සියලුම ගිමිකම් ඇවිටිනි / முழுப் பதிப்புரிமையுடையது / All rights Reserved

පළාත් අධ්නපන දෙපාර්තමේන්තුව, නැගෙනහිර පළාත Dirational solution of Education, Eastern Province

අධ්නයන පොදු සහතික පතු (උසස් පෙළ) විතාගයල 2019

கல்விப் பொதுத் தராதரப் பத்திர (உயர்தர) மாதிரிப் பரீட்சை 2019

General Certificate of Education (Adv.Level) Model Examination - 2019

ದංයුක්ත ගණතය -

இணைந்த கணிதம் - I

Combined Mathematics - I

10 T I

පැය තුනයි Three Hours

03 மணித்தியாலம்

மேலதிக வாசிப்பு நேரம் - 10 நிமிடங்கள்

(10)) இணைந்த	கணிதம் I
பகுதி	வினா எண்	புள்ளிகள்
	01	
	02	
	03	
	04	
Α	05	
	06	
	07	
	08	
	09	
	10	
	11	
	12	
	13	
В	14	
	15	
	16	
	17	
	மொத்தம்	

[பக்கம் 2 ஐப் பார்க்க]

1)	$[\lambda+1][x^2-$	-bx] =	: [λ -	- 1][ax - c] என்ற	இரு	படிச்	Ŧ	மன்பாட்டின்	மூலங்கள்	α, β	ஆகும்,
	$\alpha + \beta = 0$	எனின்,	λ =	$\frac{a-b}{a+b}$	எனக்	காட்டுக.	இங்கு	λ≠	-1	ஆகும்.			
				u + v									

				•••••		•••••••						• • • • • • • • • • • • • • • • • • • •	*********
		••••••	•••••	•••••	••••••	••••••							*******
		•••••	••••••	•••••	••••••	•••••••		••••••					
		••••••	•••••	•••••	•••••	••••••			•••••				
	***************************************	•••••	••••••	•••••				••••••	•••••				***********
	***************************************	•••••••	•••••	•••••	············	•••••			•••••	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	••••••
	***************************************	••••••	•••••	••••••	••••••	•••••	•••••		•••••			••••••	••••••
	***************************************	••••••	•••••	••••••	••••••	••••••		••••••	•••••		• • • • • • • • • • • • • • • • • • • •	••••••	***********
	***************************************	••••••	•••••	•••••		•••••		•••••	•••••			••••••	
	•••••	••••••••	••••••	••••••		•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •		••••••	
	••••••	••••••	••••••	••••••	•••••	•••••	•••••	•••••	•••••	••••••	•••••••••••••••••••••••••••••••••••••••	••••••	•••••
	•••••	••••••	••••••	••••••	•••••	•••••	•••••	•••••	•••••	••••••	••••••	••••••	••••••
2)	$\frac{1}{x-3} > \frac{1}{2-x}$		·······		 Sir A		······	•••••	•••••	••••••••••	•••••	••••••	••••••
-,	x-3 $2-x$	orounou,	۸ ٤	291001	0113-31 6 0)	76VICS CSII 60	ЮГФ.						
		••••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••		••••••	••••••	
		•••••••	•••••	••••••	••••••	••••••	•••••		•••••	•••••		•••••	
	••••••	••••••	•••••	••••••	••••••	••••••	•••••	•••••	•••••			•••••	
	•••••	••••••	•••••	••••••		••••••	•••••	•••••	•••••		•••••	•••••	
	•••••••••	••••••	•••••	••••••	•••••	••••••		•••••	•••••	••••••		•••••	
	••••••••	••••••	•••••	••••••	•••••		•••••••	•••••	•••••			•••••	
	••••••		•••••	•••••	•••••	•••••••	••••••	•••••			•••••		
	••••••	••••••	•••••	•••••	•••••			••••••	•••••				
	•••••••••	••••••	•••••	•••••	•••••		•••••	••••••					
	••••••••	•••••••	•••••	••••••	•••••	••••••	•••••	•••••	••••				
	***************************************	••••••	•••••			••••••		•••••	•••••		•••••		
	***************************************	••••••	••••••	••••••	•••••		••••••	••••••	•••••				
	••••••	••••••	•••••	••••••	•••••								
	******************	••••••	•••••	••••••									
	*****************		•••••		••••••	•••••••	• • • • • • • • • • • • • • • • • • • •	•••••	••••		•••••		
		••••••••	••••••	•••••	••••••	••••••	••••••	••••••	• • • • • •				
2 -													

	······································
3)	$\cos^{-1}\left[\frac{x^2-y^2}{x^2+y^2}\right]=\ln a$ எனின், $\frac{dy}{dx}=\frac{y}{x}$ எனக் காட்டுக. இங்கு a மாறிலி.

.	
	$\lim_{x \to 0} \frac{8}{x^8} \left\{ 1 - \cos\left(\frac{x^2}{2}\right) - \cos\left(\frac{x^2}{4}\right) + \cos\left(\frac{x^2}{2}\right)\cos\left(\frac{x^2}{4}\right) \right\} = \frac{1}{32}$ எனக் காட்டுக.
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

5)	$f(x)=x^3+2x^2+x+2$ எனும் x இலான சார்பை $[x+2]^2$ இனால் வகுபடும்போகு பெறுப்பூருக்
5)	$f(x)=x^3+2x^2+x+2$ எனும் x இலான சார்பை $[x+2]^2$ இனால் வகுபடும்போது பெறப்படும் மீதியை வகையீட்டு அறிவை மட்டும் பயன்படுத்திக் காண்க.
5)	$f(x)=x^3+2x^2+x+2$ எனும் x இலான சார்பை $[x+2]^2$ இனால் வகுபடும்போகு பெறுப்பூருக்
5)	$f(x) = x^3 + 2x^2 + x + 2$ எனும் x இலான சார்பை $[x+2]^2$ இனால் வகுபடும்போது பெறப்படும் மீதியை வகையீட்டு அறிவை மட்டும் பயன்படுத்திக் காண்க.
5)	$f(x)=x^3+2x^2+x+2$ எனும் x இலான சார்பை $[x+2]^2$ இனால் வகுபடும்போது பெறப்படும் மீதியை வகையீட்டு அறிவை மட்டும் பயன்படுத்திக் காண்க.
5)	$f(x) = x^3 + 2x^2 + x + 2$ எனும் x இலான சார்பை $[x+2]^2$ இனால் வகுபடும்போது பெறப்படும் மீதியை வகையீட்டு அறிவை மட்டும் பயன்படுத்திக் காண்க.
5)	$f(x) = x^3 + 2x^2 + x + 2$ எனும் x இலான சார்பை $[x+2]^2$ இனால் வகுபடும்போது பெறப்படும் மீதியை வகையீட்டு அறிவை மட்டும் பயன்படுத்திக் காண்க.
5)	$f(x) = x^3 + 2x^2 + x + 2$ எனும் x இலான சார்பை $[x + 2]^2$ இனால் வகுபடும்போது பெறப்படும் மீதியை வகையீட்டு அறிவை மட்டும் பயன்படுத்திக் காண்க.
5)	$f(x) = x^3 + 2x^2 + x + 2$ எனும் x இலான சார்பை $[x+2]^2$ இனால் வகுபடும்போது பெறப்படும் மீதியை வகையீட்டு அறிவை மட்டும் பயன்படுத்திக் காண்க.
5)	ர(x) = x³ + 2x² + x + 2 எனும் x இலான சார்பை [x + 2]² இனால் வகுபடும்போது பெறப்படும் மீதியை வகையீட்டு அறிவை மட்டும் பயன்படுத்திக் காண்க.
5)	$f(x) = x^3 + 2x^2 + x + 2$ எனும் x இலான சார்பை $[x + 2]^2$ இனால் வகுபடும்போது பெறப்படும் மீதியை வகையீட்டு அறிவை மட்டும் பயன்படுத்திக் காண்க.
5)	ர(x) = x³ + 2x² + x + 2 எனும் x இலான சார்பை [x + 2]² இனால் வகுபடும்போது பெறப்படும் மீதியை வகையீட்டு அறிவை மட்டும் பயன்படுத்திக் காண்க.
5)	$f(x) = x^3 + 2x^2 + x + 2$ எனும் x இலான சார்பை $[x + 2]^2$ இனால் வகுபடும்போது பெறப்படும் மீதியை வகையீட்டு அறிவை மட்டும் பயன்படுத்திக் காண்க.
5)	ர(x) = x³ + 2x² + x + 2 எனும் x இலான சார்பை [x + 2]² இனால் வகுபடும்போது பெறப்படும் மீதியை வகையீட்டு அறிவை மட்டும் பயன்படுத்திக் காண்க.
5)	f(x) = x ³ + 2x ² + x + 2 எனும் x இலான சார்பை [x + 2] ² இனால் வகுபடும்போது பெறப்படும் மீதியை வகையீட்டு அறிவை மட்டும் பயன்படுத்திக் காண்க.
5)	f(x) = x ³ + 2x ² + x + 2 எனும் x இலான சார்பை [x + 2] ² இனால் வகுபடும்போது பெறப்படும் மீதியை வகையீட்டு அறிவை மட்டும் பயன்படுத்திக் காண்க.
5)	ர(x) = x³ + 2x² + x + 2 எனும் x இலான சார்பை [x + 2]² இனால் வகுபடும்போது பெறப்படும் மீதியை வகையீட்டு அறிவை மட்டும் பயன்படுத்திக் காண்க.

	•••••••••••••••••••••••••••••••••••••••

6)	$\frac{3x-1}{(1-x^2)(x+2)}$ இனைப் பகுதிப்பின்னமாக்குக.
	(1 - x -) (x + 2)
	•••••••••••••••••••••••••••••••••••••••
	•••••••••••••••••••••••••••••••••••••••
-35	•••••••••••••••••••••••••••••••••••••••
	•••••••••••••••••••••••••••••••••••••••
	•••••••••••••••••••••••••••••••••••••••
	•••••••••••••••••••••••••••••••••••••••
	•••••••••••••••••••••••••••••••••••••••

ښد	$a\in\mathbb{R}^+$ ஓர் மாறிலி. இதில் இருந்து வகையிடுக. இங்கு $a\in\mathbb{R}^+$ ஓர் மாறிலி. இதில் இருந்து
7)	
	$\int \frac{1}{a+x^2} dx$ ஐக் காண்க.
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
-5	•

	······································

8)	வளையி ஒன்றின் பரமானச் சமன்பாடு $x=t^2$, $y=2t-1$ ஆகும். $t=2$ இல் வளையியிற்கு
8)	
8)	வளையி ஒன்றின் பரமானச் சமன்பாடு $x=t^2$, $y=2t-1$ ஆகும். $t=2$ இல் வளையியிற்கு
8)	வளையி ஒன்றின் பரமானச் சமன்பாடு $x=t^2$, $y=2t-1$ ஆகும். $t=2$ இல் வளையியிற்கு வரையப்பட்ட செவ்வனின் சமன்பாட்டைக் காண்க.
8)	வளையி ஒன்றின் பரமானச் சமன்பாடு $x=t^2$, $y=2t-1$ ஆகும். $t=2$ இல் வளையியிற்கு வரையப்பட்ட செவ்வனின் சமன்பாட்டைக் காண்க.
8)	வளையி ஒன்றின் பரமானச் சமன்பாடு $x=t^2$, $y=2t-1$ ஆகும். $t=2$ இல் வளையியிற்கு வரையப்பட்ட செவ்வனின் சமன்பாட்டைக் காண்க.
8)	வளையி ஒன்றின் பரமானச் சமன்பாடு $x=t^2$, $y=2t-1$ ஆகும். $t=2$ இல் வளையியிற்கு வரையப்பட்ட செவ்வனின் சமன்பாட்டைக் காண்க.
8)	வளையி ஒன்றின் பரமானச் சமன்பாடு $x=t^2$, $y=2t-1$ ஆகும். $t=2$ இல் வளையியிற்கு வரையப்பட்ட செவ்வனின் சமன்பாட்டைக் காண்க.
8)	வளையி ஒன்றின் பரமானச் சமன்பாடு $x=t^2$, $y=2t-1$ ஆகும். $t=2$ இல் வளையியிற்கு வரையப்பட்ட செவ்வனின் சமன்பாட்டைக் காண்க.
8)	வளைபி ஒன்றின் பரமானச் சமன்பாடு $x=t^2$, $y=2t-1$ ஆகும். $t=2$ இல் வளைபியிற்கு வரையப்பட்ட செவ்வனின் சமன்பாட்டைக் காண்க.
8)	வளையி ஒன்றின் பரமானச் சமன்பாடு $x=t^2$, $y=2t-1$ ஆகும். $t=2$ இல் வளையியிற்கு வரையப்பட்ட செவ்வனின் சமன்பாட்டைக் காண்க.
8)	வளைபி ஒன்றின் பரமானச் சமன்பாடு $x=t^2$, $y=2t-1$ ஆகும். $t=2$ இல் வளைபியிற்கு வரையப்பட்ட செவ்வனின் சமன்பாட்டைக் காண்க.
8)	வளையி ஒன்றின் பரமானச் சமன்பாடு $x=t^2$, $y=2t-1$ ஆகும். $t=2$ இல் வளையியிற்கு வரையப்பட்ட செவ்வனின் சமன்பாட்டைக் காண்க.
8)	வளையி ஒன்றின் பரமானச் சமன்பாடு $x=t^2$, $y=2t-1$ ஆகும். $t=2$ இல் வளையியிற்கு வரையப்பட்ட செவ்வனின் சமன்பாட்டைக் காண்க.
8)	வளையி ஒன்றின் பரமானச் சமன்பாடு $x=t^2$, $y=2t-1$ ஆகும். $t=2$ இல் வளையியிற்கு வரையப்பட்ட செவ்வனின் சமன்பாட்டைக் காண்க.
8)	வளைபி ஒன்றின் பரமானச் சமன்பாடு $x=t^2$, $y=2t-1$ ஆகும். $t=2$ இல் வளைபியிற்கு வரைபப்பட்ட செவ்வனின் சமன்பாட்டைக் காண்க.
8)	வளையி ஒன்றின் பரமானச் சமன்பாடு $x=t^2$, $y=2t-1$ ஆகும். $t=2$ இல் வளையியிற்கு வரையப்பட்ட செவ்வனின் சமன்பாட்டைக் காண்க.

9)	y=2x+3 என்ற கோட்டிற்கு செங்குத்தாகவும், அக் கோட்டிலுள்ள $(1,5)$ என்ற புள்ளிக்கூடாகவும்
	செல்லும் நேர்கோடானது $x-9y=0$ என்ற கோட்டை A யில் சந்திப்பின் A யின் ஆள்கூற்றைக்
	காண்க.
1	
1	

,		
,		١
		١
10)	$artheta$ என்பது நான்காம் கால் வட்டத்தில் இருக்கும் போது $\cot^2 artheta = 4$ ஐத் திருப்தி செய்யும் எனின்,	
;	$\frac{1}{\sqrt{5}}[\sec \vartheta - \csc \vartheta] = \frac{3}{2}$ எனக் காட்டுக.	

	······	
		
		
	······································	
	•••••••••••••••••••••••••••••••••••••••	
	······································	

uகுதி B

11)

(a) $a,b \in \mathbb{Z}^+$ ஆக இருக்கையில் $f(x) = x^3 - \left(\frac{3b-1}{a}\right)x^2 + \frac{b}{a}x - \frac{1}{a}$ ஆகும். f(x) ஐ $\left(x^2 - \frac{5}{6}x + \frac{1}{6}\right)$ இனால் வகுக்க மீதி 0 எனின், a,b இனைக் காண்க.

மேலும், இதிலிருந்து அல்லது வேறுவிதமாக $\left\{\frac{f(x)}{\left(x-\frac{1}{2}\right)}+\frac{f(x)}{\left(x-\frac{1}{3}\right)}\right\}$ இன் ஒரு காரணி $\left(x-\frac{5}{12}\right)$ என உய்த்தறிக.

- (b) சமன்பாடு $a(x^2+1)=x(a^2+1)$ இன் மூலங்கள் α , β இங்கு $a\neq 0$ உம், $|a|\neq 1$ உம் ஆகும்.
 - (i) மேற்படி சமன்பாடானது பொருந்தும் மூலங்களை கொண்டிருக்காது எனக் காட்டுக.
 - (\ddot{u}) $\alpha^2 + \beta^2$, $\alpha^3 + \beta^3$ ஐ α யின் சார்பில் தருக.
 - (\ddot{u}) $\alpha^4 + \beta^4 = a^4 + \frac{1}{a^4}$ எனக் காட்டுக

இம் முடிவுகளைப் பயன்படுத்துவதன் மூலம் $(\alpha^3 + \alpha^4)$, $(\beta^3 + \beta^4)$ ஐ மூலங்களாகக் கொண்ட இருபடிச்சமன்பாடு $x^2 - (a^{\lambda} + a^{-\lambda} + a^{\mu} + a^{-\mu})x + (2 + a^{\gamma} + a^{-\gamma}) = 0$ எனின், λ, μ, γ இனைக் காண்க. $(\lambda, \mu, \gamma \in \mathbb{R})$

12)

 $oldsymbol{(a)} y = |4x-3|$ இன் வரைபை வரைக. இதிலிருந்து, y = -|4x-3| இன் வரைபை வரைக. ஒரே உருவில் y = |2x|-3 , y = -|4x-3| ஆகியவற்றின் வரைபுகளை வரைக.

இதிலிருந்து அல்லது வேறுவிதமாக |4x-3|+2|x|<3 ஐத் திருப்தியாக்கும் x இன் மெய்ப் பெறுமான தொடையைக் காண்க.

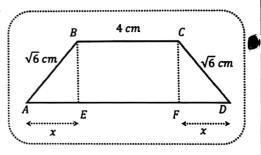
மேலும், |2x-3|+|x|<3 ஐத் திருப்தியாக்கும் x இன் மெய்ப் பெறுமான தொடையை உய்த்தறிக.

- (b) $(3 + \sqrt{8})^{x^2 x + 1} + (3 \sqrt{8})^{x^2 x 1} = \frac{2}{3 \sqrt{8}}$ இனைத் தீர்க்க.
- (c) $a,b \in \mathbb{R}^+$, $a,b \neq 1$ ஆகும் போது $\log_a b = \frac{1}{\log_b a}$ எனக் காட்டுக. இதிலிருந்து, $x = 1 + \log_a bc$, $y = 1 + \log_b ac$, $z = 1 + \log_c ab$ எனின், xyz = xy + yz + zx எனக் காட்டுக.

13)

- (a) $\lim_{\theta \to 0} \frac{2\left[\sqrt{3}\sin\left(\frac{\pi}{6} + \theta\right) \cos\left(\frac{\pi}{6} + \theta\right)\right]}{\sqrt{3}\theta\left(\sqrt{3}\cos\theta \sin\theta\right)} = \frac{4}{3} \text{ Gravis.} \text{ Seri-Bis.}$
- (b) $y = \frac{1}{4} \{x^2 \tan(x^2) + \ln|\cos(x^2)|\}$ எனின், $\left(\frac{dy}{dx}\right) [1 + \cos(2x^2)] = x^3$ எனக் காட்டுக.
- (c) $y = \sqrt{1 + \sqrt{x}}$ என்க. (x > 0)

(i)
$$y \frac{dy}{dx} = \frac{x^{-\frac{1}{2}}}{4}$$
 எனவும்,


(ü)
$$y \frac{d^2y}{dx^2} = -\frac{x^{-\frac{3}{2}}}{16} \left[\frac{2\sqrt{x} + 3x}{x + \sqrt{x}} \right]$$
 எனவும் காட்டுக.

இதிலிருந்து $\left[\frac{d^2y}{dx^2}\right]_{x=4} = -\frac{1}{48}$ எனவும் காட்டுக.

$$(d)$$
 $x=\cos 2\vartheta$ எனும் பிரதியீட்டைப் பயன்படுத்தி $y=\sin\left[2\tan^{-1}\left(\sqrt{\frac{1-x}{1+x}}\right)
ight]$ எனின், $\frac{dy}{dx}=\frac{-x}{\sqrt{1-x^2}}$ எனக் காட்டுக.

14)

- (a) $y = \frac{2x-1}{(x-3)^2}$ என இருக்க $x \neq 3$ இற்கு $y' = -\frac{2(x+2)}{(x-3)^3}$ இனால் தரப்படுகிறதெனக் காட்டுக. $x \neq 3$ இற்கு $y'' = \frac{4x+18}{(x-3)^4}$ எனத் தரப்பட்டுள்ளது. அணுகுகோடு, திரும்பற்புள்ளி, விபத்திப் புள்ளிகளைக் காட்டுவதன் மூலம் $y = \frac{2x-1}{(x-3)^2}$ இன் வரைபை பருமட்டாக வரைக.
- (b) தரப்பட்டுள்ள உருவில் ABCD ஆனது BC,AD ஆகியன அதன் சமாந்தரப் பக்கங்களாக உள்ள ஒரு சரிவகமாகும். சென்ரிமீற்றரில் அளக்கப்படும் அதன் பக்கங்களின் B0 கள் B0 கள்கு B0 கள் B0 கள் B0 கள்கள் கள் ஆகம்.

BE, CF ஆகியன முறையே B,C ஆகிய உச்சிகளிலிருந்து பக்கம் AD யிற்கு வரையப்பட்டுள்ள செங்குத்துகளாகும்.

சரிவகம் ABCD யின் பரப்பளவு A(x) ஆனது $A(x) = [4+x]\sqrt{6-x^2}$ இனால் சதுர சென்ரிமீற்றரில் தரப்படுகிறதெனக் காட்டுக.

சரிவகம் ABCD யின் பரப்பளவு A(x) ஆனது உயர்ந்தபட்சமாக இருக்கத்தக்கதாக x இன் பெறுமானத்தைக் காண்க.

15)

- (a) $\int \frac{1}{x(x+1)^2} dx$ எனின், பகுதிப்பின்ன முறைமுலம் தொகையிடுக.
- (b) பகுதிகளாக தொகையிடல் மூலம் $\int x \tan^{-1}(x+1) dx$ ஐக் காண்க.
- (c) $I = \int \frac{\sec^2 x}{(\sec x + \tan x)^n} dx$ எனக் கொள்வோம். (n > 1) $\sec x + \tan x = t$ எனும் பிரதியீட்டைப் பயன்படுத்தி $I = \frac{1}{2} \left[-\frac{1}{(n+1)} \cdot \frac{1}{t^{n+1}} \frac{1}{(n-1)} \cdot \frac{1}{t^{n-1}} \right] + C$ எனக் காட்டுக. இங்கு C எதேச்சை மாறிலி. இதிலிருந்து, $\int_0^{\frac{\pi}{2}} \frac{\sec^2 x}{(\sec x + \tan x)^4} dx$ ஐக் காண்க.

- 16) $P(x_0,y_0)$ என்னும் புள்ளியினூடு செல்கின்ற படித்திறன் m ஐ உடைய நேர்கோட்டிலுள்ள யாதுமொரு புள்ளியின் ஆள்கூறு $[x_0+t,y_0+mt]$ என்னும் வடிவில் எழுதலாம் எனக் காட்டுக. இங்கு t- பரமானம். A,C என்பன முறையே (5,-1),(-2,0) என்னும் புள்ளிகளாகும் AC யின் செங்குத்து இருகூறாக்கி மீதுள்ளபுள்ளி P இன் ஆள்கூறுகளை மேலே காட்டியவாறு பரமானம் t இல் காண்க. இதிலிருந்து,
 - (i) A,B,C,D என்பன ஒரு சதுரத்தின் உச்சிகளாக இருப்பின் B,D என்பவற்றின் ஆள்கூறுகளைக் காண்க.
 - (\ddot{u}) A , $B^{'}$, C , $D^{'}$ என்பன 50 சதுர அலகுப் பரப்புக் கொண்ட ஒழுங்காக எடுக்கப்பட்ட சா**ய்**சதுர உச்சிகளாக இருப்பின் $B^{'}$, $D^{'}$ என்பவற்றின் ஆள்சுறுகளைக் காண்க.

17)

- a) $2 \tan^{-1} x + \tan^{-1} (x+1) = \frac{\pi}{2}$ ஐத் தீர்க்க. இதிலிருந்து $\cos \left\{ \frac{\pi}{4} \frac{1}{2} \tan^{-1} \left(\frac{4}{3} \right) \right\} = \frac{3}{\sqrt{10}}$ எனக் காட்டுக.
- $f(x) = \cos x + \sin x$ எனக் கொள்வோம். f(x) ஐ $A\cos(x-\alpha)$ எனும் வடிவில் தருக. இங்கு A,α துணியப்படவேண்டிய மாறிலிகள். இதிலிருந்து அல்லது வேறுவிதமாக $-\frac{5\pi}{4} \le x \le \frac{7\pi}{4}$ இற்கு $f(x) = \cos x + \sin x$ இன் பரும்படிப் படத்தை வரைக. மேலும், $f(x) = \cos x + \sin x + 2$ எனும் வரைபை உய்த்தறிந்து வரைக.
- c) வழமையான குறியீடுகளுடன் யாதுமொரு Δ ABC யிற்கு sin விதியைக் கூறுக. மேலும், ஒரு Δ ABC யிற்கு வழமையான குறிப்பீட்டில் $an\left(\frac{B-C}{2}\right) = \left(\frac{b-c}{b+c}\right)\left(\frac{1+\cos A}{\sin A}\right)$ எனக் காட்டுக.

இதிலிருந்து, $b=\sqrt{3}c$, $\hat{A}=rac{\pi}{6}$ ஆக

- (i) △ ABC ஓர் விரிகோண முக்கோணம் எனவும்,
- (ü) ∆ ABC ஓர் இருசமபக்க முக்கோணம் எனவும் காட்டுக.

සියලුම ගිමිකම් ඇවිටිනි / முழுப் பதிப்புரிலையுடையது / All rights Reserved

පළාත් අධ්පාපන දෙපාර්තමේන්තුව, නැගෙනහිර පළාත மாகாணக் கல்வித் திணைக்களம், கிழக்கு மாகாணம் Provincial Department of Education, Eastern Province

අධ්නයන පොදු සහතික පතු (උසස් පෙළ) විභාගයල 2019

கல்விப் பொதுத் தராதரப் பத்திர (உயர்தர) மாதிரிப் பரீட்சை 2019

General Certificate of Education (Adv.Level) Model Examination - 2019

සංයුක්ත ගණතය

இணைந்த கணிதம் - II

Combined Mathematics - II

 $\mathbf{\Pi}$

පැය තුනයි Three Hours

03 மணித்தியாலம்

மேலதிக வாசிப்பு நேரம் - 10 நிமிடங்கள் Additional Reading Time - 10 minutes

அறிவுறுத்தல்கள்

பகுதி A எல்லா வினாக்களுக்கும், பகுதி B விரும்பிய 5 வினாக்களுக்கும் விடையளிக்குக

(10)) இணைந்த க	கணிதம் II
பகுதி	வினா எண்	புள்ளிகள்
	01	
	02	
	03	
	04	
A	05	
	06	
	07	
	08	
	09	
	10	
	11	
	12	
	13	
	14	
В	15	
	16	
	17	
	மொத்தம்	

[பக்கம் 2 ஐப் பார்க்க]

1)	3m திணிவுடைய ஒரு துணிக்கை A ஒரு கிடை மேசை மீது நேர் கோட்டில் இயங்கி m
	திணிவுடைய பிறிதொரு துணிக்கை B யுடன் மோதுகிறது. மோதலுக்கு சற்று முன்பு அவற்றின்
	கதிகள் முறையே 2u ,u ஒன்றையொன்று நோக்கி மோதலினால் அவை ஒன்றிணைந்து <i>C</i> எனும்
	துணிக்கையை உ ருவாக்குகிறது எனின், மொத்தலின் பின்னர் <i>C</i> யினது வேகத்தையும்,
	மொத்தலினால் ஏற்பட்ட இயக்க சக்தி நட்டத்தையும் காண்க.
	,
	ஒரு துணிக்கையானது நிலைக்குத்தாக மேல் நோக்கி u வேகத்துடன் எறியப்படுகிறது. நேரம்
	$t\left(<rac{u}{g} ight)$ இன் பின்னர், அதே புள்ளியிலிருந்து இன்னோர் துணிக்கை, அதே வேகத்துடன்
	நிலைக்குத்தாக மேல் நோக்கி எறியப்படுகிறது. இரு துணிக்கைகளினதும் இயக்கதிற்கான வேக –
	நேர வரைபுகளை ஒரே அச்சுக்களில் வரைக. இதிலிருந்து, இரு துணிக்கைகளும் சந்திக்கும் போது
	அவற்றின் கதிகள் $rac{gt}{2}$ எனக் காட்டுக.
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	······································
	······································

*	

1	
2\	
3)	உற்பத்தி O பற்றி A,B,C,D யின் தானக் காவிகள் முறையே $\underline{i}+\underline{j}$, $2\underline{i}+3\underline{j}$, $p\underline{i}+2j$, $\underline{i}+qj$
	உற்பத்தி O பற்றி A,B,C,D யின் தானக் காவிகள் முறையே $\underline{i}+\underline{j}$, $2\underline{i}+3\underline{j}$, $p\underline{i}+2\underline{j}$, $\underline{i}+q\underline{j}$ ஆகும். $ABCD$ ஒரு இணைகரம் எனத் தரப்படின் p யினதும், q யினதும் பெறுமானங்களைக்
	உற்பத்தி 0 பற்றி A,B,C,D யின் தானக் காவிகள் முறையே ட்+ j , 2ட் + 3 j , pட் + 2 j , ட் + q j ஆகும். ABCD ஒரு இணைகரம் எனத் தரப்படின் p யினதும், q யினதும் பெறுமானங்களைக் காண்க.
	உற்பத்தி 0 பற்றி A,B,C,D யின் தானக் காவிகள் முறையே ட்+ j , 2ட் + 3 j , pட் + 2 j , ட் + q j ஆகும். ABCD ஒரு இணைகரம் எனத் தரப்படின் p யினதும், q யினதும் பெறுமானங்களைக் காண்க.
	உற்பத்தி 0 பற்றி A,B,C,D யின் தானக் காவிகள் முறையே ட்+ j , 2ட் + 3 j , pட் + 2 j , ட் + q j ஆகும். ABCD ஒரு இணைகரம் எனத் தரப்படின் p யினதும், q யினதும் பெறுமானங்களைக் காண்க.
	உற்பத்தி 0 பற்றி A,B,C,D யின் தானக் காவிகள் முறையே ட்+ j , 2ட் + 3 j , pட் + 2 j , ட் + q j ஆகும். ABCD ஒரு இணைகரம் எனத் தரப்படின் p யினதும், q யினதும் பெறுமானங்களைக் காண்க.
	உற்பத்தி 0 பற்றி A,B,C,D யின் தானக் காவிகள் முறையே ட்+ j , 2ட் + 3 j , pட் + 2 j , ட் + q j ஆகும். ABCD ஒரு இணைகரம் எனத் தரப்படின் p யினதும், q யினதும் பெறுமானங்களைக் காண்க.
	உற்பத்தி 0 பற்றி A,B,C,D யின் தானக் காவிகள் முறையே <u>i</u> + <u>j</u> , 2 <u>i</u> + 3 <u>j</u> , <u>pi</u> + 2 <u>j</u> , <u>i</u> + <u>qj</u> ஆகும். ABCD ஒரு இணைகரம் எனத் தரப்படின் p யினதும், q யினதும் பெறுமானங்களைக் காண்க.
	உற்பத்தி 0 பற்றி <i>A,B,C,D</i> யின் தானக் காவிகள் முறையே <u>i</u> + <u>j</u> , 2 <u>i</u> + 3 <u>j</u> , p <u>i</u> + 2 <u>j</u> , <u>i</u> + <i>q</i> <u>j</u> ஆகும். <i>ABCD</i> ஒரு இணைகரம் எனத் தரப்படின் p யினதும், q யினதும் பெறுமானங்களைக் காண்க.
	உற்பத்தி 0 பற்றி A,B,C,D யின் தானக் காவிகள் முறையே ட்+ j , 2ட் + 3 j , pட் + 2 j , ட் + q j ஆகும். ABCD ஒரு இணைகரம் எனத் தரப்படின் p யினதும், q யினதும் பெறுமானங்களைக் காண்க.
	உற்பத்தி O பற்றி A,B,C,D யின் தானக் காவிகள் முறையே ட்+ j , 2 ட் + 3 j , p ட் + 2 j , ட் + q j ஆகும். ABCD ஒரு இணைகரம் எனத் தரப்படின் p யினதும், q யினதும் பெறுமானங்களைக் காண்க.
	உற்பத்தி <i>O</i> பற்றி <i>A,B,C,D</i> யின் தானக் காவிகள் முறையே <u>i</u> + <u>j</u> , 2 <u>i</u> + 3 <u>j</u> , p <u>i</u> + 2 <u>j</u> , <u>i</u> + q <u>j</u> ஆகும். <i>ABCD</i> ஒரு இணைகரம் எனத் தரப்படின் p யினதும், q யினதும் பெறுமானங்களைக் காண்க.
	உற்பத்தி O பற்றி A,B,C,D யின் தானக் காவிகள் முறையே ட்+ j , 2 ட் + 3 j , p ட் + 2 j , ட் + q j ஆகும். ABCD ஒரு இணைகரம் எனத் தரப்படின் p யினதும், q யினதும் பெறுமானங்களைக் காண்க.
	உற்பத்தி 0 பற்றி A,B,C,D யின் தானக் காவிகள் முறையே <u>i</u> + <u>j</u> , 2 <u>i</u> + 3 <u>j</u> , p <u>i</u> + 2 <u>j</u> , <u>i</u> + q <u>j</u> ஆகும். ABCD ஒரு இணைகரம் எனத் தரப்படின் p யினதும், q யினதும் பெறுமானங்களைக் காண்க.
	உற்பத்தி 0 பற்றி A,B,C,D யின் தானக் காவிகள் முறையே <u>i</u> + <u>j</u> , 2 <u>i</u> + 3 <u>j</u> , p <u>i</u> + 2 <u>j</u> , <u>i</u> + q <u>j</u> ஆகும். ABCD ஒரு இணைகரம் எனத் தரப்படின் p யினதும், q யினதும் பெறுமானங்களைக் காண்க.
	உற்பத்தி O பற்றி A,B,C,D யின் தானக் காவிகள் முறையே ட்+ j , 2 ட் + 3 j , p ட் + 2 j , ட் + q j ஆகும். ABCD ஒரு இணைகரம் எனத் தரப்படின் p யினதும், q யினதும் பெறுமானங்களைக் காண்க.

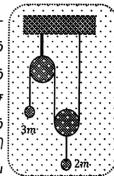
4)	ஒரு துணிக்கையானது и வேகத்துடன் கிடையுடன் α கோணத்தை ஆக்குமாறு எறியப்படுகிறது.	
	துணிக்கை ஆ ரம்ப திசைக்கு செங்குத்தாக இயங்கும் போது அது செய்ற நி <i>ணைய</i> ்றத்து உயரம் ு	
	துணிக்கை ஆரம்ப திசைக்கு செங்குத்தாக இயங்கும் போது அது சென்ற நிலைக்குத்து உயரம் $\frac{u^2}{2g}[1-\cot^2\alpha]$ எனக் காட்டுக. இங்கு g ஆனது புவியீர்பு ஆர்முடுகல் ஆகும்.	
		١
		"[
		þ
	······································	

கிடைத்தளத்திற்கு மேலே ஒரு இலேசான கப்பி தனது அச்சு கிடையாக இருக்குமாறு தொங்கவிடப்பட்டிருப்பதை உருகாட்டுகிறது. $2m$, $M(>2m)$ என்னும் இரு திணிவுகள் ஒரு கப்பியின் மேலாகச் செல்லும் மீழ்தன்மையற்ற நீளா இழையொன்றின் இரு முனைகளுக்கு இணைக்கப்பட்டு தொகுதி ஓய்விலிருந்து விடப்படுகிறது எனின், திணிவு M இனது ஆர்முடுகல் $\frac{(M-2m)g}{M+2m}$ எனக் காட்டுக.
கிடையுடன் α கோணத்தை ஆக்குகின்ற ஒரு பாதையில் ஒரு சிறுவன், மேல்நோக்கி உயர்வேக

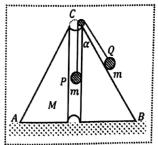
தி	ळीड	4 6	0 k	:g .	- 866	தம்.	B	ωπι	ட்டா	ர் ்	ഖഒ	ற்டி	யிஎ	नं (வலு	y 4	100	w	ஆ	,கவ	பும்,	Q	ЭШе	க்கத்	த்திற்	றகா	ன	தன	DL	10 N
				எனி					00																					
																														വൻജ
			ഖ	ண்ட	8	ய்வ	பிற்		ഖന്ദ്ര	நம்	Сī	5ரத்	தை	க்	கா	छ्णं ह	Б. ((&	இங்(த	புவ	إكسان	74	ஆ	ர்மு	டுக	ல்	<i>g</i> =	= 10	ms ⁻
ஆ (கும்	.)																												
••••	• • • • • •		••••	•••••	••••	••••	••••	••••	*****	•••••	•••••	•••••	••••	••••	•••••	••••	•••••	•••••		••••	•••••	• • • •	•••••	•••••	••••	••••	••••	•••••	••••	• • • • • • • • • • • • • • • • • • • •
••••	•••••	••••	•••••		•••••	•••••	••••	••••	•••••	•••••	••••	•••••	•••••	••••	•••••	••••	•••••	••••		•••••	••••	• • • • •			•••••	••••	•••••	•••••	•••••	
••••	•••••	••••	•••••	•••••	•••••	•••••	••••	••••	•••••	••••	••••	•••••	•••••	••••		••••		••••	•••••	••••	••••	••••	•••••		••••	•••••		•••••	•••••	••••••
••••	••••	•••••	•••••	•••••	•••••	••••	••••	••••	•••••	••••	••••	•••••	•••••	••••	••••	••••	••••	••••	•••••	••••	••••	••••	••••		••••	•••••	•••••	••••	•••••	•••••
•••••	•••••	••••	•••••	•••••	•••••	••••	• • • • •	••••	•••••	•••••	••••	•••••	•••••	••••	•••••	•••••	••••		•••••	•••••	••••	••••		•••••	••••	•••••	•••••	•••••	•••••	•••••
••••	•••••	••••	••••	•••••	•••••	••••	••••	••••	•••••	••••	••••	•••••	•••••	••••	•••••	••••	••••	••••	·····	••••	••••	••••			••••	•••••		•••••	•••••	••••••
••••	••••	•••••	•••••	•••••		••••	••••			••••		•••••	•••••	••••	•••••	••••	••••	••••		••••	••••	••••	•••••		••••	• • • • •			•••••	••••••
•••••	••••	•••••	•••••	•••••	•••••	••••	••••	••••		•••••	•••••	•••••	•••••	••••	•••••	••••	••••	•••••			••••	••••	•••••	•••••	•••••	• • • • •	•••••	••••	•••••	••••••
••••	• • • • •	•••••	••••	•••••	•••••	••••	••••		•••••	••••	•••••	•••••	•••••	••••			••••					••••	•••••		••••	•••••	•••••	•••••	•••••	••••••
••••	••••	•••••	••••	•••••			•••••	•••••	•••••	••••	•••••	•••••	•••••	••••	••••	•••••	••••	••••		••••	•••••	••••	•••••	••••	••••	••••		••••	•••••	
••••	••••	•••••	•••••	•••••	•••••	••••	• • • • •	•••••		•••••	•••••			••••	••••	•••••	••••	••••		••••	•••••	•••••	•••••	••••	••••	•••••	•••••	•••••	•••••	
••••	•••••	•••••	•••••								•••••			••••			••••	••••				•••••		•••••	••••	•••••	•••••	•••••	••••	•••••
••••	•••••	•••••	••••	•••••		••••	•••••	•••••	•••••			•••••	•••••	••••	•••••		••••	••••		••••	••••	••••	•••••	••••	•••••	•••••	•••••	•••••	••••	
••••	• • • • •	•••••	•••••	•••••				••••		•••••				••••	••••		••••	••••			••••	•••••	•••••	••••	•••••		•••••	•••••	••••	•••••
••••		•••••	••••	•••••							••••	•••••	•••••		•••••		••••	••••				••••	••••	••••	•••••	•••••	•••••		••••	•••••
••••	••••	••••		•••••							••••	•••••		••••	•••••			••••	•••••		•••••	••••	•••••	••••	••••			•••••		
	• • • • •				• • • • • •	•••••		•••••							•••••	•••••	•••••		•••••	•••••	•••••	•••••			•••••	•••••	•••••		•••••	
	•••••	•••••	•••••											•••••		•••••	•••••	•••••				•••••	•••••	•••••		•••••	•••••	•••••	•••••	
	•••••		•••••					•••••	•••••					•••••		•••••		•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••		•••••	•••••	•••••	•••••
									•••••	•••••	•••••	•••••		••••	•••••	•••••			•••••	•••••	•••••	•••••	•••••	•••••				•••••		
•••••	•••••							•••••									•••••	•••••												
••••							••••														••••		••••				•••••			
							••••								•••••		••••	•••••		••••	•••••			•••••	•••••	•••••	•••••			
AB	எ	ள்ப	5 J	ஒ ரு	£	ரற்ற	, (3 æn	ால்	AB	۶ ر	அத	ळा	£ц	<u>ر</u>	ρை	ன	A	கி	டை	ЩL	ன்.	α	Œ	ыта	ரத்	தில்	ச	ாய்	ந்துள்
ஓர்																										•	•		-	மீத
	_																						170							யம்
		_																												என்
				ன (,	L	υı	9	أرائط	ופטר	w		ш	니에	படு	ත්ත	ı Æ	wi	αD	0100
- nice	שַׁפּיי	لأبه	,0011	·	J-001		W	الب	5010	יישרי	٠ ,	عال ا	ina.																	0
*****	•••••	•••••	••••	•••••	•••••	•••••		••••	••••	•••••	••••	••••	••••	••••	••••	•••••	••••	••••	••••	•••••	•••••	•••••	••••	••••	••••	••••		•••••	*****	
	•••••	••••			••••	•••••	••••	••••	•••••	•••••	••••	•••••	••••	••••	••••	••••	••••	••••		••••	••••	•••••	••••	••••	••••	••••		••••		
,,,,,,	••••	••••	••••		•••••	•••••	••••	••••	•••••	•••••	••••	•••••	••••	••••	•••••	••••	••••	••••	•••••	••••	••••	••••	••••	•••••	••••	••••	•••••	••••		

9) தீரான ஆர்முடுகலுடன் இயங்கும் ஒரு கார் தன் இயக்கத்தின் பொழுது அடுத்தடுத்த மூன்று சமநேர இடை பெளிகளில் p,q,r மீற்றர் தூரங்களைக் கடத்துகின்றது எனின், p = 2q - r எனக் காட்டுக.			
9) சீரான ஆர்முடுகலுடன் இயங்கும் ஒரு கார் தன் இயக்கத்தின் பொழுது அடுத்தடுத்த மூன்று சமநேர இடைவெளிகளில் p,q,r மிற்றர் தூரங்களைக் கடத்துகின்றது எனின், p = 2q - r எனக் காட்டுக.			
9) சீரான ஆர்முடுகலுடன் இயங்கும் ஒரு கார் தன் இயக்கத்தின் பொழுது அடுத்தடுத்த மூன்று சமநேர இடைவெளிகளில் p,q,r மீற்றர் தூரங்களைக் கடத்துகின்றது எனின், p = 2q - r எனக் காட்டுக.			
9) சீரான ஆர்முடுகலுடன் இயங்கும் ஒரு கார் தன் இயக்கத்தின் பொழுது அடுத்தடுத்த முன்று சமநேர இடைவெளிகளில் p,q,r மீற்றர் தூரங்களைக் கடத்துகின்றது எனின், p = 2q - r எனக் காட்டுக.			
9) சீரான ஆர்முடுகலுடன் இயங்கும் ஒரு கார் தன் இயக்கத்தின் பொழுது அடுத்தடுத்த மூன்று சமநேர இடைவெளிகளில் p.q.r மீற்றர் தூரங்களைக் கடத்துகின்றது எனின், p = 2q - r எனக் காட்டுக.			
9) சீரான ஆர்முடுகலுடன் இயங்கும் ஒரு கார் தன் இயக்கத்தின் பொழுது அடுத்தடுத்த மூன்று சமநேர இடைவெளிகளில் p,q,r மீற்றர் தூரங்களைக் கடத்துகின்றது எனின், p = 2q - r எனக் காட்டுக.			
9) சீரான ஆர்முடுகலுடன் இயங்கும் ஒரு கார் தன் இயக்கத்தின் பொழுது அடுத்தடுத்த மூன்று சமநேர இடைவெளிகளில் p,q,r மீற்றர் தூரங்களைக் கடத்துகின்றது எனின், p = 2q - r எனக் காட்டுக.			
9) சீரான ஆர்முடுகலுடன் இயங்கும் ஒரு கார் தன் இயக்கத்தின் பொழுது அடுத்தடுத்த மூன்று சமநேர இடைவெளிகளில் p,q,r மீற்றர் தூரங்களைக் கடத்துகின்றது எனின், p = 2q - r எனக் காட்டுக.			
9) சீரான ஆர்முடுகலுடன் இயங்கும் ஒரு கார் தன் இயக்கத்தின் பொழுது அடுத்தடுத்த மூன்று சமநேர இடைவெளிகளில் p,q,r மீற்றர் தூரங்களைக் கடத்துகின்றது எனின், p = 2q - r எனக் காட்டுக.			
9) சீரான ஆர்முடுகலுடன் இயங்கும் ஒரு கார் தன் இயக்கத்தின் பொழுது அடுத்தடுத்த மூன்று சமநேர இடைவெளிகளில் p,q,r மீற்றர் தூரங்களைக் கடத்துகின்றது எனின், p = 2q - r எனக் காட்டுக.			
9) சீரான ஆர்முடுகலுடன் இயங்கும் ஒரு கார் தன் இயக்கத்தின் பொழுது அடுத்தடுத்த மூன்று சமநேர இடைவெளிகளில் p,q,r மீற்றர் தூரங்களைக் கடத்துகின்றது எனின், p = 2q - r எனக் காட்டுக.			
9) சீரான ஆர்முடுகலுடன் இயங்கும் ஒரு கார் தன் இயக்கத்தின் பொழுது அடுத்தடுத்த மூன்று சமநேர இடைவெளிகளில் p,q,r மீற்றர் தூரங்களைக் கடத்துகின்றது எனின், p = 2q - r எனக் காட்டுக.			
9) சீரான ஆர்முடுகலுடன் இயங்கும் ஒரு கார் தன் இயக்கத்தின் பொழுது அடுத்தடுத்த மூன்று சமநேர இடைவெளிகளில் p,q,r மீற்றர் தூரங்களைக் கடத்துகின்றது எனின், p = 2q - r எனக் காட்டுக.			
9) சீரான ஆர்முடுகலுடன் இயங்கும் ஒரு கார் தன் இயக்கத்தின் பொழுது அடுத்தடுத்த மூன்று சமநேர இடைவெளிகளில் p,q,r மீற்றர் தூரங்களைக் கடத்துகின்றது எனின், p = 2q - r எனக் காட்டுக.			
இடைவெளிகளில் p,q,r மீற்றர் தூரங்களைக் கடத்துகின்றது எனின், p = 2q - r எனக் காட்டுக.			
	9		
		இடைவெளிகளில் p,q,r மீற்றர் தூரங்களைக் கடத்துகின்றது எனின், $p=2q-r$ எனக் காட்டுக.	1
			•
			1
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			

٠,						
				·····		
		•••••				
			••••••			
				•••••		
(0)	0) $\left(3\underline{i}+4\underline{j}\right)ms^{-1}$ எனும் இ	வகத்தில்	பயணிக்கும்	கப்பலிலுள்ள	பிரயாணிக்கு	ஒருபடகானது
	0) $\left(3\underline{i}+4\underline{j} ight)ms^{-1}$ எனும் சே $\left(2\underline{i}-5\underline{j} ight)ms^{-1}$ வேகத்துடன்	செல்வதாக	த் தோன்றுகிற	கு. படகின் உ	ன் மை வேகம்	என்ன? .
						•••••
				•••••		
					•••••	
			,			
			•••••			
					•••••	
					••••••	
					•••••	
			••••••		•••••	
					••••••	
		••••••				
			•••••••			
		•••••••••••				
		•••••••	•••••			
		••••••	••••••			
		••••••		••••••		
	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•••••	• • • • • • • • • • • • • • • • • • • •			


uகுதி B

11)


- (a) ஒரு புகையிரதம் v எனும் மாறா வேகத்துடன் ஓடிக்கொண்டிருக்கும் போது A என்னும் இடத்தில் பெட்டி ஒன்று கழன்று விடுகிறது. பாதைத் தடை காரணமாக பெட்டியானது F எனும் சீரான அமர்முடுகலுக்குட்படுகிறது. அதே வேளை புகையிரதம் f எனும் சீரான ஆர்முடுகலைப் பெறுகிறது. பெட்டி கழன்று t நேரத்தின் பின்னர் பெட்டி கழன்றதை உணர்ந்த புகையிரதச் சாரதி உடனடியாக தடுப்புக்களைப் பிரயோகித்து சீரான f எனும் அமர்முடுகலுடன் சென்று B யில் ஓய்வடைகிறது. இரண்டினதும் வேக- நேர வரைபுகளை ஒரே வரிப்படத்தில் வரைக. இதிலிருந்து,
 - (i) நேரம் t யில் புகையிரதத்தின் கதி v+ft எனக் காட்டுக.
 - (\ddot{u}) A யில் இருந்து புகையிரதம் இயங்கிய தூரம் $\frac{1}{2}\Big(2v+ft+rac{(v+ft)^2}{f}\Big)$ எனக் காட்டுக.
 - (iii) புகையிரதம் ஓய்வடைந்து எவ்வளவு நேரத்தின் பின் பெட்டி ஓய்வடையும்.
- (b) சீரான ஆர்முடுகலுடன் நேர்கோட்டில் இயங்கும் துணிக்கையொன்று அடுத்துவரும் t₁, t₂, t₃ எனும் நேர இடைவெளிகளில் முறையே a, b, c தூரங்களைக் கடக்கிறது. இதன் இயக்கத்திற்கான வேக நேர வரைபுகளை ஒரே வரிப்படத்தில் வரைக. இதிலிருந்து,
 - (i) துணிக்கையின் ஆர்முடுகல் $\frac{2(bt_1-at_2)}{t_1t_2(t_1+t_2)}$ எனக் காட்டுக
 - (\ddot{u}) துணிக்கை ஒவ்வொரு நேர இடைவெளியிலும் அது சென்ற துாரங்கள் சமனாயின், $rac{1}{t_1} rac{1}{t_2} + rac{1}{t_3} = rac{3}{t_1 + t_2 + t_3}$ எனக் காட்டுக.

12)

(a) ஒரு நிலையான ஒப்பமான கப்பிக்கு மேலாகச் செல்கின்ற இலேசான நீட்ட நுனியில் திணிவு 3mமுடியாத இழை ஒன்று ஒரு ജ ஒரு திணிவு 2mகாவுகிறது. இழை துணிக்கையைக் ஒரு காவுகின்ற ஒப்பமான இலேசான கப்பியின் கீழாகச் துணிக்கையைக் ஓர் நுனி உருவில் இழையின் மற்றய காண்படுகின்றவாறு ஒரு செல்கிறது. இணைக்கப்பட்டுள்ள<u>து</u>. இத் பாவுகையுடன் சீலிங்குடன் தொகுதி புவியீர்ப்பின் கீழ்ச் சுயாதீனமாக இயங்குகிறது. இழையிலுள்ள இழுவை காண்க.

(b) அரை உச்சிக்கோணம் lpha உடைய ஒரு நேர்வட்ட M திணிவுடைய திண்ம கூம்பு உச்சி *C* ஐ கொண்டது. *C* ஊடாக மையக் குறுக்கு வெட்டின் அடி AB ஆகும். C யினூடாக கூம்பின் அச்சை அச்சாகக் சிறு அழுத்தமான வடிவமான துவாரம் கொண்ட <u>உ ന്വ</u>തെണ சும்பின் ABஅடித்தளம் ஒரு அழுத்தமான அமை<u>ந்த</u>ுள்ளது. கிடைத்தளத்தோடு பொருந்துமாறு வைக்கப்பட்டுள்ளது.

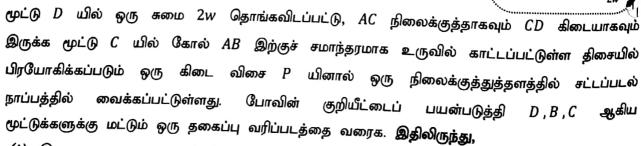
P,Q ஒவ்வொனறும் m திணிவுள்ள இரு துணிக்கைகள் ஒரு இலேசான நீளா இழையினால் இணைக்கப்பட்டு P துவாரத்தினுள்ளும், Q ஆனது BC யில் இருக்கவும் C யில் பொருத்தப்பட்ட

இலேசான ஒரு சிறு கப்பியின் உதவியுடன் இணைக்கப்பட்டுள்ளன. இங்கு *CP* என்ற பகுதி நிலைக்குத்தாக உள்ளது.

- (i) தொகுதி ஓய்வில் இருந்து இயங்கவிடப்படின் கூம்பின் ஆர்முடுகல் $\left\{\frac{(1-\coslpha)\sinlpha}{\frac{2M}{m}+4-\sin^2lpha}\right\}g$ எனக் காட்டுக.
- (ü) P,Q வில் ஆப்பினால் உஞற்றப்படும் மறுதாக்கங்களை காண்க

13)

(a) O எனும் புள்ளியில் இருந்து ஒரு துணிக்கை v வேகத்துடன் α ஏற்றக் கோணத்தில் புவியீர்ப்பின் கீழ் எறியப்படுகிறது. O வில் இருந்து அதன் மட்டத்தில் 2a துாரத்தில் அடிக்கிறது. O வில் இருந்து அதன் மட்டத்தில் a துாரத்தில் b என்னும் அதி உயர் உயரத்தை அடைகிறது. $\tan \alpha = \frac{2b}{a}$ எனவும், $v^2 = \frac{g}{2b}(4b^2 + a^2)$ எனக் காட்டுக.


O குறித்து அதன் பாதையில் ஒரு புள்ளி (x,y) எனின், $y=rac{2b}{a}x-rac{b}{a^2}x^2$ எனக் காட்டுக. $y=-p(x-q)^2+r$ எனும் வடிவில் மாற்றுக. இங்கு p,q,r கணிக்கப்படவேண்டிய மாறிலிகள். அத்துடன் $BP^2\stackrel{\iota}{=}rac{b^2}{a^4}(x-a)^4-rac{2b^2}{a^2}(x-a)^2+(x-a)^2+b^2$ எனக் காட்டுக.

- இங்கு $B\equiv(a,0), P\equiv(x,y)$ ஆகும். மேலும், x இன் எல்லாப் பெறுமானங்களிற்கும் $BP\geq b$ எனின், $b\geq \frac{a}{\sqrt{2}}$ எனக் காட்டுக.
 - (b) கிழக்கு நோக்கி v வேகத்துடன் செல்லும் கப்பலுக்கு காற்று தெற்கில் இருந்து வீசுவது போல் தோன்றுகின்றது. கப்பலின் வேகம் இரட்டிக்கப்பட்ட போது காற்று வட மேற்கே வீசுவது போல தோன்றுகின்றது. இரு சார்பு வேக முக்கோணிகளையும் ஒரே படத்தில் வரைந்து காற்றின் வேகத்தையும், திசையையும் காண்க.
- 14)
 (α) 1500 kg திணிவுடைய ஒரு கார், 500 kg திணிவுடைய ஒரு வண்டியை இழுத்துச் செல்கிறது.
 அவை ஒரு கிடைத்தரையில் செல்லும் போது கார் ஆனது 4100 N உஞற்று விசையை பயன்படுத்துகிறது. காரிற்கும், வண்டிக்கும் உரிய தடைவிசைகள் முறையே 800 N, 300 N எனின்,
 - (i) காரின் ஆர்முடுகல்
 - (ü) கார், வண்டி இணைப்பில் உள்ள இழுவிசையைக் காண்க.
 - (iii) தற்போது கிடையுடன் $\sin^{-1}\left(rac{1}{8}
 ight)$ சரிவுடைய பாதையில் அவை மேல்நோக்கி செல்லும் போது தடைவிசைகள் மாறவில்லை எனக் கொண்டு கதி $10\ ms^{-1}$ இல் இருந்து $20\ ms^{-1}$ ஆக மாற $16\ sec$ எடுத்தது எனின், அவற்றின் கதி $15\ ms^{-1}$ ஆக உள்ள போது காரின் எஞ்சின் உஞற்றும் வலுவைக் காண்க. (இங்கு $g=10\ ms^{-2}$ ஆகும்.)

- (b) A, B என்பன முறையே m, em திணிவுள்ள ஒரே அளவான இரு கோளங்கள் ஆகும். இவை ஒப்பமான கிடைத்தரையின் மீது வைக்கப்பட்டுள்ளன. இங்கு e என்பது A, B என்பவற்றுக் கிடையே உள்ள மீளமைவுக்குணகம். (0 < e < 1) ஆரம்பத்தில் இரு கோளங்களும் ஒரே திசையில், ஒரே நேர்கோட்டில் முறையே u, eu எனும் வேகங்களுடன் இயங்கி ஒன்றுடன் ஒன்று மோதுகின்றன.
 - (i) மோதுகைளின் பின் A யின் வேகம் $(1-e+e^2)u$ எனவும், B யின் வேகம் e ஐ சார்ந்தது அல்ல எனவும் காட்டுக.
 - (**ü**) மோதுகையின் போது, B யினால் A மீது ஏற்படுத்தப்படும் கணத்தாக்கு $\frac{6}{25}mu$ எனின்_{, e} இற்கு இருக்கக்கூடிய பெறுமானத்தைக் காண்க.
- 15)
 (α) ஒவ்வொன்றும் நீளம் 2α ஐ உடைய AB,BC என்னும் இரு சீரான கோல்கள் B யில் ஒப்பமாக மூட்டப்பட்டுள்ளன. கோல் AB யின் நிறை w வும் BC யின் நிறை 2w வும் ஆகும். முனை A ஒரு நிலைத்த புள்ளியுடன் ஒப்பமாகப் பிணைக்கப்பட்டுள்ளது.

AB,BC ஆகிய கோல்கள் கீழ்முக நிலைக்குத்துடன் முறையே α , β என்னும் கோணங்களை ஆக்கிக்கொண்டிருக்க இத்தொகுதி ஒரு நிலைக்குத்துத் தளத்தில் உருவிற் காட்டப்பட்டுள்ளவாறு β யில் BC யிற்குச் செங்குத்தான ஒரு திசையில் பிரயோகிக்கும் ஒரு விசை $\frac{w}{2}$ இனால் நாப்பத்தில் வைக்கப்படுகிறது. $\beta = \frac{\pi}{6}$ எனக் காட்டி, மூட்டு B யில் கோல் AB ஆனது BC மீது உஞற்றும் மறுதாக்கத்தின் கிடைக் கூறையும், நிலைக்குத்துத் கூறையும் காண்க. அத்துடன் $\tan \alpha = \frac{\sqrt{3}}{9}$ எனக் காட்டுக.

(b) உருவிற் காட்டப்பட்டுள்ள சட்டப்படல் அவற்றின் முனைகளில் ஒப்பமாக மூட்டப்பட்ட AB, BC, BD, DC, AC என்னும் ஐந்து இலேசான கோல்களைக் கொண்டுள்ளது. இங்கு AB = CB = a, CD = 2a, $B\hat{A}C = \frac{\pi}{6}$ எனத் தரப்பட்டுள்ளது. சட்டப்படல் A யில் ஒரு நிலைத்த புள்ளியுடன் ஒப்பமாகப் பிணைக்கப்பட்டுள்ளது.

- (i) இழுவைகளா, உதைப்புக்களா என எடுத்துரைத்து ஐந்து கோல்களிலும் உள்ள தகைப்புக்களையும்
- (ü) P யின் பெறுமானத்தையும் காண்க.

- (a) OACB ஓர் இணைகரம் எனவும், D ஆனது AC மீது AD:DC=2:1 ஆக இருக்கத்தக்கதாக உள்ள புள்ளி எனவும் கொள்வோம். O பற்றி A,B ஆகிய புள்ளிகளின் தானக் காவிகள் முறையே $\gamma \underline{a}$, \underline{b} ஆகும். இங்கு $\gamma>0$ ஆகும். \overrightarrow{OC} , \overrightarrow{BD} ஆகிய காவிகளை \underline{a} , \underline{b} , γ ஆகியவற்றில் எடுத்துரைக்க. இப்போது \overrightarrow{OC} ஆனது \overrightarrow{BD} இற்குச் செங்குத்தானதெனக் கொள்வோம். $3|\underline{a}|^2\gamma^2+2(\underline{a}\cdot\underline{b})\gamma-|b|^2=0$ எனக் காட்டி, $|\underline{a}|=|\underline{b}|$ ஆகவும், $A\widehat{O}B=\frac{\pi}{3}$ ஆகவும் இருப்பின், γ இன் பெறுமானத்தைக் காண்க.
- (b) மையம் O ஆகவும் ஒரு பக்கத்தின் நீளம் 2a ஆகவும் உள்ள ஓர் ஒழுங்கான அறுகோணி ABCDEF இன் தளத்தில் உள்ள மூன்று விசைகளை ஒரு தொகுதி கொண்டுள்ளது. உற்பத்தி O இலும் Ox அச்சு \overrightarrow{OB} வழியேயும் Oy அச்சு \overrightarrow{OH} வழியேயும் இருக்க விசைகளும் அவற்றின் தாக்கப் புள்ளிகளும் வழக்கமான குறியீட்டில் அட்டவணையில் காட்டப்பட்டுள்ளன. இங்கு H ஆனது CD இன் நடுப்புள்ளியாகும். (p நியூற்றனிலும் a மீற்றரிலும் அளக்கப்படுகின்றன.)

, தாக்கப் புள்ளி	தானக் காவி	விசை
A	$a\underline{i} - \sqrt{3}a\underline{j}$	$3p\underline{i} + \sqrt{3}p\underline{j}$
С	$a\underline{i} + \sqrt{3}a\underline{j}$	$-3p\underline{i} + \sqrt{3}p\underline{j}$
E	−2a <u>i</u>	–2√3pj <u></u>

இவ் புள்ளிகள், விசைகளை அறுகோணியில் குறித்துக்காட்டுக. மேலும் தொகுதி ஓர் இணைக்குச் சமவலுவுள்ளதெனக் காட்டி, இணையின் திருப்பத்தைக் காண்க.

இப்போது \overrightarrow{FE} வழியே தாக்கும் பருமன் 6p N ஐ உடைய ஒரு மேலதிக விசை இத்தொகுதியில் புகுத்தப்படுகிறது. புதிய தொகுதி ஒடுங்கும் தனி விசையின் பருமன், திசை, தாக்கக்கோடு ஆகியவற்றைக் காண்க.

- 17)
- (a) l நீளமுள்ள w நிறையுமுள்ள சீர்க்கோல் AB அதன் ஓர் முனை B ஒப்பமான நிலைக்குத்து சுவரில் தாங்கவும், மற்றைய முனை A குழிவான α ஆரையுடைய வளைந்த மேற்பரப்பில் தாங்கவும் சமநிலையில் உள்ளது (2l > a > l). இதன் மையம் O ஆனது B யிற்கு நிலைக்குத்தாக மேலுள்ளது. AB,OA என்பன கிடையுடன் ϑ,β கோணத்தை அமைப்பின்,
 - (i) tan β = 2 tan θ எனவும்,
 - (\ddot{u}) $\sin \vartheta = \sqrt{\frac{a^2 l^2}{3l^2}}$ எனவும் காட்டுக.
 - (b) 2w நிறையும், 2a நீளமும் உடைய சீரான கோல் AB யின் ஒரு முனை B கரடான நிலைக்குத்து சுவரில் தங்கவும், AB யின் நடுப்புள்ளியில் இணைத்த a நீளமுடைய நீளா இழையால் சுவரில் உள்ள புள்ளி C யில் இணைக்கப்பட்டு தாங்கவும் சமநிலையில் உள்ளது. A, C என்பன ஒரே

கிடைமட்டத்தில் உள்ள புள்ளியாகும். கோல் கிடையுடன் ஆக்கும் கோணம் θ வும், சுவருக்கும் கோலுக்கும் இடையிலான உராய்வுக்குணகம் μ உம் எனின்,

- (i) μ≥ tan ூ எனக் காட்டுக.
- (\ddot{u}) A யில் ஒரு கிடைவிசை w ஆனது AC வழியே பிரயோகிக்கப்பட்டால்
 - i. B யில் அமையும் மறுதாக்கத்தின் கிடை, நிலைக் கூறுகள் முறையே $[(1 + \tan \vartheta)w$, $w \cot \vartheta]$ எனக் காட்டுக.
 - ii. $\mu=\frac{3}{4}$ எனின், $\tan \vartheta \leq \frac{1}{2}$ எனவும் காட்டுக.

- 14 -

<u>நாகாண நட்ட பொயர்ப்பூட்</u>சை

இலைந்த கூடைகும் _ I

$$an + bn = a - b$$

$$n = \frac{a - b}{a + b}$$

$$a + b = a - b$$

$$\frac{2m-5}{(m-2)(m-3)} \stackrel{\bigcirc}{\longleftarrow} \stackrel{\bigcirc}{\longleftarrow}$$

$$\frac{2(m-5)(m-3)}{(m-2)(m-3)} \stackrel{\bigcirc}{\longleftarrow} \stackrel{\bigcirc}{\longleftarrow}$$

$$\frac{2(m-5)(m-3)}{(m-2)(m-3)} \stackrel{\bigcirc}{\longleftarrow} \stackrel{\bigcirc}{\longleftarrow} \stackrel{\bigcirc}{\longleftarrow}$$

$$\frac{2(m-5)(m-3)}{(m-2)(m-3)} \stackrel{\bigcirc}{\longleftarrow} \stackrel{\bigcirc}{\longrightarrow} \stackrel{\longrightarrow}{\longrightarrow} \stackrel{\longrightarrow}{\longrightarrow$$

$$\frac{-1}{\sqrt{1-\left(\frac{n^2-y^2}{n^2+y^2}\right)^2}} \times \left[\frac{n^2+y^2}{2m}\right] = \ln a$$

$$\frac{-1}{\sqrt{1-\left(\frac{n^2-y^2}{n^2+y^2}\right)^2}} \times \left[\frac{(n^2+y^2)(2m-2y)\frac{dy}{dm}}{(n^2+y^2)^2}\right] = 0$$

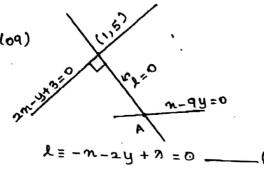
$$= 0$$

$$\frac{dy}{dn} = \frac{2n \times 2y^2}{2y \times 2n^2} = \frac{y}{n}$$

25

```
(04) \lim_{n\to 0} \frac{8}{u^2} \left[ (1-\cos(\frac{n^2}{2})) \right] - \cos(\frac{n^2}{4}) \left[ 1-\cos(\frac{n^2}{2}) \right]
     \lim_{n\to 0} \frac{8}{n^8} \left\{ \left[ 1 - \cos\left(\frac{n^2}{2}\right) \right] \left[ 1 - \cos^2\left(\frac{n^2}{4}\right) \right] \right\}  5
     \lim_{M \to 0} \frac{8}{M^2} \times 2 \sin^2(\frac{n^2}{4}) \times 2 \sin^2(\frac{n^2}{8}) \qquad \boxed{5}
= \lim_{n\to 0} 32 \times \frac{\sin^2(\frac{n^2}{4})}{16(\frac{n^2}{4})^2} \times \frac{\sin^2(\frac{n^2}{8})}{64(\frac{n^2}{8})^2}
         = 32 \times \left[ \lim_{n \to 0} \frac{\sin(n^2/4)}{(n^2/4)} \right]^2 \times \left[ \lim_{n \to 0} \frac{\sin(n^2/8)}{(n^2/8)} \right]
        25
       M=-2, -8+8-2+2 = 0 + (-2A+B)
                     n=-2, 12-8+1 = 0+ 0+ A
                    25
           BB 5m+10//----- ⑤
  \frac{3m-1}{(1-m^2)(m+2)} = \frac{3m-1}{(1-m)(1+m)(m+2)} = \frac{A}{1-m} + \frac{B}{1+m} + \frac{C}{m+2} = \frac{10}{10}
     3n-1 = A(n+1)(n+2) 1B(1-n)(n+2)+C(1-n)(1+n)
                                                                                  , 3 as attended to
                                                                                     தம் சாயாயன் 5
   n=-1; -4 = 28
                                                       n=-2;-7 =-3C
                            n=1 ; 2=6A
                                                                                     4 ELIMINAL X
```

$$\frac{3n}{(1-n^2)(n+2)} = \frac{\frac{1}{3}}{1-n} + \frac{-2}{1+n} + \frac{\frac{7}{3}}{n+2}$$


$$(1-n^2)(n+2) = \frac{1}{3} + \frac{-2}{1+n} + \frac{\frac{7}{3}}{n+2}$$

(07)
$$\frac{d\left[\sqrt{3a} + an'\left(\sqrt[4]{a}\right)\right]}{dn} = \frac{1}{\sqrt{a}} \times \frac{1}{1 + n\%} \times \frac{1}{\sqrt{a}} - \frac{10}{10}$$

$$\Rightarrow \left(d \left[\frac{1}{\sqrt{a}} + a \bar{n}' \left(\frac{\gamma}{\sqrt{a}} \right) \right] = \left(\frac{1}{a + n^2} + d n \right)$$

$$\int \frac{1}{a+m^2} dm = \frac{1}{\sqrt{a}} + \frac{1}{\sqrt{a}} + \frac{1}{\sqrt{a}} + \frac{1}{\sqrt{a}} + \frac{1}{\sqrt{a}} = \frac{1}{\sqrt{a}} + \frac{1}{\sqrt{a}} = \frac{1}{\sqrt{a}} + \frac{1}{\sqrt{a}} = \frac{1}{\sqrt{a}} + \frac{1}{\sqrt{a}} = \frac{1}{\sqrt{a}}$$

$$\frac{y-3}{n-4} = -2$$

$$y=1$$
, $n=+q$

Seco

L

านเมา

(a)
$$f(m) = n^{3} - \frac{(3b-1)}{a}n^{2} + \frac{bn}{a} - \frac{1}{a}$$

$$n^{2} - \frac{5n}{b} + \frac{1}{b} = (n - \frac{1}{2})(n - \frac{1}{3})$$

$$f(\frac{1}{2}) = \frac{1}{8} - \frac{(3b-1)}{4} + \frac{b}{2a} - \frac{1}{a} = 0$$

$$= \frac{1}{8} - \frac{3b}{4a} + \frac{b}{2a} + \frac{1}{4a} - \frac{1}{a} = 0$$

$$= \frac{1}{8} - \frac{b}{4a} - \frac{3}{4a} = 0$$

$$= \frac{1}{8} - \frac{b}{4a} - \frac{b}{4a} = 0$$

$$= \frac{1}{8} - \frac{b}{4a} = 0$$

$$= \frac{1}{8} - \frac{b}{4a} = 0$$

$$= \frac{1}{8} - \frac{1}{4a} + \frac{1}{4a} = 0$$

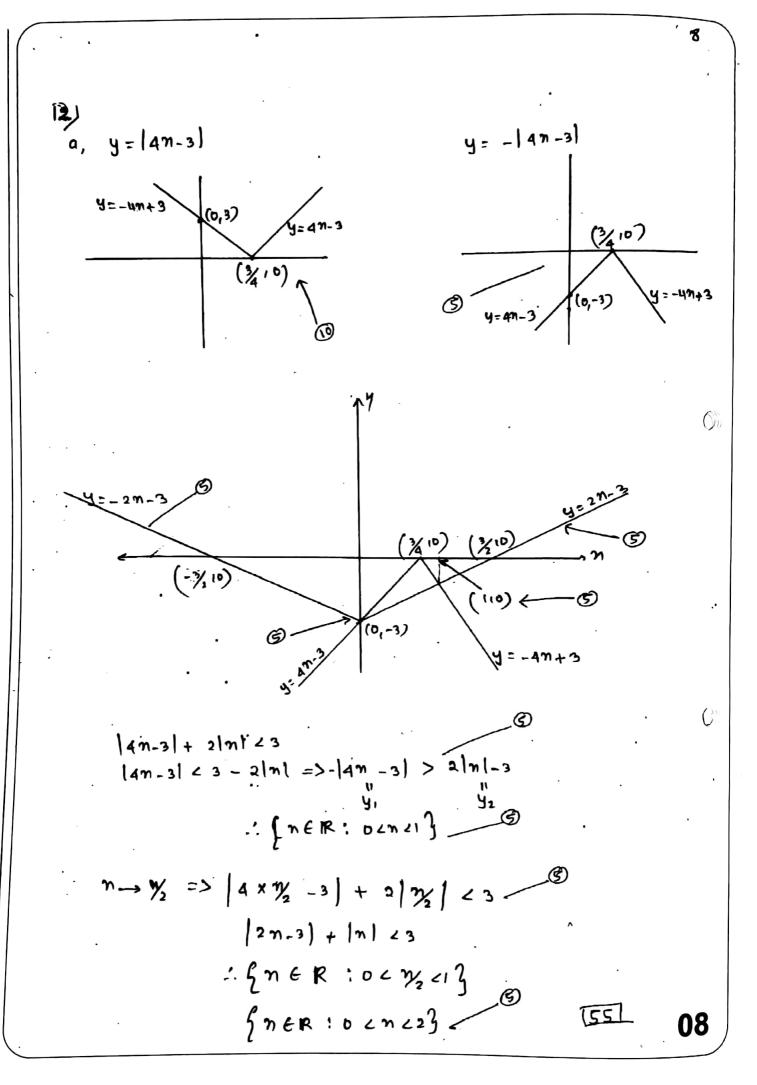
$$= \frac{1}{8} - \frac{1}{4a} +$$

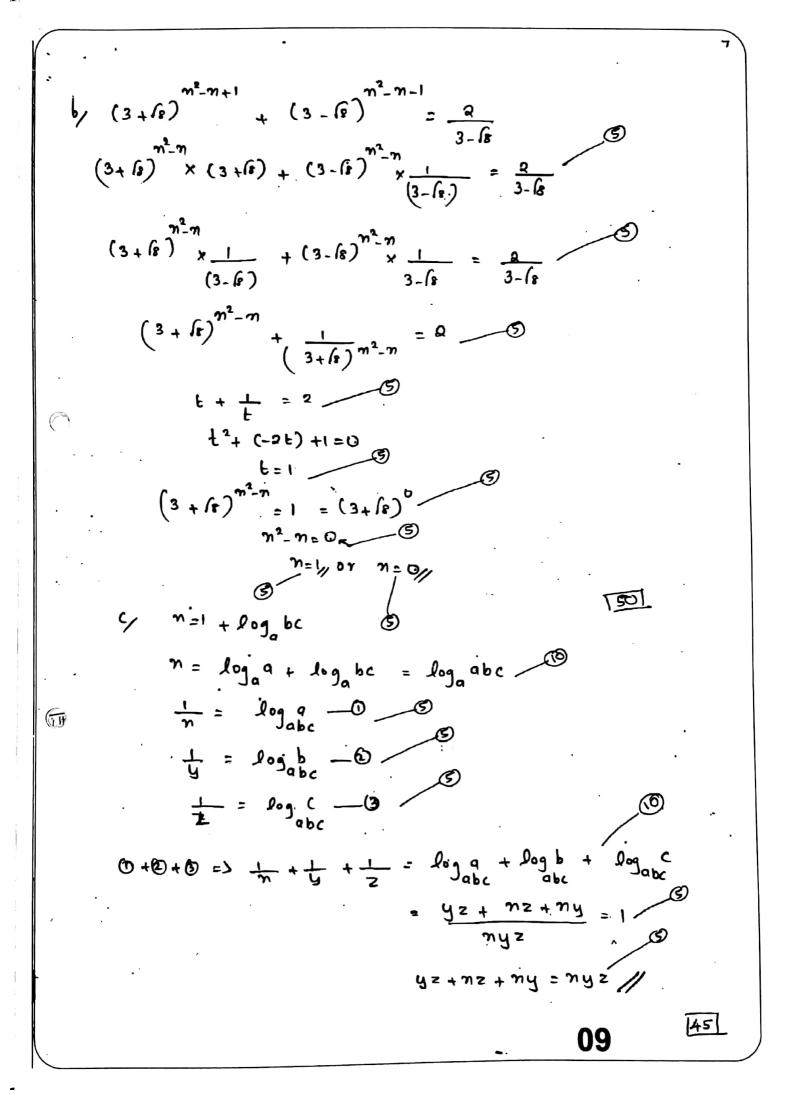
 $= a^3 + \frac{1}{a^3} + a^4 + \frac{1}{a^4}$

$$(x^{3} + x^{4})(\beta^{3} + \beta^{4}) = (\alpha\beta)^{3} + (\alpha\beta)^{4} + \alpha^{3}\beta^{4} + \alpha^{4}\beta^{3}$$

$$= 1 + 1 + 1(\alpha + \beta)$$

$$= 2 + \frac{\alpha^{2} + 1}{\alpha}$$


$$= (\alpha + 1)^{2}$$


$$= (\alpha + 1)^{2}$$

$$= (\alpha^{3} + \alpha^{4} + \frac{1}{\alpha^{3}} + \frac{1}{\alpha^{4}})^{2} + (\alpha + 1)^{2} = 0$$

$$(3)$$

(TH

9
$$\lim_{N \to \infty} \frac{1}{30} \left[\frac{\sin(\pi/+ \infty) \cos \pi/- \cos(\pi/+ \infty) \sin \pi/}{\sin \pi/ \cos \pi/} \right]$$
 $\lim_{N \to \infty} \frac{1}{30} \times \frac{\sin(0)}{\sin(\pi/-0)} \times \frac{\sin(\pi/-0)}{\sin(\pi/-0)}$
 $\lim_{N \to \infty} \frac{1}{30} \times \frac{\sin(0)}{\sin(\pi/-0)} \times \lim_{N \to \infty} \frac{1}{\sin(\pi/-0)} \times \lim_{N \to \infty} \frac{1}{\sin(\pi/-0)$

$$y \frac{du}{dn} = \frac{1}{4} \frac{\pi^{\frac{1}{2}}}{4n}$$

$$y \frac{du}{dn^{2}} + \left(\frac{du}{dn}\right)^{2} = \frac{1}{4} \frac{\pi^{\frac{1}{2}}}{2}$$

$$= -\frac{\pi^{\frac{1}{2}}}{8} - \left[\frac{\pi^{\frac{1}{2}}}{4y}\right]^{2}$$

$$= -\frac{\pi^{\frac{1}{2}}}{8} \left[2 + \frac{\pi^{\frac{1}{2}}}{1+\sqrt{\pi}}\right]$$

$$= -\frac{\pi^{\frac{1}{2}}}{16} \left[2 + \frac{\pi^{\frac{1}{2}}}{1+\sqrt{\pi}}\right]$$

$$= -\frac{\pi^{\frac{1}{2}}}{16} \left[2 + \frac{\pi^{\frac{1}{2}}}{1+\sqrt{\pi}}\right]$$

$$= -\frac{\pi^{\frac{1}{2}}}{16} \left[\frac{2 + 2\pi + 5\pi}{1 + \sqrt{\pi}}\right] = -\frac{\pi^{\frac{1}{2}}}{16} \left[\frac{2 \times 2 + 3 \times 4}{2 + \sqrt{2}}\right]$$

$$= -\frac{1}{8 \times 16} \left[\frac{2 \times 2 + 3 \times 4}{6}\right]$$

$$= -\frac{1}{8 \times 16} \left[\frac{2 \times 2 + 3 \times 4}{6}\right]$$

$$= -\frac{1}{8 \times 16} \left[\frac{2 \times 2 + 3 \times 4}{6}\right]$$

$$= -\frac{1}{8 \times 16} \left[\frac{2 \times 2 + 3 \times 4}{6}\right]$$

$$= -\frac{1}{8 \times 16} \left[\frac{2 \times 2 + 3 \times 4}{6}\right]$$

$$= -\frac{1}{8 \times 16} \left[\frac{2 \times 2 + 3 \times 4}{6}\right]$$

$$= -\frac{1}{8 \times 16} \left[\frac{2 \times 2 + 3 \times 4}{6}\right]$$

$$= -\frac{1}{8 \times 16} \left[\frac{2 \times 2 + 3 \times 4}{6}\right]$$

$$= -\frac{1}{8 \times 16} \left[\frac{2 \times 2 \times 2 \times 2}{6}\right]$$

$$= -\frac{\pi}{16} \left[\frac{2 \times 2 \times 2 \times 2}{6}\right]$$

$$= -\frac{\pi}{16} \left[\frac{2 \times 2 \times 2 \times 2}{6}\right]$$

$$= -\frac{\pi}{16} \left[\frac{2 \times 2 \times 2 \times 2}{6}\right]$$

$$= -\frac{\pi}{16} \left[\frac{3 \times 2 \times 2}{6}\right]$$

$$=$$

(B)
(a)
$$\int_{n(n+1)^2}^{1} dn \frac{1}{n(n+1)^2} = \frac{A}{n} + \frac{B}{n+1} + \frac{C}{(n+1)^2}$$

$$1 = A(m+1)^2 + B(m+1)n + Cn$$

$$n^2 \cdot 0 = A + B$$

$$m = 0 \cdot 1 = A + O$$

$$A = 1 \cdot B = -1$$

$$n = -1 \cdot 1 = -C = C = -1$$

$$= \ln |n| - \ln |m+1| - \frac{(n+1)^{-1}}{1} + C$$

b) $\int n + an^{-1}(n+1) dn$

$$= \ln |n| - \ln |m+1| - \frac{(n+1)^{-1}}{1} + C$$

$$= \frac{m^2}{2} + an^{-1}(n+1) - \frac{1}{2} \int \frac{n^2 + 2n + 2}{n^2 + 2n + 2} dn$$

$$= \frac{m^2}{2} + an^{-1}(n+1) - \frac{1}{2} \int \frac{n^2 + 2n + 2}{n^2 + 2n + 2} dn$$

$$= \frac{m^2}{2} + an^{-1}(n+1) - \frac{1}{2} \int \frac{n^2 + 2n + 2}{n^2 + 2n + 2} dn$$

$$= \frac{m^2}{2} + an^{-1}(n+1) - \frac{1}{2} \int \frac{n^2 + 2n + 2}{n^2 + 2n + 2} dn$$

$$= \frac{n^2}{2} + an^{-1}(n+1) - \frac{1}{2} \int \frac{n^2 + 2n + 2}{n^2 + 2n + 2} dn$$

$$= \frac{n^2}{2} + an^{-1}(n+1) - \frac{1}{2} \int \frac{n^2 + 2n + 2}{n^2 + 2n + 2} dn$$

$$= \frac{n^2}{2} + an^{-1}(n+1) - \frac{1}{2} \int \frac{n^2 + 2n + 2}{n^2 + 2n + 2} dn$$

$$= \frac{n^2}{2} + an^{-1}(n+1) - \frac{1}{2} \int \frac{n^2 + 2n + 2}{n^2 + 2n + 2} dn$$

$$= \frac{n^2}{2} + an^{-1}(n+1) - \frac{1}{2} \int \frac{n^2 + 2n + 2}{n^2 + 2n + 2} dn$$

$$= \frac{n^2}{2} + an^{-1}(n+1) - \frac{1}{2} \int \frac{n^2 + 2n + 2}{n^2 + 2n + 2} dn$$

$$= \frac{n^2}{2} + an^{-1}(n+1) - \frac{1}{2} \int \frac{n^2 + 2n + 2}{n^2 + 2n + 2} dn$$

$$= \frac{n^2}{2} + an^{-1}(n+1) - \frac{1}{2} \int \frac{n^2 + 2n + 2}{n^2 + 2n + 2} dn$$

$$= \frac{n^2}{2} + an^{-1}(n+1) - \frac{1}{2} \int \frac{n^2 + 2n + 2}{n^2 + 2n + 2} dn$$

$$= \frac{n^2}{2} + an^{-1}(n+1) - \frac{1}{2} \int \frac{n^2 + 2n + 2}{n^2 + 2n + 2} dn$$

$$= \frac{n^2}{2} + an^{-1}(n+1) - \frac{1}{2} \int \frac{n^2 + 2n + 2}{n^2 + 2n + 2} dn$$

$$= \frac{n^2}{2} + an^{-1}(n+1) - \frac{1}{2} \int \frac{n^2 + 2n + 2}{n^2 + 2n + 2} dn$$

$$= \frac{n^2}{2} + an^{-1}(n+1) - \frac{1}{2} \int \frac{n^2 + 2n + 2}{n^2 + 2n + 2} dn$$

$$= \frac{n^2}{2} + an^{-1}(n+1) - \frac{1}{2} \int \frac{n^2 + 2n + 2}{n^2 + 2n + 2} dn$$

$$= \frac{n^2}{2} + an^{-1}(n+1) - \frac{1}{2} \int \frac{n^2 + 2n + 2}{n^2 + 2n + 2} dn$$

$$= \frac{n^2}{2} + an^{-1}(n+1) - \frac{1}{2} \int \frac{n^2 + 2n + 2}{n^2 + 2n + 2} dn$$

$$= \frac{n^2}{2} + an^{-1}(n+1) - \frac{1}{2} \int \frac{n^2 + 2n + 2}{n^2 + 2n + 2} dn$$

$$= \frac{n^2}{2} + an^{-1}(n+1) - \frac{1}{2} \int \frac{n^2 + 2n + 2}{n^2 + 2n + 2} dn$$

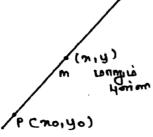
$$= \frac{n^2}{2} + an^{-1}(n+1) - \frac{1}{2} \int \frac{n^2 + 2n + 2}{n^2 + 2n + 2} dn$$

$$= \frac{n^2}{2} + an^{-1}(n+1) - \frac{1$$

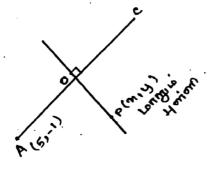
$$T = \int \frac{(\frac{1}{4} + \frac{1}{4})}{2} \times \frac{dk}{k^{n+1}}$$

$$T = \frac{1}{2} \int \left[\frac{1}{k^{n+2}} + \frac{1}{k^{n}} \right] dq$$

$$T = \frac{1}{2} \left[-\frac{1}{(n+1)} \times \frac{1}{k^{n+1}} - \frac{1}{(n-1)} \times \frac{1}{k^{n-1}} \right] + c$$


$$\int \frac{\sec^{2}n}{(\sec^{2}n + \tan^{2}n)^{4}} dn$$

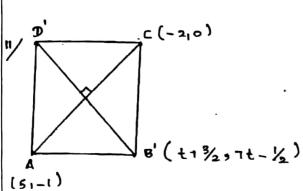
$$T = \frac{1}{2} \left[-\frac{1}{n+1} \cdot \frac{1}{k^{n+1}} - \frac{1}{(n-1)} \times \frac{1}{k^{n-1}} \right]^{\frac{n}{2}}$$


$$T = \frac{1}{2} \left[-\frac{1}{n+1} \times \frac{1}{k^{n+1}} - \frac{1}{n-1} \times \frac{1}{k^{n-1}} \right]^{\frac{n}{2}}$$

$$T = -\frac{1}{2} \left[\frac{1}{k^{n}} \times 0 - \frac{1}{k^{n}} \times 1 + \frac{1}{k^{n}} \times 0 - \frac{1}{k^{n}} \times 1 \right]$$

$$= \frac{1}{2} \left[\frac{1}{k^{n}} + \frac{1}{3} \right]$$

> multumoding House = (wolf , hother)


$$m A_{c} = \frac{1}{\epsilon} = -\frac{1}{4}$$

55

முத் படுகியவரு ந்து

$$\frac{71 + 3/2}{1 - \frac{1}{2}} \times \frac{71 - \frac{1}{2}}{1 + \frac{7}{2}} = -1$$

40

munny

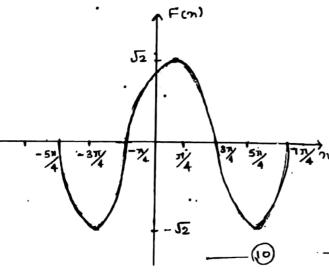
$$Ac^2 = 1^2 + (5+2)^2 = 50$$

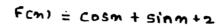
 $\Rightarrow Ac = \sqrt{50}$

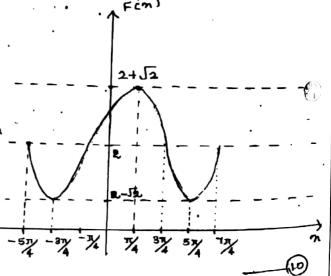
$$B = \left(\frac{5}{2}, \frac{13}{2}\right)$$

(17)(a)
$$2+an'n+1an'(m+1) = \pi/2$$

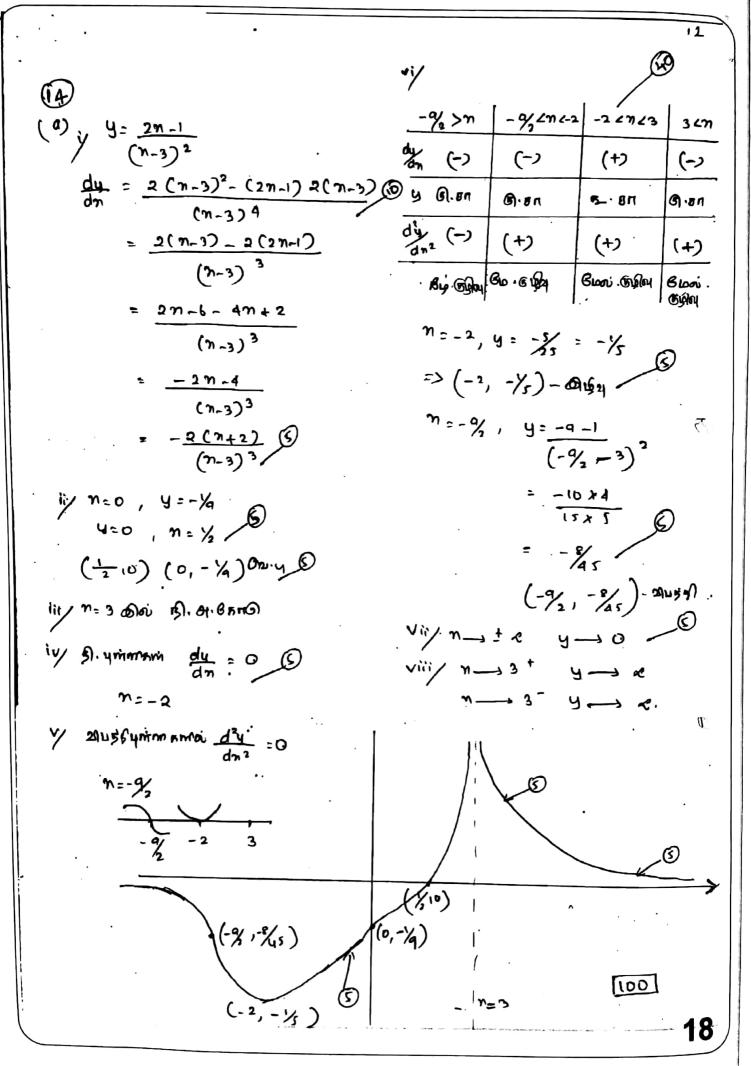
$$+an'm=2d \Rightarrow n=1and + 4an'(m+1)=\beta \Rightarrow 4n+1=1an\beta$$

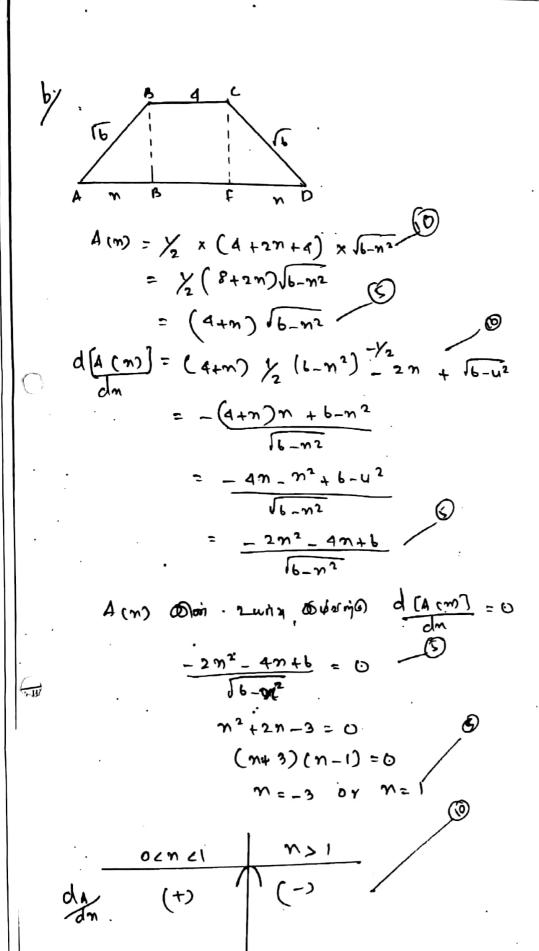

$$2d+\beta=\pi/2 - 6$$


$$2d=\frac{\pi}{2}-\beta$$


(b)
$$F(m) = \cos m + \sin m = \sqrt{2} \left[\cos \frac{\pi}{4} \cos m + \sin \frac{\pi}{4} \right]$$
 (5)
$$= \sqrt{2} \left[\cos (m - \frac{\pi}{4}) \right]$$

$$A = \sqrt{2} , d = \frac{\pi}{4}$$




(c)
$$\frac{a}{sin k} = \frac{c}{sin k} = lonts on$$
 [10)

Sin A Sin B Sin C

 $\frac{b - c}{b - c} = \frac{c}{k sin k} - k sin c}{b + c}$
 $\frac{b - c}{b + c} = \frac{k sin k}{k sin c} - k sin c}{c + c}$
 $\frac{c}{sin k} - sin c}{c + c}$
 $\frac{c}{sin k} - sin c}{c + c}$
 $\frac{c}{sin k} + sin c}{c + c}$
 $\frac{c}{c} + c + c}{c}$
 $\frac{c}{c} + c}{c}$

2000 min 2

. n= 1 Do A wing 2 wit y Oumille &.

<u>50</u>]