CHAPTER 7 CURVE SKETCHING AND INEQUALITIES

Inequalities

In Introducing Pure Mathematics (pages 6 and 36), we found how to solve
simple inequalities such as

4x+7>3(x—4) and x*—-7x+10=0

We established that we can add and subtract as usual with an inequality
symbol, as if it were an equals symbol. But to multiply or divide by a negative
number, we must change the sign of the inequality. For example, we have
3>2 but -3<-2
“2x>4 = x<-=-2

ax + b

ex+d
multiplying both sides of the inequality by cx + d, since we do not know
whether cx + d is positive, giving

Hence, an inequality such as > 2 cannot be solved simply by

ax+b > 2(cx + d)
or negative, giving

ax+b < 2(cx 4+ d)

. . b
To solve inequalities such as L

> k, we can use either of the following
two methods. EX +

1 Multiply both sides of the inequality by (cx + d)*, which we know must be
positive.

2 Sketch y = ity b, solve &* +b

cx+d cx +
results, write down the solution to the inequality.

= k and then, by comparing these two

You should be able to use both methods, but the one which you prefer will
probably depend on whichever is better, your algebraic skill or your graphical
skill.

5x -9

Example 6 Solve the inequality > 2.

X+
SOLUTION

Method 1
Multiplying by (x + 3)?, we obtain
5x -9
+3
= (5x —9N(x+3) > 2(x + 3)

= 5x—9x+3)-2(x+3>>0

(x +3)* > 2(x+3)°
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Noting that (x 4 3) is a factor, we factorise to obtain
(x+3)5x—9—-2(x+3)]>0
= (x+3)Bx—-15>0
= (x+3)x-5>0
= x>5 or x< -3

Method 2

x—9

x+3

The asymptotes are x = —3 and y = 5.

Consider the curve y =

The curve cuts the axes at <%, O) and (0, —3).

5x—9
x+3°

We can now sketch the curve of y =

i

A

INEQUALITIES

]

y=x+3)x-—75)

—1.5

<Y

—3

|
w

When >x — 4 =2, we have
X+
Sx=9=2(x+3)
= 3x=15
= x=15

We insert the point P (5, 2) on the curve. Hence, we can see that

5x -9
x+3

>2

is satisfied by the part of the graph above the dotted line y = 2. That is,

where x > 5 or x < —3.
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CHAPTER 7 CURVE SKETCHING AND INEQUALITIES

(x+ D(x+4)

Example 7 Solve the inequalit
P Wy - D=2

SOLUTION
Method 1
Multiplying by (x — 1)*(x — 2)*, we obtain
(x+D(x+4) (@
(x—D(x—-2)
= x+DEx+FHx—-DEx—2) <2x—D*(x—2)>
= (+DE+Hx-DE-2)—2x—1)*(x=2°<0
Noting that (x — 1) and (x — 2) are factors, we factorise to obtain
x—Dx=2[(x+Dx+4)-2(x—-1)(x—-2)] <0
= (x-DEx-2[*+5x+4-2x>+6x—4]<0
= (x—Dx-2)(—x>+11x) <0
= (x—DKx-2)(x*-11x) >0
= x—Dx—=2)x(x—-11)>0

— 1)*(x — 2)% < 2(x — 1)*(x — 2)?

Therefore, we have
(x+ D(x+4)
(x—1)x—2)
when x > 11,1 <x <2, x <0.
Method 2

Consider the curve of y = e+ Dx+4)

(o — e —2)
The horizontal asymptote is y = 1.

The vertical asymptotes are x = 1 and x = 2.

The curve crosses the axes when y = 0, x = —1, —4, and when x = 0,
y=2.

When y = 1, we obtain
x+Dx+4) 1

(x—Dx=2)
= x4 =x>*—3x+2
= 8x=-2
1
= Ee= ——
4

When y = 2, we obtain
(x—l—l)(x—l—4):2
(x—Dx-2)
= xX2+5x+4=2x*-3x+2)
= 0=x*-11x
= x=0 and 11
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INEQUALITIES

Therefore, we have
(x+ D(x+4)
(x—D(x—-2)
when x > 11, 1 < x <2, x < 0.

Inequalities involving modulus curves

In Introducing Pure Mathematics (page 95), we found how to solve simple
modulus inequalities. Here, we consider modulus inequalities involving
algebraic fractions.

Take, for example, the modulus inequality

5x -9
x+3

>2

We solve this by first solving
5x -9 S5x—9

=+2 and = =sd
x4+3 x+3
and then deducing the required values of x from the sketch of the curve
® |5x—0
x+3
5x—9]. . : 5x—-9
The sketch of y = is obtained by sketching y = and
x+3 x+3

reflecting in the x-axis that part of the curve below the x-axis.
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CHAPTER 7 CURVE SKETCHING AND INEQUALITIES

Thus, to solve SX_; 9‘ > 2, we proceed as follows.
X

= 2, which gives x = 5 (as in Example 6, pages 140-1).

First, we solve 0%
x+3

Next, we solve % —3
X+

= —2, which gives

5x-9=-2(x+3) => x=3
5x—-9

Then, we sketch y =

x+3

Finally, we sketch y = . _39‘ . (See top of page 145.)
Insert the point P where X9 = +2, and the point Q where - = -2,
x+3 x+3
Hence, we have
S5x — 9‘ )
x+3
when x > 5 and x < %, excluding x = —3, where the curve is not defined.
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EXERCISE 7B

Exercise 7B

In Questions 1 to 4, solve each of the inequalities for x.

a)x+3<2 b)x+5>l c)2x_1>3
x4+ x—3 x+3
d) 3x+4>2 e)l—2x>2 f)3+4x>3
x—35 4x 42 S5x—1
2 a) x—Dx-2) b) (x+2)(x—195) o (x—D(x—4) )
(x+Dx+2) (x—3)(x—-2) (x+ D(x—9)
d) Q2x—1D(x—-2) 5 (x+ D(x+95)
(x—3)x+7 (x+2)2x+3)
3 a) x+3‘>1 b) x_1‘>2 c) x+3‘>2
x+2 x+2 X —
d) 2X_l‘>1 e) 3’C_l‘>2 f) x+2\<1
x+5 x+2 x+3
2 . 2 _ D e R e
4 x*+x 3>1 2x° + x 5<1 o = x—2
X2+ x-2 2x2+x-3 x2+3x+2
2 _
5 Find the complete set of values of x for which a (EDEXCEL)
X
6 Given that |x| # 1, find the complete set of values of x for which LAY ! ;
x—1 x+1  @pExXCEL)
7 Find the set of values of x for which x + 2 > (EDEXCEL)
— X
8 Find the set of values of x for which —— < 2 (EDEXCEL)
x+2 x-1
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CHAPTER 7 CURVE SKETCHING AND INEQUALITIES

9 Find the set of values of x for which x < 2x +25 ; (EDEXCEL)
x p—
. . 25t —x—T ;
10 For the curve with equation y = — 3 prove algebraically that there are no real values
of x for which 3 < y < 19. (AEB 98)
3x—6
11 fx)=—— xR, x#0,x# -6
(x) Y6 #0, x #

a) Find the range of values of f(x).

Hence, or otherwise, sketch the curve with equation y = f(x). State the equations of any
asymptotes and the coordinates of any turning points.

b) Use your graph to find the number of real roots of the equation
X 4+6x2—3x+6=0
¢) On a separate diagram, sketch the curve with equation y = |f(x)|. (EDEXCEL)

12 On the same diagram, sketch the graphs of
y=I|x—35] and y=|3x-2]

distinguishing between them clearly.
Find the set of values of x for which |x — 5| < |3x — 2|. (EDEXCEL)

= _? <3, (EDEXCEL)

13 Find the complete set of values of x for which n
: b

14 Find the constants P, Q and R in the identity

5
x+x+2EPx+Q+ R
x—1 x—1

Hence write down the equation of the oblique asymptote of the curve C whose equation is
Pk
y =
x—1
Show that C does not intersect this asymptote.

The points (-1, —1) and (3, 7) are stationary points of C. Sketch C, indicating the
asymptotes. (NEAB)

15 a) Sketch the graph of y = |2x + 3|, giving the coordinates of the points where the graph meets
the coordinate axes.
b) Hence, or otherwise, find the set of values of x for which 4x + 10 > |2x + 3|. (EDEXCEL)
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8 Roots of polynomial equations

And the equation will come at last.
LOUIS MACNEICE

Roots of a quadratic equation
If o and f are the roots of a quadratic equation, f(x) = ax® + bx + ¢ = 0, then
the equation must be of the form

f(x) = k(x — a)(x — ) for some constant k
Therefore, we have

k(x—o)(x—pB)=ax* +bx+c¢

= k(x* =[x+ Blx+af) = ax? +bx +¢
Equating the coefficients of x* gives: k = a
Equating the coefficients of x gives: —k(a+f) =5b
And equating the constants gives: ko = ¢

Therefore, we obtain

oc—&—ﬁ:—é and ocﬁ:£
a a
Or
The sum of the roots is — L and the product of the roots is <
a a

Example 1 In the equation 3x*> — 7x + 11 = 0, find

a) the sum of the roots

a b) the product of the roots.

g SOLUTION

= a) Usingoc+,8:—é,wehave

% =7 7
Y Sumoftheroots,oc+[)’:——3—:+§

P

Bw

b) Using aff = £, we have
a

Product of the roots, ff = —131
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CHAPTER 8 ROOTS OF POLYNOMIAL EQUATIONS

Conversely, we may write the quadratic equation as

x? — (sum of roots)x + (product of roots) = 0

Example 2 Find the equation whose roots have a sum of % and a product
of —2.
2

SOLUTION
Using x? — (sum of roots)x + (product of roots) = 0, we have

x2—1x—-3=0 or 2x*—x—-5=0

I E R EEEEEEREN]

Example 3 The equation 3x2? 4+ 9x — 11 = 0 has roots « and f. Find the
equation whose roots are o + f§ and af.

SOLUTION

From 3x% 4+ 9x — 11 = 0, we have

g+ f=-3 and aﬁ:—%
. 11 20
The sum of the new roots is: oc+ﬁ+oc/3:—3—?:—?
11

The product of the new roots is: (x4 ) x aff = —3 % o =11

Therefore, the new equation is

| E S EREEREEEEEEEEEEEE RN R R EREE N

x2+23—0x+11:0 or 3x®+20x 4352 0

Example 4 The equation 4x?> + 7x — 5 = 0 has roots « and f. Find the
equation whose roots are «2 and f°.

SOLUTION

From 4x?> + 7x — 5 =0, we have
7 5
o+ pf=—— \and) af=—=
P=3 P=-1

The sum of the new roots is
o + 7= (0 + B)* — 20
Substituting the above values in the RHS, we obtain
2
%+ [ = <—%> -2 % —%z?—z
The product of the new roots is 024> = (¢f)>. Substituting the value for
of, we obtain

o= (-3)-Z
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4) 16
Therefore, the new equation is
xz—%wr%:o or 16x*—89x+25=0
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ROOTS OF A CUBIC EQUATION

Roots of a cubic equation
In a similar manner, if o, § and y are the roots of a cubic equation
ax® + bx* + cx + d = 0, then we have
ax® + bx> + ex +d = k(x — a)(x — f)(x — »)
= ax’ +bx* +ex+d=k[x3 — (o4 B+ 9)x? + (@B + By + yo)x — aBy]

5

Equating coefficients of x? gives: a+f+7y=— b
a

Equating coefficients of x gives: aff + By + yo = id
a

And equating the constants gives: offy = — d

a

Example 5 Find the cubic equation in x which has roots 4, 3 and —2.

SOLUTION
The sum of the roots is
o+pf+y=44+3+(-2)=5
The sum of the roots taken two at a time is
af+Py+yr=4x34+3x -2+ (-2x4)= =2
The product of the roots is
afy =4x3x -2=-24
Therefore, the equation is
X3 —5x2—2x+24=0

| E SR EREEEEEEEENEEEENEERNRNERTE]

Example 6 The cubic equation x* + 3x*> — 7x + 2 = 0 has roots o, f, P.
Find the value of o2 + % + 32

SOLUTION

From the cubic equation, we have

awt+p+y=-3
af +Ppy + yau = -7
afy = -2

We now expand (« + § + y)* to obtain

o+ B9 = (a4 B+79) — 20f + By +ya)
Substituting the values, we obtain

4y =(=32=-2x-7=23
Therefore, we have

o2 + B+ =23
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CHAPTER 8 ROOTS OF POLYNOMIAL EQUATIONS

Roots of a polynomial equation of degree n

From the properties of the roots of a quadratic equation and of a cubic equation,
we see that in a polynomial equation of degree n, ax" + bx" ! +cex" 2 +... =0,

. b .
the sum of the roots is —— and the product of the roots is given by
a

_1y Lastterm

(

First term

since the last term is the product of —a, —f, —y, =0, ... .

®  Example 7 The roots of f(x) = 4x° + 6x* —3x3 + 7x* — 1lx — 3 =0 are
2 o, fl,y,0and e

a) Find the product of the five roots.
b) i) Show that x = I is a root of the equation.

ii) Hence show that the sum of the roots other than 1 is — —Z—

SOLUTION

a) The sum of all five roots, o, f8, 7, 6 and e, is b = ~2 = —
a

b) i) When x =1, we have
f(l)=44+6—-3+7—-11-3=0

Therefore, from the factor theorem, x = 1 is one root of the
equation.

ii) The sum of all five roots is —% (from part a). That is,

3
oc+ﬁ+y+(3+8:—5
Putting ¢ = 1, we have

3
oc+/3+y+5+1:—§ = oc+[f+y+5:7%

) 5
Therefore, the sum of the other four roots is ——.

Example 8 The equation z* + (3 +1i)z + p = 0 has a root of 2 — i. Find
the value of p and the other root of the equation.

SOLUTION
Since 2 — i is a root, z = 2 — i satisfies the equation. Therefore, we have

C-)+3+D)2-)+p=0
= p=-10+5i

E
=
E

TTY

The sum of the roots, a + ff = — é, is —(3 +1). Therefore, the other root is
a

W oW

B+ -Q2-i)=-5
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EXERCISE 8A

Exercise 8A

1 Write down the sum and the product of the roots of each of the following equations.

a) > +3x—7=0 b) x> — 1lx+5=0 c) X’ +5x—4=0

d) 3x>+ 11x+2=0 e)x+2:é f) 2x* =7 —4x
X

2 Write down the equation whose roots have the sum and the product given below.
a) Sum 7; product 15 b) Sum —3; product +5
¢) Sum —2; product —4 d) Sum -—5; product —11

3 If o, f5, 7 are the roots of the equation x* — 5x + 3 = 0, find the values of
a) o+ p+7y b) o + f* + 92 c) o + B+

4 The equation 2z% — (7 — 2i)z + ¢ = 0 has a root of 1 +i. Find i) the value of g and ii) the other
root of the equation.

5 The equation 322 — (1 — i)z + ¢ = 0 has a root of 3 + 2i. Find i) the value of 7 and ii) the other
root of the equation.

6 Given that o, 8, y are the roots of the equation x* + x> +4x — 5= 0, find the cubic equation
whose roots are fy, yo« and af. (WIJEC)

7 Given the cubic equation x* — 7x 4+ ¢ = 0 has roots @, 2« and §, find the possible values of g.
(WJEC)

8 The equation 3x* — 5x + 6 = 0 has roots « and f. Without solving the given equation, find an
equation with integer coefficients whose roots are (« + f) and «f. (EDEXCEL)
9 The roots of the equation x* — 3x2 = 3x — 7 =0 are o, f and 7.

a) Find the value of o? + f* + 2.
b) Show that

1 o
a 1 yh=0 (NEAB)
B vl
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CHAPTER 8 ROOTS OF POLYNOMIAL EQUATIONS

Equations with related roots

If « and f are the roots of ax? + bx + ¢ = 0, then we can obtain the equation
whose roots are 2« and 2 by making a substitution for x.

First, we express ax?> +bx +c¢ =0 as
alx —o)(x — ) =0

which gives
a(2x —20)(2x —2p) =0

We obtain the required equation, whose roots are 2o and 2f3, by putting
y = 2x, which gives

aly = 20)(y —2p) =0

Hence, replacing x by % gives an equation whose roots are twice those of the

original equation.

Example 9 Find the equation whose roots are 3« and 3§, where « and f
are the roots of the equation 2x> — 5x + 3 = 0.

SOLUTION

Replacing x by % in 2x? — 5x + 3 = 0, we obtain an equation in y whose

roots for —J?)i are the same as those for x: that is, « and . Hence, the roots
for y will be 3o and 3.

Therefore, the required equation is

2
2(X> —5<Z> +3=0
3 3
= 2)2—15y+27=0

If the equation is to be expressed in terms of x, it would be

2x2 —15x+27=0
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Example 10 Find the equation whose roots are o, %, 72, where o, , y
are the roots of 3x* — 7x? + 11x — 5 =0.

SOLUTION

0, we obtain «, f, y as the

Replacing x by /y in 3x* — 7x* + 11x — 5 =
2 ﬁ2 2
s P, Y

roots for /y. Hence, the roots for y are o
Therefore, the equation in ,/y is

3P = T(Y +11(/H) —5=0
= 3y +1/y=Ty+5
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EXERCISE 8B

Squaring both sides, we have
9y° + 66)? + 121y = 4932 + 70y + 25
Therefore, the required equation is

93 + 1732 + 51y — 25 = 0

Exercise 8B

1

10

11

12

The roots of the equation x* + 7x + 11 = 0 are « and f. Find the equation whose roots are 2¢
and 2p.

The roots of the equation x*> — 15x + 7 = 0 are o and f. Find the equation whose roots are 3o
and 3p.

The roots of the equation 3x* —4x? +8x — 7 = 0 are o, ff and y. Find the equation whose roots
are 2o, 2 and 2y.

The roots of the equation x* — 3x> — 11x + 5 = 0 are «, ff and 7. Find the equation whose roots
are 1, i and -

2 2 2
The roots of the equation 2x* + 3x + 17 = 0 are « and . Find the equation whose roots are o

and f*.

The roots of the equation 3x> — 7x + 15 = 0 are w and B. Find the equation whose roots are o?
and f°.

The equation 2x* + 7x + 3 = 0 has roots eand f. Find the equation whose roots are
a) 20,28 b) c) o2, d) a+2,8+2

X

w |

%
3
The equation 3x* 4+ 9x — 2 = 0 has roots « and f. Find the equation whose roots are

a) 4o, 4p b)%,g c) oc2,ﬁz da—3-3

The roots of the equation x* 4+ 3x? 4+ 5x +7 = 0 are o, § and 7. Find the equation whose roots
are

a) 32,383y b) o2, f*, 77 c) u+3,8+3,9+3

The roots of the equation x* +3x* +7x? — 11x + 1 = 0 are o, , y and . Find the equation
whose roots are 3u, 3, 3y and 36.

The equation x + 2 + - = 0 has roots o and f. Find the equation whose roots are 5¢ and 5p.
X

The roots of the quadratic equation x* — 3x + 4 = 0 are « and 8. Without solving the equation,

. . o ;s 1 1
find a quadratic equation, with integer coefficients, whose roots are — and —ﬁ— (EDEXCEL)
o
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CHAPTER 8 ROOTS OF POLYNOMIAL EQUATIONS

Complex roots of a polynomial equation

If z = x + 1y is a root of a polynomial equation with real coefficients, then
z = x — iy is also a root of the polynomial equation, where Z is the conjugate
of z (see page 3).
Proof
Suppose z is a root of the polynomial
2"+ a,_ 12" Y+ a, 22 ... +ay=0

Then, taking the conjugate of both sides, we have

2" +ay_12" '+ a, 22"+ ...+ ay=0

Using z; + z, = Z] + Z;, we obtain

a7+ ay_ 12"Vt a, 22"+ ..+ G =0

And using z;z; = 77 z;, we obtain

a7+ ay 12"V a2 24 ..+ TG =0
which gives

L@+ 6@ +EG @ . +a =0
Since all the g; are real, @ = ;. Therefore, we have

@)+ ay 1@ Fa 2@+ g =0

Hence, z is also a root of the polynomial.

The complex roots of a polynomial with real coefficients always occur in
conjugate complex pairs.

Note We found in Example 8§ (page 150) that when a quadratic equation does
not have real coefficients, the roots are not conjugate complex pairs. (In
Example 8, they are 2 —1 and —5.)

Example 11 Show that 4 — 1 is a root of the polynomial equation
fz)=Ze622+24+34=0
Hence find the other roots.

SOLUTION

To prove that z =4 — i is a root, we prove that f(4 —1) = 0. Ifz =4 —1i1is
a‘root, then z =4 41 is also a root, since the roots occur as conjugate
complex pairs.

Next, we find the quadratic with real coefficients which is a factor. We
then divide f(z) by this quadratic to find the other factor.

'EFE NS EREEREEREREEEREE]
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COMPLEX ROOTS OF A POLYNOMIAL EQUATION

Substituting z = 4 —iin f(z) = z° — 622 + z + 34 = 0, we have
f(4—i)=(4—1) —6(4—i) +(4—i)+ 34
=52 47i— 90 + 48i + 4 — i + 34
=0

Therefore, 4 —iis a root of f(z) = 2> — 622+ z+ 34 = 0. Hence, 4 +1 is
also a root.

If z— (4 +1) and z — (4 — 1) are factors of the polynomial, so is
Z—@+Dz—@4-1)]=2>-8z+17

Dividing z* — 62> +z 4+ 34 = 0 by z2 — 8z + 17, we obtain
fz2) = (2> -8z +17)(z +2)

Therefore, the three roots of f(z) = 2° — 622 +z+34 =0are 4 +1,4 —1
and —2.

Example 12 Show that 2 +1 is a root of the polynomial equation
fz) =2* — 1222 + 6222 — 140z + 125 =0

Hence find the other roots.

SOLUTION

As in Example 11, to prove that z =2 + i is a root, we prove that
f(241)=0.If z=2+11is a root, then z =2 — i is also a root.

Next, we find the quadratic with real coefficients which is a factor. We
then divide f(z) by this quadratic to find the other factors.

Substituting z = 2 +1iin f(z) = z* — 1223 4+ 622> — 140z + 125 = 0, we have
f2+1) = @2 +1)* — 122 +i)> £622 +1)* — 1402 + 1) + 125
= —7 + 24i — 24 — 1321 + 186 + 2481 — 280 — 140i + 125
=0

Therefore, (2 +1) is a root of f(z) = z* — 122° + 622 — 140z + 125 = 0.
Hence, (2 —1i) is also a root.

If z— (2 +1) and z — (2 — 1) are factors of the polynomial, so is
Z-QR+Dz-QR—-1)]=22—4z+5

Dividing z* — 1223 + 622% — 140z 4 125 by z2 — 4z + 5, we obtain
f(z).= (22 — 4z + 5)(z> — 8z + 25)

Using the quadratic formula, we find that the roots of z2 — 8z 4+25 =10
are 4 + 3i.

Therefore, the four roots of f(z) = z* — 1223 + 6222 — 140z + 125 = 0 are
2+1i,2—1,4+31and 4 — 3i.
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Example 13 The roots of the equation f(x) = 2x* — 3x> + 7x — 19 = 0 are
o, f and y. Show that

a) there is only one real root
b) the real root lies between x =2 and x = 3
c) the real part of the two complex roots lies between —% and —3.

SOLUTION

To show that a cubic equation has only one real root, we find the values
of f(x) at its turning points. Hence, we will be able to see which of the
following curves is f(x).

Vi Yi YA

YA

A

0 x 0\/3

Note When the values of f(x) at its turning points are of opposite sign,
f(x) = 0 has three real roots.

a) To find the values of f(x) at its turning points, we differentiate f(x):
f(x) =2x* - 3x> +7x - 19
f'(x) = 6x% —6x +7
Hence, we have
6x> —6x+7=0

L 6£/36=168
12

That is, f'(x) = 0 has no real roots. Hence, the cubic f(x) has no
turning points, which means that f(x) = 0 has only one real root.

=

b) We find that
f2)=—1 and f£(3)=+29

So, f(x) has opposite signs at x = 2 and x = 3 and is continuous for
2 € x < 3. Therefore, the real root of f(x) = 0 lies between x = 2 and
DR

c) Let the three roots of the equation be «, 5, 7, where o is a real number
between 2 and 3, and f and y are complex numbers.

Since the roots of a polynomial with real coefficients occur in conjugate
complex pairs, § and y are conjugate complex numbers, which we will
represent by p + ig and p — iq.
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Exercige 8L

1

2

10

EXERCISE 8C

Usingoc—l—ﬁ—{—y:—é, we find
a

3

a+B+y==

p+v )

which gives

. \ 3
O‘+P+IQ+P—1QZE

3

= 2p==—u
$=3

Since 2 < a < 3, we therefore have

3 3
——3<2p<==2
2 P73

= —§<2 <—l
2P

S S
1P 77

Hence, the real part of each complex root lies between —% and —3.

Solve the equation x* — 5x* 4+ 2x? — 5x + 1 = 0, given thati is a root.

Solve the equation 3x* — x3 4 2x? — 4x — 40 =0, given that 2i is a root.

Determine the number of real roots of the equation 2x* + x = 3.

Determine the number of real roots of the equation 2x* — 7x +2 = 0.

Determine the range of possible values of k if the equation x° + 3x2 = k has three real roots.
One root of the equation z* — 523 + 1322 — 1624+ 10 = 0 is 1 + i. Find the other roots.

a) Show that one root of the equation z* + 5z — 56z 4+ 110 = 0 is 3 +1i.
b) Find the other roots of the equation.

a) Show that one root of the equation z* — 2z° + 62> +22z+ 13 =01is 2 — 3i.
b) i) Find the other roots of the equation.
ii) Hence factorise z* — 223 + 622 + 22z + 13 into two quadratics, each of which has real
coefficients.
The polynomial f(z) is defined by
f2)=z* -2 4322 -22+42

a) Verify that i is a root of the equation f(z) = 0.
b) Find all the other roots of the equation f(z) = 0. (EDEXCEL)

Given that 2 41 is a root of the equation 3x* — 14x? 4+ 23x — 10 = 0, find the other roots of the
equation. (WIEC)
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11

12

13

14

15

16

17

18

One of the complex roots of 2z* — 1323 + 332% — 80z — 50 = 0 is (1 — 3i), where i* = —1.
i) State one other complex root.

ii) Find the other two roots and plot all four on an Argand diagram. (NICCEA)

Given that 3i is a root of the equation 3z° — 52> + 27z — 45 = 0, find the other two
roots. (OCR)

a) Verify that z = 2 is a solution of the equation z* — 8z% + 22z — 20 = 0.

b) Express z> — 82z + 22z — 20 as a product of a linear factor and a quadratic factor with real
coefficients. Hence find all the solutions of z* — 82> + 22z — 20 = 0. (SQA/CSYS)

Two of the roots of a cubic equation, in which all the coefficients are real, are 2 and 1 + 3i.

i) State the third root.

ii) Find the cubic equation, giving it in the form z* + az® + bz 4+ ¢ = 0. (OCR)

Verify that z = 1 +1 is a solution of the equation z3 + 1622 — 34z + 36 = 0.

Write down a second solution of the equation.

Hence find constants o and f such that

241622 342436 = (22 —az+a)(z+f)  (SQA/CSYS)

The roots of the equation 7x> — 8x? 4+ 23x + 30 = 0 are o, S, 7.

a) Write down the value of o« + f + 7.

b) Given that 1 + 2i is a root of the equation, find the other two roots. (NEAB)

Derive expressions for the three cube roots of unity in the form re’. Represent the roots on an

Argand diagram.

Let w denote one of the non-real roots. Show that the other non-real root is ?. Show also that
l+w+w*=0

Given that
a=p+q P=pHgo.  y=p+qo’

where p and q are real,

i) find, in terms of p, aff + By + ya
ii) show that afy =p° +¢°
iii) find a cubic equation, with coefficients in terms of p and ¢, whose roots are «, f3, 7.
(NEAB)

The polynomial f(z) has real coefficients and one root of the equation f(z) = 0 is 5 + 4i. Show
that z2 = 10z + 41 is a factor of f(z).
Given now that

f(z) = 2% — 102° + 412* 4 162% — 160z + 656,

solve the equation f(z) = 0, giving each root exactly in the form a + ib. (OCR)
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9 Proof, sequences and series

We must never assume that which is incapable of proof.
G. H. LEWES

We studied some aspects of proof in Introducing Pure Mathematics (pages 515—
22). Here, we will examine proof by induction, including its application to
divisibility, and will revisit proof by contradiction.

Proof by induction

Proof by induction is used when we are given a statement which applies to any
natural number, n.

To prove a statement by induction, we proceed in two steps:

1 We assume that the statement is true for n = &, and then use this assumption
to prove that it is true for n = k + 1.

2 We then prove the statement for n = 1.

Step 2 tells us that the statement is true for n = 1.

Step 1 then tells us that, when k = 1, the statement is true for n = 2.
Using step 1 again, when k = 2, the statement must be true for n = 3.
Using step 1 yet again, the statement is true for n = 4.

Similarly, step 1 can be repeated forn = 5, n = 6, and so on.

Therefore, the statement is true for all integer n( > 1).

Example 1 Prove that Z p= %n(n + 1).
r=1

SOLUTION

We assume that the formula is true for n = k. Therefore, we have
k

Zr:%k(k+l)

re=z)
We are trying to prove that Z r= %n(n + 1) is true forn =k + 1.
re=i]

k+1
That is, we are trying to prove that Z = %(k + Dk +2).

]
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We have
k+1 k

Zr:2r+(k+l)thterm

rel r=1
which gives

k+1 1
r:5mk+n+k+1

=1

=

:%mm+4y+xk+u]

:%w+nm+m

& 1 )
Therefore, = + 1) 1s true forn =k + 1.
rz::l r 5 nn+1) n
When n=1: LHS of the formula = 1
RHS of the formula = % x1x2=1

Therefore, the formula is true for n = 1.

Therefore, Z r= %n(n + 1) is true for all n > 1.
r=1

Note In a mathematical proof by induction, it is vital that we write these last
four lines of the proof in full.
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Example 2 Prove that Z rrl=(m+ D= 1.

pi=]

SOLUTION

We assume that the formula is true for n = k, which gives

k
dorr=(k+1)l<1

r=1
Therefore, we have

k+1

> rt=(k+ D! =1+ (k+ Dth term

Y k1) =14 e+ D+ D)
=(k+DI(1+k+1)—1
=(k+2)(k+1)—1
=k+2! -1

Therefore, the formula is true forn =k + 1.
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PROOF BY INDUCTION

Whenn=1: LHS onr.r! =]

r=1

RHSof » rrl=(n+1!-1=2-1=1
Fi=1
Therefore, the formula is true for n = 1.

Therefore, » r.rl = (n+ 1)l = 1 is true for all n > 1.

r=1

n

Example 3 Prove that (e“sinx) = 2%e¥sin (x + Lnm).

d X"

SOLUTION

We assume that the formula is true for n = k, which gives
da . —Z%X'(—kik)
s (e'sinx) = 22¢e™sin (x + 4 km

Therefore, we have

k+1(x. ) d(dk(x. )> d[Z%V'(—#Ik)]
— (e%sinx) = — | —(e’sinx) | = —[22e%sin 93
dxk+1 dx \ dxk dx TG

L2 k
= 222¢e%sin (x + %kn)+27e"cos (x4 %kn)
k
= 22¢" [sin (x + L km) + cos (x + L kn)]

Using asin 6 + bcos 8 = Rsin (6 + «), we obtain
k+1

dxk+1

k
e'sin x) = 22¢%v/2sin [(x +1 kn) + L n]
4 4

= 220+ Dexsinx + Bk 4 D]

(e¥sin x) =22¢"sin (x + Lnm) is true for n =k + 1.

Therefore,
dxn

When n = 1: i(exsin X) =e'sinx + e cos x
X
= v/2¢*sin (x + 1 m)

Therefore, the formula is true for n = 1.

n

Therefore, R ST x) = 2%e¥sin (x+ %nn) is true for all n > 1.

dxn

2 1 o (28 2*—1
Example4IfA<O 1>,provethatA _<O 1 >

SOLUTION

We assume that the statement is true for n = k, which gives

2k 2k
o
“=(5 7
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Therefore, we have

3k 38 { 2 1
k+1 _ gk _
A =4 XA—(O 1 >X<O 1)

_ (2k+1 2k+2k_1>

0 1
2k+1 2k+1_1
k+1 _
= 4 _<0 1 )

Therefore, the statement is true forn =k + 1.

When n = 1, the statement is true.

. 2 1 . (20 2" -1
Therefore,lfA:(O 1>,A —<0 | )foralln}l.
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Divisibility

Proof by induction can also be used to prove that a term is divisible by a
certain integer.

Example 5 Prove that 5% +22"~23"~1 is divisible by 13.

SOLUTION
Let u, = 5% +2%'=23"~1 Therefore, we have
Wy i = 52(n+1) 4 22(n+1)723(n+1)—1
Expressing u, . in the powers of u,, we obtain
Uy | = 5252 4 0292231301
=25% 57 412 x 24 "R
Adding u, and u,  , we obtain
Uy + Uy = 26 x BRI x 222311

Both 26 and 13 are divisible by 13. Therefore, since the sum of u, and
u, .1 is divisible by 13, either

both u, and wu, . ; are divisible by 13, or
both u, and u, | are not divisible by 13.

When n = 1, uy = 52 + 2°3% = 26, which is divisible by 13.

Therefore, u, is divisible by 13 for all integer n > 1.

It is not necessary to use simply u,, | + u, as the term to be divisible by the
required integer divisor. We can add, or subtract, any multiple of u,,; and u,,
as long as that multiple is not the divisor, or a factor of the divisor.

In Example 5, we could have used u,, ; — 12u, = 13 x 5. But obviously we
could not use 13w, ; — 13u,, which is divisible by 13, to prove anything about
the divisibility of u, | or u,.
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Example 6 Prove that 3* 2 4 52+ ig divisible by 14.

SOLUTION

e
]
2

Let u, = 3*'*2 -+ 527+ Therefore, we have
By § = 34(}1+1)+2 =8 52(n+1)+1
= 3434n+2 + 5252n+1
— 81 x 3%1+2 4 25 x 5+]
Note We are trying to prove divisibility by 14. But for the term in 5% +1,

Upy1 +u, gives 25+ 1)57+1 and  u, | — u, gives (25 — 1)5**!

Neither 25 + 1 = 26, nor 25 — 1 = 24 are divisible by 14, and so are
unhelpful. However, we can see that both u, , | + 3u, and u, | — 11u,
make the term in 52" *+! divisible by 14, giving respectively (25 + 3) = 28
and (25— 11) = 14.

We need to check that the term in 3*'*2 also satisfies this divisibility:

tp1 — i, = 81 x 39142 4. 25 5 5241 _ ][ (3442 | §2+1y
4 :81><34n+2+25><52n+1_11X34n+2_11X52n+1
. =70 % 34)1+2 = 14 % 5271+1

which is divisible by 14.

= Therefore, either both u,., and u, are divisible by 14, or both u, 1 and u,
= are not divisible by 14.

When n =1, 3%+2 + 57+1 = 36 4 5% — 854, which is'divisible by 14.
Therefore, all u, are divisible by 14.
Therefore, 3*+2 + 521+1 is divisible by 14 forall n > 1.

Example 7 Prove that 7" + 4" + 1 is divisible by 6.

SOLUTION
Let u, = 7" 4+ 4" + 1. Therefore, we have
Uy 11 = TRANN®! + 1
=T xT7"+4 x 4"+ 1
To eliminate the 41, we need to subtract u, from u, ., giving
Uy — U, =0xT"+3 x4

We cannot use 2u, | — 2u,, as this would involve multiplying by 2, which
is a factor of 6, which we are trying to prove is a factor of the given
expression. Hence, we need to show that 3 x 47, as well as 6 x 77, is
divisible by 6:
Upy1 — U, =6 XT"+3 x4"
=6xT"+3 x 2%
=6Xx 7"+ 6x 21

which is divisible by 6.

R
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Therefore, either both u, ., and u, are divisible by 6, or both u,,; and u,
are not divisible by 6.

Whenn=1,7"+4"4+1=7+4+ 1= 12, which is divisible by 6.
Therefore, all u, are divisible by 6.

BEOND BN MR ORE MO BN M W oW oMW

Therefore, 7" 4+ 4" + 1 is divisible by 6 for all n > 1.

Proof by contradiction

Another way to prove that something is true is to assume that it is false, and

then to arrive at a contradiction. (See also Introducing Pure Mathematics, pages
521-3.)

Suppose, for example, that we want to prove the statement
There is no biggest integer.

It seems obvious that there is no biggest whole number, but ‘it seems obvious’
is not a proper mathematical proof. One way to prove this statement is to
assume that there is a biggest integer.

Call the biggest integer M. Then M + 1 must also be an integer. Now,
M+ 1> M. But M was supposed to be the biggest integer. Therefore, we have
a contradiction.

So our original assumption is false: there is no biggest integer.
One of the most beautiful proofs in all of mathematics concerns the statement
There are an infinite number of prime numbers

We suppose there are not an infinite number of prime numbers, and prove that
this is nonsense.

Assume that there are a finite number of prime numbers. Then we can write
them down as {py,ps, ...,p,}. The number p; x p, x ... X p, + 1 is not
divisible by any of the prime numbers {pi, p,, ..., p,}. This is nonsense because
{p1,p2, - ... pn} was supposed to be a list of all the prime numbers. This
contradiction tells us that our original assumption is wrong. Hence, there are
infinitely many prime numbers.

Exercise 9A

1 Use proof by induction to prove that Z r= %n(n + 1D(2n+1).
r=1

2 Use proof by induction to prove that Z r= i—nz(n + 1)

pe=1

3 Prove that 13" — 6"~ 2 is divisible by 7.

4 Prove that 2% + 3%'=2 js divisible by 5.
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EXERCISE 9A

It is given that ¢p(n) = 7 (6n+ 1) — 1, forn =1,2,3,...
i) Show that
O(n+ 1) — d(n) = 7"(36n + 48)
ii) Hence prove by induction that ¢(#) is divisible by 12 for every positive integer n. (OCR)

Verify that 5° = 1 (mod 11). Hence find the remainder obtained on dividing 5'%%% by 11.
(OCR)
Use mathematical induction to prove that

i(r —DBr—-2) =ri(n-1)

r=1

for all positive integers n. (AEB 97)

f(n) = 24 x 2% + 3* where n is a non-negative integer.
g

a) Write down f(n + 1) — f(n).
b) Prove, by induction, that f(n) is divisible by 5. (EDEXCEL)

Prove by mathematical induction that 5% — 1 is divisible by 24 for all positive integers 7.
(WJEC)

Prove, by induction, that Z rir+3)= %n(n +1Dn+95), neN. (EDEXCEL)

=]

Prove by induction that Z P = é«n(n + D2n+1).
=il

Find the sum of the squares of the first n positive odd integers. (OCR)

Use induction to prove that

n

S rr+1) = %n(n—i— D(n+2)

r=1

for all positive integers n. (SQA/CSYS)

Prove by induction that

i: Hr + N in(n LD+ +3)  (NICCEA)

r=1
a) Write down an expression for the nth term of the series
12 22 32 42
= + + +...
I'x3 3x5 5x7 7x9

b) Prove by induction, or otherwise, that the sum, S, of the first #n terms of the above series is
given by

_nn+1)

= (NEAB)
22n+1)

Show by mathematical induction that
14224322 +...+n2" l=m-1D2"+1

for all positive integer values of 7. (WIEC)
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. 1 N3 1, ) o 3
16 a) Use the results r==—n(mn++1)and r’ =—n"(n+ 1)" to find an expression, in terms of
) D 1=t 1) Z; yRAGRY p

r=1

n, for Z r(r — 1)(r 4+ 1), factorising your answer as fully as possible.
E=i]

b) Use mathematical induction to prove that

- 1 1 1
; rr=D@r+1) 4 2n(n+1)
for all positive integers n > 2. (AEB 97)

17 Use mathematical induction to prove that

n

S rr+ D)(r+5) = %n(n + D +2)n+7)

r=1

for all positive integers 7. (AEB 98)

18 Show, by means of a counter-example, that the statement

axb=0impliecsa=0orb=20

is false.
2
Find a unit vector n such thatnx | =2 | = 0. (NEAB)
1
19 Prove by induction that
Z & =1 1 (OCR)

Pr+1? (1)

r=1

20 Prove that there is no smallest positive rational number. [Hint Prove this by contradiction.]

21 Prove, by induction, that

S P21y = l—lzn(n ~)(+1)(3n+2)  (EDEXCEL)
r=1

22 i) Show that, if n = k+ 1, then
GBn+2)n—1)  3k*+ 5k
n(n+1) k(k+ 1)(k+2)
provided k > 0.
ii) Prove by induction
z": 4 _Gn+2)n-1
—=r-1 an+1)

(NICCEA)

23 Show that S r(r +2) = %(n + D2+ 7).
=1

7

Using this result, or otherwise, find, in terms of », the sum of the series
3In2+4In2°+5In2* + ... +(n+2)In2"

Express your answer in its simplest form. (EDEXCEL)
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EXERCISE 9A

Consider the sequence defined by the relationship u, | = 5u, + 2 whose first term is u; = 1.
i) Show that the first four terms are 1, 7, 37, 187, ...
ii) Use the method of induction to prove that u, = %[3(5”‘ S| (NICCEA)

A sequence u, U, Uy, ... is defined by
up=2 and wu,,1=1-2u, (n=0)
a) Prove by induction that, for all n = 0,

U, = %{l + 5(=2)"}

b) State, briefly giving a reason for your answer, whether the sequence is convergent.
(NEAB)

Prove by contradiction that if the sum of two numbers is greater than 50, then at least one of
the original numbers must have been greater than 25.

4=(23)

Use induction to prove that, for all positive integers 7,

(1 o0
4 _<1—2n 2n>

Determine whether or not this formula for 4” is-also valid when n = —1. (SQA/CSYS)

Let

Prove by induction that, for every positive integer N,

z 1 4N+l
ntd 6 (N+a)

n=1

Given that, for every positive integer N,

N+1 N
1 (i)
(N+4) ~ 6\5

show that the infinite series

1 x4 2x4 3x4
51 T ol o 71 = s o
is convergent, and give the sum to infinity. (OCR)

Let u, v, w be positive integers. For each of the following, decide whether the statement is true
or false. Where false, give a counter-example; where true, give a proof.

i) If u and v both divide w then u + v divides w.
i) If « divides both v and w then u divides v + w.
iii) If u divides v and v divides w then u divides v + w.

Write down the converse of statement ii, and determine whether or not this converse is true.
(SQA/CSYS)
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Summation of series

As we have already seen on pages 15961, proof by induction can be used to
prove that a series has a known sum. Unfortunately, it is of no use when we
do not know the sum in advance. Therefore, we will now introduce two other
methods of summing a series: applying standard formulae and differencing.

Applying standard formulae

On pages 159 and 164, we found that

Zr = ln(n +1)
r=1 2

n 5 1
Zr = gn(n + 1D2n+1)
r=1
Xn: P =L 1y

r=l 4

We also have
2

- (3]
r=1 r=1

These four formulae can be used to find the sums of many series.

n n
Note Z r is often expressed as Z r.
=1 1

Example 8 Find the sum of » ~ (47 +1).

r=1

SOLUTION
First, we split the given term into its parts, and then use the formulae
above, as appropriate.

Note 21:1+1+1+...+1:n (total of n terms of 1)
r=1

Splitting the given term, we have

Zn:(4r2+1)=4zn:r2+i1
r=1 =1 =]

which gives
n

Z(4r2+1):4xén(n+1)(2n+l)+n

r=l

= %n(n +1D2rn+1)+n

IR RES S S RFREERERE R R SRR ERE R R R ERE RN

_ %[2,@(” + 1)1+ 1) + 3n]
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= i(4r2 +1) = —;-n[2(n +1D)2n+ 1) + 3]

Therefore, we have

S @R+ 1) = %n(4n2 4 6n+5)

=i

Example 9 Find the sum of Z 2r° + 37 + 1).
rie= 1.

SOLUTION
Splitting the given term, we have

i(zr3+3;ﬂ2+ 1):i2}’3+§:3r2+i1
Faed] E=1

=] 7=

:2i1ﬂ3+3ir2+zﬂ:1
=1 F=d]; =1

which gives
d P+ + 1) =2x %nQ(n + 1%+ 3 x én(n + D@21 +n
=1

= %[n(n + 1P + (n+ D2nA1) +.2]
Therefore, we have

Do QP +3 + ) =207 + 40 40+ 3)

r=1

2n
Example 10 Find the sum of Z 4r - 3).

r=n+1

SOLUTION

Splitting the given term, we have

2n 2n n
YT @ == @' -3-> @’ -3
r=n-+1 r=1 r=1
WhichgivesJr
2n 2n 2n n n
Y @r-3=4>"r-3>"1- (42#—321)
r=n-+1 1 1 1 1

=4 x %(2}1)2(211 + 1% —3x2n— {4 X %nz(n + 12— 34

= 4’ (2n + 1)* — 61 — n*(n + 1)* + 3n
=4n?@dn* +dn+ 1) - > +2n+1)—3n
=n*(15n% + 14n + 3) — 3n
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Therefore, we have
2n
> @9 —3)=15n" + 14’ + 3 — 3n

r=n+1

BRED MBS

8
Example 11 Find Z (r* +2).

p=1]

SOLUTION

Splitting the given term, we have

8 8
i(r2+2)22r2+z2
r=1 1 1

Using
S = %n(n L)@+ 1)
r=1

n n
and remembering that Z 1 = n, therefore Z 2 = 2n, we obtain
=il r=1

Zn:(rz +2)= én(n +1DQ2n+ 1)+ 2n

re=l

Now, n = 8, therefore,
8
Z(r2+2):%><8><9>< 17 +16 =220
r=1
Hence, we have

8
> (P +2)=220

r=1
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Exercise 9B

1 Find > (2% + 21). 2 Find ) (27 +1).
r=1 r=1

3 Find Y (r+ 1)(r = 2). 4 Find » (2r = 1)(r +5).
Pt r=1

5 a) Showthat 3 (2r — 1)(2r +3) = %n(4n2 +12n—1).
r=1
35
b) Hence find ) ~(2r — 1)(2r +3).  (EDEXCEL)
r=5

6 Given that n is a positive integer, find Z (2r — 1)*, giving your answer in its simplest form.
r=1 (EDEXCEL)
n 1 30
7 Show that Z r2r+1) = gn(n + 1)(4n + 5). Hence evaluate Z rQ2r+1). (EDEXCEL)

r=i r=10
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8 Write down the sum
2N

E ﬂ3

n=1

in terms of N, and hence find
B-24+3 484, - NP

in terms of N, simplifying your answer. (OCR)

Differencing

Some series can be summed using partial fractions (see Introducing Pure
Mathematics, pages 280-89). The basis of this method is that most of the terms
cancel out.

. . 1
Example 12 Find ,
; r(r—+1)

SOLUTION

First, we write as the sum of partial fractions:

r(r+ 1)
1 11

rr+1) :7u r+1
Hence, we have

n 1 n 1 1
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We notice that all the terms except the first and the last cancel one
another. Therefore, we have

z": 1 o\ ™ __n
= rr4+1) 1 n+1 n+1

=1

Example 13 ' Find Z —2*
O+ D +2)

i SOLUTION

®  First, we write —————— as the sum of partial fractions:
> rr+ 1)(r+2)

J 2 R 1

KD +2) r r+l rt2
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Hence, we have

S
—rr+ D)r+2) —\r r+1 r+2
2V 1 27 v 1/ 27 V1
1 -S4 2+ (- 2+2 )+ F—F+F
( 2 A <2 A ﬁ) <3 4 5>_F
| VA Vi 1/ 2/ v
L=+ L)+ (-4 )+
(;4 /5 ;"’6) (nf—?_ nA~1 +n>

n~1 /m n+1 h n+l n+2

Note Do not reduce fractions to their lowest terms, since this obscures
the cancellation which should occur.

I

We notice that almost all the terms cancel one another. We are left with

ié_ﬁ_g___: 2,1, 1 2 1
—r(r+1)(r+2) 2 2 n+l1 n+l1 n4+2
1 1 1

2 n+l n+2

Example 14 Use the identity r = %[r(r + 1) — (r — 1)r] to find the
sum Z r.
r=1

SOLUTION

Making the given substitution, we obtain

E:w_Ej [r(r + 1) = (r — Dr]

:5(1><2—0><1)—i—%(2><3—1><2)+%(3><4—2><3)+...

1
£ fn— Dn = (1= 2 = D)+ 5+ 1) = (1= Dn]
We notice that almost all the terms cancel one another. We are left with

zn:r:%[—o x 1 +n(n+1)]
"\

1
=—nn+1
2( )

Note This result was also found on pages 15960, using a different method.
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