943 � 10�3 1.718 � 1025 1 6.250 � 10�2 3.125 � 10�5

1 pound � 453.6 0.4536 3.108 � 10�2 2.732 � 1026 16 1 0.0005

1 ton � 9.072 � 105 907.2 62.16 5.463 � 1029 3.2 � 104 2000 1

1 metric ton � 1000 kg

Speed

ft/s km/h METER/SECOND mi/h cm/s

1 foot per second � 1 1.097 0.3048 0.6818 30.48

1 kilometer per hour � 0.9113 1 0.2778 0.6214 27.78

1 METER per SECOND � 3.281 3.6 1 2.237 100

1 mile per hour � 1.467 1.609 0.4470 1 44.70

1 centimeter per second � 3.281 � 10�2 3.6 � 10�2 0.01 2.237 � 10�2 1

1 knot � 1 nautical mi/h � 1.688 ft/s 1 mi/min � 88.00 ft/s � 60.00 mi/h

Time

y d h min SECOND

1 year � 1 365.25 8.766 � 103 5.259 � 105 3.156 � 107

1 day � 2.738 � 10�3 1 24 1440 8.640 � 104

1 hour � 1.141 � 10�4 4.167 � 10�2 1 60 3600

1 minute � 1.901 � 10�6 6.944 � 10�4 1.667 � 10�2 1 60

1 SECOND � 3.169 � 10�8 1.157 � 10�5 2.778 � 10�4 1.667 � 10�2 1

Force

dyne NEWTON lb pdl

1 dyne � 1 10�5 2.248 � 10�6 7.233 � 10�5

1 NEWTON � 105 1 0.2248 7.233

1 pound � 4.448 � 105 4.448 1 32.17

1 poundal � 1.383 � 104 0.1383 3.108 � 10�2 1

1 ton � 2000 lb



Pressure

atm dyne/cm2 inch of water cm Hg PASCAL lb/in.2 lb/ft2

1 atmosphere � 1 1.013 � 106 406.8 76 1.013 � 105 14.70 2116

1 dyne per

centimeter2 � 9.869 � 10�7 1 4.015 � 10�4 7.501 � 10�5 0.1 1.405 � 10�5 2.089 � 10�3

1 inch of
watera at 4°C � 2.458 � 10�3 2491 1 0.1868 249.1 3.613 � 10�2 5.202

1 centimeter
of mercurya

at 0°C � 1.316 � 10�2 1.333 � 104 5.353 1 1333 0.1934 27.85

1 PASCAL � 9.869 � 10�6 10 4.015 � 10�3 7.501 � 10�4 1 1.450 � 10�4 2.089 � 10�2

1 pound per inch2 � 6.805 � 10�2 6.895 � 104 27.68 5.171 6.895 � 103 1 144

1 pound per foot2 � 4.725 � 10�4 478.8 0.1922 3.591 � 10�2 47.88 6.944 � 10�3 1

a Where the acceleration of gravity has the standard value of 9.80665 m/s2.
1 bar � 106 dyne/cm2 � 0.1 MPa 1 millibar � 103 dyne/cm2 � 102 Pa 1 torr � 1 mm Hg

Energy, Work, Heat

Btu erg ft � lb hp � h JOULE cal kW � h eV MeV

1 British 1.055 3.929 2.930 6.585 6.585
thermal unit �

1
� 1010

777.9
� 10�4

1055 252.0
� 10�4 � 1021 � 1015

1 erg �
9.481

1
7.376 3.725 2.389 2.778 6.242 6.242

� 10�11 � 10�8 � 10�14 10�7
� 10�8 � 10�14 � 1011 � 105

1 foot-pound �
1.285 1.356

1
5.051 3.766 8.464 8.464

� 10�3 � 107 � 10�7 1.356 0.3238
� 10�7 � 1018 � 1012

1 horsepower-   2545 2.685 1.980 2.685 6.413 1.676 1.676
hour � � 1013 � 106 1

� 106 � 105 0.7457
� 1025 � 1019

1 JOULE �
9.481 3.725 2.778 6.242 6.242

� 10�4 107 0.7376
� 10�7 1 0.2389

� 10�7 � 1018 � 1012

1 calorie �
3.969 4.186 1.560 1.163 2.613 2.613
� 10�3 � 107 3.088

� 10�6 4.186 1
� 10�6 � 1019 � 1013

1 kilowatt    3.600 2.655 3.600 8.600 2.247 2.247
hour �

3413
� 1013 � 106 1.341

� 106 � 105 1
� 1025 � 1019

1 electron-volt �
1.519 1.602 1.182 5.967 1.602 3.827 4.450

� 10�22 � 10�12 � 10�19 � 10�26 � 10�19 � 10�20 � 10�26
1 10�6

1 million     1.519 1.602 1.182 5.967 1.602 3.827 4.450
electron-volts �  � 10�16 � 10�6 � 10�13 � 10�20 � 10�13 � 10�14 � 10�20

10�6 1

Magnetic Field

gauss TESLA milligauss

1 gauss � 1 10�4 1000

1 TESLA � 104 1 107

1 milligauss � 0.001 10�7 1

1 tesla � 1 weber/meter2

Magnetic Flux

maxwell WEBER

1 maxwell � 1 10�8

1 WEBER � 108 1

Power

Btu/h ft � lb/s hp cal/s kW WATT

1 British thermal unit per hour � 1 0.2161 3.929 � 10�4 6.998 � 10�2 2.930 � 10�4 0.2930

1 foot-pound per second � 4.628 1 1.818 � 10�3 0.3239 1.356 � 10�3 1.356

1 horsepower � 2545 550 1 178.1 0.7457 745.7

1 calorie per second � 14.29 3.088 5.615 � 10�3 1 4.186 � 10�3 4.186

1 kilowatt � 3413 737.6 1.341 238.9 1 1000

1 WATT � 3.413 0.7376 1.341 � 10�3 0.2389 0.001 1
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Geometry

Circle of radius r: circumference � 2
r; area � 
r2.
Sphere of radius r: area � 4
r2; volume � 
r3.
Right circular cylinder of radius r and height h:

area � 2
r2 � 2
rh; volume � 
r 2h.
Triangle of base a and altitude h: area � ah.

Quadratic Formula

If ax2 � bx � c � 0, then x �

Trigonometric Functions of Angle �

sin  � cos  �

tan  � cot  �

sec  � csc  �

Pythagorean Theorem

In this right triangle,
a2 � b2 � c2

Triangles

Angles are A, B, C

Opposite sides are a, b, c

Angles A � B � C � 180°

� �

c2 � a2 � b2 � 2ab cos C

Exterior angle D � A � C

Mathematical Signs and Symbols

� equals
� equals approximately
� is the order of magnitude of
� is not equal to
� is identical to, is defined as
� is greater than (� is much greater than)
� is less than (� is much less than)
� is greater than or equal to (or, is no less than)
� is less than or equal to (or, is no more than)
� plus or minus
� is proportional to

sin C
c

sin B
b

sin A
a

r
y

r
x

x
y

y
x

x
r

y
r

�b � √b2 � 4ac
2a

.

1
2

4
3

Mathematical FormulasA P P E N D I X

E
� the sum of
�x� the average value of x

Trigonometric Identities

sin(90° � ) � cos 

cos(90° � ) � sin 

sin/cos � tan 

sin2  � cos2  � 1
sec2  � tan2  � 1
csc2  � cot2  � 1
sin 2 � 2 sin  cos 

cos 2 � cos2  � sin2  � 2 cos2  � 1 � 1 � 2 sin2 

sin(� � �) � sin � cos � � cos � sin �

cos(� � �) � cos � cos � � sin � sin �

tan(� � �) �

sin � � sin � � 2 sin (� � �) cos (� � �)

cos � � cos � � 2 cos (� � �) cos (� � �)

cos � � cos � � �2 sin (� � �) sin (� � �)

Binomial Theorem

Exponential Expansion

ex � 1 � x � � � � � �

Logarithmic Expansion

ln(1 � x) � x � x2 � x3 � � � �

Trigonometric Expansions (� in radians)

sin  �  �

cos  � 1 �

tan  �  �
 3

3
�

2 5

15
� � � �

 2

2!
�

 4

4!
� � � �

 3

3!
�

 5

5!
� � � �

(	 x 	 � 1)1
3

1
2

x3

3!
x2

2!

(1 � x)n � 1 �
nx
1!

�
n(n � 1)x2

2!
� � � �  (x2 � 1)

1
2

1
2

1
2

1
2

1
2

1
2

tan � � tan �

1 � tan � tan �

y axis

x axis
θ

r
y

x0

c
a

b

b a

c

C

B
D

A
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Derivatives and Integrals

In what follows, the letters u and v stand for any functions of x, and
a and m are constants. To each of the indefinite integrals should be
added an arbitrary constant of integration. The Handbook of
Chemistry and Physics (CRC Press Inc.) gives a more extensive
tabulation.

Derivatives

1. � 1

2. (au) � a

3. (u � v) � �

4. xm � mxm�1

5. ln x �

6. (uv) � u � v

7. ex � ex

8. sin x � cos x

9. cos x � �sin x

10. tan x � sec2x

11. cot x � �csc2 x

12. sec x � tan x sec x

13. csc x � �cot x csc x

14. eu � eu

15. sin u � cos u

16. cos u � �sin u
du
dx

d
dx

du
dx

d
dx

du
dx

d
dx

d
dx

d
dx

d
dx

d
dx

d
dx

d
dx

d
dx

du
dx

dv
dx

d
dx

1
x

d
dx

d
dx

dv
dx

du
dx

d
dx

du
dx

d
dx

dx
dx

Cramer’s Rule

Two simultaneous equations in unknowns x and y,

a1x � b1y � c1 and a2x � b2y � c2,

have the solutions

x � �

and

y � � .

Products of Vectors

Let and be unit vectors in the x, y, and z directions. Then

� � � � � � 1, � � � � � � 0,

� � � � � � 0,

� � , � � , � � .

Any vector with components ax, ay, and az along the x, y, and z
axes can be written as

� ax � ay � az .

Let , , and be arbitrary vectors with magnitudes a, b, and c.
Then

� (

Let  be the smaller of the two angles between and . Then

� axbx � ayby � azbz � ab cos 

� � �

� (aybz � byaz) � (azbx � bzax) � (axby � bxay)

a: � (b
:

� c:) � (a: � c:)b
:

� (a: � b
:

) c:

a: �  (b
:

� c:) � b
:

�  ( c: � a:) � c: �  (a: � b
:

)

	 a: � b
:

	 � ab sin 

k̂ĵî

ax

bx

ay

by
k̂

ax

bx

az

bz
ĵ

ay

by

az

bz
î

a: � b
:

� �b
:

� a: � 	îax

bx

ĵ
ay

by

k̂
az

bz
	

a: � b
:

� b
:

� a:

b
:

a:

(sa:) � b
:

� a: � (sb
:

) � s(a: � b
:

)  (s � a scalar).

b
:

� c:) � (a: � b
:

) � (a: � c:)a:

c:b
:

a:

k̂ĵîa:

a:

ĵîk̂îk̂ĵk̂ĵî

k̂k̂ĵĵîî

îk̂k̂ĵĵîk̂k̂ĵĵîî

î, ĵ, and k̂

a1c2 � a2c1

a1b2 � a2b1

a1

a2

c1

c2

a1

a2

b1

b2

c1b2 � c2b1

a1b2 � a2b1

c1

c2

b1

b2

a1

a2

b1

b2
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12.

13.

14.

15.

16.

17.

18.

19.

20.

21. 
 x dx
x � d

� x � d ln(x � d)


�

0
x2n�1 e�ax2

dx �
n!

2an�1  (a � 0)


 dx
(x2 � a2)3/2 �

x
a2(x2 � a2)1/2


 x dx
(x2 � a2)3/2 � �

1
(x2 � a2)1/2


 dx
√x2 � a2 � ln(x � √x2 � a2)


�

0
x2ne�ax2

dx �
1 �  3 �  5 � � �  (2n � 1)

2n�1an √ 


a


�

0
xne�ax dx �

n!
an�1


x2e�ax dx � �
1
a3  (a2x2 � 2ax � 2)e�ax


xe�ax dx � �
1
a2  (ax � 1)e�ax


e�ax dx � �
1
a

e�ax
Integrals

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11. 
sin2 x dx � 1
2 x � 1

4 sin 2x


tan x dx � ln 	 sec x 	


cos x dx � sin x


sin x dx � �cos x


ex dx � ex


u
dv
dx

dx � uv � 
v
du
dx

dx


 dx
x

� ln 	 x 	


xmdx �
xm�1

m � 1
 (m � �1)


(u � v)dx � 
u dx � 
v dx


au dx � a
u dx


dx � x
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Properties of Common
Elements

A P P E N D I X

F
All physical properties are for a pressure of 1 atm unless otherwise specified.

Specific
Atomic Molar Boiling Heat,
Number Mass, Density, Melting Point, J/(g � °C)

Element Symbol Z g/mol g/cm3 at 20°C Point, °C °C at 25°C

Aluminum Al 13 26.9815 2.699 660 2450 0.900

Antimony Sb 51 121.75 6.691 630.5 1380 0.205

Argon Ar 18 39.948 1.6626 � 10�3 �189.4 �185.8 0.523

Arsenic As 33 74.9216 5.78 817 (28 atm) 613 0.331

Barium Ba 56 137.34 3.594 729 1640 0.205

Beryllium Be 4 9.0122 1.848 1287 2770 1.83

Bismuth Bi 83 208.980 9.747 271.37 1560 0.122

Boron B 5 10.811 2.34 2030 — 1.11

Bromine Br 35 79.909 3.12 (liquid) �7.2 58 0.293

Cadmium Cd 48 112.40 8.65 321.03 765 0.226

Calcium Ca 20 40.08 1.55 838 1440 0.624

Carbon C 6 12.01115 2.26 3727 4830 0.691

Cesium Cs 55 132.905 1.873 28.40 690 0.243

Chlorine Cl 17 35.453 3.214 � 10�3 (0°C) �101 �34.7 0.486

Chromium Cr 24 51.996 7.19 1857 2665 0.448

Cobalt Co 27 58.9332 8.85 1495 2900 0.423

Copper Cu 29 63.54 8.96 1083.40 2595 0.385

Fluorine F 9 18.9984 1.696 � 10�3(0°C) �219.6 �188.2 0.753

Gadolinium Gd 64 157.25 7.90 1312 2730 0.234

Gallium Ga 31 69.72 5.907 29.75 2237 0.377

Germanium Ge 32 72.59 5.323 937.25 2830 0.322

Gold Au 79 196.967 19.32 1064.43 2970 0.131

Hafnium Hf 72 178.49 13.31 2227 5400 0.144

Helium He 2 4.0026 0.1664 � 10�3 �269.7 �268.9 5.23

Hydrogen H 1 1.00797 0.08375 � 10�3 �259.19 �252.7 14.4

Indium In 49 114.82 7.31 156.634 2000 0.233

Iodine I 53 126.9044 4.93 113.7 183 0.218

Iridium Ir 77 192.2 22.5 2447 (5300) 0.130

Iron Fe 26 55.847 7.874 1536.5 3000 0.447

Krypton Kr 36 83.80 3.488 � 10�3 �157.37 �152 0.247

Lanthanum La 57 138.91 6.189 920 3470 0.195

Lead Pb 82 207.19 11.35 327.45 1725 0.129

Lithium Li 3 6.939 0.534 180.55 1300 3.58

Magnesium Mg 12 24.312 1.738 650 1107 1.03

Manganese Mn 25 54.9380 7.44 1244 2150 0.481

Mercury Hg 80 200.59 13.55 �38.87 357 0.138

Molybdenum Mo 42 95.94 10.22 2617 5560 0.251

Neodymium Nd 60 144.24 7.007 1016 3180 0.188



Appendix F A-15

Neon Ne 10 20.183 0.8387 � 10�3 �248.597 �246.0 1.03

Nickel Ni 28 58.71 8.902 1453 2730 0.444

Niobium Nb 41 92.906 8.57 2468 4927 0.264

Nitrogen N 7 14.0067 1.1649 � 10�3 �210 �195.8 1.03

Osmium Os 76 190.2 22.59 3027 5500 0.130

Oxygen O 8 15.9994 1.3318 � 10�3 �218.80 �183.0 0.913

Palladium Pd 46 106.4 12.02 1552 3980 0.243

Phosphorus P 15 30.9738 1.83 44.25 280 0.741

Platinum Pt 78 195.09 21.45 1769 4530 0.134

Plutonium Pu 94 (244) 19.8 640 3235 0.130

Polonium Po 84 (210) 9.32 254 — —

Potassium K 19 39.102 0.862 63.20 760 0.758

Radium Ra 88 (226) 5.0 700 — —

Radon Rn 86 (222) 9.96 � 10�3 (0°C) (�71) �61.8 0.092

Rhenium Re 75 186.2 21.02 3180 5900 0.134

Rubidium Rb 37 85.47 1.532 39.49 688 0.364

Scandium Sc 21 44.956 2.99 1539 2730 0.569

Selenium Se 34 78.96 4.79 221 685 0.318

Silicon Si 14 28.086 2.33 1412 2680 0.712

Silver Ag 47 107.870 10.49 960.8 2210 0.234

Sodium Na 11 22.9898 0.9712 97.85 892 1.23

Strontium Sr 38 87.62 2.54 768 1380 0.737

Sulfur S 16 32.064 2.07 119.0 444.6 0.707

Tantalum Ta 73 180.948 16.6 3014 5425 0.138

Tellurium Te 52 127.60 6.24 449.5 990 0.201

Thallium Tl 81 204.37 11.85 304 1457 0.130

Thorium Th 90 (232) 11.72 1755 (3850) 0.117

Tin Sn 50 118.69 7.2984 231.868 2270 0.226

Titanium Ti 22 47.90 4.54 1670 3260 0.523

Tungsten W 74 183.85 19.3 3380 5930 0.134

Uranium U 92 (238) 18.95 1132 3818 0.117

Vanadium V 23 50.942 6.11 1902 3400 0.490

Xenon Xe 54 131.30 5.495 � 10�3 �111.79 �108 0.159

Ytterbium Yb 70 173.04 6.965 824 1530 0.155

Yttrium Y 39 88.905 4.469 1526 3030 0.297

Zinc Zn 30 65.37 7.133 419.58 906 0.389

Zirconium Zr 40 91.22 6.506 1852 3580 0.276

The values in parentheses in the column of molar masses are the mass numbers of the longest-lived isotopes of those elements that are radioactive. Melting
points and boiling points in parentheses are uncertain. The data for gases are valid only when these are in their usual molecular state, such as H2, He, O2, Ne,
etc. The specific heats of the gases are the values at constant pressure. Primary source: Adapted fron J. Emsley, The Elements, 3rd ed., 1998, Clarendon Press,
Oxford (www.webelements.com). Data on newest elements are current.

Specific
Atomic Molar Boiling Heat,
Number Mass, Density, Melting Point, J/(g� °C)

Element Symbol Z g/mol g/cm3 at 20°C Point, °C °C at 25°C

www.webelements.com
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The names of elements 104 through 109 (Rutherfordium, Dubnium, Seaborgium, Bohrium, Hassium,
and Meitnerium, respectively) were adopted by the International Union of Pure and Applied 
Chemistry (IUPAC) in 1997. As of early 2004, the discovery of elements 110 through 115 have been re-
ported in scientific journals. See www.webelements.com for the latest information and newest elements.

Periodic Table 
of the Elements

A P P E N D I X

G

H
1

IA

IIA

Alkali
metals

Li
3

Na
11

K
19

Rb
37

Cs
55

Fr
87

1

2

3

4

5

6

7

Be
4

Mg
12

Ca
20

Sr
38

Ba
56

Ra
88

Sc
21

Y
39

*
57-71

†
89-103

Ti
22

Zr
40

Hf
72

Rf
104

V
23

Nb
41

Ta
73

Db
105

Cr
24

Mo
42

W
74

Sg
106

Mn
25

Tc
43

Re
75

Bh
107

Fe
26

Ru
44

Os
76

Hs
108

Co
27

VIIIB

Transition metals

Rh
45

Ir
77

Mt
109

Ni
28

Pd
46

Pt
78

Ds
110

Cu
29

Ag
47

Au
79

Uua
111

Zn
30

Cd
48

Hg
80

Uub
112

Ga
31

In
49

Tl
81

113

Ge
32

Sn
50

Pb
82

Uuq
114

As
33

Sb
51

Bi
83

115

Se
34

Te
52

Po
84

116

Br
35

I
53

At
85

117

Kr
36

Al
13

Si
14

P
15

S
16

Cl
17

Ar
18

B
5

C
6

N
7

O
8

F
9

Ne
10

He
2

IIIB IVB VB VIB VIIB IB IIB

IIIA

Nonmetals

IVA VA VIA VIIA

0

Noble
gases

Xe
54

Rn
86

La
57

Ce
58

Pr
59

Nd
60

Pm
61

Sm
62

Eu
63

Gd
64

Tb
65

Dy
66

Ho
67

Er
68

Tm
69

Yb
70

Lu
71

Ac

Lanthanide series *

Actinide series †
89

Th
90

Pa
91

U
92

Np
93

Pu
94

Am
95

Cm
96

Bk
97

Cf
98

Es
99

Fm
100

Md
101

No
102

Lr
103

118

T
H

E
 H

O
R

IZ
O

N
T

A
L

 P
E

R
IO

D
S

Inner transition metals

Metalloids

Metals

www.webelements.com


(Answers that involve a proof, graph, or otherwise lengthy 
solution are not included.)

Chapter 1
RE 1-1: Examples include second or hour, meter or inch, and gram
or kilogram.

RE 1-2: A 12-inch ruler would more likely change less over time
than your foot, especially if you are still growing.

RE 1-3: The length of one day or the time it takes for the earth to
rotate 360° about its own axis is not constant, because the speed of
the earth’s rotation is slowly decreasing with time.

RE 1-4: (a) Since 24 h of time occurs for each 360° of rotation or
4 min for each degree of longitude or 240 s for each degree of
longitude, 20 min and 13 s will relate to a rotation or longitude change
of (1213 s)/(240 s/deg) � 5.05 degrees of longitude change.
(b) If the clock is off by 2 min or 120 s, the longitude will be off by (120
s)/(240 s/degree) � 0.5 degrees of longitude. (c) 360° or one revolution
relates to one circumference of length. Therefore 0.5°/360° � x/(24 000
nautical miles), or x � 33.3 nautical miles off course. Sailor beware!

RE 1-5: (a) If your watches are synchronized, you should measure
the same time for the flash. For the same duration of time between
the flash and thunder you both should have accurate watches and
be located close to one another. (b) No, the 12 h (smaller) clock
shows a time of 7:44 or a total elapsed time of 464 min since 
12 o’clock. This is 464 min/(1440 min/day) � .322 day elapsed. The
10 h (larger) clock shows a time of 8.23 hours elapsed since 
10 o’clock (12 o’clock on the other scale) or 8.23/(20 hr/day) � .412
day elapsed.

RE 1-6: One of many possible procedures would be to use the bal-
ance to determine the amount of clay equal to 1 kg. Divide the clay
into 1000 equal volume pieces. Assuming the density of the clay is
uniform, each clay piece now has a mass of 1 gram. Use these pieces
with the balance and the object whose mass is to be determined to
find its mass.

RE 1-7: (a) It is correct to write 1 min/60 s � 1 because 1 minute
and 60 seconds are the same length of time. It is meaningless to say
1/60 � 1 when no units are specified. These numbers are not the
same in the absence of the context of the units. (b) In terms of
conversion factors and chain-link conversions, the number of minutes
in a day is given by

1 d � (1 d)� 24 h
1 d �� 60 min

1 h � � 1440 m.

RE 1-8: (a) 2. (b) Exact, if the cows were counted. (c) 6. Remember
that the leading zeros don’t count. (d) 7. Trailing zeros do count. (e)
Exact, by definition.

RE 1-9: (a) 11. (b) Probably 3, we can’t be sure. (c) 2.09 � 1010 ft.
(d) 1010 ft (ten to the tenth feet).

RE 1-10: (a) You should keep all digits for intermediate results;
thus you should use A � 1.96 cm2 for calculating V. (b) 2.7 cm3; in
this situation the answer can be to no more significant figures than
the original data. (c) 2.8 cm3.

RE 1-11: (a) 27; (b) 198.0; (c) 0.6; (d) 0.9986, see Evaluating Func-
tions in Appendix A, Section 5. (e) Since five is an exact number, the
four significant numbers in the average length limits the answer to
10.67 m.

RE 1-12: (a) 0.01 s; (b) .01 s out of 1.78 s or .01/1.78 � 0.00562, or
about 0.6%.

Problems
1. (a) 0.98 ft/ns; (b) 0.30 mm/ps. 3. C, D, A, B, E; the important crite-
rion is the constancy of the daily variation, not its magnitude. 5. 0.12
AU/min 7. 2.1 h. 9. 1.21 � 1012 �s. 11. (a) 160 rods; (b) 40 chains.
13. (a) 4.00 � 104 km; (b) 5.10 � 108 km2; (c) 1.08 � 1012 km3.
15. 1.9 � 1022 cm3. 17. 1.1 � 103 acre-feet. 19. 9.0 � 1049. 21. (a) 103

kg; (b) 158 kg/s. 23. (a) 1.18 � 10�29 m3. 25. 3.8 mg/s. 27. 8 � 102 km.
29. 6.0 � 1026. 31. (a) 60.8 W; (b) 43.3 Z. 33. 89 km. 35. � 1 � 1036.
37. 700 to 1500. 39. (a) 293 U.S. bushels; (b) 3.81 � 103 U.S. bushels.
41. 9.4 � 10�3. 43. 5.95 km. 45. 1.9 � 105 kg. 47. 2 � 104 to 4 � 104.
49. 10.7. 59. (a) 13 597 kg; (b) 4917 L; (c) 6172 kg; (d) 20 075 L;
(e) 45%

Chapter 2
RE 2-1: (b), (c), and (d).

RE 2-2: Correct order: (c), (b), and (a).

RE 2-3: Yes, the displacement can be positive as long as the parti-
cle moves to a less negative position.

RE 2-4: (a) Average velocity is the displacement divided by the to-
tal time �vx� � 10 mi/30 min � 0.33 mi/min due east. (b) Average speed
is the total distance traveled divided by the total time �s� � 30 mi/30
min � 1 mi/min. (c) The answers are different because the displace-
ment is different from the total distance traveled in the 30 minute
time period.

RE 2-5: Instantaneous speed. The speedometer only tells you the
speed at which you are currently driving, not your acceleration or
direction.

Answers to Reading Exercises
and Odd-Numbered Problems



RE 3-5: (a) (b) 
(c) 62 kg

RE 3-6: (a) The mass measurement in part (b) above uses the ratio
of the force to acceleration and hence is the inertial mass. (b) We as-
sumed that the student is on the surface of planet Earth and that the
bathroom scale was calibrated for the same planet.

RE 3-7: In both cases (a) and (b) the acceleration is zero, there-
fore the net force must also be zero. This will require all three
forces to add to zero as vectors. (a) This requires to point to the
left in the diagram with a magnitude of 2 N so 
(b) Since the acceleration is also zero in this case, we still have

RE 3-8: (a) Bottom right cart has a net force of �5 N, top left has
�4 N, top right has �1 N, and bottom left has a net force of zero. (b)
Since the acceleration and net force are directly proportional, the ac-
celerations rank in the same order.

RE 3-9: In the chosen coordinate system, all the accelerations in
the v vs. t graphs shown is Fig. 3-2 are negative since the slopes are
negative. (a) The box on carpet acceleration is about �3.9 m/s2

as determined by calculating the slope of the v vs. t graph. Slope �
(0.00 � 0.90)(m/s)/(0.23 � 0.00)(s). (b) The cart on track accelera-
tion is about �0.15 m/s2 as determined by calculating the slope of the
v vs. t graph. Slope � (0.62 � 0.80)(m/s)/(1.2 � 0.0)(s).

RE 3-10: (a) There appear to be no other horizontal forces
on the moving objects except friction. Thus, we can assume that
the net force on each object is due to a friction force. This friction
force seems to be constant since the acceleration is constant
and we assume that . (b) Box on carpet � max �
0.5 kg � (� 3.9 m/s2) � �2 N. It points to the left. (c) Cart on track

. It also points to
the left.

RE 3-11: (a) A tossed object is changing its velocity at all times.
Just before it reaches the top of its flight it has a positive velocity and
just after it has a negative velocity. Since acceleration is rate of
change of velocity over time, even the instantaneous acceleration
doesn’t go to zero over an infinitesimal time interval. (b) The Fig.
3-22 graph of velocity vs. time is linear with a constant negative slope.
Since slope of a vy vs. t graph represents the acceleration component
ay, then ay � constant so is constant.

RE 3-12: Change every x in the two equations in Table 2-1 to a y.
Then replace ay (previously ax) with �g.

RE 3-13: (a) The unmagnetized paperclip will be attracted to the
magnet and, in turn, the magnet will be attracted toward the paper-
clip. Newton’s Third Law tells us that these attractive forces will be
equal in magnitude to one another but opposite in direction; the
force on the magnet will be to the left and the force on the paperclip
will be to the right. (b) Newton’s Third Law applies to all forces of in-
teraction of which this is just one example.

Problems
1. 16 N. 3. (a) 0.02 m/s2; (b) 8 � 104 km; (c) 2 � 103 m/s. 5. 1.2 �
105 N. 7. (a) 4.9 � 105 N; (b) 1.5 � 106 N. 9. (a) 245 m/s2; (b) 20.4 kN.
11. (a) 8.0 m/s; (b) �x direction. 13. 8.0 cm/s2. 15. 1.8 � 104 N. 17.
(a) 31.3 kN; (b) 24.4 kN. 19. 2Ma/(a � g). 21. 2.4 N. 23. (a) 1.23 N;
(b) 2.46 N; (c) 3.69 N; (d) 4.92 N; (e) 6.15 N; (f) 0.25 N.
25. (a) 3.2 s; (b) 1.3 s. 27. (a) 3.70 m/s; (b) 1.74 m/s; (c) 0.154 m. 29.

a: � ay ĵ

Fx
fric � max � 0.5 kg � (�0.15 m/s2) � �0.08 N

Fx
fricFx

net � max

F
:

C � (�2 N)î.

F
:

C � (�2 N)î.
F
:

C

m � F/a � 62 kg;F
:

� (�26 N)î, a: � (�0.42 m/s2)î;

Ans-2 Answers to Reading Exercises and Odd-Numbered Problems

RE 2-6: (a) Remember that the velocity is the time derivative of
the position equation. The velocity will be constant if it has no time
dependence. Position equations 1 and 4 give a constant velocity.
(b) The velocity is negative in equations 2 and 3.

RE 2-7: In returning to x1 the total displacement is
zero. Since , the average velocity is also zero.

RE 2-8: (a) �, (b) �, (c) �, (d) �; remember that will have the
same direction as or .

RE 2-9: The equations of Table 2-1 apply when ax is constant. Take
the second derivative of x with respect to t to find ax. Only equations
1, 3 and 4 give a constant ax (ax � 0 is a constant).

Problems
1. 414 ms. 3. (a) �40 km/h; (b) 40 km/h. 5. (a) 73 km/h; (b) 68 km/h;
(c) 70 km/h; (d) 0. 7. (a) 0, �2, 0, 12 m; (b) �12 m; (c) �7 m/s.
9. 1.4 m. 11. (a) �6 m/s; (b) negative x direction; (c) 6 m/s; (d) first
smaller, then zero, and then larger; (e) yes (t � 2s); (f) no. 13. 100 m.
15. (a) velocity squared; (b) acceleration; (c) m2/s2, m/s2. 17. 20 m/s2,
in the direction opposite to its initial velocity. 19. (a) m/s2, m/s3;
(b) 1.0 s; (c) 82 m; (d) �80 m; (e) 0, �12, �36, �72 m/s; (f) �6, �18,
�30, �42 m/s2. 21. 0.10 m. 23. (a) 1.6 m/s; (b) 18 m/s. 25. (a) 3.1 �
106 s � 1.2 months; (b) 4.6 � 1013 m. 27. 1.62 � 1015 m/s2. 29. 2.5 s. 31.
(a) 3.56 m/s2; (b) 8.43 m/s. 33. (a) 5.00 m/s; (b) 1.67 m/s2; (c) 7.50 m.
35. (a) 0.74 s; (b) �6.2 m/s2. 37. (a) 10.6 m; (b) 41.5 s. 39. (a) 30 s;
(b) 300 m. 41. (a) 54 m, 18 m/s, �12 m/s2; (b) 64 m at t � 4.0 s; (c)
24 m/s at t � 2.0 s; (d) �24 m/s2; (e) 18 m/s. 49. (a) 0.75 s; (b) 50 m.
57. Since there is some latitude in what might be considered “the
right answer” here, we have elected to mention some Web sites (cur-
rent as of May 2002) where graphs for model rocket kinematics
are shown: http://www.rocket-roar.com/rap/alt.html; http://mks.nio-
brara.com/altitude.html; http://www.boilerbay.com/rockets/; 59. 40 m.

Chapter 3
RE 3-1: (a) The velocity of the cart on the carpet goes to zero at
t � 1.1 s. (b) The velocity of the cart on the track at t � 1.1 s is
approximately 0.65 m/s, so it still has (0.65 m/s/0.80 m/s) or 81% of its
initial speed.

RE 3-2: (a) An elevator or car starting or stopping, or a merry-
go-round moving at a constant speed. (b) The person feels heavy dur-
ing startup and light during stopping. Objects, such as a marble, start
to move with no apparent reason on the merry-go-round floor.

RE 3-3: (a) No acceleration: Sliding a block along a table with a
small steady force or shoving on a huge object like a desk or car, etc.,
can result in either constant velocity motion or an inability to move
the object (desk or car). (b) Acceleration: Pushing hard on a sliding
block, pushing on a rolling ball, pushing or pulling someone on a ve-
hicle with wheels, etc.

RE 3-4: You would attach one end of the rubber band to a post and
hook the other end of the rubber band to a calibrated spring scale.
Then you would record the unstretched length of the rubber band
and the fact that the force on it is 0 N. Next you would pull on the
rubber band with the spring scale until it reads 1 N and record the
new length of the rubber band. Then you would repeat the process as
the spring scale reads 2 N, 3 N, etc., recording the rubber-band length
each time. In that way you can generate either a look-up table or a
graph of force vs. rubber-band length. If greater precision is needed,
you could take data for many more force-scale readings.

v:2 � v:1� v:
a:

�vx� � �x/�t
�x � x 1 � x 1

http://www.rocket-roar.com/rap/alt.html
http://mks.niobrara.com/altitude.htm
http://www.boilerbay.com/rockets/
http://mks.niobrara.com/altitude.htm


4.0 m/s. 31. 22 cm and 89 cm below the nozzle. 33. (a) 5.4 s;
(b) 41 m/s. 35. (a) 1.23 cm; (b) 4 times, 9 times, 16 times, 25 times. 37.
(a) 29.4 m; (b) 2.45 s. 39. (a) 3260 N (b) 2.7 � 103 kg; (c) 1.2 m/s 
41. (a) 17 s; (b) 290 m. 43. (a) 11 N; (b) 2.2 kg; (c) 0; (d) 2.2 kg.
45. (a) 494 N, up; (b) 494 N, down. 47. (a) 1.1 N. 49. 5.1 m/s. 51.
(a) 466 N; (b) 527 N.

Chapter 4
RE 4-1: Displacement (1) is identical as the ball ends up going a
net distance of 6 meters north and 3 meters west. Displacement (2) is
different. It actually has an equal magnitude but the ball has moved
in the opposite direction. Note: Displacement does not depend on
where something starts or ends, but only on how much and in what
direction its position has changed relative to where it started.

RE 4-2: (a) The maximum magnitude occurs when the two vectors
point in the same direction. This gives a magnitude for vector of 
3 m � 4 m � 7 m. (This answer is not correct without a unit at-
tached.) (b) The minimum magnitude occurs when the two vectors
point in the opposite directions. This gives a magnitude for vector 
of 4 m � 3 m � 1 m.

RE 4-3: Methods (c), (d), and (f) work since the parallelogram
methods (c) and (d) show that the same correct resultant can be ob-
tained regardless of the order in which components are added.
Method (f) shows an equivalent construction using components. All
the other vectors point in the wrong directions.

RE 4-4: The vectors in figures (b) and (d) have the same compo-
nents as the standard vector.

RE 4-5: Compare Figs 4-12 and 4-13.

c:

c:

Answers to Reading Exercises and Odd-Numbered Problems   Ans-3

Problems
1. The displacements should be (a) parallel, (b) antiparallel, (c) per-
pendicular. 3. (a) 5; (b) 1; (c) 7. 5. (a) �2.5 m; (b) �6.9 m. 7. (a) 47.2 m;
(b) 122°. 9. (a) 168 cm; (b) 32.5° above the floor. 11. (a) 6.42 m;
(b) no; (c) yes; (d) yes; (e) a possible answer: (4.30 m) � (3.70 m) �
(3.00 m) ; (f) 7.96 m. 13. (a) 370 m; (b) 36° north of east; (c) 425 m;
(d) the distance. 15. (a) (�9 m) � (10 m) ; (b) 13 m; (c) � 132°.
17. (a) 4.2 m; (b) 40° east of north; (c) 8.0 m; (d) 24° north of west.
19. (a) (3.0 m) � (2.0 m) � (5.0 m) ; (b) (5.0 m) � (4.0 m) �
(3.0 m) ; (c) (�5.0 m) � (4.0 m) � (3.0 m) . 21. (a) 38 m; (b)
320°; (c) 130 m; (d) 1.2°; (e) 62 m; (f) 130°. 23. (a) 1.59 m; (b) 12.1 m;
(c) 12.2 m; (d) 82.5°. 29. (a) Put axes along cube edges, with the
origin at one corner. Diagonals are a � a � a , a � a � a , a �
a � a , a � a � a ; (b) 54.7°; (c) a. 31. 4.1. 33. (a) 103 km;
(b) 60.9° north of due west. 35. (a) 15 m; (b) south; (c) 6.0 m;
(d) north. 37. 5.0 km, 4.3° south of due west. 39. 5.39 m at 21.8° left
of forward. 41. (a) 4.28 m; (b) 11.7 m. 43. (a) �80 m; (b) 110 m;
(c) 143 m; (d) �168° (counterclockwise). 45. 3.6 m. 47. (a) 1.84 m;
(b) 69° north of east. 49. (a) 9.51 m; (b) 14.1 m; (c) 13.4 m; (d) 10.5 m.
51. (a) 9.19 � 7.71 ; (b) 14.0 � 3.41

Chapter 5
RE 5-1: (a) No, because in Fig. 5-5 the vertical positions of the ball
on the right are the same as those of the ball on the left. (b) No. The
horizontal positions of the ball on the right are equally spaced, indi-
cating that horizontal velocity of the ball is constant and unaffected
by the falling.

RE 5-2: The skateboarder’s vertical motion is independent of his
horizontal velocity. This is why the skateboarder lands back on his
skateboard after his jump.

RE 5-3: (a) At each of the three points, the force vector points
straight down and has a constant magnitude and (b) the same is true
for the three acceleration vectors. (c) The horizontal component of
each of the three velocity vectors points to the right and has a con-
stant size. The vertical component of the velocity at the left point is
directed straight upward and is slightly larger than the common size
of the horizontal velocity components. The vertical component of the
velocity at the center point is zero, while at the right point it is di-
rected downward and is smaller in size than the horizontal velocity
component.

ĵîĵî
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RE 4-6: (a & b). The x- and y-components of are both positive.
The x-component of is positive but the y-component points down
in a negative direction. (c) Using the parallelogram method to get the
vector sum of and results in a vector that has both x- and y-com-
ponents that are positive.

RE 4-7: This is a kind of artificial question since units of force and
acceleration are different as are units of displacement and velocity.
However, if the scalars (mass and time respectively) act as compres-
sors or stretchers, then the simplistic answers would be (a) The force
vector would point in the same direction as the acceleration vector
but be three times as long. (b) The velocity vector would point off in
the same direction as the displacement vector and be twice as long
since the displacement was divided by 0.5 s.

RE 4-8:

(a)

(b) � v:� �
�r:

�t
�

(3.2 m)î � (�0.8 m)ĵ
0.5 s

� (6.4 m/s)î � (�1.6 m/s)ĵ.

F
:

� ma: � 3.0 kg[(1.8 m/s2)î � (1.0 m/s2)ĵ] � (5.4 N)î � (3.0 N)ĵ.

d2
:

d1
:

d2
:

d1
:

(a) (b) (c)

RE 5-4: (a) The x-component of velocity is not changing and is the
slope of Fig. 5-9. From the data in the figures, the slope is about 2.3
m/s. The initial y-component of velocity is the initial slope of Fig 5-10,
which is about 3.5 m/s. The launch angle will be the inverse tangent of
3.5/2.3 or about 57°. (b) Using a protractor about 57°, too.

RE 5-5: (a) The horizontal component of velocity remains con-
stant. (b) The vertical component of velocity is changing constantly
as there is a vertical acceleration. (c) The horizontal component of its
acceleration is zero. The only force (gravity) acting is in the vertical
direction. (d) The vertical component of its acceleration is constant
(9.8 m/s2 downward).



(a) 7.49 km/s; (b) 8.00 m/s2. 51. (a) 19 m/s; (b) 35 rev/min; (c) 1.7 s.
53. (a) 0.034 m/s2; (b) 84 min. 55. (a) 12 s; (b) 4.1 m/s2, down;
(c) 4.1 m/s2, up. 57. 160 m/s2. 59. (4.00 m, 6.00 m)

Chapter 6
RE 6-1: If you gather the tails of the three vectors shown in the he-
licopter diagram, you get the free-body diagram shown in (c).

RE 6-2: Use the balance in Fig. 3-9 and place one object on the left
pan and the other object on the right pan. If the two objects have the
same mass they will balance one another. They would have the same
weight if they both gave the same reading on the spring scale. Also
you could realize that if they have the same mass, they have the same
weight since W � mg and g is a constant. The weight and mass are
not the same. The weight is a force, and the mass is mass. Yes, since
the weight and mass are proportional, the ratios are the same.

RE 6-3: It’s true that the planet is yanking down on the patient but
this is a force equal to his weight. However, since the normal force
from the floor is equal and opposite, there is no net force and hence
no acceleration.

RE 6-4: (a) In this case, at constant speed a equals zero and thus the
net force must equal zero, requiring and to be equal in mag-
nitude and opposite in direction. (b) Since the only two forces acting
on the block are and , to have an upward acceleration we
must have a net upward force, meaning that the magnitude of is
now larger than that of . (c) Slowing down means an accelera-
tion or net force in the downward direction, requiring the magnitude
of to be larger than that of . What do you think would happen
to if the elevator cable broke and the block fell freely with a � g?

RE 6-5: In both answers to follow we are assuming the only forces
acting on the block in the horizontal direction are the friction force
and the pull of the cord, which is what the force sensor is measuring.
Since in both cases there is no acceleration, these two forces must be
equal and opposite, allowing us to equate the force sensor reading to
the frictional force. (a) From the graph it looks like the block breaks
free when the force is about 9.5 N. The total mass is 0.7956 kg, and
the normal force that equals the weight is mg; therefore using
Eq. 6-11, we find � stat � 9.5/(0.7956 � 9.8) � 1.22. Notice that the
coefficient of friction has no units. (b) From the graph, the force
needed to keep the block moving at a constant speed is about 3.0 N.
Using Eq. 6-10, � kin � 3.0/(0.7956 � 9.8) � 0.38.

RE 6-6: (a) Zero; (b) 5 N; (c) No; (d) Yes, there is now a net force
of 2 N on the block causing it to accelerate; (e) 8 N.

RE 6-7: It is true that friction has both a bad side and a good side.
Friction always tries to retard motion. If you desire that motion then
friction is bad—for example, the pistons in your car engine—and we
do everything we can (lubricants) to eliminate it. However, there are
other times when we don’t want motion (slippage) to occur, as when
we are walking or riding a bike, and the force of friction allows us to
do these activities.

RE 6-8: Think of the cord as an object with a mass you are trying to
accelerate with only two forces—the one at one end from the hand
and the other at the other end from the block. We will assume that
the length of the cord hanging down on each side is the same so we
can ignore the force of gravity on the cord. (a) If the cord is not ac-
celerating then the magnitudes of the two forces are equal and can-
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RE 5-6: (a) Using Eq. 5-15 and noting that �x � 8 m and �y � �6
m gives a displacement of . (b) No, since it
has components along both axes.

RE 5-7: (a) When traveling clockwise, the x-component of the par-
ticle’s velocity is positive when it is in the I and II quadrant, and its
y-component is negative in the I quadrant, so the particle is now in
the I quadrant. (b) When traveling counterclockwise, the x-compo-
nent of the particle’s velocity is positive when it is in the III and IV
quadrant, and it’s y-component is negative in the III quadrant, so the
particle is then in the III quadrant.

�r: � (8 m)î � (�6 m)ĵ

x

y

III

IVIII
x

y

III

IVIII

(a) Quadrant I (b) Quadrant II

RE 5-8: Remember that the x-component of acceleration will be in
the direction of the change in the x-component of velocity and the y-
component of acceleration will be in the direction of the change in
the y-component of velocity. Just knowing the trajectory or path of
the particle does not give you the direction of the acceleration. You
also need to know how the velocity is changing as the particle travels
along its trajectory. Therefore, if the change in the velocity vector is
in the direction of the path of the particle, will be tangent to the
trajectory. However, you will study other situations (Section 5-7)
where is actually perpendicular to the trajectory, that is, the change
in the velocity is perpendicular to the trajectory.

RE 5-9: The centripetal force is always inward toward the center of
the curve. According to Newton’s First Law, the passenger wants to
travel in a straight line unless acted upon by a force. The centripetal
force acts on the passenger through the friction between the passenger
and the car seat. If that frictional force is not strong enough, the pas-
senger tends to travel in a straight line and slides to the outside edge
of the seat, where both the seat and the side of the car can provide
the centripetal force needed to move your body in a curved path.

Problems
1. (a) 62 ms; (b) 480 m/s. 3. (a) 0.205 s; (b) 0.205 s; (c) 20.5 cm;
(d) 61.5 cm. 5. (a) 2.00 ns; (b) 2.00 mm; (c) 1.00 � 107 m/s; (d) 2.00 �
106 m/s. 7. (a) 16.9 m; (b) 8.21 m; (c) 27.6 m; (d) 7.26 m; (e) 40.2 m;
(f) 0. 9. 4.8 cm. 13. (a) 11 m; (b) 23 m; (c). 17 m/s; (d) 63° below the
horizontal. 15. (a) 24 m/s; (b) 65° above the horizontal. 17. (a) 10 s;
(b) 897 m. 19. the third. 21. (a) 202 m/s; (b) 806 m; (c) 161 m/s;
(d) �171 m/s. 23. (a) yes; (b) 2.56 m. 25. between the angles 31° and
63° above the horizontal. 27. (a) (�5.0 m) � (8.0 m) ; (b) 9.4 m;
(c) 122°; (e) (8 m) � (�8 m) ; (f) 11 m; (g) �45°. 29. (a) (�7.0 m)
� (12 m) ; (b) x axis. 31. 8.43 m at �129°. 33. 7.59 km/h, 22.5°
east of north; 35. (a) (3.00 m/s) � (�8.00 m/s2)t ; (b) (3.00 m/s) � 
(�16.00 m/s) ; (c) 16.3 m/s; (d) �79.4° 37. 0.421 m/s at 3.1° west 
of due north. 39. (a) (6.00 m) � (�106 m) ; (b) (19.0 m/s) �
(�224 m/s) ; (c) (24.0 m/s2) � (�336 m/s2) ; (d) �85.2° to �x.
41. (a) (�1.5 m/s) ; (b) (4.5 m) � (�2.25 m) . 43. (a). 45 m;
(b) 22 m/s. 45. (a) (8 m/s2 )t ; (b) (8 m/s2) . 47. (a) 22 m; (b) 15 s. 49.ĵĵ
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ĵ

îĵî
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cel. (b) If the block is accelerating then so is the cord and the force of
the hand on the cord is greater than that of the block. (c). In this case
the acceleration is opposite to b and the pull force of the hand is less
than the pull force due to the block.

RE 6-9: Look at Eq. 6-25. The only things in this equation that will
change with the size of the drops are the mass, m, and the cross-sec-
tional area A. So for this exercise vt

2 is proportional to m/A. How will
this ratio change with the size of the drops? A changes as r2 and m
changes as (� water)(volume) and since volume goes as r3, we finally
determine that m/A and hence vt

2 goes as r. Therefore, large drops
have greater speeds than small drops.

Problems
1. (a) Fx � 1.88 N; (b) Fy � 0.684 N; (c) (1.88 N) � (0.684 N) .
3. 2.9 m/s2. 5. (3 N) � (�11 N) . 7. (a) (�32 N) � (�21 N) ;
(b) 38 N; (c) 213° from �x. 9. (a) 108 N; (b) 108 N; (c) 108 N. 11. (a)
200 N; (b) 120 N. 13. 0.61. 15. (a) 190 N; (b) 0.56 m/s2. 17. (a) 0.13 N;
(b) 0.12. 19. (a) no; (b) (�12 N) � (5 N) . 23. (a) 300 N; (b) 1.3 m/s2.
25. (a) 66 N; (b) 2.3 m/s2. 27. (b) 3.0 � 107 N. 29. 100 N.
31. (a) 0; (b) 3.9 m/s2 down the incline; (c) 1.0 m/s2 down the incline.
33. (a) 3.5 m/s2; (b) 0.21 N; (c) blocks move independently. 35. 490 N
37. (a) 6.1 m/s2, leftward; (b) 0.98 m/s2, leftward. 39. g(sin 	 � �kin

cos 	). 41. 9.9 s. 43. 6200 N. 45. 2.3. 47. 1.5 mm. 49. (a) 68 N (b) 73
N. 51. (a) 2.2 � 10�3 N; (b) 3.7 � 10�3 N. 53. (a) 4.6 � 103 N for
each bolt; (b) 5.8 � 103 N. 55. (a) 180 N; (b) 640 N. 57. (a) 3.1 N; (b)
14.7 N. 59. (a) 6.8 � 103 N (b) � 21° or 159°. 61. (b) F/(m � M);
(c) MF/(m � M); (d) F(m � 2M)/2 (m � M). 63. 1.8 � 104 N.
65. about 48 km/h. 67. 21 m. 69. . 71. (a) light; (b) 778 N;
(c) 223 N. 73. 2.2 km. 75. (b) 8.74 N; (c) 37.9 N, radially inward;
(d) 6.45 m/s. 77. (a) ; (b) graph; (c) 41.3 m/s;
(d) 21.2 m/s. 81. (a) 3.0 N, up the incline; (b) 3.0 N, up the incline;
(c) 1.6 N, up the incline; (d) 4.4 N, up the incline; (e) 1.0 N, down the
incline. 83. 0.54

Chapter 7
RE 7-1: (a) The 60 s encounter between the Titanic and an iceberg
was a collision. (b) A tennis ball encountering a racket for 2 s is not a
collision.

RE 7-2: (a) . Since the slopes repre-
sent the magnitude is greatest where the slope is steepest.
Thus, ranking is by steepness of slope. (b) Since the momentum is ini-
tially positive, the particle speeds up in region 1, drifts in region 2,
and slows down in region 3, where its momentum is becoming less
positive (and hence more negative).

RE 7-3: The change in the egg’s momentum is � , and since
is zero the change is just . The time you take in catching the

egg does not affect the momentum change since the initial and final
velocities are still the same. However the time taken in the catch will
affect the average force the egg experiences. Since the change in mo-
mentum equals the impulse, which equals the average force times the
time the force acts, making the time of the catch longer makes the av-
erage force on the egg less and hence a greater likelihood of a suc-
cessful catch. In order to make �t as large as possible, you move your
hands and body backwards once the catch is made in order to bring
the egg to zero speed over the largest time interval possible.

RE 7-4: (a) p1 x is to the right and �, p2 x is to the left and �, therefore
�px is �. Remember that � is always final minus initial, and here we
have a negative number minus a positive number giving a negative re-
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sult. (b) �py is zero since the y component of the momentum does not
change in the bounce. (c) The direction of is left. To see this, draw
the two momentum vectors and subtract the initial from the final. Re-
member: To subtract vectors add the negative of the second to the first.

RE 7-5: (1) Assuming the carts are frictionless, the system consist-
ing of the firecracker and the two carts is an isolated system and mo-
mentum should be conserved. In fact, if the firecracker is initially at
rest and explodes symmetrically, then the carts should move off at
the same speed in opposite directions. (2) Assuming the carts are not
frictionless, then the track and the table and the Earth become part
of the system. We might not see the carts come off with the same
speeds in opposite directions. Instead the Earth might move (imper-
ceptibly) to make up the difference. However, momentum is always
conserved, so it should be so for our new system.

RE 7-6: (a) Zero, since no external forces are acting and hence the
total momentum is conserved. (b) No, since the y-component of mo-
mentum must also be conserved. (c) The second piece must be mov-
ing in the negative direction on the x axis so that the total momen-
tum after the explosion is zero.

RE 7-7: We need a mass for the grapefruit—let’s say 1.0 kg. The
grapefruit’s momentum starts at zero and goes to (1 kg)(2 m/s) �
2 kg � m/s, therefore �p � 2 kg � m/s.The change in the Earth’s momen-
tum will be equal and opposite, therefore the change in the Earth’s
speed will be 2 kg � m/s divided by the mass of the Earth. If you look
at the inside front cover of this text, you find mEarth � 5.98 � 1024 kg.
Dividing, you get vEarth � 3.3 � 10�25 m/s. Did you feel the Earth move?

Problems
1. 24 km/h. 3. (a) (�4.0 � 104 kg � m/s ) ; (b) west. 5. (a) 30°;
(b) (�0.572 kg � m/s) . 7. 2.5 m/s. 9. 3000 N. 11. 67 m/s, in opposite
direction. 13. (a) 42 N � s; (b) 2100 N. 15. (a) (7.4 � 103 N � s ) �
(�7.4 � 103 N � s ) ; (b) (�7.4 � 103 N � s ) ; (c) 2.3 � 103 N;
(d) 2.1 � 104 N; (e) �45°. 17. 10 m/s. 19. (a) 1.0 kg � m/s; (b) 10 N;
(c) 1700 N; (d) the answer for (b) includes time between pellet colli-
sions. 21. 41.7 cm/s. 23. (a) 46 N; (b) none. 25. � 2 mm/y.
27. 3.0 mm/s, away from the stone. 29. (a) 4.6 m/s; (b) 3.9 m/s; (c) 
7.5 m/s. 31. increases by 4.4 m/s. 33. 190 m/s. 35. (a) {mA/(mA �
mB)}vA 1. 37. (a) 7290 m/s; (b) 8200 m/s. 39. 4400 km/h. 41. 8.1 m/s at
38° south of east. 43. (a) 11.4 m/s; (b) 95.1° clockwise from �x.
45. (a) 61.7 km/h; (b) 63.4° south of west. 47. (a) 2.5 m/s. 49. 1.0 m/s
north. 51. (a) 1.4 � 10�22 kg � m/s; (b) 150°; (c) 120°. 53. 14 m/s, 135°
from the other pieces. 55. 3.0 m/s. 57. 120°. 59. (a) 4.15 � 105 m/s;
(b) 4.84 � 105 m/s. 61. (a) 41°; (b) 4.76 m/s; (c) no. 63. 2.0 m/s,
�x direction. 65. 108 m/s. 67. (a) 1.57 � 106 N; (b) 1.35 � 105 kg;
(c) 2.08 km/s. 69. 2.2 � 10�3

Chapter 8
RE 8-1: (a) At the center; (b) in the lower right quadrant; (c) on
the negative y axis; (d) at the center; (e) in the lower left quadrant;
(f) at the center

RE 8-2: (a) The spacing between successive halfway points is the
same, which suggests that the velocity represented by these points is
constant.

(b)

RE 8-3: Since there are no outside forces on the system, the center
of mass of the system will not change. Thus, the skaters will end up
meeting at the origin of the original coordinate system in all three sit-

v � � �r: �/�t � 0.41m/[(12/15)s] � 0.51 m/s
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0.55 hp. 59. (a) 8.8 m/s; (b) 2600 J; (c) 1.6 kW. 61. 24 W 63. (a) 2.1 �
106 kg; (b) m/s; (c) (1.5 � 106)/ N; (d) 6.7 km
65. (a) � 1 � 105 megatons; (b) � ten million bombs

Chapter 10
RE 10-1: No, for the force to be conservative the work done in go-
ing between two points must not depend on the path taken. Also, if
you go from 2 to 1 instead of 1 to 2 the work will change sign. There-
fore, for the force in the exercise to be conservative the work for the
bottom path should have a negative sign.

RE 10-2: A Hot Wheels® car that traverses path b should lose
more kinetic energy than one that traverses path a. This is because
path b is longer so the friction forces have more distance to act on
path b.

RE 10-3: The kinetic energy of the barbell is zero before the lift
and zero after the lift, as evidenced by the fact that y vs. t is a
constant at t � 0.0 s and at t � 2.0 s. Since the kinetic energy change
�K � 0.0 J, then the net work on the barbells should be zero. An ex-
amination of graph 10-10b shows that the positive work is approxi-
mately given by the area under the F net vs. y curve. W� � area under
the positive portion of the curve � (0.5)(116 N)(.15 m) � �8.7 J and
W� � area under the negative portion of the curve (0.5)(58 J)(.45 �
.15) m � �8.7 J. So W net � W� � W� � 0.0 J.

RE 10-4: Use Eq. 10-13. Note that the change in the potential en-
ergy is the negative of the area under the curves in the figure. The
most positive will be (3) and the least positive (2).

RE 10-5: Without friction, the decrease in the potential energy will
equal the increase in the kinetic energy. (a) Therefore, since all four
blocks are losing the same amount of potential energy, they will all
have the same kinetic energy at point B. (b) Since the kinetic ener-
gies are the same, the speeds are the same.

RE 10-6: Use the equation The force is the
negative of the slope of the U vs. x curve. (a) Ranking magnitudes
with the greatest first: CD, AB, BC. (b) The slope is negative, hence
the force is in the positive x direction.

RE 10-7: b > a > c as determined by the equation �

RE 10-8: (a) 4 kg � m/s; (b) 8 kg � m/s; (c) assuming an elastic colli-
sion, 3 J.

RE 10-9: (a) 2 kg � m/s. (b) Since the initial y-component is zero,
the final must be zero. Therefore, the final y-component of momen-
tum for the target is 3 kg � m/s.

Problems
1. 89 N/cm. 3. (a) 4.31 mJ; (b) �4.31 mJ; (c) 4.31 mJ; (d) �4.31 mJ;
(e) all increase. 5. (a) mgL; (b) �mgL; (c) 0; (d) �mgL; (e) mgL; (f)
0; (g) same. 7. (a) 184 J; (b) �184 J; (c) �184 J. 9. �320 J 11. (a)
2.08 m/s; (b) 2.08 m/s; (c) increase. 13. (a) ; (b) ; (c) ;
(d) all the same. 15. (a) 260 m; (b) same; (c) decrease. 17. (a) 21.0
m/s; (b) 21.0 m/s; (c) 21.0 m/s. 19. (a) 0.98 J; (b) �0.98 J; (c) 3.1 N/cm.
21. (a) 39.2 J; (b) 39.2 J; (c) 4.00 m. 23. (a) 35 cm; (b) 1.7 m/s. 25. 10
cm. 27. 1.25 cm. 31. (a) ; (b) 5mg; (c) 71°. 33. mgL/32. 37. (a)
1.12(A/B)1/6; (b) repulsive; (c) attractive. 39. (a) �3.7 J; (c) 1.29 m;
(d) 9.12 m; (e) 2.16 J ; (f) 4.0 m; (g) (4 � x)e�x/4 N; (h) 4 m. 41. (a)
30.1 J; (b) 30.1 J; (c) 0.22. 43. (a) 5.6 J; (b) 3.5 J. 45. 11 kJ. 47. 20
ft � lb. 49. (a) 1.5 MJ; (b) 0.51 MJ; (c) 1.0 MJ; (d) 63 m/s. 51. (a) 67 J;
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uations (a), (b), and (c). The only difference is that in case (a) Ethel
will be holding one end of the “massless” pole at the end, in case (b)
Fred will be holding an end of the “massless” pole, and in case (c)
one-third of the “massless” pole will be sticking out behind Fred and
two-thirds will be sticking out behind Ethel.

Problems
1. (a) �4.5 m; (b) �5.5 m. 3. (a) 4600 km; (b) 0.73Re. 5. (a) 1.1 m;
(b) 1.3 m; (c) shifts toward topmost particle. 7. (a) �0.25 m; (b) 0.
9. 6.8 � 10�12 m from the nitrogen atom, along axis of symmetry. 11.
(a) H/2; (b) H/2; (c) descends to lowest point and then ascends to H/2;

(d) . 13. xcom � B/2 and ycom � H/3. 15. xcom �

B/2 and ycom � 4R/(3�). 17. (a) 0,0; (b) 0. 19. (�1.50 m, �1.43 m).
21. 29 m. 23. 72 km/h. 25. (a) 28 cm; (b) 2.3 m/s. 27. 53 m.
29. (a) halfway between the containers; (b) 26 mm toward the heav-
ier container; (c) down; (d) �1.6 � 10�2 m/s2. 31. 4.2 m. 33. 1.2 m/s,
132° counterclockwise from east. 37. (a) 33 m/s; (b) 8.7 m/s. 39. (a)
540 m/s; (b) 40.4°. 41. (a) 0.2000vrel; (b) 0.2103vrel ; (c) 0.2095vrel.
43. (a) 1.0 m/s north; (b) 3 m north

Chapter 9
RE 9-1: (a) Decreases. (b) Remains the same. Remember that the ki-
netic energy is a scalar and depends on the velocity squared, so �2 m/s
and 2 m/s give the same kinetic energy. (c) Negative for situation (a)
and zero for situation (b). Situation (b) is interesting. How can the net
work done be zero? Try breaking the velocity change into two changes:
first from �2 m/s to zero, then from zero to 2 m/s. For the first change
the work is negative and for the second change the work is positive.
When we add the two works together, we get zero for the total.

RE 9-2: c 
 a 
 b � d

RE 9-3: Use Eq. 9-19: (a) positive; (b) negative; (c) zero. Think
through your calculated answers. Do they make sense? For example,
in (a) as the block moves from �3 cm to the origin, the spring force
and displacement are in the same direction giving a positive work;
from the origin to 2 cm the spring force and displacement are in op-
posite directions giving a negative work, but the positive work is
larger because the displacement is larger giving a net positive work.

RE 9-4: d 
 c 
 b 
 a

RE 9-5: The power is zero at all times since and are always
perpendicular in uniform circular motion.

Problems
1. 1.2 � 106 m/s. 3. (a) 3610 J; (b) 1900 J; (c) 1.1 � 1010 J. 5. (a) 2.9 �
107 m/s; (b) 2.1 � 10�13 J. 7. (a) 7.5 � 104 J; (b) 3.8 � 104 kg � m/s; (c)
38° south of east. 9. 1.18 � 104 kg. 11. (a) 3.7 m/s; (b) 1.3 N� s; (c) 1.8 �
102 N. 13. (a) 42 J; (b) 30 J; (c) 12 J; (d) 6.48 m/s, positive direction of
x axis; (e) 5.48 m/s, positive direction of x axis; (f) 3.46 m/s, positive
direction of x axis. 15. AB: �, BC: 0, CD: �, DE: �. 17. (a) 170 N;
(b) 340 m; (c) �5.8 � 104 J; (d) 340 N; (e) 170 m; (f) �5.8 � 104 J.
19. 800 J. 21. (a) 98 N; (b) 4.0 cm; (c) 3.9 J; (d) �3.9 J. 23. 0, by both
methods. 25. (a) �0.043 J; (b) �0.13 J. 27. (a) 6.0 N; (b) � 2.5 N; (c)
15 N 29. 15.3 J. 31. (a) 590 J; (b) 0; (c) 0; (d) 590 J. 33. 6.8 J. 35. (a)
1.20 J; (b) 1.10 m/s. 37. (a) 1.50 J; (b) increases. 39. (a) 1.2 � 104 J;
(b) � 1.1 � 104 J; (c) 1100 J; (d) 5.4 m/s. 41. (a) �3Mgd/4; (b) Mgd;
(c) Mgd/4; (d) . 43. 20 J. 45. (a) 8.84 � 103 ; (b) 7.84 � 103 J; (c)
6.84 � 103 J. 47. (a) 2.3 J; (b) 2.6 J. 49. 490 W. 51. (a) 0.83 J; (b) 2.5 J;
(c) 4.2 J; (d) 5.0 W. 53. 740 W. 55. 68 kW. 57. (a) 1.8 � 105 ft � lb; (b)
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(b) 67 J; (c) 46 cm. 53. (a) 31.0 J; (b) 5.35 m/s; (c) conservative.
55. (a) 44 m/s; (b) 0.036. 57. (a) �0.90 J; (b) 0.46 J; (c) 1.0 m/s. 59. 1.2 m.
63. in the center of the flat part. 65. (a) 216 J; (b) 1180 N; (c) 432 J;
(d) motor also supplies thermal energy to crate and belt. 67. (a) 0.2
to 0.3 MJ; (b) same amount. 69. (a) 860 N; (b) 2.4 m/s. 71. (a)
mR( � gt); (b) 5.06 kg. 73. (a) mv1/(m � M); (b) M/(m � M).
75. 25 cm. 79. (a) 41°; (b) 4.76 m/s; (c) no. 81. (a) 6.9 m/s, 30° to �x
direction; (b) 6.9 m/s, �30° to �x direction; (c) 2.0 m/s, �x direction.
83. (a) 99 g; (b) 1.9 m/s; (c) 0.93 m/s. 85. 7.8%. 87. (a) 1.2 kg; (b) 2.5
m/s. 89. (a) 100 g; (b) 1.0 m/s. 91. (a) 1.9 m/s, to the right; (b) yes;
(c) no, total kinetic energy would have increased. 93. (a) 1/3; (b) 4h.
95. 1.0 kg. 97. (c) 11%; (d) 10%; (e) 79%

Chapter 11
RE 11-1: (a) Positive, since 	 is increasing. (b) Negative, since 	 is
decreasing.

RE 11-2: (a) Positive; (b) negative; (c) negative; (d) positive

RE 11-3: Find the angular acceleration, , by taking the second de-
rivative of 	 with respect to t. The accelerations for (a) and (d) do not
depend on t and are therefore constant, and hence the equations of
Table 11-1 apply.

RE 11-4: Since the speeds are being squared, v2 and �2 will always
be positive quantities.

RE 11-5: (a) Yes, the centripetal acceleration; (b) no, since  is
zero; (c) yes; (d) yes, since  is no longer zero.

RE 11-6: Calculate mr2 for each, and you’ll find they are all the
same.

RE 11-7: (1) 
 (2) 
 (4) 
 (3). Remember that I depends
not only on the mass but also on how far that mass is from the 
chosen axis.

RE 11-8: so a � d > c > b.

RE 11-9: A � C 
 D 
 B � E � zero. For A and C, � is 90°;
for D, � is between zero and 90°; for E, � is zero; and for C, r
is zero.

RE 11-10: (a) Same direction. (b) Less.

Problems
1. (a) a � 3bt2 � 4ct3; (b) 6bt � 12ct2. 3. (a) 5.5 � 1015 s; (b) 26.
5. (a) 2 rad; (b) 0; (c) 130 rad/s; (d) 32 rad/s2; (e) no. 7. 11 rad/s. 9.
(a) �67 rev/min2; (b) 8.3 rev. 11. 200 rev/min. 13. 8.0 s. 15. (a) 44
rad; (b) 5.5 s, 32 s; (c) �2.1 s, 40 s. 17. (a) 340 s; (b) �4.5 � 10�3

rad/s2; (c) 98 s. 19. 1.8 m/s2, toward the center. 21. 0.13 rad/s. 23. (a)
3.0 rad/s; (b) 30 m/s; (c) 6.0 m/s2; (d) 90 m/s2. 25. (a) 3.8 � 103 rad/s;
(b) 190 m/s. 27. (a) 7.3 � 10�5 rad/s; (b) 350 m/s; (c) 7.3 � 10�5 rad/s;
(d) 460 m/s. 29. 16 s. 31. (a) �2.3 � 10�9 rad/s2; (b) 2600 y; (c) 24 ms.
33. 12.3 kg � m2. 35. (a) 1100 J; (b) 9700 J. 37. (a) 5md2 � 8/3Md2;
(b) (5/2m � 4/3M)d2�2. 39. 0.097 kg � m2. 41. 1/3M(a2 � b2). 45. 4.6
N � m. 47. (a) r1FA sin 	1 � r2FB sin 	2; (b) �3.8 N � m. 49. (a) 28.2
rad/s2; (b) 338 N � m. 51. (a) 155 kg � m2; (b) 64.4 kg. 53. 130 N.
55. (a) 6.00 cm/s2; (b) 4.87 N; (c) 4.54 N; (d) 1.20 rad/s2; (e) 0.0138
kg � m2. 57. (a) 1.73 m/s2; (b) 6.92 m/s2. 59. 396 N � m. 61. (a)

mL2� 2/6; (b) L2� 2/6g. 63. 5.42 m/s 65. . 67. (a) [(3g/H)(1 �

cos 	)]0.5; (b) 3g(1 � cos 	); (c) 3/2g sin 	; (d) 41.8°.
69. (a) 0.083519ML2 � 0.084ML2; (b) low by (only) 0.22%

3
2 √ g

L

Ia � Id � mr 2, Ib � 1
2 mr 2, Ic � 5

8 mr 2,
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Chapter 12
RE 12-1: (a) When is the sin of the angle between the vectors
zero? Sin is zero for 0o and 180°. (b) Here the sin needs to equal �1.
This occurs at 90° and 270°. (c) Here sin � � 3 � 4 sin � � 6 so
� � sin�1 (6/12) so � � 30° or 150°.

RE 12-2: The time rate of change of the rotational momentum is
equal to the net torque. 3 
 1 
 2 � 4 � zero.

RE 12-3: (a) 1 � 3 
 2 � 4 
 5 � zero, since r⊥ is 4 m for both 1
and 3 and 2 m for both 2 and 4 and zero for 5. (b) Particles 2 and 3
have negative rotational momentum about o, since � �
points into the page for each of them.

RE 12-4: (a) Since the rate of change of the rotational momentum
is equal to the applied torque, which is the same for all three cases, all
three objects increase their rotational momentum at the same rate;
and assuming all three started from rest, they will all have the same
rotational momentum at any given time. (b) Look at Table 11-2
(Some Rotational Inertias). Note that Ihoop 
 Idisk 
 Isphere. Since L �
I� and they all have the same L, the object with the biggest I will
have the smallest �; � sphere >�disk 
 �hoop.

RE 12-5: (a) Decrease, since although the total mass of the system
has not changed, it is distributed closer to the axis of rotation. (b) Re-
main the same, since there is no net external torque. (c) If I decreases
and L is constant, then � must increase.

Problems
1. (a) 59.3 rad/s; (b) 9.31 rad/s2; (c) 70.7 m. 3. �3.15 J. 5. 1/50 7.
(a) 8.0°; (b) more. 9. (a) 13 cm/s2; (b) 4.4 s; (c) 55 cm/s; (d) 1.8 � 10�2 J;
(e) 1.4 J; (f) 27 rev/s. 11. (a) 10 s; (b) 897 m. 13. the third. 17.
(a) 10 N � m, parallel to yz plane, at 53° to �y; (b) 22 N � m, �x. 19.
(a) (50 N � m) ; (b) 90°. 21. (a) (�170 kg � m2/s) ; (b) (�56 N � m) ;
(c) (�56 kg � m2/s2) . 23. (a) 0; (b) 8t N � m, in �z direction; (c)
2/ N � m, �z; (d) 8/t3 N � m, �z. 25. 9.8 kg � m2/s. 27. (a) 0; (b)
(8.0 N � m) � (8.0 N � m) . 29. (a) mvd; (b) no; (c) 0, yes. 31. (a)
�1.47 N � m; (b) 20.4 rad; (c) �29.9 J; (d) 19.9 W. 33. (a) 14md2; (b)
4md2�; (c) 14md2�. 35. . 37. (a) 3.6 rev/s;
(b) 3.0; (c) in moving the bricks in, the forces on them from the man
transferred energy from internal energy of the man to kinetic energy.
39. (a) 267 rev/min; (b) 2/3. 41. (a) 149 kg � m2; (b) 158 kg � m2/s;

(c) 0.746 rad/s 43. 45. (a) (mRv � I�1)/(I � mR2);

(b) no, energy transferred to internal energy of cockroach. 47.
3.4 rad/s. 49. (a) 0.148 rad/s; (b) 0.0123; (c) 181°. 51. The day would
be longer by about 0.8 s. 53. (a) 18 rad/s; (b) 0.92 55. (a) 0.24 kg � m2;

(b) 1800 m/s 57.
.
59. 11.0 m/s

61. (a) 0.180 m ; (b) clockwise

Chapter 13
RE 13-1: Situations (c), (e), and (f) can yield static equilibrium, since
in each case both the net force and the net torque can be zero. In (a),
(b), and (d) the net force can be zero but the net torque cannot.

RE 13-2: The apple’s center of gravity will end up directly below
the rod, since only in that position is the net torque on the apple sta-
bly zero. The net torque on the apple is also zero when the apple’s
center of gravity is directly above the rod, but this is an unstable equi-
librium point and the slightest rotation will cause the apple to rotate
away from this position.
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RE 14-4: due to the Earth always points directly toward the
center of the Earth. However, the object’s apparent weight associ-
ated with , (the “normal” force exerted on an object “at rest” on
the surface of the rotating Earth), is not always directed exactly away
from the center of the Earth! In fact, points directly away from the
center of the Earth only at the Earth’s poles and at its equator. Why?

RE 14-5: In each case the direction of would be toward the
center of the Earth. Case A: The magnitude of would decrease
as 1/r2 where r is the distance to the center of the Earth. Case B: The
magnitude of would be proportional to r, and hence decrease.
Case C: Because of the considerably higher density of the Earth’s
core compared with its surface crust, the magnitude of would
increase at first but then decrease to zero as we moved toward the
center of the Earth.

RE 14-6: (a) The gravitational potential energy of the ball–sphere
system increases. (b) The gravitational force between the ball and the
sphere is attractive (inward), and the displacement is outward. Since
the force and displacement are in opposite directions, the work done
by the gravitational force is negative.

Problems
1. 19 m 3. 29 pN 5. 1/2 7. 2.60 � 105 km 9. 0.017 N, toward the 

300 kg sphere 11. 3.2 � 10�7 N 13.

15. 2.6 � 106 m 17. (b) 1.9 h 21. (a) 0.414R; (b) 0.5R 23. (a) (3.0 �
10�7 N/kg)m; (b) (3.3 � 10�7 N/kg)m; (c) (6.7 � 10�7 N/kg�m)mr
25. (a) 9.83 m/s2; (b) 9.84 m/s2; (c) 9.79 m/s2 27. (a) �1.3 � 10�4 J;
(b) less; (c) positive; (d) negative 29. (a) 0.74; (b) 3.7 m/s2; (c) 5.0 km/s
31. (a) 5.0 � 10�11 J; (b) �5.0 � 10�11 J 35. (a) 1700 m/s; (b) 250 km;
(c) 1400 m/s 37. (a) 82 km/s; (b) 1.8 � 104 km/s 39. 2.5 � 104 km

Chapter 15
RE 15-1: Half the weight of the woman, (125 lb/2)(9.8 N/2.2 lb) �
300 N, is supported by her two spike heels. Let’s say that each heel
makes contact with 1 cm2 � 10�4 m2 of the floor. Then the pressure
of her heels on the floor is P � F/A � (300 N/10�4 m2) � 3 � 106 Pa.
This estimate is close to that presented in the table. This pressure is
high because of the small contact area over which this otherwise
modest force is applied. An automobile has a much larger contact
area.

RE 15-2: If air and water are made up of molecules that are about
the same size and mass, then the average distance between the mole-
cules in air at sea level must be about 10001/3 � 10 times larger than
those of the water. This suggests that there is significantly more
empty space around each air molecule, allowing them to be com-
pressed closer together by quite a bit before they fill all of the avail-
able volume.

RE 15-3: The force the air exerts on the book is about (105 N/m2)
(2.54 � 10�2 m/in)2 (2.2 lb/9.8 N) (8 in)(10 in) 
 1200 lb. The close
fit and the flexibility of the rubber mat prevents air from leaking
into the space between the mat and the smooth tabletop, holding
the mat down against the table with close to the full 1200 lb of
force the air exerts on the top surface of the mat. The rougher sur-
face of the book, as well as its rigidity, let air readily leak into the
space between the book and the table when you start to pick up
the book. This “equalizes” the pressure on each side of the book,
reducing the net force that the air exerts on the book to a negligi-
ble amount.
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RE 13-3: You are better off if there is no friction between the lad-
der and the wall. With no friction between the ladder and the
ground, the ground cannot exert any horizontal force to counter the
horizontal force that the wall must exert on the ladder to keep it in
place.

RE 13-4: In each of these three cases, the net horizontal force is
zero independent of the magnitudes of the three unknown forces.
This leaves only two independent equations for equilibrium—
namely, net vertical force equals zero and net torque equals zero. But
we have three unknowns to solve for. Since we can’t do this, each of
these three situations is indeterminate.

RE 13-5: Equation 13-29 tells us that, for elastic stretching, Young’s
modulus is just the stress (F/A) divided by the strain (�L/L). Rela-
tive to rod 1, rod 2 has the same stress and twice the strain, and so its
Young’s modulus is half that of rod 1. By the same reasoning, rod 3
also has half the Young’s modulus of rod 1, and rod 4 has a Young’s
modulus that is four times larger than that of rod 1. So, from higher
to lower Young’s modulus, rod 4 is the largest, rod 1 is next, and rods
2 and 3 tie for smallest.

RE 13-6: During bending, the particles on the inside of the bend
are pushed closer together while those on the outside of the bend
are pulled farther apart. During a shear deformation, adjacent
planes of particles shift laterally with respect to one another. While
the planes remain the same distance from one another, the
“springs” (bonds) between adjacent planes are each stretched by
the same amount.

Problems
1. (a) 2; (b) 7 3. (a) (�27 N) � (2 N) ; (b) 176° counterclockwise
from �x direction 5. 7920 N 7. (a) (mg/L) ; (b) mgr/L
9. (a) 1160 N, down; (b) 1740 N, up; (c) left; (d) right 11. 74 g 13. (a)
280 N; (b) 880 N, 71° above the horizontal 15. (a) 8010 N; (b) 3.65
kN; (c) 5.66 kN 17. 71.7 N 19. (a) 5.0 N; (b) 30 N; (c) 1.3 m

21. mg 23. (a) 192 N; (b) 96.1 N; (c) 55.5 N 25. (a) 6630 N;

(b) 5740 N; (c) 5960 N 27. 2.20 m 29. 0.34 31. (a) 211 N; (b) 534 N;
(c) 320 N 33. (a) 445 N; (b)0.50; (c) 315 N 35. (a) slides at 31°;
(b) tips at 34° 37. (a) 6.5 � 106 N/m2; (b) 1.1 � 10�5 m 39. (a) 867 N;
(b) 143 N; (c) 0.165 41. 44 N

Chapter 14
RE 14-1: The ratio (relative amount) of the magnitudes of these
two forces depends only on the square of the ratio of the two center-
to-center distances between the Earth and the other mass.

RE 14-2: Equation 14-2 tells us that g (the acceleration of a freely
falling body) is just (GmEarth/r2) where r is the distance to the center
of the Earth to the point where g is measured. This is consistent with
the model that assumes that the Moon stays in its orbit simply be-
cause it is in free fall. Although the observations are consistent with
this model, this does not “prove” that the model is “true.” It only es-
tablishes that this model is “good enough” to account for the data at
hand.

RE 14-3: Since the location of the particle lies outside each of the
spheres at the same distance from the center of the sphere in each
case, each of the spheres will exert exactly the same magnitude force
on the particle.

√ 2rh � h2

r � h

√L2 � r 2
ĵî



RE 15-4: The density of air is only about one-thousandth that of
water.

RE 15-5: The pressure at a depth �y is the same in each container
of oil. The shape of the container does not matter.

RE 15-6: Compressible fluids, like compressible springs, can “ab-
sorb” work and store it as elastic potential energy. Increasing the
pressure of the compressible fluid in the hydraulic jack will thus store
some of the work done on the fluid as elastic potential energy and
slightly reduce the amount of work that the fluid does on the output
by that amount.

RE 15-7: The pressure at the bottom of this container is deter-
mined solely by the depth of the fluid above the bottom and the pres-
sure that the air exerts on the surface of that fluid. In particular, the
weight of the “extra” fluid that lies outside the central column is not
carried by the horizontal bottom of the container and does not in-
crease the pressure there.

RE 15-8: (a) Since the penguin floats in each of the three fluids,
each fluid supplies a buoyant force exactly equal to the penguin’s
weight, so each fluid supplies the same buoyant force (A � B � C).
(b) The penguin must displace the amount of fluid that matches her
weight. Thus she displaces more of the least dense fluid B than of A,
and even less of the most dense fluid C (B 
 A 
 C).

RE 15-9: You need to make sure that the weight of the canoe and
its load is less than that of the water it displaces before the water
starts coming in over the top edge of the hull. Although a chunk of
concrete cannot displace its weight with water, a thin concrete canoe
and its riders can.

RE 15-10: The net flow into (�) and out of (�) the entire system
must be zero. So: �x � (4 � 8 � 4 � 6 � 5 � 2) cm3/s � 0 cm3/s or 
x � �13 cm3/s, so fluid flows out of the unlabeled pipe at a rate of
13 cm3/s.

RE 15-11: (a) The area of face 1 is 4.0 cm2 � 4.0 � 10�4 m2. Face 2
has an area of 5.7 cm2 � 5.7 � 10�4 m2. Face 3 has an area of 8.0 cm2 �
8.0 � 10�4 m2. (b) The total surface area of all 6 faces is 69.7 cm2 �
69.7 � 10�4 m2.

RE 15-12: (a) The flux through any face is v �A cos (	). Thus the
flux through face 1 is (0.5 m/s) (4.0 � 10�4 m2) (cos (0)) � �2.0 �
10�4 m3/s. The flux through face 2 is (0.5 m/s) (5.7 � 10�4 m2)
(cos (45°)) � �2.0 � 10�4 m3/s. The flux through face 3 is (0.5 m/s)
(8.0 � 10�4 m2) (cos (180°)) � �4.0 � 10�4 m3/s. (b) The flux
through the front, back, and bottom faces is zero because 	 � 90° for
each of these faces and so the cos (	) term in the expression for the
flux is zero. (c) Adding the contributions from all six faces yields zero
net flux through this closed surface, as expected.

RE 15-13: (a) The volume flow rate is the same through each of the
four sections. (b) The flow speed is largest in section 1, followed by
section 2 and section 3, where it will be the same, and finally section 4
has the smallest flow speed. Recall that the flow speed is inversely
proportional to the local cross-sectional area of the pipe. (c) The
pressure will be greatest in section 4, less in section 3, still less in sec-
tion 2, and least in section 1. The pressure difference between sec-
tions 2 and 3 is due to their difference in altitude. The pressure differ-
ences between sections at the same altitude are due to differences in
the flow speed.

Answers to Reading Exercises and Odd-Numbered Problems   Ans-9

Problems
1. 1.1 � 105 Pa or 1.1 atm 3. 2.9 � 104 N 5. 0.074 7. (b) 26 kN 
9. 5.4 � 104 Pa 11. (a) 5.3 � 106 N; (b) 2.8 � 105N; (c) 7.4 � 105 N;
(d) no 13. 7.2 � 105 N 15. �gA(h2 � h1)2 17. 1.7 km 19. (a)
�gWD2/2; (b) �gWD3/6; (c) D/3 21. (a) 7.9 km; (b) 16 km 23. 4.4 mm
25. (a) 2.04 � 10�2 m3; (b) 1570 N 27. (a) 670 kg/m3; (b) 740 kg/m3

29. (a) 1.2 kg; (b) 1300 kg/m3 31. 57.3 cm 33. 0.126 m3 35. (a) 45 m2;
(b) car should be over center of slab if slab is to be level 37. (a) 9.4 N;
(b) 1.6 N 39. 8.1 m/s 41. 66 W 43. (a) 2.5 m/s; (b) 2.6 � 105 Pa
45. (a) 3.9 m/s; (b) 88 kPa 47. (a) 1.6 � 10�3 m3/s; (b) 0.90 m
49. 116 m/s 51. (a) 6.4 m3; (b) 5.4 m/s; (c) 9.8 � 104 Pa 53. (a) 74 N;
(b) 150 m3 55. (b) 2.0 � 10�2 m3/s 57. (b) 63.3 m/s

Chapter 16
RE 16-1: The amplitude and the angular frequency will stay the
same. The initial phase will differ from �0 by 90° or �/2 since you can
think of a cosine as a sine that has been shifted 90° to the left.

RE 16-2: (a) When t � 2.00 T the particle will have moved through
two full oscillations and will be back where it started from—namely,
at x � �X. (b) When t � 3.50T the particle will have moved through
three full oscillations and an additional half oscillation and so will be
at x � �X. (c) When t � 5.25T the particle will have moved through
five full oscillations and an additional quarter oscillation and so will
be at x � 0.

RE 16-3: Equation 16-12 tells us that the period of a mass on a
given spring increases as the amount of oscillating mass increases.
The fact that the mass of the spring itself oscillates along with the
mass on its end suggests that some of the spring’s mass should be in-
cluded in the mass that appears in Eq. 16-12. Since the spring oscil-
lates with a progressively smaller amplitude as we go from its moving
end to its fixed end, only some fraction of the spring’s mass needs to
be included in this corrected total oscillating mass.

RE 16-4: Only (a) implies simple harmonic motion. Although (b) is
a restoring type of force, it is quadratic, not linear in x. Force (c) is
repulsive rather than attractive, driving the particle away from x �
0 rather than back toward it. Force (d) is both repulsive and
nonlinear.

RE 16-5: The particle’s velocity component is zero at t � t2 and t4.
The particle is moving to the left at its greatest speed at t � t1 and it
is moving to the right at its greatest speed at t � t3. Considering vx as
a mathematical function of t, we can indeed say that vx is a minimum
at t1 and a maximum at t3, but do remember that it is actually moving
at its fastest speed when the velocity component is both a minimum
and a maximum.

RE 16-6: The vertical component ax of the acceleration is increas-
ing in regions 1 and 2 and it is decreasing in regions 3 and 4. Note,
however, that the magnitude of this acceleration is actually decreas-
ing in regions 1 and 3 while the magnitude is increasing in regions 2
and 4. Pause and reflect on this!

RE 16-7: In each of these cases, the net force acting on the pendu-
lum mass is proportional to the mass itself. Since Newton’s Second
Law tells us that acceleration is net force divided by mass, the mass
cancels out here and so acceleration will be independent of the mass
in these cases.

RE 16-8: “Same shape and size” for these three pendula means
that the rotational inertia of each is simply proportional to its mass

1
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with the same constant of proportionality in each case. “Suspended at
the same point” means the same distance from the point of suspen-
sion to the center of mass in each case. Since I/m and h are the same
for each of the three, Eq. 16-26 tells us that each will have the same
period.

RE 16-9: Since K � 3 J and U � 2 J at a given point, then the total
mechanical energy of this system is E � K � U � 5 J at every point
in its motion. Conservation of mechanical energy rules! (a) In partic-
ular, when the block is at x � 0, the system’s potential energy is zero
and so its kinetic energy must be 5 J. (b) At x � �X, the system’s ki-
netic energy is zero so then U � 5 J.

RE 16-10: From Eq. 16-39 the time it takes for the mechanical
energy of a damped oscillator to fall to one-fourth (or to any given
fraction, for that matter) of its initial value is proportional to m/b.
The ratio of m/b for set 2 is 4/6 � 2/3 that of set 1, and for set 3 it is
1/3 of that for set 1. Thus set 1 takes the longest time to lose one-
fourth of its mechanical energy, followed by set 2, then by set 3. (set 1

 set 2 
 set 3)

Problems
1. (a) 0.50 s; (b) 2.0 Hz; (c) 18 cm 3. (a) 0.500 s; (b) 2.00 Hz; (c) 12.6
rad/s; (d) 79.0 N/m; (e) 4.40 m/s; (f) 27.6 N 5. f 
 500 Hz 7. (a) 6.28 �
105 rad/s; (b) 1.59 mm 9. (a) 1.0 mm; (b) 0.75 m/s; (c) 570 m/s2

11. (a) 1.29 � 105 N/m; (b) 2.68 Hz 13. 7.2 m/s 15. 2.08 h 17. 3.1 cm
19. (a) 5.58 Hz; (b) 0.325 kg; (c) 0.400 m 21. (a) 2.2 Hz; (b) 56 cm/s;
(c) 0.10 kg; (d) 20.0 cm below yi 23. (a) 0.183A; (b) same direction
29. (a) (n � 1)k/n; (b) (n � 1)k; (c) f; (d) f
31. (a) 39.5 rad/s; (b) 34.2 rad/s; (c) 124 rad/s2 33. 99 cm 35. 5.6 cm 

37. (a) 2� ; (b) increases for d � L/ , decreases for 

d 
 L/ ; (c) increases; (d) no change 39. (a) 0.205 kg� m2; (b) 
47.7 cm; (c) 1.50 s 41. 2� 43. (a) 0.35 Hz; (b) 0.39 Hz; (c) 0 
45. (b) smaller 47. (a) (r/R) ; (b) ; (c) no oscillation 49. 37 mJ
51. (a) 2.25 Hz; (b) 125 J; (c) 250 J; (d) 86.6 cm 53. (a) ; (b) ;
(c) xmax/ 55. (a) 16.7 cm; (b) 1.23% 57. 0.39 59. (a) 14.3 s; (b) 5.27
61. (a) F max/b�; (b) F max/b

Chapter 17
RE 17-1: (a) None of these graphs correctly shows the displacement
of the rope versus position along the rope at t � 0 s. Graph (b) is the
closest to correct of the four but fails to show the considerable length
of undisturbed rope that lies between x � 0 and the trailing (left)
edge of the pulse at t � 0 s. (b) Graph (a) correctly shows the dis-
placement of the rope versus time at x � x1 as the pulse passes by.

RE 17-2: Realizing that each of these phase expressions is of the
form (kx � � t) and that the wavelength � � 2 �/k, we see that wave
1 has the smallest wavelength and thus the largest k so it must corre-
spond to case (c). Wave 2 has the smallest k and so must go with case
(a), and wave 3 has the middle value of k and so matches case (b).

RE 17-3: The velocity vy
string describes the up and down (transverse)

motion of a particular small segment of the string as the wave passes
by that location. Typically the velocity varies rapidly between positive
and negative values as the wave goes by. The magnitude of the maxi-
mum of this velocity increases with increasing amplitude of passing
wave having the same wavelength and frequency. The other velocity,
vx

wave tells us how fast and in what direction any given crest of the
wave itself moves along the rope. For a uniform rope its time does not
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vary at all and it does not depend on the amplitude of the wave. In the
derivation in this section, vx

wave is used to obtain the mass of the seg-
ment of string under study and vy

string is used to obtain the momentum
change of the segment.

RE 17-4: If you increase the frequency of the oscillations driving waves
in a string, holding the tension constant, then (a) the speed of the waves
remains the same and (b) the wavelength decreases. If you instead in-
crease the tension keeping the driving frequency constant, then (c) the
wave speed increases and (d) the wavelength also increases.

RE 17-5: (a) Equation (1) represents the interference of a pair of
waves traveling in the positive x direction. (b) Equation (3) repre-
sents the interference of a pair of waves traveling in the negative x
direction. (c) Equation (2) represents the interference of a pair of
waves traveling in opposite  directions.

RE 17-6: (a) The missing frequency is 75 Hz. (b) The seventh har-
monic has a frequency of 7 � 75 Hz � 525 Hz.

Problems
1. (a) 3.49 m�1; (b) 31.5 m/s 3. (a) 0.68 s; (b) 1.47 Hz; (c) 2.06 m/s 
7. (a) y(x, t) � 2.0 sin 2�(0.10x � 400t), with x and y in cm and t in s;
(b) 50 m/s; (c) 40 m/s 9. (a) 11.7 cm; (b) � rad 11. 129 m/s 13. (a)
15 m/s; (b) 0.036 N 15. y(x, t) � 0.12 sin(141x � 628t), with y in mm,
x in m, and t in s 17. (a) 2�ymax/�; (b) no 19. (a) 5.0 cm; (b) 40 cm;
(c) 12 m/s; (d) 0.033 s; (e) 9.4 m/s; (f) 5.0 sin(16x � 190t � 0.93), with
x in m, y in cm, and t in s 21. 2.63 m from the end of the wire 
from which the later pulse originates 25. 1.4ymax 27. (a) 0.31 m;
(b) 1.64 rad; (c) 2.2 mm 29. (a) 140 m/s; (b) 60 cm; (c) 240 Hz 31.
(a) 82.0 m/s; (b) 16.8 m; (c) 4.88 Hz 33. 7.91 Hz, 15.8 Hz, 23.7 Hz
35. (a) 105 Hz; (b) 158 m/s 37. (a) 0.25 cm; (b) 120 cm/s; (c) 3.0 cm;
(d) zero 39. (a) 50 Hz; (b) y � 0.50 sin[�(x � 100t)], with x in m, y in
cm, and t in s 41. (a) 1.3 m; (b) y � 0.002 sin(9.4x) cos(3800t), with 
x and y in m and t in s 43. (a) 2.0 Hz; (b) 200 cm; (c) 400 cm/s;
(d) 50 cm, 150 cm, 250 cm, etc.; (e) 0, 100 cm, 200 cm, etc. 47.
(a) 323 Hz; (b) eight 49. 5.0 cm 

Chapter 18
RE 18-1: We express units in terms of very basic elements of length
[L], mass [M] and time [T]. Since B is a force per unit area, its units 

are B � � [M]/[L][T2]. � is a mass per unit volume so 

� � [M]/[L3]. B/� � [L2]/[T2] and � [L]/[T] or a “velocity” given
by [m]/[s] in SI units.

RE 18-2: The measured wave speed for the round trip is vwave �
(2)(2.4 m)/(.0133 � .0002)(s) � 366 m/s, which is in reasonable
agreement with the stated 343 m/s in room-temperature air.

RE 18-3: Since energy per unit time passing through a surface that
faces a source of sound is just the product of the sound intensity
there and the area of the surface, and since sound intensity falls off
with distance from the source, (a) the intensity of the sound is the
same at surfaces 1 and 2 and is smaller at surface 3, and (b) the areas
of surfaces 1 and 2 are equal while that of surface 3 is larger.

RE 18-4: The second harmonic of the longer pipe B has the same
frequency as the first harmonic of the shorter pipe A.

RE 18-5: (a) and (e) have greater detected frequency than emitted
frequency. (b) and (f) have reduced detected frequencies. (c) and (d)
are indeterminate.

√B/�

[M][L]/[T 2]
[L2]
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Problems
1. divide the time by 3 3. (a) 79 m, 41 m; (b) 89 m 5. 1900 km 7. 40.7 m
9. (a) 0.0762 mm; (b) 0.333 mm 11. (a) 343 (1 � 2m) Hz, with m
being an integer from 0 to 28; (b) 686m Hz, with m being an integer
from 1 to 29 13. (a) 143 Hz, 429 Hz, 715 Hz; (b) 286 Hz, 572 Hz, 858
Hz 15. 17.5 cm 17. 15.0 mW 19. (a) 1000; (b) 32 21. (a) 59.7;
(b) 2.81 � 10�4 23. (a) 5000; (b) 71; (c) 71 25. (a) 5200 Hz; (b) ampli-
tudeSAD/amplitudeSBD � 2 27. (a) 57.2 cm; (b) 42.9 cm 29. (a) 405
m/s; (b) 596 N; (c) 44.0 cm; (d) 37.3 cm 31. (a) 1129, 1506, and 1882
Hz 33. 12.4 m 35. (a) node; (c) 22 s 37. 45.3 N 39. 387 Hz 41. 0.02
43. 17.5 kHz 45. (a) 526 Hz; (b) 555 Hz 47. (a) 1.02 kHz; (b) 1.04 kHz
49. 155 Hz 51. (a) 485.8 Hz; (b) 500.0 Hz; (c) 486.2 Hz; (d) 500.0 Hz
53. (a) 598 Hz; (b) 608 Hz; (c) 589 Hz 55. (a) 42°; (b) 11 s

Chapter 19
RE 19-1: Some properties that are measurable include mass, vol-
ume, hardness, elasticity, and breaking strength. Flavor and color, for
example, are less easily quantified.

RE 19-2: For comfort we often want to maintain the temperature
inside our homes significantly higher (in winter) or lower (in sum-
mer) than that of the environment outside. Thermal insulation inside
the walls of our homes reduces the amount of heat energy that would
otherwise flow out of the house in winter or into the house in sum-
mer, reducing the expenditure of energy needed to maintain a com-
fortable interior temperature.

RE 19-3: Equation 19-5 tells us that, for the same amount of heat
energy added to the same mass, the temperature increase is inversely
proportional to the specific heat of the material being heated. Thus
object A has a greater specific heat than object B.

RE 19-4: The good news for the firefighter is that each kilogram of
water sprayed on the fire can remove a relatively large amount of
heat from the burning object. The bad news is that this heat can eas-
ily be transferred to the firefighter’s body if the steam condenses on
her skin. One gram of steam at 100 °C condensing on one gram of
(water-like) flesh at 37 °C will yield two grams of water-like material
at a temperature of (100 °C � 37 °C)/2 � 69 °C.

RE 19-5: For the net work done by the gas on its environment to
be positive, the top curve must go from left (lower pressure) to
right (higher pressure.) For maximum positive work each cycle that
area on the P-V diagram enclosed by the cycle must be as large as
possible. So curves c and e yield the maximum possible positive
work here.

RE 19-6: (a) The change in the internal energy of the gas is the same
in each case. (b) The work done by the gas is greatest for path 4, then
path 3, path 2, and finally path 1. (c) The thermal energy added to the
gas is also greatest for path 4, then path 3, path 2, and finally path 1.

RE 19-7: (a) For any cyclic process, Q � W � 0 or Q � W. (b) Be-
cause the net work that the gas does on its environment is negative
here, that means that the net thermal energy Q transfer to the system
is also negative and has the same value as the work. Thus thermal en-
ergy equal in magnitude to the work done by the system must be
transferred from the gas to the environment each cycle.

RE 19-8: (a) Plates 2 and 3 will be tied for the largest increase in
their vertical heights, followed by plate 1 and then plate 4. (b) Plate 3
will have the greatest increase in area, followed by plate 2, with
plates 1 and 4 tied for last place.
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RE 19-9: The hole gets larger as the plate’s temperature increases,
as would a circle drawn on the plate.

RE 19-10: The pressure at the base of the rod decreases, since the
weight of the rod remains constant while the area of the base sup-
porting that weight increases a bit.

RE 19-11: The greater the thermal conductivity, the smaller is the
temperature difference between the two faces of samples of the same
thickness. Since the temperature differences here, going from left to
right, are 10 C°, 5 C°, 15 C°, and 5 C°, slabs b and d tie for greatest
thermal conductivity, followed by slab a, with slab c having the small-
est thermal conductivity.

Problems
1. (a) 320 °F; (b) �12.3 °F 3. (a) Dimensions are inverse time. 5. (a)
523 J/kg� K; (b) 26.2 J/mol� K; (c) 0.600 mole 7. 42.7 kJ 9. 1.9 times as
great 11. (a) 33.9 Btu; (b) 172 F° 13. 160 s 15. 2.8 days 17. 742 kJ
19. 73 kW 21. 33 g 23. (a) 0°C; (b) 2.5°C 25. A: 120 J, B: 75 J, C: 30 J
27. �30 J 29. (a) 6.0 cal; (b) �43 cal; (c) 40 cal; (d) 18 cal, 18 cal
31. 348 K 33. (a) �40°; (b) 575°; (c) Celsius and Kelvin cannot give
the same reading 35. 960 �m 37. 2.731 cm 39. 29 cm3 41. 0.26 cm3

43. 360°C 47. 0.68 s/h, fast 49. 7.5 cm 51. (a) 0.13 m; (b) 2.3 km 53.
1660 J/s 55. (a) 16 J/s; (b) 0.048 g/s 57. 0.50 min 59. (a) 17 kW/m2;
(b) 18 W/m2 61. 0.40 cm/h

Chapter 20
RE 20-1: Processes (a), (b), (d), and (e) start and end on the same
isotherm because each has PV � 12 units.

RE 20-2: (a) The average translational kinetic energy doubles
when the temperature in kelvins of the gas doubles. (b) The average
translational kinetic energy would be zero if the temperature of the
gas were 0 K. However, all real gases condense into liquids before
reaching 0 K.

RE 20-3: (a) The average kinetic energy of each of the three
types of molecules is the same. (b) Since that is true, the rms 
speed of each is inversely related to its molecular mass, so type 3
has the greatest rms speed, followed by type 2, with type 1 the
smallest.

RE 20-4: Since the internal energy of an ideal gas depends only on
its temperature, path 5 has the greatest change in E int, followed by
the other four paths, all of which tie for second place.

Problems
1. 0.933 kg 3. 6560 5. (a) 5.47 � 10�8 mol; (b) 3.29 � 1016 7. (a)
0.0388 mol; (b) 220°C 9. (a) 106; (b) 0.892 m3 11. A(T2 � T1) � B(T 2

2

� T 2
1) 13. 5600 J 15. 100 cm3 17. 2.0 � 105 Pa 19. 180 m/s 

21. 9.53 � 106 m/s 23. 1.9 kPa 25. 3.3 � 10�20 J 27. (a) 6.75 � 10�20

J; (b) 10.7 31. (a) 6 � 109 km 33. 15 cm 35. (a) 3.27 � 1010; (b) 172
m 37. (a) 6.5 km/s; (b) 7.1 km/s 39. (a) 1.0 � 104 K; (b) 1.6 � 105 K;
(c) 440 K, 7000 K; (d) hydrogen, no; oxygen, yes 41. (a) 7.0 km/s;
(b) 2.0 � 10�8 cm; (c) 3.5 � 1010 collisions/s 43. (a) v0; (b) N/3;
(c) 122v0; (d) 1.31v0 45. RT ln(Vf /Vi) 47. (n1C1 � n2C2 � n3C3)/
(n1 � n2 � n3) 49. (a) 6.6 � 10�26 kg; (b) 40 g/mol 51. 8000 J 53. (a)
6980 J; (b) 4990 J; (c) 1990 J; (d) 2990 J 55. (a) 14 atm; (b) 620 K
59. 1.40 61. (a) In joules, in the order Q, �Eint, W: 1 : 2: 3740,
3740, 0; 2 : 3: 0, �1810, 1810; 3 : 1: �3220, �1930, �1290;
cycle: 520, 0, 520; (b) V2 � 0.0246 m3, p2 � 2.00 atm, V3 � 0.0373 m3,
p3 � 1.00 atm

2
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Chapter 21
RE 21-1: As the putty falls to the floor, gravitational potential en-
ergy is converted into translational kinetic energy. When the putty
hits the floor it looks at first as if all the mechanical energy is some-
how destroyed. But a closer look at the putty after the fall reveals
that the putty and the floor beneath it have warmed up a bit. How
so? As the putty collides with the floor, the floor does work on the
putty. Since the putty doesn’t bounce back, the work done on the
putty system serves to raise its internal energy. Now the putty’s tem-
perature rises and it begins transferring microscopic thermal energy
to its surroundings (air and floor) until thermal equilibrium is
achieved. Even more careful observations show, in fact, that all of the
mechanical energy present in the system before the fall is still there
after the putty hits the floor, just in other forms, primarily as thermal
energy.

RE 21-2: Driving a nail into a board, letting your hot coffee cool,
and saying hello to your friend are all examples of irreversible
processes in the sense that if you saw a movie of them running back-
ward you would know something was wrong.

RE 21-3: Process (c) and (b) involve the same amount of heat en-
ergy transfer to the water, while (a) adds twice as much heat to the
water. Process (a) also happens at the lowest average temperature, so
it involves the greatest entropy change of the water, followed by (b)
and then (c).

RE 21-4: Equation 21-11 relates the efficiency of a Carnot engine
to the two thermodynamic  temperatures between which it operates.
Applying this to these three cases yields Carnot efficiencies of
(a) 0.20, (b) 0.25, and (c) 0.33, so ranking the efficiencies, greatest
first, yields (c), then (b), then (a).

RE 21-5: (a) Raising the lower temperature TL by (�T) increases
the numerator of Eq. 21-14 by (�T) and simultaneously decreases the
denominator by the same amount. This yields the greatest increase in
the coefficient of performance of the refrigerator. (b) Lowering the
lower temperature TL by (�T) decreases the numerator of Eq. 21-14
by (�T) and simultaneously decreases the denominator by the same
amount. This yields the greatest decrease in the coefficient of perfor-
mance of the refrigerator. (c) Increasing the higher temperature TH

by (�T) makes the denominator bigger by (�T) with no change in the
numerator, decreasing the coefficient of performance of the refriger-
ator, but not as much as in (b). (d) Decreasing the higher tempera-
ture TH by (�T) makes the denominator smaller by (�T) with no
change in the numerator, increasing the coefficient of performance of
the refrigerator, but not as much as in (a). So, from greatest to least,
the changes in the coefficient of performance of the refrigerator are
(a), (d), (c), and finally (b).

RE 21-6: If we had, say, 6 molecules, then the number of mi-
crostates corresponding to 3 molecules in each half of the box would
be 6!/(3!)2 � 20. Generalizing Eq. 21-18 to three bins in the box with
2 molecules in each bin would have 6!/(2!)3 � 90. In this case a
greater number of microstates is associated with dividing the box up
into a larger number of equally populated equal subvolumes. This re-
mains true as the number of molecules is increased, so (b) has more
microstates than (a).

Problems
1. 14.4 J/K 3. (a) 9220 J; (b) 23.0 J/K; (c) 0 5. (a) 5.79 � 104 J; (b) 173
J/K 7. (a) 14.6 J/K; (b) 30.2 J/K 9. (a) 57.0°C; (b) �22.1 J/K; (c) �24.9

J/K; (d) �2.8 J/K 13. (a) 320 K; (b) 0; (c) �1.72 J/K 15. �0.75 J/K
17. (a) �943 J/K; (b) �943 J/K; (c) yes 19. (a) 3p0V0; (b) �E int �
6RT0, �S � R ln 2; (c) both are zero 21. (a) 31%; (b) 16 kJ 23. (a)
23.6%; (b) 1.49 � 104 J 25. 266 K and 341 K 27. (a) 1470 J; (b) 554 J; (c)
918 J; (d) 62.4% 29. (a) 2270 J; (b) 14800 J; (c) 15.4% (d) 75.0%,
greater 31. (a) 78%; (b) 81 kg/s 33. (a) T2 � 3T1, T3 � 3T1/4��1, T4 �
T1/4��1, p2 � 3p1, p3 � 3p1/4�, p4 � p1/4�; (b) 1 � 41�� 35. 21 J 37. 440
W 39. 0.25 hp 41. [1 � (T2/T1)]/[1 � (T4/T3)] 45. (a) W �
N!/(n1!n2!n3!); (b) [(N/2)! (N/2)!]/[(N/3)! (N/3)! (N/3)!]; (c) 4.2 � 1016

Chapter 22
RE 22-1: Electric stove, microwave, lights, car starter motor, tooth-
brush, computer, tape recorder, CD player, FM radio, amplifier, etc.

RE 22-2: (a) Since the two tapes have identical histories, they
should have like charges and repel. (b) The observations were consis-
tent with my predictions. The two  tapes repelled each other.

RE 22-3: (a) If woodolin was a new type of charge then two
wooden rods charged with linen would repel each other. A wooden
rod would have to attract both the charged amber (or plastic) rod
and the charged glass rod. (b) According to the text statements, this
observation has never been made. It has always been the case that a
suspected new type of charge (such as woodolin) always repels
either a charged amber rod or a charged glass rod and attracts the
other type rod. This makes it the same as one of the existing charges.

RE 22-4: A very simple explanation is that in a solid, all parts are
stiff. But since one can melt ice into water and then boil water into a
gas (water vapor) the atomic explanation seems quite plausible.

RE 22-5: I would discharge one of the spheres by touching it. Then
I would allow the two spheres to touch each other. They should share
the charge q equally so each sphere has charge q/2. If I repeat the
process, then each sphere will have charge (q/2)/2 � q/4.

RE 22-6: (a) If the paper bits are uncharged, then there is no mu-
tual attraction or repulsion. (b) “Induction” always causes the neutral
object to be attracted toward the charged object, independent of the
sign of the charge on the charged object. So, no, you can’t tell the sign
of the charge on the charged object in this way.

RE 22-7: (1) A, B is attractive (unlike charges), (2) A, A is repul-
sive (like charges), (3) B, B is repulsive (like charges), (4) B, C attract
(by induction), (5) C, C nonexistent forces (both neutral), and (6) C,
A attract (by induction).

RE 22-8: (a) Scotch tape acts like an insulator since charge doesn’t
draw away as you handle the tape at its ends. (b) A balloon behaves
like an insulator, because when you charge it, it can stick by induc-
tion to a wall rather than touch and pull away.

RE 22-9: (a) No, since charges on it are not mobile. (b) If we start
with a positively charged glass plate as the bottom plate in Fig. 22-10
and perform all the same steps, the aluminum pie plate will be nega-
tively charged.

RE 22-10: All of these assertions are inconsistent with the experi-
mental results in the text.

RE 22-11: (a) The central proton is attracted toward the electron,
so this force is to the left. (b) The central proton is repelled by the
other proton, so this force is also to the left. (c) Thus the net force on
the central proton is to the left. (d) There are no locations along the
line connecting the charges where the force on the former central
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proton can be zero. Since the magnitudes of the charges on the pro-
ton and electron are the same, the only location where the force mag-
nitudes on the other proton are zero is halfway between the first two,
but we know the forces don’t cancel there.

Problems
1. �1.32 � 1013 C 3. 6.3 � 1011 5. 122 mA 7. (a) positron; (b) electron
9. 1.38 m 11. (a) 4.9 � 10�7 kg; (b) 7.1 � 10�11 C 13. (a) 0.17 N;
(b) �0.046 N 15. either �1.00 �C and �3.00 �C or �1.00 �C and
�3.00 �C 17. (a) charge �4q/9 must be located on the line joining
the two positive charges, a distance L/3 from charge �q. 19. q � Q/2
21. (a) 3.2 � 10�19 C; (b) two 23. (a) 0; (b) 1.9 � 10�9 N 25. (a) 6.05
cm; (b) 6.05 cm from central bead 27. �13e 29. (a) positive; (b) �9
31. 9.0 kN 33. 1.72a, directly rightward 35. �11.1 �C 37. q � 0.71Q
39. (b) 1e, 0.654 rad; 2e, 0.889 rad; 3e, 0.988 rad; 4e, 1.047 rad; 5e, 1.088
rad 41. (a) Let J � qQ/4��0d 2. For  � 0, F � �J[�2 � (1 � ��)�2];
for 0 �  � 1, F � J[�2 � (1 � )�2]; for 1 � , F � J[�2 � ( � 1) �2]
43. (a) 5.7 � 1013 C, no; (b) 6.0 � 105 kg 45. (b) �2.4 � 10�8 C

47. (a) ; (b) 

Chapter 23
RE 23-1: F elec � 1/r 2. Thus at 4 cm, F elec would be (1/2)2 � 1/4 of its
value at 2 cm, or 9 mm. At 6 cm, F elec would be (1/3)2 � 1/9 of its
value at 2 cm, or 4 mm.

RE 23-2: Since the force on the test object to the sources, ,
varies from point to point in space, the test object must be small
enough spatially to test the “local” value rather than the average
value over too large a volume of space.

RE 23-3: The type of test charge makes no difference! For a nega-
tive test charge we would still use Eq. 23-9 to determine the electric
field vector. But, the new and the new negative
charge . So will equal (no charge).

RE 23-4: (a) Rightward, (b) leftward, (c) leftward, (d) rightward (p
and e have the same charge magnitude and p is farther).

RE 23-5: (a) To the left, (b) to the left in a parabolic path, (c) its
speed decreases at first, then increases. It will move in a straight line
first rightward, then leftward.

RE 23-6: All four experience the same magnitude torque.

RE 23-7: Near a positive charge, points always away from the
charge; near a negative charge, points always toward the charge.

RE 23-8: Just as for the two equidistant point charges in Fig. 23-10,
we can “pair up” equal patches of charge equidistant from the point
at which we are calculating for all such patches of charge on the
sheet, canceling the contributions to parallel to the sheet.

Problems
1. 56 pC 3. 3.07 � 1021 N/C, radially outward 5. 50 cm from qA and 100
cm from qB 7. 0 9. 1.02 � 105 N/C, upward 11. (a) 47 N/C; (b) 27 N/C 
13. 4kQ/3d2 or Q/3��0d2 15. 1.38 � 10�10 N/C, 180� from �x 17. 6.88 �
10�28 C � m 23. q/� 2�0r 2, vertically downward 25. (a) �q/L; (b)
q/4��0a(L � a) 29. (a) �1.72 � 10�15 C/m; (b) �3.82 � 10�14 C/m2;
(c) �9.56 � 10�15 C/m2; (d) �1.43 � 10�12 C/m3 31. E � 2k�Q�(sin
	/2)/	R2 33. 217� 35. 3.51 � 1015 m/s2 37. 6.6 � 10�15 N 39. (a) 1.5 �
103 N/C; (b) 2.4 � 10�16 N, up; (c) 1.6 � 10�26 N; (d) 1.5 � 1010 41. (a)
1.92 � 1012 m/s2; (b) 1.96 � 105 m/s 43. (a) 2.7 � 106 m/s; (b) 1000 N/C
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45. 27 �m 47. (a) yes; (b) upper plate, 2.73 cm 49. (a) 27 km/s; (b) 50
�m 51. 5.2 cm 53. (a) 0; (b) 8.5 � 10�22 N � m; (c) 0 55.
57. 1.92 � 10�21 J 59. (a) 6.4 � 10�18 N; (b) 20 N/C 63. (a) to the right
in the figure; (b) (2kqQ cos 60�)/a2

Chapter 24
RE 24-1: (a) (2 � 10�4 m2) cos 60� � (3 �
10�4 m3/s). Whatever fluid that is represented by this vector velocity
field is flowing through this surface area dA. (b) 
(3 N/C)(2 � 10�4 m2) cos 60� � 3 � 10�4 N � m2/C. Nothing is flowing
through the small area. Instead, the flux represents the product of the
E-field component normal to the area.

RE 24-2: To find the answers we simply sum the flux through all six
faces.We get and 
�3 N � m2/C. (a) Cube 2, (b) cube 3, and (c) cube 1.

RE 24-3: The central charge always acts along the central line. For
each noncentral charge (for example, the one to the left) that acts at
a point on this central line, there is a conjugate charge (in this exam-
ple, the one to the right of center) that is exactly the same distance
from the point as the original point. The E-field vectors have the
same magnitude. The E-components perpendicular to the plane act
in the same direction and add vectorially. The parallel components
act in opposite directions and cancel.

RE 24-4: Since Gauss’ law states that �net � qenc/�0 as long as the same
charge is enclosed by the new Gaussian surfaces, �net is unchanged.

RE 24-5: Negative charges would be induced on the inside surface
of the cavity so that qenc � qinduced � qcenter � 0. Thus, the net flux at
the cavity’s Gaussian surface would be zero.

Problems
1. (a) 0; (b) �3.92 N � m2/C; (c) 0; (d) 0 for each field 3. 2.0 �
105 N � m2/C 5. (a) 8.23 N � m2/C; (b) 8.23 N � m2/C; (c) 72.8 pC in each
case 7. 3.54 �C 9. 0 through each of the three faces meeting at q,
q/24�0 through each of the other faces 11. �7.5 nC 15. �1.04 nC 19.
(a) E � (q/4��0a3)r; (b) E � q/4��0r2; (c) 0; (d) 0; (e) inner, �q; outer,
0 21. q/2�a2 23. 6K�0r3 25. 5.0 �C/m 27. (a) E � q/2��0LR, radially in-
ward; (b) �q on both inner and outer surfaces; (c) E � q/2��0Lr, ra-
dially outward 29. (a) 2.3 � 106 N/C, radially out; (b) 4.5 � 105 N/C,
radially in 31. (b) �R2/2�0r 33. (a) 5.3 � 107 N/C; (b) 60 N/C 35. 5.0
nC/m2 37. 0.44 mm 39. 2.0 �C/m2 41. (a) 37 �C; (b) 4.1 � 106 N � m2/C

Chapter 25
RE 25-1: Question 1: Because charges that are infinitely far apart
exert no forces on each other. Question 2: Zero separation between
particles would involve infinite attractive or repulsive forces.

RE 25-2: (a) If we assume the E-field does not change as a result
of the reconfiguration of the charge then the positive charge dis-
placement is opposite to the direction of the E-field, so the E-field
does negative work. (b) It takes external work to move the charge
against the field so �U increases, and (c) because we are interested in
the change of electric potential between points 1 and 2.

RE 25-3: (a) The external force does positive work. (b) The proton
moves to a higher potential so V2 
 V1.

RE 25-4: (a) The E-field acts from left to right. (b) Positive exter-
nal work is done on the electron in paths 1, 2, 3, and 5. Negative work
is done on Path 4. (c) �V3 
 �V1 � �V2 � �V5 
 �V4.

�net
cube 3 ��net

cube 1 � 0 N �  m2/C, �net
cube 2 � �5 N �  m2/C,

� � E
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� �A
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RE 25-5: Given the charge distribution, we can simply add the
contribution to the potential at a point P due to each of the charges,
taken separately, using Eq. 25-25. If all we know is then we
must calculate V( ) using Eq. 25-17.

RE 25-6: V at P is the same for all three of these configurations.
The potential at P due to each proton only depends on how far away
that proton is from P and not on the direction.

RE 25-7: Using Eq. 25-29 for case (a) 	 � 0 and so cos	 � �1, for
case (b) 	 � 180� and cos	 � �1, and for case (c) 	 � 90� so cos	 � 0.
All other terms remain constant, so ranked from most to least posi-
tive, Va 
 Vc 
 Vb.

RE 25-8: (a) E2 
 E1 � E3, (b) Pair 3. (c) It accelerates leftward.

RE 25-9: Since potential energy is a scalar quantity, its superposi-
tion involves only scalar addition while the superposition of electric
fields requires adding vectors.

RE 25-10: (a) A is wrong since it originates on � and terminates
on �. B is wrong since it is not perpendicular to the plate near the
plate. C is wrong since it has a kink. D is wrong for the same reason
as A. E is wrong since it both originates and terminates on a �
charge. F is ok. (b) A correct drawing would have curves like A, D,
and F but with arrows pointing toward the negatively-charged
sphere.

RE 25-11: Because her skin is a conductor and thus an equipoten-
tial surface. Charges will redistribute so they have a higher density
near the top of her head, which has more curvature than the sides of
her head. The strength of the electric field is higher where the
charges bunch so the equipotential surfaces are closer together than
they were.

Problems
1. (a) 3.0 � 105 C; (b) 3.6 � 106 J 3. (a) 3.0 � 1010 J; (b) 7.7 km/s; (c)
9.0 � 104 kg 5. 8.8 mm 7. (a) 136 MV/m; (b) 8.82 kV/m 9. (b) because
V � 0 point is chosen differently; (c) q/(8��0R); (d) potential differ-
ences are independent of the choice for the V � 0 point

11. (a) Q/4��0r; (b) ;

(c) with � as in (b); (d) yes 13. (a) �4.5 kV; (b) �4.5 kV

15. x � d/4 and x ��d/2 17. (a) 0.54 mm; (b) 790 V 19. 6.4 � 108 V
21. 2.5q/4��0d 23. �0.21q2/�0a 25. (a) �6.0 � 104 V; (b) �7.8 � 105 V;
(c) 2.5 J; (d) increase; (e) same; (f) same 

27. 29. 2.5 km/s 31. (a) 0.225 J; (b) A, 45.0

m/s2; B, 22.5 m/s2; (c) A, 7.75 m/s, B, 3.87 m/s 33. 0.32 km/s 35. 1.6 �
10�9 m 39. (c/4��0)[L � d ln(1 � L/d)] 41. 17 V/m at 135� counter-

clockwise from �x 45. (a) leftward; (b) 0 47. 2.5 � 

10�8 C 49. (a) �180 V; (b) 2700 V, �8900 V 51. (a) �0.12 V; (b) 1.8 �
10�8 N/C, radially inward

Chapter 26
RE 26-1: Volta probably felt a tingling sensation or perhaps a
shock or jolt that would cause him to let go of the terminals.

RE 26-2: “Circuit” means a full round trip around some route. This
is just what the electric charge does.
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RE 26-3: (a) If the overall circuit had qnet � 0 before the switch
was closed, it will remain charge neutral after the switch is closed
since the circuit is a closed system and charge is neither created
nor destroyed, but merely flows around the circuit. (b) Individual
wires in the circuit can and do acquire a (small) net positive or
negative charge, but this charge must come from other parts of the
circuit.

RE 26-4: Electrical current is the net transport of charge past a
given point in a circuit in a given time. If equal amounts of positive
charge moving, say, right, and negative charge moving right go past
the same point, there is no net transport of charge past that point, so
i � 0 A.

RE 26-5: Let’s assume that the unknown current i flows from right
to left. Then the net current flowing into (�) or out of (�) the middle
node is (� 2 � 3 � 4 � 1 � 2 � 2 � i) A. But currents must all add
to zero at this node. Thus i ��8 A, meaning our assumption was
wrong and that i � 8 A flowing from left to right.

RE 26-6: A voltmeter is attached across a circuit element because
it is designed to measure the potential difference between the ends of
the circuit. An ammeter is inserted in a branch of a circuit because it
is designed to measure the current through that part of the circuit. In
a series circuit where there are no branches or alternate paths for
current to flow, it doesn’t matter whether the ammeter is placed be-
fore or after a series circuit element.

RE 26-7: Device 1 is ohmic since (�V/i) � 2.25 � � con-
stant and i � 0 A when �V � 0 V. Device 2 is nonohmic since
(�V/i) � constant. Device 3 is nonohmic. Although a plot of �V vs.
i is a straight line, i is nonzero at �V � 0, so i is not proportional 
to �V.

RE 26-8: If the cross-sectional area of the Nichrome wire is cut in
half, its resistance will double, so the slope of the i vs. �V graph which
is 1/R will be cut in half.

RE 26-9: (a) R � 1/r 2 for most wires, suggesting the current flows
through the whole cross-sectional area of the wire, not just on its
surface as indicated in Eq. 26-8. (b) If the current flowed only in a
thin layer near the surface then I’d expect R � 1/r since the circum-
ference is 2�r for a wire with a circular cross section.

RE 26-10: Since R � �L/A, (a) � (c) 
 (b).

RE 26-11: (a) � (b) 
 (d) 
 (c).

RE 26-12: Only the cross-sectional area A matters in comparing
current densities, so (a) � (d) 
 (b) � (c).

RE 26-13: Since the current density is (I/A) � (�V/(RA)) and 
RA � pL, we see here that the current density is just inversely pro-
portional to the length of each wire. So (b) � (d) 
 (a) � (c).

Problems
1. (a) 1200 C; (b) 7.5 � 1021 3. 5.6 ms 5. 100 V 7. 2.0 � 10�8 � � m
9. 2.4 � 11. 54 � 13. 3.0 15. (a) 0.43%, 0.0017%, 0.0034% 17. 560 W
19. (a) 1.0 kW; (b) 25 c� 21. 0.135 W 23. (a) 10.9 A; (b) 10.6 �; (c) 4.5
MJ 25. 660 W 27. (a) 3.1 � 1011; (b) 25 �A; (c) 1300 W, 25 MW 29. (a)
17 mV/m; (b) 243 J 31. (a) 6.4 A/m2, north; (b) no, cross-sectional
area 33. 0.38 mm 35. (a) 2 � 1012; (b) 5000; (c) 10 MV 37. 13 min 
39. 8.2 � 10�4 � � m 41. (a) 0.67A; (b) toward the negative terminal
43. (a) 1.73 cm/s; (b) 3.24 pA/m2
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Chapter 27

RE 27-1:

RE 27-2: (a) If all the current were “used up” in the first bulb, the
second and third bulbs would be dark. (b) If most of the current were
“used up” in the first bulb, the second bulb would glow more dimly
than the first and the third bulb would glow more dimly than the sec-
ond. (c) If only a small amount were “used up” in the first bulb, the
third would be dimmer than the second, and the second would be a
bit dimmer than the first.

RE 27-3: ia � ib � ic and Vb 
 Vc 
 Va.

RE 27-4: (a) i1 � i2 � i3. (b) �V1 
 �V2 
 �V3.

RE 27-5: Since the ammeter is wired in series with the resistors,
its resistance adds to theirs. (a) With no ammeter, the current will
be largest. (b) with RA � R1 � R2 the current will be reduced, but
only a little. (c) With RA � R1 � R2 the current would be cut in
half. Thus a good ammeter should have as small a resistance as
possible.

RE 27-6: (a) R1 � R2 in series so i1 � i2 and �V1 � �V2 � �VB

and so i � i1 � i2 � �VB/(R1 � R2). (b) R1 � R2 in parallel so i1 � i2

and �V1 � �V2 � �VB so now i � i1 � i2 � 2�VB/R1 � 2�VB/R2
.

RE 27-7: Note that RV is in parallel with R1. Thus if RV �� R1, the
effective resistance between d and e in Fig. 27-7 would be dramati-
cally decreased from R1 to less than RV. This would “pull down” �Vde

to a smaller value that it had before I installed the voltmeter. How-
ever, if RV 

 R1, then the effective resistance between d and e re-
mains just about R1 and the value of �Vde is about what it was with-
out the meter present. Thus RV 

 R gives more accurate
measurements of potential differences.

RE 27-8: Since the bulbs are identical and wired in parallel, i1 � i2 �
i3. If only one bulb were connected to the battery its brightness
would be the same as before, since the potential difference across it is
still �VB.

Problems
1. (a) 30 �; (b) clockwise; (c) A 3. (a) 45 �; (b) 0.33 A each; (c) 0.33 A
5. V1 � 3.5 V; V2 � 4.3 V; V3 � 7.2 V 7. 8.0 � 9. (a) 0; (b) 1.25 A, down-
ward 11. (a) 120 �; (b) i1 � 51 mA, i2 � i3 � 19 mA, i4 � 13 mA 13.
20 � 15. (a) bulb 2; (b) bulb 1 17. 0.45 A 19. i1 � �50 mA, i2 � 60 mA,
Vab � 9.0 V 21. (a) Cu: 1.11 A, A1: 0.893 A; (b) 126 m 23. 5.56 A 25. 3d
29. nine 31. providing energy, 360 W 33. (a) 3.0 A, downward; (b) 1.6
A, downward; (c) 6.4 W, supplying; (d) 55.2 W, supplying 
35. (a) 12 eV (1.9 � 10�18 J); (b) 6.5 W 39. (a) 7.50 A, leftward;
(b) 10.0 A, leftward; (c) 87.5 W, supplied 41. (a) 0.33 A, rightward;
(b) 720 J 43. (a) $320; (b) 4.8 cents 45. 14 h 24 min 47. (a) 0.50 A;
(b) P1 � 1.0 W, P2 � 2.0 W; (c) P1 � 6.0 W supplied, P2 � 3.0 W ab-
sorbed 49. (a) VT � �ir � �; (b) 13.6 V; (c) 0.060 � 51. (a) 14 V;
(b) 100 W; (c) 600 W; (d) 10 V, 100 W 53. (a) 50 V; (b) 48 V; (c) B is
connected to the negative terminal 55. (a) r1 � r2; (b) battery with r1

59. (a) R � r/2; (b) Pmax � �2/2r 61. (a) 0.346 W; (b) 0.050 W; (c) 0.709
W; (d) 1.26 W; (e) �0.158 W 63. (a) battery 1, 0.67 A down; battery 2,
0.33 A up; battery 3, 0.33 A up; (b) 3.3 V

1
2

� 0.113 �.

� R � (1.7 � 10�8 ��m)(0.30 m)/(1
4 � (2.4 � 10�4 m)2)

�Cu � 1.7 � 10�8 ��m; d � 2.4 � 10�4 m; L � 0.30 m

R � �L/A; A � �r 2 � 1
4 �d 2
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Chapter 28
RE 28-1: The capacitance of a capacitor remains the same, what-
ever the amount of excess charge on its plates and whatever potential
difference is applied across it. Doubling �q� doubles �Vc while tripling
�Vc triples �q�.

RE 28-2: Each of these three types of capacitors becomes electri-
cally isolated when removed from a battery so the excess charge on
each of the “plates” does not change.

RE 28-3: In these cases �V is constant and C and hence �q� must
change when spacings change, so �q� (a) decreases, (b) increases, and
(c) decreases.

RE 28-4: Each capacitor initially has the same �q� and the same
��V�. (a) Wiring them in parallel, positive plate to positive and nega-
tive to negative, leaves �q� and ��V� on each unchanged. Wiring them
in parallel, positive to negative, makes ��V� � 0 and so �q� � 0 on
each. (b) Wiring them in series leaves these quantities unchanged.

RE 28-5: (a) Since i0 � ��VB��R, (i0)1 
 (i0)2 
 (i0)4 
 (i0)3. (b) Since
t(1/2) is proportional to � � RC, (t(1/2))4 
 (t(1/2))1 � (t(1/2))2 
 (t(1/2))3.

Probl.ems
1. 7.5 pC 3. 3.0 mC 5. (a) 140 pF; (b) 17 nC 7. 5.04��0R 11. 9090
13. 3.16 �F 17. 43 pF 19. (a) 50 V; (b) 5.0 � 10�5 C; (c) 1.5 � 10�4 C

21.

23. 72 F 25. 0.27 J 27. (a) 2.0 J 29. (a) 2�V; (b) Ui � �0A�V2/2d, Uf �
2Ui; (c) �0A�V 2/2d 35. Pyrex 37. 81 pF/m 39. 0.63 m2 43. (a) 10 kV/m;
(b) 5.0 nC; (c) 4.1 nC

45. (a) (b) 

(c) q� � q(1 � 1/!) 47. 4.6 49. (a) 2.41 �s; (b) 161 pF 51. (a) 2.17 s;
(b) 39.6 mV 53. (a) 1.0 � 10�3 C; (b) 1.0 � 10�3 A; (c) �VC � 1.0 �
103 e�t V, �VR � 1.0 � 103 e�t V; (d) P � e�2t W

Chapter 29
RE 29-1: (a) z axis, (b) �x axis, (c) no direction since 

RE 29-2: (a) The electron, because it’s less massive and “bends”
more easily in the presence of a perpendicular force, (b) the electron
travels clockwise.

RE 29-3: The force exerted on the charge by
the E-field is the same in all 4 cases and points out of the page. In
cases 1 and 3, and are parallel so there is no magnetic force on
the charged particle. In cases 2 and 4, and are perpendicular
with magnetic forces out of and into the page respectively. (a) In
terms of force magnitude can take
on any value from zero to larger than and so can not be
ranked. (b) A zero net force is only possible for case 4.

RE 29-4: The equation is a maximum for a
given when is perpendicular to both and . This is true
whenever . Trying each direction, the right-hand rule
yields pointing along the �y axis.

RE 29-5: (a) where � � 	 for cases 2 and 3 and 
� � � � 	 for cases 1 and 4. But sin 	 � sin(� � 	) so � is the same
for all 4 cases. (b) U(�) � cos �. Now for cases 2��
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and 3, � � 	 � �/2 so cos 	 
 0, and for cases 1 and 4 � � � � 	 

�/2 cos � � �cos	 � 0, thus U1 � U4 
 U3 � U2.

Problems
1. (a) 6.2 � 10�18 N; (b) 9.5 � 108 m/s2; (c) remains equal to 550 m/s 3.
(a) 400 km/s; (b) 835 eV 5. (a) east; (b) 6.28 � 1014 m/s2; (c) 2.98 mm
7. 21 �T 9. (a) 2.05 � 107 m/s; (b) 467 �T; (c) 13.1 MHz; (d) 76.3 ns 
11. (a) 0.978 MHz; (b) 96.4 cm 15. (a) 1.0 MeV; (b) 0.5 MeV 
17. (a) 495 mT; (b) 22.7 mA; (c) 8.17 MJ 19. (a) 0.36 ns; (b) 0.17 nm;
(c) 1.5 mm 21. (a) 3.4 � 10�4 T, horizontal and to the left as viewed
along 1; (b) yes, if its velocity is the same as the electron’s velocity
23. 0.27 mT 25. 680 kV/m 27. (b) 2.84 � 10�3 29. 38.2 cm/s 31. 28.2N,
horizontally west 33. 467 mA, from left to right 35. 0.10 T, at 31° from
the vertical 37. 4.3 � 10�3 N � m, negative y 41. 2 �aiB sin 	, normal to
the plane of the loop (up) 43. 2.45 A 45. (a) 12.7 A; (b) 0.0805 N � m
47. (a) 0.30 J/T; (b) 0.024 N � m 49. (a) 2.86 A � m2; (b) 1.10 A � m2 51.
(a) (8.0 � 10�4 N � m)(�1.2 � 0.90 � 1.0 ); (b) �6.0 � 10�4 J

Chapter 30
RE 30-1: (a) is to the left at point 1, (b) is up at point 2, (c) 
is to the right at point 1, (d) is down at point 2.

RE 30-2: (a) If at point 1 then the current in the wire is
coming out of the page. (b) Since , and since 
at point 2 points straight down and has the same magnitude as

is directed 45 degrees down and toward the right at point 2
and its magnitude is 

RE 30-3:

RE 30-4: where ienc is the net current flowing

through the loop. Therefore, for case (a)

� 0 for case (b)
� i for case (c)
� 2i for case (d).

(d) 
 (a) � (c) 
 (b).

RE 30-5: For z 

 R, due to any one loop is proportional to
. Since all the i’s are equal, for each loop. Taking the

directions of the currents into account and calling B1 the magnetic
field magnitude for one small loop, and B2 � 4B1, the magnetic field
magnitude for one large loop, Ba � 2B1; Bb � 0; Bc � 0; Bd � 2B1 �
B2 � 2B1 � 4B1 .

Problems
1. (a) 3.3 �T; (b) yes 3. (a) 16 A; (b) west to east 5. �0qvi/2�d,
antiparallel to i; (b) same magnitude, parallel to i 7. 2 rad 

9. out of page. 19. (�0i/2�w) ln(1 � w/d), up 

21. 256 nT 23. (a) it is impossible to have other than B � 0 midway
between them; (b) 30 A 25. 4.3 A, out of page 27. 80 �T, up the page
29. 0.791�0i2/�a, 162° counterclockwise from the horizontal 31. 3.2
mN, toward the wire 33. (a) (�2.0 A)�0; (b) 0 37. �0J0r2/3a 43. 0.30
mT 45. (a) 533 �T; (b) 400 �T 49. (a) 4.77 cm; (b) 35.5 �T 51. 0.47
A � m2 53. (a) 2.4 A � m2; (b) 46 cm 59. (a) 79 �T; (b) 1.1 � 10�6 N � m

Chapter 31
RE 31-1: They were trying to relate induction to the presence of a
magnetic field rather than to a changing field.
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RE 31-2: Since the magnetic field is uniform, the left and right seg-
ments are polarized symmetrically as shown in the diagram. There is
no favored direction in which current can flow.

RE 31-3: This case is similar to the one shown in Fig. 31-7. How-
ever, now the polarization will always be stronger on the right side of
the coil than it is on the left side, so the current will flow continuously
in a counter clockwise direction.

RE 31-4: Yes, since observations show that the in the magnetic
force law turns out to be the relative velocity be-
tween the object producing the B-field and the charge.

RE 31-5: The magnet is accelerating downward as it falls at
By the time its rear end is passing through the area

subtended by the loop, it is traveling faster than the front pole was as
it passed by, so the rate of change of the B-field is greater at t � 0.20 s
than it was at t � 0.10 s and the amount of induced current is also
greater.

RE 31-6: (a) b 
 d � e 
 a � c. (b) The magnitude �dB�dt� deter-
mines that the amount of induced emf is greatest when the slope is
greatest.

RE 31-7: (a) into the page to add to the decreasing field, (b) out of
the page to subtract from the decreasing field.

RE 31-8: In each semicircular area �d"mag�dt� is identical. The only
issue is the “sense” of the induced emf contributed by each semicir-
cle. Using Lenz’s law, loop (a) has a nonzero, clockwise (CW) in-
duced current. Loop (b) has a counterclockwise (CCW) current in
both the upper and lower halves, so �ia� � �ib�. In loop (c), the induced
emfs in the upper and lower half circles cancel one another out so 
�ic� � 0 so �ia� � �ib� 
 �ic�.

RE 31-9: As each loop enters or leaves the region where B � 0, ��� �
�d"mag�dt� � (h)(v) where h � height of the loop and v is its speed.
Since v � constant for each, ��c� � ��d� � 2��a� � 2��b�.

RE 31-10: (a) Out (given), (b) out since path 3 has ��� � 3(mag),
(c) out since path 3 has ��� � 3(mag), (e) in, since path 4 has ��� � 0,
(d) in since path 2 has ��� � 2(mag).

RE 31-11: When we pointed a right thumb in the direction of the
current our fingers wrapped around the wire in the direction of the
magnetic field. This is consistent with the direction of the magnetic
field shown in Fig. 31-24.

RE 31-12: The quantity idis � �0d"elec�dt has the units of current.
We can use the right hand rule to find the direction of and we can
use it to find the magnitude of induced by a capacitor.

RE 31-13: (a) �"d� 
 �"b� 
 �"c� 
 �"a�. Since (Eq. 31-49),

RE 31-14: They both involve the integration of a field vector over a
closed Gaussian surface. Each integral determines a net flux at the
closed surface that is proportional to the net electric or magnetic
charge enclosed by the surface. The major difference between the elec-
tric and magnetic situation is that the net magnetic charge enclosed is
always zero (that is, north and south poles always appear together),
and the net electric charge enclosed can be positive, negative, or zero.

"curve � �
ends

B
:

�dA
:

."net � 
ends

B
:

�dA
:

� 
curve

B
:

�dA
:

 so

B
:

�dA
:

� 0

B
:

B
:

a: � (�9.8 m/s2)ĵ.
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RE 31-15: A statement of Faraday’s law is that a changing mag-
netic field produces an electric field. The Ampère-Maxwell law states
that a changing electric field produces a magnetic field. So there is a
mathematical symmetry between the two fields.

Problems
1. 1.5 mV 3. (a) 31 mV; (b) right to left 5. (a) 1.1 � 10�3 �; (b) 1.4 T/s
7. 30 mA 9. 2.9 mV 11. (a) �0iR2�r 2/2x3; (b) 3�0i�R2r2v/2x4; (c) in the
same direction as the current in the large loop 13. (b) no 15. 29.5 mC
17. (a) 21.7 V; (b) counterclockwise 19. (b) design it so that Nab �
(5/2�) m2 21. 5.50 kV 23. 80 �V, clockwise 25. (a) 13 �Wb/m; (b)
17%; (c) 0 27. 3.66 �W 29. (a) 48.1 mV; (b) 2.67 mA; (c) 0.128 mW
31. (a) 600 mV, up the page; (b) 1.5 A, clockwise; (c) 0.90 W; (d) 0.18
N; (e) same as (c) 33. (a) 240 �V; (b) 0.600 mA; (c) 0.144 �W; (d) 2.88
� 10�8 N; (e) same as (c) 35. (a) 71.5 �V/m; (b) 143 �V/m 39. 2.4 �
1013 V/m � s 41. (a) 1.18 � 10�19 T; (b) 1.06 � 10�19 T 43. (a) 5.01 �
10�22 T; (b) 4.51 � 10�22 T 45. 52 nT � m 51. (a) 0.63 �T; (b) 2.3 �
1012 V/m � s 53. (a) 710 mA; (b) 0; (c) 1.1 A 55. (A) 2.0 A; (b) 2.3 �
1011 V/m � s; (c) 0.50 A; (d) 0.63 �T � m 57. (a) 75.4 nT; (b) 67.9 nT 
59. (a) 27.9 nT; (b) 15.1 nT 61. (b) sign is minus; (c) no, there is com-
pensating positive flux through open end near magnet 63. 47.4 �Wb,
inward

Chapter 32
RE 32-1: Combine Eqs. 32-1 and 32-2 to get L � �0An2l. (a) If n
doubles L : 4L. (b) If l doubles A : 2A.

RE 32-2: (d) decreasing rightward or (e) increasing and leftward.

RE 32-3: (a) Req � (Np�Ns)2 R we want Req seen by the generator
to be smaller. So Ns must be greater than Np. (b) This would be a step
up transformer.

RE 32-4: A refrigerator magnet is ferromagnetic; a standard paper
clip is also ferromagnetic, since it is made of steel, a ferromagnetic
material; a silver wire is diamagnetic (the book says so).

RE 32-5: (a) Spin down or (2). (b) Since the proton has the oppo-
site sign of charge, spin up or (1).

RE 32-6: A ferromagnetic material must have well more than 50%
of its domains aligned with each other to act like a strong magnet. If
no one alignment of the domains dominates, then it is not a perma-
nent magnet.

RE 32-7: Hysteresis is a lack of retraceability of a magnetization
curve. It occurs because the reorientation of domains are not com-
pletely reversible.

RE 32-8: (a) is directed toward the magnet. (b) The dipole mo-
ments are also directed toward. (c) The force on sphere 1 is less.

RE 32-9: (a) is directed away from the magnet. (b) The dipole
moments are also directed away. (c) The force on sphere 1 is less.

RE 32-10: The Earth’s B-field has a different declination and incli-
nation at different locations at any one time. But, it also varies in
time. Currently the geographic poles are moving daily. They can also
reverse themselves in time periods on the scale of 1000 years.

Problems
1. 0.10 �Wb 5. let the current change at 5.0 A/s 7. (b) so that the
changing magnetic field of one does not induce current in the other;

(c) 9. 12 A/s 11. (a) 0.60 mH; (b) 120 13. (a) 1.67 mH;Leq � �
N

j�1
Lj

F
: mag

F
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(b) 6.00 mWb 15. (b) have the turns of the two solenoids wrapped in
opposite directions 17. magnetic field exists only within the cross sec-

tion of solenoid 1 19. (a) (b) 13 �H 21. 6.91�L

23. 46 � 25. (a) 8.45 ns; (b) 7.37 mA 27. 10.6 A/s 29. (a) i1 � i2 �
3.33 A; (b) i1 � 4.55 A; i2 � 2.73 A; (c) i1 � 0, i2 � 1.82 A (reversed);
(d) i1 � i2 � 0 31. (a) 3.28 ms; (b) 6.45 ms; (c) infinite time; (d) for 
R � 6.0 �, the current of the 2.00 A is the equilibrium current, given
by #/R � (12 V)/(6.0 �); it takes an infinite time to reach. For R �
5.00 �, the current of 2.00 A is less than the equilibrium current and
requires a finite time to reach. (e) 0; (f) 3 ms 33. 81.1 �s 35. (a) 2.4 V;
(b) 3.2 mA, 0.16 A 37. 10 39. (a) �9.3 � 10�24 J/T; (b) 1.9 � 10�23 J/T
41. (a) 0; (b)0; (c) 0; (d) �3.2 � 10�25 J; (e) �3.2 � 10�34 J � s, 2.8 �
10�23 J/T, �9.7 � 10�25 J, �3.2 � 10�25 J 43. (a) nine; (b) 4 �B � 3.71
� 10�23 J/T; (c) �9.27 � 10�24 J; (d) �9.27 � 10�24 J 45. 5.15 �
10�24 A �m2 47. (a) 180 km; (b) 2.3 � 10�5 49. �� � e2r2 B/4m
51. 20.8 mJ/T 53. yes 55. (b) Ki/B, opposite to the field; (c) 310 A/m
57. 55 �T 59. (a) 31.0 �T, 0°; (b) 55.9�T, 73.9°; (c) 62.0 �T, 90°

Chapter 33
RE 33-1: Using Eq. 33-6, a � b 
 c. (Note that coil area doesn’t
matter here.)

RE 33-2: At t � 0 s, U elec � max and Umag � 0. T � period � 1/f.
(a) �q(t)� is a maximum again at t � T/2. (b) �vC is next the same at 
t � T. (c) Uelec is next a maximum at t � T/2. (d) i is next a maximum
at t � T/4.

RE 33-3: The unit for � is [rad/s]. Since L � �L�(di/dt), we get 
[H] � [V/(A/s)]. Since C � q/�V we get [F] � [Q/V]. and
the units of are [1/(V � s/A)(Q/V)]1/2 but [A] � [Q/s] so [1/s2]1/2

or [1/s]. This matches the � unit of [rad/s].

RE 33-4: (a) According to the loop rule, �vC � �vL � 0. Since 
�L � �vL, �L � �5 V. (b) Umag � U � Uelec � 160 �J � 10 �J � 150 �J.

RE 33-5: (a) C 
 B 
 A. (b) 1 & A, 2 & B, 3 & S, 4 & C. (c) A.

RE 33-6: (a) (1) lags, (2) leads, (3) in phase. (b) (3) (�dr � � when
XL � XC).

RE 33-7: (a) Increase since the circuit is mainly capacitive; in-
crease C to decrease XC to be closer to resonance for maximum �P�.
(b) Closer.

Problems
1. 25.6 ms 3. (a) 97.9 H; (b) 0.196 mJ 7. (a) 34.2 J/m3; (b) 49.4 mJ 
9. 1.5 � 108 V/m 11. (a) 1.0 J/m3; (b) 4.8 � 10�15 J/m3 13. 9.14 nF 
15. (a) 1.17 �J; (b) 5.58 mA 17. with n a positive integer: (a) t �
n(5.00 �s); (b) t � (2n � 1)(2.50 �s); (c) t � (2n � 1)(1.25 �s) 19. (a)
1.25 kg; (b) 372 N/m; (c) 1.75 � 10�4 m; (d) 3.02 mm/s 21. 7.0 � 10�4 s
23. (a) 3.0 nC; (b) 1.7 mA; (c) 4.5 nJ 25. (a) 275 Hz; (b) 364 mA 
27. (a) 6.0:1; ( b) 36 pF, 0.22 mH 29. (a) 1.98 �J; (b) 5.56 �C; (c) 
12.6 mA; (d) �46.9°; (e) �46.9° 31. (a) 0.180 mC; (b) T/8; (c) 66.7 W
33. (a) 356 �s; (b) 2.50 mH; (c) 3.20 mJ 35. Let T2 ( � 0.596 s) be the
period of the inductor plus the 900 �F capacitor and let T1

(� 0.199 s) be the period of the inductor plus the 100 �F capacitor.
Close S2, wait T2/4; quickly close S1, then open S2; wait T1/4 and then
open S1. 37. 8.66 m� 39. (L/R) ln 2 43. (a) 0.0955 A; (b) 0.0119 A 
45. (a) 0.65 kHz; (b) 24 � 47. (a) 6.73 ms; (b) 11.2 ms; (c) inductor;
(d) 138 mH 49. (a) XC � 0, XL � 86.7 �, Z � 218 �, I � 165 mA,
� � 23.4° 51. (a) XC � 37.9 �, XL � 86.7 �, Z � 206 �, I � 175 mA,
� � 13.7° 53. 1000 V 55. 89 � 57. (a) 224 rad/s; (b) 6.00 A; (c) 

1/√LC
� � 1/√LC

�0Nl
2�

 ln �1 �
b
a �;



228 rad/s, 219 rad/s; (d) 0.040 61. 1.84 A 63. 141 V 65. 0, 9.00 W,
2.73 W, 1.82 W 67. (a) 12.1 �; (b) 1.19 kW 69. (a) 0.743; (b) leads;
(c) capacitive; (d) no; (e) yes, no, yes; (f) 33.4 W 71. (a) 117 �F; (b) 0;
(c) 90.0 W, 0; (d) 0°, 90°; (e) 1, 0 73. (a) 2.59 A; (b) 38.8 V, 159 V, 224 V,
64.2 V, 75.0 V; (c) 100 W for R, 0 for L and C.

Chapter 34
RE 34-1: (a) Since the induced emf around the dotted loop must
oppose the increase in on the right of the rectangle points
down in the negative y direction. � on the left has a greater
magnitude and points in the same direction. (b) Since must
be in the positive x direction, on the right points into the paper in
the negative z direction. on the left points in the same direc-
tion as but has a greater magnitude.

RE 34-2: In the positive x direction.

RE 34-3: For total absorption, Pr � I/c independent of area, but
Fr � PrA so it decreases as the area decreases.

Problems
1. 5.0 � 10�21 H 3. Bx � 0, By � �6.7 � 10�9 cos[� � 1015(t � x/c)],
Bz � 0 in SI units 5. 0.10 MJ 7. 8.88 � 104 m2 9. (a) 16.7 nT; (b) 33.1
mW/m2 11. (a) 6.7 nT; (b) 5.3 mW/m2; (c) 6.7 W 13. (a) 87 mV/m; (b)
0.30 nT; (c) 13 kW 15. 3.44 � 106 T/s 17. (a) z axis; (b) 7.5 � 1014 Hz;
(c) 1.9 kW/m2 19. 89 cm 21. (a) 3.5 �W/m2; (b) 0.078 �W; (c) 1.5 �
10�17 W/m2; (d) 110 nV/m; (e) 0.25 fT 23. 1.0 � 107 Pa 25. 5.9 � 10�8

Pa 27. (a) 100 MHz; (b) 1.0 �T along the z axis; (c) 2.1 m�1, 6.3 � 108

rad/s; (d) 120 W/m2; (e) 8.0 � 10�7 N, 4.0 � 10�7 Pa 31. 1.9 mm/s 33.
(b) 580 nm 35. (a) 4.68 � 1011 W; (b) any chance disturbance could
move the sphere from being directly above the source, and then the
two force vectors would no longer be along the same axis 37. (a) 1.9
V/m; (b) 1.7 � 10�11 Pa 39. 3.1% 41. 4.4 W/m2 43. 2/3 45. (a) 2
sheets; (b) 5 sheets 47. 0.21 49. 35� 51. 0.031 53 19.6� or 70.4� (� 90�
� 19.6�) 55. (a) 0.50 ms; (b) 8.4 min; (c) 2.4 h; (d) 5500 B.C. 57. (a)
515 nm, 610 nm; (b) 555 nm, 5.41 � 1014 Hz, 1.85 � 10�15 s 59. it
would steadily increase; (b) the summed discrepancies between the
apparent time of eclipse and those observed from x; the radius of
Earth’s orbit

Chapter 35
RE 35-1: a

RE 35-2: 0.2d, 1.8d, 2.2d.

RE 35-3: When you look into a flat mirror, you see the portion of
light scattering off your face that bounces off the mirror and travels
straight back into your eyes. But you assume that the light entering
your eyes has traveled in a straight line to reach you, so you see an
image of your face behind the mirror. The image of your face is right
side up. The light from your hair hits the mirror at a slight angle and
then bounces into your eyes from above which is why you see your
hair on top. Left and right are a different story. If you are standing
face to face with another person and your right ear points toward
the east, her left ear will point toward the east. If, instead, you face a
flat mirror, the light from your right ear will bounce off the mirror
and enter your eyes from the east. Even though your east ear is the
east ear of the image, your right ear has become the left ear of the
image.

RE 35-4: Ray 1: A ray that is initially parallel to the central axis re-
flects as if it came originally from the focal point behind the mirror.
Ray 2: A ray that comes from the object and is traveling toward the
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focal point behind the mirror emerges parallel to the central axis.
Ray 3: A ray that comes from the object and is traveling toward the
center of curvature C of the mirror returns along itself. Ray 4: A ray
that comes from the object and reflects from the mirror at its inter-
section c from the central axis is reflected symmetrically from the
central axis.

RE 35-5: (a) Real; (b) inverted; (c) same.

RE 35-6: (a) e; (b) virtual, same.

Problems
1. 1.48 3. 1.26 5. 1.07 m 11. 1.22 13. (a) 49�; (b) 29� 15. (a) cover the
center of each face with an opaque disk of radius 4.5 mm; (b) about
0.63 17. (a) ; (b) ; (c) light emerges at the right; (d) no
light emerges at the right 19. 49.0� 21. 40 cm 23. (a) 3 27. new illumi-
nation is 10/9 of the old 29. 10.5 cm 33. (a) 2.00; (b) none 37. i � �12
cm 39. 45 mm, 90 mm 43. 22 cm 47. same orientation, virtual, 30 cm
to the left of the second lens; m � 1 53. (a) 13.0 cm; (b) 5.23 cm; (c)
�3.25; (d) 3.13; (e) � 10.2 55. (a) 2.35 cm; (b) decrease 57. (a) 5.3
cm; (b) 3.0 mm

Chapter 36
RE 36-1: b (least n), c, a.

RE 36-2: (a) 3�, 3; (b) 2.5�, 2.5.

Problems
1. (a) 5.09 � 1014 Hz; (b) 388 nm; (c) 1.97 � 108 m/s 3. 1.56 5. 22�, re-
fraction reduces 	 7. (a) 3.60 �m; (b) intermediate, closer to fully
constructive interference 9. (a) 0.833; (b) intermediate, closer to fully
constructive interference 11. (a) 0.216 rad; (b) 12.4° 13. 2.25 mm
15. 648 nm 17. 16 19. 0.072 mm 21. 6.64 �m 23. 2.65 25. y �
27 sin(�t � 8.5°) 27. (a) 1.17 m, 3.00 m, 7.50 m; (b) no 29. I �

[1 � 8 cos2(�d sin 	/�)], Im � intensity of central maximum 31.
Fully constructively 33. 0.117�m, 0.352 �m 35. 70.0 nm 37. 120 nm
39. (a) 552 nm; (b) 442 nm 43. 140 45. 1.89�m 47. 2.4 �m 49.

for m � 0, 1, 2, . . . 51. 1.00 m 53. x � (D/2a)(m � )�,
for m � 0, 1, 2, . . . 55. 588 nm 57. 1.00030

Chapter 37
RE 37-1: (a) expand, (b) expand

RE 37-2: (a) second side maximum, (b) 2.5

RE 37-3: (a) red, (b) violet

RE 37-4: Diminish

RE 37-5: (a) left, (b) less.

Problems
1. 60.4 �m 3. (a) �a � 2�b; (b) coincidences occur when mb � 2ma

5. (a) 70 cm; (b) 1.0 mm 7. 1.77 mm 11. (d) 53�, 10�, 5.1� 13. (b)
0 rad, 4.493 rad, etc.; (c) �0.50, 0.93, etc. 15. (a) 1.3 � 10�4 rad; (b) 
10 km 17. 50 m 19. (a) 1.1 � 104 km; (b) 11 km 21. 27 cm 23. (a)
0.347�; (b) 0.97� 25. (a) 8.7 � 10�7 rad; (b) 8.4 � 107 km; (c) 0.025
mm 27. five 29. (a) 4; (b) every fourth bright fringe is missing 31. (a)
nine; (b) 0.255 33. (a) 3.33 �m; (b) 0.0�, �10.2�, �20.7�, �32.0�,
�45.0�, �62.2� 35. three 37. (a) 6.0 �m; (b) 1.5 �m; (c) m � 0, 1, 2, 3,
5, 6, 7, 9, 39. 1100 47. 3650 53. 0.26 nm 55. 39.8 pm 59. (a)

61. 30.6�, 15.3� (clockwise); 3.08�,
37.8° (counterclockwise)

a0/√5, a0/√10, a0/√13, a0/√17a0/√2,

1
2√(m � 1

2)�R,

1
9Im

√2√1 � sin2 	
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Chapter 38
RE 38-1: We observe that the second train is moving with respect
to our train. The “slight vibration” we feel is evidence that our own
train is moving along the tracks, but this does not tell us either the
speed or the direction of that motion. Without this information on
our own motion, we cannot determine whether or not the second
train is at rest with respect to the tracks.

RE 38-2: (a) Our measured value of the speed of light is equal to its
value measured by the rider. (b) With respect to our frame, it takes
some time for the light to move from one end of the boxcar to the
other. During that time the boxcar moves in a direction opposite to that
of the light. As a result, we measure the distance between emission and
absorption of the light to be smaller than the length of the boxcar. (c)
Part (b) shows that the distance between emission and absorption is
shorter in our frame than in the frame of the rider on the boxcar. The
speed of light is the same for both of us. Therefore, the time between
emission and detection is shorter as measured in our frame is shorter
than the time measured in the boxcar frame. (You should revisit this
analysis after reading Section 38-12 Lorentz Contraction. Will this re-
analysis lead to the same conclusion or a different one?)

RE 38-3: These questions concern individual impressions, so there
are no objective answers. Here are mine: Halfway through the
performance I would experience it as a whole series of events: hard
parts, easy parts, mistakes! Those who printed the program probably
listed the Minute Waltz as one event in the concert. Looking back ten
years later, I will probably (but not necessarily) remember it as a sin-
gle event.

RE 38-4: (a) Recall that, in general, distance � velocity*time. We
know the velocity (c) and the distance (30 meters) of the returning
light pulse. Therefore the time taken for this return is (30 m)/(3 �
108 m/s) � 10�7 second � 0.1 microsecond. Therefore the pulse ar-
rived at detector B 0.225 � 0.1 � 0.125 microsecond after it passed
us at detector A. (b) The proton pulse left detector A at t � 0 and, ac-
cording to part (a) arrived at detector B at t � 0.125 microseconds.
Therefore its speed from A to B is (30 m)/(0.125 � 10�6 s) � 2.4 �
108 m/sec, or 2.4/3 � 0.8 of the speed of light.

RE 38-5: Decay reduces the remaining number of pions by a fac-
tor of two for every 25 meters of distance they travel (at that particu-
lar speed, whatever it is). So there will be one-quarter remaining af-
ter 50 meters of travel and one-eighth at a distance of 75 meters from
the target.

RE 38-6: All the clocks will run at the rate of every other clock. If
this were not so, you could use the difference between rates of differ-
ent clocks to detect which inertial reference frame you are in, con-
trary to the principle of relativity.

RE 38-7: Rearrange Eq. 38-3 to read ��/�t � . Square
both sides of this equation, solve for v2/c2, and substitute the values
given in the statement of the exercise, v2/c2 � 1 � ��/�t � 1 � 1/1.01
� 0.0099. Take the square root of both sides to obtain approximately
v/c � 0.1. This is a rough-and-ready criterion for the speed above
which relativistic effects become significant in reasonably accurate
experiments.

RE 38-8: The time a light pulse takes to travel one way from
Earth’s surface to the moon’s surface is 3.76 � 108 m/3.00 � 108 m �
1.25 second. The two firecrackers, one on each surface explode one
second apart in the earth-moon frame. Nothing, not even light can

√1 � v2/c2
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travel from the first explosion to the second explosion. Therefore one
explosion cannot have caused the other one.

RE 38-9: Music has been emitted from the tape player. There are
vibrations in the air. This is a fact that must be true in both frames of
reference. (For example, it might be arranged to have the noise set
off a firecracker, whose explosion must be acknowledged by all.) Air
currents and distance permitting, Sam on the ground will be able to
hear the music sometime (with what distortions we do not bother to
analyze here). When Sam and Susan meet over coffee, they will both
verify that some tape has been wound from one spool to the other in
the tape recorder.

RE 38-10: Rearrange Eq. 38-17 to read E/mc2 � (l � v2/c2)�1/2.
Take the reciprocal of both sides, then square both sides and substi-
tute values for the ratio of energy to rest energy given in the state-
ment of the exercise. The result is (mc2/E)2 � 1/4 � 1 � v2/c2. Re-
arrange and take a square root to obtain v � c � 0.866c.

RE 38-11: The algebraic equations for this solution are essentially
identical to those for the solution to the preceding reading exercise
38-10. Rearrange Eq. 38-28 to read �x�/�x � (1 � v2/c2)�1/2. Take the
reciprocal of both sides, then square both sides and substitute values
for the ratio of measured lengths given in the statement of the exer-
cise. The result is (�x�/�x)2 � 1/4 � 1 � v2/c2. Rearrange and take a
square root to obtain v � c � 0.866c.

RE 38-12: The light flash will move with speed c in our frame; this
is a basic assumption of special relativity (Section 38-3). Verify this
result by substituting the values u� � c and vrel � 0.9c into Eq. 38-31.

c as we predicted.

RE 38-13: Square both sides of Eq. 38-33 and multiply through by
the resulting denominator: Solve for vrel

.

Problems
1. (a) v/c � 3.16 � 10�18 (b) v/c � 9.26 � 10�8 (c) v/c � 2.87 �
10�6 (d) v/c � 10�4 3. EACH of the identical experiments should
give the same result in the uniformly moving train as in the
closed freight container. 5. v/c � 0.990 or v � 2.97 � 108 m/s 7.
You set your clock to the time 2 � 10�4 s. 9. �� � 4.7 � 10�8 s
and �t � 17 � 10�8 s. Therefore �t/�� � 3.6 11. (a) 26.3 y (b)
52.3 y (c) 3.71 y 13. (a) v/c � 0.995 (b) 4.8 � 103 m (c) 480 m (d)
48 km (e) 9.8 � 104 particles will survive. 15. (a) v/c � 0.9999995
(b) one year (c) It does not matter as long as the acceleration is
small. 17. (1, 2) timelike, yes; (1, 3) spacelike, no; (2,3) lightlike,
yes 21. 3.51 � 10�8 kg/y or about 35 micrograms/year 23. 1.4467
� 10�29 kg, or 8.127 MeV 25. (a) 1.04 � 1010 J (b) 0.116 mg 27.
(a) v/c � [N(N � 2)]1/2/(N � 1)(b)p � [N(N � 2)]1/2 mc 29. (a)
m[p2/(2K)] � [K/(2c2)]. For slow particle speed this reduces to
the first term, which becomes m, as expected. (b) m/me � 206 31.
(a) The lowest total energy after the collision (equal to the total
energy before the collision) leaves the products at rest. (b) Ki-
netic energy of each incident proton is equal to the rest energy
(the mass) of one proton. (c) This incident kinetic energy is equal
to 1 GeV, which is reasonable since in the zero-total-momentum
frame all the incident kinetic energy goes into the creation of
mass, provided that the products remain at rest. 33. $x � $ rel and
vy � $ y�[1 � ($ rel)2/c2]1/2 35. (a) cos� � [cos �� � $ rel/c]/[1 �

vrel �
1 � (f/f0)2

1 � (f/f0)2 c �
1 � 0.81
1 � 0.81

c � 0.1c

(f/f0)2(1 � vrel/c) � (1 � vrel/c).

u �
c � vrel

1 � cvrel/c2 �
c � 0.9c

1 � 0.9c2/c2 �
1.9c
1.9

�

√3/4

√3/4



($ rel/c) cos ��] (b) cos �o � $ rel/c (c) �o � 8.1� 37. (a) $ � 2.6 �
108 m/s (b) L � 50 m. 39. (a) Yes, at an appropriate speed,
proper time between two timelike events can be made as small as
desired. (b) v � 0.999 999 15c 41. velocity with respect to the
rocket � �0.82c 43. Minimum and maximum values occur when
daughter particles move along direction of relative motion. u� �
0.990 c and u_ � 0.282 c 45. f � 22.9 MHz 47. $ rel � 0.96 c 49.
(a) She does not age at all. (b) Both earth and Zircon age 100 y.

(c) 350 y (d) 1200 y on earth 51. 31.6 s 55. (a) 0.511 MeV (b)
Msys � m � 2me (c) Mass of the system is 2me both before and
after the collision. 57. EM � (M2 � m2)c2/(2m) 61. Partial an-
swer: Let T be the time lapse between the instant we see the sun
explode and the instant we see Venus change color. Then we have
time T/3 to escape earth after we see Venus change color. This as-
sumes that the alien ship moves faster than the pulse emitted by
the sun.
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I-1

Index

A
a (gravitational acceleration con-

stant), 73, 74, 392–393
various altitudes, 393table

absolute pressure, 421
absolute zero, 560, 561
absorbed radiation, 1001
acceleration. See also forces; ve-

locity
average, 38
center of mass, 219
centripetal, 125–127, 129
constant, 41–45
constant force along line,

60–61
constant rotational accelera-

tion, 306–307
corresponding relations for

translation and rota-
tion, 322table

and drag force, 160
free fall motion, 73–75
ideal projectile motion,

111–113
and kinetic friction force,

149–151
and mass measurement, 63–65
Newton’s Second Law for mul-

tiple forces in straight
line motion, 70–71

Newton’s Second Law for sin-
gle force in straight line
motion, 65–66

Newton’s Second Law in mul-
tiple dimensions,
141–142

of particles in mechanical
waves, 487

rocket flight, 196–197
rotational, 304, 310
speeding up and slowing down,

39–40
standard force, 62–63
and static friction force,

151–152
and tension, 155–156
torque, 315–320

acceleration amplitude, 455
accelerometer, 64–65
acetone, index of refraction,

1018table
acoustic interferometers, 535–536
AC 114 quasar, 406
addition, vectors, 92
adiabat, 599

adiabatic compression, Carnot en-
gine, 615–618

adiabatic expansion, 598–601
adiabatic processes, 556table,

556–557, 598, 615–618
Advanced Hybrid Particulate 

Collector (AHPC), 659,
676

air, 516table
density, 414table
dielectric properties, 816table
humidity and breakdown, 684
index of refraction, 1018table
mean free path at sea level,

587
molar specific heat at freezing

point of water, 605
sound waves through, 514
thermal conductivity of dry,

567table
air-filled pipe

longitudinal wave in, 513
standing sound waves in, 525

Allegheny Observatory, 1107
Alpha Centauri, 1122
alpha particles, 682

velocity selector, 858
alternating current circuits, 932,

955, 967, 978–980. See
also transformers

alternating current generator,
electric dipole antenna,
990

aluminum
coefficient of linear expansion,

564table
dopant in silicon, 767
elastic properties, 376table
paramagnetic material, 936
resistivities, 757table
specific heat, 549table
speed of sound in, 516table
thermal conductivity, 567table

ammeters, 752, 777–778
ammonia, permanent electric di-

pole moment, 741
ammonium, molar specific heat at

constant volume,
592table

Ampère, André Marie, 831, 863,
870, 871, 872

Ampère-Maxwell law, 907,
912table, 987

Ampère’s law, 871–875, 987
ampere (unit), 748, 871
Ampèrian loop, 872

amplitude
AC emf, 967
interfering transverse waves,

496
mass-spring oscillating system,

451
sinusoidal oscillation, 448
waves, 478, 480, 483, 485, 499,

497table
Amundsen-Scott South Pole Sta-

tion, 300 F club, 574
analog ammeters, 752, 777–778
Anderson, Paul, 226, 248
Andromeda galaxy, 386, 1135
angle of incidence, 1017, 1057
angle of minimum deviation, 1048
angle of reflection, 1017
angle of refraction, 1017, 1057
angular amplitude, simple pendu-

lum, 458
angular displacement, 457, 465
angular frequency

AC emf, 967, 968
and beats, 528
LC oscillator, 963–964
mass-spring oscillating system,

451, 452
sinusoidal oscillation, 448, 449
sound waves, 518
transverse waves, 484, 485

angular magnification,
1042–1044

angular velocity, gravitational 
pendulum, 457

antennas, 990, 1004
anti-matter ion cosmic rays,

859–860
antinodes, 499–501
aorta, 431
apparent weight, 147–148

at equator, 395
in fluid, 426–428

Archimedes’ principle, 424–428
arc of charge, field due to,

674–675
Arecibo radio telescope, 1009
Argo, Dominique, 1084
argon

mean free path at room tem-
perature, 603

molar specific heat at constant
volume, 592table

Aristotle, 37
Arons, A. A., 443n, 1053
asteroid impact, 403–404

astrology, 406, 409

Page references followed by italic table indicate material in tables.
Page references followed by italic n indicate material in footnotes.

atmosphere, 411
negative and positive ions in

lower, 770
atmosphere (atm; unit), 413, 563n
atmospheric convection, 547
atmospheric pressure, 414,

416–417
atomic clocks, 8, 11, 13, 1118–1119
atomic mass units, 13–14, 578–579
atomic model, 637–638
atomic nucleus, See nucleus
atomic theory

conductors and insulators, 643
dielectrics, 817–818
and electrification, 637–641
magnetism, 937, 939

aurora, 842
automobiles, 466, 784, 795

car lift, 423–424
fluids required by, 411
tire pressure, 414table

autotransformer, 951
Avogadro, Amedeo, 578
Avogadro’s law (hypothesis), 603,

605
Avogadro’s number, 578–579
axis of rotation, 301

B
Babinet’s principle, 1105–1106
back emf, 924
bacteria, magnetic, 922, 947–948
ballet dancer, physics of grand

jeté, 16, 209, 218
ballistic pendulum, 282
Ballot, Buys, 529
bar magnet, 935, 837, 851
barometer, 419–420
base quantities, 8–9
base standards, 8–10
base units, 9table
bats, echo navigation, 512, 543
batteries, 774–789

in circuit, 808–812
electric current, 745–751
as external force acting on

charges, 717–718
in LC circuits, 958
power, 758–760
in RC circuits, 821
resistance of AA batteries, 771
in RL circuits, 929–930
symbol for, 751

beams, 992–993, 1016



beam splitter, 1076
beats, 527–529
Bell, Alexander Graham, 522
benzene, index of refraction,

1049
Bernoulli, Daniel, 435
Bernoulli’s equation, 434–437
beta decay, 654
Big Stone plant, Advanced Hybrid

Particulate Collector,
659, 676

Biot, Jean Baptiste, 864
Biot-Savart law, 865, 870
bismuth, diamagnetic material,

936
black holes, 409, 414table
blocks

accelerated by friction,
164–165

contact forces on surfaces,
146–152

floating, 443
pulling, 79–80, 157–158
sliding up ramp, 162–163, 276
static equilibrium, 363
three cords, 158–159

block-spring systems, 263
electrical-mechanical analogy,

960–962
simple harmonic motion, 450

blood, density, 414table
body-mass measuring device

(BMMD), 468
body temperature, 542, 543table,

559
Bohr magneton, 938
Bohr radius, 710
boiling point

sea level, 559
selected atoms and water,

551table
water, 543table

Boltzmann, Ludwig, 568, 583, 626
Boltzmann constant, 578, 580, 626
Boltzmann’s entropy equation,

626
bone, 376table
boron, 859
boundary reflections, sinusoidal

waves, 500
Boyle, Robert, 577
Bragg, W. L., 1104
Bragg angle, 1104
Bragg’s law, 1104
branches, connecting junctions in

electric circuits, 778
brass

coefficient of linear expansion,
564table

specific heat, 549table
Brewster angle, 1023
Brewster’s law, 1023–1024
bright bands, 1063
bright fringes

double-slit interference,
1063–1065

single slit diffraction,
1085–1087

British thermal unit (BTU), 546
building materials, 564table,

567table
bulb, 747–751

resistance in circuit, 753

bulk modulus, 376
selected materials, 516table
and speed of sound, 515

buoyant force, 424–428
and convection, 547

C
cadmium, visible emission lines,

1097
Cajori, Florian, 389n
Callisto, angle with Jupiter, 446,

453
calorie (cal), 546
cameras, 1033, 1041, 1056, 1079
capacitance, 801–808
capacitive reactance, 970
capacitive time constant, 822–823
capacitors, 800

charge ratios, 828
with dielectric, 815–817
displacement current,

908–910
energy density, 814
as energy storage device,

800–801
LC circuits, 958–965
in parallel, 808–809
phasor representation for ac

capacitive load,
970–971

RC circuits, 821–824
RLC circuits, 965–967, 968,

972–977
in series, 810–812

capillaries (blood vessels), 431
carbon, phase diagram, 438
carbon-12, 14, 579, 860
carbon-13, 579
carbon-14, 860
carbon dioxide

molar specific heat at constant
volume, 592table

root-mean-square speed at
room temperature,
585table

carbon disulfide, index of refrac-
tion, 1018table

carbon resistors, 755, 781
Cardoso, Maria Fernanda, 57
Carnot, N. L. Sadi, 615
Carnot cycle, 615
Carnot engine, 615–623
Carnot refrigerators, 620–623
carrier charge density, 763–764
carts

collision, 188–193, 281
flea pulling, 57, 66–67

Casiani, Tom, 180
cathode ray tube, 843
cats, falls from high buildings, 139,

160–161
cell membrane, 828
Celsius, Anders, 542
Celsius scale, 541–543, 561table
Centaurus cluster of galaxies, 386
center of curvature, mirrors, 1028,

1033
center of gravity, 365–370
center of mass, 211–217
center of oscillation, physical pen-

dulum, 460

centigrade temperature, 542
central diffraction maximum,

1084
full width at half-maximum

(FWHM), 1105
half-width in diffraction grat-

ings, 1098
single slit diffraction, 1089,

1090
central forces, 651
central interference maximum,

1065, 1067
centripetal acceleration, 125–127,

129
centripetal force, 124–125,

128–129
ceramics

dielectric properties, 816table
superconductive, 767

Ceres, escape speed, 403table
cesium atomic frequency stan-

dard, 11
cesium chloride, crystal structure,

654–655
chain-link conversion, of units,

16–17
change in entropy, 608–613, 617
charge, 636–639. See also capaci-

tors; Coulomb’s law;
Gauss’ law

batteries, 745–746
conservation at circuit junc-

tions, 749–750
contained inside closed sur-

face, 696–698
field, 665–669, 671–674, 690
field lines for two positive

charges, 680
magnetic force from moving,

831
motion of point charges in

electric field, 675–677
oscillations in LC circuit, 963
potential due to group of point

charges, 725–730
predicting forces on, 664–665

charge carrier density, 767
silicon and copper compared,

766table
charge carriers

average speed, 763–764
drift speed measurement using

Hall effect, 846
charge-coupled devices (CCDs),

800
charged arc, field due to,

674–675
charge density, 671, 672table
charge distribution, 671

cylindrical symmetry for uni-
form line, 702–703

determining from electric field
patterns, 690

electric potential due to con-
tinuous, 732–733

net flux at closed surface,
692–694

nonspherical isolated conduc-
tor, 736–737

symmetry, 698–705
charged ring, field due to, 671–675
charge ratios, capacitors, 828
charge separation, capacitors, 801

charging. See also electrification
batteries, 747, 788
capacitors, 801, 821–822,

909–910
by induction, 643–644

Charles, Jacques, 578
Chemerkin, Andrey, 226, 248
chokes, 923. See also inductors
chromatic aberration, 1044, 1045
chromatic dispersion, 1019–1020
chronometers, 8
circuit diagrams, 751–752
circuit elements, 751, 773
circuit junctions

charge conservation at, 749–750
multiloop circuits, 778–779

circuit meters, 751–752
circuits, 747. See also alternating

current circuits; capaci-
tance; current; potential
difference; resistance

capacitors in, 800, 808–812
charge conservation at junc-

tions, 749–750
and currents, 773
Kirchoff’s law, 750, 775–776,

779
LC circuits, 958–965
multiloop, 775, 778–779
parallel, 749–750
power, 758–760
RC circuits, 821–824
resistors, 776–784
RL circuits, 929–932, 956–957
RLC circuits, 965–967, 968,

972–977
series, 749–750
single-loop, 774–776
symbols for basic elements, 751

circuit sketch, 751
circular aperture diffraction,

1092–1094
circular motion, 116–129
circular wave, 514
classical mechanics, 81
classical theories, 1112
clocks, 1116–1119
closed cycle processes, 556table
closed surface charge distribution,

690, 692–694
closed systems, 196, 218, 280

and entropy, 608, 610, 614
coaxial cables, as capacitors, 800,

806
cobalt, as ferromagnetic material,

936, 940
coefficient of kinetic friction, 151
coefficient of linear expansion,

563–564, 566
coefficient of static friction, 152
coefficient of volume expansion,

564–565
coherent light, 1066
coils

Helmholtz, 864
induced emf, 894
in long solenoid, 895–896
inductance, 923–928
magnetic field of current-

carrying, 877–880
in transformers, 933–935

collimator, 1098
collision forces, 72, 78

I-2 Index



collisions, 181
bouncy, 190–191, 280
elastic and inelastic, 280–285
of gas molecules, 583–584
one-dimensional, 190–193,

282–285
sticky, 191–193, 281
system of particles, 217–218
two-dimensional, 193–195, 286

combustion, 608
comets, 985, 1003
compass, 862–863, 946
completely inelastic collisions,

280–281
complex objects, 210–220. See also

center of mass
component notation, for vectors,

96
component vectors, 94–96, 98–99
composite slab, thermal conduc-

tion through, 567, 569
compound microscope, 1043–1044
compressible fluids, 414
compressive forces, 372–375
computer-assisted data acquisition

and analysis (CADAA)
system, 15n

concave mirrors, 1028, 1029
concert A, 529
concrete

coefficient of linear expansion,
564table

compressive and tensile
strength, 375, 376table

conduction electrons, 638,
766–767

conduction rate, 566
conduction (thermal), 547,

566–569
conductivity, 765
conductors, 766–768

charged isolated, 706–708
current density, 760–761
defined, 642–645
moving through magnetic

field, 890–891
Ohm’s law, 754–755, 762

cone, center of mass, 214
configurations, of molecules,

624–627
conservation of electric charge,

639, 749–750
conservation of energy, 278–281,

608
and electric potential energy,

717–718
conservation of mechanical en-

ergy, 270–272
conservation of rotational mo-

mentum, 350–352
conservation of translational mo-

mentum, 189–195
conservative forces, 261–264, 715
constant acceleration, 41–45
constant-pressure processes

molar specific heat, 593–595
work done by ideal gas, 582

constant rotational acceleration,
306–307

constant-temperature processes
change in entropy, 610
work done by ideal gas,

581–582

Index I-3

constant translational accelera-
tion, 306

constant-volume gas thermome-
ter, 562

constant-volume processes,
556table, 557

molar specific heat, 591–593
Stirling engine, 618
work done by ideal gas, 582

constructive interference
light waves, 1057, 1071
sound waves, 519, 520
transverse waves, 497

contact forces, 72. See also tension
experimental verification for,

78
Force component, 146–152
idealized model of solids,

145–146
continuous charge distribution,

671
continuous wave, 477
convection, 547
conventional current, 760–761
converging lens,

1036–1037,1092–1094
conversation, sound level, 523table
conversion, of units, 16–17
conversion factors, 16
convex mirrors, 1028, 1029
cooling, 545–548
coordinate axis, 27, 28
Coordinated Universal Time

(CUT), 11
copper

carrier charge density, 763–764
coefficient of linear expansion,

564table
diamagnetic material, 936
electrical properties, 766table
resistivities, 756, 757table
specific heat, 549table
thermal conductivity, 567table

copper wire
in circuits, 755
electric field inside household

wires, 664table
cordierite, 1006
core (Earth), 408, 414table

and Earth’s magnetic field, 946
core (Sun), 414table

speed distribution of protons
in, 590

cornea, 1052
cornering forces, cars around

curves, 128
corona discharge, 738
cosine

describing sinusoidal oscilla-
tion, 448

using to find vector compo-
nents, 95

cosine-squared rule (Malus’ law),
1006

cosmic rays, 859–860, 1141
Coulomb, Charles Augustin, 638,

644
Coulomb constant, 646–647
Coulomb’s law, 644–647

and Gauss’ law, 705–706
problem solving using,

647–651
coulomb (unit), 638

CP, See molar specific heat at con-
stant pressure

Crab nebula, 1012
Cramer’s rule, 784
crates

path dependence of work done
on, 261

work done by crepe crate in
storm, 234

work done pulling up ramp,
248–249

critical angle, for total internal re-
flection, 1022

critical damping, 465–466
crossed fields, 843–844
cross product, 100–101, 340–342
crown glass, index of refraction,

1018table
crust (Earth), 394, 408

density, 414table
and Earth’s magnetic field,

946
crystal defect, 655
crystal planes, 1104
crystals, x-ray diffraction by,

1103–1105
Curie, P., 944
Curie constant, 944
Curie’s law, 944
Curie temperature, 941
current, 745. See also circuits

and Ampère’s law, 871–875
batteries, 746–751
in circuit, 776–784
defining, 748
ideal circuits, 773
from induction, 900
magnetic field, 862–869, 873,

874
magnetic force, 870–871
microscopic view, 762–766
multiloop circuits, 778–779
oscillations in LC circuit, 963
and parallel resistance,

779–784
RC circuits, 821
real emf battery, 787
RLC circuits, 973–975
RL circuits, 930–932
rms current in AC circuits,

978–979
and series resistance, 776–778
single-loop circuits, 774–776
solenoid, 875–877
toroid, 877

current amplitude, alternating cur-
rent, 973–975

current density, 760–762
current loop, torque on, 849–850
current phase, alternating current,

973table
curvature of space, 405–406
CV, See molar specific heat at con-

stant volume
cycle, engines, 614, 615
cycloid, 333
cyclotron, 840, 852–853
cylinder, rotational inertia,

313table
cylindrical capacitors, 800,

806–807
displacement current,

909–910

cylindrical symmetry, uniform line
charge distribution,
702–703

D
damped oscillations, in RLC cir-

cuits, 965–967
damped simple harmonic motion,

463–466
damping, 463–464
dark fringes

double-slit interference,
1063–1065

single slit diffraction,
1085–1091

Data Studio (PASCO scientific),
46

da Vinci, Leonardo, 476
Davy, Humphrey, 955
DC motor, 850
deceleration, 39–40
decibel scale, 522–523
decimal places, 17–18
decomposing vectors, 94
dees, cyclotron, 853
deformation, 362, 371. See also

elasticity
degrees, temperature scales, 542,

561–562
degrees of freedom, 595–597
density

and floating, 426
fluids, 413–415
selected engineering materials,

376table
selected materials, 414table,

516table
and speed of sound in media,

515
derived units, 9
destructive interference

light waves, 1057, 1071
sound waves, 519–520
transverse waves, 497

Dialog Concerning Two New Sci-
ences (Galileo), 108, 109

diamagnetism, 936, 944–945
diamond, 438

coefficient of linear expansion,
564table

index of refraction, 1018table
diatomic gases, 592table, 595–597
dielectric constant, 815, 816table
dielectrics, 815–821
dielectric strength, 815–817
diffraction, 1084–1097

entropic halos, 1106
x-ray, 1103–1105
and Young’s interference ex-

periment, 1062–1066
diffraction factor, 1096
diffraction gratings, 1097–1102
diffraction grating spectrometer,

1099
diffraction patterns, 1084
digital multimeter, 752
digital temperature sensor, 548
dipole, See electric dipole
dipole axis, 945
direct current, 955
discrete charge distribution, 671



disk
diffraction pattern, 1085
rotational inertia, 313table,

336table
dispersion

chromatic, 1019–1020
in diffraction gratings,

1100–1102
displacement. See also work

along line in straight line mo-
tion, 27–31

mass-spring oscillating system,
451

rotational, 302–303, 308–309
sinusoidal, 448, 481–484
standing waves, 499
two dimensions, 116–119
and velocity and speed, 33–35

displacement, of fluid by buoyant
object, 425

displacement current, 908–910, 987
displacement node, 525
displacement vectors, 29–30,

90–91
dissociation, 598
diverging lens, 1036–1037
division, vectors by a scalar,

100–101
D line, in sodium spectrum, 1108
Dog Star (Sirius), 1137–1138
domino, static equilibrium, 363
Doppler, Johann Christian, 529
Doppler effect, 529–533, 1135
Doppler shift, 1135–1136
dot product, 100, 101n, 339,

343–344
double pole double throw switch

(DPDT), 751
double-slit diffraction, 1094–1097
double-slit interference

with diffraction, 1092–1093
intensity, 1066–1070
Young’s experiment,

1062–1066
Douglas fir, elastic properties,

376table
DPDT (double pole double throw

switch), 751
drag coefficient, 160
drag force, 159–161, 465
Drake, Frank D., 1009
drift speed, of charge carriers, 846
driven oscillations, 467, 968
driving angular frequency, 968
DuFay, Charles, 634
dyne (force unit), 62
dysprosium, as ferromagnetic ma-

terial, 940

E
Eint, See internal energy
e, charge on electron, 1113
Earth. See also gravitational force

density, 414table
diameter determined from

sunset measurements, 5,
12

electric field near surface, 740
equatorial bulge, 393–394
escape speed, 402, 403table
insolation, 1014

intensity of solar radiation
reaching, 1010

interior, 408
interior temperature, 951
level of compensation, 439
magnetic dipole moment,

851table, 857, 951
magnetic field, 837table,

862–863, 885 
magnetic latitude, 952
magnetism, 945–947
mean diameter, 408
mean radius, 393table
Michelson-Morley experiment,

1112–1113
negative and positive ions in

lower atmosphere, 770
rotation, 394–395
uneven surface of, 393
Van Allen radiation belts, 842

Earth orbit, 128
earthquakes, 444, 467–468

S and P waves, 534
Easter Island, 25, 279
Echo satellites, 406
eddy currents, 901
Edgerton, H., 799
Edison, Thomas, 955
Eiffel tower, as lightning rod, 714,

738–739
Einstein, A., 2, 13, 81, 912, 993,

1112–1113
principle of equivalence,

404–405
Principle of Relativity,

1113–1114
search for superforce, 167

Einstein ring, 406
Einstein’s elevator, 156–157
Einstein’s train paradox, 1126
elastic collisions, 280–285
elasticity, 371–377
elastic potential energy, 267

stretched string with traveling
wave, 492

electrical-mechanical analogy,
960–961

electric cars, 888, 892–893
electric charge, See charge
electric circuits, See circuits
electric constant, 647
electric current, See current
electric dipole, 670–678

electric potential due to,
730–732

electric dipole antenna, 990–991
electric eel (Electrophorus), 772,

789–790
electric field, 660, 662–664

and aurora, 842
calculating from electric po-

tential, 733–735
calculating potential from,

723–725
capacitors, 801, 804–805,

826–827
charge carrier speed, 763
charged isolated conductors,

707–708
crossed fields, 843–844
cylindrical symmetry for uni-

form line charge distrib-
ution, 702–703

due to arc of charge, 674–675
due to electric dipole, 670–671
due to multiple charges,

667–669
due to point charge, 665–667,

690
due to ring of charge, 671–675
electric dipole antenna,

990–991
electric dipole in, 677–678
and electric potential differ-

ence, 719–720
electromagnetic waves,

989–990, 992–997
energy stored in, 812–815
generating in absence of con-

ductors, 986–987
induced, 901–908
magnitude of selected, 664table
motion of point charges in,

675–677
near Earth surface, 740
near nonconducting sheet,

679–680
polarized light, 1005
sheet of uniform charge,

703–704
spherical symmetry, 701–702
uniform, 680
vector representation, 667

electric field lines, 664, 678–680
electric field vector, 663–664, 667
electric flux, 434, 691–694
electricity, 634–636
electric motors, 849–850
electric potential. See also poten-

tial difference; voltage
calculating electric field from,

733–735
calculating from electric field,

723–725
charged isolated conductor,

735–739
defined, 718–721
due to continuous charge dis-

tribution, 732–733
due to electric dipole, 730–732
due to group of point charges,

727–730
due to point charge, 725–727
equipotential surfaces,

721–723
and induced electric field,

904–906
near proton, 727

electric potential difference, See
potential difference

electric potential energy, 715–718
due to group of point charges,

727–730
stored in electric field,

812–815
electric quadrupole, 682
electric spark

electric field at breakdown in
air, 664table

potential of spark from charge
buildup in ungrounded
gas can, 751

sound level, 523
electric wave component, of elec-

tromagnetic waves, 992
electrification, 635–642

electrocardiogram, 445
electrocution, 768
electromagnetic force, 72, 78,

167–168
electromagnetic induction,

641–644. See also in-
ductors

by changing magnetic field,
891–893

energy transfer, 899–901
Faraday’s law, 893–896
induced electric/magnetic

fields, 901–908
Lenz’s law, 896–898
by motion in magnetic field,

889–891
electromagnetic oscillations, 955

forced, 968
LC oscillations, 958–960
phasor representation,

968–972
RLC damped oscillations,

965–967
electromagnetic radiation,

547–548, 568–569, 988,
1007–1008

electromagnetic rail gun, 861, 871
electromagnetic spectrum,

1007–1009
electromagnetic wave pulse,

988–990
electromagnetic waves, 476,

986–1003
full-angle beam divergence,

1009
images, 1016
speed, 504

electromagnetism, 652
Maxwell’s prediction, 986–988

electromagnets, 830, 836, 837table
electrometer, 824
electromotive force, 784–785
electron beams, 1041
electron gun, 839–840
electronic accelerometer, 64–65
electronic balance, 64, 144
electronic force sensor, 63, 152
electron mass, 13–14
electron microscope, 1093
electron-positron pair, 1142
electrons, 637–638. See also con-

duction electrons
avalanche in Geiger counter,

711
from beta decay, 654
charge, 637table
in conductors and insulators,

643
in crossed fields, 843–844
discovery, 844
and electrification, 635
magnetic dipole moment,

851table, 937–939
as point charges, 665
transferring in electrostatic in-

teractions, 639
electron-volt (eV), 720–721
Electrophorus (electric eel), 772,

789–790
electroplaques, 789
electroscope, 640–641
electrostatic discharge, 745–746.

See also electric spark

I-4 Index



electrostatic force, 634–636
and Coulomb’s law, 644–651
dipole in electric field, 678
due to arc of charge, 674–675
due to multiple charges,

667–669
due to point charge, 665–667,

690
due to ring of charge, 671–675
gravitational force contrasted,

651–653
magnetic force contrasted,

830–831
motion of point charges in

electric field, 675–677
path independent, 715
predicting forces on charges,

664–665
and quantity of charge, 639–640

electrostatic precipitation, 676
electrostatic stress, 826
electroweak force, 167
elementary charge, 637–638
E-measure systems, 15n
emf, 784–785

alternating current, 967–968
back, 924
devices, 785–787
induced, 892, 894, 898

emission lines, 1097
emissivity, 568
energy. See also kinetic energy;

mechanical energy; po-
tential energy

law of conservation of,
278–279

and special relativity,
1127–1130

stretched string with traveling
wave, 492–493

transfer from batteries,
784–785

transfer in electromagnetic in-
duction, 899–901

transformation of mass into,
1127–1129

transport by electromagnetic
waves, 997–1001

energy density
capacitors, 814
electromagnetic waves, 997

engines, 614–623
entropic halos, 1106
entropy, 608–609, 613–627
epsilon sub zero (electric con-

stant), 647
equation of continuity, fluids,

429–431, 434
equations of motion

constant acceleration, 44table
constant translation and rota-

tional acceleration,
307table

equilibrium, 362–371
equilibrium point

electrostatic force on two
charged particles,
650–651

potential energy curves, 275
equilibrium position, 450, 457–458
equilibrium value, of particle in si-

nusoidal oscillation, 448
equipartition of energy, 596

Index I-5

equipotential surfaces, 721–723
equivalent capacitor, 808, 811–812
escape speed, 402–404
ether, 1112, 1113
ethyl alcohol

dielectric properties, 816table
index of refraction, 1018table
physical properties, 571
specific heat, 549table

EV1 electric car, 888, 893
event horizon, black holes, 409
exchange coupling, 940–941
expansion slots, 563
exponent of ten, 9
extended objects, 26, 1026–1027

locating images with principal
rays, 1038–1039

extended systems, See complex
objects

external electric field, 677,
707–708, 737–738

external forces, 184, 218
and conservation of electric

potential energy,
717–718

eye, See human eye
eyeglasses, 1016, 1033, 1041

F
Fahrenheit, Gabriel, 542
Fahrenheit scale, 541–543,

561table
Faraday, Michael, 652, 679, 815,

889, 891–892, 893, 923,
925

Faraday cage, 708, 738
Faraday-Maxwell law, 986
Faraday’s law of induction,

902–903, 893–896,
912table, 987

farad (F), 804
fast Fourier transform (FFT), 527
Fermi National Laboratory accel-

erator, 1111
ferromagnetic materials, 935, 936,

941–943
Feynman, R., 2
fiberglass, thermal conductivity,

567table
fibrillation, 654
field of view, 1028
fields, 660–662. See also electric

field; gravitational field;
magnetic field

figure skating, 195, 300
rotational inertia and spin

speed, 333
final state, 553, 591, 610
first harmonic, 501, 525
first law of thermodynamics,

555–558
fixed axis, 301
flint glass, index of refraction,

1018table
floaters, 1084
floating, 425–426
fluids, 159, 411–437 638
flux, 431
focal length

spherical mirrors, 1029
thin lens, 1036

focal plane, 1065
focal point (focus)

compound microscope, 1043
magnifying lens, 1042
spherical mirrors, 1028–1029
thin lens, 1036–1037

fog
formation after opening car-

bonated drink, 576,
599–600

from jet plane’s supersonic
shock wave, 534

food calorie, 546
force at-a-distance, 72, 145, 830
forced oscillations, 466–468, 968
force fields, 660
forces, 58. See also contact forces;

electrostatic force; fric-
tion force; gravitational
force; kinetic energy;
magnetic force; poten-
tial energy; tension;
work

applying Newton’s laws in
problem solving,
161–162

attractive, 372
buoyant, 424–428
central, 651
centripetal, 124–125, 128–129
conservative, 261–264, 715
drag, 159–161
everyday, 140
fundamental forces of nature,

72, 166–167
ideal projectile motion,

111–113
and interaction, 71–72
internal and external, 184, 218
measurement, 61–63
net, 69–70, 140–142
and Newton’s First Law, 58–69
Newton’s Second Law for mul-

tiple in straight line mo-
tion, 70–71

Newton’s Second Law for sin-
gle in straight line mo-
tion, 65–67

and Newton’s Third Law,
76–78

nonconservative, 261–262,
276–278

passive, 151
repulsive, 372
rocket thrust, 197, 199
rolling, 334–336
torque, 315–320
types of, 71–72

force sensor, 63
Fourier analysis, of musical

sounds, 527
fractional half-width, resonance

curve, 983
Francis Bittner National Magnet

Laboratory, 916
Franklin, Benjamin, 638, 639, 644,

749
free-body diagrams, 68, 69,

140–141, 161–162
free charge, 819–820
free expansion, 556table, 557–558,

600–601, 609
free fall motion, 73–75

free oscillations, 467, 968
free space, 1008
freezing point

sea level, 559
water, 543table

French, A. P., 446
Fresnel, Augustin, 1084
Fresnel bright spot, 1084–1085
friction force, 72, 146, 148–149

kinetic, 149–151
object accelerated by, 164–165
path dependence of work done

by, 261
static, 151–152

frictionless surface, 149
fuel consumption rate, of rockets,

197
fujara, 524
fulcrum, 377
full-angle beam divergence, 1009
full width at half-maximum

(FWHM), 1105
fully constructive interference

light waves, 1057, 1071
sound waves, 519, 520
transverse waves, 497

fully destructive interference
light waves, 1057, 1071
sound waves, 519–520
transverse waves, 497

fundamental mode, 501, 525
fused quartz

coefficient of linear expansion,
564table

index of refraction, 1018table,
1049

index of refraction dependence
on wavelength, 1019

resistivities, 757table
fusion power, 829

G
G (gravitational constant), 388
g (local gravitational strength), 40,

74–75, 144, 392,
393–394, 663

measuring with simple pendu-
lum, 459

gadolinium, as ferromagnetic ma-
terial, 940

Galilean transformation equa-
tions, 1132

Galileo, 37, 41, 73, 1132
Callisto observations, 446, 453
hypothesis about motion,

108–110
speed of light estimate, 1013

gamma rays, 988, 1142
bubble chamber tracks, 859

gas discharge tube, 770
gases. See also ideal gases; kinetic

theory of gases
defined, 550
density, 414table
as fluids, 411
law of partial pressures, 602
macroscopic behavior,

577–580
root-mean-square speed of se-

lected at room tempera-
ture, 585table



gases (Continued)
speed of sound in selected,

516table
thermal conductivity of 

selected, 567table
gas pressure sensors,

419
gas thermometer, 558–559,

562–563, 572
gauge number, wire, 768
gauge pressure, 421, 602
Gauss, Carl Friedrich, 690
Gaussian form, thin-lens formula,

1051
Gaussian pulse, 510
Gaussian surface, 692–696,

701–705, 707
Gauss’ law, 389n, 694–708,

910–912table
dielectrics, 818–821

Gay-Lussac, Joseph, 578
Geiger counter, 711
General Conference on Weights

and Measures, 9
general relativity, 404–405, 1113,

1121
generators, 932, 955, 967–968
geographic north pole, 945,

946
geological prospecting, 513
geomagnetic north/south poles,

838, 945
geometrical optics, 1016, 1057,

1062, 1084
germanium, dielectric properties,

816table
Giant Shower Array detector,

1141
Gibbs, William, 583
glass

coefficient of linear expansion,
564table

elastic properties, 376table
index of refraction of various

types, 1018table
resistivities, 757table
specific heat, 549table
thermal conductivity of win-

dow, 567table
Glatzmaier, Gary, 947
Glatzmaier/Roberts model, of

Earth’s magnetic field,
947

Global Positioning System (GPS),
and speed of light,
1013–1014

gold, diamagnetic material, 936
Goudsmit, S. A., 854
grand unification theories

(GUTs), 167
granite

specific heat, 549table
speed of sound in, 516table

Graphical Analysis (Vernier Soft-
ware and Technology),
46

grating spectroscope, 1099
gravitation, 386–398, 404–406
gravitational acceleration constant

(a), 73, 74, 392–393,
393table

gravitational constant (G), 388
gravitational field, 660, 662–663

gravitational force, 72, 166, 386,
388

and center of gravity, 365–370
component for blocks on sur-

faces, 147
and Earth, 392–395
electrostatic force contrasted,

651–653
force field maps for near Earth

forces, 660
and free fall motion, 73–75
and hydrostatic forces,

415–419
magnetic force contrasted, 830
path dependence test for,

260–261
and principle of superposition,

390–391
and weight, 143–145
work done by, 233–234
work done on flowing fluid,

436
gravitational lensing, 385, 405–406
gravitational mass, 63–64, 65
gravitational pendulum, 456–460
gravitational potential energy, 267,

398–404
graviton, 406
gravity, 72–75
Great Attractor, 386
Griffith, George, 397–398
grounding, 643

H
Hafele, J. C., 1118
half-life, 1119
half-width, of central diffraction

maximum in diffraction
gratings, 1098

Hall, Edwin H., 844–845
Hall effect, 844–847
Hall potential difference, 845–847
harmonic number, 501, 525
harmonics, 501, 525–526
Harrison, John, 8, 13
hearing threshold, 523table
heat, 540–541, 545–548. See also

thermodynamics
heat engines, 615
heat of fusion, 551table
heat of vaporization, 550–551table
heat pumps, 620
heats of transformation,

550–551table
heat transfer, 547
heavy water, 829
Heimlich maneuver, 421
helical path, of circulating charged

particle in magnetic
field, 841

helium
atomic structure, 637, 638
degrees of freedom, 595,

597table
molar specific heat at constant

volume, 592table
root-mean-square speed at

room temperature,
585table

speed of sound in, 516table
thermal conductivity, 567table

helium-neon laser, 1010
Helmholtz coil, 864
henry (H), 925
Henry, Joseph, 889, 893, 925, 988,

989
hertz (Hz), 447
Hertz, Heinrich, 986, 988, 989, 1007
higher temperature superconduc-

tors, 767
high-speed electronic flash, 799,

813–814
high speed tail, of Maxwell’s speed

distribution, 590
Hindenburg, 744, 757–758
Hooke, Robert, 63, 234
Hooke’s law, 63, 234–235, 372,

374, 450
hoop, rotational inertia, 313table,

336table
horizontal oscillators, 450
horseshoe bat, echo navigation,

512, 543
house, thermogram, 568
Hudson Bay, Canada, gravity low,

393
Human cannonball, 107, 115–116
human centrifuge, 311
human eye, 1008, 1016, 1024, 1041,

1042, 1052
laser surgery, 1014

humidity
affects electrostatic interac-

tion, 634, 635
and air breakdown, 684

Huygens, Christian, 1057, 1084
Huygens’ principle, 1057–1058
Huygens’ wavelet, 1058
Hydra cluster of galaxies, 386
hydraulic compression, 376
hydraulic jack, 423
hydraulic lift, 422–423
hydraulic stress, 374, 376–377
hydroelectric generators, 932
hydrogen

atomic structure, 637
effect of temperature on molar

specific heat at constant
volume, 598

electric field at Bohr radius,
710

electric field within, 664table
root-mean-square speed at

room temperature,
585table

speed of sound in, 516table
thermal conductivity, 567table
visible emission lines, 1097

hydrostatic pressures, 415–419
hyperfine levels, 11
hysteresis, 942–943
hysteresis loop, 943

I
ice

coefficient of linear expansion,
564table

density, 414table
specific heat, 549table
at triple point, 560

iceberg, percentage visible when
floating, 427

ice/salt mixture temperature, 559
ideal gases, 578–582, 591,

598–601. See also ki-
netic theory of gases

ideal gas law, 577–580
ideal gas temperature, 563
ideal inductors, 925–926

RL circuits, 929–932
ideal transformers, 933–935
image distance, 1026–1030,

1038–1040
image height, 1027, 1028, 1030
images, 1024–1027, 1031–1033,

1037–1038
impulse, 184–186
impulse-momentum theorem, 186,

227, 230
incident beam, 1016–1017
incoherent light, 1066
incompressible flow, 428
indeterminate problems, 370–371
index of refraction, 1018–1020,

1059–1061
and reflection phase shifts,

1070
indistinguishable molecules, 624,

626
induced current, 892
induced dipole moment,

731–732
induced electric field, 901–906

electromagnetic waves,
993–995

induced emf, 892, 894, 898
induced magnetic field,

906–908
electromagnetic waves,

995–997
inductance, 923–928
induction, See electromagnetic in-

duction
induction motors, 955
induction stove, 901
inductive chargers, 923
inductive reactance, 971
inductive time constant, 930–931
inductors

energy in, 956–958
ideal, 925–926
with iron cores, 942, 943
LC circuits, 958–965
mutual inductance, 923,

926–928
phasor representation for ac

inductive load, 971–972
RL circuits, 929–932, 956–957
RLC circuits, 965–967, 968,

972–977
self-inductance, 923–926

inelastic collisions, 280–281
inelastic deformation, 372
inertial mass, 64–65
inertial reference frames, 60, 1117
infrared cameras, 1041
infrared radiation, 547, 1008
inner core (Earth), 946
insolation, 1014
insulation (thermal), 568
insulators, 642–645

resistivities of selected at room
temperature, 757table

semiconductors contrasted,
767

I-6 Index



intensity, of electromagnetic
waves, 997, 998–999

diffraction gratings (line
shapes), 1102

double-slit diffraction,
1095–1097

double-slit interference,
1066–1070

single-slit diffraction,
1088–1091

transmitted polarized light,
1005–1006

variation with distance,
999–1001

intensity, of sound, 521–522
interaction, and forces, 71–73
interference. See also wave inter-

ference
applications, 1057
coherence, 1066
combining more than two

waves, 1069
diffraction contrasted, 1096
diffraction gratings, 1097
double-slit, 1062–1070
light as wave, 1057–1062
Michelson interferometer,

1076–1077
thin films, 1070–1077

interference factor, 1096
interference pattern, 1063
interfering waves, 496
interferometer, 1076
intermediate interference, trans-

verse waves, 497
internal combustion engine, 619
internal energy, 540, 551, 555–557,

577, 591–595
internal energy change, 597
internal forces, 184, 218
International Bureau of Weights

and Measures, 13, 14
International units, See SI units
interplanar spacing, in crystals,

1104
interstellar space

density, 414table
magnetic field, 837table, 981

intrinsic magnetic moment, 836
Invar, coefficient of linear expan-

sion, 564table
invariant intervals, 1121–1125
inverting vectors, 93
ions

measuring mass of heavy, 854
as point charges, 665

iron
atomic nucleus, 652–653
cores for inductors and trans-

formers, 942, 943
Curie temperature, 941
density of nucleus, 414table
dipole moment of atom, 951
as ferromagnetic material, 935,

936, 940
resistivities, 757table

irreversible processes, 608
and second law of thermody-

namics, 614
irreversible reactions, 608
irrotational flow, 435n
isolated conductors, 706–708

electric potential, 735–739

Index I-7

isolated spherical capacitors, ca-
pacitance calculation,
808

isolated systems, 183, 280
isotherm, 581
isothermal compression, 581,

615–618
isothermal expansion, 581,

610–611, 635–618. See
also constant-tempera-
ture processes

isotropic light source, 999–1000
isotropic materials, current den-

sity, 762
isotropic sound source, 522

J
jet planes

fluids required by, 411
sound level, 523table

Joint European Torus (JET) Toko-
mak, 841

joule (J), 230, 546
junctions

charge conservation at,
749–750

multiloop circuits, 778–779
Jupiter, 446, 453

escape speed, 403table

K
karate, breaking of boards, 180,

185, 189
Keating, R. E., 1118
Kelvin, Lord William Thompson,

542, 561
Kelvin scale, 542, 561
kelvins (unit), 558
kettledrum, 501, 524
kilometers, 17
kinematic calculations, 43
kinematic equations

constant acceleration, 41–44
free fall motions, 75
ideal projectile motion,

113table
kinematics, 26
kinetic energy, 229–230

conversion into thermal en-
ergy, 575

corresponding relations for
translation and rota-
tion, 322table

everyday speeds, 1129–1130
and law of conservation of en-

ergy, 278–279
mechanical energy component,

270
relativistic, 1129–1130
of rotation, 311–312
simple harmonic motion, 461
stretched string with traveling

wave, 491–492
and thermodynamics, 540
translation with simple rota-

tion, 334–337
work-kinetic energy theorem,

320–322
kinetic friction force, 149–151

kinetic theory of gases, 540, 577,
583–598

and law of partial pressures, 602
Kirchhoff, Gustav Robert, 775
Kirchhoff’s law, 750, 775–779
K0 meson, 1131

L
laboratory frame, 1117, 1132
laboratory pressure, highest sus-

tained, 414table
laboratory vacuum, 414table, 602
LabPro interface, 15
laminar flow, 428, 432
Land, Edwin, 1004
Large Magellanic Cloud, 386
laser beam, 992, 1002
laser eye surgery, 1014
lasers, 1066, 1002
lateral magnification, 1030–1031,

1038, 1040, 1043
lattice, 371
latticework clock synchronization,

1116–1118
launch angle, ideal projectile mo-

tion, 111
lava currents, and Earth’s magnet-

ism, 946–947
law of addition of velocities, 1134
law of addition of velocities, in

special relativity, 1134
law of conservation of energy,

278–279
law of conservation of rotational

momentum, 350–352
law of conservation of transla-

tional momentum, 189,
281

law of inertia, 60
law of partial pressures, 602
law of reflection, 1017
law of refraction (Snell’s law),

1017–1019, 1058–1059
Lawrence, E. O., 852
LC circuits, 958
LC oscillations, 958–965
LC oscillators, 962–965

electric dipole antenna, 990
loudspeakers, 981

lead
coefficient of linear expansion,

564table
diamagnetic material, 936
specific heat, 549table
thermal conductivity, 567table

lead acid batteries, 784–785
left-handed coordinate system, 98
length, measurement, 6, 8, 12–13
length contraction (Lorentz con-

traction), 1132–1133
lenses, 1035–1041

magnesium fluoride coating,
1073–1074

Lenz, Heinrich Friedrich, 896
Lenz’s law, 896–898

direction of self-induced emf,
925

level of compensation, Earth, 439
light, 1016. See also diffraction;

images; reflection;
refraction

chromatic dispersion,
1019–1020

Doppler shift, 532
and Maxwell’s equations, 986
wave theory of, 1057–1062,

1084
light gathering power, refracting

telescope, 1044
lightning, 634, 643, 658, 738–739
line, motion along, See straight

line motion
linear charge density, 671, 672table

cylindrical symmetry of uni-
form, 702–703

electric potential due to con-
tinuous, 732–733

linear device, 753, 754
linear expansion, 563–564
line integral, 723
line of action, of torque, 316
lines, diffraction gratings,

1097–1098
line shapes, 1102
lines of force, 679
liquids

coefficient of volume expan-
sion, 565

compressibility, 376
defined, 550
density, 414table
specific heats of selected,

549table
speed of sound in selected,

516table
thermal energy transfer to,

548–553
liquid thermometer, 540, 558–559
lithium, atomic structure, 637
ln (natural logarithm), 197
local gravitational field vector, 663
local gravitational strength (g), 40,

74–75, 144, 392–393
and gravitational field, 663
measuring with simple pendu-

lum, 459
Local Supercluster, 386
lodestones, 652, 862, 935, 943
longitude, quest to measure pre-

cisely, 8
longitudinal magnification, 1050
longitudinal waves, 477, 513. See

also sound waves
Lorentz contraction, 1132–1133
Lorentz force law, 834
Lorentz transformation,

1131–1132
loudspeakers, 468, 522, 981
Loverude, M. E., 443n

M
Mach cone, 533, 534
magnesium fluoride lens coating,

1073–1074
magnetic bacteria, 922, 947–948
magnetic bottle, 841
magnetic dipole moment, 850–852

orbital, 937–939
magnetic dipoles

characteristics, 936–937
current-carrying wire as,

877–880



magnetic domains, 941, 943
magnetic energy, 956–958
magnetic field, 831–833

and Ampère’s law, 871–875
charged particles trapped in

Earth’s, 842–843
crossed fields, 843–844
current-carrying coil, 877–880
cyclotron, 840, 852–853
displacement current, 908–910
due to current, 862–869
eddy currents, 901
electric dipole antenna,

990–991
electromagnetic waves,

989–990, 992–997
energy in, 956–958
and Faraday’s law, 893–896
Gauss’ law for, 910–912
generating in absence of con-

ductors, 986–987
Hall effect, 844–847
induced, 901–910
and magnetic force, 833–839
selected situations, 837table
solenoid, 875–877
toroid, 877

magnetic field lines, 837–838
magnetic flux, 434, 893–898
magnetic force, 652, 653, 830–843

current-carrying wire, 847–849
between parallel currents,

870–871
torque on current loop,

849–850
magnetic latitude, 952
magnetic potential energy, 851
magnetic repulsive forces, 77–78
magnetic resonance imaging

(MRI), 951
magnetic wave component, of

electromagnetic waves,
992

magnetism, 862, 937, 945–947
magnetite, 652
magnetization, 942–943
magnetization curves, 941, 944
magnetosomes, 947–948
magnetotactic bacteria, 947–948
magnets, 652, 836–838, 862. See

also bar magnet; elec-
tromagnets

magnetic field near selected,
837table

velocity selector, 858
magnification, 1040–1044

lateral, 1030–1031, 1038 longi-
tudinal, 1050

magnifying lens, 1041, 1042–1043
magnitude, 28–30
magnitude-angle notation, for vec-

tors, 96
Malus, Etienne, 1006
Malus’ law, 1006
Mammoth-Flint Ridge cave sys-

tem, 89
Manganin, resistivities, 757table
manometer, 420–421
mantle (Earth), 408

and Earth’s magnetic field,
946

maritime radio, 1008
Mars, mean diameter, 408

mass, 7
corresponding relations for

translation and rota-
tion, 322table

and gravitational force, 73–75
measuring 7–8, 13–14, 63–65
transformation into energy,

1127–1129
weight contrasted, 144–145

mass distribution, and rotational
inertia, 312, 313table

mass flow rate, 430
Massis, John, 67
mass spectrometer, 842–843, 859
mass-spring systems

damped simple harmonic mo-
tion, 465

simple harmonic motion,
450–454

maxima
diffraction patterns, 1084
interference patterns, 1063, 1067

Maxwell, James Clerk, 583, 588,
596, 652, 872, 889, 986,
1001, 1007

Maxwell’s equations, 652, 912,
912table, 986

Maxwell’s law of induction, 906
Maxwell’s rainbow, 1007–1009
Maxwell’s speed distribution law,

588–590
mean free path, 586–588, 603
measurable property, 541
measurement, 5–7

changing units, 16–17
fluid pressure, 419–421
force, 61–63
gravitational mass, 63–64, 65
international units (SI system),

8–10
length standards, 12–13
mass standards, 13–14
precision, 7–8
significant figures, 17–18
temperature, 540–543,

558–563
time standards, 11–12
tools for physics labs, 14–15

mechanical energy, 270–272
battery energy transformed

into, 747
and law of conservation of en-

ergy, 278–279
and nonconservative forces,

276–278
simple harmonic motion, 461
and thermodynamics, 540

mechanical waves, 476, 487
medium

electromagnetic waves, 993
light waves, 1112–1113

Mehlhaff, C. J., 161n
melting point, 550, 551table
mercury

density of nucleus, 414table
specific heat, 549table
superconductivity at 4 K, 767

mercury barometer, 419–420
mercury manometer, 562
Mercury-Redstone rocket, 198
metallic conductors, 641–643, 766

resistivities of selected at room
temperature, 757table

metallic lattice, 371
meter, 12–13, 1077
methane

combustion, 608
degrees of freedom, 595,

597table
metric equation, 1121–1123, 1128
metric system, 9. See also SI units
Mexico City earthquake of 1985,

444, 467–468
MG1131+0456 (Einstein ring), 406
mhos per meter (unit), 765
mica, dielectric properties (ruby

mica), 816table
Michelson, A. A., 1076
Michelson, Albert W., 1112
Michelson interferometer,

1076–1077
Michelson-Morley experiment,

1112–1113
microcomputer based laboratory

(MBL) system, 15n
microfarad, 804
microscopes, 1016, 1033,

1043–1044, 1093
microstates, 624–627
microwaves, 477
Milky Way galaxy, 386
Millikan, Robert, 638, 687
millimeter of mercury (mmHg), 413
minima

diffraction patterns, 1084,
1085–1087

interference patterns, 1063,
1067

mirrors, 1016, 1026–1029
optical instruments, 1041–1042

molar mass, 578, 579, 585table
molar specific heat, 549table,

590–597
molar specific heat, 549–550,

591–598, 597table
molecular speed, of gases,

583–586, 588–590
moles, 549, 578–580
molten lava currents, and Earth’s

magnetism, 946–947
moment of inertia, See rotational

inertia
momentum, 280. See also rota-

tional momentum;
translational momen-
tum

and special relativity,
1127–1130

monatomic gases, 591, 592table,
595–597

Moon, 387, 390
diffraction by water drops,

1106–1107
escape speed, 403table
laser beam bounced off by So-

viet-French team, 1107
Morley, Edward W., 1112
Morpho butterfly, iridescent wings,

1056, 1073–1074
motion, 26. See also acceleration;

circular motion; equa-
tions of motion; projec-
tile motion; rotation;
straight line motion;
vectors; velocity

basic measurements of, 6–7

complex objects, 210
displacement in two dimen-

sions, 116–119
free fall, 73–75
representing in diagrams and

graphs, 32–33
motion data, 46
motion diagrams, 32, 33
Motte, Andrew, 389n
Mount Everest, 392, 393table,

417
Mount Palomar telescope, 1106
MRI (magnetic resonance imag-

ing), 951
multiloop circuits, 775, 778–779
multimeter, 752
multiplication vectors, 100–101,

339–342
multiplicity, of configurations,

624–627
Munday, Dave, 25, 44
muons, 1138
mutual inductance, 923, 926–928

N
�� meson, 1119, 1131
�� meson, 1131
National Electric Code (U. S.), 769
National Institute of Standards

and Technology (NIST),
10, 11, 14

natural angular frequency, 968
negative flux, 434
negatively charged objects,

636–637
negative of a vector, 93
neodymium-glass laser, 1009
nerve cell membrane

electric field, 664table
modeling, 798

net flux, 434
net force, 69–70

as vector sum, 140–142
net torque, 316–317
net work-kinetic energy theorem,

229–230, 241, 246–248
corresponding relations for

translation and rota-
tion, 322table

flowing fluid, 436–437
rotation, 321–322

net work per cycle, Carnot engine,
616

neutral equilibrium, 275
neutrons, 637–638, 665
neutron stars, 352, 407

density, 414table
escape speed, 403table
magnetic field at surface,

837table
New Hampshire, horizontal com-

ponent of magnetic
field, 952

newton (force unit), 61–62, 64
Newton, Isaac, 58, 387
Newtonian form, thin-lens for-

mula, 1051
Newtonian mechanics, 81
newton per square meter, 562n
Newton’s First Law, 58–60
Newton’s law of cooling, 570

I-8 Index



Newton’s law of gravitation,
386–390

Newton’s laws
applying, 161–162
and momentum conservation,

189
system of particles, 217–218

newtons per coulomb, 664
Newton’s Second Law

corresponding relations for
translation and 
rotation, 322table,
352table

multiple dimensions,
141–142

for multiple forces in straight
line motion, 70–71

for rotation, 317–318
for single force in straight line

motion, 65–67
for uniform circular motion,

124
Newton’s Third Law, 76–79

and law of gravitation, 389
NGC 7319, 1141
Niagara Falls, physics of plunge

from, 25, 44–45
Nichrome wire, 753, 754, 759
nickel

as ferromagnetic material, 936,
940, 941

saturation magnetization,
951

nitrogen
mean free path, 603
molar specific heat at constant

volume, 592table
root-mean-square speed at

room temperature,
585table

NMR (nuclear magnetic reso-
nance), 951

nodes, 499–501
nonconducting sheet, electric field

near, 679–680
nonconductors, 643. See also insu-

lators
nonconservative forces, 261–262

and mechanical energy,
276–278

noncontact forces, 72, 73
nonlaminar flow, 428
nonlinear device, 753
nonpolar dielectrics, 817–818
nonrigid objects, 301
nonsteady flow, 428
nonuniform electric field, 693, 694
nonuniform forces, fluid pressure,

413
nonviscous flow, 428
normal force, 146–148
normal vector, 433, 691
North America, average rate of

energy conduction out-
ward, 573

North Anna nuclear power plant,
619

north magnetic pole, 946
north pole, magnets, 837–838, 862
nuclear magnetic resonance

(NMR), 951
nuclear repulsion, 652–653
nuclear weapons, 1127

Index I-9

nucleus, 637–638
as point charges, 665

null interval, 1125
number density of charge carriers,

846
numerical integration, 239–240

O
object distance, 1026
oblate spheroid, Earth’s shape,

393–394
ocean, 411

pressure at average depth of
Pacific, 376

pressure in deepest trench,
414table

Oersted, Hans Christian, 652, 831,
862–863, 870

Ohm, George Simm, 754
ohmic devices, 754

in ideal circuits, 773
ohmmeter, 762
ohm-meter (unit), 762
Ohm’s law, 754–755, 762–763
ohm (unit), 754
oil drop experiment (Millikan),

638, 687
oil slicks, interference effects,

1056, 1070
one-half rule, for intensity of

transmitted polarized
light, 1005

Onnes, Kamerlingh, 767
open-tube manometer, 420–421
opposite charges, 637
optical fibers, 1022
optical instruments, 1016,

1041–1045
optical path difference, 1060
orbital magnetic dipole moment,

938–939
orb web spiders, oscillations of

web, 456
order numbers, diffraction grat-

ings, 1097–1098
order of magnitude, 18
oscillating term, 483, 485, 496, 499
oscillation frequency, 449
oscillation mode, 500
oscillations, 445. See also electro-

magnetic oscillations;
LC oscillations; simple
harmonic motion; sinu-
soidal oscillations;
waves

forced, and resonance,
466–468

and waves, 479–481
oscilloscope trace, 960
outer core (Earth), 946
overdamping, 465–466
oxygen

degrees of freedom, 595,
597table

Maxwell speed distribution at
room temperature,
588

mean free path at room tem-
perature, 588

molar specific heat at constant
volume, 592table

paramagnetism of liquid, 936,
943

root-mean-square speed at
room temperature,
585table

P
pain threshold, sound level,

523table
paper

dielectric properties, 816table
plastic comb attracts after rub-

bing fur, 633, 642
parabola, projectile motion,

108–109
parallel-axis theorem, 314
parallel capacitors, 808–809
parallel circuits, 749–750
parallel components, of unpolar-

ized light wave, 1023
parallel-plate capacitors, 800,

801–803, 805–806
displacement current, 909–910

parallel resistance, 779–784
paramagnetic materials, 936,

943–944
and Curie temperature, 941

particle accelerators, 1041, 1111,
1123

particles, 476
interaction of two charged by

Coulomb’s law, 646–651
particle systems, See complex

objects
Pascal, Blaise, 421
pascal (Pa), 413, 515, 562n
Pascal’s principle, 421–424
PASCO pressure sensors, 419
passive forces, 151
path dependence, 554
path independence, 261–262

electrostatic force, 715
gravitational potential energy,

401–402
path length difference

double-slit interference, 1064
interference, 1060–1061, 1069,

1070
Michelson interferometer,

1076–1077
single-slit diffraction, 1086, 1088
sound waves, 519

Pauli exclusion principle, 939, 940
pendulum, 271–272, 282, 450, 453,

456–460, 464, 465
two colliding, 285

period
mass-spring oscillating system,

451, 452–453
simple pendulum, 458
sinusoidal oscillations, 447
sound waves, 518
transverse waves, 480, 484, 485
uniform circular motion, 127

periodic motion, 445. See also sim-
ple harmonic motion

period of revolution, 127
permanent electric dipole mo-

ment, 731, 817
permanent magnets, 836–837, 857
permittivity constant, 647

perpendicular components, of un-
polarized light wave,
1023

perpendicular distance, 308
phase (matter), 550
phase (waves), 483

AC emf, 967
phase angle, 449

single slit diffraction, 1090
phase changes (matter), 550–551
phase constant, 483

alternating current, 973table
mass-spring oscillating system,

451
RLC circuits, 975
sinusoidal oscillation, 449

phase difference
double-slit interference,

1067–1069
interference, 1060–1061
single-slit diffraction,

1085–1086, 1088–1089
sound waves, 519
thin-film interference, 1070
transverse waves, 496, 497table
two waves traveling on same

string, 502
phase-shifted

sound waves, 520
transverse waves, 496
two waves traveling on same

string, 502
phasor diagrams, 502–503

AC circuits, 968–972
phasors, 502–504

double-slit interference, 1067
representation, 968–972
single-slit diffraction, 1088–1091

phosphorus, dopant in silicon, 767
photocopier, electric field near

charged drum, 664table
photons, 1142
physics labs, measurement equip-

ment, 14–15
picofarad, 804
pi-mesons, 1119
pine boards, 180, 184–186, 189

thermal conductivity (white
pine), 567table

pinhole, diffraction from, 1084
pions, 1119
pipe organ, 524, 526
pitot tube, 442
Planck’s constant, 1113
plane mirrors, 1026–1027
plane-polarized light, 1004
planets, 403table, 407, 409
plane waves, 514

electromagnetic waves, 991
Huygen’s principle, 1056–1057

plastic bag, electrification, 635,
636, 639

plates, parallel-plate capacitors, 801
platinum, resistivities, 757table
plutonium-239, 681
point charges

electric field due to, 665–667,
690

motion of in electric field,
675–677

potential due to group of,
727–730

pointillism, 1083, 1093



point image, 1026
point-like objects, 26
Poisson, S. D., 1084
Poisson-Argo bright spot, 1084n
polar coordinates, 96

displacement in two dimen-
sions, 117–118

uniform circular motion, 129
polar dielectrics, 817–818
polarization, 641–642, 643,

1004–1007
by reflection, 1023–1024

Polaroids (Polaroid filters), 1004
Pole to Pole (Griffith), 397–398
polyatomic gases

degrees of freedom, 595–597
molar specific heats at constant

volume, 592table
polystyrene

dielectric properties, 816table
elastic properties, 376table
index of refraction, 1018table

polyurethane foam, thermal con-
ductivity, 567table

porcelain, dielectric properties,
816table

position vectors, 28–29
displacement in two dimen-

sions, 116–119
positive direction, 27
positive flux, 434
positively charged objects,

636–637
positrons, from beta decay, 654
potassium chromium sulfate, mag-

netization curve, 944
potential, 719. See also electric po-

tential
potential difference, 719–720. See

also current; resistance;
voltage

batteries, 746
capacitors, 801, 805
in circuit with capacitors,

808–812
in circuit with series resistance,

776–778, 779–784
Hall, 845–847
ideal and real emf devices,

785–787
ideal inductors, 925–926
LC circuits, 958
linear and nonlinear devices,

753
measuring with voltmeter, 752
multiloop circuits, 778–779
and power in circuits, 758–759
RC circuit, 821
single-loop circuits, 774–776

potential energy 265–275
and law of conservation of en-

ergy, 278–279
simple harmonic motion, 461
and thermodynamics, 540

pound force, 62
power, 249–251

alternating-current circuits,
978–980

batteries, 758–760, 788–789
circuits, 758–760
corresponding relations for

translation and rota-
tion, 322table

induction, 899–901
of light source, 1000
rotating body, 322
of sound source, 521, 522
stretched string with traveling

wave, 493
power factor, 979
power transmission lines

repair, 954, 955n
role of transformers, 932–933

Poynting, John Henry, 999
Poynting vector, 999
prefixes, for SI units, 10, 10table
pressure, 414table. See also con-

stant-pressure processes
of fluids, 411–413
as function of depth in water,

417
and gas macroscopic behavior,

577–578
gauge and absolute, 421
and ideal gas law, 578–580
and kinetic theory of gases,

583–586
law of partial pressures, 602
measurement in fluids,

419–421
and state of material, 550
work done on flowing fluid by

pressure difference,
436–437

pressure amplitude, 517–518
pressure field, 660
pressure sensor, 412
Priestly, Joseph, 644
primary coil, transformers,

933–935
primary windings, transformers,

934
Principia (Newton), 389
principle of equivalence, 404–405
Principle of Relativity, 1113–1114,

1119–1120, 1127
principle of superposition for

forces, 70–71, 140
and electrostatic force,

647–648
and gravitational force,

390–391
torque, 316–317

principle of superposition for
waves

sound, 529
transverse waves, 493–495

probability distribution function,
589

projectile motion, 109–119
Project Seafarer, 1012
proton-antiproton pair, 1139
proton beams, 1041
proton gun, 684
protons, 637–639

in cyclotron, 852–853
density in solar wind near

Earth, 769
electric potential near, 727
magnetic dipole moment of

small, 851table
as point charges, 665

Proxima Centauri, 1009
pulsating variable star, 536
P waves (seismic longitudinal

wave), 534

Pyrex glass
coefficient of linear expansion,

564table
dielectric properties, 816table
Mt. Palomar Observatory tele-

scope mirror, 572

Q
Q, See thermal energy
quadruple somersault, 332, 354
quadrupole moment, 682
quantity, 541
quantization, 937, 638–639
quantum theory, 597–598, 653, 767
quartz, fused, See fused quartz
quartz clock, 11
quartzite, stress-strain curve, 381
quasars, 385, 406

R
R (universal gas constant),

579–580
R-value, 566–567
radar waves, 477
radial component, 310, 316
radian, 302, 309, 449, 484
radiant energy, 548
radiation, 547–548, 568–569, 988,

1007–1008
radiation pressure, 1001–1003
radio broadcasting, 986
radio telescopes, 1009, 1041
radio waves, 477, 988, 1008
radius of curvature, 1027, 1033
rail gun, electromagnetic, 861, 871
rain, speed distribution of water

molecules, 590
randomly polarized waves, 1004
rate of energy transport per unit

area, electromagnetic
waves, 998, 999

ray diagram, 1032
Rayleigh, Lord, 428
Rayleigh’s criterion, 1092, 1093
ray model, of light, 1016
rays, 514, 1016
razor blade, diffraction from edge,

1084
RC circuits, 821–824
rectangular components, of vec-

tors, straight line mo-
tion, 94–96

rectangular coordinates
one dimensional motion, 94
two dimensional motion,

116–117
red blood cells, electron micro-

graph, 1093
red light, 1019, 1075, 1087
red shift, 1135
redshift factor, 1140
reference lines, 301, 302
reference point, 267
reflected light, 1017
reflecting planes, in x-ray diffrac-

tion, 1104
reflection, 1016–1017, 1021–1024
reflection phase shifts, 1070
refracting telescopes, 1044–1045

refraction, 1016–1020
law of (Snell’s law),

1017–1019, 1058–1059
spherical refracting surfaces,

1033–1035, 1045–1046
relativity, 404–405, 1112–1113,

1121. See also special
relativity

relativity of simultaneity,
1125–1127

relativity of velocities, 1133–1134
resistance

AA batteries, 771
ammeters, 778
charged isolated conductors,

706
defined, 753–754
internal, in batteries, 785–787
microscopic view, 762–766
ohmic devices, 754, 773
Ohm’s law, 754–755, 762–763
parallel resistance, 779–784
and resistivity, 755–758
series resistance, 776–778
voltmeters, 781–782

resistive dissipation, 759
from induction, 899

resistivity
and current density, 761–762
microscopic view, 764–765
and resistance, 755–758
selected materials at room

temperature, 757table
silicon and copper compared,

766table
temperature effect, 756–758

resistors, 755. See also LC oscilla-
tions

color code, 755table
multiloop circuits, 778–779
in parallel, 779–784
phasor representation for ac

resistive load, 968–970
RC circuits, 821–824
RL circuits, 929–932, 956
RLC circuits, 965–967, 968,

972–977
in series, 776–778
single-loop circuits, 774–776

resolvability, in circular aperture
diffraction, 1092–1093

resolving power, 1092–1093
diffraction gratings, 1100–1102
refracting telescope,

1044–1045
resolving vectors, 94–95
resonance, 466–468

RLC circuits, 975–977
and standing waves, 500–502

resonance condition, cyclotron,
853

resonance curves
fractional half-width, 983
RLC circuits, 976–977

resonant frequencies, 501
musical instruments, 524–525,

526
restoring force, 450
retina, 1024, 1042
reversible processes

change in entropy, 610–611
and second law of thermody-

namics, 614

I-10 Index



Rhodes, William, 410
right-handed coordinate system,

98
right-hand rule

Ampère’s law, 872
rotational displacement/veloc-

ity, 303
vector product, 340

rigid bodies, 300–301, 362
rotational inertia, 313table

ring, rotational inertia, 313table
ring of charge, field due to,

671–675
RL circuits, 929–932, 956–957
RLC circuits, 965–968, 972–977
rms current, 978–979
Roberts, Paul, 947
Robertson, Gregory, 161
rock climbing, 361, 369–370, 379
rock concerts, sound level,

523table, 524
rocket frame, 1117, 1132
rockets

model rocket, 76
sound, 533
translational momentum,

196–199
rocket thrust, 197, 199
rock wool, thermal conductivity,

567table
rod, rotational inertia, 312,

313table
rollerboards, 382
roller coaster, acceleration, 40
rolling forces, 334–336
root-mean-square current,

978–979
root-mean-square speed, 585–587,

588, 589
root-mean-square value, of elec-

tric field in electromag-
netic wave, 999

rotation, 300
complex/simple, 333–337
constant rotational accelera-

tion, 306–307
Earth, 394–395
fastest possible rate of planets,

407
kinetic energy of, 311–312
Newton’s Second Law for,

317–318, 344–345
power, 322
summary of relations com-

pared to translation,
322table, 352table

torque, 315–320, 342–343
work-kinetic energy theorem,

321
rotational acceleration, 304, 310

corresponding relations for
translation and rota-
tion, 322table

vector, 339
rotational displacement, 302–303,

338
rotational equilibrium, 364
rotational inertia, 312–314, 333

corresponding relations for
translation and rota-
tion, 322table

rotational kinetic energy,
311–312, 334

Index I-11

rotational momentum, 344–352,
352table

rotational position, 301–302,
308–309, 322table

rotational simple harmonic mo-
tion, 454

rotational simple harmonic oscil-
lator, 453–454

rotational speed, 304, 308, 309
rotational variables, 300–311

as vectors, 337–340
rotational velocity, 303–304

corresponding relations for
translation and rota-
tion, 322table

vector, 338–339
rotation axis, 301
rotor failure, 315
Rowland ring, 942
ruby mica, dielectric properties,

816table
Ruiping, Sun, 265
rulings, diffraction gratings,

1097–1098, 1100
Rutherford, Ernest, 710
R-value, 566–567

S
sapphire, index of refraction,

1018table
saturation magnetization, 942,

951
Savart, Félix, 864
scalar fields, 660
scalar product, 101n, 243, 339
scalars, 28

multiplying and dividing vec-
tors by, 100–101

scattering, of light, 1016–1023
polarization by, 1006

scattering, of x-rays in diffraction,
1103–1104

Science Workshop 500 interface,
15

scientific laws, 2
scientific notation, 9–10
scientific theories, 6
scuba diving, hydrostatic pressure

on diver, 410, 418
seawater

density, 414table
specific heat, 549table
speed of sound in, 516table

secondary coil, transformers,
933–935

secondary maxima
diffraction patterns, 1084
interference patterns, 1065

secondary minima
diffraction patterns, 1084
interference patterns, 1065

secondary windings, transformers,
934

second dark fringes, 1065
second harmonic, 501, 525
second law of thermodynamics,

613–614, 618
second-order fringes, 1065
seismic waves, 477

S and P waves, 534
self-inductance, 923–926

semiconductors, 766–767
Ohm’s law, 754
resistivities of selected at room

temperature, 757table
sensors, 15
serial computer, 1137
series capacitors, 810–812
series circuits, 749–750
series resistance, 776–778
series RLC circuits, 965–967,

972–977
SETI (Search for Extra-Terrestrial

Intelligence), 1009
shearing stress, 374, 376
shear modulus, 376
sheet

electric field near nonconduct-
ing, 679–680

uniform charge, 703–705
shell of charge

isolated conductors, 707, 736
spherical metal shell, 709
spherical symmetry, 700

shell theorem, 388–389, 396
Shepard, Alan, 198
shock waves, 533–534
short wave, 477
side maxima, diffraction patterns,

1084
side minima, diffraction patterns,

1084
significant figures, 17–18
silicon

dielectric properties, 816table
electrical properties, 766table,

767
surfaces of crystal, 10

silicon, n type, resistivities,
757table

silicon, p type, resistivities,
757table

silver
diamagnetic material, 936
resistivities, 757table
specific heat, 549table
thermal conductivity, 567table

simple harmonic motion, 445,
450–466

simple harmonic oscillator, 450,
453–454

simple pendulum, 456–459
simultaneity, relativity of,

1125–1127
sine

describing sinusoidal oscilla-
tion, 448

using to find vector compo-
nents, 95

single crystal, 941
single-loop circuits, 774–776

real emf battery, 785
single pole double throw switch

(SPDT), 751
single-slit diffraction1085–1091
sinusoidal oscillations, 445–449.

See also simple har-
monic motion

not all are simple harmonic
motion, 453

sinusoidal waves, 481–485,
495–500

transverse, 478
Sirius B, escape speed, 403table

Sirius (Dog Star), 1137–1138
SI units, 8–16
slab

rotational inertia, 313table
R-value, 566
thermal conduction through

composite, 567, 569
sliding surfaces, 150
slit, diffraction from, 1084
slope, position vs. time graphs, 33,

34
sloth, potential energy of, 269–270
slowing down, 45
Snell’s law, 1017–1019, 1058–1059
sodium

D line, 1108
yellow light in air wavelength,

1077
sodium chloride

index of refraction, 1018table
x-ray diffraction, 1103–1105

solar cells, 784
solar energy, 547
solar flare, 842
solar water heater, 571
solar wind, 769, 985, 1003
solenoid

coil in long, 895–896
magnetic field, 875–877
self-inductance, 923–924

solid bodies, 214
solids, 550

coefficient of volume expan-
sion, 565

compressibility, 376
defined, 550
deformation, 374
idealized model of, and contact

forces, 145–146
specific heats of selected,

549table
speed of sound in selected,

516table
thermal energy transfer to,

548–553
thermal expansion, 564

sonar, 513
sonic boom, 534
sound

arrival delay, 518
beats, 527–529
intensity, 521–522
sources of musical, 524–527

sound barrier, 534
sound level, 522–524, 523table
sound waves, 477, 513–514,

519–520, 529–534
south pole, magnets, 837–838
spacecraft orientation, 351–352
space-dependent phase, See time-

and space-dependent
phase

Space Shuttle, electric potential,
740

Space Shuttle Columbia, tethered
satellite experiment,
918

Space Shuttle Discovery, laser
beam measurements,
1106

space-time, 1121
spacetime curvature, 405–406
spark, See electric spark



SPDT (single pole double throw
switch), 751

special relativity, 81, 912, 993,
1112–1113

and cause and effect,
1124–1125

and Doppler shift, 1135–1136
E � mc2, 1127–1129
event location with intelligent

observer, 1114–1115
headlight effect, 1139
latticework clock synchroniza-

tion, 1116–1118
Lorentz transformation,

1131–1133
metric equation, 1121–1123
momentum and energy,

1127–1130
Principle of Relativity,

1113–1114, 1119–1120,
1127

relativity of simultaneity,
1125–1127

relativity of velocities,
1133–1134

time stretching, 1118–1123
specific heat, 548–549, 590. See

also molar specific heat
selected solids and liquids,

549table
speed, 34–36

base quantities, 8
rotational, 304, 308, 309

speed of light, 1012–1014
invariance, 1119
and meter standard, 13
as nature’s speed limit, 1123,

1133
transmission speed of electro-

magnetic waves, 993,
1008

speed of sound, 515–518, 1129
and root-mean-square speed

of gas, 585
and sonic boom, 534

sphere
center of mass, 214
rolling force, 336–337
rotational inertia, 313table,

336table
spherical aberration, 1044, 1045
spherical capacitors, capacitance

calculation, 807–808
spherically symmetric charge dis-

tribution, 701
spherical mirrors, 1027–1035, 1045
spherical shell, rotational inertia,

313table
spherical shell of charge, 707, 736,

738
spherical symmetry, 700–702
spherical wave, 514
spin magnetic dipole moment,

937–938
spreadsheet graphing routine, 46
spring constant, 235
spring force, 234–236

conservative force test for,
263–264

elastic potential energy, 267
and simple harmonic motion

of mass-spring system,
452–453

spring scales, 62, 63, 144
stable equilibrium, 275
stable static equilibrium, 363
stainless steel, thermal conductiv-

ity, 567table
standard kilogram, 13
standard meter bar, 13, 1076
standards, 8–10

force, 61–63
length, 12–13
mass, 13–14
time, 11–12

standing waves, 498–500
musical instruments, 524–527
and resonance, 500–502
sound, 529

Stapp, J. P., 40
stars. See also black holes; neutron

stars; white dwarf stars
density, 414table
pulsating variable, 536

starting motor, 795
state function, 611
state properties, 609, 611–613
static equilibrium, 362–365

fluid pressure, 412–413, 416
static friction force, 151–152
statistical mechanics, 623–627
steady flow, 428
steady-state current, RLC circuits,

975
steady-state process, 567
steel

bulk modulus, 376, 516table
coefficient of linear expansion,

564table
elastic properties, 376table
stress-strain curve, 375
thermal conductivity, 567table

Stefan, Josef, 568
Stefan-Boltzmann constant, 568
step-down/step-up transformers,

934
Stirling engine, 618–619
Stirling’s approximation, 626
stop-action photography, of speed-

ing bullet, 799, 813–814
storage batteries, 758
straight line motion, 26. See also

translation
acceleration, 37–40
combining forces along,

68–71
constant acceleration, 41–45
free fall motion, 73–75
and Newton’s First Law,

58–60
and Newton’s Second Law for

multiple forces, 70–71
and Newton’s Second Law for

single force, 65–67
and Newton’s Third Law,

76–79
position and displacement

along line, 27–31
representing in diagrams and

graphs, 32–33
single constant force and accel-

eration along, 60–61
velocity and speed, 31–36
velocity change, 37–40
work done by, 232–233

strain, 374–375

strain gage, 375
Stratocaster guitar, 897
stray capacitance, 808
stream, volume flux in, 432
stress, 374–377
stress-strain curve, 375
stress-strain equation, 374
stress-strain test, 375
stretched strings, waves on,

500–504
energy and power transported

by, 491–493
musical instruments, 524–527
pulses, 477–478
sinusoidal transverse waves,

482–485, 488
standing waves, 498–502
wave speed, 489–491

stroboscopic photographs, 73, 108,
109, 500

strong nuclear force, 72, 167
strontium titanate, dielectric prop-

erties, 816table
Styrofoam, 413, 414table

electrification, 635, 636, 639
subtraction, of vectors, 92–93
sugar solutions, index of refrac-

tion, 1018table
sulfur dioxide, root-mean-square

speed at room tempera-
ture, 585table

sulfuric acid, in lead acid battery,
784–785

Sun, 562, 1008, 1141
average wavelength,

1062–1063
density, 414table
escape speed, 403table
fire starting using thin lens,

1037
intensity of radiation reaching

atmosphere of Earth,
1010

intensity of radiation reaching
surface of Earth, 1013

partial coherence of sunlight,
1066

proton currents streaming
from, 749

sunspots, 1114
superconductors, 706, 766,

767–768
superelastic collisions, 280–281
superforce, 167
supernova, 403table
superposition, See principle of su-

perposition for forces;
principle of
superposition for waves

supersonic speeds, 533–534
superstring theories, 167
supersymmetry theories, 167
surface charge density, 672table
S waves (seismic transverse wave),

534
switches

make-before-break, 931
SPDT and DPDT, 931
symbol for, 751

symmetric charge distributions,
698–705

synchronizing flash, 1117
Système International, 9

systems
closed, 196, 218, 280, 608, 610,

614
defined, 544
isolated, 183, 280

T
Takahashi, D., 828
tangent, using inverse to find vec-

tor angle, 96
tangential component

of torque, 316
of translational acceleration,

310
tantalum oxide, dielectric proper-

ties, 816table
Teese, Robert, 184
telescopes, 1033, 1041,

1044–1045
television waves, 477, 1008
temperature. See also constant-

temperature processes
and change in entropy, 610
effect on molar specific heat at

constant volume,
597–598

effect on resistivity, 756–758
and gas macroscopic behavior,

577–578
and heating and cooling,

545–548
and ideal gas law, 578–580
and kinetic theory of gases,

583–586
and state of material, 550
variation of resistivity with,

756–758
temperature coefficient of resistiv-

ity, 756–757
temperature conversions,

542–543, 543table
temperature field, 660
temperature measurement,

540–543, 558–563
temperature scales, 540–543
tensile forces, 372–375
tension, 72, 153–156, 166–167
tensors, 348
teraflop computer, 1137
terminal speed, 160–161
Tesla, Nikola, 955
Thaw refracting telescope, 1107
thermal conduction, 547

composite wall, 567, 569
thermal conductivity, 566

selected metals, gases, and
building materials,
567table

thermal efficiency, 617–619,
622–623

thermal energy, 278, 540
battery energy transformed

into, 747
conversion of kinetic energy

into, 575
in thermodynamic processes,

556–557
and work, 553–554

thermal energy transfer, 541, 546
and first law of thermodynam-

ics, 555–556

I-12 Index



mechanisms for, 547–548,
566–569

to solids and liquids, 548–553
thermal equilibrium, 544–545,

553
thermal expansion, 541, 563–566
thermal insulator, 567
thermal interactions, 543–545
thermal radiation, 548, 568–569
thermal reservoir, 553–554, 614
thermal resistance, 566–567
thermodynamic processes, 553

and first law of thermodynam-
ics, 556–558

thermodynamics, 540–548, 577,
583. See also entropy;
kinetic theory of gases

first law of, 555–558
irreversible processes,

608–609
second law of, 613–614, 618

thermodynamic temperature
scale, 561

thermogram, 568
thermometers, 540–542
thermopile, 784
thin films interference,

1070–1077
thin lenses, 1035–1042
thin-lens formulas, 1036,

1046–1047, 1051
third harmonic, 501, 525
third law force-pair, 78, 184
Thomson, J. J., 843, 844
threshold energy, for creating pro-

ton-antiproton pair,
1139

time, 6–8
arrow of, 607, 608
standards of measurement,

11–12
time- and space-dependent phase

interfering waves, 496
sinusoidal waves, 483, 485
sound waves, 518

time constant
capacitive (RC circuits),

822–823
inductive (RL circuits),

930–931
time-dependent phase, sinusoidal

oscillation, 448
time dilation, 1120, 1122
time stretching, 1118–1123
titania ceramic, dielectric proper-

ties, 816table
Tokomak reactor, 829, 841
ton force, 62
toroid, 877
torpedo models, 440–441
torque, 315–317, 342–345. See

also rotational momen-
tum

on current loop, 849–850
torr, 413, 562n
Torricelli, Evangelista, 413
torsion, 453–454
total energy, 278
total internal reflection,

1021–1023
total mass, 218
tracer flow studies, 428–429
trajectory, See projectile motion

Index I-13

transformer oil, dielectric proper-
ties, 816table

transformers, 923, 932–935
autotransformer, 951
with iron cores, 943

transient current, RLC circuits,
975

translation, 300. See also straight
line motion

with simple rotation,
334–337

summary of relations com-
pared to rotation,
322table, 352table

work-kinetic energy theorem,
320

translational acceleration, 310
translational equilibrium, 364
translational kinetic energy,

229–230, 334
ideal gases, 586, 595
and net work, 246–248

translational momentum
conservation in one-dimen-

sional collisions,
190–193

conservation in two-
dimensional collisions,
193–195

conservation of, 189, 281
corresponding relations for

translation and rota-
tion, 352table

and impulse, 184–186
particles, 181–184, 219–220
rockets, 196–199

translational position, 308–309
translational speed, 308, 309
translational variables, 300,

308–311
transparent materials, 1017
transverse waves, 513

defined, 477–478
electromagnetic wave pulse,

990, 991
sinusoidal, 478

Treatise de Magnete (Gilbert),
862

triangular prism
angle of minimum deviation,

1048
chromatic dispersion, 1020
total internal reflection,

1022–1023
triple-point cell, 560, 563
triple point of water, 541, 560
tube length, compound micro-

scope, 1043
tube of flow, 430
tubes

open-tube manometer,
420–421

pitot tube, 442
sound in, 527
U-tubes, pressure equilibrium

in fluid filled, 418–419
tungsten

resistivities, 757table
specific heat, 549table

turbulence, 159–160
turbulent flow, 428
turning points, potential energy

curves, 274–275

TV cameras, 1041
TV tubes, 684
twin paradox, 1142–1143
two-dimensional collisions,

193–195, 286
two-dimensional motion,

116–122. See also circu-
lar motion

two-lens systems, 1039–1040

U
ultimate strength, 375, 376table
ultrasonic motion detector, 15
ultrasound, 513, 535
ultraviolet light, 477, 1008, 1092
underdamped pendulum, 464
underwater pressure, 417–419
unification, of forces of nature,

167
uniform circular motion, 123–129

and sinusoidal oscillation,
446

uniform density, 214, 414
uniform electric field, 680

net flux, 693–694
uniform external electric field,

677–678
uniform forces, fluid pressure,

411–412
uniform line charge distribution,

cylindrical symmetry,
702–703

uniform volume charge distribu-
tion, spherical symme-
try, 701–702

unit cell, 1103
United States National Electric

Code, 769
units, 6. See also SI units

converting, 16–17
unit vectors, 28–29, 98
universal gas constant (R),

579–580
universe

estimated mass of known, 13
expansion and cooling, 562

unlike charges, 637
unpolarized light, 1004
unpolarized waves, 1004
unstable equilibrium, 275
unstable static equilibrium, 363
uranium

density of nucleus, 414table
electric field at surface of nu-

cleus, 664table
U-tubes, pressure equilibrium in

fluid filled, 418–419

V
vacuum, index of refraction,

1018table
Van Allen radiation belts, 842
Van de Graaff generator, 689, 708,

717–718
vapor, 550, 560
variable stars, pulsating, 536
Vazquez, Miguel, 332
vector fields, 660–662, 678
vector product, 100–101, 340–343

vectors, 90–102
acceleration, 39, 62
defined, 27–28
force, 62, 65, 69–70
normal vector, 433
position, 27–30
rotational variables, 337–340
translational momentum, 182

vector sum, 92
vector sum of forces, 69
Vega, 1137
velocity. See also acceleration

average, 33–34
bouncy collisions, 190–191,

280
changes in, 37–40
corresponding relations for

translation and rota-
tion, 322table

ideal projectile motion,
111–113

instantaneous, 35–36
of particles in mechanical

waves, 487
relativity of, 1133–1134
rocket flight, 196–197
rotational, 303–304
sticky collisions, 191–193, 281
in straight line motion, 31–36
two-dimensional collisions,

194–195
and work, 228–229

velocity amplitude, 455
velocity selector, 858
velocity vector field, flow in

stream, 432
venturi meter, 441–442
vernier calipers, 14
Vernier pressure sensors, 419
vertical motion, of projectiles,

112–113
vertical oscillators, 450
Vespa mandarinia japonica, 539,

569
video capture and analysis tools,

14–16
VideoPoint software, 645
virtual focal point, 1029
virtual image, 1025
viscosity, 428
viscous drag force, 428
visible emission lines, 1097
visible light, 476, 547, 988, 993,

1008–1009, 1016. See
also diffraction; images;
reflection; refraction

visual system, 1024
Volta, Alesandro, 745
voltage, 715, 754–754. See also

electric potential 
energy; potential
difference

voltmeters, 752, 781–782
volt (unit), 720
volume, 577–580. See also con-

stant-volume processes
and state of material, 550

volume charge density, 672table
spherical symmetry of uni-

form, 701–702
volume expansion, 564
volume flow rate, 430
volume flux, 430, 431–434, 691



von Guericke, Otto, 438
von Laue, Max, 1103
Voyager 2, 352

W
wall, thermal conduction through

composite, 569
water, 543–551. See also seawater

bulk modulus, 376, 516table
coefficient of volume expan-

sion, 565
density, 414table, 516table
diamagnetic material, 936
dielectric properties, 816table
diffraction by, 1062
as dipole, 677–678, 731
index of refraction, 1018table
root-mean-square speed at

room temperature (va-
por), 585table

sound waves through, 514
speed of sound in, 516table
viscosity, 428

water vapor
root-mean-square speed at

room temperature,
585table

at triple point, 560
water waves, 477
Watt, James, 250
watt (W), 9, 250
wave equation, 510
wave form, 478, 483, 488
wavefront, 514
wave interference. See also inter-

ference
sound waves, 519–520, 529
transverse waves, 495–498

wavelength
and index of refraction,

1059–1061
sound waves, 518

transverse waves, 478, 480, 484,
491

wave number
sound waves, 518
transverse waves, 484

wave optics, 1057
wave pulses, 477–481, 489, 493,

495
waves, 476–481. See also sinu-

soidal waves; sound
waves; stretched strings,
waves on

non-sinusoidal, 486
phasors, 502–504
standing, 498–502

wave speed
sound waves, 518
stretched strings, 489–491
transverse waves, 486

wave velocity, transverse waves,
486–488

weak nuclear force, 72, 167
weighing, 144
weight, 74. See also apparent

weight
mass contrasted, 144–145

weightlessness, 128, 404
weight lifting, 226, 248, 260,

265–266
Westinghouse, George, 955
wheel, acceleration of, 318–319
whirligig beetles, interference col-

oration, 1108
white dwarf stars, 403table,

414table
white light, 1019, 1087
white pine, thermal conductivity,

567table
Whitney, M. O., 161n
Williams, Debbie, 161
windings, transformers, 934
window glass, thermal conductiv-

ity, 567table
wind-tunnel tests, 429

wires
average charge carrier speed

in, 763–764
electric field inside copper

household wires,
664table

gauge number, 768
ideal conducting, 773
levitating, 848–849
magnetic field, 873–874
magnetic force on current-

carrying, 847–849
multiloop circuits, 778–779
resistance in, 756
single-loop circuits, 774–776
symbol for, 751

Wittmann, M., 510n
wood, elastic properties,

376table
work, 227–230. See also net work-

kinetic energy theorem
Carnot engine, 616–617
corresponding relations for

translation and rota-
tion, 322table

as dot product, 243–244
and external forces acting on

charges, 717–718
and first law of thermodynam-

ics, 555–556
fluid flow, 436–437
force and, 234–242
gravitational force, 233–234
ideal gas, 581–582
internal resistance of battery,

787
nonconservative forces,

276–278
one-dimensional forces and

motions along same
line, 232–233

path dependence, 260–265
physical, 231–232
positive and negative, 232–233

potential energy as stored,
265–269

scalar quantity, 233, 339
and thermal energy, 553–557
three-dimensional variable

force, 241–242
working substance, 614, 615

X
x-component

of unit vector, 98
of vector projection on axis, 95

x-ray diffraction, 1103–1105
x-ray microscopes, 1041
x-rays, 477, 988, 1103

Y
y-component

of unit vector, 98
of vector projection on axis, 95

Yenzer, Scott H., 955n
yield strength, 375, 376table
Young, Thomas, 1084

interference experiment,
1062–1063

Young’s modulus, 373–374, 375,
376table

Z
Zacchini, Emanuel, human can-

nonball, 107, 115–116
z-component

of unit vector, 98
of vector projection on axis, 95

zero point, 27
zero potential, 724
zeroth law of thermodynamics, 545
Zopf, Richard, 89
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Mathematical Formulas*

Quadratic Formula

If ax 2 � bx � c � 0, then x �

Binomial Theorem

(1 � x)n � 1 � (x 2 � 1)

Products of Vectors
Let � be the smaller of the two angles between and . Then

� � � � ax bx � ayby � azbz � cos �

� �� � �

� � �

� (aybz � byaz) � (azbx � bzax) � (axby � bxay)

� sin �

Trigonometric Identities
sin 	 
 sin � � 2 sin (	 
 �) cos (	 � �)

cos 	 � cos � � 2 cos (	 � �) cos (	 � �)1
2

1
2

1
2

1
2

� a: � � b
:

�� a: � b
:

�

k̂ĵî

�ax

bx

ay

by
�k̂�ax

bx

az

bz
�ĵ�ay

by

az

bz
�î

� î
ax

bx

ĵ
ay

by

k̂
az

bz
�a:b

:
b
:

a:

� a: � � b
:

�a:b
:

b
:

a:
b
:

a:

nx
1!

�
n(n � 1)x2

2!
� � � �

�b 
 √b2 � 4ac
2a

Derivatives and Integrals

Cramer’s Rule
Two simultaneous equations in unknowns x and y,

a1x � b1y � c1 and a2x � b2y � c2,

have the solutions

and

.y �
�a1

a2

c1

c2
�

�a1

a2

b1

b2
�

�
a1c2 � a2c1

a1b2 � a2b1

x �
�c1

c2

b1

b2
�

�a1

a2

b1

b2
�

�
c1b2 � c2b1

a1b2 � a2b1

� dx
(x2 � a2)3/2 �

x
a2(x2 � a2)1/2

� x dx
(x2 � a2)3/2 � �

1
(x2 � a2)1/2

� dx
√x2 � a2 � ln(x � √x2 � a2)

�e x dx � e xd
dx

e x � e x

�cos x dx � sin x
d

dx
 cos x � �sin x

�sin x dx � �cos x
d

dx
 sin x � cos x

* See Appendix E for a more complete list.

The Greek Alphabet
Alpha A 	 Iota I  Rho P �

Beta B � Kappa K � Sigma � �

Gamma � � Lambda � � Tau � �

Delta � � Mu � � Upsilon � �

Epsilon � � Nu ! " Phi # $, %

Zeta & ' Xi ( ) Chi * +

Eta , - Omicron . / Psi 0 1

Theta 2 � Pi 3 4 Omega 5 6



Mass and Density
1 kg � 1000 g � 6.02 � 1026 u
1 slug � 14.6 kg
1 u � 1.66 � 10�27 kg
1 kg/m3 � 10�3 g/cm3

Length and Volume
1 m � 100 cm � 39.4 in. � 3.28 ft
1 mi � 1.61 km � 5280 ft
1 in. � 2.54 cm
1 nm � 10�9 m � 10 Å
1 pm � 10�12 m � 1000 fm
1 light-year � 9.46 � 1015 m
1 m3 � 1000 L � 35.3 ft2 � 264 gal

Time
1 d � 86,400 s
1 y � 365 d � 3.16 � 107 s

Angular Measure
1 rad � 57.3° � 0.159 rev
� rad � 180° � rev

Speed
1 m/s � 3.28 ft/s � 2.24 mi/h
1 km/h � 0.621 mi/h � 0.278 m/s

Force and Pressure
1 N � 106 dyne � 0.225 lb
1 lb � 4.45 N
1 ton � 2000 lb
1 Pa � 1 N/m2 � 10 dyne/cm2

� 1.45 � 10�4 lb/in.2

1 atm � 1.01 � 105 Pa � 14.7 lb/in.2

� 76 cm-Hg

Energy and Power
1 J � 107 erg � 0.239 cal � 0.738 ft� lb
1 kW �h � 3.6 � 106 J
1 cal � 4.19 J
1 eV � 1.60 � 10�19 J
1 horsepower � 746 W � 550 ft � lb/s

Magnetism
1 T � 1 Wb/m2 � 104 gauss1

2

1
4

* See Appendix D for a more complete list.

Some Physical Constants*

Speed of light c 3.00 � 108 m/s
Gravitational constant G 6.67 � 10�11 N�m2/kg2

Avogadro constant NA 6.02 � 1023 mol�1

Universal gas constant R 8.31 J/mol �K
Mass-energy relation c2 8.99 � 1016 J/kg

931.5 MeV/u
Electric constant (permittivity) �0 8.85 � 10�12 C2/N �m2

Coulomb constant k � 1/4��0 8.99 � 109 N � m2/c2

Magnetic constant (permeability) � 0 1.26 � 10�6 N/A2

Planck constant h 6.63 � 10�34 J�s
4.14 � 10�15 eV�s

Stefan-Boltzmann 	 5.67 � 10�8 W/m2 � k4

Boltzmann constant kB 1.38 � 10�23 J/K
8.62 � 10�5 eV/K

Elementary charge e 1.60 � 10�19 C
Electron mass me 9.11 � 10�31 kg
Proton mass mp 1.67 � 10�27 kg
Neutron mass mn 1.68 � 10�27 kg
Deutron mass md 3.34 � 10�27 kg
Bohr radius rB 5.29 � 10�11 m
Bohr magneton �B 9.27 � 10�24 J/T

5.79 � 10�5 eV/T
Rydberg constant R 0.01097 nm�1

* For a more complete list, showing also the best experimental values, see Appendix B.

Some Conversion Factors*



Some Physical Properties

Air (dry, at 20°C and 1 atm)
Density 1.21 kg/m3

Specific heat at constant pressure 1010 J/kg � K
Ratio of specific heats 1.40
Speed of sound 343 m/s
Electrical breakdown strength 3 � 106 V/m
Effective molar mass 0.0289 kg/mol

Water
Density 1000 kg/m3

Speed of sound 1460 m/s
Specific heat at constant pressure 4190 J/kg � K
Heat of fusion (0°C) 333 kJ/kg
Heat of vaporization (100°C) 2260 kJ/kg
Index of refraction (� � 589 nm) 1.33
Molar mass 0.0180 kg/mol

Earth
Mass 5.98 � 1024 kg
Mean radius 6.37 � 106 m
Free-fall acceleration at Earth’s surface 9.8 m/s2

Standard atmosphere 1.01 � 105 Pa
Period of satellite at 100 km altitude 86.3 min
Radius of the geosynchronous orbit 42,200 km
Escape speed 11.2 km/s
Magnetic dipole moment 8.0 � 1022 A � m2

Mean electric field at surface 150 V/m, down

Distance to
Moon 3.82 � 108 m
Sun 1.50 � 1011 m
Nearest star 4.04 � 1016 m
Galactic center 2.2 � 1020 m
Andromeda galaxy 2.1 � 1022 m
Edge of the observable universe �1026 m

Sl Prefixes*
Factor Prefix Symbol Factor Prefix Symbol

1024 yotta Y 10�1 deci d
1021 zetta Z 10�2 centi c
1018 exa E 10�3 milli m
1015 peta P 10�6 micro �

1012 tera T 10�9 nano n
109 giga G 10�12 pico p
106 mega M 10�15 femto f
103 kilo k 10�18 atto a
102 hecto h 10�21 zepto z
101 deka da 10�24 yocto y

*In all cases, the first syllable is accented, as in ná-no-mé-ter.


	Cover 
	Title Page 
	Copyright
	Preface
	Brief Contents
	Contents
	Introduction
	Chapter 1: Measurement
	Introduction
	Basic Measurements in the Study of Motion
	The Quest for Precision
	The International System of Units
	The SI Standard of Time
	The SI Standards of Length
	SI Standards of Mass
	Measurement Tools for Physics Labs
	Changing Units
	Calculations with Uncertain Quantities

	Chapter 2: Motion Along a Straight Line
	Motion
	Position and Displacement Along a Line
	Velocity and Speed
	Describing Velocity Change
	Constant Acceleration: A Special Case

	Chapter 3: Forces and Motion Along a Line
	What Causes Acceleration?
	Newton’s First Law
	A Single Force and Acceleration Along a Line
	Measuring Forces
	Defining and Measuring Mass
	Newton’s Second Law for a Single Force
	Combining Forces Along a Line
	All Forces Result from Interaction
	Gravitational Forces and Free Fall Motion
	Newton’s Third Law
	Comments on Classical Mechanics

	Chapter 4: Vectors
	Introduction
	Vector Displacements
	Adding Vectors Graphically
	Rectangular Vector Components
	Unit Vectors
	Adding Vectors Using Components
	Multiplying and Dividing a Vector by a Scalar
	Vectors and the Laws of Physics

	Chapter 5: Net Force and Two-Dimensional Motion
	Introduction
	Projectile Motion
	Analyzing Ideal Projectile Motion
	Displacement in Two Dimensions
	Average and Instantaneous Velocity
	Average and Instantaneous Acceleration
	Uniform Circular Motion

	Chapter 6: Identifying and Using Forces
	Combining Everyday Forces
	Net Force as a Vector Sum
	Gravitational Force and Weight
	Contact Forces
	Drag Force and Terminal Speed
	Applying Newton’s Laws
	The Fundamental Forces of Nature

	Chapter 7: Translational Momentum
	Collisions and Explosions
	Translational Momentum of a Particle
	Isolated Systems of Particles
	Impulse and Momentum Change
	Newton’s Laws and Momentum Conservation
	Simple Collisions and Conservation of Momentum
	Conservation of Momentum in Two Dimensions
	A System with Mass Exchange—A Rocket and Its Ejected Fuel

	Chapter 8: Extended Systems
	The Motion of Complex Objects
	Defining the Position of a Complex Object
	The Effective Position—Center of Mass
	Locating a System’s Center of Mass
	Newton’s Laws for a System of Particles
	The Momentum of a Particle System

	Chapter 9: Kinetic Energy and Work
	Introduction
	Introduction to Work and Kinetic Energy
	The Concept of Physical Work
	Calculating Work for Constant Forces
	Work Done by a Spring Force
	Work for a One-Dimensional Variable Force—General Considerations
	Force and Displacement in More Than One Dimension
	Multiplying a Vector by a Vector: The Dot Product
	Net Work and Translational Kinetic Energy
	Power

	Chapter 10: Potential Energy and Energy Conservation
	Introduction
	Work and Path Dependence
	Potential Energy as “Stored Work”
	Mechanical Energy Conservation
	Reading a Potential Energy Curve
	Nonconservative Forces and Energy
	Conservation of Energy
	One-Dimensional Energy and Momentum Conservation
	One-Dimensional Elastic Collisions
	Two-Dimensional Energy and Momentum Conservation

	Chapter 11: Rotation
	Translation and Rotation
	The Rotational Variables
	Rotation with Constant Rotational Acceleration
	Relating Translational and Rotational Variables
	Kinetic Energy of Rotation
	Calculating Rotational Inertia
	Torque
	Newton’s Second Law for Rotation
	Work and Rotational Kinetic Energy

	Chapter 12: Complex Rotations
	About Complex Rotations
	Combining Translations with Simple Rotations
	Rotational Variables as Vectors
	The Vector or Cross Product
	Torque as a Vector Product
	Rotational Form of Newton’s Second Law
	Rotational Momentum
	The Rotational Momentum of a System of Particles
	The Rotational Momentum of a Rigid Body Rotating About a Fixed Axis
	Conservation of Rotational Momentum

	Chapter 13: Equilibrium and Elasticity
	Introduction
	Equilibrium
	The Center of Gravity
	Indeterminate Equilibrium Problems
	Elasticity

	Chapter 14: Gravitation
	Our Galaxy and the Gravitational Force
	Newton’s Law of Gravitation
	Gravitation and Superposition
	Gravitation in the Earth's Vicinity
	Gravitation Inside Earth
	Gravitational Potential Energy
	Einstein and Gravitation

	Chapter 15: Fluids
	Fluids and the World Around Us
	What Is a Fluid
	Pressure and Density
	Gravitational Forces and Fluids at Rest
	Measuring Pressure
	Pascal's Principle
	Archimedes’ Principle
	Ideal Fluids in Motion
	The Equation of Continuity
	Volume Flux
	Bernoulli’s Equation

	Chapter 16: Oscillations
	Periodic Motion: An Overview
	The Mathematics of Sinusoidal Oscillations
	Simple Harmonic Motion: The Mass–Spring System
	Velocity and Acceleration for SHM
	Gravitational Pendula
	Energy in Simple Harmonic Motion
	Damped Simple Harmonic Motion
	Forced Oscillations and Resonance

	Chapter 17: Transverse Mechanical Waves
	Waves and Particles
	Types of Waves
	Pulses and Waves
	The Mathematical Expression for a Sinusoidal Wave
	Wave Velocity
	Wave Speed on a Stretched String
	Energy and Power Transported by a Traveling Wave in a String
	The Principle of Superposition for Waves
	Interference of Waves
	Reflections at a Boundary and Standing Waves
	Standing Waves and Resonance
	Phasors

	Chapter 18: Sound Waves
	Sound Waves
	The Speed of Sound
	Interference
	Intensity and Sound Level
	Sources of Musical Sound
	Beats
	The Doppler Effect
	Supersonic Speeds; Shock Waves

	Chapter 19: The First Law of Thermodynamics
	Thermodynamics
	Thermometers and Temperature Scales
	Thermal Interactions
	Heating, Cooling, and Temperature
	Thermal Energy Transfer to Solids and Liquids
	Thermal Energy and Work
	The First Law of Thermodynamics
	Some Special Cases of the First Law of Thermodynamics
	More on Temperature Measurement
	Thermal Expansion
	More on Thermal Energy Transfer Mechanisms

	Chapter 20: The Kinetic Theory of Gases
	Molecules and Thermal Gas Behavior
	The Macroscopic Behavior of Gases
	Work Done by Ideal Gases
	Pressure, Temperature, and Molecular Kinetic Energy
	Mean Free Path
	The Distribution of Molecular Speeds
	The Molar Specific Heats of an Ideal Gas
	Degrees of Freedom and Molar Specific Heats
	A Hint of Quantum Theory
	The Adiabatic Expansion of an Ideal Gas

	Chapter 21: Entropy and the Second Law of Thermodynamics
	Some One-Way Processes
	Change in Entropy
	The Second Law of Thermodynamics
	Entropy in the Real World: Engines
	Entropy in the Real World: Refrigerators
	Efficiency Limits of Real Engines
	A Statistical View of Entropy

	Chapter 22: Electric Charge
	The Importance of Electricity
	The Discovery of Electric Interactions
	The Concept of Charge
	Using Atomic Theory to Explain Charging
	Induction
	Conductors and Insulators
	Coulomb’s Law
	Solving Problems Using Coulomb’s Law
	Comparing Electrical and Gravitational Forces
	Many Everyday Forces Are Electrostatic

	Chapter 23: Electric Fields
	Implications of Strong Electric Forces
	Introduction to the Concept of a Field
	Gravitational and Electric Fields
	The Electric Field Due to a Point Charge
	The Electric Field Due to Multiple Charges
	The Electric Field Due to an Electric Dipole
	The Electric Field Due to a Ring of Charge
	Motion of Point Charges in an Electric Field
	A Dipole in an Electric Field
	Electric Field Lines

	Chapter 24: Gauss’ Law
	An Alternative to Coulomb’s Law
	Electric Flux
	Net Flux at a Closed Surface
	Gauss’ Law
	Symmetry in Charge Distributions
	Application of Gauss’ Law to Symmetric Charge Distributions
	Gauss’ Law and Coulomb’s Law
	A Charged Isolated Conductor

	Chapter 25: Electric Potential
	Introduction
	Electric Potential Energy
	Electric Potential
	Equipotential Surfaces
	Calculating Potential from an E-Field
	Potential Due to a Point Charge
	Potential and Potential Energy Due to a Group of Point Charges
	Potential Due to an Electric Dipole
	Potential Due to a Continuous Charge Distribution
	Calculating the Electric Field from the Potential
	Potential of a Charged Isolated Conductor

	Chapter 26: Current and Resistance
	Introduction
	Batteries and Charge Flow
	Batteries and Electric Current
	Circuit Diagrams and Meters
	Resistance and Ohm’s Law
	Resistance and Resistivity
	Power in Electric Circuits
	Current Density in a Conductor
	Resistivity and Current Density
	A Microscopic View of Current and Resistance
	Other Types of Conductors

	Chapter 27: Circuits
	Electric Currents and Circuits
	Current and Potential Difference in Single-Loop Circuits
	Series Resistance
	Multiloop Circuits
	Parallel Resistance
	Batteries and Energy
	Internal Resistance and Power

	Chapter 28: Capacitance
	The Uses of Capacitors
	Capacitance
	Calculating the Capacitance
	Capacitors in Parallel and in Series
	Energy Stored in an Electric Field
	Capacitor with a Dielectric
	Dielectrics: An Atomic View
	Dielectrics and Gauss’ Law
	RC Circuits

	Chapter 29: Magnetic Fields
	A New Kind of Force?
	Probing Magnetic Interactions
	Defining a Magnetic Field B
	Relating Magnetic Force and Field
	A Circulating Charged Particle
	Crossed Fields: Discovery of the Electron
	The Hall Effect
	Magnetic Force on a Current-Carrying Wire
	Torque on a Current Loop
	The Magnetic Dipole Moment
	The Cyclotron

	Chapter 30: Magnetic Fields Due to Currents
	Introduction
	Magnetic Effects of Currents—Oersted’s Observations
	Calculating the Magnetic Field Due to a Current
	Force Between Parallel Currents
	Ampère’s Law
	Solenoids and Toroids
	A Current-Carrying Coil as a Magnetic Dipole

	Chapter 31: Induction and Maxwell’s Equations
	Introduction
	Induction by Motion in a Magnetic Field
	Induction by a Changing Magnetic Field
	Faraday’s Law
	Lenz’s Law
	Induction and Energy Transfers
	Induced Electric Fields
	Induced Magnetic Fields
	Displacement Current
	Gauss’ Law for Magnetic Fields
	Maxwell’s Equations in a Vacuum

	Chapter 32: Inductors and Magnetic Materials
	Introduction
	Self-Inductance
	Mutual Induction
	RL Circuits (with Ideal Inductors)
	Inductors, Transformers, and Electric Power
	Magnetic Materials—An Introduction
	Ferromagnetism
	Other Magnetic Materials
	The Earth’s Magnetism

	Chapter 33: Electromagnetic Oscillations and Alternating Current
	Advantages of Alternating Current
	Energy Stored in a B :-Field
	Energy Density of a B :-Field
	LC Oscillations, Qualitatively
	The Electrical –Mechanical Analogy
	LC Oscillations, Quantitatively
	Damped Oscillations in an RLC Circuit
	More About Alternating Current
	Forced Oscillations
	Representing Oscillations with Phasors: Three Simple Circuits
	The Series RLC Circuit
	Power in Alternating-Current Circuits

	Chapter 34: Electromagnetic Waves
	Introduction
	Maxwell’s Prediction of Electromagnetism
	The Generation of Electromagnetic Waves
	Describing Electromagnetic Wave Properties Mathematically
	Transporting Energy with Electromagnetic Waves
	Radiation Pressure
	Polarization
	Maxwell’s Rainbow

	Chapter 35: Images
	Introduction
	Reflection and Refraction
	Total Internal Reflection
	Polarization by Reflection
	Two Types of Image
	Plane Mirrors
	Spherical Mirrors
	Images from Spherical Mirrors
	Spherical Refracting Surfaces
	Thin Lenses
	Optical Instruments
	Three Proofs

	Chapter 36: Interference
	Interference
	Light as a Wave
	Diffraction
	Young’s Interference Experiment
	Coherence
	Intensity in Double-Slit Interference
	Interference from Thin Films
	Michelson’s Interferometer

	Chapter 37: Diffraction
	Diffraction and the Wave Theory of Light
	Diffraction by a Single Slit: Locating the Minima
	Intensity in Single-Slit Diffraction, Qualitatively
	Intensity in Single-Slit Diffraction, Quantitatively
	Diffraction by a Circular Aperture
	Diffraction by a Double Slit
	Diffraction Gratings
	Gratings: Dispersion and Resolving Power
	X-Ray Diffraction

	Chapter 38: Special Relativity
	Introduction
	Origins of Special Relativity
	The Principle of Relativity
	Locating Events with an Intelligent Observer
	Laboratory and Rocket Latticeworks of Clocks
	Time Stretching
	The Metric Equation
	Cause and Effect
	Relativity of Simultaneity
	Momentum and Energy
	The Lorentz Transformation
	Lorentz Contraction
	Relativity of Velocities
	Doppler Shift

	Appendices
	Appendix A: The International System of Units (SI)
	Appendix B: Some Fundamental Constants of Physics
	Appendix C: Some Astronomical Data
	Appendix D: Conversion Factors
	Appendix E: Mathematical Formulas
	Appendix F: Properties of Common Elements
	Appendix G: Periodic Table of the Elements

	Answers to Reading Exercises and Odd-Numbered Problems
	Photo Credits
	Index
	Endpapers

