are the same, apart from the additional repulsive Coulomb force for the proton–proton interaction.

Evidence for the limited range of nuclear forces comes from scattering experiments and from studies of nuclear binding energies. The short range of the nuclear force is shown in the neutron–proton (n–p) potential energy plot of Figure 44.3a obtained by scattering neutrons from a target containing hydrogen. The depth of the n–p potential energy well is 40 to 50 MeV, and there is a strong repulsive component that prevents the nucleons from approaching much closer than 0.4 fm.

The nuclear force does not affect electrons, enabling energetic electrons to serve as point-like probes of nuclei. The charge independence of the nuclear force also means that the main difference between the n–p and p–p interactions is that the p–p potential energy consists of a superposition of nuclear and Coulomb interactions as shown in Figure 44.3b. At distances less than 2 fm, both p–p and n–p potential energies are nearly identical, but for distances of 2 fm or greater, the p–p potential has a positive energy barrier with a maximum at 4 fm.

The existence of the nuclear force results in approximately 270 stable nuclei; hundreds of other nuclei have been observed, but they are unstable. A plot of neutron number \(N\) versus atomic number \(Z\) for a number of stable nuclei is given in Figure 44.4. The stable nuclei are represented by the black dots, which lie in a narrow range called the line of stability. Notice that the light stable nuclei contain an equal number of protons and neutrons; that is, \(N = Z\). Also notice that in heavy stable nuclei, the number of neutrons exceeds the number of protons; above \(Z = 20\), the line of stability deviates upward from the line representing \(N = Z\). This deviation can be understood by recognizing that as the number of protons increases, the strength of the Coulomb force increases, which tends to break the nucleus apart. As a result, more neutrons are needed to keep the nucleus stable because neutrons experience only the attractive nuclear force. Eventually, the repulsive Coulomb forces between protons cannot be compensated by the addition of more neutrons. This point occurs at \(Z = 83\), meaning that elements that contain more than 83 protons do not have stable nuclei.
Chapter 44 Nuclear Structure

44.2 Nuclear Binding Energy

As mentioned in the discussion of ^{12}C in Section 44.1, the total mass of a nucleus is less than the sum of the masses of its individual nucleons. Therefore, the rest energy of the bound system (the nucleus) is less than the combined rest energy of the separated nucleons. This difference in energy is called the binding energy of the nucleus and can be interpreted as the energy that must be added to a nucleus to break it apart into its components. Therefore, to separate a nucleus into protons and neutrons, energy must be delivered to the system.

Conservation of energy and the Einstein mass–energy equivalence relationship show that the binding energy E_b in MeV of any nucleus is

$$E_b = (Z M(H) + N m_n - M_{1/2}X) \times 931.494 \text{ MeV/u}$$ \hspace{1cm} (44.2)

where $M(H)$ is the atomic mass of the neutral hydrogen atom, m_n is the mass of the neutron, $M_{1/2}X$ represents the atomic mass of an atom of the isotope $^{1/2}X$, and the masses are all in atomic mass units. The mass of the Z electrons included in $M(H)$ cancels with the mass of the Z electrons included in the term $M_{1/2}X$ within a small difference associated with the atomic binding energy of the electrons. Because atomic binding energies are typically several electron volts and nuclear binding energies are several million electron volts, this difference is negligible.

A plot of binding energy per nucleon E_b/A as a function of mass number A for various stable nuclides is shown in Figure 44.5. Notice that the binding energy in Figure 44.5 peaks in the vicinity of $A = 60$. That is, nuclei having mass numbers either greater or less than 60 are not as strongly bound as those near the middle of the periodic table. The decrease in binding energy per nucleon for $A > 60$ implies that energy is released when a heavy nucleus splits, or fissions, into two lighter nuclei. Energy is released in fission because the nucleons in each product nucleus are more tightly bound to one another than are the nucleons in the original nucleus. The important process of fission and a second important process of fusion, in which energy is released as light nuclei combine, shall be considered in detail in Chapter 45.

Figure 44.5 Binding energy per nucleon versus mass number for nuclides that lie along the line of stability in Figure 44.4. Some representative nuclides appear as black dots with labels.
Another important feature of Figure 44.5 is that the binding energy per nucleon is approximately constant at around 8 MeV per nucleon for all nuclei with \(A > 50 \). For these nuclei, the nuclear forces are said to be saturated, meaning that in the closely packed structure shown in Figure 44.2, a particular nucleon can form attractive bonds with only a limited number of other nucleons.

Figure 44.5 provides insight into fundamental questions about the origin of the chemical elements. In the early life of the Universe, the only elements that existed were hydrogen and helium. Clouds of cosmic gas coalesced under gravitational forces to form stars. As a star ages, it produces heavier elements from the lighter elements contained within it, beginning by fusing hydrogen atoms to form helium. This process continues as the star becomes older, generating atoms having larger and larger atomic numbers, up to the tan band shown in Figure 44.5.

The nucleus \(^{63}_{28}\text{Ni}\) has the largest binding energy per nucleon of 8.794 5 MeV. It takes additional energy to create elements with mass numbers larger than 63 because of their lower binding energies per nucleon. This energy comes from the supernova explosion that occurs at the end of some large stars’ lives. Therefore, all the heavy atoms in your body were produced from the explosions of ancient stars. You are literally made of stardust!

44.3 Nuclear Models

The details of the nuclear force are still an area of active research. Several nuclear models have been proposed that are useful in understanding general features of nuclear experimental data and the mechanisms responsible for binding energy. Two such models, the liquid-drop model and the shell model, are discussed below.

The Liquid-Drop Model

In 1936, Bohr proposed treating nucleons like molecules in a drop of liquid. In this liquid-drop model, the nucleons interact strongly with one another and undergo frequent collisions as they jiggie around within the nucleus. This jiggling motion is analogous to the thermally agitated motion of molecules in a drop of liquid.

Four major effects influence the binding energy of the nucleus in the liquid-drop model:

- **The volume effect.** Figure 44.5 shows that for \(A > 50 \), the binding energy per nucleon is approximately constant, which indicates that the nuclear force on a given nucleon is due only to a few nearest neighbors and not to all the other nucleons in the nucleus. On average, then, the binding energy associated with the nuclear force for each nucleon is the same in all nuclei: that associated with an interaction with a few neighbors. This property indicates that the total binding energy of the nucleus is proportional to \(A \) and therefore proportional to the nuclear volume. The contribution to the binding energy of the entire nucleus is \(C_1 A \), where \(C_1 \) is an adjustable constant that can be determined by fitting the prediction of the model to experimental results.

- **The surface effect.** Because nucleons on the surface of the drop have fewer neighbors than those in the interior, surface nucleons reduce the binding energy by an amount proportional to their number. Because the number of surface nucleons is proportional to the surface area \(4\pi r^2 \) of the nucleus (modeled as a sphere) and because \(r^2 \propto A^{2/3} \) (Eq. 44.1), the surface term can be expressed as \(-C_2 A^{2/3}\), where \(C_2 \) is a second adjustable constant.

- **The Coulomb repulsion effect.** Each proton repels every other proton in the nucleus. The corresponding potential energy per pair of interacting protons is \(k_e r^2 / r \), where \(k_e \) is the Coulomb constant. The total electric potential energy is equivalent to the work required to assemble \(Z \) protons, initially infinitely far apart, into a sphere of volume \(V \). This energy is proportional to the number
Chapter 44 Nuclear Structure

of proton pairs \(Z(Z-1)/2\) and inversely proportional to the nuclear radius. Consequently, the reduction in binding energy that results from the Coulomb effect is \(-C_3 Z(Z-1)/A^{1/3}\), where \(C_3\) is yet another adjustable constant.

- **The symmetry effect.** Another effect that lowers the binding energy is related to the symmetry of the nucleus in terms of values of \(N\) and \(Z\). For small values of \(A\), stable nuclei tend to have \(N < Z\). Any large asymmetry between \(N\) and \(Z\) for light nuclei reduces the binding energy and makes the nucleus less stable. For larger \(A\), the value of \(N\) for stable nuclei is naturally larger than \(Z\). This effect can be described by a binding-energy term of the form \(-C_4 (N-Z)^2/A\), where \(C_4\) is another adjustable constant.\(^1\) For small \(A\), any large asymmetry between values of \(N\) and \(Z\) makes this term relatively large and reduces the binding energy. For large \(A\), this term is small and has little effect on the overall binding energy.

Adding these contributions gives the following expression for the total binding energy:

\[
E_b = C_1 A - C_2 A^{2/3} - C_3 \frac{Z(Z-1)}{A^{1/3}} - C_4 \frac{(N-Z)^2}{A}
\]
(44.3)

This equation, often referred to as the *semiempirical binding-energy formula*, contains four constants that are adjusted to fit the theoretical expression to experimental data. For nuclei having \(A \geq 15\), the constants have the values

\[
C_1 = 15.7 \text{ MeV}, \quad C_2 = 17.8 \text{ MeV}, \quad C_3 = 0.71 \text{ MeV}, \quad C_4 = 23.6 \text{ MeV}
\]

Equation 44.3, together with these constants, fits the known nuclear mass values very well as shown by the theoretical curve and sample experimental values in Figure 44.6. The liquid-drop model does not, however, account for some finer details of nuclear structure, such as stability rules and angular momentum. Equation 44.3 is a theoretical equation for the binding energy, based on the liquid-drop model, whereas binding energies calculated from Equation 44.2 are experimental values based on mass measurements.

Example 44.3 Applying the Semiempirical Binding-Energy Formula

The nucleus \(^{64}\text{Zn}\) has a tabulated binding energy of 559.09 MeV. Use the semiempirical binding-energy formula to generate a theoretical estimate of the binding energy for this nucleus.

Solution

Conceptualize Imagine bringing the separate protons and neutrons together to form a \(^{64}\text{Zn}\) nucleus. The rest energy of the nucleus is smaller than the rest energy of the individual particles. The difference in rest energy is the binding energy.

Categorize From the text of the problem, we know to apply the liquid-drop model. This example is a substitution problem.

For the \(^{64}\text{Zn}\) nucleus, \(Z = 30\), \(N = 34\), and \(A = 64\). Evaluate the four terms of the semiempirical binding-energy formula:

\[
C_1 A = (15.7 \text{ MeV})(64) = 1005 \text{ MeV}
\]
\[
C_2 A^{2/3} = (17.8 \text{ MeV})(64)^{2/3} = 285 \text{ MeV}
\]
\[
C_3 \frac{Z(Z-1)}{A^{1/3}} = (0.71 \text{ MeV}) \left(\frac{30(29)}{(64)^{1/3}}\right) = 154 \text{ MeV}
\]
\[
C_4 \frac{(N-Z)^2}{A} = (23.6 \text{ MeV}) \left(\frac{(34-30)^2}{64}\right) = 5.90 \text{ MeV}
\]

\(^1\)The liquid-drop model describes that heavy nuclei have \(N > Z\). The shell model, as we shall see shortly, explains why that is true with a physical argument.
The Shell Model

The liquid-drop model describes the general behavior of nuclear binding energies relatively well. When the binding energies are studied more closely, however, we find the following features:

- Most stable nuclei have an even value of A. Furthermore, only eight stable nuclei have odd values for both Z and N.
- Figure 44.7 shows a graph of the difference between the binding energy per nucleon calculated by Equation 44.3 and the measured binding energy. There is evidence for regularly spaced peaks in the data that are not described by the semiempirical binding-energy formula. The peaks occur at values of N or Z that have become known as magic numbers:

$$Z \text{ or } N = 2, 8, 20, 28, 50, 82 \quad (44.4)$$

- High-precision studies of nuclear radii show deviations from the simple expression in Equation 44.1. Graphs of experimental data show peaks in the curve of radius versus N at values of N equal to the magic numbers.
- A group of isotones is a collection of nuclei having the same value of N and varying values of Z. When the number of stable isotones is graphed as a function of N, there are peaks in the graph, again at the magic numbers in Equation 44.4.
- Several other nuclear measurements show anomalous behavior at the magic numbers.2

These peaks in graphs of experimental data are reminiscent of the peaks in Figure 42.20 for the ionization energy of atoms, which arose because of the shell structure of the atom. The shell model of the nucleus, also called the independent-particle model, was developed independently by two German scientists: Maria Goeppert-Mayer in 1949 and Hans Jensen (1907–1973) in 1950, Goeppert-Mayer and Jensen

shared the 1963 Nobel Prize in Physics for their work. In this model, each nucleon is assumed to exist in a shell, similar to an atomic shell for an electron. The nucleons exist in quantized energy states, and there are few collisions between nucleons. Obviously, the assumptions of this model differ greatly from those made in the liquid-drop model.

The quantized states occupied by the nucleons can be described by a set of quantum numbers. Because both the proton and the neutron have spin \(\frac{1}{2} \), the exclusion principle can be applied to describe the allowed states (as it was for electrons in Chapter 42). That is, each state can contain only two protons (or two neutrons) having opposite spins (Fig. 44.8). The proton states differ from those of the neutrons because the two species move in different potential wells. The proton energy levels are farther apart than the neutron levels because the protons experience a superposition of the Coulomb force and the nuclear force, whereas the neutrons experience only the nuclear force.

One factor influencing the observed characteristics of nuclear ground states is nuclear spin–orbit effects. The atomic spin–orbit interaction between the spin of an electron and its orbital motion in an atom gives rise to the sodium doublet discussed in Section 42.6 and is magnetic in origin. In contrast, the nuclear spin–orbit effect for nucleons is due to the nuclear force. It is much stronger than in the atomic case, and it has opposite sign. When these effects are taken into account, the shell model is able to account for the observed magic numbers.

The shell model helps us understand why nuclei containing an even number of protons and neutrons are more stable than other nuclei. (There are 160 stable even–even isotopes.) Any particular state is filled when it contains two protons (or two neutrons) having opposite spins. An extra proton or neutron can be added to the nucleus only at the expense of increasing the energy of the nucleus. This increase in energy leads to a nucleus that is less stable than the original nucleus. A careful inspection of the stable nuclei shows that the majority have a special stability when their nucleons combine in pairs, which results in a total angular momentum of zero.

The shell model also helps us understand why nuclei tend to have more neutrons than protons. As in Figure 44.8, the proton energy levels are higher than those for neutrons due to the extra energy associated with Coulomb repulsion. This effect becomes more pronounced as \(Z \) increases. Consequently, as \(Z \) increases and higher states are filled, a proton level for a given quantum number will be much higher in energy than the neutron level for the same quantum number. In fact, it will be even higher in energy than neutron levels for higher quantum numbers. Hence, it is more energetically favorable for the nucleus to form with neutrons in the lower energy levels rather than protons in the higher energy levels, so the number of neutrons is greater than the number of protons.

More sophisticated models of the nucleus have been and continue to be developed. For example, the collective model combines features of the liquid-drop and shell models. The development of theoretical models of the nucleus continues to be an active area of research.

44.4 Radioactivity

In 1896, Becquerel accidentally discovered that uranyl potassium sulfate crystals emit an invisible radiation that can darken a photographic plate even though the plate is covered to exclude light. After a series of experiments, he concluded that the radiation emitted by the crystals was of a new type, one that requires no external stimulation and was so penetrating that it could darken protected photographic plates and ionize gases. This process of spontaneous emission of radiation by uranium was soon to be called radioactivity.

Subsequent experiments by other scientists showed that other substances were more powerfully radioactive. The most significant early investigations of this type were conducted by Marie and Pierre Curie (1859–1906). After several years of care-
ful and laborious chemical separation processes on tons of pitchblende, a radioactive ore, the Curies reported the discovery of two previously unknown elements, both radioactive, named polonium and radium. Additional experiments, including Rutherford’s famous work on alpha-particle scattering, suggested that radioactivity is the result of the decay, or disintegration, of unstable nuclei.

Three types of radioactive decay occur in radioactive substances: alpha (α) decay, in which the emitted particles are \(^4\)He nuclei; beta (β) decay, in which the emitted particles are either electrons or positrons; and gamma (γ) decay, in which the emitted particles are high-energy photons. A **positron** is a particle like the electron in all respects except that the positron has a charge of +e. (The positron is the antiparticle of the electron; see Section 46.2.) The symbol \(e^-\) is used to designate an electron, and \(e^+\) designates a positron.

We can distinguish among these three forms of radiation by using the scheme described in Figure 44.9. The radiation from radioactive samples that emit all three types of particles is directed into a region in which there is a magnetic field. Following the particle in a field (magnetic) analysis model, the radiation beam splits into three components, two bending in opposite directions and the third experiencing no change in direction. This simple observation shows that the radiation of the undeflected beam carries no charge (the gamma ray), the component deflected upward corresponds to positively charged particles (alpha particles), and the component deflected downward corresponds to negatively charged particles (\(e^-\)). If the beam includes a positron (\(e^+\)), it is deflected upward like the alpha particle, but it follows a different trajectory due to its smaller mass.

The three types of radiation have quite different penetrating powers. Alpha particles barely penetrate a sheet of paper, beta particles can penetrate a few millimeters of aluminum, and gamma rays can penetrate several centimeters of lead.

The decay process is probabilistic in nature and can be described with statistical calculations for a radioactive substance of macroscopic size containing a large number of radioactive nuclei. For such large numbers, the rate at which a particular decay process occurs in a sample is proportional to the number of radioactive nuclei present (that is, the number of nuclei that have not yet decayed). If \(N\) is the number of undecayed radioactive nuclei present at some instant, the rate of change of \(N\) with time is

\[
\frac{dN}{dt} = -\lambda N \quad (44.5)
\]

where \(\lambda\), called the **decay constant**, is the probability of decay per nucleus per second. The negative sign indicates that \(dN/dt\) is negative; that is, \(N\) decreases in time.

Equation 44.5 can be written in the form

\[
\frac{dN}{N} = -\lambda \, dt
\]
which, upon integration, gives

\[N = N_0 e^{-\lambda t} \] \hspace{1cm} (44.6)

where the constant \(N_0 \) represents the number of undecayed radioactive nuclei at \(t = 0 \). Equation 44.6 shows that the number of undecayed radioactive nuclei in a sample decreases exponentially with time. The plot of \(N \) versus \(t \) shown in Figure 44.10 illustrates the exponential nature of the decay. The curve is similar to that for the time variation of electric charge on a discharging capacitor in an \(RC \) circuit, as studied in Section 28.4.

The decay rate \(R \), which is the number of decays per second, can be obtained by combining Equations 44.5 and 44.6:

\[R = \frac{dN}{dt} = -\lambda N = -\lambda N_0 e^{-\lambda t} = R_0 e^{-\lambda t} \] \hspace{1cm} (44.7)

where \(R_0 = \lambda N_0 \) is the decay rate at \(t = 0 \). The decay rate \(R \) of a sample is often referred to as its activity. Note that both \(N \) and \(R \) decrease exponentially with time.

Another parameter useful in characterizing nuclear decay is the half-life \(T_{1/2} \):

The half-life of a radioactive substance is the time interval during which half of a given number of radioactive nuclei decay.

To find an expression for the half-life, we first set \(N = N_0/2 \) and \(t = T_{1/2} \) in Equation 44.6 to give

\[\frac{N_0}{2} = N_0 e^{-\lambda T_{1/2}} \]

Canceling the \(N_0 \) factors and then taking the reciprocal of both sides, we obtain \(e^{-\lambda T_{1/2}} = \frac{1}{2} \). Taking the natural logarithm of both sides gives

\[T_{1/2} = \frac{\ln 2}{\lambda} = 0.693 \] \hspace{1cm} (44.8)

After a time interval equal to one half-life, there are \(N_0/2 \) radioactive nuclei remaining (by definition); after two half-lives, half of these remaining nuclei have decayed and \(N_0/4 \) radioactive nuclei are left; after three half-lives, \(N_0/8 \) are left; and so on. In general, after \(n \) half-lives, the number of undecayed radioactive nuclei remaining is

\[N = \frac{N_0}{2^n} \] \hspace{1cm} (44.9)

where \(n \) can be an integer or a noninteger.

A frequently used unit of activity is the curie (Ci), defined as

\[1 \text{ Ci} = 3.7 \times 10^{10} \text{ decays/s} \]

This value was originally selected because it is the approximate activity of 1 g of radium. The SI unit of activity is the becquerel (Bq):

\[1 \text{ Bq} = 1 \text{ decay/s} \]

Therefore, \(1 \text{ Ci} = 3.7 \times 10^{10} \text{ Bq} \). The curie is a rather large unit, and the more frequently used activity units are the millicurie and the microcurie.
Quick Quiz 44.2 On your birthday, you measure the activity of a sample of ^{210}Bi, which has a half-life of 5.01 days. The activity you measure is 1.000 μCi. What is the activity of this sample on your next birthday? (a) 1.000 μCi (b) 0 (c) $\sim 0.2 \mu$Ci (d) $\sim 0.01 \mu$Ci (e) $\sim 10^{-22} \mu$Ci

Example 44.4 How Many Nuclei Are Left?

The isotope carbon-14, ^{14}C, is radioactive and has a half-life of 5730 years. If you start with a sample of 1000 carbon-14 nuclei, how many nuclei will still be undecayed in 25000 years?

Solution

Conceptualize The time interval of 25000 years is much longer than the half-life, so only a small fraction of the originally undecayed nuclei will remain.

Categorize The text of the problem allows us to categorize this example as a substitution problem involving radioactive decay.

Analyze Divide the time interval by the half-life to determine the number of half-lives:

$$n = \frac{25000 \text{ yr}}{5730 \text{ yr}} = 4.363$$

Determine how many undecayed nuclei are left after this many half-lives using Equation 44.9:

$$N = N_0 \left(\frac{1}{2}\right)^n = 1000 \left(\frac{1}{2}\right)^{4.363} = 49$$

Finalize As we have mentioned, radioactive decay is a probabilistic process and accurate statistical predictions are possible only with a very large number of atoms. The original sample in this example contains only 1000 nuclei, which is certainly not a very large number. Therefore, if you counted the number of undecayed nuclei remaining after 25000 years, it might not be exactly 49.

Example 44.5 The Activity of Carbon

At time $t = 0$, a radioactive sample contains 3.50 μg of pure ^{14}C, which has a half-life of 20.4 min.

(A) Determine the number N_0 of nuclei in the sample at $t = 0$.

Solution

Conceptualize The half-life is relatively short, so the number of undecayed nuclei drops rapidly. The molar mass of ^{14}C is approximately 11.0 g/mol.

Categorize We evaluate results using equations developed in this section, so we categorize this example as a substitution problem.

Find the number of moles in 3.50 μg of pure ^{14}C:

$$n = \frac{3.50 \times 10^{-6} \text{ g}}{11.0 \text{ g/mol}} = 3.18 \times 10^{-7} \text{ mol}$$

Find the number of undecayed nuclei in this amount of pure ^{14}C:

$$N_0 = (3.18 \times 10^{-7} \text{ mol})(6.02 \times 10^{23} \text{ nuclei/mol}) = 1.92 \times 10^{17} \text{ nuclei}$$

(B) What is the activity of the sample initially and after 8.00 h?

Solution

Find the initial activity of the sample using Equations 44.7 and 44.8:

$$R_0 = \lambda N_0 = \frac{0.693}{T_{1/2}} N_0 = \frac{0.693}{20.4 \text{ min}} \left(\frac{1 \text{ min}}{60 \text{ s}}\right)(1.92 \times 10^{17})$$

$$= (5.66 \times 10^{-4} \text{ s}^{-1})(1.92 \times 10^{17}) = 1.09 \times 10^{13} \text{ Bq}$$

continued
Example 44.6 A Radioactive Isotope of Iodine

A sample of the isotope 131I, which has a half-life of 8.04 days, has an activity of 5.0 mCi at the time of shipment. Upon receipt of the sample at a medical laboratory, the activity is 2.1 mCi. How much time has elapsed between the two measurements?

Solution

Conceptualize The sample is continuously decaying as it is in transit. The decrease in the activity is 58% during the time interval between shipment and receipt, so we expect the elapsed time to be greater than the half-life of 8.04 d.

Categorize The stated activity corresponds to many decays per second, so N is large and we can categorize this problem as one in which we can use our statistical analysis of radioactivity.

Analyze Solve Equation 44.7 for the ratio of the final activity to the initial activity:

$$\frac{R}{R_0} = e^{-\lambda t}$$

Take the natural logarithm of both sides:

$$\ln \left(\frac{R}{R_0} \right) = -\lambda t$$

Solve for the time t:

$$t = \frac{-1}{\lambda} \ln \left(\frac{R}{R_0} \right)$$

Use Equation 44.8 to substitute for λ:

$$t = \frac{T}{\ln 2} \ln \left(\frac{R}{R_0} \right)$$

Substitute numerical values:

$$t = \frac{8.04 \text{ d}}{0.693} \ln \left(\frac{2.1 \text{ mCi}}{5.0 \text{ mCi}} \right) = 10 \text{ d}$$

Finalize This result is indeed greater than the half-life, as expected. This example demonstrates the difficulty in shipping radioactive samples with short half-lives. If the shipment is delayed by several days, only a small fraction of the sample might remain upon receipt. This difficulty can be addressed by shipping a combination of isotopes in which the desired isotope is the product of a decay occurring within the sample. It is possible for the desired isotope to be in equilibrium, in which case it is created at the same rate as it decays. Therefore, the amount of the desired isotope remains constant during the shipping process and subsequent storage. When needed, the desired isotope can be separated from the rest of the sample; its decay from the initial activity begins at this point rather than upon shipment.

44.5 The Decay Processes

As we stated in Section 44.4, a radioactive nucleus spontaneously decays by one of three processes: alpha decay, beta decay, or gamma decay. Figure 44.11 shows a close-up view of a portion of Figure 44.4 from $Z = 65$ to $Z = 80$. The black circles are the stable nuclei seen in Figure 44.4. In addition, unstable nuclei above and below the line of stability for each value of Z are shown. Above the line of stability, the blue circles show unstable nuclei that are neutron-rich and undergo a beta decay process in which an electron is emitted. Below the black circles are red circles corresponding to proton-rich unstable nuclei that primarily undergo a beta-decay process in which a positron is emitted or a competing process called electron capture. Beta decay and electron capture are described in more detail below. Further below the line of stabil-
ity (with a few exceptions) are tan circles that represent very proton-rich nuclei for which the primary decay mechanism is alpha decay, which we discuss first.

Alpha Decay

A nucleus emitting an alpha particle (αHe) loses two protons and two neutrons. Therefore, the atomic number Z decreases by 2, the mass number A decreases by 4, and the neutron number decreases by 2. The decay can be written

$$\frac{1}{2}X \rightarrow \frac{1}{2}Z Y + \frac{1}{2}He$$ \hspace{1cm} \text{(44.10)}

where X is called the parent nucleus and Y the daughter nucleus. As a general rule in any decay expression such as this one, (1) the sum of the mass numbers A must be the same on both sides of the decay and (2) the sum of the atomic numbers Z must be the same on both sides of the decay. As examples, ^{238}U and ^{226}Ra are both alpha emitters and decay according to the schemes

$$^{238}_{92}\text{U} \rightarrow ^{234}_{90}\text{Th} + \frac{1}{2}\text{He}$$ \hspace{1cm} \text{(44.11)}

$$^{226}_{86}\text{Ra} \rightarrow ^{222}_{86}\text{Rn} + \frac{1}{2}\text{He}$$ \hspace{1cm} \text{(44.12)}

The decay of ^{226}Ra is shown in Figure 44.12.

When the nucleus of one element changes into the nucleus of another as happens in alpha decay, the process is called spontaneous decay. In any spontaneous decay, relativistic energy and momentum of the parent nucleus as an isolated system must be conserved. The final components of the system are the daughter nucleus and the alpha particle. If we call M_X the mass of the parent nucleus, M_Y the mass of the daughter nucleus, and M_a the mass of the alpha particle, we can define the disintegration energy Q of the system as

$$Q = (M_X - M_Y - M_a) c^2$$ \hspace{1cm} \text{(44.13)}

The energy Q is in joules when the masses are in kilograms and c is the speed of light, 3.00×10^8 m/s. When the masses are expressed in atomic mass units u, however, Q can be calculated in MeV using the expression

$$Q = (M_X - M_Y - M_a) \times 931.494 \text{ MeV/u}$$ \hspace{1cm} \text{(44.14)}

Table 44.2 (page 1396) contains information on selected isotopes, including masses of neutral atoms that can be used in Equation 44.14 and similar equations.

The disintegration energy Q is the amount of rest energy transformed and appears in the form of kinetic energy in the daughter nucleus and the alpha particle and is sometimes referred to as the Q value of the nuclear decay. Consider the case of the ^{226}Ra decay described in Figure 44.12. If the parent nucleus is at rest before the decay, the total kinetic energy of the products is 4.87 MeV. (See Example 44.7.) Most of this kinetic energy is associated with the alpha particle because this particle is much less massive than the daughter nucleus ^{222}Rn. That is, because the system is also isolated in terms of momentum, the lighter alpha particle recoils with a much-higher speed than does the daughter nucleus. Generally, less massive particles carry off most of the energy in nuclear decays.

Experimental observations of alpha-particle energies show a number of discrete energies rather than a single energy because the daughter nucleus may be left in an

Figure 44.11 A close-up view of the line of stability in Figure 44.4 from $Z = 65$ to $Z = 80$. The black dots represent stable nuclei as in Figure 44.4. The other colored dots represent unstable isotopes above and below the line of stability, with the color of the dot indicating the primary means of decay.

Figure 44.12 The alpha decay of radium-226. The radium nucleus is initially at rest. After the decay, the radon nucleus has kinetic energy K_{Rn} and momentum P_{Rn} and the alpha particle has kinetic energy K_a and momentum P_a.

Pitfall Prevention 44.6

Another Q We have seen the symbol Q before, but this use is a brand-new meaning for this symbol: the disintegration energy. In this context, it is not heat, charge, or quality factor for a resonance, for which we have used Q before.
<table>
<thead>
<tr>
<th>Atomic Number</th>
<th>Element</th>
<th>Chemical Symbol</th>
<th>Mass Number A ((^{\text{\textit{A}}}) means neutral atom)</th>
<th>Mass of Neutral Atom (u)</th>
<th>Percent Abundance</th>
<th>Half-life, if radioactive</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>electron</td>
<td>(e^-)</td>
<td>0</td>
<td>0.000 549</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>neutron</td>
<td>(n)</td>
<td>1*</td>
<td>1.008 665</td>
<td></td>
<td>614 s</td>
</tr>
<tr>
<td>1</td>
<td>hydrogen</td>
<td>(\text{H} = \text{p})</td>
<td>1</td>
<td>1.007 825</td>
<td>99.988 5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[deuteron]</td>
<td>(\text{H} = \text{D})</td>
<td>2</td>
<td>2.014 102</td>
<td>0.011 5</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>helium</td>
<td>(\text{He})</td>
<td>3</td>
<td>3.016 049</td>
<td></td>
<td>12.33 yr</td>
</tr>
<tr>
<td></td>
<td>[alpha particle]</td>
<td>(\alpha = ^{\text{\textit{4}}}\text{He})</td>
<td>4</td>
<td>4.002 603</td>
<td>99.999 863</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>lithium</td>
<td>(\text{Li})</td>
<td>5</td>
<td>1.007 825</td>
<td>99.988 5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[tritium]</td>
<td>(\text{H} = \text{T})</td>
<td>3*</td>
<td>3.016 049</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>beryllium</td>
<td>(\text{Be})</td>
<td>6</td>
<td>6.018 889</td>
<td></td>
<td>0.81 s</td>
</tr>
<tr>
<td>5</td>
<td>boron</td>
<td>(\text{B})</td>
<td>7</td>
<td>7.016 005</td>
<td>92.5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>carbon</td>
<td>(\text{C})</td>
<td>10</td>
<td>10.012 937</td>
<td>19.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[alpha particle]</td>
<td>(\alpha = ^{\text{\textit{4}}}\text{He})</td>
<td>6*</td>
<td>6.018 889</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>nitrogen</td>
<td>(\text{N})</td>
<td>14</td>
<td>4.003 242</td>
<td>5.730 yr</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>oxygen</td>
<td>(\text{O})</td>
<td>14*</td>
<td>14.003 074</td>
<td></td>
<td>70.6 s</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>15</td>
<td>14.003 074</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>16</td>
<td>15.994 915</td>
<td>99.757</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>17</td>
<td>16.999 132</td>
<td>0.038</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>18</td>
<td>17.999 161</td>
<td>0.205</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>fluorine</td>
<td>(\text{F})</td>
<td>18</td>
<td>18.000 938</td>
<td></td>
<td>109.8 min</td>
</tr>
<tr>
<td>10</td>
<td>neon</td>
<td>(\text{Ne})</td>
<td>19</td>
<td>18.998 403</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>sodium</td>
<td>(\text{Na})</td>
<td>20</td>
<td>19.992 440</td>
<td>90.48</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>magnesium</td>
<td>(\text{Mg})</td>
<td>21</td>
<td>22.989 769</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>aluminum</td>
<td>(\text{Al})</td>
<td>22</td>
<td>22.994 124</td>
<td></td>
<td>11.3 s</td>
</tr>
<tr>
<td>14</td>
<td>silicon</td>
<td>(\text{Si})</td>
<td>23</td>
<td>23.985 042</td>
<td>78.99</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>phosphorus</td>
<td>(\text{P})</td>
<td>24</td>
<td>26.981 539</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>16</td>
<td>sulfur</td>
<td>(\text{S})</td>
<td>25</td>
<td>26.986 705</td>
<td></td>
<td>4.2 s</td>
</tr>
<tr>
<td>17</td>
<td>potassium</td>
<td>(\text{K})</td>
<td>26</td>
<td>29.978 314</td>
<td>2.50 min</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>calcium</td>
<td>(\text{Ca})</td>
<td>27</td>
<td>30.973 907</td>
<td></td>
<td>14.26 d</td>
</tr>
<tr>
<td>19</td>
<td>manganese</td>
<td>(\text{Mn})</td>
<td>28</td>
<td>31.972 071</td>
<td>94.93</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>iron</td>
<td>(\text{Fe})</td>
<td>29</td>
<td>38.963 707</td>
<td>93.258 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>40*</td>
<td>39.963 998</td>
<td>0.011 7</td>
<td>1.28 \times 10^9 yr</td>
</tr>
<tr>
<td>21</td>
<td>nickel</td>
<td>(\text{Ni})</td>
<td>31</td>
<td>39.962 501</td>
<td>96.941</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>zinc</td>
<td>(\text{Zn})</td>
<td>32</td>
<td>41.958 618</td>
<td>0.647</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>copper</td>
<td>(\text{Cu})</td>
<td>33</td>
<td>64.965 568</td>
<td>0.135</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>silver</td>
<td>(\text{Ag})</td>
<td>34</td>
<td>107.868 106</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>cadmium</td>
<td>(\text{Cd})</td>
<td>35</td>
<td>112.906 461</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>indium</td>
<td>(\text{In})</td>
<td>36</td>
<td>114.820 933</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>thallium</td>
<td>(\text{Tl})</td>
<td>37</td>
<td>194.960 354</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>lead</td>
<td>(\text{Pb})</td>
<td>38</td>
<td>207.260 213</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>bismuth</td>
<td>(\text{Bi})</td>
<td>39</td>
<td>209.000 504</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>polonium</td>
<td>(\text{Po})</td>
<td>40</td>
<td>209.989 383</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continued
<table>
<thead>
<tr>
<th>Atomic Number Z</th>
<th>Element</th>
<th>Chemical Symbol</th>
<th>Mass Number A (* means radioactive)</th>
<th>Mass of Neutral Atom (u)</th>
<th>Percent Abundance</th>
<th>Half-life, if Radioactive $T_{1/2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>cobalt</td>
<td>Co</td>
<td>57*</td>
<td>56.936 291</td>
<td>100</td>
<td>272 d</td>
</tr>
<tr>
<td>28</td>
<td>nickel</td>
<td>Ni</td>
<td>58</td>
<td>57.935 343</td>
<td>68.076 9</td>
<td>5.27 yr</td>
</tr>
<tr>
<td>29</td>
<td>copper</td>
<td>Cu</td>
<td>63</td>
<td>59.930 786</td>
<td>26.223 1</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>zinc</td>
<td>Zn</td>
<td>64*</td>
<td>63.929 764</td>
<td>12.7 h</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>rubidium</td>
<td>Rb</td>
<td>87*</td>
<td>86.909 181</td>
<td>27.83</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>strontium</td>
<td>Sr</td>
<td>87</td>
<td>86.908 877</td>
<td>7.00</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>niobium</td>
<td>Nb</td>
<td>93</td>
<td>92.906 378</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>molybdenum</td>
<td>Mo</td>
<td>94</td>
<td>93.905 088</td>
<td>9.25</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>ruthenium</td>
<td>Ru</td>
<td>98</td>
<td>97.906 287</td>
<td>1.87</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>xenon</td>
<td>Xe</td>
<td>136*</td>
<td>135.907 219</td>
<td>2.4 $\times 10^{21}$ yr</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>cesium</td>
<td>Cs</td>
<td>137*</td>
<td>136.905 827</td>
<td>11.232</td>
<td>30 yr</td>
</tr>
<tr>
<td>56</td>
<td>barium</td>
<td>Ba</td>
<td>157</td>
<td>136.905 827</td>
<td>11.232</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>cerium</td>
<td>Ce</td>
<td>140</td>
<td>139.905 439</td>
<td>88.450</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>praseodymium</td>
<td>Pr</td>
<td>141</td>
<td>140.907 090</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>neodymium</td>
<td>Nd</td>
<td>144*</td>
<td>143.910 087</td>
<td>23.8</td>
<td>2.3 $\times 10^{33}$ yr</td>
</tr>
<tr>
<td>61</td>
<td>promethium</td>
<td>Pm</td>
<td>145*</td>
<td>144.912 749</td>
<td>17.7</td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>gold</td>
<td>Au</td>
<td>197</td>
<td>196.966 569</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>mercury</td>
<td>Hg</td>
<td>198</td>
<td>197.966 769</td>
<td>9.97</td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>lead</td>
<td>Pb</td>
<td>202</td>
<td>201.970 643</td>
<td>29.86</td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>bismuth</td>
<td>Bi</td>
<td>206</td>
<td>205.974 465</td>
<td>24.1</td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>polonium</td>
<td>Po</td>
<td>207</td>
<td>206.975 897</td>
<td>22.1</td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>radon</td>
<td>Rn</td>
<td>208</td>
<td>207.976 652</td>
<td>52.4</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>thorium</td>
<td>Th</td>
<td>214*</td>
<td>213.999 805</td>
<td>26.8 min</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>uranium</td>
<td>U</td>
<td>209</td>
<td>208.980 399</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>neptunium</td>
<td>Np</td>
<td>210*</td>
<td>209.982 874</td>
<td>138.38 d</td>
<td></td>
</tr>
<tr>
<td>94</td>
<td>plutonium</td>
<td>Pu</td>
<td>216*</td>
<td>216.001 915</td>
<td>0.145 s</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>218*</td>
<td>218.008 973</td>
<td>3.10 min</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>220*</td>
<td>220.011 394</td>
<td>55.6 s</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>222*</td>
<td>222.017 578</td>
<td>3.823 d</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>226*</td>
<td>226.025 410</td>
<td>1 600 yr</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>232*</td>
<td>232.038 055</td>
<td>100</td>
<td>1.40 $\times 10^{10}$ yr</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>234*</td>
<td>234.043 601</td>
<td>24.1 d</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>235*</td>
<td>234.040 952</td>
<td>2.45 $\times 10^{5}$ yr</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>236*</td>
<td>235.043 930</td>
<td>0.720 6</td>
<td>7.04 $\times 10^{4}$ yr</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>238*</td>
<td>238.050 788</td>
<td>99.274 5</td>
<td>4.47 $\times 10^{3}$ yr</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>239*</td>
<td>239.052 163</td>
<td>1.15 $\times 10^{2}$ yr</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>237*</td>
<td>237.048 173</td>
<td>2.14 $\times 10^{6}$ yr</td>
<td></td>
</tr>
</tbody>
</table>

excited quantum state after the decay. As a result, not all the disintegration energy is available as kinetic energy of the alpha particle and daughter nucleus. The emission of an alpha particle is followed by one or more gamma-ray photons (discussed shortly) as the excited nucleus decays to the ground state. The observed discrete alpha-particle energies represent evidence of the quantized nature of the nucleus and allow a determination of the energies of the quantum states.

If one assumes \(^{238}\text{U}\) (or any other alpha emitter) decays by emitting either a proton or a neutron, the mass of the decay products would exceed that of the parent nucleus, corresponding to a negative \(Q\) value. A negative \(Q\) value indicates that such a proposed decay does not occur spontaneously.

Quick Quiz 44.3 Which of the following is the correct daughter nucleus associated with the alpha decay of \(^{157}\text{Hf}\)?

- (a) \(^{153}\text{Hf}\)
- (b) \(^{153}\text{Yb}\)
- (c) \(^{157}\text{Yb}\)

Example 44.7 The Energy Liberated When Radium Decays

The \(^{226}\text{Ra}\) nucleus undergoes alpha decay according to Equation 44.12.

A Calculate the \(Q\) value for this process. From Table 44.2, the masses are 226.025 410 u for \(^{226}\text{Ra}\), 222.017 578 u for \(^{222}\text{Rn}\), and 4.002 603 u for \(^{4}\text{He}\).

SOLUTION

Conceptualize Study Figure 44.12 to understand the process of alpha decay in this nucleus.

Categorize The parent nucleus is an isolated system that decays into an alpha particle and a daughter nucleus. The system is isolated in terms of both energy and momentum.

Analyze Evaluate \(Q\) using Equation 44.14:

\[
Q = (M_{X} - M_{a} - M_{Y}) \times 931.494 \text{ MeV/u}
\]

\[
= (226.025 410 \text{ u} - 222.017 578 \text{ u} - 4.002 603 \text{ u}) \times 931.494 \text{ MeV/u}
\]

\[
= (0.005 229 \text{ u}) \times 931.494 \text{ MeV/u} = 4.87 \text{ MeV}
\]

B What is the kinetic energy of the alpha particle after the decay?

Analyze The value of 4.87 MeV is the disintegration energy for the decay. It includes the kinetic energy of both the alpha particle and the daughter nucleus after the decay. Therefore, the kinetic energy of the alpha particle would be less than 4.87 MeV.

Set up a conservation of momentum equation, noting that the initial momentum of the system is zero:

\[
0 = M_{Y}v_{Y} - M_{a}v_{a}
\]

Set the disintegration energy equal to the sum of the kinetic energies of the alpha particle and the daughter nucleus (assuming the daughter nucleus is left in the ground state):

\[
Q = \frac{1}{2}M_{a}v_{a}^{2} + \frac{1}{2}M_{Y}v_{Y}^{2}
\]

Solve Equation (1) for \(v_{Y}\) and substitute into Equation (2):

\[
Q = \frac{1}{2}M_{a}v_{a}^{2} + \frac{1}{2}M_{Y}\left(M_{a}v_{a}\right)^{2} = \frac{1}{2}M_{a}v_{a}^{2}\left(1 + \frac{M_{Y}}{M_{a}}\right)
\]

\[
Q = K_{a}\left(\frac{M_{Y}}{M_{Y} + M_{a}}\right)
\]

Solve for the kinetic energy of the alpha particle:

\[
K_{a} = Q\left(\frac{M_{Y}}{M_{Y} + M_{a}}\right)
\]

Evaluate this kinetic energy for the specific decay of \(^{226}\text{Ra}\) that we are exploring in this example:

\[
K_{a} = (4.87 \text{ MeV})\left(\frac{222}{222 + 4}\right) = 4.78 \text{ MeV}
\]

Finalize The kinetic energy of the alpha particle is indeed less than the disintegration energy, but notice that the alpha particle carries away most of the energy available in the decay.
To understand the mechanism of alpha decay, let’s model the parent nucleus as a system consisting of (1) the alpha particle, already formed as an entity within the nucleus, and (2) the daughter nucleus that will result when the alpha particle is emitted. Figure 44.13 shows a plot of potential energy versus separation distance r between the alpha particle and the daughter nucleus, where the distance marked R is the range of the nuclear force. The curve represents the combined effects of (1) the repulsive Coulomb force, which gives the positive part of the curve for $r > R$, and (2) the attractive nuclear force, which causes the curve to be negative for $r < R$. As shown in Example 44.7, a typical disintegration energy Q is approximately 5 MeV, which is the approximate kinetic energy of the alpha particle, represented by the lower dashed line in Figure 44.13.

According to classical physics, the alpha particle is trapped in a potential well. How, then, does it ever escape from the nucleus? The answer to this question was first provided by George Gamow (1904–1968) in 1928 and independently by R. W. Gurney (1898–1953) and E. U. Condon (1902–1974) in 1929, using quantum mechanics. In the view of quantum mechanics, there is always some probability that a particle can tunnel through a barrier (Section 41.5). That is exactly how we describe alpha decay: the alpha particle tunnels through the barrier in Figure 44.13, escaping the nucleus. Furthermore, this model agrees with the observation that higher-energy alpha particles come from nuclei with shorter half-lives. For higher-energy alpha particles in Figure 44.13, the barrier is narrower and the probability is higher that tunneling occurs. The higher probability translates to a shorter half-life.

As an example, consider the decays of 238U and 226Ra in Equations 44.11 and 44.12, along with the corresponding half-lives and alpha-particle energies:

$238U: \[T_{1/2} = 4.47 \times 10^5 \text{ yr} \quad K_\alpha = 4.20 \text{ MeV} \]

$226Ra: \[T_{1/2} = 1.60 \times 10^3 \text{ yr} \quad K_\alpha = 4.78 \text{ MeV} \]

Notice that a relatively small difference in alpha-particle energy is associated with a tremendous difference of six orders of magnitude in the half-life. The origin of this effect can be understood as follows. Figure 44.13 shows that the curve below an alpha-particle energy of 5 MeV has a slope with a relatively small magnitude. Therefore, a small difference in energy on the vertical axis has a relatively large effect on the width of the potential barrier. Second, recall Equation 41.22, which describes the exponential dependence of the probability of transmission on the barrier width. These two factors combine to give the very sensitive relationship between half-life and alpha-particle energy that the data above suggest.

A life-saving application of alpha decay is the household smoke detector, shown in Figure 44.14. The detector consists of an ionization chamber, a sensitive current detector, and an alarm. A weak radioactive source (usually 241Am) ionizes the air in the chamber of the detector, creating charged particles. A voltage is maintained between the plates inside the chamber, setting up a small but detectable current in the external circuit due to the ions acting as charge carriers between the plates. As long as the current is maintained, the alarm is deactivated. If smoke drifts into the chamber, however, the ions become attached to the smoke particles. These heavier particles do not drift as readily as do the lighter ions, which causes a decrease in the detector current. The external circuit senses this decrease in current and sets off the alarm.

Beta Decay

When a radioactive nucleus undergoes beta decay, the daughter nucleus contains the same number of nucleons as the parent nucleus but the atomic number is changed by 1, which means that the number of protons changes:

$$\frac{1}{2}X \rightarrow z^+Y + e^- \quad \text{(incomplete expression)} \quad (44.15)$$

$$\frac{1}{2}X \rightarrow z^-Y + e^+ \quad \text{(incomplete expression)} \quad (44.16)$$

Classically, the 5-MeV energy of the alpha particle is not sufficiently large to overcome the energy barrier, so the particle should not be able to escape from the nucleus.
where, as mentioned in Section 44.4, e^- designates an electron and e^+ designates a positron, with beta particle being the general term referring to either. Beta decay is not described completely by these expressions. We shall give reasons for this statement shortly.

As with alpha decay, the nucleon number and total charge are both conserved in beta decays. Because A does not change but Z does, we conclude that in beta decay, either a neutron changes to a proton (Eq. 44.15) or a proton changes to a neutron (Eq. 44.16). Note that the electron or positron emitted in these decays is not present beforehand in the nucleus; it is created in the process of the decay from the rest energy of the decaying nucleus. Two typical beta-decay processes are

\[^{14}_{6}C \rightarrow ^{14}_{7}N + e^- \quad \text{(incomplete expression)} \]
\[^{12}_{7}N \rightarrow ^{12}_{6}C + e^+ \quad \text{(incomplete expression)} \]

Let’s consider the energy of the system undergoing beta decay before and after the decay. As with alpha decay, energy of the isolated system must be conserved. Experimentally, it is found that beta particles from a single type of nucleus are emitted over a continuous range of energies (Fig. 44.15a), as opposed to alpha decay, in which the alpha particles are emitted with discrete energies (Fig. 44.15b). The kinetic energy of the system after the decay is equal to the decrease in rest energy of the system, that is, the Q value. Because all decaying nuclei in the sample have the same initial mass, however, the Q value must be the same for each decay. So, why do the emitted particles have the range of kinetic energies shown in Figure 44.15a? The isolated system model and the law of conservation of energy seem to be violated! It becomes worse: further analysis of the decay processes described by Equations 44.15 and 44.16 shows that the laws of conservation of angular momentum (spin) and linear momentum are also violated!

After a great deal of experimental and theoretical study, Pauli in 1930 proposed that a third particle must be present in the decay products to carry away the “missing” energy and momentum. Fermi later named this particle the neutrino (little neutral one) because it had to be electrically neutral and have little or no mass. Although it eluded detection for many years, the neutrino (symbol ν, Greek nu) was finally detected experimentally in 1956 by Frederick Reines (1918–1998), who received the Nobel Prize in Physics for this work in 1995. The neutrino has the following properties:

- It has zero electric charge.
- Its mass is either zero (in which case it travels at the speed of light) or very small; much recent persuasive experimental evidence suggests that the neutrino mass is not zero. Current experiments place the upper bound of the mass of the neutrino at approximately 7 eV/c^2.
- It has a spin of $\frac{1}{2}$, which allows the law of conservation of angular momentum to be satisfied in beta decay.
- It interacts very weakly with matter and is therefore very difficult to detect.

We can now write the beta-decay processes (Eqs. 44.15 and 44.16) in their correct and complete form:

\[^{\frac{1}{2}}X \rightarrow z\frac{1}{2}Y + e^- + \bar{\nu} \quad \text{(complete expression)} \]
\[^{\frac{1}{2}}X \rightarrow z\frac{1}{2}Y + e^+ + \nu \quad \text{(complete expression)} \]

as well as those for carbon-14 and nitrogen-12 (Eqs. 44.17 and 44.18):

\[^{14}_{6}C \rightarrow ^{14}_{7}N + e^- + \bar{\nu} \quad \text{(complete expression)} \]
\[^{12}_{7}N \rightarrow ^{12}_{6}C + e^+ + \nu \quad \text{(complete expression)} \]

where the symbol $\bar{\nu}$ represents the antineutrino, the antiparticle to the neutrino. We shall discuss antiparticles further in Chapter 46. For now, it suffices to say that a neutrino is emitted in positron decay and an antineutrino is emitted in electron
44.5 The Decay Processes

As with alpha decay, the decays listed above are analyzed by applying conservation laws, but relativistic expressions must be used for beta particles because their kinetic energy is large (typically 1 MeV) compared with their rest energy of 0.511 MeV. Figure 44.16 shows a pictorial representation of the decays described by Equations 44.21 and 44.22.

In Equation 44.19, the number of protons has increased by one and the number of neutrons has decreased by one. We can write the fundamental process of e\(^-\) decay in terms of a neutron changing into a proton as follows:

\[
e^- + n \rightarrow p + \nu
\]

(44.23)

The electron and the antineutrino are ejected from the nucleus, with the net result that there is one more proton and one fewer neutron, consistent with the changes in \(Z\) and \(A - Z\). A similar process occurs in e\(^+\) decay, with a proton changing into a neutron, a positron, and a neutrino. This latter process can only occur within the nucleus, with the result that the nuclear mass decreases. It cannot occur for an isolated proton because its mass is less than that of the neutron.

A process that competes with e\(^+\) decay is electron capture, which occurs when a parent nucleus captures one of its own orbital electrons and emits a neutrino. The final product after decay is a nucleus whose charge is \(Z - 1\):

\[
\frac{2}{3}X + \frac{2}{3}e \rightarrow \frac{2}{3}Y + \nu
\]

(44.24)

In most cases, it is a K-shell electron that is captured and the process is therefore referred to as K capture. One example is the capture of an electron by \(^7\)Be:

\[
\frac{2}{3}\text{Be} + \frac{2}{3}e \rightarrow \frac{2}{3}\text{Li} + \nu
\]

Because the neutrino is very difficult to detect, electron capture is usually observed by the \(\gamma\)-rays given off as higher-shell electrons cascade downward to fill the vacancy created in the K shell.

Finally, we specify \(Q\) values for the beta-decay processes. The \(Q\) values for e\(^-\) decay and electron capture are given by \(Q = (M_X - M_Y)c^2\), where \(M_X\) and \(M_Y\) are the masses of neutral atoms. In e\(^-\) decay, the parent nucleus experiences an increase in atomic number and, for the atom to become neutral, an electron must be absorbed by the atom. If the neutral parent atom and an electron (which will eventually combine with the daughter to form a neutral atom) is the initial system and the final system is the neutral daughter atom and the beta-ejected electron, the system contains a free electron both before and after the decay. Therefore, in subtracting the initial and final masses of the system, this electron mass cancels.

\[\text{Electron capture}\]

Pitfall Prevention 44.7

Mass Number of the Electron. An alternative notation for an electron, as we see in Equation 44.24, is the symbol \(\frac{2}{3}e\), which does not imply that the electron has zero rest energy. The mass of the electron is so much smaller than that of the lightest nucleon, however, that we approximate it as zero in the context of nuclear decays and reactions.
The \(Q \) values for \(e^+ \) decay are given by \(Q = (M_X - M_Y - 2m_e)c^2 \). The extra term \(-2m_e c^2\) in this expression is necessary because the atomic number of the parent decreases by one when the daughter is formed. After it is formed by the decay, the daughter atom sheds one electron to form a neutral atom. Therefore, the final products are the daughter atom, the shed electron, and the ejected positron.

These relationships are useful in determining whether or not a process is energetically possible. For example, the \(Q \) value for proposed \(e^+ \) decay for a particular parent nucleus may turn out to be negative. In that case, this decay does not occur. The \(Q \) value for electron capture for this parent nucleus, however, may be a positive number, so electron capture can occur even though \(e^+ \) decay is not possible. Such is the case for the decay of \(^7\text{Be} \) shown above.

Quick Quiz 44.4 Which of the following is the correct daughter nucleus associated with the beta decay of \(^{184}_{72}\text{Hf}\)?

- (a) \(^{183}_{72}\text{Hf}\)
- (b) \(^{183}_{73}\text{Ta}\)
- (c) \(^{184}_{73}\text{Ta}\)

Carbon Dating

The beta decay of \(^{14}\text{C}\) (Eq. 44.21) is commonly used to date organic samples. Cosmic rays in the upper atmosphere cause nuclear reactions (Section 44.7) that create \(^{14}\text{C}\). The ratio of \(^{14}\text{C}\) to \(^{12}\text{C}\) in the carbon dioxide molecules of our atmosphere has a constant value of approximately \(r_0 = 1.3 \times 10^{-12} \). The carbon atoms in all living organisms have this same \(^{14}\text{C}/^{12}\text{C}\) ratio \(r_0 \) because the organisms continuously exchange carbon dioxide with their surroundings. When an organism dies, however, it no longer absorbs \(^{14}\text{C}\) from the atmosphere, and so the \(^{14}\text{C}/^{12}\text{C}\) ratio decreases as the \(^{14}\text{C}\) decays with a half-life of 5730 yr. It is therefore possible to measure the age of a material by measuring its \(^{14}\text{C}\) activity. Using this technique, scientists have been able to identify samples of wood, charcoal, bone, and shell as having lived from 1000 to 25000 years ago. This knowledge has helped us reconstruct the history of living organisms—including humans—during this time span.

A particularly interesting example is the dating of the Dead Sea Scrolls. This group of manuscripts was discovered by a shepherd in 1947. Translation showed them to be religious documents, including most of the books of the Old Testament. Because of their historical and religious significance, scholars wanted to know their age. Carbon dating applied to the material in which they were wrapped established their age at approximately 1950 yr.

Conceptual Example 44.8 The Age of Iceman

In 1991, German tourists discovered the well-preserved remains of a man, now called “Ötzi the Iceman,” trapped in a glacier in the Italian Alps. (See the photograph at the opening of this chapter.) Radioactive dating with \(^{14}\text{C}\) revealed that this person was alive approximately 5300 years ago. Why did scientists date a sample of Ötzi using \(^{14}\text{C}\) rather than \(^{11}\text{C}\), which is a beta emitter having a half-life of 20.4 min?

Solution

Because \(^{14}\text{C}\) has a half-life of 5730 yr, the fraction of \(^{14}\text{C}\) nuclei remaining after thousands of years is high enough to allow accurate measurements of changes in the sample’s activity. Because \(^{11}\text{C}\) has a very short half-life, it is not useful; its activity decreases to a vanishingly small value over the age of the sample, making it impossible to detect.

An isotope used to date a sample must be present in a known amount in the sample when it is formed. As a general rule, the isotope chosen to date a sample should also have a half-life that is on the same order of magnitude as the age of the sample. If the half-life is much less than the age of the sample, there won’t be enough activity left to measure because almost all the original radioactive nuclei will have decayed. If the half-life is much greater than the age of the sample, the amount of decay that has taken place since the sample died will be too small to measure. For example, if you have a specimen estimated
to have died 50 years ago, neither 14C (5730 yr) nor 11C (20 min) is suitable. If you know your sample contains hydrogen, however, you can measure the activity of 3H (tritium), a beta emitter that has a half-life of 12.3 yr.

Example 44.9 Radioactive Dating

A piece of charcoal containing 25.0 g of carbon is found in some ruins of an ancient city. The sample shows a 14C activity R of 250 decays/min. How long has the tree from which this charcoal came been dead?

Solution

Conceptualize Because the charcoal was found in ancient ruins, we expect the current activity to be smaller than the initial activity. If we can determine the initial activity, we can find out how long the wood has been dead.

Categorize The text of the question helps us categorize this example as a carbon dating problem.

Analyze Solve Equation 44.7 for t:

$$t = - \frac{1}{\lambda} \ln \left(\frac{R}{R_0} \right) \quad (1)$$

Evaluate the ratio R/R_0 using Equation 44.7, the initial value of the 14C/12C ratio r_0, the number of moles n of carbon, and Avogadro's number N_A:

$$\frac{R}{R_0} = \frac{1}{\lambda r_0 N_A} \ln \left(\frac{R}{R_0} \right) = \frac{1}{\lambda r_0 N_A} \ln \left(\frac{R}{R_0} \right)$$

Replace the number of moles in terms of the molar mass M of carbon and the mass m of the sample and substitute for the decay constant λ:

$$\frac{R}{R_0} = \frac{1}{\lambda} \ln \left(\frac{R}{R_0} \right) = \frac{R}{R_0}$$

Evaluate the ratio R/R_0 using Equation 44.7, the initial value of the 14C/12C ratio r_0, the number of moles n of carbon, and Avogadro's number N_A:

$$\frac{R}{R_0} = \frac{1}{\lambda} \ln \left(\frac{R}{R_0} \right) = \frac{1}{\lambda} \ln \left(\frac{R}{R_0} \right) = \frac{1}{\lambda} \ln \left(\frac{R}{R_0} \right)$$

Substitute numerical values:

$$\frac{R}{R_0} = (250 \text{ min}^{-1})(12.0 \text{ g/mol})(5730 \text{ yr}) \left(\frac{1 \text{ min}}{60 \text{ s}} \right)$$

$$= 0.667$$

Substitute this ratio into Equation (1) and substitute for the decay constant λ:

$$t = - \frac{1}{\lambda} \ln \left(\frac{R}{R_0} \right) = - \frac{T_{1/2}}{\ln 2} \ln \left(\frac{R}{R_0} \right)$$

$$= - \frac{5730 \text{ yr}}{\ln 2} \ln (0.667) = 3.4 \times 10^3 \text{ yr}$$

Finalize Note that the time interval found here is on the same order of magnitude as the half-life, so 14C is a valid isotope to use for this sample, as discussed in Conceptual Example 44.8.

Gamma Decay

Very often, a nucleus that undergoes radioactive decay is left in an excited energy state. The nucleus can then undergo a second decay to a lower-energy state, perhaps to the ground state, by emitting a high-energy photon:

$$\frac{1}{2}X^* \rightarrow \frac{1}{2}X + \gamma \quad (44.25)$$

Where X^* indicates a nucleus in an excited state. The typical half-life of an excited nuclear state is 10^{-10} s. Photons emitted in such a de-excitation process are called gamma rays. Such photons have very high energy (1 MeV to 1 GeV) relative to the energy of visible light (approximately 1 eV). Recall from Section 42.3 that the energy of a photon emitted or absorbed by an atom equals the difference in energy.
between the two electronic states involved in the transition. Similarly, a gamma-ray photon has an energy \(h\nu \) that equals the energy difference \(\Delta E \) between two nuclear energy levels. When a nucleus decays by emitting a gamma ray, the only change in the nucleus is that it ends up in a lower-energy state. There are no changes in \(Z, N, \) or \(A \).

A nucleus may reach an excited state as the result of a violent collision with another particle. More common, however, is for a nucleus to be in an excited state after it has undergone alpha or beta decay. The following sequence of events represents a typical situation in which gamma decay occurs:

\[
\begin{align*}
^{12}_5 \text{B} & \rightarrow ^{12}_6 \text{C}^* + e^- + \bar{\nu} \\
^{12}_6 \text{C}^* & \rightarrow ^{12}_6 \text{C} + \gamma
\end{align*}
\]

Figure 44.17 shows the decay scheme for \(^{12}\text{B}\), which undergoes beta decay to either of two levels of \(^{12}\text{C}\). It can either (1) decay directly to the ground state of \(^{12}\text{C}\) by emitting a 13.4-MeV electron or (2) undergo beta decay to an excited state of \(^{12}\text{C}^*\) followed by gamma decay to the ground state. The latter process results in the emission of a 9.0-MeV electron and a 4.4-MeV photon.

The various pathways by which a radioactive nucleus can undergo decay are summarized in Table 44.3.

44.6 Natural Radioactivity

Radioactive nuclei are generally classified into two groups: (1) unstable nuclei found in nature, which give rise to natural radioactivity, and (2) unstable nuclei produced in the laboratory through nuclear reactions, which exhibit artificial radioactivity.

As Table 44.4 shows, there are three series of naturally occurring radioactive nuclei. Each series starts with a specific long-lived radioactive isotope whose half-life exceeds that of any of its unstable descendants. The three natural series begin with the isotopes \(^{232}\text{Th}\), \(^{235}\text{U}\), and \(^{238}\text{U}\), and the corresponding stable end products are three isotopes of lead: \(^{206}\text{Pb}\), \(^{207}\text{Pb}\), and \(^{208}\text{Pb}\). The fourth series in Table 44.4 begins with \(^{237}\text{Np}\) and has as its stable end product \(^{209}\text{Bi}\). The element \(^{237}\text{Np}\) is a transuranic element (one having an atomic number greater than that of uranium) not found in nature. This element has a half-life of “only” \(2.14 \times 10^6\) years.

Figure 44.18 shows the successive decays for the \(^{232}\text{Th}\) series. First, \(^{232}\text{Th}\) undergoes alpha decay to \(^{228}\text{Ra}\). Next, \(^{228}\text{Ra}\) undergoes two successive beta decays to \(^{228}\text{Th}\). The series continues and finally branches when it reaches \(^{212}\text{Bi}\). At this point, there are two decay possibilities. The sequence shown in Figure 44.18 is characterized by a mass-number decrease of either 4 (for alpha decays) or 0 (for beta or gamma decays). The two uranium series are more complex than the \(^{232}\text{Th}\) series. In addition, several naturally occurring radioactive isotopes, such as \(^{14}\text{C}\) and \(^{40}\text{K}\), are not part of any decay series.

Because of these radioactive series, our environment is constantly replenished with radioactive elements that would otherwise have disappeared long ago. For example, because our solar system is approximately \(5 \times 10^9\) years old, the supply of...
^{226}Ra (whose half-life is only 1600 years) would have been depleted by radioactive decay long ago if it were not for the radioactive series starting with ^{238}U.

44.7 Nuclear Reactions

We have studied radioactivity, which is a spontaneous process in which the structure of a nucleus changes. It is also possible to stimulate changes in the structure of nuclei by bombarding them with energetic particles. Such collisions, which change the identity of the target nuclei, are called nuclear reactions. Rutherford was the first to observe them, in 1919, using naturally occurring radioactive sources for the bombarding particles. Since then, a wide variety of nuclear reactions has been observed following the development of charged-particle accelerators in the 1930s. With today’s advanced technology in particle accelerators and particle detectors, the Large Hadron Collider (see Section 46.10) in Europe can achieve particle energies of 14 000 GeV = 14 TeV. These high-energy particles are used to create new particles whose properties are helping to solve the mysteries of the nucleus.

Consider a reaction in which a target nucleus X is bombarded by a particle a, resulting in a daughter nucleus Y and an outgoing particle b:

$$a + X \rightarrow Y + b \quad (44.28)$$

Sometimes this reaction is written in the more compact form

$$X(a, b)Y$$

In Section 44.5, the Q value, or disintegration energy, of a radioactive decay was defined as the rest energy transformed to kinetic energy as a result of the decay process. Likewise, we define the reaction energy Q associated with a nuclear reaction as the difference between the initial and final rest energies resulting from the reaction:

$$Q = (M_a + M_X - M_Y - M_b)c^2 \quad (44.29)$$

As an example, consider the reaction $^7\text{Li}(p, a)^4\text{He}$. The notation p indicates a proton, which is a hydrogen nucleus. Therefore, we can write this reaction in the expanded form

$$^1\text{H} + ^7\text{Li} \rightarrow ^4\text{He} + ^4\text{He}$$

The Q value for this reaction is 17.3 MeV. A reaction such as this one, for which Q is positive, is called exothermic. A reaction for which Q is negative is called endothermic. To satisfy conservation of momentum for the isolated system, an endothermic reaction does not occur unless the bombarding particle has a kinetic energy greater than Q. (See Problem 74.) The minimum energy necessary for such a reaction to occur is called the threshold energy.

If particles a and b in a nuclear reaction are identical so that X and Y are also necessarily identical, the reaction is called a scattering event. If the kinetic energy of the system (a and X) before the event is the same as that of the system (b and Y) after the event, it is classified as elastic scattering. If the kinetic energy of the system after the event is less than that before the event, the reaction is described as inelastic scattering. In this case, the target nucleus has been raised to an excited state by the event, which accounts for the difference in energy. The final system now consists of b and an excited nucleus Y^*, and eventually it will become b, Y, and γ, where γ is the gamma-ray photon that is emitted when the system returns to the ground state. This elastic and inelastic terminology is identical to that used in describing collisions between macroscopic objects as discussed in Section 9.4.

In addition to energy and momentum, the total charge and total number of nucleons must be conserved in any nuclear reaction. For example, consider the
reaction \(^{19}\text{F}(\text{p}, \alpha)^{16}\text{O}\), which has a \(Q\) value of 8.11 MeV. We can show this reaction more completely as

\[
\frac{1}{2}\text{H} + ^{19}\text{F} \rightarrow ^{16}\text{O} + \frac{1}{2}\text{He}
\]

(44.30)

The total number of nucleons before the reaction (1 + 19 = 20) is equal to the total number after the reaction (16 + 4 = 20). Furthermore, the total charge is the same before (1 + 9) and after (8 + 2) the reaction.

44.8 Nuclear Magnetic Resonance and Magnetic Resonance Imaging

In this section, we describe an important application of nuclear physics in medicine called magnetic resonance imaging. To understand this application, we first discuss the spin angular momentum of the nucleus. This discussion has parallels with the discussion of spin for atomic electrons.

In Chapter 42, we discussed that the electron has an intrinsic angular momentum, called spin. Nuclei also have spin because their component particles—neutrons and protons—each have spin \(\frac{1}{2}\) as well as orbital angular momentum within the nucleus. All types of angular momentum obey the quantum rules that were outlined for orbital and spin angular momentum in Chapter 42. In particular, two quantum numbers associated with the angular momentum determine the allowed values of the magnitude of the angular momentum vector and its direction in space. The magnitude of the nuclear angular momentum is \(I\), where \(I\) is called the nuclear spin quantum number and may be an integer or a half-integer, depending on how the individual proton and neutron spins combine. The quantum number \(I\) is the analog to \(S\), for the electron in an atom as discussed in Section 42.6. Furthermore, there is a quantum number \(m_I\) that is the analog to \(m_S\), in that the allowed projections of the nuclear spin angular momentum vector along the \(z\) axis are \(m_I\). The values of \(m_I\) range from \(-I\) to \(+I\) in steps of 1. (In fact, for any type of spin with a quantum number \(S\), there is a quantum number \(m_S\) that ranges in value from \(-S\) to \(+S\) in steps of 1.) Therefore, the maximum value of the \(z\) component of the spin angular momentum vector is \(I\). Figure 44.19 is a vector model (see Section 42.6) illustrating the possible orientations of the nuclear spin vector and its projections along the \(z\) axis for the case in which \(I = \frac{3}{2}\).

Nuclear spin has an associated nuclear magnetic moment, similar to that of the electron. The spin magnetic moment of a nucleus is measured in terms of the nuclear magneton \(\mu_n\), a unit of moment defined as

\[
\mu_n = \frac{e\hbar}{2m_p} = 5.05 \times 10^{-27} \text{ J/T}
\]

(44.31)

where \(m_p\) is the mass of the proton. This definition is analogous to that of the Bohr magneton \(\mu_B\), which corresponds to the spin magnetic moment of a free electron (see Section 42.6). Note that \(\mu_n\) is smaller than \(\mu_B\) (= 9.274 \times 10^{-24} \text{ J/T}) by a factor of 1 836 because of the large difference between the proton mass and the electron mass.

The magnetic moment of a free proton is 2.792 \(8\mu_n\). Unfortunately, there is no general theory of nuclear magnetism that explains this value. The neutron also has a magnetic moment, which has a value of \(-1.913\ \mu_n\). The negative sign indicates that this moment is opposite the spin angular momentum of the neutron. The existence of a magnetic moment for the neutron is surprising in view of the neutron being uncharged. That suggests that the neutron is not a fundamental particle but rather has an underlying structure consisting of charged constituents. We shall explore this structure in Chapter 46.
44.8 Nuclear Magnetic Resonance and Magnetic Resonance Imaging

The potential energy associated with a magnetic dipole moment μ in an external magnetic field B is given by $-\mu \cdot B$ (Eq. 29.18). When the magnetic moment μ is lined up with the field as closely as quantum physics allows, the potential energy has its minimum value E_{min}. When μ is as antiparallel to the field as possible, the potential energy has its maximum value E_{max}. In general, there are other energy states between these values corresponding to the quantized directions of the magnetic moment with respect to the field. For a nucleus with spin $\frac{1}{2}$, there are only two allowed states, with energies E_{min} and E_{max}. These two energy states are shown in Figure 44.20.

It is possible to observe transitions between these two spin states using a technique called NMR, for nuclear magnetic resonance. A constant magnetic field (B in Fig. 44.20) is introduced to define a z axis and split the energies of the spin states. A second, weaker, oscillating magnetic field is then applied perpendicular to B, creating a cloud of radio-frequency photons around the sample. When the frequency of the oscillating field is adjusted so that the photon energy matches the energy difference between the spin states, there is a net absorption of photons by the nuclei that can be detected electronically.

Figure 44.21 is a simplified diagram of the apparatus used in nuclear magnetic resonance. The energy absorbed by the nuclei is supplied by the tunable oscillator producing the oscillating magnetic field. Nuclear magnetic resonance and a related technique called electron spin resonance are extremely important methods for studying nuclear and atomic systems and the ways in which these systems interact with their surroundings.

A widely used medical diagnostic technique called MRI, for magnetic resonance imaging, is based on nuclear magnetic resonance. Because nearly two-thirds of the atoms in the human body are hydrogen (which gives a strong NMR signal), MRI works exceptionally well for viewing internal tissues. The patient is placed inside a large solenoid that supplies a magnetic field that is constant in time but whose magnitude varies spatially across the body. Because of the variation in the field, hydrogen atoms in different parts of the body have different energy splittings between spin states, so the resonance signal can be used to provide information about the positions of the protons. A computer is used to analyze the position information to provide data for constructing a final image. Contrast in the final image among different types of tissues is created by computer analysis of the time intervals for the nuclei to return to the lower-energy spin state between pulses of radio-frequency photons. Contrast can be enhanced with the use of contrast agents such as gadolinium compounds or iron oxide nanoparticles taken orally or injected intravenously. An MRI scan showing incredible detail in internal body structure is shown in Figure 44.22.
The main advantage of MRI over other imaging techniques is that it causes minimal cellular damage. The photons associated with the radio-frequency signals used in MRI have energies of only about 10^{-7} eV. Because molecular bond strengths are much larger (approximately 1 eV), the radio-frequency radiation causes little cellular damage. In comparison, x-rays have energies ranging from 10^4 to 10^6 eV and can cause considerable cellular damage. Therefore, despite some individuals’ fears of the word nuclear associated with MRI, the radio-frequency radiation involved is overwhelmingly safer than the x-rays that these individuals might accept more readily. A disadvantage of MRI is that the equipment required to conduct the procedure is very expensive, so MRI images are costly.

The magnetic field produced by the solenoid is sufficient to lift a car, and the radio signal is about the same magnitude as that from a small commercial broadcasting station. Although MRI is inherently safe in normal use, the strong magnetic field of the solenoid requires diligent care to ensure that no ferromagnetic materials are located in the room near the MRI apparatus. Several accidents have occurred, such as a 2000 incident in which a gun pulled from a police officer’s hand discharged upon striking the machine.

Summary

Definitions

- A nucleus is represented by the symbol $^{A}_{Z}X$, where A is the mass number (the total number of nucleons) and Z is the atomic number (the total number of protons). The total number of neutrons in a nucleus is the neutron number N, where $A = N + Z$. Nuclei having the same Z value but different A and N values are isotopes of each other.

- The magnetic moment of a nucleus is measured in terms of the nuclear magneton μ_n, where

 $$\mu_n = \frac{e\hbar}{2m_p} = 5.05 \times 10^{-27} \text{ J/T} \ (44.3)$$

Concepts and Principles

- Assuming nuclei are spherical, their radius is given by

 $$r = aA^{1/3} \quad (44.1)$$

 where $a = 1.2 \text{ fm}$.

- The difference between the sum of the masses of a group of separate nucleons and the mass of the compound nucleus containing these nucleons, when multiplied by c^2, gives the binding energy E_b of the nucleus. The binding energy of a nucleus can be calculated in MeV using the expression

 $$E_b = [\text{Z}M(\text{H}) + Nm_n - M(^{2}\text{X})] \times 931.494 \text{ MeV/u} \quad (44.2)$$

 where $M(\text{H})$ is the atomic mass of the neutral hydrogen atom, $M(^{2}\text{X})$ represents the atomic mass of an atom of the isotope ^{2}X, and m_n is the mass of the neutron.

- The liquid-drop model of nuclear structure treats the nucleons as molecules in a drop of liquid. The four main contributions influencing binding energy are the volume effect, the surface effect, the Coulomb repulsion effect, and the symmetry effect. Summing such contributions results in the semiempirical binding-energy formula:

 $$E_b = C_1A - C_2A^{2/3} - C_3 \frac{Z(Z - 1)}{A^{1/3}} - C_4 \frac{(N - Z)^2}{A} \quad (44.3)$$

 The shell model, or independent-particle model, assumes each nucleon exists in a shell and can only have discrete energy values. The stability of certain nuclei can be explained with this model.
A radioactive substance decays by **alpha decay**, **beta decay**, or **gamma decay**. An alpha particle is the \(^4\)He nucleus, a beta particle is either an electron (e\(^-\)) or a positron (e\(^+\)), and a gamma particle is a high-energy photon.

In alpha decay, a helium nucleus is ejected from the parent nucleus with a discrete set of kinetic energies. A nucleus undergoing beta decay emits either an electron (e\(^-\)) and an antineutrino (\(\bar{\nu}\)) or a positron (e\(^+\)) and a neutrino (\(\nu\)). The electron or positron is ejected with a continuous range of energies. In **electron capture**, the nucleus of an atom absorbs one of its own electrons and emits a neutrino. In gamma decay, a nucleus in an excited state decays to its ground state and emits a gamma ray.

Objective Questions

1. In nuclear magnetic resonance, suppose we increase the value of the constant magnetic field. (a) The frequency is proportional to the square of the magnetic field. (b) The frequency is directly proportional to the magnetic field. (c) The frequency is independent of the magnetic field. (d) The frequency is inversely proportional to the magnetic field. (e) The frequency is proportional to the reciprocal of the square of the magnetic field.

2. When the \(^{86}\)Kr nucleus undergoes beta decay by emitting an electron and an antineutrino, does the daughter nucleus (Rb) contain (a) \(58\) neutrons and \(37\) protons, (b) \(58\) protons and \(37\) neutrons, (c) \(54\) neutrons and \(41\) protons, or (d) \(55\) neutrons and \(40\) protons?

3. When \(^{32}\)P decays to \(^{32}\)S, which of the following particles is emitted? (a) a proton (b) an alpha particle (c) an electron (d) a gamma ray (e) an antineutrino

4. The half-life of radium-224 is about 3.6 days. What approximate fraction of a sample remains undecayed after two weeks? (a) \(\frac{1}{2}\) (b) \(\frac{1}{4}\) (c) \(\frac{1}{8}\) (d) \(\frac{1}{16}\) (e) \(\frac{1}{32}\)

5. Two samples of the same radioactive nuclide are prepared. Sample G has twice the initial activity of sample H. (i) How does the half-life of G compare with the half-life of H? (a) It is two times larger. (b) It is the same. (c) It is half as large. (ii) After each has passed through five half-lives, how do their activities compare? (a) G has more than twice the activity of H. (b) G has twice the activity of H. (c) G and H have the same activity. (d) G has lower activity than H.

6. If a radioactive nuclide \(^{32}\)X decays by emitting a gamma ray, what happens? (a) The resulting nuclide has a different \(Z\) value. (b) The resulting nuclide has the same \(A\) and \(Z\) values. (c) The resulting nuclide has a different \(A\) value. (d) Both \(A\) and \(Z\) decrease by one. (e) None of those statements is correct.

7. Does a nucleus designated as \(^{16}\)O\(^{10}\)X contain (a) \(20\) neutrons and \(20\) protons, (b) \(22\) protons and \(18\) neutrons, (c) \(18\) protons and \(22\) neutrons, (d) \(18\) protons and \(40\) neutrons, or (e) \(40\) protons and \(18\) neutrons?

8. When \(^{144}\)Nd decays to \(^{140}\)Ce, identify the particle that is released. (a) a proton (b) an alpha particle (c) an electron (d) a neutrino (e) a neutron

9. What is the \(Q\) value for the reaction \(^{9}\)Be + \(^{4}\)He \(\rightarrow\) \(^{13}\)C + n? (a) 8.4 MeV (b) 7.3 MeV (c) 6.2 MeV (d) 5.7 MeV (e) 4.2 MeV

10. (i) To predict the behavior of a nucleus in a fission reaction, which model would be more appropriate,
(a) the liquid-drop model or (b) the shell model?
(ii) Which model would be more successful in predicting the magnetic moment of a given nucleus? Choose from the same answers as in part (i).
(iii) Which could better explain the gamma-ray spectrum of an excited nucleus? Choose from the same answers as in part (i).

11. A free neutron has a half-life of 614 s. It undergoes beta decay by emitting an electron. Can a free proton undergo a similar decay? (a) yes, the same decay
(b) yes, but by emitting a positron
(c) yes, but with a very different half-life
(d) no

12. Which of the following quantities represents the reaction energy of a nuclear reaction? (a) \((\text{final mass} - \text{initial mass})/c^2\)
(b) \((\text{initial mass} - \text{final mass})/c^2\)
(c) \((\text{final mass} - \text{initial mass})^2\)
(d) \((\text{initial mass} - \text{final mass})^2\)
(e) none of those quantities

13. In the decay \(^{234}\text{Th} \rightarrow \frac{3}{2}\text{Ra} + \frac{1}{2}\text{He}\), identify the mass number and the atomic number of the Ra nucleus:
(a) \(A = 230, Z = 92\)
(b) \(A = 238, Z = 88\)
(c) \(A = 230, Z = 88\)
(d) \(A = 234, Z = 88\)
(e) \(A = 238, Z = 86\)

Conceptual Questions

1. If a nucleus such as \(^{226}\text{Ra}\) initially at rest undergoes alpha decay, which has more kinetic energy after the decay, the alpha particle or the daughter nucleus? Explain your answer.

2. “If no more people were to be born, the law of population growth would strongly resemble the radioactive decay law.” Discuss this statement.

3. A student claims that a heavy form of hydrogen decays by alpha emission. How do you respond?

4. In beta decay, the energy of the electron or positron emitted from the nucleus lies somewhere in a relatively large range of possibilities. In alpha decay, however, the alpha-particle energy can only have discrete values. Explain this difference.

5. Can carbon-14 dating be used to measure the age of a rock? Explain.

6. In positron decay, a proton in the nucleus becomes a neutron and its positive charge is carried away by the positron. A neutron, though, has a larger rest energy than a proton. How is that possible?

7. (a) How many values of \(I_z\) are possible for \(I = \frac{3}{2}\)? (b) For \(I = \frac{3}{2}\)?

8. Why do nearly all the naturally occurring isotopes lie above the \(N = Z\) line in Figure 44.4?

9. Why are very heavy nuclei unstable?

10. Explain why nuclei that are well off the line of stability in Figure 44.4 tend to be unstable.

11. Consider two heavy nuclei X and Y having similar mass numbers. If X has the higher binding energy, which nucleus tends to be more unstable? Explain your answer.

12. What fraction of a radioactive sample has decayed after two half-lives have elapsed?

13. Figure CQ44.13 shows a watch from the early 20th century. The numbers and the hands of the watch are painted with a paint that contains a small amount of natural radium \(^{226}\text{Ra}\) mixed with a phosphorescent material. The decay of the radium causes the phosphorescent material to glow continuously. The radioactive nuclide \(^{226}\text{Ra}\) has a half-life of approximately \(1.60 \times 10^3\) years. Being that the solar system is approximately 5 billion years old, why was this isotope still available in the 20th century for use on this watch?

14. Can a nucleus emit alpha particles that have different energies? Explain.

15. In Rutherford’s experiment, assume an alpha particle is headed directly toward the nucleus of an atom. Why doesn’t the alpha particle make physical contact with the nucleus?

16. Suppose it could be shown that the cosmic-ray intensity at the Earth’s surface was much greater 10 000 years ago. How would this difference affect what we accept as valid carbon-dated values of the age of ancient samples of once-living matter? Explain your answer.

17. Compare and contrast the properties of a photon and a neutrino.
Section 44.1 Some Properties of Nuclei

1. Find the nuclear radii of (a) 1H, (b) 60Co, (c) 197Au, and (d) 239Pu.

2. (a) Determine the mass number of a nucleus whose radius is approximately equal to two-thirds the radius of 226Ra. (b) Identify the element. (c) Are any other answers possible? Explain.

3. (a) Use energy methods to calculate the distance of closest approach for a head-on collision between an alpha particle having an initial energy of 0.500 MeV and a gold nucleus (197Au) at rest. Assume the gold nucleus remains at rest during the collision. (b) What minimum initial speed must the alpha particle have to approach as close as 300 fm to the gold nucleus?

4. (a) What is the order of magnitude of the number of protons in your body? (b) Of the number of neutrons? (c) Of the number of electrons?

5. Consider the 65Cu nucleus. Find approximate values for its (a) radius, (b) volume, and (c) density.

6. Using 2.30×10^{17} kg/m3 as the density of nuclear matter, find the radius of a sphere of such matter that would have a mass equal to that of a baseball, 0.145 kg.

7. A star ending its life with a mass of four to eight times the Sun’s mass is expected to collapse and then undergo a supernova event. In the remnant that is not carried away by the supernova explosion, protons and electrons combine to form a neutron star with approximately twice the mass of the Sun. Such a star can be thought of as a gigantic atomic nucleus. Assume $r = aA^{1/3}$ (Eq. 44.1). If a star of mass 3.98 $\times 10^{30}$ kg is composed entirely of neutrons ($m_n = 1.67 \times 10^{-27}$ kg), what would its radius be?

8. Figure P44.8 shows the potential energy for two protons as a function of separation distance. In the text, it was claimed that, to be visible on such a graph, the peak in the curve is exaggerated by a factor of ten. (a) Find the electric potential energy of a pair of protons separated by 4.00 fm. (b) Verify that the peak in Figure P44.8 is exaggerated by a factor of ten.

9. Review. Singly ionized carbon is accelerated through 1000 V and passed into a mass spectrometer to determine the isotopes present (see Chapter 29). The magnitude of the magnetic field in the spectrometer is 0.200 T. The orbit radius for a 12C isotope as it passes through the field is $r = 7.89$ cm. Find the radius of the orbit of a 13C isotope.

10. Review. Singly ionized carbon is accelerated through a potential difference D and passed into a mass spectrometer to determine the isotopes present (see Chapter 29). The magnitude of the magnetic field in the spectrometer is B. The orbit radius for an isotope of mass m_1 as it passes through the field is r_1. Find the radius of the orbit of an isotope of mass m_2.

11. An alpha particle ($Z = 2$, mass $= 6.64 \times 10^{-27}$ kg) approaches to within 1.00×10^{-14} m of a carbon nucleus ($Z = 6$). What are (a) the magnitude of the maximum Coulomb force on the alpha particle, (b) the magnitude of the acceleration of the alpha particle at the time of the maximum force, and (c) the potential energy of the system of the alpha particle and the carbon nucleus at this time?

12. In a Rutherford scattering experiment, alpha particles having kinetic energy of 7.70 MeV are fired toward a gold nucleus that remains at rest during the collision. The alpha particles come as close as 29.5 fm to the gold nucleus before turning around. (a) Calculate the de Broglie wavelength for the 7.70-MeV alpha particle and compare it with the distance of closest approach,
29.5 fm. (b) Based on this comparison, why is it proper to treat the alpha particle as a particle and not as a wave in the Rutherford scattering experiment?

13. Review. Two golf balls each have a 4.30-cm diameter and are 1.00 m apart. What would be the gravitational force exerted by each ball on the other if the balls were made of nuclear matter?

14. Assume a hydrogen atom is a sphere with diameter 0.100 nm and a hydrogen molecule consists of two such spheres in contact. (a) What fraction of the space in a tank of hydrogen gas at 0°C and 1.00 atm is occupied by the hydrogen molecules themselves? (b) What fraction of the space within one hydrogen atom is occupied by its nucleus, of radius 1.20 fm?

Section 44.2 Nuclear Binding Energy

15. Calculate the binding energy per nucleon for (a) 2H, (b) 4He, (c) 56Fe, and (d) 238U.

16. (a) Calculate the difference in binding energy per nucleon for the nuclei 2H and 1H. (b) How do you account for the difference?

17. A pair of nuclei for which \(Z_1 = N_2 \) and \(Z_2 = N_1 \) are called mirror isobars (the atomic and neutron numbers are interchanged). Binding-energy measurements on these nuclei can be used to obtain evidence of the charge independence of nuclear forces (that is, proton–proton, proton–neutron, and neutron–neutron nuclear forces are equal). Calculate the difference in binding energy for the two mirror isobars 13O and 15N. The electric repulsion among eight protons rather than seven accounts for the difference.

18. The peak of the graph of nuclear binding energy per nucleon occurs near 56Fe, which is why iron is prominent in the spectrum of the Sun and stars. Show that 56Fe has a higher binding energy per nucleon than its neighbors 56Mn and 56Co.

19. Nuclei having the same mass numbers are called isobars. The isotope 139La is stable. A radioactive isobar, 139Pr, is located below the line of stable nuclei as shown in Figure P44.19 and decays by e\(^-\) emission. Another radioactive isobar of 139La, 139Cs, decays by e\(^-\) emission and is located above the line of stable nuclei in Figure P44.19. (a) Which of these three isobars has the highest neutron-to-proton ratio? (b) Which has the greatest binding energy per nucleon? (c) Which do you expect to be heavier, 139Pr or 139Cs?

20. The energy required to construct a uniformly charged sphere of total charge \(Q \) and radius \(R \) is \(U = 3kQ^2/5R \), where \(k \) is the Coulomb constant (see Problem 77). Assume a 40Ca nucleus contains 20 protons uniformly distributed in a spherical volume. (a) How much energy is required to counter their electrical repulsion according to the above equation? (b) Calculate the binding energy of 40Ca. (c) Explain what you can conclude from comparing the result of part (b) with that of part (a).

21. Calculate the minimum energy required to remove a neutron from the 238U nucleus.

Section 44.3 Nuclear Models

22. Using the graph in Figure 44.5, estimate how much energy is released when a nucleus of mass number 200 fissions into two nuclei each of mass number 100.

23. (a) Use the semiempirical binding-energy formula (Eq. 44.3) to compute the binding energy for 56Fe. (b) What percentage is contributed to the binding energy by each of the four terms?

24. (a) In the liquid-drop model of nuclear structure, why does the surface-effect term \(-C_2A^{2/3}\) have a negative sign? (b) What If? The binding energy of the nucleus increases as the volume-to-surface area ratio increases. Calculate this ratio for both spherical and cubical shapes and explain which is more plausible for nuclei.

Section 44.4 Radioactivity

25. What time interval is required for the activity of a sample of the radioactive isotope 72Sb to decrease by 90.0% from its original value? The half-life of 72Sb is 26 h.

26. A freshly prepared sample of a certain radioactive isotope has an activity of 10.0 mCi. After 4.00 h, its activity is 8.00 mCi. Find (a) the decay constant and (b) the half-life. (c) How many atoms of the isotope were contained in the freshly prepared sample? (d) What is the sample’s activity 30.0 h after it is prepared?

27. A sample of radioactive material contains 1.00 \(\times \) 10\(^{15} \) atoms and has an activity of 6.00 \(\times \) 10\(^{11} \) Bq. What is its half-life?

28. From the equation expressing the law of radioactive decay, derive the following useful expressions for the decay constant and the half-life, in terms of the time interval \(\Delta t \) during which the decay rate decreases from \(R_0 \) to \(R \):

\[
\lambda = \frac{1}{\Delta t} \ln \left(\frac{R_0}{R} \right) \quad T_{1/2} = \frac{(\ln 2) \Delta t}{\ln (R_0/R)}
\]
The radioactive isotope 198Au has a half-life of 64.8 h. A sample containing this isotope has an initial activity \((t = 0)\) of 40.0 μCi. Calculate the number of nuclei that decay in the time interval between \(t_1 = 10.0\) h and \(t_2 = 12.0\) h.

A radioactive nucleus has half-life \(T_{1/2}\). A sample containing these nuclei has initial activity \(R_0\) at \(t = 0\). Calculate the number of nuclei that decay during the interval between the later times \(t_1\) and \(t_2\).

The half-life of 131I is 8.04 days. (a) Calculate the decay constant for this nuclide. (b) Find the number of 131I nuclei necessary to produce a sample with an activity of 6.40 mCi. (c) A sample of 131I with this initial activity decays for 40.2 d. What is the activity at the end of that period?

Tritium has a half-life of 12.33 years. What fraction of the nuclei in a tritium sample will remain (a) after 5.00 yr? (b) After 10.0 yr? (c) After 123.3 yr? (d) According to Equation 44.6, an infinite amount of time is required for the entire sample to decay. Discuss whether that is realistic.

Consider a radioactive sample. Determine the ratio of the number of nuclei decaying during the first half of its half-life to the number of nuclei decaying during the second half of its half-life.

(a) The daughter nucleus formed in radioactive decay is often radioactive. Let \(N_0\) represent the number of parent nuclei at time \(t = 0\), \(N_1(t)\) the number of parent nuclei at time \(t\), and \(\lambda_1\) the decay constant of the parent. Suppose the number of daughter nuclei at time \(t = 0\) is zero. Let \(N_2(t)\) be the number of daughter nuclei at time \(t\) and let \(\lambda_2\) be the decay constant of the daughter. Show that \(N_2(t)\) satisfies the differential equation
\[
\frac{dN_2}{dt} = \lambda_1 N_1 - \lambda_2 N_2.
\]

(b) Verify by substitution that this differential equation has the solution
\[
N_2(t) = \frac{N_0 \lambda_2}{\lambda_1 - \lambda_2} \left(e^{-\lambda_1 t} - e^{-\lambda_2 t} \right)
\]

This equation is the law of successive radioactive decays. (c) 210Po decays into 210Pb with a half-life of 3.10 min, and 210Pb decays into 210Bi with a half-life of 26.8 min. On the same axes, plot graphs of $N_1(t)$ for 210Po and $N_2(t)$ for 210Pb. Let \(N_{20} = 1,000\) nuclei and choose values of \(t\) from 0 to 96 min in 2-min intervals. (d) The curve for 210Pb obtained in part (c) at first rises to a maximum and then starts to decay. At what instant \(t_p\) is the number of 210Pb nuclei a maximum? (e) By applying the condition for a maximum \(dN_2/dt = 0\), derive a symbolic equation for \(t_p\) in terms of \(\lambda_1\) and \(\lambda_2\). (f) Explain whether the value obtained in part (c) agrees with this equation.

Section 44.5 The Decay Processes

Determine which decays can occur spontaneously.

(a) 40Ca \rightarrow e$^-$ + 40K
(b) 40K \rightarrow 40He + 42Mo
(c) 141Nd \rightarrow 4He + 137Ce

A 3H nucleus beta decays into 3He by creating an electron and an antineutrino according to the reaction 3H \rightarrow 3He + e$^-$ + $\bar{\nu}$

Determine the total energy released in this decay.

The 14C isotope undergoes beta decay according to the process given by Equation 44.21. Find the \(Q\) value for this process.

Identify the unknown nuclide or particle (X).

(a) α \rightarrow 65Ni + γ
(b) 215Po \rightarrow X + \(\alpha\)
(c) ν \rightarrow 53Fe + e$^+$ + ν

Find the energy released in the alpha decay 238U \rightarrow 234Th + 4He

A sample consists of 1.00 \times 106 radioactive nuclei with a half-life of 10.0 h. No other nuclei are present at time \(t = 0\). The stable daughter nuclei accumulate in the sample as time goes on. (a) Derive an equation giving the number of daughter nuclei \(N_t\) as a function of time. (b) Sketch or describe a graph of the number of daughter nuclei as a function of time. (c) What are the maximum and minimum numbers of daughter nuclei, and when do they occur? (d) What are the maximum and minimum rates of change in the number of daughter nuclei, and when do they occur?

The nucleus 13O decays by electron capture. The nuclear reaction is written 13O + e$^-$ \rightarrow 13N + ν

(a) Write the process going on for a single particle within the nucleus. (b) Disregarding the daughter’s recoil, determine the energy of the neutrino.

A living specimen in equilibrium with the atmosphere contains one atom of 14C (half-life = 5730 yr) for every 7.70×10^{11} stable carbon atoms. An archeological sample of wood (cellulose, C$_{6}$H$_{10}$O$_{5}$) contains 21.0 mg of carbon. When the sample is placed inside a shielded beta counter with 88.0% counting efficiency, 837 counts are accumulated in one week. We wish to find the age of the sample. (a) Find the number of carbon atoms in the sample. (b) Find the number of carbon-14 atoms in the sample. (c) Find the decay constant for carbon-14 in inverse seconds. (d) Find the initial number of decays per week just after the specimen died. (e) Find the corrected number of decays per week from the current sample. (f) From the answers to parts (d) and (e), find the time interval in years since the specimen died.

Section 44.6 Natural Radioactivity

Uranium is naturally present in rock and soil. At one step in its series of radioactive decays, 238U produces the chemically inert gas radon-222, with a half-life of 3.82 days. The radon seeps out of the ground to mix into the atmosphere, typically making open air radioactive with activity 0.3 pCi/L. In homes, 222Rn can be a serious pollutant, accumulating to reach much higher...
activities in enclosed spaces, sometimes reaching 4.00 pCi/L. If the radon radioactivity exceeds 4.00 pCi/L, the U.S. Environmental Protection Agency suggests taking action to reduce it such as by reducing infiltration of air from the ground. (a) Convert the activity 4.00 pCi/L to units of becquerels per cubic meter. (b) How many 222Rn atoms are in 1 m³ of air displaying this activity? (c) What fraction of the mass of the air does the radon constitute?

44. The most common isotope of radon is 222Rn, which has half-life 3.82 days. (a) What fraction of the nuclei that were on the Earth one week ago are now undecayed? (b) Of those that existed one year ago? (c) In view of these results, explain why radon remains a problem, contributing significantly to our background radiation exposure.

45. Enter the correct nuclide symbol in each open tan rectangle in Figure P44.45, which shows the sequences of decays in the natural radioactive series starting with the long-lived isotope uranium-238 and ending with the stable nucleus lead-207.

![Figure P44.45](image)

46. A rock sample contains traces of 238U, 235U, 232Th, 208Pb, 207Pb, and 206Pb. Analysis shows that the ratio of the amount of 238U to 206Pb is 1.164. (a) Assuming the rock originally contained no lead, determine the age of the rock. (b) What should be the ratios of 235U to 207Pb and of 232Th to 206Pb so that they would yield the same age for the rock? Ignore the minute amounts of the intermediate decay products in the decay chains. Note: This form of multiple dating gives reliable geological dates.

47. A beam of 6.61-MeV protons is incident on a target of W13Al. Those that collide produce the reaction

\[\text{p} + \text{W}_{13} \text{Al} \rightarrow \text{W}_{11} \text{Si} + \text{n} \]

Ignoring any recoil of the product nucleus, determine the kinetic energy of the emerging neutrons.

48. (a) One method of producing neutrons for experimental use is bombardment of light nuclei with alpha particles. In the method used by James Chadwick in 1932, alpha particles emitted by polonium are incident on beryllium nuclei:

\[7\text{He} + 4\text{Be} \rightarrow 12\text{C} + 3\text{n} \]

What is the Q value of this reaction? (b) Neutrons are also often produced by small-particle accelerators. In one design, deuterons accelerated in a Van de Graaff generator bombard other deuterium nuclei and cause the reaction

\[3\text{H} + 2\text{H} \rightarrow 3\text{He} + \text{n} \]

Calculate the Q value of the reaction. (c) Is the reaction in part (b) exothermic or endothermic?

49. Identify the unknown nuclides and particles X and Y in the nuclear reactions (a) X + 3\text{He} → 7\text{Mg} + 3\text{n}, (b) 235\text{U} + \text{n} → 238\text{Sr} + X + 2(\text{He}), and (c) 2(\text{H}) → 3\text{He} + X + Y.

50. Natural gold has only one isotope, 197\text{Au}. If natural gold is irradiated by a flux of slow neutrons, electrons are emitted. (a) Write the reaction equation. (b) Calculate the maximum energy of the emitted electrons.

The following reactions are observed:

\[4\text{Be} + \text{n} \rightarrow 10\text{Be} + \gamma \quad Q = 6.812 \text{ MeV} \]
\[7\text{Be} + \gamma \rightarrow 8\text{Be} + \text{n} \quad Q = -1.665 \text{ MeV} \]

Calculate the masses of 8Be and 10Be in unified mass units to four decimal places from these data.

Section 44.8 Nuclear Magnetic Resonance and Magnetic Resonance Imaging

52. Construct a diagram like that of Figure 44.19 for the cases when I equals (a) \(\frac{1}{2} \) and (b) 4.

53. The radio frequency at which a nucleus having a magnetic moment of magnitude \(\mu \) displays resonance absorption between spin states is called the Larmor frequency and is given by

\[f = \frac{\Delta E}{h} = \frac{2\mu B}{\hbar} \]

Calculate the Larmor frequency for (a) free neutrons in a magnetic field of 1.00 T, (b) free protons in a magnetic field of 1.00 T, and (c) free protons in the Earth’s magnetic field at a location where the magnitude of the field is 50.0 \(\mu \text{T} \).

Additional Problems

54. A wooden artifact is found in an ancient tomb. Its carbon-14 (14\text{C}) activity is measured to be 60.0% of that in a fresh sample of wood from the same region.
Assuming the same amount of 14C was initially present in the artifact as is now contained in the fresh sample, determine the age of the artifact.

55. A 200.0-mCi sample of a radioactive isotope is purchased by a medical supply house. If the sample has a half-life of 14.0 days, how long will it be before its activity is reduced to 20.0 mCi?

56. Why is the following situation impossible? A 18O nucleus is struck by an incoming alpha particle. As a result, a proton and a 12C nucleus leave the site after the reaction.

57. (a) Find the radius of the 12C nucleus. (b) Find the force of repulsion between a proton at the surface of a 12C nucleus and the remaining five protons. (c) How much work (in MeV) has to be done to overcome this electric repulsion in transporting the last proton from a large distance up to the surface of the nucleus? (d) Repeat parts (a), (b), and (c) for 12C.

58. (a) Why is the beta decay $p \rightarrow n + e^+ + \nu$ forbidden for a free proton? (b) What If? Why is the same reaction possible if the proton is bound in a nucleus? For example, the following reaction occurs: $^{13}\text{N} \rightarrow ^{13}\text{C} + e^+ + \nu$

(c) How much energy is released in the reaction given in part (b)?

59. Review. Consider the Bohr model of the hydrogen atom, with the electron in the ground state. The magnetic field at the nucleus produced by the orbiting electron has a value of 12.5 T. (See Problem 6 in Chapter 30.) The proton can have its magnetic moment aligned in either of two directions perpendicular to the plane of the electron's orbit. The interaction of the proton's magnetic moment with the electron's magnetic field causes a difference in energy between the states with the two different orientations of the proton's magnetic moment. Find that energy difference in electron volts.

60. Show that the 239U isotope cannot spontaneously emit a proton by analyzing the hypothetical process $^{239}_{94}\text{U} \rightarrow ^{235}_{92}\text{Pa} + ^1\text{H}$

Note: The 235Pa isotope has a mass of 237.051 144 u.

61. Review. (a) Is the mass of a hydrogen atom in its ground state larger or smaller than the sum of the masses of a proton and an electron? (b) What is the mass difference? (c) How large is the difference as a percentage of the total mass? (d) Is it large enough to affect the value of the atomic mass listed to six decimal places in Table 44.2?

62. Why is the following situation impossible? In an effort to study positronium, a scientist places 57Co and 14C in proximity. The 57Co nuclei decay by e^- emission, and the 14C nuclei decay by e^+ emission. Some of the positrons and electrons from these decays combine to form sufficient amounts of positronium for the scientist to gather data.

63. A by-product of some fission reactors is the isotope $^{239}_{94}\text{Pu}$, an alpha emitter having a half-life of 24 120 yr:

$$^{239}_{94}\text{Pu} \rightarrow ^{235}_{92}\text{U} + \alpha$$

Consider a sample of 1.00 kg of pure $^{239}_{94}\text{Pu}$ at $t = 0$. Calculate (a) the number of $^{239}_{94}\text{Pu}$ nuclei present at $t = 0$ and (b) the initial activity in the sample. (c) What If? For what time interval does the sample have to be stored if a “safe” activity level is 0.100 Bq?

64. After the sudden release of radioactivity from the Chernobyl nuclear reactor accident in 1986, the radioactivity of milk in Poland rose to 2 000 Bq/L due to iodine-131 present in the grass eaten by dairy cattle. Radioactive iodine, with half-life 8.04 days, is particularly hazardous because the thyroid gland concentrates iodine. The Chernobyl accident caused a measurable increase in thyroid cancers among children in Poland and many other Eastern European countries. (a) For comparison, find the activity of milk due to potassium. Assume 1.00 liter of milk contains 2.00 g of potassium, of which 0.0117% is the isotope ^{40}K with half-life 1.28×10^9 yr. (b) After what elapsed time would the activity due to iodine fall below that due to potassium?

65. A theory of nuclear astrophysics proposes that all the elements heavier than iron are formed in supernova explosions ending the lives of massive stars. Assume equal amounts of 235U and 238U were created at the time of the explosion and the present 235U/238U ratio on the Earth is 0.00725. The half-lives of 235U and 238U are 0.704 $\times 10^9$ yr and 4.47 $\times 10^9$ yr, respectively. How long ago did the star(s) explode that released the elements that formed the Earth?

66. The activity of a radioactive sample was measured over 12 h, with the net count rates shown in the accompanying table. (a) Plot the logarithm of the counting rate as a function of time. (b) Determine the decay constant and half-life of the radioactive nuclei in the sample. (c) What counting rate would you expect for the sample at $t = 0$? (d) Assuming the efficiency of the counting instrument is 10.0%, calculate the number of radioactive atoms in the sample at $t = 0$.

<table>
<thead>
<tr>
<th>Time (h)</th>
<th>Counting Rate (counts/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>3 100</td>
</tr>
<tr>
<td>2.00</td>
<td>2 450</td>
</tr>
<tr>
<td>4.00</td>
<td>1 480</td>
</tr>
<tr>
<td>6.00</td>
<td>910</td>
</tr>
<tr>
<td>8.00</td>
<td>545</td>
</tr>
<tr>
<td>10.0</td>
<td>330</td>
</tr>
<tr>
<td>12.0</td>
<td>200</td>
</tr>
</tbody>
</table>

67. When, after a reaction or disturbance of any kind, a nucleus is left in an excited state, it can return to its normal (ground) state by emission of a gamma-ray photon (or several photons). This process is illustrated by Equation 44.25. The emitting nucleus must recoil to
conserve both energy and momentum. (a) Show that the recoil energy of the nucleus is

$$E_r = \frac{(\Delta E)^2}{2Mc^2}$$

where ΔE is the difference in energy between the excited and ground states of a nucleus of mass M.

(b) Calculate the recoil energy of the 57Fe nucleus when it decays by gamma emission from the 14.4-keV excited state. For this calculation, take the mass to be 57 u. Suggestion: Assume $hf << Mr^2$.

68. In a piece of rock from the Moon, the 87Rb content is assayed to be 1.82×10^{10} atoms per gram of material and the 87Sr content is found to be 1.07×10^6 atoms per gram. The relevant decay relating these nuclides is 87Rb $\rightarrow ^{87}$Sr $+ e^- + \gamma$. The half-life of the decay is 4.75×10^{10} yr. (a) Calculate the age of the rock.

(b) What If? Could the material in the rock actually be much older? What assumption is implicit in using the radioactive dating method?

69. Free neutrons have a characteristic half-life of 10.4 min. What fraction of a group of free neutrons with kinetic energy 0.040 eV decays before traveling a distance of 10.0 km?

70. On July 4, 1054, a brilliant light appeared in the constellation Taurus the Bull. The supernova, which could be seen in daylight for some days, was recorded by Arab and Chinese astronomers. As it faded, it remained visible for years, dimming for a time with the 77.1-day half-life of the radioactive cobalt-56 that had been created in the explosion. (a) The remains of the star now form the Crab nebula (see the photograph opening Chapter 34). In it, the cobalt-56 has now decreased to what fraction of its original activity? (b) Suppose that an American, one of the people called the Anasazi, made a charcoal drawing of the supernova. The carbon-14 in the charcoal has now decayed to what fraction of its original activity?

71. When a nucleus decays, it can leave the daughter nucleus in an excited state. The 45Tc nucleus (molar mass 92.910 g/mol) in the ground state decays by electron capture and e^+ emission to energy levels of the daughter (molar mass 92.906 g/mol in the ground state) at 2.44 MeV, 2.03 MeV, 1.48 MeV, and 1.35 MeV. (a) Identify the daughter nuclide. (b) To which of the listed levels of the daughter are electron capture and e^+ decay of 45Tc allowed?

72. The radioactive isotope 137Ba has a relatively short half-life and can be easily extracted from a solution containing its parent 137Cs. This barium isotope is commonly used in an undergraduate laboratory exercise for demonstrating the radioactive decay law. Undergraduate students using modest experimental equipment took the data presented in Figure P44.72. Determine the half-life for the decay of 137Ba using their data.

73. As part of his discovery of the neutron in 1932, James Chadwick determined the mass of the newly identified particle by firing a beam of fast neutrons, all having the same speed, at two different targets and measuring the maximum recoil speeds of the target nuclei. The maximum speeds arise when an elastic head-on collision occurs between a neutron and a stationary target nucleus. (a) Represent the masses and final speeds of the two target nuclei as m_1, v_1, m_2, and v_2 and assume Newtonian mechanics applies. Show that the neutron mass can be calculated from the equation

$$m_n = \frac{m_1 v_1 - m_2 v_2}{v_2 - v_1}$$

(b) Chadwick directed a beam of neutrons (produced from a nuclear reaction) on paraffin, which contains hydrogen. The maximum speed of the protons ejected was found to be 3.30×10^7 m/s. Because the velocity of the neutrons could not be determined directly, a second experiment was performed using neutrons from the same source and nitrogen nuclei as the target. The maximum recoil speed of the nitrogen nuclei was found to be 4.70×10^7 m/s. The masses of a proton and a nitrogen nucleus were taken as 1.00 u and 14.0 u, respectively. What was Chadwick’s value for the neutron mass?

74. When the nuclear reaction represented by Equation 44.28 is endothermic, the reaction energy Q is negative. For the reaction to proceed, the incoming particle must have a minimum energy called the threshold energy, E_{th}. Some fraction of the energy of the incident particle is transferred to the compound nucleus to conserve momentum. Therefore, E_{th} must be greater than Q. (a) Show that

$$E_{th} = -Q\left(1 + \frac{M_A}{M_X}\right)$$

Figure P44.72
(b) Calculate the threshold energy of the incident alpha particle in the reaction

$$^4_2\text{He} + ^{14}_7\text{N} \rightarrow ^{17}_7\text{O} + ^1_1\text{H}$$

75. In an experiment on the transport of nutrients in a plant’s root structure, two radioactive nuclides X and Y are used. Initially, 2.50 times more nuclei of type X are present than of type Y. At a time 3.00 d later, there are 4.20 times more nuclei of type X than of type Y. Isotope Y has a half-life of 1.60 d. What is the half-life of isotope X?

76. In an experiment on the transport of nutrients in a plant’s root structure, two radioactive nuclides X and Y are used. Initially, the ratio of the number of nuclei of type X present to that of type Y is \(r_1 \). After a time interval \(\Delta t \), the ratio of the number of nuclei of type X present to that of type Y is \(r_2 \). Isotope Y has a half-life of \(T_Y \). What is the half-life of isotope X?

Challenge Problems

77. Review. Consider a model of the nucleus in which the positive charge \(Ze \) is uniformly distributed throughout a sphere of radius \(R \). By integrating the energy density \(\frac{1}{2} \varepsilon_0 E^2 \) over all space, show that the electric potential energy may be written

$$ U = \frac{3Z^2e^2}{20\pi\varepsilon_0 R} = \frac{3ke^2}{5R} $$

Problem 72 in Chapter 25 derived the same result by a different method.

78. After determining that the Sun has existed for hundreds of millions of years, but before the discovery of nuclear physics, scientists could not explain why the Sun has continued to burn for such a long time interval. For example, if it were a coal fire, it would have burned up in about 3000 yr. Assume the Sun, whose mass is equal to \(1.99 \times 10^{30} \) kg, originally consisted entirely of hydrogen and its total power output is \(3.85 \times 10^{26} \) W. (a) Assuming the energy-generating mechanism of the Sun is the fusion of hydrogen into helium via the net reaction

$$ 4(\text{H}) + 2(\gamma) \rightarrow ^4_2\text{He} + 2\nu + \gamma $$

calculate the energy (in joules) given off by this reaction. (b) Take the mass of one hydrogen atom to be equal to \(1.67 \times 10^{-27} \) kg. Determine how many hydrogen atoms constitute the Sun. (c) If the total power output remains constant, after what time interval will all the hydrogen be converted into helium, making the Sun die? (d) How does your answer to part (c) compare with current estimates of the expected life of the Sun, which are 4 billion to 7 billion years?
In this chapter, we study two means for deriving energy from nuclear reactions: fission, in which a large nucleus splits into two smaller nuclei, and fusion, in which two small nuclei fuse to form a larger one. In both cases, the released energy can be used either constructively (as in electric power plants) or destructively (as in nuclear weapons). We also examine the ways in which radiation interacts with matter and discuss the structure of fission and fusion reactors. The chapter concludes with a discussion of some industrial and biological applications of radiation.

45.1 Interactions Involving Neutrons

Nuclear fission is the process that occurs in present-day nuclear reactors and ultimately results in energy supplied to a community by electrical transmission. Nuclear fusion is an area of active research, but it has not yet been commercially developed for the supply of energy. We will discuss fission first and then explore fusion in Section 45.4.

To understand nuclear fission and the physics of nuclear reactors, we must first understand how neutrons interact with nuclei. Because of their charge neutrality, neutrons are not subject to Coulomb forces and as a result do not interact electri-
Nuclear Fission

1419

cally with electrons or the nucleus. Therefore, neutrons can easily penetrate deep into an atom and collide with the nucleus.

A fast neutron (energy greater than approximately 1 MeV) traveling through matter undergoes many collisions with nuclei, giving up some of its kinetic energy in each collision. For fast neutrons in some materials, elastic collisions dominate. Materials for which that occurs are called moderators because they slow down (or moderate) the originally energetic neutrons very effectively. Moderator nuclei should be of low mass so that a large amount of kinetic energy is transferred to them when struck by neutrons. For this reason, materials that are abundant in hydrogen, such as paraffin and water, are good moderators for neutrons.

Eventually, most neutrons bombarding a moderator become thermal neutrons, which means they have given up so much of their energy that they are in thermal equilibrium with the moderator material. Their average kinetic energy at room temperature is, from Equation 21.19,

\[K_{\text{avg}} = \frac{3}{2}k_B T = \frac{3}{2}(1.38 \times 10^{-23} \text{ J/K})(300 \text{ K}) = 6.21 \times 10^{-21} \text{ J} \approx 0.04 \text{ eV} \]

which corresponds to a neutron root-mean-square speed of approximately 2 800 m/s. Thermal neutrons have a distribution of speeds, just as the molecules in a container of gas do (see Chapter 21). High-energy neutrons, those with energy of several MeV, thermalize (that is, their average energy reaches \(K_{\text{avg}} \)) in less than 1 ms when they are incident on a moderator.

Once the neutrons have thermalized and the energy of a particular neutron is sufficiently low, there is a high probability the neutron will be captured by a nucleus, an event that is accompanied by the emission of a gamma ray. This neutron capture reaction can be written

\[^{1}n + ^{A\frac{1}{2}}X \rightarrow ^{A+1\frac{1}{2}}X^* \rightarrow ^{A+1\frac{1}{2}}X + \gamma \quad (45.1) \]

Once the neutron is captured, the nucleus \(^{A+1\frac{1}{2}}X^* \) is in an excited state for a very short time before it undergoes gamma decay. The product nucleus \(^{A+1\frac{1}{2}}X \) is usually radioactive and decays by beta emission.

The neutron-capture rate for neutrons passing through any sample depends on the type of atoms in the sample and on the energy of the incident neutrons. The interaction of neutrons with matter increases with decreasing neutron energy because a slow neutron spends a larger time interval in the vicinity of target nuclei.

45.2 Nuclear Fission

As mentioned in Section 44.2, nuclear fission occurs when a heavy nucleus, such as \(^{235}\text{U} \), splits into two smaller nuclei. Fission is initiated when a heavy nucleus captures a thermal neutron as described by the first step in Equation 45.1. The absorption of the neutron creates a nucleus that is unstable and can change to a lower-energy configuration by splitting into two smaller nuclei. In such a reaction, the combined mass of the daughter nuclei is less than the mass of the parent nucleus, and the difference in mass is called the mass defect. Multiplying the mass defect by \(c^2 \) gives the numerical value of the released energy. This energy is in the form of kinetic energy associated with the motion of the neutrons and the daughter nuclei after the fission event. Energy is released because the binding energy per nucleon of the daughter nuclei is approximately 1 MeV greater than that of the parent nucleus (see Fig. 44.5).

Nuclear fission was first observed in 1938 by Otto Hahn (1879–1968) and Fritz Strassmann (1902–1980) following some basic studies by Fermi. After bombarding uranium with neutrons, Hahn and Strassmann discovered among the reaction products two medium-mass elements, barium and lanthanum. Shortly thereafter, Lise Meitner (1878–1968) and her nephew Otto Frisch (1904–1979) explained what had happened. After absorbing a neutron, the uranium nucleus had split into two

Pitfall Prevention 45.1

Binding Energy Reminder

Remember from Chapter 44 that binding energy is the absolute value of the system energy and is related to the system mass. Therefore, when considering Figure 44.5, imagine flipping it upside down for a graph representing system mass. In a fission reaction, the system mass decreases. This decrease in mass appears in the system as kinetic energy of the fission products.
nearly equal fragments plus several neutrons. Such an occurrence was of considerable interest to physicists attempting to understand the nucleus, but it was to have even more far-reaching consequences. Measurements showed that approximately 200 MeV of energy was released in each fission event, and this fact was to affect the course of history in World War II.

The fission of ^{235}U by thermal neutrons can be represented by the reaction

$$^{1}_0\text{n} + ^{235}_{92}\text{U} \rightarrow ^{236}_{92}\text{U}^* \rightarrow X + Y + \text{neutrons}$$

(45.2)

where $^{236}_{92}\text{U}^*$ is an intermediate excited state that lasts for approximately 10^{-12} s before splitting into medium-mass nuclei X and Y, which are called fission fragments. In any fission reaction, there are many combinations of X and Y that satisfy the requirements of conservation of energy and charge. In the case of uranium, for example, approximately 90 daughter nuclei can be formed.

Fission also results in the production of several neutrons, typically two or three. On average, approximately 2.5 neutrons are released per event. A typical fission reaction for uranium is

$$^{1}_0\text{n} + ^{235}_{92}\text{U} \rightarrow ^{141}_{56}\text{Ba} + ^{92}_{36}\text{Kr} + 3^{(1)}_0\text{n}$$

(45.3)

Figure 45.1 shows a pictorial representation of the fission event in Equation 45.3.

Figure 45.2 is a graph of the distribution of fission products versus mass number A. The most probable products have mass numbers $A \approx 95$ and $A \approx 140$. Suppose these products are $^{95}_{39}\text{Y}$ (with 56 neutrons) and $^{140}_{53}\text{I}$ (with 87 neutrons). If these nuclei are located on the graph of Figure 44.4, it is seen that both are well above the line of stability. Because these fragments are very unstable owing to their unusually high number of neutrons, they almost instantaneously release two or three neutrons.

Let’s estimate the disintegration energy Q released in a typical fission process. From Figure 44.5, we see that the binding energy per nucleon is approximately 7.2 MeV for heavy nuclei ($A = 240$) and approximately 8.2 MeV for nuclei of intermediate mass. The amount of energy released is $8.2 \text{ MeV} - 7.2 \text{ MeV} = 1 \text{ MeV}$ per nucleon. Because there are a total of 235 nucleons in $^{235}_{92}\text{U}$, the energy released per fission event is approximately 235 MeV, a large amount of energy relative to the amount released in chemical processes. For example, the energy released in the combustion of one molecule of octane used in gasoline engines is about one-millionth of the energy released in a single fission event!

Quick Quiz 45.1 When a nucleus undergoes fission, the two daughter nuclei are generally radioactive. By which process are they most likely to decay? (a) alpha decay (b) beta decay (c) beta decay (d) beta decay

Quick Quiz 45.2 Which of the following are possible fission reactions?

- (a) $^{1}_0\text{n} + ^{235}_{92}\text{U} \rightarrow ^{140}_{54}\text{Xe} + ^{94}_{38}\text{Sr} + 2^{(1)}_0\text{n}$
- (b) $^{1}_0\text{n} + ^{235}_{92}\text{U} \rightarrow ^{132}_{50}\text{Sn} + ^{101}_{42}\text{Mo} + 3^{(1)}_0\text{n}$
- (c) $^{1}_0\text{n} + ^{239}_{94}\text{Pu} \rightarrow ^{157}_{53}\text{I} + ^{97}_{41}\text{Nb} + 3^{(1)}_0\text{n}$

Example 45.1 The Energy Released in the Fission of ^{235}U

Calculate the energy released when 1.00 kg of ^{235}U fissions, taking the disintegration energy per event to be $Q = 208$ MeV.

Solution Imagine a nucleus of ^{235}U absorbing a neutron and then splitting into two smaller nuclei and several neutrons as in Figure 45.1.
In Section 45.2, we learned that when ^{235}U fissions, one incoming neutron results in an average of 2.5 neutrons emitted per event. These neutrons can trigger other nuclei to fission. Because more neutrons are produced by the event than are absorbed, there is the possibility of an ever-building chain reaction (Fig. 45.3).

Experience shows that if the chain reaction is not controlled (that is, if it does not

45.3 Nuclear Reactors

In Section 45.2, we learned that when ^{235}U fissions, one incoming neutron results in an average of 2.5 neutrons emitted per event. These neutrons can trigger other nuclei to fission. Because more neutrons are produced by the event than are absorbed, there is the possibility of an ever-building chain reaction (Fig. 45.3). Experience shows that if the chain reaction is not controlled (that is, if it does not

Categorize The problem statement tells us to categorize this example as one involving an energy analysis of nuclear fission.

Analyze Because $A = 235$ for uranium, one mole of this isotope has a mass of $M = 235 \text{ g}$.

Find the number of nuclei in our sample in terms of the number of moles n and Avogadro’s number, and then in terms of the sample mass m and the molar mass M of ^{235}U:

\[
N = nN_A = \frac{m}{M}N_A
\]

Find the total energy released when all nuclei undergo fission:

\[
E = NQ = \frac{m}{M}N_AQ = \frac{1.00 \times 10^3 \text{ g}}{235 \text{ g/mol}} \cdot (6.02 \times 10^{23} \text{ mol}^{-1}) \cdot (208 \text{ MeV})
\]

\[
= 5.33 \times 10^{26} \text{ MeV}
\]

Finalize Convert this energy to kWh:

\[
E = (5.33 \times 10^{26} \text{ MeV}) \left(\frac{1.60 \times 10^{-19} \text{ J}}{1 \text{ MeV}} \right) \left(\frac{1 \text{ kWh}}{3.60 \times 10^6 \text{ J}} \right) = 2.37 \times 10^7 \text{ kWh}
\]

which, if released slowly, is enough energy to keep a 100-W lightbulb operating for 30 000 years! If the available fission energy in 1 kg of ^{235}U were suddenly released, it would be equivalent to detonating about 20 000 tons of TNT.

Figure 45.3 A nuclear chain reaction initiated by the capture of a neutron. Uranium nuclei are shown in tan, neutrons in gray, and daughter nuclei in orange.
Applications of Nuclear Physics

A nuclear reactor is a system designed to maintain what is called a self-sustained chain reaction. This important process was first achieved in 1942 by Enrico Fermi and his team at the University of Chicago, using naturally occurring uranium as the fuel.¹ In the first nuclear reactor (Fig. 45.4), Fermi placed bricks of graphite (carbon) between the fuel elements. Carbon nuclei are about 12 times more massive than neutrons, but after several collisions with carbon nuclei, a neutron is slowed sufficiently to increase its likelihood of fission with 235U. In this design, carbon is the moderator; most modern reactors use water as the moderator.

Most reactors in operation today also use uranium as fuel. Naturally occurring uranium contains only 0.7% of the 235U isotope, however, with the remaining 99.3% being 238U. This fact is important to the operation of a reactor because 238U almost never fissions. Instead, it tends to absorb neutrons without a subsequent fission event, producing neptunium and plutonium. For this reason, reactor fuels must be artificially enriched to contain at least a few percent 235U.

To achieve a self-sustained chain reaction, an average of one neutron emitted in each 235U fission must be captured by another 235U nucleus and cause that nucleus to undergo fission. A useful parameter for describing the level of reactor operation is the reproduction constant K, defined as the average number of neutrons from each fission event that cause another fission event. As we have seen, K has an average value of 2.5 in the uncontrolled fission of uranium.

A self-sustained and controlled chain reaction is achieved when $K = 1$. When in this condition, the reactor is said to be critical. When $K < 1$, the reactor is subcritical and the reaction dies out. When $K > 1$, the reactor is supercritical and a runaway reaction occurs. In a nuclear reactor used to furnish power to a utility company, it is necessary to maintain a value of K close to 1. If K rises above this value, the rest energy transformed to internal energy in the reaction could melt the reactor.

Several types of reactor systems allow the kinetic energy of fission fragments to be transformed to other types of energy and eventually transferred out of the

¹Although Fermi’s reactor was the first manufactured nuclear reactor, there is evidence that a natural fission reaction may have sustained itself for perhaps hundreds of thousands of years in a deposit of uranium in Gabon, West Africa. See G. Cowan, “A Natural Fission Reactor,” Scientific American 235(5): 36, 1976.
reactor plant by electrical transmission. The most common reactor in use in the United States is the pressurized-water reactor (Fig. 45.5). We shall examine this type because its main parts are common to all reactor designs. Fission events in the uranium fuel elements in the reactor core raise the temperature of the water contained in the primary loop, which is maintained at high pressure to keep the water from boiling. (This water also serves as the moderator to slow down the neutrons released in the fission events with energy of approximately 2 MeV.) The hot water is pumped through a heat exchanger, where the internal energy of the water is transferred by conduction to the water contained in the secondary loop. The hot water in the secondary loop is converted to steam, which does work to drive a turbine–generator system to create electric power. The water in the secondary loop is isolated from the water in the primary loop to avoid contamination of the secondary water and the steam by radioactive nuclei from the reactor core.

In any reactor, a fraction of the neutrons produced in fission leak out of the uranium fuel elements before inducing other fission events. If the fraction leaking out is too large, the reactor will not operate. The percentage lost is large if the fuel elements are very small because leakage is a function of the ratio of surface area to volume. Therefore, a critical feature of the reactor design is an optimal surface area–to–volume ratio of the fuel elements.

Control of Power Level

Safety is of critical importance in the operation of a nuclear reactor. The reproduction constant K must not be allowed to rise above 1, lest a runaway reaction occur. Consequently, reactor design must include a means of controlling the value of K.

The basic design of a nuclear reactor core is shown in Figure 45.6. The fuel elements consist of uranium that has been enriched in the ^{235}U isotope. To control the power level, control rods are inserted into the reactor core. These rods are made of materials such as cadmium that are very efficient in absorbing neutrons. By adjusting the number and position of the control rods in the reactor core, the K value
can be varied and any power level within the design range of the reactor can be achieved.

Quick Quiz 45.3 To reduce the value of the reproduction constant K, do you (a) push the control rods deeper into the core or (b) pull the control rods farther out of the core?

Safety and Waste Disposal

The 1986 accident at the Chernobyl reactor in Ukraine and the 2011 nuclear disaster caused by the earthquake and tsunami in Japan rightfully focused attention on reactor safety. Unfortunately, at Chernobyl the activity of the materials released immediately after the accident totaled approximately 1.2×10^{19} Bq and resulted in the evacuation of 135,000 people. Thirty individuals died during the accident or shortly thereafter, and data from the Ukraine Radiological Institute suggest that more than 2,500 deaths could be attributed to the Chernobyl accident. In the period 1986–1997, there was a tenfold increase in the number of children contracting thyroid cancer from the ingestion of radioactive iodine in milk from cows that ate contaminated grass. One conclusion of an international conference studying the Ukraine accident was that the main causes of the Chernobyl accident were the coincidence of severe deficiencies in the reactor physical design and a violation of safety procedures. Most of these deficiencies have since been addressed at plants of similar design in Russia and neighboring countries of the former Soviet Union.

The March 2011 accident in Japan was caused by an unfortunate combination of a massive earthquake and subsequent tsunami. The most hard-hit power plant, Fukushima I, shut down automatically after the earthquake. Shutting down a nuclear power plant, however, is not an instantaneous process. Cooling water must continue to be circulated to carry the energy generated by beta decay of the fission by-products out of the reactor core. Unfortunately, the water from the tsunami broke the connection to the power grid, leaving the plant without outside electrical support for circulating the water. While the plant had emergency generators to take over in such a situation, the tsunami inundated the generator rooms, making the generators inoperable. Three of the six reactors at Fukushima experienced meltdown, and there were several explosions. Significant radiation was released into the environment. At the time of this printing, all 54 of Japan’s nuclear power plants have been taken offline, and the Japanese public has expressed strong reluctance to continue with nuclear power.

Commercial reactors achieve safety through careful design and rigid operating protocol, and only when these variables are compromised do reactors pose a danger. Radiation exposure and the potential health risks associated with such exposure are controlled by three layers of containment. The fuel and radioactive fission products are contained inside the reactor vessel. Should this vessel rupture, the reactor building acts as a second containment structure to prevent radioactive material from contaminating the environment. Finally, the reactor facilities must be in a remote location to protect the general public from exposure should radiation escape the reactor building.

A continuing concern about nuclear fission reactors is the safe disposal of radioactive material when the reactor core is replaced. This waste material contains long-lived, highly radioactive isotopes and must be stored over long time intervals in such a way that there is no chance of environmental contamination. At present, sealing radioactive wastes in waterproof containers and burying them in deep geologic repositories seems to be the most promising solution.

Transport of reactor fuel and reactor wastes poses additional safety risks. Accidents during transport of nuclear fuel could expose the public to harmful levels of radiation. The U.S. Department of Energy requires stringent crash tests of all con-
tainers used to transport nuclear materials. Container manufacturers must demonstrate that their containers will not rupture even in high-speed collisions.

Despite these risks, there are advantages to the use of nuclear power to be weighed against the risks. For example, nuclear power plants do not produce air pollution and greenhouse gases as do fossil fuel plants, and the supply of uranium on the Earth is predicted to last longer than the supply of fossil fuels. For each source of energy—whether nuclear, hydroelectric, fossil fuel, wind, solar, or other—the risks must be weighed against the benefits and the availability of the energy source.

45.4 Nuclear Fusion

In Chapter 44, we found that the binding energy for light nuclei ($A < 20$) is much smaller than the binding energy for heavier nuclei, which suggests a process that is the reverse of fission. As mentioned in Section 39.8, when two light nuclei combine to form a heavier nucleus, the process is called nuclear fusion. Because the mass of the final nucleus is less than the combined masses of the original nuclei, there is a loss of mass accompanied by a release of energy.

Two examples of such energy-liberating fusion reactions are as follows:

$$\frac{1}{2} \text{H} + \frac{1}{2} \text{H} \rightarrow \frac{3}{2} \text{He} + e^+ + \nu$$

$$\frac{1}{2} \text{H} + \frac{1}{2} \text{He} \rightarrow \frac{3}{2} \text{He} + e^+ + \nu$$

These reactions occur in the core of a star and are responsible for the outpouring of energy from the star. The second reaction is followed by either hydrogen–helium fusion or helium–helium fusion:

$$\frac{1}{2} \text{He} + \frac{1}{2} \text{He} \rightarrow \frac{1}{2} \text{He} + \frac{1}{2} \text{He} + \frac{1}{2} \text{H} + \frac{1}{2} \text{H}$$

These fusion reactions are the basic reactions in the proton–proton cycle, believed to be one of the basic cycles by which energy is generated in the Sun and other stars that contain an abundance of hydrogen. Most of the energy production takes place in the Sun’s interior, where the temperature is approximately $1.5 \times 10^7 \text{ K}$. Because such high temperatures are required to drive these reactions, they are called thermonuclear fusion reactions. All the reactions in the proton–proton cycle are exothermic. An overview of the cycle is that four protons combine to generate an alpha particle, positrons, gamma rays, and neutrinos.

Quick Quiz 45.4 In the core of a star, hydrogen nuclei combine in fusion reactions. Once the hydrogen has been exhausted, fusion of helium nuclei can occur. If the star is sufficiently massive, fusion of heavier and heavier nuclei can occur once the helium is used up. Consider a fusion reaction involving two nuclei with the same value of A. For this reaction to be exothermic, which of the following values of A are impossible? (a) 12 (b) 20 (c) 28 (d) 64

Example 45.2 Energy Released in Fusion

Find the total energy released in the fusion reactions in the proton–proton cycle.

Solution

Conceptualize The net nuclear result of the proton–proton cycle is to fuse four protons to form an alpha particle. Study the reactions above for the proton–proton cycle to be sure you understand how four protons become an alpha particle.

Categorize We use concepts discussed in this section, so we categorize this example as a substitution problem.

continued
Applications of Nuclear Physics

Terrestrial Fusion Reactions

The enormous amount of energy released in fusion reactions suggests the possibility of harnessing this energy for useful purposes. A great deal of effort is currently under way to develop a sustained and controllable thermonuclear reactor, a fusion power reactor. Controlled fusion is often called the ultimate energy source because of the availability of its fuel source: water. For example, if deuterium were used as the fuel, 0.12 g of it could be extracted from 1 gal of water at a cost of about four cents. This amount of deuterium would release approximately 10^{10} J if all nuclei underwent fusion. By comparison, 1 gal of gasoline releases approximately 10^8 J upon burning and costs far more than four cents.

An additional advantage of fusion reactors is that comparatively few radioactive by-products are formed. For the proton–proton cycle, for instance, the end product is safe, nonradioactive helium. Unfortunately, a thermonuclear reactor that can deliver a net power output spread over a reasonable time interval is not yet a reality, and many difficulties must be resolved before a successful device is constructed.

The Sun's energy is based in part on a set of reactions in which hydrogen is converted to helium. The proton–proton interaction is not suitable for use in a fusion reactor, however, because the event requires very high temperatures and densities. The process works in the Sun only because of the extremely high density of protons in the Sun's interior.

The reactions that appear most promising for a fusion power reactor involve deuterium (2H) and tritium (3H):

\[
\begin{align*}
^7H + ^2H & \rightarrow ^3He + ^1n \quad Q = 3.27 \text{ MeV} \\
^7H + ^3H & \rightarrow ^4He + ^1H \quad Q = 4.03 \text{ MeV} \\
^7H + ^2H & \rightarrow ^3He + ^1n \quad Q = 17.59 \text{ MeV}
\end{align*}
\] (45.4)

As noted earlier, deuterium is available in almost unlimited quantities from our lakes and oceans and is very inexpensive to extract. Tritium, however, is radioactive ($T_{1/2} = 12.3$ yr) and undergoes beta decay to 3He. For this reason, tritium does not occur naturally to any great extent and must be artificially produced.

One major problem in obtaining energy from nuclear fusion is that the Coulomb repulsive force between two nuclei, which carry positive charges, must be overcome before they can fuse. Figure 45.7 is a graph of potential energy as a function of separation distance between two deuterons (deuteron nuclei, each having charge $+e$). The potential energy is positive in the region $r > R$, where the Coulomb repulsive force dominates ($R = 1$ fm), and negative in the region $r < R$, where the nuclear force dominates. The fundamental problem then is to give the two nuclei enough kinetic energy to overcome this repulsive force. This requirement can be accomplished by raising the fuel to extremely high temperatures (to approximately 10^8 K). At these high temperatures, the atoms are ionized and the system consists of a collection of electrons and nuclei, commonly referred to as a plasma.

45.2 continued

Find the initial mass of the system using the atomic mass of hydrogen from Table 44.2:

\[4(1.007825 \text{ u}) = 4.031300 \text{ u}\]

Find the change in mass of the system as this value minus the mass of a 4He atom:

\[4.031300 \text{ u} - 4.002603 \text{ u} = 0.028697 \text{ u}\]

Convert this mass change into energy units:

\[E = 0.028697 \text{ u} \times 931.494 \text{ MeV/u} = 26.7 \text{ MeV}\]
Example 45.3 The Fusion of Two Deuterons

For the nuclear force to overcome the repulsive Coulomb force, the separation distance between two deuterons must be approximately 1.0×10^{-14} m.

(A) Calculate the height of the potential barrier due to the repulsive force.

SOLUTION

Conceptualize Imagine moving two deuterons toward each other. As they move closer together, the Coulomb repulsion force becomes stronger. Work must be done on the system to push against this force, and this work appears in the system of two deuterons as electric potential energy.

Categorize We categorize this problem as one involving the electric potential energy of a system of two charged particles.

Analyze Evaluate the potential energy associated with two charges separated by a distance r (Eq. 25.13) for two deuterons:

$$U = k \frac{q_1 q_2}{r} = k \frac{(\pm e)^2}{r} = \left(8.99 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2\right) \left(1.60 \times 10^{-19} \text{ C}\right)^2 \frac{1}{1.0 \times 10^{-14} \text{ m}}$$

$$= 2.3 \times 10^{-14} \text{ J} = 0.14 \text{ MeV}$$

(B) Estimate the temperature required for a deuteron to overcome the potential barrier, assuming an energy of $\frac{1}{2} k_B T$ per deuteron (where k_B is Boltzmann’s constant).

SOLUTION

Because the total Coulomb energy of the pair is 0.14 MeV, the Coulomb energy per deuteron is equal to 0.07 MeV = 1.1×10^{-14} J.

Set this energy equal to the average energy per deuteron:

$$\frac{1}{2} k_B T = 1.1 \times 10^{-14} \text{ J}$$

Solve for T:

$$T = \frac{2(1.1 \times 10^{-14} \text{ J})}{3(1.38 \times 10^{-23} \text{ J/K})} = 5.6 \times 10^8 \text{ K}$$

(C) Find the energy released in the deuterium–deuterium reaction

$$\frac{2}{3} \text{H} + \frac{2}{3} \text{H} \rightarrow \frac{2}{3} \text{H} + \frac{1}{3} \text{He}$$

SOLUTION

The mass of a single deuterium atom is equal to 2.014 102 u. Therefore, the total mass of the system before the reaction is 4.028 204 u.

Find the sum of the masses after the reaction: $3.016 049 \text{ u} + 1.007 825 \text{ u} = 4.023 874 \text{ u}$

Find the change in mass and convert to energy units:

$4.028 204 \text{ u} - 4.023 874 \text{ u} = 0.004 33 \text{ u}$

$= 0.004 33 \text{ u} \times 931.494 \text{ MeV/u} = 4.03 \text{ MeV}$

Finalize The calculated temperature in part (B) is too high because the particles in the plasma have a Maxwellian speed distribution (Section 21.5) and therefore some fusion reactions are caused by particles in the high-energy tail of this distribution. Furthermore, even those particles that do not have enough energy to overcome the barrier have some probability of tunneling through (Section 41.5). When these effects are taken into account, a temperature of “only” 4×10^8 K appears adequate to fuse two deuterons in a plasma. In part (C), notice that the energy value is consistent with that already given in Equation 45.4.

WHAT IF? Suppose the tritium resulting from the reaction in part (C) reacts with another deuterium in the reaction

$$\frac{2}{3} \text{H} + \frac{2}{3} \text{H} \rightarrow \frac{1}{2} \text{He} + \frac{1}{3} \text{n}$$

How much energy is released in the sequence of two reactions?

continued
Chapter 45 Applications of Nuclear Physics

The temperature at which the power generation rate in any fusion reaction exceeds the loss rate is called the critical ignition temperature T_{ignit}. This temperature for the deuterium–deuterium (D–D) reaction is 4.3×10^8 K. From the relation $E < 2k_B T$, the ignition temperature is equivalent to approximately 52 keV. The critical ignition temperature for the deuterium–tritium (D–T) reaction is approximately 4.5×10^7 K, or only 6 keV. A plot of the power P_{gen} generated by fusion versus temperature for the two reactions is shown in Figure 45.8. The straight green line represents the power P_{lost} lost via the radiation mechanism known as bremsstrahlung (Section 42.8). In this principal mechanism of energy loss, radiation (primarily x-rays) is emitted as the result of electron–ion collisions within the plasma. The intersections of the P_{lost} line with the P_{gen} curves give the critical ignition temperatures.

In addition to the high-temperature requirements, two other critical parameters determine whether or not a thermonuclear reactor is successful: the ion density n and confinement time τ, which is the time interval during which energy injected into the plasma remains within the plasma. British physicist J. D. Lawson (1923–2008) showed that both the ion density and confinement time must be large enough to ensure that more fusion energy is released than the amount required to raise the temperature of the plasma. For a given value of n, the probability of fusion between two particles increases as τ increases. For a given value of τ, the collision rate between nuclei increases as n increases. The product $n\tau$ is referred to as the Lawson number of a reaction. A graph of the value of $n\tau$ necessary to achieve a net energy output for the D–T and D–D reactions at different temperatures is shown in Figure 45.9. In particular, Lawson's criterion states that a net energy output is possible for values of $n\tau$ that meet the following conditions:

\[
\begin{align*}
\text{(D–T)} & \quad n\tau \geq 10^{14} \text{ s/cm}^3 \\
\text{(D–D)} & \quad n\tau \geq 10^{16} \text{ s/cm}^3
\end{align*}
\]

These values represent the minima of the curves in Figure 45.9.
Lawson’s criterion was arrived at by comparing the energy required to raise the temperature of a given plasma with the energy generated by the fusion process. The energy E_{in} required to raise the temperature of the plasma is proportional to the ion density n, which we can express as $E_{\text{in}} = C_1 n$, where C_1 is some constant. The energy generated by the fusion process is proportional to $n^2 \tau$, or $E_{\text{gen}} = C_2 n^2 \tau$. This dependence may be understood by realizing that the fusion energy released is proportional to both the rate at which interacting ions collide ($\propto n^2$) and the confinement time τ. Net energy is produced when $E_{\text{gen}} > E_{\text{in}}$. When the constants C_1 and C_2 are calculated for different reactions, the condition that $E_{\text{gen}} > E_{\text{in}}$ leads to Lawson’s criterion.

Current efforts are aimed at meeting Lawson’s criterion at temperatures exceeding T_{ign}. Although the minimum required plasma densities have been achieved, the problem of confinement time is more difficult. The two basic techniques under investigation for solving this problem are magnetic confinement and inertial confinement.

Magnetic Confinement

Many fusion-related plasma experiments use magnetic confinement to contain the plasma. A toroidal device called a tokamak, first developed in Russia, is shown in Figure 45.10a. A combination of two magnetic fields is used to confine and stabilize the plasma: (1) a strong toroidal field produced by the current in the toroidal windings surrounding a doughnut-shaped vacuum chamber and (2) a weaker “poloidal” field produced by the toroidal current. In addition to confining the plasma, the toroidal current is used to raise its temperature. The resultant helical magnetic field lines spiral around the plasma and keep it from touching the walls of the vacuum chamber. (If the plasma touches the walls, its temperature is reduced and heavy impurities sputtered from the walls “poison” it, leading to large power losses.)

One major breakthrough in magnetic confinement in the 1980s was in the area of auxiliary energy input to reach ignition temperatures. Experiments have shown

1Lawson’s criterion neglects the energy needed to set up the strong magnetic field used to confine the hot plasma in a magnetic confinement approach. This energy is expected to be about 20 times greater than the energy required to raise the temperature of the plasma. It is therefore necessary either to have a magnetic energy recovery system or to use superconducting magnets.
that injecting a beam of energetic neutral particles into the plasma is a very efficient method of raising it to ignition temperatures. Radio-frequency energy input will probably be needed for reactor-size plasmas.

When it was in operation from 1982 to 1997, the Tokamak Fusion Test Reactor (TFTR, Fig. 45.10b) at Princeton University reported central ion temperatures of 510 million degrees Celsius, more than 30 times greater than the temperature at the center of the Sun. The \(n \tau \) values in the TFTR for the D–T reaction were well above \(10^{13} \) s/cm\(^3\) and close to the value required by Lawson’s criterion. In 1991, reaction rates of \(6 \times 10^{17} \) D–T fusions per second were reached in the Joint European Torus (JET) tokamak at Abingon, England.

One of the new generation of fusion experiments is the National Spherical Torus Experiment (NSTX) at the Princeton Plasma Physics Laboratory and shown in Figure 45.10c. This reactor was brought on line in February 1999 and has been running fusion experiments since then. Rather than the doughnut-shaped plasma of a tokamak, the NSTX produces a spherical plasma that has a hole through its center. The major advantage of the spherical configuration is its ability to confine the plasma at a higher pressure in a given magnetic field. This approach could lead to development of smaller, more economical fusion reactors.

An international collaborative effort involving the United States, the European Union, Japan, China, South Korea, India, and Russia is currently under way to build a fusion reactor called ITER. This acronym stands for International Thermonuclear Experimental Reactor, although recently the emphasis has shifted to interpreting “iter” in terms of its Latin meaning, “the way.” One reason proposed for this change is to avoid public misunderstanding and negative connotations toward the word thermonuclear. This facility will address the remaining technological and scientific issues concerning the feasibility of fusion power. The design is completed, and Cadarache, France, was chosen in June 2005 as the reactor site. Construction began in 2007 and will require about 10 years, with fusion operation projected to begin in 2019. If the planned device works as expected, the Lawson number for ITER will be about six times greater than the current record holder, the JT-60U tokamak in Japan. ITER is expected to produce ten times as much output power as input power, and the energy content of the alpha particles inside the reactor will be so intense that they will sustain the fusion reaction, allowing the auxiliary energy sources to be turned off once the reaction is initiated.

Example 45.4 Inside a Fusion Reactor

In 1998, the JT-60U tokamak in Japan operated with a D–T plasma density of \(4.8 \times 10^{13} \) cm\(^{-3}\) at a temperature (in energy units) of 24.1 keV. It confined this plasma inside a magnetic field for 1.1 s.

(A) Do these data meet Lawson’s criterion?

Solution

Conceptualize With the help of the third of Equations 45.4, imagine many such reactions occurring in a plasma of high temperature and high density.

Categorize We use the concept of the Lawson number discussed in this section, so we categorize this example as a substitution problem.

Evaluate the Lawson number for the JT-60U:

\[n \tau = (4.8 \times 10^{13} \text{ cm}^{-3})(1.1 \text{ s}) = 5.3 \times 10^{13} \text{ s/cm}^3 \]

This value is close to meeting Lawson’s criterion of \(10^{14} \) s/cm\(^3\) for a D–T plasma given in Equation 45.5. In fact, scientists recorded a power gain of 1.25, indicating that the reactor operated slightly past the break-even point and produced more energy than it required to maintain the plasma.

(B) How does the plasma density compare with the density of atoms in an ideal gas when the gas is under standard conditions (\(T = 0^\circ \text{C} \) and \(P = 1 \text{ atm} \)?)
45.4 continued

Solution

Find the density of atoms in a sample of ideal gas by evaluating \(\frac{N_A}{V_{\text{mol}}} \), where \(N_A \) is Avogadro’s number and \(V_{\text{mol}} \) is the molar volume of an ideal gas under standard conditions, \(2.24 \times 10^{-2} \text{ m}^3/\text{mol} \):

\[
\frac{N_A}{V_{\text{mol}}} = \frac{6.02 \times 10^{23} \text{ atoms/mol}}{2.24 \times 10^{-2} \text{ m}^3/\text{mol}} = 2.7 \times 10^{25} \text{ atoms/m}^3
\]

This value is more than 500,000 times greater than the plasma density in the reactor.

Inertial Confinement

The second technique for confining a plasma, called *inertial confinement*, makes use of a D–T target that has a very high particle density. In this scheme, the confinement time is very short (typically \(10^{-11} \) to \(10^{-9} \) s), and, because of their own inertia, the particles do not have a chance to move appreciably from their initial positions. Therefore, Lawson’s criterion can be satisfied by combining a high particle density with a short confinement time.

Laser fusion is the most common form of inertial confinement. A small D–T pellet, approximately 1 mm in diameter, is struck simultaneously by several focused, high-intensity laser beams, resulting in a large pulse of input energy that causes the surface of the fuel pellet to evaporate (Fig. 45.11). The escaping particles exert a third-law reaction force on the core of the pellet, resulting in a strong, inwardly moving compressive shock wave. This shock wave increases the pressure and density of the core and produces a corresponding increase in temperature. When the temperature of the core reaches ignition temperature, fusion reactions occur.

One of the leading laser fusion laboratories in the United States is the Omega facility at the University of Rochester in New York. This facility focuses 24 laser beams on the target. Currently under operation at the Lawrence Livermore National Laboratory in Livermore, California, is the National Ignition Facility. The research apparatus there includes 192 laser beams that can be focused on a deuterium–tritium pellet. Construction was completed in early 2009, and a test firing of the lasers in March 2012 broke the record for lasers, delivering 1.87 MJ to a target. This energy is delivered in such a short time interval that the power is immense: 500 trillion watts, more than 1000 times the power used in the United States at any moment.

Fusion Reactor Design

In the D–T fusion reaction

\[
\frac{2}{3} \text{H} + \frac{1}{3} \text{H} \rightarrow \frac{2}{3} \text{He} + \frac{1}{3} \text{n} \quad Q = 17.59 \text{ MeV}
\]

the alpha particle carries 20% of the energy and the neutron carries 80%, or approximately 14 MeV. A diagram of the deuterium–tritium fusion reaction is shown in Figure 45.12. Because the alpha particles are charged, they are primarily absorbed by the plasma, causing the plasma’s temperature to increase. In contrast, the 14-MeV neutrons, being electrically neutral, pass through the plasma and are absorbed by a surrounding blanket material, where their large kinetic energy is extracted and used to generate electric power.

One scheme is to use molten lithium metal as the neutron-absorbing material and to circulate the lithium in a closed heat-exchange loop, thereby producing steam and driving turbines as in a conventional power plant. Figure 45.13 (page 1432) shows a diagram of such a reactor. It is estimated that a blanket of lithium approximately 1 m thick will capture nearly 100% of the neutrons from the fusion of a small D–T pellet.
The capture of neutrons by lithium is described by the reaction
\[^{3}\text{n} + ^{7}\text{Li} \rightarrow ^{3}\text{H} + ^{4}\text{He} \]
where the kinetic energies of the charged tritium \(^{3}\text{H}\) and alpha particle are transformed to internal energy in the molten lithium. An extra advantage of using lithium as the energy-transfer medium is that the tritium produced can be separated from the lithium and returned as fuel to the reactor.

Advantages and Problems of Fusion

If fusion power can ever be harnessed, it will offer several advantages over fission-generated power: (1) low cost and abundance of fuel (deuterium), (2) impossibility of runaway accidents, and (3) decreased radiation hazard. Some of the anticipated problems and disadvantages include (1) scarcity of lithium, (2) limited supply of helium, which is needed for cooling the superconducting magnets used to produce strong confining fields, and (3) structural damage and induced radioactivity caused by neutron bombardment. If such problems and the engineering design factors can be resolved, nuclear fusion may become a feasible source of energy in the twenty-first century.

45.5 Radiation Damage

In Chapter 34, we learned that electromagnetic radiation is all around us in the form of radio waves, microwaves, light waves, and so on. In this section, we describe forms of radiation that can cause severe damage as they pass through matter, such as radiation resulting from radioactive processes and radiation in the form of energetic particles such as neutrons and protons.

The degree and type of damage depend on several factors, including the type and energy of the radiation and the properties of the matter. The metals used in nuclear reactor structures can be severely weakened by high fluxes of energetic neutrons because these high fluxes often lead to metal fatigue. The damage in such situations is in the form of atomic displacements, often resulting in major alterations in the properties of the material.
Radiation damage in biological organisms is primarily due to ionization effects in cells. A cell’s normal operation may be disrupted when highly reactive ions are formed as the result of ionizing radiation. For example, hydrogen and the hydroxyl radical OH^- produced from water molecules can induce chemical reactions that may break bonds in proteins and other vital molecules. Furthermore, the ionizing radiation may affect vital molecules directly by removing electrons from their structure. Large doses of radiation are especially dangerous because damage to a great number of molecules in a cell may cause the cell to die. Although the death of a single cell is usually not a problem, the death of many cells may result in irreversible damage to the organism. Cells that divide rapidly, such as those of the digestive tract, reproductive organs, and hair follicles, are especially susceptible. In addition, cells that survive the radiation may become defective. These defective cells can produce more defective cells and can lead to cancer.

In biological systems, it is common to separate radiation damage into two categories: somatic damage and genetic damage. Somatic damage is that associated with any body cell except the reproductive cells. Somatic damage can lead to cancer or can seriously alter the characteristics of specific organisms. Genetic damage affects only reproductive cells. Damage to the genes in reproductive cells can lead to defective offspring. It is important to be aware of the effect of diagnostic treatments, such as x-rays and other forms of radiation exposure, and to balance the significant benefits of treatment with the damaging effects.

Damage caused by radiation also depends on the radiation’s penetrating power. Alpha particles cause extensive damage, but penetrate only to a shallow depth in a material due to the strong interaction with other charged particles. Neutrons do not interact via the electric force and hence penetrate deeper, causing significant damage. Gamma rays are high-energy photons that can cause severe damage, but often pass through matter without interaction.

Several units have been used historically to quantify the amount, or dose, of any radiation that interacts with a substance.

The roentgen (R) is that amount of ionizing radiation that produces an electric charge of $3.33 \times 10^{-10} \text{ C}$ in 1 cm3 of air under standard conditions.

Equivalently, the roentgen is that amount of radiation that increases the energy of 1 kg of air by $8.76 \times 10^{-3} \text{ J}$.

For most applications, the roentgen has been replaced by the rad (an acronym for radiation absorbed dose):

One rad is that amount of radiation that increases the energy of 1 kg of absorbing material by $1 \times 10^{-2} \text{ J}$.

Although the rad is a perfectly good physical unit, it is not the best unit for measuring the degree of biological damage produced by radiation because damage depends not only on the dose but also on the type of the radiation. For example, a given dose of alpha particles causes about ten times more biological damage than an equal dose of x-rays. The RBE (relative biological effectiveness) factor for a given type of radiation is the number of rads of x-radiation or gamma radiation that produces the same biological damage as 1 rad of the radiation being used. The RBE factors for different types of radiation are given in Table 45.1 (page 1434). The values are only approximate because they vary with particle energy and with the form of the damage. The RBE factor should be considered only a first-approximation guide to the actual effects of radiation.

Finally, the rem (radiation equivalent in man) is the product of the dose in rad and the RBE factor:

$$\text{Dose in rem} = \text{dose in rad} \times \text{RBE}$$

radiation damage in biological organisms is primarily due to ionization effects in cells. a cell’s normal operation may be disrupted when highly reactive ions are formed as the result of ionizing radiation. for example, hydrogen and the hydroxyl radical oh$^-$ produced from water molecules can induce chemical reactions that may break bonds in proteins and other vital molecules. furthermore, the ionizing radiation may affect vital molecules directly by removing electrons from their structure. large doses of radiation are especially dangerous because damage to a great number of molecules in a cell may cause the cell to die. although the death of a single cell is usually not a problem, the death of many cells may result in irreversible damage to the organism. cells that divide rapidly, such as those of the digestive tract, reproductive organs, and hair follicles, are especially susceptible. in addition, cells that survive the radiation may become defective. these defective cells can produce more defective cells and can lead to cancer.

in biological systems, it is common to separate radiation damage into two categories: somatic damage and genetic damage. somatic damage is that associated with any body cell except the reproductive cells. somatic damage can lead to cancer or can seriously alter the characteristics of specific organisms. genetic damage affects only reproductive cells. damage to the genes in reproductive cells can lead to defective offspring. it is important to be aware of the effect of diagnostic treatments, such as x-rays and other forms of radiation exposure, and to balance the significant benefits of treatment with the damaging effects.

damage caused by radiation also depends on the radiation’s penetrating power. alpha particles cause extensive damage, but penetrate only to a shallow depth in a material due to the strong interaction with other charged particles. neutrons do not interact via the electric force and hence penetrate deeper, causing significant damage. gamma rays are high-energy photons that can cause severe damage, but often pass through matter without interaction.

several units have been used historically to quantify the amount, or dose, of any radiation that interacts with a substance.

the roentgen (r) is that amount of ionizing radiation that produces an electric charge of $3.33 \times 10^{-10} \text{ c}$ in 1 cm3 of air under standard conditions.

equivalently, the roentgen is that amount of radiation that increases the energy of 1 kg of air by $8.76 \times 10^{-3} \text{ j}$.

for most applications, the roentgen has been replaced by the rad (an acronym for radiation absorbed dose):

one rad is that amount of radiation that increases the energy of 1 kg of absorbing material by $1 \times 10^{-2} \text{ j}$.

although the rad is a perfectly good physical unit, it is not the best unit for measuring the degree of biological damage produced by radiation because damage depends not only on the dose but also on the type of the radiation. for example, a given dose of alpha particles causes about ten times more biological damage than an equal dose of x-rays. the rbe (relative biological effectiveness) factor for a given type of radiation is the number of rads of x-radiation or gamma radiation that produces the same biological damage as 1 rad of the radiation being used. the rbe factors for different types of radiation are given in table 45.1 (page 1434). the values are only approximate because they vary with particle energy and with the form of the damage. the rbe factor should be considered only a first-approximation guide to the actual effects of radiation.

finally, the rem (radiation equivalent in man) is the product of the dose in rad and the rbe factor:
According to this definition, 1 rem of any two types of radiation produces the same amount of biological damage. Table 45.1 shows that a dose of 1 rad of fast neutrons represents an effective dose of 10 rem, but 1 rad of gamma radiation is equivalent to a dose of only 1 rem.

This discussion has focused on measurements of radiation dosage in units such as rads and rems because these units are still widely used. They have, however, been formally replaced with new SI units. The rad has been replaced with the gray (Gy), equal to 100 rad, and the rem has been replaced with the sievert (Sv), equal to 100 rem. Table 45.2 summarizes the older and the current SI units of radiation dosage.

Low-level radiation from natural sources such as cosmic rays and radioactive rocks and soil delivers to each of us a dose of approximately 2.4 mSv/yr. This radiation, called background radiation, varies with geography, with the main factors being altitude (exposure to cosmic rays) and geology (radon gas released by some rock formations, deposits of naturally radioactive minerals).

The upper limit of radiation dose rate recommended by the U.S. government (apart from background radiation) is approximately 5 mSv/yr. Many occupations involve much higher radiation exposures, so an upper limit of 50 mSv/yr has been set for combined whole-body exposure. Higher upper limits are permissible for certain parts of the body, such as the hands and the forearms. A dose of 4 to 5 Sv results in a mortality rate of approximately 50% (which means that half the people exposed to this radiation level die). The most dangerous form of exposure for most people is either ingestion or inhalation of radioactive isotopes, especially isotopes of those elements the body retains and concentrates, such as 90Sr.

45.6 Uses of Radiation

Nuclear physics applications are extremely widespread in manufacturing, medicine, and biology. In this section, we present a few of these applications and the underlying theories supporting them.

Tracing

Radioactive tracers are used to track chemicals participating in various reactions. One of the most valuable uses of radioactive tracers is in medicine. For example, iodine, a nutrient needed by the human body, is obtained largely through the
intake of iodized salt and seafood. To evaluate the performance of the thyroid, the patient drinks a very small amount of radioactive sodium iodide containing 131I, an artificially produced isotope of iodine (the natural, nonradioactive isotope is 127I). The amount of iodine in the thyroid gland is determined as a function of time by measuring the radiation intensity at the neck area. How much of the isotope 131I remains in the thyroid is a measure of how well that gland is functioning.

A second medical application is indicated in Figure 45.14. A solution containing radioactive sodium is injected into a vein in the leg, and the time at which the radioisotope arrives at another part of the body is detected with a radiation counter. The elapsed time is a good indication of the presence or absence of constrictions in the circulatory system.

Tracers are also useful in agricultural research. Suppose the best method of fertilizing a plant is to be determined. A certain element in a fertilizer, such as nitrogen, can be tagged (identified) with one of its radioactive isotopes. The fertilizer is then sprayed on one group of plants, sprinkled on the ground for a second group, and raked into the soil for a third. A Geiger counter is then used to track the nitrogen through each of the three groups.

Tracing techniques are as wide ranging as human ingenuity can devise. Today, applications range from checking how teeth absorb fluoride to monitoring how cleansers contaminate food-processing equipment to studying deterioration inside an automobile engine. In this last case, a radioactive material is used in the manufacture of the car’s piston rings and the oil is checked for radioactivity to determine the amount of wear on the rings.

Materials Analysis

For centuries, a standard method of identifying the elements in a sample of material has been chemical analysis, which involves determining how the material reacts with various chemicals. A second method is spectral analysis, which works because each element, when excited, emits its own characteristic set of electromagnetic wavelengths. These methods are now supplemented by a third technique, neutron activation analysis. A disadvantage of both chemical and spectral methods is that a fairly large sample of the material must be destroyed for the analysis. In addition, extremely small quantities of an element may go undetected by either method. Neutron activation analysis has an advantage over chemical analysis and spectral analysis in both respects.

When a material is irradiated with neutrons, nuclei in the material absorb the neutrons and are changed to different isotopes, most of which are radioactive. For example, 60Cu absorbs a neutron to become 60Cu, which undergoes beta decay:

$$ ^1_n + ^{60}_{30}Cu \rightarrow ^{60}_{29}Cu \rightarrow ^{60}_{30}Zn + e^- + \bar{\nu} $$
The presence of the copper can be deduced because it is known that 64Cu has a half-life of 5.1 min and decays with the emission of beta particles having a maximum energy of 2.63 MeV. Also emitted in the decay of 64Cu is a 1.04-MeV gamma ray. By examining the radiation emitted by a substance after it has been exposed to neutron irradiation, one can detect extremely small amounts of an element in that substance.

Neutron activation analysis is used routinely in a number of industries. In commercial aviation, for example, it is used to check airline luggage for hidden explosives. One nonroutine use is of historical interest. Napoleon died on the island of St. Helena in 1821, supposedly of natural causes. Over the years, suspicion has existed that his death was not all that natural. After his death, his head was shaved and locks of his hair were sold as souvenirs. In 1961, the amount of arsenic in a sample of this hair was measured by neutron activation analysis, and an unusually large quantity of arsenic was found. (Activation analysis is so sensitive that very small pieces of a single hair could be analyzed.) Results showed that the arsenic was fed to him irregularly. In fact, the arsenic concentration pattern corresponded to the fluctuations in the severity of Napoleon's illness as determined from historical records.

Art historians use neutron activation analysis to detect forgeries. The pigments used in paints have changed throughout history, and old and new pigments react differently to neutron activation. The method can even reveal hidden works of art behind existing paintings because an older, hidden layer of paint reacts differently than the surface layer to neutron activation.

Radiation Therapy

Radiation causes much damage to rapidly dividing cells. Therefore, it is useful in cancer treatment because tumor cells divide extremely rapidly. Several mechanisms can be used to deliver radiation to a tumor. In Section 42.8, we discussed the use of high-energy x-rays in the treatment of cancerous tissue. Other treatment protocols include the use of narrow beams of radiation from a radioactive source. As an example, Figure 45.15 shows a machine that uses 60Co as a source. The 60Co isotope emits gamma rays with photon energies higher than 1 MeV.

In other situations, a technique called brachytherapy is used. In this treatment plan, thin radioactive needles called seeds are implanted in the cancerous tissue. The energy emitted from the seeds is delivered directly to the tumor, reducing the exposure of surrounding tissue to radiation damage. In the case of prostate cancer, the active isotopes used in brachytherapy include 125I and 103Pd.

Food Preservation

Radiation is finding increasing use as a means of preserving food because exposure to high levels of radiation can destroy or incapacitate bacteria and mold spores (Fig. 45.16). Techniques include exposing foods to gamma rays, high-energy electron beams, and x-rays. Food preserved by such exposure can be placed in a sealed container (to keep out new spoiling agents) and stored for long periods of time. There is little or no evidence of adverse effect on the taste or nutritional value of food.
from irradiation. The safety of irradiated foods has been endorsed by the World Health Organization, the Centers for Disease Control and Prevention, the U.S. Department of Agriculture, and the Food and Drug Administration. Irradiation of food is presently permitted in more than 50 countries. Some estimates place the amount of irradiated food in the world as high as 500,000 metric tons each year.

Figure 45.16 The strawberries on the left are untreated and have become moldy. The unspoiled strawberries on the right have been irradiated. The radiation has killed or incapacitated the mold spores that have spoiled the strawberries on the left.

Summary

Concepts and Principles

- **The probability that neutrons are captured as they move through matter generally increases with decreasing neutron energy. A thermal neutron is a slow-moving neutron that has a high probability of being captured by a nucleus in a neutron capture event:**

\[
^n\text{H} + _1^1\text{H} \rightarrow _1^{A+1}\text{X} \rightarrow _1^{A+1}\text{X} + \gamma
\]

- **Nuclear fission** occurs when a very heavy nucleus, such as ^{235}U, splits into two smaller fission fragments. Thermal neutrons can create fission in ^{239}U:

\[
_1^n\text{H} + _1^{235}\text{U} \rightarrow _1^{236}\text{U}^* \rightarrow \text{X} + \text{Y} + \text{neutrons}
\]

- **In nuclear fusion**, two light nuclei fuse to form a heavier nucleus and release energy. The major obstacle in obtaining useful energy from fusion is the large Coulomb repulsive force between the charged nuclei at small separation distances. The temperature required to produce fusion is on the order of 10^9 K, and at this temperature, all matter occurs as a plasma.

- **In a fusion reactor**, the plasma temperature must reach the critical ignition temperature, the temperature at which the power generated by the fusion reactions exceeds the power lost in the system. The most promising fusion reaction is the D–T reaction, which has a critical ignition temperature of approximately 4.5×10^7 K. Two critical parameters in fusion reactor design are ion density ρ and confinement time τ, the time interval during which the interacting particles must be maintained at $T > T_{\text{ign}}$. **Lawson's criterion** states that for the D–T reaction, $\rho \tau \geq 10^{11}$ s/cm3.

- **The reproduction constant K** is the average number of neutrons released from each fission event that cause another event. In a fission reactor, it is necessary to maintain $K \approx 1$. The value of K is affected by such factors as reactor geometry, mean neutron energy, and probability of neutron capture.
1. In a certain fission reaction, a ^{235}U nucleus captures a neutron. This process results in the creation of the products ^{137}I and ^{96}Y along with how many neutrons? (a) 1 (b) 2 (c) 3 (d) 4 (e) 5

2. Which particle is most likely to be captured by a ^{235}U nucleus and cause it to undergo fission? (a) an energetic proton (b) an energetic neutron (c) a slow-moving alpha particle (d) a slow-moving neutron (e) a fast-moving electron

3. In the first nuclear weapon test carried out in New Mexico, the energy released was equivalent to approximately 17 kilotons of TNT. Estimate the mass decrease in the nuclear fuel representing the energy converted from rest energy into other forms in this event. \(\text{Note: One ton of TNT has the energy equivalent of } 4.2 \times 10^9 \text{ J.} \) (a) 1 \(\mu\text{g} \) (b) 1 mg (c) 1 g (d) 1 kg (e) 20 kg

4. Working with radioactive materials at a laboratory over one year, (a) Tom received 1 rem of alpha radiation, (b) Karen received 1 rad of fast neutrons, (c) Paul received 1 rad of thermal neutrons as a whole-body dose, and (d) Ingrid received 1 rad of thermal neutrons to her hands only. Rank these four doses according to the likely amount of biological damage from the greatest to the least, noting any cases of equality.

5. If the moderator were suddenly removed from a nuclear reactor in an electric generating station, what is the most likely consequence? (a) The reactor would go supercritical, and a runaway reaction would occur. (b) The nuclear reaction would proceed in the same way, but the reactor would overheat. (c) The reactor would become subcritical, and the reaction would die out. (d) No change would occur in the reactor’s operation.

6. You may use Figure 44.5 to answer this question. Three nuclear reactions take place, each involving 108 nucleons: (1) eighteen ^6Li nuclei fuse in pairs to form nine ^{12}C nuclei, (2) four nuclei each with 27 nucleons fuse in pairs to form two nuclei with 54 nucleons, and (3) one nucleus with 108 nucleons fissions to form two nuclei with 54 nucleons. Rank these three reactions from the largest positive \(Q\) value (representing energy output) to the largest negative value (representing energy input). Also include \(Q = 0\) in your ranking to make clear which of the reactions put out energy and which absorb energy. Note any cases of equality in your ranking.

7. A device called a bubble chamber uses a liquid (usually liquid hydrogen) maintained near its boiling point. Ions produced by incoming charged particles from nuclear decays leave bubble tracks, which can be photographed. Figure OQ45.7 shows particle tracks in a bubble chamber immersed in a magnetic field. The tracks are generally spirals rather than sections of circles. What is the primary reason for this shape? (a) The magnetic field is not perpendicular to the velocity of the particles. (b) The magnetic field is not uniform in space. (c) The forces on the particles increase with time. (d) The speeds of the particles decrease with time.

8. If an alpha particle and an electron have the same kinetic energy, which undergoes the greater deflection when passed through a magnetic field? (a) The alpha particle does. (b) The electron does. (c) They undergo the same deflection. (d) Neither is deflected.

9. Which of the following fuel conditions is not necessary to operate a self-sustained controlled fusion reactor? (a) The fuel must be at a sufficiently high temperature. (b) The fuel must be radioactive. (c) The fuel must be confined at a sufficiently high density. (d) The fuel must be confined for a sufficiently long period of time. (e) Conditions (a) through (d) are all necessary.

1. What factors make a terrestrial fusion reaction difficult to achieve?

2. Lawson’s criterion states that the product of ion density and confinement time must exceed a certain number before a break-even fusion reaction can occur. Why should these two parameters determine the outcome?

3. Why would a fusion reactor produce less radioactive waste than a fission reactor?

4. Discuss the advantages and disadvantages of fission reactors from the point of view of safety, pollution, and resources. Make a comparison with power generated from the burning of fossil fuels.
5. Discuss the similarities and differences between fusion and fission.

6. If a nucleus captures a slow-moving neutron, the product is left in a highly excited state, with an energy approximately 8 MeV above the ground state. Explain the source of the excitation energy.

7. Discuss the advantages and disadvantages of fusion power from the viewpoint of safety, pollution, and resources.

8. A scintillation crystal can be a detector of radiation when combined with a photomultiplier tube (Section 40.2). The scintillator is usually a solid or liquid material whose atoms are easily excited by radiation. The excited atoms then emit photons when they return to their ground state. The design of the radiation detector in Figure CQ45.8 might suggest that any number of dynodes may be used to amplify a weak signal. What factors do you suppose would limit the amplification in this device?

9. Why is water a better shield against neutrons than lead or steel?
The atomic masses of the fission products are 97.912 735 u for $^{98\text{Zr}}$ and 134.916 450 u for $^{135\text{Te}}$.

10. Seawater contains 3.00 mg of uranium per cubic meter. (a) Given that the average ocean depth is about 4.00 km and water covers two-thirds of the Earth’s surface, estimate the amount of uranium dissolved in the ocean. (b) About 0.700% of naturally occurring uranium is the fissionable isotope ^{235}U. Estimate how long the uranium in the oceans could supply the world’s energy needs at the current usage of 1.50×10^{15} J/s. (c) Where does the dissolved uranium come from? (d) Is it a renewable energy source?

11. Review. Suppose seawater exerts an average frictional drag force of 1.00×10^{6} N on a nuclear-powered ship. The fuel consists of enriched uranium containing 3.40% of the fissionable isotope ^{235}U, and the ship’s reactor has an efficiency of 20.0%. Assuming 200 MeV is released per fission event, how far can the ship travel per kilogram of fuel?

Section 45.3 Nuclear Reactors

12. Assume ordinary soil contains natural uranium in an amount of 1 part per million by mass. (a) How much uranium is in the top 1.00 m of soil on a 1-acre (43 560 ft2) plot of ground, assuming the specific gravity of soil is 4.00? (b) How much of the isotope ^{235}U, appropriate for nuclear reactor fuel, is in this soil? Hint: See Table 44.2 for the percent abundance of ^{235}U.

13. If the reproduction constant is 1.00 25 for a chain reaction in a fission reactor and the average time interval between successive fissions is 1.20 ms, by what factor does the reaction rate increase in one minute?

14. To minimize neutron leakage from a reactor, the ratio of the surface area to the volume should be a minimum. For a given volume V, calculate this ratio for (a) a sphere, (b) a cube, and (c) a parallelepiped of dimensions $a \times a \times 2a$. (d) Which of these shapes would have minimum leakage? Which would have maximum leakage? Explain your answers.

15. The probability of a nuclear reaction increases dramatically when the incident particle is given energy above the “Coulomb barrier,” which is the electric potential energy of the two nuclei when their surfaces barely touch. Compute the Coulomb barrier for the absorption of an alpha particle by a gold nucleus.

16. A large nuclear power reactor produces approximately 3 000 MW of power in its core. Three months after a reactor is shut down, the core power from radioactive by-products is 10.0 MW. Assuming each emission delivers 1.00 MeV of energy to the power, find the activity in becquerels three months after the reactor is shut down.

17. According to one estimate, there are 4.40×10^6 metric tons of world uranium reserves extractable at $130/kg or less. We wish to determine if these reserves are sufficient to supply all the world’s energy needs. About 0.700% of naturally occurring uranium is the fissionable isotope ^{235}U. (a) Calculate the mass of ^{235}U in the reserve in grams. (b) Find the number of moles of ^{235}U in the reserve. (c) Find the number of ^{235}U nuclei in the reserve. (d) Assuming 200 MeV is obtained from each fission reaction and all this energy is captured, calculate the total energy in joules that can be extracted from the reserve. (e) Assuming the rate of world power consumption remains constant at 1.50×10^{15} J/s, how many years could the uranium reserve provide for all the world’s energy needs? (f) What conclusion can be drawn?

18. Why is the following situation impossible? An engineer working on nuclear power makes a breakthrough so that he is able to control what daughter nuclei are created in a fission reaction. By carefully controlling the process, he is able to restrict the fission reactions to just this single possibility: the uranium-235 nucleus absorbs a slow neutron and splits into lanthanum-141 and bromine-94. Using this breakthrough, he is able to design and build a successful nuclear reactor in which only this single process occurs.

19. An all-electric home uses approximately 2 000 kWh of electric energy per month. How much uranium-235 would be required to provide this house with its energy needs for one year? Assume 100% conversion efficiency and 208 MeV released per fission.

20. A particle cannot generally be localized to distances much smaller than its de Broglie wavelength. This fact can be taken to mean that a slow neutron appears to be larger to a target particle than does a fast neutron in the sense that the slow neutron has probabilities of being found over a larger volume of space. For a thermal neutron at room temperature of 300 K, find (a) the linear momentum and (b) the de Broglie wavelength. (c) State how this effective size compares with both nuclear and atomic dimensions.

Section 45.4 Nuclear Fusion

21. When a star has exhausted its hydrogen fuel, it may fuse other nuclear fuels. At temperatures above 1.00×10^8 K, helium fusion can occur. Consider the following processes. (a) Two alpha particles fuse to produce a nucleus A and a gamma ray. What is nucleus A? (b) Nucleus A from part (a) absorbs an alpha particle to produce nucleus B and a gamma ray. What is nucleus B? (c) Find the total energy released in the sequence of reactions given in parts (a) and (b).

22. An all-electric home uses 2 000 kWh of electric energy per month. Assuming all energy released from fusion could be captured, how many fusion events described by the reaction $^1\text{H} + ^3\text{H} \rightarrow ^3\text{He} + ^1\text{H}$ would be required to keep this home running for one year?

23. Find the energy released in the fusion reaction $^1\text{H} + ^2\text{H} \rightarrow ^3\text{He} + \gamma$
24. Two nuclei having atomic numbers Z₁ and Z₂ approach each other with a total energy E. (a) When they are far apart, they interact only by electric repulsion. If they approach to a distance of \(1.00 \times 10^{-14}\) m, the nuclear force suddenly takes over to make them fuse. Find the minimum value of E in terms of Z₁ and Z₂, required to produce fusion. (b) State how E depends on the atomic numbers. (c) If Z₁ = Z₂ = 1, would it be energetically favorable to take Z₁ = Z₂ = 59, or Z₁ = Z₂ = 30, or some other choice? Explain your answer. (d) Evaluate from your expression the minimum energy for fusion for the D–D and D–T reactions (the first and third reactions in Eq. 45.4).

25. (a) Consider a fusion generator built to create 3.00 GW of power. Determine the rate of fuel burning in grams per hour if the D–T reaction is used. (b) Do the same for the D–D reaction, assuming the reaction products are split evenly between (n, ³He) and (p, ³H).

26. **Review.** Consider the deuterium–tritium fusion reaction with the tritium nucleus at rest:

\[^2_1H + ^3_1H \rightarrow ^4_2He + ^1_1n \]

(a) Suppose the reactant nuclei will spontaneously fuse if their surfaces touch. From Equation 44.1, determine the required distance of closest approach between their centers. (b) What is the electric potential energy (in electron volts) at this distance? (c) Suppose the deuteron is fired straight at an originally stationary tritium nucleus with just enough energy to reach the required distance of closest approach. What is the common speed of the deuterium and tritium nuclei, in terms of the initial deuteron speed \(v_1\), as they touch? (d) Use energy methods to find the minimum initial deuteron energy required to achieve fusion. (e) Why does the fusion reaction actually occur at much lower deuteron energies than the energy calculated in part (d)?

27. Of all the hydrogen in the oceans, 0.030% of the mass is deuterium. The oceans have a volume of 317 million m³. (a) If nuclear fusion were controlled and all the deuterium in the oceans were fused to \(^4_2He\), how many joules of energy would be released? (b) **What If?** World power consumption is approximately \(1.50 \times 10^{15}\) W. If consumption were 100 times greater, how many years would the energy calculated in part (a) last?

28. It has been suggested that fusion reactors are safe from explosion because the plasma never contains enough energy to do much damage. (a) In 1992, the TFTR reactor, with a plasma volume of approximately 50.0 m³, achieved an ion temperature of 4.00 \(\times\) 10⁸ K, an ion density of 2.00 \(\times\) 10¹⁵ cm⁻³, and a confinement time of 1.40 s. Calculate the amount of energy stored in the plasma of the TFTR reactor. (b) How many kilograms of water at 270°C could be boiled away by this much energy?

29. To understand why plasma containment is necessary, consider the rate at which an unconfined plasma would be lost. (a) Estimate the rms speed of deuterons in a plasma at a temperature of 4.00 \(\times\) 10⁸ K. **(b) What If?** Estimate the order of magnitude of the time interval during which such a plasma would remain in a 10.0-cm cube if no steps were taken to contain it.

30. Another series of nuclear reactions that can produce energy in the interior of stars is the carbon cycle first proposed by Hans Bethe in 1939, leading to his Nobel Prize in Physics in 1967. This cycle is most efficient when the central temperature in a star is above \(1.6 \times 10^{12}\) K. Because the temperature at the center of the Sun is only \(1.5 \times 10^{9}\) K, the following cycle produces less than 10% of the Sun’s energy. (a) A high-energy proton is absorbed by \(^12_6C\). Another nucleus, \(^12_6A\), is produced in the reaction, along with a gamma ray. Identify nucleus \(A\). (b) Nucleus \(A\) decays through positron emission to form nucleus \(B\). Identify nucleus \(B\). (c) Nucleus \(B\) absorbs a proton to produce nucleus \(C\) and a gamma ray. Identify nucleus \(C\). (d) Nucleus \(C\) absorbs a proton to produce nucleus \(D\) and a gamma ray. Identify nucleus \(D\). (e) Nucleus \(D\) decays through positron emission to produce nucleus \(E\). Identify nucleus \(E\). (f) Nucleus \(F\) absorbs a proton to produce nucleus \(E\) plus an alpha particle. Identify nucleus \(F\). (g) What is the significance of the final nucleus in the last step of the cycle outlined in part (f)?

31. **Review.** To confine a stable plasma, the magnetic energy density in the magnetic field (Eq. 32.14) must exceed the pressure \(2 \pi n k_B T\) of the plasma by a factor of at least 10. In this problem, assume a confinement time \(\tau = 1.00\) s. (a) Using Lawson’s criterion, determine the ion density required for the D–T reaction. (b) From the ignition-temperature criterion, determine the required plasma pressure. (c) Determine the magnitude of the magnetic field required to contain the plasma.

Section 45.5 Radiation Damage

32. Assume an x-ray technician takes an average of eight x-rays per workday and receives a dose of 5.0 rem/yr as a result. (a) Estimate the dose in rem per x-ray taken. (b) Explain how the technician’s exposure compares with low-level background radiation.

33. When gamma rays are incident on matter, the intensity of the gamma rays passing through the material varies with depth \(x\) as \(I(x) = I_0 e^{-\mu x}\), where \(I_0\) is the intensity of the radiation at the surface of the material (at \(x = 0\)) and \(\mu\) is the linear absorption coefficient. For 0.400-MeV gamma rays in lead, the linear absorption coefficient is 1.59 cm⁻¹. (a) Determine the “half-thickness” for lead, that is, the thickness of lead that would absorb half the incident gamma rays. (b) What thickness reduces the radiation by a factor of 10²?

34. When gamma rays are incident on matter, the intensity of the gamma rays passing through the material varies with depth \(x\) as \(I(x) = I_0 e^{-\mu x}\), where \(I_0\) is the intensity of the radiation at the surface of the material (at \(x = 0\)) and \(\mu\) is the linear absorption coefficient. (a) Determine
the “half-thickness” for a material with linear absorption coefficient \(\mu\), that is, the thickness of the material that would absorb half the incident gamma rays. (b) What thickness changes the radiation by a factor of \(1/2\)?

35. **Review.** A particular radioactive source produces 100 mrad of 2.00-MeV gamma rays per hour at a distance of 1.00 m from the source. (a) How long could a person stand at this distance before accumulating an intolerable dose of 1.00 rem? (b) **What If?** Assuming the radioactive source is a point source, at what distance would a person receive a dose of 10.0 mrad/h?

36. A person whose mass is 75.0 kg is exposed to a whole-body dose of 0.250 Gy. How many joules of energy are deposited in the person’s body?

37. **Review.** The danger to the body from a high dose of gamma rays is not due to the amount of energy absorbed; rather, it is due to the ionizing nature of the radiation. As an illustration, calculate the rise in body temperature that results if a “lethal” dose of 1.00 rad is absorbed strictly as internal energy. Take the specific heat of living tissue as 4186 J/kg \cdot °C.

38. **Review.** Why is the following situation impossible? A “clever” technician takes his 20-min coffee break and boils some water for his coffee with an x-ray machine. The machine produces 10.0 rad/s, and the temperature of the water in an insulated cup is initially 50.0°C.

39. A small building has become accidentally contaminated with radioactive technetium-99. The longest-lived material in the building is strontium-90. \(^{90}\text{Sr}\) has an atomic mass 89.907 7 u, and its half-life is 29.1 yr. It is particularly dangerous because it substitutes for calcium in bones.) Assume the building initially contained 5.00 kg of this substance uniformly distributed throughout the building and the safe level is defined as less than 10.0 decays/min (which is small compared with background radiation). How long will the building be unsafe?

40. Technetium-99 is used in certain medical diagnostic procedures. Assume \(1.00 \times 10^{-2}\) g of \(^{99}\text{Tc}\) is injected into a 60.0-kg patient and half of the 0.140-MeV gamma rays are absorbed in the body. Determine the total radiation dose received by the patient.

41. To destroy a cancerous tumor, a dose of gamma radiation with a total energy of 2.12 J is to be delivered in 30.0 days from implanted sealed capsules containing palladium-103. Assume this isotope has a half-life of 17.0 d and emits gamma rays of energy 21.0 keV, which are entirely absorbed within the tumor. (a) Find the initial activity of the set of capsules. (b) Find the total mass of radioactive palladium these “seeds” should contain.

42. Strontium-90 from the testing of nuclear bombs can still be found in the atmosphere. Each decay of \(^{90}\text{Sr}\) releases 1.10 MeV of energy into the bones of a person who has had strontium replace his or her body’s calcium. Assume a 70.0-kg person receives 1.00 ng of \(^{90}\text{Sr}\) from contaminated milk. Take the half-life of \(^{90}\text{Sr}\) to be 29.1 yr. Calculate the absorbed dose rate (in joules per kilogram) in one year.

Section 45.6 Uses of Radiation

43. When gamma rays are incident on matter, the intensity of the gamma rays passing through the material varies with depth \(x\) as \(I(x) = I_0 e^{-\mu x}\), where \(I_0\) is the intensity of the radiation at the surface of the material (at \(x = 0\)) and \(\mu\) is the linear absorption coefficient. For low-energy gamma rays in steel, take the absorption coefficient to be 0.720 mm\(^{-1}\). (a) Determine the “half-thickness” for steel, that is, the thickness of steel that would absorb half the incident gamma rays. (b) In a steel mill, the thickness of sheet steel passing into a roller is measured by monitoring the intensity of gamma radiation reaching a detector below the rapidly moving metal from a small source immediately above the metal. If the thickness of the sheet changes from 0.800 mm to 0.700 mm, by what percentage does the gamma-ray intensity change?

44. A method called neutron activation analysis can be used for chemical analysis at the level of isotopes. When a sample is irradiated by neutrons, radioactive atoms are produced continuously and then decay according to their characteristic half-lives. (a) Assume one species of radioactive nuclei is produced at a constant rate \(R\) and its decay is described by the conventional radioactive decay law. Assuming irradiation begins at time \(t = 0\), show that the number of radioactive atoms accumulated at time \(t\) is

\[
N = \frac{R}{\lambda} (1 - e^{-\lambda t})
\]

(b) What is the maximum number of radioactive atoms that can be produced?

45. You want to find out how many atoms of the isotope \(^{65}\text{Cu}\) are in a small sample of material. You bombard the sample with neutrons to ensure that on the order of 1% of these copper nuclei absorb a neutron. After activation, you turn off the neutron flux and then use a highly efficient detector to monitor the gamma radiation that comes out of the sample. Assume half of the \(^{65}\text{Cu}\) nuclei emit a 1.04-MeV gamma ray in their decay. (The other half of the activated nuclei decay directly to the ground state of \(^{64}\text{Ni}\).) If after 10 min (two half-lives) you have detected \(1.00 \times 10^4\) MeV of photon energy at 1.04 MeV, (a) approximately how many \(^{65}\text{Cu}\) atoms are in the sample? (b) Assume the sample contains natural copper. Refer to the isotopic abundances listed in Table 44.2 and estimate the total mass of copper in the sample.

Additional Problems

46. A fusion reaction that has been considered as a source of energy is the absorption of a proton by a boron-11 nucleus to produce three alpha particles:

\[
^1\text{H} + ^{11}\text{B} \rightarrow 3(^4\text{He})
\]
This reaction is an attractive possibility because boron is easily obtained from the Earth’s crust. A disadvantage is that the protons and boron nuclei must have large kinetic energies for the reaction to take place. This requirement contrasts with the initiation of uranium fission by slow neutrons. (a) How much energy is released in each reaction? (b) Why must the reactant particles have high kinetic energies?

47. Review. A very slow neutron (with speed approximately equal to zero) can initiate the reaction

\[_1^1n + _5^{10}B \rightarrow _3^7Li + _2^4He \]

The alpha particle moves away with speed \(9.25 \times 10^6\) m/s. Calculate the kinetic energy of the lithium nucleus. Use nonrelativistic equations.

48. Review. The first nuclear bomb was a fissioning mass of plutonium-239 that exploded in the Trinity test before dawn on July 16, 1945, at Alamogordo, New Mexico. Enrico Fermi was 14 km away, lying on the ground facing away from the bomb. After the whole sky had flashed with unbelievable brightness, Fermi stood up and began dropping bits of paper to the ground. They first fell at his feet in the calm and silent air. As the shock wave passed, about 40 s after the explosion, the paper then in flight jumped approximately 2.5 m away from ground zero. (a) Equation 17.10 describes the relationship between the pressure amplitude \(\Delta P_{\text{max}}\) of a sinusoidal air compression wave and its displacement amplitude \(s_{\text{max}}\). The compression pulse produced by the bomb explosion was not a sinusoidal wave, but let’s use the same equation to compute an estimate for the pressure amplitude, taking \(\omega \approx 1 \text{ s}^{-1}\) as an estimate for the angular frequency at which the pulse ramps up and down. (b) Find the change in volume \(\Delta V\) of a sphere of radius 14 km when its radius increases by 2.5 m. (c) The energy carried by the blast is the work done by one layer of air on the next as the wave crest passes. An extension of the logic used to derive Equation 20.8 shows that this work is given by \((\Delta P_{\text{max}})(\Delta V)\). Compute an estimate for this energy. (d) Assume the blast wave carried on the order of one-tenth of the explosion’s energy. Make an order-of-magnitude estimate of the bomb yield. (e) One ton of exploding TNT releases 4.2 J of energy. What was the order of magnitude of the energy of the Trinity test in equivalent tons of TNT? Fermi’s immediate knowledge of the bomb yield agreed with that determined days later by analysis of elaborate measurements.

49. On August 6, 1945, the United States dropped on Hiroshima a nuclear bomb that released \(5 \times 10^{15}\) J of energy, equivalent to that from 12 000 tons of TNT. The fission of one \(^{235}_{92}\text{U}\) nucleus releases an average of 208 MeV. Estimate (a) the number of nuclei fissioned and (b) the mass of this \(^{235}_{92}\text{U}\).

50. (a) A student wishes to measure the half-life of a radioactive substance using a small sample. Consecutive clicks of her radiation counter are randomly spaced in time. The counter registers 372 counts during one 5.00-min interval and 337 counts during the next 5.00 min. The average background rate is 15 counts per minute. Find the most probable value for the half-life. (b) Estimate the uncertainty in the half-life determination in part (a). Explain your reasoning.

51. In a Geiger–Mueller tube for detecting radiation (see Problem 68 in Chapter 25), the voltage between the electrodes is typically 1.00 kV and the current pulse discharges a 5.00-pF capacitor. (a) What is the energy amplification of this device for a 0.500-MeV electron? (b) How many electrons participate in the avalanche caused by the single initial electron?

52. Review. Consider a nucleus at rest, which then spontaneously splits into two fragments of masses \(m_1\) and \(m_2\). (a) Show that the fraction of the total kinetic energy carried by fragment \(m_1\) is

\[\frac{K_1}{K_{\text{tot}}} = \frac{m_2}{m_1 + m_2} \]

and the fraction carried by \(m_2\) is

\[\frac{K_2}{K_{\text{tot}}} = \frac{m_1}{m_1 + m_2} \]

assuming relativistic corrections can be ignored. A stationary \(^{238}_{92}\text{U}\) nucleus fissions spontaneously into two primary fragments, \(^{56}_{26}\text{Br}\) and \(^{182}_{70}\text{La}\). (b) Calculate the disintegration energy. The required atomic masses are 86.920 711 u for \(^{56}_{26}\text{Br}\), 148.934 370 u for \(^{182}_{70}\text{La}\), and 236.045 562 u for \(^{238}_{92}\text{U}\). (c) How is the disintegration energy split between the two primary fragments? (d) Calculate the speed of each fragment immediately after the fission.

53. Consider the carbon cycle in Problem 30. (a) Calculate the \(Q\) value for each of the six steps in the carbon cycle listed in Problem 30. (b) In the second and fifth steps of the cycle, the positron that is ejected combines with an electron to form two photons. The energies of these photons must be included in the energy released in the cycle. How much energy is released by these annihilations in each of the two steps? (c) What is the overall energy released in the carbon cycle? (d) Do you think that the energy carried off by the neutrinos is deposited in the star? Explain.

54. A fission reactor is hit by a missile, and 5.00 \(\times\) \(10^6\) Ci of \(^{90}\text{Sr}\), with half-life 29.1 yr, evaporates into the air. The strontium falls out over an area of 104 km2. After what time interval will the activity of the \(^{90}\text{Sr}\) reach the agriculturally “safe” level of 2.00 \(\mu\)Ci/m2?

55. The alpha-emitter plutonium-238 \(^{238}_{94}\text{Pu}\), atomic mass 238.049 560 u, half-life 87.7 yr was used in a nuclear energy source on the Apollo Lunar Surface Experiments Package (Fig. P45.55, page 1444). The energy source, called the Radiosotope Thermoelectric Generator, is the small gray object to the left of the gold-shrouded Central Station in the photograph. Assume the source contains 3.80 kg of \(^{238}\text{Pu}\) and the efficiency
for conversion of radioactive decay energy to energy transferred by electrical transmission is 3.20%. Determine the initial power output of the source.

(b) One chain of reactions in the proton–proton cycle in the Sun’s core is

\[
\frac{\text{H}}{1} + \frac{\text{H}}{1} \rightarrow \frac{\text{He}}{3} + \nu + \gamma
\]

\[
\frac{\text{He}}{3} + \gamma \rightarrow 2\gamma
\]

\[
\frac{\text{H}}{1} + \frac{\text{He}}{3} \rightarrow \frac{3}{3} \text{He} + \gamma
\]

\[
\frac{\text{H}}{1} + \frac{3}{3} \text{He} \rightarrow \frac{4}{2} \text{He} + \nu + \gamma
\]

\[
\nu + \gamma \rightarrow 2\gamma
\]

Based on part (a), what is \(Q_{\text{net}} \), for this sequence?

60. Natural uranium must be processed to produce uranium enriched in \(^{235}\text{U} \) for weapons and power plants. The processing yields a large quantity of nearly pure \(^{238}\text{U} \) as a by-product, called “depleted uranium.” Because of its high mass density, \(^{238}\text{U} \) is used in armor-piercing artillery shells.

(a) Find the edge dimension of a 70.0-kg cube of \(^{238}\text{U} \) (\(\rho = 19.1 \times 10^3 \text{ kg/m}^3 \)).

(b) The isotope \(^{238}\text{U} \) has a long half-life of 4.47 \(\times 10^9 \) yr. As soon as one nucleus decays, a relatively rapid series of 14 steps begins that together constitute the net reaction

\[
^{238}\text{U} \rightarrow 8(^{4}\text{He}) + 6(^{0}\text{He}) + ^{206}\text{Pb} + 6\bar{\nu} + Q_{\text{net}}
\]

Find the net decay energy. (Refer to Table 44.2.)

(c) Argue that a radioactive sample with decay rate \(R \) and decay energy \(Q \) has power output \(P = QR \).

(d) Consider an artillery shell with a jacket of 70.0 kg of \(^{238}\text{U} \). Find its power output due to the radioactivity of the uranium and its daughters. Assume the shell is old enough that the daughters have reached steady-state amounts. Express the power in joules per year.

(e) What If? A 17-year-old soldier of mass 70.0 kg works in an arsenal where many such artillery shells are stored. Assume his radiation exposure is limited to 5.00 rem per year. Find the rate in joules per year at which he can absorb energy of radiation. Assume an average RBE factor of 1.10.

61. Suppose the target in a laser fusion reactor is a sphere of solid hydrogen that has a diameter of \(1.50 \times 10^{-4} \) m and a density of 0.200 g/cm\(^3\). Assume half of the nuclei are \(^{2}\text{H} \) and half are \(^{3}\text{H} \). (a) If 1.00% of a 200-kJ laser pulse is delivered to this sphere, what temperature does the sphere reach? (b) If all the hydrogen fuses according to the D–T reaction, how many joules of energy are released?

62. When photons pass through matter, the intensity \(I \) of the beam (measured in watts per square meter) decreases exponentially according to

\[
I = I_0 e^{-\mu x}
\]

where \(I \) is the intensity of the beam that just passed through a thickness \(x \) of material and \(I_0 \) is the intensity of the incident beam. The constant \(\mu \) is known as the linear absorption coefficient, and its value depends on the absorbing material and the wavelength of the pho-
63. Assume a deuteron and a triton are at rest when they fuse according to the reaction

\[^1H + ^1H \rightarrow ^2He + ^1n \]

Determine the kinetic energy acquired by the neutron.

64. (a) Calculate the energy (in kilowatt-hours) released if 1.00 kg of 239Pu undergoes complete fission and the energy released per fission event is 200 MeV. (b) Calculate the energy (in electron volts) released in the deuteron–tritium fusion reaction

\[^2H + ^3H \rightarrow ^4He + ^1n \]

(c) Calculate the energy (in kilowatt-hours) released if 1.00 kg of deuterium undergoes fusion according to this reaction. (d) What If? Calculate the energy (in kilowatt-hours) released by the combustion of 1.00 kg of carbon in coal if each C + O₂ → CO₂ reaction yields 4.20 eV. (e) List advantages and disadvantages of each of these methods of energy generation.

65. Consider a 1.00-kg sample of natural uranium composed primarily of 235U, a smaller amount (0.720% by mass) of 238U, and a trace (0.005 00%) of 234U, which has a half-life of 2.44 × 10⁸ yr. (a) Find the activity in curies due to each of the isotopes. (b) What fraction of the total activity is due to each isotope? (c) Explain whether the activity of this sample is dangerous.

66. Approximately 1 of every 3 300 water molecules contains one deuterium atom. (a) If all the deuterium nuclei in 1 L of water are fused in pairs according to the D–D fusion reaction \(^{2}H + ^{2}H \rightarrow ^{3}He + n + 3.27\) MeV, how much energy in joules is liberated? (b) What If? Burning gasoline produces approximately \(3.40 \times 10^5\) J/L. State how the energy obtainable from the fusion of the deuterium in 1 L of water compares with the energy liberated from the burning of 1 L of gasoline.

67. Carbon detonations are powerful nuclear reactions that temporarily tear apart the cores inside massive stars late in their lives. These blasts are produced by carbon fusion, which requires a temperature of approximately \(6 \times 10^8\) K to overcome the strong Coulomb repulsion between carbon nuclei. (a) Estimate the repulsive energy barrier to fusion, using the temperature required for carbon fusion. (In other words, what is the average kinetic energy of a carbon nucleus at \(6 \times 10^8\) K?) (b) Calculate the energy (in MeV) released in each of these “carbon-burning” reactions:

\[^{12}C + ^{12}C \rightarrow ^{20}Ne + ^4He \]
\[^{12}C + ^{12}C \rightarrow ^{24}Mg + \gamma \]

(c) Calculate the energy in kilowatt-hours given off when 2.00 kg of carbon completely fuse according to the first reaction.

68. A sealed capsule containing the radiopharmaceutical phosphorus-32, an \(\beta\) emitter, is implanted into a patient’s tumor. The average kinetic energy of the beta particles is 700 keV. The initial activity is 5.22 MBq. Assume the beta particles are completely absorbed in 100 g of tissue. Determine the absorbed dose during a 10.0-day period.

69. A certain nuclear plant generates internal energy at a rate of 3.065 GW and transfers energy out of the plant by electrical transmission at a rate of 1.000 GW. Of the waste energy, 3.0% is ejected to the atmosphere and the remainder is passed into a river. A state law requires that the river water be warmed by no more than 3.50°C when it is returned to the river. (a) Determine the amount of cooling water necessary (in kilograms per hour and cubic meters per hour) to cool the plant. (b) Assume fission generates 7.80 \(\times 10^{10}\) J/g of 235U. Determine the rate of fuel burning (in kilograms per hour) of 235U.

70. The Sun radiates energy at the rate of \(3.85 \times 10^{26}\) W. Suppose the net reaction \(4(\ ^{1}H) + 2(\ _{6}C) \rightarrow \ ^{4}He + 2\nu + \gamma\) accounts for all the energy released. Calculate the number of protons fused per second.

71. During the manufacture of a steel engine component, radioactive iron (\(^{59}\)Fe) with a half-life of 45.1 d is included in the total mass of 0.200 kg. The component is placed in a test engine when the activity due to this isotope is 20.0 \(\mu\)Ci. After a 1 000-h test period, some of the lubricating oil is removed from the engine and found to contain enough \(^{59}\)Fe to produce 800 disintegrations/min/L of oil. The total volume of oil in the engine is 6.50 L. Calculate the total mass worn from the engine component per hour of operation.

72. (a) At time \(t = 0\), a sample of uranium is exposed to a neutron source that causes \(N_0\) nuclei to undergo fission. The sample is in a supercritical state, with a reproduction constant \(K > 1\). A chain reaction occurs that
proliferates fission throughout the mass of uranium. The chain reaction can be thought of as a succession of generations. The N_0 fissions produced initially are the zeroth generation of fissions. From this generation, $N_0 K$ neutrons go off to produce fission of new uranium nuclei. The $N_0 K$ fissions that occur subsequently are the first generation of fissions, and from this generation $N_0 K^2$ neutrons go in search of uranium nuclei in which to cause fission. The subsequent $N_0 K^2$ fissions are the second generation of fissions. This process can continue until all the uranium nuclei have fissioned. Show that the cumulative total of fissions N that have occurred up to and including the nth generation after the zeroth generation is given by

$$N = N_0 \left(\frac{K^{n+1} - 1}{K - 1} \right)$$

(b) Consider a hypothetical uranium weapon made from 5.50 kg of isotopically pure 235U. The chain reaction has a reproduction constant of 1.10 and starts with a zeroth generation of 1.00×10^{20} fissions. The average time interval between one fission generation and the next is 10.0 ns. How long after the zeroth generation does it take the uranium in this weapon to fission completely? (c) Assume the bulk modulus of uranium is 150 GPa. Find the speed of sound in uranium. You may ignore the density difference between 235U and natural uranium. (d) Find the time interval required for a compressional wave to cross the radius of a 5.50-kg sphere of uranium. This time interval indicates how quickly the motion of explosion begins. (e) Fission must occur in a time interval that is short compared with that in part (d); otherwise, most of the uranium will disperse in small chunks without having fissioned. Can the weapon considered in part (b) release the explosive energy of all its uranium? If so, how much energy does it release in equivalent tons of TNT? Assume one ton of TNT releases 4.20 GJ and each uranium fission releases 200 MeV of energy.

73. Assume a photomultiplier tube for detecting radiation has seven dynodes with potentials of 100, 200, 300, . . . , 700 V as shown in Figure P45.73. The average energy required to free an electron from the dynode surface is 10.0 eV. Assume only one electron is incident and the tube functions with 100% efficiency. (a) How many electrons are freed at the first dynode at 100 V? (b) How many electrons are collected at the last dynode? (c) What is the energy available to the counter for all the electrons arriving at the last dynode?

![Figure P45.73](https://www.aswarphysics.weebly.com)
The word *atom* comes from the Greek *atomos*, which means “indivisible.” The early Greeks believed that atoms were the indivisible constituents of matter; that is, they regarded them as elementary particles. After 1932, physicists viewed all matter as consisting of three constituent particles: electrons, protons, and neutrons. Beginning in the 1940s, many “new” particles were discovered in experiments involving high-energy collisions between known particles. The new particles are characteristically very unstable and have very short half-lives, ranging between 10^{-6} s and 10^{-23} s. So far, more than 300 of these particles have been cataloged.

Until the 1960s, physicists were bewildered by the great number and variety of subatomic particles that were being discovered. They wondered whether the particles had no systematic relationship connecting them or whether a pattern was emerging that would provide a better understanding of the elaborate structure in the subatomic world. For example, that the neutron has a magnetic moment despite having zero electric charge (Section 44.8) suggests an underlying structure to the neutron. The periodic table explains how more than 100 elements can be formed from three types of particles (electrons, protons, and
neutrons), which suggests there is, perhaps, a means of forming more than 300 subatomic particles from a small number of basic building blocks.

Recall Figure 1.2, which illustrated the various levels of structure in matter. We studied the atomic structure of matter in Chapter 42. In Chapter 44, we investigated the substructure of the atom by describing the structure of the nucleus. As mentioned in Section 1.2, the protons and neutrons in the nucleus, and a host of other exotic particles, are now known to be composed of six different varieties of particles called quarks. In this concluding chapter, we examine the current theory of elementary particles, in which all matter is constructed from only two families of particles, quarks and leptons. We also discuss how clarifications of such models might help scientists understand the birth and evolution of the Universe.

46.1 The Fundamental Forces in Nature

As noted in Section 5.1, all natural phenomena can be described by four fundamental forces acting between particles. In order of decreasing strength, they are the nuclear force, the electromagnetic force, the weak force, and the gravitational force.

The nuclear force discussed in Chapter 44 is an attractive force between nucleons. It has a very short range and is negligible for separation distances between nucleons greater than approximately 10^{-15} m (about the size of the nucleus). The electromagnetic force, which binds atoms and molecules together to form ordinary matter, has a strength of approximately 10^{-2} times that of the nuclear force. This long-range force decreases in magnitude as the inverse square of the separation between interacting particles. The weak force is a short-range force that tends to produce instability in certain nuclei. It is responsible for decay processes, and its strength is only about 10^{-5} times that of the nuclear force. Finally, the gravitational force is a long-range force that has a strength of only about 10^{-39} times that of the nuclear force. Although this familiar interaction is the force that holds the planets, stars, and galaxies together, its effect on elementary particles is negligible.

In Section 13.3, we discussed the difficulty early scientists had with the notion of the gravitational force acting at a distance, with no physical contact between the interacting objects. To resolve this difficulty, the concept of the gravitational field was introduced. Similarly, in Chapter 23, we introduced the electric field to describe the electric force acting between charged objects, and we followed that with a discussion of the magnetic field in Chapter 29. For each of these types of fields, we developed a particle in a field analysis model. In modern physics, the nature of the interaction between particles is carried a step further. These interactions are described in terms of the exchange of entities called field particles or exchange particles. Field particles are also called gauge bosons.¹ The interacting particles continuously emit and absorb field particles. The emission of a field particle by one particle and its absorption by another manifests as a force between the two interacting particles. In the case of the electromagnetic interaction, for instance, the field particles are photons. In the language of modern physics, the electromagnetic force is said to be mediated by photons, and photons are the field particles of the electromagnetic field. Likewise, the nuclear force is mediated by field particles called gluons. The weak force is mediated by field particles called W and Z bosons, and the gravitational force is proposed to be mediated by field particles called gravitons. These interactions, their ranges, and their relative strengths are summarized in Table 46.1.

¹The word bosons suggests that the field particles have integral spin as discussed in Section 43.8. The word gauge comes from gauge theory, which is a sophisticated mathematical analysis that is beyond the scope of this book.
and negative charges, Anderson placed the cloud chamber in a magnetic field,
energy reactions on the order of several GeV.) To discriminate between positive
rays—mostly energetic protons passing through interstellar space—to initiate high-
electron-like particles of positive charge. (These early experiments used cosmic
was awarded a Nobel Prize in Physics in 1936 for this achievement. Anderson
2Antiparticles for uncharged particles, such as the neutron, are a little more difficult to describe. One basic process
that can detect the existence of an antiparticle is pair annihilation. For example, a neutron and an antineutron can
annihilate to form two gamma rays. Because the photon and the neutral pion do not have distinct antiparticles, pair
annihilation is not observed with either of these particles.

Table 46.1 Particle Interactions

<table>
<thead>
<tr>
<th>Interactions</th>
<th>Relative Strength</th>
<th>Range of Force</th>
<th>Mediating Field Particle</th>
<th>Mass of Field Particle (GeV/c^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuclear</td>
<td>1</td>
<td>Short (= 1 fm)</td>
<td>Gluon</td>
<td>0</td>
</tr>
<tr>
<td>Electromagnetic</td>
<td>10^-2</td>
<td>=</td>
<td>Photon</td>
<td>0</td>
</tr>
<tr>
<td>Weak</td>
<td>10^-5</td>
<td>Short (= 10^-5 fm)</td>
<td>W^+, Z^0 bosons</td>
<td>80.4, 80.4, 91.2</td>
</tr>
<tr>
<td>Gravitational</td>
<td>10^-39</td>
<td>=</td>
<td>Graviton</td>
<td>0</td>
</tr>
</tbody>
</table>

46.2 Positrons and Other Antiparticles

In the 1920s, Paul Dirac developed a relativistic quantum-mechanical description
of the electron that successfully explained the origin of the electron’s spin and
its magnetic moment. His theory had one major problem, however: its relativistic
wave equation required solutions corresponding to negative energy states, and if
negative energy states existed, an electron in a state of positive energy would be
expected to make a rapid transition to one of these states, emitting a photon in the
process.

Dirac circumvented this difficulty by postulating that all negative energy states
are filled. The electrons occupying these negative energy states are collectively
called the Dirac sea. Electrons in the Dirac sea (the blue area in Fig. 46.1) are not
directly observable because the Pauli exclusion principle does not allow them to
react to external forces; there are no available states to which an electron can make
a transition in response to an external force. Therefore, an electron in such a state
acts as an isolated system unless an interaction with the environment is strong
enough to excite the electron to a positive energy state. Such an excitation causes
one of the negative energy states to be vacant as in Figure 46.1, leaving a hole in the
sea of filled states. This process is described by the nonisolated system model: as
energy enters the system by some transfer mechanism, the system energy increases
and the electron is excited to a higher energy level. The hole can react to external forces
and is observable. The hole reacts in a way similar to that of the electron except that
it has a positive charge: it is the antiparticle to the electron.

This theory strongly suggested that an antiparticle exists for every particle, not only
for fermions such as electrons but also for bosons. It has subsequently been verified
that practically every known elementary particle has a distinct antiparticle. Among
the exceptions are the photon and the neutral pion (π^0; see Section 46.3). Following
the construction of high-energy accelerators in the 1950s, many other anti-
particles were revealed. They included the antiproton, discovered by Emilio Segré
(1905–1989) and Owen Chamberlain (1920–2006) in 1955, and the antineutron,
discovered shortly thereafter. The antiparticle for a charged particle has the same
mass as the particle but opposite charge. For example, the electron’s antiparticle
(the positron mentioned in Section 44.4) has a rest energy of 0.511 MeV and a posi-
tive charge of +1.60 × 10^-19 C.

Carl Anderson (1905–1991) observed the positron experimentally in 1932 and
was awarded a Nobel Prize in Physics in 1936 for this achievement. Anderson
discovered the positron while examining tracks created in a cloud chamber
by electron-like particles of positive charge. (These early experiments used cosmic
rays—mostly energetic protons passing through interstellar space—to initiate high-
energy reactions on the order of several GeV.) To discriminate between positive
and negative charges, Anderson placed the cloud chamber in a magnetic field,

![Positrons and Other Antiparticles](https://www.aswarphysics.weebly.com)
causing moving charges to follow curved paths. He noted that some of the electron-like tracks deflected in a direction corresponding to a positively charged particle.

Since Anderson’s discovery, positrons have been observed in a number of experiments. A common source of positrons is pair production. In this process, a gamma-ray photon with sufficiently high energy interacts with a nucleus and an electron–positron pair is created from the photon. (The presence of the nucleus allows the principle of conservation of momentum to be satisfied.) Because the total rest energy of the electron–positron pair is $2m_e^2 = 1.02 \text{ MeV}$ (where m_e is the mass of the electron), the photon must have at least this much energy to create an electron–positron pair. The energy of a photon is converted to rest energy of the electron and positron in accordance with Einstein’s relationship $E_R = mc^2$. If the gamma-ray photon has energy in excess of the rest energy of the electron–positron pair, the excess appears as kinetic energy of the two particles. Figure 46.2 shows early observations of tracks of electron–positron pairs in a bubble chamber created by 300-MeV gamma rays striking a lead sheet.

Quick Quiz 46.1 Given the identification of the particles in Figure 46.2b, is the direction of the external magnetic field in Figure 46.2a (a) into the page, (b) out of the page, or (c) impossible to determine?

The reverse process can also occur. Under the proper conditions, an electron and a positron can annihilate each other to produce two gamma-ray photons that have a combined energy of at least 1.02 MeV:

$$e^- + e^+ \rightarrow 2\gamma$$

Because the initial momentum of the electron–positron system is approximately zero, the two gamma rays travel in opposite directions after the annihilation, satisfying the principle of conservation of momentum for the isolated system.

Electron–positron annihilation is used in the medical diagnostic technique called positron-emission tomography (PET). The patient is injected with a glucose solution containing a radioactive substance that decays by positron emission, and the material is carried throughout the body by the blood. A positron emitted during a decay event in one of the radioactive nuclei in the glucose solution annihilates with an electron in the surrounding tissue, resulting in two gamma-ray photons emitted in opposite directions. A gamma detector surrounding the patient pinpoints the source of the photons and, with the assistance of a computer, displays an image of the sites at which the glucose accumulates. (Glucose metabolizes rapidly in cancerous tumors and accumulates at those sites, providing a strong signal for a PET detector system.) The images from a PET scan can indicate a wide variety of disorders in the brain, including Alzheimer’s disease (Fig. 46.3). In addition, because glucose metabolizes more rapidly in active areas...
of the brain, a PET scan can indicate areas of the brain involved in the activities in which the patient is engaging at the time of the scan, such as language use, music, and vision.

46.3 Mesons and the Beginning of Particle Physics

Physicists in the mid-1930s had a fairly simple view of the structure of matter. The building blocks were the proton, the electron, and the neutron. Three other particles were either known or postulated at the time: the photon, the neutrino, and the positron. Together these six particles were considered the fundamental constituents of matter. With this simple picture, however, no one was able to answer the following important question: the protons in any nucleus should strongly repel one another due to their charges of the same sign, so what is the nature of the force that holds the nucleus together? Scientists recognized that this mysterious force must be much stronger than anything encountered in nature up to that time. This force is the nuclear force discussed in Section 44.1 and examined in historical perspective in the following paragraphs.

The first theory to explain the nature of the nuclear force was proposed in 1935 by Japanese physicist Hideki Yukawa, an effort that earned him a Nobel Prize in Physics in 1949. To understand Yukawa’s theory, recall the introduction of field particles in Section 46.1, which stated that each fundamental force is mediated by a field particle exchanged between the interacting particles. Yukawa used this idea to explain the nuclear force, proposing the existence of a new particle whose exchange between nucleons in the nucleus causes the nuclear force. He established that the range of the force is inversely proportional to the mass of this particle and predicted the mass to be approximately 200 times the mass of the electron. (Yukawa’s predicted particle is not the gluon mentioned in Section 46.1, which is massless and is today considered to be the field particle for the nuclear force.) Because the new particle would have a mass between that of the electron and that of the proton, it was called a meson (from the Greek meso, “middle”).

In efforts to substantiate Yukawa’s predictions, physicists began experimental searches for the meson by studying cosmic rays entering the Earth’s atmosphere. In 1937, Carl Anderson and his collaborators discovered a particle of mass 106 MeV/c², approximately 207 times the mass of the electron. This particle was thought to be Yukawa’s meson. Subsequent experiments, however, showed that the particle interacted very weakly with matter and hence could not be the field particle for the nuclear force. That puzzling situation inspired several theoreticians to propose two mesons having slightly different masses equal to approximately 200 times that of the electron, one having been discovered by Anderson and the other, still undiscovered, predicted by Yukawa. This idea was confirmed in 1947 with the discovery of the π meson (π), or simply pion. The particle discovered by Anderson in 1937, the one initially thought to be Yukawa’s meson, is not really a
meson. (We shall discuss the characteristics of mesons in Section 46.4.) Instead, it takes part in the weak and electromagnetic interactions only and is now called the muon (μ).

The pion comes in three varieties, corresponding to three charge states: π^+, π^-, and π^0. The π^- and π^0 particles (π^0 is the antiparticle of π^+) each have a mass of 139.6 MeV/c^2, and the π^+ mass is 135.0 MeV/c^2. Two muons exist: μ^- and its antiparticle μ^+.

Pions and muons are very unstable particles. For example, the π^-, which has a mean lifetime of 2.6×10^{-8} s, decays to a muon and an antineutrino. The muon, which has a mean lifetime of 2.2 μs, then decays to an electron, a neutrino, and an antineutrino:

$$\pi^- \rightarrow \mu^- + \bar{\nu}$$
$$\mu^- \rightarrow e^- + \nu + \bar{\nu}$$

(46.1)

For chargeless particles (as well as some charged particles, such as the proton), a bar over the symbol indicates an antiparticle, as for the neutrino in beta decay (see Section 44.5). Other antiparticles, such as e^+ and μ^+, use a different notation.

The interaction between two particles can be represented in a simple diagram called a Feynman diagram, developed by American physicist Richard P. Feynman. Figure 46.4 is such a diagram for the electromagnetic interaction between two electrons. A Feynman diagram is a qualitative graph of time on the vertical axis versus space on the horizontal axis. It is qualitative in the sense that the actual values of time and space are not important, but the overall appearance of the graph provides a pictorial representation of the process.

In the simple case of the electron–electron interaction in Figure 46.4, a photon (the field particle) mediates the electromagnetic force between the electrons. Notice that the entire interaction is represented in the diagram as occurring at a single point in time. Therefore, the paths of the electrons appear to undergo a discontinuous change in direction at the moment of interaction. The electron paths shown in Figure 46.4 are different from the actual paths, which would be curved due to the continuous exchange of large numbers of field particles.

In the electron–electron interaction, the photon, which transfers energy and momentum from one electron to the other, is called a virtual photon because it vanishes during the interaction without having been detected. In Chapter 40, we discussed that a photon has energy $E = hf$, where f is its frequency. Consequently, for a system of two electrons initially at rest, the system has energy $2mc^2$ before a virtual photon is released and energy $2mc^2 + hf$ after the virtual photon is released (plus any kinetic energy of the electron resulting from the emission of the photon). Is that a violation of the law of conservation of energy for an isolated system? No; this process does not violate the law of conservation of energy because the virtual

Richard Feynman

American Physicist (1918–1988)

Inspired by Dirac, Feynman developed quantum electrodynamics, the theory of the interaction of light and matter on a relativistic and quantum basis. In 1965, Feynman won the Nobel Prize in Physics. The prize was shared by Feynman, Julian Schwinger, and Sin Itiro Tomonaga. Early in Feynman’s career, he was a leading member of the team developing the first nuclear weapon in the Manhattan Project. Toward the end of his career, he worked on the commission investigating the 1986 Challenger tragedy and demonstrated the effects of cold temperatures on the rubber O-rings used in the space shuttle.

3The antineutrino is another zero-charge particle for which the identification of the antiparticle is more difficult than that for a charged particle. Although the details are beyond the scope of this book, the neutrino and antineutrino can be differentiated by means of the relationship between the linear momentum and the spin angular momentum of the particles.
photon has a very short lifetime \(\Delta t \) that makes the uncertainty in the energy \(\Delta E \approx \hbar/2 \Delta t \) of the system greater than the photon energy. Therefore, within the constraints of the uncertainty principle, the energy of the system is conserved.

Now consider a pion exchange between a proton and a neutron according to Yukawa’s model (Fig. 46.5a). The energy \(\Delta E_R \) needed to create a pion of mass \(m_p \) is given by Einstein’s equation \(\Delta E_R = m_pc^2 \). As with the photon in Figure 46.4, the very existence of the pion would appear to violate the law of conservation of energy if the particle existed for a time interval greater than \(\Delta t \approx \hbar/2 \Delta E_R \) (from the uncertainty principle), where \(\Delta t \) is the time interval required for the pion to transfer from one nucleon to the other. Therefore,

\[
\Delta t = \frac{\hbar}{2 \Delta E_R} = \frac{\hbar}{2m_p c^2}
\]

and the rest energy of the pion is

\[
m_p c^2 = \frac{\hbar}{2 \Delta t} \tag{46.2}
\]

Because the pion cannot travel faster than the speed of light, the maximum distance \(d \) it can travel in a time interval \(\Delta t \) is \(c \Delta t \). Therefore, using Equation 46.2 and \(d = c \Delta t \), we find

\[
m_p c^2 = \frac{\hbar c}{2d} \tag{46.3}
\]

From Table 46.1, we know that the range of the nuclear force is on the order of \(10^{-15} \) fm. Using this value for \(d \) in Equation 46.3, we estimate the rest energy of the pion to be

\[
m_p c^2 \approx \left(1.055 \times 10^{-34} \text{ J} \cdot \text{s}\right) \left(3.00 \times 10^8 \text{ m/s}\right) \frac{2(1 \times 10^{-15} \text{ m})}{2} = 1.6 \times 10^{-11} \text{ J} = 100 \text{ MeV}
\]

which corresponds to a mass of 100 MeV/c² (approximately 200 times the mass of the electron). This value is in reasonable agreement with the observed pion mass.

The concept just described is quite revolutionary. In effect, it says that a system of two nucleons can change into two nucleons plus a pion as long as it returns to its original state in a very short time interval. (Remember that this description is the older historical model, which assumes the pion is the field particle for the nuclear force; the gluon is the actual field particle in current models.) Physicists often say that a nucleon undergoes fluctuations as it emits and absorbs field particles. These fluctuations are a consequence of a combination of quantum mechanics (through the uncertainty principle) and special relativity (through Einstein’s energy-mass relationship \(E_R = mc^2 \)).
In this section, we discussed the field particles that were originally proposed to mediate the nuclear force (pions) and those that mediate the electromagnetic force (photons). The graviton, the field particle for the gravitational force, has yet to be observed. In 1983, W^± and Z^0 particles, which mediate the weak force, were discovered by Italian physicist Carlo Rubbia (b. 1934) and his associates, using a proton–antiproton collider. Rubbia and Simon van der Meer (1925–2011), both at CERN, shared the 1984 Nobel Prize in Physics for the discovery of the W^± and Z^0 particles and the development of the proton–antiproton collider. Figure 46.5b shows a Feynman diagram for a weak interaction mediated by a Z^0 boson.

46.4 Classification of Particles

All particles other than field particles can be classified into two broad categories, hadrons and leptons. The criterion for separating these particles into categories is whether or not they interact via the strong force. The nuclear force between nucleons in a nucleus is a particular manifestation of the strong force, but we will use the term strong force to refer to any interaction between particles made up of quarks. (For more detail on quarks and the strong force, see Section 46.8.) Table 46.2 provides a summary of the properties of hadrons and leptons.

Table 46.2 Some Particles and Their Properties

<table>
<thead>
<tr>
<th>Category</th>
<th>Particle Name</th>
<th>Symbol</th>
<th>Anti-particle</th>
<th>Mass (MeV/c^2)</th>
<th>B</th>
<th>L</th>
<th>L_π</th>
<th>L_µ</th>
<th>L_τ</th>
<th>S</th>
<th>Lifetime(s)</th>
<th>Spin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leptons</td>
<td>Electron</td>
<td>e^-</td>
<td>e^+</td>
<td>0.511</td>
<td>0</td>
<td>+1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Stable</td>
<td>2.60 x 10^-8</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Electron–neutrino</td>
<td>ν_μ</td>
<td>ν_μ^+</td>
<td>< 2 eV/c^2</td>
<td>0</td>
<td>+1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Stable</td>
<td>8.33 x 10^-16</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Muon</td>
<td>μ^-</td>
<td>μ^+</td>
<td>105.7</td>
<td>0</td>
<td>0</td>
<td>+1</td>
<td>0</td>
<td>0</td>
<td>2.20 x 10^-6</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Muon–neutrino</td>
<td>ν_μ</td>
<td>ν_μ^-</td>
<td>< 0.17</td>
<td>0</td>
<td>0</td>
<td>+1</td>
<td>0</td>
<td>0</td>
<td>Stable</td>
<td>10^18</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Tau</td>
<td>τ^-</td>
<td>τ^+</td>
<td>1.781</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>+1</td>
<td>0</td>
<td>< 4 x 10^-15</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tau–neutrino</td>
<td>ν_τ</td>
<td>ν_τ^-</td>
<td>< 0.18</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>+1</td>
<td>0</td>
<td>Stable</td>
<td>2.2 x 10^-21</td>
<td>0</td>
</tr>
<tr>
<td>Mesons</td>
<td>Pion</td>
<td>π^-</td>
<td>π^+</td>
<td>139.6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.60 x 10^-8</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>π^0</td>
<td>π^-</td>
<td>135.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8.33 x 10^-16</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kaon</td>
<td>K^-</td>
<td>K^+</td>
<td>493.7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>+1</td>
<td>1.24 x 10^-8</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>K^0</td>
<td>K^-</td>
<td>497.7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>+1</td>
<td>0.52 x 10^-8</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>K_L</td>
<td>K^-</td>
<td>497.7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>+1</td>
<td>0.52 x 10^-8</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eta</td>
<td>η</td>
<td>Self</td>
<td>548.8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>< 10^-18</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>η'</td>
<td>Self</td>
<td>958</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>< 2.2 x 10^-21</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Baryons</td>
<td>Proton</td>
<td>p</td>
<td>p^-</td>
<td>938.3</td>
<td>+1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Stable</td>
<td>1.4 x 10^-16</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Neutron</td>
<td>n</td>
<td>n^-</td>
<td>939.6</td>
<td>+1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>614</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Lambda</td>
<td>Λ^0</td>
<td>Λ^0</td>
<td>Λ^-</td>
<td>1.156</td>
<td>+1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>2.6 x 10^-10</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Σ^-</td>
<td>Σ^-</td>
<td>Σ^-</td>
<td>1.189</td>
<td>+1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>0.8 x 10^-10</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Σ^0</td>
<td>Σ^-</td>
<td>Σ^-</td>
<td>1.192</td>
<td>+1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>6 x 10^-20</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Σ^-</td>
<td>Σ^-</td>
<td>Σ^-</td>
<td>1.197</td>
<td>+1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>1.5 x 10^-10</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Delta</td>
<td>Δ^+</td>
<td>Δ^-</td>
<td>Δ^-</td>
<td>1.230</td>
<td>+1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6 x 10^-21</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Δ^-</td>
<td>Δ^-</td>
<td>Δ^-</td>
<td>1.231</td>
<td>+1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6 x 10^-21</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Δ^0</td>
<td>Δ^-</td>
<td>Δ^-</td>
<td>1.232</td>
<td>+1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6 x 10^-21</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Δ^-</td>
<td>Δ^-</td>
<td>Δ^-</td>
<td>1.234</td>
<td>+1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6 x 10^-21</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Xi</td>
<td>Ξ^-</td>
<td>Ξ^-</td>
<td>Ξ^-</td>
<td>1.315</td>
<td>+1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-2</td>
<td>2.9 x 10^-10</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ξ^-</td>
<td>Ξ^-</td>
<td>Ξ^-</td>
<td>1.321</td>
<td>+1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-2</td>
<td>1.64 x 10^-10</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Omega</td>
<td>Ω^-</td>
<td>Ω^-</td>
<td>Ω^-</td>
<td>1.672</td>
<td>+1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-3</td>
<td>0.82 x 10^-10</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Hadrons

Particles that interact through the strong force (as well as through the other fundamental forces) are called **hadrons**. The two classes of hadrons, **mesons** and **baryons**, are distinguished by their masses and spins.

Mesons all have zero or integer spin (0 or 1). As indicated in Section 46.3, the name comes from the expectation that Yukawa’s proposed meson mass would lie between the masses of the electron and the proton. Several meson masses do lie in this range, although mesons having masses greater than that of the proton have been found to exist.

All mesons decay finally into electrons, positrons, neutrinos, and photons. The pions are the lightest known mesons and have masses of approximately 1.4×10^2 MeV/c^2, and all three pions—π^+, π^-, and π^0—have a spin of 0. (This spin-0 characteristic indicates that the particle discovered by Anderson in 1937, the muon, is not a meson. The muon has spin $\frac{1}{2}$ and belongs in the **lepton** classification, described below.)

Baryons, the second class of hadrons, have masses equal to or greater than the proton mass (the name **baryon** means “heavy” in Greek), and their spin is always a half-integer value ($\frac{1}{2}$, $\frac{3}{2}$, ...). Protons and neutrons are baryons, as are many other particles. With the exception of the proton, all baryons decay in such a way that the end products include a proton. For example, the baryon called the Ξ^0 hyperon (Greek letter xi) decays to the Λ^0 baryon (Greek letter lambda) in approximately 10^{-10} s. The Λ^0 then decays to a proton and a π^- in approximately 3×10^{-10} s.

Today it is believed that hadrons are not elementary particles but instead are composed of more elementary units called quarks, per Section 46.8.

Leptons

Leptons (from the Greek *leptos*, meaning “small” or “light”) are particles that do not interact by means of the strong force. All leptons have spin $\frac{1}{2}$. Unlike hadrons, which have size and structure, leptons appear to be truly elementary, meaning that they have no structure and are point-like.

Quite unlike the case with hadrons, the number of known leptons is small. Currently, scientists believe that only six leptons exist: the electron, the muon, the tau, and a neutrino associated with each: e^-, μ^-, τ^-, ν_e, ν_μ, and ν_τ. The tau lepton, discovered in 1975, has a mass about twice that of the proton. Direct experimental evidence for the neutrino associated with the tau was announced by the Fermi National Accelerator Laboratory (Fermilab) in July 2000. Each of the six leptons has an antiparticle.

Current studies indicate that neutrinos have a small but nonzero mass. If they do have mass, they cannot travel at the speed of light. In addition, because so many neutrinos exist, their combined mass may be sufficient to cause all the matter in the Universe to eventually collapse into a single point, which might then explode and create a completely new Universe! We shall discuss this possibility in more detail in Section 46.11.

46.5 Conservation Laws

The laws of conservation of energy, linear momentum, angular momentum, and electric charge for an isolated system provide us with a set of rules that all processes must follow. In Chapter 44, we learned that conservation laws are important for understanding why certain radioactive decays and nuclear reactions occur and others do not. In the study of elementary particles, a number of additional conservation laws are important. Although the two described here have no theoretical foundation, they are supported by abundant empirical evidence.
Baryon Number

Experimental results show that whenever a baryon is created in a decay or nuclear reaction, an antibaryon is also created. This scheme can be quantified by assigning every particle a quantum number, the baryon number, as follows: $B = +1$ for all baryons, $B = -1$ for all antibaryons, and $B = 0$ for all other particles. (See Table 46.2.) The law of conservation of baryon number states that whenever a nuclear reaction or decay occurs, the sum of the baryon numbers before the process must equal the sum of the baryon numbers after the process.

If baryon number is conserved, the proton must be absolutely stable. For example, a decay of the proton to a positron and a neutral pion would satisfy conservation of energy, momentum, and electric charge. Such a decay has never been observed, however. The law of conservation of baryon number would be consistent with the absence of this decay because the proposed decay would involve the loss of a baryon. Based on experimental observations as pointed out in Example 46.2, all we can say at present is that protons have a half-life of at least 10^{33} years (the estimated age of the Universe is only 10^{10} years). Some recent theories, however, predict that the proton is unstable. According to this theory, baryon number is not absolutely conserved.

Quick Quiz 46.2 Consider the decays (i) $n \rightarrow \pi^+ + \pi^- + \mu^+ + \mu^-$ and (ii) $n \rightarrow p + \pi^-$. From the following choices, which conservation laws are violated by each decay? (a) energy (b) electric charge (c) baryon number (d) angular momentum (e) no conservation laws

Example 46.1 Checking Baryon Numbers

Use the law of conservation of baryon number to determine whether each of the following reactions can occur:

(A) $p + n \rightarrow p + p + n + \bar{\beta}$

Solution

Conceptualize The mass on the right is larger than the mass on the left. Therefore, one might be tempted to claim that the reaction violates energy conservation. The reaction can indeed occur, however, if the initial particles have sufficient kinetic energy to allow for the increase in rest energy of the system.

Categorize We use a conservation law developed in this section, so we categorize this example as a substitution problem.

Evaluate the total baryon number for the left side of the reaction: $1 + 1 = 2$

Evaluate the total baryon number for the right side of the reaction: $1 + 1 + 1 + (-1) = 2$

Therefore, baryon number is conserved and the reaction can occur.

(B) $p + n \rightarrow p + p + \bar{\beta}$

Solution

Evaluate the total baryon number for the left side of the reaction: $1 + 1 = 2$

Evaluate the total baryon number for the right side of the reaction: $1 + 1 + (-1) = 1$

Because baryon number is not conserved, the reaction cannot occur.
Example 46.2 Detecting Proton Decay

Measurements taken at two neutrino detection facilities, the Irvine–Michigan–Brookhaven detector (Fig. 46.6) and the Super Kamiokande in Japan, indicate that the half-life of protons is at least 10^{33} yr.

(A) Estimate how long we would have to watch, on average, to see a proton in a glass of water decay.

Solution

Conceptualize Imagine the number of protons in a glass of water. Although this number is huge, the probability of a single proton undergoing decay is small, so we would expect to wait for a long time interval before observing a decay.

Categorize Because a half-life is provided in the problem, we categorize this problem as one in which we can apply our statistical analysis techniques from Section 44.4.

Analyze Let’s estimate that a drinking glass contains a number of moles n of water, with a mass of $m = 250$ g and a molar mass $M = 18$ g/mol.

Find the number of molecules of water in the glass:

$$N_{\text{molecules}} = nN_A = \frac{m}{M}N_A$$

Each water molecule contains one proton in each of its two hydrogen atoms plus eight protons in its oxygen atom, for a total of ten protons. Therefore, there are $N = 10N_{\text{molecules}}$ protons in the glass of water.

Find the activity of the protons from Equation 44.7:

$$R = \frac{A}{N} = \frac{\ln 2}{T_{1/2}} \left(\frac{10}{M}N_A \right) = \frac{\ln 2}{10^{33} \text{ yr}} \left(\frac{250 \text{ g}}{18 \text{ g/mol}} \right) \left(6.02 \times 10^{23} \text{ mol}^{-1}\right)$$

$$R = 5.8 \times 10^{-8} \text{ yr}^{-1}$$

Finalize The decay constant represents the probability that one proton decays in one year. The probability that any proton in our glass of water decays in the one-year interval is given by Equation (1). Therefore, we must watch our glass of water for $1/R = 17$ million years! That indeed is a long time interval, as expected.

(B) The Super Kamiokande neutrino facility contains 50 000 metric tons of water. Estimate the average time interval between detected proton decays in this much water if the half-life of a proton is 10^{33} yr.

Solution

Analyze The proton decay rate R in a sample of water is proportional to the number N of protons. Set up a ratio of the decay rate in the Super Kamiokande facility to that in a glass of water:

$$\frac{R_{\text{Kamiokande}}}{R_{\text{glass}}} = \frac{N_{\text{Kamiokande}}}{N_{\text{glass}}} \rightarrow R_{\text{Kamiokande}} = \frac{N_{\text{Kamiokande}}}{N_{\text{glass}}}R_{\text{glass}}$$

The number of protons is proportional to the mass of the sample, so express the decay rate in terms of mass:

$$R_{\text{Kamiokande}} = \frac{m_{\text{Kamiokande}}}{m_{\text{glass}}}R_{\text{glass}}$$

Substitute numerical values:

$$R_{\text{Kamiokande}} = \frac{50000 \text{ metric tons}}{0.250 \text{ kg}} \left(1000 \text{ kg} \right) \left(5.8 \times 10^{-8} \text{ yr}^{-1}\right) = 12 \text{ yr}^{-1}$$

Finalize The average time interval between decays is about one-twelfth of a year, or approximately one month. That is much shorter than the time interval in part (A) due to the tremendous amount of water in the detector facility. Despite this rosy prediction of one proton decay per month, a proton decay has never been observed. This suggests that the half-life of the proton may be larger than 10^{33} years or that proton decay simply does not occur.
Lepton Number

There are three conservation laws involving lepton numbers, one for each variety of lepton. The law of conservation of electron lepton number states that whenever a nuclear reaction or decay occurs, the sum of the electron lepton numbers before the process must equal the sum of the electron lepton numbers after the process.

The electron and the electron neutrino are assigned an electron lepton number $L_e = 1$, and the antileptons e^- and $\bar{\nu}_e$ are assigned an electron lepton number $L_e = 2$. All other particles have $L_e = 0$. For example, consider the decay of the neutron:

$$n \rightarrow p + e^- + \bar{\nu}_e$$

Before the decay, the electron lepton number is $L_e = 0$; after the decay, it is $0 + 1 + (-1) = 0$. Therefore, electron lepton number is conserved. (Baryon number must also be conserved, of course, and it is: before the decay, $B = +1$, and after the decay, $B = +1 + 0 + 0 = +1$.)

Similarly, when a decay involves muons, the muon lepton number L_μ is conserved. The μ^- and the ν_μ are assigned a muon lepton number $L_\mu = 1$, and the antimuons μ^+ and $\bar{\nu}_\mu$ are assigned a muon lepton number $L_\mu = -1$. All other particles have $L_\mu = 0$.

Finally, tau lepton number L_τ is conserved with similar assignments made for the tau lepton, its neutrino, and their two antiparticles.

Quick Quiz 46.3 Consider the following decay: $\pi^0 \rightarrow \mu^- + e^+ + \nu_\mu$. What conservation laws are violated by this decay? (a) energy (b) angular momentum (c) electric charge (d) baryon number (e) electron lepton number (f) muon lepton number (g) tau lepton number (h) no conservation laws

Quick Quiz 46.4 Suppose a claim is made that the decay of the neutron is given by $n \rightarrow p + e^-$. What conservation laws are violated by this decay? (a) energy (b) angular momentum (c) electric charge (d) baryon number (e) electron lepton number (f) muon lepton number (g) tau lepton number (h) no conservation laws

Example 46.3 Checking Lepton Numbers

Use the law of conservation of lepton numbers to determine whether each of the following decay schemes (A) and (B) can occur:

A $\mu^- \rightarrow e^- + \bar{\nu}_e + \nu_\mu$

B $\pi^+ \rightarrow \mu^+ + \nu_\mu + \nu_e$

Solution

Conceptualize Because this decay involves a muon and an electron, L_μ and L_e must each be conserved separately if the decay is to occur.

Categorize We use a conservation law developed in this section, so we categorize this example as a substitution problem.

Evaluate the lepton numbers before the decay:

$\mu^- \rightarrow e^- + \bar{\nu}_e + \nu_\mu$

Evaluate the total lepton numbers after the decay:

$\pi^+ \rightarrow \mu^+ + \nu_\mu + \nu_e$

Therefore, both numbers are conserved and on this basis the decay is possible.
Many particles discovered in the 1950s were produced by the interaction of pions with protons and neutrons in the atmosphere. A group of these—the kaon (K), lambda (Λ), and sigma (Σ) particles—exhibited unusual properties both as they were created and as they decayed; hence, they were called *strange particles*.

One unusual property of strange particles is that they are always produced in pairs. For example, when a pion collides with a proton, a highly probable result is the production of two neutral strange particles (Fig. 46.7):

\[
\pi^- + p \rightarrow K^0 + \Lambda^0
\]

The reaction \(\pi^- + p \rightarrow K^0 + n \), where only one final particle is strange, never occurs, however, even though no previously known conservation laws would be violated and even though the energy of the pion is sufficient to initiate the reaction.

The second peculiar feature of strange particles is that although they are produced in reactions involving the strong interaction at a high rate, they do not decay into particles that interact via the strong force at a high rate. Instead, they decay very slowly, which is characteristic of the weak interaction. Their half-lives are in

Solution

Evaluate the lepton numbers before the decay:

\[L_e = 0 \quad L_{\mu} = 0 \]

Evaluate the total lepton numbers after the decay:

\[L_e = -1 + 1 + 0 = 0 \quad L_{\mu} = 0 + 0 + 1 = 1 \]

Therefore, the decay is not possible because electron lepton number is not conserved.

Figure 46.7 This bubble-chamber photograph shows many events, and the inset is a drawing of identified tracks. The strange particles \(\Lambda^0 \) and \(K^0 \) are formed at the bottom as a \(\pi^- \) particle interacts with a proton in the reaction \(\pi^- + p \rightarrow K^0 + \Lambda^0 \). (Notice that the neutral particles leave no tracks, as indicated by the dashed lines in the inset.) The \(\Lambda^0 \) then decays in the reaction \(\Lambda^0 \rightarrow \pi^- + p \) and the \(K^0 \) in the reaction \(K^0 \rightarrow \pi^+ + \mu^- + \bar{\nu}_\mu \).
the range 10^{-10} s to 10^{-8} s, whereas most other particles that interact via the strong force have much shorter lifetimes on the order of 10^{-23} s.

To explain these unusual properties of strange particles, a new quantum number S, called \textbf{strangeness}, was introduced, together with a conservation law. The strangeness numbers for some particles are given in Table 46.2. The production of strange particles in pairs is handled mathematically by assigning $S = +1$ to one of the particles, $S = -1$ to the other, and $S = 0$ to all nonstrange particles. The \textbf{law of conservation of strangeness} states that in a nuclear reaction or decay that occurs via the strong force, strangeness is conserved; that is, the sum of the strangeness numbers before the process must equal the sum of the strangeness numbers after the process. In processes that occur via the weak interaction, strangeness may not be conserved.

The low decay rate of strange particles can be explained by assuming the strong and electromagnetic interactions obey the law of conservation of strangeness but the weak interaction does not. Because the decay of a strange particle involves the loss of one strange particle, it violates strangeness conservation and hence proceeds slowly via the weak interaction.

\textbf{Example 46.4} \hspace{1cm} \textbf{Is Strangeness Conserved?}

\textbf{(A)} Use the law of strangeness conservation to determine whether the reaction $\pi^0 + n \rightarrow K^+ + \Sigma^-$ occurs.

\textbf{SOLUTION}

\textbf{Conceptualize} We recognize that there are strange particles appearing in this reaction, so we see that we will need to investigate conservation of strangeness.

\textbf{Categorize} We use a conservation law developed in this section, so we categorize this example as a substitution problem.

Evaluate the strangeness for the left side of the reaction: $S = 0 + 0 = 0$

Evaluate the strangeness for the right side of the reaction: $S = +1 - 1 = 0$

Therefore, strangeness is conserved and the reaction is allowed.

\textbf{(B)} Show that the reaction $\pi^- + p \rightarrow \pi^- + \Sigma^+$ does not conserve strangeness.

\textbf{SOLUTION}

Evaluate the strangeness for the left side of the reaction: $S = 0 + 0 = 0$

Evaluate the strangeness for the right side of the reaction: $S = 0 + (-1) = -1$

Therefore, strangeness is not conserved.

\textbf{46.7 Finding Patterns in the Particles}

One tool scientists use is the detection of patterns in data, patterns that contribute to our understanding of nature. For example, Table 21.2 shows a pattern of molar specific heats of gases that allows us to understand the differences among monatomic, diatomic, and polyatomic gases. Figure 42.20 shows a pattern of peaks in the ionization energy of atoms that relate to the quantized energy levels in the
Figure 46.9

The pattern for the higher-mass, spin-$\frac{3}{2}$ baryons known at the time the pattern was proposed.
and Ξ^+ are excited states of the particles Σ^+, Σ^0, Σ^-, Ξ^0, and Ξ^-. In these higher-energy states, the spins of the three quarks—see Section 46.8—making up the particle are aligned so that the total spin of the particle is $\frac{3}{2}$. When this pattern was proposed, an empty spot occurred in it (at the bottom position), corresponding to a particle that had never been observed. Gell-Mann predicted that the missing particle, which he called the omega minus (Ω^-), should have spin $\frac{3}{2}$, charge -1, strangeness -3, and rest energy of approximately 1 680 MeV. Shortly thereafter, in 1964, scientists at the Brookhaven National Laboratory found the missing particle through careful analyses of bubble-chamber photographs (Fig. 46.10) and confirmed all its predicted properties.

The prediction of the missing particle in the eightfold way has much in common with the prediction of missing elements in the periodic table. Whenever a vacancy occurs in an organized pattern of information, experimentalists have a guide for their investigations.

46.8 Quarks

As mentioned earlier, leptons appear to be truly elementary particles because there are only a few types of them, and experiments indicate that they have no measurable size or internal structure. Hadrons, on the other hand, are complex particles having size and structure. The existence of the strangeness–charge patterns of the eightfold way suggests that hadrons have substructure. Furthermore, hundreds of types of hadrons exist and many decay into other hadrons.

The Original Quark Model

In 1963, Gell-Mann and George Zweig (b. 1937) independently proposed a model for the substructure of hadrons. According to their model, all hadrons are composed of two or three elementary constituents called quarks. (Gell-Mann borrowed the word quark from the passage “Three quarks for Muster Mark” in James Joyce’s *Finnegans Wake*.) In Zweig’s model, he called the constituents “aces.” The model has three types of quarks, designated by the symbols u, d, and s, that are given the arbitrary names up, down, and strange. The various types of quarks are called flavors. Figure 46.11 is a pictorial representation of the quark compositions of several hadrons.
An unusual property of quarks is that they carry a fractional electric charge. The up, down, and strange quarks have charges of $+2e/3$, $-e/3$, and $-e/3$, respectively, where e is the elementary charge $1.60 	imes 10^{-19} \text{ C}$. These and other properties of quarks and antiquarks are given in Table 46.3. Quarks have spin $\frac{1}{2}$, which means that all quarks are fermions, defined as any particle having half-integral spin, as pointed out in Section 43.8. As Table 46.3 shows, associated with each quark is an antiquark of opposite charge, baryon number, and strangeness.

The compositions of all hadrons known when Gell-Mann and Zweig presented their model can be completely specified by three simple rules:

- A meson consists of one quark and one antiquark, giving it a baryon number of 0, as required.
- A baryon consists of three quarks.
- An antibaryon consists of three antiquarks.

The theory put forth by Gell-Mann and Zweig is referred to as the original quark model.

Quick Quiz 46.5 Using a coordinate system like that in Figure 46.8, draw an eightfold-way diagram for the three quarks in the original quark model.

Charm and Other Developments

Although the original quark model was highly successful in classifying particles into families, some discrepancies occurred between its predictions and certain experimental decay rates. Consequently, several physicists proposed a fourth quark flavor in 1967. They argued that if four types of leptons exist (as was thought at the time), there should also be four flavors of quarks because of an underlying symmetry in nature. The fourth quark, designated c, was assigned a property called charm. A charmed quark has charge $+2e/3$, just as the up quark does, but its charm distinguishes it from the other three quarks. This introduces a new quantum number C, representing charm. The new quark has charm $C = +1$, its antiquark has charm of $C = -1$, and all other quarks have $C = 0$. Charm, like strangeness, is conserved in strong and electromagnetic interactions but not in weak interactions.
 Evidence that the charmed quark exists began to accumulate in 1974, when a heavy meson called the \(J/\Psi \) particle (or simply \(\Psi \), Greek letter psi) was discovered independently by two groups, one led by Burton Richter (b. 1931) at the Stanford Linear Accelerator (SLAC), and the other led by Samuel Ting (b. 1936) at the Brookhaven National Laboratory. In 1976, Richter and Ting were awarded the Nobel Prize in Physics for this work. The \(J/\Psi \) particle does not fit into the three-quark model; instead, it has properties of a combination of the proposed charmed quark and its antiquark (\(c\bar{c} \)). It is much more massive than the other known mesons (~3 100 MeV/c²), and its lifetime is much longer than the lifetimes of particles that interact via the strong force. Soon, related mesons were discovered, corresponding to such quark combinations as \(c\bar{d} \) and \(d\bar{c} \), all of which have great masses and long lifetimes. The existence of these new mesons provided firm evidence for the fourth quark flavor.

In 1975, researchers at Stanford University reported strong evidence for the tau (\(\tau \)) lepton, mass 1 784 MeV/c². This fifth type of lepton led physicists to propose that more flavors of quarks might exist, on the basis of symmetry arguments similar to those leading to the proposal of the charmed quark. These proposals led to more elaborate quark models and the prediction of two new quarks, top (\(t \)) and bottom (\(b \)). (Some physicists prefer truth and beauty.) To distinguish these quarks from the others, quantum numbers called topness and bottomness (with allowed values \(+1, 0, -1 \)) were assigned to all quarks and antiquarks (see Table 46.3). In 1977, researchers at the Fermi National Laboratory, under the direction of Leon Lederman (b. 1922), reported the discovery of a very massive new meson \(Y \) (Greek letter upsilon), whose composition is considered to be \(b\bar{b} \), providing evidence for the bottom quark. In March 1995, researchers at Fermilab announced the discovery of the top quark (supposedly the last of the quarks to be found), which has a mass of 175 GeV/c².

Table 46.4 lists the quark compositions of mesons formed from the up, down, strange, charmed, and bottom quarks. Table 46.5 shows the quark combinations for the baryons listed in Table 46.2. Notice that only two flavors of quarks, u and d, are contained in all hadrons encountered in ordinary matter (protons and neutrons).

Will the discoveries of elementary particles ever end? How many “building blocks” of matter actually exist? At present, physicists believe that the elementary particles in nature are six quarks and six leptons, together with their antiparticles, and the four field particles listed in Table 46.1. Table 46.6 lists the rest energies and charges of the quarks and leptons.

Despite extensive experimental effort, no isolated quark has ever been observed. Physicists now believe that at ordinary temperatures, quarks are permanently confined inside ordinary particles because of an exceptionally strong force that prevents them from escaping, called (appropriately) the strong force\(^5\) (which we

\(^5\)As a reminder, the original meaning of the term strong force was the short-range attractive force between nucleons, which we have called the nuclear force. The nuclear force between nucleons is a secondary effect of the strong force between quarks.
introduced at the beginning of Section 46.4 and will discuss further in Section 46.10). This force increases with separation distance, similar to the force exerted by a stretched spring. Current efforts are under way to form a quark–gluon plasma, a state of matter in which the quarks are freed from neutrons and protons. In 2000, scientists at CERN announced evidence for a quark–gluon plasma formed by colliding lead nuclei. In 2005, experiments at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven suggested the creation of a quark–gluon plasma. Neither laboratory has provided definitive data to verify the existence of a quark–gluon plasma. Experiments continue, and the ALICE project (A Large Ion Collider Experiment) at the Large Hadron Collider at CERN has joined the search.

Quick Quiz 46.6 Doubly charged baryons, such as the D^{++}, are known to exist. False or True: Doubly charged mesons also exist.

46.9 Multicolored Quarks

Shortly after the concept of quarks was proposed, scientists recognized that certain particles had quark compositions that violated the exclusion principle. In Section 42.7, we applied the exclusion principle to electrons in atoms. The principle is more general, however, and applies to all particles with half-integral spin (½, ¾, etc.), which are collectively called fermions. Because all quarks are fermions having spin ½, they are expected to follow the exclusion principle. One example of a particle that appears to violate the exclusion principle is the $V^{(ss)}$ baryon, which contains three strange quarks having parallel spins, giving it a total spin of ¾. All three quarks have the same spin quantum number, in violation of the exclusion principle. Other examples of baryons made up of identical quarks having parallel spins are the D^{++} (uuu) and the D^{--} (ddd).

To resolve this problem, it was suggested that quarks possess an additional property called color charge. This property is similar in many respects to electric charge except that it occurs in six varieties rather than two. The colors assigned to quarks are red, green, and blue, and antiquarks have the colors antired, antigreen, and antiblue. Therefore, the colors red, green, and blue serve as the “quantum numbers” for the color of the quark. To satisfy the exclusion principle, the three quarks in any baryon must all have different colors. Look again at the quarks in the baryons in Figure 46.11 and notice the colors. The three colors “neutralize” to white.

Pitfall Prevention 46.3 Color Charge Is Not Really Color

The description of color for a quark has nothing to do with visual sensation from light. It is simply a convenient name for a property that is analogous to electric charge.
A quark and an antiquark in a meson must be of a color and the corresponding anticolor and will consequently neutralize to white, similar to the way electric charges + and − neutralize to zero net charge. (See the mesons in Fig. 46.11.) The apparent violation of the exclusion principle in the Ω^- baryon is removed because the three quarks in the particle have different colors.

The new property of color increases the number of quarks by a factor of 3 because each of the six quarks comes in three colors. Although the concept of color in the quark model was originally conceived to satisfy the exclusion principle, it also provided a better theory for explaining certain experimental results. For example, the modified theory correctly predicts the lifetime of the p_0 meson.

The theory of how quarks interact with each other is called quantum chromodynamics, or QCD, to parallel the name quantum electrodynamics (the theory of the electrical interaction between light and matter). In QCD, each quark is said to carry a color charge, in analogy to electric charge. The strong force between quarks is often called the color force. Therefore, the terms strong force and color force are used interchangeably.

In Section 46.1, we stated that the nuclear interaction between hadrons is mediated by massless field particles called gluons. As mentioned earlier, the nuclear force is actually a secondary effect of the strong force between quarks. The gluons are the mediators of the strong force. When a quark emits or absorbs a gluon, the quark’s color may change. For example, a blue quark that emits a gluon may become a red quark and a red quark that absorbs this gluon becomes a blue quark.

The color force between quarks is analogous to the electric force between charges: particles with the same color repel, and those with opposite colors attract. Therefore, two green quarks repel each other, but a green quark is attracted to an antigreen quark. The attraction between quarks of opposite color to form a meson ($qq\bar{q}$) is indicated in Figure 46.12a. Differently colored quarks also attract one another, although with less intensity than the oppositely colored quark and antiquark. For example, a cluster of red, blue, and green quarks all attract one another to form a baryon as in Figure 46.12b. Therefore, every baryon contains three quarks of three different colors.

Although the nuclear force between two colorless hadrons is negligible at large separations, the net strong force between their constituent quarks is not exactly zero at small separations. This residual strong force is the nuclear force that binds protons and neutrons to form nuclei. It is similar to the force between two electric dipoles. Each dipole is electrically neutral. An electric field surrounds the dipoles, however, because of the separation of the positive and negative charges (see Section 23.6). As a result, an electric interaction occurs between the dipoles that is weaker than the force between single charges. In Section 43.1, we explored how this interaction results in the Van der Waals force between neutral molecules.

According to QCD, a more basic explanation of the nuclear force can be given in terms of quarks and gluons. Figure 46.13a shows the nuclear interaction between a neutron and a proton by means of Yukawa’s pion, in this case a π^-. This drawing differs from Figure 46.5a, in which the field particle is a π^0; there is no transfer of charge from one nucleon to the other in Figure 46.5a. In Figure 46.13a, the charged pion carries charge from one nucleon to the other, so the nucleons change identities, with the proton becoming a neutron and the neutron becoming a proton.
Let’s look at the same interaction from the viewpoint of the quark model, shown in Figure 46.13b. In this Feynman diagram, the proton and neutron are represented by their quark constituents. Each quark in the neutron and proton is continuously emitting and absorbing gluons. The energy of a gluon can result in the creation of quark–antiquark pairs. This process is similar to the creation of electron–positron pairs in pair production, which we investigated in Section 46.2. When the neutron and proton approach to within 1 fm of each other, these gluons and quarks can be exchanged between the two nucleons, and such exchanges produce the nuclear force. Figure 46.13b depicts one possibility for the process shown in Figure 46.13a. A down quark in the neutron on the right emits a gluon. The energy of the gluon is then transformed to create a $u\bar{u}$ pair. The u quark stays within the nucleon (which has now changed to a proton), and the recoiling d quark and the \bar{u} antiquark are transmitted to the proton on the left side of the diagram. Here the \bar{u} annihilates a u quark within the proton and the d is captured. The net effect is to change a u quark to a d quark, and the proton on the left has changed to a neutron.

As the d quark and \bar{u} antiquark in Figure 46.13b transfer between the nucleons, the d and \bar{u} exchange gluons with each other and can be considered to be bound to each other by means of the strong force. Looking back at Table 46.4, we see that this combination is a π^-, or Yukawa’s field particle! Therefore, the quark model of interactions between nucleons is consistent with the pion-exchange model.

46.10 The Standard Model

Scientists now believe there are three classifications of truly elementary particles: leptons, quarks, and field particles. These three types of particles are further classified as either fermions or bosons. Quarks and leptons have spin $\frac{1}{2}$ and hence are fermions, whereas the field particles have integral spin of 1 or higher and are bosons.

Recall from Section 46.1 that the weak force is believed to be mediated by the W^+, W^-, and Z^0 bosons. These particles are said to have weak charge, just as quarks have color charge. Therefore, each elementary particle can have mass, electric charge, color charge, and weak charge. Of course, one or more of these could be zero.

In 1979, Sheldon Glashow (b. 1932), Abdus Salam (1926–1996), and Steven Weinberg (b. 1933) won the Nobel Prize in Physics for developing a theory that unifies the electromagnetic and weak interactions. This **electroweak theory** postulates that the weak and electromagnetic interactions have the same strength when the particles involved have very high energies. The two interactions are viewed as different manifestations of a single unifying electroweak interaction. The theory makes many concrete predictions, but perhaps the most spectacular is the prediction of...
the masses of the W and Z particles at approximately $82 \text{ GeV}/c^2$ and $93 \text{ GeV}/c^2$, respectively. These predictions are close to the masses in Table 46.1 determined by experiment.

The combination of the electroweak theory and QCD for the strong interaction is referred to in high-energy physics as the **Standard Model**. Although the details of the Standard Model are complex, its essential ingredients can be summarized with the help of Fig. 46.14. (Although the Standard Model does not include the gravitational force at present, we include gravity in Fig. 46.14 because physicists hope to eventually incorporate this force into a unified theory.) This diagram shows that quarks participate in all the fundamental forces and that leptons participate in all except the strong force.

The Standard Model does not answer all questions. A major question still unanswered is why, of the two mediators of the electroweak interaction, the photon has no mass but the W and Z bosons do. Because of this mass difference, the electromagnetic and weak forces are quite distinct at low energies but become similar at very high energies, when the rest energy is negligible relative to the total energy. The behavior as one goes from high to low energies is called **symmetry breaking** because the forces are similar, or symmetric, at high energies but are very different at low energies. The nonzero rest energies of the W and Z bosons raise the question of the origin of particle masses. To resolve this problem, a hypothetical particle called the **Higgs boson**, which provides a mechanism for breaking the electroweak symmetry, has been proposed. The Standard Model modified to include the Higgs boson provides a logically consistent explanation of the massive nature of the W and Z bosons. In July 2012, announcements from the ATLAS (A Toroidal LHC Apparatus) and CMS (Compact Muon Solenoid) experiments at the Large Hadron Collider (LHC) at CERN claimed the discovery of a new particle having properties consistent with that of a Higgs boson. The mass of the particle is 125–127 GeV, within the range of predictions made from theoretical considerations using the Standard Model.

Because of the limited energy available in conventional accelerators using fixed targets, it is necessary to employ colliding-beam accelerators called **colliders**. The concept of colliders is straightforward. Particles that have equal masses and equal kinetic energies, traveling in opposite directions in an accelerator ring, collide head-on to produce the required reaction and form new particles. Because the total momentum of the interacting particles is zero, all their kinetic energy is available for the reaction.

Several colliders provided important data for understanding the Standard Model in the latter part of the 20th century and the first decade of the 21st century: the Large Electron–Positron (LEP) Collider and the Super Proton Synchrotron at CERN, the Stanford Linear Collider, and the Tevatron at the Fermi National Laboratory in Illinois. The Relativistic Heavy Ion Collider at Brookhaven National Laboratory is the sole remaining collider in operation in the United States. The Large Hadron Collider at CERN, which began collision operations in March 2010, has
taken the lead in particle studies due to its extremely high energy capabilities. The expected upper limit for the LHC is a center-of-mass energy of 14 TeV. (See page 868 for a photo of a magnet used by the LHC.)

In addition to increasing energies in modern accelerators, detection techniques have become increasingly sophisticated. We saw simple bubble-chamber photographs earlier in this chapter that required hours of analysis by hand. Figure 46.15 shows a complex set of tracks from a collision of gold nuclei.

46.11 The Cosmic Connection

In this section, we describe one of the most fascinating theories in all science—the Big Bang theory of the creation of the Universe—and the experimental evidence that supports it. This theory of cosmology states that the Universe had a beginning and furthermore that the beginning was so cataclysmic that it is impossible to look back beyond it. According to this theory, the Universe erupted from an infinitely dense singularity about 14 billion years ago. The first few moments after the Big Bang saw such extremely high energy that it is believed that all four interactions of physics were unified and all matter was contained in a quark–gluon plasma.

The evolution of the four fundamental forces from the Big Bang to the present is shown in Figure 46.16 (page 1470). During the first 10^{-43} s (the ultrahot epoch, $T \sim 10^{32}$ K), it is presumed the strong, electroweak, and gravitational forces were joined to form a completely unified force. In the first 10^{-35} s following the Big Bang (the hot epoch, $T \sim 10^{29}$ K), symmetry breaking occurred for gravity while the strong and electroweak forces remained unified. It was a period when particle energies were so great ($> 10^{16}$ GeV) that very massive particles as well as quarks, leptons, and their antiparticles existed. Then, after 10^{-35} s, the Universe rapidly expanded and cooled (the warm epoch, $T \sim 10^{29}$ to 10^{15} K) and the strong and electroweak forces parted company. As the Universe continued to cool, the electroweak force split into the weak force and the electromagnetic force approximately 10^{-10} s after the Big Bang.

After a few minutes, protons and neutrons condensed out of the plasma. For half an hour, the Universe underwent thermonuclear fusion, exploding as a hydrogen bomb and producing most of the helium nuclei that now exist. The Universe continued to expand, and its temperature dropped. Until about 700 000 years after the Big Bang, the Universe was dominated by radiation. Energetic radiation prevented matter from forming single hydrogen atoms because photons would instantly ionize any atoms that happened to form. Photons experienced continuous Compton scattering from the vast numbers of free electrons, resulting in a Universe that was opaque to radiation. By the time the Universe was about 700 000 years old, it had
Chapter 46 Particle Physics and Cosmology

Gravitational force splits off from the strong and electroweak forces.

The Universe expands rapidly.

The strong and electroweak forces split.

The weak and electromagnetic forces split.

The expansion appears to accelerate.

Present day

Gravitation
Strong
Weak
Electromagnetic

Time (s)

Temperature (K)

The Big Bang occurs. All forces are unified.

The Universe consists of quarks and leptons.

Protons and neutrons can form.

Nuclei can form.

Atoms can form.

Figure 46.16 A brief history of the Universe from the Big Bang to the present. The four forces became distinguishable during the first nanosecond. Following that, all the quarks combined to form particles that interact via the nuclear force. The leptons, however, remained separate and to this day exist as individual, observable particles.

expanded and cooled to approximately 3,000 K and protons could bind to electrons to form neutral hydrogen atoms. Because of the quantized energies of the atoms, far more wavelengths of radiation were not absorbed by atoms than were absorbed, and the Universe suddenly became transparent to photons. Radiation no longer dominated the Universe, and clumps of neutral matter steadily grew: first atoms, then molecules, gas clouds, stars, and finally galaxies.

Observation of Radiation from the Primordial Fireball

In 1965, Arno A. Penzias (b. 1933) and Robert W. Wilson (b. 1936) of Bell Laboratories were testing a sensitive microwave receiver and made an amazing discovery. A pesky signal producing a faint background hiss was interfering with their satellite communications experiments. The microwave horn that served as their receiving antenna is shown in Figure 46.17. Evicting a flock of pigeons from the 20-ft horn and cooling the microwave detector both failed to remove the signal.

The intensity of the detected signal remained unchanged as the antenna was pointed in different directions. That the radiation had equal strengths in all directions suggested that the entire Universe was the source of this radiation. Ultimately, it became clear that they were detecting microwave background radiation (at a wavelength of 7.35 cm), which represented the leftover “glow” from the Big Bang. Through a casual conversation, Penzias and Wilson discovered that a group at Princeton University had predicted the residual radiation from the Big Bang and were planning an experiment to attempt to confirm the theory. The excitement in the scientific community was high when Penzias and Wilson announced that they had already observed an excess microwave background compatible with a 3-K
blackbody source, which was consistent with the predicted temperature of the universe at this time after the Big Bang.

Because Penzias and Wilson made their measurements at a single wavelength, they did not completely confirm the radiation as 3-K blackbody radiation. Subsequent experiments by other groups added intensity data at different wavelengths as shown in Figure 46.18. The results confirm that the radiation is that of a black body at 2.7 K. This figure is perhaps the most clear-cut evidence for the Big Bang theory. The 1978 Nobel Prize in Physics was awarded to Penzias and Wilson for this most important discovery.

In the years following Penzias and Wilson’s discovery, other researchers made measurements at different wavelengths. In 1989, the COBE (COsmic Background Explorer) satellite was launched by NASA and added critical measurements at wavelengths below 0.1 cm. The results of these measurements led to a Nobel Prize in Physics for the principal investigators in 2006. Several data points from COBE are shown in Figure 46.18. The Wilkinson Microwave Anisotropy Probe, launched in June 2001, exhibits data that allow observation of temperature differences in the cosmos in the microkelvin range. Ongoing observations are also being made from Earth-based facilities, associated with projects such as QUaD, Qubic, and the South Pole Telescope. In addition, the Planck satellite was launched in May 2009 by the European Space Agency. This space-based observatory has been measuring the cosmic background radiation with higher sensitivity than the Wilkinson probe. The series of measurements taken since 1965 are consistent with thermal radiation associated with a temperature of 2.7 K. The whole story of the cosmic temperature is a remarkable example of science at work: building a model, making a prediction, taking measurements, and testing the measurements against the predictions.

Other Evidence for an Expanding Universe

The Big Bang theory of cosmology predicts that the universe is expanding. Most of the key discoveries supporting the theory of an expanding universe were made in the 20th century. Vesto Melvin Slipher (1875–1969), an American astronomer, reported in 1912 that most galaxies are receding from the earth at speeds up to several million miles per hour. Slipher was one of the first scientists to use Doppler shifts (see Section 17.4) in spectral lines to measure galaxy velocities.

In the late 1920s, Edwin P. Hubble (1889–1953) made the bold assertion that the whole universe is expanding. From 1928 to 1936, until they reached the limits of the 100-inch telescope, Hubble and Milton Humason (1891–1972) worked at Mount Wilson in California to prove this assertion. The results of that work and of its continuation with the use of a 200-inch telescope in the 1940s showed that the speeds
at which galaxies are receding from the Earth increase in direct proportion to their distance \(R \) from us. This linear relationship, known as Hubble’s law, may be written

\[
v = HR
\]

where \(H \), called the Hubble constant, has the approximate value

\[
H \approx 22 \times 10^{-3} \text{ m/(s \cdot ly)}
\]

Example 46.5 Recession of a Quasar

A quasar is an object that appears similar to a star and is very distant from the Earth. Its speed can be determined from Doppler-shift measurements in the light it emits. A certain quasar recedes from the Earth at a speed of 0.55 \(c \). How far away is it?

Solution

Conceptualize A common mental representation for the Hubble law is that of raisin bread cooking in an oven. Imagine yourself at the center of the loaf of bread. As the entire loaf of bread expands upon heating, raisins near you move slowly with respect to you. Raisins far away from you on the edge of the loaf move at a higher speed.

Categorize We use a concept developed in this section, so we categorize this example as a substitution problem.

Find the distance through Hubble’s law:

\[
R = \frac{v}{H} = \frac{(0.55)(3.00 \times 10^9 \text{ m/s})}{22 \times 10^{-3} \text{ m/(s \cdot ly)}} = 7.5 \times 10^9 \text{ ly}
\]

What If? Suppose the quasar has moved at this speed ever since the Big Bang. With this assumption, estimate the age of the Universe.

Answer Let’s approximate the distance from the Earth to the quasar as the distance the quasar has moved from the singularity since the Big Bang. We can then find the time interval from the particle under constant speed model: \(\Delta t = \frac{d}{v} = \frac{R}{v} = \frac{1}{H} \approx 14 \text{ billion years} \), which is in approximate agreement with other calculations.

Will the Universe Expand Forever?

In the 1950s and 1960s, Allan R. Sandage (1926–2010) used the 200-inch telescope at Mount Palomar to measure the speeds of galaxies at distances of up to 6 billion light-years away from the Earth. These measurements showed that these very distant galaxies were moving approximately 10,000 km/s faster than Hubble’s law predicted. According to this result, the Universe must have been expanding more rapidly 1 billion years ago, and consequently we conclude from these data that the expansion rate is slowing. Today, astronomers and physicists are trying to determine the rate of expansion. If the average mass density of the Universe is less than some critical value \(\rho_c \), the galaxies will slow in their outward rush but still escape to infinity. If the average density exceeds the critical value, the expansion will eventually stop and contraction will begin, possibly leading to a superdense state followed by another expansion. In this scenario, we have an oscillating Universe.

Example 46.6 The Critical Density of the Universe

(A) Starting from energy conservation, derive an expression for the critical mass density of the Universe \(\rho_c \) in terms of the Hubble constant \(H \) and the universal gravitational constant \(G \).
S O L U T I O N

Conceptualize Figure 46.19 shows a large section of the Universe, contained within a sphere of radius R. The total mass in this volume is M. A galaxy of mass m_{galaxy} that has a speed v_{galaxy} at a distance d from the center of the sphere escapes to infinity (at which its speed approaches zero) if the sum of its kinetic energy and the gravitational potential energy of the system is zero.

Categorize The Universe may be infinite in spatial extent, but Gauss's law for gravitation (an analog to Gauss's law for electric fields in Chapter 24) implies that only the mass inside the sphere contributes to the gravitational potential energy of the galaxy–sphere system. Therefore, we categorize this problem as one in which we apply Gauss's law for gravitation. We model the sphere in Figure 46.19 and the escaping galaxy as an isolated system for energy.

Analyze Write the appropriate reduction of Equation 8.2, assuming that the galaxy leaves the spherical volume while moving at the escape speed:

$$\frac{\text{min}}{GmM}$$

Substitute for the mass contained within the sphere the product of the critical density and the volume of the sphere:

$$\frac{\text{min}}{Gm}$$

Solve for the critical density:

$$\text{min}$$

From Hubble's law, substitute for the ratio (l)

$$\frac{22}{6.67 \times 10^{-11} \text{ N m}^2 \text{kg}^{-1}} = \frac{10 \text{ m ly}}{8.7 \times 10^{-24} \text{ kg ly}}$$

B) Estimate a numerical value for the critical density in grams per cubic centimeter.

S O L U T I O N

In Equation (1), substitute numerical values for min and GmM:

$$\frac{22}{6.67 \times 10^{-11} \text{ N m}^2 \text{kg}^{-1}} \times \frac{10 \text{ m ly}}{8.7 \times 10^{-24} \text{ kg ly}}$$

Reconcile the units by converting light-years to meters:

$$8.7 \times 10^{-10} \text{ kg ly} \times \frac{1 \text{ ly}}{9.46 \times 10^{15} \text{ m}} = 9.7 \times 10^{-30} \text{ g cm}$$

Finalize Because the mass of a hydrogen atom is 1.67×10^{-24} g, this value of min corresponds to 6×10^{67} hydrogen atoms per cubic centimeter or 6×10^{30} atoms per cubic meter.

Missing Mass in the Universe?

The luminous matter in galaxies averages out to a Universe density of about 0.1 g/cm^3. The radiation in the Universe has a mass equivalent of approximately 2% of the luminous matter. The total mass of all nonluminous matter (such as interstellar gas and black holes) may be estimated from the speeds of galaxies orbiting each other in a cluster. The higher the galaxy speeds, the more mass in the cluster. Measurements on the Coma cluster of galaxies indicate, surprisingly,
that the amount of nonluminous matter is 20 to 30 times the amount of luminous matter present in stars and luminous gas clouds. Yet even this large, invisible component of dark matter (see Section 13.6), if extrapolated to the Universe as a whole, leaves the observed mass density a factor of 10 less than \(\rho \) calculated in Example 46.6. The deficit, called missing mass, has been the subject of intense theoretical and experimental work, with exotic particles such as axions, photinos, and superstring particles suggested as candidates for the missing mass. Some researchers have made the more mundane proposal that the missing mass is present in neutrinos. In fact, neutrinos are so abundant that a tiny neutrino rest energy on the order of only 20 eV would furnish the missing mass and “close” the Universe. Current experiments designed to measure the rest energy of the neutrino will have an effect on predictions for the future of the Universe.

Mysterious Energy in the Universe?

A surprising twist in the story of the Universe arose in 1998 with the observation of a class of supernovae that have a fixed absolute brightness. By combining the apparent brightness and the redshift of light from these explosions, their distance and speed of recession from the Earth can be determined. These observations led to the conclusion that the expansion of the Universe is not slowing down, but is accelerating! Observations by other groups also led to the same interpretation.

To explain this acceleration, physicists have proposed dark energy, which is energy possessed by the vacuum of space. In the early life of the Universe, gravity dominated over the dark energy. As the Universe expanded and the gravitational force between galaxies became smaller because of the great distances between them, the dark energy became more important. The dark energy results in an effective repulsive force that causes the expansion rate to increase.\(^7\)

Although there is some degree of certainty about the beginning of the Universe, we are uncertain about how the story will end. Will the Universe keep on expanding forever, or will it someday collapse and then expand again, perhaps in an endless series of oscillations? Results and answers to these questions remain inconclusive, and the exciting controversy continues.

46.12 Problems and Perspectives

While particle physicists have been exploring the realm of the very small, cosmologists have been exploring cosmic history back to the first microsecond of the Big Bang. Observation of the events that occur when two particles collide in an accelerator is essential for reconstructing the early moments in cosmic history. For this reason, perhaps the key to understanding the early Universe is to first understand the world of elementary particles. Cosmologists and physicists now find that they have many common goals and are joining hands in an attempt to understand the physical world at its most fundamental level.

Our understanding of physics at short distances is far from complete. Particle physics is faced with many questions. Why does so little antimatter exist in the Universe? Is it possible to unify the strong and electroweak theories in a logical and consistent manner? Why do quarks and leptons form three similar but distinct families? Are muons the same as electrons apart from their difference in mass, or do they have other subtle differences that have not been detected? Why are some particles charged and others neutral? Why do quarks carry a fractional charge? What determines the masses of the elementary constituents of matter? Can isolated quarks exist? Why do electrons and protons have exactly the same magnitude of

charge when one is a truly fundamental particle and the other is built from smaller particles?

An important and obvious question that remains is whether leptons and quarks have an underlying structure. If they do, we can envision an infinite number of deeper structure levels. If leptons and quarks are indeed the ultimate constituents of matter, however, scientists hope to construct a final theory of the structure of matter, just as Einstein dreamed of doing. This theory, whimsically called the Theory of Everything, is a combination of the Standard Model and a quantum theory of gravity.

String Theory: A New Perspective

Let’s briefly discuss one current effort at answering some of these questions by proposing a new perspective on particles. While reading this book, you may recall starting off with the particle model in Chapter 2 and doing quite a bit of physics with it. In Chapter 16, we introduced the wave model, and there was more physics to be investigated via the properties of waves. We used a wave model for light in Chapter 35; in Chapter 40, however, we saw the need to return to the particle model for light. Furthermore, we found that material particles had wave-like characteristics. The quantum particle model discussed in Chapter 40 allowed us to build particles out of waves, suggesting that a wave is the fundamental entity. In the current Chapter 46, however, we introduced elementary particles as the fundamental entities. It seems as if we cannot make up our mind! In this final section, we discuss a current research effort to build particles out of waves and vibrations on strings!

String theory is an effort to unify the four fundamental forces by modeling all particles as various quantized vibrational modes of a single entity, an incredibly small string. The typical length of such a string is on the order of 10^{-33} m, called the **Planck length**. We have seen quantized modes before in the frequencies of vibrating guitar strings in Chapter 18 and the quantized energy levels of atoms in Chapter 42. In string theory, each quantized mode of vibration of the string corresponds to a different elementary particle in the Standard Model.

One complicating factor in string theory is that it requires space–time to have ten dimensions. Despite the theoretical and conceptual difficulties in dealing with ten dimensions, string theory holds promise in incorporating gravity with the other forces. Four of the ten dimensions—three space dimensions and one time dimension—are visible to us. The other six are said to be **compactified**; that is, the six dimensions are curled up so tightly that they are not visible in the macroscopic world.

As an analogy, consider a soda straw. You can build a soda straw by cutting a rectangular piece of paper (Fig. 46.20a), which clearly has two dimensions, and rolling it into a small tube (Fig. 46.20b). From far away, the soda straw looks like a one-dimensional straight line. The second dimension has been curled up and is not visible. String theory claims that six space–time dimensions are curled up in an analogous way with the curling being on the size of the Planck length and impossible to see from our viewpoint.

Another complicating factor with string theory is that it is difficult for string theorists to guide experimentalists as to what to look for in an experiment. The
Planck length is so small that direct experimentation on strings is impossible. Until the theory has been further developed, string theorists are restricted to applying the theory to known results and testing for consistency.

One of the predictions of string theory, called **supersymmetry**, or SUSY, suggests that every elementary particle has a superpartner that has not yet been observed. It is believed that supersymmetry is a broken symmetry (like the broken electroweak symmetry at low energies) and the masses of the superpartners are above our current capabilities of detection by accelerators. Some theorists claim that the mass of superpartners is the missing mass discussed in Section 46.11. Keeping with the whimsical trend in naming particles and their properties, superpartners are given names such as the **squark** (the superpartner to a quark), the **selectron** (electron), and the **gluino** (gluon).

Other theorists are working on **M-theory**, which is an eleven-dimensional theory based on membranes rather than strings. In a way reminiscent of the correspondence principle, M-theory is claimed to reduce to string theory if one compactifies from eleven dimensions to ten dimensions.

The questions listed at the beginning of this section go on and on. Because of the rapid advances and new discoveries in the field of particle physics, many of these questions may be resolved in the next decade and other new questions may emerge.

Summary

Concepts and Principles

- Before quark theory was developed, the four fundamental forces in nature were identified as nuclear, electromagnetic, weak, and gravitational. All the interactions in which these forces take part are mediated by **field particles**. The electromagnetic interaction is mediated by photons; the weak interaction is mediated by the W^+ and Z^0 bosons; the gravitational interaction is mediated by gravitons; and the nuclear interaction is mediated by gluons.

- Particles other than field particles are classified as hadrons or leptons. **Hadrons** interact via all four fundamental forces. They have size and structure and are not elementary particles. There are two types, **baryons** and **mesons**. Baryons, which generally are the most massive particles, have nonzero **baryon number** and a spin of $\frac{1}{2}$ or $\frac{3}{2}$. Mesons have baryon number zero and either zero or integral spin.

- In all reactions and decays, quantities such as energy, linear momentum, angular momentum, electric charge, baryon number, and lepton number are strictly conserved. Certain particles have properties called **strangeness** and **charm**. These unusual properties are conserved in all decays and nuclear reactions except those that occur via the weak force.

- A charged particle and its **antiparticle** have the same mass but opposite charge, and other properties will have opposite values, such as lepton number and baryon number. It is possible to produce particle–antiparticle pairs in nuclear reactions if the available energy is greater than $2mc^2$, where m is the mass of the particle (or antiparticle).

- **Leptons** have no structure or size and are considered truly elementary. They interact only via the weak, gravitational, and electromagnetic forces. Six types of leptons exist: the electron e^-, the muon μ^-, and the tau τ^-, and their neutrinos ν_e, ν_μ, and ν_τ.

- Theorists in elementary particle physics have postulated that all hadrons are composed of smaller units known as **quarks**, and experimental evidence agrees with this model. Quarks have fractional electric charge and come in six **flavors**: up (u), down (d), strange (s), charmed (c), top (t), and bottom (b). Each baryon contains three quarks, and each meson contains one quark and one antiquark.
According to the theory of **quantum chromodynamics**, quarks have a property called **color**; the force between quarks is referred to as the **strong force** or the **color force**. The strong force is now considered to be a fundamental force. The nuclear force, which was originally considered to be fundamental, is now understood to be a secondary effect of the strong force due to gluon exchanges between hadrons.

The background microwave radiation discovered by Penzias and Wilson strongly suggests that the Universe started with a Big Bang about 14 billion years ago. The background radiation is equivalent to that of a black body at 3 K. Various astronomical measurements strongly suggest that the Universe is expanding. According to Hubble’s law, distant galaxies are receding from the Earth at a speed $$v = HR$$, where $$H$$ is the **Hubble constant**, $$H = 22 \times 10^{-3} \text{ m/s} \cdot \text{y}$$, and $$R$$ is the distance from the Earth to the galaxy.

Objective Questions

1. What interactions affect protons in an atomic nucleus? More than one answer may be correct. (a) the nuclear interaction (b) the weak interaction (c) the electromagnetic interaction (d) the gravitational interaction

2. In one experiment, two balls of clay of the same mass travel with the same speed $$v$$ toward each other. They collide head-on and come to rest. In a second experiment, two clay balls of the same mass are again used. One ball hangs at rest, suspended from the ceiling by a thread. The second ball is fired toward the first at speed $$v$$, to collide, stick to the first ball, and continue to move forward. Is the kinetic energy that is transformed into internal energy in the first experiment (a) one-fourth as much as in the second experiment, (b) one-half as much as in the second experiment, (c) the same as in the second experiment, (d) twice as much as in the second experiment, or (e) four times as much as in the second experiment?

3. The $$\Omega^-$$ particle is a baryon with spin $$\frac{2}{3}$$. Does the $$\Omega^-$$ particle have (a) three possible spin states in a magnetic field, (b) four possible spin states, (c) three times the charge of a spin $$\frac{2}{3}$$ particle, or (d) three times the mass of a spin $$\frac{2}{3}$$ particle, or (e) are none of those choices correct?

4. Which of the following field particles mediates the strong force? (a) photon (b) gluon (c) graviton (d) $$W^\pm$$ and $$Z$$ bosons (e) none of those field particles

5. An isolated stationary muon decays into an electron, an electron antineutrino, and a muon neutrino. Is the total kinetic energy of these three particles (a) zero, (b) small, or (c) large compared to their rest energies, or (d) none of those choices are possible?

6. Define the average density of the solar system $$\rho_{SS}$$ as the total mass of the Sun, planets, satellites, rings, asteroids, icy outliers, and comets, divided by the volume of a sphere around the Sun large enough to contain all these objects. The sphere extends about halfway to the nearest star, with a radius of approximately $$2 \times 10^{16} \text{ m}$$, about two light-years. How does this average density of the solar system compare with the critical density $$\rho_c$$ required for the Universe to stop its Hubble’s-law expansion? (a) $$\rho_{SS}$$ is much greater than $$\rho_c$$. (b) $$\rho_{SS}$$ is approximately or precisely equal to $$\rho_c$$. (c) $$\rho_{SS}$$ is much less than $$\rho_c$$. (d) It is impossible to determine.

7. When an electron and a positron meet at low speed in empty space, they annihilate each other to produce two 0.511-MeV gamma rays. What law would be violated if they produced one gamma ray with an energy of 1.02 MeV? (a) conservation of energy (b) conservation of momentum (c) conservation of charge (d) conservation of baryon number (e) conservation of electron lepton number

8. Place the following events into the correct sequence from the earliest in the history of the Universe to the latest. (a) Neutral atoms form. (b) Protons and neutrons are no longer annihilated as fast as they form. (c) The Universe is a quark–gluon soup. (d) The Universe is like the core of a normal star today, forming helium by nuclear fusion. (e) The Universe is like the surface of a hot star today, consisting of a plasma of ionized atoms. (f) Polyatomic molecules form. (g) Solid materials form.

Conceptual Questions

1. The W and Z bosons were first produced at CERN in 1983 by causing a beam of protons and a beam of antiprotons to meet at high energy. Why was this discovery important?

2. What are the differences between hadrons and leptons?

3. Neutral atoms did not exist until hundreds of thousands of years after the Big Bang. Why?
4. Describe the properties of baryons and mesons and the important differences between them.

5. The Ξ^0 particle decays by the weak interaction according to the decay mode $\Xi^0 \rightarrow \Lambda^0 + \pi^0$. Would you expect this decay to be fast or slow? Explain.

6. In the theory of quantum chromodynamics, quarks come in three colors. How would you justify the statement that “all baryons and mesons are colorless”?

7. An antibaryon interacts with a meson. Can a baryon be produced in such an interaction? Explain.

9. How many quarks are in each of the following: (a) a baryon, (b) an antibaryon, (c) a meson, (d) an antimeson? (e) How do you explain that baryons have half-integral spins, whereas mesons have spins of 0 or 1?

10. Are the laws of conservation of baryon number, lepton number, and strangeness based on fundamental properties of nature (as are the laws of conservation of momentum and energy, for example)? Explain.

11. Name the four fundamental interactions and the field particle that mediates each.

12. How did Edwin Hubble determine in 1928 that the Universe is expanding?

13. Kaons all decay into final states that contain no protons or neutrons. What is the baryon number for kaons?
Section 46.4 Classification of Particles

Section 46.5 Conservation Laws

8. The first of the following two reactions can occur, but the second cannot. Explain.
 \[K_S^0 \rightarrow \pi^+ + \pi^- \quad \text{(can occur)} \]
 \[\Lambda^0 \rightarrow \pi^+ + \pi^- \quad \text{(cannot occur)} \]

9. A neutral pion at rest decays into two photons according to \(\pi^0 \rightarrow \gamma + \gamma \). Find the (a) energy, (b) momentum, and (c) frequency of each photon.

10. When a high-energy proton or pion traveling near the speed of light collides with a nucleus, it travels an average distance of \(3 \times 10^{-15} \) m before interacting. From this information, find the order of magnitude of the time interval required for the strong interaction to occur.

11. Each of the following reactions is forbidden. Determine what conservation laws are violated for each reaction.
 (a) \(p + \bar{p} \rightarrow \mu^+ + e^- \)
 (b) \(\pi^- + p \rightarrow p + \pi^+ \)
 (c) \(p + p \rightarrow p + p + n \)
 (d) \(\gamma + p \rightarrow n + \pi^0 \)
 (e) \(\nu_e + p \rightarrow n + e^+ \)

12. (a) Show that baryon number and charge are conserved in the following reactions of a pion with a proton:
 (1) \(\pi^+ + p \rightarrow K^+ + \Sigma^+ \)
 (2) \(\pi^- + p \rightarrow \pi^+ + \Sigma^- \)
 (b) The first reaction is observed, but the second never occurs. Explain.

13. The following reactions or decays involve one or more neutrinos. In each case, supply the missing neutrino (\(\nu_e, \nu_{\mu}, \text{ or } \nu_{\tau} \)) or antineutrino:
 (a) \(\pi^- \rightarrow \mu^- + ? \)
 (b) \(K^- \rightarrow \mu^- + ? \)
 (c) \(? + p \rightarrow n + e^- \)
 (d) \(? + n \rightarrow p + e^- \)
 (e) \(? + n \rightarrow p + \mu^- \)
 (f) \(\mu^- \rightarrow e^- + ? + ? \)

14. Determine the type of neutrino or antineutrino involved in each of the following processes.
 (a) \(\pi^+ \rightarrow \pi^0 + e^+ + ? \)
 (b) \(? + p \rightarrow \mu^- + p + \pi^+ \)
 (c) \(\Lambda^0 \rightarrow p + \mu^- + ? \)
 (d) \(\pi^- \rightarrow \mu^- + ? + ? \)

15. Determine which of the following reactions can occur. For those that cannot occur, determine the conservation law (or laws) violated.
 (a) \(p \rightarrow \pi^+ + \pi^0 \)
 (b) \(p + p \rightarrow p + p + \pi^0 \)
 (c) \(p + p \rightarrow p + \pi^+ \)
 (d) \(\pi^+ \rightarrow \mu^- + \nu \)
 (e) \(n \rightarrow p + e^- + \bar{\nu} \)
 (f) \(\pi^+ \rightarrow \mu^- + n \)

16. Occasionally, high-energy muons collide with electrons and produce two neutrinos according to the reaction \(\mu^- + e^- \rightarrow 2\nu \). What kind of neutrinos are they?

17. A \(K_S^0 \) particle at rest decays into a \(\pi^+ \) and a \(\pi^- \). The mass of the \(K_S^0 \) is 497.7 MeV/c^2, and the mass of each \(\pi \) meson is 139.6 MeV/c^2. What is the speed of each pion?

18. (a) Show that the proton-decay \(p \rightarrow e^+ + \gamma \) cannot occur because it violates the conservation of baryon number. (b) What If? Imagine that this reaction does occur and the proton is initially at rest. Determine the energies and magnitudes of the momentum of the positron and photon after the reaction. (c) Determine the speed of the positron after the reaction.

19. A \(\Lambda^0 \) particle at rest decays into a proton and a \(\pi^- \) meson. (a) Use the data in Table 46.2 to find the \(Q \) value for this decay in MeV. (b) What is the total kinetic energy shared by the proton and the \(\pi^- \) meson after the decay? (c) What is the total momentum shared by the proton and the \(\pi^- \) meson? (d) The proton and the \(\pi^- \) meson have momenta with the same magnitude after the decay. Do they have equal kinetic energies? Explain.

Section 46.6 Strange Particles and Strangeness

20. The neutral meson \(\rho^0 \) decays by the strong interaction into two pions:
 \[\rho^0 \rightarrow \pi^+ + \pi^- \quad (T_{1/2} \approx 10^{-23} \text{ s}) \]

 The neutral kaon also decays into two pions:
 \[K_S^0 \rightarrow \pi^+ + \pi^- \quad (T_{1/2} \approx 10^{-10} \text{ s}) \]

 How do you explain the difference in half-lives?

21. Which of the following processes are allowed by the strong interaction, the electromagnetic interaction, the weak interaction, or no interaction at all?
 (a) \(\pi^- + p \rightarrow 2\eta \)
 (b) \(K^- + n \rightarrow \Lambda^0 + \pi^- \)
 (c) \(K^- \rightarrow \pi^- + \pi^0 \)
 (d) \(\Omega^- \rightarrow \Xi^- + \pi^0 \)
 (e) \(\eta \rightarrow 2\gamma \)

22. For each of the following forbidden decays, determine what conservation laws are violated.
 (a) \(\mu^- \rightarrow e^- + \gamma \)
 (b) \(n \rightarrow p + e^- + \nu_e \)
 (c) \(\Lambda^0 \rightarrow p + \pi^0 \)
 (d) \(p \rightarrow e^+ + \pi^0 \)
 (e) \(\Xi^0 \rightarrow n + \pi^0 \)

23. Fill in the missing particle. Assume reaction (a) occurs via the strong interaction and reactions (b) and (c) involve the weak interaction. Assume also the total strangeness changes by one unit if strangeness is not conserved.
 (a) \(K^+ + p \rightarrow ? + p \)
 (b) \(\Omega^- \rightarrow ? + \pi^- \)
 (c) \(K^+ \rightarrow ? + \mu^+ + \nu_\mu \)
24. Identify the conserved quantities in the following processes.
 (a) \(\Xi^- \rightarrow \Lambda^0 + \mu^- + \nu_\mu \)
 (b) \(K_S^0 \rightarrow 2\pi^0 \)
 (c) \(K^- + p \rightarrow \Sigma^0 + n \)
 (d) \(\Sigma^0 \rightarrow \Lambda^0 + \gamma \)
 (e) \(e^+ + e^- \rightarrow \mu^+ + \mu^- \)
 (f) \(\bar{\nu} + n \rightarrow \bar{\Lambda}^0 + \Sigma^- \)
 (g) Which reactions cannot occur? Why not?

25. Determine whether or not strangeness is conserved in the following decays and reactions.
 (a) \(\Lambda^0 \rightarrow p + \pi^- \)
 (b) \(\pi^- + p \rightarrow \Lambda^0 + K^0 \)
 (c) \(\bar{\nu} + p \rightarrow \bar{\Lambda}^0 + \Lambda^0 \)
 (d) \(\pi^- + p \rightarrow \pi^- + \Sigma^+ \)
 (e) \(\Xi^- \rightarrow \Lambda^0 + \pi^- \)
 (f) \(\Xi^0 \rightarrow p + \pi^- \)

26. The particle decay \(\Sigma^+ \rightarrow \pi^+ + n \) is observed in a bubble chamber. Figure P46.26 represents the curved tracks of the particles \(\Sigma^+ \) and \(\pi^+ \) and the invisible track of the neutron in the presence of a uniform magnetic field of 1.15 T directed out of the page. The measured radii of curvature are 1.99 m for the \(\Sigma^+ \) particle and 0.580 m for the \(\pi^+ \) particle. From this information, we wish to determine the mass of the \(\Sigma^+ \) particle. (a) Find the magnitudes of the momenta of the \(\Sigma^+ \) and the \(\pi^+ \) particles in units of MeV/c. (b) The angle between the momenta of the \(\Sigma^+ \) and the \(\pi^+ \) particles at the moment of decay is \(\theta = 64.5^\circ \). Find the magnitude of the momentum of the neutron. (c) Calculate the total energy of the \(\pi^+ \) particle and of the neutron from their known masses \(m_{\pi} = 139.6 \text{ MeV}/c^2 \) and \(m_n = 938.3 \text{ MeV}/c^2 \) and the relativistic energy–momentum relation. (d) Find the mass of the \(\Sigma^+ \) particle? (e) Calculate the mass of the \(\Sigma^+ \) particle. (f) Compare the mass with the value in Table 46.2.

27. If a \(K_L^0 \) meson at rest decays in \(0.900 \times 10^{-10} \text{ s} \), how far does a \(K_L^0 \) meson travel if it is moving at \(0.960c \) ?

Section 46.7 Finding Patterns in the Particles

Section 46.8 Quarks

Section 46.9 Multicolored Quarks

Section 46.10 The Standard Model

Problem 89 in Chapter 39 can be assigned with Section 46.10.

28. The quark compositions of the \(K^0 \) and \(\Lambda^0 \) particles are \(d\bar{u} \) and \(u\bar{d} \), respectively. Show that the charge, baryon number, and strangeness of these particles equal the sums of these numbers for the quark constituents.

29. The reaction \(\pi^- + p \rightarrow K^0 + \Lambda^0 \) occurs with high probability, whereas the reaction \(\pi^- + p \rightarrow K^0 + n \) never occurs. Analyze these reactions at the quark level. (a) Show that the first reaction conserves the total number of each type of quark and the second reaction does not.

30. Identify the particles corresponding to the quark states (a) \(suu \), (b) \(u\bar{d}d \), (c) \(s\bar{d}d \), and (d) \(ssd \).

31. The quark composition of the proton is \(uud \), whereas that of the neutron is \(udd \). Show that the charge, baryon number, and strangeness of these particles equal the sums of these numbers for their quark constituents.

32. Analyze each of the following reactions in terms of constituent quarks and show that each type of quark is conserved. (a) \(\pi^- + p \rightarrow K^+ + \Sigma^- \)
 (b) \(K^- + p \rightarrow K^0 + \Lambda^0 + \Omega^- \)
 (c) Determine the quarks in the final particle for this reaction: \(p + p \rightarrow K^0 + p + \pi^+ + ? \)
 (d) In the reaction in part (c), identify the mystery particle.

33. What is the electrical charge of the baryons with the quark compositions (a) \(u\bar{u}d \) and (b) \(u\bar{d}d \)? What are these baryons called?

34. Find the number of electrons, and of each species of quark, in \(1 \text{ L} \) of water.

35. A \(\Sigma^0 \) particle traveling through matter strikes a proton; then a \(\Sigma^+ \) and a gamma ray as well as a third particle emerge. Use the quark model of each to determine the identity of the third particle.

36. What If? Imagine that binding energies could be ignored. Find the masses of the \(u \) and \(d \) quarks from the masses of the proton and neutron.

Section 46.11 The Cosmic Connection

Problem 21 in Chapter 39 can be assigned with this section.

37. Review. Refer to Section 39.4. Prove that the Doppler shift in wavelength of electromagnetic waves is described by

\[\lambda' = \lambda \sqrt{\frac{1 + v/c}{1 - v/c}} \]

where \(\lambda' \) is the wavelength measured by an observer moving at speed \(v \) away from a source radiating waves of wavelength \(\lambda \).

38. Gravitation and other forces prevent Hubble’s-law expansion from taking place except in systems larger than clusters of galaxies. What If? Imagine that these forces could be ignored and all distances expanded at a rate described by the Hubble constant of \(22 \times 10^{-3} \text{ m/s} \cdot \text{yr} \). (a) At what rate would the 1.85-m height of a basketball player be increasing? (b) At what rate would the distance between the Earth and the Moon be increasing?

39. Review. The cosmic background radiation is blackbody radiation from a source at a temperature of 2.73 K.
40. Assume dark matter exists throughout space with a uniform density of \(6.00 \times 10^{-28} \text{ kg/m}^3\). (a) Find the amount of such dark matter inside a sphere centered on the Sun, having the Earth’s orbit as its equator. (b) Explain whether the gravitational field of this dark matter would have a measurable effect on the Earth’s revolution.

41. The early Universe was dense with gamma-ray photons of energy \(\sim k_B T\) and at such a high temperature that protons and antiprotons were created by the process \(\gamma \rightarrow p + \bar{p}\) as rapidly as they annihilated each other. As the Universe cooled in adiabatic expansion, its temperature fell below a certain value and proton pair production became rare. At that time, slightly more protons than antiprotons existed, and essentially all the protons in the Universe today date from that time. (a) Estimate the order of magnitude of the temperature of the Universe when protons condensed out. (b) Estimate the order of magnitude of the temperature of the Universe when electrons condensed out.

42. If the average density of the Universe is small compared with the critical density, the expansion of the Universe described by Hubble’s law proceeds with speeds that are nearly constant over time. (a) Prove that in this case the age of the Universe is given by the inverse of the Hubble constant. (b) Calculate \(1/H\) and express it in years.

43. Review. A star moving away from the Earth at 0.280\(c\) emits radiation that we measure to be most intense at the wavelength 500 nm. Determine the surface temperature of this star.

44. Review. Use Stefan’s law to find the intensity of the cosmic background radiation emitted by the fireball of the Big Bang at a temperature of 2.73 K.

45. The first quasar to be identified and the brightest found to date, 3C 273 in the constellation Virgo, was observed to be moving away from the Earth at such high speed that the observed blue 434-nm H\(_\alpha\) line of hydrogen is Doppler-shifted to 510 nm, in the green portion of the spectrum. (a) How fast is the quasar receding? (b) Edwin Hubble discovered that all objects outside the local group of galaxies are moving away from us, with speeds \(v\) proportional to their distances \(R\). Hubble’s law is expressed as \(v = HR\), where the Hubble constant has the approximate value \(H = 22 \times 10^{-3} \text{ m/(s \cdot ly)}\). Determine the distance from the Earth to this quasar.

46. The various spectral lines observed in the light from a distant quasar have longer wavelengths \(\lambda_n\) than the wavelengths \(\lambda_\lambda\) measured in light from a stationary source. Here \(n\) is an index taking different values for different spectral lines. The fractional change in wavelength toward the red is the same for all spectral lines. That is, the Doppler redshift parameter \(Z\) defined by

\[
Z = \frac{\lambda_n - \lambda_\lambda}{\lambda_\lambda}
\]

is common to all spectral lines for one object. In terms of \(Z\), use Hubble’s law to determine (a) the speed of recession of the quasar and (b) the distance from the Earth to this quasar.

47. Using Hubble’s law, find the wavelength of the 590-nm sodium line emitted from galaxies (a) \(2.00 \times 10^6\) ly, (b) \(2.00 \times 10^9\) ly, and (c) \(2.00 \times 10^{10}\) ly away from the Earth.

48. The visible section of the Universe is a sphere centered on the bridge of your nose, with radius 13.7 billion light-years. (a) Explain why the visible Universe is getting larger, with its radius increasing by one light-year in every year. (b) Find the rate at which the volume of the visible section of the Universe is increasing.

49. In Section 13.6, we discussed dark matter along with one proposal for the origin of dark matter: WIMPs, or weakly interacting massive particles. Another proposal is that dark matter consists of large planet-sized objects, called MACHOs, or massive astrophysical compact halo objects, that drift through interstellar space and are not bound to a solar system. Whether WIMPs or MACHOs, suppose astronomers perform theoretical calculations and determine the average density of the observable Universe to be \(1.20\mu_p\). If this value were correct, how many times larger will the Universe become before it begins to collapse? That is, by what factor will the distance between remote galaxies increase in the future?

Additional Problems

51. For each of the following decays or reactions, name at least one conservation law that prevents it from occurring.

(a) \(\pi^- + p \rightarrow \Sigma^+ + \pi^0\)

(b) \(\mu^- \rightarrow \pi^- + \nu_e\)

(c) \(p \rightarrow \pi^+ + \pi^- + \pi^0\)
52. Identify the unknown particle on the left side of the following reaction:

53. Assume that the half-life of free neutrons is 614 s. What fraction of a group of free thermal neutrons with kinetic energy 0.040 eV will decay before traveling a distance of 10.0 km?

54. Why is the following situation impossible? A gamma-ray photon with energy 1.05 MeV strikes a stationary electron, causing the following reaction to occur:

Assume all three final particles move with the same speed in the same direction after the reaction.

55. Review. Supernova Shelton 1987A, located approximately 170,000 ly from the Earth, is estimated to have emitted a burst of neutrinos carrying energy (Fig. P46.55). Suppose the average neutrino energy was 6 MeV and your mother’s body presented cross-sectional area 5,000 cm². To an order of magnitude, how many of these neutrinos passed through her?

56. An unstable particle, initially at rest, decays into a positively charged particle of charge + and rest energy and a negatively charged particle of charge – and rest energy . A uniform magnetic field of 0.250 T exists perpendicular to the velocities of the created particles. The radius of curvature of each track is found to be 1.33 m. What is the mass of the original unstable particle?

57. Hubble’s law can be stated in vector form as . Outside the local group of galaxies, all objects are moving away from us with velocities proportional to their positions relative to us. In this form, it sounds as if our location in the Universe is specially privileged. Prove that Hubble’s law is equally true for an observer elsewhere in the Universe. Proceed as follows. Assume we are at the origin of coordinates, one galaxy cluster is at location and has velocity relative to us, and another galaxy cluster has position vector and velocity Suppose the speeds are nonrelativistic. Consider the frame of reference of an observer in the first of these galaxy clusters. (a) Show that our velocity relative to her, together with the position vector of our galaxy cluster from hers, satisfies Hubble’s law. (b) Show that the position and velocity of cluster 2 relative to cluster 1 satisfy Hubble’s law.

58. A meson at rest decays according to → . Assume the antineutrino has no mass and moves off with the speed of light. Take 139.6 MeV and 105.7 MeV. What is the energy carried off by the neutrino?

59. An unstable particle, initially at rest, decays into a proton (rest energy 938.3 MeV) and a negative pion (rest energy 139.6 MeV). A uniform magnetic field of 0.250 T exists perpendicular to the velocities of the created particles. The radius of curvature of each track is found to be 1.33 m. What is the mass of the original unstable particle?

60. An unstable particle, initially at rest, decays into a positively charged particle of charge + and rest energy and a negatively charged particle of charge – and rest energy . A uniform magnetic field of magnitude exists perpendicular to the velocities of the created particles. The radius of curvature of each track is found to be 1.33 m. What is the mass of the original unstable particle?

61. (a) What processes are described by the Feynman diagrams in Figure P46.61? (b) What is the exchanged particle in each process?

Earth’s surface. Estimate the fractional mass loss of the Sun over 10 yr due to the emission of neutrinos. The mass of the Sun is 1.989 kg. The Earth–Sun distance is equal to 1.496 AU.

57. Hubble’s law can be stated in vector form as . Outside the local group of galaxies, all objects are moving away from us with velocities proportional to their positions relative to us. In this form, it sounds as if our location in the Universe is specially privileged. Prove that Hubble’s law is equally true for an observer elsewhere in the Universe. Proceed as follows. Assume we are at the origin of coordinates, one galaxy cluster is at location and has velocity relative to us, and another galaxy cluster has position vector and velocity Suppose the speeds are nonrelativistic. Consider the frame of reference of an observer in the first of these galaxy clusters. (a) Show that our velocity relative to her, together with the position vector of our galaxy cluster from hers, satisfies Hubble’s law. (b) Show that the position and velocity of cluster 2 relative to cluster 1 satisfy Hubble’s law.

58. A meson at rest decays according to → . Assume the antineutrino has no mass and moves off with the speed of light. Take 139.6 MeV and 105.7 MeV. What is the energy carried off by the neutrino?

59. An unstable particle, initially at rest, decays into a proton (rest energy 938.3 MeV) and a negative pion (rest energy 139.6 MeV). A uniform magnetic field of 0.250 T exists perpendicular to the velocities of the created particles. The radius of curvature of each track is found to be 1.33 m. What is the mass of the original unstable particle?

60. An unstable particle, initially at rest, decays into a positively charged particle of charge + and rest energy and a negatively charged particle of charge – and rest energy . A uniform magnetic field of magnitude exists perpendicular to the velocities of the created particles. The radius of curvature of each track is found to be 1.33 m. What is the mass of the original unstable particle?

61. (a) What processes are described by the Feynman diagrams in Figure P46.61? (b) What is the exchanged particle in each process?
62. Identify the mediators for the two interactions described in the Feynman diagrams shown in Figure P46.62.

![Feynman Diagram](image)

Figure P46.62

63. Review. The energy required to excite an atom is on the order of 1 eV. As the temperature of the Universe dropped below a threshold, neutral atoms could form from plasma and the Universe became transparent. Use the Boltzmann distribution function \(e^{-E/kT}\) to find the order of magnitude of the threshold temperature at which 0.01% of a population of photons has energy greater than 1.00 eV.

64. A \(\Sigma^0\) particle at rest decays according to \(\Sigma^0 \rightarrow \Lambda^0 + \gamma\). Find the gamma-ray energy.

65. Two protons approach each other head-on, each with 70.4 MeV of kinetic energy, and engage in a reaction in which a proton and positive pion emerge at rest. What third particle, obviously uncharged and therefore difficult to detect, must have been created?

66. Two protons approach each other with velocities of equal magnitude in opposite directions. What is the minimum kinetic energy of each proton if the two are to produce a \(\pi^+\) meson at rest in the reaction \(p + p \rightarrow p + n + \pi^+\)?

Challenge Problems

67. Determine the kinetic energies of the proton and pion resulting from the decay of a \(\Lambda^0\) at rest:

\[\Lambda^0 \rightarrow p + \pi^-\]

68. A particle of mass \(m_1\) is fired at a stationary particle of mass \(m_2\), and a reaction takes place in which new particles are created out of the incident kinetic energy. Taken together, the product particles have total mass \(m_3\). The minimum kinetic energy the bombarding particle must have so as to induce the reaction is called the threshold energy. At this energy, the kinetic energy of the products is a minimum, so the fraction of the incident kinetic energy that is available to create new particles is a maximum. This condition is met when all the product particles have the same velocity and the particles have no kinetic energy of motion relative to one another. (a) By using conservation of relativistic energy and momentum and the relativistic energy–momentum relation, show that the threshold kinetic energy is

\[K_{\text{min}} = \frac{\left[m_2^2 - (m_1 + m_2)^2 \right]c^2}{2m_2}\]

Calculate the threshold kinetic energy for each of the following reactions: (b) \(p + p \rightarrow p + p + p + \bar{p}\) (one of the initial protons is at rest, and antiprotons are produced); (c) \(\pi^- + p \rightarrow K^0 + \Lambda^0\) (the proton is at rest, and strange particles are produced); (d) \(p + p \rightarrow p + p + \pi^0\) (one of the initial protons is at rest, and pions are produced); and (e) \(p + \bar{p} \rightarrow Z^0\) (one of the initial particles is at rest, and \(Z^0\) particles of mass 91.2 GeV/c^2 are produced).

69. A free neutron beta decays by creating a proton, an electron, and an antineutrino according to the reaction \(n \rightarrow p + e^- + \bar{\nu}\). What if? Imagine that a free neutron were to decay by creating a proton and electron according to the reaction \(n \rightarrow p + e^-\) and assume the neutron is initially at rest in the laboratory. (a) Determine the energy released in this reaction. (b) Energy and momentum are conserved in the reaction. Determine the speeds of the proton and the electron after the reaction. (c) Is either of these particles moving at a relativistic speed? Explain.

70. The cosmic rays of highest energy are mostly protons, accelerated by unknown sources. Their spectrum shows a cutoff at an energy on the order of \(10^{20}\) eV. Above that energy, a proton interacts with a photon of cosmic microwave background radiation to produce mesons, for example, according to \(p + \gamma \rightarrow p + \pi^0\). Demonstrate this fact by taking the following steps: (a) Find the minimum photon energy required to produce this reaction in the reference frame where the total momentum of the photon–proton system is zero. The reaction was observed experimentally in the 1950s with photons of a few hundred MeV. (b) Use Wien’s displacement law to find the wavelength of a photon at the peak of the blackbody spectrum of the primordial microwave background radiation, with a temperature of 2.73 K. (c) Find the energy of this photon. (d) Consider the reaction in part (a) in a moving reference frame so that the photon is the same as that in part (c). Calculate the energy of the proton in this frame, which represents the Earth reference frame.

71. Assume the average density of the Universe is equal to the critical density. (a) Prove that the age of the Universe is given by \(2/(3H)\). (b) Calculate \(2/(3H)\) and express it in years.

72. The most recent naked-eye supernova was Supernova Shelton 1987A (Fig. P46.55). It was 170 000 ly away in the Large Magellanic Cloud, a satellite galaxy of the Milky Way. Approximately 3 h before its optical brightening was noticed, two neutrino detection experiments simultaneously registered the first neutrinos from an identified source other than the Sun. The Irvine–Michigan–Brookhaven experiment in a salt mine in Ohio registered eight neutrinos over a 6-s period, and the Kamiokande II experiment in a zinc mine in Japan counted eleven neutrinos in 13 s. (Because the supernova is far south in the sky, these neutrinos entered the detectors from below. They passed through the Earth before they were by chance absorbed by nuclei in the detectors.) The neutrino energies were between approximately 8 MeV and
40 MeV. If neutrinos have no mass, neutrinos of all energies should travel together at the speed of light, and the data are consistent with this possibility. The arrival times could vary simply because neutrinos were created at different moments as the core of the star collapsed into a neutron star. If neutrinos have nonzero mass, lower-energy neutrinos should move comparatively slowly. The data are consistent with a 10-MeV neutrino requiring at most approximately 10 s more than a photon would require to travel from the supernova to us. Find the upper limit that this observation sets on the mass of a neutrino. (Other evidence sets an even tighter limit.)

73. A rocket engine for space travel using photon drive and matter–antimatter annihilation has been suggested. Suppose the fuel for a short-duration burn consists of \(N \) protons and \(N \) antiprotons, each with mass \(m \).

(a) Assume all the fuel is annihilated to produce photons. When the photons are ejected from the rocket, what momentum can be imparted to it?

(b) **What If?** If half the protons and antiprotons annihilate each other and the energy released is used to eject the remaining particles, what momentum could be given to the rocket?

(c) Which scheme results in the greater change in speed for the rocket?
Table A.1: Conversion Factors

Length

<table>
<thead>
<tr>
<th></th>
<th>m</th>
<th>cm</th>
<th>km</th>
<th>in.</th>
<th>ft</th>
<th>mi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 meter</td>
<td>1</td>
<td>10^2</td>
<td>10^{-1}</td>
<td>39.37</td>
<td>3.281</td>
<td>6.214×10^{-4}</td>
</tr>
<tr>
<td>1 centimeter</td>
<td>10^{-2}</td>
<td>1</td>
<td>10^{-5}</td>
<td>0.3937</td>
<td>3.281×10^{-2}</td>
<td>6.214×10^{-6}</td>
</tr>
<tr>
<td>1 kilometer</td>
<td>10^5</td>
<td>10^5</td>
<td>1</td>
<td>3.937</td>
<td>3.281×10^3</td>
<td>0.621 4</td>
</tr>
<tr>
<td>1 inch</td>
<td>2.540×10^{-2}</td>
<td>2.540</td>
<td>2.540×10^{-5}</td>
<td>1</td>
<td>8.333×10^{-2}</td>
<td>1.578×10^{-5}</td>
</tr>
<tr>
<td>1 foot</td>
<td>0.304 8</td>
<td>30.48</td>
<td>3.048×10^{-4}</td>
<td>12</td>
<td>1</td>
<td>1.894×10^{-4}</td>
</tr>
<tr>
<td>1 mile</td>
<td>1 609</td>
<td>1.609×10^5</td>
<td>1 609</td>
<td>6.336×10^4</td>
<td>5 280</td>
<td>1</td>
</tr>
</tbody>
</table>

Mass

<table>
<thead>
<tr>
<th></th>
<th>kg</th>
<th>g</th>
<th>slug</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 kilogram</td>
<td>1</td>
<td>10^3</td>
<td>6.852 $\times 10^2$</td>
<td>6.024 $\times 10^26$</td>
</tr>
<tr>
<td>1 gram</td>
<td>10^{-3}</td>
<td>1</td>
<td>6.852 $\times 10^2$</td>
<td>6.024 $\times 10^{23}$</td>
</tr>
<tr>
<td>1 slug</td>
<td>14.59</td>
<td>1.459 $\times 10^4$</td>
<td>1</td>
<td>8.789 $\times 10^27$</td>
</tr>
<tr>
<td>1 atomic mass unit</td>
<td>1 660 $\times 10^{-27}$</td>
<td>1 660 $\times 10^{-24}$</td>
<td>1 437 $\times 10^{-28}$</td>
<td>1</td>
</tr>
</tbody>
</table>

Note: 1 metric ton = 1 000 kg.

Time

<table>
<thead>
<tr>
<th></th>
<th>s</th>
<th>min</th>
<th>h</th>
<th>day</th>
<th>yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 second</td>
<td>1</td>
<td>1.667×10^{-2}</td>
<td>2.778 $\times 10^{-4}$</td>
<td>1.157 $\times 10^{-5}$</td>
<td>3.169 $\times 10^{-8}$</td>
</tr>
<tr>
<td>1 minute</td>
<td>60</td>
<td>1</td>
<td>1.667×10^{-2}</td>
<td>6.994 $\times 10^{-4}$</td>
<td>1.901 $\times 10^{-6}$</td>
</tr>
<tr>
<td>1 hour</td>
<td>3 600</td>
<td>60</td>
<td>1</td>
<td>4.167 $\times 10^{-2}$</td>
<td>1.141 $\times 10^{-4}$</td>
</tr>
<tr>
<td>1 day</td>
<td>8.640 $\times 10^3$</td>
<td>1 440</td>
<td>24</td>
<td>1</td>
<td>2.738 $\times 10^{-5}$</td>
</tr>
<tr>
<td>1 year</td>
<td>3.156 $\times 10^7$</td>
<td>5 259</td>
<td>5.259×10^5</td>
<td>8.766 $\times 10^3$</td>
<td>365.2</td>
</tr>
</tbody>
</table>

Speed

<table>
<thead>
<tr>
<th></th>
<th>m/s</th>
<th>cm/s</th>
<th>ft/s</th>
<th>mi/h</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 meter per second</td>
<td>1</td>
<td>10^2</td>
<td>3.281</td>
<td>2.237</td>
</tr>
<tr>
<td>1 centimeter per second</td>
<td>10^{-2}</td>
<td>1</td>
<td>3.281×10^{-2}</td>
<td>2.237×10^{-2}</td>
</tr>
<tr>
<td>1 foot per second</td>
<td>0.304 8</td>
<td>30.48</td>
<td>1</td>
<td>0.681 8</td>
</tr>
<tr>
<td>1 mile per hour</td>
<td>0.447 0</td>
<td>44.70</td>
<td>1.467</td>
<td>1</td>
</tr>
</tbody>
</table>

Note: 1 mi/min = 60 mi/h = 88 ft/s.

Force

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>lb</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 newton</td>
<td>1</td>
<td>0.224 8</td>
</tr>
<tr>
<td>1 pound</td>
<td>4.448</td>
<td>1</td>
</tr>
</tbody>
</table>

(Continued)
Table A.1 Conversion Factors (continued)

Energy, Energy Transfer

<table>
<thead>
<tr>
<th>Energy</th>
<th>J</th>
<th>ft · lb</th>
<th>eV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 joule</td>
<td>1</td>
<td>0.737 6</td>
<td>6.242 \times 10^{19}</td>
</tr>
<tr>
<td>1 foot-pound</td>
<td>1.356</td>
<td>1</td>
<td>8.464 \times 10^{19}</td>
</tr>
<tr>
<td>1 electron volt</td>
<td>(1.602 \times 10^{-19})</td>
<td>1.182 \times 10^{-19}</td>
<td>1</td>
</tr>
<tr>
<td>1 calorie</td>
<td>4.186</td>
<td>3.087</td>
<td>2.613 \times 10^{19}</td>
</tr>
<tr>
<td>1 British thermal unit</td>
<td>(1.055 \times 10^3)</td>
<td>7.779 \times 10^2</td>
<td>6.585 \times 10^{21}</td>
</tr>
<tr>
<td>1 kilowatt-hour</td>
<td>(3.600 \times 10^6)</td>
<td>2.655 \times 10^6</td>
<td>2.247 \times 10^{25}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>cal</th>
<th>Btu</th>
<th>kWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 joule</td>
<td>0.238 9</td>
<td>9.481 \times 10^{-4}</td>
</tr>
<tr>
<td>1 foot-pound</td>
<td>0.323 9</td>
<td>1.285 \times 10^{-3}</td>
</tr>
<tr>
<td>1 electron volt</td>
<td>(3.827 \times 10^{-20})</td>
<td>1.519 \times 10^{-22}</td>
</tr>
<tr>
<td>1 calorie</td>
<td>1</td>
<td>3.968 \times 10^{-2}</td>
</tr>
<tr>
<td>1 British thermal unit</td>
<td>(2.520 \times 10^2)</td>
<td>1</td>
</tr>
<tr>
<td>1 kilowatt-hour</td>
<td>(8.601 \times 10^5)</td>
<td>3.413 \times 10^2</td>
</tr>
</tbody>
</table>

Pressure

<table>
<thead>
<tr>
<th>Pressure</th>
<th>Pa</th>
<th>atm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 pascal</td>
<td>1</td>
<td>9.869 \times 10^{-6}</td>
</tr>
<tr>
<td>1 atmosphere</td>
<td>(1.013 \times 10^5)</td>
<td>1</td>
</tr>
<tr>
<td>1 centimeter mercury</td>
<td>(1.333 \times 10^3)</td>
<td>1.316 \times 10^{-5}</td>
</tr>
<tr>
<td>1 pound per square inch</td>
<td>(6.895 \times 10^3)</td>
<td>(6.805 \times 10^{-2})</td>
</tr>
<tr>
<td>1 pound per square foot</td>
<td>(47.88)</td>
<td>(4.725 \times 10^{-4})</td>
</tr>
</tbody>
</table>

Table A.2 Symbols, Dimensions, and Units of Physical Quantities

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Common Symbol</th>
<th>Unit*</th>
<th>Dimensionsb</th>
<th>Unit in Terms of Base SI Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acceleration</td>
<td>(\ddot{a})</td>
<td>m/s²</td>
<td>L/T²</td>
<td>m/s²</td>
</tr>
<tr>
<td>Amount of substance</td>
<td>(n)</td>
<td>MOLE</td>
<td></td>
<td>mol</td>
</tr>
<tr>
<td>Angle</td>
<td>(\theta, \phi)</td>
<td>radian (rad)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Angular acceleration</td>
<td>(\ddot{\alpha})</td>
<td>rad/s²</td>
<td>T⁻²</td>
<td>s⁻²</td>
</tr>
<tr>
<td>Angular frequency</td>
<td>(\omega)</td>
<td>rad/s</td>
<td>T⁻¹</td>
<td>s⁻¹</td>
</tr>
<tr>
<td>Angular momentum</td>
<td>(\mathbf{L})</td>
<td>kg · m²/s</td>
<td>ML²/T</td>
<td>kg · m²/s</td>
</tr>
<tr>
<td>Angular velocity</td>
<td>(\dot{\omega})</td>
<td>rad/s</td>
<td>T⁻¹</td>
<td>s⁻¹</td>
</tr>
<tr>
<td>Area</td>
<td>(A)</td>
<td>m²</td>
<td>L²</td>
<td>m²</td>
</tr>
<tr>
<td>Atomic number</td>
<td>(Z)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capacitance</td>
<td>(C)</td>
<td>farad (F)</td>
<td>Q²T²/ML²</td>
<td>A² · s⁴/kg · m²</td>
</tr>
<tr>
<td>Charge</td>
<td>(q, Q, e)</td>
<td>coulomb (C)</td>
<td>Q</td>
<td>A · s</td>
</tr>
</tbody>
</table>

aAt 0°C and at a location where the free-fall acceleration has its “standard” value, 9.806 65 m/s².

(Continued)
<table>
<thead>
<tr>
<th>Quantity</th>
<th>Common Symbol</th>
<th>Unit(^a)</th>
<th>Dimensions(^b)</th>
<th>Unit in Terms of Base SI Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charge density</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Line</td>
<td>(\lambda)</td>
<td>C/m</td>
<td>Q/L</td>
<td>A · s/m</td>
</tr>
<tr>
<td>Surface</td>
<td>(\sigma)</td>
<td>C/m(^2)</td>
<td>Q/L(^2)</td>
<td>A · s/m(^2)</td>
</tr>
<tr>
<td>Volume</td>
<td>(\rho)</td>
<td>C/m(^3)</td>
<td>Q/L(^3)</td>
<td>A · s/m(^3)</td>
</tr>
<tr>
<td>Conductivity</td>
<td>(\sigma)</td>
<td>1/(\Omega) · m</td>
<td>Q(^2)T/ML(^3)</td>
<td>A(^2) · s(^3)/kg · m(^3)</td>
</tr>
<tr>
<td>Current</td>
<td>(I)</td>
<td>AMPERE</td>
<td>Q/T</td>
<td>A</td>
</tr>
<tr>
<td>Current density</td>
<td>(J)</td>
<td>A/m(^2)</td>
<td>Q/TL(^2)</td>
<td>A/m(^2)</td>
</tr>
<tr>
<td>Density</td>
<td>(\rho)</td>
<td>kg/m(^3)</td>
<td>M/L(^3)</td>
<td>kg/m(^3)</td>
</tr>
<tr>
<td>Dielectric constant</td>
<td>(\kappa)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electric dipole moment</td>
<td>(\vec{p})</td>
<td>C · m</td>
<td>QL</td>
<td>A · s · m</td>
</tr>
<tr>
<td>Electric field</td>
<td>(\vec{E})</td>
<td>V/m</td>
<td>ML/QT(^2)</td>
<td>kg · m/A · s(^3)</td>
</tr>
<tr>
<td>Electric flux</td>
<td>(\Phi_E)</td>
<td>V · m</td>
<td>ML(^3)/QT(^2)</td>
<td>kg · m(^3)/A · s(^3)</td>
</tr>
<tr>
<td>Electromotive force</td>
<td>(\mathcal{E})</td>
<td>volt (V)</td>
<td>ML(^3)/QT(^2)</td>
<td>kg · m(^3)/A · s(^3)</td>
</tr>
<tr>
<td>Energy</td>
<td>(E, ; U, ; K)</td>
<td>joule (J)</td>
<td>ML(^3)/T(^2)</td>
<td>kg · m(^2)/s(^2)</td>
</tr>
<tr>
<td>Entropy</td>
<td>(S)</td>
<td>J/K</td>
<td>ML(^2)/T(^2)K</td>
<td>kg · m(^2)/s(^2) · K</td>
</tr>
<tr>
<td>Force</td>
<td>(\vec{F})</td>
<td>newton (N)</td>
<td>ML/T(^2)</td>
<td>kg · m/s(^2)</td>
</tr>
<tr>
<td>Frequency</td>
<td>(f)</td>
<td>hertz (Hz)</td>
<td>T(^{-1})</td>
<td>s(^{-1})</td>
</tr>
<tr>
<td>Heat</td>
<td>(Q)</td>
<td>joule (J)</td>
<td>ML(^2)/T(^2)</td>
<td>kg · m(^2)/s(^2)</td>
</tr>
<tr>
<td>Inductance</td>
<td>(L)</td>
<td>henry (H)</td>
<td>ML(^2)/Q(^2)</td>
<td>kg · m(^2)/A \cdot s(^2)</td>
</tr>
<tr>
<td>Length</td>
<td>(l, ; L)</td>
<td>METER</td>
<td>L</td>
<td>m</td>
</tr>
<tr>
<td>Displacement</td>
<td>(\Delta x, ; \Delta \vec{r})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distance</td>
<td>(d, ; h)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Position</td>
<td>(x, ; y, ; z, ; \vec{r})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnetic dipole moment</td>
<td>(\vec{\mu})</td>
<td>N · m/T</td>
<td>QL(^2)/T</td>
<td>A · m(^2)</td>
</tr>
<tr>
<td>Magnetic field</td>
<td>(\vec{B})</td>
<td>tesla (T) (= Wb/m(^2))</td>
<td>M/QT</td>
<td>kg/A · s(^2)</td>
</tr>
<tr>
<td>Magnetic flux</td>
<td>(\Phi_B)</td>
<td>weber (Wb)</td>
<td>ML(^2)/QT(^2)</td>
<td>kg · m(^3)/A · s(^3)</td>
</tr>
<tr>
<td>Mass</td>
<td>(m, ; M)</td>
<td>KILOGRAM</td>
<td>M</td>
<td>kg</td>
</tr>
<tr>
<td>Molar specific heat</td>
<td>(c)</td>
<td>J/mol · K</td>
<td></td>
<td>kg · m(^2)/s \cdot mol · K</td>
</tr>
<tr>
<td>Moment of inertia</td>
<td>(I)</td>
<td>kg · m(^2)</td>
<td>ML(^2)</td>
<td>kg · m(^2)</td>
</tr>
<tr>
<td>Momentum</td>
<td>(p)</td>
<td>kg · m/s</td>
<td>ML/T</td>
<td>kg · m/s</td>
</tr>
<tr>
<td>Period</td>
<td>(T)</td>
<td>s</td>
<td>T</td>
<td>s</td>
</tr>
<tr>
<td>Permeability of free space</td>
<td>(\mu_0)</td>
<td>N/A(^2)(= H/m)</td>
<td>ML/Q(^2)</td>
<td>kg · m/A(^2) · s(^2)</td>
</tr>
<tr>
<td>Permittivity of free space</td>
<td>(\varepsilon_0)</td>
<td>C(^2)/N · m(^2)(= F/m)</td>
<td>Q(^2)T(^2)/ML(^3)</td>
<td>A(^2) · s(^3)/kg · m(^3)</td>
</tr>
<tr>
<td>Potential</td>
<td>(V)</td>
<td>volt (V)(= J/C)</td>
<td>ML(^2)/QT(^2)</td>
<td>kg · m(^3)/A · s(^3)</td>
</tr>
<tr>
<td>Power</td>
<td>(P)</td>
<td>watt (W)(= J/s)</td>
<td>ML(^2)/T(^3)</td>
<td>kg · m(^2)/s(^3)</td>
</tr>
<tr>
<td>Pressure</td>
<td>(P)</td>
<td>pascal (Pa)(= N/m(^2))</td>
<td>M/LT(^3)</td>
<td>kg/m · s(^2)</td>
</tr>
<tr>
<td>Resistance</td>
<td>(R)</td>
<td>ohm ((\Omega))(= V/A)</td>
<td>ML(^2)/Q(^2)T</td>
<td>kg · m(^3)/A \cdot s(^5)</td>
</tr>
<tr>
<td>Specific heat</td>
<td>(c)</td>
<td>J/kg · K</td>
<td>L(^2)/T(^2)K</td>
<td>m(^2)/s \cdot K</td>
</tr>
<tr>
<td>Speed</td>
<td>(v)</td>
<td>m/s</td>
<td>L/T</td>
<td>m/s</td>
</tr>
<tr>
<td>Temperature</td>
<td>(T)</td>
<td>KELVIN</td>
<td>K</td>
<td>K</td>
</tr>
<tr>
<td>Time</td>
<td>(t)</td>
<td>SECOND</td>
<td>T</td>
<td>s</td>
</tr>
<tr>
<td>Torque</td>
<td>(\tau)</td>
<td>N · m</td>
<td>ML(^2)/T(^2)</td>
<td>kg · m(^2)/s(^2)</td>
</tr>
<tr>
<td>Velocity</td>
<td>(\vec{v})</td>
<td>m/s</td>
<td>L/T</td>
<td>m/s</td>
</tr>
<tr>
<td>Volume</td>
<td>(V)</td>
<td>m(^3)</td>
<td>L(^3)</td>
<td>m(^3)</td>
</tr>
<tr>
<td>Wavelength</td>
<td>(\lambda)</td>
<td>m</td>
<td>L</td>
<td>m</td>
</tr>
<tr>
<td>Work</td>
<td>(W)</td>
<td>joule (J)(= N · m)</td>
<td>ML(^2)/T(^2)</td>
<td>kg · m(^2)/s(^2)</td>
</tr>
</tbody>
</table>

\(^a\)The base SI units are given in uppercase letters.

\(^b\)The symbols M, L, T, K, and Q denote mass, length, time, temperature, and charge, respectively.
This appendix in mathematics is intended as a brief review of operations and methods. Early in this course, you should be totally familiar with basic algebraic techniques, analytic geometry, and trigonometry. The sections on differential and integral calculus are more detailed and are intended for students who have difficulty applying calculus concepts to physical situations.

B.1 Scientific Notation

Many quantities used by scientists often have very large or very small values. The speed of light, for example, is about $300\ 000\ 000\ \text{m/s}$, and the ink required to make the dot over an i in this textbook has a mass of about $0.000\ 000\ 001\ \text{kg}$. Obviously, it is very cumbersome to read, write, and keep track of such numbers. We avoid this problem by using a method incorporating powers of the number 10:

\[
10^0 = 1 \\
10^1 = 10 \\
10^2 = 10 \times 10 = 100 \\
10^3 = 10 \times 10 \times 10 = 1\ 000 \\
10^4 = 10 \times 10 \times 10 \times 10 = 10\ 000 \\
10^5 = 10 \times 10 \times 10 \times 10 \times 10 = 100\ 000
\]

and so on. The number of zeros corresponds to the power to which ten is raised, called the exponent of ten. For example, the speed of light, $300\ 000\ 000\ \text{m/s}$, can be expressed as $3.00 \times 10^8\ \text{m/s}$.

In this method, some representative numbers smaller than unity are the following:

\[
10^{-1} = \frac{1}{10} = 0.1 \\
10^{-2} = \frac{1}{10 \times 10} = 0.01 \\
10^{-3} = \frac{1}{10 \times 10 \times 10} = 0.001 \\
10^{-4} = \frac{1}{10 \times 10 \times 10 \times 10} = 0.000\ 1 \\
10^{-5} = \frac{1}{10 \times 10 \times 10 \times 10 \times 10} = 0.000\ 01
\]

In these cases, the number of places the decimal point is to the left of the digit 1 equals the value of the (negative) exponent. Numbers expressed as some power of ten multiplied by another number between one and ten are said to be in **scientific notation**. For example, the scientific notation for $5\ 943\ 000\ 000$ is 5.943×10^8 and that for $0.000\ 083\ 2$ is 8.32×10^{-5}.
When numbers expressed in scientific notation are being multiplied, the following general rule is very useful:

\[10^n \times 10^m = 10^{n+m} \] \hspace{1cm} (B.1)

where \(n \) and \(m \) can be any numbers (not necessarily integers). For example, \(10^2 \times 10^5 = 10^7 \). The rule also applies if one of the exponents is negative: \(10^3 \times 10^{-8} = 10^{-5} \).

When dividing numbers expressed in scientific notation, note that

\[\frac{10^n}{10^m} = 10^{n-m} = 10^{n-\bar{m}} \] \hspace{1cm} (B.2)

Exercises

With help from the preceding rules, verify the answers to the following equations:

1. \(86400 = 8.64 \times 10^4 \)
2. \(9816762.5 = 9.8167625 \times 10^6 \)
3. \(0.00000039 = 3.98 \times 10^{-8} \)
4. \((4.0 \times 10^3)(9.0 \times 10^9) = 36 \times 10^{18} \)
5. \((3.0 \times 10^7)(6.0 \times 10^{-15}) = 1.8 \times 10^{-4} \)
6. \(\frac{75 \times 10^{-11}}{5.0 \times 10^{-3}} = 1.5 \times 10^{-7} \)
7. \(\frac{(3 \times 10^3)(8 \times 10^{-2})}{(2 \times 10^7)(6 \times 10^5)} = 2 \times 10^{-18} \)

B.2 Algebra

Some Basic Rules

When algebraic operations are performed, the laws of arithmetic apply. Symbols such as \(x, y, \) and \(z \) are usually used to represent unspecified quantities, called the **unknowns**.

First, consider the equation

\[8x = 32 \]

If we wish to solve for \(x \), we can divide (or multiply) each side of the equation by the same factor without destroying the equality. In this case, if we divide both sides by 8, we have

\[\frac{8x}{8} = \frac{32}{8} \]

\[x = 4 \]

Next consider the equation

\[x + 2 = 8 \]

In this type of expression, we can add or subtract the same quantity from each side. If we subtract 2 from each side, we have

\[x + 2 - 2 = 8 - 2 \]

\[x = 6 \]

In general, if \(x + a = b \), then \(x = b - a \).

Now consider the equation

\[\frac{x}{5} = 9 \]
If we multiply each side by 5, we are left with x on the left by itself and 45 on the right:

$$\left(\frac{x}{5}\right) (5) = 9 \times 5$$

$$x = 45$$

In all cases, whatever operation is performed on the left side of the equality must also be performed on the right side.

The following rules for multiplying, dividing, adding, and subtracting fractions should be recalled, where a, b, c, and d are four numbers:

<table>
<thead>
<tr>
<th>Rule</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplying</td>
<td>$\left(\frac{a}{b}\right) \left(\frac{c}{d}\right) = \frac{ac}{bd}$</td>
</tr>
<tr>
<td>Dividing</td>
<td>$\frac{(a/b)}{(c/d)} = \frac{ad}{bc}$</td>
</tr>
<tr>
<td>Adding</td>
<td>$\frac{a}{b} = \frac{c}{d}$</td>
</tr>
</tbody>
</table>

Exercises

In the following exercises, solve for x.

Answers

1. $a = \frac{1}{1 + x}$
 $$x = \frac{1 - a}{a}$$
2. $3x - 5 = 13$
 $$x = \frac{7}{a - b}$$
3. $ax - 5 = bx + 2$
 $$x = \frac{7}{a - b}$$
4. $\frac{5}{2x + 6} = \frac{3}{4x + 8}$
 $$x = \frac{11}{7}$$

Powers

When powers of a given quantity x are multiplied, the following rule applies:

$$x^n x^m = x^{n+m}$$ \hfill (B.3)

For example, $x^2 x^4 = x^{2+4} = x^6$.

When dividing the powers of a given quantity, the rule is

$$\frac{x^n}{x^m} = x^{n-m}$$ \hfill (B.4)

For example, $x^6/x^2 = x^{6-2} = x^4$.

A power that is a fraction, such as $\frac{1}{2}$, corresponds to a root as follows:

$$x^{1/n} = \sqrt[n]{x}$$ \hfill (B.5)

For example, $4^{1/\sqrt{2}} = 1.587 4$. (A scientific calculator is useful for such calculations.)

Finally, any quantity x^n raised to the mth power is

$$(x^n)^m = x^{nm}$$ \hfill (B.6)

Table B.1 summarizes the rules of exponents.

Exercises

Verify the following equations:

1. $3^2 \times 3^3 = 243$
2. $x^5 x^{-8} = x^{-3}$
3. \(x^{10}/x^{-5} = x^{15}\)
4. \(5^{1/3} = 1.709\) (Use your calculator.)
5. \(60^{1/4} = 2.783\) (Use your calculator.)
6. \((x^3)^3 = x^{12}\)

Factoring

Some useful formulas for factoring an equation are the following:

- \(ax + ay + az = a(x + y + z)\) common factor
- \(a^2 + 2ab + b^2 = (a + b)^2\) perfect square
- \(a^2 - b^2 = (a + b)(a - b)\) differences of squares

Quadratic Equations

The general form of a quadratic equation is

\[
ax^2 + bx + c = 0 \tag{B.7}
\]

where \(x\) is the unknown quantity and \(a\), \(b\), and \(c\) are numerical factors referred to as **coefficients** of the equation. This equation has two roots, given by

\[
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \tag{B.8}
\]

If \(b^2 \geq 4ac\), the roots are real.

Example B.1

The equation \(x^2 + 5x + 4 = 0\) has the following roots corresponding to the two signs of the square-root term:

\[
x = \frac{-5 \pm \sqrt{5^2 - 4(1)(4)}}{2(1)} = \frac{-5 \pm \sqrt{9}}{2} = \frac{-5 \pm 3}{2}
\]

\[
x_+ = \frac{-5 + 3}{2} = -1 \quad x_- = \frac{-5 - 3}{2} = -4
\]

where \(x_+\) refers to the root corresponding to the positive sign and \(x_-\) refers to the root corresponding to the negative sign.

Exercises

Solve the following quadratic equations:

Answers

1. \(x^2 + 2x - 3 = 0\) \(x_+ = 1\) \(x_- = -3\)
2. \(2x^2 - 5x + 2 = 0\) \(x_+ = 2\) \(x_- = \frac{1}{2}\)
3. \(2x^2 - 4x - 9 = 0\) \(x_+ = 1 + \sqrt{22}/2\) \(x_- = 1 - \sqrt{22}/2\)

Linear Equations

A linear equation has the general form

\[
y = mx + b \tag{B.9}
\]
where and are constants. This equation is referred to as linear because the graph of versus is a straight line as shown in Figure B.1. The constant , called the -intercept, represents the value of at which the straight line intersects the axis. The constant is equal to the slope of the straight line. If any two points on the straight line are specified by the coordinates () and () as in Figure B.1, the slope of the straight line can be expressed as

\[
\text{Slope } = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}
\]

Note that and can have either positive or negative values. If 0, the straight line has a positive slope as in Figure B.1. If 0, the straight line has a negative slope. In Figure B.1, both and are positive. Three other possible situations are shown in Figure B.2.

Exercises

Draw graphs of the following straight lines: (a) 3 (b) (c)

2. Find the slopes of the straight lines described in Exercise 1.

Answers (a) 5 (b) 2 (c)

3. Find the slopes of the straight lines that pass through the following sets of points: (a) (0, 4) and (4, 2) (b) (0, 0) and (2, 5) (c) (5, 2) and (4, 5)

Answers (a) - (b) - (c) -

Solving Simultaneous Linear Equations

Consider the equation 3 = 15, which has two unknowns, and Such an equation does not have a unique solution. For example, (= 0, 3), (= 5, 0), and 2, - are all solutions to this equation.

If a problem has two unknowns, a unique solution is possible only if we have two pieces of information. In most common cases, those two pieces of information are equations. In general, if a problem has unknowns, its solution requires equations. To solve two simultaneous equations involving two unknowns, and, we solve one of the equations for in terms of and substitute this expression into the other equation.

In some cases, the two pieces of information may be (1) one equation and (2) a condition on the solutions. For example, suppose we have the equation and the condition that and must be the smallest positive nonzero integers possible. Then, the single equation does not allow a unique solution, but the addition of the condition gives us that 1 and

Example B.2

Solve the two simultaneous equations

(1) = -8

(2) 4

Solution

From Equation (2), 2. Substitution of this equation into Equation (1) gives

= -8

= -18
Alternative Solution Multiply each term in Equation (1) by the factor 2 and add the result to Equation (2):

\[
\begin{align*}
10 & = -16 \\
4 & = -12 \\
12 & = 1
\end{align*}
\]

Two linear equations containing two unknowns can also be solved by a graphical method. If the straight lines corresponding to the two equations are plotted in a conventional coordinate system, the intersection of the two lines represents the solution. For example, consider the two equations

\[
\begin{align*}
2 & = 2 \\
1 & = -1
\end{align*}
\]

These equations are plotted in Figure B.3. The intersection of the two lines has the coordinates 5 and 3, which represents the solution to the equations. You should check this solution by the analytical technique discussed earlier.

Exercises
Solve the following pairs of simultaneous equations involving two unknowns:

Answers

5, 2.

65, 3.27

Exercises

Logarithms

Suppose a quantity is expressed as a power of some quantity

\[(B.11) \]

The number is called the base number. The logarithm of with respect to the base is equal to the exponent to which the base must be raised to satisfy the expression

\[\log \]

Conversely, the antilogarithm of is the number

\[\text{antilog} \]

In practice, the two bases most often used are base 10, called the common logarithm base, and base \(= 2.718282 \), called Euler's constant or the natural logarithm base. When common logarithms are used,

\[\log_{10} \text{ or } 10 \]

\[(B.14) \]
When natural logarithms are used,

\[
\ln \text{ or } \ln
\]

(B.15)

For example, \(\log_{10} 5 = 0.778\), so antilog \(5^{0.778} \approx 52\). Likewise, \(\ln 52 = 3.951\), so antiln \(3.951 \approx 52\).

In general, note you can convert between base 10 and base e with the equality

\[
\ln 10 = \frac{2.302585}{\log_{10} e}
\]

(B.16)

Finally, some useful properties of logarithms are the following:

<table>
<thead>
<tr>
<th>(\log)</th>
<th>(\log)</th>
<th>(\log)</th>
<th>(\log)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ab)</td>
<td>(\log a)</td>
<td>(\log b)</td>
<td>(\log)</td>
</tr>
<tr>
<td>(\log)</td>
<td>(\log)</td>
<td>(\log)</td>
<td>(\text{any base})</td>
</tr>
<tr>
<td>(\ln)</td>
<td>(\ln)</td>
<td>(\ln)</td>
<td>(\ln)</td>
</tr>
<tr>
<td>(\ln)</td>
<td>(\ln)</td>
<td>(\ln)</td>
<td>(\ln)</td>
</tr>
</tbody>
</table>

(B.18)

\(\ln a = -\ln a\)

B.3 Geometry

The distance between two points having coordinates \((x_1, y_1)\) and \((x_2, y_2)\) is

\[
\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}
\]

(B.17)

Two angles are equal if their sides are perpendicular, right side to right side and left side to left side. For example, the two angles marked \(\theta\) in Figure B.4 are the same because of the perpendicularity of the sides of the angles. To distinguish the left and right sides of an angle, imagine standing at the angle’s apex and facing into the angle.

Radian measure. The arc length of a circular arc (Fig. B.5) is proportional to the radius for a fixed value of \(\theta\) (in radians):

\[
\theta = \frac{s}{r}
\]

(B.18)

Table B.2 gives the areas and volumes for several geometric shapes used throughout this text.

The equation of a straight line (Fig. B.6) is

\[
x = mx + b
\]

(B.19)

where \(m\) is the \(-intercept and \(b\) is the slope of the line.

The equation of a circle of radius \(r\) centered at the origin is

\[
x^2 + y^2 = r^2
\]

(B.20)

The equation of an ellipse having the origin at its center (Fig. B.7) is

\[
x^2/a^2 + y^2/b^2 = 1
\]

(B.21)

where \(a\) is the length of the semimajor axis (the longer one) and \(b\) is the length of the semiminor axis (the shorter one).

The equation of a parabola the vertex of which is at \((h, k)\) (Fig. B.8) is

\[
y = ax^2
\]

(B.22)
The equation of a **rectangular hyperbola** (Fig. B.9) is

\[xy = \text{constant} \]

(B.23)

B.4 Trigonometry

That portion of mathematics based on the special properties of the right triangle is called trigonometry. By definition, a right triangle is a triangle containing a 90° angle. Consider the right triangle shown in Figure B.10, where side \(a\) is opposite the angle \(\theta\), side \(b\) is adjacent to the angle \(\theta\), and side \(c\) is the hypotenuse of the triangle. The three basic trigonometric functions defined by such a triangle are the sine (sin), cosine (cos), and tangent (tan). In terms of the angle \(\theta\), these functions are defined as follows:

\[
\sin \theta = \frac{\text{side opposite}}{\text{hypotenuse}} \\
\cos \theta = \frac{\text{side adjacent to} \ \theta}{\text{hypotenuse}} \\
\tan \theta = \frac{\text{side opposite}}{\text{side adjacent to} \ \theta}
\]

(B.24)

(B.25)

(B.26)

The Pythagorean theorem provides the following relationship among the sides of a right triangle:

\[a^2 + b^2 = c^2 \]

(B.27)

From the preceding definitions and the Pythagorean theorem, it follows that

\[\sin \theta + \cos \theta = 1 \]

\[\tan \theta = \frac{\sin \theta}{\cos \theta} \]

The cosecant, secant, and cotangent functions are defined by

\[\csc \theta = \frac{1}{\sin \theta} \quad \sec \theta = \frac{1}{\cos \theta} \quad \cot \theta = \frac{1}{\tan \theta} \]
The following relationships are derived directly from the right triangle shown in Figure B.10:

\[
\begin{align*}
\sin \theta &= \cos (90^\circ - \theta) \\
\cos \theta &= \sin (90^\circ - \theta) \\
\cot \theta &= \tan (90^\circ - \theta)
\end{align*}
\]

Some properties of trigonometric functions are the following:

\[
\begin{align*}
\sin (-\theta) &= -\sin \theta \\
\cos (-\theta) &= \cos \theta \\
\tan (-\theta) &= -\tan \theta
\end{align*}
\]

The following relationships apply to any triangle as shown in Figure B.11:

\[
\alpha + \beta + \gamma = 180
\]

Law of cosines

\[
bc \cos \gamma = ac \cos \beta = ab \cos \alpha
\]

Law of sines

\[
\sin \alpha \sin \beta \sin \gamma = \frac{abc}{4}\]

Table B.3 lists a number of useful trigonometric identities.

Example B.3

Consider the right triangle in Figure B.12 in which \(a = 2.00\), \(b = 5.00\), and \(c\) is unknown. From the Pythagorean theorem, we have

\[
\begin{array}{ccccccc}
a & = & 2.00 & \quad & b & = & 5.00 \\
\hline
2.00 & 5.00 & 4.00 & 25.0 & 29.0 \\
\hline
29.0 & & 5.39 & & & &
\end{array}
\]

To find the angle \(\theta\), note that

\[
\tan \theta = -\frac{2.00}{5.00} = 0.400
\]
Exercises

In Figure B.13, identify (a) the side opposite (b) the side adjacent to and then find (c) \cos, (d) \sin, and (e) \tan

Answers
(a) 3 (b) 3 (c) $\frac{\sqrt{8}}{5}$ (d) $\frac{\sqrt{7}}{5}$ (e) 1

2. In a certain right triangle, the two sides that are perpendicular to each other are 5.00 m and 7.00 m long. What is the length of the third side?

Answer 8.60 m

3. A right triangle has a hypotenuse of length 3.0 m, and one of its angles is 30°. (a) What is the length of the side opposite the 30° angle? (b) What is the side adjacent to the 30° angle?

Answers (a) 1.5 m (b) 2.6 m

B.5 Series Expansions

\[\ln \frac{\theta}{\cos \frac{\theta}{5}} \]

\[\sin \frac{\theta}{\cos \frac{\theta}{5}} \]

\[\cos \frac{\theta}{\sin \frac{\theta}{5}} \]

\[\tan \frac{\theta}{\sin \frac{\theta}{15}} \]

For $\theta < 1$, the following approximations can be used:

\[\ln \frac{\theta}{\cos \frac{\theta}{5}} \]

\[\sin \frac{\theta}{\cos \frac{\theta}{5}} \]

\[\cos \frac{\theta}{\sin \frac{\theta}{5}} \]

\[\tan \frac{\theta}{\sin \frac{\theta}{15}} \]

B.6 Differential Calculus

In various branches of science, it is sometimes necessary to use the basic tools of calculus, invented by Newton, to describe physical phenomena. The use of calculus is fundamental in the treatment of various problems in Newtonian mechanics, electricity, and magnetism. In this section, we simply state some basic properties and "rules of thumb" that should be a useful review to the student.

The approximations for the functions \sin, \cos, and \tan are for 0.1 rad.
First, a function must be specified that relates one variable to another (e.g., a coordinate as a function of time). Suppose one of the variables is called \(y \) (the dependent variable), and the other \(x \) (the independent variable). We might have a function relationship such as

\[
ax + bx + cx
\]

If \(a \), \(b \), and \(c \) are specified constants, \(y \) can be calculated for any value of \(x \). We usually deal with continuous functions, that is, those for which \(y \) varies “smoothly” with \(x \).

The derivative of \(y \) with respect to \(x \) is defined as the limit as \(\Delta \) approaches zero of the slopes of chords drawn between two points on the \(y \) versus \(x \) curve. Mathematically, we write this definition as

\[
\lim_{\Delta \to 0} \frac{\Delta y}{\Delta x} = \frac{dy}{dx}
\]

where \(\Delta x \) and \(\Delta y \) are defined as \(\Delta x = x - x_0 \) and \(\Delta y = y - y_0 \) (Fig. B.14). Note that \(\Delta x \) does not mean \(x \) divided by \(\Delta x \), but rather is simply a notation of the limiting process of the derivative as defined by Equation B.28.

A useful expression to remember when \(n \) is a constant is

\[
\frac{dy}{dx} = nax
\]

If \(f(x) \) is a polynomial or algebraic function of \(x \), we apply Equation B.29 to each term in the polynomial and take \(\frac{\text{constant}}{x} = 0 \). In Examples B.4 through B.7, we evaluate the derivatives of several functions.

Special Properties of the Derivative

A. Derivative of the product of two functions If a function \(f(x) \) is given by the product of two functions—say, \(g(x) \) and \(h(x) \)—the derivative of \(f(x) \) is defined as

\[
\frac{df}{dx} = \left(\frac{dg}{dx} \right) h(x) + g(x) \left(\frac{dh}{dx} \right)
\]

B. Derivative of the sum of two functions If a function \(f(x) \) is equal to the sum of two functions, the derivative of the sum is equal to the sum of the derivatives:

\[
\frac{df}{dx} = \frac{dg}{dx} + \frac{dh}{dx}
\]

C. Chain rule of differential calculus If \(f(x) \) and \(g(x) \), then can be written as the product of two derivatives:

\[
\frac{df}{dx} = \frac{dy}{dz} \frac{dz}{dx}
\]

D. The second derivative The second derivative of \(f(x) \) with respect to \(x \) is defined as the derivative of the function \(f'(x) \) (the derivative of the derivative). It is usually written as

\[
\frac{d^2f}{dx^2} = \frac{d}{dx} \left(\frac{df}{dx} \right)
\]

Some of the more commonly used derivatives of functions are listed in Table B.4.

Table B.4 Derivative for Several Functions

<table>
<thead>
<tr>
<th>(\frac{dx}{dx})</th>
<th>(a)</th>
<th>(ax)</th>
<th>(nax)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sin ax)</td>
<td></td>
<td>(\cos ax)</td>
<td></td>
</tr>
<tr>
<td>(\cos ax)</td>
<td>(= - \sin ax)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\tan ax)</td>
<td></td>
<td>(\sec ax)</td>
<td></td>
</tr>
<tr>
<td>(\cot ax)</td>
<td>(= - \csc ax)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\sec ax)</td>
<td></td>
<td>(\tan ax)</td>
<td></td>
</tr>
<tr>
<td>(\csc ax)</td>
<td></td>
<td>(\cot ax)</td>
<td></td>
</tr>
<tr>
<td>(\ln ax)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\sin ax)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\cos ax)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\tan ax)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(\text{Note: The symbols } a \text{ and } x \text{ represent constants.} \)
Example B.4

Suppose \(y(x) \) (that is, \(y \) as a function of \(x \)) is given by

\[y(x) = ax^3 + bx + c \]

where \(a \) and \(b \) are constants. It follows that

\[y(x + \Delta x) = a(x + \Delta x)^3 + b(x + \Delta x) + c \]

and

\[y(x) + \Delta y = a(x^3 + 3x^2 \Delta x + 3x \Delta x^2 + \Delta x^3) + b(x + \Delta x) + c \]

so

\[\Delta y = y(x + \Delta x) - y(x) = a(3x^2 \Delta x + 3x \Delta x^2 + \Delta x^3) + b \Delta x \]

Substituting this into Equation B.28 gives

\[\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} [3ax^2 + 3ax \Delta x + a \Delta x^2] + b \]

\[\frac{dy}{dx} = 3ax^2 + b \]

Example B.5

Find the derivative of

\[y(x) = 8x^5 + 4x^3 + 2x + 7 \]

Solution

Applying Equation B.29 to each term independently and remembering that \(d/dx \) (constant) = 0, we have

\[\frac{dy}{dx} = 8(5)x^4 + 4(3)x^2 + 2(1)x^0 + 0 \]

\[\frac{dy}{dx} = 40x^4 + 12x^2 + 2 \]

Example B.6

Find the derivative of \(y(x) = x^3/(x + 1)^2 \) with respect to \(x \).

Solution

We can rewrite this function as \(y(x) = x^3(x + 1)^{-2} \) and apply Equation B.30:

\[\frac{dy}{dx} = (x + 1)^{-2} \frac{d}{dx}(x^3) + x^3 \frac{d}{dx}(x + 1)^{-2} \]

\[= (x + 1)^{-2} 3x^2 + x^3 (-2)(x + 1)^{-3} \]

\[\frac{dy}{dx} = \frac{3x^2}{(x + 1)^2} - \frac{2x^3}{(x + 1)^3} = \frac{x^2(x + 3)}{(x + 1)^3} \]
B.7 Integral Calculus

We think of integration as the inverse of differentiation. As an example, consider the expression

\[\frac{df(x)}{dx} = \frac{d}{dx} \left(\frac{g(x)}{h(x)} \right) = \frac{h \frac{dg}{dx} - g \frac{dh}{dx}}{h^2} \]

which was the result of differentiating the function

\[y(x) = ax^3 + bx + c \]

in Example B.4. We can write Equation B.34 as \(dy = f(x) \, dx = (3ax^2 + b) \, dx \) and obtain \(y(x) \) by “summing” over all values of \(x \). Mathematically, we write this inverse operation as

\[y(x) = \int f(x) \, dx \]

For the function \(f(x) \) given by Equation B.34, we have

\[y(x) = \int (3ax^2 + b) \, dx = ax^3 + bx + c \]

where \(c \) is a constant of the integration. This type of integral is called an **indefinite integral** because its value depends on the choice of \(c \).

A general **indefinite integral** \(I(x) \) is defined as

\[I(x) = \int f(x) \, dx \]

where \(f(x) \) is called the **integrand** and \(f(x) = dI(x)/dx \).

For a **general continuous** function \(f(x) \), the integral can be interpreted geometrically as the area under the curve bounded by \(f(x) \) and the \(x \)-axis, between two specified values of \(x \), say, \(x_1 \) and \(x_2 \), as in Figure B.15.

The area of the blue element in Figure B.15 is approximately \(f(x_i) \Delta x_i \). If we sum all these area elements between \(x_1 \) and \(x_2 \) and take the limit of this sum as \(\Delta x_i \to 0 \),
we obtain the true area under the curve bounded by \(\) and the axis, between the limits \(\) and

\[
\text{Area} = \lim_{x \to b} \int_a^x f(x) \, dx \tag{B.36}
\]

Integrals of the type defined by Equation B.36 are called **definite integrals**. One common integral that arises in practical situations has the form

\[
\int_a^b f(x) \, dx \tag{B.37}
\]

This result is obvious, being that differentiation of the right-hand side with respect to \(f \) gives \(f \) directly. If the limits of the integration are known, this integral becomes a **definite integral** and is written

\[
\int_a^b f(x) \, dx \tag{B.38}
\]

Examples

<table>
<thead>
<tr>
<th>Example</th>
<th>Integral</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>(dx)</td>
</tr>
<tr>
<td>2.</td>
<td>(dx)</td>
</tr>
<tr>
<td>3.</td>
<td>(dx)</td>
</tr>
</tbody>
</table>

Partial Integration

Sometimes it is useful to apply the method of **partial integration** (also called “integrating by parts”) to evaluate certain integrals. This method uses the property

\[
dv \quad uv \quad du \tag{B.39}
\]

where \(v \) and \(u \) are carefully chosen so as to reduce a complex integral to a simpler one. In many cases, several reductions have to be made. Consider the function

\[
\int f(x) \, dx
\]

which can be evaluated by integrating by parts twice. First, if we choose \(u = \) \(\) \(\), we obtain

\[
\int f(x) \, dx \quad \int f(x) \, dx
\]
Now, in the second term, choose \(u = x, v = e^x \), which gives
\[
\int x^2 e^x \, dx = x^2 e^x - 2x e^x + 2 \int e^x \, dx + c_1
\]
or
\[
\int x^2 e^x \, dx = x^2 e^x - 2xe^x + 2e^x + c_2
\]

The Perfect Differential

Another useful method to remember is that of the perfect differential, in which we look for a change of variable such that the differential of the function is the differential of the independent variable appearing in the integrand. For example, consider the integral
\[
I(x) = \int \cos^2 x \sin x \, dx
\]
This integral becomes easy to evaluate if we rewrite the differential as \(d(\cos x) = -\sin x \, dx \). The integral then becomes
\[
\int \cos^2 x \sin x \, dx = -\int \cos x \, d(\cos x)
\]
If we now change variables, letting \(y = \cos x \), we obtain
\[
\int \cos^2 x \sin x \, dx = -\int y^2 \, dy = -\frac{y^3}{3} + c = -\frac{\cos^3 x}{3} + c
\]

Table B.5 lists some useful indefinite integrals. Table B.6 gives Gauss’s probability integral and other definite integrals. A more complete list can be found in various handbooks, such as The Handbook of Chemistry and Physics (Boca Raton, FL: CRC Press, published annually).

Table B.5

<table>
<thead>
<tr>
<th>Integral</th>
<th>Equivalent Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\int x^n , dx = \frac{x^{n+1}}{n+1}) (provided (n \neq -1))</td>
<td>(\int \ln ax , dx = (x\ln ax) - x)</td>
</tr>
<tr>
<td>(\int \frac{dx}{x} = \int x^{-1} , dx = \ln x)</td>
<td>(\int x^m , dx = \frac{x^{m+1}}{m+1}) ((m \neq -1))</td>
</tr>
<tr>
<td>(\int \frac{dx}{a + bx} = \frac{1}{b} \ln \left(\frac{a + bx}{b} \right))</td>
<td>(\int \frac{dx}{a + be^x} = \frac{x}{a} - \frac{1}{ac} \ln (a + be^x))</td>
</tr>
<tr>
<td>(\int \frac{dx}{x(x + a)} = -\frac{1}{a} \ln \frac{x + a}{x})</td>
<td>(\int \sin ax , dx = -\frac{1}{a} \cos ax)</td>
</tr>
<tr>
<td>(\int \frac{dx}{(a + bx)^2} = -\frac{1}{b(a + bx)})</td>
<td>(\int \cos ax , dx = \frac{1}{a} \sin ax)</td>
</tr>
<tr>
<td>(\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \tan^{-1} \frac{x}{a})</td>
<td>(\int \tan ax , dx = -\frac{1}{a} \ln \left(\tan \frac{ax}{2} \right))</td>
</tr>
<tr>
<td>(\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \frac{x + a}{a - x} (a^2 - x^2 > 0))</td>
<td>(\int \cot ax , dx = \frac{1}{a} \ln \left(\csc \frac{ax}{2} \right))</td>
</tr>
<tr>
<td>(\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln \frac{x - a}{x + a} (x^2 - a^2 > 0))</td>
<td>(\int \sec ax , dx = \frac{1}{a} \ln \left(\sec ax + \tan ax \right) = \frac{1}{a} \ln \left(\tan \frac{ax}{2} + \frac{\pi}{4} \right))</td>
</tr>
<tr>
<td>(\int \frac{dx}{x^2} = \frac{1}{2a} \ln \frac{x}{x + a} (x^2 - a^2 > 0))</td>
<td>(\int \csc ax , dx = \frac{1}{a} \ln \left(\csc ax - \cot ax \right) = \frac{1}{a} \ln \left(\tan \frac{ax}{2} \right))</td>
</tr>
</tbody>
</table>

(Continued)
Table B.5 Some Indefinite Integrals (continued)

<table>
<thead>
<tr>
<th>Integral</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>[\int \frac{x}{a^2 + x^2} , dx = \pm \frac{1}{2} \ln \left(a^2 + x^2 \right)]</td>
<td>[\int \sin^2 ax , dx = \frac{x}{2} - \frac{\sin 2ax}{4a}]</td>
</tr>
<tr>
<td>[\int \frac{dx}{\sqrt{a^2 - x^2}} = \sin^{-1} \frac{x}{a} = -\cos^{-1} \frac{x}{a^2} (a^2 - x^2 > 0)]</td>
<td>[\cos^2 ax , dx = \frac{x}{2} + \frac{\sin 2ax}{4a}]</td>
</tr>
<tr>
<td>[\int \frac{dx}{\sqrt{x^2 + a^2}} = \ln \left(x + \sqrt{x^2 + a^2} \right)]</td>
<td>[\int \frac{dx}{\sin^2 ax} = -\frac{1}{a} \cot ax]</td>
</tr>
<tr>
<td>[\int \frac{dx}{\sqrt{a^2 - x^2}} = -\sqrt{a^2 - x^2}]</td>
<td>[\int \frac{dx}{\cos^2 ax} = \frac{1}{a} \tan ax]</td>
</tr>
<tr>
<td>[\int \frac{dx}{\sqrt{x^2 + a^2}} = \sqrt{x^2 + a^2}]</td>
<td>[\tan^2 ax , dx = \frac{1}{a} (\tan ax) - x]</td>
</tr>
<tr>
<td>[\int \frac{dx}{\sqrt{a^2 - x^2}} = \int \left(x \sqrt{a^2 - x^2} + a^2 \sin^{-1} \frac{x}{a^2} \right)]</td>
<td>[\cot^2 ax , dx = -\frac{1}{a} (\cot ax) + x]</td>
</tr>
<tr>
<td>[\int x \sqrt{a^2 - x^2} , dx = \frac{1}{2} \left(x \sqrt{a^2 - x^2} + a^2 x \right)]</td>
<td>[\int \sin^{-1} ax , dx = x \sin^{-1} ax + \frac{\sqrt{1 - a^2 x^2}}{a}]</td>
</tr>
<tr>
<td>[\int \sqrt{x^2 + a^2} , dx = \frac{1}{2} \left(x^2 + a^2 \right)^{1/2}]</td>
<td>[\int \cos^{-1} ax , dx = x \cos^{-1} ax - \frac{\sqrt{1 - a^2 x^2}}{a}]</td>
</tr>
<tr>
<td>[\int (\sqrt{x^2 + a^2})^{1/2} , dx = \frac{1}{2} \left(x^2 + a^2 \right)^{1/2}]</td>
<td>[\int \frac{x , dx}{(x^2 + a^2)^{1/2}} = \frac{x}{a^2 \sqrt{x^2 + a^2}}]</td>
</tr>
<tr>
<td>[e^{ax} , dx = \frac{1}{a} e^{ax}]</td>
<td>[\int \frac{dx}{(x^2 + a^2)^{1/2}} = \frac{1}{\sqrt{x^2 + a^2}}]</td>
</tr>
</tbody>
</table>

Table B.6 Gauss’s Probability Integral and Other Definite Integrals

\[I_0 = \int_0^\infty e^{-ax} \, dx = \frac{1}{2} \sqrt{\frac{\pi}{a}} \quad \text{(Gauss's probability integral)} \]

\[I_1 = \int_0^a x e^{-ax} \, dx = \frac{1}{2a} \]

\[I_2 = \int_0^a x^2 e^{-ax} \, dx = -\frac{dI_0}{da} = \frac{1}{4} \sqrt{\frac{\pi}{a^3}} \]

\[I_3 = \int_0^a x^3 e^{-ax} \, dx = -\frac{dI_1}{da} = \frac{1}{2a^2} \]

\[I_4 = \int_0^a x^4 e^{-ax} \, dx = \frac{d^2 I_0}{da^2} = \frac{3}{8} \sqrt{\frac{\pi}{a^5}} \]

\[I_5 = \int_0^a x^5 e^{-ax} \, dx = \frac{d^2 I_1}{da^2} = \frac{1}{a^3} \]

\[\vdots \]

\[I_{2k} = (-1)^k \frac{d^k}{da^k} I_0 \]

\[I_{2k+1} = (-1)^k \frac{d^k}{da^k} I_1 \]
B.8 Propagation of Uncertainty

In laboratory experiments, a common activity is to take measurements that act as raw data. These measurements are of several types—length, time interval, temperature, voltage, and so on—and are taken by a variety of instruments. Regardless of the measurement and the quality of the instrumentation, **there is always uncertainty associated with a physical measurement.** This uncertainty is a combination of that associated with the instrument and that related to the system being measured. An example of the former is the inability to exactly determine the position of a length measurement between the lines on a meterstick. An example of uncertainty related to the system being measured is the variation of temperature within a sample of water so that a single temperature for the sample is difficult to determine.

Uncertainties can be expressed in two ways. **Absolute uncertainty** refers to an uncertainty expressed in the same units as the measurement. Therefore, the length of a computer disk label might be expressed as \((5.5 \pm 0.1) \text{ cm}\). The uncertainty of \(\pm 0.1 \text{ cm}\) by itself is not descriptive enough for some purposes, however. This uncertainty is large if the measurement is 1.0 cm, but it is small if the measurement is 100 cm. To give a more descriptive account of the uncertainty, **fractional uncertainty** or **percent uncertainty** is used. In this type of description, the uncertainty is divided by the actual measurement. Therefore, the length of the computer disk label could be expressed as

\[
\ell = \frac{5.5 \text{ cm} \pm 0.1 \text{ cm}}{5.5 \text{ cm}} = 5.5 \text{ cm} \pm 0.018 \quad \text{(fractional uncertainty)}
\]

or as

\[
\ell = 5.5 \text{ cm} \pm 1.8\% \quad \text{(percent uncertainty)}
\]

When combining measurements in a calculation, the percent uncertainty in the final result is generally larger than the uncertainty in the individual measurements. This is called **propagation of uncertainty** and is one of the challenges of experimental physics.

Some simple rules can provide a reasonable estimate of the uncertainty in a calculated result:

Multiplication and division: When measurements with uncertainties are multiplied or divided, add the percent uncertainties to obtain the percent uncertainty in the result.

Example: The Area of a Rectangular Plate

\[
A = \ell w = (5.5 \text{ cm} \pm 1.8\%) \times (6.4 \text{ cm} \pm 1.6\%) = 35 \text{ cm}^2 \pm 3.4\%
\]

\[
= (35 \pm 1) \text{ cm}^2
\]

Addition and subtraction: When measurements with uncertainties are added or subtracted, add the absolute uncertainties to obtain the absolute uncertainty in the result.

Example: A Change in Temperature

\[
\Delta T = T_2 - T_1 = (99.2 \pm 1.5)°\text{C} - (27.6 \pm 1.5)°\text{C} = (71.6 \pm 3.0)°\text{C}
\]

\[
= 71.6°C \pm 4.2\%
\]

Powers: If a measurement is taken to a power, the percent uncertainty is multiplied by that power to obtain the percent uncertainty in the result.
Example: The Volume of a Sphere

\[V = \frac{4}{3} \pi r^3 = \frac{4}{3} \pi (6.20 \text{ cm } \pm 2.0\%)^3 = 998 \text{ cm}^3 \pm 6.0\% \]

\[= (998 \pm 60) \text{ cm}^3 \]

For complicated calculations, many uncertainties are added together, which can cause the uncertainty in the final result to be undesirably large. Experiments should be designed such that calculations are as simple as possible.

Notice that uncertainties in a calculation always add. As a result, an experiment involving a subtraction should be avoided if possible, especially if the measurements being subtracted are close together. The result of such a calculation is a small difference in the measurements and uncertainties that add together. It is possible that the uncertainty in the result could be larger than the result itself!
Periodic Table of the Elements

<table>
<thead>
<tr>
<th>Group I</th>
<th>Group II</th>
<th>Transition elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>H 1</td>
<td>1.0079
1s</td>
<td></td>
</tr>
<tr>
<td>Li 3</td>
<td>Be 4</td>
<td>Ca 20
Symbol: Ca
Atomic number: 20
Electron configuration: 4s²</td>
</tr>
<tr>
<td>Na 11</td>
<td>Mg 12</td>
<td></td>
</tr>
<tr>
<td>K 19</td>
<td>Sc 21</td>
<td>Ti 22
V 23
Cr 24
Mn 25
Fe 26
Co 27</td>
</tr>
<tr>
<td>Rb 37</td>
<td>Sr 38</td>
<td>Zr 40
Nb 41
Mo 42
Tc 43
Ru 44
Rh 45</td>
</tr>
<tr>
<td>Cs 55</td>
<td>Ba 56</td>
<td>Hf 72
Ta 73
W 74
Re 75
Os 76
Ir 77</td>
</tr>
<tr>
<td>Fr (223)</td>
<td>Ra (226)</td>
<td>Rf (261)
Db (262)
Sg (266)
Bh (264)
Hs (277)
Mt (268)</td>
</tr>
</tbody>
</table>

*Lanthanide series
**Actinide series

*Note: Atomic mass values given are averaged over isotopes in the percentages in which they exist in nature.

†For an unstable element, mass number of the most stable known isotope is given in parentheses.

Rg (261)
Cn (262)
Nh (266)
Fl (264)
Mc (277)
Lr (268)
<table>
<thead>
<tr>
<th>Group III</th>
<th>Group IV</th>
<th>Group V</th>
<th>Group VI</th>
<th>Group VII</th>
<th>Group 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>He</td>
<td>1s²</td>
<td>1.0079</td>
<td>1.0081</td>
<td>1s¹</td>
</tr>
<tr>
<td>B</td>
<td>C</td>
<td>N</td>
<td>O</td>
<td>F</td>
<td>Ne</td>
</tr>
<tr>
<td>2p¹</td>
<td>2p²</td>
<td>2p³</td>
<td>2p⁴</td>
<td>2p⁵</td>
<td>2p⁶</td>
</tr>
<tr>
<td>Al</td>
<td>Si</td>
<td>P</td>
<td>S</td>
<td>Cl</td>
<td>Ar</td>
</tr>
<tr>
<td>3p¹</td>
<td>3p²</td>
<td>3p³</td>
<td>3p⁴</td>
<td>3p⁵</td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td>Cu</td>
<td>Zn</td>
<td>Ga</td>
<td>Ge</td>
<td>As</td>
</tr>
<tr>
<td>58.693</td>
<td>63.546</td>
<td>65.41</td>
<td>69.723</td>
<td>72.64</td>
<td>74.922</td>
</tr>
<tr>
<td>3d⁸4s²</td>
<td>4d¹⁰5s¹</td>
<td>3d¹⁰4s²</td>
<td>4p¹</td>
<td>4p²</td>
<td>4p³</td>
</tr>
<tr>
<td>Pd</td>
<td>Ag</td>
<td>Cd</td>
<td>In</td>
<td>Sn</td>
<td>Sb</td>
</tr>
<tr>
<td>106.42</td>
<td>107.87</td>
<td>112.41</td>
<td>114.82</td>
<td>118.71</td>
<td>121.76</td>
</tr>
<tr>
<td>4d¹⁰</td>
<td>4d¹⁰5s¹</td>
<td>4d¹⁰5s²</td>
<td>5p¹</td>
<td>5p²</td>
<td>5p³</td>
</tr>
<tr>
<td>Pt</td>
<td>Au</td>
<td>Hg</td>
<td>Tl</td>
<td>Pb</td>
<td>Bi</td>
</tr>
<tr>
<td>195.08</td>
<td>196.97</td>
<td>200.59</td>
<td>204.38</td>
<td>207.2</td>
<td>208.98</td>
</tr>
<tr>
<td>5d⁹6s¹</td>
<td>5d⁹6s¹</td>
<td>5d⁹6s²</td>
<td>6p¹</td>
<td>6p²</td>
<td>6p³</td>
</tr>
<tr>
<td>Rs</td>
<td>Ru</td>
<td>Ln</td>
<td>Np</td>
<td>Lp</td>
<td>Am</td>
</tr>
<tr>
<td>110</td>
<td>111</td>
<td>112</td>
<td>113</td>
<td>114</td>
<td>115</td>
</tr>
<tr>
<td>(271)</td>
<td>(272)</td>
<td>(285)</td>
<td>(284)</td>
<td>(289)</td>
<td>(293)</td>
</tr>
<tr>
<td>Eu</td>
<td>Gd</td>
<td>Tb</td>
<td>Dy</td>
<td>Ho</td>
<td>Er</td>
</tr>
<tr>
<td>151.96</td>
<td>157.25</td>
<td>158.93</td>
<td>162.50</td>
<td>164.93</td>
<td>167.26</td>
</tr>
<tr>
<td>4f⁷6s²</td>
<td>4f⁷5d⁶6s²</td>
<td>4f⁸5d¹⁶s²</td>
<td>4f¹⁰6s²</td>
<td>4f¹¹6s²</td>
<td>4f¹²6s²</td>
</tr>
<tr>
<td>Am</td>
<td>Cm</td>
<td>Bk</td>
<td>Cf</td>
<td>Es</td>
<td>Fm</td>
</tr>
<tr>
<td>95</td>
<td>96</td>
<td>97</td>
<td>98</td>
<td>99</td>
<td>100</td>
</tr>
<tr>
<td>(243)</td>
<td>(247)</td>
<td>(251)</td>
<td>(252)</td>
<td>(257)</td>
<td>(258)</td>
</tr>
<tr>
<td>5f⁷7s²</td>
<td>5f⁷6d¹⁷s²</td>
<td>5f⁸6d¹⁷s²</td>
<td>5f¹⁰7s²</td>
<td>5f¹¹7s²</td>
<td>5f¹²7s²</td>
</tr>
</tbody>
</table>

Elements 113, 115, 117, and 118 have not yet been officially named. Only small numbers of atoms of these elements have been observed. Note: For a description of the atomic data, visit physics.nist.gov/PhysRefData/Elements/PerTable.html.
Table D.1 SI Units

<table>
<thead>
<tr>
<th>Base Quantity</th>
<th>SI Base Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Symbol</td>
</tr>
<tr>
<td>Length</td>
<td>meter (m)</td>
</tr>
<tr>
<td>Mass</td>
<td>kilogram (kg)</td>
</tr>
<tr>
<td>Time</td>
<td>second (s)</td>
</tr>
<tr>
<td>Electric current</td>
<td>ampere (A)</td>
</tr>
<tr>
<td>Temperature</td>
<td>kelvin (K)</td>
</tr>
<tr>
<td>Amount of substance</td>
<td>mole (mol)</td>
</tr>
<tr>
<td>Luminous intensity</td>
<td>candela (cd)</td>
</tr>
</tbody>
</table>

Table D.2 Some Derived SI Units

<table>
<thead>
<tr>
<th>Other Quantity</th>
<th>Name</th>
<th>Symbol</th>
<th>Expression in Terms of Base Units</th>
<th>Expression in Terms of SI Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plane angle</td>
<td>radian</td>
<td>rad</td>
<td>m/m</td>
<td>J/m</td>
</tr>
<tr>
<td>Frequency</td>
<td>hertz</td>
<td>Hz</td>
<td>s⁻¹</td>
<td></td>
</tr>
<tr>
<td>Force</td>
<td>newton</td>
<td>N</td>
<td>kg · m/s²</td>
<td>J/m</td>
</tr>
<tr>
<td>Pressure</td>
<td>pascal</td>
<td>Pa</td>
<td>kg/m · s²</td>
<td>N/m²</td>
</tr>
<tr>
<td>Energy</td>
<td>joule</td>
<td>J</td>
<td>kg · m²/s²</td>
<td>N · m</td>
</tr>
<tr>
<td>Power</td>
<td>watt</td>
<td>W</td>
<td>kg · m²/s³</td>
<td>J/s</td>
</tr>
<tr>
<td>Electric charge</td>
<td>coulomb</td>
<td>C</td>
<td>A · s</td>
<td></td>
</tr>
<tr>
<td>Electric potential</td>
<td>volt</td>
<td>V</td>
<td>kg · m²/A · s³</td>
<td>W/A</td>
</tr>
<tr>
<td>Capacitance</td>
<td>farad</td>
<td>F</td>
<td>A² · s⁻¹/kg · m²</td>
<td>C/V</td>
</tr>
<tr>
<td>Electric resistance</td>
<td>ohm</td>
<td>Ω</td>
<td>kg · m²/A² · s³</td>
<td>V/A</td>
</tr>
<tr>
<td>Magnetic flux</td>
<td>weber</td>
<td>Wb</td>
<td>kg · m²/A · s²</td>
<td>V · s</td>
</tr>
<tr>
<td>Magnetic field</td>
<td>tesla</td>
<td>T</td>
<td>kg/A · s²</td>
<td></td>
</tr>
<tr>
<td>Inductance</td>
<td>henry</td>
<td>H</td>
<td>kg · m²/A² · s²</td>
<td>T · m²/A</td>
</tr>
</tbody>
</table>
Chapter 1

Answers to Quick Quizzes

2. False
3. (b)

Answers to Odd-Numbered Problems

(a) 5.52 kg/m
(b) It is between the density of aluminum and that of iron and is greater than the densities of typical surface rocks.

3. 23.0 kg
5. 7.69 cm
9. (b) only
11. (a) kg/m/s
(b) N·s
13. No.
15. 11.4 kg/m
17. 871 m
19. By measuring the pages, we find that each page has area 0.277 m 0.217 m 0.060 m. The room has wall area 37 m , requiring 616 sheets that would be counted as 232 pages. Volume 1 of this textbook contains only 784 pages.

21. 1.00
23. 4.05
25. 2.86 cm
27. 151
29. (a) 507 years
(b) 2.48 miles
31. balls in a room 4 m by 4 m by 3 m
33. piano tuners
35. (209 4) cm
37. 31556026.0 s
39.
41. 8.80%
43.
45. (a) 6.71 m
(b) 0.894
(c) 0.745
47. 48.6 kg
49. 3.46
51. Answers may vary somewhat due to variation in reading precise numbers off the graph. (a) 0.015 g
(b) 8%
(c) 5.2 g/m
(d) For shapes cut from this copy paper, the mass of the cutout is proportional to its area. The proportionality constant is 5.2 g/m
8%, where the uncertainty is estimated. (e) This result is to be expected if the paper has thickness and density that are uniform within

the experimental uncertainty.
(f) The slope is the areal density of the paper, its mass per unit area.

53. 5.2 m
3%
55. 316 m
57. 5.0 m
59. 3.41 m
61. (a) aluminum, 2.75 g/cm; copper, 9.36 g/cm; brass, 8.91 g/cm; tin, 7.68 g/cm; iron, 7.88 g/cm
(b) The tabulated values are smaller by 2% for aluminum, by 5% for copper, by 6% for brass, by 5% for tin, and by 0.3% for iron.

63. 3.81 gal/yr
65. Answers may vary. (a) prokaryotes
(b)
67. (a) 2.70 g/cm
(b) 1.39 kg
69. 0.579
(b) only

Chapter 2

Answers to Quick Quizzes

(c)
2. (b)
3. False. Your graph should look something like the one shown below. This graph shows that the maximum speed is about 5.0 m/s, which is 18 km/h (11 mi/h), so the driver was not speeding.

4. (b)
5. (c)
6. (a)–(c), (b)–(d), (c)–(f)
(i) (e)
(ii) (d)

Answers to Odd-Numbered Problems

(a) 5 m/s
(b) 1.2 m/s
(c) 2.5 m/s
(d) 3.3 m/s
(e) 0
3. (a) 3.75 m/s
(b) 0
Answers to Quick Quizzes and Odd-Numbered Problems

5. (a) 2.30 m/s (b) 16.1 m/s (c) 11.5 m/s
 (d) 2.4 m/s (e) 3.8 m/s (f) 4.0 s
9. (a) 5.0 m/s (b) 2.5 m/s (c) 0 (d) 5.0 m/s
11. (a) 5.00 m (b) 4.88
13. (a) 2.80 h (b) 218 km
15. (a)
 (b) 1.60 m/s (c) 0.800 m/s
17. (a) 1.3 m/s (b) 3 s, 2 m/s (c) 6 s, 10 s (d) 1.5 m/s
19. (a) 20 m/s, 5 m/s (b) 263 m
21. (a) 2.00 m (b) 3.00 m/s (c) 2.00 m/s
23.
25. (a) 4.98 (b) 1.20 m/s
27. (a) 9.00 m/s (b) 3.00 m/s (c) 17.0 m/s (d) The graph of velocity versus time is a straight line passing through 13 m/s at 10:05 a.m. and sloping downward, decreasing by 4 m/s for each second thereafter. (e) If and only if we know the object's velocity at one instant of time, knowing its acceleration tells us its velocity at every other moment as long as the acceleration is constant.
29. 16.0 cm/s
31. (a) 202 m/s (b) 198 m
33. (a) 35.0 s (b) 15.7 m/s
35. 3.10 m/s
37. (a)
 (b) Particle under constant acceleration (c) (Equation 2.17)
 (d) 1.25 m/s (e) 8.00 s
39. (a) The idea is false unless the acceleration is zero. We define constant acceleration to mean that the velocity is changing steadily in time. So, the velocity cannot be changing steadily in space.
 (b) This idea is true. Because the velocity is changing steadily in time, the velocity halfway through an interval is equal to the average of its initial and final values.
41. (a) 13.5 m (b) 13.5 m (c) 13.5 m (d) 22.5 m
43. (a) 1.88 km (b) 1.46 km
45. (a) 0.231 m (b) 0.364 m (c) 0.399 m (d) 0.175 m
47. David will be unsuccessful. The average human reaction time is about 0.2 s (research on the Internet) and a dollar bill is about 15.5 cm long, so David's fingers are about 8 cm from the end of the bill before it is dropped. The bill will fall about 20 cm before he can close his fingers.
49. (a) 510 m (b) 20.4 s
51. 1.79 s
53. (a) 10.0 m/s up (b) 4.68 m/s down
55. (a) 7.82 m (b) 0.782 s
57. (a) - -
59. (a) 10.0 (b) 3.00 (c) 1.67 (In these expressions, is in m/s is in meters, and is in seconds.) (d) 3.00 ms (c) 450 m/s (d) 0.900 m
61. (a) 4.00 m/s (b) 1.00 ms (c) 0.816 m
63. (a) 3.00 s (b) 15.3 m/s
65. (a) 3.00 m/s down and 34.8 m/s down
67. (a) 2.83 s (b) It is exactly the same situation as in Example 2.8 except that this problem is in the vertical direction. The descending elevator plays the role of the speeding car, and the falling bolt plays the role of the accelerating trooper. Turn Figure 2.13 through 90° clockwise to visualize the elevator–bolt problem! (c) If each floor is 3 m high, the highest floor that can be reached is the 13th floor.
69. (a) From the graph, we see that the Acela is cruising at a constant positive velocity in the positive direction from about 50 s to 50 s. From 50 s to 200 s, the Acela accelerates in the positive direction reaching a top speed of about 170 mi/h. Around 200 s, the engineer applies the brakes, and the train, still traveling in the positive direction, slows down and then stops at 350 s. Just after
350 s, the train reverses direction (becomes negative) and steadily gains speed in the negative direction. (b) approximately 2.2 m/s; (c) approximately 6.7 m/s

71. (a) Here, must be greater than and the distance between the leading athlete and the finish line must be great enough so that the trailing athlete has time to catch up.
 (b) ________ (c) ________

73. (a) 5.46 s (b) 73.0 m
 (c) $v_{x}=22.6$ m/s; $v_{y}=26.7$ m/s

75. (a) $1/\tan \theta$ (b) The velocity starts off larger than for small values of and then decreases, approaching zero as approaches 90°.

77. (a) 15.9 s (b) 30.0 m/s (c) 225 m

81. (a) 35.9 m (b) 4.04 s (c) 45.8 m (d) 22.6 m/s

83. (a) 8.60 m (b) 4.47 m, 63.4°; 4.24 m, 135°

70.0 m

9. This situation can never be true because the distance is the length of an arc of a circle between two points, whereas the magnitude of the displacement vector is a straight-line chord of the circle between the same points.

11. (a) 5.2 m at 60° (b) 3.0 m at 330° (c) 5.0 m at 150°
 (d) 5.2 m at 300°

13. approximately 420 ft at

15. 47.2 units at 122°

17. (a) yes (b) The speed of the camper should be 28.3 m/s or more to satisfy this requirement.

19. (a) (11.1 6.40) m (b) (1.65 2.86) cm
 (c) (18.0 12.6) in.

21. 558 m at 2.00° S of E

23. (a) 2.00 6.00 (b) 4.00 2.00 (c) 6.32 (d) 4.47
 (e) 288°; 26.6°

25. 9.48 m at 166°

27. 4.64 m at 78.6° N of E

29. (a) 185 N at 77.8° from the positive axis
 (b) (39.3 181)

31. (a) 2.83 m at 315° (b) 13.4 m at 117°

33. (a) 8.00 12.0 (b) 2.00 3.00 1.00
 (c) 24.0 36.0 12.0

35. (a) 3.00 2.00 (b) 3.61 at 146° (c) 3.00 6.00

37. (a) 5.00 and 7.00 (b) For vectors to be equal, all their components must be equal. A vector equation contains more information than a scalar equation.

39. 196 cm at 345°

41. (a) 15.1 7.72 cm (b) 7.7 2 15.1 cm
 (c) 7.7 2 15.1 cm

43. (a) 20.5 35.5 m (b) 25.0 m
 (c) 61.5 107 m (d) 37.5 m (e) 157 km

45. 1.43 m at 32.2° above the horizontal

47. (a) 10.4 cm (b) 35.5°

49. (a) 20.5 35.5 m (b) 25.0 m
 (c) 61.5 107 m (d) 37.5 m (e) 157 km

51. 240 m at 237°

53. (a) 25.4 s (b) 15.0 km/h

55. (a) 0.079 8 N (b) 57.9° (c) 32.1°

57. (a) The, and components are, respectively, 2.00, 1.00, and 3.00. (b) 3.74 (c) 57.7°, 74.5°, 36.7°

59. 11.5°

61. (a) (10 000 9 600 sin 1/2 cm (b) 270°; 140 cm (c) 90°;
 20.0 cm (d) They do make sense. The maximum value is attained when and are in the same direction, and it is 60 cm 80 cm. The minimum value is attained when and are in opposite directions, and it is 80 cm 60 cm.

63. (a) 2.00 m/s (b) its velocity vector

65. (a) (b) 1/2
 (c)

67. (a) (10.0 m, 16.0 m) (b) This center of mass of the tree distribution is the same location whatever order we take the trees in. (We will study center of mass in Chapter 9.)

Chapter 4

Answers to Quick Quizzes

(a)

2. (i) (b) (ii) (a)

3. 15°, 30°, 45°, 60°, 75°

4. (i) (d)
 (ii)

5. (i) (b)
 (ii)

Answers to Odd-Numbered Problems

(a) 4.87 km at 209° from east (b) 23.3 m/s
 (c) 13.5 m/s at 209°

3. (a) (1.00 0.750) m/s (b) (1.00 0.500) m/s, 1.12 m/s

5. (a) 18.0 4.00 4.90 , where is in meters and is in seconds
 (b) 18.0 4.00 9.80 , where is in meters per second and is in seconds
 (c) = -9.80
 (d) 54.0 32.1 18.0 25.4 m s;
 = -9.80
7. (a) \(\vec{V} = -12.0 \hat{i} \) m/s, where \(\vec{V} \) is in meters per second and \(t \) in seconds (b) \(\vec{a} = -12.0 \hat{i} \) m/s\(^2\) (c) \(\vec{V} = (3.00 \hat{i} - 6.00 \hat{j}) \) m/s; \(\vec{V} = -12.0 \hat{j} \) m/s
8. (a) \((0.800 \hat{i} - 0.500 \hat{j}) \) m/s\(^2\) (b) \(339^\circ \) (c) \((360 \hat{i} - 72.7 \hat{j}) \) m/s, \(-15.2^\circ \)
9. 12.0 m/s
10. (a) 2.81 m/s horizontally forward (b) 9.6% 53.1\(^\circ\)
11. 3.96 m/s horizontally forward (b) 9.6%
12. 67.8\(^\circ\)
13. \(\tan \theta_i = \frac{gt^2}{2v_i^2 \cos^2 \theta_i} \)
14. (a) The ball clears by 0.89 m. (b) while descending
15. 18.1 m/s (b) 1.13 m (c) 2.79 m
16. 9.91 m/s
17. (a) 1.26 h (b) 1.13 h (c) 1.19 h
18. (a) 15.0 km/h east (b) 15.0 km/h west
19. 0.0167 h = 60.0 s
20. (a) 9.80 m/s\(^2\) down and 2.50 m/s\(^2\) south (b) 9.80 m/s\(^2\) down (c) The bolt moves on a parabola with its axis downward and tilting to the south. It lands south of the point directly below its starting point (d) The bolt moves on a parabola with a vertical axis.
21. \(\frac{2d/c}{\sqrt{1 - v^2/c^2}} \) (b) \(\frac{2d/c}{\sqrt{1 - v^2/c^2}} \)
22. (c) The trip in flowing water takes a longer time interval. The swimmer travels at the low upstream speed for a longer time interval, so his average speed is reduced below \(c \). Mathematically, \(\frac{1}{2} (1 - v^2/c^2) \) is always greater than 1. In the extreme, as \(v \to c \), the time interval becomes infinite. In that case, the student can never return to the starting point because he cannot swim fast enough to overcome the river current.
23. 15.3 m
24. 5.44 m/s\(^2\)
25. The relationship between the height \(h \) and the walking speed is \(h = (4.16 \times 10^{-3})v_i^2 \), where \(h \) is in meters and \(v_i \) is in meters per second. At a typical walking speed of 4 to 5 km/h, the ball would have to be dropped from a height of about 1 cm, clearly much too low for a person's hand. Even at Olympic-record speed for the 100-m run (confirm on the Internet), this situation would only occur if the ball is dropped from about 0.4 m, which is also below the hand of a normally proportioned person.

Answers to Quick Quizzes and Odd-Numbered Problems

Chapter 5

Answers to Quick Quizzes
1. (d)
2. (a)
3. (d)
4. (b)
5. (i) (c) (iii) (a)
6. (b)
7. (b) Pulling up on the rope decreases the normal force, which in turn, decreases the force of kinetic friction.

Answers to Odd-Numbered Problems
1. (a) 534 N (b) 54.5 kg
2. (a) \((6.00 \hat{i} + 15.0 \hat{j}) \) N (b) 16.2 N
3. (a) \((2.50 \hat{i} + 5.00 \hat{j}) \) N (b) 5.59 N
4. 2.58 N
5. (a) 1.53 m (b) 24.0 N forward and upward at 52.9\(^\circ\) with the horizontal
6. (a) 3.64 \times 10^{-18} \) N (b) 8.93 \times 10^{-30} \) N is 408 billion times smaller
7. (a) force exerted by spring on hand, to the left; force exerted by spring on wall, to the right (b) force exerted
by wagon on handle, downward to the left; force exerted by wagon on planet, upward; force exerted by wagon on ground, downward (c) force exerted by football on player, downward to the right; force exerted by football on planet, upward (d) force exerted by small-mass object on large-mass object, to the left (e) force exerted by negative charge on positive charge, to the left (f) force exerted by iron on magnet, to the left

15. (a) 45.0 m/s (b) 15.0 m/s (c) 225 m/s (d) 75.0 m/s (e) 227 m/s (f) 79.0 m/s

17. (a) (b) (c) \(\frac{F_k}{mg} \)

19. (a) 5.00 m/s at 36.9° (b) 6.08 m/s at 25.3°
21. (a) 15.0 lb up (b) 5.00 lb up (c) 0
25. (a) 2.15 N forward (b) 645 N forward (c) 645 N toward the rear (d) 1.02 \(10^2 \) N at 74.1° below the horizontal and rearward
27. (a) 3.43 kN (b) 0.967 m/s horizontally forward
29. (a) 7.0 m/s horizontal and to the right (b) 21 N (c) 14 N horizontal and to the right

31. (a) 613 N (b) 253 N, 165 N, 325 N
33. 100 N and 204 N
35. 8.66 N east
39. (a) tan \(\theta \) (b) 4.16 m/s
41. (a) 646 N up (b) 646 N up (c) 627 N up (d) 589 N up
43. (a) 79.8 N, 39.9 N (b) 2.34 m/s
45. (a) 19.6 N (b) 78.4 N

47. 3.73 m
49. (a) 2.20 m/s (b) 27.4 N
51. (a) 706 N (b) 814 N (c) 706 N (d) 648 N
53. 1.76 kN to the left
55. a) 0.306 (b) 0.245
57. \(= 0.727, 0.577 \)
59. (a) 1.11 s (b) 0.875 s
61. (a) 1.78 m/s (b) 0.368 (c) 9.37 N (d) 2.67 m/s
63. 37.8 N

65. (a) [Diagram]

67. 6.84 m
69. 0.060 m
71. (a) 0.0871 (b) 27.4 N
73. (a) Removing mass (b) 13.7 m/s
75. (a) \(\frac{F_k}{mg} \) (b) \(\frac{F_k}{mg} \)
77. (a) 2.22 m (b) 8.74 m/s down the incline
79. (a) [Diagram]

81. (a) [Diagram]

83. (a) [Diagram]

85. (a) [Diagram]
causing the acceleration of the 5-kg pair of objects. The acceleration is real and nonzero, but it lasts for so short a time that it is never associated with a large velocity. The frame of the building and your legs exert forces, small in magnitude relative to the hammer blow, to bring the partition, block, and you to rest again over a time interval large relative to the hammer blow.

85. (a) Upper pulley:
 Lower pulley:

(b) /2, /2, /2, /2, (c)

87. 0.287

89. (b) If is greater than tan (1/) , motion is impossible.
91. (a) The net force on the cushion is in a fixed direction, downward and forward making angle tan() with the vertical. Starting from rest, it will move along this line with (b) increasing speed. Its velocity changes in magnitude. (c) 1.63 m (d) It will move along a parabola. The axis of the parabola is parallel to the line described in part (a). If the cushion is thrown in a direction above this line, its path will be concave downward, making its velocity become more and more nearly parallel to the line over time. If the cushion is thrown down more steeply, its path will be concave upward, again making its velocity turn toward the fixed direction of its acceleration.

95. (a) 30.7° (b) 0.843 N

97. 20.0 N

99. (a) 0.931 m/s (b) From a value of 0.025 m/s for large , the acceleration gradually increases, passes through a maximum, and then drops more rapidly, becoming negative and reaching 2.10 m/s at 0.7
(c) 0.976 m/s at 25.0 cm (d) 6.10 cm
101. (a) 4.90 m/s (b) 3.13 m/s at 30.0° below the horizontal (c) 1.35 m (d) 1.14 s
(e) The mass of the block makes no difference.

103. (a) 2.13 s (b) 1.66 m

Chapter 6

Answers to Quick Quizzes

(i) (a) (ii) (b)
(i) Because the speed is constant, the only direction the force can have is that of the centripetal acceleration.

(ii) In addition to the forces in the centripetal direction in part (a), there are now tangential forces to provide the tangential acceleration. The tangential force is the same at all three points because the tangential acceleration is constant.

Answers to Odd-Numbered Problems

any speed up to 8.08 m/s
(a) 8.33 N toward the nucleus
(b) 9.15 m/s inward
5. 6.22
2.14 rev/min
9. (a) static friction (b) 0.085 0
11. 14.3 m/s
13. (a) 2.14 rev/min
(b) 9.1
5 m/s inward
(5)
15. (a) 1.33 m/s (b) 1.79 m/s at 48.0° inward from the direction of the velocity

17. (a) 8.62 m (b) downward (c) 8.45 m/s (d) Calculation of the normal force shows it to be negative, which is impossible. We interpret it to mean that the normal force goes to zero at some point and the passengers will fall out of their seats near the top of the ride if they are not restrained in some way. We could arrive at this same result without calculating the normal force by noting that the acceleration in part (c) is smaller than that due to gravity. The teardrop shape has the advantage of a larger acceleration of the riders at the top of the arc for a path having the same height as the circular path, so the passengers stay in the cars.

19. No. The archeologist needs a vine of tensile strength equal to or greater than 1.38 kN to make it across.

21. (a) 17.0° (b) 5.12 N
23. (a) 491 N (b) 50.1 kg (c) 2.00 m/s
25. 0.527
27. 0.212 m/s , opposite the velocity vector
29. 3.01 N up
31. (a) 1.47 N s/m (b) 2.94 s (c) 2.94
35. (a) 0.0547 s (b) 2.50 m/s (c)
37. (a) At , the velocity is eastward and the acceleration is southward. (b) At , the velocity is southward and the acceleration is westward.

39. 781 N

41. (a) \(mg \frac{mv}{2R} \) (b) \(\sqrt[3]{

43. (a) (b)

(c) In this model, the object keeps moving forever. (d) It travels a finite distance in an infinite time interval.
45. (a) the downward gravitational force and the tension force in the string, always directed toward the center of the path
Answers to Quick Quizzes and Odd-Numbered Problems

Chapter 7

Answers to Quick Quizzes

1. (a) 2. (c), (a), (d), (b)
2. (d)
3. (a)
4. (b)
5. (c)
6. (i) (c) (ii) (a)
7. (d)

Answers to Odd-Numbered Problems

(a) 1.59 J (b) smaller (c) the same
3. (a) 472 J (b) 2.76 kN
5. (a) 31.9 J (b) 0 (c) 0 (d) 31.9 J
9. 16.0
11. (a) 16.0 J (b) 36.9 J
13. 7.05 m at 28.4°
15. (a) 7.50 J (b) 15.0 J (c) 7.50 J (d) 30.0 J
17. (a) 0.938 cm (b) 1.25 J
19. (a) 575 N/m (b) 46.0 J
21. (a) mg (b) 23. (a) Design the spring constant so that the weight of one tray removed from the pile causes an extension of the springs equal to the thickness of one tray. (b) 316 N/m (c) We do not need to know the length and width of the tray.
25. (b) mgR
27. (a)

(b) The slope of the line is 116 N/m. (c) We use all the points listed and also the origin. There is no visible evidence for a bend in the graph or nonlinearity near either end. (d) 116 N/m (e) 12.7 N

29. 50.0 J
31. (a) 60.0 J (b) 60.0 J
33. (a) 1.20 J (b) 5.00 m/s (c) 6.30 J
35. 878 kN
37. (a) 4.56 kJ (b) 4.56 kJ (c) 6.34 kN (d) 422 km/s (e) 6.34 kN (f) The two theories agree.
39. (a) 97.8 N (b) 4.31 31.6 N (c) 8.73 m/s
41. (a) 2.5 J (b) 9.8 J (c) 12 J
43. (a) 196 J (b) 196 J (c) 196 J (d) The gravitational force is conservative.
45. (a) 125 J (b) 50.0 J (c) 66.7 J (d) nonconservative (e) The work done on the particle depends on the path followed by the particle.
47. away from the other particle
49. 51. (a) 40.0 J (b) 40.0 J (c) 62.5 J
53. ![Diagram showing an unstable and neutral equilibrium]

55. 90.0 J

57. (a) 8 N/m (b) It lasts for a time interval. If the interaction occupied no time interval, the force exerted by each ball on the other would be infinite, and that can not happen. (c) 0.8 J (d) 0.15 mm (e) 10

59. 0.299 m/s

61. (a) 20.5 14.3 N 36.4 21.0 N (b) 15.9 35.3 N (c) 3.18 7.07 m (d) 5.54 23.7 m (e) 2.50 39.3 m

(f) 1.48 kJ (g) 1.48 kJ (h) The work–kinetic energy theorem is consistent with Newton's second law.

63. 0.131 m

65. (a) (b) The force must be conservative because the work the force does on the particle on which it acts depends only on the original and final positions of the particle, not on the path between them.

67. (a) 3.62 /4.30 23.4 , where is in meters and is in kilograms (b) 0.095 1 m (c) 0.492 m (d) 6.85 m (e) The situation is impossible. (f) The extension is directly proportional to when is only a few grams. Then it grows faster and faster, diverging to infinity for 0.184 kg.

Chapter 8

Answers to Quick Quizzes

(a) For the television set, energy enters by electrical transmission (through the power cord). Energy leaves by heat (from hot surfaces into the air), mechanical waves (sound from the speaker), and electromagnetic radiation (from the screen). (b) For the gasoline-powered lawn mower, energy enters by matter transfer (gasoline). Energy leaves by work (on the blades of grass), mechanical waves (sound), and heat (from hot surfaces into the air). (c) For the hand-cranked pencil sharpener, energy enters by work (from your hand turning the crank). Energy leaves by work (done on the pencil), mechanical waves (sound), and heat due to the temperature increase from friction.

2. (i) (b) (ii) (b) (iii) (a)

3. (a)

4.

5. (c)

Answers to Odd-Numbered Problems

(a) \(\int \text{ER} \) (b) \(\int \text{ER} \) (c) \(\int \text{ER} \) (d) 0

3. 10.2 m

5. (a) \(1/2 \) (b) 0.098 0 N down (a) 4.43 m/s (b) 5.00 m

9. 5.49 m/s

11. \(\frac{gh}{15} \)

13.

15. (a) 0.791 m/s (b) 0.531 m/s

17. (a) 5.60 J (b) 2.29 rev

19. (a) 168 J

21. (a) 5.60 J (b) 2.29 rev (c) 28.8 N (d) 0.679

23. (a) 160 J (b) 73.5 J (c) 28.8 N (d) 0.679

25. (a) 4.12 m (b) 3.35 m

27. (a) Isolated. The only external influence on the system is the normal force from the slide, but this force is always perpendicular to its displacement so it performs no work on the system. (b) No, the slide is frictionless. (c) system \(mgh \) (d) system \(-mgh \) (e) system \(mgy_{\text{max}} \) (f) \(gh_{\text{max}} \cos \) (g) \(\text{max} \) (h) If friction is present, mechanical energy of the system would not be conserved, so the child’s kinetic energy at all points after leaving the top of the waterslide would be reduced when compared with the frictionless case. Consequently, her launch speed and maximum height would be reduced as well.

29. 1.23 kW

31. 4.5

33. $145

35.

37. (a) 423 mi/gal (b) 776 mi/gal

39. 236 s or 3.93 min

41. (a) 10.2 kW (b) 10.6 kW (c) 5.82 MJ

43. (a) 0.588 J (b) 0.588 J (c) 2.42 m/s (d) 0.196 J, 0.392 J

45.

47. (a) \(\int \text{ER} \) , where is in seconds and is in joules (b) 12 and 48 , where is in seconds, is in m/s , and is in newtons (c) \(P \) 48 288 , where is in seconds and is in watts (d) 1.25

49. (a) 11.1 m/s (b) 1.00 J (c) 1.35 m

51. (a) 6.08 J (b) 4.59 J (c) 4.59

53. (a) 4.0 mm (b) 1.0 cm

55. 0.131 m

57. (a) 0.400 m (b) 4.10 m/s (c) The block stays on the track.

61. 33.4 kW

63. 0.328

65. (a) 0.400 m (b) 4.10 m/s (c) The block stays on the track.

67.

69.
Answers to Quick Quizzes
Chapter 9

Answers to Quick Quizzes

1. (d)
2. (b), (c), (a)
3. (i) (c), (e) (ii) (b), (d)
4. (a) All three are the same. (b) dashboard, seat belt, air bag
5. (a)
6. (b)
7. (b)
8. (i) (a) (ii) (b)

Answers to Odd-Numbered Problems

1. (b) \(p = \sqrt{2mk} \)
2. 7.00 N
3. \(\vec{F}_{\text{ext}} = (+3.26 \hat{i} - 3.99 \hat{j}) \) kN
4. (a) \(-6.00 \hat{i} \) m/s (b) 8.40 J (c) The original energy is in the spring. (d) A force had to be exerted over a displacement to compress the spring, transferring energy into it by work. The cord exerts force, but no over displacement.
5. (c) System momentum is conserved with the value zero.
6. (f) The forces on the two blocks are internal forces, which cannot change the momentum of the system; the system is isolated. (g) Even though there is motion afterward, the final momenta are of equal magnitude in opposite directions, so the final momentum of the system is still zero.
7. (a) 13.5 N \(\cdot \) s (b) 9.00 kN
8. (c) no difference
9. (a) \(9.60 \times 10^{-2} \) s (b) \(3.69 \times 10^{5} \) N (c) 26.6 g
10. (a) \(12.0 \hat{i} \) N \(\cdot \) s (b) 4.801 m/s (c) 2.801 m/s (d) 2.401 N
11. 16.5 N
12. 301 m/s
13. (a) 2.50 \(\hat{j} \) m/s
14. (a) 0.284 m/s (b) 1.15 \(\times 10^{-13} \) J and 4.54 \(\times 10^{-14} \) J
15. (a) 4.82 m/s (b) 8.41 m
16. 91.2 m/s
17. 0.556 m
18. (a) 1.07 m/s at \(-29.7^{\circ} \) (b) \(\frac{\Delta K}{K} = -0.318 \)
19. (a) \(3.00 \hat{i} - 1.20 \hat{j} \) m/s
20. \(v_f = v_i \cos \theta, v_y = v_i \sin \theta \)
21. 2.50 m/s at \(-60^{\circ} \)
22. (a) \(-9.35 \hat{i} - 8.35 \hat{j} \) Mm/s (b) 439 fJ
23. \(\vec{v}_{CM} = (0 \hat{i} + 1.00 \hat{j}) \) m
24. 3.75 \(\times 10^{10} \) J
25. (a) 15.9 g (b) 0.153 m
26. (a) \(1.40 \hat{i} + 2.40 \hat{j} \) m/s (b) \(7.00 \hat{i} + 12.0 \hat{j} \) kg \(\cdot \) m/s
27. \(0.700 \) m
28. (a) \(\vec{v}_{ij} = -0.780 \hat{i} \) m/s, \(\vec{v}_{ij} = 1.12 \hat{i} \) m/s (b) \(\vec{v}_{CM} = 0.360 \hat{i} \) m/s before and after the collision
29. (b) The bumper continues to exert a force to the left until the particle has swung down to its lowest point.
30. \(\sqrt{\frac{F(2d - L)}{2m}} \) (b) \(F \)
31. 15.0 N in the direction of the initial velocity of the exiting water stream.
32. (a) 442 metric tons (b) 19.2 metric tons (c) It is much less than the suggested value of 442/2.50. Mathematically, the logarithm in the rocket propulsion equation is not a linear function. Physically, a higher exhaust speed has an extra-large cumulative effect on the rocket body's final speed by counting again and again in the speed the body attains second after second during its burn.
33. (a) zero (b) \(\frac{mv_i}{2} \) upward \(\sqrt{2} \)
34. 260 N normal to the wall
35. (a) 1.33 \(\hat{i} \) m/s (b) \(-235 \hat{i} \) N (c) 0.680 s (d) \(-160 \hat{i} \) N \(\cdot \) s and \(+160 \hat{i} \) N \(\cdot \) s (e) 1.81 m (f) 0.454 m (g) \(-427 \hat{j} \) (h) \(+107 \hat{j} \) (i) The change in kinetic energy of one member of the system, according to Equation 8.2, will be equal to the negative of the change in internal energy for that member: \(\Delta K = -AE_{int} \). The change in internal energy, in turn, is the product of the friction force and the distance through which the member moves. Equal friction forces act on the person and the cart, but the forces move through different distances, as we see in parts (e) and (f). Therefore, there are different changes in internal energy for the person and the cart and, in turn, different changes in kinetic energy. The total change in kinetic energy of the system, \(-320 \) J, becomes \(+320 \) J of extra internal energy in the entire system in this perfectly inelastic collision.
36. (a) Momentum of the bullet–block system is conserved in the collision, so you can relate the speed of the block and bullet immediately after the collision to the initial speed of the bullet. Then, you can use conservation of mechanical energy for the bullet–block–Earth system to relate the speed after the collision to the maximum height. (b) 521 m/s upward
37. \(2v_f \) for the particle with mass \(m \) and \(0 \) for the particle with mass \(3m \).
38. (a) \(m_1v_1 + m_2v_2 \) (b) \(v_i - v_f \sqrt{\frac{m_1m_2}{m_1 + m_2}} \)
39. \(v_f = \frac{(m_1 - m_2)v_1 + 2m_2v_2}{m_1 + m_2} \)
40. \(v_f = \frac{2m_1v_1 + (m_2 - m_1)v_2}{m_1 + m_2} \)
41. \(m_1; 13.9 \) m \(m_2; 0.556 \) m
42. 990 m/s
43. 143 m/s
44. (a) 0; inelastic (b) \(-0.250 \hat{i} + 0.75 \hat{j} - 2.00 \hat{k} \) m/s; perfectly inelastic (c) either \(a = -0.64 \) with \(\vec{v} = -0.419 \hat{k} \) m/s or \(a = 2.74 \) with \(\vec{v} = -3.38 \hat{k} \) m/s
45. 0.403
46. (a) \(-0.256 \hat{i} \) m/s and \(0.128 \hat{j} \) m/s (b) \(-0.064 \hat{i} \) m/s and \(0 \) (c) \(0 \) and \(0 \)
47. (a) 100 m/s (b) 374 J
A-34

Answers to Quick Quizzes and Odd-Numbered Problems

91. (a) 2.67 m/s (incident particle), 10.7 m/s (target particle) (b) -5.33 m/s (incident particle), 2.67 m/s (target particle) (c) 7.11 x 10^{-3} J in case (a) and 2.84 x 10^{-2} J in case (b). The incident particle loses more kinetic energy in case (a), in which the target mass is 1.00 g.

93. (a) particle of mass m: \sqrt{2}v_i; particle of mass 3m: \sqrt{3}v_i (b) 35.5°

95. (a) \nu_{CM} = \sqrt{\frac{F}{2m}(x_1 + x_2)}

(b) \theta = \cos^{-1} \left[1 - \frac{F}{2mgL} (x_1 - x_2) \right]

Chapter 10

Answers to Quick Quizzes

1. (i) (c) (ii) (b)

2. (b)

3. (i) (b) (ii) (a)

4. (i) (b) (iii) (a)

5. (b)

6. (a)

7. (b)

Answers to Odd-Numbered Problems

1. (a) 7.27 x 10^{-5} rad/s (b) Because of its angular speed, the Earth bulges at the equator.

3. (a) 5.00 rad, 10.0 rad/s, 4.00 rad/s (b) 53.0 rad, 22.0 rad/s, 4.00 rad/s (c) 4.00 rad/s (b) 18.0 rad (c) 5.24 s (b) 27.4 rad (d) 8.21 x 10^{-2} rad/s (b) 4.21 x 10^{-3} rad

9. 13.7 rad/s

13. 3.10 rad/s

15. (a) 0.180 rad/s (b) 8.10 m/s^2 radially inward

17. (a) 25.0 rad/s (b) 39.8 rad/s (c) 0.628 s

19. (a) 8.00 rad/s (b) 8.00 m/s (c) 64.1 m/s^2 at an angle 3.58° from the radial line to point P (d) 0.00 rad

21. (a) 126 rad/s (b) 3.77 m/s (c) 1.26 km/s (d) 20.1 m

23. 0.572

25. (a) 3.47 rad/s (b) 1.74 m/s (c) 2.78 s (d) 1.02 rotations

27. -3.55 N \cdot m

29. 21.5 N

31. 177 N

33. (a) 24.0 N \cdot m (b) 0.356 rad/s^2 (c) 1.07 m/s^2

35. (a) 21.6 kg \cdot m^2 (b) 3.60 N \cdot m (c) 52.5 rev

37. 0.312

39. (a) 5.80 kg \cdot m/s^2 (b) Yes, knowing the height of the door is unnecessary.

41. 1.28 kg \cdot m^2

43. \frac{11}{3} mL_z

45. (a) 143 kg \cdot m^2 (b) 2.57 kJ

47. (a) 24.5 m/s (b) no (c) no (d) no (e) no (f) yes

49. 1.03 x 10^{-3} J

51. 149 rad/s

53. (a) 1.59 m/s (b) 53.1 rad/s

55. (a) 11.4 N (b) 7.57 m/s^2 (c) 9.53 m/s (d) 9.53 m/s

57. (a) 2(Rg/3)^{1/2} (b) 4(Rg/3)^{1/2} (c) (Rg)^{1/2}

59. (a) 500 J (b) 250 J (c) 750 J

61. (a) \frac{1}{2} \sin \theta (b) The acceleration of \frac{1}{2} \sin \theta for the hoop is smaller than that for the disk. (c) \frac{1}{2} \tan \theta

63. (a) The disk (b) disk: \sqrt{\frac{g}{h}}; hoop: \sqrt{\frac{gh}{k}}

65. (a) 1.21 x 10^{-4} kg \cdot m^2 (b) Knowing the height of the can is unnecessary. (c) The mass is not uniformly distributed; the density of the metal can is larger than that of the soup.

67. (a) 4.00 J (b) 1.60 s (c) 0.80 m

69. (a) 12.5 rad/s (b) 128 rad

71. (a) 0.496 W (b) 413 W

73. (a) (3g/L)^{1/2} (b) 3g/2L (c) \frac{3g}{4L} \hat{i} - \frac{3g}{8L} \hat{j}

(d) \frac{2}{3} Mg \hat{i} + \frac{1}{3} Mg \hat{j}

(g(h_2 - h_1))

75. \frac{2\pi R^2}{\tau^2}

77. (a) Particle under a net force (b) Rigid object under a net torque (c) 118 N (d) 156 N (e) \frac{\tau^2}{I} (f) 1.17 kg \cdot m^2

79. \omega = \sqrt{\frac{2mg \sin \theta + kd^2}{I + mR^2}}

81. \frac{10g(R - r)(1 - \cos \theta)}{r^2}

83. (a) 2.70 R (b) F_x = -20 mg/7, F_y = -mg

85. (a) \sqrt{\frac{2gh}{k}} (b) \sqrt{\frac{gh}{k}}

87. (a) 0.800 m/s (b) 0.400 m/s^2 (c) 0.600 N, 0.200 N forward

89. (a) \sigma = 0.0602 s^{-1}, a_0 = 3.50 rad/s (b) \alpha = -0.176 rad/s (c) \gamma = 1.29 rev (d) 9.26 rev

91. (b) to the left

93. (a) 2.8 s (b) 12.8 s

Chapter 11

Answers to Quick Quizzes

1. (d)

2. (i) (a) (ii) (c)

3. (b)

4. (a)

Answers to Odd-Numbered Problems

1. \hat{i} + 8.00 \hat{j} + 22.0 \hat{k}

3. (a) 7.00 \hat{k} (b) 60.3°

5. (a) 30 N \cdot m (counterclockwise)

(b) 36 N \cdot m (counterclockwise)

7. 45.0°

9. (a) F_x = F_y (b) no

11. 17.5 \hat{k} \cdot kg \cdot m^2/s

13. m(xv_x - yv_y) \hat{k}

15. (a) zero (b) \left(-mv_z^2 \sin^2 \theta \cos \theta / 2g \right) \hat{k}

(c) \left(-2mv_z^2 \sin^2 \theta \cos \theta / g \right) \hat{k}

(d) The downward gravitational force exerts a torque on the projectile in the negative z direction.

17. mR \hat{k} \cos (vt/R + 1) \hat{k}

19. 60.0 kg \cdot m^2/s

21. (a) -mg \cos \theta \hat{k} (b) The Earth exerts a gravitational torque on the ball. (c) -mg \cos \theta \hat{k}

23. 1.20 kg \cdot m^2/s

25. (a) 0.360 kg \cdot m^2/s (b) 0.540 kg \cdot m^2/s

27. (a) 0.433 kg \cdot m^2/s (b) 1.75 kg \cdot m^2/s

29. (a) 1.57 \times 10^4 kg \cdot m^2/s (b) 6.26 \times 10^4 s = 1.74 h

31. 7.14 rev/min
33. (a) The mechanical energy of the system is not constant. Some chemical energy is converted into mechanical energy. (b) The momentum of the system is not constant. The turntable bearing exerts an external northward force on the axle. (c) The angular momentum of the system is constant. (d) 0.360 rad/s counterclockwise (e) 99.9 J

35. (a) 11.1 rad/s counterclockwise (b) No; 507 J is transformed into internal energy. (c) No; the turntable bearing promptly imparts impulse 44.9 kg m/s north into the turntable–clay system and thereafter keeps changing the system momentum.

37. (a) down (b) /

39. (a) (b) No; some mechanical energy of the system changes into internal energy. (c) The momentum of the system is not constant. The axle exerts a backward force on the cylinder when the clay strikes.

41. (a) yes (b) 4.50 kg /s (c) No. In the perfectly inelastic collision, kinetic energy is transformed to internal energy. (d) 0.749 rad/s (e) The total energy of the system must be the same before and after the collision, assuming we ignore the energy leaving by mechanical waves (sound) and heat (from the newly-warmer door to the cooler air). The kinetic energies are as follows: 2.50 J; 1.69 J. Most of the initial kinetic energy is transformed to internal energy in the collision.

43. 5.46

45. 0.910 km/s

47. 7.50

49. (a) 7 /3 (b) mgd (c) 3 counterclockwise (d) 2 /7 upward (e) mgd (f) mvd (g) 14gd (h) ggd 21

51. (a) isolated system (angular momentum) (b) /2 (c) -mv - (d) -mv - (e) -mv

53. (a) (b) (c) -mv

55. (a) 3750 kg m /s (b) 4.88 kJ (c) 3750 kg m /s (d) 10.0 m/s (e) 750 kJ (f) 5.62 kJ

57. (a) 2 /3 (b) 2 /3 (c) 4 /3 (d) 4 /3 (e) 26 /27 (f) ggd 21 No horizontal forces act on the bola from outside after release, so the horizontal momentum stays constant. Its center of mass moves steadily with the horizontal velocity it had at release. No torques about its axis of rotation act on the bola, so the angular momentum stays constant. Internal forces cannot affect momentum conservation and angular momentum conservation, but they can affect mechanical energy.

59. an increase of 6.368 % or 0.550 s, which is not significant

61. (a) - (b) - (c) - (d) -

63. -ga

Chapter 12

Answers to Quick Quizzes

(a)

2. (b)
A-36 Answers to Quick Quizzes and Odd-Numbered Problems

1. 7.41 × 10^{-10} N
2. (a) 2.50 × 10^{-7} N toward the 500-kg object (b) between the objects and 2.45 m from the 500-kg object
3. 2.67 × 10^{-3} m/s
4. 2.97 nN
5. 0.614 m/s, toward Earth
6. 0.057 2 rad/s or 1 rev in 110 s
7. v = 5.58 km/s, r = 1.04 × 10^7 m
8. 8.60 × 10^6 m
9. 134 min

Chapter 13

Answers to Quick Quizzes

1. (a) Perihelion (b) Aphelion (c) Perihelion (d) All points

Answers to Odd-Numbered Problems

1. 1.78 Å
2. 0.614 m/s, toward Earth
3. 2.97 nN
4. (a) 2.43 h (b) 6.59 km/s (c) 4.74 m/s² toward the Earth
5. 0.057 2 rad/s or 1 rev in 110 s
6. v = 5.58 km/s, r = 1.04 × 10^7 m
7. 8.60 × 10^6 m

Chapter 14

Answers to Quick Quizzes

1. (a) 2.96 × 10^6 Pa
2. (a) 6.24 MPa (b) Yes; this pressure could puncture the vinyl flooring.
3. 2.18 kg
4. 7.46 m
5. 18.2 ms
6. (a) 3.67 × 10^7 J (b) 9.24 × 10^{10} kg · m²/s
7. 10.5 m (b) No. The vacuum is not as good because some alcohol and water will evaporate. The equilibrium vapor pressures of alcohol and water are higher than the vapor pressure of mercury.
8. 23.1 lb
9. 98.6 kPa
10. (a) 116 kPa (b) 52.0 Pa
11. 2.31 lb
12. 98.6 kPa
13. (a) 10.5 m (b) No. The vacuum is not as good because some alcohol and water will evaporate. The equilibrium vapor pressures of alcohol and water are higher than the vapor pressure of mercury.
14. 23.1 lb
15. 52.0 Pa
16. 0.258 N down
17. (a) 4.9 N down, 16.7 N up (b) 86.2 N (c) By either method of evaluation, the buoyant force is 11.8 N up.
18. 7.00 cm (b) 2.80 kg
19. 1250 kg/m³ (b) 500 kg/m³
20. (a) 4.9 N down, 16.7 N up (b) 86.2 N (c) By either method of evaluation, the buoyant force is 11.8 N up.
21. 116 kPa (b) 52.0 Pa
22. 0.258 N down
23. 7.00 cm (b) 2.80 kg
24. 1250 kg/m³ (b) 500 kg/m³
25. (a) 4.9 N down, 16.7 N up (b) 86.2 N (c) By either method of evaluation, the buoyant force is 11.8 N up.
26. 7.00 cm (b) 2.80 kg
27. 1250 kg/m³ (b) 500 kg/m³
28. (a) 4.9 N down, 16.7 N up (b) 86.2 N (c) By either method of evaluation, the buoyant force is 11.8 N up.
29. 7.00 cm (b) 2.80 kg
30. 1250 kg/m³ (b) 500 kg/m³
31. (a) 4.9 N down, 16.7 N up (b) 86.2 N (c) By either method of evaluation, the buoyant force is 11.8 N up.
32. 7.00 cm (b) 2.80 kg
33. 1250 kg/m³ (b) 500 kg/m³
34. (a) 4.9 N down, 16.7 N up (b) 86.2 N (c) By either method of evaluation, the buoyant force is 11.8 N up.
35. 7.00 cm (b) 2.80 kg
36. 1250 kg/m³ (b) 500 kg/m³
37. (a) 11.6 cm (b) 0.963 g/cm³
38. (a) 11.6 cm (b) 0.963 g/cm³
39. 1.52 × 10^3 m³
40. (a) 17.7 m/s (b) 1.73 mm
41. 0.247 cm
42. (a) 2.28 N toward Holland (b) 1.74 × 10^6 s
43. (a) 15.1 MPa (b) 2.95 m/s
Answers to Odd-Numbered Problems

Chapter 15

Answers to Quick Quizzes

1. (d)
2. (f)
3. (a)
4. (b)
5. (c)
6. (i) (a) (ii) (a)

Answers to Odd-Numbered Problems

1. (a) 17 N to the left (b) 28 m/s² to the left
3. 0.63 s
5. (a) 1.50 Hz (b) 0.667 s (c) 4.00 m (d) π rad (e) 2.83 m/s
7. 0.628 m/s
9. 40.9 N/m
11. 12.0 Hz
13. (a) −2.34 m (b) −1.30 m/s (c) −0.076 3 m/s
(d) 0.315 m/s
15. (a) \(x = 2.00 \cos (3.00 \pi t - 90°) \) or \(x = 2.00 \sin (3.00 \pi t) \)
where \(x \) is in centimeters and \(t \) is in seconds
(b) 18.8 cm/s (c) 0.333 s (d) 178 cm/s² (e) 0.500 s
(f) 12.0 cm
17. (a) 20 cm (b) 94.2 cm/s as the particle passes through equilibrium.
(c) ±17.8 m/s² at maximum excursion from equilibrium.
19. (a) 400 cm/s (b) 160 cm/s² (c) 32.0 cm/s
(d) 96.0 cm/s² (e) 0.232 s
21. 2.23 m/s
23. (a) 0.542 kg (b) 1.81 s (c) 1.20 m/s²
25. 2.60 cm and −2.60 cm
27. (a) 28.0 m (b) 1.02 m/s (c) 12.2 m (d) 15.8 m
29. (a) \(\frac{1}{2} E \) (b) \(\frac{1}{2} E \) (c) \(x = \pm \sqrt{\frac{2E}{k}} \)
(d) No; the maximum potential energy is equal to the total energy of the system. Because the total energy must remain constant, the kinetic energy can never be greater than the maximum potential energy.
31. (a) 4.58 N (b) 0.125 J (c) 18.3 m/s² (d) 1.00 m/s
(e) smaller (f) the coefficient of kinetic friction between the block and surface (g) 0.934
33. (b) 0.628 s
35. (a) 1.50 s (b) 0.559 m
37. 0.944 kg m²
39. 1.42 s, 0.499 m
41. (a) 0.820 m/s (b) 2.57 rad/s² (c) 0.641 N
(d) \(v_{\text{max}} = 0.817 \text{ m/s}, a_{\text{max}} = 2.54 \text{ rad/s}², F_{\text{max}} = 0.634 \text{ N} \)
(e) The answers are close but not exactly the same. The answers computed from conservation of energy and from Newton’s second law are more precise.
43. (a) 3.65 s (b) 6.41 s (c) 4.24 s
45. (a) 5.00 \times 10⁻⁷ kg m² (b) 3.16 \times 10⁻¹ N m/rad
47. (a) 7.00 Hz (b) 2.00% (c) 10.6 s
51. 11.0 cm
53. (a) 3.16 s⁻¹ (b) 6.28 s⁻¹ (c) 5.09 cm
55. 0.641 Hz or 1.31 Hz
57. (a) 2.09 s (b) 0.477 Hz (c) 36.0 cm/s (d) \(E = 0.064 \text{ J/m}, \)
where \(E \) is in joules and \(m \) is in kilograms (e) \(k = 9.00 \text{ N/m}, \)
where \(k \) is in newtons/meter and \(m \) is in kilograms
(f) Period, frequency, and maximum speed are all independent of mass in this situation. The energy and the force constant are directly proportional to mass.
59. (a) 2Mg (b) \(M = \frac{1}{4} + \frac{y}{L} \) (c) \(\frac{4}{3} \pi \frac{2L}{g} \) (d) 2.68 s
61. 1.56 \times 10⁻² m
63. (a) \(v_{\text{Earth}} = 25 \text{ cm} \) (b) \(L_{\text{Mars}} = 9.4 \text{ cm} \) (c) \(m_{\text{Earth}} = 0.25 \text{ kg} \)
(d) \(m_{\text{Mars}} = 0.25 \text{ kg} \)
65. 6.02 cm
67. \(\frac{1}{2} \pi L \sqrt{\frac{gL}{k}} \)
69. 7.75 s⁻¹
71. (a) 1.26 m (b) 1.58 (c) The energy decreases by 120 J.
(d) Mechanical energy is transformed into internal energy in the perfectly inelastic collision.
73. (a) \(\omega = \sqrt{\frac{200}{0.400 + M}} \), where \(\omega \) is in s⁻¹ and \(M \) is in kilograms
(b) 22.4 s⁻¹ (c) 22.4 s⁻¹
75. (a) 3.00 s (b) 14.3 J (c) \(\theta = 25.5° \)
77. (b) 1.46 s
79. (a) \(x = 2 \cos \left(10t + \frac{\pi}{2}\right) \) (b) \(\pm 1.73 \text{ m} \) (c) 0.105 s = 105 ms
(d) 0.098 0 m
81. (b) \(T = \frac{2}{\pi} \sqrt{\frac{\pi M}{g}} \)
83. 9.12 \times 10⁻⁵ s
85. (a) 0.500 m/s (b) 8.56 cm
87. (a) \(\frac{1}{2} (M + \frac{1}{2} m) v^2 \) (b) \(2 \pi \sqrt{\frac{M + \frac{1}{2} m}{k}} \)
89. (a) \(\frac{2\pi}{\sqrt{g}} \sqrt{\frac{L}{2} + \frac{1}{2a}} \frac{dM}{dt} \) (b) \(2 \pi \sqrt{\frac{L}{g}} \)

Chapter 16

Answers to Quick Quizzes

1. (i) (b) (ii) (a)
2. (i) (c) (ii) (b) (iii) (d)
3. (c)
4. (f) and (h)
5. (d)
Answers to Odd-Numbered Problems

1. 184 km
2. $y = \frac{6.00}{(x - 4.50)^2 + 3.00}$ where x and y are in meters and t is in seconds
3. 0.319 m
4. 3.35 m/s
5. (a) 2.00 cm (b) 2.98 m (c) 0.576 Hz (d) 1.72 m/s
6. 0.196 s
7. 314 rad/s
8. $0.075 \sin (4.71 \pi t)$
9. (a) 0.500 Hz (b) 3.14 rad/s (c) 3.14 rad/m
10. (a) 19.0 ms (b) 1.68 m

Answers to Quick Quizzes and Odd-Numbered Problems

11. (a) 21.0 ms (b) 1.68 m
12. (a) 39.2 N (b) 0.892 m/s (c) 83.0 m/s
13. (a) 52.3 rad/s (b) 3.14 rad/m (c) 3.14 rad/s (d) 20.9 m
14. (a) 15.1 W (b) 3.02 J
15. (a) 15.1 W (b) 625 W

Chapter 17

Answers to Quick Quizzes

1. (c)
2. (b)
3. (b)
4. (c)

Answers to Odd-Numbered Problems

16. (a) $2.00 \mu \text{m}$ (b) 40.0 cm (c) 54.6 m/s (d) $-0.433 \mu \text{m}$ (e) 1.72 mm/s
17. (a) $\Delta P = 0.200 \sin (20 \pi x - 6.860 \pi t)$ where ΔP is in pascals, x is in meters, and t is in seconds
18. (a) 0.103 Pa (b) 0.196 s
19. $9.0 \times 10^5 \text{ N}$
20. 5.56 km (b) No. The speed of light is much greater than the speed of sound, so the time interval required for the light to reach you is negligible compared to the time interval for the sound.
21. 7.82 m
22. (a) 27.2 s (b) 25.7 s; the time interval in part (a) is longer.
23. (a) The pulse that travels through the rail (b) 23.4 ms
24. 66.0 dB
25. (a) 3.75 W/m^2 (b) 0.001 W/m^2
26. $3.0 \times 10^{-8} \text{ W/m}^2$
27. (a) 0.691 m (b) 691 km
28. (a) $1.3 \times 10^2 \text{ W}$ (b) 96 dB
29. (a) 2.34 m (b) 0.380 m (c) 0.161 Pa (d) 0.161 Pa
30. (a) $4.25 \times 10^{-8} \text{ m}$ (b) $7.09 \times 10^{-8} \text{ m}$
31. (a) $1.32 \times 10^{-14} \text{ W/m}^2$ (b) 81.2 dB
32. 68.3 dB
33. (a) 30.0 m (b) $9.49 \times 10^5 \text{ m}$
34. (a) 475 Hz (b) 430 Hz
35. (a) 3.04 kHz (b) 2.08 kHz (c) 2.62 kHz; 2.40 kHz
36. (a) 441 Hz (b) 439 Hz (c) 54.0 dB
37. (a) 0.021 J/m (b) 28.9 Hz (c) 57.8 Hz
38. 26.4 m/s
39. (a) 56.3 km (b) $56.6 \text{ km farther along}$
40. 0.883 cm
41. (a) 5.56 km (b) $61.4 \text{ trucks per minute}$
42. (a) $0.515 \text{ trucks per minute}$ (b) $0.614 \text{ trucks per minute}$
43. 67.0 dB
44. (a) 4.16 m (b) $0.455 \mu \text{s}$ (c) 0.157 mm
45. It is unreasonable, implying a sound level of 123 dB. Nearly all the decrease in mechanical energy becomes internal energy in the latch.
46. (a) $5.04 \times 10^3 \text{ m/s}$ (b) $1.59 \times 10^{-4} \text{ s}$ (c) $1.90 \times 10^{-3} \text{ m}$ (d) 2.38×10^{-3} (e) $4.76 \times 10^6 \text{ N/m}^2$ (f) $\frac{\sigma_i^2}{\sqrt{\rho Y}}$
47. (a) 55.8 m/s (b) 2.500 Hz
48. (a) 3.29 m/s (b) The bat will be able to catch the insect because the bat is traveling at a higher speed in the same direction as the insect.
49. (a) 0.343 m (b) 0.303 m (c) 0.383 m (d) 1.03 kHz
50. (a) 0.983 kHz (b) 4.40 kHz
51. $1.34 \times 10^4 \text{ m}$
52. 1.531 Hz (b) 466 Hz to 539 Hz (c) 568 Hz

Chapter 18

Answers to Quick Quizzes

1. (c)
2. (i) (a) (ii) (d)
3. (d)
4. (b)
5. (c)
Answers to Odd-Numbered Problems

5.66 cm

3. (a) 1.65 cm (b) 6.02 cm (c) 1.15 cm

5. 91.3°
(a) : positive direction; : negative direction
(b) 0.750 s (c) 1.00 m

9. (a) 9.24 m (b) 600 Hz

11. (a) 156° (b) 0.0584 cm

15. (c) Yes; the limiting form of the path is two straight lines through the origin with slope 0.75.

17. (a) 4.24 cm (b) 6.00 cm (c) 6.00 cm (d) 0.500 cm, 1.50 cm, 2.50 cm

19. at 0.089 1 m, 0.303 m, 0.518 m, 0.732 m, 0.947 m, and 1.16 m from one speaker

21. 19.6 Hz

23. (a) 163 N (b) 660 Hz

25. (a) second harmonic (b) 74.0 cm (c) 3

27. (a) 350 Hz (b) 400 kg

29. 1.86 g

31. (a) 3.8 cm (b) 3.85%

33. (a) three loops (b) 16.7 Hz (c) one loop

35. (a) 3.66 m/s (b) 0.200 Hz

37. 57.9 Hz

39. (a) 0.357 m (b) 0.715 m

41. (a) 0.656 m (b) 1.64 m

43. (a) 349 m/s (b) 1.14 m

45. (a) 0.195 m (b) 841 Hz

47. (0.252 m) with 1, 2, 3, . . .

49. 158 s

51. (a) 50.0 Hz (b) 1.72 m

53. (a) 21.3 m (b) seven

55. (a) 1.59 kHz (b) odd-numbered harmonics (c) 1.11 kHz

57. 5.64 beats/s

59. (a) 1.99 beats/s (b) 3.38 m/s

61. The following coefficients are approximate:

100, 156, 62, 104, 52, 29, 25.

63. 31.1°

65. 800 m

67. 1.27 cm

69. 262 kHz

71. (a) 45.0 or 55.0 Hz (b) 162 or 242 N

73. (a) 0.0782 m (b) 3 (c) 0.0782 m

(d) The sphere floats on the water.

75. (a) 34.8 m/s (b) 0.986 m

77. 3.85 m/s away from the station or 3.77 m/s toward the station

79. 283 Hz

81. 407 cycles

83. (b) 11.2 m, 63.4°

85. (a) 78.9 N (b) 211 Hz

87. 15Mg

Chapter 19

Answers to Quick Quizzes

(c)

2. (c)

3. (c)

4. (c)

5. (a)

6. (b)

Answers to Odd-Numbered Problems

(a) 106.7°F (b) Yes; the normal body temperature is 98.6°F, so the patient has a high fever and needs immediate attention.

3. (a) 109°F, 195 K (b) 98.6°F, 310 K

5. (a) 320°F (b) 77.3 K

9. (a) 0.176 mm (b) 8.78 m (c) 0.0930 cm

11. 3.27 cm

13. 1.54 km. The pipeline can be supported on rollers. U-shaped loops can be built between straight sections. They bend as the steel changes length.

15. (a) 0.109 cm (b) increase

17. (a) 437°C (b) 2.1°C (c) No; aluminum melts at 660°C (Table 20.2). Also, although it is not in Table 20.2, Internet research shows that brass (an alloy of copper and zinc) melts at about 900°C.

19. (a) 99.8 mL (b) It lies below the mark. The acetone has reduced in volume, and the flask has increased in volume.

21. (a) 99.4 mL (b) 2.01 L (c) 0.998 cm

23. (a) 11.2 kg/m (b) 20.0 kg

25. 1.02 gallons

27. 4.28 atm

29. (a) 2.99 mol (b) 1.80 molecules

31. 1.50 molecules

33. (a) three loops (b) 16.7 Hz (c) one loop

35. (a) 3.66 m/s (b) 0.200 Hz

37. 57.9 Hz

39. (a) 0.357 m (b) 0.715 m

41. (a) 0.656 m (b) 1.64 m

43. (a) 349 m/s (b) 1.14 m

45. (a) 0.195 m (b) 841 Hz

47. (0.252 m) with 1, 2, 3, . . .

49. 158 s

51. (a) 50.0 Hz (b) 1.72 m

53. (a) 21.3 m (b) seven

55. (a) 1.59 kHz (b) odd-numbered harmonics (c) 1.11 kHz

57. 5.64 beats/s

59. (a) 1.99 beats/s (b) 3.38 m/s

61. The following coefficients are approximate:

100, 156, 62, 104, 52, 29, 25.

63. 31.1°

65. 800 m

67. 1.27 cm

69. 262 kHz

71. (a) 45.0 or 55.0 Hz (b) 162 or 242 N

73. (a) 0.0782 m (b) 3 (c) 0.0782 m

(d) The sphere floats on the water.

75. (a) 34.8 m/s (b) 0.986 m

77. 3.85 m/s away from the station or 3.77 m/s toward the station

79. 283 Hz

81. 407 cycles

83. (b) 11.2 m, 63.4°
Answers to Quick Quizzes and Odd-Numbered Problems

65. (a) 0.34% (b) 0.48% (c) All the moments of inertia have the same mathematical form: the product of a constant, the mass, and a length squared.
67. 2.74 m
69. (a) \(\frac{gP}{\rho gh} \) (b) decrease (c) 10.3 m
73. (a) 6.17 kg/m (b) 632 N (c) 580 N (d) 192 Hz
75. No; steel would need to be 2.30 times stronger.
77. (a) (b) (c) 50.4% (d) With this approach, 102 mL of turpentine spills, 2.01 L remains in the cylinder at 80.0°C, and the turpentine level at 20.0°C is 0.969 cm below the cylinder’s rim.
79. 4.54 m

Chapter 20

Answers to Quick Quizzes

(i) iron, glass, water (ii) water, glass, iron

2. The figure below shows a graphical representation of the internal energy of the system as a function of energy added. Notice that this graph looks quite different from Figure 20.3 in that it doesn’t have the flat portions during the phase changes. Regardless of how the temperature is varying in Figure 20.3, the internal energy of the system simply increases linearly with energy input; the line in the graph below has a slope of 1.

3. Situation System \(Q \) \(W \) \(\Delta U \)
 (a) Rapidly pumping up a bicycle tire Air in the pump 0 + +
 (b) Pan of room-temperature water sitting on a hot stove Water in the pan – –
 (c) Air quickly leaking out of a balloon Air originally in the balloon – –

4. Path A is isovolumetric, path B is adiabatic, path C is isothermal, and path D is isobaric.

5. (b)

Answers to Odd-Numbered Problems

(a) 2.26 J (b) 2.80 steps (c) 6.99 steps

Chapter 21

Answers to Quick Quizzes

(i) (b) (ii) (a)

2. (i) (a) (ii) (c)

3. (d)

4. (c)

Answers to Odd-Numbered Problems

(a) 3.54 atoms (b) 6.07 \(\text{cm}^3 \) (c) 1.35 km/s

3. (a) 0.943 N (b) 1.57 Pa

5. 3.32 mol
Answers to Quick Quizzes and Odd-Numbered Problems

(f, g)

1.52 1.52 1.67 1.67 2.53 1.01 1.52

ABCA 0.656 0.656

Chapter 22

Answers to Quick Quizzes

(i) (c) (ii) (b) 2.
3. C, B, A
4. (a) one (b) six
5. (a)
6. false (The adiabatic process must be reversible for the entropy change to be equal to zero.)

Answers to Odd-Numbered Problems

(a) 10.7 kJ (b) 0.533 s
5. (a) 6.94% (b) 335 J
5. (a) 0.294 (or 29.4%) (b) 500 J (c) 1.67 kW
55.4%
9. (a) 75.0 kJ (b) 7.33 kPa
11. 77.8 W
13. (a) 4.51 J (b) 2.84 J (c) 68.1 kg
15. (a) 67.2% (b) 58.8 kW
17. (a) 8.70 J (b) 3.30 J
19. 9.00
21. 11.8
23. 1.86
25. (a) 564°C (b) No; a real engine will always have an efficiency less than the Carnot efficiency because it operates in an irreversible manner.
27. (a) 741 J (b) 459 J
29. (a) 9.10 kW (b) 11.9 kJ
31. (a) 564 K (b) 212 kW (c) 47.3%
33. (a) — 1.40 0.5 383 383 where is in megawatts and is in kelvins (b) The exhaust power decreases as the firebox temperature increases. (c) 1.87 MW (d) 3.84 K (c) No answer exists. The energy exhaust cannot be that small.
35. 1.17
37. (a) 244 kPa (b) 192 J
39. (a)

Macrostate Microstates Number of ways to draw
All R RRR
2 R, 1 G GRR, RGR, RRG
1 R, 2 G GGR, GRG, RGG
All G GGG

(b) 8.77 L (c) 900 K (d) 300 K (e) 336 J
35. 132 m/s
37. (a) 2.00 163 0 atoms (b) 2.70 atoms
39. (a) 2.37 K (b) 1.06
41. (b) 0.278
43. (b) 8.31 km
45. (a) 1.69 h (b) 1.00
47. (a) 367 K (b) The rms speed of nitrogen would be higher because the molar mass of nitrogen is less than that of oxygen. (c) 572 m/s
49. 5.74 Pa 56.6 atm
51. (i) (a) 100 kPa (b) 66.5 J (c) 400 K (d) 5.82 kJ (e) 7.48 kJ (f) 1.66 kJ (ii) (a) 133 kPa (b) 49.9 L (c) 400 K (d) 5.82 kJ (e) 5.82 kJ (f) 0; (iii) (a) 120 kPa (b) 41.6 L (c) 300 K (d) 0 (e) 909 J (f) 909 J; (iv) (a) 120 kPa (b) 43.3 L (c) 312 K (d) 722 J (e) 0 (f) 722 J
53. 0.623
55. (a) 0.514 m (b) 2.06 m (c) 2.38 10 K (d) 480 kJ (e) 2.28 MJ
57. (a) 3.65 (b) 3.99 (c) 3.00 (d) 106 (e) 7.98
59. (a) 300 K (b) 1.00 atm
61. (a) 18 $^{1/2}$ (4.81 $^{3/2}$, where $^{1/2}$ is in meters per second and $^{3/2}$ is in meters (b) 2.08 $^{5/2}$, where $^{5/2}$ is in seconds and $^{3/2}$ is in meters (c) 0.926 mm/s and 3.24 ms (d) 1.32 m/s and 3.88
63. 0.480°C
65. (a) 0.203 mol (b) 900 K (c) 900 K (d) 15.0 L (e) Lock the piston in place and put the cylinder into an oven at 900 K. (f) Keep the gas in the oven while gradually letting the gas expand to lift the piston as far as it can. (g) Move the cylinder from the oven back to the 300-K room and let the gas cool and contract.
Answers to Odd-Numbered Problems

(a) 1.60 C, 1.67 kg
(b) 1.60 C, 3.82 kg
(c) 1.60 C, 5.89 kg
(d) 3.20 C, 6.65 kg
(e) 4.80 C, 2.33 kg
(f) 6.40 C, 2.33 kg
(g) 1.12 C, 2.33 kg
(h) 1.60 C, 2.99 kg

5. 3.60 N downward
9. (a) 8.74 N (b) repulsive
11. (a) 1.38 N (b) 77.5° below the negative x axis
13. 0.872 N at 330°
15. 0.872 N at 330°
17. (a) 8.24 N (b) 2.19 m/s
19. —
21. (a) 2.16 N toward the other
(b) 8.99 N away from the other
23. (a) 5.58 N (b) 10 N
25. (a) 3.06 N (b) 10 N
27. (a) 31 N/C to the right
(b) 8.98 N to the left
29. 1.82 m to the left of the 2.50 C charge
31. (a) 1.80 N/C to the right
(b) 8.98 N to the left
33. 3.25 N
35. (a) 0.599 N (b) 2.70 kN (c) 3.00 13.5 N
37. (a) 1.59 N/C (b) toward the rod
39. (a) 6.64 N/C away from the center of the ring
(b) 2.41 N/C away from the center of the ring
(c) 6.39 N/C away from the center of the ring
(d) 6.64 N/C away from the center of the ring
41. (a) 0.935 N/C (b) 1.04 N/C (about 11% higher)
(c) 5.15 N/C (d) 5.19 N/C (about 0.7% higher)
43. (a) — (b) to the left
45. (a) 2.16 N/C (b) to the left
47. —
49. (a) — (b) is negative, and is positive.
51. (a) 6.13 m/s (b) 1.96 s (c) 11.7 m
(d) 1.20
53. 4.38 m/s for the electron; 2.39 m/s for the proton
55. (a) in the direction of the velocity of the electron
57. (a) 111 ns (b) 5.68 mm (c) 450 km/s
59. —

Answers to Quick Quizzes and Odd-Numbered Problems

(a), (c), (e)
2. (c)
3. (b)
4. (a)
5.

Chapter 23

Answers to Quick Quizzes and Odd-Numbered Problems

(b) Macrostate Microstates Number of ways to draw
All R RRRR
4R, 1G GRRRR, RGRRR, RRRGR, RRRRG
3R, 2G GRGRR, GRGRG, GRGGR, GGRGR, GGRGG
RRGRR, RRGRG, RRGGR, RGGRR, RRGGG 10
2R, 3G RRGGG, RRGGG, RGGGR, RGGGR, GGGRR, GGGRR 10
1R, 4G RGGGG, GRGGG, GGGRR, GGGGG
All G

41. (a) one (b) six
43. 143 J/K
45. 1.02 kJ/K
47. 57.2 J/K
49. 0.507 J/K
51. 195 J/K
53. (a) 3.45 J/K (b) 8.06 J/K (c) 4.62 J/K
55. 3.28 J/K
57. 32.9 J/K
59. (a) — (b) —
61. 0.440 44.0%
63. (a) 5.00 kW (b) 763 W
65. (a) 0.390 (b) 0.545
67. (a) 3nRT (b) 5nRT ln 2 (c) nRT (d) nRT ln 2
(e) 3nRT (1 + ln 2) (f) 2 nRT ln 2 (g) 0.275
69. (a) 39.4 J (b) 65.4 rad/s 625 rev/min
(c) 293 rad/s 2.79 rev/min
71. 5.97 kg/s
73. (a) 4.10 J (b) 1.42 J (c) 1.01 J
(d) 28.8% (c) Because the efficiency of the cycle is much lower than that of a Carnot engine operating between the same temperature extremes.
75. (a) 0.476 J/K (b) 417 J
77. ln 3
79. (b) yes (c) No; the second law refers to an engine operating in a cycle, whereas this problem involves only a single process.
81. (a) 25.0 atm, 1.97 4.13 atm, 1.19 10 m 1.00 atm, 3.28 10 m
(b) 2.99
6.05 atm, 5.43

www.aswarphysics.weebly.com
Answers to Quick Quizzes and Odd-Numbered Problems

61. (a) $\frac{mg}{\sin \theta}$ (b) 3.19 N/C down the incline

63.

65. (a) 2.18 m (b) 2.43 cm
67. (a) 1.09 C (b) 5.44
69. (a) 24.2 N (b) 4.21 8.42
71. 0.706
73. 25.9 cm
75. 1.67
77. 1.98
79. 1.14 C on one sphere and 5.69 C on the other
81. (a)
83. (a) 0.307 s (b) Yes; the downward gravitational force is not negligible in this situation, so the tension in the string depends on both the gravitational force and the electric force.
85. (a) 1.90 (b) 3.29 (c) away from the origin
89. 1.36 1.96 kN
91. (a) $\frac{935}{0.0025}$ where F is in newtons per coulomb and d is in meters (b) 4.00 kN
(c) 0.0168 m and 0.916 m
(d) nowhere is the field as large as 16 000 N/C

Chapter 24
Answers to Quick Quizzes
(c)
2. (b) and (d)
3. (a)

Answers to Odd-Numbered Problems
(a) 1.98 MN/C (b) 0
3. 4.14 MN/C
5. (a) 858 N/C (b) 0 (c) 557 N
28.2 N
9. (a) 0.689 MN/C (b) less than
11. for r; 0 for r; 0 for r
13.
15. (a) 539 N m/C (b) No. The electric field is not uniform on this surface. Gauss’s law is only practical to use when all portions of the surface satisfy one or more of the conditions listed in Section 24.3.
17. (a) 0 (b)
19. 18.8 kN
21. (a) 3.50 kN
25. 2.48 C/m
27. 508 kN/C up
29. (a) 0 (b) 7.19 MN/C away from the center
31. (a) 51.4 kN/C outward (b) 645 N
33. qQ
35. (a) 0 (b) 3.65 N/C (c) 1.46 N/C (d) 6.49 N/C

Chapter 25
Answers to Quick Quizzes
(i) (b) (ii) (a)
2. to to to to
3. (i) (c) (ii) (a)
4. (i) (a) (ii) (a)

Answers to Odd-Numbered Problems
(a) 1.13 N/C (b) 1.80 14N (c) 4.37 17N
3. (a) 1.52 m/s (b) 6.49 m/s
5. 260 V (a) 38.9 V (b) the origin
9. 0.300 m/s
11. (a) 0.400 m/s (b) It is the same. Each bit of the rod feels a force of the same size as before.
13. (a) 2.12 V (b) 1.21
15. 6.93
17. (a) 45.0 V (b) 34.6 km/s
19. (a) 0 (b) 0 (c) 44.9 kV
21. (a) — (b) — $\frac{qQ}{r}$
23. (a) 4.83 m (b) 0.667 m and 2.00 m
25. (a) 32.2 kV (b) 0.096 J
Answers to Quick Quizzes and Odd-Numbered Problems

Chapter 26

Answers to Quick Quizzes

(b) dh dx

Answers to Odd-Numbered Problems

(a) 9.00 V (b) 12.0 V

3. (a) 48.0 C (b) 6.00

5. (a) 2.69 nF (b) 3.02 kV

9. (a) 11.1 kV/m toward the negative plate (b) 98.4 nC/m

11. (a) 1.33 C/m (b) 13.4 pF

13. (a) 17.0 F (b) 9.00 V (c) 45.0 C on 5 F, 108 C on 12

15. (a) 2.81 F (b) 12.7

17. (a) in series (b) 398 F (c) in parallel; 2.20

19. (a) 3.33 F (b) 180 C on the 3.00- F and 6.00- F capacitors; 120 C on the 2.00- F and 4.00- F capacitors (c) 60.0 V across the 3.00- F and 2.00- F capacitors; 30.0 V across the 6.00- F and 4.00- F capacitors

21. ten

25. 12.9

27. 6.00 pF and 3.00 pF

29. 19.8

31. 3.24

33. (a) 1.50 C (b) 1.83 kV

35. (a) 2.50 J (b) 66.7 V (c) 3.33 J (d) Positive work is done by the agent pulling the plates apart.

37. (a)

(b) 0.150 J (c) 268 V

39. 9.79 kg

41. (a) 400 C (b) 2.5 kN/m

43. (a) 13.3 nC (b) 272 nC

45. (a) 81.3 pF (b) 2.40 kV

47. (a) 369 pC (b) 1.2 F, 3.1 V (c) 45.5 nJ

49. (a) 40.0 J (b) 500 V

51. 9.43 10
Answers to Quick Quizzes

Chapter 27

Answers to Odd-Numbered Problems

1. 27.0 yr
2. 0.129 mm/s
3. 1.79 × 10^{16} protons
4. (a) 0.632 fF, (b) 0.999 nF, (c) 1.27 fF
5. (a) 17.0 A (b) 850 kA/m^2
6. (a) 2.55 A/m^2 (b) 5.30 × 10^{10} m^{-3} (c) 1.21 × 10^{10} s
7. 3.64 h
8. silver (ρ = 1.59 × 10^{-8} Ω ⋅ m)
9. 8.89 Ω
10. (a) 1.82 m (b) 280 μm
11. (a) 13.0 Ω (b) 255 m
12. 6.00 × 10^{-12}(Ω ⋅ m)^{-1}
13. 0.18 V/m
14. 0.12
15. 6.32 Ω
16. (a) 3.0 A (b) 2.9 A
17. (a) 31.5 nF ⋅ m (b) 6.35 MA/m^2 (c) 49.9 mA
18. 4.27°C
19. 448 A
20. (a) 8.33 A (b) 14.4 Ω
21. 4.1 W
22. 36.1%
Answers to Quick Quizzes and Odd-Numbered Problems

(d) Chemical energy in the 12.0-V battery is transformed into internal energy in the resistors. The 4.00-V battery is being charged, so its chemical potential energy is increasing at the expense of some of the chemical potential energy in the 12.0-V battery. (c) 1.66 kJ

5. (a) the negative direction (b) the positive direction (c) The magnetic force is zero in this case.
 (a) 7.91 N (b) zero

9. (a) 1.25 N (b) 7.50 m/s

11. 20.9

13. (a) 4.27 cm (b) 1.79

15. (a)

17. 115 keV

19. (a) 5.00 cm (b) 8.79 m/s

21. 7.88

23. 8.00

25. 0.278 m

27. (a) 7.66 (b) 2.68 m/s (c) 3.75 MeV (d) 3.1 3 revolutions (e) 2.57

29. 244 kV/m

31. 70.0 mT

33. (a) 8.00 T (b) in the positive direction

35. 2.88

37. 1.07 m/s

39. (a) east (b) 0.245 T

41. (a) 5.78 N (b) toward the west (into the page)

43. 2.98 N west

45. (a) 4.0 m (b) 6.9

47. (a) north at 48.0° below the horizontal (b) south at 48.0° above the horizontal (c) 1.07

49. 9.05 m, tending to make the left-hand side of the loop move toward you and the right-hand side move away.

51. (a) 9.98 N m (b) clockwise as seen looking down from a position on the positive axis

53. (a) 118 m (b) 118 118

55. 43.2

57. (a) 9.27 (b) away from observer

59. (a) 3.52 1.60 10 ^18 N (b) 24.4°

61. 0.588 T

63.

65. 39.2 mT

67. (a) the positive direction (b) 0.696 m (c) 1.09 m (d) 54.7 ns

69. (a) 0.713 A counterclockwise as seen from above

71. (a) mg/Nw (b) The magnetic field exerts forces of equal magnitude and opposite directions on the two sides of the coils, so the forces cancel each other and do not affect the balance of the system. Hence, the vertical dimension of the coil is not needed. (c) 0.261 T

73. (a) 2.00 A (b) 1.89

75. (a) 3.91 s (b) 782

81. 20.0 or 98.1

Chapter 29

Answers to Quick Quizzes

(c)

2. (i) (b) (ii) (a)

3. (c)

4. (i) (c), (b), (a) (ii) (a) (b) (c)

Answers to Odd-Numbered Problems

Gravitational force: 8.93 N down, electric force: 1.60 N up, and magnetic force: 4.80 down.

3. (a) into the page (b) toward the right (c) toward the bottom of the page

(b) 0.125 mm

77. 3.71

79. (a) 0.128 T (b) 78.7° below the horizontal
Chapter 30

Answers to Quick Quizzes

1. $B > C > A$
2. (a)
3. $c > a > d > b$
4. $a = \varepsilon = d > b = 0$
5. (c)

Answers to Odd-Numbered Problems

1. (a) 21.5 mA (b) 4.51 V (c) 96.7 mW
2. 1.60×10^{-6} T
3. (a) 28.3 μT into the page (b) 24.7 μT into the page
4. 5.52 μT into the page
5. (a) 920 turns (b) 12 cm
6. (a) 226
7. (a) 2.2 $\times 10^{-20}$ kg
8. (a) 3.00 $\times 10^{-5}$ N/m (b) attractive
9. 5.33 m
10. (a) opposite directions (b) 67.8 A (c) It would be smaller. A smaller gravitational force would be pulling down on the wires, requiring less magnetic force to raise the wires to the same angle and therefore less current.
11. (a) 200 μT toward the top of the page (b) 133 μT toward the bottom of the page
12. 5.40 cm
13. (a) 4.00 m (b) 7.50 nT (c) 1.26 m (d) zero
14. (a) zero (b) $\frac{\mu_0 I}{2\pi R}$ tangent to the wall (c) $\frac{\mu_0 I}{(2\pi R)^2}$ inward
15. (a) 20.0 μT toward the bottom of the page (b) zero
16. 31.8 mA
17. (a) 226 μN away from the center of the loop (b) zero
18. 920 turns (b) 12 cm
19. (a) 3.13 mV (b) 0
20. (a) 8.65 $\times 10^{-8}$ electrons (b) 4.01 $\times 10^{20}$ kg
21. 3.18 A
22. (a) 10^{-10} T (b) It is 10^{-12} as large as the Earth’s magnetic field.
23. 143 pT
24. $\frac{\mu_0 I}{2\pi w} \ln \left(1 + \frac{w}{l}\right)$
25. (a) $\mu_0 \sigma v$ into the page (b) zero (c) $\frac{1}{2} \mu_0 \sigma^2 v^2$ up toward the top of the page (d) $\frac{1}{\sqrt{\mu_0 \sigma_\ell}}$; we will find out in Chapter 34 that this speed is the speed of light. We will also find out in Chapter 39 that this speed is not possible for the capacitor plates.
26. 1.80 mT
27. 3.89 μT parallel to the xy plane and at 59.0° clockwise from the positive x direction

Answers to Quick Quizzes and Odd-Numbered Problems

A-47

(a) 1.60 A counterclockwise (b) 20.1

11. (a) 233 Hz (b) 1.98 mV

12. (a) 24.1 V with the outer contact negative (b) 2.80 m/s

13. (a) $E = 0.422 \cos 120^\circ T$, where E is in volts and t is in seconds
14. 2.83 mV

15. 13.1 mV

16. (a) 10.8 V with the outer contact negative (b) 0.000 A (c) 2.00 W

17. 272 m

18. (a) 12.0 A clockwise (b) 20.1 μT (c) left

19. (a) $E = 0.422 \cos 120^\circ T$, where E is in volts and t is in seconds
20. 2.83 mV

21. 13.1 mV

22. (a) 39.9 μV (b) The west end is positive.
23. (a) 3.00 N to the right (b) 6.00 W
24. (a) 0.500 A (b) 2.00 W (c) 2.00 W
25. 2.80 m/s

26. 24.1 V with the outer contact negative

27. (a) 113 V (b) 300 V/m

28. (a) $E = 0.422 \cos 120^\circ T$, where E is in volts and t is in seconds
29. 13.1 mV

30. (a) 12.0 A clockwise (b) 20.1 μT (c) left

31. (a) 1.88 $\times 10^{-7}$ T \cdot m2 (b) 6.28 $\times 10^{-8}$ V

32. 272 m

33. 24.1 V with the outer contact negative

34. (a) 226 μN away from the center of the loop (b) zero
35. (a) 920 turns (b) 12 cm
36. (a) 3.13 mV (b) 0
37. (a) 8.65 $\times 10^{-8}$ electrons (b) 4.01 $\times 10^{20}$ kg
38. 3.18 A
39. (a) $9.87 \sin 100\theta$ (b) $1.33 s$
40. (a) $E = 9.87 \cos 100\theta$, where E is in millivolts per meter and t is in seconds (b) clockwise
41. 13.3 V

42. (a) $E = 19.6 \sin 100\theta$, where E is in volts and t is in seconds (b) 19.6 V

43. 28.6 sin 4.00πt, where E is in millivolts and t is in seconds
44. (a) $\Phi_B = 8.00 \times 10^{-3} \cos 120\theta$, where Φ_B is in T \cdot m2 and t is in seconds (b) $E = 3.02$ sin 120πt, where E is in volts and t is in seconds (c) $I = 3.02$ sin 120πt, where I is in amperes and t is in seconds (d) $P = 9.10 \sin^2 120\pi t$, where P is in watts and t is in seconds (e) $\tau = 0.024$ $1 \sin^2 120\pi t$, where τ is in newton meters and t is in seconds
45. (a) 113 V (b) 300 V/m
Chapter 32
Answers to Quick Quizzes

(c), (d)
2. (i) (b) (ii) (a)
3. (a), (d)
4. (a)
5. (i) (b) (ii) (c)

Answers to Odd-Numbered Problems

19.5 mV
3. 100 V
5. 19.2
4. 4.00 mH
9. (a) 360 mV (b) 180 mV (c) 3.80 A
11. \(Lk \)
13. 18.8 \cos 120, \) where \(Lk \) is in volts and \(Lk \) is in seconds
15. (a) 0.469 mH (b) 0.188 ms
17. (a) 1.00 k (b) 3.00 ms
19. (a) 1.29 k (b) 72.0 mA
21. (a) 20.0% (b) 4.00%
23. 92.8 V
25. (a) 0.500 (1 \(\cos 100^\circ \)), where \(Lk \) is in amperes and \(Lk \) is in seconds
(b) 1.50 \(\cos 250^\circ \), where \(Lk \) is in amperes and \(Lk \) is in seconds
27. (a) 0.800 (b) 0
29. (a) 6.67 A/s (b) 0.332 A/s
31. (a) 5.66 ms (b) 1.22 A (c) 58.1 ms
33. 2.44
35. (a) 44.3 nJ/m (b) 995 J/m
37. (a) 18.0 J (b) 7.20 J
39. (a) 8.06 MJ/m (b) 6.32 kJ
41. 1.00 V
43. (a) 18.0 mH (b) 34.3 mH (c) 9.00 mV
45. 781 pH
47. 281 mH
49. 400 mA
51. 20.0 V
53. (a) 503 Hz (b) 119 C (c) 114 mA
55. (a) 135 Hz (b) 119 C (c) 114 mA
57. (a) 2.51 kHz (b) 69.9
59. (a) 0.693 (b) 0.347
61. (a) 20.0 mV (b) 10.0, where \(V \) is in mega volts and \(V \) is in seconds
(c) 63.2
63. — —
65. (a) 4.00 H (b) 3.50
67. (a) (b) 10 H (c) 10
69.

Chapter 33
Answers to Quick Quizzes

(i) (c) (ii) (b)
2. (b)
3. (a)
4. (b)
5. (a) (b) (c)
6. (a)
(c)

Answers to Odd-Numbered Problems

(a) 96.0 V (b) 136 V (c) 11.3 A (d) 768 W
3. (a) 2.95 A (b) 70.7 V
5. 19.2
9. (a) 360 mV (b) 180 mV (c) 3.00 s
11. Lk
13. 18.8 \cos 120, \) where \(Lk \) is in volts and \(Lk \) is in seconds
15. (a) 0.469 mH (b) 0.188 ms
17. (a) 1.00 k (b) 3.00 ms
19. (a) 1.29 k (b) 72.0 mA
21. (a) 20.0% (b) 4.00%
23. 92.8 V
25. (a) 0.500 (1 \(\cos 100^\circ \)), where \(Lk \) is in amperes and \(Lk \) is in seconds
(b) 1.50 \(\cos 250^\circ \), where \(Lk \) is in amperes and \(Lk \) is in seconds
27. (a) 0.800 (b) 0
29. (a) 6.67 A/s (b) 0.332 A/s
31. (a) 5.66 ms (b) 1.22 A (c) 58.1 ms
33. 2.44
35. (a) 44.3 nJ/m (b) 995 J/m
37. (a) 18.0 J (b) 7.20 J
41. 1.00 V
43. (a) 18.0 mH (b) 34.3 mH (c) 9.00 mV
45. 781 pH
47. 281 mH
49. 400 mA
51. 20.0 V
53. (a) 503 Hz (b) 12.0 C (c) 37.9 mA (d) 72.0
55. (a) 135 Hz (b) 119 C (c) 114 mA
57. (a) 2.51 kHz (b) 69.9
59. (a) 0.693 (b) 0.347 — —
61. (a) 20.0 mV (b) 10.0, where \(V \) is in mega volts and \(V \) is in seconds
(c) 63.2
63. — —
65. (a) 4.00 H (b) 3.50
67. (a) (b) 10 H (c) 10
69. — —

Chapter 34
Answers to Quick Quizzes

(i) (c) (ii) (b)
2. (b)
3. (a)
4. (b)
5. (a) (b) (c)
6. (a)
(c)

Answers to Odd-Numbered Problems

(a) 96.0 V (b) 136 V (c) 11.3 A (d) 768 W
3. (a) 2.95 A (b) 70.7 V
5. 19.2
9. (a) 360 mV (b) 180 mV (c) 3.00 s
11. Lk
13. 18.8 \cos 120, \) where \(Lk \) is in volts and \(Lk \) is in seconds
15. (a) 0.469 mH (b) 0.188 ms
17. (a) 1.00 k (b) 3.00 ms
19. (a) 1.29 k (b) 72.0 mA
21. (a) 20.0% (b) 4.00%
23. 92.8 V
25. (a) 0.500 (1 \(\cos 100^\circ \)), where \(Lk \) is in amperes and \(Lk \) is in seconds
(b) 1.50 \(\cos 250^\circ \), where \(Lk \) is in amperes and \(Lk \) is in seconds
27. (a) 0.800 (b) 0
29. (a) 6.67 A/s (b) 0.332 A/s
31. (a) 5.66 ms (b) 1.22 A (c) 58.1 ms
33. 2.44
35. (a) 44.3 nJ/m (b) 995 J/m
37. (a) 18.0 J (b) 7.20 J
41. 1.00 V
43. (a) 18.0 mH (b) 34.3 mH (c) 9.00 mV
45. 781 pH
47. 281 mH
49. 400 mA
51. 20.0 V
53. (a) 503 Hz (b) 12.0 C (c) 37.9 mA (d) 72.0
55. (a) 135 Hz (b) 119 C (c) 114 mA
57. (a) 2.51 kHz (b) 69.9
59. (a) 0.693 (b) 0.347 — —
61. (a) 20.0 mV (b) 10.0, where \(V \) is in mega volts and \(V \) is in seconds
(c) 63.2
63. — —
65. (a) 4.00 H (b) 3.50
67. (a) (b) 10 H (c) 10
69. — —

Chapter 35
Answers to Quick Quizzes

(i) (c) (ii) (b)
2. (b)
3. (a)
4. (b)
5. (a) (b) (c)
6. (a)
(c)

Answers to Odd-Numbered Problems

(a) 96.0 V (b) 136 V (c) 11.3 A (d) 768 W
3. (a) 2.95 A (b) 70.7 V
5. 19.2
9. 3.14 A
11. 5.60 A
13. (a) 12.6 (b) 6.21 A (c) 8.78 A
15. 0.450 Wb
17. 32.0 A
19. (a) 41.3 Hz (b) 87.5
21. 100 mA
23. (a) 141 mA (b) 235 mA
25. [Image of a diagram]

27. (a) 47.1 (b) 637 (c) 2.40 k (d) 2.33 k (e) 14.2°
29. (a) 17.4” (b) the voltage
31. (a) 194 V (b) The current leads by 49.9°.
33. 353 W
37. 88.0 W
39. (a) 16.0 (b) 12.0
41. \(\frac{11}{14} \) mm
43. 1.82 pF
45. 242 mJ
47. (a) 0.633 pF (b) 8.46 mm (c) 25.1
49. 687 V
51. 87.5
53. 0.756
55. (a) 34% (b) 5.3 W (c) 3.9
57. (a) 1.60 turns (b) 30.0 A (c) 25.3 A
59. (a) 22.4 V (b) 26.6° (c) 0.267 A (d) 83.9 (e) 47.2
61. 2.6 cm
63. (a) could be 53.8 or it could be 1.35 k (b) capacitive reactance is 53.8 (c) must be 1.43 k
65. (b) 31.6
67. (a) 19.7 cm at 35.0° (b) 19.7 cm at 35.0° (c) The answers are identical. (d) 9.36 cm at 169°
69. (a) Tension and separation must be related by 274 , where is in newtons and is in meters. (b) One possibility is 10.0 N and 0.200 m.
71. (a) 0.225 A (b) 0.450 A
73. (a) 78.5 (b) 1.59 k (c) 1.52 k (d) 138 mA
75. 56.7 W
77. (a) 580 H (b) 54.6 F (c) 1.00 (d) 894 Hz (e) At 200 Hz, 60° (leads); at out is in phase with); and at 4.00 Hz, 60°
79. (a) 224 s (b) 500 W (c) 221 s and 226 s
81. 58.7 Hz or 33.9 Hz. The circuit can be either above or below resonance.

Chapter 34

Answers to Quick Quizzes

(i) (b) (ii) (c)
2. (c)
3. (c)
4. (b)
5. (a)
6. (c)
7. (a)

Answers to Odd-Numbered Problems

(a) out of the page (b) 1.85
3. (a) 11.3 GV m/s (b) 0.100 A
5. 2.87 5.75 10 m
(a) 0.690 wavelengths (b) 58.9 wavelengths
9. (a) 681 yr (b) 8.32 min (c) 2.56 s
11. 74.9 MHz
13. 2.25 m/s
15. (a) 6.00 MHz (b) 73.4 nT
(c) = −73.4 cos 0.126 = 37.7 10 , where is in nT, is in meters, and is in seconds
17. 2.9 m/s
19. (a) 0.333 T (b) 0.628 m (c) 4.77
21. 3.34 m/s
23. 2.25 m/s
25. (a) 6.00 MHz (b) 73.4 nT
(c) 523.73.4 cos 0.126
3.77 10 , where is in nT, is in meters, and is in seconds
27. 2.9 m/s
29. (a) 0.333 T (b) 0.628 m (c) 4.77
31. 3.34 m/s
33. (a) 332 kW/m radially inward (b) 1.88 kV/m and 222
35. 5.31 N/m
37. (a) 1.90 kN/C (b) 50.0 pJ (c) 1.67 kg m/s
39. 4.09°
41. (a) 1.60 kg each second (b) 1.60
(c) The answers are the same. Force is the time rate of momentum transfer.
43. (a) 5.48 N (b) 913 m/s away from the Sun (c) 10.6 days
45. (a) 134 m (b) 46.8 m
47. 56.2 m
49. (a) away along the perpendicular bisector of the line segment joining the antennas (b) along the extensions of the line segment joining the antennas
51. (a) 6.00 pm (b) 7.49 cm
53. (a) 4.16 m to 4.54 m (b) 3.41 m to 3.66 m
(c) 1.61 m to 1.67 m
55. (a) 3.85 W (b) 1.02 kV/m and 3.39
57. 5.50
59. (a) 3.21 W (b) 0.639 W/m (c) 0.513% of that from the noon Sun in January
61. 5.87 W
63. 378 nm
65. (a) 6.67 T (b) 5.31 W/m
(c) 1.67 W (d) 5.56
67. (a) 625 kW/m (b) 21.7 kV/m (c) 72.4 T (d) 17.8 min
69. (a) 388 K (b) 363 K
71. (a) 3.92 W/m (b) 308 W
73. (a) 0.161 m (b) 0.163 m (c) 76.8 W (d) 470 W/m
(e) 595 V/m (f) 1.98 T (g) 119 W
75. (a) The projected area is , where is the radius of the planet. (b) The radiating area is 4 . (c) 1.61
77. (a) 584 nT (b) 419 m (c) 2.16
(d) vibrates in the plane. (e) 40.6
(f) 271 nPa (g) 407 nm
79. (a) 22.6 h (b) 30.6 s
Chapter 35

Answers to Quick Quizzes

1. (d)
2. Beams ② and ④ are reflected; beams ③ and ⑤ are refracted.
3. (c)
4. (c)
5. (i) (b) (ii) (b)

Answers to Odd-Numbered Problems

1. (a) 2.07×10^3 eV (b) 4.14 eV
5. 114 rad/s
7. 22.5°
9. (a) 1.81×10^8 m/s (b) 2.25×10^8 m/s
(c) 1.36×10^8 m/s
11. (a) 29.0° (b) 25.8° (c) 32.0°

Chapter 36

Answers to Quick Quizzes

1. false
2. (b)
3. (b)
4. (d)
5. (a)
6. (b)
7. (a)
8. (c)

Answers to Odd-Numbered Problems

1. 89.0 cm
3. (a) younger (b) -10^3's younger
5. (a) $p_i + h$, behind the lower mirror (b) virtual (c) upright (d) 1.00 (e) no
7. (a) 1.00 m behind the nearest mirror (b) the palm (c) 5.00 m behind the nearest mirror (d) the back of her hand (e) 7.00 m behind the nearest mirror (f) the palm (g) All are virtual images.
9. (i) (a) 13.3 cm (b) real (c) inverted (d) -0.333 (ii) (a) 20.0 cm (b) real (c) inverted (d) 1.00 (iii) (a) ∞ (b) no image formed (c) no image formed (d) no image formed
11. (a) -12.0 cm; 0.400 (b) -15.0 cm; 0.250 (c) both upright
13. (a) -7.50 cm (b) upright (c) 0.500 cm
15. 3.33 m from the deepest point in the niche
17. 0.790 cm
19. (a) 0.160 m (b) -0.400 m
21. (a) convex (b) at the 30.0-cm mark (c) -20.0 cm
23. (a) 15.0 cm (b) 60.0 cm
25. (a) concave (b) 2.08 m (c) 1.25 m from the object
27. (a) 25.6 m (b) 0.0587 rad (c) 2.51 m (d) 0.0239 rad (e) 62.8 m
29. (a) 45.1 cm (b) -89.6 cm (c) -6.00 cm
31. (a) 1.50 m (b) 1.75 m
33. 4.82 cm
35. 8.57 cm
37. 1.50 cm/s
39. (a) 6.40 cm (b) -0.250 (c) converging
41. (a) 39.0 mm (b) 39.5 mm
43. 20.0 cm
45. (a) 20.0 cm from the lens on the front side (b) 12.5 cm from the lens on the front side (c) 6.67 cm from the lens on the front side (d) 8.33 cm from the lens on the front side
47. 2.84 cm
49. (a) 0.172 mm/s (b) 0.345 mm/s (c) and (d) northward and downward at 50.0° below the horizontal.
81. 62.2%
83. (a) $\frac{4x^2 + L^2}{L} \omega$ (b) 0 (c) $L\omega$ (d) $2L\omega$ (e) $\frac{\pi}{8\omega}$
87. 70.6%
Chapter 38
Answers to Quick Quizzes

(a) 1.1 m (b) 1.7 mm

Answers to Odd-Numbered Problems

(a) four (b) 28.7°, 73.6°

3. (a) 2.62 mm (b) 2.62 mm

9. (a) 55.7 m (b) 124 m

11. 641

13. 632 nm

15. 1.54 mm

17. 2.40

19. 0.318 m/s

21. 0.968

23. 48.0

25. (a) 1.29 rad (b) 99.6 nm

27. 0.968

29. (a) 7.95 rad (b) 0.453

31. 512 nm

33. 0.500 cm

35. 290 nm

37. 8.70

39. 1.31

41. 1.20 mm

43. 1.001

45. 1.25 m

47. 1.62 cm

49. 78.4

51. \(650\), where \(a\), \(b\), \(c\), \(d\) are in nanometers and \(0, 1, 2, 3, 4, 5\).

53. ———

55. 5.00

57. 2.50 mm

59. 113

61. (a) 72.0 m (b) 36.0 m

63. (a) 70.6 m (b) 136 m

65. (a) 14.7 m (b) 1.53 cm (c) 16.0 m

67. 0.505 mm

69. 3.58°

71. 115 nm

73. (a) 2 l (b) 266 nm

75. 0.498 mm

77. (a) 160 cm to the left of the lens (b) 0.800 (c) inverted

79. (a) 25.3 cm to the right of the second surface (b) real

81. (a) 25.3 cm to the right of the mirror (b) virtual

(c) upright (d) 8.05

83. (a) 1.40 kW/m (b) 6.91 mW/m (c) 0.164 cm (d) 58.1 W/m

85. 8.00 cm

87. 11.7 cm

89. (a) 1.50 m in front of the mirror (b) 1.40 cm

(a) 0.334 m or larger (b) 0.025 5 or larger

91. (a) 1.99 (b) 10.0 cm to the left of the lens (c) 2.50

(d) inverted

93. ———

95. (a) \(650\), where \(a\), \(b\), \(c\), \(d\) are in nanometers and \(0, 1, 2, 3, 4, 5\).

97. ———
A-52

Answers to Quick Quizzes and Odd-Numbered Problems

25. 1.81
27. (a) three (b) 0°, 45.2°, 45.2°
29. 74.2 grooves/mm
31. 33. 514 nm
35. (a) 3.53 rulings/cm (b) 11
37. (a) 5.23 m (b) 4.58
39. 0.095 4 nm
41. (a) 0.109 nm (b) four
43. (a) 54.7° (b) 63.4° (c) 71.6°
45. 0.375
47. (a) 0.943 2.83 m/s
(b) The result would be the same.
49. (a) 929 MeV/ (b) 6.58 MeV/ (c) No
51. 4.51
53. (a) smaller (b) 3.18 kg
(c) It is too small a fraction of 9.00 g to be measured.
55. 4.28 kg/s
57. (a) 8.63 J (b) 9.61
59. (a) 0.979 (b) 0.065 2 (c) 45.0
(d) 0.999 999 97 ; 0.948 ; 1.06
61. (a) 4.08 MeV (b) 29.6 MeV
63. 2.97
65. (a) 2.66 m (b) 3.87 km/s (c) 8.35
(d) 5.29 (e) 4.46
67. 0.712%
69. (a) 13.4 m/s toward the station and 13.4 m/s away from
(b) 0.056 7 rad/s
71. (a) 4.49 compared with the prediction from the
approximation of 1.5 4.71 (b) 7.73 compared with
the prediction from the approximation of 2.5 7.85
73. (b) 0.001 90 rad 0.109°
75. (b) 15.3
77. (a) 41.8° (b) 0.592 (c) 0.262 m

Chapter 39

Answers to Quick Quizzes

(c)
2. (d)
3. (d)
4. (a)
5. (a)
6. (c)
(d)
8. (i) (c) (ii) (a)
9. (a) (b) (c)

Answers to Odd-Numbered Problems

10.0 m/s toward the left in Figure P39.1
3. 5.70 degrees or 9.94 rad
5. 0.917
0.866
9. 0.866
11. 0.220
13. 5.00 s
15. The trackside observer measures the length to be 31.2 m,
so the supertrain is measured to fit in the tunnel, with
18.8 m to spare.
17. (a) 25.0 yr (b) 15.0 yr (c) 12.0 ly
19. 0.800
21. (b) 0.050 4
23. (c) 2.00 kHz (d) 0.075 m/s 0.17 mi/h
25. 1.55 ns
27. (a) 2.50 m/s (b) 4.98 m (c) 1.33
29. (a) 17.4 m (b) 3.30°
31. Event B occurs first, 444 ns earlier than A
33. 0.357
35. 0.998 toward the right
37. (a) 0.943 2.83 m/s
39. (a) 929 MeV/ (b) 6.58 MeV/ (c) No
41. 4.51
45. 0.285
47. (a) 3.07 MeV (b) 0.986
49. (a) 5.37 335 MeV
(b) 1.33 8.31 GeV
51. 1.63 MeV/
53. (a) smaller (b) 3.18 kg
(c) It is too small a fraction of 9.00 g to be measured.
55. 5.51 m, 2.76 m, 1.84 m
57. 632.8 nm
59. (a) 7.26 rad, 1.50 arc seconds (b) 0.1891 y (c) 50.8 rad
(d) 1.52 mm
61. (a) 25.6° (b) 18.9°
63. 545 nm
65. 13.7°
67. 15.4°
69. (b) 3.77 nm/cm
71. (a) 4.49 compared with the prediction from the
approximation of 1.5 4.71 (b) 7.73 compared with
the prediction from the approximation of 2.5 7.85
73. (b) 0.001 90 rad 0.109°
75. (b) 15.3
77. (a) 41.8° (b) 0.592 (c) 0.262 m

Chapter 40

Answers to Quick Quizzes

(b)
2. Sodium light, microwaves, FM radio, AM radio.
3. (c)
4. The classical expectation (which did not match the
experiment) yields a graph like the following drawing:

0
5. (d)
6. (c)
Answers to Quick Quizzes and Odd-Numbered Problems

A-53

8. (a)

Answers to Odd-Numbered Problems

6.85 m, which is in the infrared region of the spectrum.

3. (a) lightning: m; explosion: m (b) lightning: ultraviolet; explosion: x-ray and gamma ray

5. 71. (a) 0.143 nm (b) This is the same order of magnitude as the spacing between atoms in a crystal

(c) Because the wavelength is about the same as the spacing, diffraction effects should occur.

73. (a) The Doppler shift increases the apparent frequency of the incident light. (b) 3.86 eV (c) 8.76 eV

Chapter 41

Answers to Quick Quizzes

(d) 2.

3.

4.

Answers to Odd-Numbered Problems

(a) 126 pm (b) 5.27 kg m/s (c) 95.3 eV

(b) 0.037 0 (c) 0.750

5. (a) 0.511 MeV, 2.05 MeV, 4.60 MeV

(b) They do; the MeV is the natural unit for energy radiated by an atomic nucleus.

(a)

(b)

(c)

5. (a) 0.511 MeV, 2.05 MeV, 4.60 MeV

(b) They do; the MeV is the natural unit for energy radiated by an atomic nucleus.

(a)

(b)

(c)

(d) In the 2 graph in the text’s Figure 41.4b, it is more probable to find the particle either near /4 or /4 than at the center, where the probability density is zero. Nevertheless, the symmetry of the distribution means that the average position is /2.

21. (a) 0.196 (b) The classical probability is 0.333, which is significantly larger.

(c) 0.333 for both classical and quantum models

23. (a) 0.196 (b) 0.609

25. (b)

27. (a) mL

(b) 22.1 keV/ = 478 eV

71. (a) 0.143 nm (b) This is the same order of magnitude as the spacing between atoms in a crystal

(c) Because the wavelength is about the same as the spacing, diffraction effects should occur.

73. (a) The Doppler shift increases the apparent frequency of the incident light. (b) 3.86 eV (c) 8.76 eV

Chapter 41

Answers to Quick Quizzes

(d) 2.

3.

4.

Answers to Odd-Numbered Problems

(a) 126 pm (b) 5.27 kg m/s (c) 95.3 eV

(b) 0.037 0 (c) 0.750

5. (a) 0.511 MeV, 2.05 MeV, 4.60 MeV

(b) They do; the MeV is the natural unit for energy radiated by an atomic nucleus.

(a)

(b)

(c)

5. (a) 0.511 MeV, 2.05 MeV, 4.60 MeV

(b) They do; the MeV is the natural unit for energy radiated by an atomic nucleus.

(a)

(b)

(c)

(d) In the 2 graph in the text’s Figure 41.4b, it is more probable to find the particle either near /4 or /4 than at the center, where the probability density is zero. Nevertheless, the symmetry of the distribution means that the average position is /2.

21. (a) 0.196 (b) The classical probability is 0.333, which is significantly larger.

(c) 0.333 for both classical and quantum models

23. (a) 0.196 (b) 0.609

25. (b)

27. (a) mL

(b) 22.1 keV/ = 478 eV

71. (a) 0.143 nm (b) This is the same order of magnitude as the spacing between atoms in a crystal

(c) Because the wavelength is about the same as the spacing, diffraction effects should occur.

73. (a) The Doppler shift increases the apparent frequency of the incident light. (b) 3.86 eV (c) 8.76 eV

Chapter 41

Answers to Quick Quizzes

(d) 2.

3.

4.

Answers to Odd-Numbered Problems

(a) 126 pm (b) 5.27 kg m/s (c) 95.3 eV

(b) 0.037 0 (c) 0.750

5. (a) 0.511 MeV, 2.05 MeV, 4.60 MeV

(b) They do; the MeV is the natural unit for energy radiated by an atomic nucleus.

(a)

(b)

(c)

5. (a) 0.511 MeV, 2.05 MeV, 4.60 MeV

(b) They do; the MeV is the natural unit for energy radiated by an atomic nucleus.

(a)

(b)

(c)

(d) In the 2 graph in the text’s Figure 41.4b, it is more probable to find the particle either near /4 or /4 than at the center, where the probability density is zero. Nevertheless, the symmetry of the distribution means that the average position is /2.

21. (a) 0.196 (b) The classical probability is 0.333, which is significantly larger.

(c) 0.333 for both classical and quantum models

23. (a) 0.196 (b) 0.609

25. (b)

27. (a) mL

(b) 22.1 keV/ = 478 eV

71. (a) 0.143 nm (b) This is the same order of magnitude as the spacing between atoms in a crystal

(c) Because the wavelength is about the same as the spacing, diffraction effects should occur.

73. (a) The Doppler shift increases the apparent frequency of the incident light. (b) 3.86 eV (c) 8.76 eV
Answers to Quick Quizzes and Odd-Numbered Problems

Chapter 42

Answers to Quick Quizzes

2. (c)
3. (b)
4. (a) five (b) nine
5. (c)
6. true

Answers to Odd-Numbered Problems

(a) 121.5 nm, 102.5 nm, 97.20 nm (b) ultraviolet
3. 1.94
5. (a) 5 (b) no (c) no
 (a) 5.69 m (b) 11.3 N
9. (a) 13.6 eV (b) 1.51 eV
11. (a) 3.634 eV (b) 2.8 m (c) 1.34
13. (a) 219 m/s (b) 136 eV (c) 27.2 eV
15. (a) 2.89 kg · m/s (b) 2.74 (c) 7.30
17. (a) 0.476 nm (b) 0.997 nm
19. (a) 5 (b) 520 km/s
21. (a) 54.4 eV for 1, 2, 3, ...
Answers to Quick Quizzes and Odd-Numbered Problems

35.

37.

39.

41. (a) 1

(b)

\(e \)

\(\ell \)

(b) 2.58 \(\times \) 10\(^{34} \) J

43. aluminum

45. (a) 30 (b) 36

47. 18.4 T

49. 17.7 kV

51. (a) 14 keV (b) 8.8

53. (a) If \(2 \), then \(2, 1, 0, 1, 2, \) if \(1 \), then

\(1, 0, 1; \) if \(0 \), then \(0. \) (b) 6.05 eV

55. 0.068 nm

57. gallium

59. (a) 28.3 THz (b) 10.6 m (c) infrared

61. 3.49 photons

63. (a) 4.24 W/m (b) 1.20

65. (a) 3.40 eV (b) 0.136 eV

67. (a) 1.57 \(\times \) 0.866

69. 9.80 GHz

71. between 10 K and 10 K; use Equation 21.19 and set the kinetic energy equal to typical ionization energies

73. — —

75. (a) 609 eV (b) 6.9 eV (c) 147 GHz (d) 2.04 mm

77. — —

79. (a) 486 nm (b) 0.815 m/s

81. (a) —

(b) —

(c) 0, \(\omega \), and \(\theta \)

(d) —

(e) where 0.191

83. (a) 4.20 mm (b) 1.05 photons

(c) 8.84

85. \(\quad mL \)

87. 0.125

89. (a) 0.106 , where \(\ell \) is in nanometers and 1, 2, 3, ...

(b) = 6.80 where \(\ell \) is in electron volts and 1, 2, 3, ...

91. The classical frequency is 4

Chapter 43

Answers to Quick Quizzes

(a) van der Waals (b) ionic (c) hydrogen (d) covalent

2. (c)

3. (a)

4. A: semiconductor; B: conductor; C: insulator

Answers to Odd-Numbered Problems

10 K

3. 4.3 eV

5. (a) 74.2 pm (b) 4.46 eV

(a) 1.46 \(\times \) 10\(^5 \) kg m\(^2\) (b) The results are the same, suggesting that the molecule’s bond length does not change measurably between the two transitions.

9. 9.77 \(\times \) rad/s

11. (a) 0.0147 eV (b) 84.1

13. (a) 32.0 pm (b) 9.22 pm

15. (a) 2.32 kg (b) 1.82 kg (c) 1.62 cm

17. (a) 0.362 eV, 1.09 eV (b) 0.0979 eV, 0.294 eV, 0.490 eV

19. (a) 472 m (b) 473 m (c) 0.715

21. (a) 4.60 kg (b) 1.32 Hz (c) 0.0741 nm

23. 6.25

25. 7.83 eV

27. 5.28 eV

29.

31. (a) 4.23 eV (b) 3.27

33. (a) 2.54 \(\times \) (b) 3.15 eV

35. 0.939

41. (a) 276 THz (b) 1.09

43. 1.91 eV

45. 227 nm

47. (a) 59.5 mV (b) 59.5 mV

49. 4.18 mA

51. (a) (b) 10.7 kA

53. 203 A to produce a magnetic field in the direction of the original field
53. (a) 29.2 MHz (b) 42.6 MHz (c) 2.13 kHz
55. 46.5 d
57. (a) 2.7 fm (b) 1.5 N (c) 2.6 MeV
(d) 7.4 fm; 3.8 N; 18 MeV
59. 2.20
61. (a) smaller (b) 1.46 u (c) 1.45 % (d) no
63. (a) 2.52 (b) 2.29 Bq (c) 1.07
65. 5.94 Gyr
67. (b) 1.95
69. 0.401%
71. (a) Mo (b) electron capture; all levels; e⁻ emission: only 2.03 MeV, 1.48 MeV, and 1.35 MeV
73. (b) 1.16 u
75. 2.66 d

Chapter 45

Answers to Odd-Numbered Problems

1. 1.5 fissions
3. 144Xe, 143Xe, and 142Xe
5. 232 Th; Th; Pa
7. 126 MeV
9. 184 MeV
11. 5.58
13. 2.68
15. 26 MeV
17. (a) 3.08 g (b) 1.31 mol (c) 7.89 ³¹I nuclei
(d) 2.53 ²¹J (e) 5.34 yr (f) Fission is not sufficient to supply the entire world with energy at a price of $130 or less per kilogram of uranium.
19. 1.01 g
21. (a) Be (b) C (c) 7.27 MeV
23. 5.49 MeV
25. (a) 31.9 g/h (b) 123 g/h
27. (a) 2.61 ³¹I (b) 5.50
29. (a) 2.23 m/s (b)
31. (a) 10 J/m (b) 1.2 J/m
33. (a) 0.456 cm (b) 5.79 cm
35. (a) 10.0 h (b) 3.16 m
37. 2.39 °C, which is negligible
39. 1.66
41. (a) 421 MBq (b) 153 ng
43. (a) 0.963 mm (b) It increases by 7.47%.
45. (a) atoms (b)
47. 1.01 MeV
49. (a) 1.5 ³¹I nuclei (b) 0.6 kg
51. (a) 3.12 ³¹I atoms (b) 3.12 ³¹I electrons
53. (a) 1.94 MeV, 1.20 MeV, 7.55 MeV, 7.30 MeV, 1.73 MeV, 4.97 MeV (b) 1.02 MeV (c) 26.7 MeV
(d) Most of the neutrinos leave the star directly after their creation, without interacting with any other particles.
55. 69.0 W
57. 2.57
59. (b) 26.7 MeV
Answers to Quick Quizzes and Odd-Numbered Problems

Answers to Quick Quizzes

1. (a) 5.67 K (b) 120 kJ
2. (i) (c), (d) (ii) (a)
3. (b), (e), (f)
4. (b), (c)
5. 0

Answers to Odd-Numbered Problems

(a) 5.57 J (b) $1.70
3. (a) 4.54 Hz (b) 6.61
5. 118 MeV
 (b) The range is inversely proportional to the mass of the field particle. (c)
9. (a) 67.5 MeV (b) 67.5 MeV/ (c) 1.63
11. (a) muon lepton number and electron lepton number
 (b) charge (c) angular momentum and baryon number
 (d) charge (e) electron lepton number
13. (a) μ (b) (c) μ^- (d) μ^- (e) μ^- + ν
15. (a) It cannot occur because it violates baryon number conservation. (b) It can occur. (c) It cannot occur because it violates baryon number conservation. (d) It can occur. (e) It can occur. (f) It cannot occur because it violates baryon number conservation, muon lepton number conservation, and energy conservation.
17. 0.828
19. (a) 37.7 MeV (b) 37.7 MeV (c) 0 (d) No. The mass of the meson is much less than that of the proton, so it carries much more kinetic energy. The correct analysis using relativistic energy conservation shows that the kinetic energy of the proton is 5.35 MeV, while that of the meson is 32.3 MeV.
21. (a) It is not allowed because neither baryon number nor angular momentum is conserved. (b) strong interaction (c) weak interaction (d) weak interaction (e) electromagnetic interaction
23. (a) K (scattering event) (b) (c)
25. (a) Strangeness is not conserved. (b) Strangeness is conserved. (c) Strangeness is conserved. (d) Strange- ness is not conserved. (e) Strangeness is not conserved. (f) Strangeness is not conserved.
27. 9.25 cm
35. (a) (b) 0 (a) antiproton; antineutron
35. The unknown particle is a neutron, udd.
39. (a) 1.00 mm (b) microwave
41. (a) (b)
43. 7.73
45. (a) 0.160 (b) 2.18
47. (a) 590.09 nm (b) 599 nm (c) 684 nm
49. 6.00
51. (a) Charge is not conserved. (b) Energy, muon lepton number, and electron lepton number are not conserved. (c) Baryon number is not conserved.
55.
59. 1.12 GeV/
61. (a) electron–positron annihilation; e (b) A neutrino collides with a neutron, producing a proton and a muon; W
63.
65. neutron
67. 5.35 MeV and 32.3 MeV
69. (a) 0.782 MeV (b) 0.919 382 km/s
 (c) The electron is relativistic; the proton is not.
71. (b) 9.08 Gyr
75. (a) 2Nmc (b) $\bar{N}mc$ (c) method (a)
Index

Locator note: **boldface** indicates a definition; *italics* indicates a figure; *t* indicates a table.

Aberrations, in lenses, 1112–1113, 1113, 1121
Absolute pressure (P), 423
Absolute temperature scale, 571–572, 572
conversion to/from, 572
Absolute uncertainty, A–20
Absolute zero, 572
Absorption, stimulated, 1325, 1326
Absorption spectroscopy, 1297–1298, 1298
Absorptivity, 613
AC, See Alternating current (AC)
Acceleration (a), 31–35
average (a_{avg}), 31, 31, 33, 34, 80, 92, 314t
average angular (a_{avg}), 295, 300
of center of mass (a_{cm}), 272
centrifugal (a_c), 91–94, 92, 95, 150–156, 298–299
constant
motion in one dimension with, 36, 36–40
motion in two dimensions with, 81–84
direction of, 31, 32–33
force and, 32–33, 114, 115–117
in free fall, 41–43
instantaneous (a), 31, 32–33, 34, 80
in uniform circular motion, 92
instantaneous angular (a), 295–296, 298, 314t
and torque, 392–397
linear, in rolling motion, 317
mass and, 115–117
motion diagrams of, 35, 35–36
negative, 33, 35, 36
in nonuniform circular motion, 156–158, 157
particle under constant acceleration model, 36, 36–40, 38
in projectile motion, 84–85, 87–89
radial (a_r), 94, 94–96, 156–158, 157
relative, 97
in relativistic conditions, 1215
in simple harmonic motion, 451, 452, 454, 455, 455–456, 463
tangential (a_t), 94, 94–95, 156–158, 157, 298–299, 299, 303
total, 94, 95
transverse (a_t), 490–491
in uniform circular motion, 91, 91–92, 150–156
units of, 8t, 31
and velocity vector, 80–81
Acceleration–time graph, 32, 32, 33, 33
Acceptor atoms, 1364, 1364
Accommodation, 1116, 1117
Actinium, radioactivity series, 1404, 1404t
Action force, 119, 119
Activity, of radioactive substance, 1392, 1393–1394
units of, 1392
Addition
associative law of, 62, 63
commutative law of, 62, 62, 181
derivative of sum of two functions, A–14
of fractions, A–6
significant figures in, 12
and uncertainty, A–20
of vectors, 80
component method, 67, 67–70
graphical method, 62, 62–63, 64–65
Adiabatic free expansion, 604–605
entropy in, 672, 674, 674, 675–676, 677
as irreversible process, 659, 659–660
Adiabatic process, 604–605, 637
for ideal gas, 637–639, 638
Advanced LIGO, 1149
AFM, See Atomic force microscope (AFM)
Agricultural research, radioactive tracers in, 1435
Agua Caliente Solar Project, 1367
Air
average expansion coefficient, 575t
density, 419t
dielectric constant and dielectric strength of, 791t
index of refraction, 1067t
speed of sound in, 511–512, 512t
thermal conductivity, 609t
Air columns, standing waves in, 546–549, 547
Air conditioners, 656
Air drag, See Air resistance
Airplanes
acceleration in carrier landing, 38–39, 46–47
cabin pressure, 419
sonic boom, 522
wings of, 344, 344–345
Air resistance, 102, 164, 164–167
free fall and, 40–41
ALICE (A Large Ion Collider Experiment), 1465
Alcohol
average expansion coefficient, 575t
index of refraction, 1067t
latent heats of fusion and vaporization, 598t
specific heat, 594t
speed of sound in, 512t
Alcohol thermometers, 570–571
Algebra, review of, A–5–A–10
ALICE (A Large Ion Collider Experiment), 1465
Alkali metals, 1321
Allowed transitions, 1322, 1322
Alloys, metal, 1355
Alpha (a) decay, 1390, 1391, 1395, 1395–1399, 1399, 1400
decay pathways, 1404t
as example of tunneling, 1282–1283, 1283, 1399, 1399
and radiation damage, 1433, 1434t
Alpha rays, 1380
Alternating current (AC)
AC–DC converters, 1017, 1017, 1018, 1018–1019
advantages of, 1018
voltage of, 1001
Alternating-current (AC) circuits applications, 998
average power in, 1011–1013
capacitors in, 1004–1007, 1005, 1011
household wiring, 852–853, 853
electrical safety, 853–855, 854
inductors in, 1002, 1002–1004, 1003, 1011
RC circuits, as filters, 1019, 1019
resistors in, 999, 999–1002, 1000, 1001, 1012

RLC circuits, series, 1007, 1007–1011, 1008

average power in, 1011–1014, 1014

resonance in, 1013–1015, 1014

Alternating-current (AC) generators, 949–951, 950

Alternating-current (AC) sources, 998–999, 999

Alternating-current (AC) transformers, 1015, 1015–1018, 1016, 1017

Alternative representations, 22, 22–23

Altitude and atmospheric pressure, 419

and free-fall acceleration, 391–392, 391t

Aluminum (Al)

average expansion coefficient, 575t

density, 6

isotopes of, 1396t

latent heats of fusion and vaporization, 598t

resistivity, 814t

specific heat, 594t

speed of sound in, 512t

thermal conductivity, 609t

work function of, 1243t

Alzheimer’s disease, 1450, 1451

Amorphous solids, 1179, 1340

Ampere (A), 3, 809, 910

Ampère, Andre-Marie, 912

Ampère–Maxwell law, 1031–1032, 1033–1034, 1036–1037

Ampère’s law, 911–915, 912

general form of (Ampère–Maxwell law), 1031–1032, 1033–1034, 1036–1037

Amperian loop, 912

Amplitude (A)

of damped oscillation, 469, 469t, 470, 470t

of driven oscillator, 470, 470t

of simple harmonic motion, 452–453, 453, 455, 456

of standing wave, 539

of wave, 487, 488, 491

Analysis models, 28

isolated system

angular momentum version, 345–350, 347

energy version, 215–222, 217

momentum version, 250–252, 251, 273

problem-solving strategies for, 217–218

nonisolated system

angular momentum version, 338–342, 379, 341

momentum version, 252–256, 255, 273

problem-solving strategies for, 217–218

particle in a field

electric field, 698, 699–703, 700, 701

gravitational field, 392–394, 393–394

magnetic field, 869, 871–874, 872, 876

particle in equilibrium, 120–121, 121, 122, 123

particle in simple harmonic motion, 452–458, 456

particle in uniform circular motion, 91, 91–94, 93, 152–156

particle model, 21–22, 267, 272

particle under a net force, 121, 121, 122, 123–130

particle under constant acceleration, 36, 36–40, 38

particle under constant speed, 30–31

particle under constant velocity, 28–31, 29, 30

quantum particle under boundary conditions, 1277–1278

rigid object in equilibrium, 363–365, 364

rigid object under a net torque, 302–307, 304, 305

rigid object under constant angular acceleration, 296–298, 297

selection of, 29, 121

system model, 178

traveling wave, 487, 487–491

waves in interference, 534–538, 535, 537, 1137, 1137–1140, 1139

waves under boundary conditions, 541, 541–545, 542, 543

wave under reflection, 1061–1065, 1062, 1063

wave under refraction, 1065

1065, 1065–1067, 1066, 1067, 1068

Analysis of problems, 46, 47. See also Problem-solving strategies

Analyzer, 1176–1177, 1177

Anderson, Carl, 1449–1450, 1451–1452, 1455

Andromeda galaxy, 466, 466–470

Angle(s)

conversion to/from polar coordinates, 60–61

to/from radians, 294

critical, 1074, 1074–1076

equality of, A–10, A–10

small angle approximation, 465, 465t

Angle of deviation (δ), 1070, 1070

Angle of incidence, 1062, 1062

Angle of reflection, 1062, 1062

Angle of refraction, 1065, 1065–1069, 1066

Angular acceleration (α)

average (aṃ), 295, 300

instantaneous (a), 295–296, 298, 314t

and torque, 302–307

Angular displacement (θ), 294, 294

Angular frequency (ω)

of AC voltage, 999

of electromagnetic waves, 1037

of oscillation in LC circuit, 982

of RLC circuit, 1010

in simple harmonic motion, 453, 454, 455, 456, 462–463

of simple pendulum, 465

of sound wave, 509

of wave, 488, 491

Angular impulse–angular momentum theorem, 341

Angular magnification (m), 1118, 1118–1119, 1120, 1121

Angular momentum (L), 314, 335–352, 339

and axis, choice of, 339

conservation of, 345–350, 346, 352, 403

in isolated system, 345–350

in nonisolated systems, 338–342, 339, 341

orbital

and magnetic moment, 919, 919–920

quantization of, 919–920, 1312–1314, 1313

of photon, 1322

of planetary orbit, 396–397, 403

of rigid object, 342, 342–345

of system of particles, 340–342

Angular position (θ), 294, 294

296–297, 296t

Angular speed (ω), 92–93, 94, 294–295, 296–297, 296t, 299, 314t

vs. angular frequency, 462

average (ωavg), 294

of charge in magnetic field, 876, 878 instantaneous (ω), 295

Angular velocity, 295–296, 296, 298, 298

Angular wave number. See Wave number

Antenna

dipole, 1044, 1044–1045

electromagnetic wave production by, 1044, 1044–1045

half-wave, 1044, 1044–1045

Antibaryons, 1454

Antibaryons, 1454

Antihyperons, 1454

Antilithium, 1454

Anti-logarithm, A–9

Antinuons, 1458
Antineutrinos (7), 1400–1401, 1401
Antineutrons, 1449
Antinodes, 539, 539–540, 540, 541
 displacement, 546, 547, 550
 pressure, 546
Antiparticles, 1391, 1449, 1449–1451, 1451–1454
Antiprotons, 1449
Antiquarks, 1463, 1463t, 1464t
Anti-strange quark, 1463t, 1464t
Anti-top quark, 1463t
Anti-up quark, 1463t, 1464t
Apex angle (θ), 1070, 1070
Aphelion, 396
Apogee, 396
Apollo 11, 1064
Applied force (F_applied), 186–187
Aqueous humor, 1115, 1115
Arago, Dominique, 1161
Archimedes, 424, 426
Archimedes’s principle, 424–427
Archimedes’s screw, 427
Area
 under curve, 43–44, 44
 derived quantity, 5
 of geometric shapes, A–11t
units of, 8t
Argon (Ar), electronic configuration, 1320, 1321
Argon ion laser, 1328
Aristotle, 40
Art forgery detection, 1436
Artificial radioactivity, 1404, 1404t
Associative law of addition, 63, 63
Astatine (At), electronic configuration, 1321
Astigmatism, 1117
Astronomical unit (AU), 397
Astronomy and astrophysics. See also Gravitation; Moon; Planet(s); Planetary motion; Stars; Sun; Telescopes; Universe
 Doppler effect in, 520, 1293–1210
 Einstein’s cross, 1222
 history of, 394–395
 space–time distortion by gravity, 1221–1223, 1222
 spectral analysis of stars, 1298
 Whirlpool galaxy, 388, 406
ATLAS (A Toroidal LHC Apparatus), 1408
Atmosphere (unit of pressure), 423
Atmosphere of Earth
 atmospheric blurring and, 1160, 1169, 1169
 carbon dioxide levels, 1351, 1351
 Atmosphere of planets, escape speeds and, 405
 Atmosphere of Sun, analysis of gases in, 1297–1298
 Atmospheric pressure (P_a), 419, 420, 423
 Atmospheric temperature, cloud cover and, 613
Atomic (s)
 binding forces, modeling of, 460, 460
 etymology of, 6, 1447
 history of concept, 1447
 ionization of, 1303
 magnetic dipole moment of, 919, 919–920, 920t
 models, 627
 Bohr (semiclassical), 627, 1300, 1300–1305, 1302, 1303, 1311
 classical, 919, 919–920, 920
early, 1299, 1299–1300, 1300
 history of, 6–7
 planetary, 1299–1300, 1300
 quantum, 627, 919, 1306–1308
 potential energy of, in molecule, 201, 201
 quantization of energy in. See Energy levels, quantization of shells, 1307, 1307t
 filling of, 1318–1320, 1318t, 1319
 angular momentum in, 920, 920
 subshells, 1307, 1308t
 filling of, 1318–1320, 1318t, 1319
 thermal expansion and, 574
 Atomic clocks, 5, 5
 Atomic cohesive energy of covalent solids, 1355, 1355t
 of ionic solids, 1355
 Atomic force microscope (AFM), 1284
 Atomic mass, A–22–A–23t
 vs. mass number, 1381
 Atomic mass unit (u), 578, 1381–1382
 rest energy equivalent, 1382
 Atomic number (Z), 7, 1303–1304, 1381, 1381
 A–22–A–23t
 vs. ionization energy, 1321, 1321–1322
 Moseley data on, 1324, 1324
 vs. neutron number, for stable nuclei, 1385, 1385, 1394–1395, 1395
 Atomic physics, 1191
 Atomic spectra, of gases, 1297–1299, 1298, 1292–1325
 splitting of, in magnetic field, 1304, 1313, 1313–1314
 Atomic spectroscopy, 1171
 Atomic theory, history of, 6–7, 567
 Atomizers, 434, 434
 A Toroidal LHC Apparatus (ATLAS), 1408
 Atwood machine, 128, 128
 315–316, 316
 Audible sound waves, 507
 Audio systems
 impedance matching in, 1016
 speaker crossover networks, 1019
 Aurora australis, 879
 Aurora borealis, 879
 Automobiles
 air bags in, 254
 braking distance, 225–226
 car lifts, 420, 420–421
 “centrifugal” force in turns, 159, 159
 collisions, 247, 255, 255–256, 261, 265–266, 266
 drag racing, 21
 electric, charging systems for, 980
 engine of, 654, 655
 fuel-cell-powered, 1
 hybrid engines, 952, 952
 hydraulic brakes, 421
 kinetic energy of, 189t
 maximum speed in turn, 133, 153–155, 474
 means of propulsion, 277
 rearview mirrors, 1100
 day/night setting on, 1092, 1092
 and rolling friction, 318
 suspension vibration in, 457–458
 tailight reflectors, 1064, 1064t
 tangential and radial acceleration of, 95, 95–96
 tire pressure, 629
 Average acceleration (a_avg), 31, 31, 33,
 34, 80, 314t
 in uniform circular motion, 92
 Average angular acceleration (α_avg), 295, 300
 Average angular speed (ω_avg), 294
 Average coefficient of linear expansion (α), 574, 575t
 Average coefficient of volume expansion (β), 574–575, 575t
 Average current (I_avg), 809
 Average energy density of electromagnetic waves, 1040
 Average power (P_avg), 232
 Average power, electrical (P_elec) in AC circuits, 1011–1013
 in series RL Circuit, 1011–1014, 1014
 Average speed (v_avg), 24–25
 Average velocity (v_avg), 23–25, 36, 79, 80
 Avogadro’s number (N_A), 578
 Axioms, 1474
 Axis
 major, of ellipse, 395
 minor, of ellipse, 395
 of rotation, 295, 301, 339
 semimajor, of ellipse, 395, 395
 semiminor, of ellipse, 395, 395
 Back emf, 952–953, 971, 973
 Background radiation, 1434
 Back-of-the-envelope calculations, 11
 Bainbridge mass spectrometer, 880
 Balances, eddy current damping in, 954–955, 955
 Ballistic pendulum, 261–262, 262
Index

Calculus (continued)
 indefinite integral, A–16, A–18–A–19t
 integral, 43–45, 44, A–16–A–19
Caloric, 591
Caloric (cal), 591–592
Caloric (food caloric), 592
Calorimeter, 595, 595
Calorimetry, 595, 595–596
Camera(s), 1113, 1113–1115
digital, 1113, 1113–1115, 1245
electron bombardment CCD, 1245
f-number, 1114–1115
lens coatings, 1147, 1147
light meter in, 1244
spherical aberration in, 1113
Cancer, radiation and, 1433
–1115
–596
Calorimetry, 595
Calorimeter, 595
Calorie (food calorie), 592
–592
Calorie (cal), –592
Carbon dioxide (CO2)
Carbon dating, 1402–1403
Carbon dioxide lasers, 1328
Categorization of problems, 45, 46.
Center of mass, 268
–272
Center of gravity, 269, 269
Centrifugal force, 159, 159, 160
Centripetal acceleration (a), 91–94, 92,
95, 150–156, 298–299
Ceramic superconductors, 820
Cesium (Cs)
 electronic configuration, 1321
 isotopes, 1397
Cesium fountain clock, 5
Chadwick, James, 1383
Chain reaction, nuclear, 1421
 critical, subcritical, and super-
 critical, 1422
 self-sustained, 1422, 1422
Chain rule of differential calculus, A–14
Challenger shuttle disaster, 1452
Chamberlain, Owen, 1449
Champagne bottle, opening of, 579, 579
Change in, symbol for (\(\Delta\)), 23
Characteristic x-rays, 1322, 1323–1325
Charka Solar Park, 1367
Charcoal briquettes, color of glow from,
1234, 1234
Charge (q)
on capacitor, 777–778, 783, 784
 conservation of, 691, 691, 843
 fundamental (e), 692, 694, 764–765
 in LC circuit, 982, 983
 mechanical analogy to, 985t
 moving, magnetic field created
by, 869
 positive and negative, 691
 properties of, 690–692, 691
 quantization of, 692, 764–765
 source, 699, 699
test, 699, 699
units of, 694
Charge carrier, 809
 drift speed/velocity of, 810, 810–811,
 816–817, 891
Charge carrier density, 891
Charge-coupled device (CCD), 1113,
1113, 1245
Charge density
 linear, 704–705
 surface, 704–705
 volume, 704–705
Charging
 of capacitors, 846–849, 847, 848, 850
 by conduction, 693
 of conductors, 692, 692–693
 maximum charge on, 847, 848, 848, 850
 maximum operating voltage, 787–788, 791
 parallel combination of, 782–783,
 783, 785–786
 parallel-plate, 750–751, 751, 778,
 778–779
 capacitance of, 779–780, 780
 potential difference between plates of,
 777–778
 rated voltage of, 791
 series combination of, 784, 784–786
 spherical, capacitance of, 781,
 781–782
 types of, 792, 792
 variable, 792, 792
 working voltage of, 791
Carbon (C)
 atomic mass unit and, 1381
 \(C_{60}\) (buckminsterfullerene),
 1354, 1354
 covalent bonding of, 1354–1355
 electronic configuration, 1319, 1319
 isotopes, 1381, 1396t
 and carbon dating, 1402–1403
 decay of, 1393–1394, 1400, 1304,
 1404, 1404
 mass of atom, 1382, 1382
 resistivity of, 814t
 Carbon dating, 1402–1403
 Carbon dioxide (CO2)
 as greenhouse gas, 1351, 1351
 index of refraction, 1067t
 Carbon dioxide lasers, 1328
 Carbon monoxide (CO)
 rotation of, 1346
 vibration of, 1348–1349
 Cardinal catheterization lab, 904
 Carnot, Sadi, 660, 661
 Carnot cycle, 660–664, 662
 Carnot engine, 660–665, 661, 662
 entropy change in, 673–674, 677–678
 Carnot’s theorem, 660
 Cartesian coordinate system, 59, 59
 conversion to/from polar coordinates,
 60–61
 Cataracts, UV light and, 1046
 Categorization of problems, 45, 46. See
also Problem-solving strategies
 Cavendish, Henry, 389, 389
 CCD. See Charge-coupled device (CCD)
 CDs. See Compact discs (CDs)
 Cell separator, laser, 1329
 Celsius scale, 571, 572
 conversion to/from, 572, 573
 Center of gravity, 269, 269
 of rigid object, 365, 365–366, 366
 Center of mass, 267–272, 268, 269
acceleration of, 272
 center of gravity and, 365, 365–366
linear momentum of, 272
motion of, 272–274
of rolling object, 316–317, 317
velocity of, 272
Centers for Disease Control and Prevention, U.S., 1437
Central maximum, 1161, 1161, 1170
Centrifugal force, 159, 159, 160
Centripetal acceleration (a), 91–94, 92,
95, 150–156, 298–299
Ceramic superconductors, 820
Curve (graph), 1404, 1404
Index

Cyclic process, 604
Cycloid, 316, 317
Cyclotron, 881–882, 882
Cyclotron frequency, 876, 878
Cylindrical capacitors, capacitance of, 780, 780–781

Dalton, John, 592
Dam, force on, 422–423
Damped oscillation, 468, 468–469, 469
in RLC circuit, 984–985
Damped oscillator, 468
Damping coefficient (β), 468
Dark energy, 1474
Dark matter, 406–407, 1474
Daughter nucleus, 1395
Davison, C. J., 1250
Davison–Germer experiment, 1250–1251
DC. See Direct current (DC)
Dead Sea Scrolls, dating of, 1402
De Broglie, Louis, 1233, 1249, 1249
De Broglie wavelength, 1250–1251
Debye, Peter, 1246
Decay, spontaneous, 1395
Decay constant, 1391
Decay rate (R), 1392, 1392–1394
Deceleration, 33
Decibels (dB), 515–516, 515
Decorative light strings, 839–840, 840
Dees, of cyclotron, 881–882, 882
Defibrillator, 777, 789–790
Definite integral, 44, A–17, A–17, A–19
Deformable systems
conservation of angular momentum in, 345–346, 346
elastic properties of solids, 373–376
motion of, 275–277
work in, 179
and work–kinetic energy theorem, 189

Degrees, converting to/from radians, 294

Degrees of freedom of molecule, and molecular energy, 630, 635–636

Delta (Δ) [particle], 1454, 1464, 1465
Delta (Δ) [symbol], 23

Democritus, 6

Density (ρ), 5

of common substances, 419t
measurement of, 426, 426
temperature and, 419, 577, 577
Density-of-states function, 1357, 1358–1359
Department of Energy, U.S., 1424–1425
depletion region, of junction diode, 1365, 1365

Depth, and pressure, 419–423, 420

Depth of field, 1114

Derivatives, 26, A–14, A–14–A–16, A–14t
partial, 490
properties, A–14
rules for, 34–35

second, A–14
of position with respect to time, 33
of vector product, 336
of velocity with respect to time, 32
Derived quantities, 5–6, A–24t

Destructive interference, 534, 535, 536, 536, 537
of light waves, 1134, 1135, 1135–1136,
1136, 1138, 1139, 1140–1142,
1162–1163

Deuterium, fusion and, 1426–1428,
1428, 1430, 1431, 1431, 1432

Dewar flask, 614, 614

Diamagnetism, 921–922, 922
superconductors and, 1370

Diamonds
index of refraction, 1067t
sparking of, 1075
structure and bonding of, 1354, 1354

Dielectric constant (ε0), 790–791, 791t

Dielectrics, 790
atomic description of, 795–797, 796
capacitors with, 790, 790–793, 792
795–798, 796
polarization of, 795–797, 796

Dielectric strength, 791, 791t

Dielectric waves, 1064–1065

Dielectrics, 790
atomic description of, 795–797, 796

Diffusion, 1061, 1061, 1160–1161
of electrons, 1250–1251
interference and, 1136–1137, 1137
of x-rays by crystals, 1174,
1174–1175, 1175

Diffraction grating(s), 1169–1174, 1170
applications, 1171–1174, 1172,
1173, 1174
light intensity distribution, 1170, 1170
position of fringes, 1170, 1170, 1171

Diffraction grating spectrometer, 1171, 1172

Diffraction patterns, 1160–1161, 1161
of diffraction grating. See Diffraction grating(s)
as interference, 1162–1163
of light passing circular object, 1161,
1161
of light passing edge of object, 1161,
1161
multiple slits, 1142, 1142
single slits, 1161–1165, 1162, 1164
light intensity distribution, 1164,
1164
position of fringes, 1162, 1162–1164

Diffuse reflection, 1062, 1062

Digital cameras, 1113, 1113–1115, 1245
Digital micromirror device, 1064,
1064–1065

Digital movie projectors, 1064, 1064–1065

Dimension, 7

Dimensional analysis, 7–9

Dimensions, compactified, 1475, 1475

Diode(s), 1018
applications, 1018, 1018
circuit symbol for, 1018
junction, 814, 814, 1365,
1365–1366, 1366
light-absorbing, 1366, 1367
light-emitting (LEDs), 1366, 1367

Dioptric, 1117

Dipole antenna, 1044–1045
Dipole–dipole force, 1345
Dipole-induced dipole force, 1343

Dirac, Paul A. M., 1315, 1316, 1317,
1449, 1449

Dirac sea, 1449, 1449

Direct current (DC), 833
AC–DC converters, 1017, 1017, 1018,
1018–1019

Disadvantages of, 1018

Direct-current (DC) circuits
emf in, 835–836, 834
Kirchhoff’s rules, 843–846
problem-solving strategy for, 844–845
RC circuits, 846–852
resistors in parallel, 838, 838–840,
839, 840, 842–843
resistors in series, 836–837, 837, 839
RLC circuits, 984–986, 985, 986, 986t
RL circuits, 972–976, 973, 973,
974, 975
time response of, 974

Direct-current (DC) generators, 951,
951–952

Direct-current (DC) power supply, 1018–1019

Direction of polarization, 1175

Direction of propagation, 1035

Disintegration energy (Q), 1395–1399,
1400, 1401–1402, 1405,
1420–1421

Dispersion, of light waves, 1072–1074,
1073, 1074

Dispersion force, 1343

Displacement (Δx), 23, 23, 43–44, 44
angular (Δθ), 294, 294
and work, 179
Displacement amplitude (s_max), 509–510,
510, 512, 513, 514

Displacement antinodes, 546, 547, 550

Displacement current, 1031,
1031–1033, 1032

Displacement node, 546, 547, 550

Displacement vector, 79, 79

Dissociation energy, 1342

Distance (d), 23, 23, A–10

Distribution function, 639

Distributive law of multiplication, 182, 336

Diverging mirrors, 1095, 1095–1096
Index

Electromagnetic field, on particle in, 1034
Electromagnetic plane waves, 1035, 1035–1039, 1036
Poynting vector of, 1039–1040
wave intensity of, 1040, 1041
Electromagnetic radiation, as energy transfer, 212, 213, 613
Electromagnetic waves
applications of, 904, 1030
electromagnetic spectrum, 1045–1047, 1046
energy carried by, 1039–1042
energy density of, 1039, 1041
examples of, 483
light as, 1034–1035, 1037, 1057, 1059, 1197
media-free propagation of, 483, 1030
momentum transferred by, 1042–1044
nature of, 1249
plane, 1033, 1035–1039, 1036
Poynting vector of, 1039–1040
wave intensity of, 1040, 1041
production by antenna, 1044–1045
properties of, 1033, 1037–1038
radiation pressure of, 1042–1044
sinusoidal, 1037–1038, 1038
sources of, 1045
speed of, 1035, 1037
wave intensity of, 1040, 1041

Electromagnetism
definition of, 689
electroweak theory and, 1467–1468
origin of, at origin of Universe, 1469, 1470
field particles for, 1448, 1449t, 1452, 1452–1453
as fundamental force, 112, 690, 1448
history of, study of, 689, 868–869
as physics subdivision, 1, 2–3
in Standard Model, 1467–1468, 1468
Electromotive force. See emf

Electron(s).
See also Free-electron theory of metals
antiparticle, 1449, 1449–1451, 1450
charge of, 691, 692, 694, 695t,
1381, 1464t
conduction, 516
de Broglie wavelength of, 1250–1251
discovery of, 7
double-slit interference patterns,
1255, 1255–1256, 1256
\(e/m\) ratio for, 881
as fundamental particle, discovery of, 881
as lepton, 1455
magnetic dipole moment of, 919, 919–920
mass of, 5t, 695t, 1381, 1382t
nuclear force and, 1385

properties, 1454t
relativistic momentum of, 1215–1216
rest energy of, 1218, 1464t
spin angular momentum of, 1316–1317, 1317
spin magnetic moment of, 1317, 1317
spin of, 920, 920, 1314–1317, 1315
and spin magnetic quantum number, 1314–1317, 1315
in transfer of charge, 691–692
tunneling by, 1282
wave properties of, 1250–1251

Electron affinity, 1341–1342

Electron beam, bending of, 877–878

Electron bombardment CCD camera, 1245

Electron capture, 1394, 1401–1402, 1404t

Electron cloud, 1309, 1309

Electron gas, 816

Electron-hole pairs, 1363

Electronic devices.
See also Generators, electric; Motors, electric; Television
AC–DC converters, 1017, 1017, 1018, 1018–1019
chip technology, advances in, 1369, 1369
defibrillators, 777, 789–790
digital cameras, 1113, 1113–1115
digital movie projectors, 1064, 1064–1065
electric guitars, 938, 938
laser pointers, 1043–1044, 1366
light meter, in camera, 1244
liquid crystal displays, 1181
metal detectors, 970
power tool electromagnetic braking, 954
radio receiving circuit, 1014
smoke detectors, 1399, 1399
solar cells, 1146–1147, 1147
stud finders, 792, 792
toothbrushes, 979, 979–980

Electron lepton number, conservation of, 1458

Electron microscopes, 1251, 1251–1252, 1252

Electron–neutrino (\(\nu\)), 1454t, 1455, 1458, 1464t

Electron spin resonance, 1407

Electron volt (eV), 639, 748, 1218

Electrons, 639, 642, 1218

Electrostatic equilibrium, conductors in, 765–766

Electrostatic force. See Electric force

Electrostatic precipitators, 765–766, 766

Electrostatics, applications of, 765, 765–766, 766

Electroweak force, 1469, 1470

superposition principle for, 701, 702–703
units of, 748
value of, from electric potential, 755, 755–756
work done by, 747–748, 750, 752–754
Electric field lines, 708–710, 709, 710
of electric dipole, 710, 710
and electric flux, 725, 725–728, 726, 727
electric potential and, 749, 749
vs. magnetic field lines, 911, 918, 918
rules for drawing, 709–710
Electric field vector, 699–700, 708–709
Electric flux (\(\Phi_E\)), 725, 725–728, 726, 727
net, 727
through closed surface, 726–728, 727, 728 (See also Gauss’s law)
units of, 726
zero flux, 750
Electric force (Coulomb force), 694
Coulomb’s law for, 694–699
as field force, 112
and fusion, 1426, 1426–1427
vs. magnetic force, 871, 873
and nuclear stability, 1384–1385, 1385, 1390
Electric guitar, 938, 938
Electricity, etymology of, 689
Electric potential (V), 746–748, 747
applications of, 765, 765–766, 766
in DC circuit, 834, 834
due to charged conductor, 761, 761–764, 762
due to continuous charge distribution, 756, 756–761
due to electric dipole, 758
due to point charges, 752
problem-solving strategy for, 757
in uniform electric field, 748–752, 749, 750
units of, 748
value of electric field from, 755, 755–756.
Electric potential energy (U)
in capacitors, 786, 786–790
due to point charge, 753–754
of electric dipole in electric field, 794
of electric dipole in external electric field, 794
in electric fields, 747–748
vs. electric potential, 747–748
of particle in electric field, 749, 749–752
of several point charges, 753, 753–754
Electric shock, 853–854
Electrified, definition of, 691
Electrolyte, 792
Electrolytic capacitor, 792, 792
Electromagnetic braking systems, on trains, 954
Index

Electroweak theory, 1467–1468
Elements. See also Periodic table of the elements
absorption spectroscopy of, 1297–1298, 1298
ionization energy vs. atomic number, 1321, 1321–1322
origin of, 1387
Ellipse, 395, 395, A–10, A–10
Elliptical orbits, 395–396, 396, 403
emf (E), 833–836, 834
back, 952–953, 971, 973
induced, 935–939, 936, 937, 938, 970
(See also Induction)
mechanical, 939–944, 940, 941, 942, 944–947, 945–947
self-induced, 970–971, 972
Emissions
line width of, 1258
spontaneous, 1325, 1325
stimulated, 1325–1327, 1326
Emission spectroscopy, 1297–1299, 1299, 1299, 1322–1325
Emissivity (ε), 615, 1234–1235
Endothermic reactions, 1405
Energetically favorable bonds, 1342
Energy (E), 177–201. See also Conservation of energy; Internal energy; Kinetic energy (K); Potential energy
atomic cohesive
of covalent solids, 1355, 1355t
of ionic solids, 1355
in capacitor, 786, 786–790, 787, 976
carried by electromagnetic waves, 1039–1042
as currency of nature, 214
dark, in Universe, 1474
definition of, 177
electrical, mechanical analogies to, 980–982, 981, 984–985, 985t
entropy and, 672
equipartition theorem for, 630, 635–637
in inductor, 976–978
ionic cohesive, of ionic solids, 1353
in LC circuit, 976–978, 983, 983–984
mass as form of, 1217–1220
mechanical (E_mech), 1198, 216
conservation of, 198, 216–217, 218, 221, 314
nonconservative forces and, 227–231
in simple harmonic motion, 458–461, 459, 460
total, in orbits, 403
transformation into internal energy, 196, 196–197, 216–217, 222–224, 227–231
in mechanical waves, 212, 213, 484, 495, 495–497
phase change and, 597–600, 599
planetary and satellite motion and, 402–407
quantization of. See Energy levels;
Quantum mechanics of quantum particle in a box, 1273, 1273–1274, 1274, 1276–1277
relativistic, 1216–1220, 1217
and resistor
delivered, 820–821, 851–852, 1001
stored, 976
and rolling motion, 318–321
and rotational motion, 312–316, 318–321
in simple harmonic motion, 458–461, 459, 460
spreading, and entropy, 672
transfer mechanisms for, 212, 212–213, 569, 594, 603, 603–604
in thermal processes, 608–614
transformation mechanism for, 197
units of, 232, A–21
waves as transfer of, 484
work as transfer of, 180, 190, 212, 212
Energy bar charts, 195, 196, 196, 251, 251
Energy density of electric field, 1040–1041
of electromagnetic wave, 1040–1041
of magnetic field, 976–977, 1040–1041
Energy diagrams, 199–200, 200
Energy gap, 1361–1363, 1361t, 1362–1364
Energy-level diagrams, 656–657, 637, 1236–1237, 1237, 1274, 1274
molecular, 1349, 1350
Energy levels
allowed, Schrödinger’s equation and, 1278
band theory of solids, 1359, 1359–1361, J, 1360
excited states, 1273, 1273–1274, 1274
forbidden energies, 1360, 1360
ground-state, 1273, 1273–1274, 1274
quantization of, 630–637, 637, 1236–1237, 1237, 1273, 1273, 1274, 1274
in Bohr model, 1300–1305, 1302, 1303, 1311
in quantum model, 1306–1308
in simple harmonic oscillator, 1287, 1287
splitting of, in systems of atoms, 1359, 1359–1361, 1360
thermal excitation and, 639, 639–640
Energy reservoir, 602–603
Energy spreading, and entropy, 672
Energy states of molecules, 1344–1349, 1345, 1348
and molecular spectra, 1349–1352, 1350, 1351
Engines. See also Motors
Carnot, 660–665, 661, 662
entropy and, 673–674, 677–678
diesel, 638–639, 655, 666–667
efficiency of, 655–656
gasoline, 655, 665, 665–666, 666
heat, 654, 654–656, 655
of locomotive, 654, 654
power of, 656
steam, 654, 654, 664–665
Enrichment, of uranium, 1422, 1423
Entropy (S), 667–671, 669
in adiabatic free expansion, 672, 674, 674, 675–676, 677
Carnot engine and, 673–674, 677–678
change in, and energy spreading, 672
change in, for thermodynamic systems, 671–678
choice, of microstates, 668–671
history of concept, 667–668
missing information of microstates, 668–671
probability, of microstates, 668–671
in reversible and irreversible processes, 672–678
and second law of thermodynamics, 678–678
as state variable, 667, 676
thermal conduction and, 674–675, 677
for thermodynamic systems, 670–671
uncertainty of, microstates, 668–671
Envelope
of oscillatory curve, 469, 469
of shock wave front, 522, 522
Environment, 178
Equation(s). See also Kinematic equations in algebraic form, solving of, 13
Bernoulli’s equation, 430–433, 431
coefficients of, A–7
Compton shift equation, 1247–1248
conservation of energy equation, 213–215, 275
continuity equation for fluids, 428, 428–430
differential, 163
dimensional analysis of, 8–9
Galilean transformation equations, 97, 1194–1195
lens-makers’, 1105
linear, A–7–A–9
linear wave equation, 497–498
Lorentz space-time transformation equations, 1210–1212
Lorentz velocity transformation equations, 1212–1214, 1213
Maxwell’s equations, 1033–1034, 1196
mirror equation, 1094–1095
photoelectric effect, 1243
quadratic, A–7
for rotational motion, 314t
Schrödinger equation, 1269, 1277–1279, 1280
and quantum model of hydrogen atom, 1306–1308
of state for ideal gas, 578–579
thin lens equation, 1105
for translational motion, 314 temperature, inclusion of, 10
Equation of continuity for fluids, 428–430
Equation of state for ideal gas, 578–579
Equilibrium, 363–372
Electrostatic. See Electrostatic equilibrium
neutral, 200
particle in equilibrium model, 120–121, 121, 122–123
and potential energy, 199–201, 200
rigid object in equilibrium model, 364–365, 366–372
problem-solving strategies for, 366–367
rotational, 364–365
stable, 200, 200
static conditions for, 364–365
unstable, 200, 200
Equilibrium position, 451, 451
Equipartition of energy theorem, 451
Equipotential surfaces, 750, 750, 755, 755–756, 762
Equivalence, principle of, 1222
Equivalent resistance (R_{eq}), 836–837, 837, 838–839, 841–842
Eris, 398
Escape speed (v_{esc}), 404, 404–405, 405
black holes and, 406
molecular speed distribution and, 641–642
Estimation, 10–11
Eta (η) [particle], properties, 1454
Ether, 1195–1198
Ether wind theory, 1195–1198
Euler’s number (e), 163, A–9
European Council for Nuclear Research, 1203
European Laboratory for Particle Physics (CERN), 868, 1121
European Organization for Nuclear Research (CERN), 868, 1191, 1145, 1405, 1406
European Space Agency, 1471
Evaporation, 642
Event horizon, 406, 406
Excimer lasers, 1328
Excited states, 1273, 1273–1274, 1274
Exclusion principle, 1318–1320, 1319
bosons and, 1370
quarks and, 1465–1466
Exhaust speed, 278
Exhaust stroke, 665, 666
Exothermic reactions, 1405
Expansion joints, 573, 573
Expectation value, 1270, 1271, 1275–1276
Exponents, A–4
rules of, A–6–A–7, A–6t
and uncertainty, A–20–A–21
Exposure times, of camera, 1113–1115
Extraordinary (E) rays, 1170, 1179
Extrinsic semiconductors, 1364
Eye(s)
– anatomy of, 1115, 1115–1116
conditions of, 1116–1117, 1117
laser-based medical applications for, 1328
resolution of, 1167–1168
vision in, 1115–1116, 1116
Eyepiece, 1119, 1119, 1120, 1120
Factoring, A–7
Fahrenheit scale, 572, 573
Faraday (F), 778
Faraday, Michael, 689, 699, 708, 778, 869, 935, 936, 936, 937
Faraday’s law of induction, 935–937
Farman’s law of induction, 935–937, 1033–1034, 1035–1036
applications, 938–939
general form, 948
Far point of eye, 1116
Farsightedness (hyperopia), 1116, 1117
Ferris wheel, force exerted on rider, 155–156
Fermi, Enrico, 1400, 1419, 1422
Fermi energy, 1356, 1356–1358, 1356, 1357, 1357
Fermi–Dirac distribution function ($f(E)$), 1356, 1356
Fermi National Laboratory (Fermilab), 1455, 1464, 1468
Fermions, 1370
exclusion principle and, 1465–1466
quarks as, 1463
in Standard Model, 1467
Ferris wheel, force exerted on rider, 135, 155–156
Ferromagnetism, 920–921, 921, 921
Feynman, Richard P., 1452, 1452–1453
Feynman diagrams, 1452, 1452, 1453, 1454, 1467, 1467
Fiber optics, 1075–1076, 1076
Fictitious forces, 158–161, 159, 159, 160, 161
Field-effect transistor, 1368, 1368–1369
Field forces, 112, 112, 699, See also Electric field; Gravitational field; Magnetic field
Field particles (exchange particles; gauge bosons), 1448, 1449t, 1451–1453, 1452, 1453
in Standard Model, 1467–1468, 1468
Films, thin, interference in, 1144, 1144–1147, 1145
problem-solving strategy, 1146
Filter circuits, 1018–1020, 1018–1020, 1019
Finalization of problem-solving, 46, 47. See also Problem-solving strategies
First law, Kepler’s, 395–396
First law of motion, Newton’s, 113–114
First law of thermodynamics, 603–604, 653
applications, 604–608
First-order maximum, 1138, 1170, 1171
Fish
apparent image of, 1103, 1103–1104
buoyancy adjustment in, 424–425
view from underwater, 1075, 1075
Fission, 1419–1421, 1420
energy released in, 1420–1421
nuclear binding energy and, 1386
Fission fragments, 1420, 1420
Fission reactors, 1219–1220, 1421–1425
advantages of, 1425
control of, 1423, 1423–1424
core design, 1423, 1423–1424
design of, 1423, 1423
history of, 1422, 1422
safety and waste disposal, 1424–1425
Fizet, Armand H. L., 1060, 1060–1061
Flash drives, 1267
Flavors, of quarks, 1462, 1463
Flow
ideal fluid flow model, 427–428, 428
steady (laminar), 427, 427–428, 428
turbulent, 427, 427
Flow rate (volume flux), 428
Fluid(s). See also Gas(es); Liquid(s); continuity equation for, 428, 428–430
ideal flow model, 427–428, 428
Fluid dynamics, 427–434
Fluid mechanics, 417–434
Bernoulli’s equation, 430–433, 431
dynamics, 427–434
pressure, 417, 417–419, 418
Fluorine (F)
electronic configuration, 1319, 1321
isotopes, 1396t
Flux
electric, 725, 725–728, 726, 727
net, 727
through closed surface, 726–728, 727, 728 (See also Gauss’s law)
units of, 726
zero flux, 730
magnetic, 917
electric field induced by change in, 947, 947–949
Gauss’s law for, 916–919, 918
volume (flow rate), 428
f–number
of camera lens, 1114–1115
of human eye, 1116
Focal length (f)
of combination of thin lenses, 1111
of compound microscope, 1119, 1119
of concave mirror, 1094, 1095
sign conventions, 1096t
of thin lens, 1105, 1105, 1106, 1106t, 1107
Focal point(s)
- of concave mirror, 1094, 1095
- of thin lens, 1105, 1105
Focus, of ellipse, 395, 395
Food
- analysis of heavy metal contamination in, 1298
- irradiating to preserve, 1436–1437, 1437
Food and Drug Administration, U.S., 1437
Foot (ft), 4, 5
Forbidden energies, 1360, 1360
Forbidden transitions, 1322
Force(s) (\(\vec{F} \)), 111–113, 112. See also Electric force; Friction; Fundamental forces; Gravitational force; Magnetic force; Normal force; Strong force; Weak force
- and acceleration, 32–33, 114, 115–117
- action, 119, 119
- applied (\(\vec{F}_{app} \)), 186–187
- binding forces, atomic, 460, 460
- buoyant (\(\vec{B} \)), 423–427, 424, 424, 425
centrifugal, 159, 159, 160
- on charged object, 700
- on charged particle, 694–699
color force, 1466
- conservative, 197–198
- and potential energy, 197, 198–199
- work done by, 197–198, 198–199
- contact, 112, 112, 126
coplanar, 364
Coriolis, 159–160, 160
dipole–dipole force, 1343
dipole–induced dipole force, 1343
dispersion force, 1343
ficitious, 158–161, 159, 159, 160, 161
field, 112, 112, 699
- of kinetic friction (\(\vec{F}_{f} \)), 130, 131
- line of action of, 300, 301
- measurement of, 112–113, 113
- net (\(\Sigma \vec{F} \)), 116, 314
- momentum and, 252–253
- particle under a net force model, 121, 121, 122, 122–130
- on system of particles, 272
time-averaged, 253, 253–254
- nonconservative, 188
- friction as, 196, 196–197, 222–227
- and mechanical energy, 227–231
- work done by, 198, 198
- in nonuniform circular motion, 156–158, 157
- on particle in electromagnetic field, 1034
- and potential energy, 199
- and pressure, 418
- reaction, 119, 119
- relativistic, 1215
- restoring, 186, 451
- in simple harmonic motion, 451, 451
- spring force (\(F_s \)), 185
- of static friction (\(F_s \)), 130, 130–131
- vs. torque, 301
- in uniform circular motion, 151, 151–156
- units of, 116, A–1t
- as vector quantity, 112–113, 113
- constant force, 178–181, 179, 180
- gravitational force, 197, 215
- nonconservative, 198, 198
- varying force, 185–188, 184
- Force constant (spring constant; \(k \)), 185–186, 187, 187–188,
- 220–221, 456
Forced convection, 613
- Force diagram, 119, 119
- Forced oscillation, 469–471, 470
- Forward bias, 1366, 1366
- Fossil fuels, and greenhouse effect, 1351
- Frager series, 553
- Fourier’s theorem, 553–554
- Fourier synthesis, 554, 554
- Fourier transform, 1148–1149
- Fourier transform infrared (FTIR) spectroscopy, 1148–1149
- Fovea, 1115, 1116
- Fractional uncertainty, A–20
- Fractions, multiplying, dividing, and adding, A–6
- Frames of reference, See Reference frames
- Francium (Fr), electronic configuration, 1321
Franklin, Benjamin, 691
- Fraunhofer diffraction pattern, 1161–1165, 1162, 1164
- Free-body diagram, 119, 119
- Free-electron theory of metals classical, 816–818
- quantum, 1353–1359, 1356, 1357
- Free fall
- 40–43
- conservation of mechanical energy in, 216, 216, 218, 218
- gravitational force and, 41–43,
- 391–392, 391
- and projectile motion, 84–91, 85
- resistive forces in, 161–167
- Free-fall acceleration, 41–43
- measurement of, 465
- Frequency (\(f \))
- angular (\(\omega \))
- of AC voltage, 999
- of electromagnetic waves, 1037
- of oscillation in LC circuit, 982
- in simple harmonic motion, 453, 454, 455, 456, 462–463
- of simple pendulum, 465
- of sound wave, 509
- of wave, 488, 491
- of electromagnetic waves, 1037–1038
fundamental (\(f_1 \)), 542–543
importance of understanding, 1296–1297
mass of, 1382t
quantum model of, 627, 1306–1308
quantum numbers, 1306–1308, 1507t
for n = 2 state, 1317, 1317t
physical interpretation of, 1311–1317
radial probability density function, 1309, 1309–1311, 1311
space quantization for, 1314
wave function (ψ) for, 1308–1311
ground state, 1308
2s state, 1311
Hydrogen bonding, 1343–1344, 1344
Hydrogen gas, mol specific heat of, 1287–1288
Hydrogen molecules, exclusion principle and, 1435
Hyperbola, rectangular, A–11, A–11
Hyperopia (farsightedness), 1091
Indefinite integrals, A–16
Indefinite integral, 1091
Induction, 935–939, 936, 937, 938
charging objects by, 692, 692–693
eddy currents, 933, 933–955, 954
electric field created by, 947, 947–949
Faraday's law of, 935–937, 1033–1034, 1035–1036
applications, 938–939
general form, 948
in generators and motors, 949–953
Lenz's law, 944, 944–947
motional emf, 939–944, 940, 941, 942, 944–947, 945–947
mutual, 978–980, 979, 979
self-induction, 970–971, 972
Inductive reactance, 1003, 1004, 1009–1010
Inductor (L), 975. See also RLC circuits; RL circuits
in AC circuits, 1002, 1002–1004, 1003, 1011
inertial mass, 118
Inertial mass, 118, 118
Inertial reference frames, 113–114
Infrared waves, 1045
Infrasonic sound waves, 507
Inertial confinement, of plasma, 1431, 1431
Inertial confinement of plasma, 1431, 1431
Inertial symbol for, 973
energy stored in, 976–978
Inelastic collisions, 257, 257–266, 266
perfectly inelastic, 257, 257, 261–262
Inelastic scattering, 1405
Inert gases, 1320–1321
Ice density, 419
hydrogen bonding in, 1343–1344
index of refraction, 1067t
specific heat, 594t
thermal conductivity, 609t
Icebergs, 427, 427
Ice point of water, 571, 572
Ideal absorber, 613
Ideal fluid flow model, 427–428, 428
Ideal gas, 578–580
adiabatic process for, 637–639, 638
equation of state for, 578–579
internal energy of, 630, 632
isothermal expansion of, 606, 606
macroscopic description, 578–580
molar specific heat of, 631–634, 632
molecular model of, 627, 627–631
properties of, 627
Ideal gas law, 578–579
Ideal gas model, 578–580
Ideal solenoid, 915–918, 916
IKAROS (Interplanetary Kite-craft Accelerated by Radiation of the Sun), 1045
Image (φ), 1091, 1091
real, 1091
virtual, 1091
Image distance (q), 1091, 1091, 1093, 1094, 1098–1099
for refracted images, 1101, 1103
sign conventions for, 1095–1096, 1096, 1096t, 1101t, 1106t
Image formation. See also Lens(es); Resolution
angular magnification, 1118, 1118–1119, 1120, 1121
in concave mirrors, 1093, 1093–1095, 1094, 1098–1099
ray diagrams, 1096, 1097
in convex mirrors, 1095, 1095–1096, 1099–1100
ray diagrams, 1096–1098, 1097
in flat mirrors, 1090–1093, 1091
lateral magnification for mirrors, 1096–1098, 1097
for thin lenses, 1106, 1106–1112
by refraction, 1100, 1100–1104, 1101, 1101t, 1102
sign conventions for refraction, 1096–1098, 1097
for thin lens, 1106, 1106, 1106t
in spherical mirrors concave, 1093, 1093–1095, 1094, 1098–1099
convex, 1095, 1095–1096, 1099–1100, 1100
in telescopes, 1120–1122, 1121, 1122
Image height (h), sign conventions for, 1096–1098, 1096t
Impedance (Z), 1009, 1010
Impedance matching, 1016
Impedance, 1003
Impulse (I), 253, 253–254
Impulse approximation, 254–255
Impulse–momentum theorem for angular impulse and momentum, 341
in deformable systems, 275
and nonisolated system model for momentum, 254
for particle, 254–255
for system of particles, 273
Impulsive force, 254
Incoherent light sources, 1136
Incompressible fluid, 427
Indefinite integrals, A–16, A–18–A–19t
Independent-particle model of nucleus. See Shell model of nucleus
Index of refraction (n), 1066–1068, 1067t
birefringent materials, 1179, 1179t
and polarizing angle (Brewster's law), 1178
and wavelength, 1067, 1067, 1072, 1072–1073, 1073
Induced polarization, 795, 795–797, 796
Inductance (L), 971–972
mechanical analogy to, 980–982, 981, 984–985, 985t
mutual, 978–980, 979, 979
units of, 971

Index

I–16
Intensity (I)

of diffraction grating interference pattern, 1170

in double-slit interference pattern, 1140–1142, 1142,

1164–1165, 1165

of electromagnetic waves, 1040, 1041

of polarized beam (Malus’s law),

1177, 1177

reference (I₀), 543

in single-slit interference pattern, 1164, 1164

of sound waves, 512–517, 513

Interference, 534–538, 535

beating, 550–552, 551, 551

constructive, 534, 535, 536, 536, 537

of light waves, 1134–1136, 1135,

1136, 1138, 1139, 1140–1142,

1144, 1145, 1161, 1169–1170,

1174, 1174

destructive, 534, 535, 536, 536, 537

of light waves, 1134, 1135–1136,

1136, 1138, 1139, 1140–1142,

1144, 1145, 1162–1163

of light waves, 1134–1149, 1148,

1196, 1196

interferometers, 1147–1149, 1148,

1196, 1196

magnetic bottles, 879, 879

mass spectrometer, 880, 880–881

neutrino detectors, 1457, 1457

open-tube manometer, 423, 423

seismographs, 485

synchrotrons, 881

torsion balance, 694, 694

Van de Graaff generators, 765, 765

velocity selector, 880, 880

Venturi tubes, 432, 432

Insulation, home, 611–612, 611

Insulators
electrical, 692

band theory and, 1361, 1361–1362

charging of, 693, 693

surface charge on, 693, 693

ternal, 693

Intake stroke, 665, 665–666

Integral calculus, A–16–A–19

Integrals
definite, 44, A–17, A–17, A–19

indefinite, A–16, A–18–A–19

Integrand, A–16

Integrated circuits, 1369, 1369–1370

Integration, 43–45, 44, A–16–A–19

Gauss’s probability integral, A–19

line integral, 747

partial, A–17–A–18

path integral, 747

surface integral, 726

Intel microchips, technological improvement in, 1369

Intensification (continued)
Dewar flasks, 614, 614

electrostatically precipitators, 765–766, 766

interferometers, 1147–1149, 1148,

1196, 1196

magnetic bottles, 879, 879

mass spectrometer, 880, 880–881

neutrino detectors, 1457, 1457

open-tube manometer, 423, 423

seismographs, 485

synchrotrons, 881

torsion balance, 694, 694

Van de Graaff generators, 765, 765

velocity selector, 880, 880

Venturi tubes, 432, 432

Insulation, home, 611–612, 611

Iodine (I)
electronic configuration, 1321

isotopes
activity of, 1394

in radiation therapy, 1436

in radioactive tracing, 1434–1435

Ion(s), heavy, radiation damage from, 1434

Ion density (n), 1428

Ionic bonding, 1341–1342, 1342

in solids, 1552–1554, 1553

Ionic cohesive energy, of solids, 1353

Ionization
of atom, 1303

cells, by radiation, 1333

Ionization energy, 1303

vs. atomic number, 3221, 1321–1322

Iridescence, 111

Iris of eye, 1113, 1115

Iron (Fe), density, 6, 419

as ferromagnetic substance, 920

isotopes, 1396

resistivity, 814

specific heat, 594

speed of sound in, 512

thermal conductivity, 609

work function of, 1243

Irreversible processes, 653–654, 659–660

entropy in, 662–668

Irrotational flow, 427

Irvine–Michigan–Brookhaven neutrino detection facility, 1457, 1457

Isobaric process, 605, 607–608

Isolated object, 114

Isolated system
angular momentum in, 345–350

conservation of energy in, 215–222

definition of, 212

internal energy of, 604

Isolated system model
angular momentum version, 345–350, 547

energy version, 215–222, 217

momentum version, 250–252, 251, 273

problem-solving strategies for, 217–218

Isotherm, 605, 606, 632, 632

Isothermal expansion of ideal gas, 606, 606

Isothermal process, 605

Isotones, 1389

Isotopes, 1381, 1396–1397

Isotropic material, 574

Isovolumetric process, 605

ITER (International Thermonuclear Experimental Reactor), 1430

Ixia, 398

Jacket, of fiber optic cable, 1076, 1076

Japan, Fukushima nuclear accident in, 1424
Japan Aerospace Exploration Agency (JAXA), 1043
Jensen, Hans, 1389–1390, 1390
JET (Joint European Torus), 1430
Jewett, Frank Baldwin, 881
Joint European Torus (JET), 1430
Joule (J), 180, 192, 592
Joule, James Prescott, 590, 592, 592
Joule heating, 821
Joules per second (J/s), 232
Joint European Torus (JET), 1430
Kepler’s laws, 395–396
Kepler, Johannes, 395, 395
Kelvin scale, 598–600
Kelvin–Planck form of second law of thermodynamics, 655, 657, 660, 677
Kelvin scale, 572, 572
conversion to/from, 572
Kepler, Johannes, 395, 395
Kepler’s laws, 395–398
first, 395–396
second, 396, 396–397
third, 397, 397–398
Keyboard buttons, 780, 780
Kilby, Jack, 1360
Kilogram (kg), 5, 4–5, 114, 117
Kilowatt hours (kWh), 252
Kinematic equations, 37
in one dimension, 36–38, 44–45
in rotational motion, 296–297, 296t, 297, 314t
in two dimensions, 79–82
Kinematics, 21
in one dimension, 21–47
in two dimensions, 78–98
modeling of, 81, 81–82, 82
Kinesiology, 29
Kinetic energy (K), 188–191, 314t
of alpha particle, 1395, 1395–1398, 1400
of beta particle, 1400, 1400
in elastic collisions, 257
of electron, in photoelectric effect, 1241, 1242–1244, 1244, 1245–1246
in inelastic collisions, 257
in mechanical waves, 495–496
molecular and pressure, 627–629
and temperature, 630–631
vs. momentum, 249
planetary motion and, 402–403
of quantum particle in a box, 1273–1274
relativistic, 1216–1220, 1217
in rolling motion, 317–318, 318
rotational (Kp). 311, 311–312, 314, 314t of selected objects, 189t
in simple harmonic motion, 458–459, 459, 460
and work. See Work–kinetic energy theorem
Kinetic friction, 130, 131, 222, 222–227
coefficient of kinetic friction, 131–135, 132, 230–231
Kinetic theory of gases, 627–630
Kirchhoff’s rules, 843–846
problem-solving strategy for, 844–845
Krypton (Kr), electronic configuration, 1119
Laue, Max von, 1174
Laue pattern, 1174, 1174
Law of conservation of baryon number, 1456
Law of conservation of electron lepton number, 1458
Law of conservation of linear momentum, 277
Law of conservation of muon lepton number, 1458
Law of conservation of strangeness, 1460
Law of conservation of tau lepton number, 1458
Law of cosines, A–12
Law of inertia. See First law of motion
Law of reflection, 1062, 1065, 1071, 1071–1072
applications, 1063–1065, 1064
Law of refraction, 1068
Law of sines, A–12
Law of thermal conduction, 609–610
Law of universal gravitation, 389–391
Lawrence, E. O., 882
Laws of motion, 111–115
analysis models using, 120–130
applications of, 122–130
first, 113–114
history of, 2
in noninertial reference frames, 158–161, 159, 160
second, 115–117
analysis models using, 120–130
in nonuniform circular motion, 158
for particle, 249
rotational form of, 302–303, 339, 340–341, 342–343
for system of particles, 272
in uniform circular motion, 151–156
third, 118–120, 119
Laws of thermodynamics first, 603–604, 653
applications, 604–608
second, 653–654, 676–678
Clausius statement of, 657, 676
temperature statement of, 676
Kelvin–Planck form of, 655, 657, 660, 677
zeroth, 569, 569–570
Lawson, J. D., 1428
Index

Lawson number (\(\sigma_r\)), 1428, 1428–1429, 1430
Lawson’s criterion, 1428, 1428–1429, 1430, 1431

LC circuit

- applications, 1034, 1034
- energy stored in, 980–982
- oscillations in, 980, 980–984, 981, 983, 1013, 1054, 1034

Lead (Pb)

- average expansion coefficient, 575\(t\)
- density, 419\(t\)
- isotopes, 1397\(t\)
- latent heats of fusion and vaporization, 508\(t\)
- resistivity, 814\(t\)
- specific heat, 594\(t\)
- speed of sound in, 512\(t\)
- thermal conductivity, 609\(t\)
- work function of, 1243

Lens(es)

- proper (contraction of, in special relativity, work function of, 1243
- thermal conductivity, 609\(t\)
- resistivity, 814\(t\)
- latent heats of fusion and isotopes, 1397\(t\)
- average expansion coefficient, 575\(t\)
- 983
- 981, 984, 981, 983, 1013, 1054, 1034

Lepton numbers, conservation laws, 1458–1459

Leucippus, 6

Lenz’s law, 1444–1447

Lepton(s), 1454, 1455

- properties, 1454\(t\)
- rest energy and charge, 1464\(t\)
- in Standard Model, 1467–1468, 1468
- Lepton numbers, conservation laws, 1458–1459

Lifetimes (\(\tau\)), of excited state, 1258

Effective potential of, 1243–1245

Lederer, Leon, 1464

Length, 4

- contraction of, in special relativity, 1205–1206, 1206, 1207–1209, 1209

- proper (\(L_p\)), 1205
- sample values of, 4\(t\)

- symbol for, 7
- units of, 3, 4, 466, A–1\(t\), A–24\(t\)

- Lennard-Jones potential energy function, 201, 201, 459–460, 460, 1341

Lens(es)

- aberrations in, 1112–1113, 1113, 1121
- in cameras, 1113, 1113–1115
- converging
- in cameras, 1113, 1113–1115
- focal points, 1105, 1105
- image formation in, 1106, 1106–1107, 1108, 1108–1109
- magnification by, 1118
- spherical aberration in, 1113, 1113
- for vision correction, 1116, 1117

- diverging
- chromatic aberration in, 1113, 1113
- focal points, 1105, 1105
- image formation in, 1106, 1107, 1109, 1109–1110
- for vision correction, 1117, 1117
- of eye, 1115, 1115, 1116–1117, 1117
- Fresnel, 1107, 1107
- gravitational, 1222, 1222
- lens-makers’ equation, 1105

- power (\(P\)) of, 1116
- shapes, 1106, 1106
- testing of, 1145
- thick, 1104, 1104
- thin, 1104, 1104–1112, 1105
- combination of, 1110–1112, 1111
- magnification by, 1106, 1111
- ray diagrams for, 1106

Light

- coherent sources of, 1136
- deflection by gravitational field, 1198, 1222–1223, 1223
- early models of, 1058–1059
- incoherent sources of, 1136
- and life on Earth, 1057
- monochromatic sources of, 1136
- nature of, 1057, 1058–1059
- particle model of, 1058–1059
- quantization of, 1059
- speed of (\(c\)), 4
- measurement of, 1059–1061
- Michelson–Morley experiment, 1196, 1196–1198
- relativity and, 1198, 1198–1199
- wave model of, 1034–1035, 1037, 1059, 1197

- Light-absorbing diodes, 1366, 1367
- Lightbulbs
- compact fluorescent, 808
- in decorative light strings, 839–840, 840
- failure of, 837
- halogen, 1321
- three-way, 839, 839
- wavelength of radiation from, 1233, 1239

- Light cone, 1207
- Light-emitting diodes (LEDs), 1366, 1367
- Light meter, in camera, 1244

- Lightning, 700, 746
- Light waves
- diffraction of. See Diffraction
- dispersion of, 1072–1074, 1073, 1074
- as electromagnetic radiation, 1034–1035, 1037, 1057, 1059, 1197
- interference of. See Interference
- polarization of. See Polarization
- reflection of. See Reflection
- refraction of. See Refraction
- transverse nature of, 1175
- unpolarized, 1175–1176, 1176

- visible light spectrum, 1045\(t\), 1046, 1046–1047, 1073, 1073, 1074
- wavelength of
- and color, 1045\(t\)
- measuring, 1138–1139, 1145, 1147–1148, 1170, 1171
- particle model and, 1249

LIGO. See Laser interferometer gravitational-wave observatory

- Limiting angle of resolution, for circular aperture, 1167–1169
- Line(s), equations for, A–7–A–9, A–10, A–10
- Linear charge density (\(l\)), 1035, 1036
- Linear expansion, average coefficient of, 574, 574

- Linearly polarized waves, 1035, 1079, 1176
- Linear mass density (\(\lambda\)), 308
- Linear momentum (\(p\)), 247–250, 248, 314\(t\)
- of alpha particle, 1395, 1395–1398
- and collisions in one dimension, 256–264
- and collisions in two dimensions, 264, 264–267
- conservation of, 250–251, 254, 257, 277
- of electromagnetic waves, 1042–1044
- impulse and, 253, 253–254
- in isolated system, 250–252
- vs. kinetic energy, 249
- quantization of, 1273
- relativistic, 1214–1216, 1217–1218, 1219
- and rotational motion, 314, 320–321
- of system of particles, 272

- Linear wave(s), 534
- Linear wave equation, 497–498, 1037
- Line integrals, 747
- Line of action, 300
- Lines, equations for, A–7–A–9, A–10, A–10
- Line of stability, 1385, 1385
- Line spectra
- atomic, 1297–1299, 1298, 1322–1325
- splitting of, in magnetic field, 1304, 1313, 1313–1314
- molecular, 1349–1352, 1350, 1351
- x-ray, 1322, 1322–1325
- Line width of atomic emissions, 1258
- Liquid(s)

- characteristics of, 417
- evaporation of, 642
- indices of refraction in, 1067\(t\)
- objects falling in, 162, 162–164
- specific heat, 594\(t\)
- Liquid crystal displays, 1181
- Liquid-drop model of nucleus, 1387–1389, 1388, 1389
Index

Materials science. See also Deformable systems; Friction; Gas(es); Liquid(s); Metal(s); Nonohmic materials; Ohmic materials; Rigid object(s); Solid(s); birefringent materials, 1179; 1179–1180, 1179t, 1180 liquid crystal displays, 1181 neutron activation analysis, 1435–1436 nonohmic materials, 812 current–potential difference curve, 813–814, 814 ohmic materials, 812 current–potential difference curve, 815, 814 resistivity, 813 optical activity, 1181 Mathematical Principles of Natural Philosophy (Newton), 389 Mathematical representation, 22–23 Mathematics review, A–4–A–21 Matrix algebra, 844 Mathematical representation, 22–23 Mathematical Principles of Natural Philosophy (Newton), 389 Mechanical energy (\(E_{\text{mech}}\)), 198, 216 conservation of, 198, 216–217, 218, 221, 314 nonconservative forces and, 227–231 in simple harmonic motion, 458–461, 459, 460 total, in orbits, 403 transformation into internal energy, 196, 196–197, 216–217, 222–224, 227–231 Mechanical engineering. See Airplanes; Automobiles; Bridges; Railroads; Satellites; Spacecraft Mechanical equivalent of heat, 592, 592–593 Mechanical systems, analogies with electrical systems, 980–982, 981, 984–985, 985t Mechanical waves, 483. See also Sinusoidal waves; Sound waves beating, 550–552, 551, 551 components of, 484 energy transfer in, 212, 213, 484, 495, 495–497 interference in, 534–538, 535, 550–552, 551 linear wave equation, 497–498 media, 483, 484 propagation of, 484, 484–487, 485 reflection of, 494, 494, 495 speed of, 488, 491, 491–494, 511 superposition of, 534–538, 535, 536 transmission of, 494–495, 495 traveling wave model, 487, 487–491 Mechanics. See also Fluid mechanics; Kinematics; Quantum mechanics classical, 1, 2–3, 1192 statistical, 635, 640, 667–668 Medicine and biophysics. See also Eye(s); Hearing brain, human, magnetic fields in, 873t cardiac catheterization lab, 904 cataracts, UV light and, 1046 lasers in, 1328–1329 MRI (magnetic resonance imaging), 829, 873t, 1407, 1407–1408 positron-emission tomography (PET), 1450–1451, 1451 radiation damage, 1433–1434, 1434t radiation therapy, 1436, 1436 radioactive tracers, 1434–1435, 1435 x-rays and cellular damage, 1409, 1433, 1434t medical uses of, 1323, 1323–1324 Meissner effect, 922, 922, 1370, 1370 Meitner, Lise, 1419 Melting, and entropy, 673 Membranes, standing waves in, 550, 550 Mendeleev, Dmitri, 130 Mercury (Hg) average expansion coefficient, 575t density, 419t emission spectrum, 1298 as food contaminant, 1298 isotopes, 1397t specific heat, 594t speed of sound in, 512t superconduction in, 819, 819 in thermometers, 570, 570–571 vapor, in “neon” and fluorescent lighting, 1298 Mercury (planet) escape speed, 405t orbit, 395, 396, 406 planetary data, 398t Mercury barometer, 423, 423 Mesons, 1451–1452 composition, 1462, 1463, 1464, 1464t, 1466, 1466 properties, 1454t, 1455 patterns in, 1461, 1461 Metal(s) alloys, 1355 electrical conduction in band theory and, 1361, 1361 classical model, 816–818 quantum model, 818, 1355–1359, 1356, 1357 Fermi energy, 1356, 1356–1358, 1357, 1357t, 1361, 1361 Hall effect in, 891–892 metallic bonds, 1355, 1355 resistivity, 814t superconductors, 819, 819–820, 820, 820t temperature coefficients of resistivity, 814t, 819 thermal conduction in, 609, 609t work function of, 1243, 1243t Metal detectors, 970 Metal–oxide–semiconductor field-effect transistor (MOSFET), 1368, 1368–1369 Metastable states, 1325–1326, 1327 Meter (m), 3, 4 Meter, electrical, 853, 853 Michelson, Albert A., 1147, 1196 Michelson interferometer, 1147–1149, 1148, 1196, 1196 Michelson–Morley experiment, 1196, 1196–1198, 1198–1199 Microscopes compound, 1119, 1119–1120 electron, 1251, 1251–1252, 1252 optical, limitations of, 1284 scanning tunneling (STM), 1283–1284, 1284 Microstate, 668–670
Microwave background radiation, 1470, 1470–1471, 1471
Microwaves, 1045, 1046
Millikan, Robert, 692, 764
Millikan oil-drop experiment, 764, 764–765
Minima, 1161
Minor axis, of ellipse, 395
Mirror(s). See also Reflection concave, 1093, 1093–1095, 1094, 1098–1099
ray diagrams for, 1096, 1097
in telescopes, 1121, 1121
convex, 1095, 1095–1096, 1099–1100, 1100
ray diagrams for, 1096–1098, 1097
diverging, 1095, 1095–1096
flat, 1090–1093, 1091, 1092
lateral magnification, 1091, 1094, 1098–1099, 1100
sign conventions for, 1096–1097
multiple images in, 1092
parabolic, 1113
ray diagrams for, 1096–1098, 1097
reversal of image in, 1091–1092, 1092
sign conventions for, 1095–1096, 1096, 1096
spherical aberration in, 1093, 1093, 1113
Mirror equation, 1094–1095
Missing information, about microstates, 668–671
Missing mass, in Universe, 1473–1474
Models. See also Analysis models; Particle model; Rigid object model; Wave model
of atom. See Atom(s)
of atomic binding forces, 460, 460
of electrical conduction
classical, 816–818
quantum, 818, 1353–1359, 1356, 1357
ideal fluid flow, 427–428, 428
ideal gas, 578–580
of light
carly models, 1058–1059
particle model, 1058–1059
wave model, 1054–1055, 1057, 1059, 1197
molecular model of ideal gas, 627, 627–631
of nucleus, 6, 7
of Solar System
gocentric model, 394
heliocentric model, 394
structural, 627
utility of, 6–7
Moderators, 1419, 1422, 1423, 1423
Modern physics, 1, 3, 1191
Molar mass (M), 578
Molar specific heat of complex gases, 635–637, 636
at constant pressure (C_p), 632–634, 635–637
at constant volume (C_v), 632–634, 635–637, 636
of hydrogen gas, 1287–1288
of ideal gas, 631–634, 632
molecular rotational and vibrational components of, 634, 635, 635–637, 636
ratio of (γ), 633, 634
of real gases, 635
Mole (mol), 3, 578
Molecular bonds, 1341–1344
covalent, 1342–1343, 1354, 1354–1355
hydrogen, 1343–1344, 1344
ionic, 1341–1342, 1342,
1352–1354, 1353
metallic, 1355, 1355
in solids, 1352–1355
van der Waals, 1343
Molecular spectra, 1349–1352, 1350, 1351
Molecule(s)
link bond length of, 1346
energy states of, 1344–1349, 1345, 1346
and molecular spectra, 1349–1352, 1350, 1351
in gas, speed distribution of, 630, 641
kinetic energy of
and pressure, 627–629
and temperature, 630–631
nonpolar, 794
polar, 794, 794–795
induced polarization, 795, 795–797, 796
quantization of energy in, 630–637, 637
rms speed (v_rm), 630, 631
rotational motion of, 635, 635–637, 636, 637, 1344–1347, 1345
symmetric, induced polarization of, 795, 795
vibrational motion of, 635, 635–637, 636, 637, 1347–1349, 1348
Molybdenum (Mo), isotopes, 1397
Moment arm (d), 301, 301
Moment of inertia (I), 303, 342
as analogous to mass, 303
axis of rotation and, 303
calculation of, 307–311
and conservation of angular momentum, 345–346
for diatomic molecule, 1344–1345, 1346
of rigid object, 303, 304, 307–311, 467
Momentum (p). See Angular momentum; Linear momentum
Monochromatic light sources, 1136
Moon
distance to, measurement of, 1064, 1064, 1328
escape speed, 405, 642
forces causing orbit of, 111–112
kinetic energy of, 189t
mass, 5t
planetary data, 398t
Morley, Edward W., 1196
Moseley, Henry G. J., 1324, 1324
MOSFET (metal-oxide-semiconductor field-effect transistor), 1368, 1368–1369
Motion. See also Collisions; Kinematics; Laws of motion; Nonuniform circular motion; Oscillatory motion; Planetary motion; Precessional motion; Projectile motion; Rotational motion; Simple harmonic motion; Uniform circular motion; Waves in deformable systems, 275–277
impending, 131
in one dimension, 21–47
with resistive forces, 161–167, 162
of system of particles, 272–274
in two dimensions, 78–98
with constant acceleration, 81–84
modeling of, 81, 81–82, 82
types of, 21
Motional emf, 939–944, 940, 941, 942, 944–947, 945–947
Motion diagrams, 35, 35–36
Motors. See also Engines
electric, 950, 951–953, 952
eddy currents in, 954
power of, 233
torque generation in, 888
Mount Palomar observatory, 1472
Mount Wilson observatory, 1471
Movie projectors, digital, 1476
M-theory, 1476
Müller, K. Alex, 1371
Multiplication
derivative of product of two functions, A–14
distributive law of, 182
of fractions, A–6
of powers, A–6
in scientific notation, A–4–A–5
significant figures in, 12
and uncertainty, A–20
of vector, by scalar, 64
Muon lepton number, conservation of, 1458
Muon–neutrino (νμ), 1454t, 1455, 1458, 1464t
Muons (μ), 1452
and length contraction, 1206
as lepton, 1455
properties, 1454t
rest energy and charge, 1464t
and time dilation, 1202–1203, 1203
Music
and harmonic series, 542–543
vs. noise, characteristics of, 550, 553
Musical instruments
characteristic sounds of, 553, 555, 554
percussion, 542, 550, 550
pipe organs, 546
string, 541–544, 548, 551–552, 938, 938
synthesizers, 554
temperature and, 548
tuning of, 543, 552
Muson(s), 1400–1401, 1401t, 1455
and massing of Universe, 1474
Myopia (nearsightedness), 1116, 1117
Nanoelectromechanical system (NEMS) resonator, 1340
Nanotechnology, 1280–1281, 1285, 1364
Napoleon (cause of death, 1436
NASA (National Aeronautics and Space Administration), 1471
National Ignition Facility (Livermore National Laboratory), 1418, 1451
National Institute of Standards and Technology (NIST), 5, 5, 910
National Spherical Torus Experiment (NSTX), 1429, 1430
National Standard Kilogram, 5
Natural convection, 612–613
Natural frequency (ωo), 68, 542, 546, 547–548
of LC circuit, 982, 1013
Natural logarithms, A–9–A–10
Natural radioactivity, 1404–1405, 1404t
Near point, of eye, 1116
Nearpoint, of eye, 1116
Ne’sman, Yuval, 1461
Negative electric charge, 691
NEMS (nanoelectromechanical system) resonator, 1340
Neodymium (Nd), isotopes, 1397t
Neon (Ne)
electronic configuration, 1319
emission spectrum, 1298, 1298
isotopes, 1396t
Neon signs, 1296, 1298
Neptune
escape speed, 405t
orbit of, 406
planetary data, 398t
Neptunium (Np)
isotopes, 1397t
radioactive series, 1404, 1404t
Net force (ΣF), 116, 314t
momentum and, 252–253
particle under a net force model, 121, 121, 122, 125–130
on system of particles, 272
time-averaged, 253, 252–254
Net torque, 301–302, 314t
and angular acceleration, 302–307
Net work (W), 184, 184–185, 188–190, 314, 314t
Neutral equilibrium, 200
Neutral wire, 853, 853
Neutinos (ν), 1400–1401, 1401t, 1455
and missing mass of Universe, 1474
Neutron(s), 6, 7
as baryon, 1455
change to/from proton, 1401, 1406–1467, 1467
charge of, 692, 695t
composition of, 1404t
decay of, 1455, 1458
discovery of, 1383
field particle absorption and emission, 1453, 1466–1467, 1467
interactions with nuclei, 1418–1419
magnetic dipole moment of, 920, 1406
mass of, 695t, 1381
properties, 1454t
thermal, 1419
Neutron activation analysis, 1435–1436
Neutron capture, 1419
Neutron number (N), 1381
as atomic number, for stable nuclei, 1385, 1385, 1394–1395, 1395
Neutron radiation
damage from, 1433, 1434t
and neutron activation analysis, 1435–1436
Neutron stars, 347, 405–406
Newton (N), 116
Newtonian mechanics. See Mechanics
Newton · meter (N · m), 180
Newton’s law of universal gravitation, 389–391, 392
Newton’s laws of motion. See Laws of motion
Newton’s rings, 1145, 1145
Nichrome, 814–815, 814, 822
Nickel (Ni)
binding energy per nucleon, 1386, 1387
as ferromagnetic substance, 920
isotopes, 1397t
Niobium (Nb), isotopes, 1397t
NIST. See National Institute of Standards and Technology (NIST)
Nitrogen (N)
electronic configuration, 1319
isotopes, 1396t
decay of, 1400, 1401
latent heats of fusion and vaporization, 598t
molar specific heat, 633t
molecular speed distribution, 641, 641
NMR (nuclear magnetic resonance), 1407, 1407
Nobel Prize in Physics, 765, 1172, 1236, 1242, 1245, 1246, 1249, 1257, 1299, 1301, 1329, 1354, 1368, 1369, 1370, 1371, 1383, 1390, 1390, 1391, 1400, 1422, 1449, 1449, 1453, 1454, 1452, 1454, 1467, 1464, 1467, 1471
Noble gases, 1320–1321
van der Waals bonding in, 1343
Nodes, 539, 539–540, 540, 541, 546, 547
displacement, 540, 547, 550
pressure, 546
Noise pollution, 515
Nonconservative forces, 198
friction as, 196, 196–197, 222–227
and mechanical energy, 222–231
work done by, 198, 198
Noninertial reference frames, 113
laws of motion in, 158–161, 159, 160
Nonisolated system, 253
angular momentum in, 338–342, 339, 341
and conservation of energy, 212, 212–215
definition of, 212
problem-solving strategies for, 217–218
Nonisolated system model
angular momentum version, 338–342, 339, 341
momentum version, 252–256, 255, 273
problem-solving strategies for, 217–218
Nonlinear waves, 554
Nonohmic materials, 812
current-potential difference curve, 813–814, 814
Nonpolar molecules, 794
Nonsinusoidal waves, 553, 553–554, 554
Nonuniform circular motion, 156–158, 157
Nonviscous fluid, 427
Normal force (FN), 119, 119, 121, 121
and friction, 131
and work, 180, 180
Normalization condition, on wave function, 1270
Index

Oscillation (continued)
overdamped, in RLC circuit, 985
in series RLC circuit, 984, 984–985, 985
Oscillatory motion, 450–471. See also Pendulums; Simple harmonic motion
applications, 450–460
damped, 468, 468–469, 469
forced, 469–471, 470
natural frequency, 468, 542, 546, 547–548
in object attached to spring, 451, 451–452
pendulums, 464–468
resonance, 470, 470–471
Ottó cycle, 665, 665–666, 666
Ötzi the Iceman (Bronze Age remains), 1380, 1402–1403
Out of phase, 536, 536
Overdamped oscillation, 469, 469
in RLC circuit, 985
Oxygen (O)
density, 419
electronic configuration, 1319
isotopes, 1396
latent heats of fusion and vaporization, 598
molar specific heat, 633
speed of sound in, 512
thermal conductivity, 609
Ozone layer, of Earth, 1046
Pain, threshold of, 514, 515, 516–517, 517
Pair annihilation, 1450
Pair production, 1450, 1450
Palladium (Pd), in radiation therapy, 1436
Paper, dielectric constant and dielectric strength of, 791
Parabolas, A–10, A–11
Parallel-axis theorem, 308–311, 310
Parallel combination of capacitors, 782–783, 783, 785–786
of resistors, 838, 838–840, 879, 840, 842–843
Parallel-plate capacitors, 750–751, 751, 778, 778–779
capacitance of, 779–780, 780
Paramagnetism, 921, 922
Paraxial rays, 1093
Parent nucleus, 1395
Partial derivatives, 490
Partial integration, A–17–A–18
Particle(s), 21
classification of, 1454–1455, 1454
conservation laws for, 1455–1459
constructing from wave, 1252–1255, 1253, 1254, 1475–1476
detection of, 1469, 1469
fundamental classifications of, 1467
search for, 1447–1448, 1461, 1464, 1475–1476
and missing matter of Universe, 1474
properties, 1454
rest energy of, 1217–1219
search for patterns in, 1460–1462, 1461
source, 392–393
systems of, of motion, 272–274
test, 392–393
total energy of, 1217–1220
wave properties of, 1249–1252
Particle accelerators, 881–882, 881–882
Particle-in-a-box problem
classical particles, 1272
quantum particles, 1272, 1272–1277, 1273, 1274
analogy to standing waves, 1276
free electron theory of metals, 1355–1359, 1356, 1357
Schrödinger equation and, 1278–1279
three-dimensional boxes, 1356–1357
Particle in a field model
electric field, 699, 699–703, 700, 701
gravitational field, 392–393, 392–394, 393–394
magnetic field, 869, 871–874, 872, 876
Particle in equilibrium model, 120–121, 121, 122–123
Particle in simple harmonic motion
model, 452–458, 456
Particle in uniform circular motion
model, 91, 91–94, 93, 152–156
Particle model, 21–22, 267, 272
of light, vs. wave model, 1246, 1249
and principle of complementarity, 1250
wave properties of particles and, 1249–1252
Particle physics
history of, 1451–1453
questions remaining in, 1474–1475
Particle under a net force model, 121, 121, 122, 122, 123–130
Particle under constant acceleration
model, 36, 36–40, 38
Particle under constant speed model, 30–31
Particle under constant velocity model, 28–31, 29, 30
Pascal (Pa), 418
Pascal, Blaise, 420
Pascal’s law, 420–421
Paschen series, 1299, 1303
Path difference (δ), 537–538, 1137, 1137–1138
Path integral, 747
Path length (r), 536, 537
Pauli, Wolfgang, 1314, 1315, 1318, 1318, 1400
Pendulums, 464–468
as accelerometer, 161
ballistic, 261–262, 262
clock, 465
conical, 152
physical, 466, 466–467
simple, 464, 464–466
torsional, 467–468, 468
Penzias, Arno A., 1470, 1470–1471
Percent uncertainty, A–20
Perfect differential, A–18
Perfectly inelastic collisions, 257, 257, 261–262
Perfect square, A–7
Perigee, 396
Perihelion, 396
Period (T), 92, 93
of electromagnetic wave, 1038–1039
of physical pendulum, 467
of rotating charge in magnetic field, 876
of simple harmonic motion, 453, 453–454, 456, 462
of simple pendulum, 465
torsion pendulum, 468
do wave, 487, 487–488
Periodic motion, 450. See also Oscillation; Oscillatory motion; Simple harmonic motion; Waves
Periodic sound wave, 508
Periodic table of the elements, 1320, 1320–1322, 1461, A–22–A–23
Permeability of free space (μ₀), 905
Permittivity of free space (ε₀), 694
Phase
change of, in reflection, 1143, 1143
difference in, in double-slit experiment, 1141
do simple harmonic motion, 453
Phase angle, 983, 1000, 1008–1010, 1012
Phase angle, initial. See Phase constant
Phase change, 593, 597–600, 599
Phase constant (φ), 453, 455, 456, 463, 489
Phase speed, of wave packet, 1254
Phasor, 1000, 1000–1001
addition of, 1008, 1008–1009
Phasor diagram, 1000, 1000–1001, 1003, 1003, 1005, 1008, 1008
Phipps, T. E., 1316
Phipps–Taylor experiment, 1316, 1317
Phosphorus (P), isotopes, 1396
photons, 1474
Photoelectric effect, 1059, 1240, 1240–1246, 1241, 1244
applications of, 1244–1245, 1245
classical prediction vs. experimental results, 1241–1242
Potassium (K), electronic configuration, 1321
Fermi energy, 1357, 1357
Fermi energies, 1396, 1404
Potential, See Electric potential
Potential difference (ΔV), 474–478
across capacitor plates, 777–778
applications of, 765–766
mechanical analogy to, 985
in uniform electric field, 748–752, 749, 750
units of, 748
value of electric field from, 753, 755–756
Potential energy, 191–196, 192, 192. See also Electric potential, Electric potential energy
conservative forces and, 197, 198–199
of crystal, 1353, 1353
elastic (U_e), 194–196, 195
eequilibrium force and, 200, 200
gravitational (U_G), 192–194, 400, 400–402, 401
Lennard–Jones function, 201, 201
of magnetic dipole in magnetic field, 887–888
in mechanical waves, 496
reference configuration for, 1341, 192–194, 195
simple harmonic motion, 458–459, 459
200
200
vs. temperature and volume, in ideal gas, 578–579
units of, A–21
Pressure amplitude (ΔP_{amp}), 509–510, 510, 512, 514
Pressure antinodes, 546
Pressure nodes, 546
Pressurized-water reactor, 1423, 1425
Pressurized water reactor, 1423
Pressure
of sound waves, 512–513
of motor, 233
of lens, 1117
of wave, 496
Power (P), 232–233, 314
average, 232
electrical. See Electrical power of engine, 656
instantaneous, 232, 313
of lens, 1117
of motor, 235
in rotational motion, 313, 514
of sound waves, 512–513
of wave, 496
Power cords, three-pronged, 854, 854
Power factor ($\cos \phi$), 1011
Power functions
Poynting vector (\mathbf{S}), 1039–1040, 1041, 1042, 1044
Powert f, 665, 666
Precession
Presecdium (Pr), isotopes, 1397, 1397
Precessional frequency (ω_p), 351–352
Precessional motion, 350–352, 351
Prefixes, for powers of ten, 5, 6t
Presbyopia, 1117
Pressure (P), 375, 417, 417–419, 418
absolute (P_0), 423
atmospheric (P_a), 419, 420
barometric, 423
Bernoulli’s equation, 430–433, 431
depth and, 419–423, 420
elevation and, 430–431
force and, 418
gauge, 423
measurement of, 418, 418, 423, 423
molecular kinetic energy and, 627–629
Pascal’s law, 420–421
PV diagrams, 602, 602
sound waves as variations in, 508, 508–510, 509
vs. temperature and volume, in ideal gas, 578–579
units of, A–21
Problem-solving strategies, 87
Projectile motion, 84–91
acceleration in, 84–85, 88–89
conservation of mechanical energy in, 221
exploded projectile, 273–275, 274
height, maximum, 85, 85–87
horizontal range, 85, 85–87
90–91
problem-solving strategies, 87
trajectory, 84, 85, 86, 86
Projectors, digital, 1064–1065
Promethium (Pm), isotopes, 1397
Propagation
of electromagnetic waves, 1035
of mechanical waves, 484
484–487, 485
of uncertainty, A–20–A–21
Proper length (L_p), 1205
Proper time interval (Δt_0), 1202, 1206
Proton (s), 6, 7
as baryon, 1455
change to/from neutron, 1401, 1401–1406, 1406
charge, 601, 692, 694, 695
composition, 1464
decay, detection of, 1457, 1457
field particle absorption and emission, 1453, 1466–1467
magnetic dipole moment of, 920, 1406
mass, 695, 1381, 1382
neutron change into, 1401
properties, 1454
stability, 1456–1457
total energy, 1218–1219
Quantum dot, 1425–1426
Proton–proton cycle, 1425–1426
Proton radiation, damage from, 1434
Pyrex glass, speed of sound in, 512
Quadratic equations, A–7
Quality of motion, 249
Quantity (timbre), 553
Quality factor (Q), 1014
Quantities
derived, 5–6, A–24t
fundamental, 5
notation for, 7, 8, A–2–A–3t
Quantity of motion, 249
Quantization
of atomic orbital angular momentum, 919–920, 1312–1314, 1313
of electric charge, 692, 764–765
of energy levels, 636–637, 637
, 1236–1237, 1237, 1273, 1273–1274, 1274
in Bohr model, 1300–1305, 1302, 1303, 1311
in quantum model, 1306–1308
of energy of particle in a box, 1272–1275, 1273, 1274
of frequency, 533, 541, 542, 547, 548, 1276
of light, 1059
of molecular rotational motion, 1344–1346, 1345
of molecular vibrational motion, 1347–1349, 1348
of nuclear spin, 1406, 1406–1407
of nucleon energy states, 1390, 1390
, 1312–1317, 1313, 1314–1317, 1315, 1317
Quantum chromodynamics (QCD), 1466–1467, 1468
Quantum dot, 1280–1281
Quantum electrodynamics theory, 1452
Quantum mechanics. See
also Quantization
on blackbody radiation, 1236–1238
Compton effect, 1246, 1246–1248, 1247
correspondence principle, 1304
Einstein and, 1198, 1233, 1234,
1238, 1283
free-electron theory of metals, 1355–1359, 1356, 1357
history of, 3, 1233–1234, 1236,
1236–1238, 1246, 1278, 1301
impact of, 1191
and indeterminacy of future, 1283
model of atom, 1306–1308
model of electrical conduction, 818
and molar specific heat, 636–637
orbital angular momentum in,
919–920, 1312–1314, 1313
particle and wave models of light, 1246, 1249
photoelectric effect, 1240, 1240–1246, 1241, 1244
as physics subdiscipline, 1, 3
probabilistic interpretation of,
1268–1271
and simple harmonic motion,
1239–1240, 1286–1288, 1287
spin angular momentum in, 920
strangeness of, 1234
wave properties of particles, 1249–1252
Quantum number(s), 1256
bottomness, 1464
color (C), 1463
color charge as, 1465–1466
eclusion principle and, 1318–1319, 1319
of hydrogen atom, 1306–1308, 1307
for n = 2 state, 1317, 1317
physical interpretation of, 1311–1317
nuclear spin (I), 1406
orbital (ℓ), 1307
allowed values, 1307t, 1311–1312
physical interpretation of, 1311–1312
orbital magnetic (mℓ), 1307
allowed values, 1307t, 1312–1314, 1313
physical interpretation of, 1312–1314
physical interpretation of, 1311–1317
principal (n), 1307, 1307t
rotational (J), 1345
spin magnetic (mS), 1314, 1316
physical interpretation of, 1314–1317, 1315
topness, 1464
vibrational (v), 1347
Quantum number space, 1358, 1358–1359
Quantum particles, 1252–1255
under boundary conditions, 1271–1277, 1272, 1273, 1274
analogy to standing waves, 1276
analysis model for, 1276–1277
free electron theory of metals, 1355–1359, 1356, 1357
Schrödinger equation and, 1278–1279, 1280, 1281
well of finite height, 1279,
1279–1281, 1280
well of infinite height, 1271–1277,
1272, 1273, 1274
electron double-slit experiment, 1253,
1255–1256, 1256
expectation value of, 1270, 1271,
1275–1276
Heisenberg uncertainty principle and,
1256–1258
probability density of, 1269, 1269
quantization of energy, 1272–1275,
1273, 1274
tunneling by, 1281, 1281–1282,
1399, 1399
applications, 1267, 1282–1286
wave equation for (Schrödinger equation), 1269, 1277–1279
wave properties of, 1249–1252
Quantum particle under boundary conditions analysis model, 1277–1278
Quantum states, 1236
allowed, 1318–1320, 1318t, 1319,
1322, 1322
Quantum statistics, 1356
Quark, 398
Quark–gluon plasma, 1465
Quarks, 6, 7, 1462, 1462–1465, 1464t
in baryons, 1464t
color charge, 1465–1467, 1466
flavors, 1462, 1463
interaction of (quantum chromodynamics), 1466–1467
in mesons, 1464t
original model, 1462–1463
properties, 1463t
in Standard Model, 1467–1468, 1468
Quartz, resistivity of, 814
Quasistatic compression/expansion, 601–602, 606
Quartic project, 1471
Quasiparticles
See Disintegration energy (Q)
Rad (radiation absorbed dose), 1433,
1434, 1434t
Radar, police, 520
Radar acceleration (a), 94, 94–96,
156–158, 257
Radial probability density function,
1309, 1309–1311, 1311
Radian (rad), 294
converting degrees to/from, 294
Radian measure, A–10, A–10
Radiation, particle
background, 1434
damage from, 1342–1434, 1434t
discovery of, 1380
dose limit recommendations, 1434
fatal doses, 1434
as term, 1391
units for, 1433–1434, 1434t
uses of, 1434–1437, 1435–1437
Radiation, thermal, 613–614
Radiation pressure, of electromagnetic waves, 1042–1044
Radiation therapy, 1436, 1436
principle of relativity, 1198–1199
relativistic Doppler effect, 1209–1210
relativistic energy, 1216–1220, 1217
relativistic force (F), 1215
relativistic kinetic energy, 1216–1220, 1217
relativistic linear momentum, 1214–1216, 1217–1218, 1219
space–time graphs, 1207, 1207–1209, 1209
and speed of light, 1195–1198, 1196, 1198–1199
and time
dilation of, 1200, 1200–1204, 1201, 1206, 1209, 1211–1212
proper time interval, 1202, 1206
relativity of, 1199, 1199–1200

twin paradox, 1204–1205, 1205, 1207, 1207
rem (radiation equivalent in man), 1434–1435, 1434r
Reproduction constant (K), 1422, 1423–1424
Residual strong force, 1454
Resistance (R), 811–816, 812
and electrical power transmission, 822, 822

equivalent (R_eq), 836–837, 837, 838–839, 841–842
internal, 834, 834–835
mechanical analogy to, 984–985, 985t
temperature and, 817–819, 819
Resistive forces, 161–167, 162.
See also Friction
direction of, 162
proportional to object speed squared, 164–167
proportional to object velocity, 162, 162–164
Resistivity (ρ), 813, 814t, 817–818
Resistor(s), 812–813, 813. See also RC circuits; RLC circuits
in AC circuit, 999, 999–1002, 1000, 1001

circuit symbol for, 820
color coding of, 813, 813t, 813t
composition, 812
ergy delivered to, 820–821, 851–852, 1001
ergy stored in, 976
power delivered to, 821–825, 834–836, 842–843, 852, 1001, 1012
in series combination, 836–837, 837, 839
wire-wound, 812
Resolution
circular aperture, 1166–1169, 1167, 1169
single-slit aperture, 1166, 1166

Resonance, 470–471, 546, 546, 548
in LC circuits, 980–981
in series RLC circuits, 1013–1015, 1014
Resonance frequency (ω), 470, 470, 546, 548
of series RLC circuit, 1013–1015, 1014
Resonant tunneling devices, 1284–1285, 1285
Resonant tunneling transistors, 1283, 1285–1286
Rest energy, 1217–1219
Rest-energy equivalent of atomic mass unit, 1382
Restoring force, 186, 451
Resultant force. See Net force
Resultant vector, 62
Retroflexion, 1063–1064, 1064
Reverse bias, 1366, 1366
Reversible processes, 659–660
Carnot cycle as, 661, 662, 663
tropy and, 662–668

Right, 1464
Rigel (star), color of, 1235, 1235
Richter, Burton, 1464
Ridley (star), color of, 1235, 1235
Right-hand rule
for Ampère’s law, 912
for angular momentum, 339
for angular velocity vector, 295–296, 296
for force on charge in magnetic field, 972, 972–973
for magnetic field direction, 911, 911
for magnetic field direction, 911, 912
for torque on current loop in magnetic field, 972, 972–973
for vector products, 336, 336
Right triangle, A–11
Rigid object(s), 293
angular momentum of, 342, 342–345
in equilibrium, 364–365, 366–372
problem-solving strategies for, 366–367
gravitational force on, 365, 365–366
moment of inertia of, 303, 304t, 307–311, 467
as physical pendulum, 466, 466–467
rolling motion in, 316–321, 317
rotational motion in. See Torque
Rotational motion
torque on. See Torque
Rigid object in equilibrium model, 363–365, 364
Rigid object model, 293
Rigid object under constant angular acceleration model, 296–298, 297
Rigid object under a net torque model, 302–307, 304–305
Ripple, 1019
RLC circuits, series
alternating current, 1007, 1007–1011, 1008
average power in, 1011–1014, 1014
resonance in, 1013–1015, 1014
direct current, oscillation in, 984–986, 985, 986, 986t
RL circuits, direct current, 972–976, 973, 973, 974, 975
rms current, 1001–1002, 1003, 1004
rms speed (v_rms), 630, 631t
rms voltage, 1001
Rockets
escape speed of, 104–1045, 405t
exploded, motion of, 274–275
kinetic energy of, 189t
propulsion, 249, 277, 277–278, 279
thrust, 278
Rods (in eye), 1116
Roll, standing waves in, 550, 550
Roemer, Ole, 1060, 1060
Roentgen (R), 1433
Roentgen, Wilhelm, 1174
Rolling friction, 318
Rolling motion, 316–321, 317
pure, 316–317
Root-mean-square (rms) speed (v_rms).
See rms speed (v_rms)
Roots, A–6
Rotating bar, motional emf in, 943, 943–944
Rotational angular momentum, allowed values of, for diatomic molecule, 1345, 1345
Rotational equilibrium, torque and, 364–365
Rotational kinetic energy (K_θ), 311, 311–312, 514, 314t
Rotational motion, 21, 293–321. See also Torque
angular and translational quantities, relationships between, 298–300
angular momentum approaches to, 338–350
axis of rotation in, 295, 339
energy approaches to, 312–316, 318–321
equations for, 314t
kinematic equations, 296–297, 296t, 297
kinetic energy (K_θ) of, 311, 311–312, 314, 314t
of molecules, 635, 635–637, 636, 637, 1344–1347, 1345
moment of inertia (I) and, 303, 304t, 307–311
momentum approaches to, 314, 320–321
quantities and terminology in, 293–296
reference line for, 294, 294
Index

Rotational motion (continued)
rigid object under constant angular acceleration model, 296–298, 297
rolling, 316–321, 317
second law of motion for, 302–305, 339, 340–341, 342–343
work–kinetic energy theorem for, 189, 313–314
Rotational quantum number (J), 1345
Rotation rate, 92
Rounding, 13
Rubber
dielectric constant and dielectric strength of, 791
resistivity, 814
speed of sound in, 512
thermal conductivity, 609
Rubbia, Carlo, 1454
Rubidium (Rb), isotopes, 1321, 1397
Rubisco, 1174
Rubin, Ruthie, 1299–1300, 1380, 1382–1383, 1405
Revalue, 611–612, 611
Rydberg, Johannes, 1298
Rydberg constant (R), 1298
Safety, electrical, household wiring and, 855–855, 854
Salam, Abdus, 1467
Sandage, Allan R., 1472
Satellite-dish antenna, 1094
Satellites, orbit of
changing orbit of, 403–404
energy analysis models in, 403–405
escape speed, 404–405, 405
geosynchronous, 399, 399–400, 403–404
Saturation, of nuclear forces, 1387
Saturn
e scape speed, 405
orbit of, 406
planetary data, 398
Savart, Félix, 904
s bands, 1360, 1360–1361
Scalar (dot) product, 187, 181–183
Scalar quantity, 23, 61
multiplication of vector by, 64
Scanning tunneling microscope (STM), 1283–1284, 1284
Scattering event, 1405
polarization by, 1180, 1180–1181
Schmitt, Harrison, 118
Schrieffer, J. R., 1370
Schrödinger, Erwin, 1233, 1267, 1269, 1277, 1278, 1283
Schrödinger equation, 1269, 1277–1279, 1280, 1281
and quantum model of hydrogen atom, 1306–1308
Schwarzschild radius (R), 406, 406
Schwinger, Julian, 1452
Scientific notation, A–4–A–5
significant figures in, 12
Sclera, 1115
Scotopic vision, 1115
Scott, David, 11
Secant (sec), A–11, A–121
Second (s), 5
Second primary maxima, 1161, 1161
Secondary winding, 1015, 1015
Second derivative, A–14
Second law, Kepler’s, 396, 396–397
Second law of motion, Newton’s, 115–117
analysis models using, 120–130
in nonuniform circular motion, 158
for particle, 249
relativistic form of, 1215
rotational form of, 302–303, 339, 340–341, 342–343
for system of particles, 272
in uniform circular motion, 151–156
Second law of thermodynamics, 1161
Clausius statement of, 657, 676
entropy statement of, 657
Clausius–Klein–Planck form of, 655, 656, 660, 677
Sedna, 398
Seeds (radiation therapy devices), 1436
Segré, Emilio, 1449
Self-sustained chain reaction, 1422, 971
Self-induction, 970–972
values of, 971
self-inductance, 970–972
in object attached to spring, 451
applications, 459–460
in object attached to spring, 451, 451–452
pendulums, 464–468
quantum-mechanical viewpoint on, 1239–1240, 1286–1288, 1287
standing wave as, 539
specific heat of, 594
Silicon (Si)
crystals, 1353, 1354
energy gap value, 1361
lattices, 1361
resistivity, 814
as semiconductor, 692
specific heat of, 594
density, 419
Fermi energy, 1357
latent heats of fusion and vaporization, 598
resistivity, 814
specific heat, 594
termal conductivity, 609
work function of, 1243
Similar triangles, 92
Simple harmonic motion, 451. See also
Oscillatory motion
applications, 459–460
energy in, 458–461, 459, 460
in object attached to spring, 451, 451–452
pendulums, 464–468
quantum-mechanical viewpoint on, 1239–1240, 1286–1288, 1287
standing wave as, 539
uniform circular motion and, 462, 462–464, 463
Simple harmonic motion model, 452–458, 453, 455
Simple pendulum, 464–466
Simplification of problems, 45
Simultaneity, and theory of relativity, 1199, 1199–1200, 1208–1209, 1209, 1211–1212
Sine (sin), A–11–A–12, A–121
Single-slit aperture, resolution through, 1166, 1166
Single-slit diffraction patterns, 1161–1165, 1162, 1164
light intensity distribution, 1164, 1164
position of fringes, 1162, 1162–1164
Sinusoidal electromagnetic waves, 1037–1038, 1038
Sinusoidal waves, 487, 487–491
general expression for, 489
sound waves, 507
speed of, 488, 491, 491–494
on strings, 490, 490–491
speed of, 491, 491–494
superposition of, 535–536, 536
wave function of, 488–489
SL (Système International) units, 3,
A–2/A–3, A–24
of acceleration, 8t, 31
of activity, 1392
of angular momentum, 339
of area, 8t
of average speed, 24
of average velocity, 23
of capacitance, 778
of charge, 910
conversion to U.S. customary units, 9
of current, 809
of current density, 809–812
of electric charge, 694
of electric field, 748
of electric field vector, 700
of electric flux, 726
of electric field, 748
of electric potential, 591
of energy, 891
of force, 116
of frequency, 454
of gravitational potential energy, 192
of inductance, 971
of kinetic energy, 188
of length, 4
of linear momentum, 249
of magnetic dipole moment, 887
of magnetic field, 873
of magnetic flux, 917
of mass, 4–5, 5, 114, A–1, A–24
of moment of inertia, 303
of potential difference, 748
of power, 232, 821
of Poynting vector, 1039
prefixes for, 5, 6
of pressure, 418
for radiation, 1334, 1434
of resistance, 812
of speed, 8t
of temperature, 572
of time, 5, 5
of torque, 301
of volume, 8t
of work, 180
Skerries SeaGen Array, 935
Sky, color of, 1057, 1180–1181
SLAC (Stanford Linear Accelerator), 1464
Sliding bar, magnetic forces acting on,
940, 940–943, 942, 944–945, 945
Slipher, Vesto Melvin, 1471
Slip rings, 950, 950
Slit(s), diffraction and interference
from. See Diffraction; Double-slit interference patterns;
Interference; Single-slit diffraction patterns
Slope, A–8, A–8, A–10
of position–time curve
for constant velocity, 29, 29
line between two points of, 24
line tangent to, 25–26, 26, 27, 33, 33
as rate of change ratio, 26
units of, 26
of velocity–time graph
line between two points on, 31, 31
line tangent to, 31, 32, 33, 33
Slug, 5
Small angle approximation, 465, 465t
Smith, George E., 1245
Smoke detectors, 1399, 1399
Smell, Willebrord, 1067
Snell’s law of refraction, 1067–1069,
1068, 1072, 1072, 1074
Soap
films, light interference in, 1144,
1144–1147, 1145
surfactants in, 795
Sodium chloride (NaCl)
electronic configuration, 1321
emission spectrum, 1314–1315
Fermi energy, 1357t
isotopes, 1396t
photon absorption in, 510–512, 512t
specific heat, 594
Sonic boom, 522
Sound waves, 485, 507–522.
See also Hearing
Source charge, 699, 699
Source particle, 392–393
South pole
de Earth, 870, 870–871
of magnet, 868–869, 870
South Pole Telescope, 1471
Spacecraft
conservation of angular momentum in,
352, 352
escape speed, 404–405, 405t
Hubble Space Telescope, 1160, 1169,
1169, 1367
IKAROS (Interplanetary Kite-craft
Accelerated by Radiation of the Sun), 1043
Voyager 2, 352
Space quantization, 1312–1317, 1313,
1315, 1317
Space Station, International, weight
of, 394
Space–time
distortion by gravity, 1221–1223
string theory and, 1475
Space–time coordinates, 1210–1211
Space–time graphs, 1207, 1207–1209, 1209
Strangeness, 1460, 1461, 1461
conservation of, 1460
Strange particles, 1459, 1459–1460
Strange quark (s), 7, 1462, 1463t, 1464t
Strassman, Fritz, 1301, 1419
Streamline, 428, 428
Stress, 373
shear, 374, 374
strain and, 373
tensile, 373, 374
volume, 375, 375
Stress analysis, optical, 1179–1180, 1180
Strings
energy transfer by waves on, 495, 495–497
linear wave equation for, 497–498
propagation of waves on, 484, 484–487, 485
reflection of waves on, 494, 494, 495
sinusoidal waves on, 490, 490–491
speed of waves on, 491, 491–494
standing waves on, 538–545, 539, 542
tension on, 491, 491–543
transmission of waves on, 494–495, 495
String theory, 1475–1476
Stroboscopic photography, 35, 35
Strong force
and classification of particles, 1454, 1455
definition of, 1454
evolution of, at origin of Universe, 1469, 1470
field particles for, 1466–1467
as fundamental force, 112, 1454, 1464–1465
in Standard Model, 1468, 1468
Strontium, isotopes, 1397t
Structural models, 627
of electrical conduction, 816–818
Stud finders, 792, 792
Subcritical reaction, 1422
Subshells, atomic, 1307, 1308t
filling of, 1318–1320, 1318t, 1319
Subtraction
of fractions, A–6
significant figures in, 12
and uncertainty, A–21
of vectors, 63, 63–64
Sulfur (S)
isotopes, 1396t
latent heats of fusion and vaporization, 598t
resistivity of, 814t
Sun
atmosphere, analysis of gases in, 1297–1298
electromagnetic radiation from, 613
escape speed, 405t
fusion in, 1425
magnetic field of, 873t
mass of, 5t, 398–399
planetary data, 398t
temperature of, 572
wavelength of radiation from, 1230
Sunburn, 1046
Sunglasses
polarized, 1178
UV protection and, 1046
Sunlight
energy delivered to Earth by, 1041
polarization of, 118, 1178, 1180–1181
Superconductors, 819, 819–820, 820, 820t, 868, 873t, 1370, 1370–1371
high-temperature, 1371
Meissner effect in, 922, 922, 1370, 1370
Supercooling, 599–600
Supercritical reaction, 1422
Superheating, 600
Super Kamiokande neutrino detection facility, 1437
Supernovas, 347, 405–406
Supercriticality
principle, 534, 537
for electric fields, 701, 702–703
for mechanical waves, 534–538, 535, 536
Super Proton Synchrotron, 1468
Super string particles, 1474
Supersymmetry (SUSY), 1476
Surface charge density (σ), 704–705
of conductor of arbitrary shape, 761, 761–762, 763
of spherical conductor, 762, 762
Surface effect, in liquid-drop model of nucleus, 1387
Surface integral, 726
Surface mass density (σ), 308
Surfactants, 795
S waves
Swim bladder, in fish, 424–425
Switch, symbol for, 782
Symbols. See Notation
Symmetric molecules, induced polarization of, 795, 795
Symmetry breaking, 1468, 1469
Symmetry effect, in liquid-drop model of nucleus, 1388
Synchrotrons, 881
System(s), 178. See also Isolated system; Nonisolated system
angular momentum in, 340–342
deformable
conservation of angular momentum in, 345–346, 346
elastic properties of solids, 373–376
motion of, 275–277
work in, 179
and work–kinetic energy theorem, 189
equilibrium of, 199–201, 200, 201
identification of, 178
of molecules, internal energy of, 635, 635–637, 636, 637
of particles, motion of, 272–274
potential energy of, 191–196, 192, 192
System boundary, 178
System model, 178
Tabular representation, 22, 22t
Tacoma Narrows Bridge, 470, 470
Tangent (tan), A–11–A–12, A–12t
on calculators, 67
Tangential acceleration, 94, 94–95, 156–158, 157, 298–299, 299, 303
Tangential speed (v), 298, 299, 311
Tangential velocity, 298, 298
Tau (τ), 1454, 1455, 1464, 1464t
tau lepton number, conservation of, 1458
tau–neutral (ντ), 1454t, 1455, 1458, 1464t
Taylor, J. B., 1316
Telescopes
atmospheric blurring, 1160, 1169, 1169
Hubble Space Telescope, 1160, 1169, 1169, 1169
Keck Observatory, 1122, 1122, 1168
magnification in, 1120, 1120–1122, 1121
photoelectric photometry and, 1245
radio, 1169
resolution of, 1168–1169, 1169
Yerkes Observatory, 1122
Television
broadcast frequencies, 1046
color production in, 1116
picture tube, magnetic field in, 874
remote control, infrared LED in, 1367
Temperature (T), 568–580, 570
and atomic energy levels, 639–640
and blackbody radiation, 1234–1235, 1235
critical, 819–820, 820t
and density, 419, 577, 577
and entropy, 671
and frequencies of instruments, 548
and internal energy, 594, 630, 632
vs. internal energy and heat, 591
measurement of, 569, 570–573
molecular interpretation of, 630–631
physical properties changed by, 570
vs. pressure and volume, in ideal gas, 578–579
and resistance, 817–819, 819
and resistivity, 813, 814t
sensation of, 568–569
and specific heat, 594
and speed of sound waves, 511–512, 512t
thermal equilibrium, 569–570
thermal expansion, 568, 573, 573–578, 575, 575t
units of, 3, A–24t
zeroth law of thermodynamics, 568–570, 569, 569

Index I–34
of molecules, between rotational energy levels, 1345–1346
spontaneous emissions, 1325, 1325
stimulated absorption, 1325, 1325, 1326
stimulated emissions, 1325–1327, 1326
Translational motion, 21
equations for, 314t
in rolling motion, 316–321, 317
work–kinetic energy theorem and, 189
Transmission, of electrical power, 822, 1015, 1017, 1017–1018
corona discharge in, 763–764, 766, 766
as energy transfer, 212, 213
and I^2R loss, 822, 822
Transmission, of waves, 494–495, 495
Transmission axis, 1176, 1177
Transmission coefficient (T), 1281–1282
Transmission electron microscope, 1251, 1252
Transmission grating, 1169
Transportation. See Airplanes; Automobiles; Railroads; Satellites; Spacecraft
Transuranic elements, 1404, 1422
Transverse acceleration (a_y), 490–491
Transverse speed (v_x), 490–491
Transverse wave, 484, 484–485
Traveling wave, 487
Traveling wave model, 487, 487–491
Triangle(s)
geomeric properties of, A–11, A–11t
similar, 92
Trigonometry, A–11–A–13
identities for, A–12t
Triple point of water, 572
Tritium, fusion and, 1426–1428, 1428,
1430, 1431, 1431, 1432
Trough, of wave, 487, 487
Truth quark, 1464
tube of flow, 428
Tungsten
in lightbulb filaments, 837
resistivity, 814t
Tuning fork, 549, 549, 553, 553, 554
Tunneling, 554
applications, 1267, 1282–1286
Turbulent flow, 427, 427
Turning points, 200, 200
Twin paradox, 1204–1205, 1205,
1207, 1207
Uhlenbeck, George, 1315, 1316
Ukraine Radiological Institute, 1424
Ultrasonic sound waves, 507
Ultraviolet catastrophe, 1236
Ultraviolet waves, 1046, 1046
Unbalanced force. See Net force
Uncertainty
estimation of, A–20–A–21
of microstates, 668–671
propagation of, A–20–A–21
Uncertainty principle. See Heisenberg uncertainty principle
Underdamped oscillation, 469, 469
Uniform circular motion, 91, 91–94
acceleration in, 91, 91–92, 150–156
angular momentum in, 339–340
angular speed of, 92–93, 94
force in, 151, 151–156
period of, 92, 93
second law of motion in, 151–156
and simple harmonic motion, 462,
462–464, 463
United Nations Environmental Programme, 1392
Units. See also SI (Système International) units; U.S. customary units
conversion of, 9–10, A–1–A–2
in equations, inclusion of, 9
Unit vectors (\hat{i}, \hat{j}, \hat{k}), 66, 66–67
cross products of, 336
scalar products of, 182
Universal gas constant (R), 579, 633
Universal gravitation. See Gravitations
Universal gravitational constant (G), 389
Universe
critical density of, 1472–1473
dark energy in, 1472–1473
dark matter in, 1472–1473
entropy of, 676, 678
missing mass in, 1473–1474
origin, Big Bang theory of, 1469–1470, 1470
Unstable equilibrium, 200, 200
Up quark (u), 6, 7, 1462, 1463t, 1464t
Uranium (U)
decay of, 1395, 1399
density of, 419t
enrichment of, 1422, 1423
fission of, 1419–1421, 1420
in fission reactors, 1219–1220, 1421,
1421–1423, 1423
isotopes, 1397t
radioactive series, 1404, 1404t
Uranus
escape speed, 405t
orbit of, 406
planetary data, 26–28, 26–28, 26
U.S. customary units, 5, 8t, 59, 116, 232, 611–612
conversion to SI units, 9
Vacuum, dielectric constant and dielectric strength of, 791t
Vacuum tubes, 1364
Valence band, 1361–1363, 1362–1364
Van Allen radiation belt, 879, 879
Van de Graaff, Robert J., 765
Van de Graaff generators, 765, 765
Van der Meer, Simon, 1454
Van der Waals bonding, 1434
Van der Waals forces, 1434
Vaporization, latent heat of, 598, 598t
Variable(s)
state, 601
transfer, 601
Variable capacitors, 792, 792
Varuna, 398
Vector(s)
addition of, 80
component method, 67, 67–69
graphical method, 62, 62–66, 64–65
components of, 65, 65–70
displacement, 79, 79
equality of, 62, 62
multiplication by scalar, 64
negative of, 63
notation for, 61
position, 67, 79–79, 79, 81
as function of time, 81–82, 82,
83–84
of projectile, 84, 85
properties of, 62–65
resultant, 62
scalar (dot) product of, 181, 181–183
subtraction of, 67, 63–64
unit, 66, 66–67
vector (cross) product of,
335–338, 336
determinant form, 336–337
velocity, as function of time, 81–82,
82, 83
Vector model, 1312, 1313
Vector (cross) product, 335–338, 336
determinant form, 336–337
Vector quantity, 23, 61, 61
direction of, 23
force as, 112–113, 113
Velocity (\vec{v}), 26
angular, 295–296, 296, 298, 298
average (\vec{v}_{ave}), 23–25, 26–28, 36,
79, 80
of center of mass (\vec{v}_{CM}), 272
in elastic collisions, 258–259
instantaneous (\vec{v}), 25–28, 26, 26,
79–80, 80
as function of time, 81–82, 82, 83
of particle under constant acceleration,
36, 36, 37, 38, 44
of particle under constant velocity, 29
relative, 96, 96–98, 97
in simple harmonic motion, 454, 455,
455–456, 459
tangential, 298, 298
Velocity selector, 880, 880
Velocity–time graph
relation to acceleration–time graph,
33, 33
relation to position–time graph, 33, 33
Velocity–time graph (continued)
slope of line between two points of, 31, 31
slope of line tangent to, 31, 32, 33
Velocity transformation equations
Galilean, 97, 1195, 1196
Lorentz, 1212–1214, 1213
Venturi tube, 432, 432
Venus
escape speed, 405t
orbit of, 406
planetary data, 398t
Vibrational motion
of molecule, 635, 635–637, 636, 637, 1347, 1347–1349, 1348
as motion type, 21
Vibrational quantum number (v), 1347
VIRGO, 1149
Virtual image, 1091
Virtual object, 1104, 1111
Virtual photons, 1452, 1452–1453
Viscosity, 427
Viscous force, 162, 162–164, 427
Visible light spectrum, 1045t, 1046, 1046–1047, 1073, 1073, 1074
Vitreous humor, 1115
Volt (V), 748
Voltage (ΔV), 748
across capacitor in AC circuit, 1005, 1005–1006
across inductor in AC circuit, 1002–1004, 1003
across resistor in AC circuit, 999–1000, 1000
of alternating current, 1001
open-circuit, 834
in RLC series circuit, 1007, 1007–1011, 1008
terminal, 834–835
Voltage amplitude, of AC source, 999
Voltage (V)
of geometric shapes, A–11t
vs. pressure and temperature, in ideal gas, 578–579
PV diagrams, 602, 602
thermal expansion and, 574–575, 575 units of, 8t
Volume charge density (ρ), 704–705
Volume effect, in liquid-drop model of nucleus, 1387
Volume expansion, average coefficient of (β), 574–575, 575t
Volume flux (flow rate), 428
Volume strain, 375
Volume stress, 375, 375, 376
Volumetric mass density (ρ), 308
Water
density, 419t
density vs. temperature curve, 577, 577–578
dielectric constant and dielectric strength of, 791t
freezing of, 577–578
ice point of, 571, 572
index of refraction, 1067t, 1102
latent heats of fusion and vaporization, 508–509, 598t
molar specific heat, 633t
phase change in, 598–599, 599
specific heat, 504–505, 504t
speed of sound in, 512t
steam point, 571, 572
supercooling, 599–600
superheating, 600
thermal conductivity, 609t
triple point, 572
view from underneath, 1075, 1075
view into, and refraction, 1103, 1103–1104
waves in, 483, 485, 485, 485, 1135, 1135
Water molecule
hydrogen bonding of, 1343–1344
polarization of, 794, 794–795
Watt (W), 232, 921
Watt, James, 232
Wave(s), 483–498. See also Electromagnetic waves; Light waves;
Mechanical waves; Sinusoidal waves; Sound
Wave function (probability amplitude; ψ), 1268–1271
band theory and, 1359, 1359–1361, 1360
boundary conditions for, 1278
of covalent bond, 1342–1343
equation, 1267, 1271, 1275–1276
for hydrogen, 1308–1311
ground state, 1308
normalized, 1270
one-dimensional, 1269,
1269–1271, 1270
of particle in box, 1272–1277, 1273
for particle in finite well, 1279,
1279–1281, 1280
of simple harmonic oscillator, 1286
space-and-time dependent, 1268
Wave intensity (I), of electromagnetic waves, 1040, 1041
Wavelength (λ), 487, 487–491
of blackbody radiation, 1234–1240, 1235, 1236, 1237
Compton (λc), 1247
cutoff (λc), 1244
de Broglie, 1250–1251
of electromagnetic waves, 1037–1038, 1038–1039
index of refraction and, 1067, 1067,
1072, 1072–1073, 1073
of light
and color, 1045t
measuring, 1138–1139, 1145,
1147–1148, 1170, 1171
particle model and, 1249
of normal modes, 542, 542
of quantum particle in a box, 1272–1273, 1276
of sound wave, 509, 513, 513
of x-ray radiation, 1322, 1322–1324
Wavelets, 1070–1071
Wave model, 487, 487–491
of light, vs. particle model, 1246, 1249
of particles, 1249–1252
and principle of complementarity, 1250
Wave number (k), 488, 491, 509
of electromagnetic waves, 1037
Wave optics, 1134
Wave packet, 1253, 1253–1255, 1254
group speed of, 1254–1255
phase speed of, 1254
Index

Waves in interference analysis model, 534–538, 535, 537, 1137, 1137–1140, 1139
Waves under boundary conditions model, 541, 541–545, 542, 543
Wave under reflection analysis model, 1061–1065, 1062, 1063
Wave under refraction analysis model, 1065, 1065–1071, 1066, 1067, 1068
W bosons, 1448, 1449t, 1454, 1467–1468, 1468
Weak charge, 1467
Weak force
electroweak theory and, 1467–1468
evolution of, at origin of Universe, 1469, 1470
field particles for, 1448, 1449t, 1453, 1454
as fundamental force, 112, 1448
in Standard Model, 1467–1468, 1468
Weakly interacting massive particles (WIMPs), 407
Weber (Wb), 917
Weight, 117–118
vs. mass, 115, 117–118, 118
measurement with spring scale, 126–127, 127
Weinberg, Steven, 1467
Wells, 1278–1279
of infinite height, particles in, 1271–1277, 1272, 1273, 1274
nanotechnology and, 1280–1281
quantum particles in, 1271–1277, 1272, 1273, 1274
analogy to standing waves, 1276
analysis model for, 1276–1277
free electron theory of metals, 1355–1359, 1356, 1357
Schrödinger equation and, 1278–1279, 1280
well of finite height, 1279
1279–1281, 1280
well of infinite height, 1271–1277, 1272, 1273, 1274
square, 1278
of finite height, particle in, 1279, 1281–1284, 1280
“What If?” questions, in problem solving, 47
Wheelchairs, 371, 371–372
Whirlpool galaxy, 388, 406
White dwarf star, 405
White light
dispersion and, 1072, 1073, 1073
visual perception of, 1116
Wien’s displacement law, 1235, 1238–1239
Wilkinson Microwave Anisotropy probe, 1471
Wilson, Charles, 1246
Wilson, Robert W., 1470, 1470–1471
WIMPs. See Weakly interacting massive particles (WIMPs)
Windmills, 177, 189
Wind power, 177
Windshield wipers, intermittent, 850
Wire-wound resistors, 812
Wood
specific heat, 594t
thermal conductivity, 609t
Work (W), 179, 314t
in adiabatic process, 604–605
to charge capacitor, 787, 787
by conservative force, 197–198, 198–199
by constant force, 178–181, 179, 180, 183
in cyclic process, 604
in deformable systems, 172
and displacement, 179
in electric field, 747–748, 750, 752–754
as energy transfer, 180, 190, 212, 212
in fluid flow, 430–431
by friction, 196–197, 198, 198, 222
on gas, 601, 601–608, 602, 603
by gravitational force, 197, 215
by heat engine, 655–656
in isobaric process, 605, 607–608
in isothermal process, 605–606, 606
in isovolumetric process, 605
and kinetic energy. See Work–kinetic energy theory
by magnetic field on displaced particle, 873
net (2W), 184, 184–185, 188–190, 314, 314t
by nonconservative force, 198, 198
path-dependent, 198, 198
path-independent, 189, 191, 193, 197, 198
and potential energy function, 198–199
in rotational motion, 313, 314, 314t
as scalar, 179, 181
by spring, 185, 185–187, 187, 187–188, 189–190
units of, 180
by varying force, 183–188, 184
Work function (ϕ), of metal, 1243, 1243t
Working voltage of capacitor, 791
Work–kinetic energy theorem, 188–191, 189, 212, 214, 215, 275
relativistic form of, 1216–1217
for rotational motion, 189, 313–314
World Health Organization, 1437
World line, 1207, 1207, 1209, 1209
World Meteorological Organization, 1352
Xenon (Xe)
electronic configuration, 1320, 1321
isotopes, 1397t
Xi (Ξ) [particle], 1454t, 1455, 1464t
X-rays, 1046t
bremsstrahlung, 1323, 1323, 1428
and cellular damage, 1408, 1433, 1434t
characteristic, 1322, 1323–1325
diffraction by crystals, 1174, 1174–1175, 1175
electron speed in, 748
and food preservation, 1436
line spectra, 1322, 1322–1325
medical uses of, 1323, 1323–1324
scattering from electrons, 1323, 1324–1325
Compton effect in, 1246–1248, 1246, 1247
X-ray spectra, 1322, 1322–1325
Yard, 4
Yerkes Observatory, 1122
γ-intercepts, A–8, A–8, A–10, A–10
Y meson, 1464
Young, Thomas, 1059, 1134, 1138
Young’s modulus (E), 373–374, 374t
Yukawa, Hideki, 1451, 1451–1452, 1453
Z bosons, 1448, 1449t, 1453, 1454, 1467–1468, 1468
Zeeman effect, 1313, 1313–1314
Zero
absolute, 572
as significant figures, 12
Zeroth law of thermodynamics, 568–570, 569, 569
Zeroth-order maximum, 1138, 1170
Zinc (Zn)
isotopes, 1397t
work function of, 1243t
Zweig, George, 1462, 1463
Conversions

Length
- 1 in. = 2.54 cm (exact)
- 1 m = 39.37 in. = 3.281 ft
- 1 ft = 0.3048 m
- 12 in. = 1 ft
- 3 ft = 1 yd
- 1 yd = 0.9144 m
- 1 km = 0.621 mi
- 1 mi = 1.609 km
- 1 μm = 10⁻⁶ m = 10⁻⁹ mm
- 1 light-year = 9.461 × 10¹⁵ m

Area
- 1 m² = 10⁴ cm² = 10.76 ft²
- 1 ft² = 0.0929 m²
- 1 in.² = 6.452 cm²

Volume
- 1 m³ = 10⁶ cm³ = 6.102 × 10⁴ in.³
- 1 ft³ = 1.728 in.³ = 2.83 × 10⁻² m³
- 1 L = 1000 cm³ = 1.057 qt = 0.0353 ft³
- 1 gal = 3.786 L = 231 in.³

Mass
- 1 000 kg = 1 t (metric ton)
- 1 slug = 14.59 kg
- 1 u = 1.66 × 10⁻²³ kg = 931.5 MeV/c²

Force
- 1 N = 0.2248 lb
- 1 lb = 4.448 N

Velocity
- 1 mi/h = 1.47 ft/s = 0.447 m/s = 1.61 km/h
- 1 m/s = 100 cm/s = 3.281 ft/s
- 1 mi/min = 60 mi/h = 88 ft/s

Acceleration
- 1 m/s² = 3.28 ft/s²
- 1 ft/s² = 0.3048 m/s²
- 1 ft/min² = 0.681 mi/min²

Pressure
- 1 bar = 10⁵ N/m² = 14.5 lb/in.²
- 1 atm = 760 mm Hg = 76.0 cm Hg
- 1 atm = 14.7 lb/in.² = 1.013 × 10⁵ N/m²
- 1 Pa = 1 N/m² = 1.45 × 10⁻⁴ lb/in.²

Time
- 1 yr = 365 days = 3.16 × 10⁷ s
- 1 day = 24 h = 1.44 × 10³ min = 8.64 × 10⁴ s

Energy
- 1 J = 0.738 ft·lb
- 1 cal = 4.186 J
- 1 Btu = 252 cal = 1.054 × 10³ J
- 1 eV = 1.602 × 10⁻¹⁹ J
- 1 kWh = 3.60 × 10⁶ J

Power
- 1 hp = 550 ft·lb/s = 0.746 kW
- 1 W = 1 J/s = 0.738 ft·lb/s
- 1 Btu/h = 0.293 W

Some Approximations Useful for Estimation Problems
- 1 m = 1 yd
- 1 kg = 2 lb
- 1 N = 4 lb
- 1 L = 4 gal
- 1 m/s = 2 mi/h
- 1 yr = π × 10⁷ s
- 60 mi/h = 100 ft/s
- 1 km = 1/2 mi

Note: See Table A.1 of Appendix A for a more complete list.

The Greek Alphabet

<table>
<thead>
<tr>
<th>Greek</th>
<th>Lower</th>
<th>Upper</th>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpha</td>
<td>Α</td>
<td>α</td>
<td>Iota</td>
<td>ι</td>
</tr>
<tr>
<td>Beta</td>
<td>β</td>
<td>β</td>
<td>Kappa</td>
<td>κ</td>
</tr>
<tr>
<td>Gamma</td>
<td>Γ</td>
<td>γ</td>
<td>Lambda</td>
<td>Λ</td>
</tr>
<tr>
<td>Delta</td>
<td>Δ</td>
<td>δ</td>
<td>Mu</td>
<td>μ</td>
</tr>
<tr>
<td>Epsilon</td>
<td>Ε</td>
<td>ε</td>
<td>Nu</td>
<td>ν</td>
</tr>
<tr>
<td>Zeta</td>
<td>Ζ</td>
<td>ζ</td>
<td>Xi</td>
<td>Ξ</td>
</tr>
<tr>
<td>Eta</td>
<td>Η</td>
<td>η</td>
<td>Omicron</td>
<td>Ω</td>
</tr>
<tr>
<td>Theta</td>
<td>Θ</td>
<td>θ</td>
<td>Pi</td>
<td>Π</td>
</tr>
</tbody>
</table>

www.aswarphysics.weebly.com
Standard Abbreviations and Symbols for Units

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Unit</th>
<th>Symbol</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>ampere</td>
<td>K</td>
<td>kelvin</td>
</tr>
<tr>
<td>u</td>
<td>atomic mass unit</td>
<td>kg</td>
<td>kilogram</td>
</tr>
<tr>
<td>atm</td>
<td>atmosphere</td>
<td>kmol</td>
<td>kilomole</td>
</tr>
<tr>
<td>Btu</td>
<td>British thermal unit</td>
<td>L</td>
<td>liter</td>
</tr>
<tr>
<td>C</td>
<td>coulomb</td>
<td>lb</td>
<td>pound</td>
</tr>
<tr>
<td>°C</td>
<td>degree Celsius</td>
<td>ly</td>
<td>light-year</td>
</tr>
<tr>
<td>cal</td>
<td>calorie</td>
<td>m</td>
<td>meter</td>
</tr>
<tr>
<td>d</td>
<td>day</td>
<td>min</td>
<td>minute</td>
</tr>
<tr>
<td>eV</td>
<td>electron volt</td>
<td>mol</td>
<td>mole</td>
</tr>
<tr>
<td>°F</td>
<td>degree Fahrenheit</td>
<td>N</td>
<td>newton</td>
</tr>
<tr>
<td>F</td>
<td>farad</td>
<td>Pa</td>
<td>pascal</td>
</tr>
<tr>
<td>ft</td>
<td>foot</td>
<td>rad</td>
<td>radian</td>
</tr>
<tr>
<td>G</td>
<td>gauss</td>
<td>rev</td>
<td>revolution</td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
<td>s</td>
<td>second</td>
</tr>
<tr>
<td>H</td>
<td>henry</td>
<td>T</td>
<td>tesla</td>
</tr>
<tr>
<td>h</td>
<td>hour</td>
<td>V</td>
<td>volt</td>
</tr>
<tr>
<td>hp</td>
<td>horsepower</td>
<td>W</td>
<td>watt</td>
</tr>
<tr>
<td>Hz</td>
<td>hertz</td>
<td>Wb</td>
<td>weber</td>
</tr>
<tr>
<td>in.</td>
<td>inch</td>
<td>yr</td>
<td>year</td>
</tr>
<tr>
<td>J</td>
<td>joule</td>
<td>Ω</td>
<td>ohm</td>
</tr>
</tbody>
</table>

Mathematical Symbols Used in the Text and Their Meaning

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>=</td>
<td>is equal to</td>
</tr>
<tr>
<td>≠</td>
<td>is not equal to</td>
</tr>
<tr>
<td>∝</td>
<td>is proportional to</td>
</tr>
<tr>
<td>~</td>
<td>is on the order of</td>
</tr>
<tr>
<td>></td>
<td>is greater than</td>
</tr>
<tr>
<td><</td>
<td>is less than</td>
</tr>
<tr>
<td>≈</td>
<td>is approximately equal to</td>
</tr>
<tr>
<td>Δx</td>
<td>the change in x</td>
</tr>
<tr>
<td>∑ x_i</td>
<td>the sum of all quantities x_i from i = 1 to i = N</td>
</tr>
<tr>
<td></td>
<td>the absolute value of x (always a nonnegative quantity)</td>
</tr>
<tr>
<td>Δx → 0</td>
<td>Δx approaches zero</td>
</tr>
<tr>
<td>dx/dt</td>
<td>the derivative of x with respect to t</td>
</tr>
<tr>
<td>∂x/∂t</td>
<td>the partial derivative of x with respect to t</td>
</tr>
<tr>
<td>∫</td>
<td>integral</td>
</tr>
</tbody>
</table>