16

17

18

EXERCISE 13C

b) i) Show that the integrating factor for the above differential equation is l

%
ii) Solve the differential equation to find y in terms of x, and use it to show that
»(1.2) = 1.638, correct to three decimal places.
¢) Hence find, correct to one decimal place, the percentage error in using Euler’s formula in
the evaluation of y(1.2). (NEAB)

dy

The variable y satisfies the differential equation =x*+3% and y = 0 at x = 0.5.
=

dy
%
at x = 0.51, x = 0.52 and x = 0.53, giving your answers to four decimal places. (EDEXCEL)

Use the approximation < ) S y—17_—}—0 with step length 7 = 0.01 to estimate the values of y
0 1

a) The differential equation

can be written as two simultaneous first-order differential equations.
5 ) dx i y
i) If one of these equations is v = e write down the other equation.
4

ii) Use a step-by-step method with two steps of d7 = 0.05 to estimate the value of x at
t=0.1, given thatat r =0, x =0 and v = 2.
b) i) Find the general solution of the differential equation

ii) Find the particular solution if x = 0 and % =2 at t = 0. Hence calculate the value of x

when ¢ = 0.1, giving your answer to two decimal places. (NEAB/SMP 16-19)

The equation f(x) = 0 has a root at x = a, which is known to be close to x = x,. Use the
Taylor series expansion of f(x) about x = x, to derive the formula for the Newton-Raphson
method of solution of f(x) =0

It is known that the equation f(x) = 0, where
f(x) = x* — 62 HEN]
has four distinct roots of which two are positive.
Show that exactly one root of the equation lies in the interval [2, 3].
Use the Newton-Raphson method to determine this root correct to two decimal places.

It is proposed to determine the other positive root using simple iteration. Show that the

equation can be rearranged to give the iterative scheme
X211
Xpp1 =—+ 5 +——
6 3 6x,

and that this may be suitable to obtain a solution in the interval [0.5, 1].

Using xo = 0.5 as a starting value, and recording the successive iterates to three decimal places,
use simple iteration to determine this root to two decimal places.

State the order of convergence of the iterative scheme used and explain how the data from the
iterative process can be seen to agree with this. (SQA/CSYS)
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19

20

Derive Euler’s method for the approximate solution of the differential equation
dy
— = f(x,
I %)

subject to the initial condition y(xg) = yq.
The differential equation j—y = (x> + y)e > with (1) = 2 is to be solved.
X

Use Euler’s method with step lengths of 0.1 and 0.05 to obtain two approximations to the
solution of this equation at x = 1.2. Perform the calculations using four decimal place
accuracy.

Assuming that the difference in the two estimates for y(1.2) is due entirely to the truncation
error, estimate the size of this error in the calculation with step size 0.05. Hence give a better
estimate of y(1.2) to an appropriate degree of accuracy.

The predictor—corrector method of solution where Euler’s method is used as the predictor and
the trapezium rule as the corrector (with one corrector application on each step) is to be used
to approximate the solution of the above equation at x = 1.2. Use step length 0.1 and perform
the calculation using four decimal place accuracy. (SQA/CSYS)

The solution of the differential equation
w2 v+ 1*—cosx  p(1)=0
dx

is required at x = 1.15. Obtain an approximation to this solution using Euler’s method with
step size 0.05. Perform the calculation using three decimal place accuracy.

If a step size 0.01 had been used in this calculation, by what factor would you expect the
truncation error to be reduced? (SQA/CSYS)
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14 Matrices

]\/;%416177azics is, not a book confined within a cover and bound between brazen clasps, whose
cantents'it needs only patience'to-ransack.
JAMES JOSEPH SYLVESTER

A matrix stores mathematical information in a concise way. The information is
written down in a rectangular array of rows and columns of terms, called
elements or entries, each of which has its own precise position in the array.

4
8 | is a matrix, but its meaning depends on the context.
7

As in Chapter 6, it could represent a vector, meaning 4i + 8j + 7k. In football,
it could represent the number of goals scored by three different clubs. In a
shop, it could represent the number of packets of three different items bought.

Notation

We normally represent matrices by bold capital letters: For example,

4 11 5
M=|1 4 2
1 2 1

Example 1, on page 300, illustrates an application of this notation.

The order of a matrix

The order of a matrix is‘its shape. For example, the matrix (Z _32 75>

has order 2 x 3, since its elements are arranged in two rows and three columns.

When stating the‘order of a matrix, we must always give first the number of
rows, followed by the number of columns.

4
8] 1s a column matrix and has order 3 x 1, since its elements are arranged
7

in three rows and only one column.

The matrix (4 8 7) has order 1 x 3 and is a row matrix.
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When the number of rows and the number of columns are equal, the matrix is
called a square matrix.

Note (4,8,7) with the numbers separated by commas is a point. (4 8 7)
with no commas is a matrix.

Addition and subtraction of matrices

Only when two matrices are of the same order can we add them or subtract
them.

To add two matrices of the same order, we proceed as follows, element by

element:
a b ¢ p r a+p b+qg cH+r
d e f|l+]s ul=\d+s e+t fH+u
g h i v X g+v h+w i+x

We subtract two matrices of the same order in a similar way.

T =~

We cannot evaluate (Z) + (C

order.

d )
) because the matrices are not of the same
e

Multiplication of matrices

Multiplying a matrix by a number

To multiply a matrix by, for example, k, we multiply every element of the
matrix by k. Hence, we have

a b ¢ ka kb ke
kid e f|=|kd ke kf
g h i kg kh ki

2
*  Example 1 Find 3A + 2B when A = (g Z _51 ) and
E
|
3 2 4
= B- < )
. -1 -3 2
= SOLUTION
2
® _We have
B
B
2
E

47 -1 302 4
3A+2B—3<8 1 5>+2(_1 o 2)
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= Multiplying out the RHS, we obtain

2

= 12 21 -3 6 4 8
= i

: 3A+2B_<24 3 15>+<—2 6 4)
E

% which gives

]

= 18 25 5

: 3A+2B_(22 = 19>

Multiplying one matrix by another

We cannot multiply any matrix by any other matrix.

To allow multiplication, the orders of the two matrices concerned must
conform to the following rule:

The number of columns in the first matrix must be the same as the
number of rows in the second matrix.

For example, if the first matrix has order 3 x 3, the second must have order
3 x something, as in the case of A and B below, which we will multiply

together:
DEeiia legie 2Eaa(
A B0 3 B=\{1 -2 1
Daae 3 S |

To multiply A by B, we start by taking the first row of matrix A, (2 3 1),

1
and the first column of matrix B, | 1
0

We then multiply the first element of the row by the first element of the
column, the second element of the row by the second element of the column,
and the third element of the row by the last element of the column. We then
add up these three products.

This gives the element in the top left-hand corner of the matrix AB, which is
2x14+3xl+dbhx0=5

So, we have

o 7
ABS%- ¢ 7 ?
i fa

Next, we take the second row of matrix A, (0 —2 3), and the first column

1
of matrix B, | 1
0

Again, we multiply each element of the row by the corresponding element of
the column and add up the products.
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This gives the second element of the first column of matrix AB, which is
Ox1-2x14+3x0=-2

So, now we have

5 9
AB=| -2 ?
? 07

We repeat the procedure on the second and third columns of matrix B,
eventually obtaining

5 0 4
AB=| -2 10 1
2 2 5

(Notice that at each stage it looks as if we are finding a scalar dot product of
two vectors.)

Generally, the product PQ produces a matrix which has the same number of
rows as P, and the same number of columns as Q. Hence, if P has order p x ¢
and Q has order ¢ x ¢, then PQ has order p x g.

Multiplication is not commutative

It is important to note that the multiplication of two matrices is not
commutative. That is,

AB # BA
Therefore, we must ensure that we write the matrices in the correct sequence.
(See Exercise 14A, Question 1, page 300.)

Also, to avoid ambiguity when referring to the product of A and B, we must
specify their sequence. For example, in the case of AB, we say ecither that A
premultiplies B or that B postmultiplies A.

There are, however, three exceptions to the non-commutative law:

e Multiplication of a zero matrix by a non-zero matrix of the same order (see
page 304).

e Multiplication of a square matrix by its inverse (see page 304).

e Multiplication of a square matrix by the identity matrix of the same order
(see page 303).

We also note the following:

e If AB exists, BA does not necessarily exist.
e The matrix A? is A x A, which can only exist if A is a square matrix.

Multiplication is associative

We find that for any matrices A, B and C, which are conformable for
multiplication,

A(BC) = (AB)C

provided their sequence is not changed.
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Known as the associative law, this allows us to decide whether we start the
multiplication with the first pair of matrices or the second pair. Consequently,
we can refer to the product ABC without ambiguity.

Determinant of a matrix

As stated on page 81, determinants always consist of a square array of
elements. It follows, therefore, that only a square matrix can have a
determinant.

From our definition of a determinant, we see that it is the scalar representation
of its originating square matrix, and gives the value associated with that
matrix.

If A is a square matrix, we can find the determinant of A, denoted by det A or
|A|, by the method shown on pages 80-1.

Determinant of the product of two matrices

The determinant of the product AB is the same as the product of the
determinant of A and that of B:

det (AB) = det A x detB

Identity matrices and zero matrices

An identity matrix is any square matrix all of whose elements in the leading
diagonal are 1, and all of whose other elements are zeros. It is denoted by I.

Hence,
1 0
=( 1)

is known as the 2 x 2 identity matrix, and

I 0
I=(0 1
0.0

Y =) )

is known as the 3 x 3 identity matrix.

When we multiply I by any square matrix M of the same order as I, I behaves
as unity. That is,

IM=MI=M
Z.ero matrices

When all the elements of a matrix are zeros, it is known as a zero matrix, and
is denoted by 0.
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A zero matrix may have any order and therefore is not unique. For example,

() o3

We can multiply any non-zero matrix by a zero matrix provided the zero
matrix is conformable for multiplication. For example,

(% )6)-6)
e (00)(35)-(0)-G 36 )

Generally, we have

OM=0 and NO=0

Also, from the second example, we note that when 0 and M have the same
order

0M =0=M0

which is one of the three exceptions to the non-commutative laws discussed on
page 302.

When we multiply together two non-zero matrices, we can get a zero matrix as
the result. For example,

5 2\/(2 4\ (00
10 4 -5 —10/ \0 o
Inverse matrices

If M is a square matrix, its inverse, denoted by M, is defined by
MM!'=M'M=1

Contrary to the non-commutative law discussed on page 302, we note that the
order in which we multiply M and M~ does not matter, which means that
ML, if it exists, is unique.

The inverse of a square matrix, M, exists when det M # 0. That is, when M is
said to be non-singular. When det M = 0, M is said to be singular.
The minor determinant

The minor determinant of an element of a matrix is the determinant of the
matrix formed by deleting the row and column containing that element.

For example, the minor determinant of the middle element, 2, of the
5 6 9

matrix { 7 2 1 | is the determinant of the matrix 5P , which is
3 8
3 4 8
59
13 ; } _ 13
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Finding the inverse of a 3 X 3 matrix

We proceed in the following order:
1 Find the value of the determinant, A, of the matrix.
2 Find the value of the minor determinant of each of the elements.

3 Form a new matrix from the minor values, inserting them in the positions
corresponding to the elements from which they were derived. Also insert a
minus sign at each odd-numbered place, counting on from the top left entry
of the matrix. These minor values with their associated signs (+ or —) are
called the cofactors of the elements of the original matrix.

4 Find the transpose of the result.

Hence, we have

a b e\ 1 A -B C\'
d e f| =—|-p E -F
¢ h i A\ G -H I

where A4, B, C, ... are the minor determinants of the elements 4, b, c, . ..
respectively.

Example 2 Find the inverse of M, where M =

— DD =
— 0 N
o B

SOLUTION
First, we calculate det M, which gives
detM=1(6-4)—-24—-4)+52=3)=-3

Next, we calculate the minor determinants, obtaining

2 0 -1
-1 -3 -1
-7 -6 =1

Then, we insert those minor values in their appropriate positions, together
with their associated signs (+ or —), to form the matrix to be transposed.

1 2
11
inserted three places from the top left corner of the matrix, for which the
associated sign is minus, giving —(—1) = +1. Thus, +1 is the cofactor of
element 4.)

(For example, the minor value of element 4 is = —1. This is

Hence, we have

M'=—1[+1 -3 +1
S3\-7 +6 -1

gy s S SRR RS EERE SR RS R R R E RS R EEREREEEERE
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= We obtain the transpose by reflecting the matrix in its leading diagonal
¥ (see page 84), giving

= 2 _1 1

- 2 1 -7 3 33

= M'=——1 0 -3 6 |=[0 1 =2

- 3

B -1 1 -1 A 1 1

= 3 33

”Exkercise 14A )

1 Evaluate PQ and QP, where
6 4 1 -2
P:<2 3) and Q‘(z 3 >
What do you conclude from your results, and why has it happened?

2 Find the inverse of each of the following.

3 4 2 7
e 2 (1 )

-1 0 1
3 Find the inverse of the matrix ( 2 0 1 ) in terms of k. (NICCEA)
k -1 0

cosfl —sind
sin 0 cos 0

An — [ cos nf  — sinnf
~ \ sinn0 cosnt

for all positive integers 7. (WJEC)

4 Given the matrix A = ( ), show by induction that

5 a) Calculate the inverse of the matrix

1 x -1 5
AxX)=(3 0 2 X # =
11 0 2

a i 1 3 -1
The image of the vector (b) when transformed by the matrix (3 0 2 ) is the
c 11 0
4
vector | 3
5

b) Find the values of a, b and c. (EDEXCEL)
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6 Given that the matrix A = and that the determinant of A = 20, find A",

D W W
(O NI N
N = W

(WJEC)

7 The matrices A and C are given by
11 1 1 0 2
A=1(1 2 2 C=13 10
21 3 1 1 1
Find the matrix B satisfying BA = C. (WJEC)

0 1
-2 3
i) Show that A> = 3A — 2L
i) By writing A* = A x A? and using part i, show that A®> = 7A — 61.
iii) For positive n, use the method of induction to prove that

A"=2"-DA+2-21 (NICCEA)

8 Let matrix A = < ) and I be the unit matrix (é ?)

9 The matrix A is given by

where a # —1.

i) Find A",
i) Given that a = 2, find the coordinates of the point which is mapped onto the point with
coordinates (1,2, 3) by the transformation represented by A. (OCR)

10 The matrix A is given by

2 -1 1
A=l 0 3.0
1 1 a

where a # 1. Find the inverse of A.
Hence, or otherwise, find the point of intersection of the three planes with equations
2x = y+2=0
3y+2z=0
»-y+az=3 (OCR)

11 Matrices A and B are given by

1 0 0 I 1 1
A=11 -1 0 and B=[0 1 -1
1 0 a 0 0 2

where a # 0.
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i) Find the inverse of A.
ii) Given that

find the matrix C such that ABC = I, where I is the identity matrix. (OCR)
12 It is given that
2
A={(1 1 3
5

where a # 2.

i) Show that A has an inverse, and find it.
i) Itis given that

X1 N1
Al x2 | =B »n
X3 Y3

where
01 1
B={(1 0 1
1 10
Find x, in terms of y, y,, y3 and a. (OCR)

11 1 | —lg —1
13 LetA=(1 1 1]andB=|-1 1 -l
1 1 1 -1 -1 1

a) Determine whether or not AB = BA.
b) Verify that A% 4+ 3B*> = 12I, where I is the 3 x 3 identity matrix.

¢) Find AB, AB? and AB® as multiples of A, and make a conjecture about a general result for
AB". Use induction to prove your conjecture.

d) It is given that B is invertible, with inverse of the form

x. y z
Bl=[z x y
y z X

Write down a system of linear equations which x, y and z must satisfy, and hence find the
values of x, y and z.

e) Verify that B> — B is a multiple of I, and hence find B™" in the form B + sI where r,

s are
real numbers. Hence check your answer to part d. (SQA/CSYS)
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11 2
14 a) Giventhat A= [ 0 2 1 |, find A%,
1 0 2
10 9 23
b) UsingA>= | 5 9 14 |, show that A> — 5SA2 + 6A — I = 0.
9 5 19

¢) Deduce that A(A — 2I)(A — 3I) = .
d) Hence find A”'.  (EDEXCEL)

1
15 Giventhat A= | 0
0

oSN O

0
1 |, use matrix multiplication to find
1

a) A2 b A’

c) Prove by induction that

1 0 0
A"=10 2" 2"—1 nz=l1
0 0 1

d) Find the inverse of A”". (EDEXCEL)

Transformations

A number of transformations of a two-dimensional plane onto a two-
dimensional plane, R?, and of a three-dimensional space onto a three-
dimensional space, R*, may be represented by a matrix M, where

X X1
My |=1|n
i Z1

means that the image of (x, y, z) under the transformation, T, is (x;, y;, ;).

Linear transformations

T is described as a linear transformation of n-dimensional space (where
n=2,3,...) when it has the properties

T(Ax) = AT(x) and TUAx + py) = AT(x) + uT(y)
where A and u are arbitrary constants.

We may represent a linear transformation by a matrix. For example, in three
dimensions, we might represent T by the matrix

a b ¢
M= |d e f
g h i
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Hence, to find, under T, the image of the point with position vector i, we
calculate

a b c 1 a
d e f 0)l=1d
g h i 0 g

So, under T, the image of the point (1,0, 0) is (a, d, g), which we can see is the
first column of M.

To find which type of transformation is represented by a matrix, we find the
images of the vectors (1,0,0) and (0, 1,0) and (0,0, 1). Common linear
transformations are rotations about the origin, reflections in lines through the
origin, stretches and shears.

We can represent a linear transformation of R?, which is the xy-plane, by a
matrix. Such a matrix will have order 2 x 2.

For example, let T be an anticlockwise rotation of two-dimensional space.

The rotation, centred at the origin, is through angle 0.
i 1)
Then the vector (0 ) , which is i, transforms (—sin 6, cos ) === == >
cos 6 0 (cos 6, sin 0)
to the vector | . , and the vector , : :
sin 1 1 Y
S —sin 0 N
which is j, transforms to the vector ( s > . ) PR
cos 6 : %
The matrix for T is then given by = s L 7 EO)

cosf@ —sind
M=|".
< sin 0 cos 0 )
So, to find the matrix representing this transformation, we find the images of

(1,0) and (0, 1), which become the two columns of the matrix.

In three dimensions, we find the images of the points (1,0, 0), (0,1, 0) and
(0,0, 1), which are the vertices of the unit cube. In vector form, these are the
images of the vectors i, j and k. As seen below and on page 311, these become
the columns of the matrix representing the transformation.

Example 3 Find the matrix M representing an enlargement, scale factor
2, with the origin as the centre of enlargement.

SOLUTION

The images of the vertices of the unit cube are
(1,0,0) — (2,0,0)
(0,1,0) — (0,2,0)
(0,0,1) — (0,0,2)

Hence, we have

I S E B EER SN FEREEE R RRERNE.]

2
M=|0
0

(=2 S R an)
|\ B e el
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: Example 4 Find the matrix M representing a reflection in the line y = x

¢ In the xy-plane.

; SOLUTION

i The images of the vertices of the unit cube are

(1,0.0) = (0,1,0)

(0,1,0) — (1,0,0)

(0,0,1) — (0,0, 1)

) Hence, we have

- 0 1 0

s M=1|1 0 0

. 0 0 1

« Example 5 Find the matrix M representing a shear in the yz-plane, in

*  which (0, 1,0) is invariant and (0,0, 1) moves to (0,2, 1).

: SOLUTION

; The images of the vertices of the unit cube are Ex

(1,0,0) — (1,0,0) 0, 0,1) 5 ©,2,1)
(0,1,0) — (0,1,0)

(0,0,1) = (0,2,1)

: Hence, we have 5
: 0 0,1,0) *
. 1 0 0

. 0 0 1

- Example 6 Find the image of the line y = 7x under the transformation

" whose matrix is <4 P >

s 2. %
2 SOLUTION
& To find the image of a line (or a plane), we first obtain the general point

= on the line (or plane), and then obtain the image of this general point.
The general point on the line y = 7x is (¢, 71).
The image of this point is given by

(3 ShEn)=lon)

Hence, we have x = -3¢, y = 371.
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So, to find the desired line, we eliminate ¢, obtaining
37x+3y=0
Therefore, the image of the line y = 7x is 37x + 3y = 0.

| E R E RN EI

Example 7 The transformation T is the composite transformation of

i) a one-way stretch in the x-direction, scale factor 3
i) a one-way stretch in the y-direction, scale factor 9
iii) a one-way stretch in the z-direction, scale factor 3
iv) a reflection in the xy-plane.

Find the matrix N representing the composite transformation.

SOLUTION

Transformations iii and iv can be combined to give a one-way stretch in
the z-direction of scale factor —3.

After all four transformations have taken place, the images of the vertices
of the unit cube are

(1,0,0) — (3,0,0)
(0,1,0) — (0,9,0)
(0,0,1) — (0,0, — 3)

Hence, we have

B EEEERESREEREEE R R R EERERE R R E R R R ERERERDREE D]

30 0
N=[0 9 0
0 0 -3

Invariant points and lines

An invariant point of the transformation T is a point which is unchanged by
that transformation. That is, T(x) = x.

For example, the only points which are unchanged by reflection in the line
»y = x are the points on the line y = x itself. Therefore, the only invariant
points in this transformation are on the line y = x.

Reflection in the line y = x does not affect the line y = x. In addition, the line
¥ = —x maps onto itself. These are the only two lines which map onto
themselves. Both lines pass through the origin.

We say that these are the invariant lines of the transformation which is a
reflection in the line y = x. The only invariant lines are y = x and y = —x.

We notice that some points which are not invariant points are on an invariant
line. For example, the point (1, — 1), which is on the line y = —x, is reflected
to the point (—1, 1), which is still on the same invariant line y = —x.

All invariant lines of a transformation which can be represented by a matrix,
other than those with an invariant plane, pass through the origin. If the
transformation is represented by the identity matrix, all lines are invariant.
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TRANSFORMATIONS

Example 8 Find a) the invariant points and b) the invariant lines of the

: - —1
transformation whose matrix is (3 5 )

SOLUTION

a) The invariant points are the points (x, y) which satisfy

2 5)0)-0)
2 5 y y
From this, we obtain the following simultaneous equations:
dx—J =% == 3K=7 1]
x+5y=y = 2xx=-4y 2]
Substituting [1] into [2], we have
2x = —4(3x)
= 2x=-12x
= x =)
The only solution to equations [1] and [2] is x = y = 0.

Therefore, the origin (0, 0) is the only invariant point under this
transformation.

b) The line y = mx + ¢ is invariant if points on it map onto points on the
same line, but not necessarily onto the same points.

Thus, the general point, (¢, mt), on the line y = mx should map onto
another point, (7,mT), on the line. So, we must solve the equation

4 -1 ry 4 T

2 5 mt )  \mT
Multiplying out the LHS, we obtain

d-me\ _ (T

Q2+5myt ) \mT
Therefore, we have the simultaneous equations

@G-—mi=T

2+ Sm)t =mT

which give
m 1
24+5m m

Cross-multiplying, we obtain
dm —m?> =2+ 5m
= m+m+2=0

This equation has no real roots, and so the transformation has no
invariant line.
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Consider the anticlockwise rotation by g about the origin in R*. Every line is

rotated, and so there are no invariant lines. Also, there is only one invariant
point, namely (0, 0).

Any rotation (except by the angle 0° or 180°) in two- y?
dimensional space has no invariant lines. For example, we
can see from the figure on the right that the image line can
never lie along the object line, unless 6 = 0° or 180°.

i

;; Image line

[

However, in three-dimensional space, a rotation must have 0 "
an invariant line, namely the line about which the rotation /

occurs. In three-dimensional space, a plane always maps ;j

onto a plane unless the matrix is singular (that is, det M = 0). f;

When the matrix is singular, a plane sometimes maps onto a
line or a point. Similarly, a line always maps onto a line unless
the matrix is singular, in which case the line might map onto

a point.

Eigenvectors and eigenvalues

An eigenvector of a linear transformation T is a vector pointing in the direction
of an invariant line under the transformation T.

For example, let T be a reflection in the line y = x. Then (1, —1) is on the

invariant line y = —x, but it maps onto (—1, 1).

The eigenvalue for the eigenvector (_1 ) is —1, since all the points on the line
y = —x map onto points whose coordinates are —1 times the original
coordinates.

To summarise, if M is the matrix for a transformation T, then
M(3) =4()
Y Y

means that <;> is an eigenvector of T, and 1 is the eigenvalue of T associated

with (x>
y

In this case, we have

)6)-0)

In three-dimensional space,

X X
My ]|=4ly
Z Z
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X
means that | y | is an eigenvector of T, and that A is the eigenvalue of T
Z
X
associated with | y
z

Finding eigenvectors and eigenvalues

To find the eigenvalues of a transformation whose matrix is

a b ¢
M=\(d e f
g h i
we solve the equation det (M — AI) = 0 for A, which we will now prove.
We have
a b ¢ X X
d e f y =1y
g h i b z
which gives

ax+by+c=Aix
dx+ey+fz= 2y
gx+hy+iz= 1Az
from which we obtain
(a—D)x+by+cz=0
dx+(e—AD)y+fz=0
gx+hy+(G—-1)z=0

For the eigenvectors to be non-zero, these three equations must have non-
unique solutions (see page 87). Hence, we have

a— A b c
d e—A f |=0
g h i— A

which is
detM—A)=0
To find the eigenvectors, we solve
X X
M|y ]| =4y
z z

for each value of A.
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Example 9 Find a) the eigenvalues and b) the eigenvectors of the matrix
1 1 2
0 2 2
-1 1 3

a) We solve the equation

1 —d 1 2
0 2-14 2 | =0
-1 1 3—-14

which gives
A1-DH[C-HB-H-21-120)+22-2)=0
= (1-ADA-51+4)—-2+4-21=0
= -6l +111-6=0

This equation is known as the characteristic equation of the matrix (see
page 323).

SOLUTION

Factorising the LHS, we obtain
A-1DA=-2)(A-3)=0
= 4=1,2.3
Therefore, the eigenvalues are 1, 2 and 3.

b) The eigenvector for the eigenvalue 1 is given by a solution to the

equation
1 1 2
0 2 2 =
-1 1 3

X+y+2z
= 2y 42z =
—x+y+3z

from which we obtain the simultaneous equations

N =
N <=

N ==

X+y+2z=x 1]
29 +2z=y 2]
Xty +3z=z 3]

We note that there are only two different equations from which to
solve for three unknowns. Therefore, we cannot obtain a unique
solution to such a set of equations (see page 87). Hence, we will let one
of the unknowns be 7. We also note that subtracting [3] from [1] gives
% =0

So, we let z = ¢ and solve the simultaneous equations for y:

X+y+2t=x [4]
2y+2t=y 5]
—x+y+3t=t [6]
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From [4], we obtain y = —2¢.
0
Therefore, the direction of the eigenvector is | —2¢
!
0
Hence, | —2 | is an eigenvector for the eigenvalue 1.
1

The eigenvector for the eigenvalue 2 is given by a solution to the
equation

1 1 2 X %
0 2 2 y|=2|y
-1 1 3 b4 4

from which we obtain the simultaneous equations

x+y—2z=2x 7]
2y+2z=2p [8]
—x+y—+3z=2z 9]

This time, we do not let z = ¢, since [8] immediately gives z = 0.
So, we put y = ¢. Then from [7], we obtain x = r.

t
Therefore, the direction of the eigenvector is | ¢

0
1
Hence, | 1 | 1s an eigenvector for the eigenvalue 2.
0

The eigenvector for the eigenvalue 3is given by a solution to the
equation

1 1 2 X B
2 2 y | =31y
-1 1 3 3 Z

from which we obtain the simultaneous equations
X+ y+2z=3x
29 +2z =13y
Sy + 3z =3z

which give
—2x+y+22=0 [10]
2z=yp [11]
—x+y=0 [12]

We let x = 7. Then from [12] and [11], we have y = ¢ and z = é
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t
Therefore, the direction of the eigenvector is | ¢

1t
1
Hence, | 1 | is an eigenvector for the eigenvalue 3.
3
Since any scalar multiple of an eigenvector is also an eigenvector,
2
we can write the eigenvector for 3 as | 2
1
1
Example 10 Show that | —1 | is an eigenvector of the matrix A, where
-2
1 0 -1
A=1[1 2 1
2 0 4
Find the associated eigenvalue.
SOLUTION
1
If [ —1 | is an eigenvector of A, then we have
-2
1 1
Al -1 ] =] -1
-2 -2
1
where / is the eigenvalue associated with | —1
-2
Hence, we obtain
1 1 0 —1 1 3
Al -1]=[1 2 1 -1 ]1=1-3
-2 2 0 4 -2 —6
1\ 1
= Al -1]| =3 -1
-2 -2
We note that
1 1
Al -1 ]| =3| -1
-2 -2
1
has the same form as Ax = 1x, therefore | —1 | is an eigenvector of A
-2

and its associated eigenvalue is 3.
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Diagonalisation

If M is a symmetric matrix, then MT = M. That is, the transpose of the matrix
M is the same as the original matrix M.

3 4 -2
For example, 4 1 7 is a symmetric matrix, since we have
—2 7.4
3 4 —2\" 3 —2
4 1 7 = 4 1 7
-2 7 4 -2 7 4

Note that the eigenvectors of a symmetric matrix which have non-equal
eigenvalues are mutually perpendicular,

A diagonal matrix is one in which every element is 0 except those in the leading
diagonal.

1 0 0
Forexample [ 0 7 0 | is a diagonal matrix.
0 0 -1
If P is the matrix with the eigenvectors of M as each of its columns, we have
P 'MP=D

where D is a diagonal matrix, the diagonal elements of which are the
eigenvalues.

Since P! MP = D, we have
PP'MP=PD = MP=PD
= MPP'=PDP'! = M=PDP'

Hence, M representing the transformation may be expressed in terms of a
diagonal matrix when the eigenvectors are used as axes. (See page 323 for an
example of this.)

If P is the matrix with the eigenvectors of the symmetric matrix M as each of
its columns, we have

P'MP = D,
where D, is also a diagonal matrix.

If the eigenvectors used in P are normalised (that is, converted to unit vectors),
then the elements of D, are also the eigenvalues.

However, if the eigenvectors of the symmetric matrix P are not normalised,
then each element in the leading diagonal is the product of an eigenvalue and
the square of the modulus of the associated eigenvector.

1 1 2
In Example 9 (pages 316-18), we found that the eigenvectorsof | 0 2 2
-1 1 3
0 1 2
are { —2 |, | 1 | and [ 2 |. Hence, we have
1 0 1

319



CHAPTER 14 MATRICES

0 1 2 — 0
P=|-2 12 Pl=
1 0 1 11 1

2 2
& —=¢ 0 1 1 2\/0
2 -1 =21l o 2 2)[=2
11 11 3 1

That is, we have

P 'MP=D

NSRS
|

=
|

(S}

O
— NN

The diagonalisation of a symmetric matrix is given in Example 11.

Example 11 The transformation T is represented by

3 4 —4
M=|4 5 0
-4 0 1

a) the eigenvalues of M

b) their associated eigenvectors

¢) a matrix, P, so that PTMP = D, where D is a diagonal matrix whose
diagonal elements are the eigenvalues.

Find

SOLUTION
a) To find the eigenvalues, we have
Mx = Ax
= M-=-AiADx=0
= |[M—-A|=0
which gives

3—24 4 —4
4 5—4 0 |=0
—4 0 1-4

B-ADE-MN(1-A)—-4x41-1)—-4x45-21)=0
A =927 -91+81=0
Factorising, we obtain
A=A+ 1-9 =0

= 4 =38~—3

IS EESEEE TSR EEREERERERR R SRR R ERRERERRERE R R E R R R R RERERN

Therefore, the eigenvalues of M are 3,9, —3.
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DIAGONALISATION

b) When 4 = 3, we find the associated eigenvector from Mx = 3x, which
gives

3 4 -4 X X
4 5 y ]| =31y
-4 0 1 z z
3x+4y—4z=3x = 4dy—4z=0 1]
dx+5y=3y = 4x+2y=0 2]
—4x+z=3z = —4x =2z 3]

Putting x = ¢, we obtain, from [2] and [3], y = —2¢ and z = —21.

1
Therefore, one eigenvector is | —2
-2
2 2
Similarly, we find the other eigenvectors are | 2 | and | —1
-1 2
¢) From part b, we have
1 2 2
P=|-2 2 -1
-2 -1 2
1
We find that the magnitude of each of the eigenvectors | —2 |,
-2
2 2
2 Jand | —1 | is 3.
-1 2

Therefore, normalising the eigenvectors, we obtain respectively

1 2 2
3 3 3
] (5] e |
_2 Q 1 2
3 3 3
which give
1 2 2
3 3 3
= | -2 2 _1
P = 3.3 3
_2 _1 2
3 33
Hence, we have
1 _2 _2 1 2 2
3 3 3 3 4 -4 3 3 3
T -1 2 2 _1 _2 2 1
PMP=| 3% 2 s 4 5 0 = < 5
2 _1 2 -4 0 1 ~2 _1 2
3 3 3 3 303
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= which gives

- 1 -2 2\ (3 3 3

i PPPM=(6 6 -3|{-% % -3

= -2 1 =2 _2 _1 2

& 3 3003

. 30 0

. ={0 9 o

. 00 -3

= which is a diagonal matrix with the eigenvalues of M as its elements.

We noticed in Example 7 (page 312) that the transformation composed of
i) a one-way stretch in the x-direction, scale factor 3

ii) a one-way stretch in the y-direction, scale factor 9

iii) a one-way stretch in the z-direction, scale factor 3

iv) a reflection in the xy-plane

was represented by

300
N={0 9 0
0 0 -3

By geometrical consideration of the actual transformation, we can deduce that
the eigenvectors of this transformation are the three mutually perpendicular

1 0 0
vectors [ O }, [ 1 | and | O | with associated eigenvalues 3,9, —3.
0 0 1

We have just found that the transformation represented by

3 4 —4
M=[4 5 0
4 0 1

also has three mutually perpendicular eigenvectors with associated eigenvalues
3,9, —3. Thus, these two transformations (Example 7, page 312, and Example 11,
page 320) are the same transformation but about different axes: that
represented by N has its one-way stretches in each of the three mutually
perpendicular directions i, j, k, whereas that represented by M has its one-way
stretches of the same scale factors in the three mutually perpendicular

directions | —

Naturally, both matrices have determinant —81, being the scale factor of the
volume of the enlargement, which is the volume of the image of the unit cube.
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Hence, the transformation x’ = Mx, where

3 4 4
M= 4 5 0
-4 0 1

with respect to axes in the direction of the eigenvectors becomes the
transformation X' = DX, where

3 0 0
D={0 9 0
0 0 -3

which is the diagonalised form of M.

The characteristic equation

On page 316, we mentioned that the characteristic equation of the matrix
1 1

M= 0 2

-1 1

P62 +11A-6=0

W NN

18

where the values of 1 are the eigenvalues of M.

M also satisfies this characteristic equation. Hence, we have
M’ — 6M? + 1IM — 61 = 0
From this equation, we can find M1,
Postmultiplying by M, we obtain
MM —6M'M ' + 1IMM™' —6M ! =0
= M —6M+I111-6M"' =0
which gives

M! :le—M+l—11
6 6
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Exercise 14B -

1 The matrix A is given by

(3
= 4

Give a full description of the geometrical transformation represented by A*. (OCR)

2 The matrix C is <_01 g) The geometrical transformation represented by C may be

considered as the result of a reflection followed by a stretch. By considering the effect on the
unit square, or otherwise, describe fully the reflection and the stretch.

Find the matrices A and B which represent the reflection and the stretch respectively. (OCR)
. . 1 -1
3 The matrix M is given by M = 0o 1 /)
Describe fully the geometrical transformation represented by M.

The matrix C is given by

c_ ( :  sb/A- 1))
—3V3 3(V3+D
C represents the combined effect of the transformation represented by M followed by the
transformation represented by a matrix B.
i) Find the matrix B.

i) Describe fully the geometrical transformation represented by B. (OCR)

4 The matrices A and B are given by

3 -4 1 0
=G5 24
Under the transformation represented by AB, a triangle P maps onto the triangle Q whose

vertices are (0, 0), (9, 12) and (22, —4).

i) Find the coordinates of the vertices of P.
ii) State the area of P and hence find the area of Q.
i) Find the area of the image of P under the transformation represented by ABA .. (OCR)

1 -1 0
5 LletA=| -1 0 —1 |.Write down the matrix A — AL, where 1 € R and I is the
-1 1 0

3 % 3 identity matrix.

Find the values of A for which the determinant of A — AI is zero. (SQA/CSYS)

6 The matrix P is defined by
1 -2
P=(% )
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