

வடமாகாணக் கல்வித் திணைக்களத்துடன் இணைந்து தொண்டைமானாறு வெளிக்கள நிலையம் நடாத்தும் தவணைப் பரீட்சை, நவம்பர் - 2019

Conducted by Field Work Centre, Thondaimanaru In Collaboration with Provincial Department of Education **Northern Province**

Term Examination, November - 2019

தரம் :- 13 (2020)

இரசாயனவியல் – I

நேரம் :- 2 மணித்தியாலம்

பகுதி I

- காணப்படும் தரை நிலையில் இருக்கும் வாயு நிலையில் உள்ள Cr³⁺அயனொன்றில் சோடியாக்கப்பாடாத இலத்திரன்களின் எண்ணிக்கை.

- 2. (3, 1, 1,+1/2), (4, 0, 0, +1/2) ஆகிய சக்திச்சொட்டு தொடைகளுடன் தொடர்புபட்ட சக்திப்படியில் இலத்திரனைக் கொண்டுள்ள மூலகங்கள் முறையே
 - 1. Al மற்றும் Zn
- 2 . Na மற்றும் Ca

3.Mg மற்றும் K

- 4 .Al மற்றும் Sc
- 5. Mg மற்றும் Ca
- பின்வரும் சேர்வையின் IUPAC பெயர் என்ன?

- 1. 6 hydroxy 1 aminohex 4 en 3 one
- 2. 1 amino 6 hydroxyhex 4 en 3 one
- 3. 1 ammine 6 hydroxyhex 4 -en 3 one
- 4. 1 amino 6 hydroxo 4 en 3 one
- 5. 6 hydroxo 1 aminohex 4 en 3 one
- 4. dinitogen trioxide(N_2O_3) மூலக்கூறிற்கு வரையத்தக்க உறுதியான பரிவுக்கட்டமைப்புக்களின் எண்ணிக்கை 4. 2
 - 1) 3
- 3. 1

- 5. 5
- 5. திணிவின் படி 5% NaNO₃ஐக் கொண்ட 2.21gcm⁻³ அடர்த்தி உடையதுமான NaNO₃ கரைசலின் மூலர்செறிவானது. ($moldm^{-3}$) (Na = 23, N = 14, O = 16) 5. 1.3
 - 1. 0.13
- 2. 13
- 4. 17.1
- தரப்பட்டுள்ள P, Q, R, S எனும் சேர்வைகள் மின்நாட்டபிரதியீட்டுத்தாக்கங்களில் பங்குபற்றும் போது தாக்க வீத அதிகரிப்பு வரிசை CH2CH3 Br

NH₂

- $I. \quad R < P < S < Q$
- R < S < P < Q

- 2. P < R < S < Q
- 5. S < R < P < Q
- 3. P < S < R < Q

கீழே தரப்பட்டுள்ள தாக்கத் தொடரில் A, B ஆகியவற்றின்கட்டமைப்புக்கள் முறையே

$$CH_3 - CH - C \equiv CH \xrightarrow{\text{Hg}^{2+}/\text{805} \text{n sst} \text{ H}_2\text{SO}_4} \rightarrow A \xrightarrow{\text{(1) LiAlH}_4} B$$

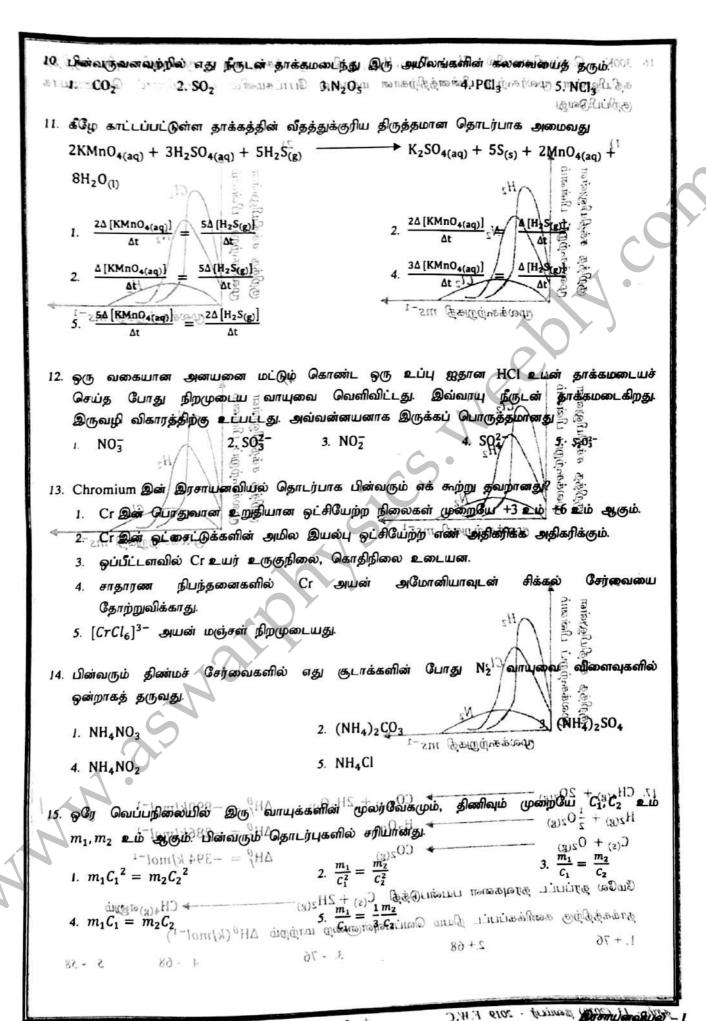
$$CH_3$$

$$CH_3$$

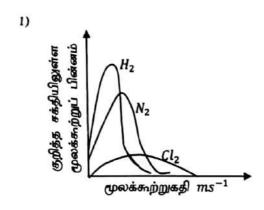
- 1. $CH_3 CH CH_2 CHO$, $CH_3 CH CH_2 CH_2 OH$
- 2. $CH_3 CH CH_2 CHO$, $CH_3 CH CH_2 COOH$
- 3. $CH_3 CH C CH_3, CH_3 CH CH CH_3$ $CH_3 CH_3 -$
- 4. $CH_3 CH C CH_3$, $CH_3 CH CH_2 CH_3$ CH_3
- 5. $CH_3 CH CH_2 CHO$, $CH_3 CH CH_2 CH_3$ CH_3 CH_3
- 8. பின்வரும் இரசாயனத் தாக்கங்களில் எதன் வெப்ப உள்ளுறை மாற்றம் MgO_(s) இன் நியம வெப்ப உள்ளுறையை ஒத்தது.

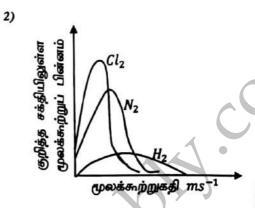
 1. $Mg(g) + \frac{1}{2}O_{2(g)}$ \longrightarrow $MgO_{(s)}$ 2. $Mg^{2+}(g) + O_{(g)}^{2-}$ \longrightarrow $MgO_{(s)}$ 3. $Mg(s) + \frac{1}{2}O_{2(g)}$ \longrightarrow $MgO_{(s)}$ 4. $Mg(s) + O_{(g)}$ \longrightarrow $MgO_{(s)}$

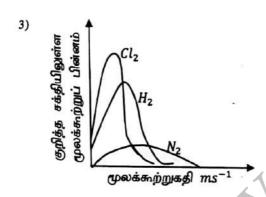
1.
$$Mg(g) + \frac{1}{2}O_{2(g)}$$
 MgO_(s)

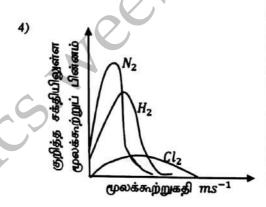

2.
$$Mg^{2+}(g) + O_{(g)}^{2-} \longrightarrow MgO_{(s)}$$

3.
$$Mg_{(s)} + \frac{1}{2}O_{2(g)} \longrightarrow MgO_{(s)}$$


4.
$$Mg(s) + O(g) \longrightarrow MgO(s)$$


5.
$$2Mg_{(s)} + O_{2(g)} \longrightarrow 2MgO_{(s)}$$


- 9. இலட்சிய வாயுக்களை பற்றிய பின்வரும் கூற்**றுக்களில் எது உண்மையானதன்று**.
 - மூலக்கூற்று மோதுகைகள் மீள்சக்திக்கு உரியன.
 - 2. மூலக்கூறுகள் ஒரே கதியுடன் நேர் கோடுகளில் எழுந்தமானமாக இயங்குகின்றன.
 - மூலக்கூறுகளுக்கு இடையில் கவர்ச்சி விசையோ அல்லது தள்ளுவிசையோ அல்லது புறக்கணிக்ககூடியவை.
 - 4. மூலக்கூறுகளுக்கு இடையேயுள்ள தூரத்துடன் ஒப்பிடும் போது வாயு மூலக்கூறுக்கின் பருமன் புறக்கணிக்கத்தக்க கூடியளவு சிறியது.
 - 5. மூலக்கூறுகளின் இயக்கப்பண்ப சக்திகளின் சராசரிப்பெறுமானம் வெப்பநிலையில் தங்கியுள்ளது.




16. 300K வெப்பநிலையில் $Cl_{2(g)}, N_{2(g)}, H_{2(g)}$ ஆகிய மூலக்கூறுக்கான மூலர்கதி எதிர் குறித்த கதியிலுள்ள மூலர்கூற்று பின்னத்திற்கான மக்கவல் போட்சுமனின் வளையினால் செம்மையாக குறிப்பிடுவது.

17.
$$CH_{4(g)} + 2O_{2(g)}$$
 $CO_{2(g)} + 2H_2O_{(l)}$ $\Delta H_f^{\theta} = -890kJmol^{-1}$ $H_{2(g)} + \frac{1}{2}O_{2(g)}$ $H_2O_{(l)}$ $\Delta H_f^{\theta} = -286kJmol^{-1}$ $C_{(s)} + O_{2(g)}$ $\Delta H_f^{\theta} = -394kJmol^{-1}$

மேலே தரப்பட்ட தரவுகளை பயன்படுத்தி $C_{(s)} + 2H_{2(g)} \longrightarrow CH_{4(g)}$ எனும் தாக்கத்திற்கு கணிக்கப்பட்ட நியம வெப்பவுள்ளுறை மாற்றம். $\Delta H^{\theta}(kJmol^{-1})$ 1. + 76 2. + 68 3. - 76 4. - 68 5. - 58

18. 60% தூய்மையான KClO₃ மாதிரியில் இருந்து 48g O₂ தயாரிக்**கத்தேவையான** KClO₃₍₅₎ மாதிரியின் திணிவு யாது? (g)

1. 18.75

2. 112.5

3. 11.25

4. 1125

5. 187.5

பின்வரும் சமநிலைகளையும் அதன் சமநிலை மாதிரிகளையும் கருதுக. ஆரம்பத்தில் 2.0mol A_(g)
 உம் P_(g) வேறுபட்ட கொள்கலனிலுள் அடைக்கப்பட்டுள்ளன.

$$A_{(g)} \rightleftharpoons 2B_{(g)}; k_1; P_{(g)} \rightleftharpoons Q_{(g)} + R_{(g)}; k_2$$

k₁: k₂ இற்கு இடையிலான விகிதம் l : 5 ஆகும். **இரண்டு சமநிலை தாக்கங்களினதும்** கூட்டற்பிரிகை சமன் ஆகும். இச்சமநிலையில் மொத்த **அ**முக்கங்களின் விகிதுமாக அமைவது.

1. 1:20

2.1:1

3.1:15

4.1:24

5.1:18

- 20. ஆவர்த்தன அட்டவணையில் உள்ள கூட்டம் 17 மூலகங்களில் அணு எண் அதிகரிக்கும் போது பின்வருவனவற்றில் எது நடைபெறமாட்டாது.
 - 1. ஒட்சியமிலங்களின் அமிலத்தன்மை அதிகரித்தல்.
 - 2. ஒட்சியேற்றும் இயல்பு அதிகரித்தல்.
 - 3. மூலர் கூறுகளின் கொதிநிலை அதிகரித்தல்.
 - 4. தாக்குதிறன் குறைவடைதல்.
 - 5. மூலகத்தின் பௌலிங்கின் மின்னெதிர்த்தன்மை குறைவடைதல்.
- 21. கீழே தரப்பட்டுள்ள சேர்வைகளின் எந்த ஒழுங்கு கொ**திநிலைகளின் சரியான ஏறுவரிசையைக்** கொடுக்கிறது.
 - 1. $CH_3CH_2CH_2CH_3 < CH_3 C CH_3 < CH_3COOH < CH_3CH_2CH_2OH$
 - $\begin{array}{c} 0 \\ || \\ 2. \quad \text{CH}_3 \text{C} \text{CH}_3 < \text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_3 < \text{CH}_3\text{COOH} < \\ \text{CH}_3\text{CH}_2\text{CH}_2\text{OH} \end{array}$
 - $\begin{array}{c} 0 \\ || \\ 3. \quad \text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_3 < \text{CH}_3 \text{C} \text{CH}_3 < \text{CH}_2\text{CH}_2\text{CH}_2\text{OH} < \text{CH}_3\text{COOH} \\ \end{array}$
 - $\begin{array}{c} & 0 \\ || \\ \text{4. } \quad \text{CH}_3\text{COOH} < \text{CH}_3\text{CH}_2\text{CH}_2\text{OH} < \text{CH}_3 \text{C} \text{CH}_3 < \text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_3 \end{array}$
 - $\begin{array}{c} & 0 \\ || \\ 5. \quad CH_3CH_2CH_2OH < CH_3COOH < CH_3 C CH_3 < CH_3CH_2CH_2CH_3 \end{array}$

5

- 22. A_(g) → B_(g) + C_(g) எனும் தாக்கத்தை கருதுக. A இயின் செறிவு 1 மணி நேரத்தில் 2 moldm⁻³ இல் இருந்து 1 moldm⁻³ இற்கு குறைகிறது, 2 மணி நேரத்தில் A யின் செறிவு 1 moldm⁻³ இல் இருந்து 0.25 moldm⁻³ இற்கு குறைகின்றது. தாக்கத்தின் வரிசையாக அமைவது.
 - 1. 1
- 2.0
- 3.2
- 4.3
- 5. யாவும் தவறானது
- 23. ClO₂ அயனில் Cl அணுவின் கலப்பொழுங்காக அமைவது
 - 1. SP3
- 2. SP2
- 3. SP
- d²SP³
- 5. யாவும் தவறானது
- 24. NaCl கரைசலுடன் Ag⁺ அயன்கள் **இணைந்து வெள்ளி குளோரைட்டாக (Silver Chloride)** வீழ்படிவாதலில் சரியான நிகழ்வு எது?
 - 1. தாக்கத்தின் ΔΗ பூச்சியமாகும்.
 - 2. ΔH ஆனது ΔG இற்கு சமன் ஆகும்.
 - ΔG ஆனது பூச்சியமாகும்.
 - தாக்கத்தின் ΔG பூச்சியமாகும்.
 - 5. தாக்கத்தின் ΔG பூச்சியத்திலும் சிறியது.
- 25. N, O, F, Cl, Ar என்றும் அணுக்களின் முதலாம் அயனாக்கல் சக்தியின் அதிகரிக்கும் வரிசை
 - 1. O < N < F < Cl < Ar

2. CI < O < N < F < Ar

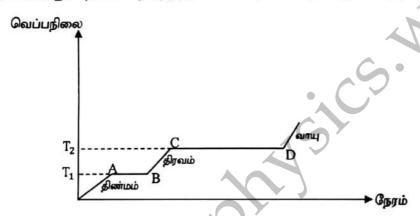
3. C1 < O < N < Ar < F

4. O < Cl < N < Ar < F

- 5. O < Cl < N < F < Ar
- 26. H₂S, SO₂ஆகிய இரு வாயுக்களிற்கும் பொருந்**தாதது எது**?
 - ஓட்சியேற்றியாக தொழிற்படும்
- தாழ்த்தியாக தொழிற்படும்.
- 3. இரண்டும் அமில வாயுக்களாகும்.
- 4. அமில மழைக்கு பங்களிப்புச் செய்யும்
- 26) இரசாயனச் சமநிலை தொடர்பாக பின்வரும் கூற்றுக்களில் உண்மையற்றது எது?
 - இரசாயனத் தாக்கம் சமநிலையில் உள்ள போது தாக்கிகள் அழியும் வீதமும் தாக்கிகள் உருவாகும் வீதமும் எப்போதும் சமனாகும்.
 - 2. நியம நிலையில் சமநிலை மாறிலிகள் அலகுகளைக் (unit) கொண்டிருக்கமாட்டாது.
 - 3. சமநிலைக்கு முன்பு $\Delta G < 0$ மற்றும் Q < K ஆக இருப்பின் முன்முக தாக்கம் சுயமாக நடைபெறும்:
 - சமநிலை மாறிலிகள் சமநிலைத் தானத்தின் அளவீடுகளாகும்.
 - 5, $10^{-3} < K_c$ தாக்கிகள் விளைவுகளை விட உயர் அளவில் இருக்கும்.
- 27) பின்வரும் கூற்றுக்களில் உண்மையானது?
 - பீனோலுக்கு பீரீடல் கிராவ் அற்கைல் ஏற்றம் செய்வதன் மூலம் இலகுவாக ஓதோ, பரா விளைவுகள் கிடைக்கும்.
 - 2. நைத்திரோ பென்சீனில் பிரீடல் கிராவ் அற்கைல் ஏற்றம் நடைபெறாது.
 - அல்டிகைட், கீற்றோன்கள் மாத்திரம் காபனைல் [c = 0] கூட்டத்தைக் கொண்டிருக்கும்.
 - 4. பீனோல் ஒரு ஐதிரிக் அற்ககோல் (mono hydric) ஆகும்.
 - காபொட்சிலேற் அயனை விட பீனொக்சைட் அயன் உறுதியானது.

28) 2A + B — C + D என்ற தாக்கம் இருபடிகளின் ஊடாக நடைபெறுகின்றது.

$$2A \xrightarrow{K_f} A_2$$
 (விரைவானது)


K_f - முற்தாக்க வீத மாறிலி

$$A_2 + B \longrightarrow C + D$$
 (மெதுவானது)

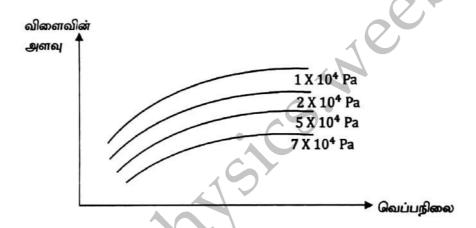
பின்வரும் தொடர்புகளில் தவறானது எதுவாகும்?

- 1. முற்தாக்கவீதம் = $K_f[A]^2$
- 2. பிற்தாக்கவீதம் = $K_r[A_2]$
- 3. சமநிலையில் $K_f[A]^2 = K_r[A_2]$
- 4. தாக்கவீதம் = $K_f[A]^2[B]$
- 5. $K = \frac{K_r}{K_f}$

29) X என்னும் திண்ம பதார்த்தத்தின் வெப்பநிலை எதிர் நேர வரைபு **கீழே தரப்படுகின்றது**.

பின்வரும் கூற்றுக்களுள் பொய்யானது?

- 1. இப்பதார்த்தத்தின் [ΔΗ உருகல்] <[ΔΗ ஆவியாதல்] ஆகும்.
- 2. இப்பதார்த்தத்தின் உருகுநிலை T₁ ஆகும்.
- 3. இப்பதார்த்தத்தின் கொதிநிலை T₂ ஆகும்.
- 4. CD வரைபு,X பதார்த்தத்தின் திரவம் ஆவியாகின்றது.
- 5. X திண்ம பதார்த்தம் உருகுவதை விட விரைவாக ஆவியாகின்றது


30) P தொகுப்பு மூலகங்களும் அவற்றின்சேர்வைகள் பற்றி உண்மையா**னது**?

- புரோமினிற்கு +7 ஒட்சியேற்ற நிலை மிகவும் உறுதியானது
- 2. NH₃ மூலமாக மட்டும் செயற்படும்.
- 3. SCl_2 நீருடன் தாக்கி H_2SO_3 , S, HCl என்பவற்றைத் தரும்
- 4. செனன் (Xe) +2, +4, +6 ஒட்சியேற்ற எண்களை மட்டும் எடுக்கும்.
- CO இன் லூயிஸ் கட்டமைப்பில் அட்டமநிலை பூர்த்தி செய்யப்படவில்லை.

் 31 தொடக்கம் 40 வரையுள்ள வினாக்கள் ஒவ்வொன்றிற்கும் (a), (b), (c), (d) எனும் நான்கு தெரிவுகள் தரப்பட்டுள்ளன. அவற்றுள் ஒன்று திருத்தமானது அல்லது ஒன்றுக்கு மேற்பட்டவை திருத்தமானவை. திருத்தமான தெரிவை / தெரிவுகளை தேர்ந்தெடுக்க

1	2	3	4	5
(a),(b)	(b) (c)	(c) (d)	(d) (a)	வேறு தெரிவுகளின்
ஆகியவை	ஆகியவை	ஆகியவை	ஆகியவை	எண்ணோ
மாத்திரம்	மாத்திரம்	மாத்திரம்	மாத்திரம்	சேர்மானவைகளோ
திருத்தமானவை	திருத்தமானவை	திருத்தமானவை	திருத்தமானவை	திருத்தமானவை

31) பின்வரும் வரைபு சமநிலை விளைவின் அளவு எவ்வாறு அமுக்கத்துடனும் வெப்பநிலையுடனும் மாறுகின்றது என்பதைக் காட்டுகின்றது. பின்வரும் தாக்கங்களில் எது/ எவை வரைபுடன் தொடர்புடையன/ தொடர்புடையது?

(a)
$$PCl_{5(g)} \Longrightarrow PCl_{3(g)} + Cl_{2(g)}$$
 $\Delta H > 0$
(b) $N_2O_{4(g)} \Longrightarrow 2NO_{2(g)}$ $\Delta H > 0$
(c) $H_{2(g)} + l_{2(g)} \Longrightarrow 2Hl_{(g)}$ $\Delta H > 0$
(d) $SbCl_{3(g)} + Cl_{2(g)} \Longrightarrow SbCl_{5(g)}$ $\Delta H < 0$

- 32) 3d தொகுப்பு மூலகங்கள் பற்றி பின்வரும் கூற்றுகளில் சரியானது சரியானவை எது / எவை?
 - (a) Sc தொடக்கம் Ni வரை அணுவாரை குறைந்து கொண்டு செல்கின்றது.
 - (b) மூலகங்கள் யாவும் பல ஒட்சியேற்**ற நிலையிலுள்ள உறுதியான கற்றயன்களை** உருவாக்குகின்றன.
 - (c) அனேக தாண்டல் உலோக அயன்களின் நீர்க்கரைசல்கள் மின்காந்த திருசியத்தின் கட்புலனாகும் பகுதியிலிருந்துகதிர்வீசலை உறிஞ்சுவதனால் பல்வேறு நிறங்களை உருவாக்குகின்றன.
 - (d) Cu அதியுயர்இரண்டாம் அயனாக்கல் சக்தி உடையது.

- 33) பின்வரும் இயல்புகளின் சமனிலித்தொடர்புகளில் சரியானது / சரியானவை?
 - (a) $AgNO_3$ உடன் வீழ்படிவு கொடுக்கும் வேகம் :- $CH_3CH_2I < \bigcirc < CH_3COCI$
 - (b) அமில இயல்பு:- $\begin{picture}(c) OH & OH & OH & OH \\ OCH_3 & CH_3 & NO_2 & O \\ \end{picture}$
 - (c) கொதிநிலை :- CH₃CH₂Cl < CH₃CHO < CH₃COCH₃ < *HCOOH*
 - (d) ശ്രഖ இயல்பு :-CH3CONH2 < NH3 < (CH3)3N < (CH3)2NH
- 34) வாயுக்கள் தொடர்பாக பிழையான கூற்று / கூற்றுக்கள் எது / எவை?
 - (a) 0⁰Cவெப்பநிலையிலும் 1 bar அமுக்கத்திலும் ஒரு இலட்சிய வாயுவின் மூலர்களவளவு 22.41 dm³mol⁻¹ ஆகும்.
 - (b) தரப்பட்ட ஒரு நேரத்தில் சுவருடனான ஒரு மோதல் எண்ணிக்கை வாயுவின் அடர்த்திக்கு நேர்விகிதசமன்
 - (c) அவதி வெப்பநிலை என்பது ஒரு வாயுவின் வெப்பநிலையை வாயுவை திரவமாக மாற்றுவதற்காக பிரயோகிக்க வேண்டிய தாழ் வெப்பநிலை ஆகும்.
 - (d) அமுக்கப்படுகாரணி $Z = \frac{V_{ideal}}{V_{real}}$ இனால் தரப்படும். (V_{ideal} இலட்சிய நடத்தை காட்டும் போது மூலர்கனவளவு V_{real} வாயுவின் உண்மை மூலர்கனவளவு)
- 35) சக்திச் சொட்டெண்கள் தொடர்பாக பின்வரும் கூற்றுக்களில் உண்மையானது / உண்மையானவை?
 - (a) n = 3 உடன் இணைந்த இலத்திரன்களின் உயர்ந்த எண்ணிக்கை 9 ஆகும்.
 - (b) Cu^+ அயனில் ஒபிற்றலின் வடிவத்தை தீர்மானிக்கும் சொட்டெண் 2 ஆகவுள்ள இலத்திரன்களின் எண்ணிக்கை 10 ஆகும்.
 - (c) ஒரே n மற்றும் ! இன் பெறுமானங்களுக்கு உரிய ஒபிற்றல் தொடையானது உப ஓடு என அழைக்கப்படும்.
 - (d) முதன்மை சக்திச்சொட்டெண் அதிகரிக்கும் ஒழுங்கு **இரத்திரன்கள் நிரப்பப்படல்** எப்பொழுதும் அணுவின் சக்தியை இழிவாக்கும்.
- 36) வெப்ப இரசாயனம் தொடர்பாக பின்வரும் கூற்றுக்களில் எது / எவை உண்மையானது / உண்மையானவை?
 - (a) நியம நிலை என்பது அமுக்கம் l atm உம் செறிவு 1moldm⁻³ உம் ஆகும்.
 - (b) ஓர் இரசாயன தாக்கத்தின் வெப்பவுள்ளுறை மாற்றமானது தாக்கிகளின் பௌதீக நிலைகளில் தங்கியிருக்கும்.
 - (c) இயக்கசக்தி, வேகம், நிறம் என்பன ஒரு தொகுதியின் நுண்பார்வைக்குரிய **இயல்புகளாகும்**.
 - (d) திண்ம அயன் சேர்வை ஒன்றின் மொத்த உறுதித்தன்மை ஒரு கற்றயனுக்கும் ஒரு அன்னயனுக்கும் இடையிலான இடைத்தாக்கத்தில் தங்கியுள்ளது.

பாத்திரணென்றில் $2P_{(g)}+R_{(s)}\Rightarrow Q_{(g)}+S_{(g)}$ எனும் தாக்கம் 37) cogu சமநிலையிலுள்ளது. தாக்கத்தில் முன்முகத்தாக்கத்தின் வற்சக்தி உம் பின்முகத்தாக்கத்தின் ஏவற்சக்தி 550 KJmol-1 அதம் ஆகும் கொறிகை கொருக்கு படி இத் தொகுதி பற்றி பின்வரும் கூற்றுக்களில் உண்மையானது / உண்மையானவை? (a) வெப்பநிலையை கூட்டும் போது $Q_{(g)}$ இன் அளவு கூடுகிறது. Sun Bear di (b) வெப்பநிவையை கூட்டும் போது முற்தாக்க வீதம் அதிகரிப்பதோடு பிற்தாக்க குறைகின்றது. (c) தாக்கி R இன் சிறிதளவு அகற்றும் போது பிற்தாக்கம் சாதகமாக்கப்படும். (d) அமுக்கத்தை அதிகரிக்கும் போது) ச**மநிலைத்தானம் மாற்றம்டையாது** பாடு மாற 38) நீர் சேர்க்கும் போது குறிப்பிடத்தக்க மாற்றத்தைக் காட்டுவது / காட்டுவன எது / எனவ்? b) PCL (a) BiCl₃ സ്വാന്ത്രണ്ട (a) 0°C வப்படிவையிலும் பேலி (bar ஆமுக்கத்திலும் ப வாயுவின் 22.41 dan met Jugui. CONH₂ 30) ்கைக்கும் சேர்வை தொடூபாக பின்வரும் கற்றுக்களில் சரியானது /சரியானவை? कार्का कंडी कंडि நேர்விகிதசமன் என்பது ஒரு வாயுவின் வெப்பநிலையை வாயுவை திரவமாக வெப்பநினை (a) NaBH₄ இனால் தாழ்த்தல் அடைந்து C₆H₅CH₂NH₂ மதோற்று விக்கும். காகற்கு முறு ரோய (b) CH₃COOH உடன் தாக்கமடைந்து எசுத்தரைக் கொடுக்கும் நா (c) NaNO₂ / HCl உடன் தாக்கமடைந்து N₂ வாயுவைக் கொடுக்கும். (d) $\mathrm{CH_3mgBr}$ உடன் வாயு விளைவு ஒன்றைக் கொடுக்கும். V_{real} — surujahisi z ssismu (ipsijussiaisiai) 40) தாக்க இயக்கவியல் தொடர்பாக **பின்வரும் கூற்றுக்களுள் சரியானது** / ச**ரியானவை**? (B) இரண்டாம் வரிசை தாக்கத்தின் தாக்கவீத மாறிலியின் அதை moldin-35 11 ஆகும் குக்க (b) ஒரு தாக்கத்தின் தாக்கவீதமாறிலியின் பெறுமானம் தாக்கிகளின் ஆரம்ப் செறிவில் தங்கி (a) n = 3 உடன் இணைந்த இலத்<mark>விகுள்கிறோம் பில்பிக்கையில் மாறிலியாகும்.</mark> இலத்திக்காது. min(c) மூலக்கூற்றுந்திறன் ஈதரு போதும்பூச்சியமாக ஆக்ஷையாது. க்கெற்றிட்டு (b) Си⁺ அயனில் (d) பல படி தாக்கம் ஒன்றில் தோன்றுகின்ற ஒருவப்பட்ட க**்சிக்கல் மிகவும் இறுதியானதாக** (c) ஒரே n மற்றும் / இன் பெறுமானங்களுக்கு உரிய ஒபிற்றல் தொடையான**்!லக்ற**இடு என அழைக்கப்படும். ் 41 தொடக்கம் 50 அன்றயுள்ள வினரக்கள் ஒவ்வொன்றிலும் இரண்டு கூற்றுக்கள் தரப்பட்டுள்ளன. தெரிவுகள் முதலாம் கூற்று இரண்டாம் கூற்று உண்மையாக இருந்து முதலாம் கூற்றுக்கு ற்றுக்களில் உண்ணியானது உண்டை 100 திருத்தமான விளக்கத்தை தருவது **உ**ண்மையாக இருந்து முதலாம் சுற்றுக்கு in land I molden salies & (2) திருத்தமான விளுக்கத்தை தரா<u>தது</u> பௌத்க Beefloi டுகாவ்றுமாவது 55.166 (d) (3) உண்மை பொய் கிலைகளில் தங்கியிருக்கும் இயலிழ்களாகும் (ฮาซิโนใต่ระ เมเตจีเมศาตาลายีมโษเดิน வேகம், நிறம் என்பனவுகுழ்க்க இயக்கசக்கி. (c) பெரும் அன்றின் ப்பிபடு ம்குடுவமர் ு முதித்தன்மை Cayenen (b) இடையிலான இடைந்தாக்கத்தில் அய்கியுள்ளது.

1-decidentsweep goutest 2019 1.W.C

	முதலாம் கூற்று	இரண் டாம் கூற்று
41)	அமில ஊடகத்தில் Cr^{6+} ஆனது $Cr_2O_7^{2-}$ ஆக மட்டும் காணப்படும்.	அமில ஊடகத்தில் CrO ₄ ²⁻ இருபகுதியமாக்கப்பட்டு Cr ₂ O ₇ ²⁻ அயன்களாக மாற்றப்படும்.
42)	வன்மூலக்கரைசல் ஒன்றை ஐதாக்கும் போது அதன் pH குறைவடையும்	மென்மூலக்கரைசலொன்றை ஐதாக்கும் போது அதன் அயனாக்க அளவு அதிகரிக்கும்.
43)	மாறாவெப்பநிலை, மாறா அமுக்கத்தில் ஒரு சுயமான தாக்கத்திற்கு ΔG _{r×n} < 0 ஆக அமையும்.	ஒரு தாக்கத்தின் சுயாதீன தன்மையை அறிவதற்கு வெப்பவுள்ளுறை மாற்றம், எந்திரப்பி மாற்றம் ஆகிய இரண்டையும் கருத்திற் கொள்ள வேண்டும்.
44)	அமைன்கள், அற்ககோல்களிலும் பார்க்க கூடியளவு மூலத்தன்மை உடையது	அமைன் சார்பாக அற்கைல் அமோனியம் அயனின் உறுதித்தன்மை அற்ககோல் சார்பாக அற்கைல் ஒட்சோனியம் அயனின் உறுதித்தன்மையிலும் உயர்வு
45)	எப்பொழுதும் மூலகமொன்றின் அணு அயனைத் தோற்றுவிக்கும் போது S ² P ⁶ இலத்திரன் நிலை அமைப்பைப் பெறும்	எப்பொழுதும் அணு அன்னயனைத தோற்றுவிக்கும் போது p ஒபிற்றல்களில இலத்திரன்களை ஏற்கும்.
46)	மாறா அமுக்கத்தில் உள்ள எல்லா சமநிலைத் தொகுதிக்கும் சடத்துவ வாயு ஒன்றை சேர்த்தால் சமநிலை தானம் மாற்றமடையும்.	எல்லா நிபந்தனைகளிலும் சமநிலை தொகுதிகளின் வெப்பநிலையை மாற்றுவதன் மூலம் சமநிலை மாறிலியின பெறுமானத்தை மாற்ற முடியும்.
47)	அற்கீன், அற்கைன் சேர்வைகள் யாவும் Br ₂ / CCl ₄ இன் நிறத்தை நீக்கும்.	நிரம்பாத சேதனச் சேர்வைகள் யாவு Br ₂ / CCl ₄ உடன் தாக்கம் புரியும்
48)	சேர்வைகள் யரவற்றினதும் உருகுநிலை, நீரில் கரையும் திறன் என்பவற்றை அறிய முனைவாக்கும் வலு, முனைவாகு தன்மையை பயன்படுத்தலாம்.	கற்றயனுக்கு ஏற்றம் கூடவும், ஆன குறையவும் முனைவாக்கும் வ <u>ஓ</u> அதிகரிக்கும்.
19)	ஓர் இலட்சிய வாயுவில் உள்ள எல்லா மூலக்கூறுகளும் ஒரே கதியில் இயங்குவதில்லை.	ஓர் இலட்சிய வாயுவில் உள்ள மூலக்கூற்றிடைக் கவர்ச்சி விசையை எப்போதும் புறக்கணிக்க முடியாது
50)	காபனைல் சேர்வைகளில் காபனைல் காபனுக்கு நேரடியாக பிணைக்கப்பட்டுள்ள காபனுக்கு இணைக்கப்பட்ட H அணுக்கள் அமிலதன்மை உடையன.	காபனைல் சேர்வைகளில் காபனைவ தொகுதி வன்மையான இலத்திரவ வழங்கும் தன்மை உடையது.

வடமாகாணக் கல்வித் திணைக்களத்துடன் கணைந்து தொண்டைமானாறு வெளிக்கள நிலையம் நடாத்தும் தவணைப் பரீட்சை, நவம்பர் - 2019

Conducted by Field Work Centre, Thondaimanaru In Collaboration with Provincial Department of Education **Northern Province**

Term Examination, November - 2019

தரம்	:-	13	(2020)	
			·/	

இரசாயனவியல் - II A

நேரம் :- 3 மணித்தியாலம் 10 நிமிடம்

பக்கி II A

	அமைப்புக் கட்டுரை வினாக்கள்
1) (A)	அமைப்புக் கட்டுரை விணாக்கள் பின்வரும் விணாக்கள் ஆவர்த்தன அட்டவணையின் மூன்றாம் ஆவர்த்தனத்தில் உள்ள மூலகங்களுடன் தொடர்புபட்டவை. (i) தொடக்கம் (vi) வரையுள்ள பகுதிகளுக்கு விடை எழுதும் போது வழங்கப்பட்டுள்ள வெளியில் மூலகத்தின் குறியீட்டை எழுதுக. (i) மிகக்கூடிய மின்னெதிர்த்தன்மை உள்ள மூலகத்தை இனங்காண்க. (ii) அதிக எண்ணிக்கையான பிறதிருப்ப வடிவம் உள்ள மூலகத்தை இனங்காண்க. (iii) மிகச்சிறிய ஒரணு அயனை உண்டாக்கும் மூலகத்தை இனங்காண்க.
	(iv) வாயு நிலையில் மட்டும் ஈரணு மூலக்கூறை உருவாக்கும் மூலகம்
	(v) ஏனைய மூலகங்களுடன் சேர்வையை உருவாக்க முடியாத மூலகம்
	(vi) வாயு நிலை யில் இரு பகுதியமாகக் காணப்படும் குளோரைட்டை உருவாக்கும் மூலகம்.
(B)	
	(i) மூலக்கூறு PO ₄ H ₃ இற்கு மிகவும் ஏற்றுக்கொள்ளத்தக்க லூயியின் புள்ளி – கோட்டு
	கட்டமைப்பை வரைக? அதன் அடிப்படைக் கட்டமைப்பு கீழே தரப்பட்டுள்ளது. O H — O — P — O — H O H

(II) மூலக்கூறு C ₂ H ₆ N ₂ O இற்கு மிகவும் உறுதியா	-	(5)		100
கட்டமைப்பு கீழே தரப்பட்டுள்ளது. மேலும் இர	11.50			காட்டுக்
கட்டமைப்புக்களை வரைக. உறுதி யற்ற கட்டமைப்	ாப உ றுதிய _ி	ற்றது என	எழுதுக.	
:O: CH ₃ - C - N - N - H 				Á
			1	
(iii) பின்வரும் லூயியின் புள்ளி – கோட்டுக் கட்டவ				
அட்டவணையில் தரப்பட்ட C, N, O அணுக்களின் பி				
;ö:©	•			
$H - \ddot{O} - C^2 \equiv C^3 - \ddot{N} = \ddot{N} - \ddot{F}$:				
$H - \ddot{O} - C \equiv C - \dot{M} = \dot{M} - \ddot{E}$:				
01	C ₃	N ⁴	N ⁵	7
(ájv) VSEPR சோடிகள்				1
(b) இலத்திரன் சோடி கேத்திரகணிதம்	+ +		 	1
(c) கலப்பாக்கம்	+ -			1
(d) வடிவம்	+			1
(v) மேலே (iii) இல் தரப்பட்ட லூயியின் புள்ளிக்	கோ' ூச்	BLI ON	പ്ഥിക് 'റ	
(v) மேலே (பு) இல தரப்பட்ட லூயயன் புள்ளக ரபிணைப்புக்கள் உ ண்டாவதுடன் சம்மந்தப்பட்ட			பபால பா ர் ஒபிற்ற	
ஏப்ணைப்புக்கள் உ ண்டாவதுடன் சமமந்தப்பட்ட இ னங்காண்க ?		VLLI 60	. എ பற்ற	,
	O ¹	September 1	<u></u>	
(i) $H - O^1$ H	C ²			
(ii) $C^3 - N^4$ C^3	N ⁴	. 555.555.555.555.55		3.55.5.5.5.5.5.5.5.
(iv) $N^4 - N^5$ N^4	N ⁵			
(v) N ⁵ - F N ⁵	F			
AND STREET CONTROL CON		1200	15 (11 <u>0</u> 28	
(vi) மேலே (iii) இல் தரப்பட்ட லூயியின் புள்ளி				
πபிணைப்புக்கள் உண்டாவதுடன் சம்பந்தப்படும் அ	ணு ஒபிற்ற	ல்களை 🙎)னங்கான்	145.
I. $C^2 - C^3$ C^2 C^3				
N4 - N5 N4 N5				
13 (2020) November _ 2010 EW C				

(C)	Geria.		b GeneGene	ர்களில் ஓர் அனு ஒட	பிற் றல் விவரிக்கப்படுகி றது. பூர் <i>த்தி</i>
		n	l	m_{ℓ}	அனு ஒபிற்றல்
	(i)			<u>-2</u>	3d
	(ii) 3			+1	
	3		••••••	0	······
	3			-1	
	(iii) 3				3s
	(iv) 2		*************	+1	
	(v) 2				2s
(D)	அதிக	ரிக்கும் வரிசைய	பில் குறிப்பிடு	5 .	
	(i) <i>B</i>	SeSO ₄ , MgSO ₄ ,	CaSO ₄	(வெப்பவுறுதி)	90 ^y ,
	(ii) <i>I</i>	NO ₄ -, NO ₂ , N	0 ₂ , NO ₃	(பிணைப்புக் கோண	nib)
	(iii) <i>I</i>	KF, NaF, LiF		(அயன் தன்மை)	
2) (A)	முதல் நீரினு ஐதர	ாம், இரண்டாம் டன் உக்கிரமாக சனையும் வன தைகளிற்கான X ஐ இனங்க X இன் தரை 	ந் அயனாக்கர க தாக்கமுறுவ ர்மூல ஐதரெ சவர்க்கார தய ரண்க. நிலை இலத்தி வளியில் எரி	ற் சக்திகள் கணிசம பதுடன் நீரில் தீப்பற்றிய ராட்சைட்டையும் கெ பாரிப்பில் விசேடமாக ப X பிரன் நிலையமைப்பு ய	பயன்படுத்தப்படும்.
S		திரவத்தையும்		ுறையு ம் கொடுக்கும்.	ந்து காரக்கரைசலையும் பாகுநிலைத்
		2) இரசாயனத்	5 தாக்கத்தைத்	தருக?	
			மேற்கூறிய த	ாக்கத்தை எமுதுக?	

((v) X இனது உப்பை சுவாலைச்சோதனையில் இனங்காணும் போது விடிசட சேசைவ
	உண்டு. அத்தேவை யாது?
9	(vi) X இன் கூட்ட மூலகம் Y ஏனைய மூலகங்களிலிருந்து வேறுபட்டு காணப்படும்
	அம்மூலகத்தைக் குறிப்பிடுக?
	(vii) Y ஆனது அயற்கூட்ட மூலகம் ஒன்றுடன் காட்டும் ஒத்த இயல்புகள் எவ்வாறு
	அழைக்கப்படும்?
	(viii) மேலே குறிப்பிட்ட இயல்புகள் ஏதாவது இரண்டைக் குறிப்பிடுக?
(B)	
I.	தரப்பட்ட பட்டியலில் இருந்து பொருத்தமான கரைசலைத் தெரிவு செய்து பெட்டியினுள்
	எழுதி கீழே தரப்பட்டுள்ள தாக்கங்களைப் பூரணப்படுத்துக. ஒரு கரைசலை ஒரு தடவை மட்டும் பயன்படுத்தலாம்.
	$NaOH_{(aq)}$, $Na_2S_2O_{3(aq)}$, $HNO_{3(aq)}$, $NaBr_{(aq)}$, $HCl_{(aq)}$
	(i) (NH ₄)₂SO _{4(aq)} +
	மணமுடைய கார வாயு)
	(ii) $Pb(NO_3)_{2(aq)}$ +
	(iii) + AgNO _{3(aq)}
	(iv) BaCO ₃ + D (தெளிந்த சுண்ணாம்பு நீரைப்
	பால்நிறமாக்கும் வாயு வெளியேறும்)
	ட (வெப்பமேற்றுகையில் கருமை
i.	(v) Pb(NO ₃) ₂ நிறமாக மாறும் வெண்ணிற
	வீழ்படிவு)
II.	A முதல் E வரையான இனங்களின் இரசாயன சூத்திரங்களை எழுதுக.
	A
4	_
	E
III.	வீழ்படிவு B, C கரைவதற்கான தாக்கத்தை தருக?
IV.	E வெப்பமாக்குகையில் கருமையான வீழ்படிவு உருவாவதற்கான தாக்கத்தை தருக.
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

3) (A)	பின்வரும் வினா ஆனது ஆய்வு கூடத்தில் Mg இன் சாரணுத்திணிவு துணித்லுடன் தொடர்பட்டது. இப்பரிசோதனையின் போது ஓர் அளவியில் 25 cm³ நீரானது எடுக்கப்பட்டு பின்னர் ஏறத்தாழ அளவியின் மேல் மட்டம் வரும் வரை ஐதான HCI சேர்க்கப்பட்டது. அளவியின் வாயருகே பருத்திப் பஞ்சினால் உருண்டையாக சிறைப்பிடிக்கப்பட்ட 0.04g Mg
	நாடாத்துண்டு உட்புகுத்தப்பட்டது. அளவியானது கைவிரலினால் பொத்திப் பிடிக்கப்பட்டு தலைகீழாக மாற்றப்பட்டு நீருள்ள முகவையில் நிலைக்குத்தாக நிறுத்தப்பட்டு ஆரம்ப
	வாசிப்பு குறிக்கப்பட்டது. வாயுக்குமிழ்கள் வெளியேற ஆரம்பித்து Mg நாடா முற்றுமுமுதாக
	தாக்கமுற்றதும் இறுதி வாசிப்பு குறிக்கப்பட்டது. ஆய்வு கூட வெப்பநிலை 30° <i>C ஆகும்.</i>
	அவ்வெப்பநிலையில் நீரின் நிரம்பலாவி அமுக்கம் 31.8mmHg ஆகும். அளவியின் ஆரம்ப,
	இறுதி வாசிப்புக்கள் முறையே 46.00, 2.20 cm³ ஆகும்.
1	R = 8.314]mol ⁻¹ K ⁻¹ ஆகும். வளிமண்டல அமுக்கம் 760 mmHg ஆகும். I. Mg நாடாவானது ஏன் பருத்திப் பஞ்சினுள் சிறைப்பிடிக்கப்பட்டுள்ளது?
	ட பத்திய படுத்திப் பஞ்சிலுள் சிலிறப்பிடிக்கப்பட்டுள்ளது:
	II. சிறைப்பிடிக்காதுவிடின் என்ன அசௌகரியத்தை அனுபவிப்பீர்?
ii.	இப்பரிசோதனையில் ஐதான HCl இற்கு பதிலாக con HCl ஐ பயன்படுத்தி மேற்படி
	பரிசோதனையை மேற்கொள்ள முடியுமா? ஏன் என காரணம் தருக.
iii.	இங்கு நடைபெறும் இரசாயனத்தாக்கத்திற்கான சமப்படுத்திய சமன்பாடு தருக?
iv.	வெளிவரும் வாயுவின் கனவளவை கணிக்க?
v.	வெளிவரும் வாயுவின் அமுக்கத்தை Nm^{-2} இல் கணிக்க?
vi.	இக் கணிப்பில் பயன்படுத்தப்படும் சமன்பாட்டை எழுதி அவற்றின் குறியீடுகளை குறிப்பிடுக?
1	
vii.	வெளிவரும் வாயுவின் மூல்களின் எண்ணிக்கையை கணிக்க?

viii.	இக் கணிப்பில் ஏதாவது எடுகோள் மேற்கொண்டிருப்பின் அவ் எடுகோளை குறிப்பிடுக?
ix.	Mg மூலர்திணிவை கணித்து Mg இன் சாரணுத்திணிவை தருக?
4) (A)	A, B, C, D ஆகிய நான்கு சேர்வைகளும் C ₇ H ₁₆ O எனும் மூலக்கூற்றுச் சூத்திரம் உடையவை. நான்கும் Na உடன் H ₂ வாயுவை விடுவிக்கின்றன. A, B, C ஆகியன நீரற்ற ZnCl ₂ /Con HCl
	உடன் உடனடி கலங்கலை கொடுத்தன. ஆனால் D நீண்ட நேரத்தின் பின்னர் கொடுத்தது
i.	A, B, C ஐ இனங்கண்டு கட்டமைப்புகளை வரைக?
	A B C
ii.	இவற்றில் ஒன்று மட்டும் ஒளியியல் தாக்கத்தை காட்டவில்லை அக்கட்டமைப்பை
	இனங்காண்க?
iii.	மேற்படி சேர்வைகளில் ஒன்றானது Al_2O_3 உடன் வெப்பப்படுத்தப்பட்டு பெற <mark>ப்படும் அற்கீன்</mark>
	(C ₇ H ₁₄) G செறிந்த H ₂ SO ₄ உடன் தாக்கம் புரியச்செய்யப்பட்டு கிடைக்கும் விளைபொ ருள்
	நீர்ப்பகுப்பு செய்யப்படுகையில் குறைந்தளவில் H எனும் விளைபொருள் கிடைக்கப்பட்டது.
	H ஆனது இரண்டு சமச்சீரற்ற காபனைக் கொண்டது எனின் A, G, H இன் கட்டமைப்பை
	வரைக
г	A G H
iv.	D ஆனது ஒளியியல் சமபகுதியத்தை காட்டும் எனின் D இற்கு சாத்தியமான மூன்று கட்டமைப்புக்கள் தருக?

٧.	தருக .	•••••					ய சோதனைகள	
В)	P	H ₂ O		C ₂ H ₂	,]	C ₂ H ₅ − C ≡	(
	*	8		Ġ	cs.		2) S 1) H ⁺ /H ₂ O	
т		Br ₂ /CCl ₄	R	U	அற்ககோல் சேர் KOH		OH C - CH ₃ C C CH ₃	
P -				Q				
II. R, S	i, T. U ஆகிய	பவற்றின் கட்	டமைப்பை	வரைக்.				

Grade - 13 (2020) November - 2019 F.W.C

7

Chemistry II A

வடமாகாணக் கல்வித் திணைக்களத்துடன் **கணைந்து** தொண்டைமானாறுவெளிக்களநிலையம் நடாத்தும் தவணைப் பர்ட்சை, நவம்பர் - 2019

Conducted by Field Work Centre, Thondaimanaru
In Collaboration with Provincial Department of Education
Northern Province

Term Examination, November - 2019

தரம் :- 13 (2020)

இரசாயனவியல் – II B

பகுதி II B

கட்டுரைவினாக்கள் எவையேனும் இரண்டு வினாக்களுக்கு விடை எழுதுக.

5) (A)

- (i) 25^{0} Cஇல் $0.02~{
 m moldm^{-3}CH_{3}COOH_{(aq)}}$ இன் pH இனைக் கணிக்க (25^{0} Cஇல் ${
 m CH_{3}COOH}$ இன் ${
 m K_{a}} = 1.8 \times 10^{-5} {
 m moldm^{-3}}$)
- (ii) மேற்படி கரைசலின் 25 cm³ ஆனது 0.03 moldm¬³NaOH கரைசலுடன் நியமிப்புச் செய்யப்பட்டது. தொகுதியினுள் NaOH_(aq)இன் 12.5 cm³ சேர்க்கப்பட்ட நிலையில் விளைவுக் கரைசலின் pH யாதாகும்?
- (iii) 0.02 moldm⁻³ HCl கரைசலின் pH யாது?
- (iv) இந்த HCI கரைசலின் 500 cm³ இற்குள் பகுதி (i) இல் குறிப்பிட்ட CH₃COOH கரைசலின் 500 cm³ ஐ சேர்ப்பின் விளைவுக்கரைசலின் pH யாதாகும்?
- (B) (I) (i) நியம தகன வெப்பவுள்ளுறை, நியமதோன்றல் வெப்பவுள்ளுறை எனும் பதங்களை வரையறுக்க.

(ii)
$$CH_3 - C - H_{(g)} + \frac{5}{2}O_{2(g)} \longrightarrow 2CO_{2(g)} + 2 H_2O_{(g)}$$

மேலுள்ள தாக்கத்தைக் கருதுக.

பின்வரும் பிணைப்புப் பிரிகை வெப்பவுள்ளுறைத் தகவல்களை பயன்படுத்தி மேறகுறிப்பிட்ட தாக்கத்தின் நியமவெப்பவுள்ளுறை மாற்றத்தைக் கணிக்க.

பிணைப்பு	பிணைப்பு பிரிகை வெப்பவுள்ளுறை/ KJmol ^{—1}
C – C	348
C — H	412
C = 0	743
0 = 0	496
0 – H	463

(II) இரு தாக்கங்களின் நியம வெப்பவுள்ளுறை மாற்றங்கள் கீழ்த்தரப்பட்டுள்ளன.

$$CO_{(g)} + \frac{1}{2}O_{2(g)} \longrightarrow CO_{2(g)}$$
 $\Delta H^{\theta} = -284 \text{kJmol}^{-1}$

$$2NO_{(g)} + 2CO_{(g)} \longrightarrow N_{2(g)} + 2CO_{2(g)} \qquad \Delta H^{\theta} = -748 \text{kJmol}^{-1}$$

பின்வரும் தரவுகளும் தரப்பட்டுள்ளது.

$$\Delta H_{f(H_2O_{(g)})}^{\theta} = -242 \text{ kJmol}^{-1}$$

$$\Delta H_{f(NH_{3(g)})}^{\theta} = -46 \text{ kJmol}^{-1}$$

$$S_{(H_2O_{(g)})}^{\theta} = 189 \, \text{Jmol}^{-1} \text{K}^{-1}$$

$$S_{(NH_{3(g)})}^{\theta} = 193 \, \text{Jmol}^{-1} \text{K}^{-1}$$

$$S_{(NO_{(g)})}^{\theta} = 211 \, \text{Jmol}^{-1} \text{K}^{-1}$$

$$S_{(O_{2(g)})}^{\theta} = 205 \, \text{Jmol}^{-1} \text{K}^{-1}$$

மேற்படி தரவுகளைப் பயன்படுத்தி

$$4NH_{3(g)}+5O_{2(g)}$$
 ——— $\Rightarrow 4NO_{(g)}+6H_{2}O_{(g)}$ என்ற தாக்கத்துக்கான பின்வருவனவற்றைக்
கணிக்க

I. நியம வெப்பவுள்ளுறை மாற்றம் $(\Delta \hat{H}_R^{\theta})$

II. ΔS^θ

III. ΔG^{θ}

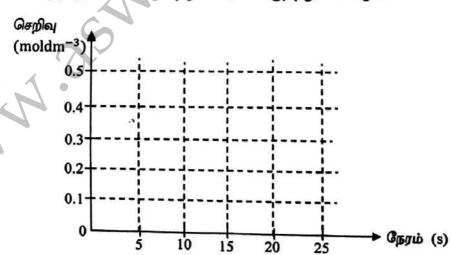
இதிலிருந்து 25°C இல் மேற்குறிப்பிட்ட தாக்கம் சுயமாக நிகமுமா? எனத் தீர்மாணிக்க.

6) (A) X + Y + 2 Z → விளைவுகள்

 25° C இல் மேற்படி தாக்கத்தின் இயக்கப்பண்பியல் பற்றி அறிவதற்காக மேற்கொள்ளப்பட்ட பரிசோதனைகளில் X, Y, Z என்பவற்றின் ஆரம்பச் செறிவுகள் மாற்றப்பட்டு ஒவ்வொரு சந்தர்பபத்திலும் தாக்கி X இன் செறிவில் ஏற்பட்டமாற்றம் $\Delta[x]$ உம் அதற்கான நேரம் t உம் அளவிடப்பட்டு பின்வருமாறு அட்டவணைப்படுத்தப்பட்டன.

[x]/moldm ⁻³	[Y]/moldm ⁻³	[Z]/moldm ⁻³	Δ(x)/moldm ⁻³	t/s	ஆரம்பத் தாக்கவீதம் R moldm ⁻³ s ⁻¹
0.2	0.1	0.1	0.040	25	
		0.1	0.096	30	•••••
	0.1	0.2	0.012	30	
	0.1	0.1	0.012	30	
	[x]/moldm ⁻³ 0.2 0.2 0.1 0.1	0.2 0.1 0.2 0.2 0.1 0.1	0.2 0.1 0.1 0.2 0.2 0.1 0.1 0.1 0.2	0.2 0.1 0.1 0.040 0.2 0.2 0.1 0.096 0.1 0.1 0.2 0.012	0.2 0.1 0.1 0.040 25 0.2 0.2 0.1 0.096 30 0.1 0.1 0.2 0.012 30 0.1 0.1 0.2 0.012 30

- (i) ஒவ்வொரு பரிசோதனையிலும் ஆரம்பத் தாக்கவீதங்களைக் கணித்து அட்டவணையின் உரிய நிரலை நிரப்புக.
- (ii) X, Y, Z சார்பான தாக்கவரிசைகள் முறையே a, b, c எனவும் தாக்கவீத மாறிலி k எனவும் கொண்டு ஆரம்பத் தாக்வீதம் R இற்கான கணிதக் கோவையை எழுதுக.
- (iii) அட்டவணையிலுள்ள தரவுகளை உபயோகித்து a, b, c மற்றும் k ஆகியவற்றின் பெறுமானங்களைக் கணிக்க.
- (iv) X, Y இன் செறிவுகள் மாறிலியாக உள்ள போது நேரத்துடன் Z இன் செறிவு மாறலை வரைபில் காட்டுக.
- (v) Z இன் செறிவு மாறாதிருக்க X, Y ஒவ்வொன்றின் செறிவுகளும் இரு மடங்காக்கப்படின் தாக்கவீதத்திற்கு யாது நிகமும்?


(B) $A_{(g)} + 2B_{(g)} \rightleftharpoons 3C_{(g)}$

மேலுள்ள தாக்கமானது 1 dm³ கனவளவுடைய மூடிய பாத்திரமொ**ன்றில் 400 K வெப்ப** நிலையில் நடைபெறுகின்றது.

t=0 இல் தாக்கம் ஆரம்பிக்கப்பட்டது என்க. ஏதாவது ஒரு நேரம் t=t s இல் A, B, C ஆகியவற்றின் செறிவுகள் முறையே $0.6\,\mathrm{moldm^{-3}}$, $0.3\,\mathrm{moldm^{-3}}$, $0.3\,\mathrm{moldm^{-3}}$ என்க. ஆகக் காணப்பட்டன. $t=15\mathrm{s}$ இல் மேற்படி தாக்கம் ஒரு சமநிலையை அடைந்தது. இதன் போது தொகுதியிலுள்ள $A_{(g)}$, $B_{(g)}$, $C_{(g)}$ ஆகியவற்றின் செறிவுகள் முறையே $0.4\,\mathrm{moldm^{-3}}$, $0.1\,\mathrm{moldm^{-3}}$ $0.3\,\mathrm{moldm^{-3}}$ ஆகக் காணப்பட்டன.

t = 17s இல் 0.2 mol C_(g) ஆனது மேற்படி தொகுதிக்குள் சேர்க்கப்பட்டது. t = 25s இல் தொகுதி மீண்டும் ஒரு சமநிலையை அடைந்தது. இந் நிகழ்வுகளின் போது தொகுதியின் வெப்பநிலை மாறாமல் இருந்தது என எடுத்துக் கொண்டு பின்வரும் வினாக்களுக்கு விடையளிக்குக.

- (i) மேற்படி சமநிலைத் தாக்கத்தின் சமநிலை மாறிலி k_c ஐ 400 K இல் கணிக்க.
- (ii) தொடக்கத்தில் தொகுதியில் C_(g) இல்லாதிருப்பின் தொடக்கத்தில் காணப்பட்ட A, B இன் மூல அளவுகள் யாதாக இருக்கும்?
- (iii) ஏதாவது நேரம் t=t s இல் Q_c இன் பெறுமானத்தை அடிப்படையாகக் கொண்டு தாக்கம் சமநிலையை எய்துவதற்கு நகரும் திசையை எதிர்வு கூறுக.
- (iv) மேற்படி நிகழ்வுகளின் போது தாக்கிகளினதும் விளைவினதும் செறிவுகளில் ஏற்படும் மாற்றங்களை t = 0, 15s, 20s, 25s ஆகிய நேர ஆயிடைகளை அடிப்படையாகக் கொண்டு கீழ்த் தரப்பட்டவாறு ஒரு வரைபில் குறித்துக் காட்டுக.

- 7) (A) ஒரு தாண்டல் உலோகம் M ஆனது நீர் ஊடகத்தில் ஒரு நிறச்சிக்கலயன் P ஐ உண்டாக்குகின்றது. அதன் பொதுச்சூத்திரம் [M(H₂O)_n]^{m+} அது கீழ் தரப்பட்ட தாக்கங்களுக்கு உட்படுகிறது.
 - P இற்கு மட்டுப்படுத்திய அளவில் செறிந்த NH_{3(aq)} சேர்க்கும் போது முதலில் மென்சிவப்பு நிற வீழ்படிவு (Q) உருவாகியது.
 - இவ் வீழ்படிவு தொடர்ந்து செறிந்த NH_{3(aq)} சேர்க்கையில் கரைந்து மஞ்சள் நிற கரைசல் பெறப்படும். எனினும் அம் மஞ்சள் நிறகரைசல் சற்று நேரத்தில் கபிலமாகமாறியது.
 - P இற்கு செறிந்த HCl சேர்க்கும் போது நீலநிறமுடைய கரைசல் (S) ஐ தோற்றுவித்தது.
 - (i) உலோகம் M ஐ இனங்காண்பதுடன் அதன் சிக்கலயன் P இல் உள்ள M இன் ஒட்சியேற்ற நிலையைக் குறிப்பிடுக.
 - (ii) சிக்கலயன் P இல் உள்ள M இன் இலத்திரன் நிலையமைப்பை தருக.
 - (iii) m, n பெறுமதிகளைத் தருக.
 - (iv) Q, R, S ஆகியவற்றின் கட்டமைப்புக்களைத் தருக
 - (v) P, R, S ஆகிய சிக்கலயன்களின் IUPAC பெயர்களைஎழுதுக.
 - (vi) கரைசலின் நிறம் மஞ்சளிலிருந்து கபிலமாக மாறுவதற்குரிய காரணத்தை குறிப்பிடுக.
 - (B) A, B ஆகியன மூலக்கூற்றுச் சூத்திரம் CoN₅H₁₂I₂O₂ ஐ உடைய இரு இணைப்புச் சேர்வைகளாகும். இவற்றில் H அணுக்கள் NH₃ ஆக மாத்திரம் உள்ளன. இரு சேர்வைகளினதும் கோபோல்ற் ஒரே ஒட்சியேற்ற நிலையில் உள்ளது. சேர்வை B மாத்திரம் AgNO_{3(aq)} உடன் ஒரு மஞ்சள் நிறமான வீழ்படிவைத் தருவதுடன் அவ் வீழ்படிவு செறிந்த NH₃ இலும் கரையமாட்டாதாகும்
 - (i) மேற்குறித்த சேர்வைகளில் Co இன் ஒட்சியேற்ற நிலை யாது?
 - (ii) மேற்படி சேர்வைகளிலுள்ள Co அயனின் இலத்திரன் நிலையமைப்பைத் தருக.
 - (iii) A, B ஆகிய இரு சேர்வைகளினதும் இணைந்த பொது இணையிகளை இனம் காண்க.
 - (iv) A, B இன் கட்டமைப்பைச் சூத்திரங்களை உய்த்தறிக. (காரணம் குறிப்பிடல் அவசியம்)
 - (v) சேர்வை A இல் உள்ள அன்னயனை இனம் காண்பதற்கு ஓர் இரசாயனச் சோதனையை குறிப்பிடுக.

பகுதி II C

எவையேனும் இரண்டு வினாக்களுக்கு விடை எழுதுக.

08) (A) ஒரு சேதன ஆரம்பிக்கும் பொருளாக CH₂ = CH₂ ஐயும் பட்டியலில் தரப்பட்டுள்ளவற்றை மாத்திரம் சோதனைப் பொருளாகவும் பயன்படுத்தி எட்டு (8) இற்குமேற்படாதபடி முறைகளில் பின்வரும் சேர்வையை எங்ஙனம் தொகுப்பீர் எனக் காட்டுக.

$$CH_3CH = CH - CH_2 - \bigcirc$$

சோதனைப்பொருள்களின் பட்டடியல்

Cl₂, ஐதான H₂SO₄, நீரற்ற*Alcl*₃ செறி H₂SO₄, *H*₂O, *PCl*₅, *Mg*, உலர் சுதர்,
Pyridinium Chloro Chromate PCC.

(B) பின்வரும் மாற்றலை எட்டு(8)க்கு மேற்படாதபடி முறைகளைப் பயன்படுத்தி எங்ஙனம் தொகுப்பீர் எனக்காட்டுக.

$$CH \equiv CH \longrightarrow CH_3 - CH = N - CH_2CH_2CH_2CH_3$$

(C) பின்வரும் தாக்கத்தின் பிரதான விளைபொருளைத் தருக

$$CH_3 - CH_2 CH = CH_2 \xrightarrow{conc. H_2SO_4}$$

- i) பிரதான விளைபொருளின் கட்டமைப்பை எழுதுக.
- ii) இவ்விளைபொருளை தோற்றுவிப்பதற்குரிய பொறிமுறையை எழுதுக.
- 9) (A) ஒரு குறித்த P என்னும் நீர்க்கரைசலில் இரு கற்றயனும் இரு அன்னயனும் காணப்படுகின்றன. இவற்றை இனம் காண பின்வரும் பரிசோதனைகள் மேற்கொள்ளப்பட்டு அவதானங்கள் பெறப்பட்டன. கற்றயன்களுக்கான பரிசோதனை

பரிசோதனை	அவதானம்
P கரைசலின் ஒரு பகுதிக்கு dil KOH	நரைநிறமான (X ₁) செங்கபில நிற
கரைசல் துளித்துளியாக சேர்க்கப்பட்டது.	வீழ்படிவு (X ₂)
மேற்பெறப்பட்ட வீழ்படிவுக்கு dil NH3	வீழ்படிவின் ஒரு பகுதி கரைந்து
நீர்க்கரைசல் சேர்க்கப்பட்டது.	செங்கபில நிற வீழ்படிவு
	காணப்பட்டது.
ii இல் பெறப்பட்ட கரைசல் வடிக்கப்பட்டு	வெண்ணிறவீழ்படிவு தோன்றியது
வடிகிரவக்கிற்கு dil HNO3 சேர்க்கப்பட்டு	(X ₃) சூடாக்க கறுப்பாக மாறியது.
The state of the s	(X ₄)
(X ₂) வீழ்படிவு இற்கு dil HNO ₃ சேர்த்து NH ₄ SCN சேர்க்கப்பட்டது.	சிவப்பு நிறச்சிக்கல் சேர்வை உருவாகியது (X _S)
	P கரைசலின் ஒரு பகுதிக்கு dil KOH கரைசல் துளித்துளியாக சேர்க்கப்பட்டது. மேற்பெறப்பட்ட வீழ்படிவுக்கு dil NH ₃ நீர்க்கரைசல் சேர்க்கப்பட்டது. ii இல் பெறப்பட்ட கரைசல் வடிக்கப்பட்டு வடிதிரவத்திற்கு dil HNO ₃ சேர்க்கப்பட்டு மிகை Na ₂ S ₂ O ₃ சேர்க்கப்பட்டது. (X ₂) வீழ்படிவு இற்கு dil HNO ₃ சேர்த்து

அள்ளயுள்களுக்கான சோதணை

சோதனை	அவதானம்
I. H ⁺ /KMnO₄ கரைசல் P இற்கு	KMnO ₄ இன் நிறம் நீங்கியது. வாயு
சேர்க்கப்பட்டது.	வெளியேறியது.
ு⊛ II. I இல் பெறப்பட்ட கரைசலுக்கு BaCl₂ நீர்க்கரைசல் சேர்க்கப்பட்டது.	dil HNO ₃ இல் கரையாத வெள்ளை வீழ்படிவு பெறப்பட்டது. (X ₆)
III. (I) இல் பெறப்பட்ட வாயு தெளிந்த	வெண்ணிற வீழ்படிவு தோ ன்றி (<i>X</i> ₇) பின்
சுண்ணாம்பு நீருடாக செலுத்தப்பட்டது.	தெளிவான கரைசல் பெறப்பட்டது. (<i>X</i> ₈)
IV. P இன் நீர்க்கரைசலுக்கு Ca(NO ₃) ₂ சேர்க்கப்பட்டது.	வெண்ணிற வீழ்படிவு பெறப்பட்டது. (X ₉)
V. P இன் நீர்க்கரைசலுக்கு dil HCl	செங்கபில நிற வாயு (X ₁₀)
சேர்க்கப்பட்டது.	வெளியேறியது.

- (i) கற்றயன்களையும், அன்னயன்களையும் இனங்காண்க.
- $(ii) \ X_1 X_{10}$ என்பவற்றை இனங்காண்க.
- (B) கரைசல் G இல் Hg²⁺, Br⁻, H⁺ அயன்கள் உள்ளன. அவற்றின் செறிவுகளைக் காண்பதற்கு பின்வரும் செய்முறைகள் மேற்கொள்ளப்பட்டன.

செய்முறை I :-

கரைசல் G இன் 25.00 cm³ உடன் மிகையான AgNO₃ கரைசலைச் சேர்த்த போது கிடைத்த வீழ்படிவின் உலர் திணிவு 3.761 g ஆக இருந்தது.

செய்முறை II :-

கரைசல் G இன் 25.00 cm³ ஐ எடுத்து அதில் உள்ள Hg^{2+} ஐ HgS ஆக முற்றாக படிவீழ்த்துவதற்கு H_2S குமிழியிடப்பட்டது. வீழ்படிவு வடிக்கப்பட்டடு வடிதிரவம் செய்முறை III இல் பயன்படுத்துவதற்காக வைக்கப்பட்டது. வீழ்படிவு 0.2 $moldm^{-3}$ அமில $KMnO_4$ இன் 30.00 cm^3 இற்குள் சேர்க்கப்பட்ட போது Hg^{2+} , Mn^{2+} , SO_2 என்பன தோற்றுவிக்கப்பட்டது. (உருவாகும் SO_2 $KMnO_4$ உடன் தாக்கமுறவில்லை எனக் கொள்க.) கரைசலை கொதிக்கசெய்து SO_2 முற்றாக அகற்றப்பட்ட பின்பு மிகையான $KMnO_4$ முற்றாக தாக்கமுற $0.3 \, moldm^{-3} Na_2 C_2 O_4$ இன் $20.00 \, cm^3$ தேவைப்பட்டது.

செய்முறை III:-

மேலே(II) இல் பெற்ற வடிதிரவம் கொதிக்கசெய்து H_2S முற்றாக அகற்றப்பட்டு பின்பு அறைவெப்பநிலையில் $0.4~{
m moldm^{-3}Ba(OH)_2}$ உடன் தாக்கமுற விடப்பட்ட போது முற்றான நடுநிலையான தாக்கத்திற்கு $25.00~{
m cm^3~Ba(OH)_2}$ தேவைப்பட்டது.

[Ag -108 gmol⁻¹, Br - 80 gmol⁻¹]

Hg²⁺, Br⁻, H⁺இன் செறிவுகளை மேற்படி செய்முறைக்கு அமைவாகக் காண்க.

- 10) (A) மூலகம் X ஆனது p தொகுப்புக்குரியது. இது அறைவெப்பநிலையில் ஈரணு மூலக்கூறு X₁ ஆக காணப்படுகின்றது. கொதிநிலை 34.7°C யும் உருகுநிலை 101°C யும் உடையது. இது உயர் முதலாம் இலத்திரன் நாட்டம் உடையது. X ஆனது மறை, நேர் ஒட்சியேற்ற எண்களை எடுக்கக் கூடியது.
 - I. X, X₁ ஐ இனம் காண்க?
 - II. X இன் இலத்திரன் நிலையமைப்பை $1S^2, 2S^2 \dots \dots$ வடிவில் தருக.
 - III. X இன் ஒட்சியேற்ற எண்களைத் தருக.
 - IV. X ஆனது உருவாக்கும் ஒட்சியமிலங்கள் நான்கு தருக.
 - V. X யைக் கொண்ட கூட்ட மூலகங்கள் ஐதரசனுடன் உருவாக்கும் சேர்வைகளைத் [HX] தந்து அவற்றின் கொதிநிலை போக்கை வரைந்து போக்கை விளக்குக.
 - VI. X₁ ஆனது பின்வருவனவற்றுடன் காட்டும் தாக்கச் சமன்பாடுகளைத் தருக.
 - (i) மிகை NH₃ உடன்
 - (ii) மிகை செறி NaOH உடன்

VII. X இன் பயன்பாடு ஒன்று தருக.

- (B) மூன்றாம் ஆவர்த்தன மூலகங்களின் அதியுயர் ஒட்சைட்டுக்களின் சூத்திரத்தை தந்து அவற்றின்
 - I. மூலகத்தின் ஒடசியேற்ற எண்
 - II. பிணைப்பு வகை
 - III. அமில மூல வகை

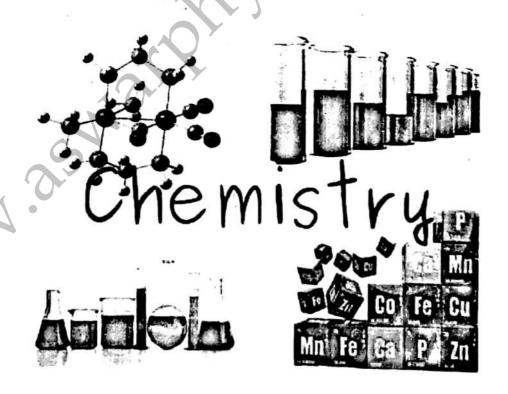
என்பவற்றைத் தருக.

- (C) அமில வலிமை பீனோலை விட காபொட்சிலிக்கமிலத்துக்கு கூடவாகும் விளக்குக.
- (D) பின்வரும் இரசாயன தாக்கங்களை சமன் செய்த தாக்கங்களாக பூரணப்படுத்துக.
 - I. LiNO₃ இன் வெப்பப்பிரிகை
 - II. SCl₂ நீருடன் காட்டும் தாக்கம்
 - III. Br₂ ஆனது NaOH உடன் காட்டும் தாக்கம்.
 - IV. KMnO₄ + H₂SO₄ + H₂S →
 - V. $Cr_2O_7^{2-} + H_2O_2 + H^+$
- (E) 2.568 g KIO₃ ஆனது நீரில் கரைக்கப்பட்டு அதனுள் மிகை KI சேர்க்கப்பட்டது. KIO₃ இணை பூரணமாக I₃ ஆன மாற்றுவதற்கு தேவையான 3 moldm⁻³ HCl இன் குறைந்த கனவளவைக் காண்க. [K-39, I-127, O-16]

வடமாகாணக் கல்வித் திணைக்களத்துடன் **கீணைந்து** தொண்டைமானாறு வெளிக்கள நிலையம் நடாத்தும் தவணைப் பரீட்சை, நவம்பர் - 2019

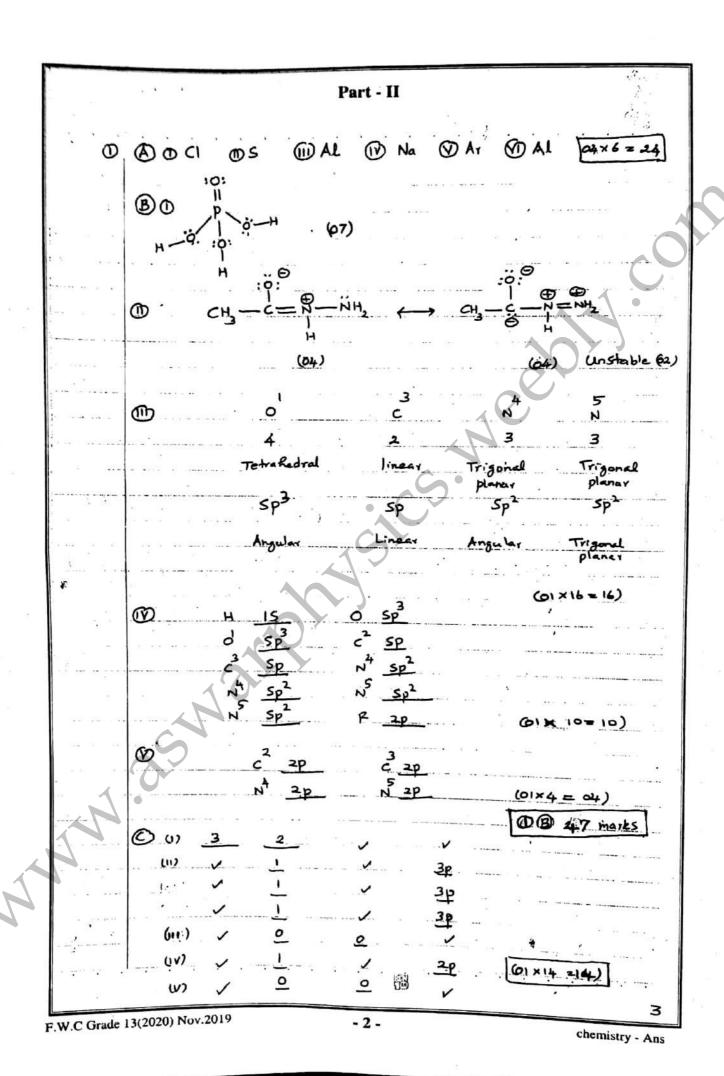
Conducted by Field Work Centre, Thondaimanaru

In Collaboration with Provincial Department of Education Northern Province
Term Examination, November - 2019

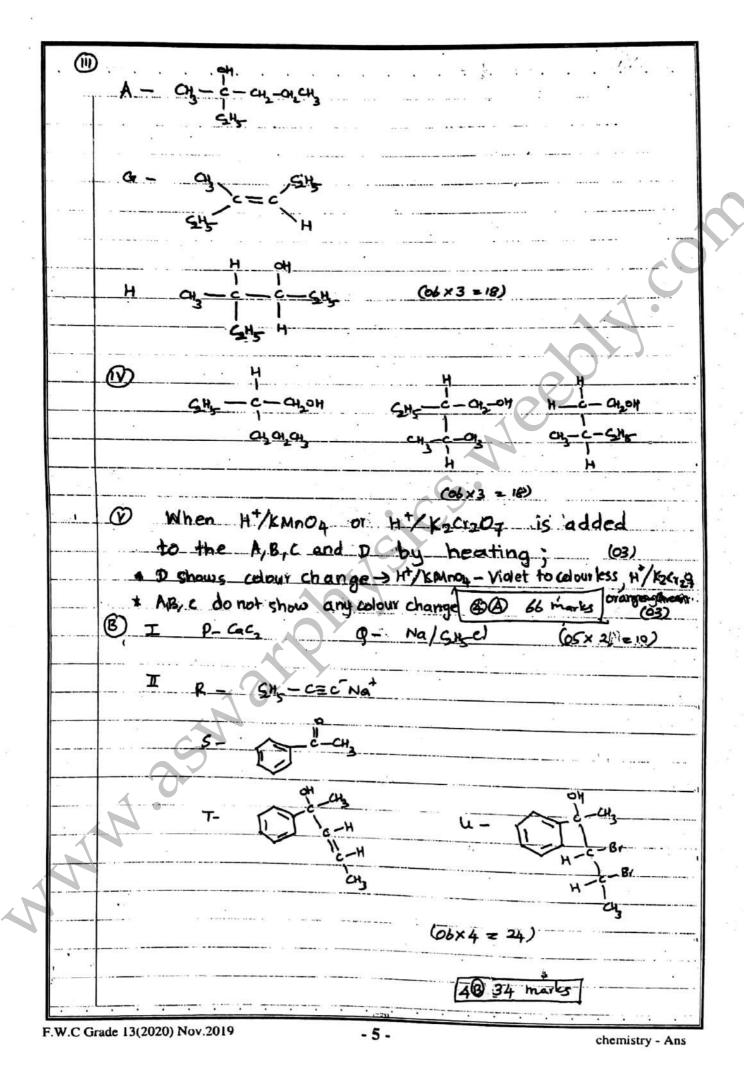

Grade - 13 (2020)

Chemistry

Marking Scheme


Part - I MCQ

01) 3	11) 5	21) 3	31) 1	41) I
02) 1	12) 3	22) 1	32) 5	42) 2
03) 2	13) 5	23) 1	33) 4	43) 2
04) 4	14) 4	24) 5	34) 3	44) 1
05) 5	15) 1	25) 4	35) 2	45) 5
06) 1	16) 2	26) 5	36) 1	46) 5
07) 3	17) 3	27) 2	37) 4	47) 3
08) 3	18) 5	28) 5	38) 4	48) 4
09) 2	19) 1	29) 5	39) 3	49) 3
10) 4	20) 2	30) 3	40) 2	50) 1


F.W.C Grade 13(2020) Nov.2019

chemistry - Ans

(5) (1. Reso / Mass / Caso
(1) Beso4 L Mgso4 L Caso4
U1) NO43 - L NG - L NO - L NO -
(11) Lie LNARLER (05×3)=15
22 6 2 6 1
(2) (5) (1) K (67) (1) 15252p 353p 45 (6) (11) kg, kg, kg, kg, kg
(63.x3 = 04)
W I KO ₂ (63)
$32K0_2 + 2H_20 \rightarrow 2K0H + H_20_2 + 0_2 (95)$
$TT 4KO_1 + 2450 \longrightarrow 4KOH +30_2 (05)$
1 Double Cobalt glass (03)
(O3)
(VIII) Diagonal Telationship (03)
(Vii) a decomposition of Liscon is same as Macon (03)
* decomposition of Lino, Lion are similar to compounds of Ma
Li con form N3 like Mg 1030 DD 50 marks
(B) T
O NAOH W Hel W NaBy W HNO3 V Naso (0375= 5)
A-NH3 B-PBC12 C-AgBi D-CO2 E-PLSQ3
'(04×5=20)
PbCl2cs F Pb q + 2Clq,
AgBis + NH3 ex = [Ag(NH3)] Bi (eq)
$PbS_2O_3 \longrightarrow PbS_1 + SO_3 \qquad (osx3 = 15)$
\$B 50 marks
3 (i) I - To reduce the reaction between Mg tape and HC1. (05)
IT It is difficult to get initial reading due to the fast roaction (es)
Ui) I - NO,
I Because, Rapid reaction takesplace, difficult to get initial (5)
(iii) Mg + 2Hcl -> MgCl2 + H2 G7) Treading
- July

(IV) VH2 = (46.00-2.20) = 43.80 Cm (04+01)	
$V_{H_2} = (46.00 - 2.20) = 43.80 \text{ cm} (-04.40)$	
760-31.8 × 10 Nm ⁻²	
(05) (04+01)	
(VI) PV = NRT (05)	ر :
P-Pressure exerted n-Amount of substance T-Absolute temper	att re
(vii) by gas R- universal gas constant (0)x5 = 05)	2
728.2×10 Pa × 43.8 × 10 m	
760 83147mol 21×303 K	
= 1.665 × 103 mo) {(03+01) × 5=20}	9
(VIII) He actuais sheel god (05)	
0×)	8
$n_2 \frac{W}{h}$ (05) M_2 0.048 (04+01)	
1.665×103 mol	2
Pelative molecularmass Mg 224 (04+01)	
(A) (B) (D) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C	
A - CH3 - C-CH2-CH2-CH3	
52Hg	
B- CH - C- C-H	
Structures A, B and C	
are Interchangeable.	
C- SHC- SH5	
GH5 (06 ×3 = 18)	
(
CH - C - SH	
GHC (66)	
F.W.C Grade 13(2020) Nov.2019 -4-	
chemistry - Ans	Ė

Part IIB

E) (A) (h) CH3COOH and H2OW CH3COO (an) + 430 (an)

Thittal:
$$0.02$$

At equilibri $(0.02-2)$
 $K_{\alpha} = \left[\frac{\text{CH}_{3} \cos (-\alpha)}{(-\alpha)} \right] \left[\frac{\text{H}_{3} \circ (-\alpha)}{(-\alpha)} \right]$

$$\left[\frac{\text{CH}_{3} \cos (-\alpha)}{(-\alpha)} \right] \left[\frac{\text{H}_{3} \circ (-\alpha)}{(-\alpha)} \right]$$

 $\begin{array}{lll}
1.8 \times 10^{-5} \text{ mal dm}^{-3} &= \frac{x^2}{(0.02 - x) \text{ maldm}^{-3}} &= \frac{3}{(0.02 - x)} \text{ maldm}^{-3} \\
& \text{Since } x < < 0.02 & , 0.02 - x < 0.02 \\
& \frac{1}{2} = 36 \times 10^{-8} \text{ mal}^2 \text{ dm}^{-6} \\
& \Rightarrow x = 6 \times 10^{-4} \text{ mal dm}^{-3}
\end{array}$

$$[H_0t] = 6 \times 10^{-4} \text{ mol dm}^3 - - - 65$$

$$pH = -\log(H_0t_0)$$

$$= -\log_{10}(6 \times 10^{-4}) = 4 - \log_{10}6$$

$$= 4 - 0.7762 = 3.2218 - - 65$$

Amt. of moles of CHCOOH in 25 cm3 solp = 0.02 moldm-3 x 25x 10-3 dm3

Amt. in males of Nach added

 $= 0.03 \, \text{mol dm}^{-3} \times 12.5 \times 10^{-3} \, \text{dm}^{-3}$ $= 3.75 \times 10^{-4} \, \text{mol} \, - \, - \, \boxed{33}$

Remaining amt. of CH COOK = (5x10-4_3.75x10-4)

Concentration of remaining encoun

Concentration of che concentration of che concentration of the concentra

= 3.75 × 10 4 mal

F.W.C Grade 13(2020) Nov.2019

- 6 -

chemistry - Ans

$$[H_{0}] = \frac{1}{100} \frac{1}$$

F.W.C Grade 13(2020) Nov.2019

```
By Herr's law, DH = DH, -DB
                                     = (3979 - 4 +24) ko m/7
= -1193 kom12----
            CO(0) + \(\frac{1}{2} O_2 (0) - \rightarrow CO_2 (0) \) \( \Delta H^{\frac{1}{2}} = -284 \) KT mb/T
           2NO(g) + 2 CO(g) - + N2(g) + 2602(g, 10H) = - 748 k JAW )
         0 x 2 - 00=) N2gy+ 02gy - 2 ND(g)
                   -. 2x-DHF(Ng) = 2x-284 KJMOIL (74PK3)
                                       = 180 Wm.H______
                           ΔHf(No;) = 90 KJmal7. _ _ 65
         I) For the given reaction

AHR = 42 EAH Products - S ABREGUES
                               = (4x90 kJmal) + (6x-242 lot mar)
                                      - [(-46 kJmork4)+0 kony
         (II) \Delta S_R^{\oplus} = \sum S_{Products}^{\oplus} - \sum S_{Reactor}^{\oplus}
                     = [(211 Jmol+k+x4)+(189 JmoHk+x6)]- [92Jmoltky
                                                       F ROSTMINED F
                         181 Jind 1 K-1 ___ (3)
        D) DG = DHR - TOSR --- GF
                     = -908 KJ moH - Egak x 181x 10-3 (c) moHkg)
                       = -961-9 KIMO17 -- - @
             Since DGOZO, the reaction is perspontano
        of Initial rates = 16x10-4
                                                   Q (S) (B) > (BO)
                                32 × 10-4
                                4 × 10-4
                                 4xw-4
                               Cunito not necessary
             R = k[x]aCy]bCzjc--
F.W.C Grade 13(2020) Nov.2019
                                - 8 -
```

16 x 10 -4 moldm35+ = k(0,2 moldm3) (0,1 moldm3) (0,1 moldm3) 32x10-4 maldrist= k(0,2 ") (0.2 ") (0.4)) 4x10-4moldmist= k(.0.1 ") (0.1 ") (0.2 ") (0.2 ") (4 x 10-4 molding st = k (0,11,) (0,11,) (0,11) (0,1)

Four eyrs 4 x 05 = (2)

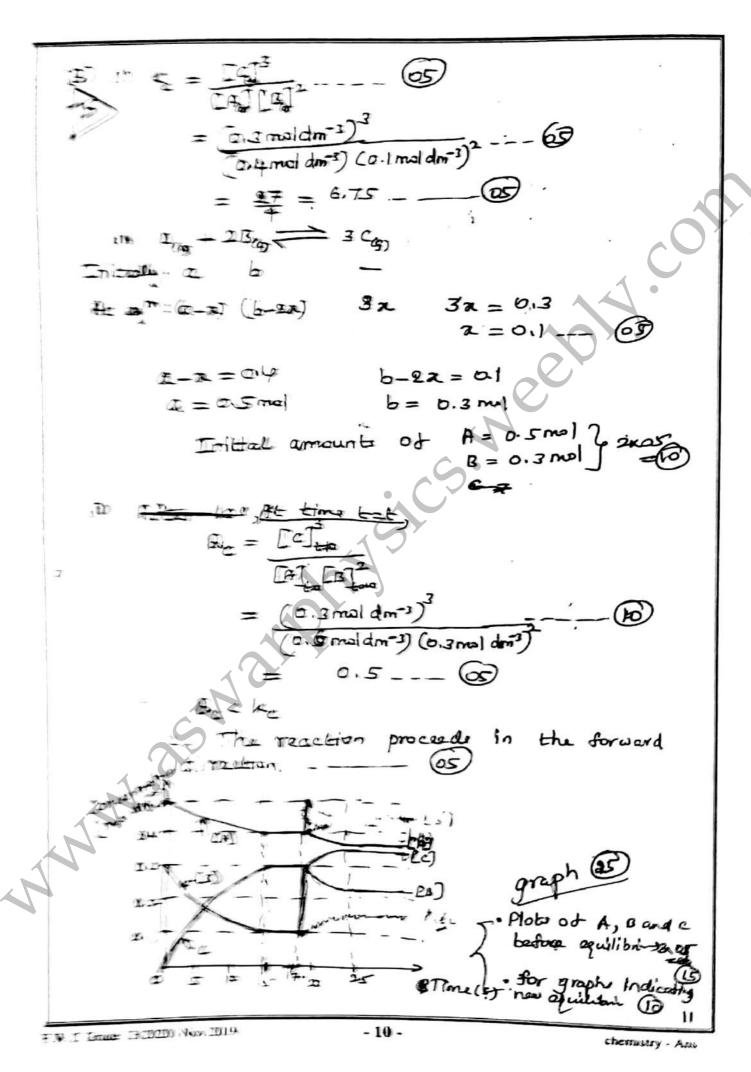
$$\frac{\dot{\phi}}{\dot{\Phi}} \Rightarrow 4 = 2^{\alpha} \Rightarrow \alpha = 2$$

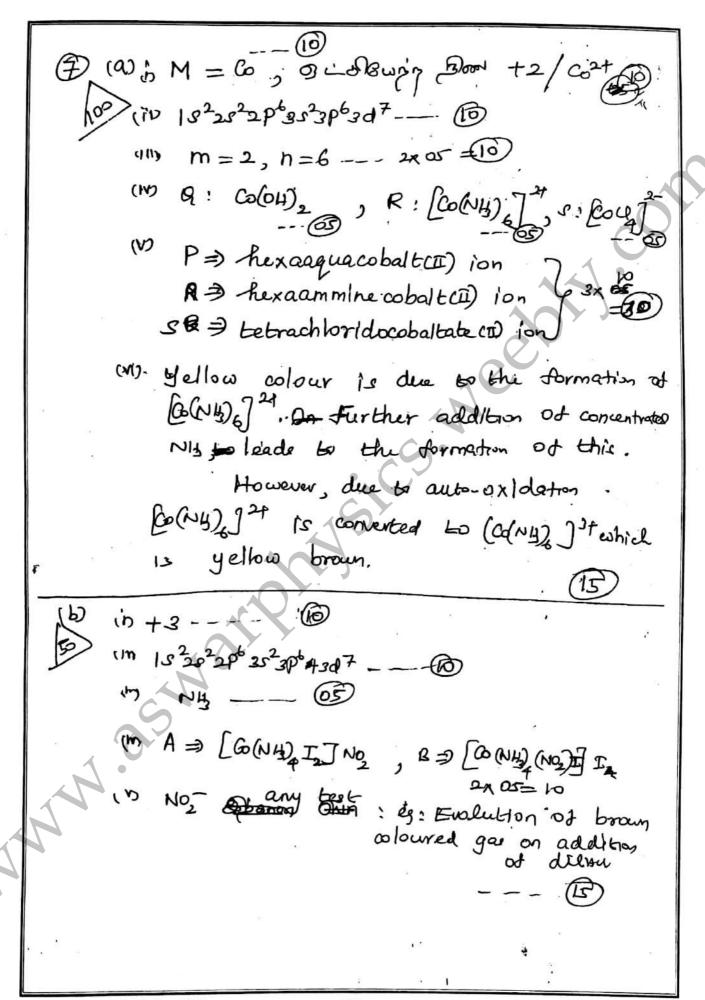
$$(3) = 1 = 2^{c} = 0$$

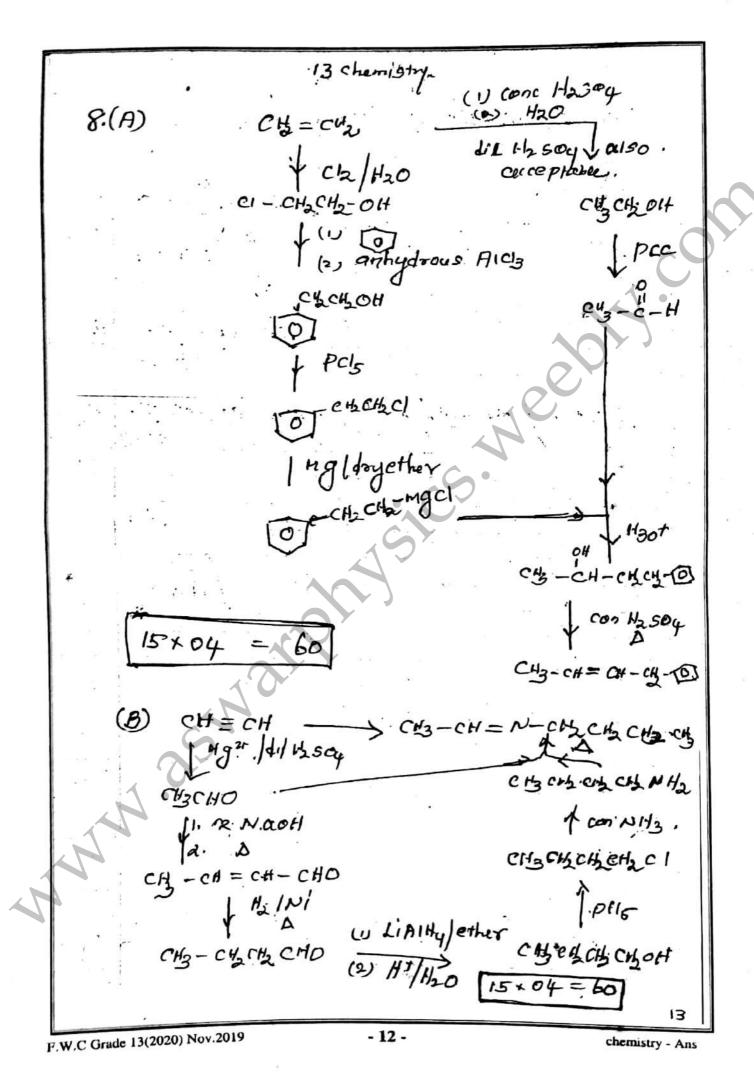
$$R = k [R]^2 [Y] [Z]^2 = k [X]^2 [Y]$$

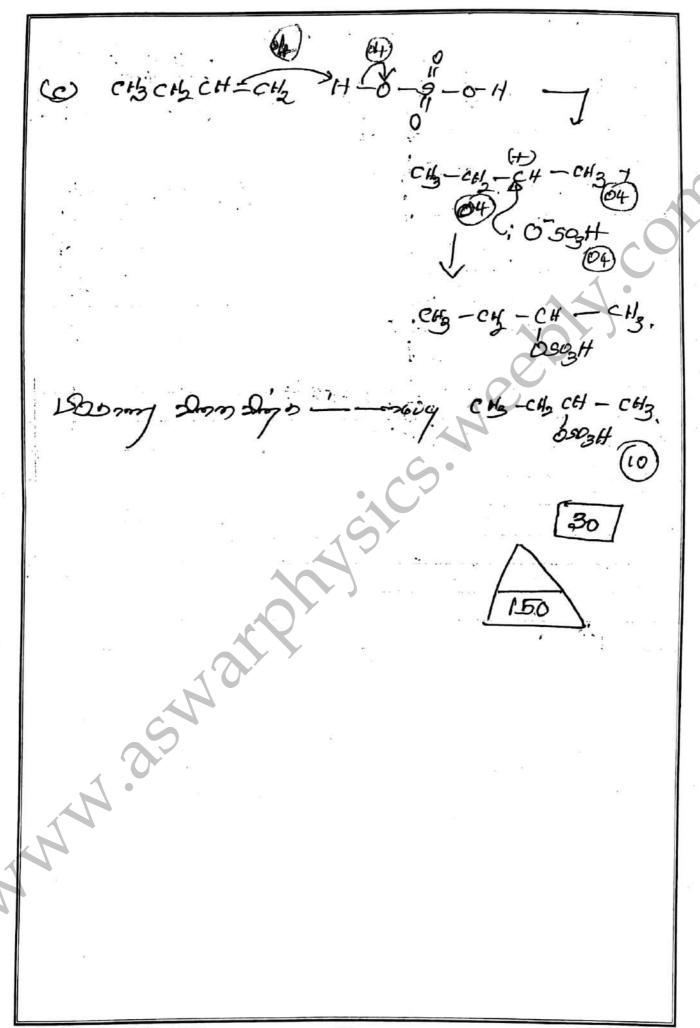
since order wirt 2 ss o, rate is indepen -dank of the concentration of zi- -- (5) [Z] midia Gradient le a constant

graph (05)

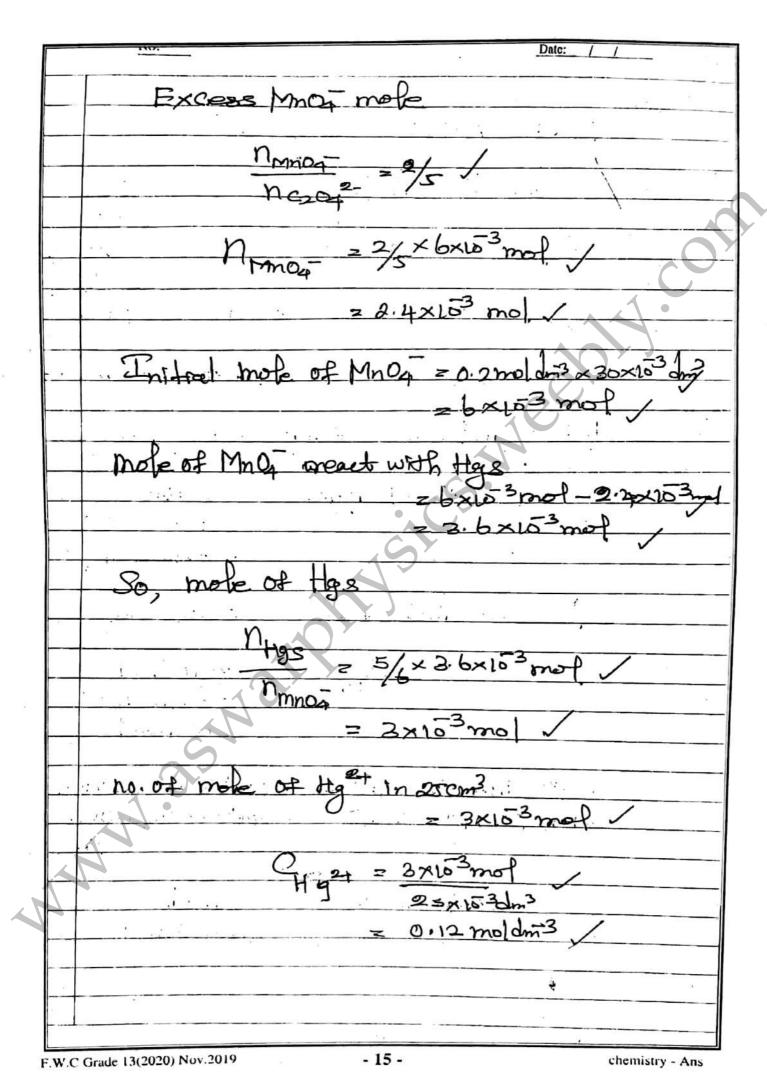

(1) The rate will Increase by a factor of -- 63

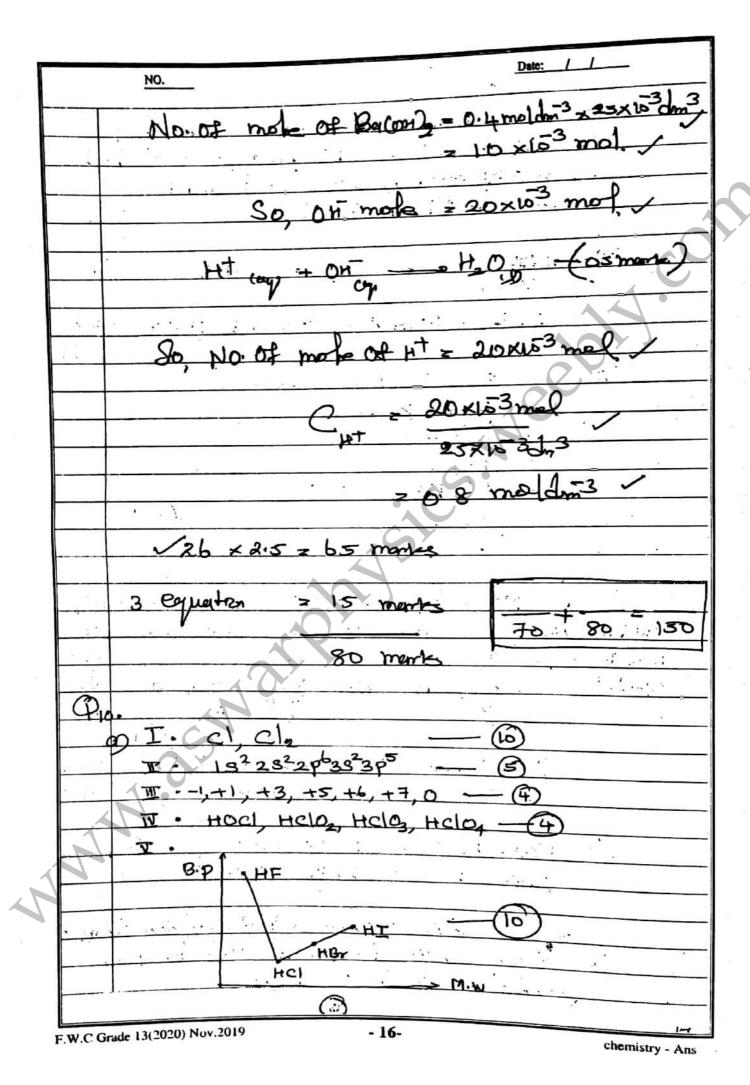

(iii) (antd) $k = \frac{R}{(x1^2)}$


= 16x 10-4 maldm-357 (0,2 maldm-3)2 (0,1 maldm3)


= \$ 0.4 mol-7 dm6 st --- 65

F.W.C Grade 13(2020) Nov.2019

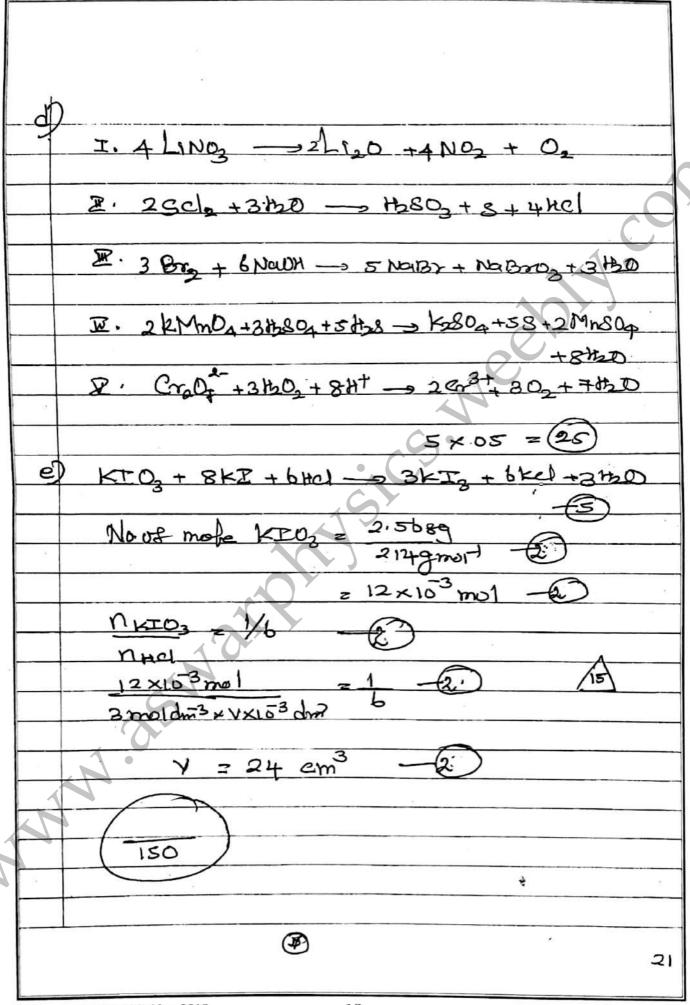



F.W.C Grade 13(2020) Nov.2019

- 13 -

chemistry - Ans

	NO.	Date: / /
0		
Q _q	a) I. Ag+, Fe3+, C204	, NO.
	II. K1- A9.0	×6- Agol
	X2- FC (OY)3	XI- Callos
	x3 - A9.8203	×8- Ca(HCO3)2
	Xs - [Fecsen)Cr	×9- CaCaOq
,		70 × 3
		14×05 = 70 montes]
	b) mal	
	b) molar mass of AgB	2 1 88 gmel
	male of Agran	2 3.7619
	0,0	1889mar 1
		= 2×10-3 mol /
	So, mole of Br =	= 2×103 mol /
	<u></u>	= 2×103mol
		25×103dm3 ,
		O S I TOTOM
	5.50 + 6 Mn 0 + 28H+ -> 6	Mn + + 5802 + 141207
	2 Mn0, +8H+ C20, 2	Mnet + 2002 + 4120
		Clo max 'ss)
		0.3 molam3 20x 103 dm3
-		bx10-3 mol
		4
F.W.C C	Grade 13(2020) Nov.2019 - 14 -	chemistry - Ans



<u>NO.</u>	Date: / /
As molecule must be	
Inc coses P. I. 174	ge increases boiling point
D. Organial	HE boiling point is higher
than expected bear	auso Of A-bonding
to tupon HR mol	eculos. (10)
VI. CALL SOL	
VI . 8 NH3 + 30/2 -	-3 No + 6 HC/ -(5)
	= 11-al , 41ada (a) a
SCI2 + BROOK -	5 Nacl + Naclos + 3 150
	glesing worter serfe
Papar Produ	ztsU
plastres	
dyes	
+extites	
· medicines	
b) Na 0 Mag m	Has sia Rais sos eba
Tugo F	
	+3 +4 +5 +6 +7 P NC C C C
B	Weak A A
	A 28×1 = (28)
I - Donne No	C- Nestwork considert c- Covalant
	n-Amphoteore A-Acrare
. The selection	
	9

C6H50H + H20 = C6H50 + H30+ -3 RCOOH + H20 = PCOOT + H30+ -0 The equilibrium point of the above equilibrium is more sufshifted towards the right side relative to the Corresponding equilibrium attained by the phends The reason for this is that the stabilization of the Corbonylate ion relative to the combonyline acid is greater than the stabilization us the phenoxite ion relative to phenol. Both the comboxylate ton and Carbouytre autilized by reasonance as in the aue of phenoxite son and phenole. The stabilization of the combosylate amon by reasonance is greater than the stabilization of the aird because unlike in the aud there is no change sepation into Masononie Sincture as The higher actify of the ambaylic acids Can be explained by the fact that the Carboxylate ron 18 orygon arton stabilized by the delocalization of the negative change between two equivalent electronegative oxygen offens in Contract to the delocalization of the regarding

Change on oxygen and carbon adong in (4) phenoxide annon.

F.W.C Grade 13(2020) Nov.2019

F.W.C Grade 13(2020) Nov.2019

- 19 -

chemistry - Ans