CHAPTER 13 NUMERICAL METHODS

Using triangle PTQ, we have

Gradient of tangent = 1% 4
QT
= f(a)= i)
QT
0
= Qr=1®
(o) 1
The x-value of the point T is
f(o)
—OT =o —
o—Q o F'a)
which is a better approximation to the root of f(x) = 0. Y4

When the root of f(x) = 0 is not close to «, the method
may fail. For example, in Figure A, the next x-value
found is at T, which is further from the root than « is.

Figure A

And in Figure B, f'(«) = 0, which is unhelpful.

In its iterative form, the Newton—Raphson method gives

_ few)
£ (o)

Oyl = Oy

SOLUTION

Let o be the required root.

Differentiating f(x) = x> + 5x — 9, we have
(%)= 3x% 4 5

Putting o; = 1, we obtain
fla)=14+5-9%=%3
f'(ay) =3+5=28

Using Newton—Raphson, we have

o M)
OCnJrl Oy f/(O(n)
which gives
(o) 3
Oy = 0l — =1+=-=1375
2T () 8

Hence, we have
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_ f(1.375) _ 1375 — 0.474 609 375

o3 = 1.375 = 1.
£(1.375) 10.671 875
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Figure B

Example 3 Use the Newton—Raphson method, with an initial value of
x =1, to find a root of f(x) = x* + 5x — 9 to three significant figures.

= 1.3305271



SOLUTION OF POLYNOMIAL EQUATIONS

which then gives

£(1.330 5271)

o, = 1.3305271 —
£(1.530 5271)

= 1.3305271 — N e 1.329744 36

10.310907
o3 and a4 are now so close together that we can say that the root is 1.33 to
three significant figures. (The root is actually 1.329 744 to seven significant
figures. Were we to repeat the procedure a few more times, we would find
that the root is 1.329 744 122, correct to ten significant figures.)

So, the root of f(x) = x> + 5x — 9 is 1.33, correct to three significant
figures.

Iteration

An iterative process is one which is repeated several times, following exactly
the same procedure each time.

It provides yet another way of obtaining the solution to an equation f(x) = 0,

in which we rearrange the equation to create an iterative formula of the form
Xn+1 = g(xn)

where x, 1 is a closer approximation than x, to the solution of f(x) = 0.

For example, we can rearrange x> + 5x — 9 = 0 as
X¥=9-5x = x=+v9-5x

from which we can obtain the iterative formula
Xng1 = 0 — 5%,

Alternatively, we can rearrange x> 4+ Sx =9 = 0 as

X=9-5x = x2:2—5 = X 2~5
65 X

from which we can obtain the iterative formula

9

Xn+1 =4 —= 6
Xn
Naturally, some iterative procedures produce an accurate solution more
quickly than others, and some iterative procedures fail quickly.

. /9 . .
For example, using x,,.; = ,/— — 5, with x; = 1, we obtain
xﬂ

9
Xo=4/——5=2
. 1

Xg = 22— 5=+-0.5 which does not exist.

How to decide which iterative formula to use is beyond the scope of the
A-level syllabuses, and therefore of this book. All the iterations you will meet
at this level result in one of the patterns shown next.
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CHAPTER 13 NUMERICAL METHODS

Example 4 Use x,,, | = é(xi + 1) to find a solution to
o) = x°—6x+1 =0.
SOLUTION

As in the previous methods, we need to determine an interval in which the
root lies.

Putting x = 2 and x = 3 in f(x) = x* — 6x + 1, we obtain

f(2)=-3 and f(3)=10
Therefore, there is a root of f(x) = 0 for a value of x between 2 and 3.
(Also, since f(0) = 1 and f(1) = —4, there is another root of f(x) = 0 for a
value of x between 0 and 1.)

Using x,., = %(x,f + 1), with x; = 2, we have

xzzé(f—i-l): 1.5

which gives
Xy = é(1.53 +1) = 0.729 1666

x4 == 0231 28
We see that these values of x are not converging to the required root.

Alternatively, starting at x; = 3, we have

1 3 28
X2 6( ) 6

wlro

Xy = %[(4%)3 +1] = 17.1049
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We see that these values of x are not converging to the root either.

In Example 4, we note that starting below the root £(:)
sends the iteration to the smaller root, whereas
starting above the root sends the iteration off to
infinity. We can graphically represent these results by
a staircase diagram, as shown on the right.

=Y

Va i

Starting point
below root

Starting point
above root
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SOLUTION OF POLYNOMIAL EQUATIONS

Example 5 Starting with x = —1, use the iteration K] = éxnz -2

to find the root to three significant figures.

SOLUTION

Using x, . = éxnz — 2 with x; = —1, we have

Xp=1-2=-13=_183333

x3 =+(-1.833 33— 2= —13% = —1.4398

x4 = —1.654 488 883 xs = —1.543777756

x¢ = —1.602791 707 x7 = —1.571843124

xg = —1.588218 199 X9 = —1.579 593825
Therefore, the root is —1.58, correct to three significant figures.
Eventually, we would find that the root is —1.582 575 695.
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The result in Example 5 is represented graphically
by a pattern which spirals into the root, as shown

fx) A

on the right. Hence, it is called a cobweb diagram. -

AN

flx) = x

Two other patterns which you are likely to meet are shown below.

fx) = x

\ﬁ

() A f(x) 4
flx) = x
m‘?ﬁm%
/
/
o) (0]
I e
Starting point Starting point
below root above root

In the pattern on the left, the iterative values step directly into the root from
above (or below). The pattern on the right spirals out from the root.
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CHAPTER 13 NUMERICAL METHODS

Exercise 13A

1

10

Show that a root of the equation x> = 7 — 5x lies in the interval 1 < x < 2. Use linear
interpolation to find this root correct to two decimal places.

Show that a root of the equation xe** = 12 lies in the interval 0 < x < 1. Use linear
interpolation to find this root correct to two decimal places.

Show that a root of the equation x*> — 4x = 5 lies in the interval 2 < x < 3. Use interval
bisection to find this root correct to two decimal places.

Show that a root of the equation 3x> — e* = 0 lies in the interval 0 < x < 1. Use interval
bisection to find this root correct to two decimal places.

Show that a root of the equation 2x* — e2* = 0 lies in the interval 0 < x < 1. Use linear
interpolation to find this root correct to two decimal places.

Show that a root of the equation sin 1521 = 3x — 1 lies in the interval 0 < x < 1. Use linear

interpolation to find this root correct to two decimal places.

Using the Newton—Raphson method, find the real root of x’ + 3x — 7 = 0 correct to two
decimal places.

An iterative formula for solving a cubic is

3

Xyt =5 — 4

n
a) Take x; = 4 and calculate x,, x3, X4, X5, X6, X7 and xg. For each iteration, write down the first
five digits.
b) What is the solution, correct to three dp?
¢) How many iterations are required to find this solution?
d) By replacing x,; and x, with x, show that this value is a solution of the equation

¥ 4+4x?-3=0

It is given that the equation €™ + x> — 3.5x = 0 has exactly one root in the interval [0, 1].

Apply the bisection method three times to obtain a more accurate determination of the interval
containing the root.

Calculate the minimum number of further applications of the bisection method required to
make the length of the interval less than 107°. (SQA/CSYS)

fo)=tanx+1 -4 -—-S<x<Z
2 2
a) Show that the equation f(x) = 0 has a root « in the interval [1.42,1.44]
b) Use linear interpolation once on the interval [1.42, 1.44] to find an estimate of «, giving your
answer to three decimal places.
¢) Show that the equation f(x) = 0 has another root f in the interval [0.6,0.7].
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11

12

13

14

15

16

17

EXERCISE 13A

d) Use the iteration
Xpp1 =41 +tanx,)?  xo = 0.65

to find f to three decimal places. (EDEXCEL)

fx) =2 — x3

a) Show that a root, «, of the equation f(x) = 0 lies in the interval 1.3 < o < 1.4.
b) Taking 1.37 as your starting value, apply the Newton—Raphson procedure once to f(x) to
obtain a second approximation to this root. Give your answer to three decimal places.
(EDEXCEL)

Show that the equation

ef+x—-3=0
has a root between 0 and 1. Use the Newton-Raphson method to solve the equation, giving
your answers correct to five decimal places. Record your values of xg, x;, X3, .+. to-as many
decimal places as your calculator will allow. (WIJEC)

Given that x is measured in radians and f(x) = sin x — 0.4x,

a) find the values of f(2) and f(2.5) and deduce that the equation f(x) = 0 has a root « in the
interval [2, 2.5]

b) use linear interpolation once on the interval [2,2.5] to estimate a value for o, giving your
answer to two decimal places

c) using 2.1 as a first approximation to «, use the Newton-Raphson process once to find a
second approximation to «, giving your answer to two decimal places. (EDEXCEL)

The equation x* + 3x% — 1 = 0 has a root between 0 and 1. Use the Newton—-Raphson method,
with initial approximation 0.5, to find this root correct to two decimal places.
Give a clear reason why it would be impossible to use the Newton-Raphson method with

initial approximation 0. (OCR)

Use the Newton-Raphson method to find, correct to three decimal places, the root of the
equation x* — 10x = 25 which is close to 4. (OCR)

f(x) = cosh x — x3
a) Show that the equation f(x) = 0 has one root, «, between 1 and 2.
A second root, f, of the equation f(x) = 0 lies close to 6.14.
b) Apply the Newton—Raphson procedure once to f(x) to obtain a second approximation to f3,
giving your answer to three decimal places. (EDEXCEL)
f(x) =¥ — 2x?

a) Show that the equation f(x) = 0 has a root « in the interval [—1, 0] and a root p in the
interval [1, 2].
b) Use linear interpolation once on the interval [1, 2] to find an approximation to f3, giving
your answer to two decimal places.
c) Apply the Newton-Raphson process twice to f(x), starting with —0.5, to find an
approximation to o, giving your final answer as accurately as you think is appropriate.
(EDEXCEL)
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CHAPTER 13 NUMERICAL METHODS

18

19

20

21

a) Solve x = 0.5 + sin x by each of the following two methods.

i) An iterative method, other than the Newton-Raphson method, starting with x; = 1.5.

Give a solution which is correct to five significant figures.

ii) The Newton-Raphson method, applied once only, starting from x; = 1.5.

b) Calculate the gradient of 0.5 + sin x, where x = 1.5. Comment on its relevance to one of the

methods used in part a. (NEAB/SMP 16-19)

Given that f(0) = 0 — \/(sin0), 0 < 8 < 1 m, show that
a) the equation f() = 0 has a root lying between +n and &

cosf
p P =1—-———
I 2+/(sin 0)

c) Taking %n as a first approximation to this root of the equation f(0) = 0, use the Newton—

Raphson procedure once to find a second approximation, giving your answer to two

decimal places.
d) Show that f'(§) = 0 when sinf =+/5 —2.  (EDEXCEL)

The figure shows the line with equation y = 5x .

and the curve with equation y = ¢*. They meet
where x = « and x = §. Approximate values for a
and p are 0.2 and 2.5 respectively.

a) The iterative formula a, ,; = %e”n 1s used to
find a more accurate approximation for o.
Taking a, = 0.2 use the iterative formula to
obtain a,, as, a4 and as, giving your answers to
four decimal places.

The Newton-Raphson process is used to find a

more accurate approximation for f. %

p

=Y

b) Taking f(x) = e* — 5x and a first approximation to f§ of 2.5, apply the Newton-Raphson
process once to obtain a second approximation, giving your answer to three decimal places.

¢) Explain, with the aid of a diagram, why the Newton-Raphson process fails if the first

approximation used for fisIn 3. (EDEXCEL)

a) The cubic equation

X = 9x+3=0

has a root that lies between 0 and 1. Use the Newton—Raphson method with starting value

xo = 0.5 to find this root, giving your answer correct to six decimal places.

b) A rearrangement of the equation
x+3=2tanx

gives the iterative formula

Xn+l = tan_l (Lf>

By considering the condition for convergence, show that this iterative formula can be used

to find any root of the equation. (WJEC)
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EXERCISE 13A

22 The diagram below shows part of the graph of the function f, where

6

Hx} =
4x3 —12x2 +9x + 3

YA

(b,2)

@9

a) The graph of f has a minimum turning point at (a, %) and a maximum turning point at
(b,2). Use calculus to obtain the values of ¢ and 5.
b) The line x = ¢ is a vertical asymptote to the graph of f.
i) Write down an equation which ¢ must satisfy.
i) Use Newton’s method, with xo = —0.2, to find an approximation to the value of ¢
correct to four decimal places.

) . X . ) .
[Newton’s method uses the iteration x, | = x, — P /(( ”)) to produce successive approximations
p(x,
to a solution of the equation p(x) = 0. (SQA/CSYS)

23 The equation f(x) = 0 has a root at x = @, which is known to be close to x = Xo. By drawing a
suitable graph to illustrate this situation, derive the formula for the first iteration of the
Newton-Raphson method of solution of f(x) = 0. Hence explain how the general formula is
obtained.

It is known that the equation f(x) = 0, where
f(x) =3x° — 8%% -4
has three distinct real roots of which two are positive.

Use the Newton-Raphson method with starting value —1 to determine the negative root
correct to three decimal places.

It is known that the other two roots lie in the narrow interval [0.75, 1.25]. Use a diagram to
explain why the Newton-Raphson method may be difficult to use in the determination of these
roots.
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CHAPTER 13 NUMERICAL METHODS

It is proposed to determine the root near x = 0.75 using simple iteration with the iterative scheme

3xi 1

8 2x,
Show that this may be suitable to obtain a solution in the neighbourhood of x = 0.75.

Xnt1 =

Using x = 0.75 as a starting value and recording successive iterates to three decimal places, use
simple iteration to determine this root to two decimal places.

The third root is known to lie in the interval [1.2, 1.25]. Use three applications of the bisection
method to determine a more accurate estimate of the interval in which this root lies.
(SQA/CSYS)

Evaluation of areas under curves

When we need to find the area under a curve but are unable to integrate the
function, we have to use a numerical method. The two most common
numerical techniques are the trapezium rule and Simpson’s rule.

Trapezium rule

We can find the area under a curve by drawing equally spaced lines parallel to
the y-axis. These will produce a number of trapezia of equal widths, as the
figure shows.

YA

) 4

=Y

Y A h h ) b

If we divide the x-axis from x = a to x = b into n equal intervals, then we will
obtain n trapezia.
Let the y-values of the curve at these x-values be yg, 1, ..., Vs, as shown.
The area of the first trapezium is %h(yo + y1), where 4 is the width of each strip.
The area of the second trapezium is %h(yl + 7).
Hence, the total area of the trapezia is

Lho+y) +3hO0n + )+ .o+ 5hGu— 1+ )

By collecting like terms, we obtain the trapezium rule, which is
h
Area %5[)}0 + V201 +y2+ . FYu-1)]

where A is the width of a strip and y, and y, are the first and last ordinates.
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EVALUATION OF AREAS UNDER CURVES

Use six intervals.

Example 6 Find, by the trapezium rule, an approximate value for J

7

e* dx.

which gives
Area = 1183.590416 or 1183.6 to1dp

Note

e The accurate answer to Example 6 is ¢’ — e!, which is 1093.914 877 or 1093.9

to one decimal place.

e The answer obtained by the trapezium rule can be made more accurate by

using more strips of smaller width.

Simpson’s rule

The trapezium rule is rarely very accurate because
we usually use too small a number of trapezia to
approximate the area to be found.

We obtain a better approximation by imposing a - et

known, integrable quadratic curve which passes

through points on the original curve. :
Yo
Simpson’s rule is based upon the use of a !
quadratic curve which passes through three

YA

B
B
B
B
2
E |
E
; SOLUTION
2
= First, we divide the x-axis from x =1to x =7 74 y=¢'
®  (the limits of the integral) into six strips (as requested).
- Hence, the x-values of these points are x = 1, 2, 3, 4,
i 5, 6, 7, as the figure shows.
2
s The corresponding y-values are e!,e?,e3, ¢4, e5,¢f, ¢”.
E
% Therefore, using the trapezium rule, we have 5
2
pe h
~— 2 "y e z I
. Area 2 [yo+yn+ 20+ y2 o A yu i)l T | | i
L :
. 1 L1 g |
. %5[61+e7+2(ez+e3+e4+es+e6)] T T e —
.
B
2
2

y=ax*+bx+c

T

Y2E

consecutive points. Thus, Simpson’s rule finds the —h
approximate value for a pair of strips.

Consider the quadratic curve y = ax? + bx + ¢, passing through three
consecutive points, (4, 1), (0,y;) and (-4, yp), as shown on the right.

Whenx=0,y=y;, = c=y [1]

When x=h,y=y, = y,=ah’>+bh+y 2]

Whenx=—-h,y =y, = yo=ah>—bh+y [3]
Adding [2] and [3], we obtain

Yo + y2 = 2al’ + 2y, (4]
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CHAPTER 13 NUMERICAL METHODS

Using integration to find the area under the quadratic curve, we have

h
Area of pair of strips = J (ax® + bx + ¢)dx
~h

3 2 h
_ [ﬂ.+_’&+cx]
2 i

3

a b < an b )

SR LN N (ST
3 g ¢ 3 " ¢
3

L

3
Substituting from [1] and [4], we obtain

h(yo +y2 — 2y1)
3

Area of pair of strips = + 2y1h

h
:g@o + 4y + y2)

Using a number of such pairs of strips, we have

/ h h
Total area %%(yo + 4y +yz)+§(yz +4y; +y4)+§(y4 +4ys +ye) + .-

h
%’3—()’04'4;‘/1 +y+ya+A4ys Fyat+yat4ys+Hys+...)

By factorising, we obtain Simpson’s rule, which is

h
Areawg[yo +y, 4+t ys+ )20t vatye+ )]

Area ~ % x Strip width (First+ Last +4 x Sum of odds + 2 x Sum of evens)

Note There must always be an even number of strips. That is, » must be even.

7

Example 7 Find, by Simpson’s rule, an approximate value for J e* dx.
1
Use six intervals.

SOLUTION

First, we divide the x-axis from x = 1 to x = 7 (the limits of the integral)
into six strips (as requested).

Note Since we are using Simpson’s rule, we ensure that we use an even
number of strips.

Hence, the x-values of these points are x = 1, 2, 3, 4, 5, 6, 7. (See top
figure on page 281.)

ISR E S FENE SR ERERE R R RER.
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EXERCISE 13B

The corresponding y-values are €', €2, &3, ¢*, e, e, e’.

Therefore, using Simpson’s rule, we have
Area = %[e1 +e’ +4( +et + %) +2(e* + e’)]

which gives

Area = 1099.33761 or 1099.3 to1dp

Note On page 281, we gave the accurate value of this area as 1093.9 (to 1 dp).
Hence, the value obtained by Simpson’s rule gives a better approximation than
that obtained by the trapezium rule.

Exercise 13B

Using five equally spaced ordinates, estimate the value of each of the following to four decimal
places by means of i) the trapezium rule, and ii) Simpson’s rule.

5 6 6 . 4
a) J x% dx b) J x> dx c) J sin = dx d) J esinx 4
1 2 o 4 |

5

Using six strips, find an estimate for J x* dx by means of i) Simpson’s rule, and
2
ii) the trapezium rule.

a) Show that the length of the arc, s, of the curve with equation y = cosh x between x = 0 and
x =2 1is given by

)
K :J cosh xdx
0

b) Obtain an estimate to this integral by using Simpson’s rule with five equally spaced
ordinates, giving your answer to four decimal places.

c) Find the exact value of s.

d) Determine the percentage error which results from using the estimate for s calculated in
part b rather than the exact value obtained in part e, giving your answer to one significant
figure. (EDEXCEL)

1
4y Ly
I”:J x'e2dx n=0
0

a) Show that I, =nl, , —2e2, n> 2.

b) Evaluate I, in terms of e.

c¢) Find, using the results of parts a and b, the value of I, in terms of e.

d) Show that the approximate value for /; using Simpson’s rule with three equally spaced
ordinates is

é(2\ﬁe% +e?)  (EDEXCEL)
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CHAPTER 13 NUMERICAL METHODS

Yo
5 A=| —— dx
,L \/ (4x2 == 9)
a) Using five equally spaced ordinates, obtain estimates for A4, to four decimal places, by
means of

i) the trapezium rule
ii) Simpson’s rule.

b) Find

1
Ji dx
V(4x? —9)
and hence evaluate A4, giving your answer to four decimal places.
¢) Which of your estimates in part a is the more accurate? Give a reason for your answer.
(EDEXCEL)

xn
6 I, = | ———— dx
J\/(l + %%)
a) Show that nl, = x"~'\/(1 +x*) — (n— DI,_,, n>2.

The curve C has equation

2 ¥

V)
The finite region R is bounded by C, the x-axis and the lines with equations x = 0 and x = 2.
- The region R is rotated through 2n radians about the x-axis.

y y=0

b) Find the volume of the solid so formed, giving your answer in terms of mt, surds and natural
logarithms.

An estimate for the volume obtained in part b is found using Simpson’s rule with three
ordinates.

¢) Find the percentage error resulting from using this estimate, giving your answer to three
decimal places. (EDEXCEL)

7 For 0 < x < m, the curve C has equation y = In(sin x). The region of the plane bounded by C,

the x-axis and the lines x = % and x = g is rotated through 2= radians about the x-axis.

Show that the surface area of the solid generated in this way is given by S, where

5
S:2n[

1

In (sin x) i

sin x
Use the trapezium rule with four ordinates (three strips) to find an approximate value for S,
giving your answer to three decimal places. (AEB 97)

8 Use the trapezium rule, with six intervals, to estimate the value of

3
J In(1+ x)dx

0

showing your working. Give your answer correct to three significant figures.

Hence write down an approximate value for

3
J In+/(1+ x)dx (OCR)

0
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EXERCISE 13B

9 Use the trapezium rule with five intervals to estimate the value of

0.5
J V1 +xYdx

0
showing your working. Give your answer correct to two decimal places.

By expanding (1 + xz)% in powers of x as far as the term in x*, and integrating term by term
obtain a second estimate for the value of

0.5
J V(A +xH)dx

0

}

giving this answer also correct to two decimal places. (OCR)

h

10 Derive Simpson’s rule with two strips for evaluating an approximation to J f(x) dx.
—h
3
Use Simpson’s composite rule with four strips to obtain an estimate of J cos(x — 2)In x dx.
2

(Use five decimal place arithmetic in your calculation.) (SQA/CSYS)

11 Use the composite trapezium rule with four sub-intervals to obtain an approximation to the
definite integral

[

J xsin (mx) dx
0
(Give your final answer to four decimal places.) (SQA/CSYS)

12 Use the trapezium rule, with four intervals, to estimate the value of

il ke

showing your working and giving your answer correct to

two decimal places.

The diagram shows part of the graph of y = \/ <x = l) . A
X

i) State, with a reason, whether this use of the trapezium
rule gives an underestimate or an overestimate of the

2 1
value ofj \/<x — —) dx.
1 X 0

ii) State, without further calculation, whether increasing
the number of intervals in the trapezium rule from
four to eight would lead to a larger or a smaller estimate

2
for J \/<x — i) dx. Give a reason for your answer. (OCR)
1 X
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CHAPTER 13 NUMERICAL METHODS

Step-by-step solution of differential equations

First-order differential equations

Most differential equations cannot be solved exactly, but need a
step-by-step approach.

These methods depend on drawing lines parallel to the y-axis,
distance / apart.

h is called the step length.

Single-step approximation

The linear approximation

<§j_> n YL )0
dx 0 h

is commonly used in the step-by-step solution of first-order differential
equation. It is known as Euler’s method, after Léonard Euler (1707-83),
the prolific Swiss mathematician. We derive it as follows.

With reference to the figure on the right, P(xy, o) is a point
on the curve y = f(x) and Q(xy, y;) is another point on the
curve close to P, where x; — xy = £ and £ is small.

We see that the gradient of the chord PQ is approximately
the same as the gradient of the tangent at P. Hence, we have

which gives

Naturally, the accuracy of this method depends on the size of the step length, 4.

I FE S EEEEER SR EER SRR ERERERREESN

Gradient of PQ = yl;hyo

Gradient of tangent at P = (d_y) ~ 210
dx 0 h

Example 8 Use a step length of 0.1 to find y(0.3) for g—y =In(x+y),
X
given that y = 2 when x = 0.

SOLUTION

Using <d_y> ~ JJI;J, we obtain
X/0

dy
= yo+h|—=
Y1 = Yo <dx)0

which means that

y at new value of x (i.e. when x is 0.1) =

= y at original value of x + & x j—y at original value of x

X
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STEP-BY-STEP SOLUTION OF DIFFERENTIAL EQUATIONS

Hence, we have
y0.1)~=2+01In(0+2)
= »(0.1) = 2.0693
We repeat this procedure with the values obtained for y and % when

4
x = 0.1 now being treated as the original values, and the new value for y
being found for x = 0.2. Thus, we obtain

y(0.2) = y(0.1) + A (d_y)
d =01

X

= 9(0.2) ~ 2.0693 + 0.11n (0.1 + 2.0693)
= 30.2) ~ 2.1467

Repeating again, we have

1(0.3) = y(0.2) + & (Q>
d =02

X

= 3(0.3) ~ 2.1467 + 0.11n (0.2 + 2.1467)
= (0.3) ~2.2320

Example 9 Use a step length of 0.2 to find y(1.4) for j—y = ¢“®" given that
X

y =3 when x = 1.

SOLUTION
Using (ﬂ) ~ 2L Y0 e obtain
X /o h

dy
~yot+h
Y1 ~=JYo (dx>0

which means that

y at new value of x (i.e. when x is 1.2) =

= y at original value of x + & x j—} at original value of x

X

Hence, we have
B(1.2)% 3 + 0.2 05!
= p(1.2) ~ 3.3433

We repeat this procedure with the values obtained for y and % when
X

x = 1.2 now being treated as the original values, and the new value for y
being found for x = 1.4. Thus, we obtain

y(1.4) ~ y(1.2) + h<dy>
d x=T.2

X

= p(1.4)~ 3.3433 4 0.2
= p(1.4) =~ 3.6307
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Double-step approximation

A better approximation is given by

<d_y> 1=V
dx 2h
which uses a double step, as shown in the figure on the right.

We see that the gradient of the chord TQ is a better
approximation to the gradient of the tangent at P
than that obtained with the single step.

We have

Gradient of chord TQ = 2L =1 7.1

2h
which gives

Gradient of tangent at P = (dl> gL —F=l
dx 2h

Example 10 Using (j > R~ u, and using a step length of 0.1, find
X

2h
y when x = 1.2 for
d_y _ 3)62 _ yz
dx 2xy

given that y =2 at x = 1.

SOLUTION

Since we are required to use the double-step approximation, we need to
know the values of y at two values of x.

To find the second value of y, we use the single-step method. As we are
given the y-value when x = 1, the original value of x is 1, and the new
value of x is 1.1. Hence, we have

dy iz Jo (dy>
s = ~yo+h|——
<dx> h SRR L ey |

which gives

(1. 1)~y(1)+01<dy>
dx x=1

When x = 1'and y = 2, we have
ﬂ 3x? —y? 34 1
dx 2xy 2 x 1 x 2 4
which gives

y(1.1) = 2+0.1 x —i

I E RS R P EFRSEEERERER SRS R R R R R R R R R R RRRERDN]

= y(1.1)= 1975
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Now we have two values for y, we can use the double-step approximation

(ﬂ) ol
dX 0 2h

= M= +2h<d—y>
dx 0

which gives

y(1.2) =~ y(1) + 2h (QJ—}>
d =l

X

3 x1.12 - 1.975
Zx e 1975

= y(1.2)=2+2x0.1x-0.062284
Therefore, when x = 1.2, y = 1.9875, correct to 4 dp.

= y(12)=24+2x0.1x

I E S S EREEREREREEEEEREEEERERERRERE R

; ; : &
Second-order differential equations of the form e f(x,y)
dx?
d
With reference to the figure on the right, P is a point at x = — %h %

: > : Q
on the curve of j—y against x, and Q is a point at x = %h on the /
X ]

same curve, where 4 is small. __%

We see that the gradient of the chord PQ is approximately the same !
as the gradient of the tangent at x = 0. Hence, we have =k

L %h
dx %h dx %h
h
dX %h dx _%h

h

N[

Gradient of PQ =

That is, we have

2
Gradient of tangent = (d L ) =
dx2 0

which gives
s Y=o - Yos Vo
<ﬂ> a h
dx2 0 h

£ (d_2y> o M2 )
dx2 0 h2

To solve numerically a second-order differential equation, we need either the

values of y at two different values of x, or one value of y and one value of g—y
X
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Example 11

2
d
Y — xetosYy

dx?

Using a step length of 0.1, find y when x = 1.3, given that y = 1 when
x=1and y=1.2 when x = 1.1.

SOLUTION
We use
(dzy) =2ty
dx? /, h?
with

Vo as the value when x = 1.1
vy asthevalue when x =1.1+h=1.2
y_; as the value when x = 1.1 —h =1

Hence, we have

<@>  ¥(1.2) = 2y(1.1) + ¥(1)
dx2 x=1.1 012

N (@) 12y —24+1
dx2 x=1.1 001

When x = 1.1 and y = 1.2, we have

2
9V 1e12 — 158038
dx?

which gives

Y12 —14 | 56038
0.01

= 3(1.2) ~2.4—1+0.0158038
= 3(1.2) ~ 1.4158

We repeat this procedure, using
<d2y> CYI=2y0 +y
0

dx? h?
with
yo as the value when x = 1.2
» as the value when x =12+ h = 1.3
y_1 asthe valuewhen x =12 —-h=1.1

Hence, we obtain
(@) L M(13) = 2y(1.2) + p(1.1)
x=1.2

dx? 0.12

I s P S FERERSE SRR RN R ERER R RN R R E R ER RS R REEREE R ER RN
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For x =1.2 and y = 1.4158, this gives

2
(d_y> 003 w P2 — 28316 4 1.2
d.xz =12 0.01

=  p(1.3)~2.8316 — 1.2+ 0.014003
=  P(1.3) ~ 1.6456
Therefore, when x = 1.3, y = 1.6456, correct to 4 dp.

Example 12
2

Ei~Ji: 1 + xcosy+sinycosy

dx?

Using a step length of 0.05, find y when x = 1.1, given that % =1
by
and y = 0 when x = 1.

SOLUTION

. dy
Because we are given y and d_} at only one value of x, we need to use a
¥

first-order step-by-step approximation to find a second value for y.

We know the value of y when x = 1, so x = 1 becomes the original value
for x. We require a step length of 0.05, hence we use

<ﬂ> o VL= 2ty
dx2 /, e

with
Vo as the value when x =1
v as the value when x = 1 + A= 1.05
y_; as the value when x =1 — /1 = 0.95

The most accurate first-order step-by-step method is the double-step
approximation

<d_1> o Z1 QY
dx 0 2h

which gives
». »(1.05) — ¥(0.95)
0.1
= 0.1 = p(1.05) — ¥(0.95) 1]

2
Using (d y) & &M, with x = 1 and y = 0, we obtain
X2 0 h2

<@> _ p(1.05) — 2 x 0 + (0.95)
dxz . /’12
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When x = 1 and y = 0, we have
V)
<d_y) =1+1cos0+sin0cos0 =2
dx? x=1
which gives
y(1.05) + 1(0.95)
0.0025
= 0.005 = y(1.05) + y(0.95) 2]

2~

Hence, adding [1] and [2], we obtain y(1.05) ~ 0.0525.

We have now two values of y, namely y(1) and y(1.05), so we are able to

use
@) LM =2ty
dx2 0 h2

to find y when x = 1.1

Thus, we have

(@) (1) — 29(1.05) + y(1)
dx2 x=1.05 0052

When x = 1.05 and y = 0.0525, we also have

2
<M> — 1+ 1.05c0s 0.0525 + sin 0.0525€0s 0.0525
dx? x=1.05

= 2.100957
which gives

p(1.1) — 2 x 0.0525 +0
0.052

= p(1.1) = 0.0025 x 2.1009 57 + 0.105
= y(1.1) = 0.1103
Therefore, when x = 1.1, y = 0.1103, correct to 4 dp.

2.100957 ~

I E SR ESREEEEEEREEESEE SRR RN R R R R R R E R R ERE R R E R E RN R R R R RS R ERE R R ERRER]

Taylor’s series

The other main method for solving differential equations numerically is to use
Taylor’s series (the derivation of which is beyond the scope of this book):

f(x)zf(a)+(x—a)f'(a)+( 2“) £ (q )+( - —a)’ ) 1.

We use this series to find values of f(x), or y, near a given value of f(x) (see
Example 12). Its most common application is in the special case when a = 0,
which gives

f(x) = £(0) + xf'(0) + f”(O) + f”'(O) +.
Notice that this is the same as Maclaurin’s series, which we studied on pages

177-9. In the numerical solution of differential equations, when we refer to a
series we always mean Taylor’s series, though it is rarely seen in its full form.
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Example 13 Expand f(x) up to terms in x*, where

&y | dy
+Xx
dx? dx

+y=0

given that y = 1 and g—) = 0 at x = 0. Hence find y when x = 0.01, giving
%

your answer to 11 decimal places.

SOLUTION
D 5 d
+x2L + y = 0, we obtain
dx
&y  dy , &  dy
x4 = )
dx?  dx dx?  dx
dy  dy  dy
= +E———t2—==1
dx3 dx? dx

Differentiating again, we obtain

g P S s

=0
dx*  dx? dx? dx?

d4y d3y d2
——+x +3—=10
dx* dx? dx?
But f(0)=1 and {'(0) = 0 (given), so we have

&y, dy

F +x—=+ 0: {"(0)= -
rom 2 Yd y= )
dy  dy L dy
F —4+2—=—=0 {(0)=0
— dx3 i dx? T+ dx @
From ﬂ+ dy LB 4 dy =3: "(0)=3
dx4 dx3 dx? '
which give
X% Qx4
) =1-"2\Nr

Therefore, substituting x = 0.01, we obtain
£(0.01) =1 — 0.00005 —l—é x 0.00000001

That is, y =0.999950001 25, correct to 11 dp as the next term is 1012,

Example 14 Expand y up to terms in (x — 1)°, where
d’y | dy

,..___!_ — =X
dx? ydx

given that y = 0 and j—y = 1 at x = 1. Hence find y when x = 1.01, giving
X

your answer to six decimal places.
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Exercise 1 V3C‘ |

SOLUTION

As the values of y and g—y are given when x = 1, we must use the full
X

version of Taylor’s series and obtain a solution for y in powers of x — 1.
2

Differentiating 47 + yd—y = X, we obtain
dx? dx
dy dy dy  d

—Z 4L x—=+4y——-1=0

dx*  dx dx dx?
&Py (dy)
= ——1=0
dx3 FRE <dx> 4 dx?
But f(1) = 0 and (1) = 1 (given), so we have

d*y dy
From —— +
dx? i dx

(1) =1

d’y  [dy d?y
From —= <L 1=0 1) =0
R P +<dx> ¥ O

which give
(x—1)°
2!
(Note that since (1) = 0, there is no term in (x = 1)*.)

f(x)y=(x-1+

When x = 1.01, we obtain
f(0.1) = 0.01 + 0.000 05
Therefore, y = 0.010 050, correct to 6 dp as the next term is 1073.

In Questions 1 to 4, find the Taylor’s series solution for y up to and including terms in x*:

1

2

3

g—y:y3+x8, for which y =1, when x = 0.

X

dy _ > 2 : _ _

3 = x"y + xy°, for which y = 2, when x = 0.

X

z
Q+x§£+4y:0,forwhichd—y:1andy:Owhenx:O.

dx? X dx
d2
dx

Hence find y correct to nine decimal places when x = 0.01.

+yd—+2xy 0, for which dy—Oandy—lwhenx‘O.
K dx dx
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EXERCISE 13C

Given that

dzy 3 3
——=% =2y
dx? 4

and that y = 0 and % = 1 when x = 0, expand y as a power series in (x — 1). Hence find y,
b

correct to four decimal places, when a) x = 1.1, and b) x = 0.9.

Given that y satisfies the differential equation
2 5l
dy 4yd_y —0
dx? dx

dy
%
y in ascending powers of x up to, and including, the term in x°. (EDEXCEL)

and that y =0 at x =0, and = 2 at x = 0, use the Taylor series method to find a series for

Obtain the Taylor polynomial of degree two for the function sin x near x = g Estimate the

value of sin46° using the first-degree approximation. (SQA/CSYS)

Obtain the Taylor polynomial of degree two, in the form (0.5 + h) = ¢y + c;h + ¢,h?* for the

function f(x) = near x = 0.5,

State, with a reason, whether f(x) is sensitive to small changes in the value of x in the
neighbourhood of x = 0.5. (SQA/CSYS)

d’y  dy

—+x—+3y=0

dx? dx 4

dy
where y=1latx=0and —=2at x =0.
%
Find y as a series in ascending powers of x, up to and including the term in x°. (EDEXCEL)
Given that y satisfies the differential equation j_y =(x+y)’,andy=1latx=0,
%
2 3
a) find expressions for -V and d_y
dx? dx3

b) Hence, or otherwise, find y as a series in ascending powers of x up to and including the term
in x3.
c) Use your series to estimate the value of y at x = —0.1, giving your answer to one decimal

place. = (EDEXCEL)

Obtain the series solution in ascending powers of x, up to and including the term in x3, of the
differential equation

&y, dy

— + w_e 4 —

dx> ¥ dx %

given that y = 3 and jl =2atx=0. (EDEXCEL)
E
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13

14

15

gz:y(xy—l), y=latx=0
dx

a) Use the approximation of X%}O = <d—}> to estimate the value of y at x = 0.1.
1 X /o

b) Using a step length of 0.1 with the approximation }2—2;1& R <§~y—> and your answer from
X/1

part a, estimate the value of y at x = 0.2.
c¢) Using a step length of 0.1 again and by repeating the application of the approximation used
in part b, estimate the value of y at x = 0.3. (EDEXCEL)

The function y(x) satisfies the differential equation
dy
— = f{x,
i (x, )

where f(x, ) = (x2 + 1), and »(0) = 1.
a) Use the Euler formula
Virl = Ve +hf(x,, )
with 4 = 0.1 to obtain an approximation to y (0.1).
b) Use the improved Euler formula
Vi1 =Y+ hf(x,, )

together with your answer to part a to obtain an approximation to »(0.2), giving your
answer correct to three decimal places. (NEAB)

The motion of one point of a turbine blade is given by

dx dy
— =4y +3 — =5 —4x
ds 4 de

Initially, x =2, y = 0.

a) Use a step-by-step method with d7 = 0.05 to estimate its position one tenth of a second
later.

b) Find a second-order equation, in x and ¢ only, which gives the displacement x at any time 7.

c¢) Write down a first-order differential equation in x and y only. Solve this equation by an
exact method, leaving your solution in the form f(y) = g(x). (NEAB/SMP 16-19)

The function y(x) satisfies the differential equation
dy
— = f{(x,
.- &7

where f(x,7) =2 + 2 and y(1) = 1.
X

a) Use the Euler formula

Yr+1 = Jr + hf(xr: y;)

with /1 = 0.05 to obtain an approximate value for y(1.2), giving your answer correct to three
decimal places.
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