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Vectors Unit 1

Contents 
Section Learning competencies 

1.1  Representation • Define the term vector. 
 of vectors • Give some examples of vector quantities. 
 (page 1) • Represent vectors both analytically and graphically.

1.2  Addition and • Define the term resultant vector.    
 subtraction of • Add two vectors together (including vectors in the same direction, 
 vectors  opposite directions and at right angles to each other).      
 (page 3) • Determine the angle of a resultant vector.
  • Use Pythagoras’s theorem to determine the size of the resultant vector.
  • Resolve a vector into horizontal and vertical components.
  • Find the direction and resultant of two or more vectors using the   
   component method. 

1.3  Some  • Define the term equilibrium.    
 applications of • Explain the importance of forming a triangle of three vectors.
 vectors • Carry out some experiments to investigate vectors. 
 (page 10)       

Whenever you take a measurement of an object you are recording 
a physical property of that object. Further physical properties 
can then be calculated using these measurements. All physical 
quantities are either scalar or vector quantities. This unit looks at 
vectors in detail, including examples of vectors, how to add them 
up and why they are used. Vectors are crucial in a wide range of 
applications, from landing on the Moon to crossing rivers and to 
keeping bridges standing up!

1.1 Representation of vectors

By the end of this section you should be able to:

• Define the term vector.

• Give some examples of vector quantities.

• Represent vectors both analytically and graphically.

What are vectors?
If you were asked for directions to your house, simply saying  
‘6 km away’ would not be very helpful. Instead you need to 
provide more information. Along with the distance a direction is 
also required. Saying ‘6 km due North from here’ provides much 
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Unit 1: Vectors

Grade 9

more information. You have provided a magnitude (6 km) and a 
direction (North). Quantities that have both a size and a direction 
are referred to as vectors.

Vectors are incredibly useful tools in both mathematics and physics. 

A vector quantity has both magnitude and direction.•	

The alternative, a scalar quantity, just has magnitude (size) and 
there is no direction associated with it. For example, it would be 
silly to say a chemical energy of 600 J North! Energy is an example 
of a scalar quantity.

All vector quantities have a direction associated with them. For 
example, a force of 6 N to the left, or a displacement of 45 km South.

Table 1.1 Some examples of vector and scalar quantities

Vector quantities Scalar quantities

Forces (including weight) Distance

Displacement Speed

Velocity Mass

Acceleration Energy

Momentum temperature

How can we represent vectors?
As all vectors have a direction, we must include one when writing 
them down. For example, a displacement of 13 km would not be 
enough information. We must write 13 km South West. 

We usually represent vectors using arrows. The length of this 
arrow represents the size of the quantity and the way it is pointing 
represents its direction.

Notice in Figure 1.2 that the 50 km vector is twice the size of the   
25 km vector.

We often represent vector quantities in equations using bold type 
or with an arrow above the quantity. For example, to represent force 
we might write F or F

→
. So an important equation like F = ma would 

be written as F = ma or F
→
 = ma→  as both force and acceleration are 

vector quantities.

Vectors and scalars should not be confused with SI units. 

The International System of Units (SI) defines seven basic units of 
measurement. These may be seen in Table 1.2 at the top of the next 
page and all have very exact definitions.  For example, the second 
is defined as the duration of 9 192 631 770 periods of the radiation 
corresponding to the transition between the two hyperfine levels of 
the ground state of the caesium-133 atom!

All other SI units are derived from combining one or more these 
units. For example, the newton is the SI derived unit of force, 1 N is 
equivalent to 1 kg m/s2.

KEY WORDS
scalar a quantity specified 
only by its magnitude
magnitude size
vector a quantity specified by 
its magnitude and direction

DiD yoU knoW?
Vectors, as they are 
understood today, first 
appeared in a publication 
called Vector Analysis by 
the American J. W. Gibbs in 
1881.

6 N

Figure 1.1 An arrow representing 
a force of 6 N at about 55° to the 
horizontal.

Think about this… 
Magnitude is a scientific 
way of describing the size 
of a quantity. For example, 
a velocity of 50 m/s north 
has a magnitude of 50 m/s.
Scalars are quantities that 
have a magnitude only.

Figure 1.2 Two different 
displacement vectors, represented 
by arrows.

50 km North 25 km East

55o
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If you have several parallel vectors, the resultant may be found by 
adding all the vectors in the same direction and subtracting those 
going in the opposite direction. This can be seen in Figure 1.6c.

Combining perpendicular vectors
But what if the vectors to be added are not parallel? 

For example, think about a swimmer swimming from one river 
bank to another. He swims across the river perpendicular to the 
river bank at 2.0 m/s. However, the river is flowing parallel to the 
river bank at 1.0 m/s. How can you find his resultant velocity?

One method is referred to as the parallelogram method. This 
involves drawing the two vectors with the same starting point. 
The two vectors must be drawn to a scale and are made to be the 
sides of the parallelogram. The resultant will be the diagonal of the 
parallelogram.

Worked example
1. Choose a scale of 5 cm to represent 1 m/s.

2. Draw the vectors to represent the different velocities of the 
man starting at the same point.

3. Complete the parallelogram (which in the case of 
perpendicular vectors is always a rectangle). 

4. Draw the resultant vector diagonally across the 
parallelogram, from A to C (this represents the resultant 
velocity of the swimmer).

5. Measure the length of AC and 
convert into m/s. it should  
be around 11.25 cm long, and 
this is equivalent  
to 2.25 m/s (using 1 m/s is 5 
cm). the angle from the river  
bank should be measured as 
around 64°. 

Pythagoras’s theorem
The square of the hypotenuse of a right-angled triangle is equal to 
the sum of the squares on the other two sides.

flow of river

Figure 1.7 Obang going across 
Baro River

Activity 1.3: Using the 
parallelogram method

Using the parallelogram 
method, determine the 
resultant vector in each case:

• 10 km left, 20 km up

• 150 km north, 50 km West

• 7 km East, 14 km north

Discussion activity

What is your total 
displacement during the 
school day? You begin the day 
by getting out of bed, and end 
it by returning to bed.

2.0 m/s

A

BC

D
1.0 m/s

DiD yoU knoW?
Pythagoras (or to give him 
his full name, Pythagoras of 
Samos) was born in ancient 
Greece around 570 BC. 
That’s over 2500 years ago!

Figure 1.9 A right-angled triangle

a

c

a2 = b2 + c2

                                       b

Discussion activity

What are the advantages of the parallelogram method over using 
mathematics to solve vector problems?

Figure 1.8 The resultant 
velocity.

θ
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An alternative to the parallelogram method involves using 
Pythagoras’s theorem to determine the size of the resultant vector. 
Trigonometry can then be used to find its direction. This gives a 
much more precise answer.

Looking again at the swimmer example, a quick sketch of the 
vectors can be seen in Figure 1.10.

Because the vectors are perpendicular, they form a right-angled 
triangle. The resultant is the hypotenuse, so using Pythagoras’s 
theorem we get:

a2 = b2 + c2  State principle or equation to be used (Pythagoras’s theorem)
resultant2 = 1.02 + 2.02  Substitute in known values  

resultant2 = 5.0  Solve for resultant2

resultant = √5.0  Rearrange for resultant (take square root) and solve  
resultant = 2.24 m/s (to 3 sig fig)  Clearly state the answer with unit   
This method may be used for any two perpendicular vectors. 
However, we are missing the direction – all vectors must include a 
direction.

Trigonometry

Looking back at our simple diagram.

 

1.0 m/s

resultant 
2.0 m/s

river bank

Figure 1.12 The swimmer’s velocity vectors shown as a right-angled 
triangle including the river bank.

Using trigonometry, we can determine angle θ. As we have the side 
opposite the angle (1.0 m/s) and the side adjacent to the angle  
(2.0 m/s) we should use:

tan θ =
   opposite   

State principle or equation to be used (trigonometry)
  adjacent

1.0 m/s

resultant 
2.0 m/s

Figure 1.10 The swimmer’s velocity vectors 
shown as a right-angled triangle.

Figure 1.11 Terms used in 
trigonometry

Think about this… 
the opposite side is 
so called because it is 
opposite the angle.

KEY WORDS
hypotenuse the side of a 
right-angled triangle opposite 
the right angle
opposite the side of a right-
angled triangle opposite the 
angle being calculated
Pythagoras’s theorem 
theorem for calculating the 
angles and length of the sides 
of a right-angled triangle
right angle an angle of 90 
degrees

θ

sin θ =  opposite
 hypotenuse

cos θ =  adjacent
 hypotenuse

tan θ = opposite
 adjacent

opposite

hypotenuseadjacent

θ
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tan θ =
  1.0  

Substitute in known values
              2.0
tan θ = 0.5  Solve for tan θ
θ = tan–1 0.5  Rearrange equation to make θ the subject and solve
θ = 26.6°  Clearly state the answer with unit
This means the angle between the resultant velocity and the river 
bank is given by 90° – 26.6° = 63.4°.

Both methods give nearly identical answers; the mathematical 
method offers more precise values.

Table 1.3 Comparing mathematical and diagrammatic methods for 
finding resultants

Parallelogram method Mathematical method

Size 2.25 m/s 2.24 m/s

Direction 64° 63.4°

If you have more than two perpendicular vectors you add up the 
parallel ones first leaving you with two perpendicular vectors from 
which you can determine the resultant. 

non-parallel and non-perpendicular vectors
So we can now add parallel vectors and perpendicular vectors, 
but what if the two vectors to be added are not parallel or 
perpendicular? An example of two forces can be seen below.

We could use the parallelogram method, as before. This can be 
seen below, but notice that as the vectors are not perpendicular the 
parallelogram is not a rectangle.

The size and the angle of the resultant could then be measured 
directly. But what if we wanted to find a more precise, mathematical 
answer?

Draw the two vectors from the same origin. A diagonal passing 
through their origin describes their resultant.

Resolving vectors
In order to solve the problem mathematically we need to resolve 
one of the vectors. Resolving means splitting one vector into two 
component vectors (usually one horizontal and one vertical). These 
components have the same effect as the original vector. This process 
is almost the reverse of combining two perpendicular vectors. An 
example can be seen on the next page in Figure 1.16; the 8.0 N force 
can be resolved into two component vectors that when combined 
have the same effect.

Figure 1.13 Combining more 
than two vectors

These four vectors become two

60o

8.0 N 6.0 N

Figure 1.14 Non-parallel and 
non-perpendicular vectors  
(in this case forces)

Figure 1.15 Parallelogram 
method for non-perpendicular 
vectors

KEY WORD
resolve to split a force or 
vector into its horizontal and 
vertical components

Trigonometry

hypotenuse × sin θ = opposite

hypotenuse × cos θ = adjacent
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The component vectors form the sides of a right-angled triangle. 
They make up the opposite and adjacent sides of the triangle. As we 
know the size of the hypotenuse (in this case 8.0 N) and the angle 
(in this case 60°) we can then use trigonometry to find their sizes.

Figure 1.17 Component vectors as a right-angled triangle

force

horizontal
component

Figure 1.18 This is an example of where resolving forces may be 
useful. Although the rope is at an angle it is only the horizontal 
component that causes the box to move.

So working through we get:

hypotenuse × sin θ = opposite•	

8.0 N × sin 60° = 6.9 N, the vertical component•	

hypotenuse × cos θ = adjacent•	

8.0 N × cos 60° = 4.0 N, the horizontal component•	

How is this useful?

We now have three vectors to add together; instead of the 8 N 
vector we have two components.

These can then be added to give 10.0 N horizontally and  
6.9 N vertically. Using Pythagoras and trigonometry, the size  
and direction of the resultant can be calculated as before.

10.0 N

6.9 N

Figure 1.20 Solution: the resultant is 12.1 N at an angle of 34.6° from 
the horizontal. Check it yourself!

Figure 1.16 Components shown 
in blue

60o

8.0 N

6.9 N 4.0 N 6.0 N

Figure 1.19 Component vectors 
to add

adjacent

opposite

θ
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Figure 1.21 Vectors are really important to pilots in planning  
their route.

This technique works for multiple vectors at different angles.  
For example, adding two velocities (this could be the velocities  
of an aircraft, one due to the direction it is moving the other due  
to the wind).

Each of these vectors could then be resolved into horizontal and 
vertical components. This would give you four vectors to combine.

These could then be added to give two perpendicular vectors. 
Notice that the horizontal vectors are in different directions and so 
should be subtracted. 

Finally you can use Pythagoras and trigonometry to determine the 
size and direction of the resultant.

Summary

in this section you have learnt that:

the resultant is the sum of two or more vectors.•	

When adding vectors their direction is very important.•	

the parallelogram method is a quick and easy way to •	
determine the resultant vector.

to add perpendicular vectors mathematically you use •	
Pythagoras’s theorem to find the size of the resultant and 
trigonometry to determine its direction.

Resolving a vector means splitting it into two components.•	

Resolving vectors enables you to find the result for vectors •	
at different angles.

Activity 1.4: Resultant
forces
Mathematically determine 
the resultant force if two 
forces, A and B, act on an 
object. Force A is 85 n and 
is at an angle of 20° to the 
horizontal. Force B is 125 n 
and is at an angle of 60° to 
the horizontal.

30o

120 N

80o

100 N

Figure 1.22 Two vectors at 
different angles

Figure 1.23 Four components 
from the two vectors in Figure 
1.22
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Review questions
1.  Calculate the resultant force in each of the examples below.

�

���� ����

�

�����
�����

�����

�
����

����

Figure 1.24 Examples for Question 1 

2.  An aircraft is travelling due North with a velocity of  
100 m/s. A strong wind blows from the West with a velocity of 
25 m/s. Find the resultant velocity, using both the parallelogram 
method and the mathematical method.

3.  Find the resultant force in Figure 1.22.

1.3 Some applications of vectors

By the end of this section you should be able to:

• Define the term equilibrium.

• Explain the importance of forming a triangle of three 
vectors.

• Carry out some experiments to investigate vectors.

What does equilibrium mean?
As well as their importance in navigation (displacement and 
velocity vectors), force vectors are incredibly important to all 
buildings and structures. Often huge forces are involved but in 
the case of a bridge or building there should be no resultant forces 
acting. If there was, the bridge would move and perhaps topple over.

When there is no resultant force acting on an object it is said to be 
in equilibrium.

This is easy to imagine in one dimension.

4 N

8 N

6 N

6 N

Figure 1.25 Forces in equilibrium

The sum of the forces to the left is 12 N. The sum of the forces to the 
right is 12 N (you could say –12 N). Adding these together gives a 

KEY WORD
equilibrium a state of 
balance where there are no 
resulting forces acting on a 
body

M01_PHYS_SB_ETHG9_0162_U01.indd   10 5/8/10   11:14:31 am



11

Unit 1: Vectors

Grade 9

resultant of 0 N. This object is in equilibrium, there is no resultant 
force acting on it.

In two dimensions this gets a little more difficult. If the vectors are 
just perpendicular you add up the horizontal forces (those in the 
x direction) and these should give a resultant force of zero. You 
would then repeat the process for the vertical forces (those in the 
y direction). If all the forces add up to zero then the object is in 
equilibrium. 

Scale diagrams
If the forces are not perpendicular then there are two techniques 
you could use to check if the object is in equilibrium. The first 
involves drawing a scale diagram. 

To do this you simply:

select a scale for your forces •	

draw them to scale, one after the other (in any order), lining •	
them up head to tail ensuring the directions are correct.

If you end up where you started then all the forces cancel out 
and there is no resultant force (Figure 1.26). However, if there is 
a gap then there must be a resultant force and the object is not in 
equilibrium (Figure 1.27).

Triangle of vectors
If there are only three forces acting, then the scale diagram will 
always be a triangle if the object is in equlibrium. 

Figure 1.28 Triangle of vectors

Proving equilibrium mathematically
If you have several forces you can check they are in equilibrium 
mathematically.

Take three forces below.

 

DiD yoU knoW?
When in equilibrium, all the 
horizontal forces (those in 
the x direction) must add 
up to equal zero. This can be 
written as:

ΣFx = 0

Σ means ‘sum of ’. So this 
literally means that the 
sum of all the forces in the 
x direction is zero. 

The same is true for the 
vertical forces (those in the 
y direction). This can be 
written as:

ΣFy = 0

Start End

Start/End

Figure 1.26 Scale diagram 
showing no resultant force

Figure 1.27 Scale diagram 
showing a resultant force (the red 
arrow)

Figure 1.29 Three forces, A, B 
and C at different angles

42o

6o64o

106 N
(A) (B) (C)

84 N

42 N
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Each of these forces could then be resolved into horizontal and 
vertical components. This would give six component vectors – three 
vertical and three horizontal.

Discussion activity

If you had two forces could you work out the size and direction of 
a third force required to keep the object in equilibrium?

 
(A)

78.8 N 36.8 N 42.0 N

70.9 N
75.5 N

4.6 N

(B) (C)

Figure 1.30 Six components from the three forces in Figure 1.29

Adding up the vertical vectors:

70.9 N – 75.5 N + 4.6 N = 0 N

Adding up the horizontal vectors:

78.8 N – 36.8 N – 42.0 N = 0 N

There is no resultant force so the object must be in equilibrium. 
Be careful to ensure you add or subtract the vectors depending on 
their direction.

You could repeat this technique for any number of forces! If the 
components don’t all cancel out then the object will not be in 
equilibrium.

The box pulled by Chaltu, Biruk and Abrehet is in 
equilibrium. This means that:

The sum of the forces exerted by Abrehet and Biruk 
is equal to the force exerted by Chaltu

OR

The sum of the forces exerted by Biruk and Chaltu is 
equal to the force exerted by Abrehet

OR

The sum of the forces exerted by Chaltu and Abrehet 
is equal to the force exerted by Biruk.

90º
B

A

C

Figure 1.31 Investigating vectors

Chaltu

Biruk

Abrehet
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Activity 1.5: Experimentally determining equilibrium
there are a number of experiments you could do to investigate 
forces in equilibrium. Here is one example.

you are going to pull on a block of wood with two forces. you 
will find the resultant of the two forces, and then check your 
findings by vector addition.

• Find a suitable block of wood, and three forcemeters 
(newtonmeters or spring balances). Place the block on a 
sheet of plain paper.

• Attach two of the forcemeters (A and B) to one end of the 
block, as shown in Figure 1.31. Attach the third (C) to the 
opposite end.

• one person pulls on each forcemeter. A and B should be 
at an angle of 90° to each other. C is in the opposite 
direction. Pull the forcemeters so that their effects balance.

• on the paper, record the magnitudes and directions of the 
three forces.

• now find the resultant of forces A and B (either by scale 
drawing or by calculation).

• Because force C balances forces A and B, it must be equal 
and opposite to the resultant of A and B. Did you find this?

• Repeat the experiment with different forces at a different 
angle.

you could repeat the experiment without one of the 
forcemeters. you could then, either by scale diagram or 
mathematically, determine the size and direction of the 
unknown force.

Review questions
1.  What is meant by the term equilibrium? 

2.  Give three examples of objects in equilibrium found in the 
classroom and draw an approximate scale diagram for the 
object.

3.  Three forces are acting on an object (Figure 1.32) which is in 
equilibrium. Determine force A.

 
 

 
Figure 1.32 Three forces, acting on a ship.

Force A

1200 N

1400 N

51.3o

42.0o
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Summary

in this section you have learnt that: 

An object is said to be in equilibrium when there are no •	
resultant forces acting on it.

Scale diagrams can be used to determine whether or not an •	
object is in equilibrium.

if there are three forces acting on an object in equilibrium •	
then when drawn they form a triangle.

Using the component method you can mathematically •	
determine if an object is in equilibrium. 

End of unit questions 
1.   Distinguish between a vector and a scalar quantity. Give four 

examples of each.

2.   State which of the following are vectors and which are scalars: 
distance, mass, time, weight, volume, density, speed, velocity, 
acceleration, force, temperature and energy.

3.   A velocity of magnitude 40 m/s is directed at an angle of 40° 
East of North. Draw a vector on paper to represent this velocity.

4.   A car travels 3 km due North, then 5 km East. Represent 
these displacements graphically and determine the resultant 
displacement.

5.   Two forces, one of 12 N and another of 24 N, act on a body in 
such a way that they make an angle of 90° with each other. Find 
the resultant of the two forces.

6.   Two cars A and B are moving along a straight road in the same 
direction with velocities of 25 km/h and 40 km/h, respectively. 
Find the velocity of car B relative to car A.

7.   Calculate the component of a force of 200 N at a direction of 
60° to the force. 
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It is almost impossible to imagine yourself living in a world without 
motion. Stand still, perfectly still; are you in motion? Yes you are… 
the Earth is spinning at over 450 m/s and even more mind boggling, 
it is travelling around the Sun with a speed of 30 000 m/s! You are 
moving very fast.

Every physicist needs a detailed understanding of motion. From 
catching a ball to driving a car, motion affects our daily lives. How 
things move is an important aspect of physics.

This unit looks at how things move. You will learn techniques to 
correctly describe the motion of objects, how to calculate how 
a certain object will move and the fact that all motion is in fact 
relative.

Motion in a straight line Unit 2

Contents 
Section Learning competencies 

2.1		Uniform	motion	 •	 Describe	the	characteristics	of	uniform	motion.	
	 		(page	16)	 •	 Define	the	terms	distance,	displacement,	speed	and	velocity.
	 			 •	 	Explain	the	difference	between	distance	and	displacement.
	 			 •	 	Distinguish	between	average	and	instantaneous	speeds	and	velocities.

2.2		Uniformly		 •	 Define	the	term	acceleration.
	 		accelerated	 •	 Describe	the	meaning	of	the	term	uniformly	accelerated	motion.
	 		motion	 •	 	Explain	the	meaning	of	the	unit	m/s2.
	 		(page	19)	 •	 	Use	velocity–time	graphs	to	determine	the	acceleration	of	an	object.	

2.3		Graphical		 •	 Describe	the	key	features	of	distance–time	and	displacement–time
	 		description	of		 	 graphs.
	 		uniformly		 •	 Use	displacement–time	graphs	to	determine	the	velocity	of	an	object.
	 		accelerated		 •	 Describe	the	key	features	of	velocity–time	graphs.
	 		motion		 •	 Use	velocity–time	graphs	to	determine	the	acceleration	of	an	object	and
	 		(page	22)	 	 the	displacement.

2.4		Equations	of		 •	 Describe	the	equations	of	uniformly	accelerated	motion.
	 		uniformly	 •	 Use	these	equations	to	solve	problems.	
	 		accelerated		 •	 Explain	the	importance	of	using	the	correct	sign	convention	(+	or	–)	
	 		motion		 	 when	dealing	with	velocities	and	accelerations.
	 		(page	28)	 •	 Define	the	meaning	of	the	term	free	fall.
	 			 •	 Apply	the	equations	to	solve	problems	relating	to	free	fall.

2.5		Relative		 •	 Explain	the	meaning	of	the	term	reference	point	(or	reference	frame).
	 		velocity	in	one		 •	 Describe	the	relative	velocities	of	objects.
	 		dimension		 •	 Calculate	the	relative	velocity	of	a	body	with	respect	to	another	body
	 		(page	36)	 	 when	moving	in	the	same	or	in	the	opposite	direction.
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Activity 2.1: Distance 
and displacement for a 
journey
Using	a	map,	design	a	
journey	from	one	town	
to	another.	By	carefully	
considering	the	route	
determine	the	distance	and	
the	displacement	for	the	
journey.

Repeat,	but	this	time	make	
the	journey	much	larger!	
Perhaps	starting	at	Addis	
Ababa	and	ending	up	in	a	
different	continent.

16

UNIT 2: Motion in a straight line

2.1 Uniform motion

By	the	end	of	this	section	you	should	be	able	to:

•	 Describe	the	characteristics	of	uniform	motion.

•	 Define	the	terms	distance,	displacement,	speed	and	
velocity.

•	 Explain	the	difference	between	distance	and	displacement.

•	 Distinguish	between	average	and	instantaneous	speeds	and	
velocities.

What	is	uniform	motion?
In order to understand motion there are several key terms we need 
to understand. Uniform motion refers to an object moving at a 
steady speed in a straight line. If it is speeding up, slowing down or 
changing its direction then its motion is not uniform.

An example could be a bus driving at a steady 100 km/h along a 
straight road. The bus’s motion is said to be uniform.

Distance and displacement
We have used the term displacement in the previous unit. 
Displacement is a vector quantity and so it is very different from 
distance.  

North
A B

Figure 2.1 The difference between distance and displacement for a 
journey

Imagine a person travels from A to B following the black line 
(Figure 2.1). They would travel a distance of 32 km. This is how far 
they have actually travelled. 

However, their displacement (the dotted line) would only be 12 km 
East. This is how far they have travelled in a particular direction (in 
this case East). 

A more extreme example could be athletes running around a 
circular track. If they complete six laps, with each lap being 1.0 km, 
then they would have travelled a distance of 6.0 km. However, as 
they are back where they started, their displacement would be zero!

Each lap covers a distance of 1.0 km but the displacement after each 
lap is zero. 

KEY WORDS
uniform motion the motion 
of an object moving at a 
steady speed in a straight line
displacement distance 
moved in a particular 
direction

Think about this… 
If	an	object	is	travelling	in	
a	circle	at	a	steady	speed	
why	is	this	not	considered	
to	be	uniform	motion?

Start/Finish

Figure 2.2 Displacement when 
travelling in a circle

Discussion activity

What would the distance and 
displacement be after half a 
lap?

What about three and a half 
laps?
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Speed and velocity
The differences between distance and displacement are even more 
important when calculating average speed and average velocity.

average speed =  distance travelled  

                                   time taken         

average velocity =  displacement
                                    time taken

Speed is a scalar quantity whereas velocity is a vector quantity. 
Therefore, velocity must always include a direction. 

Using the journey in Figure 2.1 we can calculate the average speed 
and the average velocity. Let’s assume it took 6 hours to complete 
the journey.

average speed =  distance travelled  State principle or equation to be
                                time taken       used (definition of average speed)       

average speed =  32 km   Substitute in known values and complete

                     6 h     calculation

average speed = 5.3 km/h  Clearly state the answer with unit

No direction needs to be given because speed is a scalar quantity

average velocity =  displacement  State principle or equation to be
                              time taken     used (definition of average velocity)

average velocity =  12 km, East  Substitute in known values and  

                        6 h         complete calculation

average velocity = 2.0 km/h East  Clearly state the answer with unit

The differences between average speed and average velocity can be 
seen clearly in this simple calculation. 

Average speed and velocity
It is very important to stress that these are averages. At different 
times the person could have been travelling faster or slower than 
their average speed. Think about a bus ride from one city to another 
– the journey may be 200 km long and take four hours. This would 
give an average speed of 50 km/h. 

Looking at the journey in more detail we might find on the main 
road that the bus travels at 100 km/h but in the city it may have to 
travel much slower, perhaps 30 km/h. Also, being a bus, it has to 
stop to pick people up! Its speed is then 0 km/h. The bus is very 
rarely travelling at 50 km/h.

Average speeds and average velocities are useful but they do leave 
out a great deal of information about the nature of the journey.

Activity 2.2: Average 
speed and average 
velocity
In	small	groups,	use	a	metre	
stick	or	travel	wheel	to	
measure	out	a	short	(15	m)	
course.	

Draw	a	scale	diagram	of	your	
course.

Take	turns	to	run,	walk,	
crawl	(whatever	you	like!)	
through	the	course	making	
sure	to	time	your	journey	
each	time.

Use	your	measurements	
to	determine	your	average	
speed	and	average	velocity	
in	each	case.

Think about this… 
If	Deratu	takes	15	minutes	
to	complete	12	laps	on	the	
running	track	at	Addis	Ababa	
Stadium,	what	is	her	average	
speed if one lap is 450 m 
long?	What	would	her	average	
velocity	be?

Figure 2.3 What speed and 
velocity did Deratu achieve?
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KEY WORDS
instantaneous speed speed 
at a given instant in time

instantaneous velocity 
velocity at a given instant in 
time

Instantaneous speed and velocity
As an alternative, the terms instantaneous speed and 
instantaneous velocity are used. In the case of instantaneous 
velocity, this refers to the velocity at any given instant in time (the 
same is true for speed). 

Instantaneous velocity is often changing. This might be due to the 
object getting faster, getting slower or even changing direction. This 
is because velocity is a vector quantity, so if the direction changes so 
does the velocity.

An extreme example of this is an object going around a circle at a 
steady speed. Here the speed of the object is constant but its velocity 
is always changing.

If an object is travelling with uniform motion then the 
instantaneous velocity (and speed) remains the same.

Summary

In	this	section	you	have	learnt	that:

•	 Uniform	motion	is	when	an	object	travels	at	constant	speed	
in a straight line.

•	 Distance	is	a	scalar	quantity,	whereas	displacement	is	a	
vector	quantity.

•	 Average	speed	=	distance	travelled	/	time	taken.

•	 Average	velocity	=	displacement	/	time	taken.

•	 Instantaneous	velocity	is	the	velocity	at	any	given	instant	
in time.

Review questions
1. Using examples, explain the difference between distance and 

displacement.

2. The Earth is, on average, 150 million km from the Sun. 
Calculate its average speed in orbit.

3. A runner jogs 12 km North then turns and runs 16 km East in 
three hours.

a) What is his displacement?

b) Calculate his average speed.

c) Calculate his average velocity (including the direction).
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2.2 Uniformly accelerated motion

By	the	end	of	this	section	you	should	be	able	to:

•	 Define	the	term	acceleration.

•	 Describe	the	meaning	of	the	term	uniformly	accelerated	
motion.

•	 Explain	the	meaning	of	the	unit	m/s2.

•	 Use	velocity–time	graphs	to	determine	the	acceleration	of	
an	object

What	is	acceleration?
The term acceleration has a very specific definition.

Acceleration is the rate of change of velocity.•	

This means that whenever an object’s velocity is changing it 
is accelerating. The faster the velocity changes, the greater the 
acceleration. Acceleration is the change in velocity per unit time.

It is important to note that it is a change in velocity not a change in 
speed. A change in velocity might be:

getting faster•	

getting slower•	

changing direction.•	

It is possible to travel at a constant speed but with a changing 
velocity. For example, any object moving at a steady speed in a circle 
must be accelerating even though its speed is not changing. This is 
because when an object moves in a circle:

its direction changes.•	

This means its velocity must be changing •	

and if its velocity is changing it is accelerating.•	

KEY WORD
acceleration the rate of 
change of velocity

DID	yoU	knoW?
The famous Ethiopian great 
distance runner, Miruts 
Yifter, was nicknamed the 
“gear changer”. He used to 
accelerate at the finishing 
lap of 10 000 and 5000 m 
races.

Figure 2.4 The Earth follows a near 
perfect circular orbit. It travels  
at a fairly steady speed of around 
30 000 m/s but its velocity is always 
changing.
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The acceleration of an object depends on the forces acting on it 
(more on this in unit 3).

If these forces don’t change then the acceleration of the object 
doesn’t change. Uniform acceleration refers to situations where 
the acceleration of an object remains constant. This might be an 
acceleration of 0 m/s2, in which case the velocity of the object also 
remains constant. Most real world situations involve changing 
forces (most notably drag as objects get faster); this means the 
acceleration of an object often changes as it gets faster.

What does 8 m/s2 mean?
Acceleration has strange units. 

Velocity is usually measured in m/s and as acceleration is the 
change in velocity per second, acceleration is measured in m/s/s  
or m/s2.

An acceleration of 8 m/s2 means the object will be increasing its 
velocity by 8 m/s every single second. So if it started from rest, then 
after 1 second it would be travelling at 8 m/s, after 2 seconds at  
16 m/s, after 3 second at 24 m/s, etc.

Alternatively, an acceleration of –9 m/s2 means the velocity decreases 
by 9 m/s every single second. Imagine an object initially travelling 
at 45 m/s. It accelerates at –9 m/s2 (or you could say decelerates at 
9 m/s2). After one second it would be travelling at 36 m/s, after two 
seconds at 27 m/s, after three seconds at 18 m/s, etc.

Acceleration	calculations
To calculate acceleration we use:

average acceleration =  change in velocity   
                                                time taken

For example, a car going from 10 m/s to 30 m/s in 4 seconds:

average acceleration =  change in velocity  State principle or equation 
                                              time taken           to be used (definition of 

average acceleration)

average acceleration =  (30 m/s – 10 m/s)  Substitute in known values
                                                    4 s

average acceleration =  20 m/s  Complete calculation in brackets 
                                            4 s
average acceleration = 5 m/s2  Clearly state the answer with unit

It is a positive number as the car’s velocity is increasing from  
10 m/s to 30 m/s. Its velocity increases by 5 m/s every second.

What about the same car braking to a stop? If it goes from 30 m/s to 
0 m/s (stop) in 10 seconds, what is its acceleration?

average acceleration = change in velocity  State principle or equation
                                              time taken         to be used (definition of           
                                                            average acceleration)

Figure 2.5 A car increases its 
velocity as it accelerates.
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average acceleration =  (0 m/s – 30 m/s)  Substitute in known values
                                                  10 s

average acceleration = –30 m/s  Complete calculation in brackets
                                           10 s

average acceleration = –3 m/s2  Clearly state the answer with unit

It is a negative number because the car’s velocity is decreasing from 
30 m/s to 0 m/s. Its velocity decreases by 3 m/s every second until it 
comes to rest.

A more complex problem might involve calculating the original 
velocity of an object. 

For example, an aircraft accelerates at 10 m/s2 for 15 s. Its final 
velocity is 320 m/s. Find its initial velocity before it accelerated.

average acceleration =   change in velocity
 time taken

This can be rearranged to:

average acceleration × time taken = change in velocity 

10 m/s2 × 15 s = change in velocity 

150 m/s = change in velocity 

The final velocity is 320 m/s and the change in velocity is  
150 m/s. To find the initial velocity we use:

initial velocity = final velocity – change in velocity

initial velocity = 320 m/s – 150 m/s

initial velocity = 170 m/s

Summary

In	this	section	you	have	learnt	that:

•	 Acceleration	is	defined	as	the	rate	of	change	of	velocity.

•	 Acceleration	is	measure	in	m/s2.

•	 When	an	object	is	uniformly	accelerated,	its	acceleration	
remains	constant.	

Review questions
1. Define acceleration and state its units.

2. A car accelerates from 10 m/s to 28 m/s in 6 s. Find the average 
acceleration.

3. An aircraft decelerates at 0.5 m/s2. After 8 minutes its velocity 
has dropped to 160 m/s. Find its initial velocity.
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2.3 Graphical description of uniformly accelerated
 motion

By	the	end	of	this	section	you	should	be	able	to:

•	 Describe	the	key	features	of	distance–time	and	
displacement–time	graphs.

•	 Use	displacement–time	graphs	to	determine	the	velocity	 
of	an	object.

•	 Describe	the	key	features	of	velocity–time	graphs.

•	 Use	velocity–time	graphs	to	determine	the	acceleration	 
of	an	object	and	the	displacement.

Motion graphs
Average velocities can only tell us a certain amount of information. 
If we need more detail then motion graphs are used. In order to 
determine instantaneous velocities we can plot displacement–time 
graphs.

A graph is a useful way of showing how something has moved. To 
draw a graph, we need information about an object’s displacement 
at different times. Table 2.1 shows the displacement of a cyclist on 
the way to school.

Table 2.1 Displacement of a cyclist

Displacement	(m)		 0		 80		 160		 240		 240		 280

Time (s)  0  20  40  60  80  100

�
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Figure 2.6 Displacement–time graph for a cyclist

The information in the table has been used to draw the graph 
(Figure 2.6). Note the axes of the graph have been carefully labelled 
to show the quantity and unit:
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time in seconds on the •	 x-axis

displacement in metres on the •	 y-axis.

We can tell quite a lot from this graph.

At first, the graph is a straight line sloping upwards. The cyclist •	
went at a steady speed for the first 60 s.

Then the graph is horizontal. The cyclist stopped for 20 s.•	

Then the graph slopes upwards again, but less steeply. During the •	
last 20 s, the cyclist moved more slowly than before.

Figure 2.7 summarises how to interpret the shape of a 
displacement–time graph. You can see that the steeper the gradient 
(slope) of the graph, the greater the velocity of the moving object. A 
curved graph indicates that the object’s velocity is changing.

Calculating velocity
From the displacement–time graph, we can work out an object’s 
velocity (as explained in the worked example):

Velocity = gradient of displacement–time graph.•	

Worked example

Figure 2.8 Displacment–time graph of a taxi

Figure	2.8	is	a	displacement–time	graph	for	a	moving	taxi.	Find	
its	velocity.

Choose	two	points	on	the	graph	(they	should	not	be	too	close	
together).

Draw	horizontal	and	vertical	lines	to	complete	a	right-angled	
triangle.

Calculate	the	displacement	and	time	represented	by	these	two	
sides of the triangle:

displacement	=	1000	m	–	200	m	=	800	m
time	=	50	s	–	10	s	=	40	s
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Figure 2.7 Different 
displacement–time graphs
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Activity 2.3: Distance–
time graph on way to 
school
Carefully	sketch	out	a	
distance–time	graph	for	your	
journey	into	school.	Describe	
each	section	of	your	graph	
with	a	partner.

Horizontal line
Constant displacement
Velocity = 0

Straight line, sloping upwards
Constant velocity
A has a greater velocity than B

Graph curving
Velocity is changing
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Calculate	velocity	in	the	usual	way:

velocity	= displacement	= 800 m
  =	20	m/s	                      time         40 s 

So	the	taxi	is	travelling	at	20	m/s.

Distance–time and displacement–time graphs
Although the key features are the same, there is one big difference 
between distance–time and displacement–time graphs.

As distance is a scalar quantity it only goes up and up. The distance 
never goes down.

However, as displacement is a vector quantity it can also go down. 
For example, if you walk 10 m away from your friend heading 
North and then stop you have travelled a distance of 10 m and your 
displacement is 10 m North. However, if you then turn around and 
walk 6 m back towards your friend you will have travelled 16 m but 
your displacement would then be only 4 m North. This can be seen 
in the two examples below.
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Figure 2.9 Distance–time and displacement–time graphs for the same 
journey.
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You can clearly see the displacement begin to fall as you head back 
in the direction you came from. Eventually if you end up back 
by your friend your displacement will be 0 m but you will have 
travelled a distance of 20 m.

Gradient Negative 
gradients

Distance–time	graph Speed No

Displacement–time	graph Velocity yes

Table 2.2 A comparison between distance–time and displacement–
time graphs

This means you can get negative values from the gradient of a 
displacement–time graph but not from a distance–time graph. This 
makes sense if you think about it. You might get a negative velocity 
of –4 m/s but negative speeds do not make any sense.

Velocity–time	graphs
Just as a displacement–time graph shows how far an object has moved, 
a velocity–time graph shows how its velocity changes as it travels along. 
Figure 2.10 shows an example; in this case, the motion of a car at the 
start of its journey. We can deduce several points from the graph. 
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Figure 2.10 A velocity–time graph for a car.

At the start, the car was not moving.

velocity = 0 when time = 0•	

The car accelerated at a steady rate during the first 10 s until it 
reached a velocity of 15 m/s. 

the graph is a straight line, sloping upwards•	

The car travelled at 15 m/s for 20 s. 

the graph is horizontal, so acceleration = 0•	

After 30 s, the car decelerated rapidly to a halt.

graph slopes steeply down to velocity = 0•	

You can learn a lot from the shape of a velocity–time graph, 
as shown in Figure 2.11. Take care! Do not confuse these with 
displacement–time graphs. Always check the labels on the axes 
before interpreting a graph. 
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UNIT 2: Motion in a straight line

If the velocity–time graph is a straight line, the object’s acceleration 
is constant, and we say that it is moving with uniform acceleration.

Calculating acceleration and displacement
We can calculate two quantities from a velocity–time graph. The 
worked examples show how to do this.

Acceleration is the gradient of a velocity–time graph.•	

Displacement is the area under a velocity–time graph.•	

Worked example

Figure	2.12	shows	how	the	velocity	of	a	train	changed	as	it	set	
off	from	a	station.	Calculate	its	initial	acceleration.

 

 
 
Figure 2.12 Velocity–time graph for a train

•	 Choose	two	points	on	the	graph.	As	before,	select	points	
that are far apart.

•	 Complete	a	right-angled	triangle.

•	 Calculate	the	change	in	velocity	and	the	time	taken:

	 change	in	velocity	=	25	m/s	–	5	m/s	=	20	m/s

	 time	taken	=	125	s	–	25	s	=	100	s

•	 Calculate	the	acceleration:

	 acceleration	=	gradient	of	graph	=

			 20	m/s		=	0.2	m/s2 
  100 s

Calculate	the	distance	travelled	by	the	train	during	the	first	
300	s	of	its	journey.

 
 

Figure 2.13 Finding the displacement of the train from its  
velocity–time graph.
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Figure 2.11 Four velocity–time 
graphs.
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Figure	2.13	shows	the	same	graph	as	Figure	2.12;	this	time,	
though,	we	have	to	calculate	displacement,	which	is	equal	to	
the	area	under	the	graph.	The	area	is	divided	into	two	parts:	a	
triangle	and	a	rectangle.	(Area	of	triangle	=	½	×	base	×	height;	
area	of	rectangle	=	base	×	height.)

displacement	=	area	of	triangle	+	area	of	rectangle

=	(½	×	30	m/s	×	150	s)	+	(30	m/s	×	150	s)

=	2250	m	+	4500	m

=	6750	m 

Activity 2.4: Graphs that tell stories
A	velocity–time	graph	can	tell	the	story	of	a	journey.	Here	is	
one	driver’s	description	of	a	recent	trip.	

‘We	crawled	along	through	the	city	traffic	at	6	m/s	for	 
five	minutes.	Then	we	left	the	city,	and	we	gradually	
accelerated	to	24	m/s	in	20	s.	We	kept	going	at	this	speed	for	
two	minutes,	but	then	I	noticed	an	accident	on	the	road	ahead	
and	I	braked,	so	that	we	came	to	a	halt	in	8	s.

1	 Draw	a	graph	to	represent	this	journey.	(Remember,	all	the	
times	must	be	in	seconds.)

2	 From	your	graph,	calculate	the	car’s	acceleration	and	
deceleration.

3	 Calculate	the	total	distance	travelled	by	the	car.	now,	make	
up	your	own	story	and	challenge	a	partner	to	draw	the	
graph	and	make	the	calculations.

Summary
In	this	section	you	have	learnt	that:

Distance–time,	displacement–time	and	velocity–time	graphs	•	
may	be	used	to	represent	an	object’s	motion.

The	gradient	of	a	displacement–time	graph	is	equal	to	the	•	
velocity	of	the	object.

The	gradient	of	the	line	of	a	velocity–time	graph	is	equal	to	•	
the	acceleration.

The	area	under	the	line	of	a	velocity–time	graph	is	equal	to	•	
the	displacement.

Acceleration	is	defined	as	the	rate	of	change	of	velocity.•	

Acceleration	is	measured	in	m/s•	 2.

KEY WORDS
uniform acceleration a 
constant value of acceleration

Think about this… 
It is important to note that 
the	area	under	the	line	
may	also	be	negative;	this	
would	indicate	a	negative	
displacement.	In	this	case	
the	line	would	dip	under	
the x-axis.
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Review questions
1. Draw a displacement–time graph for the following:

Displacement (m) 0 20 40 40 80 80 60 40 0

Time (s) 0 10 20 30 40 50 60 70 80

a) Explain the different sections of the graph in as much detail 
as you can. 

b) Use the graph to determine the maximum velocity.

c) Find the average velocity after 45 s.

d) Find the instantaneous velocity at 45 s.

2. The following data were collected during a short race between 
two friends. 

Velocity (m/s) 0 0.5 1 1.5 2 2 4 6 2 0
Time (s) 0 2 4 6 8 10 12 14 16 18

a) Describe the different sections of the graph.

b) Determine the acceleration over the first eight seconds.

c) Determine the maximum acceleration.

d) Using the graph calculate the displacement:

i)  over the first eight seconds

ii)  the total race.

e) Find the maximum velocity reached by the runner.

2.4 Equations of uniformly accelerated motion

By	the	end	of	this	section	you	should	be	able	to:

•	 Describe	the	equations	of	uniformly	accelerated	motion.

•	 Use	these	equations	to	solve	problems.

•	 Explain	the	importance	of	using	the	correct	sign	convention	
(+	or	–)	when	dealing	with	velocities	and	accelerations.

•	 Define	the	meaning	of	the	term	free	fall.

•	 Apply	the	equations	to	solve	problems	relating	to	free	fall.

As discussed in Section 2.2, acceleration has a very specific 
definition.

Acceleration is the rate of change of velocity.•	

This can be written as:

average acceleration = change in velocity / time taken

If the acceleration is uniform (i.e. does not change) then the average 
acceleration is the same as the acceleration during any given time. 
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So we could rewrite that equation as:

acceleration = change in velocity / time

But, only if the acceleration is constant.

To calculate change in velocity we could use the equation below:

change in velocity = final velocity – initial velocity

Or in symbols:

change in velocity = v – u

where

v = final velocity

u = initial velocity

This means our first equation could be written as:

a = (v – u)/t

where

v = final velocity

u = initial velocity

a = acceleration 

t = time

This first equation is usually written as

v = u + at (1)

For example, if a car is travelling at 8 m/s and accelerates with 
uniform acceleration at 2 m/s2 for 6 s its final velocity will be:

v = u + at  State principle or equation to be used

v = 8 m/s + (2 m/s2 × 6 s)   Substitute in known values and complete 
calculation

v = 20 m/s  Clearly state the answer with unit

This equation is often referred to as the first equation of the 
equations of uniformly accelerated motion; there are four more. 
Remember, this only applies if the acceleration is constant.

The second equation comes from the definition of velocity:

Velocity is the rate of change of displacement

This can be written as:

average velocity =  displacement / time 

If the acceleration is uniform then the average velocity can be found 
by:

average velocity = (final velocity + initial velocity) / 2

So the equation becomes:

(initial velocity + final velocity) / 2 = displacement / time

Or in symbols

(u + v)/2 = s/t

DID	yoU	knoW?
The Greek symbol delta Δ 
is often used to represent 
‘change in’. So the formula 
for acceleration could be 
written as a = Δv / t.

Think about this… 
To	help	confusing	v and 
u,	remember	that	u	comes	
before	v	in	the	alphabet	and	
so u	is	the	initial	velocity,	the	
velocity	before	v!
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where

s = displacement

v = final velocity

u = initial velocity

t = time

Rather confusingly, s if often used for displacement. Be careful not 
to confuse this for speed!

This second equation is usually written as:

s = ½(u + v)t (2)

This gives us two of the five equations:

v = u + at       (1)

s = ½(u + v)t (2)

Notice that these equations only use five quantities: s, u, v, a and t. 

The first one is missing s, the second one is missing a. The three 
remaining equations are each missing one of the remaining 
quantities. They are derived from the two above.

The complete set of equations in their usual form can be seen below:

v = u + at (1) (no s)

s = ½(u + v)t (2) (no a)

s = ut + ½at2 (3) (no v)

v2 = u2 + 2as (4) (no t)

s = vt – ½at2 (5) (no u)
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Figure 2.14 The five quantities that appear in the equations of motion.

Using	the	equations
These equations can be used to solve a range of problems regarding 
the motion of accelerating objects. There are lots of terms to use and 
so to avoid confusion it is often a good idea to draw a quick table 
like the one below:

Table 2.3 A table of motion quantities

s (m) u (m/s) v (m/s) a (m/s2) t (s)

Activity 2.5: Deriving 
equations
Using	algebra,	derive	the	
three	remaining	equations	
from	the	two	equations	
given	opposite.

Symbols	used	in	the	
equations

s	=	displacement

v	=	final	velocity

u	=	initial	velocity

a	=	acceleration

t	=	time

DID	yoU	knoW?
These equations are often 
referred to as the SUVAT 
equations. But don’t forget, 
they only apply if the 
acceleration of the object is 
uniform (constant).
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You can then fill in the quantities you know and this will help you 
select the correct equation.

For example:

A cheetah accelerates at 3 m/s2 for 5 s. If its final velocity is 24 m/s, 
determine its initial velocity.

We can now fill in what we know.

s (m) u (m/s) v (m/s) a (m/s2) t (s)
? 24 3 5

From the table you can see we don’t have s so we have to use 
equation (1), the only one without s in it.

v = u + at  State principle or equation to be used

Rearranging to give u gives

u = v – at  Rearrange equation to make u the subject

u = 24 m/s – (3 m/s2 × 5 s)   Substitute in known values and complete 
calculation

u = 9 m/s  Clearly state the answer with unit

Here is another example. A runner in a race decides to accelerate 
right up to the moment he crosses the line. He is initially travelling 
at 5 m/s and accelerates at 0.4 m/s2 for 5 s.  Find:

i) The distance from the line when he decides to accelerate.

ii) His final velocity as he crosses the line.

Again we can fill in what we know.

s (m) u (m/s) v (m/s) a (m/s2) t (s)
? 5 0.4 5

From the table you can see we don’t have v so we have to use 
equation (3), the only one without v in it.

s = ut + ½at2  State principle or equation to be used

s = (5 m/s × 5 s) + ½ × 0.4 m/s2 × (5 s)2   Substitute in known values 
and complete calculation

s = 30 m  Clearly state the answer with unit

Adding this to the table we get. 

s (m) u (m/s) v (m/s) a (m/s2) t (s)
30 5 ? 0.4 5

To find v we can use any equation apart from equation (5). Perhaps 
the best one to use is equation (1) as this does not rely on the value 
for s. You may have miscalculated this so it’s better to be safe and 
use values you are certain of if at all possible.

v = u + at  State principle or equation to be used

v = 5 m/s + (0.4 m/s2 × 5 s)   Substitute in known values and complete 
calculation

v = 7 m/s  Clearly state the answer with unit

Figure 2.15 Cheetahs are the 
fastest land animals, reaching 
speeds of 120 kph!

Figure 2.16 How fast does the 
runner finish?
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Velocity–time	graphs	for	s = ut + ½at2

Equation (3) can be derived using ideas covered in section 2.3. 

A velocity–time graph for an object with constant acceleration 
might look like the one in Figure 2.17. This might be a marble 
rolling down an inclined ramp with the velocity measured at two 
points along the ramp.

The gradient of the line is constant because the acceleration of the 
object is constant.

The total area under the graph represents the displacement of the 
object between these two velocities (see Figure 2.18).

This area has two sections, shown as 1 and 2 in Figure 2.19.

The area of the first section is simply u × t or ut. This added to the 
second area will give the displacement.

The area of the triangle (Figure 2.20) is given by:

½(v – u) × t

From equation (1), v = u + at, it follows that v – u = at and so the 
area can be expressed as:

½at × t or ½at2

The total area is given by the two areas added together. This gives:

total area = ut + ½at2

So, the total area is the same as the displacement:

s = ut + ½at2

If the acceleration was zero the graph would be a horizontal line; 
the area in this case would be just ut. In other words, ½at2 would be 
0. Equally, if the object started from rest then u would be 0 and the 
graph would be just a triangle, in which case the area would be just 
½at2 as ut would be 0.

Positive	or	negative?
As both velocity and acceleration are vector quantities their 
directions are very important. If the velocity is in the same direction 
as the acceleration then both could be considered to be positive. 
However, if they are in opposite directions then one must be 
negative. 

Figure 2.21 A car braking at traffic lights

Figure 2.17 A typical velocity–
time graph

Figure 2.18 The area under the 
line represents the displacement of 
the object.

Figure 2.19 The area can be split 
into two sections.

Figure 2.20 The area of the 
triangle

Velocity
/m/s

Time/s

u

v

Velocity
/m/s

Time/s

u

v

Velocity
/m/s

Time/s

u

t

v

v-u

1

2

Velocity
/m/s

Time/s

u

v

10 m/s

3 m/s2

M02_PHYS_SB_ETHG9_0162_U02.indd   32 5/8/10   11:17:41 am



33

UNIT 2: Motion in a straight line

Grade 9

As an example, Figure 2.21 shows a car approaching a set of traffic 
lights. If the car has to stop, its velocity is in one direction but the 
acceleration is in the opposite direction (since it is slowing down). 
This would give us a velocity of 10 m/s and an acceleration of –3 m/s2.

Imagine a ball rolling up a very long slope with an initial velocity of 
6 m/s. The acceleration acts down the slope and has a value of  
2 m/s2. If we wanted to find the velocity of the ball after two seconds 
we could use one of our equations of constant acceleration.

s (m) u (m/s) v (m/s) a (m/s2) t (s)
6 ? 2 2

This table is wrong. We have both initial velocity and acceleration as 
positive. This is not right as they are in opposite directions. 

If we were to use v = u + at using these values we would get a final 
velocity of 10 m/s. The ball has got faster as it has travelled up the 
slope!

Instead if we decide to say the velocity up the slope is positive we 
get

s (m) u (m/s) v (m/s) a (m/s2) t (s)
6 ? –2 2

The acceleration is –2 m/s2 as we have decided that the positive 
direction is up the slope.

v = u + at  State principle or equation to be used

v = 6 m/s + (–2 m/s2 × 2 s)   Substitute in known values and complete 
calculation

v = 2 m/s  Clearly state the answer with unit

This makes much more sense! The ball has got slower.

What about if we wanted the velocity after 10 s? Filling in the table 
we would get:

s (m) u (m/s) v (m/s) a (m/s2) t (s)
6 ? –2 10

The acceleration is –2 m/s2 as we have decided that the positive 
direction is up the slope.

v = u + at  State principle or equation to be used

v = 6 m/s + (–2 m/s2 × 10 s)   Substitute in known values and complete 
calculation

v = –14 m/s  Clearly state the answer with unit

Our answer is –14 m/s. What does this mean? Because we decided 
to make the direction up the slope positive, –14 m/s must mean 
the ball has gradually slowed down, stopped and then rolled back 
down. After 10 s it is travelling down the slope at 14 m/s.

Think about this… 
It	does	not	really	matter	
which	one	is	negative	as	long	
as	we	think	carefully	about	
our	answers.	Using	the	car	
example	it	would	be	equally	
valid	to	say	the	velocity	is	
–10	m/s	and	the	acceleration	
is	3	m/s2.

Figure 2.22 Ball rolling up a slope 

Think about this… 
We	would	have	got	the	same	
answer	if	we	had	made	the	
acceleration	positive	and	
the	initial	velocity	in	the	
negative	direction.	Except	
our	final	answer	would	be	
+14	m/s;	indicating	it	is	in	
the	same	direction	as	the	
acceleration.
Equally,	using	s = ut + ½at2 
we	would	get	a	displacement	
of	–40	m,	meaning	the	ball	
is	40	m	lower	down	the	slope	
than	when	it	started.
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Free fall
Free fall is a kind of motion where the acceleration of the object is 
just due to the acceleration due to gravity. For this to take place we 
must assume that air resistance (drag) is not acting on the object. 
For most examples we are going to look at this as a fair assumption. 
Air resistance only plays an important role if the object is moving 
quite fast or has a very large surface area. However, there are plenty 
of cases when we will need to consider air resistance in the future 
(for example, a parachutist!).

Around 1590, there was a story about Galileo Galilei (1564–1642), 
an Italian scientist. It is said he climbed up the Leaning Tower 
of Pisa to test out his theory of free fall. He dropped two cannon 
balls, one large one, one small one. Everyone watching thought the 
larger one, that is the one with more mass, would hit the ground 
first. Instead they both hit the ground at the same time. Galileo had 
realised that all objects dropped on Earth accelerate at the same 
rate; it is only air resistance that slows them down.

When an object is undergoing free fall it will accelerate at 9.81 m/s2; 
this is the acceleration due to gravity on the surface of the Earth. It 
is important to note that if we ignore air resistance then all objects, 
regardless of their mass, will accelerate at this rate.

This is a little counter-intuitive; our experiences work against us 
when thinking about free fall. If you imagine a stone and a piece of 
paper being dropped, it is obvious the stone will hit the ground first! 
However, this is due to air resistance having a greater effect on the 
piece of paper. Both the stone and paper initially accelerate at the 
same rate. 

On the Moon there is no atmosphere and so no air resistance. In 
1971, American astronaut David Scott simultaneously dropped a 
hammer and a feather from the same height to demonstrate free 
fall.  The hammer and the feather both fell exactly at the same rate 
and so hit the ground at the same time! 

If we ignore air resistance then the acceleration of all falling objects 
can be considered to be uniform. We can then use the equations of 
uniform acceleration to determine how long objects take to hit the 
ground and what their final velocity is just before impact.

For example, imagine a ball dropped from a height of 4.0 m. How 
long would it take to hit the ground?

s (m) u (m/s) v (m/s) a (m/s2) t (s)
4.0 0.0

(as dropped)

9.81 ?

You can see we’ve used the initial velocity as 0 m/s, as the ball is 
dropped, and the acceleration as 9.81 m/s2.

Figure 2.23 Air resistance is very 
important to parachutists!

DID	yoU	knoW?
Technically, as the 
definition of free fall does 
not include any mention of 
velocity (either magnitude 
or direction), it also applies 
to objects initially moving 
upward. For example, 
a small marble thrown 
vertically up into the air is 
undergoing free fall on both 
the way up and the way 
down!

Figure 2.24 The Leaning Tower 
of Pisa
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We	don’t	know	the	final	velocity	of	the	ball	so	we	must	use	
equation	(3)	(there	is	no	v	in	this	equation).
s = ut	+	½at2  State principle or equation to be used
ut	=	0,	as	the	ball	was	dropped,	so	the	equation	becomes:	 
s	=	½at2

This	can	rearranged	to	t	=	√2s/a   Rearrange equation to make t 
the subject

t	=	√(2	×	4.0	m)/9.81	m/s2   Substitute in known values and 
complete calculation

t	=	0.9	s		Clearly state the answer with unit

you	can	see	from	this	that	it	does	not	matter	what	the	mass	
of	the	ball	is.	Any	object	dropped	from	4	m	will	hit	the	ground	
after	0.9	s	if	we	ignore	air	resistance.

Worked example

Using our equations of uniform acceleration we can also work out 
the final vertical velocity. Looking back at the table we now have:

s (m) u (m/s) v (m/s) a (m/s2) t (s)
4.0 0.0            

(as dropped)
? 9.81 0.9

We	could	use	either	equation	(1),	(2),	(4)	or	(5)	to	determine	
v.	However,	equation	(4)	does	not	rely	on	your	calculation	of	
time,	so	this	is	preferable.

v2	=	u2 + 2as  State principle or equation to be used

v = √(u2	+	2as)  Rearrange equation to make v the subject

v	=	√(02	+	2	×	9.81	m/s2	×	4.0	m)			Substitute in known values 
and complete calculation

v	=	8.9	m/s		Clearly state the answer with unit

Worked example

The equations can also be used if the ball is thrown vertically 
upwards. In this case it is the same process, but u is not 0 m/s and it 
is very important to remember that u is in one direction and a is in 
the other. One will have to be negative!

For example, we can use the equations to work out how long it 
takes a ball thrown vertically with a velocity of 20 m/s to reach its 
maximum height and how high it reaches.

Looking at the table we have:

s (m) u (m/s) v (m/s) a (m/s2) t (s)
20 0 9.81 ?

At its maximum height, the velocity of the ball will be 0 m/s. To find 
t we use equation (1).

Figure 2.25 Astronaut on the 
Moon

Activity 2.6: Dropping a 
ball
Drop	a	ball	from	several	
different heights and time 
how	long	it	takes	to	hit	the	
ground.	Record	your	data	
carefully	and	take	repeats	
for	each	height.

Using	equation	(3),	calculate	
the	time	it	actually	takes	
to	hit	the	ground.	Compare	
the	actual	times	with	your	
readings	and	comment	on	
your	findings.

DID	yoU	knoW?
The acceleration due to 
gravity varies all over the 
globe. At sea level it ranges 
between 9.79 m/s2 and 9.83 
m/s2 depending on location. 
It also changes with altitude 
(although not by very 
much). So we often use a 
standard value of exactly 
9.80665 m/s2.

KEY WORDS
gravity the force of attraction 
between an object in the 
Earth’s gravitational field and 
the Earth itself
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v = u + at  State principle or equation to be used
t = (v – u)/a  Rearrange equation to make t the subject
t = (0 m/s – 20 m/s) / –9.81 m/s2   Substitute in known values and 

complete calculation
t = 2.0 s  Clearly state the answer with unit

A similar process gives s = 14 m. Try it for yourself!

An object in free fall produces very distinctive displacement–time 
and velocity–time graphs. The displacement–time and velocity-time 
graphs for an object in free fall can be seen in Figure 2.26.

In	this	section	you	have	learnt	that:

There	are	five	equations	that	describe	uniformly	accelerated	•	
motion;	these	can	be	used	to	solve	a	range	of	problems.

The	directions	of	the	velocity	and	the	acceleration	of	an	•	
object	are	important	when	deciding	whether	they	are	
positive	or	negative	values.	

When	an	object	accelerates	under	gravity	it	is	said	to	be	in	•	
free fall.

The	equations	of	uniform	acceleration	can	be	used	to	solve	•	
problems	relating	to	free	fall.

Summary

Review questions
1. What are the five equations that describe uniform accelerated 

motion?

2. A bus accelerates from 10 m/s to 18 m/s over 3 s. Find:

a) The distance the bus covers whilst it is accelerating.

b) The acceleration of the bus.

3. A runner slows down after completing a race. Her deceleration 
is 0.25 m/s2. After 5 s she is travelling at 4 m/s, determine her 
initial velocity.

4. A stone is dropped off a tall building. It takes 5.3 s to hit the 
ground. Determine the height of the building.

5. Explain what is meant by free fall.

2.5 Relative velocity in one dimension

By	the	end	of	this	section	you	should	be	able	to:

•	 Explain	the	meaning	of	the	term	reference	frame	(or	
reference	point).

•	 Describe	the	relative	velocities	of	objects.

•	 Calculate	the	relative	velocity	of	a	body	with	respect	to	
another	body	when	moving	in	the	same	or	in	the	opposite	
direction.

Think about this… 
If	you	drop	an	object,	the	
displacement	before	it	hits	
the	ground	is	given	by	 
s	=	½at2.	If	you	take	a as  
10	m/s2	(close	enough),	this	
becomes	s	=	5t2	If	it	takes	1	s	
to	hit	the	ground	then	it	must	
have	fallen	5	m,	2	s	means	 
20	m,	etc.	This	is	handy	to	
work	out	to	approximate	
height	of	bridges	or	depth	of	
wells.	Just	make	sure	nobody	
is	standing	underneath!
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Figure 2.26 Motion graphs for 
objects undergoing free fall
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It’s	all	relative!
Whenever we take measurements of displacement the answer 
we give is always relative. One house might be 1.5 km away from 
another or one object might be a certain distance from another.

The term reference frame (sometimes called reference point or 
frame of reference) refers to measurements taken from a certain 
point of view. Most of the measurements you will take are from 
your own reference frame. 

You might think this only applies to displacements, but it also 
applies to velocities. If you are standing still and a car is approaching 
you at 12 m/s you might think it has a velocity of 12 m/s in all 
frames of reference, but you would be wrong. Now imagine you are 
in a different frame of reference, moving in the same direction as 
the car at 2 m/s. The car would appear to be moving towards you at 
10 m/s. No longer 12 m/s!

The most common frame of reference is the Earth. When you stand 
still you might think your velocity is zero. This is true in the Earth’s 
frame of reference. However, if you could step off the Earth into 
space you would see the Earth rotating and moving around the Sun. 
So you would definitely be moving!

There are several different frames of reference. However, the laws 
of motion governing a moving object (more on these in unit 3) are 
only valid if the reference frame is either stationary relative to the 
moving object or moving at constant velocity. This is often referred 
to as an inertial frame of reference. 

Relative	velocity
As velocity is always measured from a reference frame this means 
velocity is also always relative. Whenever you record the velocity of 
an object the value of its velocity is relative to one frame of reference 
or another. Velocity is usually measured from the Earth’s frame of 
reference; an object is said to have zero velocity if it is not moving 
relative to the Earth. Equally 30 m/s usually means 30 m/s relative 
to the Earth.

However, we also often measure velocities from the frame of 
reference of an observer who is moving at a steady speed. 

For example, imagine you are sat on a moving bus and another bus 
is overtaking you. From your frame of reference the overtaking bus 
will appear to be moving quite slowly past the window. However, 
if you were standing on the pavement, the overtaking bus will be 
moving much faster relative to you.

The relative velocity between two objects can be thought of the 
difference between their velocities (not their speeds, as the direction 
is very important).

To calculate the relative velocities between moving objects we can 
use the following equation:

vRab = va – vb 

DID	yoU	knoW?
One of the key ideas in 
Einstein’s theory of special 
relativity is that the speed of 
light must be constant in all 
reference frames. This leads 
to some very strange effects, 
including time slowing 
down for objects moving 
very, very fast!

KEY WORDS
reference frame a point 
from which measurements are 
taken
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For example, the relative velocity of two trains on parallel tracks. 
One train (a) is heading North at 30 m/s the other train (b) is 
heading South at 20 m/s. In terms of vectors we could say:

va = 30 m/s North and vb = 20 m/s South.

 Train a Train b

 va = 30 m/s vb = –20 m/s

Figure 2.27 Two trains heading towards each other

As the trains are heading toward each other the driver of train a 
would see train b approaching at 50 m/s. 

vRab = va – vb 

vRab = 30 m/s – –20 m/s

vRab = 50 m/s 

Also, the driver of train b would see train a approaching at 50 m/s! 
The relative velocity between the two trains is 50 m/s. So if they 
were 100 m apart it would take two seconds for the trains to pass 
each other.

We can use the same process to calculate the relative velocity 
between two athletes running along a long straight road. But this 
time they are both travelling in the same direction.

The leading runner is travelling a 5 m/s but the athlete in second 
place is sprinting to catch up. He is travelling at 7 m/s.

 Athlete 2 Athlete 1

                    v2 = 7 m/s v1 = 5 m/s

Figure 2.29 Two athletes at the closing stages of a race

Figure 2.28 A travelling train

Think about this… 
If	two	trains	18	km	apart	are	
travelling	towards	each	other,	
one	with	a	velocity	of	35	m/s	
and	the	other	moving	at	 
25	m/s,	how	long	would	it	be	
before	the	trains	pass	by	each	
other?

KEY WORDS
relative velocity the 
difference between the 
velocities of two moving 
objects
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vR12  = v1 – v2   State principle or equation to be used (relative velocity 
between 1 and 2) 

vR12  = 5 m/s –  7 m/s   Substitute in known values and complete 
calculation

vR12  = –2 m/s  Clearly state the answer with unit

Because we have calculated the velocity of the lead runner relative 
to the second place runner we get –2 m/s. This means the leading 
runner would see the second place runner approaching him at  
2 m/s.

If they are 20 m apart it would take the second place runner 10 s to 
catch the leader (assuming they stay at the same speed).

5 km/h 5 km/h 20 km/h

Figure 2.30 Relative velocities of passengers on a bus

Review questions
1.  Explain what is meant by the term reference frame.

2.  Find the relative velocities of the following:

a) two cars travelling North on the same road, one travelling 
at 15 m/s the other travelling at 20 m/s

b) two ships sailing down a river, one heading due East at  
4 m/s the other sailing West at 2 m/s.

In	this	section	you	have	learnt	that:

In	this	section	you	have	learnt	that:

A	frame	of	reference	refers	to	a	certain	point	of	view	•	
depending	on	the	position	and	motion	of	the	observer.

The	laws	of	motion	only	apply	if	the	reference	frame	of	the	•	
observer	is	stationary	or	moving	at	a	constant	velocity.

The	velocity	of	an	object	depends	on	the	frame	of	reference	•	
of	the	observer.

The	relative	velocity	between	one	moving	object	and	another	•	
is	given	by	the	difference	between	their	velocities.

Summary

Think about this… 
This	equation	can	be	used	if	
one	object	is	stationary.	Here	
the	relative	velocity	is	just	
the	velocity	of	the	moving	
object!	If	you	are	standing	
on a platform and a train 
approaches	at	6	m/s,	its	
relative	velocity	is	6	m/s!	But	
also	the	train	driver	would	
see	you	approaching	at	 
6	m/s.

Activity 2.7: People on 
the bus
Look	at	the	three	people	on	
the	bus	in	Figure	2.30.	What	
are	the	relative	velocities	
between	each	of	them?	What	
about	the	relative	velocity	
between	the	three	on	the	
bus	and	a	passenger	waiting	
at	the	next	bus	stop?
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End of unit questions 
1.   How long will a bus take to travel 150 km at an average speed of 

40 km/h?

2.   A cheetah can run at 30 m/s, but only for about 12 s. How far 
will it run in that time?

3.   It takes a cheetah just 3 s to reach its top speed of 30 m/s.   
What is its acceleration?

4.   Table 2.4 shows how the displacement of a runner changed 
during a sprint race. Draw a displacement–time graph to show 
this data, and use it to deduce the runner’s speed in the middle 
of the race.

Table 2.4  Data for a sprinter during a race

Displacement 
(m)

0 4 10 20 50 80 105

Time (s) 0 1 2 3 6 9 12

5.   Figure 2.31 shows how the velocity of four cars changed as they 
travelled along a straight road. Give reasons for your answers to 
these questions:

(a)  Which car was travelling at a steady speed?

(b)  Which car was decelerating?

(c)  Which car had the greatest acceleration?

6.  Table 2.5 shows how the velocity of a car changed during part of 
a journey along a main road. 

(a)  Draw a velocity–time graph for the journey.

(b)  Write a brief description of the journey.

(c)   The car’s speed changed during two parts of the journey. 
Calculate its acceleration at these times.

Table 2.5  Data for part of a car journey – see Question 6

Velocity 
(m/s)

16 20 24 24 24 21 18

Time (s) 0 10 20 40 60 70 80

7.   A taxi is travelling at 15 m/s. Its driver accelerates with 
acceleration 3 m/s2 for 4 s. What is its new velocity?

8.   A car accelerates from 20 m/s to 30 m/s in 10 s.

(a)  Calculate the car’s acceleration using v = u + at.

(b)   Draw a velocity–time graph to show the car’s motion. Find the 
distance it travels by calculating the area under the graph.

(c)  Check your answer by using the equation s = ut + ½at2.

time

velocity

a

A

B

C

D

Figure 2.31  Velocity–time 
graphs for four cars.
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9.    A truck gradually starts off from rest with a uniform 
acceleration of 2 m/s2. It reaches a velocity of 16 m/s. Using the 
equation v2 = u2 + 2as, calculate the distance it travels while it is 
accelerating.

10.   Table 2.6 shows values of the displacement and velocity of a 
falling object. Copy and complete the table, and use it to draw 
displacement–time and velocity–time graphs for the object. 
(Take g = 10 m/s2.)

Table 2.6  The motion of a falling object – see Question 10

Time t (s) 0 1 2 3 4

Displacement s (m) 0 5 20

Velocity v (m/s) 0 10 20

11.   A stone is dropped from the top of a 45 m high building. How 
fast will it be moving when it reaches the ground? And what 
will its velocity be?

12.  Two cars A and B are moving along a straight road in the same 
direction with velocities of 25 km/h and 40 km/h, respectively. 
Find the velocity of car B relative to car A.

13.  An aircraft heads North at 320 km/h relative to the wind. The 
wind velocity is 80 km/h from the North. Find the velocity of 
the aircraft relative to the ground.

14.   Two aircraft P and Q are flying at the same speed, 300 m/s. 
The direction along which P is flying is at right angles to the 
direction along which Q is flying. Find the magnitude of the 
velocity of the aircraft P relative to aircraft Q.

15.  A train travelling along a straight track starts from rest at point 
A and accelerates uniformly to 20 m s–1 in 20 s. It travels at 
this speed for 60 s, then slows down uniformly to rest in 40 s 
at point C. It stays at rest at C for 30 s, then reverses direction, 
accelerating uniformly to 10 m s–1 in 10 s. It travels at this speed 
for 30 s, then slows down uniformly to rest in 10 s when it 
reaches point B.

 a Plot a graph of the motion of the train.
 b Use your graph to calculate:
  i  the train’s displacement from point A when it reaches 

point C
  ii  the train’s displacement from point A when it reaches 

point B
  iii  the train’s acceleration each time its speed changes.
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Contents
Section Learning competencies

3.1  Forces in nature
  (page 43)

List some of the forces that occur in nature and categorise them •	
as contact or non-contact.
State Newton’s first law.•	
Explain the relationship between mass and inertia.•	
State Hooke’s law and distinguish between elastic and inelastic •	
materials.
Experimentally determine and describe the force constant of a •	
spring.

3.2  Newton’s second law
  (page 52)

Distinguish between resultant force and equilibrant force.•	
Describe the effect of a force acting on a body.•	
Apply Newton’s second law (as •	 Fnet = ma) to solve problems.
Resolve forces into rectangular components and compose forces •	
acting on a body using component methods.
Describe the terms weight and weightlessness (including •	
distinguishing between weight and apparent weight).
Calculate the weight and apparent weight of an object in a range •	
of situations.

3.3 Frictional forces
  (page 64)

Explain the causes of frictional forces.•	
Describe the differences between limiting friction, static friction •	
and kinetic friction.
Draw free body diagrams for objects on inclined planes (to include •	
frictional forces) and use these diagrams to solve problems.

3.4  Newton’s third law
  (page 71)

State Newton’s third law. •	
Describe experiments to demonstrate it and give examples of •	
where it is applicable.

3.5  Conservation of 
linear momentum

  (page 74)

Define linear momentum and state its units.•	
State the law of conservation of momentum.•	
Define the term impulse and state its units.•	
Solve numerical problems relating to momentum, conservation of •	
momentum and impulse.
State Newton’s second law in terms of momentum.•	

3.6  Collisions (page 83) Distinguish between elastic and inelastic collisions.•	

3.7  The first condition 
of equilibrium

  (page 84)

State the conditions required for linear equilibrium.•	
Decide whether a system is in equilibrium.•	
Apply the first condition of equilibrium to solve problems.•	

Forces and Newton’s 
laws of motion Unit 3

Forces are all around us. From keeping us standing on the Earth, to 
the Earth moving around the Sun. We experience forces every day 
of our lives.

This unit looks at different types of forces, how they interact and 
what effect they have on motion. This is a large topic encompassing 
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3.1 Forces in nature

By the end of this section you should be able to:

List some of the forces that occur in nature and categorise •	
them as contact or non-contact.
State Newton’s first law.•	
Explain the relationship between mass and inertia.•	
State Hooke’s law and distinguish between elastic and •	
inelastic materials.
Experimentally determine and describe the force constant of •	
a spring.

What are forces?
In simple terms, a force is a push or a pull. You might push a book 
across the desk or gravity might pull objects towards the centre of 
the Earth. 

There are plenty of different examples of forces. However, if you 
look deeper, forces fall into just four groups:

Electromagnetic forces, dealing with charged objects, atomic •	
interactions and whenever objects come into contact.
Gravity, which relates to all objects that have mass, from an apple •	
falling to the ground to the Earth orbiting the Sun. 
Finally, two forces dealing with interactions within the nucleus •	
of atoms. These are called the strong nuclear force and the weak 
nuclear force. Although very important we rarely encounter 
these forces in our day to day lives.

Below are some examples of common forces.

Table 3.1 Some examples of forces
Friction Drag forces (including air 

resistance and water resistance)
Electrostatic attraction or 
repulsion

Thrust

Buoyant force (upthrust) Gravitational attraction
Weight Tension
Contact force (reaction) Magnetic attraction or repulsion

All forces are vector quantities. This means they all have both a 
magnitude and a direction, and are often represented in diagrams 
as arrows. The size of the arrow represents the magnitude of the 
force and the way it is pointing shows the direction it is acting. The 
SI derived unit of force is the newton (N).

Figure 3.4 on the next page, is called a free body diagram. These 
kinds of diagrams are really useful when dealing with forces. It 

Figure 3.1 Weight is a common 
force we experience every day.

Figure 3.2 Forces play an 
important role in keeping atoms 
together.

Figure 3.3 Forces pull stars 
together to form gigantic galaxies.

Activity 3.1: Categorising 
forces
Categorise all the forces 
listed in Table 3.1 as contact 
or non-contact.

some of the most important work ever carried out by Physicists. 
You will look into Newton’s laws, Hooke’s work on springs, and even 
learn how to calculate your mass and weight on different planets.
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is important that you consider all the forces acting and draw the 
arrows approximately to scale. In this case the weight of the stone is 
greater than the air resistance.

Contact or non-contact
Forces can be categorised as either contact or non-contact. Some 
forces act over a distance and so the objects involved do not need to 
be touching. Other forces need objects to touch before their effects 
can be noticed.

If you push your hands together you can feel a contact force (this is 
really an electrostatic repulsion between the electrons in the atoms 
in your hands). The same is true when you kick a ball.

 ���������������������

Figure 3.4 Forces acting on a 
stone falling through the air

Figure 3.5 Kicking a ball 
demonstrates a contact force.

Several forces act over a distance, the most obvious being 
gravitational attraction. The Earth is kept in orbit around the Sun 
even though they are 150 million km apart! 

It is not just gravity; magnetic forces can also act over distances, for 
example, two magnets attracting each other. 

N S N S

Figure 3.7 Magnets can attract or repel each other without being in 
contact. 

What effect do forces have?
The famous ancient Greek, Aristotle, did a great deal to help 
develop the idea of science. However, he got forces all wrong! He 
thought that forces were needed to make objects move, that is, there 
cannot be any movement unless a force is acting.

DID yoU kNoW?
All forces are measured in 
newtons, named after Sir 
Isaac Newton (more on him 
later). He was born in 1642 
and in his famous book 
Principia Mathematica he 
made significant advances 
in understanding motion. 
He also developed key 
theories on gravity and 
optics, and invented an 
entire new branch of 
mathematics: calculus.

Figure 3.6 Despite being  
150 million km away the Sun’s 
gravity still has a significant 
influence on the motion of the 
Earth.

KEY WORDS
pull movement towards a 
force
push movement away from a 
force
contact forces forces where 
objects must touch before the 
force has an effect
newton SI unit of force
non-contact forces 
forces where objects are not 
required to touch for the force 
to have an effect

Stone

Weight of stone

Air resistance
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This idea makes a lot of sense in our experience. If we push a block 
along it will keep on moving, but if we stop pushing the block it will 
slow down and stop. The problem is that on Earth whenever objects 
are in motion there are other forces acting, namely weight, friction 
and/or drag. These forces have an effect on the motion of the object.

It is true that forces and motion are linked but forces do not simply 
make objects move.

It was not until the famous English physicist, Sir Isaac Newton, 
came along, some 2000 years after Aristotle, that we developed a 
more complete understanding of forces. Newton took some of the 
ideas developed by Galileo and constructed three laws that describe 
how motion and forces are related. 

Newton’s first law of motion explains what effect forces have on 
objects. It states:

An object will remain at rest or travelling at a constant •	
velocity unless acted upon by an external force.

This takes a bit of reading but what it means is that forces don’t 
make objects move but they do make objects change the way they 
are moving.

An object will remain at rest unless a force makes it start to move. It 
will then continue to move at the same velocity until another force 
slows it down. So using our block example from earlier, when we 
stop pushing it the block slows down because friction is acting on it. 
If there was no friction it would continue at the same velocity until 
another force acted on it.

The use of the term velocity here is also important. It means an 
object moving around a curve or in a circle must have a force acting 
on it. Whenever an object moves in a circle its velocity is changing 
(because velocity is a vector quantity) and so according to Newton’s 
first law there must be a force acting on it.

Newton’s first law means a force is always required to make an object:

speed up•	

slow down•	

or change direction.•	

If an object is not doing any of these, then we can conclude there are 
no overall forces acting on it. This might mean remaining stationary 
but it also means travelling at a steady speed in a straight line.

Mass and inertia
Newton’s first law means that objects have a tendency to resist any 
changes to their motion. They will remain stationary or at constant 
velocity unless a force acts on them.

This is referred to as the inertia of an object. It is defined as:

The property of an object to remain at rest or moving at a •	
steady speed in a straight line.

Figure 3.8 Aristotle developed 
some excellent theories but his 
ideas about forces were wrong!

Figure 3.9 Sir Isaac Newton – 
perhaps the greatest physicist of 
all time.

Think about this… 
Newton’s first law means if 
you were to throw a tennis 
ball in space, far away from 
any stars and planets, it 
would continue to travel at a 
steady speed in a straight line 
forever! (Well until it got near 
another object and then its 
gravity would start to have an 
effect).
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You may have experienced this on a bus or train. If you are standing 
still and the vehicle moves you tend to fall backwards. This is 
because as it moves your feet are pulled along due to friction, but 
the rest of your body resists this change in motion; it wants to stay 
at rest. 

The same is true when the bus/train stops suddenly; you tend to ‘fly 
forward’. You’re not really flying forward, you just keep moving at 
the same speed as the vehicle slows down.

The inertia of an object depends on its mass. The greater the mass 
of the object, the greater its inertia.

This is why it is easy to kick a small stone. Because it has a small 
mass and so a small inertia, only a small force is required to change 
the motion of the stone. However, a large boulder has a great deal 
more mass. If you kicked a boulder chances are it wouldn’t move 
(and you’d have a sore toe!). It has much more mass, so it has a 
much greater inertia and a much larger force is required to change 
its motion.
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Activity 3.2: Observing inertia
Try these simple observations (Figure 3.12).

•	 Place	a	book	on	a	cloth	on	a	smooth	table.	Pull	the	cloth	
quickly. The book remains at rest.

•	 Place	a	coin	on	a	small	card.	Support	the	card	on	the	edges	
of a table so that its sides stick out. Hit the card firmly 
with one finger. The coin stays where it is.

•	 Put	some	water	in	a	bucket	or	can.	Spin	it	around	quickly,	
in a vertical circle. Although the can is upside down at the 
top of the circle, no water falls out.

Figure 3.12 Demonstrating inertia

other effects of forces
If more than one force acts on an object it can also change the shape 
of the object. Two parallel equal and opposite forces can either 
stretch or compress an object.

Figure 3.10 With no friction or 
air resistance to slow it down, a 
ball thrown in space will travel at 
a steady speed in a straight line.

Figure 3.11 The greater the 
mass the greater the inertia. The 
large boulder has a much greater 
inertia. 

DID yoU kNoW?
Inertia comes from the 
Latin word, “iners”, meaning 
idle, or lazy. Newton used 
this word to illustrate that 
objects were lazy; they did 
not want to move unless a 
force was applied to them.

KEY WORDS
inertia the tendency of an 
object to resist changes to its 
motion
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Forces can also twist or bend an object if applied in different 
directions.

Robert Hooke was another physicist working in London around the 
same time as Newton. He was investigating methods for making 
more precise clocks. He was interested in the effect forces had on 
springs.

Hooke used springs fixed at one end (this provided an upward 
force) and applied a force to the bottom of the spring to stretch it 
(this force is sometimes called the load).

 

 

Figure 3.14 Robert Hooke was a 
great scientist and was a rival of 
Isaac Newton.  

Figure 3.15 Applying a force to a 
spring fixed at one end causes it 
to extend.

Hooke found that the greater the force applied to the spring the 
greater the extension. Not only that, he found that the extension 
of the spring was directly proportional to the force applied. This is 
often referred to as Hooke’s law.

This means when he applied twice the force the spring would 
extend twice as far. Three times the force, the spring would extend 
three times as far. 

Hooke’s experiments are easy to repeat in a lab. Figure 3.17 on the 
next page, shows a simple experimental arrangement you could use 
to test his findings.

Table 3.2 Some results from an experiment on stretching a spring

Force applied (N) Length of spring (cm) Extension (cm)

0 10.0 0.0

1 11.5 1.5

2 13.0 3.0

3 14.5 4.5

4 16.0 6.0

5 18.5 8.5

6 22.0 12.0

Figure 3.13 Some possible effects 
of two equal and opposite forces

DID yoU kNoW?
Hooke is perhaps best 
known for Hooke’s law (also 
called the law of elasticity), 
but like Newton he made 
several other valuable 
contributions. He is often 
described as the father of 
microscopy, making several 
important discoveries. 
Hooke also came up with 
the term cell to describe the 
basic unit of life.

Figure 3.16 Some of Robert 
Hooke’s original drawings of his 
experiment

Two forces can compress an object

Two forces can stretch an object

load

FΔ x

KEY WORDS
load a force applied to a 
spring 
extension the increase in 
length of a spring

Two forces can compress an object

Two forces can stretch an object
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Plotting these results on a graph will produce one like that in Figure 
3.18. With Hooke’s law experiments it is not uncommon to see it the 
other way around, with extension plotted against force applied, so 
make sure you look carefully at the axis!

Any relationship that is directly proportional will produce a 
straight line graph with the line going through the origin. However, 
it is worth remembering it does not have to be at 45°. Figure 3.19 
shows three directly proportional relationships.

Looking at Figure 3.19, what is different about the springs to 
produce different slopes? Some springs are stiffer than others. A 
stiffer spring will not extend as far when a force is applied to it. 
Looking at the graph, which is the stiffest spring?

If you answered spring A you’d be correct. Spring C is the least stiff; 
it is the easiest to extend. Let’s look at why, but this time just using 
two springs instead of three.

Figure 3.20 shows the results collected for two different springs. 
Spring A is stiffer than spring B.

Consider the same force applied to each spring – force F. You can 
see from the second graph that this force causes spring B to extend 
more than spring A. Therefore you can conclude that spring A is 
stiffer than spring B.

Figure 3.20 Results collected for two different springs 

Figure 3.18 A graph showing that 
force is directly proportional to 
extension

Figure 3.19 Three directly 
proportional relationships for 
three different springs 

Think about this… 
Extending twice as far does 
not mean the spring is now 
double its length. It just 
means the extension is twice 
the size. Take a spring 15 mm 
long; if 2 N caused a 3 mm 
extension then 4 N would 
cause a 6 mm extension. 
With a load of 4 N the spring 
would be 21 mm long.

�������
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Figure 3.17 Investigating how 
force affects the extension of a 
spring

Force / N

Extension/m

Force / N Spring A

Spring B

Spring C

Extension/m

Force / N

Extension/m

Spring A

Spring B

Force / N

Force F

Extension/mExtension A Extension B

Spring A

Spring BKEY WORDS
Hooke’s Law the force 
applied to a spring is directly 
proportional to its extension 
up to the elastic limit
directly proportional   
a relationship where both 
variables increase (or 
decrease) at the same time
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The spring constant is a measure of the stiffness of a spring. It is 
given the symbol k. A stiff spring might have a spring constant of 
1000 N/m and a less stiff spring might have a spring constant of 15 
N/m.

You can determine the spring constant of any given spring by using 
the force–extension graph.

The gradient of the line is equal to the spring constant. The steeper 
the line, the higher the gradient, the greater the spring constant and 
the stiffer the spring!

Using the data and graph below we can determine the spring 
constant for the spring.

Table 3.3 Typical force and extension data

Force (N) Extension (m)
0 0.00
1 0.05
2 0.10
3 0.15
4 0.20
5 0.25
6 0.30

The gradient of the line = rise/step  State principle or equation to be used  
            (determine the gradient of the line)

gradient = 6 N / 0.3 m Substitute in known values and complete   
   calculation

gradient = 20 N/m  Clearly state the answer with unit

Therefore, k = 20 N/m.  Make clear the gradient is also equal to k

Spring balances
The relationship between force and extension is used to great effect 
in spring balances. These are very simple devices designed to 
measure forces. They are often used to determine the weight of an 
object.

Think about this… 
The spring constant of 15 
N/m means you would need 
to apply a force of 15 N to 
extend the spring by 1 m. 30 
N would cause an extension 
of 2 m, etc. If k = 1000 N/m, 
then 1000 N would be needed 
to extend the spring by 1 m. 
500 N would cause a 50 cm 
extension, etc.

Figure 3.21 Using a force–
extension graph to determine the 
spring constant

Figure 3.22 The springs used in 
car suspension systems need to 
have a high spring constant.

Force / N

Extension / m

Gradient = k 

0

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

1

2

3

4

5

6

7

step = 0.30

rise = 6 NForce / N

Extension / m

KEY WORDS
origin the point of 
intersection of the axes of a 
graph

Figure 3.23 Force–extension 
graph using data from Table 3.3
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Spring balances work on the principle that the greater the force 
applied the greater the extension. This means it is easy to construct 
a simple scale and pointer next to the spring. When a force is 
applied (e.g. the weight of an object) the spring will extend to a pre-
determined length.

Activity 3.3: Making a spring balance
you can make a spring balance of your own. 

•	 You	need	a	spring,	and	a	container	for	the	objects	you	are	
going to weigh (Figure 3.25).

•	 You	also	need	a	scale,	next	to	the	spring.	Make	a	cardboard	
pointer, and attach it to the bottom of the spring, so that it 
will move past the scale.

•	 First,	you	must	calibrate the spring balance. Hang some 
known loads on the meter. Mark their values on the scale. 
Mark the scale in equal divisions.

•	 Now	use	your	meter	to	weigh	other	objects.

Figure 3.25 Making a spring balance

������

�������

���������
��������

�����

�

The elastic limit
If we keep on applying force will the spring keep extending forever? 
Obviously at some point the spring will break, but before it does 
it behaves slightly differently. It begins to stretch more easily and 
eventually it will stretch so far that it will not return to its original 
length when the force is removed. 

Figure 3.24 Two different 
examples of spring balances

DID yoU kNoW?
Spring balances are often 
called newtonmeters (or 
forcemeters). That definitely 
would not have pleased 
Hooke! He and Newton 
were scientific rivals and did 
not get on at all well.

Think about this… 
What would be different 
about the spring constant of 
a spring in a spring balance 
used to weigh heavy objects?

KEY WORDS
gradient the slope of a line 
on a graph
spring balance device used 
to measure force via the 
extension of a spring
spring constant a measure of 
the stiffness of a spring
stiffness the amount of 
force required to stretch or 
compress a spring
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So far we have been dealing with what is called elastic deformation 
of the spring. This happens when the force applied to the spring is 
directly proportional to the extension and when you remove the 
force the spring returns to its original length.

A spring will only stretch elastically up to a certain point. This point 
is called the elastic limit. After this limit is reached the deformation 
is said to be plastic. 

Plastic deformation means that the force is no longer proportional 
to the extension and when you remove the force the spring no 
longer returns to its original length; it has been permanently 
stretched. 

The graph below shows you how to indentify the two different types 
of deformation.

Figure 3.26 Elastic and plastic deformation of a spring

E on the graph is the elastic limit. Below the elastic limit the 
deformation is elastic. Above the elastic limit plastic deformation 
occurs.

Hooke’s findings about springs led to the law of elasticity, which is 
more commonly called Hooke’s law. This only applies if the spring is 
below its elastic limit and so may be written as:

The force applied is directly proportional to the extension of a •	
spring up to the elastic limit.

Different springs have different elastic limits depending on their 
shape, thickness, material, etc. All materials have an elastic limit; 
think about a wooden or plastic ruler. If you bend it a little bit it will 
return to its original length. If you apply too much force it will bend 
so far it snaps; you’ve gone beyond the elastic limit for the ruler.

DID yoU kNoW?
The shorthand way 
of writing directly 
proportional is to use this 
symbol: ∝. This means we 
could write Hooke’s law as  
F ∝ Δx up to the elastic 
limit.

Force / N

Extension / m

Elastic region

Plastic region
E

KEY WORDS
calibrate to compare a 
measuring device with a 
known standard

elastic deformation where 
the force applied is directly 
proportional to the extension 
and where the object will 
return to its original length 
when the force is removed

elastic limit the point up 
to which a spring will stretch 
elastically

plastic deformation where 
the force applied is not 
directly proportional to the 
extension and where the 
object will not return to its 
original length when the force 
is removed
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In this section you have learnt that:

In this section you have learnt that:

Forces can either be classed as contact or non-contact. •	
Examples of forces include friction, drag, weight, 
gravitational attraction and contact forces.

Newton’s first law states: “An object will remain at rest or •	
travelling at a constant velocity unless acted upon by an 
external force”.

Inertia is the tendency of an object to resist changes to its •	
motion. The greater the mass of an object the greater its 
inertia.

Hooke’s law states: “The force applied to a spring is directly •	
proportional to the extension of the spring up to the elastic 
limit”.

The stiffer the spring the greater the spring constant •	
(k; measured in N/m).

Elastic deformation means when forces are removed the •	
object	will	return	to	its	original	length.	Plastic	deformation	
means when the forces are removed the object does not 
return to its original length; it is permanently stretched.

Summary

Review questions
1. Give some examples of forces and classify them as contact or 

non-contact.

2. State Newton’s first law and explain what it means.

3. Describe Hooke’s law and define the following terms: elastic 
deformation, elastic limit and plastic deformation.

4. Sketch two force vs. extension graphs, one for a stiff spring the 
other for a much weaker spring.

3.2 Newton’s second law

By the end of this section you should be able to:

Distinguish between resultant force and equilibrant force.•	

Describe the effect of a force acting on a body.•	

Apply Newton’s second law (as •	 Fnet = ma) to solve problems.

Resolve forces into rectangular components and compose •	
forces acting on a body using component methods.

Describe the terms weight and weightlessness (including •	
distinguishing between weight and apparent weight).

Calculate the weight and apparent weight of an object in a •	
range of situations.
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What if more than one force is acting?
There are often several forces acting on an object. As all forces are 
vector quantities we can add them up using the techniques covered 
in Unit 1.

The overall force acting on any object is referred to as the resultant 
force. This is often called the net force or Fnet. It is defined as:

The vector produced when two or more forces act upon a •	
single object. 

It is calculated by vector addition of the forces acting upon the 
object. 

For example, consider two forces A and B acting on an object. They 
will produce a resultant force. In the two examples below forces A 
and B give rise to a resultant, force C.

 

Figure 3.27 Different resultant forces acting on an object

If the forces are parallel it is easy to determine the resultant vector. 
However, if the forces are not parallel (as in Figure 3.28) we then 
use scale diagrams, parallelogram rules or the mathematical 
techniques covered in Unit 1 to determine the magnitude and 
direction of the resultant force.

Figure 3.28 Non-parallel forces leading to a resultant force

Sometimes it is helpful to know the equilibrant force. This is the 
force you need to apply to a system to cancel out the resultant force. 
This will result in there being no net force acting on an object.

Figure 3.29 There are several 
forces acting on an aircraft in 
flight.

Figure 3.30 An equilibrant force will cancel 
out the resultant force acting on an object.

DID yoU kNoW?
The equilibrant force for any 
system is always equal in 
magnitude to the resultant 
force but it acts in the 
opposite direction. This just 
cancels out the effect of the 
resultant force. This can be 
written as: Fnet = – Fequilibrant

Object

A

B

Object Object Object

C

= =

A

B

C

= =Object

A

Object

A

B

B

C C
45°

90°

Object

Forces A and B

Resultant force

Resultant forceEquilibriant force

KEY WORDS
equilibrant force the force 
required to cancel out the 
resultant force
resultant force the overall 
force acting on an object
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Two forces are acting on a boat. one force 
of 400 N is due to current in the river, 
acting downstream. The other force due to 
the propeller has a magnitude of 500 N and 
acts at an angle of 50° to the river bank. 
Determine the resultant force acting on the 
boat.

Figure 3.31 Boat crossing a river

Figure 3.32 Two force vectors acting on the boat

We could determine the resultant force using 
a scale diagram. However, on this occasion 
we are going to find the resultant force 
mathematically.

In order to determine the resultant force we 
must first resolve the 500 N into horizontal 
and vertical components using trigonometry. 

•	 Vertical	component:
 sin θ = opp / hyp  State principle or equation 

to be used (trigonometry)
 hyp x sin θ = opp   Rearrange to make the 

opp side the subject
 500 N x sin 50° = 383 N ↑. Substitute in 

known values and complete calculation, then 
clearly state the answer with unit

•	 Horizontal	component:
 cos θ = adj / hyp   State principle or equation 

to be used (trigonometry)
 hyp x sin θ = adj   Rearrange to make the adj 

side the subject

 500 N x cos 50° = 321 N →.  Substitute in 
known values and complete calculation, then 
clearly state the answer with unit

We can then add the horizontal forces to give 
the resultant horizontal force.

•	 Resultant	horizontal	force:
 Fnet horizontal = 321 N → + 400 N → Determine 

the net horizontal force (note the directions)
 Fnet horizontal = 721 N →.   Clearly state the 

answer with unit

We can then use Pythagoras’s theorem to 
determine the magnitude of the resultant 
force and trigonometry to determine the 
direction.

•	 Magnitude of resultant force:
 Fnet horizontal = 721 N →  Clearly state known 

values 
 Fnet vertical = 383 N ↑ Clearly state known values
 Fnet = 383 N ↑ + 721 N → Determine the net  

     force (note the   
     directions)

 Fnet 
2 = 3832 + 7212 Apply Pythagoras’s theorem

 Fnet 
2 = 666 530  Solve for Fnet

2

 Fnet = √666 530   Rearrange for resultant (take 
square root) and solve

 Fnet = 816 N Clearly state the answer with unit

•	 Direction	of	resultant	force:
 Fnet horizontal = 721 N →   Clearly state known 

values  
 Fnet vertical = 383 N ↑ Clearly state known values
 tan θ = opp / adj   State principle or equation 

to be used (trigonometry)
 θ = tan-1 (opp / adj)  Rearrange equation to 

make θ the subject
 θ = tan-1 (721 / 383) Substitute in known  

          values and complete  
          calculation

 θ = 62°  Clearly state the answer with unit

This is the angle between the resultant and 
the vertical component. The angle between 
the resultant force and the river bank is  
90°– 62° = 28°.

Worked example

400 N

500 N

50°
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Figure 3.33 Determining the resultant force

In this situation the equilibrant force would 
be 816 N acting in the opposite direction to 
the resultant force.

θ

Resultant

721 N

383 N

River bank

Forces and acceleration
In the previous section we said: Newton’s first law means a force is 
required to make an object:

speed up•	

slow down•	

change direction.•	

If an object does any of these things we can say it is accelerating. 
In other words, forces cause objects to accelerate, or more precisely 
if there is a resultant force acting on an object, then that object will 
accelerate. The forces are said to unbalanced. 

If there are balanced forces acting on an object then there is no 
resultant force and so the object will not accelerate.

 
Newton’s second law relates to the rate of change of momentum of 
an object (more on this later). He realised that whenever a resultant 
force acts on an object it will accelerate and this acceleration takes 
place in the same direction as the force. If you push an object to the 
left it will accelerate towards the left. 

Through careful experiment and investigation he also worked out 
that if you double the resultant force then the acceleration of the 
object will also double. In other words the force applied is directly 
proportional to the acceleration (as long as everything else remains 
constant).

Figure 3.34 Any object going 
around a bend is accelerating; 
the forces are unbalanced and so 
there must be a resultant force 
acting on it.

KEY WORDS
trigonometry a type of 
mathematics that deals with 
the relationships between the 
sides and angles of triangles 
accelerating where an object 
is speeding up, slowing down 
or changing direction 
balanced forces where the 
forces acting on a body cancel 
each other out and there is no 
resultant force 
inversely proportional 
a relationship where one 
variable increases as the other 
decreases and vice versa 
unbalanced forces where the 
forces acting on a body do 
not cancel out and there is a 
resultant force 
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He also determined that the acceleration of the object also depends 
on the object’s mass. The greater the mass the greater the inertia, 
and so the lower the acceleration. In fact if you double the mass 
the acceleration will halve and vice versa. An object with a quarter 
of the mass will accelerate at four times the rate if the same force is 
applied. This relationship is called inversely proportional. As one 
quantity doubles the other halves.

Figure 3.35 The effects of force and mass on acceleration

As long as the mass of the object remains constant then Newton’s 
second law can be expressed as:

The acceleration of an object is directly proportional to the •	
resultant force acting on the object.

and

This acceleration occurs in the direction of the resultant force.•	

(Remember, this only applies if the mass of the object is constant.)

This gives us:

Resultant force = mass of object × acceleration of object

Fnet = ma

We can use this equation to determine the resultant force required 
to make a car of mass 1200 kg accelerate at 2 m/s2.

Resultant force = mass of object × acceleration of object  State 
principle or equation to be used (Newton’s second law)

Fnet = ma  Simplify statement to symbols

Fnet = 1200 kg × 2 m/s2   Substitute in known values and complete 
calculation

Fnet = 2400 N  Clearly state the answer with unit

We can use the equation to determine the acceleration of a soccer 
ball if we know the applied resultant force. A footballer may strike a 
ball of mass 400 g with a force of 200 N.

Figure 3.36 When you apply 
the brakes on a bike a force is 
generated in the opposite direction 
to motion. You accelerate in this 
direction and so slow down.

Figure 3.37 The greater the force 
applied to the ball the greater its 
acceleration.
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DID yoU kNoW?
Newton’s second law may be 
used to define the newton 
as the unit of force. Using 
Fnet = ma and making sure 
the units are all correct 
(force in N, mass in kg and 
acceleration in m/s2), we 
can say that a force 1 N is 
the force required to give a 
mass of 1 kg an acceleration 
of 1 m/s2. Or 1 N is 
equivalent to 1 kg m/s2.

Figure 3.38 Two forces acting on 
an object

Figure 3.39 Two forces acting on 
an object in different directions

Figure 3.40 Trolley being pushed 
by two people

20 N

10 N
4 kg

50 N
30 N 2.0 kg

60 kg

40 N

? N

2.0 m/s²

Fnet = ma  State principle or equation to be used (Newton’s second law)  
a = Fnet / m  Rearrange equation to make a the subject
m = 400 g, which is 0.4 kg  Ensure all values are in SI units
a = 200 N / 0.4 kg  Substitute in known values and complete calculation
a = 500 m/s2  Clearly state the answer with unit 

This acceleration will be in the same direction as the resultant force.

Fnet = ma with several forces
If several forces are acting on an object then in order to determine 
its acceleration we must first determine the resultant force.

To determine the acceleration we would use Fnet = ma.
Fnet = ma  State principle or equation to be used (Newton’s second law)
a = Fnet / m  Rearrange equation to make a the subject

The resultant force  in Figure 3.38 is 30 N →   Determine resultant by 
simple calculation of net 
force

a = 30 N / 4.0 kg  Substitute in known values and complete calculation
a = 7.5 m/s2 to the right  Clearly state the answer with unit

To determine the acceleration we would again use Fnet = ma. Except 
in this case we must subtract the forces to determine the resultant 
force.
Fnet = ma  State principle or equation to be used (Newton’s second law)
a = Fnet / m  Rearrange equation to make a the subject

The resultant force in Figure 3.39 is 20 N →   Determine resultant by 
simple calculation of net 
force  

a = •	 20 N / 2.0 kg   Substitute in known values and complete 
calculation  

a = •	 10 m/s2 in the direction of the 50 N force   Clearly state the 
answer with unit  

This process can be repeated for forces at an angle and for problems 
involving more than two forces.

If you know the acceleration of the object you can also determine 
the magnitude and direction of the resultant forces. For example, 
two people are pushing a 60 kg trolley along. One applies a force of 
40 N and the trolley accelerates at 2.0 m/s2. Determine the size of 
the force applied by the other person.

Fnet = ma  State principle or equation to be used (Newton’s second law)

Fnet = 60 kg × 2 m/s2   Substitute in known values and complete 
calculation

Fnet = 120 N  Clearly state the answer with unit

The resultant force is 120 N.

Fnet = F1 + F2  Express net force in terms of F1 and F2
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120 N = 40 N + F2  Substitute in known values and complete calculation

F2 = 80 N →  Clearly state the answer with unit

The same technique may be used to determine the acceleration of 
an object with two forces acting on it at right angles. For example:

First we must determine the resultant force using Pythagoras’s 
theorem.

a2  = b2  + c2  State principle or equation to be used (Pythagoras’s theorem)

Fnet
2  = (40 N)2 + (30 N)2  Substitute in known values

Fnet
2 =  2500  Solve for Fnet

2 then solve for Fnet by taking square root

Fnet = 50 N  Clearly state the answer with unit

Then using F = ma we get:

a = Fnet / m  Rearrange F = ma to make a the subject

a = 50 N / 80 kg  Substitute in known values and complete calculation

a = 0.63 m/s2  Clearly state the answer with unit

Trigonometry should then be used to determine the direction of 
this acceleration; this is in the same direction as the result force (37° 
to the horizontal – check it for yourself). 

Mass and weight 
Mass and weight are two terms that are frequently confused. We 
often say we are going to weigh something and then record its mass 
in kg!

We must make sure we don’t muddle the two; they are very 
different.

Mass is a scalar quantity and it is a measure of the quantity of 
matter. The more mass the more stuff (the more matter). Remember 
the ineria of an object depends on its mass, you can think of mass as 
a measure of an object’s inertia. Mass is measured in kilograms (kg).

Weight is a force and so it’s a vector quantity, measured in newtons 
(N). It is the force we experience due to the gravitational pull of the 
Earth pulling on our mass. Weight is directed towards the centre of 
the Earth. 

We can calculate the weight of an object using:

weight = mass •	 × gravitational field strength

w = mg•	

On the surface of the Earth the gravitational field strength is around 
9.81 N/kg. We will use 10 N/kg in the following examples to make 
the mathematics a little easier.

A person with a mass of 70 kg will have a weight of:

w = mg  State principle or equation to be used

w = 70 kg × 10 N/kg   Substitute in known values and complete 
calculation

DID yoU kNoW?
The kilogram is defined 
as the same amount of 
mass as the international 
prototype kilogram. This is 
a platinum–iridium block 
held in Paris, France. 

Figure 3.42 The international 
prototype kilogram has a mass of 
exactly one kilogram.

KEY WORDS
mass a measure of the 
quantity of matter
weight the force experienced 
by an object due to the 
gravitational pull of the Earth

30 N

40 N 80 kg

Figure 3.41 Two forces acting on 
an object at right angles
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Mass=70 kg

Weight=700 N

Figure 3.43 Weight pulls all 
objects towards the centre of the 
Earth.

Think about this… 
The value for gravitational 
field strength is the same 
value as the acceleration 
due to gravity (9.81). This 
can shown by considering an 
object of mass m dropped 
from a height above the 
ground. From Newton’s 
second law we know the 
acceleration will be equal to 
a = Fnet / m. We also know 
the force accelerating the 
object is the weight of the 
object so we could write Fnet 
= mg. Combining these two 
equations gives us: a = mg / 
m, the m’s cancel giving  
a = g!

Figure 3.44 Weight and mass

w = 700 N (actually more like 687 N if we use g = 9.81 N/kg). 
Clearly state the answer with unit

If the gravitational field strength changes then the weight of the 
object will change but its mass will stay the same. The gravitational 
field strength varies a little around the Earth. This is for two reasons.

Firstly the amount of mass between you and the centre of the Earth 
changes depending on where you are. If there is a particularly 
dense pocket of material underneath you this will increase the 
gravitational field strength slightly. The reverse is also true, if there 
is large pocket of gas or lower density material underneath you the 
gravitational field strength will go down.

The distance from the centre of the Earth also affects g; it gets 
smaller the further away from the centre of Earth you get. This 
change is quite small, you need to move really far away before is 
becomes noticeable. Even at the top of the tallest mountain g is still 
around 9.8 N/kg.

Remember, only the weight of the object will change; its mass will 
stay the same. This is also true if we consider different planets. 
Taking our astronaut as an example, if he stands on the Moon 
his mass is still 70 kg (there is still the same amount of matter). 
However, on the Moon the gravitational field strength is much less 
than that on Earth. This is because the Moon has much less mass 
and so a weaker gravitational field. The value for g on the moon is 
just 1.6 N/kg. 

His weight on the Moon would be:

w = mg  State principle or equation to be used

w = 70 kg × 1.6 N/kg   Substitute in known values and complete 
calculation

w = 112 N  Clearly state the answer with unit 

Figure 3.45 Astronaut on the Moon and in deep space

In deep space, far away from any planets and stars, the gravitational 
field strength is pretty much zero. In this case his mass would still 
be 70 kg. However, his weight would be 0 N; he is weightless.

Mass=70 kg
Mass=70 kg

Weight=112 N

Weight=0 N
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Figure 3.48 Weight and contact 
force cancel out

Contact force=700 N

Weight=700 N

Figure 3.46 Astronauts on the Moon can carry very large packs due 
to the Moon’s weak gravity.

True weightlessness and apparent 
weightlessness
You are only truly weightless if the gravitational field strength 
is zero. Even astronauts in orbit around the Earth are not truly 
weightless. There is still a gravitational pull due to the Earth; they 
still have a weight. So why do they float around?

When we are standing on the ground our weight pulls us vertically 
downwards towards the centre of the Earth. We push down on the 
Earth and the Earth pushes back up with a contact force. These two 
forces cancel out so there is no resultant force (this is why we don’t 
accelerate towards the centre of the Earth; if the ground was not 
there then we would!).

It is this contact force we feel. We don’t notice the pull of gravity. If 
you take this contact force away by jumping off a tall diving board, 
our weight accelerates us downwards but we don’t feel it. It feels like 
we are weightless, but we are not!

Apparent weightlessness is when the only force acting is your •	
weight.

Real weightlessness is when your weight is zero.•	

You get a similar feeling when a car goes over a humpback bridge 
or when an aircraft climbs or descends. We notice the change in the 
contact force and this makes us feel like our weight has changed. 

DID yoU kNoW?
Slight variations in the 
gravitational field strength 
are used to look for oil and 
gas deposits. Because the 
oil and gas is less dense 
than the surrounding rock 
this causes a small dip the 
gravitational field strength 
above the deposit. This 
dip may be detected with 
sensitive equipment.

Figure 3.47 Astronauts in the 
International Space Station are 
not truly weightless. 

Figure 3.49 This diver would 
experience apparent weightlessness 
for a brief period of time.

Weight=700 N
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Contact force= 900 N

Weight=700 N

Fnet = 200 N

Contact force=700 N

Weight=700 N

Fnet=200 N

Contact force=500 N

Weight=700 N

Figure 3.51 Contact force and 
weight in a stationary lift.

Figure 3.52 Accelerating 
upwards requires a net 
vertical force.

Figure 3.53 Accelerating downwards 
requires a net vertical force. This 
time you would feel like your weight 
has dropped.

Figure 3.50 The contact force we 
experience changes dramatically 
on an exciting roller coaster ride.

Another common example is when you are in a lift. If the lift is not 
accelerating the two forces are equal, as shown in Figure 3.51.

If the lift accelerates upwards then there must be a net force acting 
on it. A net force also needs to act on you as you are inside the lift! 
Imagine the net force acting on you is 200 N (assuming your mass is 
70 kg this would give an acceleration of 2.86 m/s2).

The floor would push you up harder; the contact force would have 
to increase to 900 N. This provides the extra 200 N. You feel heavier, 
even though your weight has not changed. It would feel like your 
weight is 900 N. This is referred to as your apparent weight; your 
real weight is still 700 N.

The same is true if the lift were to accelerate downwards. Again 
imagine the net force on you is 200 N. In this case the contact force 
would drop 200 N to 500 N. You would feel like your weight has 
dropped! Your apparent weight would be 500 N.

You can use Newton’s second law to determine your apparent 
weight in an accelerating lift. Taking a person of mass 55 kg then 
their weight would be:

w = mg  State principle or equation to be used

w = 55 kg × 10 N/kg   Substitute in known values and complete 
calculation

w = 550 N  Clearly state the answer with unit 

If this person is in a lift accelerating vertically upwards at 2 m/s2 
then the net force acting on the person would be:

Fnet = ma  State principle or equation to be used (Newton’s second law)

Fnet = 55 kg × 2 m/s2   Substitute in known values and complete 
calculation 

Fnet = 110 N  Clearly state the answer with unit

This force would come from an increase in the contact force. The 
contact force would have to go up to 660 N (550 N + 110 N). This 
would be your apparent weight.

KEY WORDS
apparent weight the 
resultant of an object’s real 
weight and any contact forces 
acting on the object
real weight the force 
experienced by an object 
solely due to the gravitational 
pull of the Earth

Think about this… 
you only notice this effect 
when the lift accelerates. When 
the lift is travelling at a steady 
speed the forces are balanced 
again (from Newton’s first law).
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If the lift was accelerating downwards at 2 m/s2 then your apparent 
weight would be 440 N. This would give a net force vertically 
downwards equal to 110 N.

If the lift cable were to snap then as the lift accelerates towards 
the ground the contact force would fall to zero! The floor would 
stop pushing you up. You would feel like you are weightless. Your 
apparent weight would be 0 N; you would be apparently weightless. 

 
 
 

 

Figure 3.55 A photo of the infamous ‘Vomit Comet’

Fnet = ma considering the weight of the object
We must always think carefully when solving Fnet = ma problems. 
Take for example a rocket of mass 15 000 kg. If the engines provide 
a force of 200 000 N what would its acceleration be?

F•	
net = ma

a = F•	
net / m 

a•	  = 200 000 N / 15 000 kg

a = •	 13.3 m/s2 

This is wrong! We’ve not used the resultant force. Remember free 
body diagrams really help to identify all the forces acting on an 
object. 

You can see the resultant force is equal to:

Fnet = force from engines – weight of rocket   Express Fnet in terms of all 
forces acting

Fnet = 200 000 N – (15 000 kg × 10 N/kg)  Substitute in known values

FNet = 200 000 N – 150 000 N   Solve calculation in brackets then 
complete calculation

FNet = 5000 N  Clearly state the answer with unit

This would give us an acceleration equal to:

Fnet = ma  State principle or equation to be used (Newton’s second law)

a = Fnet / m  Rearrange equation to make a the subject 

Figure 3.56 A free body diagram 
for the forces acting on a rocket at 
take off.

Fnet

Force from engines

Weight of rocket

Fnet=700 N

Contact force=0 N

Weight=700 N

Figure 3.54 If the contact force 
is zero you would be apparently 
weightless.

DID yoU kNoW?
As part of astronaut training 
trainees take a flight in an  
aircraft commonly called  
the Vomit Comet! This air-
craft accelerates downwards 
at 9.81 m/s2; this means the  
contact force inside the air- 
craft falls to zero. All the  
occupants become 
apparently weightless for  
around 30 s (until the air- 
craft needs to pull up again). 
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DID yoU kNoW?
When large rockets take off 
their acceleration usually 
increases for the first few 
minutes of their flight. 
The acceleration starts off 
quite low then increases 
as the rocket burns fuel. 
This has a significant effect 
on its acceleration for two 
reasons. Firstly the weight 
drops and so this increases 
the resultant force acting 
and secondly as the object 
has less mass its acceleration 
will be greater (remember 
acceleration and mass are 
inversely proportional).

Figure 3.57 See Question 4

a = 5000 N / 15 000 kg   Substitute in known values and complete 
calculation

a = 0.3 m/s2  Clearly state the answer with unit 

We must always make sure we consider all the forces involved 
before determining the resultant force acting on an object.

In this section you have learnt that:

In this section you have learnt that:

The overall force acting on an object is called the resultant •	
force. The equilibrant force is the force that needs to be 
applied to cancel out the resultant force.

A resultant force will cause an object to accelerate in the •	
same direction as the resultant force. 

Newton’s second law states: “Force is directly proportional to •	
acceleration, as long as the mass remains constant, and the 
acceleration is in the same direction of the force”. This gives 
us Fnet = ma.

In order to determine the resultant force, the forces acting •	
on the object may need to be resolved then combined 
together again.

Mass is a measure of the amount of matter measured in kg, •	
whereas weight is a force measured in N caused by gravity 
pulling on an object’s mass.

Summary

Review questions
1. Explain what is meant by the terms resultant force and 

equilibrant force.
2. Describe Newton’s second law.
3. Copy and complete Table 3.4.

Table 3.4
Force (N) Mass (kg) Acceleration (m/s2)
100 40

60 10
1000 25

0.2 10
30 600

4.  Figure 3.57 shows the forces acting on three different objects. 
For each:
(a) calculate the resultant force acting;
(b) say whether the forces are balanced or unbalanced;
(c) calculate the object’s acceleration.

5. Explain the differences between mass and weight.

KEY WORDS
free body diagrams are used 
to gain an understanding of 
the forces (or sometimes the 
fields) acting on an object
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3.3 Frictional forces

By the end of this section you should be able to:

Explain the causes of frictional forces.•	

Describe the differences between limiting friction, static •	
friction and kinetic friction.

Draw free body diagrams for objects on inclined planes (to •	
include frictional forces) and use these diagrams to solve 
problems.

What causes friction?
Friction is a force we experience every single day. Without friction 
even the simplest of actions, like walking, would be impossible. 
Friction occurs whenever two solids rub against each other. It is 
a contact force and it always tends to act in a direction opposing 
motion.

It is caused by tiny bumps in the surface of the two objects knocking 
and locking together. No surface is perfectly smooth. This is obvious 
if you look closely at sandpaper but you need to look really close at 
smoother objects like a metal sheet.

Figure 3.59 The bumps on the surfaces of material knock together 
causing friction.

When magnified, you can see all the small bumps in the surface of a 
material. It is these bumps that cause friction.

Different types of friction
There are two different types of friction. It depends on if the objects 
in contact are moving or if they are stationary.

Static friction 
This is the frictional force between two objects that are •	
in contact and trying to move past each other, but not yet 
moving. 

Imagine gently pushing a heavy book on a desk. At first it does not 
accelerate. This is because the force you are applying is cancelled 
out due to static friction. As you gradually increase the force the 
static friction also increases and the book remains stationary. If 

Figure 3.58 Even very smooth 
surfaces have a rough texture at 
the microscopic level.

Block

Desk

KEY WORDS
friction the force generated 
when solids slide or attempt 
to slide over each other

Figure 3.60 Sandpaper is very 
rough. Sliding over sandpaper 
generates a great deal of friction.
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Think about this… 
Friction only happens when 
solids rub together. This 
means that there is no such 
thing as friction with the air 
or friction through water; 
both of these examples 
are types of drag. This is a 
different type of force.

Figure 3.62 The friction between 
snow and ski is very small. This 
allows professional skiers to reach 
some very high speeds.

KEY WORDS
kinetic friction the frictional 
force between two objects 
sliding over each other
limiting friction the 
maximum value of static 
friction
static friction the frictional 
force between two objects 
that are trying to move 
against each other but are not 
yet moving
roughness a measure of the 
texture of a surface

you continue to push harder, eventually the book will slide. The 
maximum value of the static friction, i.e. the value just before 
sliding occurs, is called the limiting friction.

Kinetic friction (sometimes called dynamic friction)
This is the frictional force between two objects sliding over •	
each other. 

It always acts in the opposite direction to motion.

force of friction

box

string

effort

floor

Figure 3.61 Kinetic friction always acts in the opposite direction to 
motion.

The force of friction usually drops when objects start moving and 
so it is often the case that kinetic friction is less than the limiting 
friction of a surface.

Factors affecting the frictional force
There are several factors affecting the force of friction between 
objects.

Perhaps the most obvious is the roughness of the surface. The 
rougher the surface, the greater the friction. In simple terms the 
bumps on the surface are bigger or more frequent. This causes them 
to lock together more easily or more often.

You might think the weight of the object affects the friction. A 
heavier object will push down harder on the surface locking the 
bumps together harder and so increasing the force of friction. 
This is generally true but actually it is the contact force that affects 
the friction. Think about the lift example covered in the previous 
section. When the lift is accelerating downwards the weight stays 
the same but the contact force (and so the frictional force) would 
drop. This is especially important when considering objects on 
slopes (more on this later).
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The friction force between objects can be calculated using the 
following equation:

F•	
f = μN

where:

Ff is the frictional force.

μ is a constant called the coefficient of friction, which depends 
on the roughness of the two surfaces. A high coefficient of friction 
would mean that the surfaces are very rough and so this would 
lead to a high frictional force. Materials have a static coefficient of 
friction and a kinetic coefficient of friction, depending on the type 
of friction being calculated.

N is the normal contact force acting on the block. Normal in this 
case means at right angles to the surface. If the block is horizontal 
and there is no vertical acceleration then the normal contact force is 
equal to the weight.

Figure 3.63 Factors affecting friction

Table 3.5 Examples of the static friction coefficient between materials

Materials rubbing together μstatic

Aluminium Steel 0.61

Concrete Rubber 1.00

Concrete Wood 0.62

Steel Teflon 0.04

Wood Wood 0.45

DID yoU kNoW?
Friction is really just 
another example of the 
electrostatic force. It is 
caused by the electrons in 
the atoms in the bumps 
repelling each other.

Ff

N

μ

Moving in this direction

Think about this… 
The surface area of the 
objects in contact with each 
other does not affect the 
frictional force between them. 
Although there is a greater 
area in contact, the weight of 
the object is more spread out 
and so there is no change in 
the frictional force. 

The kinetic coefficient of friction between rubber and asphalt 
is 0.8. Calculate the force of friction acting on a rubber block 
of mass 2.0 kg as it is pulled along a level road at a steady 
speed.

Ff = μkineticN  State principle or equation to be used

Ff = 0.8 × N  Substitute in known value for μkinetic

As the road is level the normal contact force is equal to the 
weight of the rubber block. In this case the weight = 20 N  
(2 kg x 10 N/kg)

Worked example

KEY WORDS
coefficient of friction a 
ratio representing the friction 
between two surfaces
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DID yoU kNoW?
Teflon has one of the lowest 
coefficients of friction 
of any material. It was 
accidentally invented by 
an American named Roy 
Plunkett in 1938. The use 
of Teflon was important in 
America’s development of 
the atomic bomb. Nowadays 
its low friction makes it 
ideal for non-stick frying 
pans!

Figure 3.64 Non-stick frying 
pans have a very low friction 
coefficient.

Ff = 0.8 × 20 N   Substitute in known values and complete 
calculation

Ff = 16 N  Clearly state the answer with unit

A 12 kg block of wood is stationary on a horizontal concrete 
slab. The maximum coefficient of static friction between wood 
and concrete is 0.65 (this occurs at the limiting friction). What 
force needs to be applied in order to slide the block along.

Ff = μstaticN  State principle or equation to be used

Ff = 0.65 × N  Substitute in known constant for μstatic

As the block is level the normal contact force is equal to the 
weight of the wood. In this case the weight = 120 N

Ff = 0.65 × 120 N   Substitute in known values and complete 
calculation

Ff = 78 N  Clearly state the answer with unit

Activity 3.4: Measuring friction
•	 Tie	a	block	of	wood	with	string	to	the	hook	of	a	spring	

balance.	Place	the	block	on	a	table.	Pull	the	balance	
gradually parallel to the table. Note its reading when the 
block just starts to move. 

•	 Repeat	and	take	the	average	of	the	results.	

you have measured the maximum force of static friction (the 
limiting friction).

•	 Now	pull	the	balance	until	the	block	moves	steadily	along.	
Note the reading. 

•	 Repeat	several	times	and	take	the	average.	

you have measured the force of dynamic friction. 

•	 Which	is	greater?

string

table

forcemeter

block

Figure 3.65 Measuring friction using a spring balance

you must ensure you pull the block along at a steady speed. 
This tells us the forces are balanced and the reading on the 
spring balance is the same as the frictional force. 
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KEY WORDS
inclined plane a sloping 
surface or ramp

Figure 3.67 Forces acting on a 
block on a slope

Figure 3.68 The three forces form 
a triangle with no resultant force.

Force due 
to static 
friction

N

θ

Weight of block

N

Force due to 
static friction

Weight of block

θ

Friction and inclined planes
If an object is resting on an inclined plane the normal contact force 
is reduced (the weight stays the same). This means the frictional 
force is also reduced.

Figure 3.66 A wooden block on a slope

Let’s assume the block is not sliding down the ramp. If we consider 
the forces acting on the object we can see that there are three 
different forces.

As the object is not accelerating (in this case it is stationary) we can 
conclude from Newton’s first law that there is no resultant force 
acting.

These three forces must form a triangle, as shown in Figure 3.68.

The normal contact force is given by:

N = w•	  cos θ

This is always true regardless of if the object is in equilibrium or 
not. As a result, as the angle of the slope increases the normal 
contact force falls and so does the force due to friction. If the slope 
was vertical then the force due to friction would be 0 N.

In order for the block to remain stationary (i.e. the forces remain 
balanced) then the force due to static friction must equal:

F = w•	  sin θ

where w is the weight of the block, F is the force due to static 
friction and θ is the angle of the slope.

However, the force of friction is also equal to:

F•	
f = μstaticN

In this case N = w cos θ, so:

F•	
f = μstatic w cos θ
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Think about this… 
Putting	the	two	equations	
for the friction force equal to 
each other: w sin θ = μstatic w 
cos θ. This can be rewritten 
as tan θ = μstatic and so the 
maximum angle of the slope 
before the block will slide is 
given by θ = tan-1 μstatic. The 
higher the maximum value 
for μstatic the steeper the slope 
can before the object slides 
down the slope.

Figure 3.69 The object slides due 
to a resultant force.

Force due to static friction

Weight of block

N

Fnet

θ

Unpolished surface Polished surfaceUnpolished surface Polished surface

As the angle of the slope increases, cos θ gets smaller. This means 
the frictional force that can be provided also falls (as all the other 
variables are constant). At the same time the force required to keep 
the object stationary (w sin θ) increases.

This means as the slope gets steeper eventually the block will 
accelerate down the slope as the forces can no longer be balanced; 
the limiting friction has been reached and exceeded.

If the object is accelerating down the slope then there must be a 
resultant force acting on the object. 

This resultant force is equal to the difference between w sin θ and 
the force due to kinetic friction. 

F•	
net = w sin θ – μkinetic N

Take, for example, a block of wood of mass 30 kg accelerating down 
a concrete slope inclined at 45°. We could use the formula above to 
calculate the acceleration of the block. The μkinetic between the wood 
and the slope is = 0.45.

First we need to find the resultant force:

F•	
net = w sin θ – μkinetic N  Express Fnet in terms of other forces

In this case the weight of the block is 300 N (from w = mg) and the 
normal contact force is 212 N (from N = w cos θ).

Fnet = 300 N × sin 45° – (0.45 × 212 N)  Substitute in known values and 
complete calculation

Fnet =117 N  Clearly state the answer with unit

The acceleration of the block can then be calculated using Newton’s 
second law.

Fnet = ma  State principle or equation to be used (Newton’s second law)

a = Fnet / m  Rearrange equation to make a the subject

a = 117 N / 30 kg  Substitute in known values and complete calculation

a = 3.3 m/s2  Clearly state the answer with unit

Reducing friction
In order to reduce the friction between objects there are two 
techniques that can be used.

Polishing 
Polishing or sanding down an object reduces the size of the bumps 
on the surface. This makes it smoother and so the coefficient of 
friction drops.

Figure 3.70 Polishing reduces the roughness of a surface.
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Surfaces without lubrication Surfaces with lubrication between them

Lubrication
Lubricating between the surfaces rubbing together also reduces 
friction. Commonly used lubricants include oil, water and even 
graphite.

The lubricant effectively fills the gaps between the materials, 
preventing them from bumping into each other and so allowing 
them to slide over each other easily.

Figure 3.71 Lubrication keeps the surfaces apart.

The effects of friction
Friction causes a heating effect. When you rub your hands together 
friction between them causes them to warm up. This has many 
applications but also causes several problems.

Advantages of friction
Is friction always a problem? No. We could not walk if there was no 
friction. Our feet would slip, just as they do on ice, banana skin or 
very smooth surfaces. Rubber-soled shoes and car tyres have ‘tread’ 
on them to increase friction. Smooth tyres tend to skid, especially 
on wet, greasy or icy roads. 

The brakes on a bicycle, car or other vehicle make use of friction. 
The brake pads press on the wheels, slowing them down.

Figure 3.73 shows one situation where friction is useful. Without 
friction, the teacher’s chalk would not mark the board.

Disadvantages of friction
When two parts of any machine rub against each other, the friction 
between them causes heat, noise and wear. The heat produced in 
fast-moving machines may be so great that the parts become red-
hot.

Friction is reduced by lubrication with grease, oil or graphite. 
Bicycles and sewing machines need oil regularly. The engine of a 
motor car has a case at the bottom, called a sump, which is full of 
oil. This covers all the moving parts in the engine. If the engine has 
too little oil, the pistons and cylinders become so hot that they join 
together.

A bicycle wheel must turn freely. If there is friction between the 
wheel and its axle, the bicycle will be harder to ride. Ball bearings 
between the wheel and axle allow the wheel to turn freely – see 
Figure 3.74.

Figure 3.72 Without oil vehicle 
engines would heat up too much 
and possibly seize up entirely.

Figure 3.73 Friction between 
board and chalk causes the chalk 
to gradually wear away

Figure 3.74 Ball bearings ensure 
that a wheel turns smoothly on its 
axle.
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In this section you have learnt that:

In this section you have learnt that:

Friction is a force generated when solids either attempt to •	
slide or slide over each other. 

Friction is caused by bumps in the surface of the materials.•	

Static friction occurs when objects try to move past each •	
other. kinetic friction occurs when objects slide over each 
other; it acts in the opposite direction to motion.

Frictional forces can be calculated using •	 F = μN (where N is 
the normal contact force – this reduces if the object is on an 
inclined plane).

Summary

Review questions
1. Describe the causes of friction and the factors that affect it.

2. Explain the difference between static friction and kinetic 
friction.

3. If the static friction between wood and concrete is 0.62, 
determine the force required to make a wooden block of mass  
2 kg start to slide.

4. Give two examples in which friction is useful and two where it 
is a disadvantage.

3.4 Newton’s third law

By the end of this section you should be able to:

State Newton’s third law. •	

Describe experiments to demonstrate it and give examples •	
of where it is applicable.

The third law of motion
Newton’s third law deals with what happens when you apply a force. 
It is perhaps the most counter-intuitive of Newton’s three laws.  
It states:

If body A exerts a force on body B then body B will exert an •	
equal and opposite force on body A.

In simple terms this means whenever you push an object it pushes 
back with an equal and opposite force; essentially forces come 
in pairs. You can’t apply a force to an object without that object 
applying the same force back onto you.
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Figure 3.75 Examples of Newton’s third law in action.

Th e pairs of forces are oft en called a Newton’s pair or an action 
and reaction pair. It is important to notice that they are equal and 
opposite.

Equal: same magnitude•	

Opposite: opposite direction•	

If you push down on the desk with a force of 10 N the desk pushes 
back up with a force of 10 N. Th is applies to all forces!

It may seem strange but the gravitational attraction of the Earth 
on a satellite is exactly the same size as the pull on the Earth from 
the satellite. Th e same is true at ground level. If you hold a stone 
above the Earth then it pulls the Earth up with the same force that 
the Earth pulls to stone down. When you drop it the stone appears 
to fall but both the stone and the Earth experience the same force. 
However, the stone’s acceleration is much, much greater as it has 
much less mass.

To correctly identify Newton’s pairs it is worth remembering that 
the pairs of forces must fi t the following four criteria:

equal in magnitude•	

opposite direction•	

act on diff erent bodies•	

same type of force•	

So, for example, consider a book on a desk.

Desk

Book

Weight of book
(gravitational attraction to Earth)

KEY WORDS
Newton’s pair a pair of equal 
and opposite forces acting 
between two objects

push of
wall on girl

push of
girl on wall

pull of gravity
on child

pull of child
on Earth

on boy

push of boy
on chair

push of chair

Figure 3.76 An example of 
Newton’s pairs

Figure 3.77 Two forces acting on 
a book, but they are not a Newton 
pair.
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Figure 3.77 shows two forces acting on the book, but they are not an 
action–reaction pair. Th ey are equal and opposite but they do not 
act on diff erent bodies and they are not the same type of force. 

So, where are the Newton’s pairs in this example? 

Table 3.6 Newton’s pairs for a book on a desk

Force Newton’s pair
Contact force on book from desk Contact force on desk from 

book
Weight of book (gravitational 
attraction of the Earth pulling 
on the book)

Gravitational attraction of the 
book pulling on the Earth

Th e book pushes down on the desk and pulls the Earth upward due 
to gravitational attraction. Th ese are the pairs to the two forces in 
Figure 3.77. If we draw three free body diagrams (Figure 3.78) we 
can more easily see the pairs of forces.

Figure 3.78 Th e two pairs of forces

Th ere are two more pairs of forces not included in Figure 3.78. Can 
you work out what they are? (Hint: they do not involve the book).

Applications of the third law
Newton’s third law is incredibly important to motion. Applications 
such as rockets, jet engines, cars and even just walking around rely 
on this law.

When you walk you push backwards on the ground; at the same 
time the ground pushes forward on you and so you accelerate 
forwards! Th e same is true with car tyres.

With a rocket or jet engine hot gases are blasted out of the back; 
they are in essence pushed out. Th is results in an equal and opposite 
force on the engine pushing it forward.

Figure 3.79 Newton’s third law in 
action

Tyre

Tyre pushes
back on road

Road pushes tyre
forward with an
equal but opposite
force
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Activity 3.5: Discovering equal and opposite forces
With a partner get a rope and two skateboards. Both stand on 
a board some distance apart and hold a rope between you. If 
one of you holds the rope and the other one pulls it towards 
them, who moves? 

you both will! An equal and opposite force is exerted on the 
puller. If he pulls with twice as much force he will experience 
twice as much force pulling him forwards.

In this section you have learnt that:

In this section you have learnt that:

Newton’s third law states: “If body A exerts a force on body •	
B then body B will exert an equal and opposite force on 
body A”.

Newton’s third law means forces always come in pairs.•	

Summary

Review questions
1. State Newton’s third law.

2. Describe the characteristics of Newton’s pairs of forces and give 
three different examples.

3.5 Conservation of linear momentum

By the end of this section you should be able to:

Define linear momentum and state its units.•	

State the law of conservation of momentum.•	

Define the term impulse and state its units.•	

Solve numerical problems relating to momentum, •	
conservation of momentum and impulse.

State Newton’s second law in terms of momentum.•	

What is linear momentum?
Linear momentum is another important idea in physics. It can 
be thought of as a measure of how hard it is to stop a moving 
object; the ‘unstopability’ of the object. Objects with a larger linear 
momentum are harder to stop!

There are two factors that make an object hard to stop, its mass and 
its velocity. The greater the mass the harder it is to stop, the faster 
an object is moving the harder it is to stop. Linear momentum is 

Figure 3.80 Without Newton’s 
third law space rockets would not 
be able to move!

DID yoU kNoW?
As well as linear 
momentum there is another 
physical property called 
angular momentum. This 
is all to do with the rotation 
of a spinning object. For the 
purpose of the following 
sections any reference to 
momentum refers to linear 
momentum.

Figure 3.81 A charging rhino has 
a large momentum!
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defined as the product of an object’s mass and velocity. This leads to 
the equation for linear momentum:

linear momentum = mass •	 × velocity

Or in symbols:

p = mv•	

p is the symbol for linear momentum and as the units of mass are 
kg and the units of velocity are m/s it follows the units of linear 
momentum are kg m/s.

For example, a rhino running at top speed has quite a large 
momentum; it’s very hard to stop! An adult black rhino may have 
a mass of 1000 kg and for short periods of time can reach 15 m/s 
when sprinting. To find its momentum we would use the equation: 

momentum = mass × velocity   State principle or equation to be used 
(definition of momentum)

p = 1000 kg × 15 m/s   Substitute in known values and complete 
calculation

p = 15 000 kg m/s  Clearly state the answer with unit

A sprinting human may have a momentum of around 640 kg m/s 
(assuming a velocity of 8 m/s and a mass of 80 kg).

Momentum is a vector quantity. This means the direction of motion 
of the object is really important. For example, take a situation where 
two identical cars are heading towards each other.

Figure 3.83 Two head-on cars

The momentum of car A is:

momentumA = massA × velocityA  State principle or equation to be   
 used (definition of momentum applied to car A)

pA = 1200 kg × 10 m/s   Substitute in known values and complete 
calculation

pA = 12 000 kg m/s to the right  Clearly state the answer with unit

The momentum of car B is:

momentumB = massB × velocityB  State principle or equation to be used
(definition of momentum applied to car B)

pB = 1200 kg × 10 m/s   Substitute in known values and complete 
calculation

pB = 12 000 kg m/s to the left  Clearly state the answer with unit

Car BCar A

10 m/s10 m/s

Think about this… 
The equation for momentum 
shows that both the mass 
and velocity of an object 
are directly proportional to 
its momentum. This means 
an object with twice the 
mass travelling at the same 
speed will have double the 
momentum. Alternatively, an 
object going twice as fast will 
have double the momentum.

Figure 3.82 Due to its large 
mass a moving train has a large 
momentum. 

KEY WORDS
angular momentum the 
momentum of an object 
moving in a circle
linear momentum a measure 
of how hard it is to stop a 
moving object
law of conservation of 
linear momentum law 
stating that in a closed 
system, the total linear 
momentum will remain 
constant 
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Figure 3.85 Ball B moves away from ball A

We can work out the velocity of ball B. As the total momentum of 
the system must equal 5 kg m/s then the momentum of ball B must 
be 5 kg m/s.

momentumB = massB × velocityB   State principle or equation to be used 
(definition of momentum)

velocityB = momentumB / massB   Rearrange equation to make velocityB 
the subject 

vB = 5 kg m/s / 2.0 kg   Substitute in known values and complete 
calculation

vB = 2.5 m/s to the right  Clearly state the answer with unit

Thinking about this answer it makes sense. Ball B has twice the 
mass of ball A and so the velocity will need to be half of that of ball 
A before they collided.

Outcome 2: The balls stick together (imagine there are magnets 
inside them) and they move away together with a certain velocity.

Figure 3.86 The balls stick together

We can work out the velocity of the balls when they stick together. 
Just like the previous example the total momentum of the system 
must equal 5 kg m/s then the momentum of the balls must be 5 kg 
m/s.

momentum = mass × velocity   State principle or equation to be used 
(definition of momentum)

velocity = momentum / mass   Rearrange equation to make velocity the 
subject 

v = 5 kg m/s / 3.0 kg   Substitute in known values and complete 
calculation 

Notice we had to use a mass of 3.0 kg as this is the total mass of the 
two balls.

v = •	 1.7 m/s to the right  Clearly state the answer with unit

Think about this… 
If the mass of the system 
remains constant we can 
rewrite the equation as Fnet 
= mΔv / Δt. only velocity 
is changing as the mass is 
constant. From Unit 2 we 
know that Δv / Δt is the 
acceleration of the object. As 
a result we get Fnet = ma but 
only if the mass is constant!

Think about this… 
If the object changes 
direction then you mustn’t 
forget momentum is a vector 
quantity. A ball going from 
a momentum of 10 kg m/s 
to the left to 5 kg m/s to 
the right has experienced a 
change of momentum of  
15 kg m/s to the right.

? m/s

Ball A Ball B

1.0 kg 2.0 kg

? m/s

Ball A Ball B

1.0 kg 2.0 kg
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Outcome 3: Ball A bounces back off ball B. Ball B moves to the 
right with a velocity of 3 m/s and ball A moves back in opposite 
direction.

Figure 3.87 Ball A bounces off ball B and both balls move 

Again, just like the previous example the total momentum of the 
system must equal 5 kg m/s. However, this time both the balls have 
a momentum. The momentum of ball B is given by:

momentumB = massB × velocityB   State principle or equation to be used 
(definition of momentum)

pB = 2.0 kg × 3 m/s   Substitute in known values and complete 
calculation 

pB = 6 kg m/s to the right  Clearly state the answer with unit

In order for momentum to be conserved ball A must have a 
momentum of –1 kg m/s or a momentum of 1 kg m/s to the left. 
This will give us a total momentum of 5 kg m/s to the right.

The velocity of ball A can then be calculated.

momentumA = massA × velocityA   State principle or equation to be 
used (definition of momentum)

velocityA = momentumA / massA   Rearrange equation to make 
velocityA the subject

vA = –1 kg m/s / 1.0 kg   Substitute in known values and complete 
calculation

vA = –1 m/s or 1 m/s to the left  Clearly state the answer with unit

There are several other possible outcomes depending on the 
masses of the objects and the materials they are made out of. In 
every possible case the linear momentum of the system must be 
conserved!

Explosions 
When a gun is fired, an explosion occurs inside the gun and the 
bullet flies off at high speed. The person firing the gun has to be 
ready for the recoil – the gun pushes back against their shoulder, 
in the opposite direction to the direction of the bullet. Figure 3.88 
shows why this is.

The bullet has a small mass and a high velocity, towards the right.•	

The gun has a larger mass and a smaller velocity, towards the left.•	

3 m/s? m/s

Ball A Ball B

1.0 kg 2.0 kg
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0.5 m s
–1

500 m s
–1

5 kg 5 g

Figure 3.88 The momentum of the bullet is equal and opposite to the 
momentum of the gun

Before the explosion, neither the gun nor the bullet had any 
momentum. In the explosion, the bullet is given momentum to 
the right, while the gun is given an equal amount of momentum 
to the left. Recall that momentum is a vector quantity; equal and 
opposite amounts of momentum cancel out, so the total amount of 
momentum after the explosion is zero. Hence there is just as much 
momentum after the explosion as there was before it, so we can 
again see that momentum has been conserved.

Back to Newton’s second law
Earlier we discussed Newton’s second law as:

The acceleration of an object is directly proportional to the •	
resultant force acting on the object.

and

This acceleration occurs in the direction of the resultant force.•	

However, this only applies if the mass of the system remains 
constant. Newton’s original concept for the second law involved 
forces changing the linear momentum of objects.

He said:

The resultant force acting on an object must be directly •	
proportional to the rate of change of linear momentum of the 
object.

and

The change in linear•	  momentum occurs in the same direction 
as the resultant force.

Using symbols this becomes:

F•	
net = Δmv / Δt

(Remember the Δ means ‘change in’.)

To recap, the law of conservation of linear momentum states that 
the momentum must remain constant unless an external force 
acts. What Newton’s second law tells us is that the momentum of 
a system can change if a force acts on it. The two compliment each 
other!

Figure 3.89 An explosive 
situation

Activity 3.6: The human 
explosion
•	 Find	two	students	with	

the same mass. Make 
them stand on platforms 
with wheels, facing each 
other (Figure 3.89).

•	 One	student	pushes	
the other gently, in an 
attempt to make him or 
her move away. (This is 
a simple way of making 
an ‘explosion’ in the lab.) 
What happens?

•	 Does	it	make	any	
difference which student 
does the pushing, or if 
both push?

•	 Try	again	with	students	
having different masses.
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A car of mass 1400 kg accelerates from 10 m/s to 15 m/s over 
3.5 s. Find the average resultant force acting.

Fnet = Δmv / Δt   State principle or equation to be used (Newton’s 
second law in terms of momentum)

The change in momentum is equal to the final momentum 
minus the initial momentum.

Δmv = mv – mu  Express simple statement of change in momentum

Δmv = (1400 kg × 15 m/s) – (1400 kg × 10 m/s)  Substitute in
  known values and complete calculation

Δmv = 7000 kg m/s  Clearly state the answer with unit

Fnet = Δmv / Δt  State principle or equation to be used (Newton’s  
 second law in terms of momentum)

Fnet = 7000 kg m/s / 3.5 s  Substitute in known values and   
 complete calculation

Fnet = 2000 N, in the direction of its acceleration  Clearly state  
 the answer with unit

(As the mass of this system can be assumed to be constant we 
could have used Fnet = ma).

Worked example

Imagine gently hitting a tennis ball of mass 100 g with a force 
of 50 N. The tennis racket and ball are in contact for just 0.02 
s. We can calculate the change in momentum.

Fnet = Δmv / Δt  State principle or equation to be used (Newton’s  
 second law in terms of momentum)

Δmv = Fnet × Δt  Rearrange equation to make Δmv the subject

Δmv = 50 N × 0.02 s  Substitute in known values and complete  
 calculation

Δmv = 1.0 kg m/s in the direction of the 50 N force  Clearly  
 state the answer with unit

Worked example

Acting on impulse
The impulse of a force is the magnitude of the force multiplied by 
the time which it acts. 

Impulse = •	 FΔt

The units of impulse are usually expressed as N s.

An impulse of 10 N s could be caused by a 10 N force acting 
for 1 s or a 1 N force acting for 10 s (and thousands of other 
combinations!).

KEY WORDS
impulse the magnitude of a 
force multiplied by the time 
for which it acts
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From Newton’s second law we get:

F•	
net = Δmv / Δt

This can be written as:

F•	
net Δt = Δmv = impulse

The impulse of a force is also equal to the change in •	
momentum of the object.

So, the longer the force acts on an object the greater the impulse 
and so the greater the change in momentum.

A footballer kicks a stationary ball of mass 1 kg with a force 
of 90 N. The first time his foot is in contact with the ball for 
just 0.01 s. The second time he follows through and his foot 
is in contact with the ball for 0.1 s. Find the impulse, change 
in momentum and the velocity of the ball after impact in each 
case.

Table 3.7 Calculating the velocity of footballs

Worked example

Δt = 0.01 s Δt = 0.1 s

Impulse = FΔt Impulse = FΔt

Impulse = 90 N × 0.01 s Impulse = 90 N × 0.1 s

Impulse = 0.9 N s Impulse = 9 N s

Change in momentum = 
impulse

Change in momentum = 
impulse

Change in momentum = 0.9 
kg m/s

Change in momentum = 9 kg 
m/s

As the initial momentum 
was 0 kg m/s the change in 
momentum must equal the 
final momentum of the ball.

As the initial momentum 
was 0 kg m/s the change in 
momentum must equal the 
final momentum of the ball.

Final momentum = 0.9 kg 
m/s

Final momentum = 9 kg m/s

p = mv so v = p / m p = mv so v = p / m

v = 0.9 kg m/s / 1 kg v = 9 kg m/s / 1 kg

v = 0.9 m/s v = 9 m/s

Newton’s laws and conservation of linear momentum
Using Newton’s laws we can prove the law of conservation of linear 
momentum. Imagine two railway carriages. If one crashes into 
the other, they will exert equal and opposite forces on each other 
(Newton’s third law). This force will be acting for the same time on 

Think about this… 
In most sports participants 
are encouraged to follow 
through when kicking or 
hitting a ball. This increases 
the time the force is acting 
and so gives rise to a greater 
impulse and so a greater 
change in momentum.
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each carriage; therefore the impulse on each carriage will be the 
same (FΔt).

Both carriages will experience the same force but in opposite 
directions. They will therefore have the same change in momentum, 
but in opposite directions (Newton’s second law). 

Figure 3.90 Two railway carriages colliding

The change in momentum of each carriage is given by FΔt = Δmv. 
The first carriage will experience a change in momentum equal and 
opposite to the second carriage. Therefore:

m•	
1Δ v1Δ = –m2  Δv2

Or 

0 = m•	
1Δ v1– m1Δ v1

The total change of momentum of the system is 0 kg m/s; therefore 
the momentum has not changed and momentum has to be 
conserved!

In this section you have learnt that:

In this section you have learnt that:

Linear momentum is defined as the product of an object’s •	
mass and velocity (as given by p = mv). It is a vector 
quantity measured in kg m/s. 

The law of conservation of momentum states: “In a closed •	
system the total linear momentum remains constant.” This 
means if there are no external forces acting then the total 
momentum before a collision/explosion must be the same as 
the total momentum after the collision/explosion.

The impulse of a force is defined as the force multiplied by •	
the time the force is acting. It has units of N s. Impulse is 
equal to the change in momentum of an object.

Summary

m2m1

v

m2m1
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Review questions
1. Define linear momentum and state its units.
2. Calculate the momentum of a car of mass 1200 kg travelling 

with a velocity of 30 m/s.
3.  A car of mass 500 kg is moving at 24 m/s. A lion of mass 100 kg 

drops on to the roof of the car from an overhanging branch. Show 
that the car will slow down to 20 m/s.

4.  A car of mass 600 kg is moving at a speed of 20 m/s. It collides 
with a stationary car of mass 900 kg. If the first car bounces 
back at 4 m/s, at what speed does the second car move after the 
collision?

5.  A ball of mass 4 kg falls to the floor; it lands with a speed 
of 6 m/s. It bounces off with the same speed. Show that its 
momentum has changed by 48 kg m/s.

3.6 Collisions

By the end of this section you should be able to:

Distinguish between elastic and inelastic collisions. •	

Elastic and inelastic collisions will be covered in more detail in 
Unit 4. This short section serves as a brief introduction.
Whenever objects collide the linear momentum of the system 
must be conserved as long as there are no external forces acting. 
However, other quantities, such as kinetic energy, may change. 
In a perfectly elastic collision the kinetic energy of the system before 
the collision must equal the kinetic energy of the system after the 
collision.

In an elastic collision the kinetic energy must be conserved.•	

Perfectly elastic collisions are very rare. Snooker balls come pretty 
close but there is always a small drop in kinetic energy (most of 
this energy is transformed into heat and sound as the balls knock 
together).
A collision where the kinetic energy of the system drops after the 
collision is referred to as inelastic. Think of a tennis ball dropped 
on to the desk. It will bounce but it does not return to its original 
height as some of the kinetic energy has been lost.

Most collisions are inelastic but some are much more inelastic than 
others. 

In terms of momentum, Newton’s second law can be written •	
as: “The resultant force acting on an object must be directly 
proportional to the rate of change of linear momentum of 
the object and the change in linear momentum occurs in the 
same direction as the resultant force.” Using symbols this 
becomes: Fnet = Δmv / Δt

KEY WORDS
elastic collision collision 
between two objects where 
the total kinetic energy is 
conserved
inelastic collision collision 
between two objects where 
the total kinetic energy is less 
after the collision
kinetic energy the energy 
possessed by an object as a 
result of its motion

Figure 3.91 Snooker balls 
produce near-perfect elastic 
collisions.
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In this section you have learnt that:

In this section you have learnt that:

Collisions can be classed as elastic or inelastic.•	

In an elastic collision the kinetic of energy of the system •	
does not change.

Summary

Review questions
1. Explain the difference between elastic and inelastic collisions. 

3.7 The first condition of equilibrium

By the end of this section you should be able to:

State the conditions required for linear equilibrium.•	

Decide whether a system is in equilibrium.•	

Apply the first condition of equilibrium to solve problems. •	

What is linear equilibrium?
Equilibrium was discussed briefly in Unit 1. In terms of forces, 
the first condition of linear equilibrium is when a body at rest or 
moving with uniform velocity has zero acceleration. 

From Newton’s first law, for this condition to be satisfied then the 
sum of all forces acting on it must be zero. In other words, there is 
no resultant force acting on the object. 

Using the mathematical symbol ∑F for the sum of all forces we can 
write: 

For linear equilibrium ∑•	 F = 0

You must be careful when considering equilibrium. Free body 
diagrams often help here. Ensure that you have included all the 
forces acting on the object; don’t forget weight and the contact 
forces acting on it.

If you draw a free body diagram and you end up back at the start 
then you can conclude there is no resultant force and the system is 
in equilibrium (remember if there are just three forces acting then 
they must form a triangle).

Figure 3.92 Scale diagram 
showing no resultant force

Start/End
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Three forces are acting on a hovering helicopter. Its weight 
acts vertically downward and there is a strong horizontal wind. 
In order to hover, the force from the rotors must be directed 
slightly forward. Determine the magnitude of this force and its 
angle to the horizontal.

The helicopter is in equilibrium, therefore there is no net force 
acting on it. The three forces form a triangle, as shown in 
Figure 3.94.

To	calculate	the	magnitude	of	the	force	we	use	Pythagoras’s	
theorem:

a2 = b2 + c2  State principle or equation to be used (Pythagoras’s  
 theorem)

a2 = (15 000 N)2 + (3000 N)2 Substitute in known values and  
 complete calculation

a = 15 300 N  Clearly state the answer with unit

To determine angle θ we use trigonometry

tan θ = opp / adj  State principle or equation to be used   
 (trigonometry)

tan θ = 15 000 / 3000  Substitute in known values and complete  
 calculation

tan θ = 5  Solve for tan θ

θ = tan–1 5  Rearrange equation to make θ the subject and solve

θ = 79o  Clearly state the answer with unit

Worked example Lift=?

Strong wind=3000 N

Weight=15 000 N

Figure 3.93 Three forces acting on 
a helicopter.

Lift=?

3000 N

15 000 N

θ

Figure 3.94 The forces on the 
helicopter form a triangle.

In this section you have learnt that:

In this section you have learnt that:

A system/object is in linear equilibrium if there is no •	
resultant force acting on it. 

Summary

Review questions
1. Explain what is meant by the term linear equilibrium and 

describe the conditions required.

2. Three forces are acting on an object in equilibrium, as shown 
in Figure 3.95. Either using a scale diagram or mathematically 
determine the magnitude and direction of force X. Figure 3.95 Can you find force X?

50 N Vertical

10 N Horizontal

Force X
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End of unit questions 
1. State Newton’s three laws of motion.

2. Explain what is meant by the term inertia and describe how it is 
related to mass.

3. A force of 10 N causes a spring to extend by 20 mm. Find:

a) the spring constant of the spring in N/m

b) the extension of the spring when 25 N is applied

c) the force applied that causes an extension of 5 mm.

4. Calculate the weight of the following objects on Earth (assume 
g = 10 N/kg).

a) 12 kg

b) 500 g

c) 20 g

d) What is the mass and weight of each of the objects if they 
were placed on Mars? (gMars = 3.8 N/kg)

5. A runner of mass 60 kg accelerates at 2.0 m/s2 at the start of a 
race. Calculate the force provided from her legs.

6. Two forces are acting on an aircraft of mass 2000 kg, as shown 
in Figure 3.96.

 Determine the acceleration of the aircraft.

7. A concrete slab of mass 400 kg accelerates down a concrete 
slope inclined at 35°. The μkinetic between the slab and slope is 
0.60. Determine the acceleration of the block.

8. State the law of conservation of linear momentum and describe 
its consequences.

9. A bullet of mass 0.01 kg is fired into a sandbag of mass 0.49 kg 
hanging from a tree. The sandbag, with the bullet embedded 
into it, swings away at 10 m/s. Find:

a) the momentum after the collision

b) the momentum before the collision

c) the velocity of the bullet.

10. A child of mass 40 kg jumps off a wall and hits the ground at 
4 m/s. He bends his knees and stops in 1 s. Calculate the force 
required to slow him down. How would this force be different if 
he didn’t bend his knees and stopped in 0.1 s?

Figure 3.96 Forces acting on an 
aircraft

2000 N 
East

6000 N North 
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Contents
Section Learning competencies

4.1 Mechanical work
 (page 88)

Describe the necessary conditions for work to be done by a force •	
(including work done by a force F acting on a body at an angle of θ).
Use •	 W = F s cos θ to solve problems.
Calculate the work done against gravity, the work done by a •	
frictional force and the work done by a variable force.
Distinguish between negative and positive work.•	

4.2 Work–energy 
theorem

 (page 96)

Explain the relationship between work and energy.•	
Derive the relationship between work and kinetic energy and use •	
this to solve problems.
Show the relationship between work and potential energy as  •	
W = –ΔU and use this to solve problems.
Describe gravitational potential energy and elastic potential •	
energy.
Explain mechanical energy as the sum of kinetic and potential •	
energy.

4.3 Conservation of 
energy

 (page 101)

State the law of conservation of mechanical energy.•	
Revise the term collision and distinguish between elastic and •	
inelastic collisions.
Solve problems involving inelastic collisions in one dimension •	
using the laws of conservation of mechanical energy and 
momentum.
Explain the energy changes that take place in an oscillating •	
pendulum and an oscillating spring–mass system. 
Describe the use of energy resources, including wind energy, solar •	
energy and geothermal energy.
Explain the meaning of the term renewable energy.•	

4.4 Mechanical power
 (page 110)

Solve problems relating to the definition of power.•	
Show that the kWh is also a unit of work.•	
Express the formula of mechanical power in terms of average •	
velocity.

Bouncing a ball involves some complex energy changes and 
transfers. No matter what surface you drop the ball on to, it will 
never return to its original height. Why is this? In simple terms, 
some of the ball’s energy has been transferred into the air and 
ground. After the bounce it has less energy than it did before, and 
so it can’t return to its original height. 

This unit looks at work and energy, how it comes in different forms, 
and how you can transform it and transfer it. However, no matter 
how hard we try, we can’t make any more energy then there is to 
start with, nor can we destroy any. 

Work, energy and power Unit 4
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With dwindling global energy resources and continuously 
increasing demand, energy issues will play a very significant role in 
the next 20 years. 

4.1 Mechanical work

By the end of this section you should be able to:

Describe the necessary conditions for work to be done by a •	
force (including work done by a force F acting on a body at 
an angle of θ).

Use •	 W = F s cos θ to solve problems.

Calculate the work done against gravity, the work done by a •	
frictional force and the work done by a variable force.

Distinguish between negative and positive work.•	

What is work?
The term work is used all the time in everyday language. You 
might go to work, a device may stop working, you might complete 
schoolwork, or work hard to solve a problem. However, in physics, 
work means something very specific. 

You might describe someone performing a physically demanding 
task as working hard. This is closer to the truth than it first appears. 
In physics the term work (or often work done) is another way of 
saying energy is being transferred from one object to another or 
transformed from one type to another. 

Work done = energy transferred•	

This means, like energy, work done is measured in joules. (The 
joule is the SI derived unit of energy). The more energy transferred 
the more work has been done. Work is a scalar quantity, just like 
energy.

Calculating work done
Look back at the fishermen in Figure 4.1. As they pull the rope 
along they are transferring energy to their catch at the end of the 
rope. The harder they pull or the greater distance they travel, the 
more energy they transfer, the more work they do.

Mechanical work is defined as the amount of energy transferred by 
a force acting through a distance. We can calculate work done using 
the following equation:

W = F s•	

W = work done in J.

F = average force applied (it is assumed to be constant) in N.

s = the distance moved in the direction of the force in m.

Figure 4.1 These fishermen are 
working hard, but what does the 
term working hard mean?

DID yoU kNoW?
The term work was first 
used in the 1830s by the 
French mathematician 
Gaspard-Gustave Coriolis. 
He is more famous for 
giving his name to the 
Coriolis effect. This explains 
the rotation of large weather 
systems like hurricanes and 
cyclones.

Figure 4.2 The forklift is 
transferring energy to the box as 
it lifts it up. It is doing work.
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Notice we usually use s instead of d or x. This is because the 
direction of the distance moved is really important. The distance 
travelled has to be in the direction of the force. Either in the same 
direction or in the opposite direction (this is often referred to as the 
distance against the force). If you are not pulling or pushing against 
a force then you are not doing any work. We use s because the 
distance has a specific direction; therefore it can be considered to be 
a displacement. 

Mechanical work may be defined as the product of •	
displacement and the force in the direction of the 
displacement.

In both examples in Figure 4.3 work is being done, energy is being 
transferred or transformed. The first example involves pulling a 
trolley along the ground against a frictional force of 2 N. The second 
involves lifting a 2 N book. In both cases the distance moved against 
the force is 3 m and so 6 J of work has been done.

W = F s•	

W•	  = 2 N × 3 m

W•	  = 6 J

Looking at the second example the direction of the force is 
vertically downwards (it is the weight of the book). Therefore it is 
only the vertical distance moved that is important.

Look at Figure 4.4. Assuming the book weighs 2 N and there are no 
other forces acting, how much work is done in each case?

Figure 4.4 The distance moved must be in the opposite direction to 
the force.

In example A the work done is simple to calculate: W = F s, W = 6 J.

Example B is more complex and serves to illustrate the importance 
of working against the force. The book has been moved 5 m. 
However, it has only been moved 3 m vertically. It is this distance, 
the distance against the force, which we use in our calculation.

W = F s   State principle or equation to be used (definition of mechanical 
work)

W = 2 N × 3 m  Substitute in known values and complete calculation

W = 6 J  Clearly state the answer with unit

So in both A and B the work done is 6 J. The energy transferred to 
the book is 6 J in each case.

DID yoU kNoW?
One joule is defined as the 
work done when a force of 1 
N moves through a distance 
of 1 m. So 1 J = 1 N × 1 m.

DID yoU kNoW?
As well as mechanical work 
you can do electrical work 
on an object. The equation 
for electrical work done 
is W = VIt, where V is the 
potential difference in volts, 
I is current in amperes and t 
is time in seconds.

Figure 4.3 Two examples of doing 
work, for example lifting a book 
to place it on a shelf or pushing a 
shopping trolley through a store.

3 m

2 N

2 N

3 m

Book
Trolley

3 m 3 m
5 m

4 m

A B C

3 m

2 N

2 N

3 m

Book
Trolley

KEY WORDS
energy the stored ability to 
do work
joule the SI unit of work and 
energy
work / work done the 
amount of energy transferred 
when an object is moved 
through a distance by a force
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In example C in Figure 4.4 the book moves 4 m. However, it 
does not move any distance against the force (it does not move 
vertically). Therefore  
s = 0 m.

W = F s•	
W•	  = 2 N × 0 m
W = 0 J•	

So in example C no work has been done. No energy has been 
transferred to the book.

A more complex version of the work equation can be seen below. 
W = F s •	 cos θ

s is the distance travelled.

θ is the angle between the force and the direction of movement.

If you think about this equation, s cos θ is really the distance moved 
in the direction of the force.

For example, Figure 4.6 shows a 100 N box lifted 20 m at an angle of 
60° to the vertical.

The work done would be:

W = F s cos θ   State principle or equation to be used (definition of 
mechanical work)

W = 100 N × 20 m × cos 60°   Substitute in known values and complete 
calculation

W = 1000 J  Clearly state the answer with unit

Doing work against gravity, friction, and gravity
and friction!

Gravity
Work is often done against gravity. Whenever you lift up an object 
you are doing work against the force of gravity. In this case the force 
you are working against is the weight of the object. We can adapt 
our work done equation for working against gravity:

W = F s •	

Work done against gravity = weight •	 × vertical distance moved 
(or Wgravity = w × h)

The work done in lifting a 60 kg mass vertically 3 m can be found 
using the work done equation:
Wgravity = w × h  State principle or equation to be used
w = mg, w = 60 kg × 10 N/kg = 600 N   Calculate weight from known 

values
Wgravity = 600 N × 3 m  Substitute in known values and complete   
   calculation
Wgravity = 1800 J  Clearly state the answer with unit

Remember, it must be the vertical distance moved and weight acts 
vertically.

Figure 4.5 θ is the angle between 
the direction of movement and 
the direction of the force.

Figure 4.6 A box lifted up at an 
angle

Think about this… 
If the angle between the 
force and distance moved 
is 0° (i.e. they are parallel) 
then cos θ = cos 0° = 1. 
The equation W = F s cos θ 
becomes W = F s, as used in 
the earlier examples.

5 m

θ

20 m

100 N

60°
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Friction
Whenever you push an object along the ground you are working 
against a force of kinetic friction. 

Kinetic friction always acts in the opposite direction to motion. In 
Unit 3 we learnt that:

F•	
friction = μkineticN

This is the force you are working against. We can adapt our work 
done equation for working against frictional forces:

W = F s•	
Work done against friction = force due to kinetic friction •	 × 
distance moved
W•	

friction = μkineticN × s

For example, we can determine the work done in pushing a 100 kg 
wooden block 30 m across a horizontal concrete floor with μkinetic = 
0.48

W•	
friction = μkineticN × s

In this case the normal contact force is equal to the weight (as the 
floor is horizontal) and so 

N = w = mg  Express N in terms of weight

N = 100 kg × 10 N/kg   Substitute in known values and complete 
calculation

N = 1000 N  Clearly state the answer with unit

Wfriction = μkineticN × s   Express Wfriction in terms of frictional force and 
distance moved

Wfriction = 0.48 × 1000 N × 30 m   Substitute in known values and 
complete calculation

Wfriction = 14 400 J or 14.4 kJ  Clearly state the answer with unit

This energy has been transformed into heat energy where the block 
and surface rub together.

Gravity and friction
If you were to push or pull on object up a ramp then you end up 
doing work against both friction and gravity!

In this case the total work done could be found using the following 
equation:

Total work done = work done against gravity + Total work •	
done = work done against friction

Work done against gravity = weight × vertical distance moved.

W•	
gravity = w × h

Work done against friction = force due to kinetic friction × distance 
moved up ramp.

W•	
friction = μkineticN × s

Figure 4.7 Working against 
friction 

Figure 4.8 Working against 
friction and gravity

CAR

Distance moved
Friction

Friction

Weight of block
θ

KEY WORDS
heat energy energy that 
is transferred between two 
objects as a result of their 
difference in temperature
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So:

W•	
total = (w × h) + (μkineticN × s)

We have to be very careful in considering the distances we use in 
this equation; h has to be the vertical distance, as this is the distance 
moved against gravity, whereas s must be the distance moved up the 
slope as friction acts down the slope.

Using the wooden block earlier we can determine the work 
done if the block was pulled 20 m up a ramp at an angle of 
30°.

•	 Total work done = work done against gravity + work done 
against friction.

Work done against gravity:

Wgravity = w × h  Express WGravity in terms of force (weight) and   
 distance moved (height lifted)

In this case w = mg = 100 kg × 10 N/kg = 1000 N. h = vertical 
distance moved, which, using trigonometry, = s sin θ = 20 m × 
sin 30° = 10 m.

Wgravity = 1000 N × 10 m  Substitute in known values and complete  
 calculation

Wgravity = 10 000 J  Clearly state the answer with unit

Work done against friction: 

Wfriction = μkineticN × s  Express Wfriction in terms of frictional force and  
 distance moved

In this case μkinetic = 0.48, s = 20 m and N = w cos θ (see Unit 
3) = 1000 N x cos 30° = 866 N 

Wfriction = 0.48 × 866 N × 20 m  Substitute in known values and  
 complete calculation

Wfriction = 8313.6 N or 8300 N  Clearly state the answer with unit

Total work done:

Wtotal = Wgravity + Wfriction  Simple expression of total work done

Wtotal = 10 000 J + 8300 J  Substitute in known values and   
 complete calculation

Wtotal = 18 300 J  Clearly state the answer with unit

Worked example

What if the force varies?
If the force applied varies we can’t use the W = F s cos θ equation to 
find the work done. We need a different technique to calculate the 
work done. 

We can plot a graph of the force applied against the distance 
travelled against the force.

Think about this… 
Using the equations in Unit 
3 and trigonometry can you 
show how we might expand 
the final equation to:  
Wtotal = (w × s sin θ) +  

  (μkinetic × w cos θ × s)

Figure 4.9 Pulling an object up a 
ramp

KEY WORDS
graph a drawing showing how 
two or more sets of numbers 
are related to each other
area under the line the area 
between the line on a graph 
and the axes
calculus a type of 
mathematics that deals with 
rates of change
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Figure 4.10 A graph showing 
a constant force acting over a 
distance 

Figure 4.11 The area under a 
force vs. distance moved graph is 
equal to the work done.

The area under the line is equal to F s; it is equal to the work done. 
Increasing the distance moved or increasing the force both increases 
the area under the line and so more work has been done.

What if the force was not constant but gradually increasing? You 
might get a graph that looks like Figure 4.12.

In this case the area under the line is a triangle. This area is still 
equal to the work done. 

What if the force varied in a more complex way? Take, for example, 
Figure 4.14. This might be a varying force of friction as a box is 
dragged over different surfaces.

Remember the area under the line is still equal to the work done. 
But how do we calculate it?

In order to determine the area under the line we need to count the 
squares under the line and then use this to calculate the work done.

Take a small square under the line and calculate the area of this 
square. For example, if the square is 20 N high and 0.1 m across the 
area is equal to:

area of one square = 20 N •	 × 0.1 m

area of one square = 2 J.•	

Think about this… 
Hooke’s law produces a graph 
very similar to Figure 4.12. 
In fact the area under the 
line in this case represents 
the work done on the spring. 
That is, the energy stored by 
the spring. you can work out 
the energy stored using the 
equation W = ½FΔx.

DID yoU kNoW?
You could use some 
powerful mathematics 
called calculus to determine 
the area under the line. 
Newton invented this kind 
of mathematics to help him 
solve complex problems 
relating to the motion of 
objects.

Figure 4.15 No matter how 
complex the force vs. distance 
moved graph, the area under the 
line is still equal to the work done.

Force /N

Distance moved against force /m

Force /N

F

s
Distance moved against force /m

Area under = Fs

Area under = work done

Force /N

Distance moved against force /m

Force /N

F

s

Distance moved against force /m

Area under the line =  F s

Work done

Force /N

Distance moved against force /m

Force /N

Distance moved against force /m

Figure 4.14 A graph showing a 
force that changes in a complex 
way as distance increases

Figure 4.12 A graph showing a 
force that increases as the distance 
moved increases

Figure 4.13 The area under 
the line still represents the 
work done.
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This small square represents 2 J of work done. We need to count up 
all the squares and then multiply this by 2 J to determine the total 
work done. For example, if there are 100 squares the total work 
done would be:

total work done = number of squares •	 × work done for each 
square

total work done = 100 •	 × 2 J = 200 J.

If there were 500 squares the total work done would be 1000 J, etc.

You must be careful when counting the squares. You need to make a 
few estimations near the line. For example:

Figure 4.17 Counting the squares often involves some estimation close 
to the line.

In Figure 4.17 there are a total of 90.5 squares. We have had to 
estimate some of those near the line. The three small red areas 
add up to one complete square, the four green areas add up to two 
squares, etc.

In this case the total work done is equal to:

total work done = number of squares •	 × work done for each 
square

total work done = 90.5 •	 × 5 J

total work done = 452.5 J (approximately 450 J).•	

Although this is only an approximate value if you are careful 
counting the squares you will get very close to the true value of the 
work done.

Figure 4.16 The area of one 
square represents a small amount 
of the total work done.

0.1 m

2 J20 N

Force /N

Distance moved against force /m

1.5 squares
2 squares

8 squares

78 squares

0.5 m

10 N Each square = 10 N x 0.5 m = 5  J
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+W or –W?
Work may be expressed as a positive or negative value. Remember, 
work is a scalar quantity and the opposite sign does not mean the 
opposite direction. 

Instead, whether the work is positive or negative depends on 
whether or not the object gains or loses energy.

In both cases in Figure 4.18 the work done is 500 J. In the first case 
we can say work is done on the box. It gains 500 J of energy. 

In the second case the box loses 500 J of energy. We can express this 
as –500 J or we could say the work done by the box is 500 J.

In this section you have learnt that:

In this section you have learnt that:

Work done is another way of saying energy transferred. •	

Mechanical work is done whenever you move a force through •	
a distance.

The work done may be found using the equation:  •	
W = F s cos θ

Work done may be positive or negative depending on •	
whether the object in question gains or loses energy.

Summary

Review questions
1. Explain the meaning of the term work done and give an 

example of where work is done.

2. Calculate the total work done in the following examples:

a) A 20 kg log lifted 2 m into the air

b) Thirty 6 kg boxes lifted onto a shelf 1.5 m high

c) A car of mass 1400 kg pushed 50 m along a road  
(μkinetic = 0.3)

d) A concrete slab of mass 200 kg pulled 10 m up a slope at an 
angle of 30° to the horizontal (μkinetic = 0.6).

3. Describe in detail how you would determine the work done by 
a varying force.

4. Explain the difference between positive and negative work 
done.

Figure 4.18 Work being done on 
or by a moving box

10 m

50 N

10 m

Box

BoxBox

50 N

Box

10 m

50 N

10 m

Box

BoxBox

50 N

Box

KEY WORDS
negative less than zero
positive greater than zero
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4.2 Work–energy theorem

By the end of this section you should be able to:

Explain the relationship between work and energy.•	

Derive the relationship between work and kinetic energy •	
and use this to solve problems.

Show the relationship between work and potential energy •	
as W = –ΔU and use this to solve problems.

Describe gravitational potential energy and elastic potential •	
energy.

Explain mechanical energy as the sum of kinetic and •	
potential energy.

Energy vs. work?
Energy and work are really just different ways of looking at the same 
thing. The energy of an object is a mathematical representation of 
the amount of work an object can do. Whereas work is any energy 
transferred to or from the object, energy refers to the total amount 
of work the object could theoretically do. In algebraic terms:

ΔE = W•	
Both energy and work are scalar quantities measured in joules.

Forms of energy
There are several different forms of energy. These include:

Table 4.1 Different types of energy

kinetic energy Gravitational potential energy

Heat energy Elastic potential energy 
(strain)

Sound energy Chemical energy

Electromagnetic energy (light) Nuclear energy

Electrical energy

The forms of energy on the left hand side of Table 4.1 are all 
energies associated with a kind of movement, whereas the forms 
of energy on the right are all to do with storing energy due to the 
particular arrangement of objects. Remember, all forms of energy 
are scalar quantities measured in joules.

kinetic energy
Any object in motion has a kinetic energy (Ek). The amount of 
energy depends on the mass of the moving object and how fast it is 
travelling. Kinetic energy is calculated using the equation below:

kinetic energy = ½•	 mv2

Figure 4.19 It takes energy to 
play football.

DID yoU kNoW?
A common definition for 
energy is capacity to do 
work. The more energy an 
object has the more work 
it can do! The term energy 
comes from the Greek word 
‘energeia’ meaning activity 
or operation.

Activity 4.1: Energy 
examples
Can you give examples 
of where you might come 
across each of the forms of 
energy listed in Table 4.1?

KEY WORDS
forms types 
motion the act of moving or 
the way an object moves 
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For example, a car of mass 1000 kg travelling at 12 m/s will have a 
kinetic energy of:

Ek = ½mv2  State principle or equation to be used

Ek = ½ × 1000 kg × (12 m/s)2   Substitute in known values and complete 
calculation

Ek = 72 000 J or 72 kJ  Clearly state the answer with unit

An object with double the mass travelling at the same speed will 
have twice the kinetic energy. Mass and kinetic energy are directly 
proportional. However, if you double the velocity of an object its 
kinetic energy will increase by a factor of four (22). This relationship 
is not directly proportional; instead Ek is directly proportional to v2. 
If the velocity increases by a factor of five the Ek will increase by a 
factor of 25 (52). 

Why does Ek = ½mv2?
This equation comes from combining Newton’s first and second 
laws of motion and one of the equations for constant acceleration.

Part of the work–energy theorem states:

If an external force acts upon an object it will cause its kinetic •	
energy to change from Ek1 to Ek2. The net work done on a body 
equals its change in kinetic energy.

This statement should make sense. Work done is energy transferred. 
If a resultant force is applied to an object it will accelerate (Newton’s 
first law). As a result it will change its kinetic energy and this change 
will be equal to the energy transferred (or work done).
In terms of equations we have: 

Work done = change in kinetic energy•	
W = •	 ∆Ek = Ek2 – Ek1

W = •	 ½mv2
2 – ½mv1

2

W = •	 ½m(v2
2 – v1

2)

This does not show where Ek = ½mv2 comes from; however, we can 
derive this equation another way to show that it is valid. 

Figure 4.22 Deriving Ek = ½mv2

Activity 4.2: Kinetic 
energy of a car
Determine the kinetic energy 
of the car used in the 
worked example if it were 
travelling firstly at 16 m/s 
and then at 24 m/s. 

Figure 4.21 All moving objects 
have kinetic energy. In this picture 
the aircraft has the most Ek.

Think about this… 
Because Ek ∝ v2 the velocity 
of a moving car has a 
significant impact on its 
stopping distance. Travelling 
at 50 km/h it may take 25 m 
to stop (depending on road 
conditions, etc). Double that, 
travelling at 100 km/h and it 
takes a massive 75 m to stop, 
much more than double the 
distance. This is because the 
brakes have to do more than 
double the work (as there is 
more than double the Ek and 
so the force has to act over a 
much greater distance).

v=10  m/s

Ek=60 000 J Ek=120 000 J Ek=240 000 J

v=10  m/s v=20  m/s

Car: Mass 1200 kg Car: Mass 2400 kg Car: Mass 1200 kg

S

FF

V2V1

m m

Figure 4.20 The effect of mass 
and velocity on the kinetic 
energy of an object
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Potential energies
As previously mentioned the second column in our table of 
energies contains some different kinds of potential energy. They 
are effectively stored energies. They are all due the particular 
organisation or position of parts of the object/system of objects. The 
potential energy of an object is usually given the symbol U.

Potential energy = •	 U

If an object has a potential energy it can be thought of as storing 
some energy. This energy has the potential to do some work, i.e. the 
potential energy might be transformed into another form of energy 
and so work would be done (remember work done is just another 
way of saying energy has been transferred). 

Imagine an object has a potential energy of 1000 J. If this object did 
300 J of work then the potential energy remaining after the work 
has been done will be 700 J. In other words:

Work done by object = drop in potential energy of object•	

Or in symbols:

W = •	 –∆U

A car of mass 800 kg is travelling at 12 m/s. The car 
accelerates over a distance of 240 m. The net force 
causing this acceleration is 200 N. Determine the 
work done on the car and its final velocity.

W = F s  State principle or equation to be used   
 (definition of mechanical work)

W = 200 N x 240 m  Substitute in known values and   
 complete calculation

W = 48 000 J  Clearly state the answer with unit

you can calculate the final velocity in a number of 
different ways (including use one of the equations 
of constant acceleration). In this case we will use:

W = ½m(v2 – u2)  

2 W / m = v2 – u2  Rearrange equation to give v2 – u2 on  
 right hand side

v2 = (2 W / m) + u2 Rearrange equation to make v2 the  
 subject 

v2 = (2 x 48 000 J / 800 kg)  + (12 m/s)2  Substitute in  
 known values and complete calculation for v2

v2 = 264  Solve for v2 then take the square root to   
 complete

v = 16 m/s  Clearly state the answer with unit

Worked example

Activity 4.3: Final 
velocity
Check the final velocity in 
the worked example using 
one of the equations of 
constant acceleration.

KEY WORDS
potential energy 
the ability of an object to do 
work as a result of its relative 
position
stored energy the potential 
ability of an object to do 
work as a result of its relative 
position or shape change 

Starting from Newton’s second law:

F•	
net = m a

Our defining equation for work done:

W = F s •	

So we could substitute in for F and we get:

W = m a s•	

From the equations of constant 
acceleration we have:

v•	 2 = u2 + 2as

This can be written as:

as•	  = (v2 – u2) / 2

Combining this with our previous equation 
we get:

W•	  = m (v2 – u2) / 2

Or

W•	  = ½m(v2 – u2).
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Equally, if work is done on the object then its potential energy 
might increase (it is also fair to say its kinetic energy may also 
increase). This is really just another way of saying work done is 
equal to the energy transferred; we just need to think carefully 
about where that energy has come from.

Gravitational potential energy
Perhaps the most common potential energy is gravitational 
potential energy (GPE). Any object with mass in a gravitational 
field has a GPE. How much GPE depends on three factors, its mass, 
the gravitational field strength (g) and its position in the field. 

We usually deal with GPE with reference to the surface of the Earth. 
Therefore, on the ground an object has 0 J of GPE.

Gravitational potential energy•	  = mgh

m = mass in kg.

g = gravitational field strength (on Earth this is 10 N/kg or more 
precisely 9.81 N/kg).

h = height above the ground.

For example, an object of mass 30 kg at a height of 12 m has a GPE 
equal to:

GPE = mgh  State principle or equation to be used

GPE = 30 kg × 10 N/kg × 12 m   Substitute in known values and 
complete calculation

GPE = 3600 J  Clearly state the answer with unit

An object with double the mass at the same height above the 
ground will have twice the GPE. Equally, an object twice as high 
above the ground will have double the GPE. Mass and height above 
the ground are both directly proportional to the GPE of the object. 

Figure 4.24 The effect of mass and height above the ground on the 
GPE of an object

If you think about when you do work by lifting up an object, you are 
transferring GPE to the object you are lifting. Looking back at the 
equations we can see they are both saying the same thing. 

Figure 4.23 Factors affecting the 
GPE of an object

Activity 4.4: Calculating 
GPE
How high above the ground 
would a 10 kg object need 
to be to have the same GPE 
as the 30 kg object in the 
example?

Think about this… 
If an object has 0 J when on 
the ground how much GPE 
will an object have at the 
bottom of a well? It takes 
energy to lift the object out 
of the well. Work is done on 
the object and it gains energy 
to end up with 0 J. This must 
mean the GPE at the bottom 
of the well is less than 0 J. It 
must be a negative number! 
This is often referred to as a 
potential well.

g

Earth

h

m

h=10 m

Gain in GPE = 200 J Gain in GPE = 100 J Gain in GPE = 200 J

h=5 m h=5 m

Book Mass 2 kg Book Mass 2 kg Book Mass 4 kg

KEY WORDS
gravitational field the space 
around an object in which the 
object’s gravitational effect 
can be felt
gravitational potential 
energy the energy an object 
has due to its relative position 
above the ground
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W•	
gravity = w × h

GPE•	  = mgh

The energy gained by the mass (or the work done on the mass) 
is equal to weight multiplied by the vertical distance moved (the 
height above the ground).

Elastic potential energy
Another common potential energy is elastic potential energy 
(EPE), sometimes called strain energy. This is the energy associated 
with any object that has been stretched or compressed. Think 
about compressing a spring in a toy; it will store energy, which it 
converts into kinetic energy as it bounces.

The amount of EPE stored in the spring depends on the force 
applied and the distance moved (i.e. the extension of the spring). 
Think back to the Hooke’s law force vs. extension graphs studied 
in Unit 3. The area under the line is equal to the work done on the 
spring. This gives us the equation for EPE:

Elastic potential energy•	  = ½ F Δx

F = force in N.

Δx = extension of spring in m.

For example, if a force of 100 N causes a spring to extend by 40 cm 
the energy stored in the spring will be equal to:

EPE = ½ F Δx  State principle or equation to be used

EPE = ½ × 100 N × 0.4 m   Substitute in known values and complete 
calculation

EPE = 20 J  Clearly state the answer with unit

There is an alternative equation for EPE that includes the spring 
constant of the spring rather than the force applied. From Hooke’s 
law 

F = k •	 Δx

We can combine this with our equation for EPE and we get:

Elastic potential energy•	  = ½ k Δx Δx

Elastic potential energy•	  = ½ k Δx2

Total energies and energy changes
The total mechanical energy of a system is the sum of all the 
possible kinetic and potential energies.

Total mechanical energy = Σkinetic energy + Σpotential •	
energy

Total mechanical energy = Σ•	 Ek + ΣU

An aircraft cruising at 10 000 m will have a both a kinetic energy (as 
it is moving) and a potential energy (in this case GPE as it is above 
the ground). Its total mechanical energy will be its Ek + GPE.

Figure 4.26 Factors affecting the 
EPE of an object

Activity 4.5: Energy 
stored in a spring
Determine the energy stored 
in a spring that has a spring 
contact of 15 N/m and is 
extended by 20 cm.

Figure 4.27 An aircraft flying 
through the air has both kinetic 
and potential energy.

F

Δx

Figure 4.25 A child’s spring toy 
stores EPE.
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In this section you have learnt that:

In this section you have learn that:

When an object does work, the work done is equal to the •	
change in energy of the object. W = ΔE. or W = –ΔU if there 
is change in potential energy.

Any moving object has a kinetic energy given by  •	
Ek = ½mv2.

Potential energies are ‘stored energies’. For example, GPE and •	
EPE.

GPE•	  = mgh and EPE = ½FΔx (or ½kΔx2).

The total mechanical energy of an object is given by the sum •	
of its kinetic and potential energies.

Summary

Review questions
1. Use the work–energy theorem (W = ΔE) to show how  

W = ½m(v2
2 – v1

2).

2. Calculate the kinetic energy of the following objects:

a) a 75 kg human running at 8 m/s

b) a 3 g bullet travelling at 400 m/s

c) a car of mass 1200 kg that travels 60 m in 3 s.

3. Explain what is meant by the term potential energy and give 
four different examples of potential energies.

4. Calculate:

a) the GPE of a 15 kg wooden block 6 m above the ground

b) the height of the wooden block if it were to have a GPE of 
300 J.

5. Calculate the energy stored in a spring when it is compressed  
5 mm by a 60 N force.

6. Determine the mechanical energy of a bird of mass 200 g flying 
at 12 m/s at a height of 50 m above the ground.

4.3 Conservation of energy

By the end of this section you should be able to:

State the law of conservation of mechanical energy.•	

Revise the term collision and distinguish between elastic •	
and inelastic collisions.

Think about this… 
Heat is another form of 
energy. The aircraft will also 
contain a certain amount of 
heat energy. However, this 
does not count towards its 
mechanical energy. More on 
heat in Unit 7.

KEY WORDS
compressed pressed or 
squeezed into a smaller space
elastic potential energy the 
energy stored in a spring as a 
result of it being stretched or 
compressed
stretched made longer or 
wider by the application of 
force
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Solve problems involving inelastic collisions in one •	
dimension using the laws of conservation of mechanical 
energy and momentum.

Explain the energy changes that take place in an oscillating •	
pendulum and an oscillating spring–mass system. 

Describe the use of energy resources including, wind •	
energy, solar energy and geothermal energy.

Explain the meaning of the term renewable energy.•	

The law of conservation of energy
Perhaps the most important idea in all of physics, the law of 
conservation of energy, states:

The total energy of a closed system must remain constant.•	  

In essence this means energy cannot be created or destroyed only 
transferred from one place to another or transformed from one type 
to another. The energy has been conserved; it has not changed in 
value.

For example, when a candle burns we might say it ‘gives out’ heat 
and light. What we really mean to say is that the chemical energy 
in the candle is transformed into heat and light. The energy has not 
been created just transformed. Importantly, the amount of each type 
of energy must balance. If 200 J of chemical energy was converted 
into heat and light then there must be 200 J of heat and light energy, 
not 198 J or 202 J, exactly 200 J! Energy cannot be created or 
destroyed. 

We often use terms like ‘wasted energy’ or ‘lost energy’ and 
we might say ‘it’s run out of energy’. In these cases we mean 
transformed into a form we don’t need or can’t use. Most energy is 
eventually transformed into heat. This is often wasted as it is not 
used by the device but transferred to the surroundings; the energy 
has not been destroyed.

Let’s think about what happens to the potential energy of a 5.0 kg 
mass when it is dropped from a height of 10 m. The total energy 
of a system must stay the same, but as the mass falls it ‘loses’ GPE. 
This GPE is converted into other forms. If we assume that the air 
resistance is negligible then the GPE will be converted into kinetic 
energy. The further it falls the faster is goes and the higher its 
kinetic energy. 

Throughout the drop the total mechanical energy will be  
500 J. When the mass hits the floor the kinetic energy will then be 
converted into 500 J of heat and sound energy.

Figure 4.28 A burning candle 
transforms chemical energy into 
heat and light energy.

Figure 4.29 Filament bulbs 
‘waste’ quite a lot of energy as 
heat.

Think about this… 
In reality the block will hit 
the ground with just less than 
500 J of kinetic energy. What 
would have happened to the 
rest of the energy?

DID yoU kNoW?
The term closed system 
refers to a situation where 
objects are isolated from 
their wider surroundings. It 
is an idealised enironment 
as the only totally closed 
system in the universe 
itself!
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kinetic energy and momentum
Kinetic energy and linear momentum are two quantities that are 
very closely related. They both relate to moving objects with mass 
and both increase if the mass and/or the velocity of the objects 
increase, but not by the same proportion. 

There are a few other important differences. Table 4.2 summarises 
some of the key points about kinetic energy and linear momentum. 

Table 4.2 Comparing linear momentum and kinetic energy

Momentum Kinetic energy

Unit kg m/s J

Type of quantity Vector Scalar

Equation p = mv Ek = ½mv2

Effect if mass doubles Doubles Doubles

Effect if velocity doubles Doubles Quadruples 

(22 = 4)

Conserved in collisions 
as long as no external 
force acts

yes, always Possibly, but not 
always

Figure 4.31 The effect of changing mass and velocity on momentum 
and kinetic energy

Look carefully at Figure 4.31. You can see that both momentum and 
kinetic energy are directly proportional to the mass of the moving 
object. Double the mass and both the momentum and the kinetic 
energy double. However, if the velocity doubles, the momentum 
doubles, but the kinetic energy goes up by four.

Elastic and inelastic collisions
Energy and momentum are two factors that are always conserved 
in collisions between objects. However, the energy may be 
transformed (for example, into heat and sound) and as a result the 
kinetic energy may not always be conserved.

We briefly looked at elastic and inelastic collisions in Unit 3. In 
an elastic collision the kinetic energy is conserved. In an inelastic 
collision the kinetic energy is not conserved.

Figure 4.30 As an object falls 
GPE is transformed into Ek.

Activity 4.6: Energy 
changes
Describe all the energy 
changes when a football is 
dropped onto the ground. 
Why does the ball not return 
to its original height?

Activity 4.7: Kinetic 
energy and momentum
Calculate the kinetic energy 
and momentum of a mass 
of 10 kg travelling first at 6 
m/s then at 12 m/s. Repeat 
for a mass of 20 kg.

5.0 kg

5.0 kg

5.0 kg

10 m

GPE = 500 J
Ek= 0 J

GPE = 250 J
Ek= 250 J

GPE = 0 J
Ek= 500 J

v=10 m/s

Ek=60 000J

P=12 000 kgm/s P=24 000 kgm/s P=24 000 kgm/s

Ek=120 000J Ek=240 000J

v=10 m/s v=20 m/s

Car: Mass 1200kgCar: Mass 2400kgCar: Mass 1200kg

KEY WORDS
conserved neither increased 
nor destroyed
closed system a situation 
where objects are isolated 
from their environment
law of conservation of 
energy law stating that 
energy cannot be created or 
destroyed but is converted 
from one type to another
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For example, Figure 4.32 shows a perfectly elastic collision. Both 
kinetic energy and momentum are conserved.

Momentum before = mAvA + mBvB = (2.0 kg × 5 m/s) + (2.0 kg  
× 0 m/s) = 10 kg m/s →  Calculate momentum before as sum of   
 momentum of A and momentum of B

Momentum after = mAvA + mBvB = (2.0 kg × 0 m/s) + (2.0 kg × 5 
m/s) = 10 kg m/s →  Calculate momentum after as sum of momentum  
 of A and momentum of B

Momentum before = momentum after; momentum has been •	
conserved.

Kinetic energy before = ½mAvA
2 + ½mBvB

2 = (0.5 × 2.0 kg × (5 m/s)2) 
+ (0.5 × 2.0 kg × (0 m/s)2) = 25 J  Calculate kinetic energy before as   
 sum of KE of A and KE of B

Kinetic energy after = ½mAvA
2 + ½mBvB

2 = (0.5 × 2.0 kg × (0 m/s)2) 
+ (0.5 × 2.0 kg × (5 m/s)2) = 25 J  Calculate kinetic energy after as sum  
 of KE of A and KE of B

Kinetic energy before = kinetic energy after; kinetic energy has •	
been conserved and therefore it is a perfectly elastic collision.

Momentum is always conserved but kinetic energy is not. Figure 
4.34 shows an example of an inelastic collision.

Momentum before = mAvA + mBvB = (4.0 kg × 5 m/s) + (2.0 kg  
× 0 m/s) = 20 kg m/s →  Calculate momentum before as sum of   
 momentum of A and momentum of B

Momentum after = mAvA + mBvB = (4.0 kg × 2 m/s) + (2.0 kg × 6 
m/s) = 20 kg m/s →  Calculate momentum after as sum of momentum  
 of A and momentum of B

Momentum before = momentum after; momentum has been •	
conserved.

Kinetic energy before = ½mAvA
2 + ½mBvB

2 = (0.5 × 4.0 kg × (5 m/s)2) 
+ (0.5 × 2.0 kg × (0 m/s)2) = 50 J  Calculate kinetic energy before as   
 sum of KE of A and KE of B

Kinetic energy after = ½mAvA
2 + ½mBvB

2 = (0.5 × 4.0 kg × (2 m/s)2) 
+ (0.5 × 2.0 kg × (6 m/s)2) = 44 J  Calculate kinetic energy after as sum  
 of KE of A and KE of B

Kinetic energy before > kinetic energy after; kinetic energy •	
has been lost and therefore it is not a perfectly elastic collision.

In this example 6 J has been converted into heat and sound and so 
kinetic energy is not conserved and the collision is not perfectly 
elastic.

Energy in oscillating systems
We have seen that when an object falls its GPE is converted into 
kinetic energy. The same is true if you throw an object into the air. 
Here the kinetic energy is transformed into GPE as it rises. 

Figure 4.32 A perfectly elastic 
collision

Activity 4.8: Collisions
Show that both kinetic 
energy and momentum are 
conserved in the collision 
shown in Figure 4.33. 
(Remember, momentum is 
a vector quantity, whereas 
kinetic energy is a scalar.).

Figure 4.33 Is this an elastic 
collision?

Figure 4.34 An inelastic collision

5 m/s

5 m/s

0 m/s

0 m/s

Ball A

Ball A

Ball B

Ball B

2.0 kg 2.0 kg

2.0 kg

Before collision

After collision

2.0 kg 2.0 kg

9 m/s

3 m/s 15 m/s

9 m/s

Ball A Ball B

4.0 kg 2.0 kg

Before collision

After collision

4.0 kg 2.0 kg

Ball A Ball B

5 m/s

2 m/s 6 m/s

0 m/s

Ball A

Ball A

Ball B

Ball B

2.0 kg

2.0 kg

Before collision

After collision

4.0 kg

4.0 kg
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In oscillating systems kinetic energy is continuously being 
transformed into potential energy and vice versa. If there are no 
energy losses (e.g. no losses as heat) then the total mechanical 
energy will stay the same and this process will go on forever!

Take, for example, a pendulum as it swings.

As it is lifted to A the pendulum gains GPE. It is then released and 
the gain in GPE is converted into Ek. At B it is travelling fastest, it 
has the most Ek but also the lowest GPE. It then rises to C, losing Ek 
and gaining GPE as it does so. Figure 4.36 shows how the potential 
energy and kinetic change over time.

From the graph you can see that the total mechanical energy stays 
the same. As the potential energy falls the kinetic energy increases 
and vice versa. 

The total mechanical energy = kinetic energy + potential •	
energy

Another example of an oscillating system is a mass–spring system. 
In simple terms this is just a mass on the end of a spring. However, 
the suspension in a car is a more complex example of a mass–spring 
system.

In this case the potential energy may not be GPE, instead it may be 
EPE.

Figure 4.37 An example of a mass–spring system

As the spring is compressed the EPE increases and the mass slows 
down (its Ek decreases). Eventually the mass will stop; at this 
point the EPE is at its maximum and the Ek is zero. The mass then 
accelerates as EPE is converted into Ek. This process continues.

A more complex example might be a mass–spring system oscillating 
vertically like the one shown in Figure 4.38.

In this case the kinetic energy is changed into GPE and EPE. In any 
case the total mechanical energy of the system remains then same.

Energy resources
Every country demands a huge amount of energy, from fuel to 
run cars and other vehicles, to gas for cooking and heating and, of 
course, electrical energy. A source of energy that may be used by a 
country or individuals within that country is commonly referred 
to as an energy resource. Energy resources are very precious 
commodities, perhaps the most obvious being oil. 

Selecting which energy resources to use is often a very difficult 
decision. There are lots of factors to consider, chief among them 

A C

B

Figure 4.35 A simple pendulum 
transforms GPE into Ek and then 
back again.

Figure 4.36 Graph showing how 
the potential energy and kinetic 
energy of oscillating systems are 
related

Figure 4.38 A vertically 
oscillating mass–spring system

Total Energy

Kinetic
Energy

Potential
Energy

Time /s

Energy /J

KEY WORDS
energy resource a source of 
energy that can be used by a 
country or its population
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being the availability of the resource, the economics involved and 
the subsequent environmental impact (more on this later).

Energy resources are often used to generate electricity. Electricity is 
exceptionally useful as it is quite simple to transfer a vast amount of 
energy from one place to another (all you need is a suitable wire!) 
and it can be easily transformed into most other forms of energy. 
Most methods of electricity generation involve a rotating turbine. 
This turbine turns a generator (a magnet or series of magnets inside 
coils of wire). This generator converts kinetic energy into electrical 
energy. 

Globally the most common method for generating electricity 
involves the burning of fossil fuels such as coal, oil and natural gas. 
The chemical energy contained within these fuels is released as heat 
(through burning), this heat is used to turn water into steam, this 
steam then turns a turbine to generate electricity. Large fossil fuel 
power stations can generate up to 4 billion joules per second!

However, such a global reliance on fossil fuels is problematic for two 
main reasons.

Fossil fuels are a finite energy resource. Eventually we will run •	
out of coal, oil and natural gas.

Burning fossil fuels produces several atmospheric pollutants, •	
including sulphur dioxide and perhaps more worryingly, carbon 
dioxide. Carbon dioxide (CO2) is a powerful greenhouse gas. It is 
thought the increase in CO2 output is a significant factor in man-
made global warming, heating up the entire planet and leading 
to dramatic changes to weather and climate.

Ethiopia has few proven fossil fuel resources. However, some people 
estimate that there is considerable potential for oil and natural gas 
exploration in the future.

In a nuclear power station uranium is used as a fuel. Inside the 
reactor there is a complex nuclear reaction (fission – splitting the 
atom). This process generates heat, which is used to turn water 
to steam, etc. The only real difference between a nuclear power 
station and a coal-fired one is the method for generating the heat. 
In a nuclear reactor a great deal of heat can be produced per kg 
of uranium, and so nuclear plants can generate vast amounts of 
electricity. As no fuel is ‘burnt’ there are no greenhouse gases 
produced; however, this process produces radioactive waste. This 
waste will remain dangerous for millions of years.

Renewable energy resources
Resources that do not involve a fuel that will eventually run out are 
referred to as renewable. Table 4.3 includes a selection of some of 
the forms of renewable energy resources. This is not a definitive 
list; other forms include tidal (energy from tidal movements), wave 
(energy from water waves) and biomass (burning organic matter 
specifically grown for the task).

Figure 4.39 A simple generator

Think about this… 
Remember energy cannot be 
created or destroyed, so when 
we talk about generating 
energy we really mean 
converting it from one form 
into electrical energy.

Figure 4.40 An example of a 
coal-fired power station

KEY WORDS
fossil fuels fuels that are 
produced by the action of 
high temperature and pressure 
on organic materials over 
millions of years
renewable resource an 
energy resource that does not 
involve a fuel that will run out
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Table 4.3 Comparison of some renewable energy resources 

Type Description Positives Negatives

Wind The Sun heats the 
Earth’s surface. This 
heating is uneven and 
so creates convection 
currents. This leads 
to areas of higher and 
lower pressure and 
wind moves between 
them. The wind turns 
large turbines and this 
generates electricity. 

Relatively inexpensive – 
just running costs.

Does not produce any 
greenhouse gases.

Not a consistent supply. 
When there is no wind 
there is no electricity 
generated.

A large number of 
turbines are needed to 
generate a significant 
amount of power. 

Geothermal Heat from processes 
inside the Earth is 
used to turn water 
into steam. Water is 
pumped down into 
‘hotspots’ in the 
Earth’s crust. It is 
turned to steam and 
this steam is used 
to turn turbines to 
generate electricity.

only small amount of 
greenhouse gases are 
released (due to gases 
trapped inside the Earth 
being released in the 
process).

Can generate a 
significant amount of 
power. 

only certain locations 
are suitable for 
geothermal power plants 
(see next section).

Initial construction can 
be expensive.

Hydroelectric Falling water turns 
turbines to generate 
electricity. In order 
to provide a sufficient 
drop in height large 
dams are often 
constructed. The water 
builds up behind 
the dam and is then 
released through 
turbines.

only a small amount of 
greenhouse house gases 
are produced.

Very large amounts of 
energy can be generated 
with relatively small 
running costs.

Hydroelectric plants 
tend to have longer 
lives than thermal power 
stations.

Construction of large 
dams can damage the 
local environment. This 
may affect a significant 
number of the local 
inhabitants (animal and 
human).

Initial construction can 
be very expensive and is 
limited to only certain 
sites.

Generation may be 
affected by extended 
droughts. 

Solar (photovoltaic) The first type of 
solar power converts 
the energy in 
sunlight directly into 
electrical energy (via 
photovoltaic cells). 

No greenhouse gases.

Very low running costs.

Construction often 
involves the use of a 
large quantity of toxic 
materials.

Photovoltaic cells remain 
very expensive. 

only a relatively small 
amount of energy is 
generated per km2. 
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Type Description Positives Negatives

Solar (concentrating 
solar power) 

The second type of 
solar power involves 
using carefully aligned 
mirrors to focus the 
sunlight onto a boiler.

The heat turns water 
to steam and this 
turns a turbine.

Generates more 
energy per km2 than 
photovoltaics. 

No greenhouse gases are 
produced.

Mirrors need to be very 
carefully aligned. 

Sophisticated technology 
is needed to ensure they 
track the Sun as it moves 
across the sky.

Energy in Ethiopia 
In 2008 as a country we generated just over 1 × 1016 J (10 000 000 
000 000 000 J!!) of electrical energy. At the time of writing around 
nearly all of our electricity generation comes from hydroelectric 
power. 

Figure 4.41 This graph shows the amount of electricity generated per 
resource.

As part of the country’s general development plan, with the aim of 
expanding the Electric Power generation capacity, the Tekeze, Gilgel 
Gibe II and Tana Beles power plants with respective generating 
capacities of 300MW, 184MW and  460MW became operational in 
2009 and 2010. 

Reliance on hydroelectric power has advantages and disadvantages, 
as listed in Table  4.3. Ethiopia can diversify its electricity  
sources by exploiting its geothermal (> 5000 MW) and wind  
(>10 000MW ) electricity generating Potential.  Figure 4.42 
shows the location of several hydroelectric power plants. Ethiopia 
is among only a few African countries with the potential for 
significant energy generation to come from geothermal wind power. 

Activity 4.9: Energy 
resources
Discuss with a partner 
where the energy utilised by 
different energy resources 
ultimately came from. (Hint: 
you may need to go back 
several billion years for most 
of them!)

Figure 4.42 The location of 
hydroelectric power plants
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In this section you have learnt that:

In this section you have learnt that:

The law of conservation of energy states that energy cannot •	
be created or destroyed, just converted from one type to 
another.

In elastic collisions both kinetic energy and linear •	
momentum are conserved. In an inelastic collision only 
momentum is conserved.

In oscillating systems (such as simple pendulum or mass–•	
spring systems) potential energy is continuously transformed 
into kinetic energy and back again.

A renewable energy resource is one that does not involve a •	
fuel that will eventually run out. 

Wind, solar, geothermal and hydroelectric energy resources •	
all offer significant benefits; however, they each have their 
drawbacks.

Summary

Review questions
1. State the law of conservation of energy and explain why it is not 

correct to describe energy as being lost.

2. Use the principle of conservation of momentum to determine 
if the collision in Figure 4.44 is elastic or inelastic. If inelastic, 
calculate the amount of energy converted into heat and sound.

3. Describe the energy changes as a pendulum swings. If the 
pendulum has a mass of 50 g and is lifted so that it has a GPE of 
0.1 J calculate:

a) its increase in height

b) the velocity of the bob as it passes through the bottom of 
the swing (assume no energy losses).

4. Explain what is meant by the term renewable energy resource 
and give three examples.

5. Describe how hydroelectric power may be used to generate 
electricity. Include the advantages and disadvantages of using 
this resource.

DID yoU kNoW?
The enormous Three Gorges 
Dam in China can generate 
22.5 GW of power. That’s 
22.5 billion joules per 
second! If running at full 
output this colossal project 
could generate the entire 
yearly output from Ethiopia 
in just over 5 days!

Figure 4.43 The rift valley offers 
significant geothermal potential.

Figure 4.44 What type of 
collision?

6 m/s

2 m/s ? m/s

0 m/s

Ball A

Ball A

Ball B

Ball B

2.0 kg

2.0 kg

Before collision

After collision

3.0 kg

3.0 kg
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4.4 Mechanical power

By the end of this section you should be able to:

Solve problems relating to the definition of power.•	

Show that the kWh is also a unit of work.•	

Express the formula of mechanical power in terms of •	
average velocity.

What is power?
Power, like work, is another term that is frequently used in 
everyday language. It’s a term that is often misused when maybe 
energy or velocity would be more appropriate.

In physics power has a very specific definition.

Power is the rate of doing work.•	

As discussed in Unit 2, rate means per second. In other words, 
power is the work done per second. A greater power means more 
work is done per second or more energy is transferred per second.

Imagine two cars racing up a hill. If the cars have exactly the same 
mass, when they reach the top of the hill they would both have done 
the same amount of work. However, the more powerful car will be 
the winner (the one that can do the most work per second) as it will 
get to the top of the hill first!

An equation for average power is:

Power = work done / time taken•	

P = W/t•	

P = average power in W.

W = work done in J.

t = time in s.

Power is measured in watts (or kilowatts, etc). As energy is in joules 
and time in seconds, 1 watt is equal to 1 joule per second. A 4.0 kW 
motor can do 4000 J of work per second. The watt is the SI derived 
unit of power.

For example, a kettle uses 168 000 J of electrical energy in two 
minutes. Its average power can be found using the equation:

P = W/t  State principle or equation to be used (definition of power)

In this case the time taken is two minutes, which is 120 s.

P = 168 000 J / 120 s   Substitute in known values and complete 
calculation

P = 1400 W or 1.4 kW  Clearly state the answer with unit

Think about this… 
Technically the equation is 
for average power. However, 
if the rate of doing work is 
constant (for example, if the 
force you are working against 
and the speed of movement 
both remain constant) then 
the average power is the same 
as the actual power.

DID yoU kNoW?
The watt is named after 
the Scotsman James Watt. 
He was instrumental in 
the engineering of the late 
18th century. In particular 
his developments on steam 
engines are widely credited 
to have brought about the 
industrial revolution.

KEY WORDS
per second a measurement of 
rate 
power the rate of doing work
watt the unit of power 
kilowatt-hour a unit of 
energy
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If the same kettle were to run for five minutes how much work 
would the kettle do?

P•	  = W/t  State principle or equation to be used (definition of power)

W = P •	 × t  Rearrange equation to make W the subject

In this case the time taken is five minutes, which is 300 s and  
P = 1400 W

W = •	 1400 W × 300 s  Substitute in known values and complete   
 calculation

W = •	 420 000 J or 420 kJ  Clearly state the answer with unit

This work would be transferred to the water and surroundings as 
heat energy.

Activity 4.10: The power of a student
you do work when you run up stairs, because you have to move 
your weight upwards. The faster you run, the greater your 
power.

•	 Weigh	a	volunteer	student.

•	 Use	a	stopwatch	to	measure	the	time	the	student	takes	to	
run up a flight of stairs.

•	 Count	the	number	of	stairs.	Measure	the	vertical height of 
one stair, and calculate the total height of the stairs.

•	 Calculate	the	work	done	(=	weight	× height).

•	 Calculate	the	student’s	power	(=	 work done
time taken

)

The joule, the watt and other units
We have already mentioned the Joule as the standard unit of energy 
and the watt as the unit of power. 

However, a joule is quite a small unit. Lifting an apple around 1 m 
in the air and you would do 1 J of work. It’s not much. When we 
deal with large-scale energy usage, in particular electricity demands 
and generation, an alternative unit is used. 

The kilowatt-hour is an alternative unit of energy. It is the energy 
transformed by a 1 kW device in 1 hour. This means 1 kWh is 
equivalent to 3.6 million J.

We can still use our equation for power but we must consider the 
units carefully.

Figure 4.45 One ‘horsepower’ is 
around 750 W.

Figure 4.46 Lifting an apple 
around 1 m into the air transfers 
about 1 J of GPE to the apple.

Activity 4.11: Power 
calculation
Use the equation for power 
to show that 1 kWh is equal 
to 3.6 million J.

DID yoU kNoW?
The joule was named 
after the English physicist 
James Prescott Joule. He 
was born on Christmas 
Eve in 1818 and he has 
been described by some 
as the quintessential 
physicist. He conducted a 
series of incredibly precise 
experiments that led to the 
theory of conservation of 
energy.
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Table 4.4 Comparing the joule and the kilowatt-hour

Joule Kilowatt-hour

•	 Work	done	=	power	× time 
•	 [J]	=	[W]	x	[s]

•	 Work	done	=	power	× time 
•	 [kWh]	=	[kW]	x	[h]

Work done in J Work done in kWh

Power in W Power in kW

Time in s Time in h

For example, how much work is done by a 500 W motor running 
for 30 minutes?
In joules:
W = P × t   State principle or equation to be used (definition of power in 

terms of W)
In this case the time taken is 30 minutes, which is 1800 s, and P = 
500 W.
W = 500 W × 1800 s   Substitute in known values and complete 

calculation
W = 900 000 J or 900 kJ  Clearly state the answer with unit
In kilowatt-hours:
W = P × t   State principle or equation to be used (definition of power in 

terms of W)
In this case the time taken is 30 minutes, which is 0.5 hours, and P 
= 500 W, which is 0.5 kW.
W = 0.5 kW × 0.5 h   Substitute in known values and complete 

calculation
W = 0.25 kWh  Clearly state the answer with unit
As well as the joule and kilowatt-hour, Table 4.5 lists some other 
commonly used units of energy.

Table 4.5 Different energy units

Unit Application Equivalent value (J)

Electronvolt (eV) Sub-atomic particles and particle accelerators 1.6 × 10–19

Erg (erg) Using cm, grams and seconds instead of m, kg and s 1.0 × 10–7

kilocalorie (kcal) Energy contained within foods 4.2 × 103

kilowatt-hour 
(kWh)

Unit of energy used by electricity suppliers or when 
comparing large-scale energy demands (GWh is also 
used).

3.6 × 106

Tonne of oil 
equivalent (toe)

Another large-scale unit. It is the value of the 
chemical energy contained within one tonne of crude 
oil.

4.2 × 1010

Megaton (MT) Nuclear weaponry; 1 MT is the energy released by 1 
million tonnes of TNT exploding (the largest recorded 
detonation was around 50 MT). 

4.2 × 1015
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Power and velocity
Imagine a car travelling along at a steady speed. Its engine is still 
running and it is still using fuel but the kinetic energy of the car 
is not changing. Where is the chemical energy going? It can’t be 
destroyed.

For objects to move at steady speed through the air a force needs to 
be applied. Remember, forces don’t make things move they make 
them change the way they are moving. In the case of an object 
moving through the air at a steady speed there must be no net 
force acting on in it. The force from the engine must cancel out the 
resistive forces of kinetic friction and air resistance (drag). 

Figure 4.47 For a car to move at a steady speed there must be a force 
from the engine.

A force is being moved through a distance so work must be being 
done, but this energy is not transferred into the kinetic energy of 
the car as this is constant.

Instead the energy is transferred into two places:

Heat energy (road – due to friction)•	

Kinetic energy (including sound) of the air. A very turbulent •	
wake is created behind the car. 

If the engine is doing 4000 J of work per second then 4000 J of 
energy is transferred to the road and the air every second.

We can look at this process more mathematically by combining the 
equations for mechanical work and power and we get:

Power = work done / time•	

Power = force •	 × distance moved against force /time

Average velocity = distance moved against force /time•	

So

Power = force •	 × velocity

P = F v•	

So, for a car to travel at 15 m/s against a force of 6000 N the power 
from its engine needs to be:

P = •	 6000 N × 15 m/s

P = •	 90 000 W

This means the engine is converting 90 000 J of energy per second.

v

Force from engine

Car

Resistive forces {drag + kinetic friction}

Think about this… 
In reality the amount of 
chemical energy from the fuel 
will be more than 90 000 J as 
the engine will not be 100% 
efficient.

M04_PHYS_SB_ETHG9_0162_U04.indd   113 14/7/10   12:40:11 pm



114

UNIT 4: Work, energy and power

Grade 9

Looking at it another way, in order for a train to travel at 20 m/s its 
engine may have a power output of 800 000 W. This can be used to 
determine the force from the engine and so the magnitude of the 
resistive forces acting on the train.
P = F v  State principle or equation to be used
F = P / v  Rearrange equation to make F the subject 
F = 800 000 W / 20 m/s   Substitute in known values and complete 

calculation
F = 40 000 N Clearly state the answer with unit

In this section you have learnt that:

Power is defined as the rate of doing work (power = work •	
done / time taken).

Power is measured in watts (or kW) and 1 W is 1 joule per •	
second.

The scientific unit of work/energy is the joule. However, other •	
units are commonly used, including the kilowatt-hour (kWh).

For a moving object, •	 P = Fv.

Summary

Review questions
1. What is the definition of power, state its units and give two 

different equations for calculating the power of an object.

2. Calculate the power of the following:

a) a motor that does 24 000 J of work in two minutes

b) a crane that lifts a 60 kg mass 100 m in 60 seconds.

3. Calculate the work done in J by the following:

a) a 10 kW heater running for 15 minutes

b) two 100 W light bulbs on for 24 hours. 

4. Recalculate the values in question 2, but this time express the 
work done in kWh.

5. Derive P = Fv.

6. Determine the power output from an aircraft travelling at  
200 m/s working against resistive forces of 1000 N. 

End of unit questions 
1. State the law of conservation of energy and describe a situation 

where W = –ΔU could be used to illustrate this law.

2. Determine the work done when a forklift truck lifts a box of 
mass 350 kg a height of 2 m.

3. Calculate the work done if a boulder of mass 100 kg is rolled  
40 m up a slope at an angle of 20°. Assume the force of friction 
is negligible. 

Figure 4.48 A train travelling at 
high speed does a great deal of 
work against air resistance and 
kinetic friction.
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4. As a block falls through the air by 40 m it does work equal to 
–1800 J. Determine the mass of the block.

5. Calculate the kinetic energy of a ball of mass 50 g travelling at  
30 m/s. How much work will need to be done to stop the ball?

6. A mass of 2.0 kg is hung off a spring, which extends 2 cm. 
Determine the energy stored in the spring.

7. A spring is used to launch a ball vertically into the air. The spring 
has a spring constant of 200 N/m and is compressed by  
5 cm. A ball of mass 10 g is placed just above the spring. Calculate:

a) the energy stored in the spring

b) assuming the spring transfers all of its energy to the ball, the 
velocity of the ball just as it launches

c) the height reached by the ball assuming all the Ek is converted 
into GPE.

8. Describe the energy changes in a mass–spring system that is 
oscillating horizontally. Explain how this changes if the system is 
vibrating vertically.

9. An 8.0 kg ball travelling at 4 m/s collides head on with a 3 kg ball 
travelling at 14 m/s. The balls bounce off each other and travel 
back the way they came. The 8.0 kg ball travels away at  
2 m/s. Calculate:

a) the velocity of the 3 kg ball after the collision

b) the kinetic energy before and after the collision. 

c) State whether or not the collision is elastic and explain your 
answer.

10. Summarise the advantages and disadvantages of using the 
following energy resources to generate electricity:

a) coal

b) geothermal

c) wind

11. A man raises 100 kg from the floor to a height of 2 m in 2.5 s. 
What is the work done and the power developed?

12. A petrol engine raises 200 kg of water in a well from a depth of  
7 m in 6 s. Show that the engine is developing about  
2.33 kW of power.

13. It is proposed to use a small waterfall to turn an electricity 
generator. 10 m3 of water fall 50 m per minute. Only one-fifth 
of its energy can be obtained usefully. Show that the water can 
develop 16.7 kW.

14. 300 kg of water are lifted 10 m vertically in 5 s. Show that the work 
done is 30 kJ and that the power is 6 kW.

15. Calculate the resistive forces acting on a sports car if it is travelling 
at a steady speed of 25 m/s when the engine is providing 200 kW.
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Contents
Section Learning competencies

5.1  Purposes of 
machines

  (page 116)

Explain the purposes of a machine.•	
List the types of simple machines.•	
Determine whether the machines are force multipliers, speed •	
multipliers or direction changers.
Define the terms load, effort, work output, work input, mechanical •	
advantage (MA), velocity ratio (VR) and efficiency.
Derive the expression of •	 η = MA/VR from its definition.

5.2  Inclined plane, 
wedge and screw

 (page 124)

Derive an expression for MA of an inclined plane with or without •	
friction.
Calculate MA, VR and efficiency of an inclined plane.•	
Calculate MA, VR and efficiency of a wedge.•	

5.3  Levers
 (page 128)

Determine the MA, VR and efficiency of a lever.•	
Identify the orders of a lever and give examples.•	
Describe the use of a wheel and axle and determine MA, VR and •	
efficiency of a wheel and axle.
Describe the use of gears.•	
Describe different pulley systems and calculate MA, VR and •	
efficiency of a pulley system.
Describe the use of a jackscrew.•	

Simple machines Unit 5

Machines have made it possible for mankind to accomplish some 
truly amazing things, from building the ancient pyramids of Egypt 
to landing on the Moon. But it is not just these awe-inspiring 
achievements. Simpler machines are used in everything from 
cutting food and wood, to hanging a picture on the wall. Without 
machines there is no way our relatively weak bodies could lift blocks 
weighing thousands of newtons or even travel much faster than 5 
m/s for long periods of time.

In this unit you will learn about what a machine is and why they 
enable us to lift heavy loads or move large distances. We will 
investigate the six classes of simple machines and learn about how 
to determine their efficiency and what mechanical advantage they 
offer us.

5.1 Purposes of machines

By the end of this section you should be able to:

Explain the purposes of a machine.•	

List the types of simple machines.•	
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Determine whether the machines are force multipliers, •	
speed multipliers or direction changers.

Define the terms load, effort, work output, work input, •	
mechanical advantage (MA), velocity ratio (VR) and 
efficiency.

Derive the expression of •	 η = MA/VR from its definition.

What are simple machines?
You could probably list hundreds of different machines. These 
might range from the vastly complex space shuttle, down to a 
simple pair of scissors. 

A machine is a device that is specially designed or engineered to 
help make it easier to do mechanical work. Remember, from Unit 4 
mechanical work is given by:

W = F s•	

W = work done in J.

F = force applied.

s = distance moved in the direction of the force.

A machine makes it easier to do work by performing one (or more) 
of the following:

increasing the magnitude of the applied force•	

changing the direction of the applied force or transferring an •	
applied force from one place to another

increasing the distance moved against the applied force (or the •	
speed the force moves).

No machine can create extra energy (that would break the law of 
conservation of energy). In other words, the work you put in cannot 
be greater than the work you get out. However, as you can see from 
the list above it is possible to get more force out than you put in. We 
need to think about this carefully.

When you apply a force to a machine this is referred to as the 
effort. In order to do mechanical work you need to move this effort 
through a distance. Looking back at our equation for work we could 
rewrite this as:

W = F s•	

Work input = effort •	 × distance moved by effort.

The machine then provides a work output; this may be used to 
move a force (referred to as a load) through a distance). In equation 
terms:

W = F s

Work output = load •	 × distance moved by load.

Figure 5.1 Two very different 
machines!

Figure 5.2 Work input to a 
machine

Machine

Work input

Effort

Distance moved by effort

KEY WORDS
effort the force applied to a 
machine
machines devices designed 
to make it easier to do 
mechanical work
mechanical work the amount 
of energy transferred when 
an object is moved through a 
distance by a force
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If there were no energy losses inside our machine then:

Work input = work output•	

Effort•	 	×	distance moved by effort = load × distance moved by 
load

So, if the machine has been designed so the distance moved by the 
load is less than distance moved by the effort then the load can be 
greater than the effort. This means a small effort can be used to 
move a large load. 

For example, imagine a machine that when an effort of 100 N is 
moved through 2 m it moves a load through a distance of 0.5 m. We 
can determine the maximum value of the load.

Effort•	 	×	distance moved by effort = load × distance moved by 
load

100 N•	 	×	2 m = load	×	0.5 m

200 J / 0.5 m = load•	

load = 400 N•	

The same logic could be used to show it is possible to move a 
smaller load a bigger distance than the distance moved by the effort.

The term, simple machine, refers to a machine that is, well, simple! 
This has lots of interpretations including:

a device that only requires a single force to work•	

a device for doing work that has only one part•	

a device that uses a single effort to do work against a single •	
load force.

Simple machines are often described as the elementary building 
blocks from which all other machines are made.

Different types of simple machine
There are six different types of simple machine; we will look at each 
of them in turn later.

Inclined plane •	 • Lever

Wedge •	 • Wheel and axle

Screw •	 • Pulley

Think about this… 
There are energy losses in 
every machine. This is usually 
due to friction between the 
moving parts of the machine. 
This transforms some of the 
work input into heat energy. 
As a result, the work input is 
always greater than the work 
output (more on this later).

Figure 5.3 A schematic of a 
machine

Machine

Work input Work output

Effort

Distance moved by effort

Load

Distance moved by load

KEY WORDS
simple machine a device 
which requires a single effort 
to do work against a single 
force
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Simple machines can be split into two groups. Wedges and screws 
can be thought of as special kinds of inclined planes. Pulleys and 
wheels and axles can be considered to be special kinds of levers. We 
will look at each group in turn in Sections 5.2 and 5.3.

No matter which type of simple machine we deal with they will fit 
into one or more of the following categories.

Force multipliers
These are machines designed so that the load is greater than the 
effort. This is only possible if the load moves through a smaller 
distance than the effort.

Figure 5.5 A schematic of a force multiplier. Notice the load is greater 
than the effort but the distance moved is smaller.

Speed multipliers
These are machines designed so that the distance moved by the load 
is greater than the distance moved by the effort in the same time. This 
is only possible if the load is a smaller force than the effort. 

DID yoU kNoW?
The famous ancient Greek 
philosopher Archimedes 
first came up with the 
idea of a simple machine 
around 250 BC. He listed 
three types of simple 
machine: lever, pulley and 
screw. It was not until the 
Renaissance when Galileo 
completed the list of all 
six. He was also the first to 
realise that simple machines 
do not create energy.

Machine

Work input Work output

Effort

Distance moved by effort

Load

Distance moved by effort

Figure 5.4 The six different types of simple machines

Lever
Pulley

Screw

Inclined plane

Wedge

Wheel

Axle
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Figure 5.7 A schematic of a direction 
changer. Notice the load is moved in a 
different direction to the effort. 

Direction changers
These are machines designed so that the load is moved in a different 
direction to the effort. 

Depending on how they are designed some machines can act as 
both force or speed multipliers and direction changers. However, a 
machine cannot multiply both the force and the speed at the same 
time; this would mean the work output would be greater than the 
work input. 

Mechanical advantage (MA) and velocity ratio (VR)
Some machines are more effective than others. One type of force 
multiplier might be able to move a 100 N load when 20 N of effort 
is applied. Another might be able to move a 500 N with the same 
effort. 

It is not just a simple case of the greater the load that can be 
moved the better the machine, there are a number of other factors. 
However, there are two terms that are often used to compare 
different machines. These are mechanical advantage (MA) and 
velocity ratio (VR). 

Mechanical advantage (AMA and IMA)
The term mechanical advantage refers to the ratio between the load 
and the effort. For example, if a machine moves a 400 N load when 
an effort of 100 N is applied the mechanical advantage is four. In 
other words you get 4× the force out of the machine. Mechanical 
advantage can be calculated using the following equation:

Mechanical advantage = load / effort•	

MA = load / effort•	

MA has no units since it is a ratio. If the MA is 1 this means that the 
effort equals the load. If the MA is two the load is twice the effort 
and if the MA is 0.5 the load is half the size of the effort.

Machine

Work input Work output

Effort

Distance moved by effort

Load

Distance moved by load

Figure 5.6 A schematic of a speed multiplier. Notice 
the load is smaller than the effort but the distance 
moved is greater.

Machine

Work input

Work output

Effort

Distance moved by effort

Load

Distance moved by load

KEY WORDS
direction changers machines 
that move the load in a 
different direction to the 
effort
mechanical advantage the 
ratio between the load and 
the effort
ratio the size of quantities 
relative to each other
velocity ratio the ratio 
between the distance moved 
by the effort and the distance 
moved by the load
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Mechanical advantage is most frequently used to compare force 
multipliers. If the MA is greater than one the machine can be 
considered a force multiplier (as the load is greater than the effort). 

There are actually two kinds of mechanical advantage; we have 
really been talking about actual mechanical advantage (AMA). 
This compares the force you get out (load) compared with what you 
put in (effort). 

All machines also have an ideal mechanical advantage (IMA). This 
is the mechanical advantage if there were no other energy losses 
(e.g. no losses through friction, etc.). For most of our calculations 
and examples we will assume that there are no energy losses. In this 
case IMA = AMA and so there is no need to distinguish between 
the two. However, in the real world IMA is always greater than 
AMA. 

Velocity ratio (VR)
The term velocity ratio refers to the ratio between the distance 
moved by the effort and the distance moved by the load. For 
example, if an effort has to move 30 m in order to move a load 3 m 
then the velocity ratio is 3. 

Velocity ratio = distance moved by effort / distance moved by •	
load.

VR = distance moved by effort / distance moved by load.•	

Just like MA, VR has no units since it is a ratio. If the VR is 1 this 
means that the effort and the load both move the same distance. If 
the VR is 2 then the effort has to move twice as far as the load and if 
the VR is 0.5 then the load ends up moving twice as far as the effort.

Activity 5.2: Velocity ratios
Complete the following table:

Distance moved by effort 
(m)

VR Distance moved by 
load (m)

0.16 4

0.5 1.5

2 0.5

0.1 1

If the VR is less than 1 the machine can be considered a speed 
multiplier (as the distance moved by the load is greater than the 
distance moved by the effort). 

Efficiency of machines 
As discussed earlier, no machine can increase both the magnitude 
and the distance of a force at the same time. This would break 
the law of conservation of energy. When a machine provides an 

Activity 5.1: Mechanical 
advantage
Complete the following 
table:

Effort 
(N)

MA Load 
(N)

500 2

30 120

360 0.5

0.2 1000

Think about this… 
you will need to think 
carefully about what the VR 
number represents. you might 
think a VR of 3 means the 
load moves 3x further than 
the effort. This is not true! In 
fact the load will move a third 
of the distance (i.e. 1/3).

KEY WORDS
actual mechanical 
advantage the ratio between 
the load and the effort taking 
into account energy losses due 
to friction etc
ideal mechanical advantage 
the ratio between the load 
and the effort, assuming no 
other energy losses
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increase in force there must always be a decrease in the distance 
the force is moved. The reverse is also true; if a machine provides 
an increase in the distance the force moves then there will be 
a decrease in force (another way to think about this is that no 
machine can produce more work than the amount of work that is 
put into the machine).

The term efficiency (given the symbol η) is the ratio between the 
work output and the work input. It is often then multiplied by 100 
to give a percentage. The equation is as follows:

Efficiency = work output / work input•	
η•	  = work output / work input 

Just like MA and VR, efficiency has no units since it is a ratio. 

If the efficiency of a machine is 0.8 (or 80 %) this means that you 
would get 80 J of work out for every 100 J you put in. If you put in 
500 J you would get 400 J of work out. 

We can also express efficiency in terms of MA and VR by expanding 
our equations for work output and work input:

Efficiency = work output / work input•	

Efficiency = (load•	 	×	distance moved by load) / (effort	×	
distance moved by effort)
load / effort = AMA•	

distance moved by load / distance moved by effort = 1 / VR•	

So
efficiency = AMA / VR•	

η•	  = AMA/VR 
So a machine with an MA of 6 and a VR of 8 has an efficiency of:
η = AMA/VR = 6 / 8   Substitute in known values and complete   
 calculation
η = 0.75 (or 75%)  Clearly state the answer (either as a decimal or as a   
 percentage)
If AMA = VR then the machine would be 100 % efficient.

efficiency
    (%)

load (N)

0

50

100

Think about this… 
Why can’t the efficiency be greater than 1? What would this 
mean?

A simple machine provides 
a work output of 120 J for 
every 480 J of work input. 
Its efficiency would be given 
by:
η = work output / work input  

State principle or equation 
to be used (definition of 
efficiency)

η = 120 J / 480 J Substitute 
in known values and 
complete calculation

•	 η = 0.25 (or 25%) Clearly 
state the answer (either as a 
decimal or as a percentage)

To find the work output if 
2800 J of work goes into 
the machine we need to 
rearrange the equation:
η = work output / work input 

State principle or equation 
to be used (definition of 
efficiency) 

work output = η	×	work input 
Rearrange equation to make 
work output the subject 

work output = 0.25	×	2800 J 
Substitute in known values 
and complete calculation

work output = 700 J  Clearly 
state the answer with unit

We could then use our 
equations for work input 
and output to determine 
the effort and/or load if the 
other variables are known.

If the efficiency is one then 
this means the machine is 
100% efficient; there are 
no energy losses and so 
the work output equals to 
the work input. Remember, 
no machine is ever 100% 
efficient.

Worked example

Figure 5.8 The efficiency of a 
machine increases as the load 
increases.
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If the machine was 100% efficient then:

η = AMA/VR = 1•	

AMA = VR•	

In this case as there are no energy losses then the AMA would be 
equal to the IMA and so to calculate IMA we could use:

AMA = IMA = VR•	

IMA = distance moved by effort / distance moved by load•	

The VR is also equal to the maximum theoretical MA (IMA).

In this section you have learnt that:

In this section you have learnt that:

A machine is a device that makes it easier to do mechanical •	
work.

There are six different types of simple machine: inclined •	
plane, wedge, screw, lever, wheel and axle, and pulley.

Machines can be classed as force multipliers/speed •	
multipliers and/or direction changers.

The force put into a machine is called the effort; this may be •	
used to move a load. 

The work output from a machine is equal to the load•	 	×	the 
distance moved by the load. 

The work input to a machine is equal to effort•	 	×	distance 
moved by the effort.

AMA = load /effort.•	

VR = distance moved by effort / distance moved by load.•	

η•	  = MA/VR can be derived from efficiency = work output / 
work input and the equations for MA and VR above.

If the machine is 100% efficient then VR = AMA = IMA.•	

Summary

Review questions
1. List the six kinds of simple machine.

2. Define the terms: effort, load, work input, work output, AMA, 
VR, efficiency and IMA.

3. A simple machine is able to move a 400 N load a distance of  
20 cm when a force of 20 N is moved through a distance of  
5.0 m. Calculate:

a) the work input

b) the work output

c) the actual mechanical advantage

The following information 
was collected from a simple 
machine.
Effort = 300 N, load = 1200 
N, distance moved by effort 
= 15 cm, distance moved by 
load = 3 cm.
η = AMA/VR State principle 

or equation to be used 
(definition of efficiency in 
terms of AMA and VR)

AMA = load / effort = 1200 N 
/ 300 N = 4 Substitute in 
known values and complete 
calculation

AMA = 4  Clearly state the 
answer

VR = distance moved by 
effort / distance moved 
by load = 0.15 m / 
0.03 m = 5 Substitute in 
known values and complete 
calculation

VR = 5  Clearly state the 
answer

η = AMA/VR  State principle 
or equation to be used 
(definition of efficiency in 
terms of AMA and VR)

η = 4 /5 Substitute in known 
values and complete 
calculation

η = 0.8 (or 80%) Clearly 
state the answer (either as a 
decimal or as a percentage)

The efficiency of a particular 
machine depends on a 
number of different factors. 
However, it is always true 
that as the load increases 
the efficiency of the machine 
will also increase.

Worked example

KEY WORDS
efficiency the ratio between the 
work output and the work input
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d) the velocity ratio

e) the efficiency of the machine

f) the ideal mechanical advantage.

4. A simple machine has an efficiency of 0.75 and a VR of 12. 
Determine the MA and the load that can be moved if an effort 
of 100 N is applied.

5.2 Inclined plane, wedge and screw

By the end of this section you should be able to:

Derive an expression for MA of an inclined plane with or •	
without friction.

Calculate MA, VR and efficiency of an inclined plane.•	

Calculate MA, VR and efficiency of a wedge.•	

The inclined plane
An inclined plane is just another name for a ramp. The object is 
lifted to a height (h) by sliding it up the length of the slope (l). 

You probably know from experience that it is easier push a heavy 
object up a ramp than it is to lift it to the same height. This is 
because inclined planes reduce the force necessary to move a load. 
In other words, the effort required is less. However, the amount of 
work done must stay the same so the distance involved increases. 

The actual mechanical advantage can be found using the standard 
equation:

AMA = load / effort•	

In the case of the inclined plane the load would be the weight of the 
object and the effort would be to force required to push it up the 
slope.

Assuming there is no friction the force required to push the object 
up the ramp is equal to mgsin θ. As the angle of the slope increases 
sin θ gets bigger; at 90° it equals one and so then the force required 
equals mg. In other words, the shallower the slope the lower the 
force required; however, you would have to push the object a much 
greater distance to raise it to the same height. 

We can derive an expression for mechanical advantage using the 
dimensions of the inclined plane:

Work output•	  = F s = load	×	h

Work input•	  = F s = effort	×	l

If there are no energy losses (i.e. there is no friction), then work 
output = work input, so:

Figure 5.9 A simple inclined 
plane

Figure 5.10 Force required to 
move an object up a ramp vs. 
lifting it vertically

Length of slope (l)

Height of slope (h)

F= mg

F= mg sin θ

θ

F= mg

F= mg sin θ

θ
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load•	 	×	h = effort	×	l

load / effort•	  = l / h

load /effort•	  = MA

MA•	  = l / h

This is really the IMA as we have had to assume that there are no 
energy losses due to friction. Remember, the IMA is also equal to 
the VR so the VR for an inclined plane:

VR = IMA•	  = l / h

The gentler the slope, the greater the ratio of the length of its slope 
to its height. Therefore, the greater the IMA. 

The inclined plane can be thought of as a force multiplier and 
direction changer. 

Activity 5.3: Inclined planes
Calculate the VR (and so the IMA) for the following:

1.  A slope of length 20 m that rises to a height of  
5 m.

2.  A slope of length 100 m that rises to the same height.

3.  A slope that is at an angle of 30° to the horizontal and 
rises to a height of 50 m.

In reality, when you push an object up a slope you need to apply an 
effort greater than mgsin θ as you also need to overcome the force 
due to friction. The force required would equal mgsin θ + force due 
to friction. Therefore the actual mechanical advantage may be found 
using the following equation:

AMA = load / effort•	

effort•	  = mgsin θ + frictional force 

load•	  = mg

AMA•	  = mg / (mgsin θ + frictional force)

The efficiency of an inclined plane can be determined using the 
standard efficiency equation just applied to inclined planes:

η•	  = work output / work input = load	×	h / effort	×	l

Or, in terms of AMA and VR:

η = AMA/VR•	

AMA•	  = mg / (mgsin θ + frictional force) and VR = l / h

η•	  = mgh / (mgsin θ + frictional force)l

The wedge
A wedge is our second type of simple machine. Wedges are used 
to separate two objects or split objects apart. Examples of wedges 
include knives, forks, nails, spears, axes and arrows heads.

Figure 5.11 The ancient 
Egyptians used inclines to help 
in the construction of the great 
pyramids.

Think about this… 
mgh is the useful work 
output, whereas (mgsin θ 
+ frictional force)l is the 
work input. Think about this 
as work done in lifting the 
object + work done against 
friction.

Activity 5.4: Including 
friction
A slope of length 50 m rises 
to a height of 10 m above 
the ground. An effort of 
100 N is needed to push a 
250 N object up the ramp. 
Calculate:

1. AMA

2. VR

3. efficiency

KEY WORDS
wedge a piece of material, 
such as metal or wood, thick 
at one edge and tapered to a 
thin edge at the other
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A wedge can either be composed of one or two inclined planes. 
A double wedge can be thought of as two inclined planes joined 
together with their sloping surfaces outward.

There are two major differences between inclined planes and 
wedges. Firstly, when in use an inclined plane remains stationary, 
whereas the wedge moves. Secondly, the effort is applied parallel 
to the slope of an inclined plane. When using a wedge the effort is 
applied to the top of the wedge. 

The actual mechanical advantage can be found using the standard 
equation:

AMA = load / effort•	

In this case the load would be the force exerted on the object being 
split and the effort would be the force applied to the top of the 
wedge.

Just like we did with inclined planes we can derive an expression for 
mechanical advantage using the dimensions of the wedge:

Work output•	  = F s = load	×	t

Work input•	  = F s = effort	×	L

If there are no energy losses (i.e. there is no friction), then work 
output = work input, so:

load•	 	×	t = effort	×	L

load / effort•	  = L /t

load /effort = MA•	

MA•	  = L / t

This is really the IMA as we have had to assume that there are no 
energy losses due to friction. Remember, the IMA is also equal to 
the VR so the VR for a wedge = L / t.

VR = IMA•	  = L / t

The more narrow the wedge, the greater the ratio of the length of its 
slope to its width. Therefore, the greater the IMA. 

Like inclined planes, wedges can be thought of as force multipliers 
and direction changers. 

Figure 5.16 Three different wedges: 
which offers the greatest IMA?

Figure 5.12 A simple wedge

Figure 5.14 A single or double 
wedge

Figure 5.15 Differences between 
a wedge and an inclined plane

effort

load

Single Wedge

Double Wedge

Inclined plane

Effort

Wedge

Effort

Wedge 
thickness (t)

Penetration length (L)

Figure 5.13 Characteristics 
of a wedge

Single Wedge

Double Wedge

DID yoU kNoW?
The origin of the wedge is 
unknown, probably because 
it has been in use for over 
9000 years. In ancient 
Egyptian quarries, bronze 
wedges were used to break 
away blocks of stone used in 
construction.

M05_PHYS_SB_ETHG9_0162_U05.indd   126 12/7/10   1:11:19 pm



127

UNIT 5: Simple machines

Grade 9

The efficiency of a wedge can be determined using the standard 
efficiency equation just applied to wedges:

η•	  = work output / work input = load	×	t / effort	×	L

The screw
The term screw really refers to any cylinder with a helical thread 
around it. This means it includes nuts and bolts as well as more 
traditional screws. The screw is a very useful machine; it can be 
used to hold objects together, to dig into the ground and to bore 
through rocks. 

You can think of a screw as like an inclined plane wrapped around 
a cylinder. In one turn of the screw it digs in and moves into the 
material a distance equal to the separation between the threads. 
This is referred to as the pitch (P) of the screw and it is analogous to 
the height of an inclined plane. If you could unravel a screw thread 
for each rotation you could see it moves up a distance equal to P. 
The length of the slope would be the same as the circumference of 
the screw shaft.

The movement of the screw tip into the material provides the load, 
whereas the force used to turn the screw is the effort. 

The maximum theoretical mechanical advantage (IMA) for a screw 
can be calculated using the following equation:

IMA•	  = πd / P

d = the mean diameter of the screw shaft in m (πd is the 
circumference of the screw shaft).

P = the pitch of the screw in m.

There is always a great deal of friction when using screws and 
the actual mechanical advantage is much less than the value 
calculated using the equation above. However, it is also worth 
noting mechanical advantage of a screw system is increased as the 
screwdriver (or other method for turning the screw) produces its 
own mechanical advantage. 

In this section you have learnt that:

In this section you have learnt that:

For an inclined plane the AMA = load /effort, where the load •	
= the weight of the object and the effort = the force required 
to push the object up the slope (mgsin θ + frictional forces).

If we assume there is no friction on an inclined plane then •	
VR = IMA = length of the slope (l) / height of the slope (h). 

For a wedge the AMA = load /effort, where the load = the •	
force applied to the object being split apart and the effort = 
the force applied to top surface of the wedge. 

If we assume there is no friction on the wedge then VR = •	
IMA = penetration length (L) / wedge thickness (t). 

Summary

(a) (b)

bolt

thread

nut

screw

thread

effort

length
load

pitch

socket
under
car

Figure 5.17 Examples of screws 

Figure 5.18 Screw characteristics 

P

d

Figure 5.19 Screw threads

KEY WORDS
screw a cylinder of material 
with a helical thread around it
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Review questions
1. For an inclined plane derive η = l / h.

2. A block of weight 5000 N is pushed up a slope by a force of  
250 N. Assume there is no friction. Calculate:

a) the actual mechanical advantage

b) the velocity ratio

c) the length of the slope if the height of the slope is 10 m. 

3. An inclined plane is 100 m long and at an angle of 20° to the 
horizontal. The AMA of the slope is two. Calculate:

a) the effort required to push a 7200 N block up the slope

b) the ideal mechanical advantage

c) the efficiency of the slope.

4. Describe the differences between a wedge and an inclined 
plane.

5.3 Levers

By the end of this section you should be able to:

Determine the MA, VR and efficiency of a lever.•	

Identify the orders of a lever and give examples.•	

Describe the use of a wheel and axle and determine MA, VR •	
and efficiency of a wheel and axle.

Describe the use of gears.•	

Describe different pulley systems and calculate MA, VR and •	
efficiency of a pulley system.

Describe the use of a jackscrew.•	

Using levers
A simple lever is just a bar that is free to turn around a fixed point. 
This fixed point is called the fulcrum (sometimes the pivot). 

Figure 5.20 Key features of a simple lever

Unlike our earlier simple machines levers involve twisting and 
turning forces.

Think about this… 
The equation for the screw 
shows how similar a screw 
and an inclined plane are. 
πd is equivalent to l and P is 
equivalent to h. MA for the 
inclined plane = l / h and for 
the screw = πd / P.

DID yoU kNoW?
Some say there are only five 
different types of simple 
machine. They argue that 
the wedge is a just a moving 
inclined plane. Others 
say that the screw is just a 
helical inclined plane; this 
reduces the list to four!

effort

fulcrum (or pivot)

load

KEY WORDS
fulcrum the pivot of a lever
lever a bar which is free to 
turn around a fixed point
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effort

fulcrum (or pivot)

load

effort

fulcrum (or pivot)

load

Figure 5.21 Two different ways to use a lever to lift a load

MA, VR and efficiency of levers
When dealing with levers the forces are twisting rather than moving 
in a straight line. As a result we need to think carefully about MA 
and VR. Let’s take a simple example of a balanced see-saw. 

In order to balance the turning forces (moments) from both the 
objects must be equal. The forces might be different but their 
turning effects must be the same (more on this in Grade 10). In 
order for an object to balance:

anticlockwise turning force = clockwise turning force•	

So in the example below:

F•	
1	×	d1 = F2	×	d2

Figure 5.22 A simple balanced lever

If F1 is twice as large as F2 then F2 will need to be twice as far away 
from the fulcrum in order for the see-saw to balance. The product 
of the force and distance for both the left hand side and the right 
hand side must be equal.

For example, you can balance a 10 N rock with a 0.01 N feather. The 
feather would need to be 1000 times further from the fulcrum than 
the rock. 

This principle can be applied in terms of load and effort. Imagine 
the feather was the effort and the rock was the load. The lever has 
acted like a force multiplier with a 0.01 N input force and 10 N 
output force. Remember, in order for this to be true the effort needs 
to be applied 1000 times further away from the fulcrum than the 
load. This leads to the following equation:

load•	 	×	dL = effort	×	dE

DID yoU kNoW?
The term lever originates in 
France; ‘levier’ means to “to 
raise”.

fulcrum

F1 F2

d2d1

KEY WORDS
product the result of 
multiplying two values
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Figure 5.23 The key factors affecting the MA and VR of a lever

It is important to notice that the distances used are always 
perpendicular to the forces. The greater the ratio of dE to dL the 
greater the mechanical advantage (the greater the load you can 
lift for the same effort). Longer levers make it much easier to lift 
heavier loads. If you had a really long lever you could lift almost 
anything (see Did you know?).

load

effort

dE
dL

fulcrum (or pivot)

Figure 5.24 Distances perpendicular to forces

The actual mechanical advantage of the lever is given by the 
standard equation for MA:

AMA = load / effort•	

However, the equation for VR for levers is a little different. As 
the system is rotating we do not use the distance moved by the 
force. Instead we use the distances from the fulcrum. The VR can 
be found as the ratio between the distance from the effort to the 
fulcrum and the distance from the load from the fulcrum.

VR = distance from the effort to the fulcrum / distance from the •	
load from the fulcrum.

VR•	  = dE / dL

If there are no energy losses then IMA = VR and so:

IMA•	  = dE / dL

The efficiency of a given lever maybe found via:

efficiency = η = load•	 	×	dL / effort	×	dE

(In terms of MA and VR, η = AMA/VR).

Depending on the relative distances levers can be force multipliers/
speed multipliers and/or direction changers.

Think about this… 
The distances to the fulcrum 
must always be perpendicular 
to the forces. 

DID yoU kNoW?
Archimedes did not invent 
the lever; instead he wrote 
the first known explanation 
of the principles involved. 
According to Pappus of 
Alexandria and referring to 
the MA offered by levers, 
Archimedes once said: 
“Give me a place to stand 
on, and I will move the 
Earth.”

load

effort

dEdL

fulcrum (or pivot)
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Different classes of lever
There are three different classes of levers depending on the relative 
positions of the load, fulcrum and effort.

Table 5.1 Different classes of levers

Class Diagram Description Examples

1st Fulcrum is between 
the load and effort

•	 See-saw

•	 Crowbar	

•	 Pliers	(double	lever)	

•	 Scissors	(double	lever)

2nd The load is between 
the effort and the 
fulcrum

•	 Wheelbarrow	

•	 A	rowing	oar

•	 Nutcracker	(double	lever)	

3rd The effort is between 
the load and fulcrum

•	 Catapult	

•	 Hoe	or	spade

•	 Tongs	(double	lever)	

Figure 5.26 Second-class levers: load between effort and fulcrum 

load

effort

fulcrum

loadeffort
fulcrum

load
effort

fulcrum

load

effort

fulcrum

loadeffort
fulcrum

load
effort

fulcrum

load

effort

fulcrum

loadeffort
fulcrum

load
effort

fulcrum

hammer removes nail
crowbar

pincers

lever balance opening a tin scissors
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hammer removes nail
crowbar

pincers

lever balance opening a tin scissors
hammer removes nail

crowbar
pincers

lever balance opening a tin scissors

Figure 5.25 First-class levers have their fulcrum between load and effort. Pincers and scissors are double levers.
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Levers in the body
Examples of the three classes of lever occur in the body:

Table 5.2 Levers in the body

Fulcrum Load Muscle providing effort 

Head Joint between 
head and 
backbone

Head Muscle at back of neck 

Foot Toes Body Calf muscle (back of leg) 

Arm Elbow Arm Biceps muscle (upper arm)

The wheel and axle
The wheel and axle is another type of simple machine; it is 
comprised of a large wheel secured to a smaller wheel, which is 
called an axle. Wheels and axles do not just include the obvious; 
they also include gears, door-knobs, steering wheels and even 
screwdrivers!

There are two main ways to use a wheel and axle. The first way can 
be seen in Figure 5.28. You can wrap a rope around a supported 
wheel and apply an effort to the end of the rope. This causes the 
wheel and attached axle to rotate. If a load is attached to the axle 
as it turns it lifts the load. The effort has to move a long way to 
complete one single revolution (as the diameter of the wheel is 
large). The load moves a much smaller distance as the axle has a 
much smaller diameter. This means the load can be much greater 
than the effort and so there is a mechanical advantage.

The second way to use a wheel and axle is to have two wheels at 
the end of an axle. The wheel and axle then behaves like a type of 
rotating lever. In this case the fulcrum would be the centre point 
of the axle. As the wheels turn they can then be used to provide 
movement.

The mechanical advantage of a wheel and axle may be calculated 
using the standard equation for AMA:

AMA = load /effort•	

The VR of the wheel and axle is the ratio of the radius of the wheel 
to the radius of the axle. This is because as the wheel turns once it 

Figure 5.27 Third-class levers: 
effort between load and fulcrum

Activity 5.5: 
Demonstrating levers

•	 Use	a	metre	rule,	a	known	
weight as the load, 
and a spring balance as 
the effort in order to 
demonstrate the three 
classes of lever.

•	 Use	cardboard	to	make	
a simple label for the 
fulcrum.

•	 Make	arrows	to	label	the	
load and effort.

effortload

axle

wheel

Figure 5.28 A wheel and axle

ice tongs tweezers charcoal tongs

spade

fishing rod
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covers a distance equal to 2πR; in the same time the axle travels 2πr. 
So the VR is given by:

VR = distance moved by effort / distance moved by load•	

VR = 2•	 πR / 2πr

VR•	  = R / r

If the machine was 100% efficient then VR = MA = IMA so:

IMA = VR •	

IMA•	  = R / r

If the radius of the wheel is ten times greater than the radius of 
the axle, every time you turn the wheel once, the force will be 
multiplied by ten but it will also travel ten times the distance.

Depending on the relative radii wheels and axles can be thought of 
as force multipliers/speed multipliers and/or direction changers.

The effect of gears
Gears are often used in conjunction with a wheel and axle. They can 
be configured to offer an increase in mechanical advantage or an 
increase in the distance travelled, depending on the requirements of 
the system.

As one gear turns its teeth lock into another gear and force it 
to rotate. The gear made to turn is called the driving gear or 
occasionally the pinion (the one where the effort is applied). As the 
driving gear then rotates it turns the driven gear. 

The VR of a pair of gears is given by the ratio of the number of their 
teeth. 

VR = number of teeth on driven wheel / number of teeth on •	
driving wheel

VR•	  = Ndriven / Ndriving

This is also called the gear ratio. If the gear ratio was 0.5 then the 
driven gear would rotate once for every two rotations of the driving 
gear. 

Looking at Figure 5.31, if the left hand wheel was the driving wheel 
then there would be a VR of less than one. In other words the 
distance would increase but the effort would have to be greater than 
the load. 

If the driving wheel was the one on the right then the opposite 
would be true. The load would be greater than the effort but it 
would not travel as far.

If the machine was 100% efficient then VR = MA = IMA so:

IMA = VR •	

IMA•	  = Ndriven / Ndriving

Two or more gears together are called a transmission. Depending 
on the gear ratio, transmissions can produce a change the speed, 
magnitude and direction of a force. 

Figure 5.29 An example of a 
wheel and axle

DID yoU kNoW?
It is probably fair to say 
that the wheel is the most 
important invention of all 
time. The oldest wheel was 
found in Mesopotamia 
(modern Iraq/Syria). It is 
believed to be over 5000 
years old. 

Figure 5.30 The radii of the wheel 
and axle are the two factors that 
determine the VR.

Figure 5.31 A simple example of a 
pair of gear wheels

R

r
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DID yoU kNoW?
The most common application of gears involves one gear 
causing another to rotate. However, in a rack and pinion a gear 
causes a linear toothed track (called a rack) to move. This leads 
to a movement in a straight line rather than a rotation. 

Pulley systems
There are several different kinds of pulley. The most simple 
comprises a fixed axle with a rope looped over the top (called a class 
1 or fixed pulley). Even if there was no friction, a fixed pulley will 
not provide more than a mechanical advantage of 1. This means 
there is no multiplication of force; instead the pulley just changes 
the direction of the force. 

The second type of pulley is often called a movable pulley. Here the 
axle is free to move up and down. 

If one end of the rope is fixed then applying an effort to the other 
end of the rope (after it has been looped around the pulley) will 
effectively provide about two times the force. However, it is worth 
noting that you have to provide additional effort to lift the movable 
pulley as well as the load. 

A movable pulley has a VR of 2 as you would have to pull 2 m 
of rope through the pulley in order for it to lift the load 1 m. If 
there are no energy losses in the pulley then the VR = MA = IMA. 
Therefore the IMA for a movable pulley is also 2.

For both a fixed and a movable pulley there will be energy losses 
due to friction. As a result the MA will always be less than the VR. 

A compound pulley is a combination of a fixed and a movable 
pulley. This is sometimes called a block and tackle. The movable 
pulley provides the MA whereas the fixed pulley changes the 
direction of the force. This makes it easy to lift the load when 
standing on the floor!

Figure 5.32 A rack and pinion

effort

load

tension

Figure 5.33 Using a pulley to lift 
a load

Figure 5.34 A fixed pulley offers 
no MA but does change the 
direction of the force.

Figure 5.35 A movable pulley 
does provide an MA. 

Figure 5.36 A compound pulley 
is a combination of a fixed and 
movable pulley. 

100 N

100 N

100 N

100 N 100 N

50 N

50 N

50 N

50 N

100 N

50 N

50 N
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To increase the VR of any block and tackle, a pulley block with 
more than one pulley in each block can be used. A long length of 
rope is tied to the top block then passes around each of the pulleys 
in turn.

The pulleys might be side by side (as in Figure 5.37) or above each 
other, as shown in the diagram in Figure 5.38.

The VR of these systems is given by the number (N) of sections of 
rope used to lift the load. If there is only one section then VR = 1, if 
there are two sections then the VR = 2, etc.

VR = number of sections of rope that lift the load•	

VR•	  = N

These systems are never 100% efficient since there is friction on the 
pulley and some of the effort is used to lift the lower block instead 
of the load. If the machine was 100% efficient then VR = MA = IMA 
so:

IMA = VR •	

IMA•	  = N

Figure 5.39 The VR of a pulley system depends on the number of 
sections of rope that lift the load.

Figure 5.37 A pulley block with 
three pulleys

fixed pulley

(a) (b)

effort

load here

effort

load here

fixed pulley

Figure 5.38 Two pulley blocks 
with three pulleys in each

F2=100 N F2=50 N
F2=33   N

F2=25  N

N=1
N=2

N=3 N=4

N=1

F1=100 N F1=100 N

h=10 cm

100 N 50 N

25 N
s=10 cm

s=20 cm s=30 cm s=40 cm

N=2

h=10 cm

F1=100 N

N=3

h=10 cm

F1=100 N

N=4

h=10 cm

1
3

33   N1
3
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Activity 5.6: Investigating a system of pulleys
•	 Arrange	the	pulley	blocks	as	shown	in	Figure	5.40.	Attach	

a forcemeter to measure the effort. Place a known weight 
on the lower block. Pull the forcemeter downwards so that 
the load rises slowly at a uniform speed. Note the steady 
reading. Repeat and take the average reading. Table 5.3 
shows how to record your results.

fixed pulley

(a) (b)

effort

load here

effort

load here

fixed pulley

Figure 5.40 Using (a) two, and (b) four pulleys to raise a load

•	 Return	the	load	to	its	low	original	position.	Note	the	
position on the rule of the load and the hook of the 
forcemeter (the effort). Raise the load a known distance. 
Measure how far the effort moves. Repeat and take the 
average reading. 

•	 Calculate	MA,	VR	and	the	efficiency.

•	 Repeat,	using	different	weights	as	the	load.

Table 5.3 Investigating a system of four pulleys.

Load Effort MA Distance 
moved by 
load

Distance 
moved by 
effort

VR Efficiency

3 N 1.5 N 2.0 10 cm 40 cm 4 50%
5 N 2.0 N 2.5 12 cm 48 cm 4 62.5%
etc.

The table shows results for a system of four pulleys. The 
mechanical advantage is less than four and the velocity ratio 
is exactly four (it is equal to the number of strings holding the 
load).

More complex machines
A complex machine is one where two or more simple machines 
are combined to function as a single mechanism. Examples 
include scissors, wheelbarrows, bicycles, the differential pulley and 
the jackscrew. We will look at two examples in more detail, the 
differential pulley and the jackscrew.

Think about this… 
What advantages and 
disadvantages are there to 
changing the diameter of 
the pulleys wheels, as shown 
in Figure 5.38? Hint: think 
about the IMA offered by a 
wheel and axle.

KEY WORDS
fixed pulley a grooved wheel 
on a fixed axle with a rope 
looped over it
movable pulley a grooved 
wheel on a movable axle with 
a rope looped round it
pulley a simple machine 
comprising a wheel with a 
grooved rim over which a rope 
or chain is passed
transmission a set of two or 
more gears
complex machine a device 
where two or more simple 
machines are combined to 
make a single mechanism
differential pulley a pulley 
combined with a wheel and 
axle
jackscrew a screw combined 
with a lever
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The differential pulley
A differential pulley is a pulley in combination with a wheel and 
axle. It is sometimes called a “chain hoist” and it can be used to lift 
extremely large masses over a short distance. 

It is composed of two fixed pulleys at the top. These are attached to 
each other and both rotate together. However, they have different 
radii (R and r). One long loop of rope (or more commonly a chain) 
passes around the pulleys. The excess hangs off the pulley in a loop. 
To lift a load you pull on the loop, causing the pulleys to rotate and 
slowly lift the load. The mechanical advantage is calculated using 
the standard equation:

AMA = load /effort•	

In this case the load = W and the effort = F so:

AMA•	  = W / F

The VR (and so the IMA) is given by:

VR = IMA•	  = 2R / (R – r)

As R – r approaches zero the IMA increases. If R is about the same 
as r it almost gets to the stage where the weight looks like it is no 
longer lifting as you end up pulling long lengths of chain or rope 
downward for a very small vertical movement. However, you are 
able to lift very heavy loads.

The jackscrew
A jackscrew is a screw in combination with a lever. The MA from 
the lever allows large weights to be lifted by the screw.

The mechanical advantage is calculated using the standard equation:

AMA = load /effort•	

In this case the load = W and the effort = F (the force applied at the 
end of the lever) so:

AMA•	  = W / F

The VR (and so the IMA) is given by:

IMA•	  = VR = 2πR / P

The longer the handle (R) and the smaller the pitch (P) the greater 
the IMA, but it would take even more turns in order to lift the car!

In this section you have learnt that:

In this section you have learnt that:

For a lever the AMA = load / effort and the VR (and so IMA) •	
= distance of the effort to the fulcrum (dE) / distance of the 
load from the fulcrum (dL).

There are three orders of levers, depending on the relative •	
positions of the load, fulcrum and effort.

Summary

Figure 5.41 The key features of a 
differential pulley

effort

length
load

pitch

socket
under
car

Figure 5.42 A simple jackscrew 
used as a car jack

Figure 5.43 The key features of a 
jackscrew

r

F

R

W

R

W

F
p
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For a wheel and axle the AMA = load / effort and the VR •	
(and so IMA) = radius of wheel (R) / radius of axle (r).

There are three different types of pulley systems: fixed, •	
movable and compound. 

For a pulley the AMA = load / effort and the VR (and so IMA) •	
= the number (N) of sections of rope used to lift the load. 

A complex machine is a combination of two or more simple •	
machines (for example, a jackscrew is a combination of 
screw and lever – this can be used to lift very heavy loads).

Review questions
1. Explain how a lever can act as a force multiplier.

2. For the following simple see-saw calculate:

a) the load that could be lifted

b) the mechanical advantage (assume the lever is 100% 
efficient).

Figure 5.44 A simple see-saw

3. A simple wheel and axle is used to lift a bucket of water out 
of a well. The radii of the wheel and axle are 20 cm and 4 cm, 
respectively. Determine:

a) the velocity ratio (and so the IMA)

b) the theoretical effort required to lift a load of 30 N 
assuming no energy losses

c) the efficiency if the actual effort required is 10 N.

4. Describe the three different types of pulley.

End of unit questions 
1. Explain why for every simple machine the actual mechanical 

advantage is less than the ideal mechanical advantage.

2. By giving an example of a simple machine (including its 
dimensions) explain what is meant by force multiplier, speed 
multiplier and direction changer.

load

4 cm 30 cm

80 N
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3. An inclined plane rises to a height of 2 m over a distance of 6 m. 
Calculate:

a) the angle of the slope

b) the VR (and so IMA) of the inclined plane

c) the theoretical force required to push an object with a mass 
of 200 kg up the slope.

4. Give three examples of wedges.

5. A 10 cm long, 2 cm wide wooden wedge is pushed into a soft 
wood block. Calculate:

a) the velocity ratio of the wedge

b) the load on the soft wood if the effort applied is 30 N 
(assuming the wedge is 100% efficient).

6. Explain how screws could be considered to be similar to 
inclined planes.

7. Describe the three classes of lever and give a practical example 
of each.

8. Explain how a jackscrew is used and how to calculate its ideal 
mechanical advantage.
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Fluid statics Unit 6

How does a massive ocean liner, made of steel, float on the water, 
yet a tiny penny sinks? Why is it when you go swimming you can 
feel the water pushing up on you, yet you can’t feel the massive 
weight of the column of air on top of your head? This is all down 
to fluid statics, the study of the density and pressure in stationary 
liquids and gases. 

From simply breathing in and out, to the blood pumping through 
your veins, pressure in liquids and gases plays an important role in 
our lives. Without atmospheric pressure our blood would simply 
boil and life on Earth would not even be possible.

In this unit we will investigate atmospheric pressure, look into what 
causes pressure in liquids and gases, explore the factors that affect 
it and learn how to use a range of simple pieces of equipment to 
measure pressure.

Contents
Section Learning competencies

6.1 Air pressure
 (page 141)

Define the term air pressure and use the definition to solve related •	
problems.
Describe atmospheric pressure and explain its variation with •	
altitude.
Explain how to measure atmospheric pressure and show that  •	
760 mmHg is equal to one atmosphere.

6.2 Fluid pressure
 (page 151)

Define the term fluid and state the similarities and differences •	
between liquids and gases.
Define the term density and relative density and determine each •	
for a given body.
Explain how the pressure in a liquid at rest varies.•	
Apply the formula •	 p = hρg and use it to solve problems (including 
determining the pressure inside a fluid taking into account 
atmospheric pressure).
State Pascal’s principle, and apply it to solve problems and explain •	
applications (such as the hydraulic lift).
Explain the use of a manometer.•	
Demonstrate an understanding of, distinguish between and •	
calculate atmospheric, gauge and absolute pressure.
State Archimedes’s principle and the principle of flotation.•	
Distinguish between true weight and apparent weight of a body.•	
Calculate the buoyant force acting on the body in a fluid and •	
explain why bodies float or sink.
Calculate the density of a floating body or density of a fluid using •	
the flotation principle.
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6.1 Air pressure

By the end of this section you should be able to:

Define the term air pressure and use the definition to solve •	
related problems.

Describe atmospheric pressure and explain its variation with •	
altitude.

Explain how to measure atmospheric pressure and show that •	
760 mmHg is equal to one atmosphere.

Under pressure
If you’ve ever had an injection you will have noticed how easy it is 
for the doctor to push the needle through your skin. This is because 
the needle has a very sharp point and so when the doctor exerts a 
relatively small force the needle creates a great deal of pressure on 
the skin.

Pressure is defined as the amount of force acting per unit area. 

Pressure is equal to force per unit area.•	

If a large force acts on a small area it creates a greater pressure. 
For example, most animal predators have pointed teeth. When a 
crocodile or shark bites into its prey, the pressure is very large and 
so the teeth sink in! 

The reverse is also true. A large vehicle like a tractor or truck may 
have some very large tyres. These increase the area over which the 
force is acting and so reduce the pressure. This means it is less likely 
for the tractor to sink into the mud and get stuck.

The pressure exerted by a force may be calculated using the 
equation below:

pressure = force / area•	

p = F / A•	

p = pressure in Pa.

F = force in N.

A = area in m2.

Pressure is measured in pascals. One pascal is equal to a pressure of 
1 N per square metre (1 N/m2). The pascal is the SI derived unit of 
pressure (this includes all forms of pressure).

A boy weighs 500 N and the soles of his feet have an area of  
0.05 m2. Determine the pressure he exerts when he stands  
a) on both feet and b) on one foot.

Worked example

Figure 6.1 Injections don’t hurt 
much because the needle exerts a 
very high pressure on the skin.

Figure 6.2 The area over which 
the force is acting affects the 
pressure it exerts.

Figure 6.3 A large force pressing 
on a small area creates greater 
pressure than a smaller force on a 
larger area.
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On both feet:
p = F / A State principle or equation to be used (definition of pressure)
p = 500 N / 0.05 m2  Substitute in known values and complete  

 calculation
p = 10 000 Pa or 10 kPa  Clearly state the answer with unit
If he stands on one foot his weight will be the same but the 
area will be halved to 0.025 m2:
p = F / A State principle or equation to be used (definition of   

 pressure)
p = 500 N / 0.025 m2  Substitute in known values and complete  

 calculation
p = 20 000 Pa or 20 kPa  Clearly state the answer with unit

We didn’t really need to do that last calculation. We can see that 
if the area halves and the force stays the same then the pressure 
doubles (pressure is inversely proportional to area).

A book rests on a desk. Its covers measures 20 cm by 25 cm. It 
exerts a pressure of 100 Pa. Determine the mass of the book.
p = F / A  State principle or equation to be used (definition of   

 pressure)
F = p × A  Rearrange equation to make F the subject
In order to find the mass we first need to find the weight of 
the book. This is the force the book exerts on the desk. The 
area of the book is 0.20 m × 0.25 m = 0.05 m2.
F = 100 Pa × 0.05 m2  Substitute in known values and complete  

 calculation
F = 5 N  Clearly state the answer with unit
This is the weight of the book so to find its mass we use w = 
mg.
w = mg so m = w /g  State equation and rearrange equation to  

 make m the subject and solve
m = 5 N / 10 N/kg  Substitute in known values and complete  

 calculation
m = 0.5 kg or 500 g  Clearly state the answer with unit (ideally kg)

Worked example

What causes air pressure?
Although we can’t feel it in our day to day lives, air has mass. This 
means it also has a weight. One cubic metre of air has a mass of 
about 1 kg and so a weight of 10 N. The simplest way to think about 
air pressure is to treat it as the pressure due to the weight of the air 
above pushing down on a certain area. This may seem like a silly 
idea but actually it is pretty close to the truth.

DID yOU kNOW?
The pascal is named after 
Blaise Pascal. He was a 
French physicist most noted 
for his experiments with 
barometers in the mid-17th 
century (a barometer is 
an instrument to measure 
air pressure; more on this 
later).

Activity 6.1: Pressure
Complete the table below:

Force Area Pressure
720 N 4.0 m2

0.02 m2 240 kPa
5.0 N 1.0 Pa

Activity 6.2: Your own 
pressure
Stand on a piece of squared 
paper. Carefully draw around 
your feet (or get a partner 
to do this for you). 

 

Figure 6.4 In order to 
determine the pressure you 
exert you need to measure the 
area of your feet!

Use this to work out the 
area of your feet (to do this 
count the number of squares 
and multiply by the area of 
each square).

Measure your weight in N 
(or your mass in kg and 
multiply by 10 N/kg), then 
use the equation p = F / A 
to determine your pressure.
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A more complete picture involves thinking about the actual air 
particles. These are in constant motion, they are travelling in 
different directions and some travel faster than others. When the air 
particles are near a surface some will bounce into it and so exert a 
force on the surface. It is this force that gives rise to a pressure.

Atmospheric pressure
The atmosphere is the layer of air that surrounds the Earth. Above 
your head right now there is a column of air about 40 km tall. The 
exact height is quite hard to determine due to the fact that as the 
height above the ground increases the air gets thinner and thinner 
until there is practically no air. 

This column of air has a weight, which presses down on you and it 
is this that gives rise to atmospheric pressure. 

We don’t normally notice atmospheric pressure. If you move your 
hands up and down you can’t really feel it, but it is definitely there! 
The reason we don’t feel it is because not only does it push on you 
equally from all directions (left, right, front and back) but our 
bodies push back out.

There is a kind of equilibrium between the pressure in our bodies 
and the surrounding atmosphere. If you went somewhere where the 
pressure was much greater than atmospheric pressure our bodies 
would be crushed. For example, deep-sea submarines have to be 
very strong to withstand the crushing effect caused by the pressure 
of the water.

Figure 6.7 A deep-sea submarine has to withstand very high 
pressures.

The reverse is also true. If you went somewhere where the pressure 
was very low (e.g. into space without a pressurised space suit) the 
pressure inside our bodies would push outwards with some very 
nasty effects!

How big is atmospheric pressure?
The weight of the column of air above 1 m2 at ground level is around 
101 000 N! This means atmospheric pressure at ground level is 
around 101 kPa. This is often referred to as 1 atmosphere or 1 atm:

1 atm = 101 kPa•	

Figure 6.5 Air particles crashing 
into a surface apply a force to that 
surface.

Figure 6.6 The pressure in our 
bodies pushes back against 
atmospheric pressure.

Figure 6.8 Without a pressurised 
space suit this astronaut would 
experience severe difficulties.

Force

Atmospheric pressure
pushing on the body

Pressure inside the body
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Figure 6.9 Venus has a much greater atmospheric pressure than the 
Earth.

101 000 Pa is a very large pressure, but we rarely notice it in our day 
to day lives. It is about the same as having a medium-sized elephant 
balance on the top of your head! 

In the mid-17th century a German named Otto Von Guericke (who 
was mayor of Magdeburg) invented a vacuum pump. This clever 
machine removed the air from inside a chamber and so the force 
due to atmospheric pressure could really be seen. 

Von Guericke used his pump to removed air from inside two brass 
hemispheres touching each other. With the air removed the pressure 
from the atmosphere squeezed the two hemispheres together. With 
no counter pressure from the air inside, the hemispheres were 
locked tightly together. In 1654, in front of Emperor Ferdinand III, 
he demonstrated how tightly by using thirty horses in two teams of 
15 to try to separate the hemispheres. They couldn’t do it! 

Figure 6.11 Teams of horses could not pull the hemispheres apart.

Think about this… 
In fact the pressure inside 
our bodies is generally a bit 
higher than atmospheric 
pressure. Think about how 
you already know this and 
why do you think this is 
important? 

DID yOU kNOW?
The planet Venus has a 
much denser atmosphere 
that we do on Earth. The 
pressure on the surface is 
around 90 atm! That is 9 
MPa or 9 million N per 
square metre. That is the 
same pressure you would 
experience if diving to a 
depth of nearly 1 km under 
water. 

Figure 6.10 Magdeburg 
hemispheres

KEY WORDS
atmosphere the layer of air 
surrounding the Earth
vacuum pump a machine for 
removing the air from inside a 
chamber
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The atmospheric pressure pushing the two hemispheres together 
was too strong. the hemispheres could not be separated. It was not 
until air was allowed back inside the hemispheres that the difference 
in pressure was small enough to allow them to be pulled apart.

What effect does altitude have on atmospheric pressure?
The actual atmospheric pressure in the room today might be a bit 
higher or lower than 1 atm. The heating effect from the Sun causes 
small changes in pressure due to the uneven heating of the Earth’s 
surface. This leads to high or low pressure weather systems. You can 
think of a high pressure system as meaning there is a slightly greater 
mass of air above your head than on an average day. 

 
Figure 6.12 Differences in atmospheric pressure can lead to powerful 
storms.

The height above sea level, or altitude, also has a significant effect on 
atmospheric pressure. Imagine climbing a tall mountain; the higher 
you get, the smaller the column of air above you. This means there 
is a smaller mass of air above you and so less weight pushing down.

As altitude increases the atmospheric pressure decreases.

Table 6.1 shows how the pressure varies with altitude. You can see 
that it is not a simple relationship and it depends on temperature 
changes and position on the Earth.

Table 6.1 Pressure at different altitudes

Altitude (m) Approx. pressure (Pa)

0 101 000

1000 90 000

2000 79 000

5000 54 000

10 000 26 000

15 000 12 000

20 000 6000

25 000 1300

30 000 270

Activity 6.3: 
Atmospheric pressure
Fill a glass to the very top 
and then place a card on 
top of it. Make sure there is 
no air trapped between the 
glass the card.

While holding the card 
carefully turn the glass over 
and then let go of the card.

It should stay in place! 
Atmospheric pressure is 
pushing the card up and 
preventing the water from 
rushing out.

Activity 6.4: The effect 
of altitude
Plot a graph of altitude 
against atmospheric pressure 
using the information in 
Table 6.1.

DID yOU kNOW?
At 1 atm, water boils at 
100 °C. However, if the 
atmospheric pressure drops 
so does the boiling point. At 
the top of tall mountains the 
pressure is so low water will 
boil at 75 °C! In the mid-
19th century explorers used 
this fact to determine their 
altitude. 

Figure 6.13 As you climb a mountain the surrounding 
atmospheric pressure drops.
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Measuring atmospheric pressure
There are several instruments used to measure atmospheric 
pressure. The most common is a barometer. 

Think about the mercury in the dish. On the outside, air pressure 
is pressing down on the mercury. On the inside, the column of 
mercury in the tube is pressing down with an equal pressure. If 
these pressures were not equal, the level of mercury in the tube 
would alter until the pressures were balanced.

Until about 1650 the rise of liquid up a tube was explained by saying 
that the vacuum ‘sucks up’ the liquid. This is not so – a vacuum 
cannot suck, because there is nothing there to do the sucking! The 
rise is due to air pressure on the surface of the liquid outside.

A mercury barometer is long and inconvenient, heavy, and contains 
a liquid that is hazardous and easily spilt. Therefore, an aneroid 
barometer is commonly used. (Aneroid means without liquid.) It 
is compact and portable. A flat circular metal box, with only a little 
air inside, is the important part (Figure 6.16). A spring prevents 
its sides from being pushed in. The box is corrugated to make it 
strong, so that it does not collapse under air pressure. When the 
pressure changes, the upper face of the box moves. The movement 
is magnified several hundred times by a system of levers, which 
move a pointer over a circular scale, graduated in centimetres. It 
is graduated by comparing its readings with those of a mercury 
barometer.
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Figure 6.16  The construction of an aneroid barometer

Why 760 mmHg?
Pressure is often expressed in the units of mmHg. If the 
atmospheric pressure is equal to 1 atm then the height of the 
column of mercury in a barometer is 760 mm. We can prove this 
mathematically.

The column of mercury will have a weight and the weight must 
equal the force due to the atmospheric pressure pushing up on the 
bottom of the column. Let’s imagine a column of mercury 760 mm 
tall with a radius of 5 mm. This exerts a force equal to its weight. 
The weight is given by w = mg and we can determine the mass of 
the column from its density and volume (ρ = m / V and so m = ρV 
and V = πr2h as this is the volume of a cylinder). So:

V = •	 πr2h 

Figure 6.14 A barometer

Figure 6.15 A diagram of a 
simple barometer

DID yOU kNOW?
The volume of an object is 
affected by the temperature 
and the surrounding 
pressure. Chemical 
reactions also depend on 
pressure and temperature. 
In order to ensure 
experiments are conducted 
under the same conditions 
across the globe the 
International Union of Pure 
and Applied Chemistry 
(IUPAC) define standard 
temperature and pressure 
as a temperature of 0 °C 
and a pressure of 100 kPa. 
However, several different 
organisations use slightly 
different values!
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V = •	 π(0.005 m)2 × (0.76) m

V = •	 5.97 × 10-5 m3

The density of mercury is 13 570 kg/m3 so its mass is:

m = •	 ρV

m = •	 13 570 kg/m3 × 5.97 × 10-5 m3

m = •	 0.81 kg

Therefore the weight of the column can be found:

w = mg•	

w = •	 0.81 kg × 9.81 N/kg

w = •	 7.9 N

This weight must equal the force due to the pressure on the bottom 
of the column. So we can use the pressure equation to determine 
the pressure required to support of column of this height.

p = F /A•	

As it is a cylinder the area of the base of the column is given by A = 
πr2 so:

p = F / •	 πr2

p = •	 7.9 N / π × (0.005 m)2

p = •	 101 000 Pa or 101 kPa

You can repeat the calculation above for columns with different 
radii; the answers are always the same! You can combine all the 
steps into one big equation:

p = •	 ρ πr2h g / πr2

The areas cancel, which shows that the area of the column does not 
matter. Any column will reach the same height. This gives us:

p = •	 ρ h g (more on this equation later).

You might ask, why use mercury? Mercury is quite toxic and needs 
to be handled very carefully; why not use water instead? This is 
because water has a much lower density than mercury (around  
1000 kg/m3 vs. 13 600 kg/m3). This means for that atmospheric 
pressure can support a column of water around 10 m tall! This 
would make our barometer far too large to be practical. 

Some uses of air pressure
There are several uses for air pressure. Most rely on creating a 
pressure difference by pumping air into or out of a chamber. 
Pumping air into a chamber creates a greater pressure and pumping 
air out of a chamber creates a lower pressure.

If you create an area of lower pressure then the atmospheric 
pressure is larger in relative terms. As a result air is pushed in due to 
the greater force from the atmospheric pressure. Notice that there is 
no such thing as sucking to pull air into a machine.

Figure 6.17 The volume of a 
cylinder 

Think about this… 
As atmospheric pressure can 
support a column of water 
10 m high this is also the 
maximum height to which 
a column of water can be 
drawn up by a vacuum pump 
(i.e. by creating a pressure 
difference). For any higher, 
water pumps must be used. 

r

h

KEY WORDS
aneroid barometer a device 
for measuring atmospheric 
pressure that uses a 
corrugated metal box rather 
than liquid
barometer a device for 
measuring atmospheric 
pressure
pressure difference the 
relative value of the pressure 
of gas in different chambers
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Uses of air pressure
A suction pad is a round rubber pad, perfectly flat on one side. 
Wet this side and press the pad against a window or smooth 
wall, pushing out all the air from under it. The pad sticks firmly. 
Atmospheric pressure holds it in place. The pads are used to lift and 
move large sheets of plate glass, metal and plastics, to put notices on 
windows, and on many toys, e.g. arrows, that stick to walls.

If you drink through a drinking straw, you are making use 
of atmospheric pressure. You suck on the air inside the straw. 
Therefore the atmospheric pressure outside is greater than the 
pressure inside, and liquid is pushed up (Figure 6.18).

A lift pump (common pump) is often used to raise water from wells. 
A piston moves up and down a tube (Figure 6.19). There is a valve 
in the piston and also one at the end of the tube. A valve is usually 
made of leather, and has brass on it to make it heavy. The valves are 
normally shut. They let water pass upwards but not downwards.
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Figure 6.19  The four stages in the operation of a lift pump

Downstroke:•	  Foot valve B closes under its own weight. Valve A 
opens and lets air pass through it into the space above the piston.

Upstroke:•	  Valve A closes under its own weight. The pressure 
under the piston is less than atmospheric. Atmospheric pressure 
forces water into the tube through B.

Downstroke:•	  Valve B closes and A opens. Water passes through A 
into the space above the piston.

Upstroke:•	  Valve A closes and water is lifted up the tube and out of 
the spout. More water passes through B to keep the pump filled.

Atmospheric pressure determines the height to which water can 
be pumped. Even a perfect pump can raise water only 10.4 m. In 
practice, because of leaks at the valves and piston and of dissolved 
gases from the water, most pumps raise water about 7 m only. 
Delivery of water is not continuous.

A force pump can pump water to a great height. Some, used by 
firemen, can force water hundreds of metres high.
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Figure 6.18 Atmospheric pressure 
pushes the drink up the straw

KEY WORDS
common pump a pump that 
relies on atmospheric pressure 
to move water
drinking straw a thin tube 
used to suck liquids into the 
mouth
force pump a pump that 
relies on atmospheric pressure 
and compressed air to move 
water, often to a great height
lift pump a pump that relies 
on atmospheric pressure to 
move water
suction pad a round rubber 
pad that relies on atmospheric 
pressure to stick to smooth 
surfaces
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There is a foot valve B (see Figure 6.20), as in the lift pump, but it 
has a solid piston and a delivery tube at the bottom of the pump. 
There is a valve A in the delivery tube where it joins a chamber.

Upstroke:•	  The pressure in the tube under the piston becomes less. 
Valve A closes and foot valve B opens. Water is forced through B 
into the tube by atmospheric pressure.

Downstroke:•	  B closes. Valve A opens; water is forced through it 
and the delivery pipe into chamber C. The pressure on the piston 
(and not atmospheric pressure) determines the height to which 
the water is pumped.

The force pump itself delivers water only on the downstroke; the 
flow of water stops on the upstroke. However, the air trapped in 
chamber C is compressed during every downstroke. The pressure 
of this air continues to force out water during the upstroke, and 
therefore the pump delivers a steady stream of water.

Bicycle pump
The handle moves a piston in a metal cylinder (Figure 6.21). There 
is a cup-shaped leather or rubber washer on the end of the piston. 
This acts as a valve and lets air move in one direction only. The soft 
edge of the washer fits closely to the sides of the cylinder.
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Figure 6.21  How a bicycle pump works

Upstroke:•	  The pressure below the piston is reduced. Atmospheric 
pressure forces air between the washer and the wall of the cylinder.

Downstroke:•	  The pressure below the piston is increased. The 
washer is pressed tightly against the walls of the cylinder, 
making it airtight. When the pressure rises above the pressure 
inside the tyre, the tyre valve opens and air is forced into the 
tyre.
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Figure 6.20  A force pump
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A bicycle pump with the washer reversed acts as a vacuum pump or 
suction pump. 

Siphon
A siphon is a convenient way of removing liquid from a container 
such as an aquarium or petrol tank. 

Activity 6.5: To show the action of a siphon
•	 Fill	a	tall	jar	with	water.	Submerge	a	long	rubber	tube	so	

that it fills with water.

•	 Leave	one	end	in	the	water,	close	the	other	end	with	the	
fingers (to prevent the water running back), and lift it out 
of	the	jar.	Lower	this	end	until	it	is	below	the	water	level	
in	the	jar.	Open	it	and	let	water	flow	out	into	a	second	jar	
(Figure 6.22).

The water flows so long as the end C is below water level A. 
The further C is below A, the faster is the flow of water.

•	 Now	raise	the	second	jar	until	it	is	higher	than	the	first.	
Water flows in the other direction. (The tubing must always 
be full of water and its ends must be under the water.)

How a siphon works
The pressure at A and B is atmospheric. Therefore the pressure at 
C is atmospheric pressure plus the pressure due to the column of 
water BC. Hence, the pressure at C is greater than atmospheric and 
the water can push its way out against the atmosphere.

In this section you have learnt that:

In this section you have learnt that:

Pressure is defined as the force acting per unit area. It can •	
be calculated using the equation p = F/ A.

Pressure is measured in pascals (Pa), where 1 Pa equals a •	
pressure of 1 newton per square metre. 

Atmospheric pressure is caused by the weight of the column •	
of air above you pushing down on you. On a typical day this 
is equal to 101 kPa.

As your altitude increases the atmospheric pressure •	
decreases.

A barometer is a simple instrument used to measure •	
atmospheric pressure. The pressure from the atmosphere 
pushes the fluid up the tube.

1 atm is equal to 760 mmHg.•	

Summary
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Figure 6.22  A siphon

Activity 6.6: Vacuum 
cleaner
Can you explain how a 
simple vacuum cleaner 
works? Remember that it 
does not suck up the dust.

KEY WORDS
siphon a tube which can 
move liquid using the 
difference between the 
pressure of the liquid and 
atmospheric pressure
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Review questions
1. Define pressure and states its units.

2. A wooden block of mass 2.0 kg is 20 cm thick, by 10 cm wide by 
30 cm tall. Calculate the minimum and maximum pressure this 
block could exert on a surface.

3. Explain the causes of atmospheric pressure and why it changes 
with altitude.

4. Describe how a barometer works and show that at 1 atm the 
height of a column of mercury would equal 760 mm.

5. Calculate the pressure in Pa if the reading from a barometer is 
820 mmHg. 

6.2 Fluid pressure

By the end of this section you should be able to:

Define the term fluid and state the similarities and •	
differences between liquids and gases.

Define the term density and relative density and determine •	
each for a given body.

Explain how the pressure in a liquid at rest varies.•	

Apply the formula •	 P = hρg and use it to solve problems 
(including determining the pressure inside a fluid taking 
into account atmospheric pressure).

State Pascal’s principle, and apply it to solve problems and •	
explain applications (such as the hydraulic lift).

Explain the use of a manometer.•	

Demonstrate an understanding of, distinguish between and •	
calculate atmospheric, gauge and absolute pressure.

State Archimedes’s principle and the principle of flotation.•	

Distinguish between true weight and apparent weight of a •	
body.

Calculate the buoyant force acting on the body in a fluid •	
and explain why bodies float or sink.

Calculate the density of a floating body or density of a fluid •	
using the flotation principle.

What are fluids?
Can you name a fluid? I suspect you came up with either water, an 
oil of some sort, petrol or maybe something like milk. However, I 
doubt many, if any, of you came up with air. In physics a fluid refers 
to a substance that will flow along a pipe. In common use fluids 
tend to mean just liquids. However, in science fluids include all 
gases as well as liquids

KEY WORDS
flow smooth unbroken 
movement of a substance
fluid a substance that will 
flow e.g. gases, liquids
gases substances in a state 
of matter where particles can 
move about randomly and are 
widely spaced, with no bonds 
between them
liquids substances in a state 
of matter where there are 
weak bonds between the 
particles which are close 
together but can still move

M06_PHYS_SB_ETHG9_0162_U06.indd   151 14/7/10   12:42:37 pm



152

UNIT 6: Fluid statics

Grade 9

Another characteristic of fluids is that they can change their shape. 
This means they always take the shape of the container they are put 
in. For example, consider a rectangular glass box. A liquid and gas 
will both fill the bottom of the container; however, a solid will not.

Figure 6.24 Fluids take the shape of their container.

There are still some very important differences between liquids 
and gases. Perhaps the most important is the fact that gases can 
be compressed by forces. You can squeeze a balloon filled with air 
and its volume will go down. However, liquids are incompressible; 
effectively this means the volume of a liquid stays the same when 
force is applied.

Table 6.2 summarises the key properties of liquids and gases.

Figure 6.23 Natural gas is a fluid.

Table 6.2 Liquids and gases

Liquid Gas

Particles Quite close together, with no 
set pattern; particles can move 
past each other.

Far apart with no set pattern; 
particles can move past each 
other.

Bonding Weak bonds between the 
particles

No bonding between the 
particles

Can flow / change their shape 
to match a container

yes yes

Compressible No; the particles are already 
close together.

yes; there is lots of space 
between the particles.

Fluid density 
The density of any fluid may be calculated using the standard 
equation for density:

density = mass / volume•	

ρ •	 = m / V

Density is defined as mass per unit volume•	 . 

As the particles are closer together in a liquid, liquids have higher 
densities than gases. Table 6.3 includes some typical densities of 
fluids. 

Solid Liquid Gas

KEY WORDS
incompressible where the 
volume of a substance stays 
the same when force is 
applied 
density the mass per unit 
volume of a substance
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Table 6.3 Densities of fluids

Fluid Density (kg/m3)

Mercury 13 600

Honey 1400

Water 1000

Sea water 1020

Diesel 950

Alcohol 800

Petrol 740

Air 1.20

Carbon dioxide 1.98

Nitrogen gas 1.25

Both temperature and pressure have an effect on the volume 
of a fluid. Therefore the densities in Table 6.3 are at standard 
atmospheric pressure (101 kPa) and a temperature of 20 °C.

For liquids it is fair to assume that the density is uniform 
throughout the liquid (as they are incompressible). However, for 
large volumes of gas the density increases as the gas gets closer to 
the surface of the Earth (due to gravity). This is most noticeable in 
the Earth’s atmosphere. As the altitude increases the air gets less 
dense; the air is described as getting thinner.

What’s relative density?
The term relative density is often used to compare the density 
between two fluids. In most cases this involves comparing the 
density of a fluid to that of water; however, it could be any other 
substance.

The relative density of a substance is the ratio between its density 
and the density of water. For example, if something has a relative 
density of two it means it is twice as dense as water. A relative 
density of 0.25 means it has ¼ of the density of water. You can 
calculate relative density using:

relative density = density of substance / density of water.•	

The relative density of alcohol would be:

relative density = density of substance / density of water•	

relative density = 800 kg/m•	 3 / 1000 kg/m3

relative density = 0.8.•	

Notice relative density has no units since it is a ratio.

If we are comparing two identical volumes of fluids then the relative 
density can be calculated as the ratio of the masses of the same 
volume of fluid:

relative density = mass of substance / mass of equal volume of •	
water 

Think about this… 
Density is also often 
measured in g/cm3. 1 g/cm3 
is equal to 1000 kg/m3. How 
would convert from g/cm3 to 
kg/m3 and vice versa?

Activity 6.7: Relative 
density
Determine the relative 
density of:

1. mercury

2. carbon dioxide

3. petrol

4. honey.

KEY WORDS
relative density the ratio 
between the density of two 
substances 
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Activity 6.8: Measuring relative density
This method uses a density bottle (Figure 6.25) to find the 
relative density of a liquid. A density bottle has a ground-glass 
stopper, which fits exactly. There is a small hole in the stopper 
through which liquid and air can flow out when the stopper is 
put in the neck of the bottle. (This means that no air bubbles 
can be trapped under the stopper, which would give a false 
result.)

•	 Weigh	a	clean,	dry	density	bottle	with	its	stopper	(mass	=	A).

•	 Fill	with	water	and	put	in	the	stopper.	Water	should	come	out	
of the hole in the stopper. Dry the outside of the bottle and 
weigh it again (mass = B).

•	 Pour	out	the	water,	rinse	with	some	of	the	liquid	whose	
relative density is to be found. Fill with the liquid, put in the 
stopper, dry carefully and weigh (mass = C).

Relative density =
mass of liquid

=
(C – A)

mass of water (B – A)
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Figure 6.25 A density bottle

Pressure in fluids 
We’ve already discussed atmospheric pressure but if we investigate 
pressure in fluids in general we find there are two key points to 
consider:

Pressure increases with depth.•	

At any given depth the pressure is equal in all directions.•	

Pressure and depth
In any fluid the pressure increases with depth. The taller the column 
of the fluid above you, the greater the pressure it exerts. You can see 
this by conducting a very simple experiment.

Activity 6.9: Pressure and depth
Take a tall tin can and carefully make several holes going up 
one side (three or four should do it). 

Quickly fill the tin with water and observe how the water 
squirts out of the holes.

you will notice that the stream from the bottom hole travels 
further. This is because the water is under more pressure at the 
bottom of the can.

 

DID yOU kNOW?
If the relative density of a 
substance is relative to the 
density of water it is often 
called specific gravity. If the 
object has a specific gravity 
greater than 1, it will sink in 
water (more on this later). 
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Figure 6.26 The effect of depth on 
pressure
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We have already derived an equation for pressure in fluids in 
Section 6.1:

p = h•	 ρg

p•	  = pressure in Pa

h = •	 depth of fluid in m

ρ •	 = density of fluid in kg/m3

g = •	 gravitational field strength (9.81 N/kg)

Be careful not to mix up p and ρ (the Greek letter rho); make sure 
you look carefully before completing any calculations.

To recap:

Figure 6.28 shows a tank, filled with water of density ρ to a depth h. 
The base of the tank has area A. What is the pressure on the bottom 
of the tank?

The pressure is caused by the weight of the water in the tank, 
pressing down on the bottom.

Volume of water = •	 h × A

Mass of water = volume •	 × density = ρ × h × A

Weight of water = mass •	 × g = ρ × h × A × g

Pressure = weight / area = ρ •	 × h × A × g / A = ρ × h × g.

This equation shows that the pressure increases with depth (h); in 
fact the pressure exerted by the fluid is directly proportional to the 
depth of fluid. Dive twice as deep and the pressure exerted by the 
water above you is doubled.

Calculate the pressure exerted by the water at the bottom of a 
swimming pool 6 m deep.

p = hρg  State principle or equation to be used (pressure in fluids)

p = 6 m × 1000 kg/m3 × 10 N/kg  Substitute in known values and  
 complete calculation

p = 60 000 Pa  Clearly state the answer with unit

Calculate the force this pressure would exert on a concrete 
block with an area of 3 m2

p = F / A  State principle or equation to be used (definition of   
 pressure)

F = p × A  Rearrange equation to make F the subject

F = 60 000 Pa × 3 m2  Substitute in known values and complete  
 calculation

F = 180 kN  Clearly state the answer with unit

Worked example

Figure 6.27 Dams have to be 
thicker at the bottom in order to 
withstand the greater pressure.
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Figure 6.28  The pressure on the 
bottom of the tank is caused by 
the weight of the water above it.

Activity 6.10: Pressure 
calculations 
Using information in the 
density table (Table 6.3) 
calculate the pressure 
exerted by the fluid in the 
following situations:

1. Diving in sea water to a 
depth of 15 m.

2. The base of a column of 
mercury 760 mm tall.

Dam

Water
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Pressure acts equally in all directions
In fluids, despite the pressure being caused by the column of fluid 
above you, the pressure acts equally in all directions. If you imagine 
a very small cube placed under water, the pressure on each cube 
face would be same.

If you hold your hand up horizontally in front of you the pressure 
on the top is the same as the pressure on the bottom. 

Technically there is a very small difference in the height of the 
column of air on the top compared to the bottom (the thickness of 
your hand) but essentially the pressure is the same.

Activity 6.11: Pressure in a can
you can show this using 
another tin can. This time 
make four or five holes at 
the same depth around the 
bottom of the can. 

Again quickly fill it with 
water and you can see all 
the streams of water are the 
same. In other words the 
pressure is the same in all 
directions inside the can.

Figure 6.31 Pressure is the same 
in all directions. 

What about the effect of atmospheric pressure?
If you go swimming the pressure acting on you is not just due to 
the water above you. You must not forget to include atmospheric 
pressure.

Figure 6.32 The total pressure on a swimmer

The pressure on the swimmer would be the sum of the pressure due 
to the fluid and the atmospheric pressure. In terms of an equation 
this could be written as:

p = p•	
atm + hρfluid g

Figure 6.29 Pressure is the same 
in all directions on a small cube.

Figure 6.30 The pressure on the 
top and on the bottom of your 
hand is essentially the same.

DID yOU kNOW?
This topic is called fluid 
statics (or hydrostatics), 
meaning we are dealing 
with stationary fluids. 
A moving fluid exerts 
less pressure on its 
surroundings. This is 
studied in hydrodynamics 
and is very important when 
it comes to keeping aircraft 
in the air.

Pressure on the top

Pressure on the bottom

Water

Atmospheric pressure

h

p = patm+pfluid
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Pascal’s principle

Activity 6.12: Water transmits pressure
•	 Take	two	syringes	of	different	sizes.	Connect	them	with	

plastic or rubber tubing. Fill the syringes and the tube with 
water (Figure 6.33).

•	 Press	one	syringe	with	one	hand,	and	the	other	with	the	
other hand. Feel how their forces differ.
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Figure 6.33  Using water pressure to magnify a force.

If you conduct the experiment above the difference in the forces is 
clear. 

This difference comes down to the fact that liquids are 
incompressible; this means they can transfer pressure from one 
place to another. The force applied to the smaller syringe creates a 
pressure inside the liquid. This pressure is transferred throughout 
the liquid and is the same value everywhere. This pressure acts on 
the larger syringe and because the area of the syringe is larger the 
force exerted is also greater. Remember, from Unit 4, energy cannot 
be created or destroyed. Just like the simple machines studied in 
unit 5, if the output force gets bigger it must move through a smaller 
distance. 

This phenomenon is referred to as Pascal’s principle and it states:

The pressure applied to an enclosed fluid is transmitted to •	
every part of the fluid, as well as to the walls of the container 
without reducing in value.

Pascal’s principle is used in the design and construction of simple 
hydraulic machines. Figure 6.34 shows two different sized pistons, 
which form part of a hydraulic system.

If a force is applied to the left hand piston it will create a pressure 
inside the fluid.

p = F•	
1 / A1

This pressure is transferred throughout the liquid. It is the same 
everywhere.

p •	 on the left = p on the right.

The piston on the right has a much larger area. The force from this 
piston is equal to:

F•	
2 = p × A2

Determine the pressure 
acting on a diver 20 m 
below	the	surface.•	

p = patm + hρfluidg  Express 
total pressure in terms of 
atmospheric pressure and 
pressure from fluid

•	 In	this	case,	h = 20 m 
and ρfluid = 1000 kg/m3  

p = 101 000 Pa + (20 m 
× 1000 kg/m3 × 10 N/kg)  
Substitute in known values and 
complete calculation

p = 301 000 Pa or 301 kPa  
Clearly state the answer 
with unit

Worked example

Think about this… 
Discuss with a partner why 
this effect does not happen 
in gases.

Figure 6.34 Pascal’s principle

p

p

p

F2F1

A1

A2

KEY WORDS
hydraulic machines 
machines that rely on the 
incompressibility of liquids to 
do work 
Pascal’s principle principle 
stating that the pressure 
applied to an enclosed fluid 
is transmitted to every part of 
the fluid without reducing in 
value 
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As A2 is much bigger than A1, F2 will also be bigger than F1. In fact 
if the piston has double the area the force will be doubled. If the 
piston has ten times the area the force will be 10 times greater! 

For example, let’s imagine the areas are:

A1 = 2 m2 A2 = 6 m2

If a force of 100 N is applied on A1 then the force at A2 will be 300 N 
(three times bigger). Let’s prove it though calculation:

p = F / A  State principle or equation to be used (definition of pressure)

p = F1 / A1  Relate to this context

p = 100 N / 2 m2  Substitute in known values and complete calculation

p = 50 N/m2  Clearly state the answer with unit

From Pascal’s principle the pressure is the same throughout the 
liquid so:

p = F2 / A2  State principle or equation to be used (definition of pressure   
 expressed in this context)

F2 = p × A2  Rearrange equation to make F2 the subject

F2 = 50 N/m2 × 6 m2   Substitute in known values and complete 
calculation

F2 = 300 N  Clearly state the answer with unit

As the pressure is same throughout the fluid we can summarise the 
relationship between the forces and areas in the following equation:

F•	
1 / A1 = F2 / A2

Hydraulic machines
Pascal’s principle has many applications; one of the simplest is the 
hydraulic lift. This is used to lift a heavy object (such as a car) 
off the ground. Just like our example, a small force is applied to a 
smaller area piston. This creates a pressure inside a hydraulic fluid, 
which is transferred to a larger area piston. This piston creates a 
much larger force and, if the object to be lifted sits on top of the 
large piston, it can be easily lifted by the smaller force at the smaller 
area piston. 

Other examples include hydraulic presses and hydraulic brakes (in 
cars).

Hydraulic presses are used to shape metal (e.g. make motor-car 
bodies), to press waste paper or cotton wool into bales of small size, 
to press oil from oil seeds, and to lift cars so that work can be done 
easily underneath.

KEY WORDS
hydraulic lift a hydraulic 
machine used to raise heavy 
objects
hydraulics presses a 
hydraulic machine used to 
shape metal or compress 
materials into smaller volumes
hydraulic brakes a 
mechanism which uses fluid to 
transfer pressure from a foot 
pedal to push brake pads onto 
brake discs 
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•	 Inner tube method:

 Use the inner tube of a bus or lorry tyre. 
Take out the valve, and fit about  
1.5 metres of rubber tubing to the tube 
over the metal valve. Put a funnel into the 
other end of the rubber tubing. Place a 
large wooden board on the flat inner tube, 
and stand on the board. Pour water into 
the funnel. The inner tube fills with water 
and lifts you.

•	 Polythene bag method: 

 Connect some rubber tubing to a closed 
polythene bag. Place a brick with its 
largest surface on the bag. Blow into the 
tubing. The brick is lifted. 

 Turn the brick so that a smaller surface is 
on the bag. A larger pressure is needed to 
lift the brick as much as before.

Figure 6.35 A hydraulic lift operated by air pressure
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Activity 6.13: A hydraulic lift

The hydraulic press (Figure 6.36) changes a small force into a large 
one. It consists of a cylinder and a piston, of large diameter, joined 
by a pipe to a second cylinder and a piston of small diameter. Water 
or oil is pumped into the small cylinder, and it lifts the large piston 
with an enormous force. A release valve lets the liquid run away 
after the piston has done its work.
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Figure 6.36 A hydraulic press, used to compress a bale of cotton

A car’s hydraulic brakes work in a similar way. By pressing the foot 
on the brake pedal, a small force is applied to a piston with a small 
diameter. The pressure is transmitted through oil pipes to pistons of 
large diameter on the car wheels. These push the brake pads against 
the brake discs to stop the wheels. 

Think about this… 
Why is it a serious problem 
if air bubbles get into the 
hydraulic brake lines of a car?
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What is the difference between atmospheric, gauge
and absolute pressure?

When it comes to measuring the pressure of a fluid there are several 
different terms you may come across. These include atmospheric 
pressure, gauge pressure and absolute pressure.

Absolute pressure
The absolute pressure is the actual pressure at a given point. It 
is the true pressure of a system if all of the factors are taken into 
account (including atmospheric pressure).

Atmospheric pressure
Atmospheric pressure has already been discussed. It is the pressure 
of the surrounding air when measured at the surface of the Earth. 
It has a value of 101 kPa. Atmospheric pressure varies depending 
on the temperature, the altitude above sea level and the impact of 
weather systems.

Gauge pressure
Pressure gauges often give readings of gauge pressure rather than 
absolute pressure. Gauge pressure is the pressure difference between 
a system and atmospheric pressure. 

If the pressure gauge reads 25 kPa it would mean 25 kPa above 
atmospheric pressure (giving 126 kPa in total). If the gauge was 
disconnected it would read 0 Pa even though the absolute pressure 
is still 101 kPa. 

Gauge pressure can be calculated using the equation below:

p•	
g = ps – patm 

p•	
g = gauge pressure

p•	
s = system pressure (the absolute pressure of the system being 

measured)

p•	
atm = atmospheric pressure

This is often used to determine the absolute pressure of the system. 
For example, if a compressed gas was measured and the gauge 
pressure of the system was 49 kPa then the absolute pressure would 
be:

p•	
g = ps – patm  so ps = pg + patm 

p•	
s = 49 000 Pa + 101 000 Pa 

p•	
s = 150 000 Pa

As gauge pressure is relative to atmospheric pressure it is possible to 
obtain negative readings. A reading of –10 kPa would mean 10 kPa 
below atmospheric pressure.

Figure 6.37 Pressure gauges may 
read absolute pressure or gauge 
pressure.

KEY WORDS
absolute pressure the actual 
pressure at a given point
gauge pressure the difference 
between absolute pressure and 
atmospheric pressure
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Figure 6.38 The relationship between gauge pressure, absolute 
pressure and atmospheric pressure

Measuring pressure
We have already looked at simple and aneroid barometers. However, 
there are a number of other ways to measure the pressure of a fluid. 
Most modern techniques use electronic pressure sensors. However, 
there are two other common mechanical techniques.

Bourdon gauge
A Bourdon gauge is a more practical instrument for measuring the 
pressure of a gas (Figure 6.39). Inside the gauge is a flattened tube 
with one end sealed. The tube is coiled round in a spiral. The open 
end is connected to, say, the gas supply. As the gas presses in, it 
causes the spiral tube to uncurl slightly. This makes the needle move 
round the dial, indicating the pressure.
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Figure 6.39  A Bourdon gauge

Manometer
A manometer is a simple instrument often used to measure the 
pressure of a gas supply. It comprises a U-shaped tube open at both 
ends. The tube is filled with a liquid (this is often coloured to make 
it easier to see).

Increasing pressure

System pressure (above atmospheric pressure)

System pressure (below atmospheric pressure)

Zero pressure (absolute)=0 kPA

Gauge pressure 
(blue arrows)

Absolute pressure 
(green arrows)

KEY WORDS
Bourdon gauge an 
instrument for measuring the 
pressure of a gas
manometer a U-shaped tube 
filled with liquid which is used 
to measure pressure 
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If one side of the manometer is connected to a system under 
pressure, the liquid will move. For example, if one end was 
connected to a gas supply the liquid would be pushed down as the 
supply is at a greater pressure than the surrounding atmosphere.

The height difference between B and C can then be used to 
determine the pressure of the gas supply.

pressure of gas = atmospheric pressure + pressure due to the •	
column of liquid BC

pressure of gas•	  = patm + hBCρg

For example, if a water-filled manometer was connected to a gas 
supply and the height difference (BC) was 9 cm the pressure of the 
gas would be:

pressure of gas =•	  patm + hBCρg

pressure of gas = 101 000 Pa + 0.09 m•	  × 1000 kg/m3 × 10 N/kg

pressure of gas = 101 900 Pa•	

This would most likely be expressed as a gauge pressure of 900 Pa. 

Forces in fluids
Objects seem less heavy in water. For example, it is easy to hold up a 
friend horizontally in a swimming pool. Try doing this in air! 

Figure 6.43 Despite their large mass elephants appear to be lighter 
underwater.

There is a force from the water that pushes you up, acting against 
gravity. This force is called a buoyant force (or sometimes 
upthrust). It arises due to the fact that as pressure increases with 
depth if you immerse an object in a fluid the pressure on the bottom 
will be greater than the pressure on the top.

This can be shown by considering the equation, p = hρg. The 
difference in pressure can be found by using:

Δ•	 p = Δhρg

Figure 6.40 A simple manometer
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Figure 6.41  Using a manometer 
to measure the pressure of the gas 
supply

Figure 6.42 A manometer being 
used

Think about this… 
If using a manometer to 
measure the pressure of 
higher pressure gases why is 
it a good idea to use mercury? 
Why is water usually used for 
gas supplies?
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Water

ptop

pbottom

Δ p=pbottom − ptop

Δ p=Δhρg

This difference in pressure means there is a difference in force 
acting on the top and bottom of the object. The force on the bottom 
is greater and so there is net force upwards.

If you hold a cork underwater and then release it the buoyant force 
accelerates it towards the surface of the water. Equally if you drop 
a stone in the water it accelerates through the water much more 
slowly than it did through the air as the buoyant force means the net 
force acting on the stone is reduced. 

The size of the buoyant force (Fb) depends on a number of factors 
including the density of the fluid and the volume of the object. 

Buoyant forces are not just limited to liquids. Air also provides a 
buoyant force but it is very small (as the density of air is much less 
than that of water). In order for it to have a significant effect the 
volume of the object must be huge. Hot air balloons ‘float’ in the air 
due to the buoyant force of the air pushing them up, acting against 
their weight.

Apparent weight
As we mentioned earlier, objects immersed in water (or any liquid) 
appear to weigh less. Obviously their weight has not changed (w 
= mg) but they now have an apparent weight. The buoyant force 
pushes upwards, acting against the objects weight and so the weight 
appears to drop.
The apparent weight may be calculated using the equation below:

apparent weight = weight – buoyant force•	

Gases (like air) also provide a buoyant force but it is usually too 
small to need thinking about.
This equation is more commonly used to determine the buoyant 
force acting on an object:

buoyant force = weight – apparent weight•	

Figure 6.44  The pressure is greater at a greater 
depth in water, so there is a bigger force on the 
lower surface of the block than on the upper 
surface.

Figure 6.46 The pressure difference 
leads to a force acting vertically 
upwards.

Figure 6.47 The buoyant force 
from the air keeps the hot balloon 
in the air.

Figure 6.45 The pressure difference = Δhρg

Fb

KEY WORDS
buoyant force a force from 
the water which pushes a 
body upwards against gravity
upthrust a force from the 
water which pushes a body 
upwards against gravity
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Using a forcemeter we can easily determine the buoyant force acting 
on a stone (see Figure 6.49). 
Here the buoyant force is equal to:
buoyant force = weight – apparent weight   State principle or equation 

to be used

buoyant force = 6.0 N – 4.0 N   Substitute in known values and 
complete calculation

buoyant force = 2.0 N Clearly state the answer with unit

Archimedes’s principle
You probably know the story of Archimedes in his bath. King Hiero 
had ordered a new gold crown, in the shape of a wreath of leaves. 
The crown was the correct weight, but he suspected that the jeweller 
had cheated him by mixing silver with the gold. Could Archimedes 
find a way of checking the crown without damaging it?

Archimedes was in his bath when he thought of the solution. As 
everyone knows, when you get in the bath, the water level rises 
because your body displaces some of the water. Archimedes, seeing 
how he could put this to use, leapt from the bath and ran down the 
street shouting ‘Eureka!’ which means ‘I have it!’

Here is how Archimedes tested the crown. He put a weight of gold 
equal to the crown, and known to be pure, into a bowl which was 
filled with water to the brim. Then the gold was removed and the 
king’s crown put in, in its place. This caused the bowl to overflow.

Archimedes was using the fact that gold is denser than silver, so 
it takes up less space. He found that the new crown had a greater 
volume than one made of pure gold. It was indeed a cheat, and the 
jeweller was punished.

Archimedes realised that when an object is immersed in a liquid it 
displaces a certain volume of the liquid. 

Figure 6.50 A stone placed in a beaker of water will cause the level of 
water to rise as it displaces its own volume.

Figure 6.48 The forces acting on 
an object a) in air b) in water
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Figure 6.49 Measuring the 
buoyant force acting on a stone

Fb

weightweight

Fb

weightweight

a)

b)

Volume of displaced liquid
KEY WORDS
Archimedes’s principle 
principle stating that the 
weight of the fluid displaced 
by an object is equal to the 
buoyant force acting on it
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He determined that the weight of the displaced fluid was equal to 
the buoyant force. Or in his own words:

Any object, wholly or partially immersed in a fluid, is buoyed •	
up by a force equal to the weight of the fluid displaced by the 
object.

In other words, the buoyant force acting on an object is equal to the 
weight of the displaced liquid. 

buoyant force = weight of displaced fluid•	

The greater the volume of liquid displaced the greater the buoyant 
force.

Use	thin	thread	to	tie	an	object	(a	stone,	
metal weight or glass stopper is suitable) 
to the hook of a newtonmeter (a spring 
balance). Note its weight.

•	 Weigh	a	beaker.	

•	 Place	an	overflow	can	on	the	bench	and	
fill it with water. When no more water 
drips out of the can, place the weighed 
beaker under its spout (see Figure 6.51).

•	 Lower	the	object	carefully	into	the	water	
until it is partially immersed. Note the 
apparent	weight	of	the	object.

•	 Weigh	the	beaker	with	the	displaced	water	
in it.

•	 Replace	the	beaker	and	water	under	the	
spout.	Lower	the	object	into	the	can	until	
it is totally immersed but not touching 
the bottom of the can. Note the apparent 
weight	of	the	object.	

•	 Weigh	the	beaker	and	the	displaced	water.

you have to find the buoyant force on the 
object,	and	compare	it	with	the	weight	of	
water displaced.

Upthrust	=	weight	of	object	in	air	–	weight	of	
object	in	water

Weight of displaced water = weight of beaker 
with water – weight of empty beaker
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Figure 6.51 Testing Archimedes’s principle

Activity 6.14: Testing Archimedes’s principle

We can modify our equation for apparent weight in light of 
Archimedes’ principle:

apparent weight = weight – buoyant force•	

buoyant force = weight of displaced fluid•	

apparent weight = weight – weight of displaced fluid•	
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Floating and sinking
Whether or not an object floats or sinks depends on the weight of 
the object and the size of the buoyant force acting on the object.

buoyant force

a – weight is greater than buoyant force, so the stone sinks

b – weight is equal to the buyoyant force, so the cork floats

c – weight is less than the buoyant force so the balloon rises

Figure 6.52 The relative sizes of the buoyant force and the weight 
determine whether an object will float or sink.

In order to float an object must displace a volume of fluid (liquid or 
gas) equal to its own weight. This is called the law of flotation. 

If the weight of the volume of fluid displaced is equal to the weight 
of the object then the object will float.

A large steel ship is able to float because it displaces such a large 
volume of water. This volume of water has the same weight as the 
ship.

When you step into a small boat you might notice the boat sinks 
down a little in the water. This is because as the weight of the boat 
increases it needs to displace a greater volume of liquid in order to 
float, and so it sinks down lower in the water. A heavily loaded boat 
sits much lower in the water than a lightly loaded boat.

Figure 6.53 The ship floats due to 
the law of flotation.

Figure 6.54 A boat that is 
not heavily loaded displaces a 
smaller volume of liquid in order 
to float.

Boat (not loaded)

Figure 6.55 A boat that is heavily 
loaded needs to displace a much 
larger volume of water in order to 
float.

Boat (loaded)

KEY WORDS
law of flotation law stating 
that if the buoyant force is 
equal to the weight of the 
object then the object will 
float
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In the late 19th century greedy ship owners were overloading their 
ships and several ships sank as a result. The Englishman Samuel 
Plimsoll developed the waterline (or more commonly the Plimsoll 
line). This was a line that by law must be painted on all large ships. 
For safety reasons, when the ship is fully loaded the level of the 
water must not be above the Plimsoll line.

.

What about density?
If, even when fully immersed, the weight of the volume of liquid 
displaced is less than the weight of the object, then the object will 
sink. A small cube of steel does not displace enough water to float. 
However, if you hammer out the steel into a bowl shape it displaces 
a greater volume of water and so will float.

Figure 6.57 The same mass of steel will sink or float depending on its 
shape and so the amount of fluid it displaces.

In other words, if the density of the object is greater than the density 
of the fluid it will sink. 

This means we need to consider the relative density between the 
object and the liquid. If the relative density is less than one the 
object will float (as the weight of the object will be less than the 
weight of the volume of liquid it displaces). If the relative density is 
more than one the object will sink (as the weight of the object will 
be more than the weight of the volume of liquid it displaces). We 
can modify our previous equations to include the density of the 
object and the density of the fluid.

Figure 6.56 The Plimsoll line on 
a ship

Think about this… 
If you look carefully at the 
image of the Plimsoll line you 
can see that there are several 
different lines depending on 
whether the ship is in fresh 
water, salt water, cold water 
(North Atlantic) or warm 
water (tropical). Why is this?

A toy submarine has a weight of 6.2 N in air. When immersed 
in water it has a weight of 4.6 N. Determine the buoyant force 
and the weight of water displaced

buoyant force = weight – apparent weight  State principle or  
 equation to be used 

buoyant force = 6.2 N – 4.6 N  Substitute in known values and  
 complete calculation

buoyant force = 1.6 N  Clearly state the answer with unit

weight of displaced fluid = buoyant force  Make it clear the two  
 quantities are equal from Archimedes’s principle

•	 weight	of	displaced	fluid	=	1.6	N	Clearly state the answer with  
 unit

Worked example
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w = mg •	 and ρ = m / V

weight of object•	  = mobject g and so weight of object = ρobjectVobject g

weight of displaced liquid•	  = mfluid g and so weight of displaced 
fluid = ρfluidVfluid g

If the object is floating then:

buoyant force = weight of displaced liquid = weight of object•	

So:

ρ•	
objectVobject g = ρfluidVfluid g

The g’s cancel, giving:

ρ•	
objectVobject = ρfluidVfluid

This equation only applies if the object is floating. 

A floating wooden block has a volume of 0.4 m3 and displaces 
0.3 m3 of water. Determine the density of the block.

ρobjectVobject = ρfluidVfluid  State principle or equation to be used (a   
 version of Archimedes’s principle)

ρobject = ρfluidVfluid / Vobject  Rearrange equation to give  ρobject

ρobject = (1000 kg/m3 × 0.3 m3) / 0.4 m3  Substitute in known  
 values and complete  
 calculation

ρobject = 750 kg/m3 (or a relative density of 0.75)  Clearly state  
 the answer  
 with unit

Worked example
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In this section you have learnt that:

In this section you have learnt that:

A fluid is any substance that can flow. This includes gases as •	
well as liquids. 

Gases may be compressed but liquids are incompressible.•	

Density is defined as the mass per unit volume and it may be •	
calculated using the equation ρ = m / V. Density is measured 
in kg/m3.

The relative density of a substance is the density of the •	
substance compared to another (e.g. compared to water).

In fluids the pressure increases with depth and is the same •	
in all directions.

In fluids the pressure due to the fluid is equal to •	 p = hρg. 
The total pressure is equal to the pressure due to the fluid 
plus atmospheric pressure. 

Pascal’s principle states that liquids transfer pressure from •	
one place to another without any reduction in pressure. 

Gauge pressure is the difference between absolute pressure •	
and atmospheric pressure.

A manometer is a simple U-shaped tube filled with liquid •	
used to measure pressure.

The apparent weight of a body is equal to the weight of the •	
object	minus	the	buoyant	force	acting	on	it.

Archimedes’s principle states that the weight of the •	
displaced fluid is equal to the buoyant force acting on the 
object.	

The principle of flotation states if the buoyant force (or •	
weight of displaced fluid) is equal to the weight of the 
object	then	the	object	will	float.

If	the	object	is	floating	then	the	density	of	the	floating	•	
object	can	be	calculated	from:	ρobjectVobject = ρfluidVfluid where 
Vfluid is the volume of the displaced fluid.

Summary

Review questions
1. Explain what is meant by the term fluid and give three 

examples.

2. Calculate the pressure caused by sea water when diving to a 
depth of 100 m. What is the total pressure acting on the diver?

3. State Pascal’s principle and describe one of its applications.
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4. Two pistons are connected together to make a hydraulic lift. The 
smaller piston has an area of 0.05 m2 and the larger piston has 
an area of 2 m2. Calculate the following:

a) The pressure in the fluid and the force at the larger piston if 
the force on the smaller piston is 50 N.

b) The pressure in the fluid and the force from the smaller 
piston required to lift a car of mass 1200 kg.

5. Describe the relationship between the buoyant force and the 
weight of an object if the object:

a) is floating

b) is sinking

c) is rising up through the water.

End of unit questions 
1. An elephant has a mass of 3200 kg. Each of its feet covers an 

area equal to 0.08 m2. Calculate the pressure from each foot.

2. Describe what causes pressure in gases in terms of the particles 
in the gas.

3. Describe some similarities and difference between liquids and 
gases.

4. How deep under water would you need to be in order to be at 
double atmospheric pressure?

5. Explain the meaning of the terms atmospheric pressure, 
absolute pressure and gauge pressure.

6. Describe the use of a manometer and calculate the pressure of a 
gas supply that causes a column of water 15 cm high. 

7. State Archimedes’s principle and explain how this leads to the 
law of flotation.

8. Explain why a heavily loaded boat sinks lower in the water.

9. The weight of an object is measured in air to be 7.0 N. The 
object is then immersed in water and its apparent weight is 
measured to be 4.0 N. Determine the buoyant force and state 
whether or not the object floats.

10. A large ocean liner floating in the sea has a volume of  
375 000 m2 and displaces 50 000 m2 of sea water. Determine the 
density and mass of the ship. Explain why, despite being made 
of metal, the ship is able to float.

M06_PHYS_SB_ETHG9_0162_U06.indd   170 14/7/10   12:42:48 pm



171Grade 9

Contents
Section Learning competencies

7.1 Temperature and 
heat (page 172)

Explain the difference between heat and temperature.•	
Define the term thermal equilibrium.•	

7.2 Expansion of 
solids, liquids and 
gases 

 (page 179)

Describe the thermal expansion of solids and derive the expression •	
for the linear and surface expansion of solids.
Find the relationship between the coefficient of linear, area and •	
volume expansion and solve related problems.
Know applications of the thermal expansion of materials. •	
Distinguish between apparent and real expansion of a liquid and •	
solve problems involving the expansion of liquids using V = VoγΔT.
Explain the abnormal expansion of water.•	
Compare the expansion of gases with the expansion of solids and •	
liquids.

7.3 Quantity of heat, 
specific heat 
capacity and heat 
capacity

 (page 191)

Describe the factors that affect the amount of heat absorbed or •	
liberated by a body. 
Define the terms specific heat capacity and heat capacity and •	
calculate the amount of heat energy absorbed or liberated by a 
body using Q = mcΔT.
Calculate the heat capacity of a body.•	
Identify different units of heat energy.•	
Explain the significance of the high specific heat capacity of •	
water.
Use the relationship heat lost = heat gained to solve problems •	
involving heat exchange.
Describe the uses of a calorimeter.•	

7.4 Changes of state
 (page 199)

Define the terms latent heat, latent heat of fusion and latent heat •	
of vaporisation.
Solve problems involving change of state.•	

Temperature and heat Unit 7

On a hot day our ice cream melts more quickly, but why? On a cold 
day we may need a coat and if its gets very cold it might even snow. 
Our perception of temperature is all relative; what’s cold to us might 
be described very differently from a resident of northern Canada!

The concepts of heat and temperature are not just used in weather 
forecasting. The bread in an oven needs to be baked at just the 
right temperature, the wheels are fitted onto a train’s axle using 
low temperatures in a technique called shrink fitting, and air 
conditioning and central heating systems only function due to our 
understanding of heat and temperature.

This unit looks at the meaning of the terms heat and temperature, 
the effects of different temperatures and some applications that rely 
on these phenomena. 
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7.1 Temperature and heat

By the end of this section you should be able to:

Explain the difference between heat and temperature.•	

Define the term thermal equilibrium.•	

What is heat?
When we cook food, we might say we are heating it up. The 
temperature of the food increases. It seems like heat and temperature are 
the same thing, but they are not! 

We already know that matter is made up of moving particles 
(molecules, atoms and ions). In solids these particles are tightly 
bonded together and so they can only vibrate, whereas in fluids 
(liquids and gases) the particles can move around more freely. 

Heat is one form of energy; it is therefore measured in joules and 
is a scalar quantity. Heat is a flow of energy from hotter regions to 
colder ones.

Q = •	 ΣEk + ΣU

Q is the symbol used for heat energy. From Unit 4, Ek is kinetic 
energy and U is potential energy. Remember, Σ means sum of.

Imagine two beakers of boiling water. Beaker A contains 1 kg of 
boiling water and beaker B contains 0.5 kg of boiling water. They are 
both at the same temperature, 100 °C, but there are more particles 
in beaker A and so there is more energy contained within it than 
with beaker B.

When we heat up a substance, we are transferring energy to the 
substance. This means one of two things could happen.

The particles of the substance gain kinetic energy and so move •	
more rapidly.

and/or

The bonds between the particles in the substance are broken •	
and the potential energy of the particles increases. When this 
happens, the substance changes state.

What is temperature?
Temperature is a measure of ‘hotness’. The higher the temperature, 
the hotter the object. The complication is that ‘hotter’ may not mean 
more heat when comparing two objects.

The temperature of a substance is a measurement of the average 
kinetic energy of the particles within the substance. If the particles 
in a substance have a higher average kinetic energy then the object 
is at a higher temperature. That is to say if the particles are, on 
average, moving faster then the object is at a higher temperature. 
The water molecules in a glass of water at 50 °C are, on average, 
moving faster than those in a glass at 20 °C.

Figure 7.1 Two beakers of boiling 
water

Figure 7.2 A hot day. But what is 
the difference between heat and 
temperature?

1 kg

100°C

Beaker A

500 g

100°C

Beaker B

KEY WORDS
atoms the smallest parts of 
a chemical element that can 
take part in a reaction 
average kinetic energy the 
mean kinetic energy of all the 
particles in a substance 
ions an atom or group of 
atoms that has acquired an 
electrical charge by gaining or 
losing one or more electrons 
molecules the smallest unit 
of a substance, consisting of a 
group of atoms, which retains 
the chemical and physical 
properties of the substance
particles small units of 
matter such as atoms, ions 
and molecules 
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Figure 7.3 On average, the particles are moving faster if the object is 
at higher temperature.

10 kg of water at room temperature may contain more energy
than a tiny metal spark from a sparkler. However, the spark is
at higher temperature (maybe 500 °C compared with 25 °C).
Temperature is a measure of the average kinetic energy of the
particles; heat is the total thermal energy inside the substance (the
total kinetic and potential energies added together). On average, the
particles are moving faster in the spark; however, there are far more
particles in the water, all with a kinetic energy and potential energy.

It is important to notice we use the average kinetic energy. In any
substance some particles will be moving faster than others and so
these particles will have more kinetic energy than the others.

Figure 7.5 This graph shows how many particles have a given speed at 
three different temperatures.

Figure 7.4 The water may contain 
more heat energy even though it 
is at a lower temperature than the 
spark.

Think about this… 
As the temperature of a body 
indicates the average kinetic 
energy of the particles, it 
does not depend on the 
number of particles present. 

20 °C

50 °C

Water molecules

Water molecules

0 °C

1000 °C

2000 °C

Speed

N
um

be
r 
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If we look at Figure 7.5, we can see that at 0 °C, most particles 
have a relatively low speed and hence a relatively low kinetic 
energy – only a relatively small number of particles have a high 
speed and a high kinetic energy. As a substance is heated to a 
higher temperature, for example 1000 °C, the graph shows us that 
the average speed and consequently average kinetic energy of the 
particles is greater than at 0 °C.

Temperature scales
A range of temperature scales have been used in the past, though 
scientists now tend to deal with the Kelvin scale (K) or the Celsius 
scale (°C). The Fahrenheit scale (°F) is still used by the United States 
but is rarely used by the scientific community. 

To design a temperature scale two fixed reference points have to be 
used. The scale is then based on these points with a certain number 
of jumps in between them. 

For example, in the Celsius scale, the freezing point of water is given 
as 0 °C , with the second fixed point being the boiling point of water 
– the difference between the two fixed points is divided into 100 
equal divisions so the boiling point of water is 100 °C. 

Figure 7.6 The freezing point and boiling point of water were the two 
fixed points used on the Celsius scale.

The Kelvin scale uses absolute zero as one of its fixed points. This is 
the temperature at which a substance will have no thermal energy 
and it is not possible to get a lower temperature (0 K or –273.15 °C). 
The Kelvin scale has a units symbol of K; there is no degree symbol 
included.

The Kelvin and the Celsius scales are often used together as they 
have the same scale division. This means a change of 20 K is the 
same as a change of 20 °C. 

The Kelvin scale may seem unusual as it uses fixed points that we 
are not familiar with but, importantly, temperatures measured in 
the Kelvin scale are directly proportional to the average kinetic 
energy of the particles present. For example, the particles in a block 

DID yoU KNoW?
At room temperature all 
gases will have the same 
average kinetic energy. This 
means the lower mass gas 
particles are, on average, 
travelling faster. One of the 
reasons there is very little 
helium in the atmosphere 
is because they are so light 
a significant number of 
helium atoms are going fast 
enough to escape the Earth’s 
gravitational pull and float 
off into space. The heavier 
gases, like oxygen, nitrogen 
and carbon dioxide are on 
average moving slower and 
so don’t escape.

Figure 7.7 The Swedish 
astronomer Anders Celsius first 
proposed the Celsius scale in 
1742.

KEY WORDS
absolute zero the 
temperature at which a 
substance has no thermal 
energy
Celsius scale a temperature 
scale where the freezing point 
of water is fixed at 0 degrees 
and the boiling point at 100 
degrees C
Kelvin scale a temperature 
scale that uses absolute zero 
as one of its fixed points
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of iron have on average twice as much kinetic energy at 200 K than 
at 100 K.

The Fahrenheit scale uses one fixed point as the temperature of an 
ice, water and ammonium chloride mixture (0 °F) – the second 
fixed point is normal body temperature (98 °F).

The diagram in Figure 7.8 shows how these temperature scales 
compare. We will use the Celsius and Kelvin scale in our 
calculations.

Figure 7.8 Comparing different temperature scales

A bouncing ball
If a ball is bounced repeatedly, it gains heat energy and its 
temperature increases. The photographs in Figure 7.9 show thermal 
images of a ball before and after the ball is bounced. The higher 
temperatures are shown progressively in red, orange, and yellow; 
green and blue indicate lower temperatures 

Look at the temperature scales down the side of the photos – what 
temperature scale do you think is being used and where has the heat 
energy come from to increase the temperature of the ball?

Figure 7.9 Bouncing a ball will increase its temperature.

DID yoU KNoW?
The Celsius scale is 
named after the Swedish 
astronomer Anders Celsius. 
In 1742 he proposed the 
Celsius temperature scale, 
with one key difference. He 
set his lower fixed point 
(the freezing point of water) 
as 100 °C and the boiling 
point as 0 °C. This meant 
using his scale the number 
got smaller as the substance 
got hotter! The scale was 
reversed the year after he 
died. 

DID yoU KNoW?
The place that has the world’s 
highest average temperature 
is Dalol, Ethiopia, in the 
Danakil Depression. The 
average temperature is an 
almost unbelievable 35 °C, 
or 308 K.

Think about this… 
At absolute zero a substance 
will have zero internal energy. 
What does this tell you 
about the kinetic energies 
and potential energies of the 
particles? Do you think it will 
be possible to reach absolute 
zero?

Activity 7.1: Temperature 
scales
How would you convert a 
temperature recorded on 
the Celsius scale into a 
temperature on the Kelvin 
scale (K) and vice versa?

Temperature Scales

Boiling
Point of
Water

Highest
Temp.

ever recorded
in US

Freezing
Point of
Water

Moon at
its coldest

Absolute
Zero

Farenheit Celsius Kelvin

212°F 100°C 373.15 K

330 K

273.15 K
255 K

100 K

0 K

56.7°C134°F

32°F
0°F

-280°F

-460°F -273°C

-173°C

-18°C

0°C

Before bouncing After bouncing
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What happens when a substance absorbs heat
energy?

As a substance absorbs heat energy, the particles vibrate more (in 
a solid) or move faster (in a liquid or gas) as the heat energy is 
converted into the kinetic energy of the particles as the temperature 
rises. As the particles gain more energy, we can see that they move 
further apart from each other, which means the substance will 
expand (increase in size).

The diagram in Figure 7.10 shows how the particles in a solid move 
further apart as the solid is heated.

The expansion of substances on heating is called thermal 
expansion. This happens in solids, liquids and gases. We will deal 
with this in more detail in Section 7.3.

Thermal equilibrium
Heat energy flows from a hotter body to a colder body. Place 
your hand near an oven and you can feel the heat energy flowing 
into our hand. It feels hot! Place your hand inside a fridge and the 
heat energy flows from you into the fridge, it feels cold. An ice 
cube in boiling water will absorb heat energy from the hotter water, 
but the same ice cube in deep space will radiate heat energy to its 
surroundings. 

When there is a movement of heat energy from a hotter object to 
a colder object, we say that the two objects are in thermal contact. 
Objects in thermal contact do not have to be in physical contact 
but they could be touching each other. So, we would say that the ice 
cube and the boiling water are in thermal contact with each other. 

Imagine that we have two objects, A (at 90 °C) and B (at 50 °C). A 
and B are in thermal contact. There will be a net flow of heat energy 
will flow from A to B. 

As heat energy is lost from A, the particles in A will slow down. 
They have, on average, less kinetic energy and so the temperature of 
A will decrease. The opposite happens at B. As B gains heat energy, 
the particles in B move faster, their average kinetic energy will 
increase and so the temperature of B rises.

This process of heat loss from A and heat gain by B will go on until 
A and B both reach the same temperature. At this point, thermal 
equilibrium is reached (heat loss from A will equal heat gained by 
B so that there is no net movement of heat energy between the two 
bodies).

If two bodies are in thermal equilibrium, they will also be at •	
the same temperature.

The details of how two bodies in thermal contact obtain thermal 
equilibrium are governed by the first and second laws of 
thermodynamics.

Figure 7.10 As the particles 
vibrate more they spread out and 
so the substance expands.

Figure 7.11 A and B are in 
thermal contact. A is hotter than 
B; it has a higher temperature.

Think about this… 
The concept of thermal 
equilibrium allows us to 
measure temperature. 
Imagine our object B 
is a thermometer; what 
temperature will the 
thermometer read when it 
is at thermal equilibrium 
with object A? Will this 
temperature be exactly 
the same as the original 
temperature of A?

heat

HEAT
ENERGY

A B
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First law of thermodynamics
The first law of thermodynamics has more than one form but all are 
really different ways of saying the same thing. It is essentially the law 
of conservation of energy; that is, that energy cannot be created or 
destroyed but can be transformed into other forms. 

Imagine a gas that has a certain internal energy (the sum of the gas 
particles’ kinetic and potential energy). The increase in internal 
energy of the gas, ∆U, will be equal to the heat energy it has 
gained, ∆Q, plus any work done on the gas, ∆W (for example if it is 
compressed).

∆U = ∆Q•	  + ∆W
∆U = •	 change in internal energy in J
∆Q = •	 heat energy added to system in J
∆W= •	 work done on system in J

Notice in this case ∆U is the internal energy of the gas. Even though 
it is the sum of the kinetic and potential energies of the particles in 
the gas it is essentially a potential (stored) energy in the gas, hence the 
symbol U. All these terms are energies and so measured in joules.

We can see from the equation that if no work is done (∆W = 0), the 
heat energy we add to the object will equal the increase in internal 
energy. This means the temperature of the object will rise. In other 
words, energy has not been created or destroyed, just transformed 
into other forms. 

We can also increase the internal energy by doing work on the 
substance. Imagine the gas inside a pump. If we rapidly compress 
the pump with our thumb over the end we are doing work on the 
gas inside it. In this case the work goes into increasing the internal 
energy of the gas. The gas gets hotter.

The equation may be used to calculate the change in internal energy, if 
there is work being done and there is a flow of heat into a substance. 

For example, consider a gas that is being heated and compressed. 
There is a heat flow into the gas of 500 J and 200 J of work is done on 
the gas by compressing it. The change in internal energy is:
∆U = ∆Q + ∆W   State principle or equation to be used (First law of 

thermodynamics)
∆U = 500 J + 200 J   Substitute in known values and complete calculation
∆U = 700 J  Clearly state the answer with unit

However, what if the object is hotter than its surroundings? Imagine 
a cup of tea. If you stir it really fast you might do 20 J of work on the 
tea. At the same time there has been a flow of heat from the tea to the 
surroundings of 100 J. What is the change in internal energy?
∆U = ∆Q + ∆W   State principle or equation to be used (First law of 

thermodynamics)
∆U = –100 J + 20 J   Substitute in known values and complete calculation
∆U = –80 J  Clearly state the answer with unit

Figure 7.12 Heating or doing 
work on a gas increases its 
internal energy and so its 
temperature.

KEY WORDS
expand to increase in size
thermal contact when there 
is a movement of heat energy 
between a hotter and a colder 
object
thermal expansion the 
increase in size of a substance 
as a result of heating
thermal equilibrium 
situation where there is no 
net movement of heat energy 
between bodies

DID yoU KNoW?
There is also a zeroth 
law of thermodynamics, 
which states that if object 
A and B are individually in 
thermal equilibrium with 
another object C, objects A 
and B are also in thermal 
equilibrium with each other. 
This law has important 
implications – it means that 
if C is our thermometer, 
it will indicate the same 
temperature for both 
objects A and B.
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In this case the tea has lost 100 J to the surrounds so ∆Q = –100 
J. The overall change in internal energy is –80 J, so the tea’s 
temperature will fall. Theoretically it is possible to stir it fast enough 
to keep the tea at the same temperature. In which case ∆U = 0 J and 
so ∆Q = –∆W, but you would have to stir it very fast!

Second law of thermodynamics
The second law of thermodynamics concerns the direction of heat 
flow between two bodies. Usually, as we have seen when we looked 
at thermal equilibrium, heat energy flows spontaneously from hotter 
objects to colder objects. The second law of thermodynamics might 
be expressed as:

Heat generally cannot flow spontaneously from a material at •	
lower temperature to a material at higher temperature.

Heat energy will not flow from a colder object to a hotter one 
spontaneously unless work is done. Energy must be used to reverse 
the usual flow of heat energy. This principle is used in refrigerators, 
freezers and air conditioning units. The contents of a fridge are 
cooled by a liquid evaporating, but work has to be put in so as to 
condense the gas for further use.

In this section you have learnt that:

In this section you have learnt that:

Heat is energy transferred from hotter regions to cooler •	
ones.

The temperature of a substance is an indication of the •	
average kinetic energy of the particles and the Celsius and 
Kelvin scales are both temperature scales.

on heating, the particles of a substance move faster and •	
move further apart so that a substance expands on heating.

The first law of thermodynamics states that during heat •	
transfer processes, energy cannot be created or destroyed.

The second law of thermodynamics states that heat energy •	
will flow from hot objects to colder objects and that if work 
is put in, heat energy can be removed from a cold object.

When bodies are in thermal contact, heat energy flows from •	
hot objects to cold objects until thermal equilibrium is 
reached and the bodies are at the same temperature.

Summary

Review questions
1. What will be the key difference in the energy of the particles in 

iron at 250 K and 500 K?

2. Explain why a solid expands on heating.

Figure 7.13 Doing work on a cup 
of tea as heat flows from the cup 
to the surroundings.

Figure 7.14 There is a net energy 
flow from hotter to colder objects.

Figure 7.15 Energy will flow from 
colder to hotter objects if work is 
done on the system.

Figure 7.16 In a fridge heat 
flows from inside the fridge to its 
surroundings even though it is at 
a lower temperature.

HEAT
ENERGY

A B

COLD HOT

HEAT
ENERGY

WORK
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3. Describe what happens, in terms of the movement of heat 
energy, when a hot object is in thermal contact with a cold 
object. Explain how this process could be reversed.

4. Convert the following temperatures to the Kelvin scale:

a)  –273.15 °C

b)  0.0 °C

c)  1000 °C.

7.2 Expansion of solids, liquids and gases

By the end of this section you should be able to:

Describe the thermal expansion of solids.•	

Derive the expression for the linear and surface expansion •	
of solids.

Find the relationship between the coefficient of linear, area •	
and volume expansion and solve related problems.

Know applications of the thermal expansion of materials.•	

Distinguish between apparent and real expansion of a •	
liquid.

Solve problems involving the expansion of liquids using •	 V = 
VoγΔT.

Explain the abnormal expansion of water.•	

Compare the expansion of gases with the expansion of •	
solids and liquids.

The expansion of solids
We have already seen that when a solid is heated, its particles 
move further apart and hence the solid expands (increases in 
size). The ball and ring experiment shown in Figure 7.17 is a good 
demonstration of the expansion of a solid.
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Figure 7.17 The hoop and ball experiment.

The cold metal ball easily passes through the ring. After heating, the 
metal ball expands and it is no longer able to pass through the ring. 

How much a solid expands on heating will depends on the 
substance and how much its temperature increases.

Figure 7.18 When Concorde flew 
at over twice the speed of sound, 
it got so hot that it increased its 
61.6 m length by about 30 cm.

KEY WORDS
substance material or matter
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Linear expansion of solids
When a metal rod is heated it expands and increases in length. This 
expansion is referred to as linear expansion. The diagram in Figure 
7.19 shows a metal rod, of length lc (measured in metres), before 
and after heating.

The rod’s temperature has increased by ∆T. It increases in length 
on heating; the increase in length, ∆l, is the difference between the 
length before heating, lc, and the length after heating, lh. This could 
be written as:

∆l = l•	
h – lc

So, for an increase in temperature of ∆T, the fractional increase 
in length = ∆l/lc. If a 50 cm rod expanded by 2 cm the fractional 
expansion would be:

fractional increase = •	 ∆l/lc

fractional increase = 2/50•	

fractional increase = 1/25 or 0.04•	

The fractional increase in length per unit of temperature (°C or K) 
increase is given the symbol α. It is found by dividing the fractional 
increase by the increase in temperature, ∆T. 

α•	  = ∆l /lc /∆T

Which is the same as:

α•	  = ∆l/lc ∆T 

α is also known as the coefficient of linear expansion for the solid. 
It represents the increase in the length of a 1 m rod of a given 
substance when its temperature increases by 1 K. It is measured in 
/K or K–1.

So, the increase in length of a heated rod, ∆l, can be found by 
rearranging the above equation.

∆l = •	 α lc ∆T 

The values for the linear expansion coefficient of some solids are 
shown in Table 7.1.

Table 7.1 The linear expansion coefficients of some solids

Substance Linear expansion coefficient (×10–5 K–1)

aluminium 2.3

copper 1.7

brass 1.9

iron 1.1

concrete 1.2

This means that a 1 m iron rod will expand by 1.1 × 10–5 m for every 
1 K rise in temperature. With these values, we can now calculate the 
increase in length of a material.

Figure 7.19 Linear expansion of a 
narrow metal rod.

before heating

after heating

lc

lc

lh

Δl

KEY WORDS
coefficient of linear 
expansion the increase 
in length of a 1 m rod of 
given substance when its 
temperature increases by 1 K
linear expansion the increase 
in length of a substance due 
to heating
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Calculate the increase in length of a 50 cm brass rod that is 
heated from 25 °C to 70 °C.

∆l = α lc ∆T  Express Δl in terms of known factors

In this case lc = 0.50 m and ∆T = 70 °C – 25 °C = 45 °C 

∆l = 1.9 × 10–5 K–1 × 0.50 m × 45 °C Substitute in known values  
 and complete calculation

∆l = 4.3 × 10–4 m Clearly state the answer with unit

Calculate the length of an iron rail at 400 °C, when it is 
exactly 100 m long at 200 °C.

∆l = α lc ∆T Express Δl in terms of known factors

In this case lc = 100 m and ∆T = 400 °C – 200 °C = 200 °C 

•	 ∆l = 1.1 × 10–5 K–1 × 100 m × 200 °C Substitute in known 
values and complete calculation

• ∆l = 0.22 m  Clearly state the answer with unit

Therefore, length of rail at 400 °C = 100 m + 0.22 m = 100.22 m  
Ensure new length is calculated not just left as Δl

Worked example

Surface (area) expansion of solids
In the examples we have looked at in linear expansion, the sample 
has been long in comparison to its height and width, so that the 
only significant expansion is in length. In practice, many objects 
are not long and thin and we need to develop a strategy to deal 
with these objects. We will start by looking at the expansion, in two 
dimensions, of a metal plate.

Figure 7.21 Two-dimensional expansion of an object

As the plate is heated to cause an increase in temperature, ∆T, it 
expands in width and height such that the surface area when heated, 
Ah, is larger than the original surface area, Ac. So:

∆A = A•	
h – Ac

Activity 7.2: Expansion 
calculations
Calculate the increase in 
length of a 27 cm brass rod 
that is heated from 10 °C 
to 100 °C. αbrass = 1.9 × 10–5 
K–1.

Calculate the length of a 
concrete section of a bridge 
at 45.00 °C, when it is 
25.000 m long at 18.00 °C. 
αconcrete = 2.2 × 10–5 K–1.

Think about this… 
Why do you think that it is 
safe to build a bridge made 
out of concrete reinforced 
with iron?

Figure 7.20 It is very important 
to consider the surrounding 
temperature and temperature 
variations when laying train 
tracks.

before heating
surface area = Ac

after heating
surface area = Ah

M07_PHYS_SB_ETHG9_0162_U07.indd   181 12/7/10   1:19:10 pm



182

UNIT 7: Temperature and heat

Grade 9

The fractional increase in surface area, β, per unit rise in 
temperature (°C or K) is given by:

β•	  = ∆A / Ac ∆T 

∆A = •	 β Ac∆T 

What is the relationship between α and β for a
given substance?

We will start by recalling what β, the surface expansion coefficient, 
means and rewriting the expression:

β•	  = ∆A / Ac ∆T 

β•	  = Ah – Ac / Ac ∆T 

Therefore:

β •	 Ac ∆T = Ah – Ac 

Making Ah the subject of the equation:

A•	
h = βAc∆T + Ac 

which, after simplifying, gives:

A•	
h = Ac (1 + β∆T) – this expression will be of use later.

We will now write another expression for Ah, in terms of α, the 
linear expansion coefficient. If a square body of length lc is heated 
such that its temperature increases by ∆T, each side increases in 
length, ∆l, by αlc∆T (see the section on linear expansion). 

Consequently, the surface area of the heated body, is give by Ah = lh
2.

lh, the length of each side of the heated body is related to lc:

l•	
h = lc + αlc∆T

Consequently, 

A•	
h = lh

2 = (lc + αlc∆T)2 = lc
2(1 + α∆T)2 = lc

2(1 + 2α∆T + α2∆T2)

A•	
h = lc

2(1 + 2α∆T + α2∆T2)

We can further simplify this last form of the expression:

l•	
c
2 = Ac

A•	
h = Ac(1 + 2α∆T + α2∆T2)

As α is a very small number, α2∆T2 will be very small compared 
to 2α∆T and so we will make an approximation and not include 
this small term in the final expression. In other words, α2∆T2 is 
approximately zero, so:

A•	
h = Ac(1 + 2α∆T)

We can now compare this expression with the one we obtained 
earlier in terms of β:

A•	
h = Ac (1 + β∆T) 

Now we can see that β∆T = 2α∆T and therefore β = 2α.

Activity 7.3: Surface area 
expansion
Calculate the increase in 
surface area of an iron drain 
cover with a surface area of 
0.75 m2 at 20 °C, when it is 
heated to a temperature of 
53 °C.

βiron = 2.2 × 10–5 K–1

Figure 7.22 Relating linear 
expansion to surface expansion 

lh = lc + α lcΔT

lh = lc + α lcΔT

surface area = Ac =  lc2 

lc lc

lclc

before heating
surface area = Ah =  lh2 

after heating

α lcΔT

α lcΔT

lh = lc + α lcΔT

lh = lc + α lcΔT

surface area = Ac =  lc2 

lc lc

lclc

before heating
surface area = Ah =  lh2 

after heating

α lcΔT

α lcΔT
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Remember, that this is an approximation but a very good one. We 
do not find tables of β values for substances as they are obtained 
from α values using β = 2α.

Volume expansion of solids
We now need to consider the expansion of a solid in three 
dimensions, where the length, breadth and height of the substance 
all increase on heating.

As the block is heated to cause an increase in temperature, ∆T, it 
expands in width, height and breadth such that the volume when 
heated, Vh, is larger than the original volume, Vc. 

So:

∆V = V•	
h – Vc

The fractional increase in volume, γ, per unit rise temperature (°C 
or K) is given by:

γ•	  = ∆V / Vc∆T 

∆V = •	 γVc∆T 

What is the relationship between α and γ for a given substance?

We will start by recalling what γ, the volume expansion coefficient, 
means and rewriting the expression:

γ•	  = ∆V / Vc ∆T   

Therefore:

γ•	  = Vh – Vc / Vc ∆T 

Making Vh the subject of the equation:

V•	
h = γVc∆T + Vc 

which, after simplifying, gives:

V•	
h = Vc (1 + γ∆T) – this expression will be of use later.

We will now write another expression for Vh, in terms of α, the 
linear expansion coefficient. If a cube, of length lc, is heated such 
that its temperature increases by ∆T, each side increases in length, 
∆l, by αlc∆T (see the section on linear expansion). 

Figure 7.23 Three-dimensional 
expansion of an object

Activity 7.4: Volume 
expansion
Calculate the increase in 
the volume of an aluminium 
block with a volume of 
0.008 m3 at 25.00 °C, when 
it is heated to a temperature 
of 90 .00 °C. γaluminium = 6.9 × 
10–5 K–1.

before heating
volume = Vc

after heating
volume = Vh

before heating
volume = Vc

after heating
volume = Vh

lh = lc + α lcΔT

lh = lc + α lcΔT

l h
 =

 l c
 +

 α
 l c
Δ

T

volume = Vh =  lh3 = (lc + α lcΔT)3volume = Vh =  lh3 

lc

lc

lc

lc

lc

lc
α lcΔT

α lcΔT

α lcΔT

after heatingbefore heating

Figure 7.24 Relating linear expansion 
to volume expansion
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Consequently, the volume of the heated body, is give by Vh = lh
3

lh, the length of each side of the heated body is related to lc:

l•	
h = lc + αlc∆T

Consequently, 

V•	
h = lh

3 = (lc + αlc∆T)3 = lc
3(1 + α∆T)3 = lc

3(1 + 3α∆T + 3α2∆T2 + 
α3∆T3)

V•	
h = lc

3(1 + 3α∆T + 3α2∆T2 + α3∆T3)

We can further simplify this last form of the expression:

l•	
c
3 = Vc

V•	
h = Vc(1 + 3α∆T + 3α2∆T2 + α3∆T3)

As α is a very small number, α2∆T2 and α3∆T3 will be very small 
compared to 3α∆T, and so we will make an approximation and not 
include these small terms in the final expression. In other words, 
α2∆T2 and α3∆T3 are approximately zero, so:

V•	
h = Vc(1 + 3α∆T)

We can now compare this expression with the one we obtained 
earlier in terms of γ:

V•	
h = Vc (1 + γ∆T) 

Now we can see that γ∆T = 3α∆T and therefore γ = 3α.

Remember, that this is also approximation. Once again we do not 
find tables of γ values for substances as they are obtained from α 
values using γ = 3α.

1D, 2D and 3D expansion summary

Figure 7.25 1D, 2D and 3D expansion summary in terms of α

It often helps to consider α as one-dimensional (1D), β as 2D (so 
2α) and γ as 3D (so 3α).

lc

Linear expansion Area expansion Volume expansion

lc
= αΔTΔl

Ac
= 2αΔT

ΔA

Vc
= 3αΔT

ΔV
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Problems and applications of thermal expansion
Th e thermal expansion of objects can be a problem. Engineers have 
to allow for the expansion of concrete and iron on a hot day when 
building a bridge by constructing an expansion gap to allow for the 
expanding materials. Railway tracks also have expansion gaps and 
sections of pipelines in hot countries are linked by fl exible pipe, 
which can accommodate the expanding pipe.

An open expansion 
joint on a bridge

Railway line

Figure 7.26 Engineers must consider thermal expansion in a range of 
contexts.

We can also take advantage of the expansion of materials and put 
them to good eff ect. In hot riveting, a hot steel rivet is used to join 
two metal sheets. Whilst still hot, the rivet is hammered to give 
a tight joint. As the rivet cools it contracts and makes the joint 
between the two metal sheets even tighter.

Figure 7.27 Hot riveting uses the contraction of metals to make 
tighter connections.

The bimetallic strip
A bimetallic strip is made out of two metals, for example iron and 
brass bonded together. Th e coeffi  cient of linear expansion (α) of 
iron (1.1 × 10–5 K–1) is less than that of brass (1.9 × 10–5 K–1). When 
the strip is heated, the brass expands more than the iron and the 
strip bends.

Think about this… 
How could you tell that the 
photo of the expansion joint 
on a bridge was taken on a 
cold day?

Figure 7.28 Th e Eiff el Tower in 
Paris and the Sydney Harbour 
Bridge were constructed using hot 
riveting.

hot rivet - expanded

metal sheets

cold rivet - contracted

KEY WORDS
bimetallic strip a strip 
made of two different metals 
bonded together along their 
length
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The bimetallic strip is used in a thermostat. This is a switch for an 
electric circuit that turns on and off according to the temperature.

Figure 7.30 A bimetallic strip used as part of a thermostat

When the temperature rises, the brass section of strip expands faster 
than the iron and the strip bends so as to break the contact. As the 
temperature drops, the strip contracts, the contacts close and the 
circuit is restored. We can use this arrangement to switch on and off 
heating circuits in buildings and cookers, for example – when the 
desired temperature is reached, heating stops and it will not start 
again until the temperature has dropped.

Liquid in glass thermometers
Mercury in glass and alcohol in glass thermometers use the 
expansion of a liquid up a narrow glass tube. The higher the 
temperature, the more the mercury or alcohol expands and the 
further the liquids move up the capillary tube. As we have already 
seen, the Celsius scale uses two fixed points. We can calibrate a 
thermometer for the Celsius scale using the following method.

a) Place the bulb of an ungraduated thermometer in crushed ice – 
mark the level of the liquid (alcohol or mercury) when it stops 
moving. This is the first fixed point.

b) Place the bulb of the ungraduated thermometer in steam from 
boiling water. Mark the level of the liquid (alcohol or mercury) 
when it stops moving. This is the second fixed point.

c) Divide the distance between the two fixed points into 100 equal 
divisions – the first fixed point is at 0 °C and the second 100 °C.
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Figure 7.31 Calibrating a thermometer
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Figure 7.29 The bimetallic strip

DID yoU KNoW?
The word thermometer 
comes from the Greek 
“thermo”, which means 
warm, and “meter”, to 
measure.

brass

Invar

contacts

contacts move apart
when bar is too hot

KEY WORDS
real expansion the actual 
increase in size of a substance 
apparent expansion the 
observed increase in size of 
a substance, which may be 
affected by the expansion of 
its container 
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Expansion of liquids
Liquids require a container and consequently it only really makes 
sense to discuss the volume expansion of a liquid. Liquids will tend 
to expand more than solids for a given increase in temperature but 
volume expansion coefficients can also apply to liquids.

∆V•	  = γVc∆T 

∆V = change in volume.

∆T = change in temperature.

Vc = starting volume.

γ = volume expansion coefficient. 

The expansion of liquids is made more complex, however, by the 
need for a container. On warming, the container itself will also 
expand. If you ask most people to predict what they will see when  
the apparatus below is heated, they will suggest that the water level 
will rise up the narrow glass tube as it expands.

The water level will indeed rise up the glass tube, but not before it 
first drops slightly! As the flask is heated, the glass it is made from 
expands and so the water level drops until the water itself warms 
up and expands. The expansion of a vessel holding a liquid means 
the actual or real expansion of the liquid is not actually observed. 
Instead, only an apparent expansion of the liquid is observed. 
Consequently, the extent to which we see the liquid expand (the 
apparent expansion) is less than its actual expansion (real expansion). 
It is possible to allow for the expansion of the vessel in calculations:

γ•	
real = γapparent + γvessel 

so:
γ•	

apparent = γreal – γvessel 

We will use this relationship to calculate the real and apparent 
expansion of 1000 cm3 of water when it is warmed from 20 °C to  
80 °C.

γglass = 9.90 × 10–6 K–1 .γwater = 2.07 × 10–4 K–1. ∆T = 80 °C – 20 °C = 60 °C. 

real expansion•	  = ∆Vreal 

∆Vreal = γrealVc∆T State relationship to be used

∆Vreal = 2.07 × 10–4 × 0.001 m3 × 60 °C   Substitute in known values and 
complete calculation

∆Vreal = 1.24 × 10–5 m3  Clearly state the answer with unit

apparent expansion•	  = ∆Vapparent

γapparent = γreal – γvessel  State relationship to be used

γapparent = 2.07 × 10–4
 K

–1 – 9.90 × 10–6 K–1 = 1.97 × 10–4 K–1 Substitute   
            in known values and complete calculation

So:

∆Vapparent = γapparentVc∆T  State relationship to be used

Figure 7.32 A thermometer is 
a simple yet very useful piece of 
equipment.

Activity 7.5: Expansion 
of a liquid
Calculate the increase in 
the volume of 0.0025 m3 of 
mercury at 5.00 °C, when it 
is heated to a temperature 
of 55 .00 °C. γmercury = 1.8 × 
10–4 K–1.

Figure 7.33 What will happen to 
the liquid if this object is heated?

narrow glass tube

water
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∆Vapparent = 1.97 × 10–4 K–1 × 0.001 m3 × 60 °C  Substitute in known   
values and complete calculation

∆Vapparent = 1.18 × 10–5 m3  Clearly state the answer with unit

This calculation demonstrates that the real expansion of a liquid is 
greater than the apparent expansion.

Expansion of solids, liquids and gases
For a given change in temperature, ∆T, liquids will tend to expand 
significantly more than solids. This difference is clear when we 
compare values of coefficients of volume expansion for solids and 
liquids. We can see that γliquid > γsolid.

Table 7.2 Volume expansion coefficient of solids and liquids

Substance 
(solid)

Volume 
expansion 
coefficient (γ) 
(×10–5 K–1)

Substance 
(liquid)

Volume expansion 
coefficient (γ) 
(×10–5 K–1)

aluminium 6.9 petrol 95.0

copper 5.1 ethanol 75.0

brass 5.7 water 21.0

iron 3.3 mercury 18.0

You will notice that there are no volume expansion coefficients for 
gases. This is because the volume of a gas is dictated by a number 
of factors. The temperature is certainly one of these, but we also 
have to consider the pressure and the amount (number of moles) 
of gas present. The relationship between the volume of a gas and its 
temperature can be shown using the ideal gas equation:

pV = nRT•	

p = pressure of gas in Pa
V = volume of gas in m3

n = number of moles of gas in mol
R = universal gas constant (8.314 J/K/mol)
T = absolute temperature in K

You will notice that there is no constant in the equation relating 
to the nature of the gas. The equation applies to all “ideal gases” 
and is a good approximation for most gases. If the pressure and 
the amount of gas are constant, we notice that the volume is 
proportional to the absolute temperature:

V •	 ∝ T 

So, if the absolute temperature of a given quantity of gas is doubled 
at constant pressure, the volume doubles!

Gases will consequently tend to expand more for a given 
temperature rise than liquids, which in turn expand more than 
solids.
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The unusual behaviour of water
In most cases when a liquid is frozen, the solid formed will have a 
lower volume than the initial liquid. We can explain this in terms of 
kinetic theory. 

In a solid, the particles are closer together than they are in a liquid. 
Hence, for a given mass of substance, the solid usually has a lower 
volume and a higher density than its liquid state. Water though 
is an exception. The graph in Figure 7.34 shows that water has a 
maximum density at just under 4 °C.

Let’s look at this graph in a little more detail. As the water cools 
below 10 °C, the water behaves as expected at first. It increases in 
density as its particles lose energy and move closer together. Then, 
at just below 4 °C, the density starts to decrease. A drop in density 
can only mean that the water molecules are further apart in water at 
2 °C than they are at 8 °C. Why is this?

To understand this unusual observation, we need to know more 
about the forces acting between water molecules. Water has the 
chemical formula H2O; it is composed of two hydrogen atoms and 
one oxygen atom. Liquid water has a very high boiling point for 
its molecular size because strong intermolecular forces (hydrogen 
bonds) form between the oxygen atom in one molecule and a 
hydrogen atom in another. To boil water, these strong hydrogen 
bonds have to be broken.

Normally in liquid water, each water molecule forms one hydrogen 
bond to another water molecule. As the temperature of water drops 
towards 4 °C though, the molecules are closer together and each 
molecule begins to form a second hydrogen bond with another 
water molecule. In order for this second hydrogen bond to form, 
the molecules now need to be in very exact relative positions and 
the molecules end up moving further apart to allow this second 
bond to form. This gives water below 4 °C and ice a more open 
molecular structure than warmer water.

Figure 7.34 How the density of 
water changes with temperature.

Figure 7.35 A hydrogen bond 
between water molecules
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Figure 7.36 The molecules are 
further apart in frozen water 
than in water at 4 °C.
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So, with a more open structure, ice and cold water below 4 °C have a 
lower density and a higher volume than warmer water. This explains 
why ice will float on water. The expansion of water on freezing can 
cause other problems though. When it gets cold, water in pipes can 
freeze, expand and then break the pipe!

In this section you have learnt that:

In this section you have learnt that:

The thermal expansion of solids can be explained in terms •	
of the increasing distance between particles that occurs on 
warming.

The expression for the linear expansion of solids is •	 ∆l = 
αlc∆T – we can use this to find by how much the length of a 
sample expands.

The expression for the surface area expansion of solids is •	 ∆A 
= βAc∆T – we can use this to find by how much the surface 
area of a sample expands. 

The expression for the volume expansion of solids is •	 ∆V = 
γVc∆T – we can use this to find by how much the volume of a 
sample expands. 

The relationship between the coefficient of linear (•	 α), area 
(β) and volume (γ) expansion is as follows: β = 2α, γ = 3α.

The applications of thermal expansion include the bimetallic •	
strip in thermostats, hot riveting and thermometers. 

The real expansion of a liquid is less than the apparent •	
expansion as the vessel holding the liquid also expands.

The abnormal expansion of water can be explained in terms •	
of its more open molecular structure below 4 °C.

Gases expand more than both solids and liquids for a given •	
rise in temperature.

Summary

Review questions
1.  Explain why solids expand on heating.

2.  Calculate the increase in length of a 2 m brass rod that is heated 
from 0 °C to 150 °C. αbrass = 1.9 × 10–5 K–1.

3.  Calculate the surface area of an iron drain cover with a surface 
area of 0.67 m2 at 10 °C, when it is heated to a temperature of 
105 °C. βiron = 2.2 × 10–5 K–1.

4.  Show that, for a given material, the surface expansion coefficient 
(β) is about twice the linear expansion coefficient (α).

5.  Calculate the increase in the volume of a 0.1 m3 sample of water 
at 10.00 °C, when it is heated to a temperature of 80.00 °C. γwater 
= 2.1 × 10–4 K–1.
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6.  Explain what is meant by the apparent thermal expansion 
of a liquid and compare its magnitude with the real thermal 
expansion of the same liquid under the same conditions.

7.  Explain why water expands on freezing.

7.3 Quantity of heat, specific heat capacity and
 heat capacity

By the end of this section you should be able to:

Identify different units of heat energy.•	

Define the terms specific heat capacity and heat capacity.•	

Describe the factors that affect the amount of heat •	
absorbed or liberated by a body. 

Calculate the amount of heat energy absorbed or liberated •	
by a body using Q = mc∆T.

Calculate the heat capacity of a body.•	

Describe the uses of a calorimeter.•	

Explain the significance of the high specific heat capacity •	
of water.

Use the relationship heat lost = heat gained to solve •	
problems involving heat exchange.

What are the units of energy?
As discussed in Unit 4, the scientific unit of energy is the joule (J). 
You may see another unit of energy called the calorie (cal). 

One calorie is the quantity of heat energy required to increase the 
temperature of 1 g of water by 1 °C. The amount of energy in joules 
required to increase the temperature of 1 g of water by 1 °C is 4.18 J 
and so:

1 cal = 4.2 J•	

The calorie is less frequently used now but you will see later that its 
definition is connected to the work we do later in this section.

What is meant by the term specific heat capacity?
If we were heating a substance to raise its temperature, the amount 
of heat energy required would depend on three things:

1. The substance being heated. A given mass of aluminium will 
require more energy to raise its temperature by 1 K than the 
same mass of wood.

2.  The mass of the substance. The greater the mass of the substance, 
the more heat energy will be required to raise its temperature.

DID yoU KNoW?
The British Thermal 
Unit is still used in some 
applications today. It is the 
quantity of energy needed 
to raise the temperature of 1 
lb of water by 1 °F, which is 
about 1060 J.
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3. The temperature rise required. For a given mass of a 
particular substance, a large temperature increase will 
require a larger amount of heat energy than a small 
increase in temperature.

Each substance has a specific heat capacity (c), which is 
defined as:

The heat energy required to raise the temperature of •	
1 kg of a given substance by 1 K.

The units of specific heat capacity are J/kg K and Table 
7.3 shows the specific heat capacities of some materials. 
We can see that metals tend to have lower specific heat 
capacities than non-metals and that water has a notably 
high value.

Table 7.3 Some different specific heat capacities

Substance Specific heat capacity (J/kg K)

iron 470

copper 420

brass 380

aluminium 910

water 4200

rubber 1700

glass 670

From the definition of specific heat capacity, the quantity 
heat energy required (Q) to increase the temperature of a 
substance is found using the equation below:

c = Q •	 / m∆T

This is usually written as:

Q = mc∆T•	

m = mass of substance (kg)

c = specific capacity of substance (J/kg K)

∆T = change in temperature (K). Remember, a change 
in temperature of 1 °C is the same as a change in 
temperature of 1 K. So, in this case °C or K may be used.

Activity 7.6: Specific heat calculations
Calculate the specific heat capacity of a 2.0 kg 
block of a solid that requires 63 700 J to raise its 
temperature by 35 K.

A solid has a specific heat capacity of 800 J/kg K. 
How much heat energy would be released a 250 g 
sample of this solid if its temperature falls from 
310 K to 260 K?

Calculate the quantity of heat energy 
lost from a 580 g sample of water 
if it cools from 333 K to 278 K. The 
specific heat capacity of water is 
4200 J/kg K.

Q = mc∆T  State principle or equation 
to be used (from definition of specific 
heat capacity)

In this case, m = 0.58 kg, c = 4200 J/
kg K, ∆T = (333 K – 278 K) = 55 K

Q = 0.58 kg × 4200 J/kg K × 55 K   
Substitute in known values and 
complete calculation

Q = 13 398 J = 134 kJ   Clearly state 
the answer with unit

So, as the 580 g sample of water 
cools from 333 K to 290 K, it would 
lose 134 kJ of heat energy to its 
surroundings.

Worked example

Calculate the quantity of heat energy 
required to heat a 1.00 kg block 
of iron from 290 K to 320 K. The 
specific heat capacity of iron is 470 
J/kg K.

Q = mc∆T  State principle or equation 
to be used (from definition of specific 
heat capacity)

In this case, m = 1.00 kg, c = 470 J/
kg K, ΔT = (320 K – 290 K) = 30 K

Q = 1.00 kg × 470 J/kg K × 30 K   
Substitute in known values and 
complete calculation

Q = 14 100 J = 14.1 kJ  Clearly state 
the answer with unit

So, 14.1 kJ of heat energy would be 
required to increase the temperature 
of a 1.00 kg iron block by 30 K. 
Equally, if the 1.00 kg iron block 
cooled by 30 K, the iron block would 
have to lose 14.1 kJ of heat energy 
to the surroundings.

Worked example
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How can we find the specific heat capacity of a
substance?

There are several methods we can use to determine the specific heat 
capacity of a substance, but remember that to calculate this value we 
will always need to know the mass of the substance, the amount of 
heat energy supplied to it as well as its starting temperature and 
final temperature. All of these slightly different approaches involve 
heat exchange. The heat from a hot body is used to warm a colder 
body. In approaching these heat exchange calculations we use the 
principle that the heat energy lost from the hot body will equal the 
heat gained by the cold body.

Heat energy lost by hotter body = heat energy gained by colder •	
body

Sometimes, we try to prevent heat loss to the surroundings using 
insulation. The experimental approach of measuring heat capacities 
and the heat changes during chemical and physical processes is 
called calorimetry.

Electrical heating
This method can be used to find the specific heat capacity of a solid 
or a liquid. The diagram in Figure 7.37 shows the apparatus used to 
find the specific heat capacity of a solid. In this case, the hot body 
losing the heat energy is the electrical heater.

If we know the power rating of the heater and we know how long 
the heater is switched on for we can determine the quantity of heat 
energy supplied to the block. For example, a 100 W electrical heater 
supplies 100 J of heat energy every second.

We will use the following experimental data to calculate the specific 
heat capacity of aluminium using this apparatus.

A 100 W electrical heater, running for 5 minutes, warmed a 0.50 kg 
block. The start temperature of the aluminium block was 20 °C and 
its final temperature was 85 °C. 

Energy supplied = power × time   State principle or equation to be used 
(from the definition of power)

E = P × t  Express in the standard symbols

E = 100 W × (5 minutes × 60) = 100 W × 300 s  Substitute in known   
 values and complete calculation

DID yoU KNoW?
Even on his honeymoon in 
the Swiss Alps, James Joule 
did not stop work. He tried 
to show that when water 
falls through 778 feet, its 
temperature rises by 1 °F but 
all the spray got in the way!

A 300 g block of brass at 
298 K is supplied with 
1026 J of energy from an 
electrical heater. Calculate 
the final temperature of 
the brass block after this 
heating, assuming that there 
has been no heat loss. The 
specific heat capacity of 
brass = 380 J/kg K.

Q = mc∆T  State principle or 
equation to be used (from 
definition of specific heat 
capacity)

∆T = Q / mc  Rearrange 
equation to make ΔT the 
subject

In this case, m = 0.30 kg,  
c = 380 J/kg K, Q = 1026 J. 

∆T = 1026 J /(0.30 kg × 380 
J/kg K) Substitute in    
  known values and complete 

calculation

•	 ∆T = 9 K  Clearly state the 
answer with unit

So, we have found that 
ΔT = 9 K. As the brass 
block has been heated, the 
temperature would have 
increased and so the final 
temperature = 298 K + 9 K = 
307 K or 34 °C.  Ensure the
 final temperature is   
 calculated, not just ΔT

Worked example

thermometer

solid sample of
known mass

electrical heater of
known power

insulation

+ −

Figure 7.37 Finding the 
specific heat capacity of 
a known mass
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E = 30 000 J  Clearly state the answer with unit

Assuming all this energy goes into heating the block

Q = 30 000 J  

Q = mc∆T   State principle or equation to be used (from definition of  
specific heat capacity)

c = Q / m∆T  Rearrange equation to make c the subject

In this case, m = 0.50 kg, ∆T = (85 °C – 20 °C = 65 °C) = 65 K, Q = 
30 000 J.

c = 30 000 J /(0.50 kg × 65 K)   Substitute in known values and complete 
calculation

c = 923 J/kg K  Clearly state the answer with unit

We have ignored any heat energy supplied to the thermometer and 
any heat lost to the surroundings, and assumed that the electrical 
heater is 100% efficient in this calculation.

Electrical heating can also be used to determine the specific heat 
capacity of a liquid. An insulated container could be used for the 
liquid and the data obtained will be the same as for the example 
above. Alternatively, a calorimeter could be used to hold the liquid. 
A calorimeter is a polished metal can. In this case, the liquid is 
continuously stirred and we will take into account the heat energy 
supplied to the calorimeter as well as that supplied to the liquid. The 
diagram in Figure 7.38 shows the use of a calorimeter to determine 
the specific heat capacity of water.

We will use some experimental data from this method to calculate 
the specific heat capacity of water. The important factor to 
remember here is that some of the heat energy supplied by the 
heater will warm the calorimeter and stirrer as well as the water.

The electrical heater has a power rating of 200 W. It caused the 
water to increase in temperature from 25 °C to 74 °C after running 
for 5 minutes.

Mass of water = 200 g

Mass of aluminium calorimeter and stirrer = 400 g 

Specific heat capacity of aluminium = 910 J/kg K

Heat energy supplied   =   heat energy   +   heat energy received
by heater (Qh)                      received by         by aluminium
                water (Qw) calorimeter (Qc) 

The water and the stirrer will be in thermal equilibrium and so the 
temperature change for both will be the same (i.e. ∆T = 74 °C – 25 
°C = 49 °C = 49 K).

Heat supplied by heater (Qh):

E = P × t   State principle or equation to be used (from the definition of 
power)

E = 200 W × (5 minutes × 60) = 200 W × 300 s  Substitute in known   
 values and complete calculation

Thermometer

Stirrer

Insulated 
base

Water

Calorimeter

Heater

Figure 7.38 Determining the 
specific heat capacity of a liquid

KEY WORDS
calorimetry the experimental 
approach to measuring heat 
capacities and heat changes 
during chemical and physical 
processes
final temperature the 
temperature of a substance 
after heating
insulation material which 
does not conduct heat energy 
and hence can prevent heat 
loss
starting temperature the 
temperature of a substance 
before heating

DID yoU KNoW?
“calorimeter” comes from 
the Latin calor, which 
means heat.
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E = 60 000 J   Clearly state the answer with unit

Qh = 60 000 J

Heat energy received by calorimeter and stirrer (Qc):

Qc = mc∆T   State principle or equation to be used (from definition of 
specific heat capacity)

Qc = 0.40 kg × 910 J/kg K × 49 K   Substitute in known values and 
complete calculation

Qc = 17 836 J  Clearly state the answer with unit

Heat energy received by water (Qw):

Qh = Qw + Qc  Express the relationships between the energies.

60 000 J = Qw + 17 836 J  Substitute in known values

Qw = 60 000 J – 17 836 J    Rearrange to make Qw the subject complete 
calculation

Qw = 42164 J  Clearly state the answer with unit

Specific heat capacity of water:

Qw = mc∆T  State principle or equation to be used (from definition of 
specific heat capacity)

c = Qw / m∆T  Rearrange equation to make c the subject

In this case, m = 0.20 kg, ∆T = 49 °C, Qw = 42 164 J.

c = 42 164 J/(0.20 kg × 49 °C)   Substitute in known values and 
complete calculation

c = 4302 J/kg K  Clearly state the answer with unit

Once again, this is an experimental value – one major source of 
error will be heat loss to the surroundings, despite the precautions 
taken.

Method of mixtures
This method can be adapted to measure the specific heat capacity of 
a solid or liquid.

The diagram in Figure 7.39 on the next page shows the method 
used to determine the specific heat capacity of a solid. The solid, 
of known mass, ms, is heated in a water bath at 100 °C for at least 5 
minutes. The solid is then quickly transferred to the cold water of 
known mass, mw, in the calorimeter.

We know that the start temperature of the solid object is  
100 °C. Once in the calorimeter, the hot object (in this case a steel 
bolt) loses some heat energy to the colder water, and the colder 
calorimeter and stirrer. We stir the water and record the highest 
temperature on the thermometer.

Activity 7.7: Specific 
heat capacity calculation
A copper calorimeter 
and stirrer of mass 350 g 
contains 250 g of a liquid. 
A 500 W heater running for 
2 minutes and 30 seconds 
heated this combination of 
liquid and calorimeter from 
20 °C to 88 °C. Calculate 
the specific heat capacity 
of this liquid given that the 
specific heat capacity of 
copper is 420 J/kg K. 

M07_PHYS_SB_ETHG9_0162_U07.indd   195 12/7/10   1:19:18 pm



196

UNIT 7: Temperature and heat

Grade 9

stirrer
cover

thermometer

calorimeter lagging
material

outer
jacket

cotton
thread

HEAT

cotton
thread

steel
bolt

beaker

water

tripod
stand

steel
bolt

Figure 7.39 Determining the specific heat capacity of a bolt using the 
method of mixtures

In this case, the heat lost by the hot bolt will be equal to the heat 
gained by the water and the calorimeter/stirrer.

Mass of water = 200 g. 
Specific heat capacity of water = 4200 J/kg K.
Mass of copper calorimeter and copper stirrer = 100 g.
Specific heat capacity of copper = 420 J/kg K.

Start temperature of water + calorimeter = 20 °C.
Highest temperature of water after addition of the steel bolt = 25 °C.
Mass of steel bolt = 125 g.

Temperature of steel bolt before cooling = 100 °C.

Heat lost by bolt = heat received by water + heat received by  
   calorimeter/stirrer
 Qb  Qw  Qc

Heat received by water Qw:

Q•	
w = mc∆T

 m = 0.200 kg

 c = 4200 J/kg K 

 ∆T = 25 °C – 20 °C = 5 °C = 5 K

Q•	
w = 4200 J

Heat received by calorimeter/stirrer Qc:

Q•	
c = mc∆T

 m = 0.100 kg

 c = 420 J/kg K 

 ∆T = 25 °C – 20 °C = 5 °C = 5 K

Q•	
c = 210 J

Heat lost by bolt Qb:

Q•	
b = Qw + Qc

Q•	
b = 4200 J + 210 J = 4410 J
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Specific heat capacity of steel bolt cb:

At the end of the experiment, the bolt, water and the calorimeter 
and stirrer will be in thermal equilibrium and all be at the same 
temperature = 25 °C

 ∆T = start temperature of bolt – final temperature of bolt = 100 °C 
– 25 °C = 75 °C = 75 K.

Q•	
b = m × cb × ∆T

c•	
b = Qb / m∆T

c•	
b = 4410 J / (0.125 kg × 75 K)

c•	
b = 470 J/kg K

This method can be adapted to find the specific heat capacity of a 
liquid by adding a hot solid of known specific heat capacity to the 
liquid sample or even by pouring a hot liquid into a cooler one.

What is the heat capacity of a body?
We have seen lots of examples of specific heat capacity. The word 
specific here tells us that this is the heat energy required to increase 
the temperature of 1 kg of a substance by 1 K. In other words, this is 
specific to 1 kg of the substance.

The heat capacity of a body is the defined as the energy required to 
raise the temperature of the given body by 1 K; the mass of the body 
is not considered, only the energy required to raise its temperature 
by 1 K.

heat capacity•	  = Q / ∆T

Let us look again at the calculation to determine the specific heat 
capacity of the steel bolt.

The experimental data shows us that the steel bolt lost 4410 J and 
its temperature fell by 75 K, or, to increase its temperature by 75 K, 
4410 J of heat energy would be required.

So, if 4410 J of energy causes a 75 K rise, the heat capacity would be:

heat capacity•	  = Q / ∆T

heat capacity = 4410 J / 75 K•	

heat capacity = 58.8 J/K.•	

Note that the units do not include a mass term.

The specific heat capacity of steel is 470 J/kg K and if the heat 
capacity of a body is known, the specific heat capacity of the 
material of which it is made can be found provided the mass of the 
body is known.

Specific heat capacity = heat capacity of body / mass of body•	

Let’s try this with the steel bolt used in the last specific heat capacity 
experiment.

So, for the steel bolt of mass 0.125 kg:

KEY WORDS
heat capacity the energy 
required to raise the 
temperature of a body by 1 K
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specific heat capacity = heat capacity of body / mass of body•	

specific heat capacity = 58.8 J/K / 0.125 kg•	

specific heat capacity = 470 J/kg K•	

We will now try another example:

A solid block requires 3000 J of heat energy to increase its 
temperature by 60 K. Calculate the block’s heat capacity and use this 
value to calculate its specific heat capacity if the block has a mass of 
50 g.

heat capacity•	  = Q / ∆T

heat capacity = 3000 J / 60 K•	

heat capacity = 50 J/K•	

specific heat capacity = heat capacity of body / mass of body•	

specific heat capacity = 50 J/K / 0.05 kg•	

specific heat capacity = 1000 J/kg K•	

Why is the high specific heat capacity of water so
important?

If you look back at the table of specific heat capacities of different 
substances, you will see that water has an especially high value. We 
should think about this further and see if it is important.

If a substance has a high specific heat capacity, it means that a 
large amount of heat energy is required to bring about a rise 
in temperature of 1 kg water by 1K. This is important when we 
remember that water is widely used in industry and in internal 
combustion engines for cooling.

If a liquid with a low specific heat capacity was used for cooling 
purposes, a given mass of this liquid would receive very little heat 
energy before its temperature increased to its boiling point, at which 
stage it would no longer act as a coolant. 

So, the fact that a given mass of water will receive a large amount of 
heat energy compared to other liquids before it boils makes it very 
useful for cooling.

The reverse is also true. A large mass of hot water contains a very 
large amount of energy. This can then be pumped around the house 
and as the water cools is transfers this heat energy to rooms inside 
the house. 

In this section you have learnt that:

In this section you have learnt that:

The specific heat capacity of a substance is the heat •	
energy required to raise the temperature of 1 kg of a given 
substance by 1 K.

Summary

Activity 7.8: Heat 
capacity of a ball
A plastic ball experiences 
a temperature rise of 10 K 
when 600 J of heat energy 
are supplied to it. Calculate 
the heat capacity of the 
ball. What else would you 
need to know in order to 
calculate the specific heat 
capacity of the ball? 

Figure 7.40 Water’s high specific 
heat capacity makes it useful for 
cooling systems.
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The heat capacity of a body is the heat energy required to •	
raise the temperature of the body by 1 K.

The factors that affect the amount of heat absorbed or •	
liberated by a body are the temperature change, the mass of 
the body and the material making up the body. 

The amount of heat energy absorbed or liberated by a body •	
can be calculated using Q = mc∆T.

The high specific heat capacity of water is significant as •	
water is used for cooling.

A calorimeter is used in specific heat capacity and heat •	
capacity experiments.

Review questions
1.  Define the term “specific heat capacity of water”.

2.  A metal bar of mass 100 g is warmed from 20 °C to 80 °C. How 
much heat is absorbed by the metal bar if the specific heat 
capacity of this metal is 450 J/kg K.

3.  In an experiment to calculate the specific heat capacity of a 
metal, the following results were obtained:

Mass of metal = 300 g.

Start temperature = 20 °C.

End temperature = 75 °C.

Power rating of electrical heater = 100 W.

Time of heating = 150 s.

Use this data to calculate the specific heat capacity of the metal.

4.  A hot metal block is placed into 50 g of water in an insulated 
container. The water increases in temperature from 20 °C to  
32 °C. The specific heat capacity of water is 4200 J/kg K. 
Calculate the quantity of heat energy supplied to the water from 
the metal block.

7.4 Changes of state

By the end of this section you should be able to:

Define the terms latent heat, latent heat of fusion and •	
latent heat of vaporisation.

Solve problems involving change of state.•	
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Heating and cooling curves
If we heat a solid, its particles gain energy and begin to vibrate faster 
and move further apart as its temperature increases. This continues 
until the solid melts. Even though the solid is continuously heated 
as it melts, its temperature will not increase until the entire solid has 
melted. 

If the heat energy the substance gains is not used to increase the 
average kinetic energy of its particles (the temperature does not 
change) what is it being used for? We can see that the same effect 
occurs when a liquid boils. As the liquid is being heated at its 
boiling point, the temperature does not increase until all of the 
liquid has boiled.

The graph in Figure 7.42 shows how the temperature of a solid (A) 
varies with time as it is heated until melts (B) and finally forms a 
liquid (C). This is called a heating curve. The liquid is heated until 
it boils (D) until all of the liquid changes state into a gas (E), which 
continues to increase in temperature as it is heated.

Figure 7.42 This graph shows how the temperature of water changes 
as it is continuously heated.

We cannot link the heat energy being absorbed during melting 
and boiling with an increase in temperature and so the heat energy 
appears to be hidden or latent. 

If latent heat is not being used to increase the kinetic energy of the 
particles of a substance, what is it being used for? During a change 
in state, the forces of attraction holding the particles together have 
to be broken. This process requires energy and so, as a solid melts 
or a liquid boils, the heat supplied is used to separate the particles 
rather than to increase their kinetic energy. Consequently, the 
temperature of the substance does not change during a change in 
state. This is true for melting, boiling as well as condensing and 
freezing.

A similar shape is seen when the cooling curve of a substance 
is examined (Figure 7.43). When changes of state occur, the 
temperature remains constant as only potential energy is being lost 
as forces of attraction act between the particles again.

Figure 7.41 No matter how long 
you heat it the temperature of 
boiling water will not go over  
100 °C.

DID yoU KNoW?
The term phase is 
sometimes used instead 
of state – i.e. at room 
temperature and pressure 
water is in a liquid phase.

A

B

C

D

E gas

liquid to gas

liquid

solid to liquid

solid 

melting point

boiling point

Time

Temperature/K

KEY WORDS
cooling curve a graph 
showing the temperature of a 
substance against time as it 
loses heat energy and changes 
state
heating curve a graph 
showing the temperature of 
a substance against time as 
heat energy is applied and it 
changes state
melted when a substance 
has changed from a solid to a 
liquid state
phase the distinct form of 
a substance under different 
conditions e.g. solid, liquid, 
gas
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Table 7.4 Some specific latent heats of fusion and vaporisation

Substance Specific latent 
heat of fusion, 
Lf (J/kg)

Specific latent  
heat of vaporisation, 
Lv (J/kg)

aluminium 390 000 10 900 000

copper 209 000 4 730 000

gold 63 700 1 645 000

iron 245 000 6 080 000

water 334 000 2 500 000

Looking carefully at Table 7.4 we can see that the specific 
latent heat of vaporisation is always much higher than the 
specific latent heat of fusion. This means it takes a great 
deal more energy to turn a liquid to a gas than it does to 
turn a solid into a liquid. This is because when a substance 
changes from a liquid to a gas the bonds between all the 
molecules have to be broken apart, whereas the particles in 
a liquid remain bonded together.

The melting point of aluminium is 660 °C. So, at 660 °C, 
1 kg of solid aluminium would require 390 000 J of heat 
energy to change its state into a liquid. This also means 
that 390 000 J of heat energy would be given out if 1 kg of 
liquid aluminium at 660 °C changed state into a solid.

Now we will work through some example calculations, 
using the specific latent heat data in Table 7.4.

Activity 7.10: Changes of state
Calculate the heat energy required to boil 100 g  
of aluminium at its boiling point. Lv (aluminium  
= 10 900 000 J/kg).

Calculate the heat energy liberated when 2 kg of  
water turns to a solid at its melting point. Lf (water)  
= 334 000 J/kg.

Now that we can use specific heat capacities and specific 
latent heats, we can calculate the heat energy required 
when substances are heated, taking into account changes in 
state.

Total energy required = energy required to increase •	
temperature + energy required to change state

Q•	
total = mcΔT + mL

For example, we will now calculate the heat energy 
required to increase the temperature of 50 g of water from 
25 °C to 125 °C.

Specific heat capacity of water = 4200 J/kg K.

1. Calculate the heat energy required 
to melt 1 kg of copper at its 
melting point.

Heat change absorbed on melting: 

Q = m × Lf State principle or 
equation to be used (from 
definition of specific latent heat)

Q = 1 kg × 209 000 J/kg   
Substitute in known values and 
complete calculation

Q = 209 000 J = 209 kJ 
Clearly state the answer with unit

2. Calculate the mass of water that 
changes state if the water is at 
its boiling point and 500 kJ of 
energy is supplied. 

Q = m × Lv State principle or 
equation to be used (from 
definition of specific latent heat)

m = Q / Lv  Rearrange equation to 
make m the subject

m = 500 000 J / 2 500 000 J/kg  
Substitute in known values and 
complete calculation

m = 0.2 kg  Clearly state the answer 
with unit

3. Calculate the heat energy 
liberated when 0.025 kg of 
aluminium freezes at its freezing 
point.

Heat change given out on 
freezing: 

Q = m × Lf State principle or 
equation to be used (from 
definition of specific latent heat)

Q = 0.025 kg × 390 000 J/kg 
Substitute in known values and 
complete calculation

Q = 9750 J = 9.75 kJ  Clearly state 
the answer with unit

In this case, this is the energy 
given out to the surroundings as 
the aluminium freezes.

Worked example
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Specific heat capacity of steam = 2080 J/kg K.
Specific latent heat of vaporisation of water = 2 501 000 J/kg.

We will need to calculate the heat energy required for this change in 
three stages:
1. Heat energy required to heat 50 g of water from 25 °C to 100 °C 

(∆T = 75 °C = 75 K):
Q = mc∆T•	

Q = •	 0.05 kg × 4200 J/kg K × 75 K
Q•	

1 = 15 750 J
2. Heat energy required to boil 50 g of water at 100 °C: 

Q = mL•	
v

Q = •	 0.05 kg × 2 501 000 J/kg 
Q•	

2 = 125 050 J
3. Heat energy required to heat 50 g of steam from 100 °C to 125 °C 

(∆T = 25 °C = 25 K):
Q = mc∆T•	

Q = •	 0.05 kg × 2080 J/kg K × 25 K
Q•	

3= 2600 J.
 So, the total amount of heat energy required for this process:

Q = Q•	
1 + Q2 + Q3

Q = •	 15 750 J + 125 050 J + 2600 J
Q = •	 143 400 J = 143.4 kJ

Experiment to determine the specific latent heat of
fusion of ice

The apparatus in Figure 7.44 can be used to determine the specific 
latent heat of fusion, Lf, of ice.

The copper calorimeter and stirrer is weighed before being half 
filled with water. The mass of the water present in the calorimeter 
is then determined before the water is heated to at least 10 °C 
above room temperature. Small quantities of ice are then added 
to the water, while stirring, until the temperature is below room 
temperature and all the ice has melted. The mass of the calorimeter, 
stirrer and water is then determined to find out the mass of ice 
added.

We will use the experimental data obtained using this method to 
determine the specific latent heat of fusion of ice.

Mass of calorimeter = 0.15 kg.
Mass of water = 2.00 kg.
Mass of ice added = 0.60 kg.
Start temperature of ice = –10 °C.
Start temperature of water = 49 °C.
Final temperature of water = 20 °C.
Specific heat capacity of water = 4200 J/kg K.

stirrer

thermometer

copper
calorimeter

water

(a) (b)

ice

stirrer

thermometer

copper
calorimeter

water

(a) (b)

ice

Figure 7.44 A simple experiment 
to determine the specific latent 
heat of fusion of ice.
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Specific heat capacity of ice = 2100 J/kg K. 
Specific heat capacity of copper = 420 J/kg K.

We will use the principle here that the heat energy lost from the 
water and the calorimeter will go to warming and melting the ice 
and then warming the cold water produced when the ice melts.

Heat energy absorbed by ice  = Heat energy liberated from
and cold water  calorimeter/stirrer and water and  
  water

Heat energy lost by calorimeter/stirrer and water: 1. 

∆T•	  = 49 °C – 20 °C = 29 °C = 29 K

 Heat energy lost by calorimeter: 

Q•	
lost calorimeter = mcalorimeterccalorimeter∆T 

Q•	
lost calorimeter = 0.15 kg × 420 J/kg K × 29 K = 1827 J

 Heat energy lost by water: 

Q•	
lost water = mwatercwater∆T 

Q•	
lost water = 2.00 kg × 4200 J/kg K × 29 K = 243 600 J

 Total heat energy lost by calorimeter/stirrer and water = 243 600 
+ 1827 = 245 427 J. 

Heat energy absorbed by ice and water in warming from –10 2. 
°C to 20 °C: 

 Heat energy require to warm ice from –10 °C to 0 °C (∆T = 0 °C 
– –10°C = 10 °C = 10 K).

Q•	
ice (–10–0) = micecice∆T

Q•	
ice (–10–0) = 0.60 kg × 2100 J/kg K × 10 K = 12 600 J

 Heat energy required to melt 0.60 kg of ice: 

Q•	
melt ice = mLf

Q•	
melt ice= 0.60 kg × Lf

 Heat energy require to warm cold water from 0 °C to 20 °C (∆T 
= 20 °C – 0 °C = 20 °C = 20 K).

Q•	
water (0–20) = micecwater∆T

Q•	
water (0–20) = 0.60 kg × 4200 J/kg K × 20 K = 50 400 J

Heat energy absorbed by ice  = Heat energy liberated from
         and cold water  calorimeter/stirrer and water  
              

 12 600 J + 0.6Lf + 50 400 J = 245 427 J

0.6•	 Lf = 182 427 J

L•	
f = 182 427 J / 0.6

L•	
f = 304 045 J/kg = 304 kJ/kg
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In this section you have learnt that:

In this section you have learnt that:

The terms specific latent heat of fusion and specific latent •	
heat of vaporisation relate to the energy required to melt 
and vaporise 1 kg of a substance at constant temperature.

It is possible to calculate the energy (•	 Q) required or 
liberated on a change of state for a given mass, m, of a 
substance using the equation Q = mLf or Q = mLv.

Summary

Review questions
1.  Calculate the heat energy required to melt 10 g of copper at its 

melting point.

 (Lf for copper = 209 000 J/kg).

2.  Calculate the heat energy required to melt 1.2 kg of gold at its 
melting point.

  (Lf for gold = 63 700 J/kg).

3.  Calculate the heat energy liberated when 75 g of iron freezes at 
its freezing point.

  (Lf for iron = 245 000 J/kg).

4.  Define the term specific latent heat of fusion of magnesium.

5.  Calculate the heat energy required to increase the temperature 
of 0.1 kg of water from 10 °C to 150 °C.

 Specific heat capacity of water = 4200 J/kg K.
 Specific heat capacity of steam = 2080 J/kg K.
 Specific latent heat of vaporisation of water = 2 500 000 J/kg.

End of unit questions 
1.  Write a paragraph explaining the difference between the heat 

energy in a substance and the substances’ temperature.

2.  Explain, with reference to the appropriate laws of 
thermodynamics and particle movement, what happens when a 
cold object is in thermal contact with hot object.

3.  Calculate the increase in length of an iron pipeline that is  
30.00 m long at 20 °C when it is warmed to 45 °C. αiron = 1.1 × 
10–5 K–1.

4.  Calculate the increase in volume of ethanol that has a volume 
of 2.5 × 10–4 m3 at 25 °C when it is warmed to 45 °C. Explain 
why the apparent expansion will be less than this calculated real 
expansion. γethanol = 75 × 10–5 K–1.

5.  In an experiment to calculate the specific heat capacity of 
a metal, the following data were obtained. Use the data to 
calculate the specific heat capacity of the metal.
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Mass of metal = 200 g.
Start temperature = 20 °C.
End temperature = 105 °C.
Heat energy supplied by electrical heating = 2000 J.

6.  A metal block increases in temperature from 15 °C to 60 °C 
when supplied with 13 500 J of heat energy. 

 a)  Calculate the heat capacity of the metal.

 b)  Calculate the specific heat capacity of the metal, if this 
sample has a mass of 0.75 kg.

7.  20 g of water at 42 °C was placed in a well-insulated copper 
calorimeter with a mass of 27 g at a temperature of 20 °C. Use 
the specific heat capacities of water (4200 J/kg K) and copper 
(420 J/kg K) to determine the final temperature of the water.

8.  Calculate the heat energy required to increase the temperature 
of 10.0 kg of water from 25 °C to 115 °C.

Specific heat capacity of water = 4200 J/kg K.
Specific heat capacity of steam = 2080 J/kg K.
Specific latent heat of vaporisation of water = 2 500 000 J/kg.

9.  Sketch a cooling curve for bromine as bromine vapour is cooled 
from 100 °C to –20 °C. Bromine has a melting point = –7 °C 
and a boiling point of 59 °C. Mark clearly on your graph the 
melting and boiling point.

10. In an experiment to determine the latent heat of fusion of ice, 
0.5 kg of ice at –5 °C was placed into 1.5 kg of water in a copper 
calorimeter of mass (including stirrer) of 0.2 kg with both water 
and calorimeter at 61 °C. The final temperature, when all the ice 
had melted, was 25.0 °C. Use the data to calculate the latent heat 
of fusion of ice.

Mass of calorimeter = 0.20 kg.
Mass of water = 1.50 kg.
Mass of ice added = 0.50 kg.
Start temperature of ice = –5.0 °C.
Start temperature of water = 61 °C.
Final temperature of water = 25.0 °C.
Specific heat capacity of water = 4200 J/kg K.
Specific heat capacity of ice = 2100 J/kg K.
Specific heat capacity of copper = 420 J/kg K.
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Contents
Section Learning competencies

8.1  Wave propagation
  (page 207)

Define the terms wave and wave pulse.•	
Describe longitudinal and transverse waves.•	
Define the terms compression and rarefaction.•	

8.2  Mechanical waves
  (page 214)

Define and identify the following features of a wave: crest, trough, •	
wavelength, frequency, amplitude and time period.
Distinguish between mechanical waves and electromagnetic waves.•	
Identify transverse and longitudinal waves in a mechanical media.•	

8.3  Properties of waves
  (page 221)

State the wave equation and use it to solve problems. •	
Describe the characteristic properties of waves, including •	
reflection, refraction, diffraction and interference.
Define the terms diffraction and interference.•	

8.4  Sound waves
  (page 228)

Identify sound waves as longitudinal mechanical waves and •	
describe how they are produced and how they propagate.
Compare the speed of sound in different materials and determine •	
the speed of sound in air at a given temperature.
Define the intensity of a sound wave and solve problems using the •	
intensity formula.
Explain the meaning of the terms echo, reverberation, pitch, •	
loudness and quality.
Explain the reflection and refraction of sound and describe some •	
applications.

Wave motion and sound Unit 8

Water waves are a common sight, either on the sea, in rivers or 
even in the bath. But have you ever really thought about what the 
term wave means? Maybe words like ripples, vibrations and energy 
spring to mind. 

Waves enable us to see and to hear, and can even be used to monitor 
the health of unborn babies. Waves have a dangerous side too. The 
devastating tsunami on 26 December 2004 demonstrated some of 
the power of waves.

This unit looks at the different types of waves, their characteristics 
and behaviour and some of their uses.

8.1  Wave propagation

By the end of this section you should be able to:

Define the terms wave and wave pulse.•	

Describe longitudinal and transverse waves.•	

Define the terms compression and rarefaction.•	  
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What are waves?
Waves can be thought of as a series of vibrations that travel 
through a medium (a medium is another way of describing the 
material through which the wave is travelling). 

All waves transfer energy from one place to another. Light waves 
travelling out from a light bulb transfer energy from the bulb to 
your eye. Sound waves transfer energy from a speaker to your ear.

Although waves transfer energy from one place to another there is 
no transfer of matter. The material the wave is travelling through 
does not move along with the wave. In other words, when waves 
travel through water the water does not travel along with the wave.

This can be seen by observing a duck (or any object that floats) 
sitting on the water. As the wave moves past the duck it just bobs up 
and down. It does not travel along with the wave.

Unless it is a gas, the particles inside any medium are pretty much 
stationary. They move around a little and are always vibrating a little 
but essentially they remain in their equilibrium positions. When 
a wave passes through the material the particles in the medium 
simply vibrate from side to side.

This vibration could be up and down, left to right or any variation, 
but the particles always move back and forth past their equilibrium 
position.

Figure 8.5 The particles vibrate back and forth past their equilibrium 
position. 

If you plot a graph of the particle’s displacement from its 
equilibrium position against time you would get a graph similar to 
Figure 8.6.

Figure 8.6 Particle’s displacement against time 

It’s starting to look like a wave!

Figure 8.1 Waves are a common 
sight on water.

Figure 8.3 Waves transfer energy 
from A to B.

Figure 8.2 Rays of light travel out 
as waves from a light bulb.

Figure 8.4 A duck floating on the 
water just moves up and down as 
the waves go past.

A

Energy transfer

B

Direction of wave

Particle in the medium

Displacement

Equilibrium position

Time
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Wave pulses and continuous waves
Poke a stick into some water and you can see water waves (ripples) 
travelling away from the stick. The stick acts as a source for the 
waves. 

If you just poke the stick once into the water a single ripple travels 
outwards. This is referred to as a wave pulse. You can see the same 
thing with some rubber tubing.

Here you can see that there are no repeated vibrations, just one 
short pulse.

If instead of just poking the stick into the water once you were to 
move it in and out you would create a series of ripples. New ripples 
would be created every time the stick went into and out of the water. 
This is referred to as a continuous wave. 

As long as the source of the wave continues to vibrate a continuous 
wave will travel out from it.

Activity 8.1: Waves on stretched rubber tubing
•	 Tie	one	end	of	a	long	piece	of	rubber	tubing	to	a	fixed	point	

in the room.

•	 Hold	the	other	end,	so	that	the	tubing	is	taut	(stretched	
tightly).

•	 Move	your	hand	up	and	down	briefly	(Figure	8.9).	Watch	the	
wave pulse travel along the tubing. Does it reflect at the 
fixed end?

•	 Repeat,	moving	your	hand	from	side	to	side.

•	 Try	moving	your	hand	up	and	down	at	a	steady	rate;	try	
different frequencies. What do you observe?

Figure 8.9 Sending a wave pulse along a taut rubber tube

Longitudinal and transverse waves
There are two main types of wave. These types are classified by the 
direction of vibrations in relation to the direction of  

Figure 8.7 A simple wave pulse

Figure 8.8 A simple continuous 
wave

direction of wave motion

direction of wave motion

direction of wave motion

λ

KEY WORDS
equilibrium position the 
central point about which 
vibrations occur
matter a physical substance
medium material or 
substance
vibrate to move up and 
down, or side to side, about a 
central point
vibrations oscillations about 
a central equilibrium point
waves a series of vibrations 
that travel through a medium
continuous wave a wave with 
repeated vibrations
source the cause of the wave
wave pulse a wave with no 
repeated vibrations
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wave movement. Remember, in both cases the material only 
vibrates from side to side; it does not travel along the wave.

Transverse
These are the waves most people think of. They go up and down (or 
left to right) in a sinusoidal motion. 

In a transverse wave the vibrations are at right angles to the 
direction of wave movement (or energy transfer). This might be up 
and down or side to side. 

A transverse wave is defined as a wave where the:

Vibrations are perpendicular (at right angles) to the direction •	
of wave motion.

This can be seen in Figure 8.10.

Examples of transverse waves include:

all electromagnetic waves – more on these in Section 8.2•	
   light
   microwaves
   radio waves
   X-rays
   etc.

S-waves in earthquakes•	

waves on strings•	

waves on the surface of deep water.•	

All transverse waves comprise a series of crests (or peaks) and 
troughs.

Think about this…
It is easy to remember 
that transverse waves are 
the sinusoidal type. If you 
look carefully at the word 
transverse it has a transverse 
wave in the middle!

Particles in material

Vibrations
Wave motion (direction)

Crest (or peak)

Equilibrium position
(mid-point)

Trough

Figure 8.10 Vibrations in a 
transverse wave

Figure 8.11 Crests and troughs

KEY WORDS
wave movement the direction 
in which the wave is travelling
crests the maximum points of 
a transverse wave
transverse waves where the 
vibrations are perpendicular to 
the direction of wave motion
troughs the minimum points 
of a transverse wave
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Like ripples on a pond, the crests travel outwards in the same 
direction as the wave motion. 

Figure 8.12 Crests travel along with the transverse wave.

It is important to remember that the particles just move up and 
down past their equilibrium position. This can be seen by the red 
particle; it just moves up and down as the wave travels from left to 
right.

Longitudinal
In a longitudinal wave the vibrations are in the same direction as 
the direction of wave movement (or energy transfer). This means 
the vibrations are forwards and backwards along the wave. 

A longitudinal wave is defined as a wave where the:

Vibrations are parallel to (in the same direction of) the •	
direction of wave motion.

This can be seen in Figure 8.13.

As you can see, these are much more difficult to draw! You tend to 
see the particles replaced with vertical lines so the wave motion is 
easier to make out.

Activity 8.2: The human 
transverse wave
You need about ten people 
for this activity.

Form	a	line	standing	
shoulder to shoulder and 
link arms tightly at the 
elbow.

The person at the end of the 
line acts as the wave source 
and moves forwards and 
backwards (only a few steps 
are needed).

You should be able to see 
the vibration travel down 
the line of people. 

This is a transverse wave as 
the vibrations are at right 
angle to the direction of 
wave motion.

Wave motion (direction)

Particles in material

Vibrations Wave motion (direction)

Figure 8.13 Vibrations in a 
longitudinal wave

KEY WORDS
longitudinal waves waves 
where the vibrations are 
parallel to the direction of 
wave motion
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Examples of longitudinal waves include:

sound waves•	

pressure waves •	

waves forwards and backwards through a spring•	

P-waves in earthquakes.•	

When longitudinal waves travel through a material the particles 
bunch up then move further apart, then bunch up again. You can 
see this in Figure 8.14.

Figure 8.14 Compressions and rarefactions in a longitudinal wave

Regions where the particles are pushed together are called 
compressions. Regions where the particles are more spread out 
are called rarefactions. Compressions can be thought of as the 
longitudinal version of a crest and a rarefaction is the equivalent of 
a trough.

If the longitudinal wave is travelling through a gas then a 
compression can be thought of an area of higher pressure and a 
rarefaction an area of lower pressure. Compressions appear to 
travel through the material as the wave travels through it.

Figure 8.15 Compressions travel along a longitudinal wave.

It is important to remember that the particles just move forwards 
and backwards (look at the red line in the diagram).

Think about this… 
Sound waves are often drawn 
to look like transverse waves. 
This is because plotting 
a graph of displacement 
against time produces exactly 
the same shape no matter 
which type of wave it is. This 
makes comparing them and 
describing their features much 
easier.	However,	they	are	
most definitely longitudinal 
waves!

DID YoU kNoW?
In an explosion a shock 
wave (a compression) 
travels outward from the 
centre of the blast. It is this 
area of higher pressure that 
causes damage.

Compression

Rarefaction

Wave Motion (direction)

KEY WORDS
compressions regions of a 
wave where the particles are 
pushed together
higher pressure 
comparatively greater pressure 
lower pressure comparatively 
smaller pressure
rarefactions regions of a 
wave where the particles are 
spread out
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Both transverse and longitudinal waves can also been seen using a 
long spring.

Activity 8.4: Waves on a spring
Use a slinky spring. Lay it carefully on a long bench or table. 
Ask your partner to hold one end firmly.

•	 As	in	the	previous	experiment,	move	your	hand	from	side	to	
side	to	send	a	wave	pulse	along	the	spring	(Figure	18.6(a)).	
Send a continuous series of waves along the spring.

•	 There	is	a	second	way	in	which	you	can	send	a	wave	along	
a stretched spring. Push the end backwards and forwards, 
along	the	length	of	the	spring	(Figure	8.16(b)).	Watch	as	
the segments of the spring move back and forth.

Can you observe both types of wave reflecting at the fixed end 
of the spring?

�

�

Figure 8.16 Two types of wave on a stretched spring: 
(a) transverse, and (b) longitudinal

Summary

In this section you have learnt that:

A wave transfers energy from one place to •	
another as a series of vibrations.

A wave pulse is a wave with no repeated •	
vibrations.

The particles in the medium vibrate from •	
side	to	side;	they	do	not	travel	through	the	
medium with the wave.

There are two types of wave, longitudinal •	
and transverse.

In a transverse wave the vibrations are •	
perpendicular to the direction of wave 
motion.

A transverse wave comprises a series of •	
crests and troughs.

In a longitudinal wave the vibrations are •	
parallel to the direction of wave motion.

A longitudinal wave comprises a series of •	
compressions and rarefactions.

In a compression the particles are closer •	
together and in a rarefaction they are more 
spread out.

Activity 8.3: The human 
longitudinal wave
Just like before you need 
about ten people for this 
activity. Again form a 
line standing shoulder to 
shoulder and link arms 
tightly at the elbow.

This time the person at the 
end of the line (still acting 
as the wave source) moves 
from side to side. 

You should be able to see 
the vibration travel down 
the line of people and notice 
areas of compression and 
rarefaction. This time it 
is a longitudinal wave as 
the vibrations are in the 
same direction as the wave 
motion.
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Review questions
1. Explain the difference between a continuous wave and a wave 

pulse.

2. Describe what happens to particles when a wave passes through 
a medium.

3. Explain what is meant by a transverse wave and give three 
examples.

4. Explain what is meant by a longitudinal wave and give three 
examples.

8.2 Mechanical waves

By the end of this section you should be able to:

Define and identify the flowing features of a wave: crest, •	
trough, wavelength, frequency, amplitude and time period.

Distinguish between mechanical waves and electromagnetic •	
waves.

Identify transverse and longitudinal waves in a mechanical •	
media.

Waves characteristics
No matter what the type of wave all waves share some 
characteristics. These are terms you’ve probably heard before. 
However, each has a very specific meaning:

Wave speed (v)
Wave speed is defined as:

The distance the wave travels in one second.•	

This is the same as the distance one peak or one compression travels 
in one second. It’s given the symbol v (or c for electromagnetic 
waves) and like all speeds it is measured in metres per second (m/s).

Amplitude (a)
Amplitude is defined as:

The maximum displacement from the equilibrium position. •	

In simple terms it’s the maximum height of the wave. If you plot a 
graph of particle displacement against distance along the wave the 
amplitude can be easily determined. 

DID YoU kNoW?
Nothing can travel faster 
than the speed of light 
through a vacuum. This is 
the ultimate speed limit. It 
is equal to 300 000 000 m/s 
(or 3 × 108 m/s). That’s fast 
enough to go around the 
world just under 8 times per 
second.
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Notice that it is from the equilibrium position (mid-point), it is not 
the distance from top to bottom.

Amplitude is given the symbol a (or occasionally xo). As amplitude 
is a displacement it is measured in metres (m).

Wavelength (λ)
Wavelength is defined as:

The minimum distance between identical points on adjacent •	
waves. 

For example, it is the distance from one peak to another, or from 
one compression to another. Wavelength is given the symbol λ 
(lambda); this is the Greek letter l. 

As wavelength is a distance it is measured in metres (m).

Again, plotting a displacement against distance graph allows 
wavelength to be easily determined.

Amplitude

Distance

Displacement

Figure 8.17 Amplitude

Wavelength

Distance

Displacement

Figure 8.18 Wavelength

Figure 8.19 Wavelength of a longitudinal wave

WavelengthWavelength
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Frequency (f)
Frequency is defined as:

The number of complete waves passing a given point per •	
second. 

This can be determined by the number of crests or compressions 
that pass a given point per second. The higher the frequency, the 
greater the number of waves per second.

Frequency is given the symbol f and is measured in hertz (Hz). A 
frequency of 10 Hz would mean 10 waves per second. The hertz is 
the SI derived unit for frequency.

Time period (T)
Time period is defined as:

The time taken for one complete wave to pass a given point.•	

This is the time taken for one complete particle vibration or 
oscillation. It is given the symbol T (or occasionally |Τ|). 

As time period is just a measure of duration it is measured in 
seconds (s).

If you plot a slightly different graph of particle displacement 
(against time) then the time period is the time between two peaks.

Figure 8.20 Time period

There are two important equations linking these terms. The first 
links frequency and time period.

If you consider a wave with a frequency of 4 Hz this would mean 
four waves passing a point per second. Each wave would therefore 
take 0.25 second to pass the point. The time period would be 0.25 
s. The time period is the reciprocal of the frequency. A wave with 
a frequency of 10 Hz would have a time period of 1/10 or 0.1 s. In 
terms of an equation, we get:

frequency = 1 / time period•	

f = •	 1 / T

This also means T = 1/f.

Powers of ten prefixes are often used to describe frequencies and 
time periods of waves. Some common examples are listed in  
Table 8.1

DID YoU kNoW?
The reciprocal of x is 
equal to 1/x. For example, 
the reciprocal of 5 is one 
fifth (1⁄5 or 0.2), and the 
reciprocal of 0.25 is 1 
divided by 0.25, or 4.

Activity 8.5: Time 
periods
Find	the	time	period	for	the	
following waves from their 
frequency: 

a)		20	Hz

b)		3	kHz

c)		0.2	Hz

Find	the	frequency	of	the	
wave from the following 
time periods:

a)  0.4 s

b)  0.2 ms

c)  100 s

Time period

Time

Displacement

KEY WORDS
frequency the number of 
waves passing each second 
Hertz the unit of frequency
reciprocal the inverse of a 
number which when multiplied 
by the original number  
equals 1
time period the time taken 
for a complete wave to pass a 
given point
wave equation equation 
relating wave speed, frequency 
and wavelength
electromagnetic waves 
waves that comprise vibrations 
of electric and magnetic fields
mechanical waves waves that 
comprise a series of vibrations 
of matter
seismic waves waves that 
travel through the Earth, 
produced by earthquakes
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Table 8.1 Common powers of ten prefixes

Prefix Name Value Power Example

G Giga ×1 000 000 000 ×109 6.5	GHz	=	6	500	000	000	Hz

M Mega ×1 000 000 ×106 3	MHz	=	3	000	000	Hz

k kilo ×1000 ×103 4.2	kHz	=	4200	Hz

m Milli ×0.001 ×10–3 6	ms	=	0.006	s

μ Micro ×0.000 001 ×10–6 40 μs	=	0.000	040	s
n Nano ×0.000 000 001 ×10–9 8	nm	=	0.000	000	008	m

The second equation is so important in our dealings with waves that 
it is often simply called the wave equation. It relates wave speed, 
frequency and wavelength.

Wave speed = frequency × wavelength•	

v = f •	 λ

We will look at this in more detail in Section 8.3.

Mechanical vs. electromagnetic waves
So far whenever we’ve been discussing waves we have talked about 
particle vibrations within the medium through which the wave is 
travelling. However, some waves can also travel through a vacuum; 
there are no particles in a vacuum and so something else must be 
happening.

We call waves that travel through a material as vibrations of the 
material mechanical waves. Here the particles in the material 
(water, wood, air, etc.) vibrate. It is these vibrations that form the 
wave. All mechanical waves require a medium to travel through. 
They include sound waves, water waves and seismic waves. 

Electromagnetic waves, such as light, radio and x-rays, do 
not require a medium to travel through. They are comprised 
of vibrating electric and magnetic fields. There are no particle 
vibrations at all. This means electromagnetic waves are able to travel 
through a vacuum and when they travel through a medium there 
are no particle vibrations inside that medium.

Examples of mechanical waves
There are lots of examples of different mechanical waves. We will 
look at sound waves in Section 8.4. In this section we will look at 
two types in more detail, water waves and seismic waves.

Water waves
Waves that travel on the surface of water can be thought of as 
transverse waves. However, there is often a slight drift in the 
direction of wave motion, so they are not perfect transverse waves.

If you throw a stone into a pond you can see ripples as crests and 
troughs travelling out from the splash. If you poke a stick up and 

Activity 8.6: 
Electromagnetic  
spectrum chart
In the text, we have touched 
only briefly on some parts 
of the electromagnetic 
spectrum. Some aspects 
have been missed out 
almost entirely – for 
example, the importance of 
electromagnetic radiation in 
astronomy.

Your task, together with 
the rest of the class, is to 
produce a large, illustrated 
chart of the electromagnetic 
spectrum. Your chart 
will show all parts of the 
spectrum, and show uses, 
hazards,	production	and	
detection. 
•	 Decide	how	you	will	share	

out the work. Perhaps 
different groups will 
take different parts of 
the spectrum (infra-red, 
visible, etc). Perhaps 
you will look for useful 
material related to 
different uses of radiation 
(industry, astronomy, 
medicine, etc.).

•	 When	you	have	gathered	
images and other 
information, join together 
to make a long chart of 
the complete spectrum. 
Include on it scales of 
frequency and wavelength.
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down in the water you can create continuous waves travelling out 
from the source (the stick).

Water waves arise due to the surface tension on the water. As 
some of the water molecules are pushed down they pull their 
neighbouring particles down and a trough is created; this then 
travels away from the source.

The speed of water waves depends on the depth of the water. As the 
depth of the water increases, so does the wave speed. In deep water, 
water waves can travel very fast (in hundreds of km/h). 

As water waves enter shallower water their speed reduces, so the 
waves bunch up, the wavelength gets shorter but the amplitude 
increases.

An easy way to remember this is to use: SSSS Water Waves, 
shallower, shorter, steeper and slower.

Most water waves on the open sea are caused by the action of the 
wind on the surface of the water. Tsunamis are different types of 
water wave created by changes to the ocean floor or the coastline 
(often due to earthquakes). In deep water, tsunamis are not really 
noticeable. They travel very fast but have a long wavelength and 
small amplitude. As they approach land they slow down and can 
grow to massive heights. 

Seismic waves
Seismic waves are produced by earthquakes. They travel out from 
the focus in all directions throughout the Earth. It is these waves 
that usually cause the damage to buildings when they reach the 
surface.

 

Figure 8.24 Seismic waves travelling out from an earthquake

There are three types of seismic waves: L-waves, P-waves and 
S-waves. L-waves are complex types of rolling wave, which travel 
along the surface of the Earth and cause the most damage to 
buildings. 

P-waves and S-waves travel through the Earth. It is the different 
properties of these two waves that enable us to not only determine 

Figure 8.21 X-ray of a marmoset 
monkey, taken to see how its 
skeleton compares with other, 
related species

Figure 8.22 Water waves on a 
pond

Figure 8.23 Water waves slow 
down but get taller as the water 
gets shallower.

DID YoU kNoW?
The speed of water waves 
is given by the equation; v 
= √gd, v = wave speed in 
m/s, g = gravitational field 
strength in N/kg = 10 N/kg 
and d = depth of water in m. 

Focus

Fault

Epicentre
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the exact location of the earthquake but also the structure of the 
interior of the Earth.

The P in P-waves stands for primary, or pressure. P-waves are an 
example of longitudinal waves and travel very fast (around 7000 
m/s, depending on the medium). They often arrive first (hence 
primary waves) as they are faster than S-waves.

P-waves are able to travel through both the solid and liquid parts of 
the Earth’s interior.

The S in S-waves stands for secondary, or shear. S-waves are an 
example of transverse waves and still travel fast (around 4000 m/s, 
depending on the medium), just not as fast as P-waves. 

S-waves are only able to travel through the solid parts of the Earth’s 
interior.

Different stations around the Earth record when the P-waves and 
S-waves arrive. The time delay between the waves and data collected 
from other stations can be used to work out the exact location of the 
focus. For example, if three stations A, B and C calculate the focus 
is 1000 km, 800 km and 500 km away from them, respectively, the 
exact position can be determined through triangulation.

In addition to determining the location, we said earlier that 
the differences between P- and S-waves allow us to determine 
information about the structure of the Earth. 

This is a very complex process but it relies on the fact that S-waves 
are only able to travel through solid, whereas P-waves can travel 
through solids and liquids.

Figure 8.27 Using seismic waves to determine to structure of the 
Earth

As the waves travel through the Earth differences in the density 
of the medium cause the waves to bend. It is this bending and the 

Think about this… 
When water waves approach 
the coastline friction with 
the sea bed changes their 
characteristics. This leads to 
the wave rolling over itself 
and breaking onto the sea 
front (in this case it ceases to 
be a transverse wave).

DID YoU kNoW?
The fastest documented 
tsunami was created by an 
earthquake in Chile in May 
1960. The waves travelled 
the 11 000 km to New 
Zealand in around 12 hours. 
That’s an average speed of 
around 900 km/h!

Figure 8.25 Understanding 
earthquakes might help predict 
them and so save lives.

Figure 8.26 Using triangulation 
to determine the location of the 
focus

Station B

Station C

Station A

800 km

500 km
1000 km

Focus

S

S

S
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complete lack of S-waves on the opposite side of the Earth that 
allows scientists to deduce that Earth must have a liquid outer core 
and a solid inner core. Complex mathematics is used to determine 
the dimensions of the core and the changes in density between 
different layers inside the Earth. 

In this section you have learnt that:

In this section you have learnt that:

The amplitude of a wave is the maximum displacement from •	
the equilibrium position.

The wavelength of a wave is the minimum distance from two •	
identical points on adjacent waves (e.g. peak to peak).

The frequency of a wave is the number of waves passing a •	
given point per second.

The time period of a wave is the time taken for one complete •	
wave to pass a given point. 

Mechanical waves are waves that comprise a series of •	
vibrations of matter. 

Examples of mechanical waves include water waves, sound •	
waves and seismic waves. 

Electromagnetic waves comprise vibrations of electric •	
and magnetic fields. No particles are required and so 
electromagnetic waves can travel through a vacuum.

Electromagnetic waves form a family of waves called the •	
electromagnetic spectrum.

Summary

Review questions
1. Define the terms amplitude, wavelength, frequency and time 

period.

2.  Make a scale drawing of a wave with amplitude 2 cm and 
wavelength 8 cm. Mark the amplitude and the wavelength.

3. Look at the wave shown in Figure 8.28. What are the values of 
its amplitude and wavelength?

displacement (cm)

distance (cm)

0

5

15 205 10

5

Figure 8.28

DID YoU kNoW?
Other examples of 
mechanical waves include 
vibrations on strings and 
springs. These vibrations 
are used in musical 
instruments. 

KEY WORDS
focus the underground point 
of origin of an earthquake 
tsunamis huge water waves 
on the open sea often caused 
by earthquakes 
P-waves (primary or 
pressure) a type of 
longitudinal seismic wave that 
can travel through the solid 
and liquid parts of the Earth’s 
structure 
S-waves (secondary or 
shear) a type of transverse 
seismic wave that can only 
travel through the solid parts 
of the Earth’s structure 
triangulation using 
measurements from three 
positions to work out an exact 
point 
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4.  Look at the wave shown in Figure 8.29. What are the values of its 
amplitude and period?

displacement (cm)

time (s)

0

5

30 4010

5

20

Figure 8.29

5.  A wave has a frequency of 400 Hz. What is its period? Give 
your answer in seconds and milliseconds.

6. A wave has a period of 20 µs (microseconds). What is its 
frequency?

7. Describe an electromagnetic wave.

8. Describe the similarities and differences between P-waves and 
S-waves.

8.3 Properties of waves

By the end of this section you should be able to:

State the wave equation and use it to solve problems. •	

Describe the characteristic properties of waves, including •	
reflection, refraction, diffraction and interference.

Define the terms diffraction and interference.•	

The wave equation
We met the wave equation back in Section 8.2. 

wave speed = frequency × wavelength

v = f λ

v = wave speed in m/s.

f = frequency in Hz.

λ = wavelength in m.

This equation can’t be derived in the traditional sense but it is more 
a case of working it through logically from the definitions of v, f  
and λ. 

If a wave has a frequency of 10 Hz it will produce 10 waves per 
second. If the wavelength of each wave is 2 m then it follows 
logically that the train of waves created in one second would be  
20 m long. 
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This is the distance travelled by the wave in one second, or the wave 
speed. 

Figure 8.30 Showing how v = f λ

For example, if a wave has a wavelength of 3 cm and a frequency of 
11 kHz its speed can be determined: 

v = f λ  State principle or equation to be used (the wave equation)

v = 11 000 Hz × 0.03 m   Substitute in known values and complete 
calculation

v = 330 m/s  Clearly state the answer with unit

Notice that wavelength must be in m and frequency in Hz.

Worked example

The	two	students	in	Figure	8.31	measure	
the waves passing the end of a pier. They 
measure	the	wavelength	as	5	m	and	there	
were nine waves passing the pier per minute. 
To calculate the wave speed we must first 
determine the frequency. Nine waves in one 
minute	means	nine	waves	in	60	seconds	so:

9	/	60	=	0.15	waves	per	second,	so	the	
frequency	is	0.15	Hz.

We can now use the standard wave equation:

v = f λ  State principle or equation to be used (the  
 wave equation)

v = 0.15	Hz	×	5	m		Substitute in known values  
 and complete calculation

v = 0.75	m/s		Clearly state the answer with unit

Figure 8.31 These students are calculating the 
speed of the waves as they pass the pier

waves moving in this direction

2 m f = 10 Hz = 10 waves per second 

10 waves, each 2 m long = 20 m in one second
v = 20 m/s

KEY WORDS
diffraction the spreading 
out of waves when they pass 
through a gap or around an 
obstacle
interference when two or 
more waves pass through the 
same point and combine to 
either add up or cancel each 
other out
reflection when waves 
bounce off a fixed surface and 
change direction
refraction when waves 
change speed as they travel 
from one medium to another 
and hence change direction 
wave fronts lines used to 
represent wave crests

Activity 8.7: Using the wave equation

Complete the following table:

Wave speed 
(m/s)

Frequency 
(Hz)

Wavelength 
(m)

Time period 
(s)

400 2

360 4.5

1200 0.005

The wave equation may be also 
applied to electromagnetic waves, 
in which case the equation changes 
slightly to:

c = f λ

c =	speed	of	light	in	a	vacuum		 	
(3 × 108 m/s).
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Wave behaviour
All types of wave exhibit certain behaviour; they exhibit reflection, 
refraction, diffraction and interference.

Reflection
Reflection occurs when a wave reaches a fixed surface. The wave 
cannot pass through the surface; instead, it reflects off it, so that its 
direction changes. Figure 8.32 shows what happens when circular 
ripples in a ripple tank reflect off a straight barrier.

The ripples spread out as circles from the source.•	

After they have reflected from the barrier, they are still circular. •	
They continue to spread out but they are travelling in the 
opposite direction.

In a picture like Figure 8.32, we are looking down on the ripples 
from above. We see the pattern of the wave crests; if we draw lines 
to represent these crests, we call them wave fronts. Figure 8.33 
shows straight wave fronts reflecting off a straight barrier that is at 
an angle. The barrier is at 45° to the ripples arriving from the left; 
the reflected ripples have been reflected through 90°.

Figure 8.33 helps us to understand the first law of reflection of light 
– the angle of incidence equals the angle of reflection.

How are waves affected by a curved reflector? At each point on the 
surface of a curved reflector, the waves obey the law of reflection; 
that is, they reflect as if the surface at that point was flat.

Figure 8.34(a) shows the effect when plane (flat) ripples reach a 
concave reflector. The ripples are reflected inwards so that they 
converge at a point (we say that they are focused by the reflector).

A water wave travels at a speed of 80 m/s with a wavelength 
of 20 m. Calculate the time period of the wave.

In order to find the time period we must first find the 
frequency of the wave:

v = f λ  State principle or equation to be used (the wave equation)

f = v / λ  Rearrange equation to make f the subject

f = 80 m/s / 20 m  Substitute in known values and complete   
 calculation

f = 4	Hz		Clearly state the answer with unit

Time period is the reciprocal of the frequency so:

T = 1 / f  State principle or equation to be used 

T = 1	/	4	Hz		Substitute in known values and complete calculation

T = 0.25	s		Clearly state the answer with unit

Worked example

A radio station transmits at 
a	frequency	of	97.0	MHz.	
Calculate its wavelength.

c = f λ  State principle or
 equation to be used   
 (the wave equation 
 applied to    
 electromagnetic waves)

λ = c / f  Rearrange equation  
 to make λ the subject

In this case the frequency is 
97.0	MHz	or	97	million	Hz.

λ =	3	× 108 m/s / 97 × 106 
Hz		Substitute in known values  
       and complete calculation

λ =	3.1	m.		Clearly state the   
 answer with unit

Worked example

Figure 8.32 Ripples in a ripple 
tank reflect off a straight barrier 

reflected
ripples

barrier

incoming
ripples

Figure 8.33 The lines are called 
wave fronts; here they are 
reflecting off a straight barrier
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Figure 8.34(b) shows how ripples are affected by a convex reflector; 
in this case, the straight ripples are reflected so that they become 
curved. They take the form of circular ripples spreading out as 
though they were coming from a point on the other side of the 
barrier.

Figure 8.34(a) also tells us how circular ripples will be affected by a 
concave reflector. If they start from the focus of the reflector, they 
will be reflected so that they become straight ripples. (To see this, 
simply reverse the arrows in the diagram.)

incoming
ripples

concave(a) (b)
reflector

reflected
ripples

convex
reflector

incoming
ripples

reflected
ripples

Refraction
The word refraction means breaking. Refraction is a property of all 
waves (light, sound, etc.). It happens when waves change speed as 
they move from one material to another. 

Refraction can be shown using a ripple tank. Ripples travel more 
slowly in shallower water than in deeper water, because they drag 
on the bottom. A shallow area can be created in the tank by placing 
a sheet of glass in the tank; typically, the water is 8 mm deep, but 
only 3 mm deep above the glass.

incoming
ripples

reflected
ripples

deep water
= faster waves

shallow water
= slower waves 

Figure 8.35 shows the pattern that results when the boundary 
between the deep and shallow water is at an angle to the wave 
fronts. Things to notice:

The ripples change direction as they enter the shallower water.•	

The ripples are closer together in the shallower water – their •	
wavelength has decreased.

You will learn more about refraction of light in Grade 10.

Figure 8.35 Wave fronts change 
direction when their speed 
changes

Figure 8.34 Showing how plane 
ripples are reflected by (a) a 
concave reflector; (b) a convex 
reflector

M08_PHYS_SB_ETHG9_0162_U08.indd   224 12/7/10   1:24:57 pm



225

UNIT 8: Wave motion and sound

Grade 9

Introduction to diffraction and interference
Diffraction and interference are behaviours totally unique to 
waves. Essentially diffraction is the spreading out of waves when 
they travel through gaps or around obstacles, whereas interference 
is when two waves pass through each other and either add up or 
cancel each other out.

Diffraction
Imagine you are sitting in a room. The door is open, and you can 
hear music coming from the radio in the next room. You cannot see 
the radio, but the sound waves it produces pass through the door 
and spread out into the room you are in. This spreading out is an 
example of a wave phenomenon called diffraction.

Diffraction occurs when a wave passes the edge of an obstacle, 
or through a gap. It can be investigated using a ripple tank. 
Figure 8.36 shows what happens when ripples reach a barrier with a 
gap in it. From the photographs you can see the following:

The ripples spread out into the space beyond the gap.•	

The narrow gap has more effect than the wide one – there is •	
more spreading out with the narrower gap.

The effect of diffraction is greatest when the width of the gap is the 
same as the wavelength of the waves, as in Figure 8.36(a). A bigger 
gap has less effect.

Why do we not notice diffraction of light? The wavelength of light 
is very short – less than one-millionth of a metre. This means that 
a very tiny gap is needed to diffract light – light waves will not be 
noticeably diffracted as they pass through a doorway. In fact, light 
is diffracted by very small gaps or obstacles. Figure 8.37 shows the 
Moon hidden behind a church spire. The photo was taken at a time 
when there were many tiny grains of pollen in the atmosphere, and 
the light from the Moon is being diffracted by these, causing a ‘halo’ 
around it. The size of the pollen grains is similar to the wavelength 
of light.

Activity 8.8: Observing diffraction of light
Grains of talcum powder are very small – similar to the 
wavelength of light. They can diffract light to form a pattern 
like	the	halo	shown	in	Figure	8.37.	

•	 Find	two	glass	microscope	slides.

•	 Sprinkle	a	very	little	talcum	powder	on	one	slide.	Press	the
 second slide on top of the first, and slide it around to give
 a thin film of powder between the two slides.

•	 Hold	the	double	slide	close	to	your	eye	and	look	at	it
 through a distant lamp. Can you see a diffraction halo
 around the lamp?

Figure 8.36 Diffraction of ripples 
as they pass through a gap in 
a ripple tank; the gap in (a) is 
similar in size to the wavelength 
of the ripples; in (b) it is much 
bigger.

(a)

(b)
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Interference
What happens when two waves meet? A strange feature of waves is 
that they pass straight through each other. Here is an example with 
two sets of light waves. Switch on two torches (flashlights). Direct 
their beams so that they cross over. The light waves from one torch 
pass straight through the light waves from the other. If light was 
made of particles, they would bounce off each other.

Now we need to think about what happens at the point where the 
paths of the two sets of waves cross. 

Constructive and destructive interference
To observe interference, we need two sets of waves. Figure 8.38 
shows that there are two kinds of interference:

If the two waves are in phase (in step) with each other, they •	
combine to make a bigger wave, with twice the amplitude. This is 
called constructive interference.

If the two waves are out of phase with each other, they cancel •	
each other, so that there is no wave. This is called destructive 
interference.

(a)

(b)

Figure 8.38 Two waves can interfere (a) constructively, or   
(b) destructively

Note that the two sets of waves must have exactly the same wavelength 
(and frequency) if they are to interfere like this. Also, their amplitudes 
should be the same if they are going to cancel exactly.

It is difficult to see interference with light. One example is the 
coloured patterns you see where there is a thin film of oil on a 
puddle of water, or if you look at the shiny surface of a compact 
disc (CD). Where you see a bright red colour, for example, red light 
waves are reflecting off the surfaces of the oil or CD and interfering 
constructively to produce a bright colour. Different colours interfere 
at different angles to produce the pattern.

Figure 8.37 You may have seen a 
‘halo’ like this around the Moon, 
or around the Sun at sunset. It 
is caused by tiny pollen grains 
or water droplets in the air, 
diffracting the light
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Interference of ripples
A ripple tank can show the interference patterns produced when 
two sets of ripples meet. There are two ways to do this:

Use two vibrating dippers to produce two sets of circular ripples. •	
Where the ripples overlap, they produce a characteristic pattern 
(Figure 8.39). At some points, the ripples add together (interfere 
constructively) to produce a large effect. In between, they cancel 
out so that the surface of the water is unperturbed.

Alternatively, use a straight vibrating source to produce parallel •	
ripples. Direct these at a barrier with two gaps; the ripples pass 
through the gaps and diffract into the space beyond. Here, they 
overlap to produce an interference pattern similar to the one 
shown in the photograph.

•	

Review questions
1.  A guitarist plays a high note; its frequency is 2000 Hz. The 

sound waves produced have a wavelength of 0.17 m. What is 
the speed of sound in air?

2.  A drummer plays a note with a frequency of 85 Hz. What is the 
wavelength of this sound wave in air? (Speed of sound in air = 
340 m s–1.)

3.  A radio station broadcasts an FM signal with a wavelength of 
2.85 m. If the speed of radio waves is 3 × 108 m s–1, what is the 
frequency of the FM signal?

4. Explain the terms reflection, refraction, diffraction and 
interference.

In this section you have learnt that:

In this section you learnt that:

The wave equation is •	 v = f λ.

When waves bounce off a surface, this is called reflection. •	

Summary

When waves travel from one medium to another, their speed •	
may change and so they may bend. This is called refraction.

Diffraction is the spreading out of waves when they pass •	
through a gap or around an obstacle.

Interference is when two or more waves pass through the •	
same point and either add up or cancel each other out.

KEY WORDS
constructive interference 
where two waves are in phase 
with each other and combine 
to make a bigger wave
destructive interference 
where two waves are out of 
phase with each other and 
combine to cancel each other 
out

Figure 8.39 The two vibrating 
balls produce sets of ripples 
that overlap with each other 
to produce an interference 
pattern. At the top of the photo 
you can clearly see regions 
where the ripples are cancelling 
out (destructive interference). 
In between are regions of 
constructive interference
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8.4  Sound waves

By the end of this section you should be able to:

Identify sound waves as longitudinal mechanical waves •	
and describe how the waves are produced and how they 
propagate.

Compare the speed of sound in different materials and •	
determine the speed of sound in air at a given temperature.

Define the intensity of a sound wave and solve problems •	
using the intensity formula.

Explain the meaning of the terms echo, reverberation, •	
pitch, loudness and quality.

Explain the reflection and refraction of sound and describe •	
some applications.

Sound waves are longitudinal mechanical waves. Sound waves 
are produced whenever an object vibrates. When you speak your 
vocal cords in your throat vibrate as the air is pushed over them. 
Different musical instruments produce sound by making a part of 
the instrument vibrate.

As sound waves are mechanical waves they require a medium to 
travel through. Sound obviously travels through air but it also travel 
through other gases, as well as solids and liquids. Importantly, 
sound cannot travel through a vacuum.

Activity 8.10: To find whether sound can pass through 
a vacuum
•	 Hang	an	electric	bell	by	cotton	thread	from	the	stopper	of	

a	bell	jar	(Figure	8.40).	Make	the	bell	ring.	Place	the	jar	on	
the plate of an exhaust pump. Can you hear the sound?

•	 Pump	air	out	of	the	bell	jar,	letting	the	bell	ring	all	the	time	
inside the jar. What do you observe about the sound? 

•	 Let	air	enter	the	bell	jar	again.	What	happens?

���������������

�������������

��������

�������������������������������

Figure 8.40 Can sound pass through a vacuum?

Table 8.2 Vibrations in musical 
instruments

Instrument Vibration

Drums Drum skin

Piano Strings

Guitar, violin, 
etc.

Strings and 
body of 
instrument

Trumpet and 
trombone

Lips (causing 
the air inside 
to vibrate)

Activity 8.9: To show 
that sound is caused by 
vibration
•	 Stretch	a	piece	of	elastic	

and pluck it. Note the 
way it moves.

•	 Press	one	end	of	a	ruler	
down on a table. Twang 
the free end.

•	 Strike	the	prongs	of	a	
tuning fork against a 
rubber	stopper;	note	how	
they move backwards and 
forwards. Let one of the 
prongs touch a table-
tennis ball hanging on a 
thread. The ball moves. 
Touch the still surface of 
water with the moving 
prongs;	ripples	spread	out	
across the surface.

KEY WORDS
longitudinal mechanical 
waves  waves comprising 
vibrations in matter where the 
vibrations are parallel to the 
direction of wave motion
audible range the range of 
sound frequencies that can be 
detected by the ear
ear drums membranes in the 
ear that vibrate when a sound 
wave enters the ear canal
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It is important to realise that sound waves are longitudinal. We 
often see pictures of sound waves looking like transverse waves. 
Remember, this is because a graph of particle displacement against 
distance or time for both transverse and longitudinal waves looks 
like Figure 8.41.

Sound waves are a series of compressions and rarefactions and we 
can see this by conducting a very simple experiment. 

If you place a candle in front of a speaker and then play sounds 
through the speaker (ideally just one tone) you will see the candle 
flame wobble from side to side. 

This shows that the vibrations are parallel to the direction of wave 
motion. In fact if you think about how the speaker produces the 
sound then it is even more obvious.

Figure 8.43 How a speaker produces a sound wave

If you look closely at a speaker you will see the speaker cone moving 
in and out. As it moves out it creates an area of higher pressure as it 
compresses the air (B). The cone then moves back in and so creates 
an area of lower pressure, and so a rarefaction (C). This process 
continues, creating a longitudinal wave (D).

Hearing
When these vibrations reach our ears they travel down our ear canal 
and make our ear drums vibrate. These vibrations are transmitted 
to special cells inside your skull, which send a signal to your brain 
that we interpret as sound.

When we are young we can detect a range of frequencies from 
around 20 Hz to 20 000 Hz. This is referred to as our audible range.

This varies from person to person and factors such as age and 
exposure to loud music dramatically changes this range. Table 8.3 
on the next page shows the audible range of several other animals.

Activity 8.11: Sound 
travels through many 
substances
•	 A	string	telephone:	

 Join the bottoms of two 
empty tin cans with 
string. Speak into one 
tin while a friend listens 
with the other tin. keep 
the string tight so that it 
presses against the metal. 
Can sound pass through a 
string?

•	 Lay	a	ticking	watch	or	
clock at one end of a 
table. Now place one ear 
against the table, at the 
other end. Can you hear 
the ticking? Does sound 
travel better through 
wood than through air?

•	 Clap	your	hands	when	
swimming under water. 
Can you hear the sound 
easily? This might be 
tricky and so it helps if 
you have a partner who 
can clap while you swim!

Figure 8.41 Displacement against 
distance

Equilibrium
position

Distance

Displacement

A

B

C

D

Direction of sound wave

Figure 8.42 Demonstrating sound 
waves are longitudinal

Wave Motion (direction)
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The speed of sound
The speed of sound through air is around 340 m/s; this is around 
900 000 times slower than light, but still pretty fast.

In storms thunder and lightning occur at the same time. However, 
the light travels much faster than the sound. This means we always 
see the flash of lightning before the sound of thunder arrives. The 
greater the time delay, the further away the storm.

In fact if we assume the light arrives without any real delay, then for 
every second between the lightning and the thunder the storm is 
around 300 m away.

Activity 8.12: Investigating the range of hearing
A signal generator connected to a loudspeaker can produce 
sounds	of	a	known	frequency	(Figure	8.45).

Figure 8.45 Turning the dial on the signal generator changes the 
frequency of the sound from the loudspeaker.

•	 Listen	as	the	frequency	becomes	higher	and	higher.	At	what
 frequency does it become inaudible?

•	 Repeat	as	the	frequency	is	reduced.

•	 Imagine	that	someone	in	your	class	claims	to	be	able	to
	 hear	frequencies	that	are	higher	than	you	can	hear.	How
 could you check that they are telling the truth?

•	 It	is	said	that	younger	people	can	hear	higher	notes	than
	 older	people.	How	could	you	test	this	idea?

Sound travels at different speeds through different materials. The 
speed of sound through water is around five times faster than in air 
and in metals like iron it is faster still (around 15 times).

Figure 8.44 Different animals 
have different audible ranges.

Think about this… 
To help remember the audible 
range of humans think of 
20:20 vision. This is often 
used to represent good 
eyesight. Well, humans also 
have 20:20 hearing, that is 
20	Hz	to	20	kHz!

DID YoU kNoW?
Elephants can detect very 
low frequency sound waves. 
This is used for long-
distance communication 
between herds. Due to its 
low frequency it has a range 
of around 10 km.

Table 8.3 Different audible ranges

Animal Approximate 
audible range 
(Hz)

Human 20–20 000

Bat 10–200 000

Dog 15–40	000

Dolphin 120–110 000
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Table 8.4 Speed of sound in different materials

Medium Speed of sound (m/s)

Dry air at 0°C 331

Dry air at 30°C 349

Moist tropical air 351

Water at 20°C 1484

Seawater	at	15°C 1510

Wood 3850

Iron, steel 5000

Glass 5000

In general, the denser the material, the faster the speed of sound. 
This is because the particles in the medium are closer together and 
so the vibrations pass from particle to particle much quicker.

When sound waves travel through gases, things are a little more 
complex due to the motion of the particles. The density of the gas 
has an effect, and if two gases were at the same temperature then 
sound would travel faster through the denser gas. However, the 
temperature of the gas has a significant effect.

When a gas is at a higher temperature the average kinetic energy 
of the particles is higher. This means on average the particles are 
moving faster (see Unit 7). The faster the particles are moving, the 
faster the speed of sound through the gas. This can be seen in Table 
8.5.

As air gets warmer the speed of sound through it increases. The 
speed of sound through any gas may be calculated using the 
equation below:

v = •	 √(γR*T)

γ = the adiabatic index of the gas (a constant for the gas). For air, 
this equals 1.4.

R* = another constant for the gas. It equals the molar gas constant / 
the molar mass (R / M). For air. this is 286 m2/s2 K.

T = the temperature in K.

For air, this can be simplified to:

v = •	 √(kT)

where k = γ × R* = 1.4 × 286 m2/s2 K = 400 m2/s2 K and so:

v = •	 √(400 × T)

At 25 °C the speed of sound through air may be calculated using 
this equation:

v = •	 √(400 × T)

Figure 8.46 A storm

Activity 8.13: Thunder 
and lightning
A clap of thunder arrives five 
seconds after the lightning. 
How	far	away	is	the	storm?	
What would happen to the 
time delay if the storm were 
moving towards you?

Table 8.5 Speed of sound in air

Air temperature 
(°C)

Speed 
(m/s)

–20 319

–10 325

0 331

10 337

20 343

30 349
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Remember, the temperature must be in K not °C. So, 25 °C = 298 K

v = •	 √(400 × 298 K)

v•	  = 345 m/s

A simple way to determine the speed of sound is to measure the 
time it takes for a sound wave to travel a known distance.

Activity 8.14: Measuring the speed of sound using 
echoes
•	 Stand	facing	a	tall	wall,	at	a	distance	of	about	100	m	

(Figure	8.48).	Measure	the	distance	to	the	wall.

•	 Clap	two	blocks	of	wood	together,	and	listen	to	the	echo.	
The time interval is too short to measure accurately.

•	 Now	clap	the	blocks	together	so	that	each	clap	coincides	
with the echo of the previous one. Using a stopwatch, time 
a sequence of 10 claps. (Count 0, 1, 2, 3 … 9, 10.)

How	do	we	describe	sound	waves?
What is the difference between louder and quieter sounds? Or 
higher pitch and lower pitch sounds? And why does the same note 
sound different from a violin to a piano? In order to answer these 
questions we need to be able to observe what is going on in terms of 
the particles.

Sound waves are longitudinal mechanical waves, but we can use 
an oscilloscope and microphone to help ‘see’ sound waves. An 
oscilloscope produces a trace on the screen that varies depending 
on the sound entering the microphone. It is essentially a trace of the 
displacement of the particles against time.

Using an oscilloscope we can see the effect of changing volume and 
pitch.

DID YoU kNoW?
Mach numbers (named 
after the Austrian physicist 
Ernst Mach) are often used 
to quantify the speed of 
fast moving aircraft. Mach 
1 represents the speed of 
sound, Mach 2 twice the 
speed of sound, etc. Aircraft 
travelling at speeds greater 
than Mach 1 are flying faster 
than the speed of sound and 
are said to be supersonic. 

Figure 8.47 Modern jet fighters 
are able to travel much faster 
than the speed of sound.

Figure 8.49 The displacement of 
air particles against time

•	 Now	you	know	the	time	taken	for	the	sound	to	travel	to	the	
wall and back ten times. Use this information to calculate 
the speed of sound in air.

������������������

����
����

Figure 8.48 Using echoes to measure the speed of sound

Time

Displacement
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Loudness
The loudness of a sound depends on the amplitude of the sound 
wave. The greater the amplitude, the louder the sound.

In louder sounds the particles move further from their equilibrium 
position.

The loudness of a sound is measured in decibels (or dB). This is a 
complex scale. It is logarithmic not a linear scale. In other words  
40 dB is much more than twice as loud as 20 dB.

Table 8.6 The loudness of different sounds

Sound Loudness (decibels)

Whisper 10

Leaves rustling in the wind 17

Shouting 70

Loud music 100

Jet engine 120

Pitch
The pitch of a sound depends on the frequency of the sound wave. 
The higher the frequency of the sound waves the higher their pitch.

In higher pitch sounds the particles vibrate more often past their 
equilibrium position per second.

Timbre (quality)
The same note played on 
different instruments sounds 
distinctly different. This 
difference is referred to the 
timbre (or quality) of the 
sound. Quality does not mean 
good or bad, it just refers to the 
difference in the sound.

You can see from Figure 8.53 
above that the same note 
produces a different trace on 
the oscilloscope. This is because 
of the complex nature of the 
number of different vibrations 
produced by the instrument.

������������

����������

Figure 8.50 A simple oscilloscope

�
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�
����������� ������������

Figure 8.51 The difference 
between a loud sound and a quiet 
sound

�

������ ������

�
����������� ������������

Figure 8.52 The difference 
between a low pitch sound and a 
high pitch sound

KEY WORDS
loudness the audible strength 
of a sound, which depends on 
the amplitude of the sound 
wave
pitch highness or lowness of a 
sound, which depends on the 
frequency of the sound wave
timbre the quality of a sound

�������

�������
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Figure 8.53 The same 
note produced by different 
instruments 
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Activity 8.15: Sounds on a scope
•	 Connect	a	signal	generator	to	an	oscilloscope	and	to	a
 loudspeaker. Watch how the trace on the scope changes as
 the controls of the signal generator are altered.

•	 The	sound	is	made	louder:	how	does	the	trace	change?

•	 The	frequency	is	made	higher:	how	does	the	trace	change?

•	 Connect	a	microphone	to	the	oscilloscope,	in	place	of
 the signal generator. Make different sounds in front of
 the microphone and observe the traces. (Try clapping,
 whistling, playing an instrument.)

Echoes, echoes, echoes, echoes….
Sound, like all waves, is able to reflect off surfaces. A reflection of 
sound is called an echo. 

You get the best echoes off solid surfaces, like metal sheets or stone. 
Softer surfaces tend to absorb the sound waves and so there are 
reflected less. You might have noticed this inside a cave or inside a 
building with solid stone walls.

If the sound produced is in an enclosed space it may produce a 
number of echoes. It sounds like the sound is building up then 
slowly decaying away. This is called reverberation. 

This is most noticeable when the source of sound stops but the 
reflections continue. Each time they reflect off the surface they 
lose some energy and so the amplitude decreases and the sound 
becomes quieter.

The intensity of sound waves
The further the source of sound is away from you the quieter the 
sound. This is because the energy is spread out over a much wider 
area. 

This happens with all waves. If you look closely at the ripples on a 
pond you can see the amplitude of the wave decreases as you get 
further away from the source.

The intensity of any wave is defined as the energy received by each 
square metre per second. A higher intensity would mean more 
energy per second falling on each square metre.

Intensity is equal to the energy incident on each square metre •	
of a surface per second.

This gives us units of intensity as W/m2, we use W as this is just 
energy per second.

The further away the surface the more the energy gets spread out 
and so the intensity falls. Imagine standing near a wall and shouting 
at it (I know it sounds odd!). The sound spreads out as it leaves your 
mouth and strikes an area of the wall.

Figure 8.54 Different instruments 
produce different quality notes.

DID YoU kNoW?
“A duck’s quack doesn’t 
echo” is a much-quoted 
scientific myth. The truth is 
that a duck’s quack does, it’s 
just quite hard to hear due 
to the shape of the sound 
wave produced.

Figure 8.55 It is important to 
reduce the echo in recording 
studios.

Figure 8.56 The ripples get smaller 
as the energy is spread out.
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However, if you stand further away the sound has to travel a greater 
distance before it strikes the wall and so it spreads out to cover a 
wider area.

The intensity is now lower as the energy per second per square 
metre has dropped – it’s more spread out.

In all cases the intensity of a wave can be determined using the 
equation below.

intensity = power /area•	

If we think about the sound travelling out in all directions (in 3D) 
from a source we can see that the energy spreads out in the shape 
of a sphere. So in this case the area is the surface area of a sphere 
(given by 4πr2). This means the equation becomes:

intensity = power /area•	

I = P •	 / 4πr2

From this equation we can see that if the wave travels twice as far 
then the intensity falls to a quarter of its value. Three times as far 
and it is a ninth. This is because the energy is spread over a much 
larger area, double the distance and it’s four times the area, as shown 
in Figure 8.59.

This kind of relationship is called an inverse square relationship. 
As the distance goes up by a factor of x, the intensity falls by x2. This 
produces a graph like that in Figure 8.60 on the next page.

sphere area
4πr2

Source power

intensity at
surface of sphere

P

P

4πr2
= I

I

r

2r

3r

I
4

I
9

A

A
A

A

A
A

A

A
A

A

A
A

A
A

Figure 8.57 Stand close to a 
wall and the intensity is higher.

Figure 8.58 Stand further away 
and the intensity drops.

Figure 8.59 Intensity against 
distance

KEY WORDS
echo a reflection of a sound 
wave 
intensity the energy received 
by each square metre of a 
surface per second 
reverberation multiple 
reflection of sound waves in 
an enclosed space so that 
the sound continues after the 
source is cut off 
inverse square relationship 
where if one variable increases 
by a factor of x2 then the other  
decreases by a factor of x2  
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 Figure 8.60 A graph showing how intensity varies with distance from 
source.

You will come across a number of inverse square relationships in 
the next few years.

Think about this… 
Sound waves speed up as they 
enter	denser	materials;	this	
means when they refract they 
bend towards normal unlike  
light (which slows down in 
denser materials).
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A	speaker	has	a	power	output	of	150	W.	Determine	the	
intensity	of	the	sound	1.5	m	from	the	speaker.

I = P / 4πr2  State principle or equation to be used (intensity for a  
 point source)

I = 150	W	/	4π ×	(1.5	m)2  Substitute in known values and   
 complete calculation

I = 5.3	W/m2  Clearly state the answer with unit

The intensity of a sound wave is measured to be 0.7 W/m2 
when 2.0 m from the source. Calculate the power of the source.

I = P / 4πr2  State principle or equation to be used (intensity for a  
 point source)

P = I × 4πr2  Rearrange equation to make P the subject

P = 0.7 W/m2 × 4π × (2.0 m)2  Substitute in known values and  
 complete calculation

P = 35	W		Clearly state the answer with unit

Worked example

KEY WORDS
ultrasound high frequency 
sound waves, above human 
hearing  
hydrophones  underwater 
microphones 
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Uses of sound waves
Sound waves have many uses, in addition to the obvious uses in 
communication and music.

Most of these uses depend on the behaviour of the sound waves when 
they reflect or refract. Sound, like all waves, reflects off surfaces, but 
sound waves also reflect off the boundary between materials if there 
is a change in density between the materials. The greater this change 
in density the greater the amount of sound reflected.

In Figure 8.61, sound waves refract as they enter a medium with a 
different density (the red area). You can also see the sound waves 
reflect off the boundary between the materials (the green arrows).

It is these reflections and refractions that can tell us a great deal 
about the object and so make sound very useful indeed.

In fact for most uses ultrasound is used instead. Ultrasound is 
just sound waves with a high frequency and so a relatively short 
wavelength. This means it does not diffract very much and so it 
remains as a tight focused beam. 

Ultrasound is any sound above the audible range of humans. It can 
be defined as:

Sound waves with a high frequency, above human hearing, •	
above 20 kHz.

One example of the use of sound is SONAR. This stands for SOund 
Navigation And Ranging, which is the sound wave equivalent of 
radar. It is most often used by ships to determine the depth of the 
sea bed, the location of a shoal of fish, or even the position of an 
enemy submarine.

Sound is transmitted by the ship and it travels through the water. It 
reflects off the sea bed and travels back up where it is detected by 
special underwater microphones called hydrophones.

It is then a relatively simple process to determine the distance 
travelled by the sound using distance = speed of sound through 
water × time taken. The depth is then half this distance as the sound 
has had to travel there and back!

Ultrasound is also used in pre-natal scanning. Here the ultrasound 
travels into the womb and reflects off the unborn baby. This sound 
is harmless (unlike using X-rays) and allows doctors to monitor the 
progress of the developing baby.

Ultrasound is also used to detect flaws in metals and even to help 
people park their cars! In each case it is the reflection and refraction 
of the sound that makes the job possible. 

Activity 8.16: Depth sounding
The	speed	of	sound	through	sea	water	is	around	1500	m/s.	
A wave pulse is sent from a ship and takes 0.7 s to return. 
Calculate the depth of the water. Figure 8.63 Using ultrasound to 

monitor a baby

Figure 8.61 The reflection and 
refraction of sound through 
different materials
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Figure 8.62 Using SONAR to 
determine the depth of the sea
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In this section you have learnt that:

Sound waves are mechanical longitudinal waves produced •	
when objects vibrate.

Sound waves travel through different media as a series of •	
compressions and rarefactions.

In	general,	sound	travels	faster	in	denser	materials;	however,	•	
the warmer the gas the faster the speed of sound through it.

The amplitude of a sound wave affects its loudness and the •	
frequency of the sound wave its pitch. 

A reflection of sound is called an echo and if several echoes •	
are trapped inside a room or object a reverberation may be 
heard.

The intensity of a sound wave is the energy received per •	
square metre of a surface per second. 

Sound	has	many	uses	including	SONAR	and	pre-natal	•	
scanning. Both rely on the sound waves reflecting and 
refracting off different materials.

Summary

Review questions
1. Compare the speed of sound through the different materials in 

the Table 8.4 (speed of sound through materials). Explain the 
differences in the speed of sound: 

a) between solids, liquids and gases 

b) between warm air and cold air.

2. Explain the meaning of the terms loudness, pitch and timbre. 
Illustrate your explanations with diagrams and examples.

3. A speaker produces a sound output at a power of 500 W. 
Determine the intensity at:

a) 2.0 m

b) 4.0 m

c) 16 m

4. The intensity of a sound source is measured 3.0 m from the 
source and it found to be 4.0 W/m2. Calculate the intensity 
received at:

a) 1.0 m

b) 5.0 m

5. Describe one possible use of sound waves.
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End of unit questions 
1.  a)  In which type of wave are the vibrations at right angles to 

the direction of travel?

b)  What is the name given to the other type of wave?

c)  Describe the vibrations in this type of wave.

d)  Give an example of each type of wave.

e) Describe how you would demonstrate each type of wave 
using a slinky spring.

2. Complete the table and draw the following waves to scale:

Wave 
speed 
(m/s)

Frequency 
(Hz)

Wavelength 
(m)

Time 
period 
(s)

Amplitude 
(m)

720 45 8.0

40 0.05 4.0

6000 0.002 3.0

3. An electromagnetic wave has a wavelength of 10 nm. Calculate 
its frequency and identify to which part of the electromagnetic 
spectrum the wave belongs.

4.  What wave phenomena are described here?

a)   A light wave slows down as it passes from air into water; 
this causes it to change direction.

b)   Waves on the sea pass between two high walls into a 
harbour. They spread out into the space behind the walls.

c)   Two alarm sirens are emitting a loud note; at points 
between the two sirens the sound is very loud, but at other 
points it is much fainter.

d)   An explorer shouts into a dark cave; a fraction of a second 
later, he hears the sound of his own voice.

5. Draw diagrams to illustrate the difference between constructive 
and destructive interference.

6.  Two identical waves of amplitude 5 cm meet in a large ripple 
tank. What will be the amplitude of the combined wave at a 
point where they interfere constructively? And where they 
interfere destructively?

7.  Explain why, if someone is playing a guitar in the next room, 
you may be able to hear the sound of the guitar through the 
open doorway, although you cannot see the guitarist because 
she is round the corner.

8. What is meant by an echo?

9. A child claps her hands together whilst facing a tall building. 
The echo reaches her ears after 0.6 s. How far is she from the 
building? (Speed of sound in air = 340 m s–1.)
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10. Outline a method of finding the velocity of sound in air.

11.  In an experiment to measure the speed of sound in a steel rod, 
it is found that a sound will travel along a rod of length 2 m in a 
time of 0.000 4 s. What is the speed of sound in steel?

12. Explain why a flash of lightning is usually seen before the clap 
of thunder is heard.

13. A ship is sailing in a part of the sea where the bed is 600 m 
below the ship. The ship uses sonar to detect the seabed. How 
long will it take a pulse of sound to travel to the seabed and 
return to the ship? (Speed of sound in water = 1500 m s–1.)

M08_PHYS_SB_ETHG9_0162_U08.indd   240 12/7/10   1:25:11 pm



241Grade 9

Index
absolute pressure 160, 161
absolute zero 174, 175
acceleration 19–21, 26
    direction 32–33
    force and 20, 55–58
    mass and 56–57
    see also uniformly accelerated  

motion
air pressure 142–150
air resistance 34
altitude
    atmospheric pressure and 145
    density and 153
amplitude of waves 214–215
aneroid barometers 146
angular momentum 74
apparent weight 61, 163–164, 165
Archimedes 119, 130, 164
     Archimedes’ principle 164–165
Aristotle 44, 45
atmospheric pressure 143–147, 156, 

160, 161

balanced forces 55
barometers 146–147
bicycle pumps 149–150
bimetallic strips 185–186
boiling points 145, 200, 201
Bourdon gauges 161
buoyant force 162–164

calories (cal) 191
calorimeters 194–195
Celsius scale 174–175
changes of state 200–204
closed systems 102
coefficient of friction 66–67
coefficient of linear expansion 180
collisions 76–78
     conservation of energy in 103–104
     elastic and inelastic 83, 103–104
complex machines 136–137
compound pulleys 134
compressions 212
conservation of energy, law of 

102–105, 177
conservation of linear momentum, law 

of 76–78, 79, 81–82
constructive interference 226
contact forces 44
continuous waves 209
cooling curves 200–201
Coriolis, Gaspard-Gustave 88
crests of waves 210–211

density
    of floating objects 167–168
    of fluids 152–153
    relative 153–154, 167
    waves and 219–220, 231, 236
destructive interference 226
differential pulleys 137
diffraction 225
displacement 16, 26–27
displacement-time graphs 22–25, 36
distance 16
distance-time graphs 24–25
drinking straws 148

Earth
    atmosphere 143–146, 153
    gravitational field strength 58–59, 

72
    as reference frame 37
    seismic waves in 218–220
earthquakes 218–220
echoes 234
efficiency of machines 121–123, 125, 

127, 130
effort 117
elastic collisions 83, 103–104
elastic deformation 51
elastic limit 50–51
elastic potential energy (EPE) 100
electrical work 89
electricity, generation 106
electromagnetic forces 43
electromagnetic waves 217
energy
    conservation of 102–105, 177
    forms 96
    heat see heat energy
    kinetic see kinetic energy
    in oscillating systems 104–105
    potential see potential energy
    total mechanical energy 100
    units of 96, 111–112, 191
    in waves 208
    work and 88, 96–100
energy resources 105–106
    in Ethiopia 108, 109
    renewable 106–108
equilibrant forces 53, 55
equilibrium 10–13, 143
    linear 84–85
    thermal 176
expansion joints 185
explosions 78–79, 212

Fahrenheit scale 174–175
fixed pulleys 134
floating objects 166–167
fluids 151–152
    density of 152–153
    forces in 162–165
    pressure in 154–156
    see also gases; liquids
force pumps 148–149
force-distance graphs 92–94
force-extension graphs 48, 49
forces 43–44
    acceleration and 20, 55–58
    effects of 44–45, 46–50
    in equilibrium 10–13
    in fluids 162–165
    Newton’s pairs 72–73
    pressure and 141–142
    resolving 7–8, 53–55, 57–58, 

62–63
fossil fuels 106
free body diagrams 43–44
free fall 34–36
frequency of waves 216
friction 64–65
    calculating 66–69
    effects of 70, 118
    factors affecting 65–66
    reducing 69–70
    work done against 91–92
fulcrum 128, 131–132

Galileo Galilei 34, 119
gases 151–152, 188
gauge pressure 160–161
gears 133–134
geothermal power 107, 108, 109
graphs
    displacement-time 22–25, 36
    distance-time 24–25
    force-distance 92–94
    force-extension 48, 49
    velocity-time 25–27, 32, 36
gravitational field strength 58–60, 72
gravitational potential energy (GPE) 

99–100
gravity 43, 44
    acceleration due to 34, 35, 60
    work done against 90, 91–92

hearing 229, 230
heat capacity 197–198
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heat energy 101, 102, 172, 175
    absorption 176, 191–192
    changes of state 200–204
    from friction 91, 118
heating curves 200
Hooke’s law 47–49, 51, 93
hot riveting 185
hydraulic machines 157, 158–159
hydroelectric power 107, 108

ice, specific latent heat of fusion 
203–204

impulse of a force 80–81
inclined planes 68–69, 119, 124–125
inelastic collisions 83, 103–104
inertia 45–46
inertial frame of reference 37
instantaneous speed 18
instantaneous velocity 18
intensity of sound waves 234–236
interference 226–227

jackscrew 137
joules (J) 88, 89, 111–112, 191

Kelvin scale 174–175
kilograms (kg) 58
kilowatt-hour (kWh) 111–112
kinetic energy 96–98, 102
    in collisions 83, 103–104
    linear momentum compared 103
    in oscillating systems 104–105
    temperature and 172–174
    work and 97–98
kinetic friction 65, 91–92

latent heat
    of fusion 201
    of vaporisation 201
law of flotation 166
laws of thermodynamics
    first law 177–178
    second law 178
levers 119, 128–130
    in the body 132
    classes of 131–132
lift pumps 148
lifts
    hydraulic 158, 159
    passenger weight in 61–62
light, speed of 37
light waves 208
limiting friction 65
linear equilibrium 84–85
linear expansion 180–181, 184
linear momentum 74–76
    kinetic energy compared 103
    law of conservation of 76–78
    Newton’s laws and 79–80, 81–82
liquids 151–152, 187–190
load 47, 117
longitudinal waves 211–213, 215

loudness 233
lubrication 70

mach numbers 232
machines 117–118
    complex 136–137
    as direction changers 120
    efficiency of 121–123
    as force multipliers 119
    hydraulic 157, 158–159
    simple 118–119, 124–136
    as speed multipliers 119–120
Magdeburg hemispheres 144–145
magnetic forces 44
magnitude 2
manometers 161–162
mass 58–59
    acceleration and 56–57
    inertia and 46
    kinetic energy and 96–97
mass-spring systems 105
mechanical advantage (MA) 120–121
    efficiency and 121–123
    of simple machines 125, 126, 127, 

129–130, 132, 134, 137
mechanical waves 217–220
mechanical work 88–89
    against friction 91–92
    against gravity 90, 91–92
    calculating 88–90
    kinetic energy and 97–98
    machines 117–118
    positive or negative 95
    potential energy and 98–99
    variable forces 92–94
melting points 200, 201
Moon 34, 59–60, 225, 226
movable pulleys 134
musical instruments 220, 228, 234

newtonmeters 50
Newton’s laws of motion
    first law 45, 97
    linear momentum and 79–80, 

81–82
    second law 55–58, 62–63, 79–80, 

97
    third law 71–74
newtons (N) 44, 57
Newton’s pairs 72–73
non-contact forces 44
nuclear forces 43
nuclear power stations 106

oscillating systems 104–105
oscilloscopes 232–233

parallelogram method 5, 7
pascals (Pa) 141, 142
Pascal’s principle 157–158
pendulums 105
pitch 233

plastic deformation 51
Plimsoll line 167
polishing 69
pollution 106
potential energy 98–100, 102
    in oscillating systems 104–105
    work and 98–99
power 110–111
    velocity and 113–114
pre-natal scanning 237
pressure 141–142
    depth and 154–155
    direction of 156
    effect on volume 153
    in fluids 154–156
    measuring 161–162
pulley systems 119, 134–136, 137
pumps 148–150
Pythagoras’s theorem 5–7, 54

rack and pinion 134
radioactive waste 106
rarefactions 212
real weight 61
reference frame 37
reflection 223–224, 234, 237
refraction 224, 237
relative density 153–154, 167
relative velocity 37–39
renewable energy resources 106–108
resultant forces 7–8, 53–55, 57–58, 

62–63
resultant vectors 4, 7–9
reverberation 234
ripple tanks 227

scalar quantities 2, 3
scale diagrams 11, 84
screws 119, 127
seismic waves 218–220
simple machines 118–119, 124–136
siphons 150
solar power 107–108
solids, thermal expansion 179–184, 

188
SONAR 237
sound waves 208, 212, 228–229
    characteristics 232–233
    intensity 234–236
    reflection 234, 237
    refraction 237
    speed of 230–232, 236
    uses 237
specific gravity 154
specific heat capacity 191–192
    determination of 193–197
    of water 198
specific latent heat 201
    of fusion 201, 202, 203–204
    of vaporisation 201–202
speed 17–18
spring balances 49–50, 67
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spring constant 49
springs
    deformation of 50–51
    effect of forces on 47–49
    elastic potential energy 100
state, changes of 200–204
static friction 64–65
suction pads 148
surface area expansion 181–183, 184
SUVAT equations see uniformly accel-

erated motion

Teflon 67
temperature 153, 172–174
temperature scales 174–175
thermal contact 176
thermal equilibrium 176
thermal expansion 176
    applications 185–186
    of gases 188
    of liquids 187–190
    of solids 179–184, 188
thermometers 186
timbre 233
time period 216
total mechanical energy 100
transmission 133
transverse waves 210–211, 213
triangle of vectors 11
triangulation 219

troughs of waves 210
tsunamis 218, 219

ultrasound 237
unbalanced forces 55
uniform motion 16–18
uniformly accelerated motion 20
    displacement-time graphs 22–25
    equations 28–33
    free fall 34–36
    velocity time graphs 25–27

vacuum, waves in 217, 228
vacuum pumps 144
vectors 1–3
    combining 4–7
    resolving 7–9
velocity 17–18, 20, 23–24
    direction 32–33
    power and 113–114
    relative 37–39
velocity ratio (VR) 120, 121
    efficiency and 121–123
    of simple machines 125, 126, 

129–130, 132–133, 135, 137
velocity-time graphs 25–27, 32, 36
Venus 144
volume expansion 183–184
Vomit Comet 62

water
    specific heat capacity of 198
    thermal expansion of 189–190
water waves 217–218, 219
watts (W) 110
wave equation 217, 221–223
wave pulses 209
wave speed 214
wavelength 215
waves 208–209
    behaviour 223–227
    characteristics 214–217
    electromagnetic 217
    longitudinal 211–213, 215
    mechanical 217–220
    movement of particles in 208, 211, 

212
    sound 208, 212, 228–237
    transverse 210–211, 213
wedges 119, 125–127
weight 43, 58–59
weightlessness 60–62
wheel and axle 119, 132–133
wind power 107
work-energy theorem 96–100
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